
Robert Primas BSc

Side-Channel Attacks
on Efficient

Lattice-Based Encryption

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute of Applied Information Processing and Communications (IAIK)

 Master of Science

Supervisor

Second Supervisor
Dipl.-Ing. Peter Pessl Bsc

Graz, May 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Acknowledgements

I would first like to thank my thesis advisors Dipl.-Ing. Peter Pessl and Univ.-Prof. Dipl.-
Ing. Dr.techn. Stefan Mangard of the Institute of Applied Information Processing and
Communications (IAIK) at Graz University of Technology. Whenever I ran into a trouble
spot or had a question about my research or writing I could count on their continuous
support. They consistently allowed this thesis to be my own work, but steered me in the
right the direction whenever they thought I needed it.

Finally, I must express my very profound gratitude to my parents for providing me with un-
failing support and continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment would not have
been possible without them. Thank you.

iii

Abstract

Asymmetric cryptography is currently facing the future threat that is quantum comput-
ing. A quantum algorithm, originally presented by Peter Shor, is capable of breaking
current asymmetric cryptographic schemes in sub-exponential time. However, a powerful
quantum computer is required for its efficient execution. Even though it appears that the
construction of practical quantum computers will not happen within the next 20 years,
the continuous progress is of concern to the cryptographic community.

To counteract the threat of quantum computing, the development of quantum com-
puter secure asymmetric cryptographic schemes has become a hot research topic in recent
years. Currently, there already exist many such schemes that are mainly based on Lattice-
based Cryptography, Code-based Cryptography, and Supersingular Elliptic Curves. Es-
pecially lattices are promising since they allow the construction of efficient cryptographic
schemes. While many schemes offer proper theoretical security claims, there is still a lack
of research on their implementation security.

In this thesis, we present a first step towards implementation security of quantum com-
puter secure asymmetric cryptographic schemes. We show a template-based single-trace
side-channel attack on a microprocessor implementation of an asymmetric lattice-based
encryption scheme. The focus of our side-channel attack is on the Number Theoretic
Transform operation that is incorporated by many lattice-based cryptographic schemes
for efficiency. Hence, similar variations of the presented attack may be applicable to at-
tacking other lattice-based schemes. We combine our side-channel analysis with algebraic
attacks. The Belief Propagation algorithm is used to marginalize leakage information from
multiple leakage points, thereby reducing the noise level. Finally, we present a key recov-
ery algorithm that can recover the full private key, given enough correctly determined
intermediate values in the Number Theoretic Transform operation. We also perform our
attack on a masked implementation that cannot be attacked via ordinary first-order dif-
ferential power analysis or template attacks. In our evaluation, the success rate of our
attack on the masked implementation is 1. To ensure generality and reproducibility we
also evaluate our attack for simulated leakage with variable noise levels. Here, we achieve
high success rates as long as the noise in the simulated leakage is not stronger than in the
real leakage.

Keywords: Belief Propagation Algorithm, Implementation Security, Lattice-based Cryp-
tography, Learning With Errors Problem, Number Theoretic Transform, Post-Quantum
Cryptography, Side-Channel Attack, Single-Trace Attack

iv

Kurzfassung

Die Asymmetrische Kryptographie steht momentan vor einem zukünftigen Problem, den
Quantencomputern. Ein Quantenalgorithmus, ursprünglich beschrieben von Peter Shor,
kann aktuelle asymmetrische kryptographische Verfahren in subexponentieller Zeit bre-
chen. Jedoch ist ein leistungsstarker Quantencomputer für dessen effiziente Ausführung
notwendig. Obwohl es derzeit danach aussieht, als ob die Entwicklung von leistungsstarken
Quantencomputern nicht innerhalb der nächsten 20 Jahre passieren wird, ist der kontinu-
ierliche Fortschritt ein Grund zur Sorge für die kryptographische Forschungsgemeinschaft.

Um dem Problem der Quantencomputer entgegenzuwirken ist die Entwicklung von
quantencomputerresistentenen asymmetrischen kryptographischen Verfahren in den letz-
ten Jahren zu einem regen Forschungsgebiet geworden. Es gibt schon viele solcher Ver-
fahren die überwiegend auf gitterbasierter Kryptographie, codebasierter Kryptographie
und supersingulären elliptischen Kurven basieren. Besonders vielversprechend sind die
mathematischen Gitter, da sie die Konstruktion von effizienten kryptographischen Verfah-
ren erlauben. Während viele dieser Verfahren den theoretischen Sicherheitsanforderungen
entsprechen ist die Forschung an deren Implementierungssicherheit noch nicht sehr weit
fortgeschritten.

In dieser Arbeit präsentieren wir einen ersten Schritt in Richtung Implementierungs-
sicherheit für asymmetrische quantencomputerresistente kryptographische Verfahren. Wir
zeigen eine auf Templates und Single-Traces basierende Seitenkanalattacke auf eine Mikro-
prozessor-Implementierung eines asymmetrischen gitterbasierten Verschlüsselungsverfahr-
en. Der Fokus unserer Seitenkanalattacke liegt auf der Number Theoretic Transform, wel-
che von vielen gitterbasierten kryptographischen Verfahren aus Effizienzgründen verwen-
det wird. Wir kombinieren unsere Seitenkanalattacke mit algebraischen Attacken. Der
Belief Propagation Algorithmus wird benutzt um Seitenkanalinformationen aus verschie-
denen Angriffspunken zu kombinieren und somit Rauschen zu reduzieren. Schlussendlich
präsentieren wir einen Key-Recovery Algorithmus der den kompletten privaten Schlüssel
finden kann, wenn genug Zwischenwerte aus der Number Theoretic Transform bekannt
sind. Wir führen unsere Attacke auch auf eine maskierte Implementierunge aus, die nicht
durch gewöhnliche Differential Power Analysis oder Template-Attacken der ersten Ord-
nung attackiert werden kann. In unserer Evaluierung erreicht unsere Attacke eine Er-
folgsquote von 1. Um Generalität und Reproduzierbarkeit zu gewährleisten evaluieren wir
unsere Attacke auch für simulierte Seitenkanalinformation mit variablem Rauschen. Hier
erreichen wir hohe Erfolgsquoten solange das Rauschen in der simulierten Seitenkanalin-
formation nicht stärker als in der echten Seitenkanalinformation ist.

Stichwörter: Implementierungssicherheit, Gitterbasierte Kryptographie, Quantencompu-
terresistente Kryptographie, Seitenkanalattacke

v

Contents

1 Introduction 1

2 Lattice-based Cryptography 4
2.1 Lattices . 4
2.2 Lattice-based Cryptography . 5
2.3 Lattice Problems . 6

2.3.1 Shortest Vector Problem . 6
2.3.2 Closest Vector Problem . 7

2.4 Lattice Related Problems . 7
2.4.1 Shortest Integer Solution Problem 8
2.4.2 Learning with Errors Problem . 8

2.5 Efficient Implementations . 9
2.5.1 Ideal Lattices . 10
2.5.2 Number Theoretic Transform . 10
2.5.3 Ring-Learning with Errors Problem 12
2.5.4 Ring-Learning With Errors Encryption Scheme 14

2.6 Discrete Gaussian Samplers . 15
2.6.1 Discrete Gaussian Distribution . 15
2.6.2 Properties of Gaussian Samplers . 16
2.6.3 Comparison of state-of-the-art Implementations 16

3 Side-Channel Attacks 18
3.1 Overview . 18
3.2 Timing Attacks . 19
3.3 Power Analysis Attacks . 20

3.3.1 Simple Power Analysis . 21
3.3.2 Hypothesis Testing - Differential Power Analysis 21
3.3.3 Template Attacks . 23

3.4 Countermeasures . 27
3.4.1 Timing Countermeasures . 27
3.4.2 Power Analysis Countermeasures . 27

4 Soft Analytical Side-Channel Attacks 31
4.1 Algebraic Cryptanalysis . 31
4.2 Algebraic Side Channel Attacks . 32
4.3 Soft Analytical Side Channel Attacks . 33

vi

5 Marginalization in Graphical Networks 35
5.1 Marginalization Problem . 35
5.2 Factor Graphs . 36
5.3 Belief Propagation . 37
5.4 Loopy-Belief Propagation . 39

6 Attack on an RLWE-based Encryption Scheme 40
6.1 Attack Overview . 40
6.2 Attack Step 1: Side-Channel Attacks on an INTT Butterfly Network 42

6.2.1 Measurement Setup . 42
6.2.2 Microprocessor implementation . 43
6.2.3 Side-Channel Attack on Real Leakage 45
6.2.4 Side-Channel Attack on Simulated Leakage 48
6.2.5 Results - Real Leakage . 48
6.2.6 Results - Simulated Leakage . 50

6.3 Attack Step 2: Belief Propagation in an NTT Butterfly Network 50
6.3.1 Factor Graph Construction . 51
6.3.2 Belief Propagation Runtime Analysis 53
6.3.3 Belief Propagation Performance Improvements 54
6.3.4 Applying the BP algorithm . 55

6.4 Attack Step 3: Private Key Recovery . 58
6.4.1 Generating Linear Equations in the Key 58
6.4.2 Key Recovery using Lattice Reduction 59

7 Results 61
7.1 Results for Real Leakage . 61
7.2 Results for Simulated Leakage . 63

8 Conclusions 65
8.1 Implications of our Attack . 65
8.2 Suggested Countermeasures . 66
8.3 Future Work . 67

A Definitions 69
A.1 Abbreviations . 69

Bibliography 70

vii

List of Figures

2.1 A 2D lattice . 5
2.2 Shortest Vectors Problem . 7
2.3 Closest Vectors Problem . 8
2.4 Regular and ideal lattices . 10
2.5 NTT Butterfly . 11
2.6 A 4-coefficient NTT . 12
2.7 RLWE reduction chain . 13

3.1 Timing side-channel . 20
3.2 Simple Power Analysis . 21
3.3 Point of interest calculation after T-Test . 26
3.4 Basic masking scheme for an RLWE-based decryption 30

5.1 Markov Random Field . 36
5.2 Factor Graphs . 37

6.1 Pictures of the measurement setup . 43
6.2 TA on modular multiplication . 47
6.3 Results: TA on Real Leakage . 49
6.4 Results: TA on Simulated Leakage . 50
6.5 Factor Graph Construction . 51
6.6 Results: BP on Full Factor Graph . 56
6.7 BP Strategy . 57

7.1 Real Leakage: BP on Sub-Factor Graph . 62
7.2 Simulated Leakage: BP on Sub-Factor Graph 64
7.3 Success probability of key recovery for varying σ 64

viii

Chapter 1

Introduction

Many currently used asymmetric cryptographic schemes are based on ideas that date
back at least 30 years. While RSA encryption and the Diffie-Hellman key exchange were
proposed in the mid 70’s, Elliptic Curve Cryptography was originally proposed in the mid
80’s, yet not widely used until 2005.

In the year 1994, Peter Williston Shor announced the ground breaking discovery of a
quantum algorithm that could break most of the currently used asymmetric cryptographic
schemes in sub-exponential time [73]. His algorithm however, comes with the catch that
a sufficiently large practical quantum computer is required in order to allow efficient exe-
cution. Since the concept of quantum computers was mainly of purely theoretical interest
in the mid 90’s, his algorithm was not considered an immediate threat to asymmetric
cryptography for a long time.

At the same time the research on quantum computers sees a slow but steady progress.
Up until recently, there already exist several noteworthy achievements regarding the con-
struction of practical quantum computers [22, 58, 64]. The presented constructions are
still limited in many ways and hence cannot be used in meaningful applications yet. How-
ever, they do show that quantum computers are indeed possible to construct and not
just a theoretic concept. Still, it is unclear when or even if the construction of quantum
computers capable of performing Shor’s algorithm can become reality.

Nevertheless, the continuous progress in the construction of practical quantum comput-
ers started to raise concern about the long-term security of existing cryptographic schemes
in the research community. In the year 2016, these concerns were eventually backed up by
national institutions like the NSA [56]. In their publication, they promote the transition
from asymmetric cryptographic schemes like RSA and ECC to quantum computer re-
sistant alternatives like Lattice-based Cryptography or Code-based Cryptography. While
symmetric primitives are not affected by Shor’s algorithm, there exists another quantum al-
gorithm called “Grovers Search Algorithm” that can perform a trivial key search in O(2

n
2)

time [33]. The implication of this algorithm on symmetric primitives is however limited
since a simple doubling of key size restores their original security claims. For asymmetric
schemes, no such simple mitigation against Shor’s algorithm is known to date. Hence, the
search for quantum computer resistant asymmetric cryptographic schemes became a hot
research topic.

There already exist various proposals for quantum computer secure asymmetric crypto-
graphic schemes like signatures [35], public-key encryption [49], and many more [5, 27, 36,
10]. Some of those proposals are over 30 years old but only got little attention since they
are comparably inefficient and quantum computer resistance was not valued back then.

1

CHAPTER 1. INTRODUCTION 2

While there are no official standards yet, some of the proposals are already tested in prac-
tice, e.g. in TLS handshakes by Google [11]. To date the most promising candidates are
based on Lattice-based Cryptography, Code-based Cryptography or Supersingular Elliptic
Curve Cryptography.

There already exist many publications regarding the theoretical security of these new
cryptographic schemes. However, in terms of implementation security, many schemes
lack sufficient analysis. Most published implementation proposals so far mainly consider
runtime efficiency, memory efficiency, or space efficiency in case of hardware implemen-
tations. Having said that, a more profound security analysis of the implementation is
usually missing.

In this thesis, we want to provide a first step in this important but yet still vastly
unexplored topic. We show an implementation attack on one of the candidates for fu-
ture quantum computer secure asymmetric encryption schemes. For this purpose we have
chosen to attack an asymmetric encryption scheme which is based on Lattice-based Cryp-
tography, more precisely the Ring-Learning With Errors Problem. This encryption scheme
was originally proposed by Lyubashevsky et al. [49] and features low runtime, RSA-like
key sizes, and limited provable security. The scheme is currently one of the most promising
candidates for future quantum computer secure asymmetric encryption schemes.

More precisely, we perform a single-trace side-channel attack on a microprocessor im-
plementation of the Number Theoretic Transform operation, as a part of decryption op-
eration. The Number Theoretic Transform is one of the main building block of virtually
all efficient lattice-based cryptographic schemes. As a consequence, our analysis is of
value to a multitude of other cryptographic schemes that incorporate a Number Theo-
retic Transform. We also consider implementations that feature dedicated side-channel
countermeasures like masking. A masked implementation cannot be attacked via ordinary
first-order DPA or template attacks. However, an attack that solely relies on single-trace
side-channel information can be used to circumvent such a countermeasure. Ultimately, we
show that single-trace attacks are indeed possible for lattice-based cryptographic schemes.

Organization of the thesis

We first cover related work in Chapters 2-5. Our attack is then described in Chapter 6.
We discuss our results in Chapters 7-8.

In Chapter 2, we give an overview of Lattice-based Cryptography. We explain the math-
ematical concept of lattices and how they can be used to build cryptographic schemes.
Since the main goal of this thesis is an attack on a lattice-based encryption scheme, we
explain the construction of such an encryption scheme in more detail. We also give a short
discussion on the current state of lattice-based cryptographic schemes.

We attack the microprocessor implementation using side-channel information. In
Chapter 3, we present implementation attacks, mention different types of implementa-
tion attacks, and explain how they can be used to attack HW/SW implementations of
cryptographic schemes. We also mention common countermeasures against implementa-
tion attacks and how they can be circumvented.

In Chapter 4, we describe algebraic side-channel attacks. These attacks attempt to
efficiently combine leakage information from multiple leakage points, thereby lowering the
noise level of the side-channel measurements. In this thesis we use a method called “Soft
Analytical Side-Channel Attacks” for this very purpose.

CHAPTER 1. INTRODUCTION 3

Soft analytical side-channel attacks use an algorithm called Belief Propagation. Given
a graph like representation of a function, this algorithm can be used to calculate marginal
distributions of the function’s intermediate values. A comprehensive description of the
Belief Propagation algorithm is given in Chapter 5.

In Chapter 6, we describe our main contribution of this thesis, i.e. an attack on
a RLWE decryption operation. The attack description is split up into three steps, an
initial side-channel attack step, a subsequent post processing step incorporating the Belief
Propagation algorithm, and a final key recovery step. We also state some intermediate
results of the individual steps.

The results of our attack are then stated in Chapter 7. Apart from showing an attack
on a real microprocessor implementation, we also show an attack evaluation for more
generic simulated side-channel information.

In Chapter 8, we conclude our work. We state the implications of our attack for
existing proposals of encryption schemes and mention possible countermeasures. Finally,
we suggest possible future work based on our presented attack.

Chapter 2

Lattice-based Cryptography

This chapter covers the most important aspects of Lattice-based Cryptography and gives
a description of an efficient lattice-based asymmetric encryption scheme. The presented
encryption scheme is one of the candidates for future post-quantum asymmetric encryption
schemes and is based on a mathematical structure called Lattice. Lattices have proven to be
quite useful in the field of cryptography since they allow to build a variety of cryptographic
schemes featuring many beneficial properties that currently used cryptographic schemes
usually do not provide.

Section 2.1 formally introduces the concept of lattices. Section 2.2 gives an overview of
the state-of-the-art in the field of Lattice-based Cryptography. The security of all lattice-
based cryptographic schemes relies on the hardness of certain problems that are defined
on lattices. In Section 2.3, two problems are presented that are directly based on lattices.
While those two problems are not directly used as a basis for building cryptographic
schemes, there exist related problems that can be used for building cryptographic schemes.
Two such commonly used lattice related problems are presented in Section 2.4. Many
cryptographic schemes based on regular lattices have the drawback of high runtime or
large key size requirements. In order to get around this problem, so-called ideal lattices
have been proposed. Ideal lattices feature some additional structure that can be used
to build more efficient, yet still secure, cryptographic schemes. Section 2.5 explains the
concept of ideal lattices and shows how a problem related to ideal lattices is used to
build the efficient encryption scheme which is attacked in this thesis. Since many lattice-
based cryptographic schemes require a source of samples drawn from a discrete Gaussian
distribution, Section 2.6 gives an overview of the state-of-the-art in the design of discrete
Gaussian samplers.

2.1 Lattices

Definition 2.1.1. A lattice L defined by a vector basis A is a set of points in n-dimensional
space with a periodic structure. Every point in the lattice can be described by an integer
combination of the n linearly independent basis vectors a1, . . . ,an that fully determine
the lattice:

L(A) = L

...

...
...

a1 · · · an
...

...
...

 =

{ n∑
i=1

xiai : xi ∈ Z
}

4

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 5

In Figure 2.1, an example of a two dimensional lattice is shown. It is easy to see that
any point in the lattice can be reached by a combination of either the black or red vector
basis. In fact, there is an infinite number of possible vector basis for any one lattice.
Of particular interest for cryptographic applications are so-called q-ary lattices. A q-ary
lattice, for some integer q, is a lattice that contains a vector x if and only if x mod q is
also in the lattice. Unless stated otherwise, all lattices in this thesis are assumed to be
q-ary.

X

Y

Figure 2.1: A 2D lattice with two possible vector basis (red and black).

2.2 Lattice-based Cryptography

Lattice-based Cryptography is a term for cryptographic constructions based on problems
in lattices. The first break-through in this field was accomplished by Ajtai in 1996 when he
introduced the first public-key encryption scheme based on a lattice problem [3]. In fact,
in the field of number theory, lattices have been studied for much longer. Mathematicians
like Lagrange [42] and Gauss [38] have already discovered the hardness of certain lattice-
based problems in the late 18th century. Yet, no proposals for lattice-based cryptographic
schemes were made until 1996.

