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Abstract
This thesis addresses the challenges arising with the movement in industry to-
wards flexible and smart production. In such a scenario, fleets of autonomous
mobile robots interact with smart machines in a modern production hall. Those
robots should perform absolutely autonomous, i.e. they should be able to ex-
plore an unknown area without any manual configuration and operate reliable
as maintenance should be avoided.

The contribution of this thesis is the analysis and formalization of the task to
explore an unknown production hall. With this knowledge, an extensible and
robust software architecture is designed and implemented for the special case of
the RoboCup Logistics League. For this league, all the needed functionality is
implemented to participate and to complete the first phase of that competition.
Software was written for this purpose on multiple abstraction levels, e.g. low-
level components as way-point navigation, a controller to align in front of a
machine, and computer vision tasks for machine detection as well as high-level
tasks like an exploration scheduler.

The performance of this scheduler is evaluated and compared to a base-line ap-
proach. The results show an improved overall performance due to the scheduling
algorithm as well as a reliable overall software stack. This work can therefore
be used as a basis for further developments in this area.
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Chapter 1

Introduction

The industry as we know it is changing dramatically as it has already done
before several times as described by Jazdi et al. in [1]. The drastic evolution
in technology, the digitalization of the world, as well as the trend to produce
customized products, enforced companies to keep their production lines as flex-
ible as possible. Furthermore, optimization of the production chain can be
achieved as each and every part gathers information about itself, as well as its
environment. It is a huge challenge to handle all this information as well as the
dynamics introduced by this new flexibility.

1.1 Motivation

One strategy to face the challenges arising with this new requirements, is to use
autonomous, mobile robots operating in a factory floor with autonomous ma-
chines, capable of performing specific production steps. To keep this approach
flexible and reliable, each robot should be able to explore its environment to
avoid a manual setup and parametrization. To accomplish this complex task, a
robust and efficient software framework is needed to enable these mobile robots
to operate autonomously in this dynamic and non-deterministic environment.
To provide a testbed for this new technology, and to allow comparison be-
tween different approaches, the "Logistics League" was introduced as part of
the annual RoboCup world championship (see Chapter 2). Therefore, a soft-
ware framework (see Chapter 6) was developed to participate in this league,
simulating the next industrial revolution and smart production.

1.1.1 Industry 4.0

With the mechanization of production using steam engines in the late 18th cen-
tury, the first industrial revolution took place. The change to mass production
and assembly lines using electricity is known as the second industrial revolu-
tion. The utilization of robots for mass production is called the third industrial
revolution. Today, the rise of flexible production systems, cyber-physical sys-
tems, the internet of things, and cloud computing heralds the start of the fourth
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Figure 1.1: The four industrial revolutions depicted with their
main driving forces.

revolution, also known as "Industrie 4.0" [2]. This steps are summarized in Fig-
ure 1.1 by Roser1. The German term "Industrie 4.0" (industry 4.0) is used
in most of the cases, as the German government initiated and promoted this
revolution. This change in the industry is still in progress, and it is necessary
to be prepared as Draht et. al. [3] describes this revolution as:

"However, Industrie 4.0 is a phenomenon that will come inevitably,
whether we want it or not."

With this, the aim of this work is to provide a solution for multiple mobile
robots, enabling a flexible production in a modern production hall.

To enforce this research area, and to offer a testbed for novel approaches, the
RoboCup Logistics League [4] was founded as part of the annual international
robotics competition RoboCup [5], proposed and founded in 1997. Competitors
from all over the world show here the state of the art in robotics in different
disciplines. The league is further described in Chapter 2.

1.2 Goals and Challenges

In the following, the pursued goals of this thesis and the met challenges are
described. The goal of this work is to provide a flexible and robust software
architecture for robots in the industrial area.

For this, several special aspects needs to be considered. First of all, the so-
lution needs to be flexible as each and every problem arising is different and
needs different features. Furthermore, each of the software parts needs to be
testable individually. The derived solution should therefore be modular and
well structured with clearly defined interfaces.

1Christoph Roser at AllAboutLean.com - Own work, CC BY-SA 4.0
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To prove the practicality of the developed architecture, a concrete implemen-
tation needs to be shown. This software has to provide all the functionality
to allow a fleet of autonomous robots to explore an unknown factory hall and
to be extensible enough to allow easy implementation of further functionality,
such as flexible production. This comes up with several challenges, such as an
incomplete knowledge about the world, wrong or inaccurate observations, and
therefore conflicts within the knowledge-base.

1.3 Contribution

In the context of this thesis, the problems given in the RoboCup Logistic League
(see Chapter 2) are analyzed and classified. Furthermore, the problem to explore
an unknown factory hall with randomly distributed machines is formalized.

A complete software stack is provided, enabling multiple mobile robots to work
together in a modern factory. Therefore, a solution to the problems arising is
given, i.e. from scheduling of different task, to low-level issues as the detec-
tion of machine lights, and way-point navigation. The necessary prerequisites
used are described in Chapter 5 and details of the software architecture can be
found in Chapter 6. With this, all the features needed to solve the exploration
problem of the RoboCup Logistic League (described in Section 2.5.1) are pro-
vided. Furthermore, the architecture is kept modular, making it easy to add
further functionality such as an additional scheduler for the production phase
(described in Section 2.5.2).

Parts of the developed solution, e.g. an overall architecture and a solution to de-
rive an exploration schedule, was presented at the Austrian Robotics Workshop
2017 and published in [6].

1.4 Outline

This work is structured as follows: The RoboCup Logistic League is presented
as a testbed and benchmark for the developed software framework and algo-
rithms in Chapter 2. The problem to explore an unknown space is formalized
in Chapter 3, research about similar problems and their solutions is presented
in Chapter 4, and the prerequisites in Chapter 5. The developed three-layer
software architecture is introduced and described in Chapter 6. Results from
experiments using the developed software can be found in Chapter 7. The over-
all work is concluded in Chapter 8 and a perspective for future developments is
given in Chapter 9.
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Chapter 2

RoboCup Logistics League

In this chapter, the RoboCup Logistic League is introduces as the benchmark
and test-bed for the developed framework. The history of the league and the
chosen abstraction level are shown as well as the defined rules.

2.1 Aim of the League

The RoboCup Logistic League was founded to act as an unified benchmark for
novel algorithms in the context of flexible production. To do so, a modern fac-
tory hall is mocked up in the philosophy of industry 4.0. This means, that teams
of autonomous, mobile robots uses specialized, fixed manufacturing stations to
produce customized goods. Randomly arriving orders define which commodity
needs to be delivered within which time-window, i.e. no information is given in
advance (simulating customized orders from an online shop).

This concept is put into action in this league using multipleModularProduction
System (MPS) (see Section 2.3) distributed in a factory (the game-field, de-
scribed in Section 2.4), each capable of performing specific refinement tasks, i.e.
process a semi-finished product to a more complex semi-finished product, or a
final product.

Figure 2.1: Products in the RoboCup Logistic League simu-
lating customized products.
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2.2 Products

As the refinement steps are not the main concern of this league and to avoid
the need of expensive manufacturing units (e.g. lathes, milling machines), the
products (can be seen in Figure 2.1 from the official rulebook1) and the needed
of raw-material is mocked up too.

2.2.1 Raw-Materials

• Base: The base is the lowermost element and is available in the three
colors: black, red, and silver. The base can be combined with rings and a
cap.

• Ring: To allow complex products, intermediate rings are introduced. A
product can have zero, one, two or three rings. The rings are available in
the colors blue, green, yellow, and orange.

• Cap: Every product is finished with a cap. These caps are available in
the colors gray and black. Caps can be mounted onto bases or rings.

2.2.2 Composite Products

Having these basic elements, products of different complexity can be assembled,
classified as C0, C1, C2 and C3. The simplest one, C0 consists of a base with
a cap only. The next level, C1 already has an intermediate ring with a defined
color. This is the same for C2 with two intermediate rings and C3 with three
intermediate rings.

2.2.3 Additional Bases

To be able to simulate the need for additional raw material, some production
steps require to feed in bases before the actual refinement step can be executed.
This complexity is implemented for the mounting of rings, i.e. to mount a ring
a defined number of additional bases needs to be provided in advance. How
many of these bases for which color is defined per game in a random fashion by
the referee box described in Section 2.5.3.

These additional production steps are then referenced as CC0, CC1, CC2 with
no extra base, one and two additional bases needed for a ring to be mounted,
respectively.

1RoboCup Logistic rulebook at robocup-logistic.org/rules
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2.3 Modular Production Systems (MPS)

To assemble the products, the mobile robots need to deliver the basic elements
and semi-finished products to the so-called MPS. There are four different types
of stations capable of doing different refinement steps:

• Base Station (BS): One station per team providing bases in ordered color.

• Ring Station (RS): There are two stations per team, each responsible for
mounting rings of two distinct colors.

• Cap Station (CS): There are also two stations per team. The stations
host a shelf with bases with caps. To mount a cap onto a provided base,
first one of the bases of the shelf needs to be fed in. The station removes
the cap and stores it; the empty base needs to be discarded. After this,
the actual base can be entered, and the cap is mounted.

• Delivery Station (DS): One station with several slots per team where
finished products must be delivered to.

2.4 Gamefield

The production hall is structured in 24 zones, named "Zone #1" to "Zone
#24" as it can be seen in Figure 2.2. Each of these fields has a width of 2 m
and a height of 1.5 m. Therefore, the whole game field without insertion area is
12 m×6 m in size. The game field is surrounded by a border (drawn in blue) with
several openings. In every zone there can be one production system at most.
They are distributed randomly with some restrictions. In general, the area is
separated into two halves, one per team, where the corresponding machines are
located. To add the need to consider the robots of the other team too, i.e. to
do collision avoidance and dynamic path planning, two of the machines (chosen
randomly) are located at the space of the opponent team. To guarantee equal
conditions for both teams, the machines are positioned in a mirrored fashion.
In the example drawn in Figure 2.2, the first ring station (RS1) and the first
cap station (CS1) are swapped.

2.5 Rules and Gameplay

In every game, two teams compete at the same time on a shared field. Each team
gets six production machines to work with. The gameplay is mainly separated
into two phases, the exploration, and the production phase.
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Figure 2.2: Gamefield in the RoboCup Logistics League with
randomly distributed production machines, insertion area for
both teams, zone naming and origin of the used coordination

system.

2.5.1 Exploration Phase

In the first phase of the competition, the robots have no information about the
factory floor. This emphasizes the idea of fully flexible production, i.e. to put
a robot into a new hall and the robot should start to explore this hall, find the
machines, and start producing products fully autonomously. This is simulated
in this league with the first, so-called, “Exploration Phase”. The robots spread
out and try to find the machines. To reward only correct detected machines,
every machine lights up an unique random pattern. This pattern as well as the
zone the machine is in, has to be reported to get points. Wrong reports are
penalized. A detailed scoring scheme corresponding to the official rulebook for
the RoboCup Logistics League 2016 can be seen in Table 2.1.

