TU

Grazm

Leo Wirth, BSc

Internet based database laboratory

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieurin

Master's degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Nikolai Scerbakov

Institute of Interactive Systems and Data Science

Graz, May 2017

AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used other
than the declared sources/resources, and that | have explicitly indicated all ma-
terial which has been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract

Universities that want to offer a high quality of education have to provide
e-learning courses nowadays. These workshops can facilitate the participants
a lot of information and allow gaining more knowledge as in traditional ways.
All this information has to be provided interactively to support the student’s
needs. To do so, modern e-learning environments have to offer a possibility to
work on a system and get the feedback about the results immediately. This is
not always possible, but in most technical courses, where participants have to
solve tasks to learn something about the course topic, it should be done.

In this work, a system is developed to provide such an interactive role to an
existing e-learning environment called WBT-Master. This newly developed
internet based database laboratory provides the availability to directly execute
database queries from the preferred e-learning environment on a database
management system. These queries are then sent over an exchange protocol,
called simple object access protocol, to the developed service. From there the
query is executed on a database system. After the execution, the result is
returned to the calling e-learning system. The participants are able to get the
result directly after they executed the query. They do not have to wait until a
tutor checks their solutions and they get feedback. With the use of this service,
the learning rate is increased, and the managing effort is much less than in
traditional database courses. The work splits into three main chapters. In the
tirst one, the theory behind e-learning is explained. This is essential for the
planning of the internet based database system, which is done in the second
chapter. The third chapter introduces the developed system and describes how
it can be adapted and how things are realized. The system itself can be clearly
defined as a prototype because it has to be evaluated in real database courses,
to guarantee a raising learning rate and to motivate course supervisors to use
it for their systems.

Kurzfassung

Universitdten, die eine gute Ausbildung anbieten wollen, miissen in der
heutigen Zeit e-Learning-Kurse zur Verfiigung stellen. Diese Kurse sollen den
Teilnehmern eine Menge an zusitzlichen Informationen zur Verfiigung stellen,
um mehr Wissen als auf traditionellen Wegen zu generieren. Diese Unterlagen
miissen auf interaktive Art und Weise zur Verfiigung gestellt werden. Um
dies zu tun, sollten moderne e-learning Umgebungen eine Moglichkeit bieten
das Feedback sofort zu liefern. Das ist vor allem in technischen Kursen wo die
Teilnehmer Aufgaben 16sen miissen, um ihre Kenntnisse tiber das Kursthema
zu verbessern, praktisch.

In dieser Arbeit wird die Entwicklung eines Systems beschrieben, welches eine
solch interaktive Methode fiir eine bestehende e-learning Umgebung namens
WBT-Master bietet. Dieses neu entwickelte, Internet-basierende Datenban-
klabor bietet die Moglichkeit, Datenbankabfragen direkt in der bevorzugten
e-learning Umgebung auszufiihren. Diese Abfragen werden dann tiiber ein
spezielles Protokoll (Simple Object Access Protocol) an das neu entwickelte
Service gesendet. Anschliefend wird die Abfrage mit Hilfe eines Daten-
banksystems ausgefiihrt. Nach der Ausfithrung wird das Ergebnis an das
e-learning System zuriick gesendet und der Teilnehmer kann das Ergebnis
direkt abrufen. Die Studenten miissen nicht warten, bis ein Tutor ihre Losun-
gen tiberpriift und das daraus resultierende Feedback an sie zuriick sendet.
Durch die Nutzung des Internet-basierenden Datenbanklabor soll einerseits
die Lernrate erhoht werden und andererseits der Organisationsaufwand viel
geringer sein als in herkdmmlichen Datenbankkursen. Die Arbeit teilt sich
in drei Hauptkapitel. Im ersten Abschnitt wird die Theorie hinter e-learning
erklart. Dies ist fuir die Planung des Internet-basierten Datenbanksystems
wichtig, welche im zweiten Kapitel beschrieben wird. Der dritte Abschnitt
stellt die entwickelte Applikation vor und beschreibt die Funktionalitdt und
wie Modifikationen realisiert werden konnen.

Vil

Contents

[1.3. The e-learningideal
[1.3.1. Definition]
[1.3.2. Synchronous vs. asynchronous systems|.

1.4. Learningimpactl. L.

1.5. Online learning environments|.
[1.5.1. Introduction|.,

1.5.2. History|.

1.5.3. Atthemoment|

[1.5.4. Environments|

[1.5.5. WBI-Master|.

. Internet-based database laboratory|

[2.1. Introduction| oo oo
2.2. Functionality|.0 ..
23. Benefits]

[2.3.1. Benefits for instructors|. L.

[2.3.2. Benetits for participants| 000
[2.4. Learning scenarios| oo oL
2.4.1. Quizl
2.4.2. Projectschemal
2.4.3. Evaluationofresults|

Contents

[2.5. Unique features| 28
[2.5.1. IBDL vs. phpMyAdmin| 29

[2.6. Requirements| 31
[2.7. Architecture| L 33
[2.8. Integration| oo oo oo 38
[2.9. Database interaction| 42
[2.10. Summary|.o oo 43
[3. Implementation| 45
[3.1. Definitions| 47
[3.2. Database executor|. L. 47
[3.2.1. Database Connection|. 53

[3.3. Graphical configuration interface| 57
[3.3.1. JavaServlets|. oo, 63

[3.4. Web-Service| 69
[3.4.1. Java API for XML Web-Services| 72
[3.4.2. SOAPhandler|, 79
[3.4.3. SOAP specification| 81
[3.4.4. Interface as XML Schemal 84
[3.4.5. APIKeys|. 86
[3.4.6. Verification| 89
[3.4.7. IBDL database schema|. 91

[3.5. Permission handling| 93
[3.6. Protection mechanisms|. 0L 94
[3.6.1. Preiltering|o 000 95
[3.6.2. Sandbox| o oo 96
OIMNG|. . . o v v v e e e e e e e e e 98

8 D| . e 100
3.8.1. Tomca| L oo 101
[3.82. MySQL|. 102
[3.8.3. SampleJavaClientf 103

[3.9. Summary|. 105
[4. Further development] 107
E O S 107

5

h. Conclusionl

Contents

[5.1.

Lessons learned| oo

ACronyms

ADPP

E

[A.1. WSDL file]

109
110

111

115
115

123

Xi

List of Figures

[r.1. Computer networks and online education: history and overview |

ofthefield 9
1.2. e-learning market worldwide|o 0000 12
1.3. Moodle usage statistics|. 0000 13
2.1. Quizquestion| L 21
2. QUIZANSWET] . . . o o oo e e e e e e 22
2.3. Assignment definition|0 0 0L 24
2.4. Assignmentsolution| 0L 24
2.5. Levenshtein example matrix|. 28
2.6. System architecture overview| L. 34
2.7. Web service overview|, 36
[.1. Class diagram| 46
[3.2. Graphical user interface] 58
[3.3. Dump manager interface]. 59
[3-4. Database manager interface| 60
[3.5. Database user manager interface] 61
[3.6. Testenvironment] 61

[B.7. Resultsinterface|., 62
8. SOAP handler chain] 79

[B.9. APl key managment interface| 87

xiii

List of Tables

2.1. Requestedresult-setf 25
2.2. Participantsresult-set|. 25
2.3. IBDL vs phpMyAdmin|. 30
2.4. REST/SOAP comparison| 39

. actionlogtable] 0 oL 92

. apikeystablel o 92

. dbusertablel. 92

B-4. dumptablel. 92
[35. usertable. 92
[B.6. userlogtable 93

XV

1. Introduction

The project described in this document shows how to combine modern e-
learning environments with a web service to generate a whole new course
experience. Interactive laboratories help students to understand theoretical
things easier. But in a digital economy, as we live, laboratories have to be
integrated into e-learning systems to gain more comfort. To do so, the internet-
based database laboratory is a virtual laboratory where all participants can
easily train their database knowledge. The whole training can be done in this
system, as well as the exam and participants get their results shortly after they
send the query to the web service.

To gain the maximum benefits out of this web service, knowledge about
e-learning systems is as important as database laboratory experience. The
database laboratory is developed as web service, to extend currently available
online learning systems. The integration will be done over the Simple Object
Access Protocol (SOAP) and the database management system for this project
will be MySQL. The e-learning environment used to demonstrate this project
is the WBT-Master which is also used in database courses at the Technical Uni-
versity of Graz. To enhance the current methodology of the database course,
the internet based database laboratory will bring the learning experience
to a new level. The lecturing team will benefit from this system because it
will be easier to train, support and evaluate course attendees. It will be less
time-consuming to check the submitted queries and also the time used to
teach students will be shortened.

1. Introduction

1.1. Motivation

The motivation of this project is the problem that more and more courses at
the university use e-learning systems where students have to submit their
assignments, but most of the time there is no real fast response of the result.
There are several test cases, and students get a number of test cases they
passed. So there is no real feedback of the mistakes. To generate a system
which immediately sends back the solution for a given query, the internet-
based database laboratory is developed and integrated into an e-learning
system. The whole project will be done in context with database courses at the
Technical University of Graz to generate an internet-based database laboratory,
where students can better train their database skills.

1.2. Thesis structure

The thesis starts with a theoretical part about e-learning, e-learning environ-
ments and several definitions. This is necessary because many decisions in the
development of the systems were done because of the aspects mentioned in
e-learning development. After that, the WBT-Master system, the architecture
and the function principle are mentioned. This is important for the integration
of the web service into the e-learning environment. In chapter [2|the theoretical
part of the web service is described. All the requirements and the primary
functionality are described here. The architecture and the design of the system
are mentioned here and the database interaction and the communication pro-
cess are defined there. The practical implementation can be found in chapter
Every single component of the system is described here. It starts with the main
part, the Java servlet, where the request/response handling is defined. The
system configuration and the user interface described there. The next big part
of chapter 3 describes the communication process between the WBT-Master
and the web service.

1.3. The e-learning idea

1.3. The e-learning idea

e-learning is an essential part of every digital native nowadays. e-learning has
evolved over the years from e-learning 1.0 to e-learning 2.0 which we have
reached now. Ebner, 2007 described e-learning 1.0 as the act of creating perfect
content with interactions, animations, simulations and similar:

Comparable to the typical classroom there is a teacher and there
are students (learners). The teaching person provides the content
in high quality. The learning material is accessible via a learning
management system. The “new” (in relation to the traditional face-
face teaching) components are further tools, like communication
tools or interactive exercises.

But this was not enough for most use cases and did not add enough benefits
to students and teachers. Something new has to be included to the e-learning
1.0 concept. At the same time, the Web 2.0 came up and people over the world
started to use social media applications. Downes, 2005 describes the transfor-
mation of the “"Read-Web” to the “Read-Write-Web” as a social revolution, not
a technical revolution.

Ebner, 2007 mentioned that e-learning 2.0 is not the product of e-learning 1.0
combined with web 2.0. There has to be a third component which he calls
"human factor”. This factor is a combination of the explanation and the time to
realize from people to use such systems. He also points out that e-learning 2.0
is the word of the next generation and it will be a step into modern education.
There are other papers which show the importance of e-learning in context
with modern education.

Edrees, |2013|reports that e-learning 2.0 is the integration of web 2.0 applica-
tions into educational and institutional practice:

They emphasized that, tools like blogs, wikis, media sharing ap-
plications, and social networking sites can support and encourage
informal conversation, dialogue, collaborative content generation,
and knowledge sharing, giving learners access to a wide range of
ideas and representations.

1. Introduction

Summarized, it has to be mentioned, that e-learning is the big thing which
actually changes education all over the world. Only good e-learning systems
will be used by the audience because otherwise there is no overvalue for
education.

1.3.1. Definition

In the very widespread field of e-learning, many concepts and definition are
mentioned. Ozkan and Koseler, |2009 defined e-learning as follows:

Electronic learning (hereafter e-learning), referring to the use of
electronic devices for learning, including the delivery of content
via electronic media such as Internet, audio or video, satellite
broadcast, interactive TV, CD-ROM, and so on, has become one
of the most significant developments in the information systems
(hereafter IS) industry (Wang, Liaw, & Wang, 2003).

This definition shows a very common thinking of e-learning in it is early days.
In these days e-learning was just a way of consuming educational content
in an electronic way. As already mentioned in e-learning 1.0 was just
a distribution of content. Another more modern definition of e-learning is
described by Pieri and Diamantini, 2014;

E-learning 2.0, in opposition to e-learning systems not based on
CSCL (computer-supported collaborative learning), undertakes
that knowledge (as meaning and understanding) is socially con-
structed.

All these definitions show that e-learning 2.0 can be seen as social media of
the learning paradigm. Wever et al., 2007/ defines e-learning 2.0 as a “social
software for educational use”, which is in principle the approach, all the other
definitions do, but they also mention the difference between the instructors
and the participants. They report the following differences between them:

However, the penultimate question, focusing on the kind of infor-
mation that is shared, reveals that instructors do share information,

1.3. The e-learning idea

especially information related to their education, whereas stu-
dents use social software mainly for sharing multimedia and other
leisure related activities, other than educational purposes.

The difference between the two main stakeholders of e-learning is one of the
problems, where e-learning can fail.

Summarized it can be reported, that the central argument of e-learning is
some kind of electronic distribution of content, which is merged with modern
technologies to educate people. To get a better understanding of the content,
the social aspect, which is already integrated in Web 2.0 has to be integrated
into modern e-learning 2.0 environments, to provide powerful systems, which
will support a high learning rate.

1.3.2. Synchronous vs. asynchronous systems

There are several types of e-learning systems. All kinds support other needs,
therefore all systems can be categorized into divisions. The biggest distinction
of e-learning systems is synchronous and asynchronous systems. Shahabadi
and Uplane, 2015 describe synchronous e-learning as a process of live, real-
time, facilitated instruction and learning-oriented interactions. It’s a kind of
virtual classroom where the whole participants learn together via an online
environment. In context to this, asynchronous systems are defined by Mayadas,
1997 as an interactive learning community, which is not limited by time or
place. It is a virtual course, where everyone can learn whenever and wherever
he wants, it is no real virtual live class. The internet based database-laboratory
in this course is designed as an asynchronous system, where participants can
practice whenever and wherever they want.

1. Introduction
1.4. Learning impact

The biggest goal of e-learning is to provide the additional benefit of the
participants to gain a faster learning rate and increase the motivation. This
learning impact is going to be directly influenced by the use of an e-learning
environment. Aparicio, Bacao, and Oliveira, 2016 came to the conclusion,
that their study indicates, that students perceive e-learning systems increase
their productivity and simplify the given task. This means that the usage of
e-learning influences the university success. The performance of the university
is increased by the use of such concepts. Aparicio, Bacao, and Oliveira, 2017
mentioned, that usage and satisfaction have a significant impact on individual
impacts, perceived different impacts of e-learning systems is noticeable in
accomplishing their tasks, in their productivity, and in the usefulness of
the system. This is a very interesting fact for the development of e-learning
systems. Most of the times, students complain about the usage of e-learning
platforms. But the result of the study shows, that in the end, students gain
more advantages as disadvantages with the use of such systems. Therefore, if a
system provides good quality to participants and instructors, the impact on the
learning rate is much higher because both sites will use it. Khatri, Chouskey,
and Singh, 2013 mention the biggest aspect in context with successful e-
learning systems. They conclude that students have to be ready to use these
environments, therefore educators have to take care that they train participants
to use these systems, otherwise there will not be any advantage in the teaching
process. So there must be a kind of combination of e-learning and traditional
learning in the beginning, which will be very time-consuming and expensive,
but after that training phase, both parties will be happy with the learning
impact on the daily teaching process. Summarized, it has to be mentioned, that
the learning impact or the increase of the learning rate is directly connected to
the skills of an instructor for motivating students to work with e-learning.

1.5. Online learning environments

1.5. Online learning environments

The meaning of e-learning is described, but e-learning without a competitive
environment is not very useful. To do so an online learning environment is
used. Moore, Dickson-Deane, and Galyen, 2011 mentioned that the definition
of online learning is pretty hard and there are several definitions. D. G.
Oblinger and J. L. Oblinger, 2005 see every learning act which is done online
as online learning. Another definition by Lowenthal, Wilson, and Parrish,
2009 is that they define the used medium as the type of learning. But Moore,
Dickson-Deane, and Galyen, 2011 finds out that most authors report, that
online learning is described as access to learning experiences via the use of
some technology. So this is a very widespread and weak definition, but online
learning is as simple as described.

1.5.1. Introduction

There are several designations for online learning environments Some authors
call them virtual learning environments and describe them as online platforms
for e-learning. These virtual learning environments (VLE) are as described by
Dillenbourg, Schneider, and Synteta, 2002/ as more than just a popular label to
describe any educational software. They defined seven aspects, which every
VLE can cover:

e A virtual learning environment is a designed information
space.

e A virtual learning environment is a social space: educational
interactions occur in the environment, turning spaces into
places.

e The virtual space is explicitly represented: the representation
of this information/social space can vary from text to 3D
immersive worlds.

e Students are not only active, but also actors: they co-construct
the virtual space.

e Virtual learning environments are not restricted to distance
education: they also enrich classroom activities.

1. Introduction

e Virtual learning environments integrate heterogeneous tech-
nologies and multiple pedagogical approaches.

e Most virtual environments overlap with physical environ-
ments.

At least one facet is covered by every environment out there. Otherwise, the
system is no real online or virtual learning system. Reese, 2015/ points out,
that while online education lacks the substance needed for higher education,
distance education has the potential to set a high standard for valuable
learning experiences in virtual environments. Instructors and students can
benefit from an environment that is rich in communication, collaboration,
and community. All these benefits have to be covered by an online learning
environment, otherwise the benefit of using it is not given.

Another aspect, which should be kept in mind is the fact, that virtual learning
or online learning systems are not only used by schools or universities. There
are many companies which use such systems to train their employees. It saves
money, time and energy. And not only employees benefit from e-learning
systems, but also customers get the possibility to train their skills in online
academy, where professional trainees interact with them. Especially for school-
ing for business software, like SAP, online learning institutes are very common.
Thus, the learning rate in comparison to the invested energy is much higher
than traditional product schoolings.

1.5.2. History

Online learning was on of the first fields which was developed in the beginning
of electronic communication and the internet. Harasim, 2000 shows in figure
the development of online learning in the last century.

7

It can be seen that the early online learning environments use very few ”online”
activities. For instance, the first university courses which were supplemented
by e-mail and computer conferences. It can also be seen, that the first online
learning courses started already about ten years before the release of the
World Wide Web. Harasim, 2000 defined the online learning systems in the
following way:

Table 1

1.5. Online learning environments

Computer networks and online education: history and overview of the field

1861
1876
1969
1971
1972

Mid-1970s

1981

1982

1983

1984
1985

1985
1986
1986

1986

1989

1989

1992

1993

1996

2000

telegraph is invented
telephone is invented
ARPANET begins

e-mail is invented
computer conferencing

is invented

university courses are
supplemented by e-mail
and computer conferencing
first totally online course
(adult education)

first online program
(executive education)
networked classroom model
emerges (primary and
secondary education)

first online undergraduate courses
first online graduate courses

first labor education network
first knowledge building network
online professional development
communities emerge

first online degree program

Internet in launched

first large scale online course
World Wide Web is invented

first national educational networks

first large-scale online education
field trials

The Source
WBSI Executive Education (IEIS)

ICLN: Research Project in four countries

RAPPI: Canada-X-Cultural Project in 5 Countries
1985: National Geographic Society Kids Network
1987: AT&T Learning Network

1988: Writers in Electronic Residence (WIER)
1989: SITP in British Columbia, Canada

Virtual Classroom (NJIT)

Nova Southeastern University

Connect-Ed (New School of Social Research)
OISE (University of Toronto)

Solinet (Canadian Union of Public Employees)
CSILE (OISE)

OISE Ontario Educators Online Course

1990 Global Lab, Lab Net And Star Schools, TERC
1992 Educators Network of Ontario

Connect-Ed (New School of Social Research)
1989 University of Phoenix Online

Open University (UK)
CERN (Switzerland)
SchoolNet (Canada)

1995 TL+NCE (Canada)
1998 CL-Net (Europe)
Virtual-U Research Project

Figure 1.1.: Computer networks and online education: history and overview of the field (Ha-

rasim, [2000)

1. Introduction

The computer communications revolution of the mid 20th cen-
tury affected all social and economic realms. Educators were
among the first to embrace the revolution, and the increased ed-
ucational opportunities and especially the new learning models
that have emerged are now influencing education and society as a
whole. At the turn of the 21st century, public discourse is beginning
to recognize the implications of this educational transformation

Online learning environments changed over the years. In the early years, this
platforms were very static and have not changed the way the education was
done. There were normal courses, in class, and the online platforms contain
additional information about the actual topic which was taught. There was no
real virtual class, where many students work on their learning skills. Another
aspect is the teaching style, which has not changed with early versions of
e-learning. Most of the time, it was a teacher-centred teaching, where students
only get to know, what the teachers learned them. This was also displayed
in the content of the learning platforms, only the teacher was able to upload
his material and the students could download it over their small internet
connection. It was also a problem for many people to download the additional
material because an internet connection was not available for everyone.

Mason, 2000|reports from e-learning courses in the UK Open University, where
students with tutors form small groups which interact with the teachers by
conferencing and e-learning systems. This was a pretty good approach because
these tutoring sessions were held all over the land and the use of online
learning helps them to provide a pretty good course quality. But there were
problems because some students were not able to afford online access to their
program, so there were still difficulties with the domain of online learning.
Nevertheless, he praised online learning but mentioned that the majority of the
courses were not delivered over the web and were still optional or additional
benefits. He summarized his results that the business of encouraging people
to learn is delicate, artful, and evolutionary. It will be ready as soon as all the
students are ready, to create an e-university.

10

1.5. Online learning environments

1.5.3. At the moment

As described in the last section, the lag of an internet connection, was the
biggest point, why online learning in the first years was not as important as
now. With the invention of the Web 2.0, which was first mentioned in the
year 2003, many social media services came up. As already reffered in
the social aspect has completely changed e-learning. Thus, online learning
environments have changed in the way they have to be used. Not only teachers
have to upload content and build a static online course, but also students
have to do this. Now, the students is the center of the online course and over
the last ten years also the educational style changed in several countries. The
teacher-centred learning was repressed more and more and now there is some
kind of student-centred learning. O’Neill and Geraldine, |2005| has given a
definition for the student-centred learning;:

The interpretation of the term ”student—centred learning” appears
to vary between authors as some equate it with ‘active learning’,
while others take a more comprehensive definition including: ac-
tive learning, choice in learning, and the shift of power in the
teacher—student relationship.

To do so, it is necessary that students get access to the online environment
every time and everywhere. It is not very useful if they only get access to
the training site. This problem was solved with the simple internet access. At
some point in the 21st century many people all over the world get internet
access very simple. The number of internet devices grows rapidly and Statista,
2016a reports a total of 3.47 average connected devices per person. Internet
has become a daily thing and is no problem to get connected. At this point,
e-learning has grown very fast. Therefore, online learning has become a
business. It is not like a simple learning environment, programmed by a
group of students or tutors to support a teacher’s course, it is much more.
There are several companies and scientist to find out how to build a modern
e-learning system which supports students and gain an extra benefit to the
users. In figure|1.2[it can be seen, that the growth of the market in the last 3
years was great, especially in North America and Asia.

11

1. Introduction

12

Size of e-learning market in 2013 and 2016, by region (in million U.S. dollars)

North America

Western Europe

Eastern Europe

Asia

Middle East

Africa

Latin America
1,400

0 2,500 5000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000

Market size in million U.S. dollars

N 2013 M 2016*

o
ista 2016

Source Additional Information

Worldwide; Docel

Figure 1.2.: e-learning market worldwide (Statista,

27,100

27,500 30,000

1.5. Online learning environments

1.5.4. Environments

The field of online learning environments is quite big. There are various big
players, which provide different services for miscellaneous use cases. For
this project, some systems for university usage will be mentioned and their
features will be described.