Some of the great promises of Lattice-based Cryptography are the resistance against
quantum computers, provable security, as well as worst case hardness. Quantum computer
resistance is a favorable property as there exists currently no widely used quantum com-
puter resistant asymmetric cryptographic scheme. While quantum computers are only a
minor threat for current symmetric cryptographic schemes, it was shown that there exist
quantum computer algorithms that can break RSA or ECC-based cryptographic schemes
in polynomial time [73]. It is not known yet whether or when quantum computers can
be constructed in such a way that they become a real threat to current asymmetric cryp-
tographic schemes. Nevertheless, quantum computer resistance is a property worth men-
tioning since there is continuous progress in the construction of more efficient and larger
quantum computers [22, 58, 64]. Especially the quantum computer resistance in combi-
nation with increasing practicality lead to an increased research activity in Lattice-based
Cryptography in the past ten years.

Many currently used asymmetric cryptographic schemes are based on the average-
case difficulty of some problem. This means that for a given problem, like factorization,

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 6

there exist instances of the problem that are harder/easier than others. One example of
a simple factorization problem instance is the factorization of even numbers. Average-
case hardness is not ideal because the security of a cryptographic scheme depends on the
actual parameterization of the underlying problem. Worst-case hardness, on the other
hand, ensures that every instance of a problem is equally hard. In other words, given an
algorithm that solves any one problem instance efficiently, the algorithm is guaranteed to
also solve any other problem instance efficiently. Therefore, the parameterization of the
problem does not affect the security of the cryptographic scheme as long as all requirements
of the encryption schemes are met.

There already exist several proposals of lattice-based cryptographic schemes covering
many different cryptographic applications like hash functions [48], signatures [35], public-
key encryption [49], and many more. All lattice-based cryptographic schemes are built
on top of one of several lattice-related problems which are assumed to be hard, even for
quantum computers. Lattice-related problems are not directly defined on lattices but can
be reduced to real lattice problems. In the next section, problems are presented that are
defined directly on lattices. Section 2.4 will then present lattice-related problems than can
be used to build cryptographic schemes.

2.3 Lattice Problems

This section presents two problems that play a major role in terms of provable security
in Lattice-based Cryptography. Almost every lattice-based cryptographic construction is
based on the assumption that one of the following problems is hard. While there exists
both a search version and a decision version for each of the presented problems, in this
section only the corresponding search variants are presented.

Notation. We use lower-case bold symbols to indicate that a variable s is a vector or
polynomial. Upper-case bold symbols indicate that a variable A is a matrix. We further
denote a dot product of the two vectors s, t by 〈s, t〉.

2.3.1 Shortest Vector Problem

Definition 2.3.1. Given a lattice L defined by n linearly independent, uniformly random
basis vectors A = [a, . . . ,an], the Shortest Vector Problem (SVP) asks to find a vector
x ∈ L with length equal to the true shortest vector in L:

‖x‖ = λ(L),

where λ(L) denotes the length of the true shortest vector:

λ(L) = min
v∈L/{0}

‖v‖

Usually, this problem does not require the solver to find the exact solution but a solution
vector x ∈ L with length of at most some polynomial approximation factor γ of the true
shortest vector:

‖x‖ < γλ(L)

This γ-approximation version of SVP is often denoted as SVPγ . A visual interpretation
for SVP in a two dimensional lattice is shown in Figure 2.2.

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 7

SVP is rather easy in the case when the lengths of the given a, . . . ,an are already close to
the true shortest vector. Since a, . . . ,an are chosen uniformly at random, the probability
of an easy problem instance is negligible for lattices of a reasonable dimension. In fact,
Ajtai has shown that SVP is NP-hard [3]. The best known results for solving SVP are
based on the LLL-algorithm [43] and HKZ-basis reductions [55]. However, none of those
approaches can be used to solve SVP in sub-exponential time.

X

Y

.

Figure 2.2: SVP: Given a vector base (black), find the shortest vector (red) or a γ-
approximation (SVPγ).

2.3.2 Closest Vector Problem

Definition 2.3.2. Given a lattice L defined by n linearly independent, uniformly random
basis vectors A = [a, . . . ,an] and a challenge vector y, the Closest Vector Problem (CVP)
asks to find a lattice point with minimal distance from the challenge vector:

argmin
x
‖Ax− y‖

Similarly to SVP, there also exists a γ-approximation version CVPγ , where it is sufficient
to find a solution vector x, such that the distance from the challenge vector is at most a
polynomial factor γ:

‖Ax− y‖ < γ

A visual interpretation of CVP is presented in Figure 2.3.

There is a strong correspondence between CVPγ and SVPγ as there exist reductions in
both directions [21]. While the used norm in SVP and CVP is usually the euclidean norm,
any other norm can be used as well.

2.4 Lattice Related Problems

This section presents two problems that are used as a basis for many lattice-based cryp-
tographic schemes. Both problems offer a reduction to a hard lattice problem. For the
second problem we also state the corresponding decision problem as it is used in many
cryptographic schemes.

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 8

X

Y

.

Figure 2.3: CVP: Given a vector base (black) and a challenge vector (blue), find the
closest vector (red) or a γ-approximation (CVPγ).

2.4.1 Shortest Integer Solution Problem

The Shortest Integer Solution Problem (SIS) was first proposed by Ajtai et al. [3] in 1996.
It is primarily used for the construction of lattice-based one-way functions.

Definition 2.4.1. Given a lattice L defined by n linearly independent, uniformly random
basis vectors A = [a, . . . ,an], a constraint parameter β and a modulus q, SIS asks to find
a non-zero vector x, such that a subset of A sums up to zero:

Ax = 0 mod q

In order to rule out trivial solutions, the following constraints have to be met as well:

‖x‖ ≤ β < q

Without the requirement ‖x‖ ≤ β, SIS can be solved efficiently by using Gaussian Elim-
ination. The requirement β < q ensures that the trivial solution x = (q, 0, . . . , 0) is not
possible.

Ajtai has shown that solving SIS is secure in the average case if SVPγ is hard in the
worst case scenario [3]. Currently, there are already several proposals for using SIS to build
one-way functions [3], collision resistant hash functions [48], or signature schemes [35].

2.4.2 Learning with Errors Problem

Definition 2.4.2. Given a lattice L defined by n linearly independent and uniformly
random basis vectors A = [a, . . . ,an], a discrete Gaussian error distribution X , a modulus
q and an arbitrary number j of LWE-tuples with the following structure:

(ai1 , b1) = (ai1 , 〈ai1 , s〉+ e1) mod q

...

(aij , bj) = (aij , 〈aij , s〉+ ej) mod q,

where ix ∈ [1, . . . , n], ex ∈ Zq is sampled from X and s ∈ Znq is uniformly random, the
search variant of the Learning with Errors Problem (LWE) requires the solver to output

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 9

s. The coefficient-wise operation bi = 〈ai, s〉 + ei can also be written as matrix-vector
multiplication for n pseudo random bits b = [b1, . . . , bn]:

b = As + e,

Beside the search variant of LWE, there also exists a decision variant. While Regev et al.
has shown that both variants are equivalent [66], only the decision variant is currently used
for proving the security of cryptographic schemes. The decision variant of LWE requires
the solver to distinguish with non-negligible advantage between LWE-tuples and tuples
(ai , b

′) where b′ is distributed uniformly random:

(ai1 , b
′
1) vs. (ai1 , b1) = (ai1 , 〈ai1 , s〉+ e1) mod q

...

(aij , b
′
j) vs. (aij , bj) = (aij , 〈aij , s〉+ ej) mod q

The assumption here is that even though the b1, . . . , bj are not distributed uniformly
random given ai1 , . . . ,aij , an attacker is not able to distinguish them from truly uniformly
random values b′1, . . . , b

′
j .

The LWE problem turned out to be a quite versatile basis for cryptographic applica-
tions. Besides public-key encryption schemes there are proposals for oblivious transfer pro-
tocols [62], identity-based encryption [78, 30, 14, 2], leakage-resilient encryption [4, 7, 25],
and fully homomorphic encryption [29]

The hardness assumption of LWE is based on results from Regev et al. [66] and Peik-
ert et al. [60]. They show that there exist reductions to a variant of SVPγ , which itself is
proven to be a hard lattice problem.

One of the main drawbacks of LWE-based encryption schemes is that their runtime
as well as key size requirements are substantially higher than what we are used to from
ECC or RSA based schemes. In practice, standard LWE encryption schemes would require
key sizes of up to one megabit which is impractical for everyday usage such as in TLS-
handshakes. The large key sizes are a result of the space needed to store the lattice basis
themselves. The high runtime is the result of time consuming vector operations that have
to be performed for every bit of the cipher text.

2.5 Efficient Implementations

This section presents ideal lattices as a way to significantly improve the practicality of
lattice-based cryptographic schemes. Section 2.5.1 explains the concept of ideal lattices
and mentions the differences to general lattices. One of the advantages of using ideal
lattices is that we can replace time consuming vector operations in e.g. LWE, by more
efficient polynomial multiplications. For this purpose an FFT-like operation called Num-
ber Theoretic Transform (NTT) is commonly used. A description of the NTT is given
in Section 2.5.2. In Section 2.5.3 an adapted version of the LWE problem is defined that
is based on ideal lattices. A description of an efficient encryption scheme based on ideal
lattices and efficient polynomial multiplication is then provided in Section 2.5.4.

Notation. We use x ∗ y to denote a point-wise multiplication and x · y to denote a
polynomial multiplication. A superscript tilde symbol indicates that a variable x̃ is the
NTT transformed of x.

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 10

2.5.1 Ideal Lattices

Ideal lattices differ from regular lattices in that they contain additional structure. While
the vectors of regular lattices are chosen uniformly at random, vectors of ideal lattices
are nega-cyclic shifted versions of each other. In this respect, a nega-cyclic shift means
an element-wise rotation of a vector with a subsequent negation of the first element. In
order to better illustrate the difference between regular and ideal lattices, Figure 2.4 shows
examples for both lattice types. Ideal lattices have the favorable property that the whole
lattice is completely defined by one vector. In other words, the space complexity of storing
a lattice basis can be reduced from O(n2) to O(n).

Besides reduced memory consumption, ideal lattices also allow us to use faster arith-
metic. This is due to the fact that ideal lattices can be interpreted as ideals in a specific
finite ring Rq = Zq

[
x
]
/(f). The polynomial f is hereby required to be monic, irreducible,

and to have a norm of specific size. f is usually set to xn + 1 for performance reasons. n
has to be a power of two and the prime q is chosen such that q ≡ 1 mod 2n. Given an ideal
lattice, time consuming matrix multiplication operations can be replaced by more efficient
polynomial multiplications. More precisely, the matrix multiplication As, as used in LWE,
can be replaced by the polynomial multiplication a · s in Rq. While such a polynomial
multiplication in a finite ring can still be time consuming due to the required reduction
step, a more efficient implementation is possible due to the NTT operation. A detailed
description of the NTT algorithm is given in the next section.

1 5 9 82 2 0 754 78 13 46
(a) Regular lattice ba-
sis with uniformly random
vectors (e.g. LWE)

1 -4 -5 -22 1 -4 -554 25 12 -41
(b) Ideal lattice basis with
nega-cyclic vectors (e.g.
RLWE)

Figure 2.4: Regular and ideal lattices

2.5.2 Number Theoretic Transform

The NTT is an algorithm that is at the core of many efficient lattice-based cryptographic
schemes. It basically allows us to perform efficient polynomial multiplication, similar to
the Fast Fourier Transform (FFT), yet in a specific finite ring. We recall that the n-point
FFT can be used to efficiently evaluate an n-degree polynomial in the n-th root of unity
and therefore perform the polynomial multiplication c = a · b by calculating

c = IFFTωn(FFTωn(a) ∗ FFTωn(b))

in time O(n log n). Contrary to the FFT, in the NTT the roots of unity are taken from
a finite ring. Consequently, the polynomial multiplication is performed in a finite ring

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 11

Sq = Zq[x]/[·]. By simply replacing the complex roots in an FFT by the primitive n-
th roots of unity in Zq we can perform efficient polynomial multiplication in the ring
Sq = Zq[x]/(xn − 1). A primitive n-th root of unity for n, q ≥ 2, is a solution x to the
equation:

xn ≡ 1 mod q,

where n is additionally the smallest such exponent for a choice of x. Thus we can calculate
c = a · b in Sq like the following:

c = INTTωn(NTTωn(a) ∗ NTTωn(b))

The adaption of the NTT from the ring Sq to the ring Rq = Zq[x]/(xn + 1), which is used
in almost every lattice-based cryptographic scheme, can be accomplished by exploiting
relation between their primitive roots. In fact, by performing an initial scaling of the
input polynomial by the 2n-th primitive root of unity ω2n as well as a scaling of the the
output by inverse exponents of ω2n we can perform polynomial multiplication in Rq:

a′i of a′ = ai · ωi2n
b′i of b′ = bi · ωi2n

c′ = INTTω2n(NTTω2n(a′) ∗ NTTω2n(b′))

ci of c = c′i · n−1ω−i2n

An iterative description of the NTT, taken from [17], is given in Algorithm 1. The factor
ω, as used in line 7 is called twiddle factor. The general structure of the NTT is similar to
the FFT. The same optimizations that apply for the FFT, such as in the Cooley-Tukey
algorithm, can be used in the NTT. Hence, an NTT operation can also be implemented
by using a butterfly as illustrated in Figure 2.5. In order to build an NTT for polynomial
with more coefficients, a butterfly network with recursive structure can be used. Such a
butterfly network is illustrated in Figure 2.6.

The inverse transformation INTT is almost identical to the forward transformation.
The only implementation difference is that the n-th (2n-th) primitive root of unity is re-
placed by its inverse.

x1
x2

x3
x4-

+ω
Figure 2.5: A single NTT butterfly

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 12

+x[0]
x[2] -

+

-
-

+x[1]
x[3] -

+ x[0]
x[1]
x[2]
x[3]

ω n0
ω n0 ω n1ω n

0

~
~
~
~

Figure 2.6: A 4-coefficient NTT

Algorithm 1: Iterative n−coefficient NTT

Input:
x Polynomial ∈ Znq
ωn n−th primitive root of unity ∈ Zq

Output:
x̃ Polynomial ∈ Znq = NTT(x)

1: x̃ ← BitReverse(x)
2: for m = 2 to n by m = 2m do

3: ωm ← ω
n/m
n

4: ω ← 1
5: for j = 0 to m

2 − 1 do
6: for k = 0 to n− 1 by m do
7: t← ω · x̃[k + j + m

2]
8: u← x̃[k + j]
9: x̃[k + j]← u+ t

10: x̃[k + j + m
2]← u− t

11: end for
12: ω ← ω · ωm
13: end for
14: end for

2.5.3 Ring-Learning with Errors Problem

Definition 2.5.1. Given an n-dimensional ideal lattice L defined by nega-cylic shifts of a
basis vector a, a discrete Gaussian error distribution X , a ring Rq = Zq

[
x
]
/(f), a modulus

q, and RLWE-tuples with the following structure:

(a , b) = (a , a · s + e) ∈ Rq,

where e ∈ Znq is sampled from X and s ∈ Znq is uniformly random, the search variant of
the Ring-Learning With Errors Problem (RLWE) requires the solver to output s. Note

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 13

that all basis vectors of L are completely defined by a = (a1, . . . , an) ∈ Znq . The remaining
basis vectors are implicitly given by ai = (ai, . . . , an,−a1, . . . ,−ai−1).

Similarly to LWE, there also exists a decision variant of RLWE that requires the solver
to distinguish with non-negligible advantage between RLWE-tuples and tuples (a , b′)
where b′ ∈ Znq is uniformly random:

(a , b′) vs. (a , b) = (a , a · s + e) ∈ Rq

In standard LWE, one LWE-sample is generated by b′x = 〈ax, s〉 + ex. This is quite
inefficient since time consuming matrix operations have to be performed for every sample.
Contrary to that, in RLWE, n samples can be generated in one run by calculating b =
a · s + e ∈ Rq. The multiplication a · s is no longer a dot product but a polynomial
multiplication in a finite ring. The runtime of the multiplication, and therefore also for
the encryption, can be reduced to O(n log n) by using the NTT operation:

ã = NTT(a) , s̃ = NTT(s) , ẽ = NTT(e)

b̃ = ã ∗ s̃ + ẽ

b = INTT(b̃)

Usually, variables are kept in the NTT domain during and after encryption. As a conse-
quence, less of the expensive (I)NTT invocations are needed, especially during decryption.

Even though RLWE is a huge step towards the construction of practical lattice-based
cryptographic schemes, it comes with one caveat. While LWE-based schemes feature
security proofs that ensure NP-hardness, there exists no such classical reduction of RLWE
to an NP-hard problem at the present time. The only currently known way to reduce
RLWE to an NP-hard problem is using a so-called quantum reduction [49]. Quantum
reductions require a quantum computer in order to be efficient, i.e., run in sub-exponential
time. Finding a way to reduce RLWE to an NP-hard problem using a classical reduction is
still an open research topic. Figure 2.7 shows an overview of the current state of provable
security for LWE and RLWE cryptographic schemes.

NP-Hard

SVP ≤ Seach-LWE ≤ Decision-LWE Crypto≤

Quantum (ring-LWE)
[05, 09]

Classical (LWE)
[05, 09]

[94, 05, 09, ...]

[05, 08, ...]

Figure 2.7: RLWE reduction chain. The numbers in the brackets denote the year of the
discovery of a reduction or the significant improvement over previous reductions.

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 14

2.5.4 Ring-Learning With Errors Encryption Scheme

This section gives a detailed description of an RLWE-based encryption scheme. The
encryption scheme was proposed by from Lyubashevsky et al. [49], our notation is based
on Roy et al. [71].

The scheme is parameterized by the tuple U ,X , σ, q as well as an encoder/decoder-
function. U and X are probability distributions with U being a uniform distribution and
X being a discrete Gaussian distribution with zero mean and standard deviation σ. All
calculations are performed modulo q. The encoder-function maps a binary input vector m
of size n into m̄ ∈ Rq by performing an element-wise multiplication with q

2 . Similarly, the
decoder-function maps an input m̄ ∈ Rq to a binary vector m by decoding values in the
interval (− q

4 ,
q
4] to ‘0’ and otherwise to ‘1’. The encryption scheme additionally requires

an n-dimensional ideal lattice that is defined by the polynomial a ∈ Rq. a is sampled from
U and can be publicly shared.

• KeyGen(a): Sample the polynomials r1 ∈ Rq from X and r2 ∈ {0, 1}n. Calculate
p = r1 − a · r2. Perform an NTT transformation of the three polynomials a,p and
r2 to get ã, p̃ and r̃2.

The public key is (ã, p̃).

The private key is r̃2.

All keys are stored in their NTT transformed version to reduce the amount of NTT
transformations during encryption and decryption. r1 is no longer needed after the
key generation is done.

• Encrypt(m, ã, p̃): A message m is encoded to m̄ by using the encoder-function.
Three polynomials e1, e2, e3 ∈ Rn are sampled from X . The cipher text (c̃1, c̃2) is
computed as:

ẽ1 ← NTT(e1)

ẽ2 ← NTT(e2)

c̃1 ← ã ∗ ẽ1 + ẽ2

c̃2 ← p̃ ∗ ẽ1 + NTT(e3 + m̄)

• Decrypt(m̄, r̃2): Compute m′ = INTT(c̃1 ∗ r̃2 + c̃2) and recover original message
m from m′ by using the decoder-function.

The parameter values used in this thesis are q = 7681, σ = 20.39 and n = 256. They were
proposed by Göttert et al. [32] for the application in hardware designs. The approximate
security level of an RLWE problem with said parameterization is about 128 bit. There
exist many more proposals for RLWE encryption schemes and various security levels. Ta-
ble 2.1 contains a list of several RLWE parameter proposals.