Reported Correct Points

Zone yes +3
no -2

Light Pattern yes +5
no -4

Total Points At most 48 points (reporting all 6 machines correctly).
At least 0 points (no negative points for exploration phase).

Table 2.1: Rewarded points during the exploration phase.
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2.5.2 Production Phase

In the second phase of the game, the robots get orders to complete. These
orders have a dedicated earliest delivery time and a deadline, i.e. the products
need to be delivered in a specified time-window. The products to produce are of
different complexity, and therefore a different number of points can be gained
for producing them. A detailed scoring scheme corresponding to the official
rulebook for the RoboCup Logistics League 2016 can be seen in Table 2.2. As
it can be seen in the scoring, manufacturing a product consists of several steps.

As an example, the production of a C1 product with a ring demanding one
additional base is listed:

1. Prepare the BS to output an arbitrary base.

2. Take the base and put it into the slide of the RS as an additional base.

3. Prepare the BS to output a base in the demanded color.

4. Prepare the RS to mount a cap in the demanded color onto a base.

5. Take the base from the BS and input it into the RS.

6. Prepare the CS to mount a cap onto a base.

7. Take the base with a cap of correct color from the shelf at the BS.

8. Input the base with the cap into the CS.

9. Remove and dispose the base without cap from the CS.

10. Take the base with ring from the RS.

11. Input the base with the ring in CS.

12. Take the base with the ring and cap from the CS.

13. Prepare the DS with the demanded delivery-slot.

14. Input the product in the DS.

As it can be seen, even the manufacturing of a simple C1 product is rather
complex and involves several steps. This complexity is further increased as the
MPS goes out of order if it is used in a wrong way (i.e. wrong preparation).
Additionally, two of the machines go out of order at random time-points for a
random amount of time during the game.

2.5.3 Referee Box

The referee box controls the overall game, illustrates the game state, monitors
the feedback from the robots and generates the random orders. A screenshot
of the referee box durring the setup phase can be seen in Figure 2.3.

This automated control system for robotic competitions is described in [7]. The
goal of this software solution is to have no or as little as possible need of human



Chapter 2. RoboCup Logistics League 9

Completed Sub-Task Description Points
Additional base Additional base was fed into the ring

station.
+2

Finish CC0 step Prepare the ring station for a color re-
quiring no additional bases.

+5

Finish CC1 step Prepare the ring station for a color re-
quiring one additional base.

+10

Finish CC2 step Prepare the ring station for a color re-
quiring two additional bases.

+20

Finish C1 pre-cap Last ring of a C1 product mounted. +10
Finish C2 pre-cap Last ring of a C2 product mounted. +30
Finish C3 pre-cap Last ring of a C3 product mounted. +80

Mount cap Mount the cap on a ordered product. +10
Delayed delivery Delivering an order within 10 seconds

after the deadline leads to an reduced
score. Defining the end of the deliver-
ing time-slot as Te and the actual de-
livery time t, the score S is given as
S = b15− bt− Tec · 1.5 + 5c

up to +20

Late delivery Delivering an order more than 10 sec-
onds after the deadline

+5

Wrong delivery Deliver a final product to the desig-
nated loading zone out of the requested
time range or after all products re-
quested in the period have already been
delivered.

+1

False delivery Deliver an intermediate product. 0
Obstruction penalty Deliver a workpiece to a machine of the

other team.
-20

Table 2.2: Rewarded points during the production phase.

interaction in such automated runs. The rules of the game, domain specific
facts, and the scoring scheme are defined as C Language Integrated Production
System (CLIPS) rule set allowing easy adoption for new game rules and even
other leagues.
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Figure 2.3: Screenshot of the Referee Box during the setup
phase.
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Chapter 3

Problem Formalization

In this chapter, the problem to coordinate a fleet of robots in order to explore
an unknown space is formalized as a task allocation problem. To do this, the
different components need to be defined, such as the team of robots, the game-
field and its zones, the machines to discover, as well as the observations made
by the robots. With this, the exploration of the game-field can be described in
a formal way.

3.1 Team of Robots, the Gamefield, and Zones

The team of N (N = 3 in this particular league) robots is denoted as the set

R := {r1, r2, . . . , rN}. (3.1)

The gamefield can be seen as an undirected, edge-weighted, planar graph G.
The graph contains M (M = 24 in this particular league) vertices. The set

Z := {z1, z2, . . . , zM} (3.2)

is representing the zones. The edges between vertices are defined as the set

E = {〈zi, zj〉|zi, zj ∈ Z}. (3.3)

To model a connectivity in terms of a Von Neumann neighborhood with range
r = 1, a weighting function for each edge is defined as

w : E → W. (3.4)

As the graph is undirected, for two vertices zi and zj, it holds that ei,j = ej,i.

With this, the graph is defined as

G := (Z,E,w). (3.5)
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Figure 3.1: Gamefield modeled as undirected, edge-weighted,
planar graph (finite weighted edges only).

Due to the geometric properties of the game-field (see Figure 2.2), it is sufficient
to define two distinct weights

W := {w1, w2}, w1, w2 ∈ R (3.6)

for left/right and up/down respectively. This models the invariance of the cost
to move between cells, i.e. moving w.l.o.g. horizontal from one zone to another
costs the same for all tuples of neighboring cells, from e.g. Z20 to Z16 costs as
much as for moving from Z14 to Z18. Such a graph can be seen in Figure 3.1.

To define the weighting function keeping the indexing of the real game-field (and
therefore the relation to that game-field), it is necessary to define the weighting
function step-wise as

w (ei,j) = w (ej,i) =



w1, ∀i ∈ {1, 2, ..., 11},∀j ∈ N : j = i+ 1

w1, ∀i ∈ {13, 14, ..., 23},∀j ∈ N : j = i+ 1

w1, ∀i ∈ {1, 2, 3, 4},∀j ∈ N : j = i+ 12

w2, ∀i ∈ {1, 2, ..., 8},∀j ∈ N : j = i+ 4

w2, ∀i ∈ {13, 14, ..., 20},∀j ∈ N : j = i+ 4

∞, otherwise.

(3.7)

Having this, the estimated cost to move from one zone to another can be defined
as the accumulated weight over the shortest path si,j between the two vertices
zi and zj representing these zones. Such a path is defined as the sequence of
edges traversed, i.e.

si,j := {〈z0
i , z

0
j 〉, 〈z1

i , z
2
j 〉, . . . , 〈zki , zkj 〉} ∈ S (3.8)
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where between all consecutive zones there must be a direct path, i.e. an edge
with finite weight. The consecutiveness is ensured by

∀m ∈ {1, 2, . . . k} : zmj = zm+1
i . (3.9)

These paths performed by the robots are collected in the set of all paths S. The
length L of such a path is the sum of all weights of the traversed edges, i.e.

L : S → R (3.10)

L(si,j) =
k−1∑
m=0

w(〈zmi , zmj 〉). (3.11)

The shortest path can be found e.g. using Dijkstra’s Algorithm described in [8].
This represents only a theoretical lower bound of the costs, i.e. real navigation
introduces additional costs due to e.g. obstacles.

3.2 Machines to Discover

The goal of the exploration phase is to detect all of the K (K = 6 in this
particular league) machines. During this period, the type of the machine needs
to be identified, but for the exploration strategy, the type has no effect in the
first place. Therefore, the machines can be denoted as

M := {m1,m2, . . . ,mK}. (3.12)

Each of these machines is positioned within one randomly chosen zone. There-
fore, the assignment of a machine to a zone can be defined as:

ai,j =

{
1, if mi is in Zone zj
0, otherwise.

(3.13)

This mapping need to be found during this phase. It is assumed that this is
known for Zone zi as one of the robots visits this zone and reported the presence
of a machine, i.e. ai,j is set. This assumption holds as one gets the response
from the referee box if a machine to zone mapping is reported. This leads to
the following condition for a fully discovered field:

explored⇔
∑
i

∑
j

ai,j = K (3.14)

3.3 Observations

To motivate the chosen modeling of the observation, the way the observations
come in needs to be shown. This is mainly done with the AR tag detection
described in Sec. 5.7. Each robot is therefore equipped with a front-facing
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camera to discover machines on the field. The distance and angle of this machine
is then calculated relatively to the robot and further (with the self-localization
of the robot) with respect to a common map. Within this map, the robot
can estimate the zone this machine is in. All this information about observed
machines are then reported as observations as described in this section.

An observation is a tuple of information

o := 〈r, z, p,m, t〉, (3.15)

where o.r ∈ R denotes the robot’s unique identification number, o.z ∈ Z the
zone the observed machine is in, o.p ∈ [0, 1] the probability of the robot that its
observation is correct, o.m ∈ M the observed machine and o.t ∈ N0 the time-
stamp of this observation. All this observations are collected in the sequence of
observations

Ω := 〈o1, o2, . . . , oO〉 (3.16)

for O observations.

These observations underly some rules due to the game rules described in Sec. 2.

First of all, there is a defined set of machines MPS, i.e. both teams share the
same six machine types, namely a “Base Station” BS, “Delivery Station” DS,
two “Ring Stations” RS1 and RS2 as well as two “Cap Stations” CS1 and CS2

per team, defined as

MPS := {BS,DS,RS1, RS2, CS1, CS2}. (3.17)

The teams T are denoted with cyan and magenta and are therefore defined as

T := {cyan,magenta}. (3.18)

With this, the set of machines for this particular league can be defined as

Mlogistics := {mi,j|∀i ∈ MPS,∀j ∈ T}. (3.19)

The relation of the own machine to the machine of the other team can be defined
as the counterpart function

counterpart : Mlogistics →Mlogistics (3.20)

defined as

counterpart(mi,j) =

{
mi,magenta, if j = cyan
mi,cyan, if j = magenta

∀i ∈ MPS. (3.21)

The second relation describes that the machines are distributed in a mirrored
way. For this, the relation of mirroring needs to be defined. Mirroring is made
about the y-axis of the game-field described in Sec. 2.4. The mirrored zone is
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therefore defined as as the mirrored function

mirrored : Z → Z (3.22)

defined as

mirrored(zi) =

{
zi+M

2
, if i ≤ M

2

zi−M
2
, otherwise.

(3.23)

With these relations, we can derive conditions if the set of observations is valid,
i.e. is conflict-free. The set is conflict-free if the following holds:

• each reported machine is reported in the same zone (see Equation 3.24).

• if a machine is reported in a zone zi, observations in the mirrored zone
must only be of the same machine type of the other team (see Equa-
tion 3.25).