Moodle

The Moodle, 20164l system is one of the biggest open source learning man-
agement system. The environment is a PHP based web-framework, which
supports many e-learning types. It is fully compatible with mobile devices,
supports plug-ins, themes and is available in many languages. Several uni-
versities and schools use this system because the costs are small. The Moodle
system is a long developed framework, which was first released in 2002. The
Moodle team provides usage statistics at their site, where they show the actual
usage, which is shown in figure [1.3| by Moodle, 2016b. It can be seen that

Registered sites

Countries

Courses 11,124,420
Users 95,715,546
Enrolments 317,267,482
Forum posts 199,259,487
Resources 98.534.916
Quiz questions 524,270,963

Figure 1.3.: Moodle usage statistics(Moodle, |2016b)
there are more than 11 million courses provided by the different Moodle

frameworks all over the world. Another statistics shows that most Moodle
registration comes from the USA followed by Western Europe.

13

1. Introduction

Dokeos

Dokeos, |2016 is another web-based learning software which is widely used by
many institutions. Dokeos is not an open source tool, and therefore the price is
calculated by the maximum users, authors and plug-ins. An interesting fact is,
that Dokeos supports the integration into industries. It is a fully professional
tool, which covers nearly every aspect of e-learning.

ATutor

ATutor, 2016|is another open source environment, which is widely used by
many university. The big advantage of this system is, that supports many
accessibility features which is important for disabled people. It also supports
different e-learning topics like, online courses, research, etc. It is also build
very modular and there are plug-ins for many situations

TeachCenter

TeachCenter, 2016 is an e-learning online platform developed by the Technical
University of Graz. This learning management software is used since 2007
and is based on the WBT-Master system which is used for this project and
described in section A big opportunity for the system is, that it is not
addicted to licensing, updates and the modular concept. All necessary mod-
ules are developed at the university and are integrated into the environment.
It is very simple to upload, download and manage learning documents. The
integration of Webz2.0 services (cloud-systems, social media, online editors)
can be done unproblematically A benefit is the use of communication tools
like communication boards, e-mail and newsgroups. Another big advantage
is the interaction with the online administration tool of the university.

14

1.5. Online learning environments

1.5.5. WBT-Master

WBT-Master| 2016 (WebBasedTraining-Master) is an e-learning environment
developed by the Technical University of Graz in cooperation with various
partners. The system was developed within the scope of Corporate Software
Engineering Knowledge Networks for Improved Training of the Work Force
(CORONET) project which was funded by the European Union. It is actually
provided in the Version 1.1a, which was built in December 2011.

The WBT-Master software was developed, because students were not mo-
tivated to use other successful e-learning environments, because providing
eBooks was not the act, students need to finish a course. They requested sim-
ple printable materials, in addition to the virtual animations and interactions,
but after that, they did not use them anymore. That’s why teacher started
to reduce the development of eBooks. Therefore, the developers describe the
motivation for their work in |WBT-Master white paper| 2016, as follows:

Analysing the situation, we came to a conclusion, that browsing
through a bunch of documents combined into a navigable structure
and provided with communicational tools, can be seen as just
one (and perhaps, not a best one) training paradigm. We can
easily imagine a situation where students are requested to write
short essay on a predefined topics, practically implement projects,
answer questions and discuss their answers, discuss materials
selected by teachers, etc., etc. From a teacher perspective, we can
say that teachers should be able to create a training curriculum
by combining different training applications into a new entity
called a course [as opposed to authoring of an e-Book]. After
recognizing such requirements, a new system called WBT-Master
was developed on entirely new principles.

The WBT-Master system is used in this project for demonstrating the web
service and for explaining the learning scenarios which occur in a database
laboratory. It has to be noticed, that the web service is able to work with any
kind of e-learning environment, but WBT-Master is already used for database
courses at TU Graz.

15

2. Internet-based database laboratory

Internet based laboratory is a widely used environment in many educational
courses. It combines the simplicity and comfortability of e-learning with real
laboratory lessons. To combine this two aspects for database courses, several
mechanisms are necessary, which will be mentioned in this chapter.

2.1. Introduction

It is every student’s dream, to have an online system where you can train your
knowledge and submit your work. But most of the time, you have to wait
until someone of the lecturing team, either the tutors or the professor, looks
through your result and return you some feedback.

Another type are systems, where people can upload their solutions and get
the feedback immediately, but most of the time they don’t know what was
wrong and what was the source of the error. With the internet-based database
laboratory, which has many benefits as mentioned in the participants
can solve their tasks and every solution gets executed on a real database
environment. They get the result of the execution and also the lecturing team
gets some feedback, about the problems of their course participants. To afford
a good learning experience, the participants should think that they work with
a real database management system.

In this chapter the functionality and the requirements of the internet-based

database laboratory are described. Furthermore, the technical specification of
the communication process and the system architecture can be found here.

17

2. Internet-based database laboratory

2.2. Functionality

This internet based laboratory should especially fulfill the needs in context
with database courses. In such courses many databases, queries and modifi-
cations can be done. Therefore, it would be good, if all these queries can be
checked by a system and can be executed in a given environment. After that,
the result of the operation could automatically be returned to the participants
and the lecturer, so that both know what was wrong. The participants should
get a system where they can train their database skills on a real system, but
all their training should be supported by lecturing team via the e-learning
system.

To integrate such systems in currently used environments a stand-alone
web service is the best solution. Because with it, already existing e-learning
software can easily be integrated with this database laboratory. To do so,
the service offers a SOAP interface for the communication between course
environment system and the web service. Another aspect is the integration of
a database management system. Therefore, the web service has a connection to
the MySQL database management system. The web service itself is responsible
for all the communication between MySQL and SOAP and it would be possible
to extend the communication interface in the future to use REST for example.
The database system can be changed, to use the system in different database
courses.

The web service can handle the following operations with the database sys-
tem:

Create database

Define database schemas
Modify database schemas
Create data

Read data

Update data

Delete data

To do so, the system gets split into several components. To reach a high compat-
ibility with other existing learning environments and database management
systems, the whole internet-based database laboratory is encapsulated in

18

2.3. Benefits

four main parts, where every part of the system will handle a subtask of the
preferred functionality.

A big aspect is the reporting of the result, so the participants should get a
helpful feedback. The result of the execution on the database management
system will be returned.

2.3. Benefits

There are many benefits the system gives the lecturing team as well as the
participants. All these benefits are generated from the web service in combi-
nation with a good e-learning system like WBT-Master. All the benefits can be
assigned either to the laboratory attendees or the course instructor team.

2.3.1. Benefits for instructors

The instructors of a database laboratory get the advantages that they get much
more feedback from the learning success of their participants. They can see
the results of every single query as well as the errors every participant did.
Also, the possibility to add additional feedback to the response of each query
execution should help the participants to reach their goals.

Another big aspect is the time-saving factor in exams. Most time of the
correction of an exam in the actual e-learning environment, without the
internet-based database laboratory web service, is the correction of the query.
Sometimes there are several possibilities for solving a given task, and the
laboratory team has to correct every single query by hand. With this system,
every query gets executed on a live database management system and the
instructors will only get the result.

2.3.2. Benefits for participants

Learning database specific things on a real life system with very fast feedback,
this is the way of learning what participants want. Every participant does not

19

2. Internet-based database laboratory

have to wait for his result of an exam or an assignment. The result should be
returned as quick as possible and also the feedback should be returned in a
way, that everyone knows what is wrong.

The second big benefit is the learning success. Because of the live execution
of the query, the participants get the feedback very fast. So in practice mode,
they can try again and execute their query again and again, until they get
their preferred result. Also, the additional information in the response helps
them to get an easier understanding of what was wrong in their query.

2.4. Learning scenarios

Every learning environment can handle various learning scenarios. These sce-
narios can be described as different modes to solve tasks to get an educational
benefit. The goal of such learning scenarios are quite different and the super-
visors of the course have to validate which scenario fits best to the given tasks.
The different e-learning environments provides different learning scenarios,
which could either be some interactive learning by doing projects where only
a little data set is provided and the students have to solve their task from
scratch. Or some quizzes where the students have to provide a solution for a
task and the result can either be true or false. The scenarios are responsible
for the knowledge transfer from the provided information to the students and
differ from the domain of the course. The number of possible scenarios can be
very high, but everyone has to be evaluated if it is good for the students and
the knowledge domain. Courses which support a student to learn technical
things have other requirements to learning scenarios then courses for other
domains. To choose the correct scenario is important otherwise, the students
get bored and the benefit of using an online environment is too small.

The internet based database environments should also be able to handle such
scenarios. To explain and describe them in combination with the IBDL, two of
them, which are most often used in the actual database course in WBT-Master
are described. These two scenarios differ in their whole workflow and also
the evaluation of the results is different. The evaluation of the result have to
be done in various ways, to gain very less false positive and false negative
results, and the participant of a course do not get bad results because of a

20

2.4. Learning scenarios

wrong evaluation of their provided solution. Also, the supervisors benefit
form the assessment because they have to check only a few results. In section
the first type “quiz” is described and in section the scenario type
“project schema” is mentioned. By the covering of the two scenarios in this
document, the other ones can be derived.

2.4.1. Quiz

The first scenario which is mentioned is the type “quiz”. In such quizzes, the
participants of a database course have to provide the solution for questions
they were asked. A quiz is generated by the instructors of the course and the
students get an amount of points for every correct solution they provide. To
demonstrate such a quiz scenario, an example of a currently used quiz in the
WBT-Master environment is shown below. This mentioned scenario is most
often used for exams in the actual database course.

To start a quiz, the participant has to open the quiz and solve the questions,
provided by the supervisors of the course. These do not necessary correlate
with each other so it can be that, there have to be many database schemas
the student have to work with. Each question of the quiz shows the actual
database schema or at least the database table which is necessary to get the
correct answer. The questions can deal with different topics of databases
courses. Most of them have the goal to get the right SQL query for an asked
data set. Such a question can be the one, shown in figure

? Question 8 : "Data Sub-Language SQL (1)" [4 Points]

Customer Transaction

ok | Cname Coity Cphone C# |P#| Date | QNT| | Product :
1 |1 |26.01 |20 || P#[Ename | Price

) |codd | London | 2283038 | 4 |5 2301 |30 || 1|CPU | 1000

3 D::rl.n London | 2234391 || 2 |1 |2601(25 || 2| VDU | 1200
3 |2 |29.01 |20

Please define an SQL Query: "Get names of customers who bought the product YDU" using selection from multiple
relations.

Figure 2.1.: Quiz question

With the provided information the participant has to solve the question.
For this question, three tables are given and the participant has to create a

21

2. Internet-based database laboratory

query which returns all names of customers who bought the product VDU.
Therefore, all tables have to be used. This can be done in different ways with
several queries. If the student knows the result, it has to be filled in the answer
box like shown in figure The query which is shown in the yellow box is
then used as answer and the supervisors of the course have to evaluate this
answer. With the IBDL system the evaluation of the result should be done
automatically, which is described in section. [2.4.3}

M/ Answer

select cname
from customer, transaction, product
where customer.c#=transaction.c# and pname="VDU' and transaction.p#=product.p#

Figure 2.2.: Quiz answer

Summarized it could be mentioned that the quiz scenario is a mode for
practicing the knowledge of the course topic by the use of questions, where
the result can either be true or wrong. Only if the result delivers the preferred
data set, it is correct and no other answers are right. The students do not
have to build a database from scratch, only simple data querying have to be
done. The learning experience for this scenario can be very high because the
students have to understand the given database schema without any further
informations and they have to know how to extract the information or how
to create new pieces of information in the actual schema. To do such quizzes,
experience in the domain of databases is required, but at the beginning of a
course, the scenario “project schema” described in the next section is more
useful.

2.4.2. Project schema

The second learning scenario which is very common in most technical courses
is the “project schema” or “project” mode. This mode is very extensive and
allows the student to test their whole knowledge of a certain domain. The
scenario has to be specified by the supervisors of a course. If the students full
fill the required needs and provide the correct solution for a project they get
the defined amount of points. To demonstrate the project schema - scenario the

22

2.4. Learning scenarios

WBT environment is used because this scenario type is also used in database
courses supported by WBT-Mater environment.

The first step is to create a personal project space in the e-learning tool. This
is called ”locker” in the WBT system. After this space is created, every file
for the project has to be uploaded there. The supervisors release a detailed
description of the SQL project. These descriptions define the entire database
schema and the available tables. Mostly only the table and column names
are specified and the students have to define the content on their own. It
can also be the case, as it is in the final assignment in the current database
course, that only the type of the resulting SQL queries is defined, and how
the tables must relate to each other. In figure such a description of an
assignment is shown. With all the give definitions the students have to build
the whole database schema as well as find the queries to get a solution for the
tasks. After Everything is done, the SQL scripts with the solution have to be
uploaded into the locker. The resulting locker can look like the one, shown in
figure After all files are uploaded the student is able to unlock his locker
and the supervisors know, that a solution is provided. Then they have to check
the schema and the provided queries to calculate the points for the project
and evaluate the student.

Consolidated it has to be mentioned, that this type of e-learning scenario is
a good opportunity to evaluate the student’s knowledge for big parts of the
course. Because of the extensive possibilities of projects or available queries,
this scenario can proof if the students understand the domain of the course
and know what they were doing. The time-consuming part of this scenario
is the evaluation because every schema and query have to be loaded into a
database management system and the result has to be compared with the
original solution.

2.4.3. Evaluation of results

The evaluation of the result is a part of the system. This feature can save a lot of
time for the course supervisors because the service automatically evaluates the
results of the given queries. To do so, the evaluation has to support different
learning scenarios as already mentioned before. The different scenarios require
miscellaneous processes to evaluate the result to get a correct solution and

23

2. Internet-based database laboratory

24

Assignment (706.004 Databases-1)

As a practical part of the course, you will need to develop an example of Relational Database. The example should
include at least:

s Database schema of 4 relations. One of primary keys should be compound, i.e. should censists of more than one
attribute.
Additionally, an explanation that the relations are in the Third Normal Form must be provided.
Three queries to the database implemented in terms of the Relational Algebra, The queries must illustrate the
Select, Join, Project, Divide and cne of Set cperations.
Three queries in terms of the Relational Calculus. Each query should operate with 2-3 relations (at least)
simultaneously.
You can choose either Relational Calculus with Domain Variables or Relaticnal Calculus with Tuple variables.
MNote, that the queries must utilize existential and universal quantifiers in both cases.
Three queries in terms of SQL. Each query should operate with 2-3 relations (at least) simultaneously. These
three queries must be implemented using “nested sub-queries/SQL Blocks™ syntax. lllustration of "Nested
SQL blecks”, "Group By" and "Having" Clauses is compulsory.
Additionally the three queries mentioned above, must be redefined using “selection from multiple™
relations syntax, i.e. should be defined without nested SQL blocks. Thus, you should define six SQL query
notations altogether.
Note, if redefining queries using another syntax is not possible for any reason, you can define new queries.
Important! You have to build up a werking database application by means of the MySQL database management
system which includes:

» Installing MySQL Database Management System

= Definition of the database schema by means of the system

s Sample database (just put some tuples into the previously defined relations)

» Implementation of the three SQL queries mentioned above via mySQL dlient (queries should be presented in

“selection from multiple relations” syntax, i.e. should be defined without nested SQL blocks.

« Example(report.doc report.pdf)
Creating a working group
You can develop the example in collaboration with colleagues. In other words, the example may be presented on behalf
of a working group consisting of maximum 5 students. The requirements above are defined for a group of not more
than 3 persens. All the guantitative requirements must be multiplyed by 2 for a bigger group.

Figure 2.3.: Assignment definition

Locker "ccccocceecec” New File

This is a test SQL locker

@ example.sql - 06 03 2010 14:41
Evaluation || Comment | | @Report || Remove

@ all.sql - 13 02 2013 12:40
Evaluation || Comment | | #Report || Remove

3 product.sql - 13 02 2013 12:46
Evaluation || Comment | | @Report || Remove

@ transaction.sql - 14 04 2013 16:38
Evaluation | [Comment | [#Report | [Remove

3 joini.sql - 14 04 2013 16:42
Evaiuation | [Comment | [@Report | [Remove

13 joinz.sql - 14 04 2013 16:52
Evaiuation | [Comment | [@Report | [Remove

13 join3.sql - 14 04 2012 16:53
Evaluation | [Comment | [@Report | [Remove

3 joind.sql - 14 04 2013 16:53
Evaluation | [Comment | [@Report | [Remove

Figure 2.4.: Assignment solution

2.4. Learning scenarios

reduce the number of errors the system made. In this section, two different
type of evaluation will be mentioned. The first type is the “Result evaluation”
which is used to compare the result of a query provided by the students in a
quiz for instance. The second on is the type "Query evaluation” which is used
to check if different query types are provided by the students, which is the
case in the “Project schema” learning scenario.

Result evaluation

This mode is easier for the evaluation of the results because the results can
be evaluated as true or as false. This means that the result of the query, the
participants provide has to be the same which is specified by the supervisors
of the course for this question. If it is not the same, the number of points
can be decreased. It is not enough to compare the two result-sets one-to-one
because the metadata, like table cells or number of rows can be different and
the evaluation will fail. To demonstrate this, the example below is provided.

The claimed result-set which is defined by the tutors should look like shown
in table In this case, all informations of brands should be displayed where
land="Deutschland”. One participant provides a query which returns the
result-set shown in table

id.b name strasse plz land
1 Intel Intelstrasse 9112 Deutschland
2 AMD Amdstrasse 7474 Deutschland

Table 2.1.: Requested result-set

id.b name strasse plz land

1 Intel Intelstrasse 9112 Deutschland
2 AMD Amdstrasse 7474 Deutschland
4 Seagate Seegasse 2014 Osterreich

Table 2.2.: Participants result-set

25

2. Internet-based database laboratory

With this definition, further information can be retrieved. The correct result
should have two rows and five columns. For the evaluation of the results, the
number of rows is the first aspect which has to be checked. If this matches, the
content can be compared with the result-set the participant’s query provides.
It can be seen that the result-set which is provided by the student’s query has
three rows. Therefore, the query is partly wrong, and the result can either be
false, or the number of points can be decreased.

If the number of rows and columns match with the correct data set, the
content of the table has to be compared column by column and row by row.
It is important to trim each value and compare take care of upper-case and
lower-case comparison. If all data elements match, the two result-sets are
similar and the answer is evaluated as correct in the learning scenario and the
full points are provided. If the number of rows or columns does not match,
the result can be compared and it can be checked if the correct result-sets are
in the provided result, if this is the case, no further points will be decreased
from the maximum points for this answer.

It can be seen, that the evaluation of the result in the scenario “quiz” is quite
simple because the provided result has to be the same, to get all possible
points. If there are more or fewer answers, points will be decreased and if
the rows or columns are wrong, further points will be decreased. It would
also be possible to only allow correct answers, so if any evaluation part fails,
the result will automatically be zero points because the answer is wrong. The
evaluation of the second learning scenario is much more complex because not
the result-set will be evaluated, but rather the query.

Query evaluation

The second type of evaluation is the query evaluation. Especially in the project
mode, it is important to check the query and not the result because a student
can build their own schemas. The main task of such projects is to create
different types of queries. The result of each query is not as important as the
correct query and can not be compared with any predefined results. Such a
task for a question can be the following:

The project which should be submitted, should contain:

26

2.4. Learning scenarios

e Database schema of 4 relations (brands,customer,sales,goods)

e Three queries in terms of Relational Calculus. Each query
should operate with 2-3 relations

e Three queries to illustrate the Select, Join and set operations.
Each should work with at least 2 relations.

As already mentioned in the scenario, the database schema has to be con-
structed by the participants of the course. The queries are developed by the
participants, and the IBDL should evaluate the result for the given data. To
handle the different types of queries and to judge if the given query is of
the correct type, a mechanism is necessary which can extract the meaning
of the query to determine for instance if a JOIN is used with at least two
relations. To do so, some kind of metric or distance have to be calculated to get
information about the similarity of a given query in comparison to a defined
query which only specifies how a JOIN query should look like but does not
contain concrete data like table name or column name.

To evaluate the result provided by the student, there are several methods
available. The most common would be a metric to determine the similarity
of the two strings - the participants-result and the students result. Such an
approach is supported by the Levenshtein distance.

This metric, published by Levenshtein, 1965/ calculates the similarity of two
strings. This is an important measure to evaluate the queries provided as a
string to generate the result for the task. The idea described by Levenshtein is
to sum up the steps to get from string to the other. The steps can be deletions,
insertions and substitutions of every single character of the string and cost 1.
The distance between the two words “data” and “base” will be 3. The higher
the distance, the lower the similarity of both words. Navarro, |2001/ describes
an algorithm using the idea of dynamic programming, which can calculate
the distance for two given strings x and y. The algorithm builds a matrix
Co.length(x),0.length(y) » Where Ci; is the minimum number of steps to match x, j
to y..j. The computation is done as shown in the formula below.

Cio=1

Cio=1j

27

2. Internet-based database laboratory

c.. = G- if x; = y;
g 1+ min(Ci,L]-, Ci,]',1, Ciflrjfl) otherwise

The mentioned example with the formula above, will result in a Matrix C; ;

which is shown in figure

dat a
012314
112314
22123
33223

Ci’]’ =
113 3H

m v 9 o

Figure 2.5.: Levenshtein example matrix

It can be seen that the Levenshtein distance provides a good possibility do
determine the similarity of two given strings. If all attributes of the database
schema are predefined in the task for a certain project, the Levenshtein distance
should be very small, because there is less tolerance. In some projects, the
attributes of a database schema can be freely chosen by the participants.
Therefore, the query which is defined by the tutors can not contain the correct
database, table and column names. The distance of the query has then to be
adjusted because the pre-defined query can differ in the name of the attributes
which results in a higher value of the distance.

2.5. Unique features

The internet based database laboratory is a unique system which can not be
compared with online database management systems as mentioned in section
The entire IBDL system provides a lot of possibilities which made the
system a unique e-learning extension for database courses. This system can
be categorized as stand-alone web service which supports database lectures
with any available e-learning environment. The SOAP interface provides the
possibility to access the service from every environment which is used to

28

2.5. Unique features

handle courses. This gave the participants the possibility to work with their
familiar systems but use all the comfort features the IBDL system provides.
There are several aspects, like the evaluation of the results, the creation of the
databases and their concerning dumps, the logging and much more which
can not be done with already existing systems.

The system can not be compared to classical online database management
systems like phpMyAdmin or Adminer. It is a newly developed database
course support system and provides completely different features to manage
the databases for a special course then the mentioned software tool. It has
to be mentioned that the IBDL can manage the database system online, but
this is not the intention of the system. To prevent the system from handling
the whole database management system, the IBDL is unable to handle the
core table of the database management system, which can be done with other
online management system.

In the next section, the difference between the internet based database sys-
tem and an online database management system are described to show the
difference between the two types of environments.

2.5.1. IBDL vs. phpMyAdmin

On of the most used online database managment tools is phpMyAdmin, 2017,
The phpMyAdmin team define their system as following:

phpMyAdmin is a free software tool written in PHP, intended to
handle the administration of MySQL over the Web. phpMyAdmin
supports a wide range of operations on MySQL and MariaDB.
Frequently used operations (managing databases, tables, columns,
relations, indexes, users, permissions, etc) can be performed via
the user interface, while you still have the ability to directly execute
any SQL statement.

The definition shows that phpMyAdmin is a MYSQL management tool, which
allows handling different operations on databases. The system supports nearly
every MYSQL command and most of them can be executed with a graphical
user interface. The system is able to create database schemas, create tables,
manage content, manage users, manage privileges, measure performance,

29

2. Internet-based database laboratory

Features phpMyAdmin IBDL
database management yes yes
backup & restore yes yes
database querying yes yes
GUI for all actions yes no
web service interface no yes
result evaluation no yes
result logging no yes

automatically create

databases from template yes yes

Table 2.3.: IBDL vs phpMyAdmin

show configuration variables and handle different languages. The usage of
the system is very high because nearly every web server, which is mostly
based on an Apache web server can run the system, and the developers are
able to handle their database with little afford and no additional tools. The
system itself can be compared to the MYSQL Workbench which also allows
to managing a database, but it has to be installed on the server to access the
database. phpMyAdmin does not support any interface to communicate with
it over SOAP or Rest, but it is possible to create different users for it, and
manage their responsibilities.