It is easy to see that the decryption operation is a lot faster than the encryption opera-
tion. In fact, since the only runtime relevant operations (excluding the discrete Gaussian
sampling) are the NTT transformations, the decryption operation runtime is only about 1

3
of the encryption operation runtime. When compared to the runtime of ECC encryption
schemes it turns out that RLWE encryption/decryption operations can be faster than
their ECC counterparts [71].

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 15

Authors n q σ
Public Security

Key Size Level

Lindner et al. [45]

128 2053 1.07 1536 bits � 128 bit

192 4093 1.41 2304 bits < 128 bit

256 4093 1.32 3072 bits ≈ 128 bit

320 4093 1.27 3840 bits > 128 bit

Göttert et al. [32]
256 7681 1.80 3328 bits ≈ 128 bit

512 12289 1.93 7168 bits ≈ 256 bit

Micciancio et al. [52]
136 2003 2.07 1496 bits ≥ 128 bit

214 16381 1.17 2996 bits ≥ 128 bit

Table 2.1: Various parameterization proposals for RLWE-based encryption schemes

The correctness of the RLWE encryption scheme can be shown by simple substitution.
The decrypted, yet still encoded, m′ does not fully correspond to the encoded plain text m̄
because of the way how the discrete Gaussian noise is used during encryption. However,
the parameters of X are chosen such that the decoding function has a negligible probability
of decoding errors when recovering m from m′:

m′ = c1 · r2 + c2

= (a · e1 + e2) · r2 + b · e1 + e3 + m̄

= (a · e1 + e2) · r2 + (et − a · r2) · e1 + e3 + m̄

≈ (a · e1 + ��e2︸︷︷︸
small

) · r2 + (��r1︸︷︷︸
small

− a · r2) · e1 + ��e3︸︷︷︸
small

+ m̄

≈ a · e1 · r2 − a · e1 · r2 + m̄

≈ ε + m̄

2.6 Discrete Gaussian Samplers

Lattice-based cryptographic schemes often require samples from a discrete Gaussian distri-
bution. In the case of an encryption scheme based on LWE, discrete Gaussian distributed
errors terms are necessary for the generation of a pseudo random cipher text. This section
is meant to give an overview of the current state in the design of discrete Gaussian sam-
plers. First, a discrete Gaussian distribution is formally defined in Section 2.6.1. In Section
2.6.2, the three most important properties for practical samplers are stated. Finally, in
Section 2.6.3, a comparison of state-of-the-art sampler designs is shown.

2.6.1 Discrete Gaussian Distribution

The continuous Gaussian distribution is parameterized by standard deviation σ > 0, mean
µ ∈ R, and is defined as follows:

Definition 2.6.1. Let X be a random variable on R, then for x ∈ R we have:

Pr(X = x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 16

The discrete version of the Gaussian distribution over Z with mean 0 and standard devi-
ation σ > 0 is then defined as follows:

Definition 2.6.2. Let X be a random variable on Z then:

Pr(X = x) =
1

S
e−x

2/2σ2
,

where S is a normalization factor and is approximately σ
√

2π.

2.6.2 Properties of Gaussian Samplers

The three most important properties are:

Precision. As mentioned previously, the security of certain lattice-based cryptographic
schemes is based on reductions to known hard problems. However, some of those reduction
steps are only valid under the assumption that true discrete Gaussian distributions are
used [26]. In practice, true discrete Gaussian samplers are intractable as they would re-
quire infinite arithmetic precision [75]. A common approach is to circumvent this problem
by using samplers with negligible statistical distance to the true distribution. The analysis
of sampler parameterizations in recent literature [44, 45, 46] indicates that a statistical
distance of 2−90 to the true distribution can be considered as sufficiently precise. It should
be noted though that some authors claim that already half of the aforementioned precision
is sufficient for almost all applications [72].

Efficiency. New cryptographic schemes need to compete with existing schemes in terms
of runtime. In the case of hardware implementations, also area requirements need to be
considered. In many lattice-based cryptographic schemes the only runtime relevant oper-
ations are polynomial multiplications and the creation of error polynomials using discrete
Gaussian sampling. As a matter of fact, most of the runtime is usually used by the sam-
pler [75]. The development of efficient discrete Gaussian samplers is thus an important
step towards the removal of potential bottlenecks in lattice-based cryptographic schemes.
In recent years, several proposals to increase the performance of discrete Gaussian sam-
plers were made [61, 65, 70]. In the next section, a performance comparison of FPGA
based designs is shown.

Security. Last but not least, since discrete Gaussian samplers are a core building block of
lattice-based cryptographic schemes, their implementation needs to be secure as well. Cur-
rently, many proposals for discrete Gaussian samplers focus primarily on precision and ef-
ficiency which make them susceptible to the leakage of side-channel information [37]. This
information leakage may then be used compromise the whole cryptographic scheme [12].
There exist proposals for side-channel resistant discrete Gaussian samplers [70]. However,
it was shown that the proposed side-channel countermeasures may not be effective enough
to prevent practical attacks as of now [63].

2.6.3 Comparison of state-of-the-art Implementations

In Table 2.6.3, a comparison of four state-of-the-art implementations of discrete Gaus-
sian samplers is shown. All implementations feature sufficient precision for application in

CHAPTER 2. LATTICE-BASED CRYPTOGRAPHY 17

lattice-based encryption schemes. Signature schemes require a larger σ, thus more pre-
cision and are not meant to be implemented using on of these samplers. To allow a fair
comparison all designs are FPGA implementations.

Authors Algorithm Design Goal Slices Clocks/Sample

Pöppelmann et al.[65] Bernoulli Area 37 144

Roy et al. [70]
Knuth-Yao Performance 35 ≈ 2.5∗

Knuth-Yao Area 30 17

Knuth-Yao SCA Resistance 52 ≈ 1.6∗

Table 2.2: Comparison of discrete Gaussian sampler implementations. Values indicated
by ∗ are averaged over multiple successive executions.

When looking at the bare numbers, designs based on the Knuth-Yao algorithm seem to
have taken the lead at the present time. And indeed, while the Bernoulli-based design was
able to outperform older designs based on Knuth-Yao [75], recent improvements by Roy
et al.[70] result in a significant performance gain for their designs. Of particular inter-
est for practical applications is the implementation that features side-channel resistance.
Implementations of the Knuth-Yao algorithm leak a tremendous amount of timing infor-
mation. Roy et al. attempt to overcome this problem by introducing random shuffling.
This countermeasure comes at the price of a significantly increased area consumption.

Chapter 3

Side-Channel Attacks

This chapter discusses side-channel attacks as a method for the exploitation of information
that is leaked by hardware and software implementations during normal operation.

Section 3.1 explains the basic principle of side-channel attacks and mentions a variety of
different types of side-channel attacks. Of particular interest in this thesis are side-channel
attacks based on timing and power consumption. Section 3.2 explains how differences in
runtime can be used to learn about processed data. In Section 3.3, multiple ways of
exploiting a device’s power consumption are presented. The most common side-channel
countermeasure strategies are discussed in Section 3.4.

3.1 Overview

The key idea behind side-channel attacks is that all implementations of cryptographic
algorithms leak some kind of information about the processed data through side-channels.
In the past, side-channels such as power consumption, timing, cache access patterns, elec-
tromagnetic radiation, acoustic waves etc. have been exploited. Side-channel leakage
may contain information about a secret that is hidden inside the attacked device. Usu-
ally, the hidden secret corresponds to the secret key which is used by the implemented
cryptographic algorithm.

Back in 1996, Kocher et al. presented the first side-channel attack based on a timing
side-channel in OpenSSL’s RSA implementation [39]. Following Kocher’s pioneering work,
many authors presented various types of side-channel attacks on various implementations
like Timing Attacks [39, 24], Cache Attacks [9, 34], Acoustic Attacks [28], Power Analysis
Attacks [40] and Electromagnetic Attacks [47]. Based on their invasiveness, side-channel
attacks can be separated into the following groups:

Invasive Attacks. A side-channel attack is said to be invasive if any modifications
can be made to the attacked device. As a first step, invasive attacks usually consist of a
depackaging of the attacked device. By doing so, protective metal layers are removed and
the circuity of the attacked device becomes more accessible to the attacker. The next step
then usually consists of an ordinary side-channel attack, thus the exploitation of leakage
information. In some cases the circuitry of the attacked device is modified as well. For
this purpose tools like laser beams or probing stations are necessary. In general, invasive
attacks are rather rare as they are cost intensive and require special equipment. The cir-
cuit modifications are also error prone and multiple attack devices may be necessary until

18

CHAPTER 3. SIDE-CHANNEL ATTACKS 19

the intended attack can be performed. Examples of invasive side-channel attacks are [41, 6]

Semi-Invasive Attacks. Semi-invasive side-channel attacks typically also start with a
depackaging of the attacked device. However, no additional modifications to the device’s
circuitry are performed here. The main goal in semi-invasive attacks is to infer information
about data that is located or processed by the device. One of the difficulties is the exact
localization of the target data in the circuitry. Only then side-channel information can be
gathered with most accuracy for later analysis. Semi-invasive attacks are very powerful as
they combine almost all benefits of invasive attacks at reduced costs. Compared to invasive
attacks, semi-invasive attacks are easier to perform as no error prone circuit modifications
are made. Example of semi-invasive side-channel attack types are:

• Acoustic Attacks (with depackaging)

• Electromagnetic Attacks (with depackaging)

• Power Analysis Attacks (with depackaging)

Non-Invasive Attacks. A side-channel attack is said to be non-invasive of no mod-
ifications to the attacked device are performed at all. The only attack vectors are the
accessible device interfaces and no traces of the attack are left behind. The impact of
non-invasive attacks is higher than the impact of invasive attacks as they are comparably
easy to perform and usually require only inexpensive equipment. There is a large variety
of side-channel attack types using different forms of non-invasive side-channel information
such as:

• Acoustic Attacks

• Cache Attacks

• Electromagnetic Attacks

• Power Analysis Attacks

• Timing Attacks

The next two sections cover the necessary background for the side-channel attacks which
are used in this thesis. While the used variant of a timing attack is rather simple, a more
sophisticated variant of a power analysis attack is used and therefore explained in more
detail.

3.2 Timing Attacks

Timing attacks exploit the fact that the runtime of algorithms often depends on the actual
processed data. The main influence factors of algorithmic runtime are hereby:

• Performance Optimizations

• Branching and Conditional Statements

• Processor Instructions

• RAM and Cache Hits

CHAPTER 3. SIDE-CHANNEL ATTACKS 20

Timing attacks are usually known plain text/cipher text attacks. Given remote or direct
access to a device under attack, a timing attack looks at how long it takes a device to
perform certain operations on a known input and uses statistical analysis to partly or fully
recover the cryptographic key which is used by the attacked device. The knowledge of the
actual input is important for the attacker to distinguish whether a timing difference is
caused by the key or not.

As demonstrated in Figure 3.1, timing information can be extracted from power traces.
There, the power consumptions of three modular multiplications are shown. The three
traces correspond to three input pairs of differing size. It is easy to see that the performed
operation took the least time for the operands corresponding to the red trace, followed
by the operands corresponding to the green and blue traces. This is due to the fact that
processors can finish the execution for certain instructions early if the size of operands
is small. Such a basic observation can already be used by an attacker to make some
assumptions on the used operators. These operators may then allow further assumptions
on the used cryptographic key.

While there exist way more sophisticated timing attacks than the one presented here [24,
20, 13], no further descriptions are given in this thesis as only very basic timing attacks
will be used in the presented attack.

Samples
20 40 60 80 100 120 140 160 180

P
ow

er
C
on

su
m

p
ti
on

-100

-50

0

50

100

63*62

250*251

990*991

Figure 3.1: Timing differences for modular multiplications on an ARM-Cortex-M4F.

3.3 Power Analysis Attacks

Power analysis is a variation of side-channel attacks in which the power consumption of
a device is studied. The attack is based on the observation that CMOS logic, nowadays
used in almost every integrated circuit, has a somewhat predictable power profile. While
CMOS devices have a very low static power consumption, the only significant power draw
occurs during the event of a state transition [1]. Even though such a power profile is
favorable for the implementation of low power integrated circuits, in terms of security it
is not ideal.

Similarly to timing attacks, power analysis attacks are often known plain text/cipher
text attacks. Yet, in the case of power analysis attacks, direct access to the attacked

CHAPTER 3. SIDE-CHANNEL ATTACKS 21

device and a suitable measurement setup are mandatory. The main goal in power analysis
attacks is to recover data which is processed by certain instructions on the attacked device.
This data may then be used by the attacker to infer information about a cryptographic
key which is used by the attacked device.

In the following, three variants of power analysis attacks are presented. In this thesis
we are using the third variant to approximately identify the operators of modular mul-
tiplication operations which occur in an inverse NTT operation. As a consequence, only
the third variant is described in more detail.

3.3.1 Simple Power Analysis

The Simple Power Analysis (SPA) is the most basic version of a side-channel attack based
on power consumption information. It can be accomplished by a direct interpretation of
the current flow caused by the attacked device.

Figure 3.2 shows the power consumption corresponding to two MOV instructions on
an ARM-Cortex-M4F. One instruction moves the byte 0x00, the other one moves the byte
0xFF. Both operations are repeated ten times and the recorded power traces are averaged
for better illustration. It is easy to see that those two operations can be distinguished
reliably by observing the difference in power consumption. The same technique can be
used to distinguish byte values other than 0x00 and 0xFF, yet the difference between the
recorded power consumption will be smaller and the distinction less reliable

SPA becomes more difficult the more noise is present in the measured power traces.
Especially, if devices are implemented with power analysis attacks in mind, the dependency
between processed data and power consumption can be reduced up to a point where SPA
becomes impractical. In such a case more sophisticated attack methods may be used as
presented in the following two sections.

Samples
0 20 40 60 80 100 120 140 160 180 200

P
ow

er
C
on

su
m

p
ti
on

-80

-60

-40

-20

0

20

40

60

80

MOV 0xFF
MOV 0x00

Figure 3.2: Simple Power Analysis.

3.3.2 Hypothesis Testing - Differential Power Analysis

The Differential Power Analysis (DPA) is a more sophisticated variant of a power analysis
attack. It was first proposed by Kocher et al. in 1999 and turned out to be a quite versatile

CHAPTER 3. SIDE-CHANNEL ATTACKS 22

and effective attack against a lot of cryptographic devices [40]. In contrast to the SPA,
a DPA requires more than one recorded power trace of the same operation while using
different known inputs and a constant key. These traces are then statistically analyzed by
the means of hypothesis testing.

In general, hypothesis tests are used to determine whether or not there is enough
evidence in a data set to infer if one out of many hypothesis holds or needs to be rejected.
In the context of DPA, the data set corresponds to set of recorded power traces and the
hypothesis correspond to the predicted power consumptions of the attacked operation
for every possible processed data value. The DPA attack then consists of generating
hypothesis for every possible processed data value followed by the evaluation and selection
of the hypothesis that fits best to the given data set. The data value corresponding to the
best fitting hypothesis is the most likely processed data value.

To generate hypothesis in a DPA, a so-called power model is needed. A power model
is function that is used to approximately predict the power consumption of the attacked
operation depending on our current hypothesis, i.e., the assumed processed data value.
A power model could be any function of the attacked operation and its processed data
theoretically. In practice however, there are a few standard power models, one of which
usually works best in every occasion. Two very frequently used power models are the
Hamming weight model and the Hamming distance model.

Hamming Weight Model. The Hamming weight power model assumes that the power
consumption of an operation is related to the number of binary ones in the operation input
x. This power model is commonly used for modelling the power consumption of MOV
instructions in software implementations:

HW(x) = CountBinaryOnes(x)

Hamming Distance Model. The Hamming distance power model assumes that the
power consumption of an operation is related to the Hamming weight of the XOR difference
between operation input x and output y. This power model is commonly used to describe
the power consumption of various hardware instructions as CMOS circuits are expected
to have higher power consumption the more state transitions occur:

HD(x, y) = HW(x⊕ y)

A hypothesis evaluation function tells us which of our hypothesis fits best to a given
data set. In DPA a hypothesis evaluation corresponding to one guessed key value is usually
performed for multiple known operation inputs. For each of those inputs a hypothesis (i.e.
power consumption prediction) is created based on the used power model. These hypoth-
esis are then evaluated using real power measurement data corresponding to the inputs
used in the hypothesis generation. The two most commonly used hypothesis evaluation
functions are Difference of Mean and the Pearson correlation coefficient.

Difference of Mean. The Difference of Mean (DoM) function is a rather simple method
for hypothesis evaluation. Based on the predicted power consumptions the measured power
traces are split up into the two groups Glow and Ghigh. Glow contains power traces with a
low predicted power consumption and Ghigh contains power traces with a high predicted
power consumption. The DoM can then be calculated as:

SDoM =
1

n

∑
Ghigh −

1

n

∑
Glow

CHAPTER 3. SIDE-CHANNEL ATTACKS 23

A score for the correctness of the hypothesis SDoM is evaluated by calculating the dif-
ference between the averages of both groups Glow and Ghigh. A high positive difference
indicates an accurate classification of power traces. Hence, a promising candidate for the
correct key hypothesis has been found. A low difference indicates a wrong classification
caused by a wrong prediction of power consumption. An incorrect key assumption during
hypothesis generation is likely.

Pearson correlation coefficient. The Pearson correlation coefficient is a more sophisti-
cated hypothesis evaluation function that additionally considers the variance in the power
traces. It can be evaluated as:

Scorr =
cov(X,Y)√

var(X)
√
var(Y)

,

where X corresponds to the predicted power consumption of our hypothesis and Y cor-
responds to the observed power consumption. The resulting correlation coefficient Scorr
indicates how well our hypothesis fits to the observed data. The value range of Scorr is:
−1 ≤ rcorr ≤ 1. Values close to 1 indicate a perfect fit of our hypothesis. Values close to 0
indicate no fit of our hypothesis. Values close to −1 indicate an inverse perfect fit of our
hypothesis.

The biggest advantage of DPA over an SPA is that the attacker does not need precise
knowledge about the actual implementation of the attacked device. Knowing the exact
time of the attacked operation is not necessary since the hypothesis evaluation can be
repeated over every instance of time in a larger time frame. Additionally, since a hypothesis
is evaluated over multiple traces, a DPA is usually more resistant to noise and therefore
yields better results.

3.3.3 Template Attacks

Template Attacks (TA), first proposed by Chari et al. [15], are often referred to as the
most powerful type of side-channel attacks based on power analysis. This is due to the
fact that TA are able to exploit all measurable dependencies between the data which is
processed by the operation and its respective power consumption. In the following we give
a description of TA based on the notation by Mangard et al. [51, Chapter 5-6].

Similar to DPA, TA are also based on hypothesis testing, yet they are also so-called
profiled attacks. A profiled attack consist of two phases, an initial analysis phase and a
later attacking phase. In the analysis phase, an attacker is assumed to gain full control
over the attacked device. He may set arbitrary inputs to precisely analyze the leakage
distribution of the attacked device in every possible scenario. Later, in the attacking
phase, the attacker is given a set of power traces corresponding to unknown processed
data and the attacker is required to recover it. In practice, the leakage analysis is only
performed on one or very few specific operations that are executed by the device and
assumed are to leak a sufficient amount of information. In the context of TA, the analysis
phase and attacking phase are called template building phase and template matching
phase, respectively.

Template building phase

The template building phase is performed before the actual attack takes place and requires
physical access to the attacked device or an identical copy of it. The goal of the template

CHAPTER 3. SIDE-CHANNEL ATTACKS 24

building phase is to find highly accurate characterizations, i.e. so-called templates, for
the dependencies between any processed data value of the attacked operation and its
respective power consumption. To do so, for every of the m possible processed data values
d ∈ D of the attacked operation a set of n power traces Td is recorded. Each set of power
traces Td is then characterized by a multivariate normal distribution. A multivariate
normal distribution is the extension of a normal distribution to higher dimensions and is
described by a mean vector m and a covariance matrix C:

f(x) =
1√

(2π)n · det(C)
exp

(
−1

2
(x−m)TC−1(x−m)

)
A template hd for one processed data value d consists of m and C. In this respect, m
contains the averaged power consumption of Td and C contains covariance information
between all traces in Td. Given a set [t1, . . . , tn] ∈ Td of recorded power traces for one d,
m and C can be estimated by:

m =
1

n

n∑
i=1

ti, (3.1)

C =

 cov(t1, t1) · · · cov(t1, tn)
...