This can be expressed as the integrity constraints:

∀o′, o′′ ∈ Ω : o′.z = o′′.z ⇔ o′.m = o′′.m (3.24)
∀o′, o′′ ∈ Ω : o′.z = mirrored(o′′.z)⇔ o′.m = counterpart(o′′.m). (3.25)

3.4 Belief

To calculate a belief of the gamefield, i.e. a probability describing the machine
distribution, zones are treated as discrete random variables (compare to Elfes
et al. [9] about occupancy grid maps). Such a zone is therefore defined in a
stochastic way as

Z : Ψ→ R, (3.26)

where Ψ is the sample space of Z defined as

Ψ := Mlogistics ∪ free. (3.27)

With this, the probability that the random variable Z has a specific state, given
the observations, can be written using Bayes’ theorem as

P (Z|Ω) =
P (Z)P (Ω|Z)

P (Ω)
, (3.28)

i.e. the product of the probability that the zone has a distinct state times
the probability of the observations given this state, normalized by the overall
probability of the given observations.

As the observations arrive over time, an iterative calculation is needed. For
this, the following can be calculated after the observation ok has arrived:

P (Z|o1, . . . , ok) =
P (ok|Z)P (Z|o1, . . . , ok−1)

P (ok)
(3.29)
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To define this as a valid probability, the probabilities of the state of a zone needs
to sum up to 1 for the complete sample space, i.e.∑

ψ∈Ψ

P (Z|ψ) = 1. (3.30)

3.5 Exploration as a Minimization Problem

The task to observe all zones can be defined as a minimization problem. The
function declaring a zone to be visited by a robot can be defined using the
function

at : (R× N0 × Z)→ {0, 1}. (3.31)

defined as

at(r, t, z) =

{
1, if robot r is in zone z at time t
0, otherwise.

(3.32)

Having this, the constraint that all the zones needs to be explored (exploration
constraint) can be defined as

∀z :
∑
r∈R

∑
t∈N

at(r, z, t) ≥ 1. (3.33)

To allow the description, at which zone z ∈ Z each robot r ∈ R is at each
time-point t ∈ N0, an binary allocation variable Xr,t,z ∈ 0, 1 is introduced.

As the movement over the zones needs time, i.e. a robot is for defined time-
window within an zone, these slots needs to be described too. For this, it is
sufficient to define the end-time for each robot r ∈ R and each time-slot t ∈ N0

as Trt ∈ R+.

With this it is possible to describe, that each robot has to be in some zone at
each time-point (placement constraint), i.e.

∀r ∈ R, ∀t ∈ N0 :
∑
z∈Z

Xr,t,z = 1. (3.34)

Furthermore, overlapping of these time-windows needs to be prevented for the
same zone. This is solved with the following constraint (time-slot consistency
constraint):

∀z ∈ Z, 6 ∃r1, r2 ∈ R : r1 6= r2,∀t1, t2 ∈ N0 : t1 6= t2 :

(Tr1,t1−1 < Tr2,t2 < Tr1,t1) ∧ (Tr2,t2−1 < Tr1,t1−1 < Tr2,t2)
(3.35)
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To allow movement between adjacent zones only, the neighborhood needs to be
defined as

∀z, z′ ∈ Z : z′ = NH(z)⇔ w(z, z′) <∞∨ z = z′ (3.36)

With this, the movement can be limited using the constraint (movement con-
straint)

∀r ∈ R, ∀t ∈ N0,∀z ∈ Z : Xr,t,z = 1⇒ Xr,t+1,NH(z) = 1. (3.37)

The endpoint of each time-slot needs to be greater or equal to the end of the
last time-slot and the additional cost for movement and observation Tobs ∈ N0.
The multiplication is only one for the desired pair of states (in both directions,
needs to be divided by two) as:

∀r ∈ R, ∀t ∈ N0 : Tr,t+1 ≥ Tr,t +
1

2

∑
z∈Z

∑
z′∈Z

Xr,t,zXr,t+1,z′ (w(z, z′) + Tobs) (3.38)

With this, the optimization problem results in finding the assignments Xopt
r,t,z

where the last time-point (with index Mr) of all the robots is minimized.

Therefore, the objective function to be minimized is given as

Xopt
r,t,z = arg min

Xr,t,z

(
max

r∈R,t∈N0

Tr,t

)
, s.t. C (3.39)

considering the constraints C defined as the set of

• integrity constraints in Equation 3.24 and Equation 3.25

• exploration constraint in Equation 3.33

• placement constraint in Equation 3.34

• time-slot consistency constraint in Equation 3.35

• movement constraint in Equation 3.37.

To keep the problem solvable, a maximum number of steps need to be defined
for t. Therefore, the definition of t ∈ N0 is only a theoretical one. To solve this,
t needs to be restricted to t ∈ {0, 1, 2, . . . , tmax} ⊆ N0.
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Chapter 4

Related Work

In this chapter, several related approaches are discussed to motivate the design
choices taken for our architecture. Therefore, different solutions are analyzed
regarding their advantages and disadvantages.

To do this, first of all the general design using multiple layers is described using
examples from other fields in computer science. Furthermore, the choice of a
central high-level component is motivated. To finalize this section, two other
solutions for similar problems are presented and compared.

4.1 Layered Approach

Splitting up complex problems into subproblems is a common strategy in
computer science. One specific strategy is to split the problems into differ-
ent layers of abstraction. This approach can be seen solving a lot of prob-
lems, e.g. the communication using Transmission Control Protocol (TCP) /
InternetProtocol (IP) as a implementation of the International Standardization
Organization (ISO)-Open Systems Interconnection (OSI) reference model [10].

Here the increasing abstraction is clearly visible from layer to layer. Lower
layers support higher layers with functionality. Other layer-based solutions can
be found for robotic issues too. Brooks et al. [11] describes a robust solution
for robot systems. Here, different layers (called levels) provide different abilities
with increasing complexity. Level 0 alone, for example, is only able to deliver
raw information and to perform the lowest level hardware actions. Level 1
builds upon this and uses these abilities to achieve more complex capabilities.
Gat continues with this idea in [12]. In this paper, he describes the ”Anatomy“
of such a three layer architecture. There these dedicated layers are

• The Controller: A reactive feed-back control mechanism.

• The Sequencer: A reactive plan execution unit.

• The Deliberator: Performing time-consuming deliberation tasks.

Similar abstraction layers can be found in the literature with different nam-
ing and slightly different definition, e.g. by Bonasso et al. [13] the three tier
architecture (3T) with skill layer, sequencing layer, and planning layer.
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A slightly modified version of these approaches is used in this work. The problem
is split into three distinct layers. One low-level layer is responsible for the
abstraction of the hardware. A mid-level layer using the functionality provided
by the lower layer, enabling more complex abilities and first error detection and
correction. The highest layer is responsible for coordinating the tasks to multiple
robots in an optimal way. Therefore, this layer is different from the other two.
The lower two layers are implemented per robot and the highest layer exists only
once per system. This structure has the advantage of providing a global view.
This avoids the problem of local minima using planning in a greedy fashion
per robot. This concept is justified in Section 4.2.2.3 and further described in
Section 6.1.

4.2 Task Allocation for Multiple Robots with Tem-
poral Constraints

To tackle the challenge of the unknown environment, multiple robots, time
constraints and much more, related work in this area needs to be reviewed. To
do this, first of all the problem needs to be classified.

4.2.1 Taxonomy

As Gerkey et al. describes in [14], the widely accepted taxonomy for this kind
of problems (Multi Robot Task Allocation (MRTA)) classifies as follows:

• Single-taskRobot (SR) versusMulti-taskRobot (MR): Is a robot capable
to perform multiple tasks simultaneously (MT) or not (ST)?

• Single-robot Task (ST) versus Multi-robot Task (MT): Is a single robot
capable to perform a task (SR) or are more than one robot needed (MR)?

• Instantaneous Assignment (IA) versus Time-extended Assignment (TA):
Need the tasks to be assigned instantaneous and no planning for future
assignments is possible (IA) or is more information available such as all
tasks to assign or at least a model of how tasks will arrive over time (TA)?

With this we can classify the problem of the RoboCup Logistic League.

4.2.1.1 Single-Task Robot versus Multi-Task Robot

To pinpoint the type of robots we have, we need to distinguish between the
different game phases described in Section 2.5.1 and Section 2.5.2 for the ex-
ploration and production phase respectively.

During the exploration phase, each robot can perform multiple tasks at the
same time, e.g. move to a machine to detect the shown light pattern and report
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on its way to that machine the pose of the other seen machines. Therefore, the
robots act as multi-task robots (MR) in this phase.

During the production phase, each task is atomic and needs the full attention
of the robots. Therefore, the robots act as single-task robots (SR) in this phase.

4.2.1.2 Single-Robot Task versus Multi-Robot Task

All the tasks are defined in such a way, that they can be done by one robot only
too. This can be also seen as it would be possible to participate with a single
robot as well. Therefore, the tasks can be classified as single-robot tasks (SR).

A multi-robot task can appear if more than one robot is necessary to solve a
task (e.g. too complex for one agent) or in the case of heterogeneous robots, if
different robots are needed to accomplish a task. Both is not the case for our
scenario.

4.2.1.3 Instantaneous Assignment versus Time-Extended Assignment

Here it is necessary to distinguish between the production and the exploration
phase again.

During the exploration phase, the tasks are inferred from the incomplete knowl-
edge about the environment. With this, at each time-point there can be an
arbitrary number of open tasks. E.g. with no further information of the game-
field, there is a task for each zone to be explored. With arriving information,
some of these tasks are discarded of refined. Therefore, this assignment of tasks
cannot be classified clearly with respect to these definitions but have more in
common with the instantaneous assignment (IA) category as the task (explore
the gamefield) is known in advance.

During the production phase, the tasks arrive in a randomized fashion with
no given model behind. As these tasks are then split into subtasks, the assign-
ment of these (dependent) subtasks could be seen as time-extended assignments.
Again, the classification is not clear with respect to these definitions, but have
more in common with the time-extended assignment (TA).

4.2.1.4 Classification of our Problem

Summarizing, the problem can be classified with the taxonomy of Gerkey et al.
[14] as follows:

• Exploration phase

– Multi-task robots (MR)

– Single-robot tasks (ST)

– Time-extended assignments (IA)
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• Production phase

– Single-task robots (SR)

– Single-robot tasks (ST)

– Instantaneous assignments (TA)

With this, similar problems can be found as summarized by Nunes et al. in [15].
Here the problem is further separated if a the tasks have to be completed within
a given Time Window (TW) and if there are Synchronization and Predicence
(SP) relations between the tasks.

With this, several examples can be found for the problem occurring during the
exploration phase (MR, ST). These are solved e.g. by Su et al. in [16] and
Amador et al. in [17] for problems with given time windows, and by Jones et
al. [18] and Tang et al. [19] for problems with synchronization and precedence
relations between the tasks. Approaches faces both, TW and SP, can be found
in Pujol et al. [20] and Parker et al. [21].

Similar problems to those in the production phase (SR, ST) can be found too
for the time-extended assignment type. Here the same separation with TW and
SP can be done. Solutions for TW problems can be found in Melvin et al. [22]
and Ponda et al. [23], for SP problems McIntire et al. [24] and Luo et al. [25]
provide a solution. Approaches for both, TW and SP problems are also given
for this domain by Korsah et al. [26] and Gombolay et al. [27].