As from the description above, it can be thought that phpMyAdmin is some-
thing similar to the IBDL system. But, this is not the case. Of course there are
several features where both systems overlap each other and basically both
system can do similar things, but they are both made for different use cases.
phpMyAdmin is the number one software for handling database related stuff
and is mostly used by developers for managing their database. The tool can
be used to enhance the IBDL system and manage the created databases, but
most actions will be more complicated.

The process of creating databases for course participant is much more com-
plicated then with IDBL, which is especially made for things like that. Also,
the act of logging and result evaluation is not available in the phpMyAdmin
environment. Table [2.3| shows a brief comparison of both systems. It can be
noticed that for the use case “database courses” the IBDL system is essential

30

2.6. Requirements

because of the availability of the provided web service interface. Without
this interface, it is not possible to combine the features of a database man-
agement interface with an already approved e-learning environment. There
is no way, to integrate phpMyAdmin functionality into an existing service
because phpMyAdmin is a stand-alone tool to manage MYSQL database. It
would be possible to develop an extension which can provide a web service
and then execute the queries on the database. But then, two tools have to
be maintained. Therefore, the better solution is the IBDL system, which is
especially implemented for the topic of database courses in combination with
existing e-learning environments.

Summarized it can be said, that the internet based database laboratory is
a unique system, which core functionality is especially made for database
courses. It can not be compared to online database management tools because
IBDL is made especially for handling database courses and to provide a
web interface where students are able to train their database knowledge and
execute their queries. IBDL is developed to support all needs which raise in
the context of database laboratories and is able to provide solutions for every
requirement.

2.6. Requirements

The web service should satisfy all requirements which are necessary for
relation with internet based database laboratory. All these requirements were
defined in addition to the currently active e-learning environment WBT-Master
and the database courses at the Technical University Graz. That’s why the
following requirements were defined:

Initialising a database environment by the lecturer
Execution of queries given by the participants
Definition of the available database operations
Specification of user permissions by the lecturer
Possibility to filter queries

Possibility to evaluate result

Return a detailed result of the execution

Reset to initial state of the database

31

2. Internet-based database laboratory

Every mentioned requirement is specified in a more detailed use-case in the
following section.

Initialising a database environment by the lecturer

At the beginning of each laboratory, the lecturer should be able to define
a default database if necessary. This database can be used by the partici-
pants for further use, querying the data for example. After that, the service
has the possibility to save a dump of the database for another restore or
initialization.

Execution of queries given by the participants

It will be possible to create, modify, databases and schemas as well as put
and query data in the database. So all possible database operations should be
possible. The system gets the query from the soap interface and will check
it. Therefore, a filtering and an execution of the operation via MySQL will be
done. The lecturer and the participants of the laboratory will get the result and
the errors they made. A detailed description of the error should be returned.
Definition of the available operations or user permissions by the lecturer. The
lecturer has to set up the available operations. So he can only allow SELECT
queries and block UPDATE queries for instance.

Definition of the available operations or user permissions by the lecturer

The lecturer has to set up the available operations. So he is able to only allow
SELECT queries and block UPDATE queries for instance. Another advantage
will be the fact, which in earlier stages of a database course, the participant
cannot ruin their work with commands they did not know. Operations which
can destroy the whole service have to be protected. Therefore, a kind of
user management has to be implemented, because root privileges for every
participant will be a security problem.

32

2.7. Architecture

Return a detailed result of the execution

Every SOAP request to the web service will return a response. It will contain
a detailed result of the execution. If the request only interacts with the web
service alone, so that a MySQL call will not be done, because of a bad query for
instance, the result will contain only the web service error. If a MySQL call is
executed, the web service result and additional the message from the database
management system will be sent back in the response. So the feedback will
contain the normal MySQL execution status and additional information from
the web service itself. This has to be done because there could happen an
error in the web service but MySQL query is still fine or vice versa.

Reset to initial state of the database

In case of an error or a broken database, the lecturer can send a message via
SOAP to the web service, which will then reinitialize the database schema to
the beginning. So this will be needed in case of a wrong permission or queries
which will ruin the schema. Normally this function does not have to be used,
but in the case of emergency, the system can be rebuild very easy.

This list shows all requirements for the internet based database laboratory sys-
tem. All other functionalities like course administration, assignment creation
and so on, will be done in already implemented systems like WBT-Master
which is already used in several courses at TU Graz. This system will then
interact with the web service via the mentioned SOAP interface. Therefore, an
accurate description of the system has to be defined.

2.7. Architecture

The system itself is a Java web service with SOAP interface and MySQL
connection via the database connector to a MySQL server. The main part of
the system is the web service. The figure bellow will give an overview of the
system architecture.

33

2. Internet-based database laboratory

34

Verification Web service

S0aP

Reguest/Response Database connector

WBT-Master

Figure 2.6.: System architecture overview

2.7. Architecture

Figure [2.6/shows an abstract view of the whole system when it will be used
in an internet based laboratory in a database course for instance. The course
tool will be connected to the web service which is connected to a database.
The course tool and the MySQL tool are given environments which must
be accessed by the service. To do so, the service has several components
which will manage all the different parts. The communication with the web
service is done via SOAP because it serves many possibilities for handling
the requirements. Another big advantage is the XML communication which
can be handled by various other systems and therefore a high compatibility is
given.

Web service

There are several web service technologies out there. One of the most often
used is the Java Technologies for Web Applications which is fully specified by
Oracle, 2006. The web service is a Java Web Application with several compo-
nents which will be explained in this section. Therefore, the service provides
a Java servlet, which manages all the services the system provides. Another
advantage of the use of this system is that Java Web also supports the use of
MVC pattern in applications. So it is possible to develop an administration
interface above the system to manage the configuration by the supervisor
team. Of course, it will be possible to manage all configurations via the SOAP
interface too.

To deploy such web services there are in principle to a main server system
which can handle the Java Technology for Web Applications. The first one
is | Apache Tomcat |2016, which is more like a Java servlet container and does
not need a lot of computing power but does not support the whole Java
Enterprise Edition. The second one is called Glassfish, which supports the
whole environment. Glassfish is also used for the reference implementation
of the Java EE. Both can be integrated into a lot of IDEs for development
purpose.

To do so, the implementation uses the Java API for XML Web Services (JAX-
WS) which is a technology for building web services that communicate over
XML. The technology is specified by Oracle, 2017bl For the communication
with the database system, a connector is used. Therefore, the figure shows

35

2. Internet-based database laboratory

the main three parts of the service and the responsibilities of every single
section are mentioned.

Web service

Java API far XML Web Java Database
Sani Java Senviet ity JDBO)
& over HTTP * Filtering
L]
e XMLbased * Request / Response handling Java AP
:) & MYSQL support
¢ Web Services + Database managment]
. . . * Extendable with
Description ® Permission handling -
Language * Result handling

Figure 2.7.: Web service overview

Figure |2.7]shows an overview of all parts of the system. The servlet as part of
the Java Web Application is the main part of the web service. The first thing
the web service will do with an incoming request, which will be handled by
the SOAP part of the service is a filtering of the query. Therefore, a special
protection filter will analyze the parameters of it and escape them, so that
there is no security vulnerability and the system does not get hacked. In

36

2.7. Architecture

the next step, the system has to check if the incoming call has the correct
permissions to execute the query. The web service needs a little redundant
storage in the existing database, to save information like this. Information
about the servlet admin user is stored in the database. A big aspect of the
whole system is, that most of the information for the web service can be
retrieved from the database setup. This is a big advantage because MySQL
can already handle different permissions and user levels per default and so
the administration effort is much less, than a system which has its user and
privilege management. The check of the available operations can be done only
by the database management system.

But the web service itself needs to have two privilege levels. One is the level
supervisor, which allows to change settings, create new labs and has root
access to the database. The other level is the user privilege level, where only
the common MySQL statements are allowed which are defined on the MySQL
system itself. So the user does not have to know anything about the web
service because he should feel like he is working directly on the database. This
is important because a participant in the lab should train with real systems.

Another aspect of the servlet is the connection to the database connector. All
filtered and escaped queries should be transmitted to the database connector
which can then do further activities. If there is an error at this early stage,
an error is returned and the next execution steps do not work. This could be
the case if the database server is not running or there is a problem with its
connection. If everything works and the servlet was able to send the query
to the database connector, then the system goes into the next phase. The
execution phase, where the query will be executed on a working MySQL
database management system via the Java Database Connector (JDBC).

Verification

The verification process of the system describes the ability of the system
to handle the main three security aspects. This is necessary because only
verified clients should be able to use this web service and no-one else can
abuse the service for any other purpose. There are three security mechanisms
which were used in this project. The first aspect is integrity, which describes
the fact, which it should be proved that the message which was sent by

37

2. Internet-based database laboratory

the client is the same which was received, or was the message really send
by the expected client. There has to be some protection mechanism which
signs the requests/responses to guarantee this aspect. The second aspect is
authentication, which defines that only web services which can authenticate
on the server, are able to use the system. The third aspect is confidentially,
which describes the encrypted and decrypted of the XML content which is
sent between the client and the server. All three security measurements are
solved as follows:

Integrity To get integrity in the system, the SOAP messages for date exchange
have to be signed. Therefore, several libraries are available which provide
tools for signing the XML request. It would also be necessary to modify
the client to be able to use such libraries, hence this have to be integrated
into WBT-Master.

Authentication Because the project is developed for|Apache Tomcat|2016 server
systems their preferred authentication method can be used. The web
service uses a defined security role, so the Tomcat server knows, that
authentication has to be offered. The client itself is able to identify via
the provided API key.

Confidentially The |Apache Tomcat| 2016/ module which is used to provide
authentication also supports the use of HTTPS. This means the transport
encryption is solved by the use of the tomcat module. But it is possible to
use XML encryption but this is only necessary if more web services are
evolved, because otherwise the message have to be encrypted/decrypted
at every web service.

2.8. Integration

There are several ways for the communication process between the web
service and a client. All exchange protocols have different advantages and
disadvantages. There are two common types which are used in the most web
services nowadays.

The first one is the Representational State Transfer (REST), which describes a
pattern which was first mentioned by Fielding, |2000. It is important to mention
that REST is not a standard but only an architecture. It is used by many web

38

2.8. Integration

service providers and is used to call a resource on an external server. To do
so, RESTful web services use HTTP/HTTPS to fulfill all create, read, update,
delete operations.

The second big thing is the Simple Object Access Protocol (SOAP) which
is a protocol specified by the World Wide Web Consortium (W3C). It uses
XML over HTTP or SMTP for the data exchange process. All requests and
responses are sent in a valid XML message and the client has to exactly fulfill
the specification the server describes via a web service description language
document. Table 2.4/ shows an overview of the differences of the two exchange
formats.

REST SOAP
Architecture Protocol
Many data formats (JSON, XML,...) XML
HTTP / HTTPS HTTP / HTTPS, SMTP
High performance Slower because of overhead
Caching No Caching
Widely used Usage in complex web services
Simple communication process Strictly used Standard
for communication process

Table 2.4.: REST/SOAP comparison

The choice for this service is SOAP because the standardization of the protocol
by the W3C allows a simpler integration into web clients. A REST interface
can be easily added in future versions of this project because the modular
system architecture allows the usage of several data exchange types at the
same time.

The Java API for XML Web Services (JAX-WS) is the other main part of the
web service. This API allows a programming language independent data
exchange between different services. So data exchange and remote procedural
calls are available to every system over a network transfer. For this project, the
SOAP protocol over the HTTP layer, which is defined as SOAP 1.1, will be

39

2. Internet-based database laboratory

used to transfer response and request over the internet. To process a request,
several steps have to be done.

In the first step, the client has to access the provided Web Services Description
Language file. This file is available on the web service and is a standardized
way to read the available methods. Such files contain the parameters and
calling conventions of every single method the web service provides to the
client. The WSDL file contains per definition of W3C, 2001 the following
parts:

e Types— a container for data type definitions using some type system
(such as XSD).

e Message— an abstract, typed definition of the data being communicated.

e Operation— an abstract description of an action supported by the service.

e Port Type—an abstract set of operations supported by one or more end-
points.

e Binding- a concrete protocol and data format specification for a particu-
lar port type.

e Port- a single endpoint defined as a combination of a binding and a
network address.

e Service- a collection of related endpoints.

The WSDL file for this project can be found in the appendix It can be
seen that the whole document uses XML to describe the content. The elements
of this XML file are specified in the XML Schema Definition (XSD) which is
also available in the web service as noticed in section [3.4.4} The whole file is
specified in addition to the SOAP protocol, so it is fully compatible with it.
After the client got this file, it is able to send requests to the service. Therefore,
the SOAP protocol over HTTP has to be used. In that second step, the client
generates a request which has to be in a special form.

Simple object access protocol (SOAP)

To use SOAP for the communication between the clients and the web service
is a big advantage over other systems because SOAP is a very good specified
protocol where the developer only has to fulfill the specification by the World
Wide Web Consortium (W3C) and many clients with various programming

40

2.8. Integration

languages can communicate with the service. For the communication process,
several aspects have to be fulfilled by the client in a specified format. Therefore,
SOAP consists out of three parts defined by W3C, 2000;

e The SOAP envelope construct defines an overall framework
for expressing what is in a message; who should deal with it,
and whether it is optional or mandatory.

e The SOAP encoding rules defines a serialization mechanism
that can be used to exchange instances of application-defined
data types.

e The SOAP remote procedure call representation defines a
convention that can be used to represent remote procedure
calls and responses.

Every part of a SOAP request is also defined by the W3C, but the main thing
is the SOAP Envelop, which is the most important part off the communication
process. The envelop is defined by W3C, 2000 as follows:

A SOAP message is an XML document that consists of a manda-
tory SOAP envelope, an optional SOAP header, and a manda-
tory SOAP body. This XML document is referred to as a SOAP
message for the rest of this specification. The name space iden-
tifier for the elements and attributes defined in this section is
"http:/ /schemas.xmlsoap.org/soap/envelope/”.

SOAP message contains the following:

e The Envelope is the top element of the XML document repre-
senting the message.

e The Header is a generic mechanism for adding features to
a SOAP message in a decentralized manner without prior
agreement between the communicating parties. SOAP defines
a few attributes that can be used to indicate who should deal
with a feature and whether it is optional or mandatory

e The Body is a container for compulsory information intended
for the ultimate recipient of the message. SOAP defines one
element for the body, which is the Fault element used for
reporting errors.

41

2. Internet-based database laboratory

As mentioned by the W3C, the SOAP protocol is very widespread and can be
used for several use cases. All parts of this Envelope are necessary for a com-
munication process. But it is not compulsory to have any detail information
in these parts. Most often it is enough to use the default parameters for the
system because they cover most aspects.

In the SOAP Header attribute covers the information of the encoding style, as
well as the must understand attribute and the actorAtrribute. The first one
describes if the header information is important and the recipient. The second
attribute covers the information about the destination of a request. Because
the SOAP message can travel around multiple destinations and forwarded
to other recipients and this attribute describes, who is responsible for the
processing.

The Body of a SOAP document is the main part of it. It covers all exchanging
information as well as the RPC calls and the error reporting. All child elements
of the SOAP body are identified by their qualified element name. The encoding
Style which can be set in the header is used to encode the information. Another
element which can be used in SOAP is the FAULT element. It can be used to
carry an error or status information in a SOAP message. If used, the FAULT
element must be used in the body element of an SOAP envelope. The W3C
specifies all primitive data types plus structures like lists and arrays on their
SOAP specification. This information is enough for the exchange of objects
and RPC.

All the mentioned SOAP aspects are used to define the necessary SOAP
Envelopes for this system. Because this specification is responsible for the
function of the whole system, this detailed definition is necessary to have a
well working system.

2.9. Database interaction

The communication between the web service and the database is done by
the Java database connectivity. This Application Programming Interface (API)
is supported by MySQL and defines how a Java application can access the
database. The JDBC API is part of the Java Standard Edition and provides a
call-level API for SQL-based databases.

42

2.10. Summary

One big advantage of such an API is the integration of the database manage-
ment system in the Java application. There are several tiers which allow the
developer to change the type of the database for instance from MySQL to
Microsoft SQL and the driver can handle this. So the developer has his own
interface for communication and does not have to know anything about the
database. Every tier can be exchanged with any other compatible tier. The only
problem appears, if the developer uses system-specific SQL queries which do
not work on other structures, therefore the developer has to use the standard
SQL commands. But for this system, all SQL commands can be handled
by JDBC, and it would be possible to change MySQL with other database
management systems. So the usability of the system is very widespread and it
can be used in different labs with different database management systems.

Another possibility for the database interaction would be a self-made database
connector. This connector can be placed in the middle of the communication
process between the web service and database. But for the interaction in this
project, the available JDBC connectors are pretty fine.

2.10. Summary

The service pushes internet based database laboratories to a new level because
the participants are now able to directly execute their tasks in a real database
management system. They are able to get the result of their work as soon as
possible, generated by the system and they also got the advantages, that they
receive a detailed result of the error if their queries fail. To do so, this service
connects to existing laboratory clients via SOAP over the HTTP layer, so it is
possible to integrate the web service in numerous available systems, like the
WBT-Master, used in several courses at TU Graz.

The supervisor of the course has the advantages which the results of a query
are sent back to the participants, with detailed error information about the
failure. The administrative configuration of the service is very simple, to
guarantee a pretty fast workflow. The aspect, which the service should feel
like a real MySQL system for the users, will always be kept in mind during the
development phase because this is very important to train the participants for
real world system they will find in their daily business. So there should be no

43

2. Internet-based database laboratory

difference, except the detail of the error messages, in comparison to a stand-
alone database system. The mentioned SOAP messages, which are described
with the web service description language in the WSDL document, are pretty
detailed specified because this is important for the further integration of this
system in a laboratory client. To use SOAP is a good decision, because it
is specified by the W3C, and therefore there are no troubles with 3rd party
clients, because they only have to act like specified.

The security aspect of the service is important because there have to be at
least two types of users. The supervisor need root privileges to configure
everything, whereas the participants only have normal user privileges. The
incoming queries can be pre-filtered, to avoid any security related issues by
some bad queries.

44

3. Implementation

In this chapter, the implementation process of the internet based database
laboratory (IBDL) is described. In this first section, a general description and
an overview diagram to describe the architecture of the implementation will
explain the functionality of the system. The following sections describe the
important parts of the system.

The internet based database laboratory is fully implemented in Java, |2017.
Therefore, Java-web technologies are used. The decision to use Java was made
because WBT-master was also implemented in Java and is running on a
Apache Tomcat Server as described in and therefore no extra server is
needed. The whole project was build under the aspect of the Model-View-
Controller (MVC) pattern and is therefore very adaptable to new requirements.
The MVC-pattern is done by pure Java and does not use any external libraries.
One big aspect of the development was the fact that only a very few third-
party libraries should be used. Because of that fact, only the JSqlParser, 2017,
and the MySQL, 2017 have to be used.The first one is used for pre-filtering
and sand-boxing described in The second library is the standard library
for the communication process between MySQL and Java. The system is
compatible with every available database management system and can simply
be modified to work with on of these, but this basic implementation only
supports the MySQL. The process for changing the database management
provider can be found in section

In 3.1/ the important Java components of the project are mentioned in about
the package it is located. Because of the MVC-pattern, each package name
defines the type of the class, regarding model, view or controller. This diagram
will give an overview of the responsibilities of each component of the system.
Detailed information can be found in each section of this chapter.

45

3. Implementation

B TbdiLogger [<<Proparty>> -nama - s¥ing
[-ENTRES PER PAGE .inl |<<Proparty>> ~password : String
[1oager - Ibdogzer ‘
[baLoggerty

C— R
[<<Property>>—name : Skring
database_utils & oS webservice . -t sontant S1ng
- [1ibel_usemame : String 3_IbdlAccess Manager i
[a ScriptRunner |-content : WabSeniceContext PrrT—
FDEFAULT DELIMITER : Sting IR —— [-abexa : DoExacuser = >,
[odime :pattorn [@_DbCredentiols | |HodiLos : bdLogger [ShaTWSHander SProperye: Tod Simg
|-eonnection : Connaction [-db_usamama : String [#helio() '
|-stopOnEror : bookaan _ |<bpassword:Swing |-tisturmpery |+ getHeaders()
|-autoCammit : boatean @ DatabaseConnector |-db_nama : Stiing o) |- tedieFautt) |-0ene m e Suparuse ey
[<<Proparty=> -togWiter : PintWrier [-oonm: Conrecton [<<Propery=> -ip : Sting [[retoa 0 <ceneraeSuperUseken
|<<Property>»-arorLogWriter : Printiiter [[-upd : Statement [+DbCredentials() eliearie
- ‘ e [zoene meUserkenly
|-delimiter : Sring |-ciip : Sting |+ DoC rodentiaig() |+ celetaDatabaseLiserfy a ApiKey Wm
e ———— | raetSuparteysy).
fullLine Delimiler : boclsan |~dbname : String |+ gatDbUsamamal) |+uploadDuma() [<<Property>>-tey : String Ko
[FscrpRumen) |-dbuser Stng |-setboUsarnamel) oparty>> hod Sting ettend
", |-dbpass : St |+getDoPasswori() |+cresteDatabase() [-Apiker() |-aeneratePassword(
[runScrot) [-Datatasacomector) [+selDbPassnorc) - | <<Props ty=> -name : Sring
| unScript) o |stistpemiesionsy) e —_— E |<<Propariy=> ~content : String
|exectommand) |-ConnacirooB() [+setpeNamal) |-setpamissons(y e aepmenman] [-Dumen
-getDelimiter) |+ConnectTaDBWithoutDe fautDB()| & |getRasun() xcep rw——————— |- convertStres mTaStringy
Feret) |-executeQuenyl) cper? méssagn: Siing
[orntnl) |-executelpdete() [ADbRootGredertiais_| !
[prntinEror) |-execatel) | o)
sy B B B B
B B
A
web pages
[epiis | ﬁz.;_:x!a _ [database_managerisn | [dump_manager.jsp | [usersisn] [Cindexisp | ﬁ Togisp. _ _ Togin jsp. ﬁ [profieisa_| [Fudent Togn | ﬁ tostisp. ﬁ ﬁ_....\.:.zm!..uﬁ

Figure 3.1.: Class diagram

46

3.1. Definitions

3.1. Definitions

To understand the following chapters, and to get an idea of the work flow of
this web service some definitions have to be made. This definition will allow
the user to simplify the usage of the system.

Dumps The first thing which has to be created in the system is a dump.
A dump can either be uploaded, so the course supervisor creates a
database schema and upload it with a specific name. Another possibility
is to create an empty dump with a specific name. The dumps are in
principle the basic database for everyone.

Database To provide a database schema to every single WBT user, a database
has to be generated. This means every single user has his own environ-
ment. The naming schema for the database is given by the dumpname
and the username and results in {dumpname}_{username}. Therefore,
it is pretty simple to identify each database.

Database user Whenever a dump gets uploaded, a MySQL user with the
dumpname is generated. This database user is then responsible for all
created databases starting with {dumpname}. All privileges set for this
user, affect all the privileges for the WBT users using a databases starting
with {dumpname}.

All mentioned definitions give a basic understanding of the system but will be
explained in more detail in the next chapters. Every single functionality will
be explained and also the code for important parts of every class or module
will be shown.