. . .
...

cov(tn, t1) · · · cov(tn, tn)

 , (3.2)

where cov(ta, tb) denotes the covariance between vectors ta and tb.

The result of the template building phase is a set of templates that characterize the
power consumption of the attacked operation for every possible processed data value in
D.

Template matching phase

The template matching phase corresponds to the attacking phase of a profiled attack.
The goal of the attacker is to determine the data value which is processed by the attacked
operation, solely based on measured power traces and the leakage analysis obtained from
the profiling phase. In the context of TA this is accomplished by matching the observed
power trace to the previously calculated templates. Given a power trace t corresponding
to an unknown processed data value and a template hd = (m,C) for any of the possible
data values d ∈ D, we can evaluate the probability density function of the multivariate
normal distribution and calculate the probability:

p(t; (m,C)) =
exp

(
−1

2 · (t−m)T) ·C−1 · (t−m)
)√

(2π)T · det(C)
(3.3)

By repeating this step for every possible template, we can determine the most likely data
value that corresponds to the template with the highest probability. Thus, we follow the
maximum likelihood decision rule:

p(t;hdl) > p(t;hdj) ∀l 6= j (3.4)

CHAPTER 3. SIDE-CHANNEL ATTACKS 25

In some applications one is not only interested in the template of maximum likelihood but
instead in the probability distribution over all templates. The probability p(dj |ti) of data
value dj given an observed power trace ti can be calculated by using Bayes’ theorem as
follows:

p(dj |ti) =
p(ti|dj) · p(dj)∑m

l=1 (p(ti|dl) · p(dl))
, (3.5)

where m denotes the number of possible data values and the prior probability p(dx) is set
to (1/n) since its probability distribution is usually uniform.

The extension of 3.5 from one given trace t to multiple traces T can be calculated as
follows:

p(dj |T) =

(∏n
i=1 p(ti|dj)

)
· p(dj)∑m

l=1

((∏n
i=1 p(ti|dj)

)
· p(dl)

) , (3.6)

where n denotes the number of traces in T.

When using 3.5 or 3.6 the result of a TA is a probability distribution over D that assigns
a probability to every possible outcome d ∈ D. In the remaining part of this section we
mention optimizations that increase effectiveness and efficiency of TA when applied in
practice.

Optimizations

When using the methods described before to perform a TA, one might come across a few
problems that arise frequently in practice. Therefore, in this section we briefly discuss
them.

Trace Size. The runtime complexity of TA heavily depends on the number of samples
in each trace t. In the matching phase the evaluation of p(t; (m,C)) in 3.3 involves the
inversion of the covariance matrix C of size len(t)2. Since matrix inversion itself has a
complexity > O(n2), runtime quickly becomes an issue as the number of samples in t
increases. To overcome this problem a technique called Trace Compression is used. Trace
compression is based on the fact that not all samples of a trace contain an equal amount of
information. Reducing a trace to a subset of samples, so-called Points of Interest (POI),
that contain the most information and therefore improve the runtime of a TA significantly
while not affecting the overall attack performance. In this thesis a T-Test was used for the
selection of POIs. The application of T-Tests for the selection of POIs was first proposed
by Gierlichs et al. [31] and has proven to be more accurate than previously used methods.
Given sets of traces Ti for different processed data values, with mean mi, variance σ2i and
sample size ni, the sum of pairwise t-differences can be calculated as:

K∑
i,j=1

 mi −mj√
σ2
i
ni

+
σ2
j

nj

2

for i > j (3.7)

CHAPTER 3. SIDE-CHANNEL ATTACKS 26

The result of 3.7 is a vector containing a t-score for each sample position. A sample
position with a high t-score indicates at the presence of high variability between the sets.
In other words, at said sample position Ti can be distinguished with higher confidence.
We can now use this information by removing all samples that do not have a sufficiently
high t-score. By doing so we can significantly reduce the trace size while not affecting the
TA performance.

Figure 3.3 illustrates the outcome of a T-Test evaluated for 25 sets of operands for
a modular multiplication operation. The squared sum is omitted in the illustration, the
single summands are illustrated instead. It is easy to see that out of 250 samples only a
few show a significant variance. As a result, all recorded traces can be reduced to the 5
samples corresponding to the POIs of the T-Test analysis.

Samples
0 50 100 150 200 250

T
-T

es
t

S
co

re

0

1000

2000

3000

4000

5000

6000

7000

T-Test Sample

POI

Figure 3.3: Point of interest calculation after T-Test

Finite Arithmetic Precision. Another problem that might arise in Equation 3.3 is the
occurrence of values that cannot be expressed using ordinary 32 or 64-bit floating point
data types. The usage of the logarithm applied to 3.3 can help is such situations. An
additional beneficial side effect of the logarithm is the removal of the expensive exponen-
tiation:

ln p(t; (m,C)) = −1

2
(ln((2 · π)NIP · det(C)) +

(t−m)′ ·C−1 · (t−m))

When replacing probabilities by their logarithm our decision rule for finding the template
with maximum likelihood needs to be replaced by the minimum of absolute logarithmic
probability:

| ln p(t;hdl) | < | ln p(t;hdj) | ∀l 6= j

CHAPTER 3. SIDE-CHANNEL ATTACKS 27

3.4 Countermeasures

After the presentation of the first side-channel attacks in 1996 [39], the design of side-
channel attack resistant implementations became a new field of research. In this section,
we discuss the most important countermeasures that have proven to significantly increase
the difficulty of performing side-channel attacks. Section 3.4.1 mentions countermeasures
that, if implemented correctly, can prevent timing attacks. In Section 3.4.2 we mention
two common countermeasures against power analysis attacks. The application of one of
these power analysis countermeasures for an RLWE encryption scheme is explained in
more detail.

3.4.1 Timing Countermeasures

As mentioned earlier, timing attacks exploit differences in runtime that may be caused by
performance optimizations, branching and conditional statements, processor instructions,
RAM and cache hits. The obvious solution to runtime variance is the usage of constant-
time algorithms. This involves:

• Removal of conditional branches based on secret information

• Disabling caches (for SW)

• Usage of constant time algorithms/instructions

In some occasions, also masking or blinding schemes can be used to tackle timing attacks.
While they do not ensure constant runtime, they eliminate the dependency between input
data and secret key. Hence, the observed timing differences do not contain any exploitable
information. Many of these proposals can be implemented easily without having a negative
side effect. Some of them however, like disabling CPU caches, come at a cost that usually
supersedes the obtained security goals. In those cases, performance/security trade-offs are
necessary.

3.4.2 Power Analysis Countermeasures

In this section, we will have a look at two popular side-channel countermeasures called Hid-
ing and Masking. The goal of both countermeasures is to remove the dependency between
the power consumption of a device and its processed data. In practice, a combination of
multiple countermeasures is often implemented since none of these countermeasures alone
can fully prevent power analysis attacks. Finally, we present a masking scheme that can
be applied to the RLWE-based encryption scheme that is attacked in this thesis.

Hiding

The hiding countermeasure attempts to eliminate the correlation between processed data,
performed operations, and their resulting power consumption. This can be achieved by
either ensuring constant power consumption of all operations or by ensuring perfect noise
in the device’s power consumption. While both approaches cannot be implemented to
an extend where e.g. performing a DPA becomes impossible, they can still be used to
significantly increase the difficulty of performing a DPA. We now discuss a couple of
implementation approaches for software and hardware applications.

CHAPTER 3. SIDE-CHANNEL ATTACKS 28

One popular hiding countermeasure is called Shuffling. Shuffling attempts to reduce the
correlation between processed data and power consumption by randomizing the execution
sequence of certain operations for a given algorithm. By doing so, an attacker cannot
reliably distinguish power traces of the attacked operation from power traces of irrelevant
operations. The performance of DPA and TA decreases since hypothesis are partially
evaluated on wrong data sets. One example application of shuffling is the SubBytes lookup
operation in AES. There, 16 successive table lookups are performed that are suspect to
leak secret data. Since the table lookups are independent of each other, their execution
sequence can be randomized easily. Shuffling alone cannot prevent power analysis attacks,
yet it can help to significantly reduce the correlation between processed data and observed
power consumption. Since the implementation of shuffling is rather easy, both in software
and hardware, it is used in many real world cryptographic implementations.

Another effective method for reducing the leakage via the power side-channel is si-
multaneous execution. By executing multiple operations simultaneously, such as e.g. in
multi-threaded applications, the resulting overall power consumption is averaged over all
simultaneously executed operations. Hence, the power leakage of every one operation
is reduced. If multithreading is not available on the target device, the usage of SIMD
statements may be a reasonable alternative. In many hardware designs simultaneous exe-
cution is naturally occurring and only limited by the data path width. As a consequence,
hardware implementations usually leak less information via the power side-channel than
software implementations. However, the usage of spatial probing can be used to increase
the effectiveness of power analysis attacks especially for hardware implementations.

A rather expensive hiding implementation for hardware designs is the usage of filters or
noise generators. In both cases the goal is to eliminate the correlation between processed
data and their resulting power consumption. Filters are typically placed between the power
supply and the computation circuit. They consist of capacitors, constant current sources,
and other power regulation circuitry. On the other hand, noise generators are usually based
on random number generators and perform random operations that cause high variability
in the devices overall power consumption. While noise generators might effectively reduce
the leakage of power information, there might still exist other side-channels that remain
unaffected by this countermeasure. The EM side-channel for example can leak power
information of a small portion of a chip behind a noise generator. This EM leakage may
then be mitigated by spreading multiple noise generators over the whole chip.

Masking

A masking scheme for a given operation defines a way to combine its input/output with
random values such that all intermediate values are concealed without causing any differ-
ences on the operation output. The random values are called mask (input) and inverse-
mask (output), generated by the implementation itself and not visible to an attacker. The
combination of masks with operation input/output is usually accomplished using sim-
ple arithmetic operations like XOR and modular addition/multiplication. In general, a
masking scheme for an operation with input x and output y is implemented as follows:

1. Generate a uniformly random sample r and set:

r = x′ and x′′ = r ⊕ x (or x′′ = x− r mod q), (3.8)

CHAPTER 3. SIDE-CHANNEL ATTACKS 29

where x′, x′′ denote the masked inputs such that:

x = x′ ⊕ x′′ (or x = x′ + x′′ mod q) (3.9)

2. Calculate the masked operation for both uniformly random shares x′ and x′′ and
obtain the masked outputs y′ and y′′.

3. Combine y′ and y′′ as:

y = y′ ⊕ y′′ (or y = y′ + y′′ mod q) (3.10)

to obtain the unmasked operation output y.

While a masking scheme is rather easy to implement for linear operations, the same cannot
be said for non-linear operations. The simple relations between masks and inputs/outputs
in 3.9 - 3.10 do not apply for non-linear operations. Thus more sophisticated masking
schemes are needed in such cases.

One example application of a masking scheme for non-linear operations is the SubBytes
operation in AES when implemented via table lookups. Table lookups are a common
side-channel attack target since the required MOV operations usually leak a lot of side-
channel information due to implementation specifics of the memory bus. One approach
for building a masked SubBytes operation is the usage of special masked lookup tables
for every possible mask value. These masked lookup table can be chosen such that 3.9 -
3.10 hold. However, This approach comes at the cost of increased runtime and memory
requirement.

Masking has proven to be a quite effective countermeasure against DPA attacks. By
using masked intermediate values, the attacker cannot reliably create key hypothesis for
masked operations since the processed data values also depend on an unknown mask
values.

Masking for Lattice-Based Encryption

We now give a more detailed description of a masking scheme proposed by Reparaz et
al. [69], that can be applied to the RLWE encryption scheme that is attacked in this
thesis. More precisely, the presented masking scheme allows us to mask the input of the
INTT operation used during decryption.

The RLWE decryption of the cipher text (c̃1, c̃2) and the private key r̃2 is defined as
follows:

m∗ = INTT(c̃1 ∗ r̃2 + c̃2)

m = Decode(m∗)

where m∗ corresponds to an encoded version of the plain text m. The masking scheme
works by splitting the private key r̃2 into the two shares r̃ ′2, r̃ ′′2 such that:

r̃2 = r̃ ′2 + r̃ ′′2 mod q

The decryption input is then processed by the INTT implementation twice, once for each
private key share:

m∗′ = INTT(c̃1 ∗ r̃ ′2 + c̃2) , m∗′′ = INTT(c̃1 ∗ r̃ ′′2),

CHAPTER 3. SIDE-CHANNEL ATTACKS 30

r2'

c2

r2''

c1

INTT

INTT
D

eco
din

g

m'

m''

Figure 3.4: Basic masking scheme for an RLWE-based decryption

and a special masked decoder is used for both plain text shares:

m′ = MaskedDecode(m∗′) , m′′ = MaskedDecode(m∗′′)

The original plain text can be recovered by:

m = m′ ⊕m′′

By using this masking scheme the INTT input is no longer only dependent on cipher text
and key, but also on a uniformly random masking value. Thus, known cipher text attacks
are not applicable anymore. First-order DPA is not possible since we cannot correctly
create key hypothesis for multiple inputs. First-order TA is also affected as they are now
limited to single-trace template matching. An illustration of the described masking scheme
can be found in Figure 3.4.

Chapter 4

Soft Analytical Side-Channel
Attacks

This chapter explains Soft Analytical Side Channel Attacks (SASCA), first proposed by
Veyrat-Charvillon et al. [77], as an intuitive way to combine traditional power analysis
attacks with algebraic methods.

SASCA is inspired by previous work on algebraic side-channel attacks (ASCA). The
goal of ASCA is similar to SASCA, i.e. improving the performance of a side-channel
attack (SCA) using algebraic methods, yet their approaches are fundamentally different.
In ASCA, leakage information of a previously executed SCA is used to improve the per-
formance of attacks based on algebraic cryptanalysis (ACA). Section 4.1 gives a short
introduction into ACA and mentions common limitations that ASCA attempts to remove.
In Section 4.2, the concept of ASCA is explained. While ASCA turn out to be quite
efficient on simulated leakage data, it is often not robust enough to allow attacks on real
implementations. This is exactly what SASCA aim to do. A description of SASCA is
given in Section 4.3.

4.1 Algebraic Cryptanalysis

The attack target in ACA is the cryptographic algorithm itself as opposed to just one
implementation of an algorithm in SCA. As a consequence, successful ACA attacks are
more severe since all implementations of the attacked algorithms are affected.

In ACA, the attacked cryptographic algorithm is represented as a system of equations.
These equations usually contain known input and output variables P1...p, C1...c as well as
unknown key variables K1...k. One trivial approach to setup an ACA attack on any cipher
is to express any bit of the cipher text as a function of the plain text and the secret key:

C1 = f1(P1, . . . ,Pp,K1, . . . ,Kk)

...

Cc = fc(P1, . . . ,Pp,K1, . . . ,Kk)

If an attacker is able to solve such a system of equations for the unknown key variables
K1...k, the attack is successful and the cryptographic algorithm is considered to be broken.
Obviously, solving such a system of equations is hard for any secure cipher since they are
designed with ACA in mind. While diffusion layers ensure that every bit of the cipher

31

CHAPTER 4. SOFT ANALYTICAL SIDE-CHANNEL ATTACKS 32

text depends on every bit of plain text and key, additional non-linear operations ensure
high-degree monomials that cannot be accurately described by linear equations. In AES,
for example, the AddRoundKey operation introduces dependencies between plain text and
the secret key, diffusion is caused by the MixColumns and ShiftRows, operation and the
SubBytes operation ensures non-linearity.

Usually, attacks solely based on ACA are not effective enough for breaking up-to-
date cryptographic schemes. Nevertheless, ACA is still considered an important tool for
analysis purposes. In order to improve attacks based on ACA, combinations with other
attack methods have been proposed. One of these combinations, ASCA, is explained in
the next section.

4.2 Algebraic Side Channel Attacks

The term “Algebraic Side Channel Attack” (ASCA) refers to an attack that combines
traditional power analysis attacks with methods from ACA. The attack was first proposed
by Renauld et al. in 2010 [67], after Courtois et al. showed the potential of ACA for
over-determined equation systems in 2002 [19].

The main idea behind ASCA is that leakage information, gathered from an SCA, can
be used to narrow down variable domains or to increase the number of equations in the
equation system of an ACA. Since ASCA requires leakage information, it is not as generic
as ACA and therefore only applies to implementations of a cryptographic scheme that
have a similar leakage profile to the attacked implementation. ASCA usually consists of
two phases, a short online phase and a long offline phase.

Online Phase

In the online phase, leakage information is collected via standard power analysis methods
like SPA, DPA, or TA. In contrast to them however, the goal in the ASCA online phase
is somewhat different. Traditional power analysis attacks follow a divide and conquer
principle. They do not attack the whole secret key at once but parts of the key in a
repeating manner. Hence, they can only attack operations at the beginning or the end of
an algorithm because otherwise the diffusion layers would cause to many dependencies on
key bits. In ASCA, however, the used equation system describes the whole cryptographic
algorithm or at least a large portion of it, which is why side-channel information from the
whole algorithm is useful.

Offline Phase

The offline phase then basically corresponds to an ACA that incorporates the informa-
tion gathered from the online phase. This phase is usually more time consuming since
it consists of performing runtime-intensive algorithms that try to find solutions for the
constructed system of equations. The most common techniques to solve such systems of
equations are based on SAT solvers [8, 18]. Since SAT solvers cannot directly work with
the probability distributions obtained from the online phase some adaptions are necessary.
In most proposals probability distributions are discretized and sieved, leaving left only a
few of the values with highest probability for each intermediate variable. These are then
given to, e.g. a SAT solver to determine a subset that does not contradict each other,

CHAPTER 4. SOFT ANALYTICAL SIDE-CHANNEL ATTACKS 33

hence a valid assignment of values to all intermediate variables in the algorithm (including
the secret key).

One of the main benefits of ASCA over traditional power analysis attacks is that they
can exploit more leakage information since many more operations can be attacked. As
a result, the number of required power traces for the attack to work may be as little as
just one. Such single trace attacks are especially powerful since they are resistant to side-
channel countermeasures like masking. Experiments on simulated leakages, e.g. low noise
Hamming weight information, have shown that ASCA can indeed achieve significantly
better results than attacks purely based on ACA [67]. It has to be noted that ASCA
seems to be prone to noise. If noise is too high, then SAT solvers quickly fail in finding
solutions for the constructed system of equations. Hence, their performance on real leakage
data is currently rather poor. If a single trace does not contain enough information for a
successful attack, multiple traces can be averaged to reduce noise. On top of that, even
though ASCA could exploit leakage information from the whole algorithm, in practice
only a subset of them is actually used to further reduce the runtime of equation solving.

4.3 Soft Analytical Side Channel Attacks

SASCA is a new approach for combining traditional SCA with algebraic methods. In
contrast to ASCA, where the cryptographic algorithm is described by a system of equa-
tions, the idea here is to work directly on the posterior distributions of intermediate values
obtained in the offline phase. Given the posterior probability distribution:

pi = Pr(Xi = xi | li)

for each observed intermediate variable xi, obtained from a leakage li, a graphical model
describing the whole algorithm is constructed. This graphical model expresses interme-
diate values xi as nodes which are connected by constraints that model the dependency
between the intermediate values. Additional constraints are then added for each observed
xi representing the leakage information pi. Unobserved variables are not directly con-
nected to leakage information. Hence, their values need to be inferred by the information
about their neighbours.