The problem faced in the RoboCup Logistics League can be classified with re-
spect to several properties as described in [28], too. Summarizing, the following
attributes can be found:

• Cooperative and Competitive: The robots work together in a team, but
at the same time, they try to achieve more points than the opposing team.

• Partial Observable: Not all information is given, e.g. the position of the
robots from the other team is unknown.

• Non-Deterministic: The execution of actions such as gripping may fail.
For some of them, there is no a trivial way to model this in a stochastic
fashion.

• Sequential: The execution of an action at time-point t1 influences the
state of the whole system at time-point t2, where t2 > t1. This means
that actions happened in the past may affect the behavior in the future.

• Continuous: As the time-slots to deliver a product or the position of the
robot are real-valued numbers, the domain is inherently continuous.

• Known Environment: The behavior of the environment is known, i.e. if a
robot feeds a particular semi-finished product into one particular machine,
the outcome is known.
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• Explicit Time: The time needed to perform a production step is random-
ized from game to game but constant during one game.

• Infinite Domain: Depending on the chosen granularity, the domain is
infinite (continuous time, the position of the robot) or finite by using
discretization.

These properties emphasize again the complexity of this league and the issues
to be solved. To address this problem in a structured way, different approaches
can be found. One of them is to structure the problem using different layers
with increasing abstraction as used in this work.

4.2.2 Typical Approaches

The solution for this problems can be separated in a first step by the used
control hierarchy, i.e. if a central monitoring and controlling unit is used, or if
some kind of swarm or distributed solution is chosen.

4.2.2.1 Centralized Solutions

Using a centralized solution means to have one central point where all the infor-
mation is collected and where the decision which tasks needs to be performed
next is made. This can be realized with a (physically) dedicated additional unit
or by choosing one of the robots to handle this tasks besides its main activity.

This approach allows it to generate a global view of the situation and to generate
a global optimum scheduling. Furthermore, it allows a separation of the task
generation / scheduling and the actual task execution. This benefits come with
the downside of a single point of failure, as if the central unit breaks, the whole
system is unable to perform further.

An often used approach to find optimal solutions is the Branch-and-Bound
algorithm. Here, the state space of possible solutions is represented as a tree.
The root of the tree corresponds here to the original problem to be solved and
all other nodes are subproblems of the original problem. Defining a bounding
function for the costs of each subproblem in the leafs leads then to the possibility
to find the optimal solution in a computational efficient way. Modifications of
this algorithm such as Branch-and-Cut [29], Branch-and-Price [30], and Branch-
Price-and-Cut [31] are further developments of this approach used in the field of
vehicle routing problems (which is similar to these problems). These approaches
are summarized well by Gini in [32].

Formalization To solve such a problem, it is necessary to formulate it as a
constraint satisfaction problem. One example for the field of vehicle routing
problems is given in [29]. Here, the problem to find a minimum number of
vehicles required to visit a defined set of nodes is presented. The problem is
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solved with respect to time window and capacity constraints (similar to our
problem).

To apply e.g. the Branch-and-Cut algorithm, the problem needs to be formu-
lated as an integer programing problem. Such a problem maximizes an term

max cTx (4.1)

with respect to the constraints

Ax ≤ b (4.2)
x ≥ 0 (4.3)

x ∈ Zn. (4.4)

Describing a problem as such an integer programing problem is beyond the scope
of this thesis (as this only motivates the choice of the software architecture,
centralized vs. decentralized). Having such a formalization, the problem can
be solved using e.g. the Branch-and-Cut Algorithm.

4.2.2.2 Decentralized Solutions

In the scope of multi robot task allocation, the most used approaches are dis-
tributed constraint optimization and marked-based methods. Therefore we will
focus on these two in this section.

Distributed Constraint Optimization Problem Based Methods MRTA
problems can be formulated as Distributed Constraint Optimization Problem
(DCOP) as Maheswaran et al. proposes in [33]. This approach has the disadvan-
tage that solving it exactly is in the class ofNon-deterministic Polynomial-time
hard (NP-hard) problems and therefore impractical [34]. Therefore, approxi-
mated solutions are used, e.g. methods like Max-Sum methods have been used
in the RoboCup Rescue League [20], [35], [36] and for task allocation in sensor
networks [37]. An advanced version of this algorithm can be found in the work
of Ramchurn et al. in [35], called Fast Max-Sum Algorithm.

Another approximation is the Low-CommunicationApproximationDistributed
ConstraintOptimization Problem (LA-DCOP) presented by Scerri et al. in [38]
and Farinelli et al. in [39]. This approach uses some kind of token passing to
chose a random agent. This solution tends to guide the search towards a greedy
solution.

Marked-Based Methods Within the field of distributed task allocation, so-
called marked-based methods are very popular. There are several reasons for
that - one of them is, that it can be implemented rather easy and scales very
well. The main idea of almost all the concepts is that robots buy tasks and
bid with respect to their own cost (e.g. how long it takes them to complete
this task, for inhomogeneous teams how appropriate is the robot for this task).
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Such sequential auction-based algorithms are widely used, e.g. by Heap et al.
[40], Sariel-Talay et al. [41] and Nanjanath et al. [42]. These solutions present
robust and well scaling solutions for the distributed task allocation problem.

Gerkey et al. [43] describes one possibility of this approach and calls it MUR-
DOCH. To keep the approach effective and flexible, an anonymous communica-
tion scheme is used. This means that all the communication is broadcast-based.
This has the advantage that robots can subscribe and unsubscribe for such a
broadcast domain without any additional effort for the auctioneer. Furthermore,
the broadcast approach is more efficient especially with increasing number of
robots.

These auctioning approaches need a lot of communication to be able to come to
an equilibrium, i.e. the local optimum solution. To reduce the traffic, so called
consensus algorithms have been introduced in [44], [45], [23].

The flexibility introduced with this decentralized algorithms comes with a down-
side as well. Most of these algorithms operate in a local scope and a greedy
fashion. Furthermore, it is hard to derive theoretic performance bounds for
these decentralized MRTA problems.

4.2.2.3 Chosen Approach

After analyzing the pros and cons of distributed and centralized approaches,
we came to the conclusion to use the centralized one. The downside of the
single point of failure could be caught by a stable knowledge-base management,
i.e. to keep the state of the world in a persistent and conflict-free manner. In
combination with a fault detection system, this single point of failure issue can
be compensated rather well.

The downsides of the decentralized approach cannot be handled as good as
they have to be in a industrial environment. Here it is necessary to provide
theoretical bounds in the future to be able to work on real-time systems. This
cannot be handled easily with distributed approaches.

Therefore, the chosen solution is centralized with a global team-server coor-
dinating a fleet of autonomous robots, with all the benefits of being able to
accumulate all the informations from all the robots and to keep the possibility
of a global optimal scheduling order of the tasks.

Most of the published solutions uses stateless methods (e.g. using User
Datagram Protocol (UDP)) to communicate with the agents. As the number
of connected robots is low in our scenario, and UDP is not reliable, a dedicated
connection to each robot is used instead (i.e. using TCP). This has several
advantages as one can be sure that a package is delivered (or a lost connection
is reported). The disadvantage of handling all the different connections to the
different clients can be neglected as it is rather easy to allow an automatic con-
nection of each robot to the scheduling system. This combines the advantages
of both approaches in an optimal way.
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4.2.3 Carologistics

The problems solved in this thesis appear in the context of a competition.
Therefore, other teams provide solutions for this too. The solution of one of
these teams, called Carologistics from Aachen, Germany, is described in this
section.

In contrast to our solution, the Carologistics team do not use the ROS as the
low-level robot framework (as described in Section 5.4), but Fawkes1.

4.2.3.1 Fawkes Robot Software Framework

An alternative solution for autonomous robots is presented by the Niemueller
et al. [46]. There, the component-based software architecture paradigm is used
to keep the system scalable and maintainable.

Component-Based Software Architecture The idea of this component-
based software architecture goes back to McIlroy’s idea [47] to produce reusable
software components. As Collins et al. [48] states, such a system needs to meet
four properties:

• A component is a compiled unit of development.

• A component implements (one or more) well-defined interfaces.

• A component provides access to an inter-related set of functionalities.

• A component may have its behavior customized in well-defined manners
without access to the source code.

4.2.3.2 Software Architecture

The solution of the Carologistics team is mainly separated into three pieces as
described by Niemüller et al. in [49] and is shown in Figure 4.1.

The three layer of the architecture allows a gradual abstraction of the world.
The three different layer are present per robot.

Low-Level Components In the lowest layer, so called components are col-
lected providing low-level functionality as hardware driver for the LightDetection
And Ranging (LiDAR), the interface to the Robotino platform, and vision
related functionality. Some of the components in this layer are ported from
ROS we are using, e.g. the implemented Adaptive Monte Carlo Localization
(AMCL).

1www.fawkesrobotics.org



Chapter 4. Related Work 26

Figure 4.1: Software framework of the Carologistics team using
component-based software architecture and Fawkes as basis.

Reactive Behaviors The part between the deliberation and the low-level
components is designed as a Lua-Based behavior engine. With this, simple and
complex so called “Skills” can be modeled similar to a hybrid state machine,
where actions are executed in the states and boolean jump conditions denote
state changes. Doing so, it acts as a gateway to the low-level hardware func-
tionality, such as e.g. simple way-point navigation or as complex “Skills” as to
retrieve a product from a machine.

Deliberation The top-level control, here called deliberation, is implemented
using a CLIPS rule engine [50]. This allows an incremental reasoning and
therefore to derive at any time-point, for each robot, a local optimal decision.
In this point this solution differs from our approach a lot. The lack of a global
point of control leads to sub-optimal solutions as each robot performs on its own
in a greedy fashion. Furthermore, the advantage of no single point of failure
as it is introduced with our high-level team-server comes here into account too,
as information about e.g. machine reservation needs to be shared between the
robots. For this, one robot is chosen to be some kind of master coordinating
these reservations. This is an additional reason for our decision to chose a
clear centralized structure, so we have that one (containable) disadvantage, and
on the other hand, all the advantages of this central point of knowledge and
computational power.

4.2.3.3 Approaches for Common Problems

As the Carologistics team participates in the same league as our team, they
have to solve the same problems with their framework. This offers a great
opportunity to compare these approaches. Some of them are presented in this
section.



Chapter 4. Related Work 27

Light Pattern Detection The detection of the light-pattern of each machine
is solved within multiple steps.

First of all, the robots align in front of the machine at a defined position. Using
the LiDAR, it is possible to align in a such a precise way. Having this, and
knowing the design (and therefore transformations) of the robot, it is possible to
determine the position of the machine light in the camera frame of the mounted
camera for this purpose. With this, it is possible to shrink the region of interest
a first time.

As a second step, the geometric properties of the lights are used. The infor-
mation, that there have to be three stacked rectangles, where one is red, one is
yellow and one is green is used. Finding the orange one turned out to be hard
to detect, so they decided to use the red and green parts only. Combining these
geometric constraints with an blob detection in the YUV color space and clus-
tering (here it is necessary to define what is green, yellow, red using a cylinder
in this color space) leads to the three Region Of Interest (ROI) containing the
light.