3.2. Database executor

One of the most important parts of the system is the DatabaseExecutor object.
It is responsible for all database process in the system and also handles every
action initialized either by the web service or the GUI To use the system with
some different database management systems, the DatabaseExecutor defines
an interface which methods have to be provided by every single executor for
the different management systems. To choose the needed executor, there is an
DBExecutorFactory which returns an instance of the needed DatabaseExecutor.

47

3. Implementation

Therefore, the static Method getDbExecutor have to be called with a string
as a parameter which defines the needed DBexecutor object as mentioned in

Listing [3.1]
public class DbExecutorFactory {
public static DbExecutor getDbExecutor(String dbType)

if (dbType == null) {
return null;
}

if (dbType.equalsIgnoreCase ("MySQL”)) {
return new MySQLExecutor () ;
}

return null;

Listing 3.1: DBExecutorFactory

To handle all different database management systems, the DatabaseExecutor
defines an interface which defines all needed methods. All these required
methods have to be implemented, to guarantee the same functionalities by the
system as are available through MySQL. These methods, which are defined
in this interface only execute several queries on the database to maintain this
web service. The implementation for a MySQL database management system
can be found in the MySQLExecutor which implements DBExecutor. A short
explanation can be found in the following descriptions.

checkPermission

Checks if permission is in the array permissions given in the parameters.

createDbUser

Creates a new database user with the name of the provided username. There-
fore, username and a generated password are saved in the table ‘ibdl’."db_user’.

48

3.2. Database executor

After that, a MySQL user is created with the CREATE USER statement. In
case of success true is returned, otherwise false.

deleteDatabase

Drops the database with the name provided in the parameter via the MySQL
DROP DATABASE command.

deleteDump

Deletes dump stored in ‘ibdl’.’dump’ given the name of the dump from the
method parameter selected_dump.

deleteUser

Drop MySQL user identified by the name of the user. The MySQL statement
DROP User is used.

executeQuery

This method is one of the most important methods used in this project. The
execution of the user provided query is done here. The method requires
the WBT-Master username, the database name, and the query. All these
parameters are checked. After that, the MySQL user for this database has
to be retrieved from the database ibdl.db_users. If the user for the MySQL
connection is available, new DbCredentials are generated and a database
connection with the given credentials is made and the query is executed. After
that, the QueryResult is checked and the output gets generated. This is done
like described in

DbCredentials dbc = new DbCredentials(db.getName(), db.
getPassword () , database + ”_” + web service_user,
localhost”);

DatabaseConnector dc = new DatabaseConnector(dbc);

dc.ConnectToDB () ;

”

49

3. Implementation

qr = dc.execute(QueryPrefilter. filter (query));
Object [][] result;
if (qr.getQueryResultType()) {
qr.getRs () .last () ;
int rows = qr.getRs().getRow () + 1;
qr.getRs () .beforeFirst () ;
ResultSetMetaData rsmd = qr.getRs () .getMetaData () ;
int columns = rsmd.getColumnCount() ;
result = new Object[rows][columns];
for (int i = 0; i < columns; i++) {
result[o][i] = rsmd.getColumnLabel(i + 1);

}

int j = 1;

while (qr.getRs().next()) {
for (int i = o; i < columns; i++) {

result[j][i] = qr.getRs().getObject(i + 1);

}
j++;

}

} else {

result = new Object[1][1];
result[o][o] = qr.getResult();

}

dc.closeConnection () ;
return result;

Listing 3.2: execute query

The returned result contains either the number of effected rows or the retrieved
rows where the name of the rows can be found at index zero of the returned
array.

executeQuerySandbox

This method is for executing a query without an effect on the database. But
the query should be executed on the real table. After the execution the table
looks like before. Therefore, it is essential to get the type of the query because
only DELETE, INSERT, UPDATE queries are supported. The first step makes a
copy of the tables which should be modified. After that, the query is executed

50

3.2. Database executor

and the result stored. In the next step, the tables get truncated and the backup
is restored.

generatePassword

Used to generate a save password, therefore a SecureRandom object is used.
The specified length in the parameters is responsible for the length of the
password.

getCreateTable

Retrieve the "SHOW CREATE TABLE” command for the table identified by
the name available in the parameters.

getDatabases

Retrieve a list of strings containing the names of all databases on the MySQL
server. Tables ibdl, information_schema, mysql, performance_schema and sys
are hidden because of security measures.

getDumpContent

Get a dump object of the dump specified by the name, containing the name
of the dump and the content.

getDumps

Get a list of all availble dumps as Dump objects stored in table ibdl.dump.

51

3. Implementation
getPassword

Returns password of an database user stored in table ibdl.db_user for user
with username specified in the parameter of the method.

getTables

Returns list with all tables existing in a database identified by the name of the
table.

getUser

Returns a user as DbUser object for user available in mysql.user identified by
the username given in the parameters.

getUsers

Returns a list of all available users stored in mysql.user.

grantPrivileges

Grant all privileges for a user to the database specified in the parameters.
Also, the username is given in the parameters.

initializeDatabase

This method is used for initialising a new database. Therefore, the dump, the
dump name and the username of the WBT-user have to be provided. The
method creates a new database with the name {dump name}_{username}
and the dump content is executed with ScriptRunner and can be found here
The method have to return true if successful and false if an error occurred.

52

3.2. Database executor

insertDump

Insert given dump content and dump name into table ibdl.dump.

setPermissions

Set all permissions given by the grants array for a user. If the permission is
part of the array, then it has to be set with the statement GRANT, if not it has
to be unset by calling the MySQL statement REVOKE.

truncateTable

This method is used for truncating the table specified in the parameters. To
do so the TRUNCATE statement is used.

uploadDump

This method saves a dump to the database. Therefore, the method insertDump
is called, which saves the dump as blob to the table ‘ibdl"."dump’.

All mentioned methods in these class are implemented and generate the
expected results. To do so, the class needs to implement a database connection.
This connection is defined in the next section. This database connection is
essential for all further connections needed in this project.

3.2.1. Database Connection

The database connection is an important component of this system. Without
a reliable and manageable database connection, most of the operations of
this system would not be possible. Therefore, this service uses the official
and most common way for database communication between MySQL and
Java. The Java database connector (JDBC) driver for MySQL, 2017|is provided
by Oracle and supports all needs for handling the database communication
process.

53

3. Implementation

Because the web service either needs a MySQL account for handling all web
service related stuff, for instance for creating new databases it also needs the
MySQL account which runs in the context of the used database. Therefore,
a new class DbCredentials is introduced which is used for providing the IP,
database name, username and password. The credentials were simply stored
in this object mentioned in listing

public DbCredentials (String db_username, String db_password,
String db.name, String ip) {
this .db_username = db_username;
this .db_password = db_password;
this .db_.name = db_name;
this .ip = ip;

Listing 3.3: DbCredentials

To work with root credentials, the class DbRootCredentials is available. It
extends the DbCredentials class and contains the MySQL authentication data
which has access to the web service back end. The credentials are described
in If the password of the MySQL user “ibdl” has changed, it has to be
corrected in this file. These credentials are only defined here.

public class DbRootCredentials extends DbCredentials {
public DbRootCredentials () {
super ();
this .setDbUsername(”ibdl”);
this . setDbPassword (”password”);
this .setDbName(”ibdl”);
this .setlp ("localhost”);

Listing 3.4: DbRootCredentials

The root credentials will be used in all methods in the MySQLExecutor
except the executeQuery() and the executeQuerySandboxMode(). These two
methods use the credentials of the MySQL user which is created for a specific
database.

The class DatabaseConnector is responsible for the database communication
process. This class awaits DBCredentials in the initialisation and provides

54

3.2. Database executor

a couple of methods. The method which is used most is shown in listing
This method connects to a database and returns an open connection. If
the connection failed, the method returns null and the thrown exception can
be found in the output. There is no logging of such events in the IBDL log,
because if there is no database connection, no logging can be done. All further
methods will fail if this method is not called at the beginning of a database
operation.

public Connection ConnectToDB() {
Driver mySqlDriver;
try {
mySqlDriver = (Driver) Class.forName(”com.mysql.jdbc.
Driver”) .newlnstance () ;
DriverManager.registerDriver (mySqlDriver) ;
conn = (Connection) DriverManager.getConnection(”jdbc
:mysql://” + dbip + ”
dbuser, dbpass);
upd = (Statement) conn.createStatement();
System.out. println ("Connection_established!”);
} catch (ClassNotFoundException ex) {
Logger. getLogger (DatabaseConnector. class.getName())
.log (Level .SEVERE, null, ex);
} catch (InstantiationException ex) {
Logger.getLogger (DatabaseConnector. class .getName())
.log(Level .SEVERE, null, ex);
} catch (IllegalAccessException ex) {
Logger. getLogger (DatabaseConnector. class .getName())
.log (Level .SEVERE, null, ex);
} catch (SQLException ex) {
Logger. getLogger (DatabaseConnector. class .getName())
.log(Level .SEVERE, null, ex);

"

:3306/” + dbname + ,

}

return conn;

Listing 3.5: ConnectToDb

This method has to be called every time a query on the database should be
executed. Otherwise, there is no open connection. It has to be mentioned that
this connection uses the database specified in the credentials as default table.

55

3. Implementation

If a connection should be made to an undefined table, there is a method called
ConnectToDBWithoutDefaultDB().

To execute a query, three different methods are available. The first one is
executeQuery() which is used whenever some response is available. Typical
here will be a SELECT query. The second one is the executeUpdate(). This
method is used whenever something in the database gets modified, but the
response is only the number of effected rows. Typical statements here would
be a UPDATE query. The third method for execution is the method execute(),
which returns the custom object QueryResult. This method should be used
whenever it is not known what query should be executed. The QueryResult
which is returned contains the result.

If a ResultSet is available, then it can be retrieved out of this object. The
ResultSet is only disposable if there are datasets returned by the query. If no
ResultSet is available, the number of effected rows is set in the QueryResult
object. This is down as described in listing

public QueryResult execute(String query) throws SQLException {
QueryResult qr = new QueryResult ();
if (upd.execute(query)) {
qr.setRs (upd. getResultSet ());
} else
qr.setResult (upd. getUpdateCount ());
t

return qr;
Listing 3.6: execute

As already mentioned, this method should only be used, if the type of the
query is unknown. This is the case when the web service client sends a query
which should be executed.

One important thing is to close the connection after all execution processes
are done. To close a connection, the method closeConnection() have to be
used. It is important to close the connection because if the service has to many
open connections, the MySQL performance slows down. This class is the main
interface for communication process between MySQL and Java. Because of
the JDBC driver by MySQL, 2017 used in this web service it is very simple
to use other database management systems. The Java Database Connectivity

56

3.3. Graphical configuration interface

API specified by Oracle, |2017¢ describes the process of changing the database
management system as simple, because only a few lines have to be changed.
In this web service, it is only necessary to create a new database connector
and load the available JDBC driver for the used database system.

All necessary parts concerning the connection section of the web service are
explained. The next chapter will describe the interaction with this mentioned
logic. There are in principle two channels to communicate with the web
service. On the one hand the graphical user interface, which describes a web
application running in a browser and on the other hand the SOAP service
which also allows calling every mentioned method.

3.3. Graphical configuration interface

The first method to handle the service is the graphical user interface (GUI).
This interface allows the supervisors of the database course to administrate
the course environment. It gives the opportunity to handle all settings from
one interface. But it has to be mentioned, that all functionalities apart from
creating API keys and creating IBDL users are available through SOAP. So it is
not necessary to use the GUI but it simplifies the system. The implementation
of the GUI is done in HTML with the support of the Framework Bootstrap,
2017, This framework gives the opportunity to create beautiful responsive
Websites with little afford. Another aspect is, that no Javascript was used for
the realization of the interface.

The interface requires a logon. A default user admin is available, which should
be used by the head supervisor of the course. The admin can then create new
users, called IBDL-users. It can be chosen if these new users are admins as
well. Only admins can create new users. This IBDL-users should be all tutors
who were responsible for database courses. After the successful login, the
supervisors get the following interface to work with. On the top right corner,
the administration options are displayed. The admin can create API keys,
which are explained in section and create new IBDL-users here. It’s like
a configuration menu for the web service itself. The IBDL-users also have the
possibility to check the logs. Every single servlet- and web service- operation
is logged in a database table. This is important because of that, every error can

57

3. Implementation

= - o x
[Internet based database X
<« c ‘G) localhost:8084/InternetBasedDatabaselaboratory/indexjsp 0‘ P -
IBDL - Admin Panel Dump manager Database manager Database user manager TestIBDL Results IBDL-Admin~
Profile
View log
APl key
Hello, IBDL-Admin! 1BDL users

Now you can setup the intemet based database laboratory environmentt
Logout

Internet based database laboratory by: Leo Wirth, BSc

Figure 3.2.: Graphical user interface

be reproduced. As already mentioned, the web service uses the model-view-
controller pattern and this means that all files for the visualization of the GUI,
which are realized with Java Servlet Pages by Oracle, can be assigned to
the view part of the MVC architecture. The graphical user interface consists
out of one index.jsp which includes all other views if required. The other files
are protected against unauthorized visiting by a header redirect, which checks
if there is a valid login session is available.

The decision for using only one page for displaying the content, and including
only the views was done because of the simplification of the systems. This
means that every page equals another because only the content of the main
body of a page gets changed in dependence of the selected menu. Therefore,
the index.jsp contains some logic, which can parse the parameters in the URL
to include the necessary layout.

58

3.3. Graphical configuration interface

There are mainly five sections in the GUI which are necessary for working
with the system:

Dump manager

€ > C [@ localhost:8084InternetBasedDatabaseLaboratory/indexjsp?menu=dump s e

IBDL - Admin Panel | Dump manager = Database manager Database user manager TestIBDL Results IBDL-Admin~

Dump manager

Upload database initialisation dump

select dump

[Datel auswanien | Keine ausgewanit

Dump name:

Create empty dump

Dump name:

Saved dumps.

Figure 3.3.: Dump manager interface

The dump manager in figure allows the user to upload exported SQL
dumps from predefined database schemas. The tutors can create databases
in their preferred environment, and upload this framework to the system.
Another possibility is to create an empty dump, which can then be used as
an empty framework for the students. The dumps can also be viewed and
deleted. The code is located in the file dump_manager.jsp.

Database manager

The database manager, which can be found in database_manager.jsp, dis-
played in figure creates the real database schema for a given web service

59

3. Implementation

= - o ox

R Itemet based dtabese

€ > C [O localhostB084/IntemetBasedDatabaseLaboratory/indexjspmenu=database IR I

IBDL - Admin Panel Dump manager ~ Database manager = Database user manager TestiBDL Results IBDL-Admin~ i

Database manager

Create database for WBT-user

Dumps:

databasest
testab
emptydd

WBT-user:

Create database

asdf_maria
databasest_anna

Figure 3.4.: Database manager interface

username. Therefore, a dump and an username have to be selected, and the
schema will be created in the MySQL environment. It is also possible to view
the tables of the schema and to delete databases.

Database user manager

The database user manager in figure 3.5/ allows setting privileges for every
database user. Every dump gets an MySQL user which is then responsible for
all databases created out of this dump. The available privileges are the same
as specified by Oracle, The source of this manager is implemented in
user_manager.jsp

Test environment

The test environment, found in file test.jsp, in figure 3.6 give the possibilities
to the tutors, to execute a query on a specific database. This can be useful for

60

3.3. Graphical configuration interface

R B - o x
/I e st g X\
« clo w5 e

IBDL - Admin Panel ~ Dump manager Database manager Database user manager ~ TestiBDL Results

Database user manager

Manage users

© oaabases?
© databasest

© dot

© testan

© dpexclusivtest2
© johann

© emptydd

© emptyabz

© o123

©leo

© a7

© aaa

© testiz

om

Internet based database laboratory by: Leo Wirth, BSc

Figure 3.5.: Database user manager interface

irtemet bazed databaze X\

clo et

Apps) Contaier Authentic: [1 Autodocs: DasSpiel [ALLIN-ONE Paketver € Ho t reet passwor [2017 DIY Verbesserte

1BDL

dmin Panel Dump manager base manager Database user manager Test|BDL | Results IBDL-Admin

Query executed!

Test environment

Create SQL statement

WBT-username

werner

Database:

b1

Query:

SELECT * FROM BRANDS

1 intet Inteisrasse 911z ang
2 AMD Amastiasse 7474 tana
s samsung Reichestrasse 1010 ang
4 Seagate Seegasse 2014 tand
5 Western Digital Route 66 8010 land
s ocz Vilenviertel 10245 tand
o st st " ana -

Figure 3.6.: Test environment

61

3. Implementation

testing a specific problem a user had.

Results

- o ox
[Intemet based database X

€« c e

£ Apps (3 Container Authentics [} Autodoes: Des Spel [ALLN-ONE Paketver G How toreset passwer [2017 DIY Verbesserc:

IBDL - Admin Panel Dump manager Database manager Database user manager TestBDL Results IBDL-Admin~ I

AR VIR N}

Results loaded!

Results

select user:

asaf_maria

Show results

1 el Inelstrasse 9112 land
2 aw Amostrasse 7474 land
3 Samsung Rechesirasse 1010 land
4 seagae Seegasse 2014 land
5 WestemDigial Route 66 8010 land
s ocz Vilenvieriel 10245 land
"o asar asat o and
2 test grfen 9112 osterreicn

1B test griften o112 osterreich

Figure 3.7.: Results interface

The result section in figure [3.7] shows which queries were executed for a
specific user and what was the result of the execution. Successful results are
marked green, and failed results are red colored. The source of this JSP can be
found in the file result.jsp. This basic implementation of the result page can
be adapted to the required result evaluation mode.

It can be seen that the GUI provides all features, which were required. Nev-
ertheless, it was important in the development that the GUI is a matter of
simplicity, and it has to be mentioned that the development of the GUI was
done because the development of the system can be done much simpler.

62

3.3. Graphical configuration interface

3.3.1. Java Servlets

Every functionality provided by the graphical user interface is realized via the
Java servlets described by Oracle, |2017d. These servlets allocate an elegant
way for working with requests and responses. It is possible to pass nearly
everything directly from the jsp files, which took over the view part of the
MV C-architecture, to the servlet and generate a response. Therefore, the most
servlets do not create HTML output but generate a response which is den
send back to the calling view and shown. To generate such responses, it is
necessary to do it like explained in listing It can be seen, that error and
success is handled separately in this interface because there are pre-defined
error and success fields in the index.jsp.

if (success){

request.setAttribute ("success”, “"<SUCCESS_MESSAGE>");
telse{

request.setAttribute ("error”, “<ERROR_MESSAGE>");
}

request. getRequestDispatcher ("<PAGE>")
.include (request, response);

Listing 3.7: response handling

The next section gave an overview of all servlets. Important code segments
will be shown in listings, but it has to be noticed, that the code of the listings
is shrunk to get an easier understanding of what is happening. The whole
graphical user interface will use the following servlets.

ChangePasswordServlet

This servlet has the responsibility to change the password of the logged in
IBDL user. Therefore, the request contains the old password, the new one
and the reply of the new password. The username can be retrieved out of
the user object in the session. After that, all three parameters get checked. In
case of an error, like a wrong password or different passwords, an error is
returned in the response. Otherwise, the IbdlUserManager is called to change
the password. If the manager returns true, the password is changed and a
success message is returned.

63

3. Implementation

The mentioned IbdlUserManager is responsible for user related stuff, like
login checking, password changing and for creating new users.

CreateDatabaseServlet

The CreateDatabaseServlet contains all the logic for creating a database. There-
fore, the username which should be the same as the user got in WBT-Master,
and a dump name are necessary Both are available in the request. The param-
eters are checked if they are not empty and it is also checked if the the dump
is available After that a new database is initialised as shown in listing

if (dbexe.initializeDatabase (dump.getContent (), dump.getName ()
, username)) {
if (dbexe.grantPrivileges (dump.getName() + ”_”+ username,
dump . getName ())) {
request.setAttribute (”success”, ”"Database.for_dump.
created!”);

Listing 3.8: creating a new database

It can be seen that in the first step, the database gets initialized and if that
operation was successful, all privileges are activated on the database. This
means that the MySQL user who has the same name as the dumb, is now
responsible for all permissions.

CreateDumpServlet

This servlet handles the empty dump creation process initialized by the
dump_manager.jsp. Therefore, only the dump name is needed and it should
not be empty. If all aspects are fulfilled, the dump is created. The normal
uploadDump() function from DbExecutor is called, with a null pointer to the
dump content. After the creation of the dump, a MySQL user with the same
name as the dump is created. In case of an error, a message is returned.

64

3.3. Graphical configuration interface

CreatelbdlUserServlet

The servlet is responsible for the creation process of a new IbdlUser. Therefore,
the user name, the real name, the password and the reply of the password
are needed. Also, the type of the user should be available in the request. At
first, all parameters get checked if they available and not empty. After that, a
IbdlUser object gets created and checked if user name is available. If this is
true a new user is created and stored.

DeletelbdlUserServlet

As the CreatelbdlUserServlet, this servlet does the opposite. It is responsible
for deleting the user. The request has to contain a user name which should
be deleted. If the delete-operation was successful, the response is sent back
otherwise an error is returned.

GetUserServlet

This servlet manages the database users. Therefore, a user name and an action
are required the action is either the view grants action or the delete-user
action. In the servlet both actions are handled differently as shown in listing

B9

if (action.equals(”View.Grants”)) {
request.setAttribute ("success”, “User.” + selected_user +

7 _loaded!”);
request.setAttribute ("user”, user);

} else if (action.equals(”Delete_user”)) {
if (dbexe.deleteUser(selected_user)) {
request.setAttribute (“success”, “User.” +

selected_user + ”“_deleted!”);

Listing 3.9: handle database user

If view grants is defined as action, than the whole user object is refreshed and
stored in the session, if the delete option is selected, then the user is deleted.

65

3. Implementation
LoginServiet

The login into the IBDL admin panel is handled by the LoginServlet. This
servlet is the only servlet which returns a response wich is directly shown in
the browser. This is pretty helpful because no extra loading page has to be
generated while waiting for the login. To do so, the servlet gets the username
and the password in the request and tries to log in the user. To log in, the
username and password get checked with the help of the IbdlUserManager.
If the login process was successful the user object is written to the session
as well as authentication is set to true. In the index.jsp file it is checked if
authenticated is set to true and if the user object is available. To notify the
user an HTML response is generated, which redirects back to index.jsp after 5
seconds as seen in listing

if (login) {

ibdlLog .logAction (IbdlLogLevel .INFO, “logged.in”, request.

getParameter ("username”)) ;
out. println ("Welcome, .” + user.getName() + ".!</br>");

o

out.println (”You.will_be.redirected .automatically.or.”+
click.<a_href="index.jsp’>here");

out.print ("<meta_http—equiv=\"Refresh\””+”content=\"2;URL=
index.jsp\”">");

HttpSession session = request.getSession () ;

session.setAttribute (”“user”, user);

session.setAttribute ("authenticated”, true);

Listing 3.10: login routine

All other Java servlet pages can check the session if the user is logged in. If a
JSP file is accessed without a valid authentication, the user gets redirected to
the login page.

LogoutServlet

The LogoutServlet is responsible for logging out a logged in user. This is
necessary if a tutor wants to exit the system. To do so, the servlet has to
invalidate the actual session by doing the following shown in listing

66

3.3. Graphical configuration interface

HttpSession session = request.getSession () ;

session.invalidate () ;

String redirect = response.encodeRedirectURL (request.
getContextPath () + ”/index.jsp”);

response.sendRedirect(redirect);

Listing 3.11: logout routine

ManageApiKeysServlet

The management of the API keys is very important because without them the
web service is not working. The functionality of these keys can be found in
The servlet is responsible for generating and deleting API keys and super
user API keys. Therefore, the servlet distinguishes between super user and
user API key, and also between creating and deleting. For every case, there is
an extra operation. To generate and delete the keys the IbdlAccessManager is
called. It is an object which is similar to the IbdlUserManager but is responsible
for the API key management. If everything was successful, a message is
returned otherwise an error is going to be displayed.