Once such a graphical model is constructed, the Belief Propagation algorithm (BP) is
used to calculate the marginal distribution of each xi, given the leakage information of all
other intermediate values xj ,∀j 6= i. If the attack is successful, the resulting probability
distributions for each xi assign a distinct value with probability 1, while all others have
probability 0. A detailed description of marginalization in graphical models as well as the
BP algorithm is given in Chapter 5.

Experiments by Veyrat-Charvillon et al. [77] on an AES implementation with simulated
leakage data have shown that SASCA performs well even when noisy simulated leakage
data is used. While the attack may require multiple traces, given leakage information with
a low signal-to-noise ratio (SNR), the traces are not required to correspond to the same
inputs. This is a more realistic scenario compared to ASCA where multiple traces can
only be used if they correspond to the same input.

Compared to results from ASCA, SASCA has two main advantages. First of all,
the runtime and memory complexity is greatly reduced compared to e.g. SAT-solver
based ASCA for algorithms whose operations can simply be expressed in a graphical
model. The runtime of the algorithm used in the offline phase is mainly determined

CHAPTER 4. SOFT ANALYTICAL SIDE-CHANNEL ATTACKS 34

by the implementation of update rules that model the dependency between the xi. In
the attack on AES these dependencies can be implemented efficiently as AddRoundKey,
SubBytes, and MixColumns describe simple relations between 2 or 3 variables. Second,
given a sufficient number of traces SASCA can deal with any SNR which makes it a
promising candidate for attacks on real applications.

Chapter 5

Marginalization in Graphical
Networks

This chapter presents an algorithm called Belief Propagation (BP), which is used for the
efficient calculation of marginal distributions for a variety of functions. The problem
of marginalization is usually an expensive task and defined in Section 5.1. However,
for certain functions the cost of computing marginals can be reduced significantly. The
presented algorithm requires to represent a function by a so-called factor graph. Section 5.2
explains what factor graphs are and how they can be constructed. Once a factor graph is
constructed and it is acyclic, the BP algorithm can be used as described in Section 5.3.
In the case of a cyclic factor graph, an adapted version of the BP algorithm may be used.
The adapted algorithm is called loopy-BP and is presented in Section 5.4 alongside with
possible limitations. Our description and notation is largely based on that of MacKay et
al. [50, Chapter 26]

5.1 Marginalization Problem

Definition 5.1.1. Given a function P ∗ of a set of N variables x ≡ {xn}Nn=1 that is defined
by the product of M of its factors:

P ∗(x) =

M∏
m=1

fm(xm),

where each of the factors fm(xm) is a function of a subset xm of the variables that make up
x, the problem of marginalization is to compute the marginal function Zn of any variable
xn:

Zn(xn) =
∑

{xn′},n′ 6=n

P ∗(x)

Usually, one is also interested in the calculation of normalized marginals:

Pn(xn) =
1

Z
Zn(xn),

where the normalizing constant Z is defined by:

Z =
∑
x

M∏
m=1

fm(x)

35

CHAPTER 5. MARGINALIZATION IN GRAPHICAL NETWORKS 36

The runtime of the summation in the marginalization step is believed to grow exponen-
tially with the number of variables N . However, for certain functions, their factorization
can be exploited in such a way that the calculation of their marginals becomes feasible,
even if they contain many variables.

5.2 Factor Graphs

A factor graph is a representation of a function’s factorization as a bipartite graph. It
is used to model dependencies between the variables of a function and will allow us to
perform the BP algorithm at a later step. Since a factor graph is an extension to a Markov
Random Field, a description of Markov Random Fields is given first.

A Markov Random fields represents a probability distribution over variables x1, . . . , xn
as an undirected graph. Each of the random variables fulfills the Markov property and is
represented by a node in the graph. Figure 5.2 shows an example of a Markov random
field. It consists of four variable nodes x1, . . . , x4 and their corresponding connections
that are modeled by undirected edges. Markov random fields cannot be used directly in

x1 x2
x3 x4

Figure 5.1: Markov Random Field

the BP algorithm because they do not contain information about the actual dependency
between a pair of connected variable nodes. Fortunately, the conversion to a factor graph
is possible for any Markov random field according to the Hammersley-Clifford theorem [16].

Factor graphs extend the concept of Markov Random Fields by introducing a second type
of nodes. Besides variable nodes they also contain factor nodes that are used to model the
dependency between pairs of connected variable nodes. A factor node is only connected
to variable nodes and vice versa. Given a function F and its factorization:

F (x1, x2, x3, x4) = f1(x1, x2)f2(x1, x3)f3(x2, x3)f4(x3, x4),

it is easy to find the corresponding factor graph as depicted in Figure 5.2a. It can be
constructed by connecting a factor node to all variable nodes that are used in the corre-
sponding factor. While the factor nodes fi can be any function of the two corresponding
variable nodes, they are usually modeled by a table containing the variable’s joint dis-
tribution. This generic way of expressing dependencies via joint distribution tables can
come at the cost of high runtime/memory requirements though. If the variable domain is
large or the number of factor node neighbours is high, other ways of describing variable
dependencies have to be found. In the attack presented in Chapter 6, we are dealing

CHAPTER 5. MARGINALIZATION IN GRAPHICAL NETWORKS 37

with a factor graph whose variable domain is
{

0, . . . , 7680
}

. The joint distribution table
approach cannot be used there anymore.

x1 x2
x3 x4

 f1 f2
 f3

(a) Acyclic factor graph. Belief
propagation will work.

x1 x2
x3 x4

 f1 f2
 f3

 f4

(b) Cyclic factor graph. Belief
propagation might work.

Figure 5.2: Acyclic factor graph (left) and cyclic factor graph (right)

Once the factor graph is constructed and it is acyclic, the BP algorithm can be used to
calculate the exact marginals of all variables in the network. However, if the resulting
factor graph does contain cycles, as shown in Figure 5.2b, the outcome of the algorithm
is not clear. In Section 5.3 the standard BP algorithm is explained under the assumption
that the used factor graph is acyclic. Section 5.4 explains how an adapted version of the
BP algorithm can be used on cyclic factor graphs and mentions possible limitations.

5.3 Belief Propagation

The BP algorithm, also called “Sum-Product” algorithm, is a network based message
passing algorithm for the efficient computation of unobserved node marginals conditioned
on observed nodes. It was first proposed by Judea Pearl [59] and is mainly used in the
field of artificial intelligence and information theory. While there exist multiple variants
of the BP algorithm for different kinds of networks, a factor graph based description is
presented in this section. The algorithm works by exchanging messages between variable
nodes and factor nodes iteratively. In this respect, a message is the belief of a variable’s
probability distribution. Each iteration consists of two steps. In step one, variable nodes
send messages to factor nodes. In step two, factor nodes send messages to variable nodes.
After a couple of iterations, the variable node marginals can be calculated in a final step.
These three steps are described in the following:

From variable to factor: A variable node xn sends a message to a connected factor
node fm by multiplying all messages xn gets from its neighbour factor nodes except fm.
By doing so, xi is telling fm about what other factors-nodes belief about xn’s probability
distribution:

qn→m(xn) =
∏

m′∈M(n)\{m}

rm′→n(xn),

M(n) is the set of all factors in which n participates
qn→m denotes messages from variable nodes to factor nodes

CHAPTER 5. MARGINALIZATION IN GRAPHICAL NETWORKS 38

rm→n denotes messages from factor nodes to variable nodes
For all leaf variable nodes n: qn→m is set to a uniform distribution

From factor to variable: Similarly, a factor node fm sends a message to a connected
variable node xn by multiplying all messages fm gets from its neighbour variable nodes
except xn, multiplying the result with its own joint distribution table and finally summing
out all variables except xn:

rm→n(xn) =
∑
xm\n

fm(xm)
∏

n′∈N (m)\m

qn′→m(xn)

 ,

N (m) denotes the set of variables the m-th factor depends on
For all leaf factor nodes m: rm→n is set to fm(xn)

Final Step: The final marginal function Zn(xn) of a variable node can be calculated by
multiplying all messages from the connected factor nodes:

Zn(xn) =
∏

m∈M(n)

rm→n(xn)

The normalized marginals can be obtained easily by dividing the marginal function by the
sum of the marginal functions:

Pn(xn) =
1

Z
Zn(xn),

where the normalization constant Z is computed as:

Z =
∑
xn

Zn(xn)

Since messages are passed only between neighbouring nodes, multiple message passing
steps are necessary until a node has observed beliefs of all other nodes in the network.
The actual number of necessary iterations depends on the structure of the used factor
graph. If the factor graph is acyclic, the following scheduling scheme can be used to
calculate exact marginals in as little as two iterations:

1. Select one variable node as the root node.

2. Propagate beliefs inwards, starting at leaf nodes.

3. Propagate beliefs outwards, starting from the root node.

4. Calculate marginals for variable nodes.

In conclusion, the BP algorithm is a rather efficient method for calculating marginals in
acyclic factor graphs. Even though the runtime is still exponential in the worst case, many
real world problems can be solved efficiently. We now explain how the algorithm can be
extended to general networks and mentions possible limitations.

CHAPTER 5. MARGINALIZATION IN GRAPHICAL NETWORKS 39

5.4 Loopy-Belief Propagation

The BP algorithm was originally designed for usage in acyclic networks. However, in many
problem instances cycles in factor graph are unavoidable. The factor graph corresponding
to an NTT operation, presented in Chapter 6, is one of those examples. This lead to
the adaption of the original algorithm to the loopy-BP algorithm. The loopy-BP algo-
rithm uses the same message passing methods as the standard algorithm but a different
initialization and scheduling:

1. Initialize all variable nodes to a uniform distribution.

2. Send messages from variable nodes to connected factor nodes.

3. Send messages from factor nodes to connected variable nodes.

4. Go to step 2, repeat until variable node distributions have converged (if possible).

5. Calculate marginals for variable nodes.

Curiously, using this adapted version of the original algorithm works for many problem
instances based on cyclic factor graphs [54]. The resulting marginals may be not exact
but usually they are good approximations of the true marginals. Nevertheless, it has
to be noted that convergence is not guaranteed here. It is not completely understood
under which conditions a loopy-BP will converge or not. Part of the reason why the
algorithm may not converge on cyclic factor graphs is that variables do influence their
own distributions which can result in positive feedback loops. Mooij et al. [53] states a
few sufficient conditions for the convergence of the loopy-BP algorithm to a unique fixed
point. Apart from the fact that convergence may not happen, also the number of necessary
iterations is not predictable. As a rule of thumb the longest path in the factor graph can
be used as a first reference value. In practice, however, the number of iterations may be
a multiple or a fraction of that value.

Chapter 6

Attack on an RLWE-based
Encryption Scheme

This chapter contains a detailed description of the main goal of this thesis, i.e. an attack
on a microprocessor implementation of an RLWE-based encryption scheme. In Section 6.1,
we give an overview of our attack procedure and goals. The attack procedure itself is then
split up into 3 steps as follows:

In Section 6.2, a side-channel attack on the attacked encryption scheme is described.
Based on the obtained leakage information from the first step, the attack results are
improved by the application of the BP algorithm as shown in Section 6.3. Since the
outcome of the BP algorithm still does not allow us to perform a full private key recovery,
we perform a lattice reduction in order to efficiently recover the remaining unknown private
key coefficients. This last step is explained in Section 6.4.

6.1 Attack Overview

The main goal of this thesis is an attack on a microprocessor implementation of an en-
cryption scheme that is based on the RLWE problem (Section 2.5.3). Since the encryption
scheme is asymmetric, the attack is targeting only the decryption operation in which the
private key is involved. The decryption of a cipher text (c̃1, c̃2) under secret key r̃2, and
a shared modulus q is defined as follows:

m∗ = Decrypt(c̃1, c̃2, r̃2) = INTTq(c̃1 ∗ r̃2 + c̃2), (6.1)

where m∗ corresponds to an encoded version the original plain text and INTT denotes
the inverse NTT operation. All calculations are modulo q.

A successful attack on a device that performs the operations from 6.1 yields the un-
known private key coefficients of r̃2. As with all implementation attacks, we start by
performing a side-channel analysis on certain operations that are suspect to leak informa-
tion about r̃2. One of the obvious choices for a side-channel attack are the coefficient-wise
operations c̃1 ∗ r̃2 + c̃2. Since an attacker may have full control over the inputs c̃1 and
c̃2, a prediction of these intermediate values is a reasonable goal. However, side-channel
countermeasures can be implemented for these operations quite easily as well. In fact,
there already exist proposals that suggest the application of masking and/or shuffling for
such obvious side-channel targets [57]. Hence, we decided not to include these operations

40

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 41

into our side-channel analysis and instead focus on operations that are harder or more
expensive to protect.

Currently, no implementation proposal for RLWE-based encryption schemes features
side-channel countermeasures inside the INTT operation. However, a masking of the
INTT input seems to be an obvious design choice due to the linearity of the (I)NTT
operation. One such masking scheme was proposed by Reparaz et al. [69, 68] and conceals
all intermediate variables inside the INTT operation (Section 3.4.2).

Given such a masking scheme, the application of side-channel analysis becomes more
difficult. Since the INTT input no longer only depends on the decryption input and the
private key, the exploitation of multiple power traces e.g. by means of first-order DPA
becomes infeasible. Single-trace attacks are however still possible. A successful attack on
the INTT operation yields the INTT input coefficients as well as the values of all butterfly
intermediates. If the whole INTT input is known to the attacker, private key recovery is
simple. In the case of an unmasked implementation we can express the INTT input x̃ as:

x̃ = c̃1 ∗ r̃2 + c̃2,

where c̃1 and c̃2 are public. This equation can simply be rewritten to:

r̃2 = x̃− c̃2 ∗ c̃−11 ,

thus leaking the NTT transformed of the private key r2. For masked implementations we
need to successfully attack both INTT operations corresponding to each private key share.
Again, we express the INTT inputs x̃′, x̃′′ corresponding to both private key shares as:

x̃′ = c̃1 ∗ r̃ ′2 + c̃2

x̃′′ = c̃1 ∗ r̃ ′′2 ,

and calculate the private key shares by:

r̃ ′2 = c̃−11 ∗ x̃ ′ − c̃2

r̃ ′′2 = c̃−11 ∗ x̃ ′′,

which gives us the the unmasked key r̃2 = r̃ ′2 + r̃ ′′2 mod q.

In the following, we show a single-trace attack that is able to recover the full private key of
an RLWE encryption scheme that uses the (I)NTT for runtime efficiency. While we show
the attack outcome for an RLWE encryption scheme, the attack may also be applicable to
any lattice-based cryptographic scheme that performs an (I)NTT operation on sensitive
data.

We now give an overview of the 3 steps that are involved in our attack:

Step 1. The first step our attack consists of a traditional side-channel analysis that is
performed on modular additions, subtractions, and multiplications that occur in an INTT
butterfly, i.e. during the decryption operation. Since we also want to deal with masked
implementations we limit the number of traces in the attack phase of our side-channel
analysis to one per decryption. Clearly, the information obtained about each INTT inter-
mediates will have a high noise level and a key recovery is not possible yet.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 42

Step 2. In step 2 we want to make use of the large amount of potentially leaking modular
operations inside the INTT butterfly and their comparably simple algebraic connections.
We follow the idea of SASCA and show the application of the BP algorithm in a graphi-
cal model representing the INTT butterfly. This approach is comparable with the offline
phase in a SASCA. The outcome of the algorithm are approximate marginal distributions
of all intermediate values of an INTT operation. If the resulting marginal distributions
indicate distinct values for all intermediates (including the input), a key recovery can be
performed as described above. If the BP algorithm can only determine a subset of all
intermediates with high confidence, a more sophisticated key recovery is necessary.

Step 3. In the last step of our attack, we show an algorithm that, given enough correct
intermediates, can recover all coefficients of the private key with significantly less com-
putational cost compared to the trivial brute force approach. As we will see later, the
application of this algorithm improves the practicality of our attack as we are usually not
able to correctly determine all intermediates after step 2.

6.2 Attack Step 1: Side-Channel Attacks on an INTT But-
terfly Network

In this section, we describe how we perform side-channel attacks on the modular operations
inside an INTT butterfly. Section 6.2.1 explains the measurement setup that is used for the
measurement of traces. Section 6.2.2 describes the software implementation that is used
by the attacked microprocessor. In Section 6.2.4, we describe the kinds of side-channel
attacks we use for each of the attacked operations. Finally, in Sections 6.2.5 and 6.2.6, we
present the first results of our side-channel analysis, both for real and simulated leakage
data.

6.2.1 Measurement Setup

Our side-channel analysis is performed on a Texas Instruments MSP432 (ARM Cortex-
M4F) microcontroller on a MSP432P401R LaunchPad development board. The same
microcontroller was already used by several other authors for the evaluation of lattice-
based cryptographic implementations [23, 57, 68]. Our microcontroller was clocked at its
maximum possible frequency of 48 MHz.

Leakage is measured via the EM side-channel. We use a Langer RF-B 3-2 near-field
probe placed in proximity to the external core-voltage regulation circuitry. Hence, we
expect the recorded traces to be similar to power consumption leakage. A PicoScope
6404 oscilloscope was used for the recording of the traces. Each trace corresponds to
the execution of one modular operation. We setup a trigger to ensure alignment of the
recorded traces. The sampling rate is set to 500 MS/s, the number of recorded samples
per trace is 250.

After the measurement phase we applied a band-pass filter from the Matlab DSP
System Toolbox to rule out unwanted signal components. A comprehensive list of the
used oscilloscope/filter settings is given in Table 6.1. Figure 6.1 shows the measurement
setup.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 43

Oscilloscope Settings

Sampling Rate 500 MS/s
Samples / Trace 250

Matlab Filter Settings

Filter Order 20
Cutoff Frequency 1 6e6
Cutoff Frequency 2 48e6
Sample Rate 500e6
Design Method window

Table 6.1: Used settings for measurements.

(a) Evaluation board with EM probe and
trigger probe.

(b) Close-up onto the placement of the EM probe.

Figure 6.1: Pictures of the measurement setup

6.2.2 Microprocessor implementation

We now describe the microprocessor implementation of the attacked RLWE encryption
scheme. As mentioned before, we focus our side-channel analysis solely on the opera-
tions that occur inside the INTT operation. Hence, we also limit the description of our
microprocessor source code to the three modular operations: addition, subtraction, and
multiplication. The source code is based on the efficient assembler implementation of the
RLWE encryption scheme by deClercq et al. [23]. For easier evaluation we only imple-
mented the leaking operations as they are easy to identify and separate.

Modular Multiplication

The modular multiplication is implemented using constant time SMULBB instructions, the
subsequent reduction is implemented via trivial division:

ab mod q = ab−
⌊
ab

q

⌋
q

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 44

This leaks limited timing information depending on the used operands. On our micro-
processor, the division takes between 2 and 12 cycles. All parameters and intermediate
variables remain in CPU registers throughout the computations. We do not use leakage
coming from explicit LOAD and STORE instructions. To ensure separation, we place NOP

instructions before/after the execution of the multiplication.

LOADW %[op_1]

LOADW %[op_2]

LOADW %[modulus] #7681

NOP

:

NOP

SMULBB %[product_1], %[op_1], %[op_2]

UDIV %[quotient], %[product_1], %[modulus]

SMULBB %[product_2], %[quotient], %[modulus]

SUB %[result], %[product_1], %[product_2]

NOP

:

Modular Addition

For the modular addition implementation:

a+ b mod q =

{
a+ b− q a+ b ≥ q
a+ b a+ b < q

we use a constant time implementation based on the conditional ARM IT instruction.
If the sum of the operands does not require a subsequent reduction step, i.e. exceed q,
additional NOP instructions are executed instead to ensure constant runtime.