To decide if a light is on or off, the colors within these regions are compared
within the YUV color space again. Here it is necessary to define what “on” and
what “off” looks like too.

As it can be seen this requires a lot of configuration and parametrization and
depends a lot on the lightning and the robot’s setup (e.g. if the position of
the camera changes, this have to be updated in the parameters too). All this
parameters are not necessary with our solution as we use machine learning to
become invariant to different lighting and to find the ROI using the constant
gradients of these lights (described in Section 5.6).

Conveyor Belt Detection As the input of the conveyor is rather small, the
alignment needs to be very precise to be able to put products into a machine
or to retrieve products from a machine.

For this, a detection using three steps is presented. First, the machine is de-
tected using the applied Augmented Reality (AR) tag. As this tag is applied
arbitrary at the machine, this would introduce the need to calibrate this for
each machine and each side.

Therefore, as a second step the mounted laser scanner is used to further increase
the precision, but this do not solve the issue for the per-machine calibration as
the conveyors can be mounted arbitrary too.

To overcome this issue, a 3D camera (Intel RealSense F200) is used. The
gathered point cloud is then used to perform a plane search to detect the input
of the conveyor belt.
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Chapter 5

Prerequisites

In this chapter components and algorithms we use are described. All the used
functionality from existing libraries is described here, this comprises the pro-
tocol buffers used for layer abstraction, the simulation environment Gazebo,
the procedural reasoning system used in the mid-level, the robotics framework
ROS for the low-level, and machine learning approaches for the light pattern
detection and the machine detection using AR tags.

5.1 Google Protocol Buffer

Google’s Protocol Buffer (short protobuf) is a language- and platform-neutral
protocol to serialize structured data. Therefore, it is a similar solution to e.g.
XML but it is more lightweight, faster and allows simpler integration. To com-
municate between different programming languages, messages are defined in
a specific syntax. Having this, the protobuf compiler can generate messages
(e.g. files with object definitions for the case of C++ or Java) for a variety of
programming languages.

5.1.1 Protobuf Syntax

Protobuf messages are defined usually in .proto files. For this, several keywords
are defined. To declare a new message, the message keyword can be used. To
explain the syntax, the example in Listing 5.1 is used. In this example, the
message Person is defined. It contains the required fields name and age. These
fields have to be set, otherwise it is not possible to serialize the message. The
optional fields sex and size may be set. As it can be seen, enumerations can be
defined and used too (Sex). To allow lists of elements, the repeated keyword
can be used. With this, it is possible to add a list of persons as children.

The number next to the message entries (e.g. = 1;) defines the order of serial-
ization. This should not be confound with the numbers at the enum definition;
these numbers define the internal representation of the entries as integers.
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Listing 5.1: Example Protobuf message.

1 message Person {
2 required string name = 1;
3 required int32 age = 2;
4 optional Sex sex = 3;
5 optional double size = 4;
6 repeated Person child = 5;
7

8 enum Sex {
9 MALE = 1;

10 FEMALE = 2;
11 }
12 }

5.1.1.1 Datatypes

As it can be seen in the example message, different primitive datatypes can be
used. All of these datatypes have their corresponding type in the supported
programming languages. An overview from the official Google documentation
can be seen in Table 5.1.

Proto C++ Java Python Go
double double double float *float64
float float float float *float32
int32 int32 int int *int32
int64 int64 int int *int64
uint32 uint32 int int *uint32
uint64 uint64 int int *uint64
sint32 int32 int int *int32
sint64 int64 int int *int64
fixed32 int32 int int *int32
fixed64 int64 int int *int64
sfixed32 int32 int int sfixed64
int64 int64 int int *int64
bool bool boolean bool *bool
string string String str *string
bytes string ByteString str []string

Table 5.1: Supported protobuf datatypes and corresponding
C++, Java, Python and Go type.

As it can be seen, there are several different types to e.g. represent int64. They
differ in the serialization and encoding of the data as described in Section 5.1.1.2.
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5.1.1.2 Encoding

To serialize the data in an efficient way, so called "Varints" are used. These
encoding of variables uses one ore more bytes to store an integer. As an arbitrary
number of bytes can be used, the end of the stream needs to be declared. For
this, the most Most Significant Bit (MSB) is used. If this bit is not set, this is
the last byte of information to this integer. The remaining seven bits contain the
two’s complement representation of the number. The arriving bytes are then in
a least significant byte first order. This is explained best using an example. To
convert the number 301 into a byte stream, first of all it needs to be converted
into the binary system:

301dec = 100101101bin = 00000100101101bin

Having this, packages of seven bits length need to be built as 0000010 0101101.
As the numbers are sent in least significant byte order, the second byte is sent
first. To mark that a second byte is following, the MSB is set to one. At the
second byte, the MSB is set to zero. The resulting byte stream is then 10101101
00000010.

As it can be seen, this encoding is very efficient for small positive numbers.
Negative numbers on the other hand are very inefficient to encode this way.
This type of encoding is therefore used for int32, int64, uint32, and unit64.

Signed numbers are treated special. To use this special encoding, the types
sint32 and sint64 can be used. Here, the so called Zig-Zag encoding is applied.
This leads to an encoding, where small (absolute value) numbers result in a small
Varint encoded value. This is done by reordering the numbers starting by zero
and map in positive and negative direction alternating. This mapping is shown
in Table 5.2.

Original Value Encoded As
0 0
-1 1
1 2
-2 3
2 4
-3 5
3 6
. . . . . .

2147483647 4294967294
-2147483648 4294967295

Table 5.2: Zig-Zag encoding for sint32 and sint64 protobuf
types.

This encoding can also be calculated as o = (n « 1)^(n » 31) for sint32 and
as o = (n « 1)^(n » 63) for sint64 (« and » denotes arithmetic shift left and
shift right, and ^ denotes an exclusive or).
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Listing 5.2: Example for the usage of protobuf with C++.

1 #include <string >
2 #include "person.pb.h"
3

4 int main(int argc , char* argv []) {
5 GOOGLE_PROTOBUF_VERIFY_VERSION;
6

7 example :: Person person;
8 person.set_name = "Smith";
9 person.set_age = 42;

10 person.set_sex = example :: Person ::Sex::MALE;
11

12 example :: Person* son = person.add_child;
13 son ->set_name = person.get_name ();
14 son ->set_age = 16;
15 son ->set_size = 1.75;
16 son ->set_sex = example :: Person ::Sex:: FEMALE;
17

18 google :: protobuf :: ShutdownProtobufLibrary ();
19 return 0;
20 }

Additionally to this variable length encoding, fixed length encoding can be
forced using fixed32 and fixed64. float and double types are also encoded
with a fixed length of 32 and 64 bits respectively.

string, bytes, embedded messages and repeated fields are represented using a
length-delimiting protocol, i.e. the data is encoded as a Varint representing the
length following by the actual data.

5.1.2 Usage of the Serialized Messages

The defined protobuf messages can be used to generate e.g. native C++ or Java
code. Having this, these files provide access to these messages in a programming
language specific way. As an example, the data access using C++ and Java is
shown in this section.

5.1.2.1 Protobuf Messages with C++

The fields of the message can be written and read by provided public interfaces
of the generated classes. This can be explained with the example protobuf
message given in Listing 5.1.

As it can be seen in Listing 5.2, after the generated header (person.pb.h) is
included, the protobuf message can be used as an ordinary class. Each of the
members can be accessed using the defined setter. In the same fashion, these
values can be retrieved again (see line 13).
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Listing 5.3: Example for the usage of protobuf with Java.

1 package com.example;
2

3 import com.example.PersonProtos.Person;
4

5 public static void main(String [] args) {
6 Person john = Person.newBuilder ()
7 .setName("Smith")
8 .setAge(42)
9 .setSex(Person.Sex.MALE)

10 .addChild(
11 Person.newBuilder ()
12 .setName("Smith")
13 .setAge(16)
14 .setSize(1.75)
15 .setSex(Person.Sex.FEMALE) )
16 .build();
17 }

A special case for adding a value is to add an element to a repeated field. To
do so, one need to call the add_ method of this field. This returns the reference
to the added field allowing to fill it.

The macro in line 5 ensures that the executable is linked to a version of
the protobuf library compatible to the used version in the proto files. The
ShutdownProtobufLibrary() function deletes all global objects allocated by
the protobuf library.

5.1.2.2 Protobuf Messages with Java

The same functionality as shown in C++ is now shown using Java in Listing 5.3.

Here, a slightly different syntax is used, e.g. the Java style camelcase for the
getter and setter (e.g. setName("Smith") and getName()). Furthermore, the
builder pattern is used to generate new messages.

These messages can now be transmitted e.g. over the network or between
programs written in different (or the same) programming language. How to
reconstruct these received messages is described in the next section.

5.1.3 Reconstruction of Protobuf Messages

As protobuf messages are e.g. sent over the network, the received data is a
simple stream of bytes. These bytes can be interpreted arbitrarily. To find
the correct type (e.g. the sent type), a trick is applied. To do so, an defined
enumeration with a pair of values is added to each message. An example of
such a message can be found in Listing 5.4.
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Listing 5.4: CompType Protobuf enum.

1 enum CompType {
2 COMP_ID = 1000;
3 MSG_TYPE = 1;
4 }

The reconstruction of the message is shown using Java. This can be done with
all the other programming languages in a similar way too.

To be able to reconstruct a message, it is necessary to register all types of
messages you want to receive, i.e. to save the mapping between the enumeration
and the Java class. This can be seen in Listing 5.5. This method adds a object
derived from GeneratedMessage (i.e. all protobuf messages) to the array of
keys. Here, the method getDefaultInstance of the given protobuf message is
invoked. This returns the descriptor of this object. With this, the defined (in
the proto file) enum and its values can be found, saved, and used later to e.g.
generate an empty protobuf message from the COMP_ID and MSG_TYPE pair or
to interpret a received byte stream by comparing this pair.

To handle a received message, the code shown in Listing 5.6 is used. Here, the
raw input stream parsed using the defined data structure of the message:

• 1 byte protocol version

• 1 byte cipher

• 2 bytes reserved

• 4 bytes payload size

• 2 bytes component id (COMP_ID)

• 2 bytes message type (COMP_ID)

With the COMP_ID and the COMP_ID, an empty message of the correct type can
be generated. Furthermore, the data can be read in using the payload size. This
is done in the parse_input() function returning this pair of protobuf message
and data. With this, the data can be parsed into the corresponding empty
message using e.g. using Java’s instanceof functionality.

5.2 Gazebo

Gazebo is a robotic simulator allowing it to model robots in a virtual world.
With this, robots and its surroundings are defined as 3D objects. An physics
engine provide realistic interaction between the objects and the world, e.g. sim-
ulates collisions and gravity. Sensors can be modeled using this plug-ins too.