ManageDatabaseServlet

The ManageDatabaseServlet is responsible for managing databases. It allows
viewing the tables of the database, as mentioned in listing Another
possibility is to reinitialize databases. This means it is possible to set a specific
database back to the content the dump contains and of course the deletion is
also possible. To do this, the request has to contain the name of the database
and the action.

ArrayList<Table> tables = null;
try {
tables = dbexe.getTables(selected_db);
} catch (SQLException ex) {
out. println ("<h2>" + ex.getLocalizedMessage () +
</h2>");

”

67

3. Implementation

for (int i = o0; i < tables.size(); i++) {
out. println (“"<h2>” + tables.get(i).getName() + "</h2>"
);
out.println(tables.get(i).getHtmlContent());
out. println ("<hr>");

Listing 3.12: view database

ManageDumpServiet

This servlet manages the dumps. The servlet gives the opportunity to view
and delete dumps. Therefore, the request has to contain the name of the
dump which should be viewed or deleted. The action has to be available in
the request. In the view action, the content of the dump is displayed, in the
delete-action, the DbExecutor is called to delete the dump.

ResultServlet

The ResultServlet is responsible for displaying the retrieve the results for a
special WBT-username. Therefore, the request has to contain the whole user
name and returns an object to the view which contains the whole result. This
object is can then be used to create the HTML output. To generate the result
object the servlets calls the IbdlLog and saves the result to an object[][]. This
is done like shown in listing

result = ibdlLog. getQueryResult(username);
if (result.length > o) {
request.setAttribute ("success”, “Results_loaded!”);
request.setAttribute (“result”, result);
1 else {
request.setAttribute(”error”, “"No.results_available!”);
}

Listing 3.13: retreive result

68

3.4. Web-Service

TestQueryServlet

The TestQueryServlet provides the possibility to execute queries on a database
for a special WBT-user. Therefore, the request has to contain the username,
the database and the query. All these parameters get checked, if they are
not empty and after that the execute() method form the DbExecuter gets
executed, with the required parameters. The return of the execute() method is
an Object[][] which contains either the returned table cells or the at [0][0] the
number of influenced rows by the query, as described in ??. The execution of
the query is done like shown in listing

result = dbexe.executeQuery(username, database, query);
request.setAttribute (“success”, “Query_executed!”);
request.setAttribute (”"result”, result);

Listing 3.14: execute query

The result will be returned an can be retrieved as attribute wit the key “result”.
The view in test.jsp is responsible for the correct displaying of the result.

UploadDumpServlet

This servlet is responsible for uploading a predefined SQL dump. This dump
can be exported from other database systems. But it is important that it is fully
compatible to the used database management system. The servlets need to
have the dump and the dump name in its request. With all this information the
uploadDump() function from the DBexecutor is called. If everything was fine
in the upload process, a success message will be returned in the response.

3.4. Web-Service

The web service is the main part of the system. It is responsible for the
interaction between the existing WBT-Master system and the internet based
database system. There are many ways to connect these two components. The
most famous types are REST and SOAP. This system uses SOAP as mentioned
in The SOAP implementation was done in Netbeans 8.2 which is provided

69

3. Implementation

by Oracle, 2017gl Netbeans give the developer the opportunity to test and
generate parts of the system out of existing code. The integration of the web
service components is supported by Netbeans, so the process of integrating
the service is very comfortable.

The web service part is fully encapsulated from the graphical user interface
part and implements all functions the GUI supports. Therefore, the web
service uses the function provided by the DbExecutor as the servlets in the
interface do it. Only with the strict separation of GUI and web service, the
simplicity of the service can be done. Also, code segment which should only
be available in the GUI or the web service can only be realized with this
architecture. To integrate the web service architecture defined in the SOAP
specification in W3C, |2000, Java provides the Java API for XML Web-Services.
With this implementation, it is possible to provide a SOAP interface in the
used application server. To do this in Netbeans, the following steps have to be
made.

Add file At first a new web service component have to be added to the
existing project. Therefore, it is necessary to add a new file to the project
by right-clicking the project node and choose "New” and then “Other...”.

Choose web service In the next step the category "Web services” has to be
selected. On the right side “"Web service” has to be chosen as file type.

Define web service In the next step the web service has to be defined. There-
fore, a name and a new package name have to be provided, because all
web service stuff is than available in this package After everything is
filled the assistant can be finished.

After this procedure, a new package with the defined package name is created.
In this package all web service files are available. Also, a new folder Web
Services is now disposable in the working tree. The main file is the web
service_name.java. It contains the proper web service and the developer is
able to create the provided methods here. To setup, the name of the entire
web service, under which the client is able to connect to it, the first line of the
web service are crucial, because here the main settings for the whole SOAP
we service can be made. The settings are annotated at the beginning of the
class starting with an @. These annotations are specified by Oracle, [2017f. The
most important annotations used in this project are the following.

70

3.4. Web-Service

©@WebService(serviceName = " IbdIWS”, targetNamespace ="") The anno-
tations marks the service name. It is also possible to define the name and
the namespace here, in the project the targetNamespace is definded as
ibdl.tugraz.at. But service name is the minimum for every web service
which has to be defined.

@HandlerChain(file = " IbdIWS_handler.xml”) The handler chain is used to
redirect the requests, which come in to a chain element before. This will
be necessary for the pre filtering a soap request. This is mentioned in
section ??.

@SOAPBinding(style = SOAPBinding.Style.RPC) The SOAPBinding anno-
tation describes the mapping of the web service to the SOAP protocol.
Therefore, the style was changed to RPC, because it does not allow the
return of empty responses.

@WebMethod(operationName = "hello”) To define a method which is ac-
cessible through the web service, this annotation is used. The parameter
in this annotation have to be at least the operationName, which describes
the name of the method in the WSDL.

@WebParam(name = "name”) The last annotation which is important for
this project is the WebParam, this is for marking the parameters a
function requires. Also, the parameter name have to be specified.

All defined annotations are often used in the web service class. As already
mentioned a response can not be empty. JAX-WS implements a way, to return
errors to the client. Every WebMethod defined in the web service has the
possibility to return a fault. A fault is a kind of exception. To standardize this
exception a custom IbdlException is introduced, to handle all possible errors
in the same way. This IbdlException works as seen in listing

@WebFault (name="1bdlException”)
public class IbdlException extends Exception{
private IbdlExceptionBean faultBean;

public IbdlException(String message,IbdlExceptionBean
faultInfo){
super (message) ;
faultBean = faultInfo;

71

3. Implementation

public IbdlException (String message, IbdlExceptionBean
faultInfo , Throwable cause) {
super (message, cause);
faultBean = faultInfo;

}

public IbdlExceptionBean getFaultInfo (){
return faultBean;
}

Listing 3.15: IbdlException

This exception extends the Java standard exception and is marked as WebFault
with the annotation @WebFault(name="IbdlException”). Hence, this exception
can be used in methods provided by the web service. The exception needs
an object called IbdlExceptionBean, which is just a wrapper to a string object
because more objects and variables can be added in the bean and used if
mandatory.

3.4.1. Java API for XML Web-Services

The whole pre-settings are defined, therefore the web service itself can be
explained. The following part describes all available methods in the web
service and how they are realised.

createDatabase

The createDatabase method requires an dump name, an username and the
super-user-api-key. If the API key is valid and a dump with the specified
name is available, then the database gets initialized by the use uf the method
initializeDatabase from the DbExecutor. A string with the success message is
returned. In case of an error the mentioned IbdlException is sent back as a
response. In every possible error case the exception is sent back, to provide the
client with the information what was wrong with the execution. The return
string of the function is only returned in success state because only then, the
function executed successfully.

72

3.4. Web-Service

deleteDatabase

The method requires a database name and the super-user-api key. All param-
eters get checked and in case of an error, an IbdlException is thrown. If all
parameters are okay, the deleteDatabase() form DbExecutor is called. If the
process was successful, the string “success” is returned to the client in the
response.

deleteDatabaseUser

The provided method deleteDatabaseUser is responsible for deleting a database
user. To do so, a username and a super-user-api-key is required. After the
key was checked, the username is also audited. If all checks passed, the
method calls the deleteUser() from DbExecutor. If the process was effective,
”success” is returned in the response to the client. If something is wrong, an
IbdlException is thrown immediately and the execution gets aborted.

deleteDump

The deleteDump method is used for deleting a dump in the internet based
database laboratory. The method needs the name of the dump and the super-
user-api-key. The parameters get checked and if all parameters are legal, the
method deleteDump form the DbExecutor object is called. If the operation
was executed successful, the String “success is returned to the calling client.
Otherwise, an IbdlException is returned.

executeQuery

This method is important and is one of the most used methods in the entire
web service. Every execution of a query by a WBT-Master user is done via this
query. Therefore, an username, database name, query and user-api-key are
required. After the API key is checked, the system executes the query on the
given database. If the username or the database not exist, a IbdlException is
returned. If that is not the case, an Object[][] is returned, where the first[] are

73

3. Implementation

the columns and the second[] are the rows. The method is shown in listing

try {
if (IbdlAccessManager.checkApiKey (user_api_key)) {

Object[][] result = dbexe.executeQuery(username, database,
QueryPrefilter . filter (query));
if (result.length == 1 && result[o].length == 1) {
ibdlLog.logQueryResult(database + ”_.” + username, query,
7”7 + result[o][o], false);

} else {
ibdlLog .logQueryResult(database + ”"_” + username, query,

ibdlLog . ArrayToHTMLTable(result), false);
}

return result;

} else {
throw new IbdlException(”Wrong_user_api_key!”, new
IbdlExceptionBean ()) ;

}
} catch (SQLException ex) {
throw new IbdlException(”SQL—Error:.” + ex.
getLocalizedMessage () , new IbdlExceptionBean ());

Listing 3.16: execute query

The usage of the Java class Object, is pretty useful here, because soap can
auto-detect the type of the content in the object and mark the type in the XML

response as shown in listing

<item>
<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mww.w3.org
/2001 /XMLSchema—instance”>id _b</item>
<item xsi:type="xs:string” xmlns:xs="http://mww.w3.0rg/2001/XMLSchema” xmlns:xsi="http://www.w3.org
/2001 /XMLSchema—instance ”>name</item>
<item xsi:type="xs:string” xmlns:xs="http://mww.w3.0rg/2001/XMLSchema” xmlns:xsi="http://mwww.w3.org
/2001/XMLSchema—instance ”>strasse</item>
<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mww.w3.org
/2001/XMLSchema—instance ">plz</item>
</item>
<item>
<item xsi:type="xs:int” xmlns:xs="http://mwww.w3.org/2001/XMLSchema” xmlns:xsi="http://www.w3.org
/2001/XMLSchema—instance ">1</item>
<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://www.w3.org
/2001/XMLSchema—instance”>Intel</item>
<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mww.w3.org
/2001 /XMLSchema—instance”>Intelstrasse</item>
<item xsi:type="xs:int” xmlns:xs="http://www.w3.o0rg/2001/XMLSchema” xmlns:xsi="http://Mmwww.w3.org
/2001 /XMLSchema—instance”>9112</item>
</item>

Listing 3.17: response

74

3.4. Web-Service

In listing it can be seen, that every returned value gets an xsi:type which
defines the type of the returned value where xsi is the used namespace
definition. With this description, it is possible to convert the data back into a
datatype the client can work with.

executeQuerySandboxMode

To execute queries in sandbox mode, which is explained in a separated
method is provided to avoid misunderstanding. This method needs the same
parameters as the normal executeQuery function, namely username, database
name, query and user-api-key. At first, the API key is checked, and after that,
the query gets executed with the executeQuerySandbox() method from the
DbExecutor. For the result, an Object[][] is generated and if everything goes
fine, the 2-dimensional array gets returned to the client. As already mentioned,
the JAX-WS libraries specify the objects in the soap response, so the client can
retrieve the information which data type the result has.

getResult

The getResult method available trough the web service gives the client the
possibility to retrieve the execution results for a special user. The method
needs the super-user-api-key and the name of the WBT-Master user, for whom
the result should be retrieved and the database name. After the API key is
checked the result is loaded, with the help of the getQueryResult method
from the IbdlLogger which is responsible for the logging stuff. This is done as

shown in listing

if (IbdlAccessManager.checkSuperApiKey (super_user_api_-key)) {

7

return ibdlLog.getQueryResult(db_name+”_"+username) ;
1 else {
ibdlLog.logAction (IbdlLogLevel .ERROR, “Invalid_API_key!._("+
super_user_api_key + ”)”, “"web_service”);
throw new IbdlException(”Invalid.API_key!”, new
IbdlExceptionBean ()) ;

Listing 3.18: get execution results

75

3. Implementation

The returned result is a two-dimensional object, which contains all entries
for the username and the name of the database provided in the request. The
information about id, database, query, result, state and timestamp are available
in the XML response.

hello

This method is just a “"HelloWorld” method for the web service. It is possible
to test the basic functionality and check if the web service is up and running.
It is also possible to provide some text in the request to get back a "Hello”
concatenated with the provided text.

listDatabaseUsers

The listDatabaseUsers method is responsible for displaying all available
database users stored in the ibdl.db_users table. The request has to con-
tain the super-user-api-key. If the key is okay, the users are gathered via the
getUsers method of DbExecutor. To generate the output, the names are stored
in the list which is returned like described in listing

users = dbexe.getUsers () ;

String [] user_names = new String[users.size()];

for (int i = o0; i < users.size(); i++) {
user_names[i] = (users.get(i).getName());

ibdlLog.logAction (IbdlLogLevel .INFO, “listUsers.successfull”,
"web._service”);
return user_names;

Listing 3.19: get database users

In case of an error the IbdlException is sent back to the client, otherwise the
list is sent back.

76

3.4. Web-Service
listDatabases

This method can be used to call a list of all available databases. Therefore, it is
necessary that the request contains the super-user-api-key. If the API key is
valid, the list of databases is generated by the use of the method getDatabases()
from the DbExecutor object. The list is sent back to the client in case of success,
otherwise, an error is sent via the IbdlException.

listDumps

To get all allocatable dumps stored in the internet database laboratory, this
method has to be used. The super-user-api-key has to be provided by the client
requesting the information. To build up the output, the method getDumps
from DbExecuter is used. Because only the names are required in the output,
the list has to be converted by abstracting the name out of the dump list.

listPermissions

To get the actual MySQL permissions for a MySQL user this method has to be
used. Thus, the request has to contain the super-user-api-key and the name of
the MySQL user which is the same as the dump name. If all these parameters
are good, a DbUser object is retrieved. After that, the list of permissions is
excluded and send back to the client.

reinitDatabase

In case something is wrong with the database for a special user, this method
can help by resetting the database back to it initial state. The method needs
to have the super-user-api-key and the database name in the request. First of
all the API key is checked, if it is valid, the database gets deleted After that a
new database form the original dump is generated. This means a completely
new database is initialized in this step and the old one gets removed.

77

3. Implementation

setPermissions

The setPermissions method is available for setting the permission for a user.
To specify the permissions, an username, the super-user-api-key and of course
the permission have to be provided in the request. This is done by a list, where
every jitem; represents a new permission. The permissions available are the
one defined by MySQL earlier explained in this document. All permissions
provided in the list are then set to GRANT, and permissions which are not in
the list are REVOKED. This is done by calling the DbExecutor and running
the setPermissions method.

uploadDump

The possibility to upload dumps is also available trough the web service.
The request has to contain the content of the dump, the name of the dump
and the super-user-admin-key. If all tree parameters are available and valid,
the dump is uploaded. Therefore, the dump has to be available in a Base64
encoded string, because otherwise there are troubles with special things in
the entire SQL statement. The dump gets then encoded in the upload process
like mentioned in listing

byte[] content = Base64.decodeBase64 (dump) ;
InputStream stream = new ByteArraylnputStream (content);

try {
dbexe . uploadDump (stream , dumpname) ;

return “success”;
} catch (SQLException ex) {
throw new IbdlException(”SQL—Error:.” + ex.
getLocalizedMessage () , new IbdlExceptionBean());

Listing 3.20: upload dump

After the content is decoded, the uploadDump method from the DbExecutor
is called. If everything works like expected, the string “success” is returned
other wards an IbdlException is returned.

78

3.4. Web-Service

createEmptyDump

This method creates a new empty dump and stores this information in the
ibdl.dumps table. To do so the method requires the super-user-api-key and
a name. This name is used as dumpname, as well ass the name for the
new MySQL user created for this dump. If all parameters are valid, the
uploadDump and the createDbUser of the DbExecutor is called. If both
operations were successful, the string “success” is returned to the client. If
there is an error, an IbdlException is sent back.

3.4.2. SOAPhandler

To access SOAP messages before the actual processing of the requests, the JAX-
WS standard provides the possibility to use handlers. The implementation of
such handlers is mentioned by Oracle, |2017a. This SOAPhandler is able to
access the message before the execution of the requested web service method
and can either be implemented on the server-side as well as on the client-side.
It is possible to have multiple handlers attached before and after the SOAP
processing web service as shown in figure [3.8| provided by Oracle, |2017a.

handlerCne. ™, 7 handerTwo.
hardlebMessagel)]_-'i' handleMeszzsage()
inbound

handlerThree.
P hardleMe:s age()

inbound N inbound / Back-end
—_— Component
handlerCne. ,./ handlerTweo. ™ ’ handlerThree. %\
hardleMessage() handleMeszage() l1*|.rr]J.eMe-d1Ee1 i

\ outbound _/r' mta‘bmmd \aurbmmd J

Figure 3.8.: SOAP handler chain

This is very useful to process SOAP requests before they are actually executed
in the web service. There are two types of handlers which can be used for the
implementation. The SOAPHandlers allow to access the full SOAP message
whereas the LogicalHandlers allow the access of the payload of the message,
so they will not allow changing any protocol specific information. For this
web service, a SOAPHandler is used to extract the clients host address out

79

3. Implementation

of the system. To implement such a SOAPHandler it is necessary to create a
new handler, in this case the IbdIWShandler which implements the provided
interface SOAPHandler.

public class IbdlWSHandler implements SOAPHandler {

public boolean handleMessage (SOAPMessageContext msgCtxt) {
SOAPMessage msg = msgCtxt. getMessage () ;
HttpServletRequest request = (HttpServletRequest)
msgCtxt. get (MessageContext.SERVLET_REQUEST) ;
IbdlAccessManager.setHost (request. getRemoteHost ()) ;
return true;

}

public Set<QName> getHeaders () {
return Collections .EMPTY_SET;
}

public boolean handleFault (SOAPMessageContext msgContext) {
return true;
}

public void close (MessageContext context) {

}

Listing 3.21: SOAPHandler

In listing can be seen that the method handleMessage is very important.
This method got the message context as a parameter. With this parameter, it is
possible to retrieve every available method out of the message. It is feasible to
get the header, the body and all attached metadata out of a SOAP request. In
the shown handler, the remote host is read out of the message and stored in
the IbdlAccessManager.

To link the SoapHandler to the web service which should use this handler, it
is essential to generate an XML file where the handler chain is specified. This
file should look like explained in listing

80

3.4. Web-Service

<?xml version="1.0" encoding="UTF-8"?>
<handler—chains xmlns="http://java.sun.com/xml/ns/javaee”>
<handler—chain>
<handler>
<handler—name>web service .IbdlWSHandler</handler—name>
<handler—class>web service.IbdlWSHandler</handler—class>
</handler>
</handler—chain>
</handler—chains>

Listing 3.22: handler chain

This handler chain contains all classes which should be used in the chain.
To concatenate the handler chain to the entire web service the annotation
@HandlerChain(file = "IbdIWS_handler.xml”) is used. After this steps were
done, every incoming request is routed through the handler chain before or
after reaching the entire web service definition.

3.4.3. SOAP specification

The specification of the web service is one of the most import things in this
project. In SOAP the description of such web services is done via the web ser-
vice description language (WSDL). The WSDL is already explained in section
To generate such file, Netbeans and several other IDE’s are able to auto
create the WSDL file by using the annotation in the web service. When running
this project on the localhost, the WSDL file is available at http://localhost:
8084/InternetBasedDatabaseLaboratory/IbdlWS?wsdl. By opening the pro-
vided URL, the description of the web service and its provided methods can
be found.

The WSDL file of this project can also be found in the appendix The
description is XML encoded because it is mainly for machine code to auto-
create the requests out of it. The file shows every single method, the required
parameters and the return-types. To integrate a web service, a developer can
parse the information available in the WSDL file to generate a request which is
then send to the web service. To do so, an example with the getResult method
provided by this service is demonstrated in the following description.

81

http://localhost:8084/InternetBasedDatabaseLaboratory/IbdlWS?wsdl
http://localhost:8084/InternetBasedDatabaseLaboratory/IbdlWS?wsdl

3. Implementation

In the first step, the WSDL file defines the message types and the message
response types. For the method getResult this looks like shown in listing

B:-23t

<message name="getResult”>
<part name="superuser—api—key” type="xsd:string”/>
<part name="wbt—username” type="xsd:string”/>
<part name="database—name” type="xsd:string”/>
</message>
<message name="getResultResponse”>
<part name="return” type="nsi:stringArrayArray”/>
</message>
<message name="IbdlException”>
<part name="fault” element="tns:IbdlException”/>
</message>

Listing 3.23: message description

In the listing above, it can be seen, that every parameter is described by its
name as well as by its type. Also, the possible IbdlException is professed. In
case of the return value, the type is defined as “ns1:stringArrayArray” because
this is a two-dimensional array from the namespace class ns1 which is defined
on top of the WSDL file. By now the types of all parameters and return value
is defined. In the next section, the method itself have to be defined.

<operation name="getResult” parameterOrder="superuser—api—key.
wbt—username.database —name”>
<input wsam:Action="http://web_service/IbdlWS/
getResultRequest” message="tns:getResult”/>
<output wsam:Action="http://web_service/IbdIWS/
getResultResponse” message="tns:getResultResponse”/>
<fault message="tns:IbdlException” name="IbdlException”
wsam:Action="http://web_service/IbdlIWS/getResult/Fault/
IbdlException” />
</operation>

Listing 3.24: operation description

In listing the description of the operation “getResult” is shown. The
order of the parameters is given, as well as the defined messages explained
before. It can also be seen, that the fault message is thrown if something is
wrong. In the WSDL document, also the SOAP binding is defined, but this

82

3.4. Web-Service

only shows the binding of SOAP action to the actual method, which is equal
for all provided operations. Thus, the SOAP client can now build the request
for calling an operation on the web service. For the explained operation, the
minimal request is shown in listing

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/” xmlns:ibdl="http://ibdl.tugraz.at”>
<soapenv:Header />
<soapenv:Body>
<ibdl:getResult>
<superuser—api—key>laigdoeYVIfj6kty]JbViSNHaz</superuser—
api—key>
<wbt—username>werner</wbt—username>
<database—name>dbi</database —name>
</ibdl:getResult>
</soapenv:Body>
</soapenv:Envelope>

Listing 3.25: getResult request

In the listing above it can be seen that the client creates a new SOAP envelope,
with an empty header, because no header information is needed. In the body
of the envelope, the two parameters superuser-api-key and the wbt-username
have to be specified, as well as the name of the requested web service method.
If this valid request is sent to the web service, a valid response is returned as

shown in listing

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/
">
<S:Body>
<nsz2:getResultResponse xmlns:ns2="http://ibdl.tugraz.at”>
<return>
<item>
<item>49</item>
<item>dbi_werner</item>
<item>SELECT x from ‘BRANDS'</item>
<item>...</item>
<item>success</item>
<item>2017—02—23 12:06:07 .0</item>
</item>

83

3. Implementation

</return>
</ns2:getResultResponse>
</S:Body>
</S:Envelope>

Listing 3.26: getResult response

The response in the listing above shows that the returned result contains the
needed information, encoded as XML in a format, that displays the mentioned
two-dimensional array. On the client this response can be transferred back
into the array. As already noticed, every web service call need to have an API
key, which is described in the next section. To form a valid request to the web
interface the XML schema as described in the next section can be used. If this
schema is used, the request is valid and a valid response is returned.