LOADW %[op_1]

LOADW %[op_2]

LOADW %[modulus] #7681

NOP

:

NOP

ADD %[sum], %[op_1], %[op_2]

CMP %[sum], %[modulus]

IT PL

SUBPL %[sum], %[sum], %[modulus]

NOP

:

Modular Subtraction

The implementation of the modular subtraction:

a− b mod q =

{
a− b+ q a < b

a− b a ≥ b

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 45

features constant runtime as well and is implemented similarly to the addition. If the
difference is < 0 then the modulus q is added.

LOADW %[op_1]

LOADW %[op_2]

LOADW %[modulus] #7681

NOP

:

NOP

SUBS %[diff], %[op_1], %[op_2]

IT MI

ADDMI %[diff], %[diff], %[modulus]

NOP

:

By using these three operations and Algorithm 1, we can construct a software implemen-
tation of an INTT butterfly for arbitrarily large input vectors.

6.2.3 Side-Channel Attack on Real Leakage

In this section, we give a detailed description of our side-channel analysis on the INTT
butterfly network. The goal of our analysis is to gather information on intermediate values
that occur during an INTT operation. Throughout the rest of this thesis we will use the
term intermediates to denote the inputs of all butterflys that make up our INTT butterfly
network.

As mentioned earlier and shown in Figure 2.6, an INTT butterfly network consists
of the three modular operations: addition, subtraction, and multiplication. We perform
a template attack (TA) (Section 3.3.3) on all three operations, yet with different goals
in mind. For the modular multiplication operation, we want to gain information about
the unknown intermediate that is multiplied with a known twiddle factor. In case of the
modular addition/subtraction operation, we use a TA in order to detect whether or not a
reduction is performed during execution.

We simplify our template building phase by isolating the 3 modular operations. For
each operation, we record power traces for all possible input/output combinations. An
attack on the full INTT butterfly is then simulated by assuming leakage information
corresponding to the real input/output data of every operation.

We additionally perform a simple SPA-based timing attack on the modular multiplica-
tion operation as seen in Figure 3.1. The timing information is used to reduce the number
of possible input combinations for each modular multiplication. Hence, the performance
of the corresponding TA is improved.

In the following a detailed description of our performed side-channel attacks on each
of the 3 modular operations is given.

SPA on Modular Multiplication

Our implementation of the modular multiplication is leaking timing information due to
the implementation of the reduction step by trivial division. The hardware divider on
our microprocessor has an operand depending runtime. We observed that these timing
differences depend on the bit size of the non-reduced product. After closer inspection, we

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 46

Product Sample Timing
Bit-Size Offset Class

< 12 0 1

< 16 25 2

< 20 38 3

< 24 50 4

≥ 24 63 5

Table 6.2: Timing differences for modular multiplication

Timing Possible
Class Intermediates

1 0 . . . 1

2 2 . . . 19

3 20 . . . 309

4 310 . . . 4959

5 4960 . . . 7680

Table 6.3: Exploiting the runtime of a modular multiplication with ω = 3383.

were able to identify a total of 5 different timing classes which are shown in Table 6.2. This
timing information can be obtained by e.g. a visual inspection of a trace. Depending on the
sample offset of the first significant power draw (Figure 3.1) we are able deduce the bit-size
of the non-reduced product of a known twiddle factor and an unknown intermediate.

With this timing information we can, given the known twiddle factor ω, narrow down
the possible values for the other factor, i.e. the used intermediate. Let us assume we are
looking at a modular multiplication operation with ω = 3383. If we can determine the
runtime of the multiplication, we can narrow down possible values of the used intermediate
as shown in Table 6.3. In the following, we denote the timing classes of a modular mul-
tiplication with Cω,1, . . . , Cω,5. Hereby, each Cω,x contains the possible input combinations
for a modular multiplication with ω and timing class x.

In our attack, we use a simple thresholding approach for determining the timing class
of a modular multiplication. We thoroughly tested our approach for over 10000 random
modular multiplications and achieved a correct classification rate of 1.

TA on Modular Multiplication

In each modular multiplication, an unknown intermediate is multiplied with a known
twiddle factor ωx, i.e. the xth power of the used primitive root of unity. The domain size
of an intermediate is determined by the modulus q, in our case 7681. The domain size of
ω is determined by the size of the input vector. An n−coefficient INTT requires the n/2
different twiddle factors ω1, . . . , ωn/2. Hence, the total number of input combinations for
a modular multiplication in a 256-coefficient INTT is 7681× 128 = 983168.

In the template building phase we recorded 100 power traces for each input combination
of the modular multiplication operation. Thus, in total we have recorded about 100 million

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 47

traces. This took about two days with our measurement setup. While storing such an
amount of power traces may sound difficult, in practice the complete raw measurement
data requires about 20GB of storage. Since the duration of a modular multiplication is
rather short, each power trace only consists of 250 sample points.

After we completed the measurement phase, we applied trace compression on our
measurement data. We identified points of interest (POI) with a T-Test (Section 3.3.3).
On average, we identified about 6 POIs out of the 250 samples of each trace. These POIs
feature a high variability between all input combinations corresponding to one known
twiddle factor. By keeping only the calculated POIs of each set of power traces we could
reduce the storage requirement to 2.4% of its original amount.

With this compressed measurement data we calculate a template hω,d for each known
ω and each of its possible input combinations d ∈ Dω. We evaluate the performance as
follows. Out of the 100 traces per input combination we choose 99 traces at random in the
template building phase. The one remaining trace is then used in the template matching
phase. For every one ω and one of its timing classes Cω,x we calculate the probabilities
(Section 3.3.3):

p(td′ |hω,d) ∀ d ∈ Cω,x, (6.2)

where td′ corresponds to one recorded trace for the modular multiplication ωd′ mod q.
Hence, we obtain a probability distribution over Cω,x for all ω. Figure 6.2 shows two such
obtained probability distributions with varying informative value.

Input Value
500 1000 1500 2000 2500 3000 3500 4000 4500

P
ro

b
a
b
il
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06

X: 2000
Y: 0.008302

(a) input = 2000, ω = 3383, timing class = 4, q =
7681, entropy = 6.4-bit

Input Value
4500 5000 5500 6000 6500 7000 7500

P
ro

b
a
b
il
it
y

#10!3

0

1

2

3

4

5

6

7

8

9

X: 6000
Y: 0.005159

(b) input = 6000, ω = 1, timing class = 2, q =
7681, entropy = 9.2-bit

Figure 6.2: Single-trace TA on two modular multiplications. We calculate the resulting
probability distribution like in 6.2 and indicate the real input and its estimated probability
in each plot.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 48

TA on Modular Addition/Subtraction

The goal of our TA on modular addition/subtraction operations is to determine whether or
not a reduction step is executed. As mentioned earlier, the implementation of the modular
addition/subtraction is constant time. A simple thresholding approach based on timing is
therefore not possible here. Nevertheless, we can build templates that can distinguish the
two cases based on the difference in their power consumption. Hence, we exploit the fact
that NOP instructions have a different power profile compared to ADD/SUBS instructions.

In our evaluation of this binary TA, the occurrence of a subsequent reduction step in a
modular addition/subtraction can be determined with a success rate of > 0.99. Therefore
we will assume correct knowledge about performed reductions for addition/subtraction
operations in our butterfly network.

6.2.4 Side-Channel Attack on Simulated Leakage

Besides our side-channel analysis on a real device we repeat our analysis based on simu-
lated leakage data to give more generic results and allow for easier reproducibility. For
this purpose we use a simple leakage model, namely the noisy Hamming Weight model.
In this leakage model the attacker gets two samples of the form:

l = (HW(xi) +N (0, σ) , HW(xiω
j
n mod q) +N (0, σ)), (6.3)

where HW denotes the Hamming weight function, xi denotes the used intermediate in
the butterfly , ωjn denotes the corresponding twiddle factor, and N (0, σ) denotes a sample
from a normal distribution with zero mean and standard deviation σ. We then perform
a 2-variate template matching on this data. In the simulated attack, besides reduction
information in the modular addition/subtraction, we now use probability distributions
obtained from the TA on simulated leakage data instead of real leakage data. We then
repeat this procedure for σ in range [0, 0.1, . . . , 1] to evaluate performance of our attack
for varying noise levels.

6.2.5 Results - Real Leakage

We now present the results of our TA on the modular multiplication based on real leakage
from our microprocessor implementation. As we will see, the information contained in
the obtained probability distributions varies greatly and depends on the inputs of the
modular multiplication operation. In Figure 6.4, we can see the probabilities obtained
from a single-trace TA on the modular multiplication operation with ω = 3383. To
allow a simpler illustration, we only look at the timing classes 2 and 3. The plots show
the performance of our TA by color-coding the obtained probability distributions. Each
line represents a TA evaluation based on a single-trace template matching. A correct
classification is accomplished if the value on the diagonal has the highest value in each
row.

To give a better sense of how much information is contained within our obtained prob-
ability distributions, we will use the entropy metric as proposed in [76]. With entropy we
can measure the information contained in a probability distribution. Given a probability

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 49

distribution X, the entropy H(X) is defined as:

H(X) = −
q∑
i=1

p(xi) log2 p(xi), (6.4)

where xi denotes one of the q possible outcomes of a given probability distribution. Highest
entropy is achieved with a uniform distribution (maximum uncertainty), while zero entropy
is achieved if a distribution has one outcome with a probability of 1 (no uncertainty). The
maximum achievable entropy for a distribution with q outcomes is log2(q) bit, in our case
log2(7681) ≈ 12.9 bit. Since we can already eliminate possible intermediates solely based
on timing information, the maximum entropy varies depending on the actual inputs of
the modular multiplication. For example, in case of ω = 3383 and timing class 2, the
maximum entropy already is as small as 4.2 bit. However, for ω = 3383 and timing class
4 the maximum entropy is still 12.1 bit.

On average, we have observed an entropy of about 7 bit for the probability distribu-
tions obtained from template attacks across all input combinations. While probability
distributions corresponding to multiplications with large operands tend to have below-
average entropy, multiplications with small operands tend be responsible for probability
distributions with above-average entropy. One exceptional case in which our template
attack performs very poorly is when ω = 1. The average entropy is about 10.5 bit. This
is unfortunate since the most frequent value of ω in an INTT butterfly is in fact 1.

Clearly, after performing a TA on the modular multiplication the obtained information
is not precise enough to allow a reliable determination of the intermediates. On average
the correct classification rate is below 10%. In order to improve these results, in the next
section, we feed our obtained probability distributions into a graphical model and attempt
to calculate marginal distributions of each intermediate based on the probability distribu-
tions of all other intermediates.

Predicted Operand
2 4 6 8 10 12 14 16 18

R
ea

l
O

p
er

an
d

2

4

6

8

10

12

14

16

18

P
ro

b
a
b
il
it
y

0%

100%

(a) TA on real leakage: Modular multiplication
with ω = 3383, timing class = 2.

Predicted Operand
50 100 150 200 250 300

R
ea

l
O

p
er

an
d

50

100

150

200

250

300

P
ro

b
a
b
il
it
y

0%

100%

(b) TA on real leakage: Modular multiplication
with ω = 3383, timing class = 3.

Figure 6.3: Classification results of single-trace template attack on real leakage.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 50

6.2.6 Results - Simulated Leakage

The TA outcome based on simulated leakage data varies depending on the noise level in the
leakage model. In Figure 6.4 we have illustrated our TA evaluation based on single-trace
simulated leakage for the same setting as in Figure 6.3b. A visual comparison confirms
that our simulated leakage data is indeed a good approximation of the real leakage data.
For σ = 0, the average entropy of the obtained probability distributions is about as high
as in case of real leakage data. For σ = 0.5, the simulated leakage data already contains
significantly more noise, the average entropy is about 9 bit. It should be noted though
that we do not use timing information from division in the TA evaluation for simulated
leakage. The restriction of the possible intermediates in Figure 6.3b is therefore solely
to allow an easier comparison. For the attack evaluation on simulated leakage data the
domain of each intermediate is always [0, . . . , 7680].

Predicted Operand
50 100 150 200 250 300

R
ea

l
O

p
er

an
d

50

100

150

200

250

300

P
ro

b
a
b
il
it
y

0%

100%

(a) TA on simulated leakage: Modular multiplica-
tion with ω = 3383, σ = 0, timing class = 3.

Predicted Operand
50 100 150 200 250 300

R
ea

l
O

p
er

an
d

50

100

150

200

250

300

P
ro

b
a
b
il
it
y

0%

100%

(b) TA on simulated leakage: Modular multiplica-
tion with ω = 3383, σ = 0.5, timing class = 3.

Figure 6.4: Classification results of single-trace template attack on simulated leakage.

6.3 Attack Step 2: Belief Propagation in an NTT Butterfly
Network

In this section, we show how we apply the BP algorithm in order to improve the information
gain for each intermediate after our side-channel analysis. The BP algorithm requires a
graphical model of the target function. Thus, we have to construct a factor graph of the
NTT. The way we construct our factor graph is described in Section 6.3.1.

We perform the loopy BP algorithm to calculate approximate marginal distributions
for all intermediates in our NTT network. Unfortunately, in our case the runtime of
a standard BP implementation is rather high. Therefore, we identified time consuming
operations and propose optimizations that significantly reduce algorithmic runtime in
Section 6.3.2. In Section 6.3.4, we show the outcome of the BP algorithm. We additionally
propose adaptions for the constructed factor graph to further improve results.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 51

6.3.1 Factor Graph Construction

A factor graph (Section 5.2) is a graphical model that represents the factorization of a
function, in our case the INTT operation. The graph consists of two type of nodes, variable
nodes and factor nodes. Variable nodes represent input, output, as well as intermediate
variables of the described function. Factor nodes are used to describe the dependencies
between those variable nodes. Since factor graphs are required to be bipartite, variable
nodes are only connected to factor nodes and vice versa. In the following, we describe how
we can represent the butterfly network corresponding to an INTT operation as a factor
graph that is made up of variable nodes and factor nodes.

Variable Nodes

A variable node represents the current probability distribution of one intermediate in our
INTT butterfly network. At any time, it stores one belief from every connected factor node.
A belief is an estimated probability distribution of the variable node from the view of the
connected factor node. The domain D of a variable node is determined by the modulus
q. In our case, q = 7681 and the variable domain is therefore [0, . . . , 7680]. Given the
beliefs of all connected factor nodes, the current approximate marginal distribution of a
variable node can be calculated by computing the product over all current beliefs.

Factor Nodes

Factor nodes model the dependency between variable nodes. Given a set of beliefs from
all connected variable nodes, a factor node updates the beliefs corresponding to the repre-
sented dependency. Clearly, the implementation of factor nodes differs for every different
type of dependency between variable nodes. In the factor graph representing an INTT
butterfly network, variable nodes are connected via modular addition, modular subtrac-
tion and modular multiplication. Therefore we use the 3 types of factor nodes: fADD,
fSUB and fMUL as seen in Figure 6.5. We now explain their implementation.

x1
x2

x3
x4-

+ω
(a) 2-coefficient butterfly

x3
x4

fMUL
fSUBx2
fADDx1

(b) Corresponding factor graph

Figure 6.5: Butterfly network (left) and our corresponding factor graph (right)

Factor Node - Modular Multiplication

The implementation of fMUL is comparably simple since its only purpose is to add side-
channel information of the modular multiplication operation into the factor graph. In

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 52

every iteration of the BP algorithm this node sends a belief to the connected variable
node that consists of the probability vector obtained from the TA.

fMUL(xi2) = Pr(x2 = xi2 | l)

Factor Node - Modular Addition

A factor node of type fADD is used to model the dependency between variable nodes
that are connected via a modular addition operation. In Figure 6.5, the value of x3 is
determined by the modular addition of x1 and x2ω. Hence, given the distributions of
x1, x2 and x3, fADD is supposed to increase the probability of likely value combinations
while reducing the probability of unlikely or even impossible value combinations. Such an
operation can be modeled by a joint distribution table. We can assign the probability (0
or 1) to each value combination of x1, x2 and x3, depending on whether or not they can
occur in a modular addition. We start by modelling a modular addition as follows:

fADD(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q

0 otherwise

We obtain a joint distribution table that models the dependency of the two summands
and their sum for a modular addition. Given the beliefs of x1, x2 and x3, an update for x1
can be calculated by building the product over the beliefs from x2 and x3, multiplying the
result with the joint distribution table and finally summing out all variables other than
x1. Updates for x2 and x3 can be calculated in a similar way.

Note that we assume knowledge about the occurrence of a reduction in every modular
addition/subtraction. We include this information by splitting up our modular addition
model into the two cases with/without reduction. For modular addition with reduction
a combination x1, x2, x3 is only possible if additionally xi1 + (xi2ω mod q) ≥ q, i.e. a
reduction is performed:

fADDRed
(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q and xi1 + (xi2ω mod q) ≥ q
0 otherwise

Similarly, for a modular addition without reduction we additionally require that no reduc-
tion is performed:

fADDNoRed
(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q and xi1 + (xi2ω mod q) < q

0 otherwise

Factor Node - Modular Subtraction

The implementation of fSUB is very similar to fADD. Instead of x3, the variable x4 is now
used as the result of the operation. The entries of a joint distribution table representing
a modular subtraction is given by:

fSUB(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q

0 otherwise

Again, we introduce side-channel information by splitting up our model in the two cases
with/without reduction. For modular subtraction with reduction we additionally require

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 53

that xi1 − (xi2ω mod q) < 0, i.e. a reduction is performed:

fSUBRed
(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q and xi1 − (xi2ω mod q) < 0

0 otherwise

For modular subtraction without reduction we require that no reduction is performed:

fSUBNoRed
(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q and xi1 − (xi2ω mod q) ≥ 0

0 otherwise

Additional Leakage

Using a factor graph representation allows us to add additional side-channel information at
virtually every point if available. Any kind of prior probability can simply be added to the
corresponding variable node as another factor node with degree 1 (see fMUL). One possi-
ble location for additional side-channel information are the modular addition/subtraction
operations, as we only use information about the occurrence of a reduction. Also the ad-
ditional leakage of LOAD and STORE instructions may be included since they are a typical
side-channel attack target.

6.3.2 Belief Propagation Runtime Analysis

We now give an estimation for the runtime of the BP algorithm based on the factor graph
which is described in the previous section. As we will see, the standard implementation
of the algorithm has such a high runtime that additional optimizations are necessary to
ensure practicality of the presented attack. These optimizations are presented in the
following section.

The expected runtime of the BP algorithm is characterized by the number of iterations,
the number of variable nodes, the domain of the variable nodes, the number of factor nodes,
and the degree of the factor nodes.

Each iteration of the BP algorithm involves the invocation of the update rules q (vari-
able nodes to factor nodes) as well as r (factor nodes to variable nodes) for all nodes in
the factor graph. The number of necessary iterations is usually small, in our case ≤ 25,
and therefore does not have a significant impact on the asymptotic runtime.

Update rule q of a variable node xi with degree deg(xi) and its neighbors fi1 , . . . , fideg(xi)
consists of a multiplication of deg(xi) − 1 incoming beliefs. The runtime complexity of
this step is comparably low as the number of needed multiplications is linear in deg(xi).

The step r of a factor node fi with degree deg(fi) and its neighbors xi1 , . . . , xideg(fi)
with domain D consists of addition and multiplication operations performed on a joint
distribution table of size |D|deg(fi). The runtime and memory complexity of r grows ex-
ponentially in the degree of fi. Therefore, the factor node with highest degree usually
determines the overall complexity of the algorithm.

In our scenario, i.e. a factor graph corresponding to a 256-coefficient INTT operation,
the highest degree of a factor node is 3 and the domain size |D| of every variable node
is 7681. The resulting size of a joint distribution table, as used in step r, is 76813 ≈ 238.
Taking additionally into consideration that the number of factor nodes with degree 3 is
2048, the runtime complexity of performing one iteration of the BP algorithm can be
estimated as ≈ 249. Even though such a runtime can be considered as still feasible, it
would drastically reduce the practicality of our attack. Hence, we tried to find a more
efficient way to compute r for our degree 3 factor nodes.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 54

6.3.3 Belief Propagation Performance Improvements

We now present an optimization that allows us to compute the update rule r for all factor
nodes of degree 3 in our factor graph with a drastically reduced runtime. By using this
optimization, we can perform one iteration of the BP algorithm for our whole factor graph
in about one minute on a single core of an Intel Core i7-5600U notebook grade CPU and
negligible memory. Our factor nodes with degree 3 are of type fADD and fSUB. They are
used to model modular additions and a modular subtractions which occur in an INTT
operation.