To allow the simulation of the given multi-robot scenario in the RoboCup Logis-
tics League, a simulated environment (see Figure 5.1) was developed by Zwilling
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Listing 5.5: Register a protobuf message.

1 public <T extends GeneratedMessage >
2 void add_message(Class <T> c) {
3 try {
4 Method m = c.getMethod("getDefaultInstance",
5 (Class <?>[]) null);
6 T msg = (T) m.invoke (( Object []) null , (Object []) null);
7 Descriptors.EnumDescriptor desc = msg
8 .getDescriptorForType ()
9 .findEnumTypeByName

10 ("CompType");
11

12 int cmp_id = desc.findValueByName("COMP_ID")
13 .getNumber ();
14 int msg_id = desc.findValueByName("MSG_TYPE")
15 .getNumber ();
16 Key key = new Key(cmp_id , msg_id);
17 _msgs.put(key , msg);
18 } catch ...
19 }
20 }

Listing 5.6: Reconstruct a received (beacon signal) message.

1 private void handle(@Nullable InputStream in) {
2 if (null == in) {
3 return;
4 }
5

6 try {
7 Pair <GeneratedMessage , byte[]> msg = parse_input(in);
8 if (null == msg || null == msg.getKey ()) {
9 received_invalid_packet = true;

10 return;
11 }
12

13 if(msg.getKey () instanceof
14 BeaconSignalProtos.BeaconSignal) {
15 BeaconSignalProtos.BeaconSignal beacon_signal;
16 try {
17 beacon_signal = BeaconSignalProtos.BeaconSignal
18 .parseFrom(msg.getValue ());
19 handleBeaconMsg(beacon_signal);
20 } catch ...
21 else {
22 System.err.println("Unkown Message!");
23 }
24 } catch ...
25 }
26 }
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Figure 5.1: Simulated arena using Gazebo.

et. al. [51]. In that approach, Gazebo is used to simulate the physical behavior
of the robots as well as their surroundings (e.g. MPS).

5.2.1 Layer of Abstraction

The provided simulation contains the official RoboCup Logistic game field and
the modular production systems. The functionality of the machines is mocked
up using Gazebo plug-ins. With this, the behavior is close to the real world
scenario.

We modeled our robots, i.e. the Robotino base with our customized construction
with cameras, for this simulator to allow us to get the same sensor readings as
the real robot. For this, the cameras and the LiDAR is simulated. With our
clear layer structure described in Section 6.1 it is possible to exchange the lowest
layer with this simulation of the robots transparently. With this, there is no
difference for the middle layer and the team-server between a simulated game
and a real game.

5.2.2 Interfaces

To use the simulation and interact with it as with a real robot and to setup the
environment, an interface is necessary.

5.2.2.1 Robot Plugins

To interact with the simulation, plugins are used. Those plugins are needed to
mock up e.g. detection of the light pattern as the actual pattern is not drawn
accurately in the simulation. Here, the ground truth of the actual light pattern
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is only returned, if the robot stands in front of the machine in a certain distance,
the correct angle and right side of the machine.

5.2.2.2 Referee Box Plugin

To setup the machines for each game in a random way, the so-called "Machine
Placement" plugin is used, provided by the league as a library. This ensures a
random distribution of the machines conforming to the rules described in 2.4.

5.3 Procedural Reasoning System (PRS)

A PRS can be used to perform complex tasks in a dynamic environment and is
based on the belief-desire-intention architecture.

5.3.1 Belief-Desire-Intention (BDI) Architecture

The Belief Desire Intention (BDI) model is one of the fundamental and widely
used approach to design intelligent agents as described in [52]. In this software
model, three different data structures are defined, the belief, the desire, and the
intention.

5.3.1.1 Belief

To be able to act in an intelligent and reactive way, it is necessary to model the
knowledge about the environment. This information is stored and kept up do
date as the belief of the agent.

5.3.1.2 Desire

The desires of the agent are the goals to achieve and can, therefore, be seen as
the motivation of the agent to perform an action.

5.3.1.3 Intention

The intention is a hierarchical set of plans describing the necessary steps to take
to achieve subgoals and therefore to satisfy a desire.

5.3.2 Open PRS

The used implementation of the procedural reasoning system is the open version
described in [53]. The main part of this system is the so-called PRS-Kernel
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consisting of the database, library of plans and a task graph. Examples of such
plans are shown in Section 6.4.

Database The database contains facts of the environment, e.g. the position
of the robot and is constantly updated. Therefore, this part of the kernel
corresponds to the belief of the BDI software model. Entries in the database
are not necessarily static, i.e. they can be concluded as evaluable predicates in
an external piece of code (i.e. as a dynamically linked library).

Library of Plans The library of plans contains sequences of actions and
tests to achieve particular goals. This part implements the intention of the
BDI software model. Open PRS cannot combine plans. Therefore, a plan, or a
sequence of sub plans, must exist explicit to achieve a goal successfully.

Task Graph The task graph is a dynamic set of tasks currently executed.
This can be seen as the processes running in an operating system.

5.3.2.1 Procedure

A procedure or a plan in the sense of PRS is a data structure used to model
information about how to achieve a subgoal or to react to a specific event. The
procedure can be split into the following parts.

Body In the body, the steps to perform are defined. This can be done either
in a graphical way or LISP-style syntax.

Invocation Condition This defines the goal this procedure may fulfill or the
events to which this procedure is meant to react to.

Context The boundary conditions in which this procedure is applicable is
defined here.

Documentation The documentation part can be used to add information
about the purpose of this procedure in running text.

Effects All facts to conclude to or retract from the database if and only if the
plan was successful are collected here.
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5.3.2.2 Goals

One of the main design principles using (Open) PRS is the concept of goals.
Goals can be seen as a desired state and can be split up in different type.

Achieve The goal to achieve a certain state S, written as (!S). This goal is
satisfied if S is in the database. An example for this would be (!gripperOpened),
being successful if and only if the the term gripperOpened is in the database
or a plan with the invocation condition gripperOpened exists and is successful.

Test Test can be used to check for facts F in the database, written as ?F. This
goal is satisfied if and only if the fact F is in the database. This mechanism can
also be used to bind variables, e.g. to get the robot’s position from the database,
(?(robotPosition $x $y $theta)) can be used to save the position and angle
of the robot in the variables x, y and theta respectively.

Wait This goal can be used to introduce time and to wait for specific state
S, written as (ˆ S). With this, the procedure waits until S is in the database
or a plan with this invocation part returns successfully. An example would
be to wait for the gripper to become ready like (ˆ (gripperState ready)).
This goal can never fail and would sleep forever. To avoid this, often timeouts
are introduced using the disjunction with an timer, i.e. (ˆ (V (gripperState
ready) (elapsed_time (time) 60)), where V is the disjunction of the two
terms and (elapsed_time (time) 60) is successfully after 60 s passed by.

Preserve This goal passively preserves a state S, written as (#S). This
is mainly used for so-called guarded actions, e.g. to guarantee that
the robot’s status is running when the gripper should be opened as
(&(!gripperOpened)(#(robotStatus running))).

Maintain To actively maintain a state S this goal can be used, written as
%S. An example would be to maintain the battery level above 20 % during
reaching the position (10, 20) and the angle of 0◦ as (&(!(robotPositioned
10, 20, 0)(%(battery_level 0.20))). If in this case the maintain goal
(%(battery_level 0.20)) fails, the system interrupts the execution the con-
junct goal (!(robotPositioned 10, 20, 0)) and tries to reestablish the state
maintained (actively), i.e. calls a plan to recharge the battery.

Assert This goal simply writes a fact F into the database, written as (=>F).
This can be used to save several states or error messages in the database, e.g.
(=>(failedAt sendingOverNetwork (time))) to log errors with the time.
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Listing 5.7: Register a function for an open PRS action.

1 make_and_declare_action("SendRobotInfo", sendRobotInfo , 1);

Listing 5.8: Implementation of a custom open PRS action.

1 Term* sendRobotInfo(TermList term) {
2 unsigned int robot_number;
3 if (PUGetOprsParameters(term , 1, INTEGER , &robot_number)) {
4 try {
5 gateway ->sendRobotInfo(robot_number);
6 } catch ...
7 return build_t ();
8 }
9 return build_nil ();

10 }

Retract With this, a fact F can be removed from the database, written as
(˜ >F). This can be used to remove old information from the database, e.g.
(˜ (failedAt sendingOverNetwork $x) to remove all errors occurred during
sending over the network.

5.3.3 Interface

To communicate with the open PRS kernel, different interfaces are used. To
set a goal, the message passer interface provided by open PRS is used. To
communicate with the low level, so-called actions, evaluable predicates, and
evaluable functions can be used.

5.3.3.1 Invoke an Action

An user-defined action can be implemented using C++. For this, a name of the
action is chosen to be used in open PRS. In our example, the action is called
SendRobotInfo. To connect this action with a function, it needs to be linked
with the corresponding function pointer to the function, the code in Listing 5.7
is used. Here, the name in open PRS, the function pointer and the number of
arguments is defined.

Having this, the function is called if the conditions for the action in open PRS
are fulfilled. Such a custom action can be seen in Listing 5.8.

Such a function needs to have a specific signature. The return value needs to be
of the type Term*. With this type, a failed or succeeded state can be returned
using the builder build_nil() and build_t(). Although the function is exe-
cuted by open PRS in a blocking way, it is possible to return with wait_id()
and do something in an additional process. If this is done, the function is
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Listing 5.9: Register a function for an open PRS evaluable
predicate.

1 make_and_declare_eval_pred("waypointExists",
2 waypointExists , 1, TRUE);

Listing 5.10: Implementation of a custom open PRS evaluable
predicate.

1 PBoolean waypointExists(TermList terms) {
2 char* waypoint;
3 if (PUGetOprsParameters(terms , 1, ATOM , &waypoint)) {
4 return RosActionManager :: getInstance ()
5 ->checkWaypointExists(waypoint);
6 }
7 return FALSE;
8 }

called later again until one of the final return values is returned (built_t or
built_nil). This allows introduction of concurrency.

The given arguments have to be of the type TermList. This structure contains
the given parameters (provided in open PRS). To get these parameters out of
this structure, the helper function PUGetOprsParameters can be used, giving
it the TermList, number of arguments, type of this argument (e.g. INTEGER)
and the location to store this data.

Such an action can therefore only execute an external functionality and return
if this succeeded or not. If one needs a customized functionality returning an
boolean value, e.g. for a branch in open PRS, a so called evaluable predicate
can be used.

5.3.3.2 Evaluable Predicate

User-defined predicates need to be registered in an similar way as actions too.
This can be seen in Listing 5.9.

The implementation of this function can be seen in Listing 5.10. Here, the
signature is special again. The returning value is now of the type PBoolean, i.e.
it can be TRUE or FALSE. This can be seen as the return value. The argument
of the function is again a TermList, and therefore the elements can be fetched
in the same way as in the action case. Here, instead of an integer, a string is
given.

If it is not enough to return true or false, i.e. if it is necessary to return e.g. a
string, an evaluable function can be used for this.
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Listing 5.11: Register a function for an open PRS evaluable
function.