3.4.4. Interface as XML Schema

XML schema is a standardized way to define the structure of a XML document.
The XML Schema Definition (XSD) will be specified to guarantee that an XML
file is valid and can be processed by the machine. The schema defines all
possible nodes and is able to cover the data type of every element. The XSD
file is different for every single request, because the number of parameters can
differ. It is possible to use a schema which does not specify the parameters,
but this will affect the granularity of the information to validate the XML
request. Therefore, a sample XSD file is shown below, which demonstrates the
schema for the executeQuery operation.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema” elementFormDefault="qualified”
attributeFormDefault="unqualified ">
<xs:element name="soapenv:Envelope”>
<xs:complexType>
<xs:sequence>
<xs:element name="soapenv:Header”></xs:element>
<xs:element name="soapenv:Body”>
<xs:complexType>
<xs:sequence>
<xs:element name="ibdl:executeQuery >
<xs:complexType>
<xs:sequence>
<xs:element name="webservice—username” type="xs:string”></xs:element>
<xs:element name="database” type="xs:string”></xs:element>
<xs:element name="query” type="xs:string”></xs:element>
<xs:element name="user—api—key” type="xs:string”></xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

84

3.4. Web-Service

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="._.xmlns:soapenv” type="xs:string”></xs:attribute>
<xs:attribute name=".xmlns:ibdl” type="xs:string”></xs:attribute>
</xs:complexType>
</xs:element>
</xs:schema>

Listing 3.27: executeQuery request XSD

This schema demonstrates an exact specification for request of the execute-
Query method. Every single request has in principle the same schema. Only
the deepest nodes change because of the different parameters. In the current
example, there are the four parameters web service-username, database, query,
user-api-key. In other requests, there are more or fewer parameters. Therefore,
the schema has to be adapted to provide a strict valid schema.

Not only the request is processed in the XML format, but also the response
is an XML message which contains the data. This response contains pretty
different result types. The are strings, arrays and objects which are returned by
the web service. The different data-types of the return values are specified in

the attributes of each node. An example of the response of the executeQuery
method is shown in listing

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/”>
<S:Body>
<ns2:executeQueryResponse xmlns:ns2="http://ibdl.tugraz.at”>
<return>
<item>

<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mww.
w3.org/2001/XMLSchema—instance”>id_b</item>

<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mwww.
w3. org/2001/XMLSchema—instance “>name</item>

<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mwww.
w3.org/2001/XMLSchema—instance”>strasse</item>

<item xsi:type="xs:string” xmlns:xs="http://www.w3.org/2001/XMLSchema” xmlns:xsi="http://mwww.
w3.org/2001/XMLSchema—instance ">plz</item>

<item xsi:type="xs:string” xmlns:xs="http://mwww.w3.org/2001/XMLSchema” xmlns:xsi="http://mwww.
w3. org/2001/XMLSchema—instance ">land</item>

</item>
</return>
</ns2:executeQueryResponse>
</S:Body>
</S:Envelope>

Listing 3.28: executeQuery response XSD

It can be seen, that all types are specified inline and no extra XML schema
exists. It is possible to create them and use it for validation. The last part
which can be defined via XML schema is the returned fault. This fault is
returned if something failed. Because the fault is especially implemented for

85

3. Implementation

this project, no pre-defined standard fault can be used. The IbdlException
fault, which is explained in listing is validated by the XSD file shown in
listing

<xs:schema version="1.0" targetNamespace="http://ibdl.tugraz.at” xmlns:tns="http://ibdl.tugraz.at”
xmlns:xs="http://mwww.w3.org/2001/XMLSchema”>
<xs:element name="IbdlException” nillable="true” type="tns:ibdlExceptionBean”/>
<xs:complexType name="ibdlExceptionBean”>
<xs:sequence/>
</xs:complexType>
</xs:schema>

Listing 3.29: ibdlExceptionBeany XSD

It can be seen that the schema for this exception is weak because only the
container of the exception is specified and the main content can be specified.
This is useful for the exception because different errors are returned, and
therefore this specification can cover all of them.

3.4.5. API Keys

To provide a high level of security, and to prevent unauthorized usage of the
web service, the system has an API access manager implemented. This access
manager is responsible for handling the API keys. There are two different
types of keys for accessing the web service. These keys are called “user API
key” and ”superuser API key”. The difference between the two types can be
described as follows.

superuser APl key This type of API key is responsible for accessing methods
provided by the system which is only allowed to access by the teaching
team of the course. Such methods are for instance the creation of new
dumps, the creation of new databases, etc. In principle, all methods ex-
cept the executeQuery() and the executeQuerySandboxMode() method,
need the superuser API key.

user APl key The user API key is needed for normal operations, which are
executed by the participants of the course. In this actual implementa-
tion, this would be the case for the executeQuery() and the execute-
QuerySandboxMode() method, which is usually run in the user context
of WBT-master.

The usage of the keys is explained, but the creation of the keys is not men-
tioned yet. To create an API key, the admin has to log into the graphical

86

3.4. Web-Service

user interface. On the right, in the user menu the section “API key” can be
found. The interface looks like figure In the interface, two keys can be

[A Intemet based database law, X+

€ @ local Datab /ManageApiKeysServiet s | G QSuchen Ta & A

IBDL - Admin Panel Dump manager Database manager Database user manager TestIBDL Results IBDL-Admin-

Superuser api key deleted!

APl Key

Superuser API key

Keys:

O
O kx

ost 127.00.1
Delete selected superuser API key

New API key:
Clent host address (=.g.: 127.0.0.1) enly neccessary if binding is activated:

[Bind key to host

Generate superuser AP! key

Keys:

O m3mJIFmGMnBoVyMLZLTUGTVRA bound to host none
(O SEITCbNFDXARLT20EDHIMHIBC bound to host: 127.0.0.4

Delete selected API key

New APl key:
lent host address (e.g. 127.0.0.1) only neccessary i binding is activated:

[Bind key to host

Generate user API key
Infemet based databsse laboratory by: Leo Wirh, BSc

Figure 3.9.: API key managment interface

generated. For a higher level of security, the keys can be bound to a given
host. This means only a special client host address, e.g. localhost, can access
the methods provided by the web service with the provided API key. If the
binding option is not selected, the key is able to run on every client. The check
of the clients host address and the api key are made in the IbdlAccessMan-
ager. This class can be called as a static object and is responsible for all API
key management. To create new API keys, two methods are available. The
generateSuperUserKey() and the generateUserKey() method generate an API
key, the length of the key is defined by the parameter KEY_SIZE which is 25 in
the actual implementation, and store the generated key in the database table
ibdl.api_keys. These methods are also overloaded for the use with a provided

87

3. Implementation

client host address. The mentioned table ibdl.api_keys contains all the infor-
mation about the available API keys and their type and preferences. To check
if a key is valid for the actual request, the method checkSuperApiKey() and
checkApiKey() are callable. Both methods work in the same way, as described
in listing [3.30| by the use of the checkApiKey method.

static boolean checkApiKey(String user_api_key)
throws SQLException {
DatabaseConnector dc =
new DatabaseConnector (new DbRootCredentials ());
dc.ConnectToDB ();
ResultSet rs;
rs = dc.executeQuery (
”SELECT._* _FROM.ibdl . api_keys._where_is_super="0""+
“and_.‘key’.=_"" + user_api_key + 7 ’;”);

if (rs.next()) {
if (rs.getInt(”check_host”) == 1) {

if (rs.getString(”host”).equals(getHost())) {
dc.closeConnection ();
return true;

telse{
dc.closeConnection ();
return false;

¥

} else {
dc.closeConnection ();
return true;

}
}
dc.closeConnection ();
return false;

}

Listing 3.30: check API key

As mentioned in the listing, the method returns true if the API key is valid,
this is important in the web service where these methods are used to check
whether a key is valid or not. Only if a valid key is served the operation can be
executed, otherwise an IbdlException should be thrown to inform the client
about the wrong key. But also the developer has to take care, which API key

88

3.4. Web-Service

should be used, either the user API key or the superuser one. With all the
mentioned methods the IbdlAccessManager provides a lot of measurements to
protect the web service from unauthorized usage. To do so, also the methods
described in section are responsible for protecting unauthorized access.

3.4.6. Verification

To verify the incoming request, it is essential to provide some features to get
integrity, confidentiality and authenticity. These three aspects are important to
support, otherwise, there can be troubles with the system, if someone tries
to attack it. This is very unlikely, but it can happen. Therefore, the possibility
have to be supported to gain all three points.

Authenticity

The web service uses application level authentication. This means that the web
service is responsible for determining if a request by the client can be executed
because the authentication data provided is valid. As already mentioned, the
system implements an API manager mentioned in section [3.4.5, which handles
both types of user levels. The configuration of the authentication data is all
done by the application itself. Therefore, it is regardless of which application
server is used. Another possibility to gain authenticity is the use of container
authentication. For this type, the authentication process is fully managed by
the application server. Therefore, it is necessary to adapt the service every
time the type of the server changes. Also, the server has to be configured, to
work with the web service, because the authentication data is checked on it.

Confidentiality

To offer confidentiality, the entire system and the Tomcat server are able to
use SSL. The graphical user interface and the SOAP web service can use a
Java keystore to generate confidentiality. To do so, the following steps have
to be ensured. At first, the keystore have to be generated with the keytool
provided by the Java Development Kit and located in the /bin folder. The tool

89

3. Implementation

have to be called with the requested parameters. For this environment, the
parameters are shown in listing were used.

keytool —genkey —alias tomcat —keyalg RSA —keysize 2048
Listing 3.31: Java keytool

The provided command creates a key with the alias tomcat, the algorithm RSA,
and a keysize of 2048 bytes. These parameters can be modified to support the
requested needs. The next step is to modify the server with the that it is able
to provide HTTPS by modified the server.xml file of the tomcat instance like

shown in listing

<Connector SSLEnabled="true” acceptCount="100" clientAuth="false”
disableUploadTimeout="true” enableLookups="false” maxThreads="25"
port="8443" keystoreFile="PATH.TOKEYSTORE/.keystore” keystorePass="PASSWORD"
protocol="org.apache.coyote. httpi1.Http1iNioProtocol” scheme="https”
secure="true” sslProtocol="TLS”

Listing 3.32: server.xml

The attached configuration includes the keystore file with the keystore pass-
word and sets the protocol. After a reboot of the server HTTPS is available. To
run the internet based database application only in HTTPS mode, the web.xml
file has to be changed like shown in listing

<security —constraint>
<web—resource—collection>
<web—resource —name>ibdlmanager</web—resource —name>
<URL-pattern>/*</URL-pattern>
</web—resource—collection>
<user—data—constraint>
<transport—guarantee>CONFIDENTIAL</transport—guarantee>
</user—data—constraint>
</security —constraint>

Listing 3.33: server.xml

The important keyword in the added constraint is “CONFIDENTIAL”, which
forces the server to deploy this application only with HTTPS. Also, the web
service is now sent over HTTPS, which raises the security level for the entire
system. But there is the third point, integrity, which have to be provided to
offer a safe system.

90

3.4. Web-Service
Integrity

Integrity should also be supported by the web service, to do so, JAX-WS and
Metro support a lot of mechanisms to do so. Some of them, also provide
authenticity and confidentiality. In the actual implementation, the integrity
feature is disabled by default, but this can be changed to the needs of the
client by setting another mechanism. The project supports the most important
mechanisms described by Oracle, 2017j.

Username Authentication with Symmetric Keys This security setting gains
integrity and confidentiality by symmetric keys. The key is used to sign
and encrypt the messages which are sent between the client and the
server. Both share the same key but the client has to send the username
and the password to the server, and must identify the alias.

Mutual Certificates Security The mutual certificates security provides au-
thenticity, integrity and confidentiality. At both actors, the client and the
server, the keystore and the truststore have to be specified.

Transport Security (SSL) This mechanism is able to serve authenticity, in-
tegrity and confidentiality. To do so, the transport security provides a
secure channel between the client and the sender, but it is not protected
at the destinations. But this problem is not very important because both
destinations in the usage of this project can be trusted.

Endorsing Certificate This setting is able to gain integrity and confidentiality.
Therefore the mechanism uses a symmetric key and the client knows
the servers certificate. The client requests the authorization by a special
identity and after that, the client is able to communicate with the server
and provide the mentioned security features.

With all three security features, the system provides all possible mechanism
of protections. Because the system is mostly run in the same trusted network,
it is possible to activate and deactivate the mechanism by the needs of the
runtime environment.

3.4.7. IBDL database schema

Because of the complexity of the system, the internet based database laboratory
needs to have a database schema, for supporting all required information. The

91

3. Implementation

usage of the different tables is already mentioned in the different sections of
chapter 3 In the development process of the system, one goal was to minimize
the number of tables required for the entire system. But all in all the system
uses six tables which are essential for running it. The format of the table,
extracted with the MySQL command DESCRIBE can be found in the tables

B.1Jto[-6l

Field Type Null Key Default Extra
id-a int(11) NO PRI NULL auto_increment
loglevel int(11) NO NULL
message text NO NULL
user text NO NULL
caller text YES NULL
timestamp timestamp NO PRI CURRENT.TIMESTAMP on update CURRENT_.TIMESTAMP
Table 3.1.: action_log table
Field Type Null Key Default Extra
id-a int(11) NO PRI NULL auto-increment
key text YES NULL
is_super tinyint(4) YES NULL
check_host tinyint(4) YES NULL
host text YES NULL
Table 3.2.: api_keys table
Field Type Null Key Default Extra
id_u int(11) NO PRI NULL auto_increment
name text YES NULL
username text YES NULL
password text YES NULL
Table 3.3.: db_user table
Field Type Null Key Default Extra
idd int(11) NO PRI NULL auto-increment
name text YES NULL
file blob YES NULL
Table 3.4.: dump table
Field Type Null Key Default Extra
id_u int(11) NO PRI NULL auto.increment
name text YES NULL
username text YES NULL
password text YES NULL
admin tinyint(4) YES o

92

Table 3.5.: user table

3.5. Permission handling

Field Type Null Key Default Extra

id-1 int(11) NO PRI NULL auto.increment

user text YES NULL

query text YES NULL

result text YES NULL

state varchar(45) YES NULL

timestamp timestamp YES CURRENT.TIMESTAMP on update CURRENT_TIMESTAMP

Table 3.6.: user_log table
3.5. Permission handling

The handling of permissions is split into two parts. The first part is the
execution of the provided methods in the web service. As already mentioned
in section there is a user level and a superuser level for executing a
requested method. For all administration stuff, the superuser key is required.
For the user stuff, like executing the method executeQuery the user API key
is used. But there have to be an action to manage the database permissions.

The second part of the permission handling. To handle the permissions for
a database, a MySQL user is created whenever a new dump (eg.: db1) is
created. This user (db1) is now responsible for all permissions for every
database retrieved from this dump dbi. This means every database which
starts with db1_* is now managed by the MySQL user db1. This is pretty
useful, because every student in a database course should get the same
permissions to work on a system, and therefore the supervisor only need to
set the permissions once. Another advantage is that the server has a much
lower numbers of users to manage and the administration is not as hard as
if every generated database has its own user in the database management
system. The permissions can either be set via the provided setPermission()
method over SOAP, or in the graphical user interface. For sure the permissions
can also be set in the database management system administration tool. The
following permissions, which where mentioned by Oracle, 2017i| are able to
manage the actual implementation of the system.

SELECT Enables the user to retrieve data from a selected table.

INSERT Allows the insertion of data into a table of the database.

UPDATE Gives the possibility to update a dataset with the provided value.
DELETE Enables the deletion of a dataset in the database table.

EXECUTE Offers the possibility to execute stored procedures.

93

3. Implementation

SHOW VIEW Enables to use the SHOW CREATE VIEW.
CREATE Gives the possibility to create new databases and tables.
ALTER Allows to change the structure of a table.

REFERENCES To create the reference for the parent table.
INDEX Allows to create or drop indexes.

CREATE VIEW Possibility to create views.

CREATE ROUTINE Possibility to create routines.

ALTER ROUTINE Allows to drop or alter a stored routine.
EVENT Enables the privilege to create, view, drop events.

DROP Allows to delete databases, tables and views.

TRIGGER Enables trigger operations.

GRANT OPTION Allows to change permissions for a user.
CREATE TEMPORARY TABLES Allows to create temporary tables.
LOCK TABLES Gives the opportunity to lock tables.

It is essential that the supervisor only allows the necessarily needed per-
missions, otherwise, there is the possibility that the students, which are not
familiar with MySQL and database can cause damage on their databases,
because they copy some queries from their preferred internet portal and
execute them, without knowing what is happening. In the beginning, all men-
tioned privileges are enabled for a user created when a dump is uploaded,
this means that the privileges have to be checked before the specific table is
used by the course participants, otherwise there will be troubles. It would be
possible to disallow all privileges on the creation of a user, but in the actual
implementation, all privileges are granted.

3.6. Protection mechanisms

The system provides some features to protect it from damage. To do so, two
measurements are implemented which are able to protect against the main
causes which can provoke harm. There is a pre-filtering option available as
described in section as well as and sandbox mode, described in section
to limit the possibility to destroy something. Both methods can be used
optionally, but they are a good opportunity to protect against human errors
caused by the participants. There are other measurements mentioned in the

94

3.6. Protection mechanisms

verification section in The alluded mechanisms are described in the
following section.

3.6.1. Pre-filtering

The pre-filtering of queries is an aspect of the project which should be available
This filtering can either be done, to filter possible broken SQL queries where
the syntax is obviously wrong because some essential parts of the query are
missing and therefore the query should not be executed to reduce the load on
the MySQL server, or to detect harmful queries which should not be executed.
The actual project only provides an interface where the actual filtering can be
done. This is because only the possibility to filter queries should be allocatable.
To filter the queries, an adequate SQL parser would be necessary like the
JSqlParser, 2017 used for filtering queries in the sandbox mode. These parsers
provide the chance to parse the provided query in the filter to the requested
needs.

The filter has to be built in the class QueryFilter where a static method
filter(String query) is available The method takes the unfiltered query and
returns the filtered query in the return value of the method. The method
already provides the chance to invoke the mentioned parser wit the statement

object as shown in listing

public static String filter (String query) {
String filtered_query = query;
IbdlLogger ibdlLog = IbdlLogger.getlnstance ();
Statements stmt = CCJSqlParserUtil. parseStatements (query);

//
// Queries can be filtered here!

//

ibdlLog .logAction (IbdlLogLevel .INFO, ”Query.filtered!”,”
prefilter”);

return filtered_query;

Listing 3.34: filterQuery

95

3. Implementation

By now the method returns the ingoing unfiltered query. The method is called,
whenever a query is going to be executed either in the graphical user interface
or via the web service.

3.6.2. Sandbox

Sandboxing is another feature the system provides. This peculiarity gives the
user the possibility to execute queries and nothing should change. It is like
an isolated playground, where no havoc can be wreaked. This is especially
expedient if a user does not know what he is doing in a query, he can run it
via the sandbox feature, and his database schema is not influenced. Therefore,
it is necessary to determine which queries are able to modify the content of a
database. In database courses, the MySQL standard CRUD operations are used
most, this means that only UPDATE, INSERT, DELETE and SELECT queries
are in the pool of possible sandbox operations. Because a SELECT query does
not influence or modify a table in the database schema, the sandbox mode
is able to handle UPDATE, INSERT and DELETE queries. To determine the
type of given query, a parser is needful. The parser used for this operation is
the JSQLParser by JSqlParser, |2017, which is able to determine the influenced

tables, as shown in listing

Statement statement = CCJSqlParserUtil. parse(query);

Insert insertStatement = (Insert) statement;
TablesNamesFinder tablesNamesFinder = new TablesNamesFinder () ;
tableList = tablesNamesFinder.getTableList(insertStatement);

Listing 3.35: query detection

To get the tables out of the query, it is necessary to know the type of the query,
this can be determined with a split operation. After this information is gained,
the type of the statement can be used to parse the query. After the information
about all tables is on hand, every table is copied via a SELECT * query into a
two-dimensional object.

After that step is done, the provided query is going to be executed in the
system. This query modifies the table and returns data. After the execution
is finished, the tables have to be restored with the information stored in the
list tableContent. To restore a table it is necessary to reset the table so that all

96

3.6. Protection mechanisms

auto-increments are set back, and the table is empty. This is realized via the
MySQL TRUNCATE TABLE operation as mentioned by Oracle, 2017k. After
this passage is executed, the table is empty and can now be refilled with the
data stored in the backup process. Therefore, an INSERT query is build up
from every single row in the backup array and inserted in the table as it can

be seen in listing

for (int i = o; i < tableList.size(); i++) {
if (this.truncateTable(database + ”_” + username +
tableList.get(i)) == false) {
throw new IbdlException(”Failed._to_truncate_table”, new
IbdlExceptionBean ()) ;
}

for (int k = 1; k < tableContent.get(i).length; k++) {
String restore = "INSERT.INTO.” + database + ”_.” +

7

+

username + ”.” + tableList.get(i) + 7 (”;
for (int j = o; j < tableContent.get(i)[o].length — 1; j
v {

” ”

restore += tableContent.get(i)[o][j] + 7,.";

}

restore += tableContent.get(i)[o][tableContent.get(i)[o].
length — 1] + ”)_VALUES.(”;

for (int j = o; j < tableContent.get(i)[k].length — 1; j
++) {

restore += ”’” + tableContent.get(i)[k][j] + 7',.";

}

restore += ”’” + tableContent.get(i)[o][tableContent.get(i
)[k].length — 1] + 77);”;
this . executeQuery (username, database, restore);

Listing 3.36: restore table

To be on the safe side, the tables can be locked for write operations before the
backup process and unlocked after the restoring procedure, to prevent from
unexpected access. A call of the MySQL provided backup function would be
more elegant but is not available via the JDBC driver. One possibility would
be, that the MySQL command line interface (CLI) is called via a process in
Java, but there is the big disadvantage, that this would by very system specific
and has to be adjusted for the used operation system.

97

3. Implementation

3.7. Logging

To log all events, a special IbdlLogger was introduced which can be called
directly in every class and is responsible for logging events as well as logging
results from executed queries by the users. It is the core element for handling
all logging stuff for superusers and users. To do so, the IbdlLogger object
provides several methods and is implemented as a singleton. To get the
instance of this object, it is necessary to call IbdlLogger.getInstance(). The
log messages which are generated if an action is called in the entire internet
based database laboratory are stored in the table ibdl.action_log. The results
of the execution, generated if a query is executed, are stored in the table
ibdl.user_log.

The logging of actions is the first part which has to be noticed. The IbdlLogger
provides the method logAction(int level, String message, String username),
which should be called if an event has to be logged. The method needs
an level, which is the log level and can either be IbdlLogLevel. INFO, Ibdl-
LogLevel WARNING, IbdlLogLevel. ERROR. If required, new log levels can
be created in the file IbdlLogLevel in the same way the current levels are
created. This is for filtering the type of log message, to get a better overview
of all logged messages. The next parameter is the message itself, and the
third parameter is the username who triggered the action. The logging of all
action is pretty useful in this project because it is a completely new developed
software, where errors can occur under special circumstances. The logAction
method also extracts the caller of the method out of the stack-trace, to find out
which class called the logAction method. To view the logged messages, the
graphical user interface provides the action ”View log” in the user menu. In
this view it is possible to view all generated log messages, sorted by the time
stamp To extract this information out of the database table the IbdlLogger
provides the method getActionLog() which needs the actual page number as
a parameter, because the view supports paging with 20 entries/page. This
means that page one contains the entries 1-20, page two entries 21-40 and so
on. With all the mentioned methods, it is possible to provide a high level of
logging, with a little afford and a high degree of logged information.