The key idea behind our optimization is the fact that update rules for distributions
of input/output values of modular additions/subtractions can be efficiently expressed in
matrix vector notation. Let us consider the modular addition:

a+ b = c mod q,

and additionally the vectors a, b, c that contain the current probability distribution of
each respective variable. Such a probability distribution assigns a probability to each of
the possible outcomes:

ai = Pr(a = i), bi = Pr(b = i), ci = Pr(c = i)

fADD updates the probability distribution of each variable based on the distribution of the
other two variables. Hence, the updated distribution c∗ depends on a, b. One entry c∗k
can be computed as the sum over all ai, bj with i + j ≡ k mod q. This update rule can
be written in matrix-vector notation as follows:

a0 aq−1 · · · a2 a1
a1 a0 aq−1 a2
... a1 a0

. . .
...

aq−2
. . .

. . . aq−1
aq−1 aq−2 · · · a1 a0

 ·

b0
b1
...

bq−2
bq−1

 =

c∗0
c∗1
...

c∗q−2
c∗q−1

 ,

where the left matrix is a circulant matrix obtained by circularly shifting a. This equation
can be written as the circular convolution:

a ? b = c∗

The circular convolution theorem can be used to transform the cyclic convolution into the
component-wise multiplication:

FFTq(a ? b) = FFTq(a) ∗ FFTq(b) = FFTq(c
∗),

and the updated probabilities for c∗ are given by:

c∗ = IFFTq(FFTq(a) ∗ FFTq(b))

The update rules for a∗ and b∗ can be obtained similarly by additionally using complex
conjugations:

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 55

a∗ = IFFTq(FFTq(c) ∗ CONJ(FFTq(b)))

b∗ = IFFTq(FFTq(c) ∗ CONJ(FFTq(a)))

Note that our implementation of fADD also incorporates binary side-channel information
about the execution of a reduction step. We can model the impact of a reduction step by
replacing the q-coefficient FFTs by 2q-coefficient FFTs plus a final selection of the upper
or lower half of the IFFT output.

A summary of our efficient fADD implementation can be found in Algorithm 2. For fSUB

only minor modifications to the algorithm are necessary. By using Algorithm 2 the run-
time cost of performing update rule r for our degree 3 factor nodes is reduced to O(q log q)
since now the only runtime relevant operations are FFT’s.

Algorithm 2: Efficient BP for Modular Addition

Input:
a,b, c Probability distributions of summands and result
Reduction True if a reduction step was executed

Output:
a∗,b∗, c∗ Updated probability distributions of summands and result

1: ã = FFT2q(a)

2: b̃ = FFT2q(b)
3: c̃ = FFT2q(c)

4: ta = IFFT2q(CONJ(b̃) ∗ c̃)
5: tb = IFFT2q(CONJ(ã) ∗ c̃)

6: tc = IFFT2q(ã ∗ b̃)
7: if Reduction then
8: a∗ = ta [q ... 2q − 1]
9: b∗ = tb [q ... 2q − 1]

10: c∗ = tc [q ... 2q − 1]
11: else
12: a∗ = ta [0 ... q − 1]
13: b∗ = tb [0 ... q − 1]
14: c∗ = tc [0 ... q − 1]
15: end if

6.3.4 Applying the BP algorithm

With a factor graph that represents an INTT operation and probability distributions for
the intermediates obtained from our TA, we applied the BP algorithm to calculate approx-
imate marginal distributions for all variable nodes. In our first attempt we performed the
BP algorithm on the whole factor graph. While we were able to narrow down the possible
values of most variable nodes, the results were not good enough to allow a subsequent key
recovery.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 56

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

Entropy0 13

(a) 1 Iteration

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

Entropy0 13

(b) 8 Iterations

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

Entropy0 13

(c) 25+ Iterations

Figure 6.6: Application of BP on the full factor graph. We show the entropy of each vari-
able node after set number of iterations. No convergence is achieved after 25+ iterations.

Figure 6.6 shows the outcome of the BP algorithm on the whole factor graph. Each cell
represents the entropy of one variable node in our factor graph. We color-code the entropy
from zero (white) to 13 (black). Hence, white cells indicate that one distinct value has been
determined and black cells indicate maximum uncertainty. After the first iteration, we see
the introduction of prior probabilities into our factor graph. In the following iterations,
the BP algorithm attempts to calculate marginal distributions for every variable node.
After 25 iterations the overall entropy of all variable nodes is not decreasing anymore.
In many areas of the factor graph the estimated probability distributions are oscillating
between two or more states in consecutive iterations.

We identified two major reasons why the BP algorithm fails to calculate distinct
marginal distributions when run on the whole factor graph.

Problem 1: Uneven availability of side-channel information

The first problem is the uneven distribution of side-channel information in our factor
graph. Figure 6.7a illustrates the location of side-channel information, i.e. modular mul-
tiplications in our factor graph. Each cell represents one butterfly containing 2 variable
nodes and 2-3 factor nodes. Black cells contain the factors fADD, fSUB, white cells ad-
ditionally contain fMUL. It is easy to see that while many multiplications are executed
in the bottom-right corner of the graph, no multiplications are executed in the top-right
corner. The BP algorithm struggles with calculating marginal distributions especially in
areas where little side-channel information is available.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 57

Problem 2: Varying outcome of the TA

The results of our TA on modular multiplications vary in informativeness depending on the
used operands. The probability vectors obtained from multiplications with large operands
yield better information than the probability vectors obtained from attacking multipli-
cations with small operands. One of the operands, the twiddle factor, is set to 1 for all
multiplications in the first layer. As a consequence, no reduction is executed, the value of
operands is rather low, and the resulting probability vectors contain little useful informa-
tion.

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

MUL No MUL

(a) Locations of multiplications in
our factor graph

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

FG 1 FG 2 FG 3

(b) The 3 factor graphs we use for
the key recovery attack

Layer Index
1 2 3 4 5 6 7 8

V
ar

ia
b
le

In
d
ex

0

32

64

96

128

160

192

224

255

Key Recovery Coe,.

(c) The coefficients which are used
in the key recovery algorithm

Figure 6.7: Based on the location of side-channel information in 6.7a, we decided to divide
our factor graph in three independent parts as shown in 6.7b. We then use the coefficients
highlighted in 6.7c for key recovery.

To circumvent these two problems, we separated the whole factor graph into the 3 smaller
and independent factor graphs FG1, FG2, and FG3. This is depicted in Figure 6.6b.
Applying the BP algorithm independently on these factor graphs gives significantly better
results. The rather noisy side-channel information from layer 1 is neglected and the overall
ratio between observed and unobserved variables is higher. Even though FG1, FG2, and
FG3 do not contain as many variables as the whole factor graph, they still contain enough
variables for a full key recovery. We have chosen to use variables from layer 6 for key
recovery, since layer 6 is the last layer of FG1 and variables in later layers are usually
recovered with higher confidence by the BP algorithm. As we will see in the next section,
knowing 192 out of the possible 256 coefficients in layer 6 allows us to perform a full private

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 58

key recovery in about one minute. In our attack, we use the variables 32 . . . 127 and 160
. . . 255 in layer 6 for key recovery as shown in Figure 6.6c

6.4 Attack Step 3: Private Key Recovery

The application of the BP algorithm can significantly improve the results of the previously
executed TA by combining all available leakage information of the attacked operation. Yet,
a simple key recovery is still not possible since there is still too much uncertainty in certain
parts of our factor graph. Of high interest to an attacker is the input of the INTT, i.e. the
marginal distributions of variable nodes in layer 1. Given the input of the INTT operation
x̃ that corresponds to:

x̃ = c̃1 ∗ r̃2 + c̃2, (6.5)

the private key r̃2 can be calculated by:

r̃2 = (x̃− c̃2) ∗ c̃−11 (6.6)

In our case, a more sophisticated key recovery approach is necessary since the INTT input
cannot be determined with high enough confidence, as shown in Figure 6.6c. However, if
we divide our factor graph in the 3 subgraphs FG1, FG2, and FG3, as described in the
previous section, we can determine many (in our example 192) intermediate variables in
layer 6 with high confidence. One immediate consequence of knowing intermediates in
layer 6 is that also some values in layer 1, the INTT input are known. Given our choice of
192 intermediates in layer 6, 160 intermediates in layer 1 can be determined by a partial
inversion of the INTT for the indices [32 . . . 63, 64 . . . 127, 192 . . . 255]. This is the a result
of the recursive structure of butterfly networks. Hence, by using 6.6 we can calculate 160
coefficients of r̃2 , leaving only 96 coefficients left to be determined. A simple brute force
attack is still infeasible though since the value domain of the 96 each unknown coefficients
is 7681 and the resulting search space is 768196 ≈ 21239.

A more efficient approach to recover the remaining key coefficients is shown in a pend-
ing submission to the CHES 2017 conference. There, we show in a collaboration with Peter
Pessl that there exists an efficient way to recover all private key coefficients of a partially
known private key in an RLWE encryption scheme. First, we generate linear equations in
the private key depending on the available intermediates. The final key recovery is then
performed by means of a lattice reduction.

6.4.1 Generating Linear Equations in the Key

We now describe how information about intermediates in the INTT butterfly network can
be combined with the public key of a corresponding RLWE decryption operation. We
start by building equations in the private key r̃2 that depend on intermediates that can
be determined with high confidence. Recall that we can rewrite polynomial multiplication
in the ring Rq in matrix-vector notation. Hence, we can express the INTT output m? as:

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 59

m? = c1 ∗ r2 + c2 = C1r2 + c2, (6.7)

where C1 corresponds to a nega-cyclic matrix obtained by repeated nega-cyclic shifts of
c1. A nega-cyclic shift means an element-wise rotation of a vector with a subsequent
negation of the first element.

Since all operations inside the (I)NTT are linear, we can transform our equation system
such that it describes any of its intermediates. In our case, we want to describe the known
intermediates in layer 6. Therefore, going back from the INTT output, we need to partially
revert the last 3 layers of the butterfly network until we reach the known intermediates,
i.e. the inputs of layer 6. The partial NTT reversal can be computed simply by:

x1 =
x3 + x4

2
mod q

x2 =
x3 − x4

2ω
mod q,

where x1, . . . , x4 and ω denote the input/output and twiddle factor corresponding to a 2-
coefficient butterfly as illustrated in Figure 6.5. As a result, we build an equation system:

C′1r2 + c′2 = x, (6.8)

where x contains, the 196 known intermediates from layer 6 and C′1, c′2 contain the
transformed coefficients.

6.4.2 Key Recovery using Lattice Reduction

Once we have a linear equation system that relates r2 to our known intermediates we can
define a Closest Vectors Problem (CVP) (Section 2.3.2) by additionally embedding the
public information (a,p). a defines our ideal lattice and challenge vector p is defined as:

p = r1 − ar2, (6.9)

where r1 is a Gaussian error term used only during key generation. In CVP the solver is
required to find a vector that is sufficiently close to the challenge vector. The parameters
for our RLWE-based encryption system are chosen such that solving this CVP problem is
infeasible. One possible solution is −ar2 since r1 is small by definition.

We can use the linear equations from the previous section to reduce the complexity of
the corresponding CVP. More precisely, we can reduce the dimension of the given lattice
up to a point where solving CVP is feasible.

First we substitute the 192 equations from 6.8 into 6.9 to get:

p′ = r1 −A′r′2

The number of columns in A′ is hereby reduced to 64, as is the lattice dimension of the
corresponding CVP. Solving CVP for this lattice is feasible. We can solve CVP by adding
the challenge vector p′ to our lattice (A′||p′), followed by a subsequent search for an
unusually short vector r1 (or −r1). For this purpose we use the BKZ implementation
from Shoups NTL library [74]. Once a candidate solution for r1 (or -r1) is found we can
calculate all coefficients of r2 by solving the linear system from 6.9. The correctness of
r2 is ensured if its distribution follows the error distribution used during key generation.
That is, either a binary uniformly random distribution or a Gaussian distribution with
zero mean and small standard deviation.

CHAPTER 6. ATTACK ON AN RLWE-BASED ENCRYPTION SCHEME 60

The runtime cost of the BKZ basis reduction algorithm, when applied to our reduced
CVP, is comparably low. On average, the single thread runtime is about 45 seconds on
a Intel Xeon E5-2699v4 CPU. We also validated the correctness of our key recovery by
repeating it 1000 times for 192 correct layer 6 intermediates. The key recovery was always
successful.

Chapter 7

Results

We now present the results of our attack on a microprocessor implementation of the
RLWE-based asymmetric encryption scheme. The encryption scheme was proposed by
Lyubashevsky et al. [49], our microprocessor implementation is based on an efficient soft-
ware implementation by deClercq et al. [23]. The attack was evaluated both for real
leakage data as well as simulated leakage data. We also consider a masked implemen-
tation of the INTT operation, used in virtually all efficient RLWE-based cryptographic
schemes, as proposed by Reparaz et al. [69].

In Section 7.1, we show the performance of our attack on a microprocessor implemen-
tation running on an ARM-Cortex-M4F. Here, leakage data is obtained by an EM-based
side-channel analysis. In Section 7.2, we repeat the attack, yet we use simulated leakage
data based on a noisy Hamming weight leakage model to give more generic results.

7.1 Results for Real Leakage

In step 1 of our attack based on real leakage data, we performed a side-channel analysis on
a microprocessor implementation (Section 6.2). We used an ordinary single-trace TA on
the modular multiplication operation to approximately recover intermediate values within
the INTT operation.

To simplify our attack setup we performed the TA on an isolated modular multipli-
cation operation. For each possible input combination we recorded 100 traces. We then
simulated one decryption by calculating all INTT intermediates for a known cipher text
and key. In the attack phase, we have chosen 1 out of the 100 traces for every occurring
input combination of the modular multiplication for template matching. The remaining
traces were used in the corresponding template building phases.

We also performed a binary TA on the modular addition/subtraction operation to
detect whether or not a reduction was executed. Since we achieved a high success rate for
the detection of reductions, we assumed this knowledge in the rest of our attack.

In step 2, we then embed the obtained leakage information into a factor graph repre-
sentation of our attacked INTT operation and apply the BP algorithm (Section 6.3). The
outcome of applying the BP algorithm on the whole factor graph is not satisfactory. Hence,
we divide our factor graph into 3 independent subgraphs to improve the performance of
the BP algorithm. After a successful application of the BP algorithm on all subgraphs,
we can determine a large part of the intermediates in layer 6 of our factor graph with high
confidence.

61

CHAPTER 7. RESULTS 62

An example of an outcome of applying the BP algorithm on the subgraph FG3 is
illustrated in Figure 7.1. We color-code the entropy (6.4) of each intermediate. Black nodes
indicate maximum uncertainty while white nodes indicate that the value is determined.
After one iteration, the side-channel information from step 1 is introduced into the factor
graph. After about 20 iterations, all intermediates in the right half of the subgraph are
determined. The results for FG1 and FG2 are similar. The outcome of step 2 is the
reliable recovery of 192 intermediates [32 . . . 63, 64 . . . 127, 160 . . . 255] in layer 6 of the
attacked INTT operation. We have repeated this step many times for differing decryption
operations. In our evaluation, the success rate of recovering the 192 layer-6 intermediates
is 1.

Based on the results of step 2, we then perform a full key recovery based on lattice
reduction in step 3 (Section 6.4). Given the 192 correct intermediates from step 2 we
setup 192 linear equations in the private key. We use these equations to reduce the lattice
of the corresponding CVP problem to 64. Such a problem instance is considered feasible.
We use the BKZ algorithm to recover all coefficients of the private key. The success rate
of step 3 is also 1. Therefore, we conclude that the success probability of our attack in
this scenario is also 1.

Layer Index
2 3 4 5 6 7 8

V
a
ri
ab

le
In

d
ex

128

160

192

224

255

Entropy0 13

(a) 1 Iteration

Layer Index
2 3 4 5 6 7 8

V
a
ri
ab

le
In

d
ex

128

160

192

224

255

Entropy0 13

(b) 4 Iterations

Layer Index
2 3 4 5 6 7 8

V
a
ri
ab

le
In

d
ex

128

160

192

224

255

Entropy0 13

(c) 20 Iterations

Figure 7.1: Application of BP on the subgraph FG3. We show the entropy of each
intermediate after a set number of iterations. Intermediates in e.g. layer 6 are determined
with high confidence. The results for FG1 and FG2 are similar.

CHAPTER 7. RESULTS 63

7.2 Results for Simulated Leakage

In our attack evaluation for simulated leakage data we perform the same attack steps
1-3, yet in step 1 we instead use simulated leakage data for our TA on the modular
multiplication operation. The simulated leakage data is derived from a noisy Hamming
weight leakage model and is described in Section 6.2. We have repeated the attack for the
varying noise parameter σ in the range of [0, 0.1, . . . , 1]. Figure 7.2 shows the outcome
of applying the BP algorithm on FG3 with σ = 0.2 (also compare to Figure 7.1). In
the shown scenario, all intermediates in the right half of the factor graph are determined
correctly, yet compared to real leakage data more iterations were necessary here.

An overview of the results is shown in Figure 7.3. We show the attack success rate
and average entropy of the prior probabilities. In contrast to the attack on real leakage
data, the success probability is not 1 anymore. Even in the case that σ = 0, the recovered
values of intermediates in layer 6 contains a few incorrect entries with a probability of
about 0.05. In such a case, key recovery in step 3 fails as well. Nevertheless, for σ ≤ 0.4
the success rate of our attack is above 0.9.

In the case of an unmasked implementation the success rate can be increased by rep-
etition. More precisely, we can perform multiple side-channel measurements for each
operation, average the obtained traces, perform our TA and continue with attack step 2
as usual. Thus, noise can be decreased arbitrarily. Albeit of requiring multiple traces,
our attack is not single-trace anymore and cannot be used for masked implementations.
When attacking a masked implementation we need to successfully perform the steps 1-2 of
our attack twice in a row. The obtained shared intermediates can then be combined and
a normal key recovery is performed according to attack step 3. As expected, the success
rate on masked implementations is about the square of the success rate in the unmasked
case.

CHAPTER 7. RESULTS 64

Layer Index
2 3 4 5 6 7 8

V
a
ri
a
b
le

In
d
ex

128

160

192

224

255

Entropy0 13

(a) 1 Iteration

Layer Index
2 3 4 5 6 7 8

V
a
ri
a
b
le

In
d
ex

128

160

192

224

255

Entropy0 13

(b) 4 Iterations

Layer Index
2 3 4 5 6 7 8

V
a
ri
a
b
le

In
d
ex

128

160

192

224

255

Entropy0 13

(c) 25 Iterations

Figure 7.2: Application of BP on the subgraph FG3. We show the entropy of each
intermediate after a set number of iterations. The results for FG1 and FG2 are similar.

0 0.2 0.4 0.6 0.8 1

<

0

0.2

0.4

0.6

0.8

1

S
u
cc
es
s
R
a
te

7

8

9

10

11

12

13

A
v
g
.
E
n
tr
o
p
y

Non-Masked

Masked

Figure 7.3: Success probability of key recovery for varying σ

Chapter 8

Conclusions

We now summarize the results of our attack, mention possible future work and give im-
plementation recommendations that could prevent our attack.

Section 8.1 explains the implications of our attack on currently existing implementation
proposals. In Section 8.2, we give suggestions that can significantly increase the required
effort of performing our attack. Finally, we want to give an outlook on possible future
work based on our attack in Section 8.3.