1 make_and_declare_eval_funct("getZoneOfMachineTf",
2 getZoneOfMachineTf , 1);

Listing 5.12: Implementation of a custom open PRS evaluable
function.

1 Term* getZoneOfMachineTf(TermList terms) {
2 char* tf_point;
3 std:: string tf_point_string;
4 if(PUGetOprsParameters(terms , 1, ATOM , &tf_point)) {
5 tf_point_string = std:: string(tf_point);
6 return RosActionManager :: getInstance ()
7 ->getZoneToTF(tf_point_string);
8 }
9 return build_nil ();

10 }

5.3.3.3 Evaluable Function

The registration of an evaluable function can be seen in Listing 5.11 and is
similar to the other two types of extensions.

This function needs to have the same structure as an action (as it can be seen
in Listing 5.12). The return value type Term* can not only handle failed and
succeeded, but all the other open PRS types too. As it can be seen, if the code
fails, build_nil() is returned. Otherwise the return value of the called function
is returned. This method can be seen in Listing 5.13. Here (if everything works
as expected), an Term* is built using MAKE_OBJECT. Having this, the type of this
structure (atom is a string in open PRS) and the value can be set and returned.

5.4 Robot Operating System (ROS)

The software framework used in the lowest layer is ROS [54]. ROS allows com-
fortable inter-process communication using a publisher/subscriber mechanism
as well as the possibility to encapsulate functionality as actions provided by
action servers.

5.4.1 Nomenclature

The ROS-Framework introduces several concepts called nodes, topics, messages,
and services.
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Listing 5.13: Implementation of the functionality in the evalu-
able function.

1 Term* RosActionManager :: getZoneToTF(std:: string tf_name) {
2 if(zone_of_tf_ ->waitForServer(TIME_OUT) == false) {
3 return build_nil ();
4 }
5 grips_way_point_navigation_msgs :: ZoneOfTFGoal
6 zone_to_tf_goal;
7 zone_to_tf_goal.tf_string = tf_name;
8 zone_of_tf_ ->sendGoal(zone_to_tf_goal);
9 bool finished_before_timeout = zone_of_tf_

10 ->waitForResult(TIME_OUT);
11 if (finished_before_timeout) {
12 grips_way_point_navigation_msgs
13 :: ZoneOfTFResultConstPtr result;
14 result = zone_of_tf_ ->getResult ();
15 Term* res = MAKE_OBJECT(Term);
16 res ->type = ATOM;
17 res ->u.string = const_cast <char*>(result
18 ->zone_name.c_str());
19 return res;
20 }
21 return build_nil ();
22 }

5.4.1.1 Nodes

Different parts of the software, i.e. modules can be separated using so-called
nodes. A node in the view of the operating system is the process that performs
the main computation needed for this module. The term node arises from the
visualization of processes as nodes and communication paths between processes
as edges in a graph.

5.4.1.2 Topics

To enable process intercommunication, so-called topics are introduced. Such a
topic is defined by a name, i.e. a string like map. Every node is, therefore, able
to publish information to these topics and nodes can subscribe such a topic, i.e.
a publisher-subscriber mechanism is used. With this, it is possible to provide
information asynchronously to (arbitrarily many) other processes.

5.4.1.3 Messages

The communication using the topics is done with strictly typed data structures
called messages. These messages can contain primitive types as integers, floating
point numbers and booleans as well as arrays of these types, constants and other
messages (arbitrarily deep nested).
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Figure 5.2: Client-Server interaction using ROS Actions.

5.4.1.4 Service

To allow synchronous communication scheme as well, services are defined. Such
a service is defined by a pair of messages, one for the request and one for the
response. The node offering the service offers such a service under an defined
name (string). The node can then call the service by sending a request message
and wait for the response.

5.4.1.5 actionlib

Using ROS actions, it is possible to model simple functionality as dedicated,
preemptable tasks. An example of such an action would be the feature to open
or close the gripper or to align in front of a machine. Using a defined message
(e.g. action message), a client can initiate an action as e.g. to align in front
of a machine by sending such a defined message. The result is sent back again
also using defined messages on a subtopic, i.e. alignment_serverresult. This
functionality is encapsulated within the actionlib1 library.

5.5 Way-Point Navigation

To allow the navigation of the robot to defined way-points, ROS move_base2 is
used. This approach uses two distinct strategies to generate a path to a given
point, namely a global and a local planner.

5.5.1 Global Planner

The global_planer3 uses the given map of the game-field (i.e. the outer border
and the insertion area) to generate a plan to the target point. The generation
of such a plan can be achieved using several approaches as e.g. an A∗ search on
the grid map.

This is quite straight forward for our system, as no machine is present in this
map and so the planner has to plan in an empty field. This leads in most of

1wiki.ros.org/actionlib
2wiki.ros.org/move_base
3wiki.ros.org/global_planner
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the cases to an straight line towards the goal. Reactive behavior have to be
implemented therefore using the local planner.

5.5.2 Local Planner

For the local approach, the global path is used as an goal, i.e. to stay on
this path and to avoid obstacles. The local planner uses the data from the
LiDAR to generate a costmap, i.e. a map of its surroundings with the obstacles.
These obstacles are inflated with the radius of the robot to allow planning for a
point instead of the robots geometry. With this, different trajectory generating
algorithms can be used. For our approach, the Dynamic Window Approach
(DWA)4 was used. Here, the costmap is transformed into the velocity space. A
detailed description of this algorithm can be found in the work of Fox et al. in
[55].

5.6 Vision-Based Object Recognition

The object recognition is split up into two phases. First, the image is reduced to
the ROI as it can be seen in Fig. 6.6 for the example of machine light detection
using a Histogram of Oriented Gradients (HOG) [56] detector. This ROI is
then scaled to a defined image size and serialized to a vector with respect to
the three color channels. This vector is then classified using a Feed-Forward
Neural Network (FF-NN).

5.6.1 Histogram of Oriented Gradients

To identify the object in the image, i.e. to find the ROI, an feature detection
algorithm is used. For this, the histogram of oriented gradients descriptor is
used. This approach works similar to e.g. Scale-Invariant Feature Transform
(SIFT) as it describes each pixel with an descriptor. In this case, the histogram
of the gradient orientations of the neighboring pixels is used.

To train this, labeled images are necessary where the ROI is defined. An
Support Vector Machine (SVM) is then trained to classify each pixel if the
desired object is here or not for a pyramid of different image resolutions (for
scale invariance). This feature extraction and classification is done using the
dlib5 library.

Standing in front of a machine, the mounted camera on the top captures an
image as it can be seen in Figure 6.5 in Section 6.3.3. The trained HOG-
Detector, respectively the learned SVM, is then capable of extracting the ROI
as they can be seen in Figure 6.6 (in Section 6.3.3 too). This extraction works

4wiki.ros.org/dwa_local_planner
5dlib.net
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Figure 5.3: Structure of a generic artificial feed-forward neural
network with one hidden layer.

with almost no false-positive results. Having this, the problem is reduced to a
standard classification problem which can be solved using a neural network.

5.6.2 Neural Network

To classify these extracted ROIs, a classic feed-forward neural network (see
[57]) with one hidden layer can be used as shown in Figure 5.3. This generic
network has I inputs, H hidden units and O output neurons. The intermediate
layer is called hidden as their units are not accessible from the outside directly.
This representation hides the presence of an additional bias for each neuron.
This is done by adding a constant 1 as input feature F0. Therefore the weights
from neuron 0 to the hidden layer represent the bias. This is equivalent to the
representation of the network with an additive bias. The same scheme is used
to represent the bias in the other layers too.

As activation function, the log-sigmoid transfer function (logsig) is used in most
of the cases which is defined as

σ(x) :=
1

1 + e−x
. (5.1)

This function has the properties to limit the output to the range [0, 1] and is
skew-symmetric around the point (0, 0.5) (see Figure 5.4). This function allows
learning nonlinear relationships between the input and the output and due to
the limited range of this function, the intermediate resulting numbers stay small
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Figure 5.4: Log-sigmoid σ(x) function for x ∈ [−10, 10].

and numerical problems are avoided. Furthermore, it allows a simpler decision
rule at the output.

With this definitions shown in Figure 5.3, the network performs the following
calculations:

z
(1)
h = σ

(
I−1∑
i=0

w
(1)
h/i · Fi

)
, ∀h ∈ N, 0 ≤ h < H (5.2)

where the subscript j numbers the outputs of the first layer, denoted with the
superscript (1) referencing to the first layer. The same operation is performed
again to generate the outputs as:

z(2)
o = σ

(
H−1∑
h=0

w
(1)
o/h · z

(1)
h

)

= σ

(
H−1∑
h=0

w
(1)
o/h · σ

(
I−1∑
i=0

w
(1)
h/i · Fi

))
, ∀o ∈ N, 0 ≤ o < O

(5.3)

Due to the properties of the logsig function, the outputs z(2)
0 to z

(2)
6 are in

the range [0, 1] if an image is given as feature vector F . The outputs can be
represented by an output vector Z consisting of these elements. To further
normalize the outputs to sum up to one and therefore giving them the meaning
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of an approximation of the probability Po, that the shown image is out of
the class o, the so-called softmax function (also called normalized exponential)
is used [58]. This is the more generalized form of the logsig function and is
calculated as:

Po = ϕ(z(2)
o ) =

ez
(2)
o

O−1∑
i=0

ez
(2)
i

, ∀o ∈ N, 0 ≤ o < O. (5.4)

This value can then be used to decide which object was shown and the confidence
can be used to decide if the result is used or not. In the simplest case, the
estimated class Ĉ is chosen as the maximum value, i.e.

Ĉ = argmax
i

(Pi) . (5.5)

5.7 AR Tag Detection

The detection of the tags is implemented using the ALVAR framework6. For
this, a ROS7 wrapper is already available, called ar_track_alvar. Configuring
this package with the correct camera, the used types of tags, and the expected
output frame of the found tags, is all what is needed for this to work for one
robot. Having this, the node publishes the transformation (ROS tf8) to each
detected AR tag, i.e. the position and orientation of this tag in the given frame.

As we need several robots working with a single ROS master (simulation of
multiple agents), it was necessary to adopt the source code to use customized
prefixes for each robot. This is implemented using an additional launch param-
eter, named tf_prefix. With this, all the robots can work independently.

The used camera is a simple 2D camera, and therefore the inferred orientation
of the tags is calculated due to the characteristic distortion of the tags in the
camera image. This leads to decreasing accuracy with tags far away and at sharp
angles. To cope with this, a filter is implemented discarding these measurements
and using only those within a certain distance and a defined cone relative to
the robot.

6virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html
7wiki.ros.org/ar_track_alvar
8wiki.ros.org/tf
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Chapter 6

Software Architecture

In this chapter we describe the developed software architecture with the RoboCup
Logistic League as a concrete area of deployment. The developed architecture
can easily be adapted to similar fields of application too.