The second task of the IbdlLogger class is the logging of the executed queries
a user send to the system. The logging of this information is important for

98

3.7. Logging

the learning success of the students, as well as for the result of possible
examinations. These log messages contain all the information which are
needed to retrace the solutions a student executes on the system. The class
provides the method logQueryResult(String username, String query, String
result, boolean error). The method needs the username, which is the WBT-
username, the query, the result and if the query was successful or not as
a parameter. To handle all the provided information, the method works as

shown in listing

public void logQueryResult(String username, String query,
String result, boolean error) {

try {
DatabaseConnector dc = new DatabaseConnector (new

DbRootCredentials ());

Connection con = dc.ConnectToDB() ;

PreparedStatement statement;

String state = "";

if (error == true) {

state = "error”;
} else {
state = ”“success”;

}

statement = con.prepareStatement (”INSERT.INTO. “ibdl *. *
user_log ‘.(‘user’,_.’query’,."result *, “state *) .VALUES.
(? 7,7 r?) ;,l);

statement.setString (1, username);

statement.setString (2, query);

statement.setString (3, result);

statement.setString (4, state);

statement . execute () ;

dc.closeConnection () ;

} catch (SQLException ex) {

Logger.getLogger(IbdlLogger. class .getName()).log(Level.

SEVERE, null, ex);

Listing 3.37: logQueryResult

It can be seen, that the provided information is stored in the ibdl.user_log
table in the database. As in all methods in the IbdlLogger, the possible thrown

99

3. Implementation

exceptions are not logged, because if something is wrong, the logging can not
work either. Therefore, the exception is only shown in the system internal log
output. After the results are logged, the system provides the possibility to view
the results either in the graphical user interface as well as in the web service
via the getResult method. Both ways call the method getQueryResult(String
username) in the IbdlLogger, which needs a username and the database name
to return a two-dimensional string array, where the first dimension contains
the columns and the second dimension contains the rows. The returned result,
contains the name, the query, the result and the time stamp. The result either
shows if a query failed, and the source of the fail, or the extracted or modified
information in the table if the query was successful. With this information,
the supervisors are able to get an insight into the students proceedings in the
course.

3.8. Setup

The system in the actual implementation, working as described in previous
sections, have to be installed. It is inevitable to set up the necessary appli-
cations. This environment has to be used with an application server. It is
designed to work with |Apache Tomcat 2016, but it is also able to run with other
application servers like Glassfish, because no system independent properties
were used. The second type of software which is important to run the system
is the database server. The type of the database server ca be changed to the
customers need, but therefore a mutation of the DbExecuter has to be imple-
mented to allow the internet based database laboratory to communicate with
this type of database management system. As already mentioned, this default
implementation uses the MySQL Server|2016, which have to be installed.

As already mentioned the internet based database laboratory is available as
Netbeans project. It can be imported and the source can be changed to fit
the customer’s requirements. It is also possible to import the project in other
IDEs but therefore the deployment setting has to be specified in the used
development environment. Of course, it is possible to run the application
directly from the IDE on the used application server. Because in productive
environments this is very unlikely to do, the build which is generated by the
IDE or the command line, has the specified format, belonging to the defined

100

3.8. Setup

application server system. The default implementation, which uses Tomcat
generates a web application archive (war) file. which can then be deployed on
the application server. The process of deploying and configuration is described
in section The MySQL server also has to be configured to work with
the actual implementation. To do so the steps mentioned in section
have to be maintained, to guarantee the described functionality and have a
solid functioning system. All necessary setup facets are mentioned in the
following chapters, as well as a description of the implementation. Following
all mentioned aspects is important.

3.8.1. Tomcat

The Tomcat application server is the most important part of the system.
Without it, the provided web application archive can not be deployed. The
server is developed at|Apache Tomcat|2016/and can be downloaded for the most
common operation systems. The preferred version is 8.0, but it is also possible
to run the system on the actual version 9.0. After the setup procedure of the
provides install executable is done, the server.xml file has to be changed to
configure HTTPS. This file is located in the installation path of the server. To
configure a keystore which is mentioned in section the following lines
shown in listing have to be added to the server.xml file.

<Connector SSLEnabled="true” acceptCount="100"
clientAuth="false” disableUploadTimeout="true”
enableLookups="false” maxThreads="25" port="8443"
keystoreFile="PATH.TOKEYSTORE/.keystore”
keystorePass="PASSWORD”

protocol="org.apache.coyote. http11. HttpriNioProtocol”
scheme="https”

secure="true” sslProtocol="TLS” />

Listing 3.38: server.xml

If the server is already running, a restart has to be introduced, to load the
new settings and provide HTTPS. To test the configuration the URL http:
//<YOURHOST> : 8443 can be opened in a browser. If it is working, the browser
recognizes the provided certificate. To deploy the application, the simplest
way is to open the server manager at http://<YOURHOST>:8443/manager.

101

http://<YOURHOST>:8443
http://<YOURHOST>:8443
http://<YOURHOST>:8443/manager

3. Implementation

To log in a user with the role “manager-gui” have to be specified first in
the file tomcat-users.xml. In the manager, it is possible to deploy a new
application by selecting the web archive (war) file provided for this project.
After the deployment, the application is available at http://<YOURHOST> :
8443/InternetBasedDatabaseLaboratory/ and can be used. But before the
internet based database laboratory is available the database system have to be
configured.

3.8.2. MySQL

The second service with has to be available for the system is the database
system. In this implementation, MySQL is featured. Therefore, it is essential to
install a server. The installation files can be retrieved on the website provided
by IMySQL Server 2016, After the execution of the database server and the
execution of the initialization assistant, where the root name and the password
are specified, the database can be accessed by the command line interface. To
initialise the ibdl - database schema, it is necessary to import the provided
.sql file. The init_ibdl.sql file contains all data the system needs to start up
successfully. To import the script the following command has to be executed
in the CLL

mysql —u root —p < init_ibdl.sql
Listing 3.39: Load init script

The password of the root user has to be specified when asked for it. After the
execution finished, a database schema ibdl should be available. This can be
verified by executing the following commands in the CLI.

SHOW DATABASES;

USE ibdl;
SHOW TABLES;

Listing 3.40: Load init script

If the schema ’ibdl” is disposable, and all six tables, which are mentioned in
are showed, the root credentials have to be changed in the IBDL-source,
and after that, the system can be accessed with default username “admin”

102

http://<YOURHOST>:8443/InternetBasedDatabaseLaboratory/
http://<YOURHOST>:8443/InternetBasedDatabaseLaboratory/

3.8. Setup

and password “password”. If the login process was successful the entire
installation process was successful.

As both systems are installed and configured successfully, the next step is the
integration of the system in the client. Therefore, the next section will show
how to add the IBDL web service into an existing Java application.

3.8.3. Sample Java Client

The implementation shows an example for the localhost as host and the
executeQuery method. An example is also available in the provided files
called IBDLClientExample, and demonstrates how to integrate the service
with its provided information. To implement the web service into the client,
the following steps have to be done.

At first, a SOAP connection has to be initialised. The URL for the connection
can be specified later because the connection object does not need it in the
idle state. To create a new connection the objects in shown in listing have
to be created.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory . newlInstance () ;

SOAPConnection soapConnection = soapConnectionFactory.
createConnection () ;

Listing 3.41: Create SOAP connection

After that, the request can be generated. This step is important because only
valid requests are accepted by the server and if it is wrong, a fault will
be returned. To generate the request the Java SOAPMessage object is used,
and the request is build up step by step, starting with the envelop, adding
a header and a body. Then add the necessary information like username,
database, query and API key to the body. It is important to specify the correct
namespace, because otherwise, the server can not handle the message. The
building of the request is shown in listing

MessageFactory messageFactory =MessageFactory.newlnstance () ;
SOAPMessage soapMessage = messageFactory.createMessage () ;
SOAPPart soapPart = soapMessage.getSOAPPart () ;

103

3. Implementation

// SOAP Envelope

SOAPEnvelope envelope = soapPart.getEnvelope();

envelope.addNamespaceDeclaration (”ibdl”, ”“http://ibdl.tugraz.
at”);

// SOAP Body
SOAPBody soapBody = envelope.getBody () ;

// SOAP Body elements

SOAPElement soapBodyElem = soapBody.addChildElement (”
executeQuery”, ”ibdl”);

SOAPElement soapBodyUsername = soapBodyElem.addChildElement(”
webservice—username”) ;

soapBodyUsername.addTextNode (username) ;

SOAPElement soapBodyDatabase = soapBodyElem.addChildElement (”
database”);

soapBodyDatabase .addTextNode (database) ;

SOAPElement soapBodyApi = soapBodyElem.addChildElement (” query”
)

soapBodyApi.addTextNode(query) ;

SOAPElement soapBodyQuery = soapBodyElem.addChildElement(”user
—api—key”);

soapBodyQuery.addTextNode (api_key) ;

MimeHeaders headers = soapMessage.getMimeHeaders () ;
headers.addHeader ("SOAPAction”, "https://localhost:8443/
InternetBasedDatabaseLaboratory/IbdlWS/” + ”“executeQuery”)

7

soapMessage . saveChanges () ;

Listing 3.42: Create request

After the response is generated, it can be sent to the web service by calling the
call(request, URL) method of the SOAPConnection object, with the request and
the URL of the web service as parameters. The method returns the response
which can then be handled, by parsing it. For the demonstrated method this
can be done in the way shown in listing

OAPPart soapPart = response.getSOAPPart() ;
SOAPEnvelope envelope = soapPart.getEnvelope();
SOAPBody soapBody = envelope.getBody () ;

104

3.9. Summary

NodeList list = soapBody.getElementsByTagName (”item”);

String row = "”;
for (int i = o; i < list.getLength(); i++) {
if (list.item(i).getChildNodes().getLength() == 1) {
row += "|” + cellString (list.item(i).getTextContent())

} else {
if ('row.isEmpty()) {
row += "1|";
System.out. println (row) ;

”r

row = ;

Listing 3.43: Parse response

The parsing method transforms the response into a table looking console
output to display the table in the demonstration method. This parsing method
should only demonstrate how the nodes of the XML response can be ac-
cessed.

3.9. Summary

The implementation of the internet based database laboratory shows, that in
the development phase the aspect was always kept on the fact, that the system
has to feel like a real database system. This is essential to guarantee a high
learning rate, and motivate the supervisors and students to work with that
system. To use the system not only in the current implementation and be able
to modify it to the changing requirements, every important part of the system
is described in this section.

The graphical user interface, as well as the web service, provide the aspects
mentioned in chapter 2, The GUI is meant to be the number one configu-
ration tool for this system because it provides all functionalities in a way,
the supervisors should be able to create courses with little afford. The web
service provides most methods, but the user has to take more care of how
information is gained and provided as mentioned before. Another aspect is the

105

3. Implementation

extensibility of the system. It is able to handle MySQL database courses in the
actual implementation, but with extensions for other database management
systems, which have to implement the interface DBExecutor, the system can
handle other database systems. This is important because, in the domain of
information technology, the life cycle of systems can be quite short because
systems can be outstripped by newer technologies.

Another important fact is the SOAP interface and the concerning web service
description file. This is essential for the implementation of the client because
the developer needs these informations to build it. The specification of the
SOAP messages can also be found in the appendix of this thesis. The project
also implements verification measurements to provide confidentiality, and
authenticity. If needed, the system can also provide integrity. To provide
authenticity, an API manager is implemented and responsible for the API
key handling. To gain confidentiality, the whole system, the web service
as well as the graphical user interface provide transport over the HTTPS
protocol. But there are also the system internal protection mechanisms which
are responsible for sandboxing and pre-filtering. These systems gain the
advantage that the system can be adapted to the needs of the database course.
Summarized it has to be noticed, that the system is constructed to be fully
extensible, maintainable and reliable. All important aspects are mentioned in
this section.

106

4. Further development

The IBDL is ready to be applied in database courses at TU Graz. Because of
the completely new development of such a system, there can occur troubles.
The actual implementation should show, that it is possible to execute SQL
queries from a learning management system on a real MySQL environment
so that it could be called as proof of concept. To improve the system and to
gain more advantage out of it, several aspects can be enhanced.

Also, the functionality of the system can be extended, but it has to be clear
what the service should provide. Should it be a stand-alone e-learning tool,
or shall the system assist and existing tool to provide this functionality, as it
is done by now. It is a fine line to determine the role of the system, but the
actual implementation sets the tone to find an answer for this question.

4.1. Outlook

The internet based database laboratory provides the required functionalities to
support an existing e-learning environment to organize and execute database
courses. The defined requirements clearly define the service as an assistance
system for e-learning environments. As already mentioned, there are some
aspects which should be added in future implementations to gain more
advantages.

The first extension can be the modification of provided graphical user inter-
face. The usability has to be checked and in case of any new insights, the
interface should be adapted. An integration of a database creation assistant,
which combines all steps and create new courses is also an aspect of the
implementation. But here the question raises if it is meaningful to implement
such an assistant on the internet based database laboratory, or would it be

107

4. Further development

better to construct it on the web service. However, the methods for both
species mentioned are already present and therefore such a modification can
be realized with reasonable effort.

The second aspect which can be revised is the result evaluation. At the moment
the results of every single execution by a user are logged and the supervisors
can extract them to evaluate the exam result or to help the students to finish
their tasks. As already described in section an automated evaluation of
the result would be a good feature. With this new module, the supervisor
is able to automatically check if the result is the same as the expected one.
Such a module with the described functionality can replace the current result
page in the GUI and in the web service, a new service method has to be
provided. The third measure which should be enlarged is the sandbox mode.
As already mentioned in the protection system section, the system provides
sand-boxing for INSERT, DELETE and UPDATE queries. The backup process
is a little complicated and can be done in a more elegant way. But therefore
the operating system have to be known because a third-party process has to
be started because the JDBC driver in its actual version is not able to provide
access to the mysqldump executable. With access to this process it is possible
to back up database schemas by only calling the command mysqldump -u root
-p DATABASENAME >backup.sql. The generated SQL script can then be used
to reload the database after the execution of the sandbox query. Therefore,
it would also be possible to execute more than one query and start and stop
sandbox mode on request.

The mentioned features clear aspects of the category optional equipment. For
all implementations, the principle of keeping the system easy to use should
not be forgotten because the best features are useless if nobody sees the
advantage for using it. More features, which should be developed will evolve
from the operation of the system in database courses. Maybe there are also
parts of the actual system which are useless and should be removed from the
actual implementation.

108

5. Conclusion

This thesis represents the planning and the implementation work for the
internet based database laboratory. Also, the domain of e-learning is described
because, without deeper knowledge, the development of a web service which
should support e-learning environment can not be done successfully. To de-
velop this system, it was necessary to get a deeper knowledge of database
systems, Java Web, SOAP and JDBC. The knowledge was gained from doc-
umentations provided by the developer of the different components. The
decision to use the mentioned systems was made because of the requirements.
Another reason for the decisions made in this work was the e-learning aspect
mentioned in the first chapter. The system was designed in the second chap-
ter, were all requirements are defined. The system architecture is described.
Another aspect mentioned here is the fact that the system should use SOAP
for data exchange and different database has to be available.

The technical implementation was done by the use of Java Web. To develop the
system, a MVC pattern was used to guarantee extensibility. This is important
because the system should be able to use different database management
systems in the future. Also, the possibility to develop new components or
extensions is provided. To implement SOAP, the JAX-WS framework was used
because it is a standardized way to provide web services to the client. The
generation of the web service description file can be done. The integration of
the MYSQL database management system is realized with the JDBC driver
provided by Oracle. Therefore many database operations can be called via
the Java code, which is extremely important for this system. The system
itself provides two methods to execute queries directly on the database, and
a user would not recognize that he is not directly working on a database
management system. This aspect is important to gain a high learning rate,
and the course participants are able to work on real database management
systems. As with any new system, there is also room for improvement, but the

109

5. Conclusion

core functionality is given. The improvements are not entirely necessary but
will provide more comfort. It was a great experience to develop the internet
based database laboratory, and also many lessons were learned from it.

5.1. Lessons learned

The author of this thesis was able to gain knowledge in the domain of e-
learning systems and Java Web. The challenge was the combination of the
different components. The JDBC driver was already used for several projects,
but it was not clear that nearly every MySQL operation is possible with it.
Another challenge was the creation of the web project itself and the resulting
web service as well as the graphical user interface. The usage of the MVC
pattern was not very complex to implement because Java Web already provides
a good possibility to do so. The creation of the web service was not trivial
because there are many annotations and properties to define to get a reliable
system. The communication over SOAP and the decoding of the different
responses was an interesting fact that could be solved satisfyingly.

The other aspect which was learned was the importance of e-learning in the
actual century. For the author, e-learning was that thing what everybody had
to use in the university in some courses. A few courses provide e-learning
with extra information which gained extra knowledge, but it was not clear
what was the benefit. In the research for this project mentioned in chapter
one, the topic of e-learning became clear and it was tried to avoid a problem
of e-learning in the system.

Summarized it has to be mentioned, that the development of the system was
not as simply as thought before the start of the project. There have always
been minor inconsistencies that had to be solved first to develop the system
further, but it has to be noticed that the development gained a lot of new
knowledge.

110

Acronyms

API Application Programming Interface
CLI Command Line Interface

DBMS Database Management System
GUI Graphical User Interface

IBDL Internet Based Database Laboratory
JAX-WS Java API for XML Web Services
JDBC Java Database Connector

JDK Java Development Kit

MVC Model-View-Controller

RPC Remote Procedure Call

SOAP Simple Object Access Protocol
SQL Structured Query Language

VDE Virtual Learning Environment

W3C World Wide Web Consortium

WBT Web Based Training

WSDL Web Service Description Language
XML Extensible Markup Language

XSD XML Schema Definition

XSL Extensible Stylesheet Language

111

Appendix

113

Appendix A.

Appendix

A.1. WSDL file

<?xml version="1.0" encoding="UTF-8'?><!— Published by JAX-WS RI at http://jax—ws.dev.java.net. RI's.
version.is JJAX-WS_RI.2.2—hudson—740—..—><'—_Generated .by JAX-WS_RI_at_http://jax—ws.dev.java.net
..RI’s version is JAX-WS RI 2.2—hudson—740—. —><definitions xmlns:wsu="http://docs.oasis—open.org
/wss/2004/01/ 0asis —200401—wss—wssecurity —utility —1.0.xsd” xmlns:wsp="http://www.w3.org/ns/ws—
policy” xmlns:wsp1.2="http://schemas.xmlsoap.org/ws/2004/09/policy” xmlnsiwsam="http://www.w3.org
/2007/05/addressing/metadata” xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/” xmlns:tns="http:
//ibdl.tugraz.at” xmlns:xsd="http://www.w3.org/2001/XMLSchema” xmlns="http://schemas.xmlsoap.org/
wsdl/” targetNamespace="http://ibdl.tugraz.at” name="IbdIWS">
<types>
<xsd:schema>
<xsd:import namespace="http://jaxb.dev.java.net/array” schemaLlocation="https://
localhost:8443/InternetBasedDatabaseLaboratory/IbdIWS?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://ibdl.tugraz.at” schemalLocation="https://
localhost:8443/InternetBasedDatabaseLaboratory/IbdlWS?xsd=2" />
</xsd:schema>
</types>
<message name="getResult”>
<part name="superuser—api—key” type="xsd:string” />
<part name="wbt—username” type="xsd:string” />
<part name="database-—name” type="xsd:string” />
</message>
<message name="getResultResponse”>
<part xmlns:nsi="http://jaxb.dev.java.net/array” name="return” type="
nsi:stringArrayArray” />
</message>
<message name="IbdlException”>
<part name="fault” element="tns:IbdlException” />
</message>
<message name="setPermissions”>
<part name="superuser—api—key” type="xsd:string” />
<part name="db—username” type="xsd:string” />
<part xmlns:ns2="http://jaxb.dev.java.net/array” name="permissions” type="
ns2:stringArray” />
</message>
<message name="setPermissionsResponse” />
<message name="deleteDatabase”>
<part name="database_.name” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string” />
</message>
<message name="deleteDatabaseResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="uploadDump”>

115

Appendix A. Appendix

116

<part name="dump” type="xsd:string” />
<part name="dumpname” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="uploadDumpResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="listDatabases”>
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="listDatabasesResponse”>
<part xmlns:ns3="http://jaxb.dev.java.net/array”
>
</message>
<message name="createEmptyDump”>
<part name="dumpname” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="createEmptyDumpResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="reinitDatabase”>
<part name="database” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="reinitDatabaseResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="hello”>
<part name="name” type="xsd:string” />
</message>
<message name="helloResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="listPermissions”>
<part name="superuser—api—key” type="xsd:string”
<part name="db—username” type="xsd:string” />
</message>
<message name="listPermissionsResponse”>
<part xmlns:ns4="http://jaxb.dev.java.net/array”
>
</message>
<message name="createDatabase”>
<part name="dump” type="xsd:string” />
<part name="wbt—username” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="createDatabaseResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="listDumps”>
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="listDumpsResponse”>
<part xmlns:ns5="http://jaxb.dev.java.net/array”
>
</message>
<message name="deleteDatabaseUser”>
<part name="db—username” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="deleteDatabaseUserResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="listUsers”>
<part name="superuser—api—key” type="xsd:string”
</message>
<message name="listUsersResponse”™>
<part xmlns:ns6="http://jaxb.dev.java.net/array”
>

/>

name="return” type="ns3:stringArray” /

name="return” type="ns4:stringArray” /

/>

name="return” type="nss5:stringArray” /

/>

name="return” type="nsé6:stringArray” /

A.1. WSDL file

</message>
<message name="executeQuerySandboxMode”>
<part name="wbt—username” type="xsd:string” />
<part name="database” type="xsd:string” />
<part name="query” type="xsd:string” />
<part name="user—api—key” type="xsd:string” />
</message>
<message name="executeQuerySandboxModeResponse”>
<part xmlns:nsy="http://jaxb.dev.java.net/array” name="return” type="
nsy:anyTypeArrayArray” />
</message>
<message name="deleteDump”>
<part name="dumpname” type="xsd:string” />
<part name="superuser—api—key” type="xsd:string” />
</message>
<message name="deleteDumpResponse”>
<part name="return” type="xsd:string” />
</message>
<message name="executeQuery”>

<part name="webservice—username” type="xsd:string” />
<part name="database” type="xsd:string” />

<part name="query” type="xsd:string” />

<part name="user—api—key” type="xsd:string” />

</message>
<message name="executeQueryResponse”>

<part xmlns:ns8="http://jaxb.dev.java.net/array” name="return” type="
ns8:anyTypeArrayArray” />

</message>
<portType name="IbdIWS">

<operation name="getResult” parameterOrder="superuser—api—key.wbt-username.database—
name”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/getResultRequest” message="
tns:getResult” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlIWS/getResultResponse” message="
tns:getResultResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlIWS/getResult/Fault/IbdlException” />
</operation>
<operation name="setPermissions” parameterOrder="superuser—api—key.db—username..
permissions”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/setPermissionsRequest” message
="tns:setPermissions” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/setPermissionsResponse”
message="tns:setPermissionsResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/setPermissions/Fault/IbdlException” />
</operation>
<operation name="deleteDatabase” parameterOrder="database_name.superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/deleteDatabaseRequest” message
="tns:deleteDatabase” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/deleteDatabaseResponse”
message="tns:deleteDatabaseResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/deleteDatabase/Fault/IbdlException” />
</operation>
<operation name="uploadDump” parameterOrder="dump_.dumpname.superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/uploadDumpRequest” message="
tns:uploadDump” />
<output wsam:Action="http://ibdl. tugraz.at/IbdlWS/uploadDumpResponse” message="
tns:uploadDumpResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/uploadDump/Fault/IbdlException” />
</operation>
<operation name="listDatabases”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/listDatabasesRequest” message=
“tns:listDatabases” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/listDatabasesResponse”
message="tns:listDatabasesResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/listDatabases/Fault/IbdlException” />