8.1 Implications of our Attack

We have shown the first single-trace side-channel attack that targets an RLWE-based
encryption scheme. Since we only use leakage information from within the INTT oper-
ation, a similar variation of our attack may be applicable to many other lattice-based
cryptographic schemes.

We have also considered a masked implementation, proposed by Reparaz et al. [69],
that conceals input/output as well as all intermediate values of the INTT, in our attack
evaluation. As shown in Chapter 7, we can break such a masked INTT implementation
with high success rates, both for real and simulated leakage data. Since our attack can
handle rather noisy side-channel information from a singe-trace template matching, we
can calculate the shares of the intermediates, combine them, perform a key recovery, and
obtain the unmasked private key.

Based on the ideas of Soft-Analytical Side-Channel Attacks (SASCA) (Section 4.3),
we built a factor graph representation of the attacked INTT operation. We then found
an efficient way of performing the BP algorithm to calculate marginal distributions of
intermediate variables. We were not able to correctly determine all intermediate variables
after the marginalization step. However, we presented an efficient key recovery algorithm
that can, given enough correctly determined INTT intermediate values, recover the full
private key.

Since we have performed an implementation attack, the theoretical security claims of
RLWE-based encryption schemes remain unaffected. Yet, we have shown that practical
implementations need to feature sufficient side-channel countermeasures. A masking of the
INTT operation alone is not sufficient. Also, shuffling of coefficient-wise multiplications
before/after the INTT operation, as proposed by Oder et al. [57] does not protect against
our attack since our attack is focused solely on leakage information from within the INTT
operation. In the next section, we present a few countermeasures that do have an impact

65

CHAPTER 8. CONCLUSIONS 66

on our attack.

8.2 Suggested Countermeasures

Based on our attack results we now propose countermeasures, some of which should be
considered in practical implementations of cryptographic schemes that incorporate an
(I)NTT. While all countermeasures are fairly easy to implement they can significantly
affect the performance/efficiency of the corresponding implementation.

Constant Time Operations

In our attack, the main targets during power analysis are the modular multiplication op-
erations. While the multiplication instruction is executed in constant time, the reduction
is implemented via trivial division using hardware dividers and does leak timing informa-
tion. We use this timing information to perform an initial classification of the unknown
intermediates into 1 out of 5 possible value ranges. Thereby, we increase the performance
of the subsequent TA by reducing the value domain of each attacked intermediate. One
obvious countermeasure is the usage of constant time modular multiplications as suggested
by Oder et al. [57]. Even though this countermeasure does not prevent our attack in prin-
ciple, it will increase the value domain of each intermediate. Thus, the noise in the prior
probabilities in attack step 2.

Shuffling inside the INTT

As mentioned earlier, there exist implementation proposals for RLWE encryption that
incorporate shuffling. Yet, to the best of our knowledge, nobody has proposed shuffling
inside the INTT operation. The implementation of shuffling inside an INTT operation
is straight forward since the butterflys in each layer are independent. A shuffled INTT
would have severe consequences on the power analysis in attack step 1, since a reliable
assignment of traces to corresponding butterflys is not possible anymore. However, the
cost of shuffling is rather high, since random execution sequences should be generated for
every layer.

Adaption of the RLWE Parameterization

The choice of the RLWE encryption parameterization can be adapted such that single-trace
side-channel analysis becomes more difficult. The size of the modulus q has a large impact
on our side-channel analysis performance, since the entropy of every INTT intermediate
is upper-bounded by log2(q). The usage of an RLWE parameterization that requires a
larger q may therefore increase the noise in the leakage information up to a point where
the BP algorithm cannot calculate marginal distributions reliably anymore.

One example of an RLWE parameterization that uses a comparably large q was pro-
posed by Micciancio et al. [52] (Table 2.1). In one of their proposals they suggest the
RLWE parameterization:

n = 214 , q = 16381 , σ = 1.17,

which would result in a security level of ≥ 128-bit and a 2996-bit public key (excluding
the lattice). Thus, the maximum entropy per intermediate in our attack would increase
from 12.9 to 14.0.

CHAPTER 8. CONCLUSIONS 67

8.3 Future Work

In this section, we present a few ideas on possible future work based on our presented
attack.

Exact Marginalization for General Graphs

One limitation of the BP algorithm, when applied on a cyclic factor graph, is that the
obtained marginals are only approximations of the real marginal distribution of each vari-
able node. Solely in case of an acyclic factor graphs the BP algorithm is guaranteed to
deliver exact marginals. However, the so-called Junction Tree algorithm may be used here
instead.

The Junction Tree algorithm is closely related to the BP algorithm, yet it allows us
to calculate marginal distributions in general graphs. The algorithm works on a junction
tree representation of a given function that eliminates cycles by clustering them into single
nodes. The transformation of our factor graph into a junction tree as well as the application
and evaluation of the junction tree algorithm is left for future work.

Evaluation for Different RLWE Parameterizations

Our attack evaluation is based on a hardware friendly RLWE parameterization from
Göttert et al. [32]:

n = 256 , q = 7681 , σ = 1.80

However, authors have also proposed many more secure parameterizations as shown in
Table 2.1. Since our attack can be scaled easily, a performance evaluation might be
interesting for parameterizations with a particularly small modulus [52]:

n = 136 , q = 2003 , σ = 2.07

or comparably high lattice dimensions and thus large factor graphs [32]:

n = 512 , q = 12289 , σ = 1.93

We expect that the choice of the modulus q has the biggest impact on the performance of
our attack. A large q implies a larger value domain for each intermediate and thus a larger
entropy in the side-channel measurements. The number of required measurements in the
template building phase also increases from ≈ 100 to e.g. ≈ 157 million for q = 12289.
The runtime of our attack is most influenced by the lattice dimension n. By doubling the
lattice dimension, compared to our RLWE parameterization, the number of intermediates
in the NTT butterfly networks increases from 2304 (256 × 9) to 5120 (512 × 10). The
BP algorithm needs to executed on factor graphs with more than twice the size. Still, we
expect the runtime of our attack to be rather low. Another implication of doubling n is
that the value domain of ω increases from 128 to 256. This results in an increased amount
of required measurements in the template building phase of ≈ 314 million for n = 512 and
q = 12289.

The choice of σ is only relevant for step 3 of our attack. However, we do not expect
a slightly higher σ to have a significant impact on the performance of our key recovery
algorithm.

CHAPTER 8. CONCLUSIONS 68

Evaluation for Hardware Implementations

Our attack was performed on a microprocessor implementation of an efficient RLWE
encryption scheme. However, there also exist efficient RLWE encryption implementations
on FPGAs, such as proposed by Roy et al [71]. Their hardware implementations are
heavily optimized, either for high throughput or small area. Hence, their implementation
of the INTT operation is quite different to the implementation that was used in this thesis.
An evaluation of our attack on such a hardware implementation with different types of
leakage information is left for further work.

Appendix A

Definitions

A.1 Abbreviations

ACA Algebraic Cryptanalysis
BP Belief Propagation
AES Advanced Encryption Standard
ASCA Algebraic Side-Channel Attack
BKZ Block Korkine Zolotarev Algorithm
CMOS Complementary metal-oxide-semiconductor
CVP Closest Vectors Problem
DPA Differential Power Analysis
ECC Elliptic Curve Cryptography
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
INTT Inverse Number Theoretic Transform
LWE Learning With Errors Problem
NTT Number Theoretic Transform
RSA Rivest-Shamir-Adleman Cryptosystem
RLWE Ring-Learning With Errors Problem
SASCA Soft Analytical Side-Channel Attack
SCA Side-Channel Attack
SPA Simple Power Analysis
SIS Shortest Integer Solution Problem
SNR Signal-to-Noise Ratio
SVP Shortest Vectors Problem
TA Template Attack

69

Bibliography

[1] Cmos, the ideal logic family. Online, 1983. https://www.fairchildsemi.com/

application-notes/AN/AN-77.pdf.

[2] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model.
In Proc. of Eurocrypt’10, volume 6110 of LNCS, pages 553–572, 2010.

[3] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 99–108, New York, NY, USA, 1996. ACM.

[4] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous Hardcore Bits and
Cryptography against Memory Attacks, pages 474–495. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[5] E. Alkim, L. Ducas, T. Pppelmann, and P. Schwabe. Post-quantum key exchange -
a new hope. Cryptology ePrint Archive, Report 2015/1092, 2015. http://eprint.

iacr.org/2015/1092.

[6] R. J. Anderson. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 2001.

[7] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast Cryptographic Primitives
and Circular-Secure Encryption Based on Hard Learning Problems, pages 595–618.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[8] G. V. Bard, N. T. Courtois, and C. Jefferson. Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over gf(2) via sat-
solvers. Cryptology ePrint Archive, Report 2007/024, 2007. http://eprint.iacr.

org/2007/024.

[9] D. J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.

[10] D. J. Bernstein, T. Chou, and P. Schwabe. McBits: Fast Constant-Time Code-Based
Cryptography, pages 250–272. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[11] M. Braithwaite. Experimenting with post-quantum cryptography. Google
Security Blog, 2016. https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html.

[12] L. G. Bruinderink, A. Hlsing, T. Lange, and Y. Yarom. Flush, gauss, and reload – a
cache attack on the bliss lattice-based signature scheme. Cryptology ePrint Archive,
Report 2016/300, 2016. http://eprint.iacr.org/2016/300.

70

https://www.fairchildsemi.com/application-notes/AN/AN-77.pdf
https://www.fairchildsemi.com/application-notes/AN/AN-77.pdf
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2015/1092
http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2007/024
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/2016/300

BIBLIOGRAPHY 71

[13] D. Brumley and D. Boneh. Remote timing attacks are practical. In Proceedings of
the 12th Conference on USENIX Security Symposium - Volume 12, SSYM’03, pages
1–1, Berkeley, CA, USA, 2003. USENIX Association.

[14] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai Trees, or How to Delegate a
Lattice Basis, pages 523–552. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[15] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks, pages 13–28. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003.

[16] S. Cheung. Proof of Hammersley-Clifford Theorem. Feb. 2008.

[17] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[18] N. T. Courtois and G. V. Bard. Algebraic Cryptanalysis of the Data Encryption
Standard, pages 152–169. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[19] N. T. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations, pages 267–287. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

[20] S. A. Crosby, D. S. Wallach, and R. H. Riedi. Opportunities and limits of remote
timing attacks. ACM Trans. Inf. Syst. Secur., 12(3):17:1–17:29, Jan. 2009.

[21] S. G. Daniele Micciancio. Complexity of Lattice Problems: a cryptographic perspec-
tive, volume 671 of The Kluwer International in Engineering and Computer Science.
Kluwer Academic Publishers, Boston, Massachusetts, Mar. 2002.

[22] N. S. Dattani and N. Bryans. Quantum factorization of 56153 with only 4 qubits.
CoRR, abs/1411.6758, 2014.

[23] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient software
implementation of ring-lwe encryption. In Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE ’15, pages 339–344, San Jose, CA,
USA, 2015. EDA Consortium.

[24] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems.
A Practical Implementation of the Timing Attack, pages 167–182. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000.

[25] Y. Dodis, S. Goldwasser, Y. Tauman Kalai, C. Peikert, and V. Vaikuntanathan.
Public-Key Encryption Schemes with Auxiliary Inputs, pages 361–381. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[26] L. Ducas and P. Q. Nguyen. Faster Gaussian Lattice Sampling Using Lazy Floating-
Point Arithmetic, pages 415–432. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[27] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersingular
isogeny cryptosystems. In ASIACRYPT (1), pages 63–91. Springer, 2016.

BIBLIOGRAPHY 72

[28] D. Genkin, A. Shamir, and E. Tromer. RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis, pages 444–461. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2014.

[29] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[30] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing, STOC ’08, pages 197–206, New York, NY, USA, 2008.
ACM.

[31] B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. stochastic methods. In
L. Goubin and M. Matsui, editors, CHES 2006, 8th International, volume 4249 of
LNCS, pages 15–29. Springer, 2006.

[32] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On the Design
of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes, pages
512–529. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[33] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceed-
ings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC
’96, pages 212–219, New York, NY, USA, 1996. ACM.

[34] D. Gruss, C. Maurice, and K. Wagner. Flush+flush: A stealthier last-level cache
attack. CoRR, abs/1511.04594, 2015.

[35] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical Lattice-Based Cryptog-
raphy: A Signature Scheme for Embedded Systems, pages 530–547. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[36] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryp-
tosystem, pages 267–288. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[37] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill. On practical discrete
gaussian samplers for lattice-based cryptography. IEEE Transactions on Computers,
PP(99):1–1, 2016.

[38] H. B. Keller and J. R. Swenson. Experiments on the lattice problem of gauss. Math-
ematics of Computation, 17(83):223–230, 1963.

[39] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology - CRYPTO ’96, 16th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings,
pages 104–113, 1996.

[40] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.

BIBLIOGRAPHY 73

[41] O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant smartcard
processors. In Proceedings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, WOST’99, pages 2–2, Berkeley, CA,
USA, 1999. USENIX Association.

[42] J. L. Lagrange. Recherches darithmetique. nouveaux memoires de lacademie de berlin.
1773.

[43] L. A. L. L. Lenstra, H.W. jr. Factoring polynomials with rational coefficients. Math-
ematische Annalen, 261:515–534, 1982.

[44] T. Lepoint and M. Naehrig. A Comparison of the Homomorphic Encryption Schemes
FV and YASHE, pages 318–335. Springer International Publishing, Cham, 2014.

[45] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In
Proceedings of the 11th International Conference on Topics in Cryptology: CT-RSA
2011, CT-RSA’11, pages 319–339, Berlin, Heidelberg, 2011. Springer-Verlag.

[46] M. Liu and P. Q. Nguyen. Solving BDD by Enumeration: An Update, pages 293–309.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[47] J. Longo, E. D. Mulder, D. Page, and M. Tunstall. Soc it to em: electromagnetic
side-channel attacks on a complex system-on-chip. Cryptology ePrint Archive, Report
2015/561, 2015. http://eprint.iacr.org/2015/561.

[48] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A Modest Pro-
posal for FFT Hashing, pages 54–72. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[49] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings, pages 1–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[50] D. J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge
University Press, 2003.

[51] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[52] D. Micciancio and O. Regev. Lattice-based cryptography, 2008.

[53] J. M. Mooij and H. J. Kappen. Sufficient Conditions for Convergence of the SumProd-
uct Algorithm. IEEE Transactions on Infermation Theory, 53(12):4422–4437, Dec.
2007.

[54] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. CoRR, abs/1301.6725, 2013.

[55] P. Q. Nguyen and D. Stehle. Low-dimensional lattice basis reduction revisited. ACM
Trans. Algorithms, 5(4):46:1–46:48, Nov. 2009.

[56] NSA/IAD. CNSA Suite and Quantum Computing FAQ, January 2016. https:

//www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/

algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm.

http://eprint.iacr.org/2015/561
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm

BIBLIOGRAPHY 74

[57] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical cca2-secure and
masked ring-lwe implementation. IACR Cryptology ePrint Archive, 2016:1109, 2016.

[58] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends,
J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Nee-
ley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V.
Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quan-
tum simulation of molecular energies. Phys. Rev. X, 6:031007, Jul 2016.

[59] J. Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. In
Proceedings of the American Association of Artificial Intelligence National Conference
on AI, pages 133–136, Pittsburgh, PA, 1982.

[60] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract. In Proceedings of the Forty-first Annual ACM Symposium on
Theory of Computing, STOC ’09, pages 333–342, New York, NY, USA, 2009. ACM.

[61] C. Peikert. An Efficient and Parallel Gaussian Sampler for Lattices, pages 80–97.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[62] C. Peikert, V. Vaikuntanathan, and B. Waters. A Framework for Efficient and Com-
posable Oblivious Transfer, pages 554–571. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008.

[63] P. Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based sig-
natures. Cryptology ePrint Archive, Report 2017/033, 2017. http://eprint.iacr.

org/2017/033.

[64] W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J.
Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson. Uncon-
ditional quantum teleportation between distant solid-state quantum bits. Science,
2014.

[65] T. Pöppelmann and T. Gneysu. Area optimization of lightweight lattice-based en-
cryption on reconfigurable hardware. In 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 2796–2799, June 2014.

[66] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

[67] M. Renauld and F.-X. Standaert. Algebraic Side-Channel Attacks, pages 393–410.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[68] O. Reparaz, S. S. Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede. Masking
ring-lwe. Journal of Cryptographic Engineering, 6(2):139–153, 2016.

[69] O. Reparaz, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. A Masked Ring-LWE
Implementation, pages 683–702. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

http://eprint.iacr.org/2017/033
http://eprint.iacr.org/2017/033

BIBLIOGRAPHY 75

[70] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact and side channel
secure discrete gaussian sampling. Cryptology ePrint Archive, Report 2014/591, 2014.
http://eprint.iacr.org/2014/591.

[71] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Com-
pact Ring-LWE Cryptoprocessor, pages 371–391. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[72] M.-J. O. Saarinen. Gaussian sampling precision in lattice cryptography. Cryptology
ePrint Archive, Report 2015/953, 2015. http://eprint.iacr.org/2015/953.

[73] P. W. Shor. Polynomial time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997.

[74] V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl,
2003.

[75] S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. High Precision Discrete Gaussian
Sampling on FPGAs, pages 383–401. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[76] F.-X. Standaert, T. G. Malkin, and M. Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks, pages 443–461. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[77] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Soft Analytical Side-Channel
Attacks, pages 282–296. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[78] J. Wang and J. Bi. Lattice-based identity-based broadcast encryption scheme. IACR
Cryptology ePrint Archive, 2010:288, 2010.

http://eprint.iacr.org/2014/591
http://eprint.iacr.org/2015/953
http://www.shoup.net/ntl

	Introduction
	Lattice-based Cryptography
	Lattices
	Lattice-based Cryptography
	Lattice Problems
	Shortest Vector Problem
	Closest Vector Problem

	Lattice Related Problems
	Shortest Integer Solution Problem
	Learning with Errors Problem

	Efficient Implementations
	Ideal Lattices
	Number Theoretic Transform
	Ring-Learning with Errors Problem
	Ring-Learning With Errors Encryption Scheme

	Discrete Gaussian Samplers
	Discrete Gaussian Distribution
	Properties of Gaussian Samplers
	Comparison of state-of-the-art Implementations

	Side-Channel Attacks
	Overview
	Timing Attacks
	Power Analysis Attacks
	Simple Power Analysis
	Hypothesis Testing - Differential Power Analysis
	Template Attacks

	Countermeasures
	Timing Countermeasures
	Power Analysis Countermeasures

	Soft Analytical Side-Channel Attacks
	Algebraic Cryptanalysis
	Algebraic Side Channel Attacks
	Soft Analytical Side Channel Attacks

	Marginalization in Graphical Networks
	Marginalization Problem
	Factor Graphs
	Belief Propagation
	Loopy-Belief Propagation

	Attack on an RLWE-based Encryption Scheme
	Attack Overview
	Attack Step 1: Side-Channel Attacks on an INTT Butterfly Network
	Measurement Setup
	Microprocessor implementation
	Side-Channel Attack on Real Leakage
	Side-Channel Attack on Simulated Leakage
	Results - Real Leakage
	Results - Simulated Leakage

	Attack Step 2: Belief Propagation in an NTT Butterfly Network
	Factor Graph Construction
	Belief Propagation Runtime Analysis
	Belief Propagation Performance Improvements
	Applying the BP algorithm

	Attack Step 3: Private Key Recovery
	Generating Linear Equations in the Key
	Key Recovery using Lattice Reduction

	Results
	Results for Real Leakage
	Results for Simulated Leakage

	Conclusions
	Implications of our Attack
	Suggested Countermeasures
	Future Work

	Definitions
	Abbreviations

	Bibliography