117

Appendix A. Appendix

</operation>
<operation name="createEmptyDump” parameterOrder="dumpname.superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdIWS/createEmptyDumpRequest”
message="tns:createEmptyDump” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/createEmptyDumpResponse”
message="tns:createEmptyDumpResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/createEmptyDump/Fault/IbdlException” />
</operation>
<operation name="reinitDatabase” parameterOrder="database.superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/reinitDatabaseRequest” message
="tns:reinitDatabase” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/reinitDatabaseResponse”
message="tns:reinitDatabaseResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/reinitDatabase/Fault/IbdlException” />
</operation>
<operation name="hello”>
<input wsam:Action="http://ibdl.tugraz.at/IbdIWS/helloRequest” message="
tns:hello” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/helloResponse” message=
tns:helloResponse” />

</operation>
<operation name="listPermissions” parameterOrder="superuser—api—key_.db—username”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/listPermissionsRequest”
message="tns:listPermissions” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/listPermissionsResponse”
message="tns:listPermissionsResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/listPermissions/Fault/IbdlException” />
</operation>
<operation name="createDatabase” parameterOrder="dump_wbt—username._superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/createDatabaseRequest” message
="tns:createDatabase” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/createDatabaseResponse”
message="tns:createDatabaseResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/createDatabase/Fault/IbdlException” />
</operation>
<operation name="listDumps”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/listDumpsRequest” message="
tns:listDumps” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/listDumpsResponse” message="
tns:listDumpsResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/listDumps/Fault/IbdlException” />
</operation>
<operation name="deleteDatabaseUser” parameterOrder="db—username.superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlIWS/deleteDatabaseUserRequest”
message="tns:deleteDatabaseUser” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/deleteDatabaseUserResponse”
message="tns:deleteDatabaseUserResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/deleteDatabaseUser/Fault/IbdlException” />
</operation>
<operation name="listUsers”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/listUsersRequest” message="
tns:listUsers” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/listUsersResponse” message="
tns:listUsersResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/listUsers/Fault/IbdlException” />
</operation>
<operation name="executeQuerySandboxMode” parameterOrder="wbt-username._database._query.
user—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdIWS/executeQuerySandboxModeRequest
” message="tns:executeQuerySandboxMode” />
<output wsam:Action="http://ibdl.tugraz.at/IbdIWS/
executeQuerySandboxModeResponse” message="
tns:executeQuerySandboxModeResponse” />

118

A.1. WSDL file

<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/executeQuerySandboxMode/Fault/IbdlException” />
</operation>
<operation name="delete(Dump” parameterOrder="dump-name_superuser—api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/deleteDumpRequest” message="
tns:deleteDump” />
<output wsam:Action="http://ibdl. tugraz.at/IbdlWS/deleteDumpResponse” message="
tns:deleteDumpResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/deleteDump/Fault/IbdlException” />
</operation>
<operation name="executeQuery” parameterOrder="webservice—username_database.query.user—
api—key”>
<input wsam:Action="http://ibdl.tugraz.at/IbdlWS/executeQueryRequest” message="
tns:executeQuery” />
<output wsam:Action="http://ibdl.tugraz.at/IbdlWS/executeQueryResponse” message
="tns:executeQueryResponse” />
<fault message="tns:IbdlException” name="IbdlException” wsam:Action="http://
ibdl.tugraz.at/IbdlWS/executeQuery/Fault/IbdlException” />
</operation>
</portType>
<binding name="IbdlWSPortBinding” type="tns:IbdIWS”>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http” style="rpc” />
<operation name="getResult”>
<soap:operation soapAction="" />

<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>

<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="setPermissions”>
<soap:operation soapAction="" />

<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>

<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="deleteDatabase”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>
<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="uploadDump”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>
<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>

119

Appendix A. Appendix

120

</operation>
<operation name="listDatabases”>

<soap:operation soapAction="" />
<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</output>
<fault name="IbdlException”>

<soap:fault name="IbdlException” use="literal” />
</fault>

</operation>

<operation name="createEmptyDump”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</output>
<fault name="IbdlException”>

<soap:fault name="IbdlException” use="literal” />
</fault>

</operation>

<operation name="reinitDatabase”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</output>
<fault name="IbdlException”>

<soap:fault name="IbdlException” use="literal” />
</fault>

</operation>
<operation name="hello”>

<soap:operation soapAction="" />

</operation>

<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.
</output>
<operation name="listPermissions”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</output>
<fault name="IbdlException”>

<soap:fault name="IbdlException” use="literal” />
</ fault>

</operation>
<operation name="createDatabase”>

<soap:operation soapAction="" />
<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.

</output>
<fault name="IbdlException”>

<soap:fault name="IbdlException” use="literal” />
</fault>

</operation>

at

”

at

at

”

at

at

at”

at”

at”

at”

at”

at”

/>

/>

A.1. WSDL file

<operation name="listDumps”>
<soap:operation soapAction="" />

<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>

<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />

</fault>
</operation>
<operation name="deleteDatabaseUser”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>

<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="listUsers”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>
<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="executeQuerySandboxMode ">
<soap:operation soapAction="" />

<input>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>

<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>

<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="deleteDump”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>
<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />
</fault>
</operation>
<operation name="executeQuery”>
<soap:operation soapAction="" />
<input>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</input>
<output>
<soap:body use="literal” namespace="http://ibdl.tugraz.at” />
</output>
<fault name="IbdlException”>
<soap:fault name="IbdlException” use="literal” />

121

Appendix A. Appendix

</fault>

</operation>

</binding>

<service name="IbdIWS”>
<port name="IbdIWSPort” binding="tns:IbdlWSPortBinding">

</port>
</service>
</definitions>

122

<soap:address location="https://localhost:8443/InternetBasedDatabaseLaboratory/
IbdIWS” />

Bibliography

Apache Tomcat (2016). URL: http://tomcat . apache.org/ (visited on 12/03/2016)
(cit. on pp. [o1).

Aparicio, Manuela, Fernando Bacao, and Tiago Oliveira (2016). “Cultural im-
pacts on e-learning systems’ success”. In: The Internet and Higher Education
31, pp. 58-70. I1SSN: 1096-7516. DOIL: http://dx.doi.org/10.1016/j
iheduc.2016.06.003. URL: http://www.sciencedirect.com/science/
article/pii/S1096751616300367 (cit. on p. @

Aparicio, Manuela, Fernando Bacao, and Tiago Oliveira (2017). “Grit in the
path to e-learning success”. In: Computers in Human Behavior 66, pp. 388
399. ISSN: 0747-5632. DOIL: http://dx.doi.org/10.1016/j.chb.2016
10.009. URL: http://www.sciencedirect.com/science/article/pii/
S0747563216307075 (cit. on p. @

ATutor (2016). URL: http://www.atutor.ca/|(visited on 11/30/2016) (cit. on
p-[14).

Bootstrap (2017). Bootstrap 3. URL: http://getbootstrap.com/ (visited on
02/16/2017) (cit. on p.[57).

Dillenbourg, Pierre, Daniel Schneider, and Paraskevi Synteta (2002). “Virtual
Learning Environments”. In: 3rd Hellenic Conference "Information & Com-
munication Technologies in Education”. Ed. by A. Dimitracopoulou. Rhodes,
Greece: Kastaniotis Editions, Greece, pp. 3-18. URL: https://telearn,
archives-ouvertes.fr/hal-00190701|(cit. on p. [7).

Dokeos (2016). URL: http://www.dokeos . com/|(visited on 11/30/2016) (cit. on
p-[14).

Downes, Stephen (2005). “E-learning 2.0”. In: eLearn 2005.10, pp. 1—. ISSN:
1535-394X. DOIL: 10.1145/1104966.1104968. URL: http://doi.acm.org/
10.1145/1104966.1104968 (cit. on p. .

Ebner, M. (2007). “E-Learning 2.0 = e-Learning 1.0 + Web 2.0?” In: Availability,
Reliability and Security, 2007. ARES 2007. The Second International Conference
on, pp. 1235-1239. DOIL: [10.1109/ARES . 2007 . 74 (cit. on p.[3).

123

http://tomcat.apache.org/
https://doi.org/http://dx.doi.org/10.1016/j.iheduc.2016.06.003
https://doi.org/http://dx.doi.org/10.1016/j.iheduc.2016.06.003
http://www.sciencedirect.com/science/article/pii/S1096751616300367
http://www.sciencedirect.com/science/article/pii/S1096751616300367
https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.10.009
https://doi.org/http://dx.doi.org/10.1016/j.chb.2016.10.009
http://www.sciencedirect.com/science/article/pii/S0747563216307075
http://www.sciencedirect.com/science/article/pii/S0747563216307075
http://www.atutor.ca/
http://getbootstrap.com/
https://telearn.archives-ouvertes.fr/hal-00190701
https://telearn.archives-ouvertes.fr/hal-00190701
http://www.dokeos.com/
https://doi.org/10.1145/1104966.1104968
http://doi.acm.org/10.1145/1104966.1104968
http://doi.acm.org/10.1145/1104966.1104968
https://doi.org/10.1109/ARES.2007.74

Bibliography

Edrees, M. E. (2013). “eLearning 2.0: Learning Management Systems Readi-
ness”. In: e-Learning "Best Practices in Management, Design and Development
of e-Courses: Standards of Excellence and Creativity” , 2013 Fourth International
Conference on, pp. 90—96. DOI: [10. 1109/ECONF . 2013. 57| (cit. on p. [3).

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of Network-
based Software Architecture”. dissertation. University of California (cit. on
p-39).

Harasim, Linda (2000). “Shift happens: online education as a new paradigm
in learning”. In: The Internet and Higher Education 3.1-2, pp. 41—61. ISSN:
1096-7516. DOI: http://dx.doi.org/10.1016/51096-7516(00) 00032~
4. URL: http://www . sciencedirect . com/ science /article /pii/
$1096751600000324 (cit. on pp. (8} [9).

Java (2017). Java Technologies. URL: https://java.com (visited on 02/15/2017)

(cit. on p. [45).

JSqlParser (2017). JSqlParser. URL: https://github.com/JSQLParser/JSqlParser
(visited on 02/16/2017) (cit. on pp. [96).

Khatri, B., P. Chouskey, and M. Singh (2013). “Comparative Analysis Study
of E-learning and Traditional Learning in Technical Institution”. In: Com-
munication Systems and Network Technologies (CSNT), 2013 International
Conference on, pp. 770—773. DOIL: 10.1109/CSNT.2013. 165 (cit. on p. @

Levenshtein, Vladimir Iosifovich (1965). “Binary codes capable of correct-
ing deletions, insertions, and reversals.” In: Soviet Physics - Doklady 10.8,
pp. 707-710 (cit. on p. [27).

Lowenthal, Patrick R., Brent G. Wilson, and Patrick Parrish (2009). “Context
matters: A description and typology of the online learning”. In: Paper
presented at the 2009 AECT International Convention, Louisville, KY. poOTI:
http://dx.doi.org/10.1016/j.iheduc.2010.10.001. URL: http:
//www.sciencedirect.com/science/article/pii/S1096751610000886
(cit. on p. [7).

Mason, Robin (2000). “From distance education to online education”. In:
The Internet and Higher Education 3.1-2, pp. 63—74. ISSN: 1096-7516. DOI:
http://dx.doi.org/10.1016/S1096-7516(00) 00033-6. URL: http:
//www.sciencedirect.com/science/article/pii/S1096751600000336
(cit. on p. [10).

Mayadas, Frank (1997). “Asynchronous Learning Networks: A Sloan Foun-
dation Perspective”. In: Journal of Asynchronous Learning Networks, 1(1),

pp. 1-16 (cit. on p. [).

124

https://doi.org/10.1109/ECONF.2013.57
https://doi.org/http://dx.doi.org/10.1016/S1096-7516(00)00032-4
https://doi.org/http://dx.doi.org/10.1016/S1096-7516(00)00032-4
http://www.sciencedirect.com/science/article/pii/S1096751600000324
http://www.sciencedirect.com/science/article/pii/S1096751600000324
https://java.com
https://github.com/JSQLParser/JSqlParser
https://doi.org/10.1109/CSNT.2013.165
https://doi.org/http://dx.doi.org/10.1016/j.iheduc.2010.10.001
http://www.sciencedirect.com/science/article/pii/S1096751610000886
http://www.sciencedirect.com/science/article/pii/S1096751610000886
https://doi.org/http://dx.doi.org/10.1016/S1096-7516(00)00033-6
http://www.sciencedirect.com/science/article/pii/S1096751600000336
http://www.sciencedirect.com/science/article/pii/S1096751600000336

Bibliography

Moodle (2016a). URL: https://moodle.org/ (visited on 11/29/2016) (cit. on
p-[13).

Moodle (2016b). Moodle Statistics. URL: https://moodle.net/stats/?lang=de
(visited on 12/16/2016) (cit. on p. .

Moore, Joi L., Camille Dickson-Deane, and Krista Galyen (2011). “e-Learning,
online learning, and distance learning environments: Are they the same?”
In: The Internet and Higher Education 14.2. Web mining and higher ed-
ucation: Introduction to the special issue, pp. 129-135. ISSN: 1096-7516.
DOI: http://dx.doi.org/10.1016/j.iheduc.2010.10.001. URL: http:
//www.sciencedirect.com/science/article/pii/S1096751610000886
(cit. on p.[7).

MySQL (2017). Connector/] 5.1.40. URL: https://dev.mysql.com/downloads/

connector/j/ (visited on 02/16/2017) (cit. on pp. [56).
MySQL Server (2016). URL: https ://dev.mysql . com/downloads/mysql/

(visited on 12/03/2016) (cit. on pp. [102).

Navarro, Gonzalo (2001). “A Guided Tour to Approximate String Matching”.
In: ACM Comput. Surv. 33.1, pp. 31-88. ISSN: 0360-0300. DOI: 10. 1145/
375360 .375365. URL: http://doi.acm.org/10.1145/375360.375365
(cit. on p. [27).

Oblinger, Diana G. and James L. Oblinger (2005). Educating the net generation.
URL: http://net.educause.edu/ir/library/pdf/pub7101.pdf (cit. on
P-[7)-

O’Neil@) McMahon and Tim Geraldine (2005). Student-centred learning: what
does it mean for students and lecturers?n. URL: http://www . aishe . org/
readings/2005-1/oneill-mcmahon-Tues_19th_0Oct_SCL. pdf (cit. on
p-[11).

Oracle (2006). Java Technologies for Web Applications. URL: http://www.oracle,
com/technetwork/articles/java/webapps-1-138794.html (visited on
10/05/2016) (cit. on p. [35).

Oracle (2017a). Creating and Using SOAP Message Handlers). URL: https://
docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers|
html| (visited on 02/10/2017) (cit. on p.[79).

Oracle (2017b). Java™ API for XML Web Services (JAX-WS). URL: http://docs
oracle.com/javase/7/docs/technotes/guides/xml/jax-ws/ (visited
on 01/10/2017) (cit. on p. 35).

Oracle (2017c¢). Java [DBC API. URL: http://docs.oracle.com/ javase/7/
docs/technotes/guides/jdbc/| (visited on 02/16/2017) (cit. on p.[57).

125

https://moodle.org/
https://moodle.net/stats/?lang=de
https://doi.org/http://dx.doi.org/10.1016/j.iheduc.2010.10.001
http://www.sciencedirect.com/science/article/pii/S1096751610000886
http://www.sciencedirect.com/science/article/pii/S1096751610000886
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/mysql/
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
http://doi.acm.org/10.1145/375360.375365
http://net.educause.edu/ir/library/pdf/pub7101.pdf
http://www.aishe.org/readings/2005-1/oneill-mcmahon-Tues_19th_Oct_SCL.pdf
http://www.aishe.org/readings/2005-1/oneill-mcmahon-Tues_19th_Oct_SCL.pdf
http://www.oracle.com/technetwork/articles/java/webapps-1-138794.html
http://www.oracle.com/technetwork/articles/java/webapps-1-138794.html
https://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers.html
https://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers.html
https://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_adv/handlers.html
http://docs.oracle.com/javase/7/docs/technotes/guides/xml/jax-ws/
http://docs.oracle.com/javase/7/docs/technotes/guides/xml/jax-ws/
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/

Bibliography

Oracle (2017d). Java Servlet Technology. URL: http : / / www . oracle . com/
technetwork/ java/index- jsp- 135475 . html (visited on 02/20/2017)
(cit. on p. [63).

Oracle (2017e). JavaServer Pages Technology. URL: http://www.oracle . com/
technetwork/ java/javaee/ jsp/index . html (visited on 02/14/2017)
(cit. on p.[58).

Oracle (2017f). JWS Annotation Reference. URL: https://docs.oracle.com/cd/
E13222_01/wls/docs103/webserv_ref/annotations.html (visited on
01/10/2017) (cit. on p. [70).

Oracle (2017g). Netbeans IDE. URL: https : / /netbeans . org/ (visited on
02/22/2017) (cit. on p. [70).

Oracle (2017h). Privileges Provided by MySQL. URL: https : //dev . mysql |
com/doc/refman/5.7/en/privileges-provided . htmly (visited on
02/20/2017) (cit. on p. [60).

Oracle (2017i). Privileges Provided by MySQL. URL: https : //dev . mysql ,
com/doc/refman/5.7/en/privileges - provided . html (visited on
02/22/2017) (cit. on p.[93).

Oracle (2017j). Security Mechanisms. URL: https://docs . oracle.com/cd/
E19159-01/820-1072/6ncp48v3q/index . html (visited on 02/25/2017)
(cit. on p. [o1).

Oracle (2017k). TRUNCATE TABLE Syntax. URL: https://dev.mysql.com/
doc/refman/5.7/en/truncate-table . html (visited on 02/20/2017)
(cit. on p. [97).

Ozkan, Sevgi and Refika Koseler (2009). “Multi-dimensional students” evalua-
tion of e-learning systems in the higher education context: An empirical
investigation”. In: Computers & Education 53.4. Learning with ICT: New
perspectives on help seeking and information searching, pp. 1285-1296.
ISSN: 0360-1315. DOIL: http://dx.doi.org/10.1016/j . compedu. 2009 |
06.011. URL: http://www.sciencedirect.com/science/article/pii/
50360131509001584 (cit. on p. lz__q)

phpMyAdmin (2017). phpMyAdmin. URL: https : //www . phpmyadmin . net /
team/| (visited on 01/20/2017) (cit. on p. [29).

Pieri, Michelle and Davide Diamantini (2014). “An E-learning Web 2.0 Ex-
perience”. In: Procedia - Social and Behavioral Sciences 116, pp. 1217-1221.
ISSN: 1877-0428. DOI: http://dx.doi.org/10.1016/j.sbspro.2014 |
01.371. URL: http://www.sciencedirect.com/science/article/pii/
$1877042814003887 (cit. on p. @

126

http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_ref/annotations.html
https://docs.oracle.com/cd/E13222_01/wls/docs103/webserv_ref/annotations.html
https://netbeans.org/
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.htmly
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.htmly
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html
https://docs.oracle.com/cd/E19159-01/820-1072/6ncp48v3q/index.html
https://docs.oracle.com/cd/E19159-01/820-1072/6ncp48v3q/index.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://doi.org/http://dx.doi.org/10.1016/j.compedu.2009.06.011
https://doi.org/http://dx.doi.org/10.1016/j.compedu.2009.06.011
http://www.sciencedirect.com/science/article/pii/S0360131509001584
http://www.sciencedirect.com/science/article/pii/S0360131509001584
https://www.phpmyadmin.net/team/
https://www.phpmyadmin.net/team/
https://doi.org/http://dx.doi.org/10.1016/j.sbspro.2014.01.371
https://doi.org/http://dx.doi.org/10.1016/j.sbspro.2014.01.371
http://www.sciencedirect.com/science/article/pii/S1877042814003887
http://www.sciencedirect.com/science/article/pii/S1877042814003887

Bibliography

Reese, Sasha A. (2015). “Online learning environments in higher education:
Connectivism vs. dissociation”. In: Education and Information Technologies
20.3, pp- 579-588. 1SSN: 1573-7608. DOIL: 10.1007/s10639-013-9303-7.
URL: http://dx.doi.org/10.1007/s10639-013-9303-7 (cit. on p. .

Shahabadi, Mehdi Mehri and Megha Uplane (2015). “Synchronous and Asyn-
chronous e-learning Styles and Academic Performance of e-learners”. In:
Procedia - Social and Behavioral Sciences 176, pp. 129-138. ISSN: 1877-0428.
DOL: http://dx.doi.org/10.1016/j.sbspro.2015.01.453. URL: http:
//www.sciencedirect.com/science/article/pii/S1877042815004905
(cit. on p.[5).

Statista (2016a). Prognose zur Anzahl vernetzter Geriite weltweit in den Jahren 2003
bis 2020. URL: https://de.statista.com/statistik/daten/studie/
479023 /umfrage / prognose - zur - anzahl - der - vernetzten - geraete -
weltweit/ (visited on 11/23/2016) (cit. on p. [11).

Statista (2016b). Size of e-learning market in 2013 and 2016, by region (in mil-
lion U.S. dollars). URL: https://wuw.statista.com/statistics/501144/
worldwide-elearning-market-size-by-region/ (visited on 11/23/2016)
(cit. on p. [12).

TeachCenter (2016). URL: https://tugraz.at/oe/lehr-und-lerntechnologien/
%201lehrtechnologien-und-services/tu-graz-teachcenter/| (visited
on 11/30/2016) (cit. on p. [14).

W3C, World Wide Web Consortium (2000). Simple Object Access Protocol (SOAP)
1.1. URL: https://www.w3.org/TR/2000/NOTE- SOAP-20000508/# _
Toc478383486) (visited on 10/11/2016) (cit. on pp. |41} [70).

W3C, World Wide Web Consortium (2001). Web Services Description Language
(WSDL) 1.1. URL: https://www.w3.org/TR/wsdl (visited on 10/07/2016)
(cit. on p. [40).

WBT-Master (2016). URL: http://coronet . iicm. tugraz . at/wbtmaster/
(visited on 12/02/2016) (cit. on p. [15).

WBT-Master white paper (2016). URL: http://coronet.iicm.tugraz.at/demo/
whitep.htm (visited on 12/02/2016) (cit. on p. [15).

Wever, B. D. et al. (2007). “E-Learning 2.0: Social Software for Educational
Use”. In: Multimedia Workshops, 2007. ISMW ’o7. Ninth IEEE International
Symposium on, pp. 511-516. DOI: [10.1109/ISM. Workshops . 2007 .91 (cit.
on p.[4).

127

https://doi.org/10.1007/s10639-013-9303-7
http://dx.doi.org/10.1007/s10639-013-9303-7
https://doi.org/http://dx.doi.org/10.1016/j.sbspro.2015.01.453
http://www.sciencedirect.com/science/article/pii/S1877042815004905
http://www.sciencedirect.com/science/article/pii/S1877042815004905
https://de.statista.com/statistik/daten/studie/479023/umfrage/prognose-zur-anzahl-der-vernetzten-geraete-weltweit/
https://de.statista.com/statistik/daten/studie/479023/umfrage/prognose-zur-anzahl-der-vernetzten-geraete-weltweit/
https://de.statista.com/statistik/daten/studie/479023/umfrage/prognose-zur-anzahl-der-vernetzten-geraete-weltweit/
https://www.statista.com/statistics/501144/worldwide-elearning-market-size-by-region/
https://www.statista.com/statistics/501144/worldwide-elearning-market-size-by-region/
https://tugraz.at/oe/lehr-und-lerntechnologien/%20lehrtechnologien-und-services/tu-graz-teachcenter/
https://tugraz.at/oe/lehr-und-lerntechnologien/%20lehrtechnologien-und-services/tu-graz-teachcenter/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383486
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383486
https://www.w3.org/TR/wsdl
http://coronet.iicm.tugraz.at/wbtmaster/
http://coronet.iicm.tugraz.at/demo/whitep.htm
http://coronet.iicm.tugraz.at/demo/whitep.htm
https://doi.org/10.1109/ISM.Workshops.2007.91