6.1 Layered Architecture

The software architecture is split up into three layers as it can be seen in Fig-
ure 6.1. Lower layers provide functionality to higher layers in a fashion similar
to ISO Open System Interconnection (ISO OSI) reference model [10]. The low-
est layer is mainly based on ROS and provides basic functionality to the upper
layers, such as open or close the gripper, move to way-points or to classify the
observed light-pattern. The next layer is based on the BDI engine openPRS
(see Section 5.3.2). Here, first error handling and more complex tasks are im-
plemented, such as aligning in front of a machine and grab a product. On top
of this, the third layer is responsible for the communication to the referee box
and distributes work-packages (e.g. fetch a base, mount a ring, etc.) in such a
way, that overall the number of achieved points is maximized.

All tasks are initiated in the highest layer. These work-packages are then de-
composed into sub-goals and posted down the layered architecture until the
lowest layer is reached. Any bypassing of this strict layer structure has to be
avoided to maintain a clear semantics.

The interfaces communicate with serialized data using Google’s protocol buffer
(protobuf)1. With this defined messages it is possible to exchange all of the
layers. Even different programming languages are possible as protobuf supports
(version 3) C++, Java (including JavaNano), Python, Go, Ruby, Objective-C,
and C#. Several third party implementations are available too, supporting C,
Perl, PHP, Scala, Julia and Apple’s Swift. This variety of languages allows
enormous flexibility.

One exception here is the communication between the mid-level and the low-
level. To reduce the overhead of the communication, ROS’ mechanisms are used

1developers.google.com/protocol-buffers/
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Figure 6.1: Layered software architecture with centralized
high-level, distributed mid-level and low-level components.

to communicate. This can be easily wrapped with protobuf messages too in the
Protobuf-ROS interface.

6.2 Communication Scheme

The communication between the different layers is based on Google’s Protocol
Buffer protocol where it is possible as it can be seen in Fig 6.2 and described
in [6]. This serialization protocol allows a strict separation between the compo-
nents. Protobuf is used as the communication to the referee box is given (and
there it is used). To avoid confusion using different approaches, and as this pro-
tocol is very efficient and widely used, it is used throughout the whole project.
Open PRS is integrated using its “Message Passer” and evaluable predicates and
actions (see Section 5.3.3 for further details). The last communication to ROS
is done using standard ROS topics and actions (see Section 5.4).
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Figure 6.2: Communication protocols between the different
layers in the system.

6.2.1 Recovery of Message Type

The functionality to communicate with a protobuf server is provided by the
protobuf_comm library2. As we use this communication scheme in our frame-
work too (client and server), the communication with a client needs to be im-
plemented too. To distinguish the raw messages, the same technique is used
therefore, i.e. to infer the type of received message, it is necessary to add a
specific enum to each of the messages. The used comparison ID is a unique pair
of COMP_ID and MSG_TYPE. An example is shown in Listing 6.1. With this, the
type of received messages can be reconstructed. This reconstruction depends

2github.com/robocup-industrial/protobuf_comm

Listing 6.1: CompType Protobuf enum.

1 enum CompType {
2 COMP_ID = 1000;
3 MSG_TYPE = 1;
4 }
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on the used programing language, e.g. using Java it is possible to use reflection
to check for the existence of this element and parse the value as it is described
in Section 5.1.3. An overview of the used messages and the comparison type
pair is given in Table 6.1.

Message COMP_ID MSG_TYPE
BeaconSignal 2000 1
VersionInfo 2000 3
LightSpec 2000 10
Machine 2000 12

MachineInfo 2000 13
GameState 2000 20
RobotInfo 2000 30
Robot 2000 31

OrderInfo 2000 41
Order 2000 42

MachineReportEntry 2000 60
MachineReport 2000 61

MachineReportInfo 2000 62
ExplorationSignal 2000 70
ExplorationZone 2000 71
ExplorationInfo 2000 72
PrepareMachine 2000 101

RingInfo 2000 110
RobotStatus 2000 204
PrsTask 5006 701

Table 6.1: Used comparison types for protobuf communication.

6.2.2 Communication between Referee Box and Scheduler

The communication between the referee box and our software framework is
restricted to our highest level, the scheduler/planner. For this communication,
two dedicated channels are used, an encrypted private channel and a public
channel. The used messages between the referee box and our framework (defined
in the refbox manual3) are the following:

• Private Channel

– Machine Info (see Section 6.2.2.1)

– Machine Report (see Section 6.2.2.2)

– Machine Report Info (see Section 6.2.2.3)

• Public Channel
3www.robocup-logistics.org/refbox
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Listing 6.2: MachineInfo Protobuf message.

1 message MachineInfo {
2 repeated Machine machines = 1;
3 optional Team team_color = 2;
4 }

– Game State (see Section 6.2.2.4)

– Exploration Info (see Section 6.2.2.5)

– Version Info (see Section 6.2.2.6)

– Robot Info (see Section 6.2.2.7)

• Both Channels

– Beacon Signal (see Section 6.2.2.8)

– Order Info (see Section 6.2.2.9)

– Ring Info (see Section 6.2.2.10)

The CompType is suppressed in the following sections to maintain a better
overview of the messages. In general, each of the protobuf message has a unique
COMP_ID and MSG_TYPE pair as described in Section 5.1.

6.2.2.1 Machine Info

The machine info consists of a list of machines (defined in Listing 6.3) and the
team color (defined in Listing 6.24) and is shown in Listing 6.2. This can be
used to send instructions to the machines (i.e. prepare machine) and for the
referee box sends this message periodically to inform about the machines state
and configuration.

6.2.2.2 Machine Report

The machine report message consists of the team color (defined in Listing 6.24)
and a list of machine report entries (defined in Listing 6.5) and is described in
Listing 6.4. This message is used by the scheduler/planner to report machine
types and the light shown to the referee box.

6.2.2.3 Machine Report Info

The machine report info message consists of a list of reported machines and
the team color (defined in Listing 6.24) and is described in Listing 6.6. This
message is sent from the referee box to the scheduler/planner to acknowledge
reported machines.
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Listing 6.3: Machine Protobuf message.

1 message Machine {
2 required string name = 1;
3 optional string type = 2;
4 optional string state = 3;
5 optional Team team_color = 10;
6

7 repeated LightSpec lights = 7;
8 optional Pose2D pose = 8;
9 optional Zone zone = 11;

10 optional bool correctly_reported = 9;
11

12 // Number bases loaded if machine is a Ring Station
13 optional uint32 loaded_with = 13 [default = 0];
14 // Available ring colors at this machine if machine is a ←↩

Ring Station
15 repeated RingColor ring_colors = 14;
16

17 // Instructions to send to the machines
18 optional PrepareInstructionBS instruction_bs = 16;
19 optional PrepareInstructionDS instruction_ds = 17;
20 optional PrepareInstructionRS instruction_rs = 18;
21 optional PrepareInstructionCS instruction_cs = 19;
22

23 // Additional exploration information.
24 optional ExplorationState exploration_type_state = 21;
25 optional ExplorationState exploration_zone_state = 22;
26 }

Listing 6.4: MachineReport Protobuf message.

1 message MachineReport {
2 required Team team_color = 2;
3 repeated MachineReportEntry machines = 1;
4 }

Listing 6.5: MachineReportEntry Protobuf message.

1 message MachineReportEntry {
2 required string name = 1;
3 optional string type = 2;
4 optional Zone zone = 3;
5 }
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Listing 6.6: MachineReportInfo Protobuf message.

1 message MachineReportInfo {
2 repeated string reported_machines = 1;
3 required Team team_color = 2;
4 }

6.2.2.4 Game State

The game state message contains the current game state (i.e. if the game is
running), the game phase (e.g. exploration, production), the time since game
start (defined in Listing 6.21), the points for both teams as well as the team
names ans is described in Listing 6.7. This message is sent periodically by the
refbox to the teams.

6.2.2.5 Exploration Info

The exploration info message contains the exploration signals (defined in List-
ing 6.9 with the mapping from light pattern to a random string and the ex-
ploration zones (defined in 6.10 (i.e. the zones to explore) and is described in
Listing 6.8. This message is sent during the exploration phase periodically by
the refbox.

6.2.2.6 Version Info

The version info is sent by the refbox to distribute the current refbox version
and is described in Listing 6.11.

6.2.2.7 Robot Info

The robot info contains a list of robots (defined in Listing 6.13 and is described
in Listing 6.12. The robot message contains therefore all information about one
robot, i.e. the name, the corresponding team, the team color, robot number and
more. This message is sent by the refbox to acknowledge all reported signals
using the beacon signal described in Section 6.2.2.8.

6.2.2.8 Beacon Signal

The beacon signal contains status information such as time (defined in List-
ing 6.21) and a sequence number and is described in Listing 6.15. This message
is used as an alive-message and is sent periodically by all active robots to the
refbox and by the refbox to the teamserver.
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Listing 6.7: GameState Protobuf message.

1 message GameState {
2 required Time game_time = 1;
3

4 required State state = 3;
5 required Phase phase = 4;
6

7 optional uint32 points_cyan = 5;
8 optional string team_cyan = 6;
9

10 optional uint32 points_magenta = 8;
11 optional string team_magenta = 9;
12

13 enum State {
14 INIT = 0;
15 WAIT_START = 1;
16 RUNNING = 2;
17 PAUSED = 3;
18 }
19

20 enum Phase {
21 PRE_GAME = 0;
22 SETUP = 10;
23 EXPLORATION = 20;
24 PRODUCTION = 30;
25 POST_GAME = 40;
26 }
27 }

Listing 6.8: ExplorationInfo Protobuf message.

1 message ExplorationInfo {
2 repeated ExplorationSignal signals = 1;
3 repeated ExplorationZone zones = 2;
4 }

Listing 6.9: ExplorationSignal Protobuf message.

1 message ExplorationSignal {
2 required string type = 1;
3 repeated LightSpec lights = 2;
4 }

Listing 6.10: ExplorationZone Protobuf message.

1 message ExplorationZone {
2 required Zone zone = 2;
3 required Team team_color = 3;
4 }
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Listing 6.11: VersionInfo Protobuf message.

1 message VersionInfo {
2 required uint32 version_major = 1;
3 required uint32 version_minor = 2;
4 required uint32 version_micro = 3;
5 required string version_string = 4;
6 }

Listing 6.12: RobotInfo Protobuf message.

1 message RobotInfo {
2 repeated Robot robots = 1;
3 }

Listing 6.13: Robot Protobuf message.

1 message Robot {
2 required string name = 1;
3 required string team = 2;
4 required Team team_color = 12;
5 required uint32 number = 7;
6 required string host = 3;
7 required Time last_seen = 4;
8

9 optional Pose2D pose = 6;
10 optional Pose2D vision_pose = 11;
11 optional RobotState state = 8;
12

13 optional float maintenance_time_remaining = 9 [default←↩
= 0.0 ];

14 optional uint32 maintenance_cycles = 10;
15 }

Listing 6.14: RobotState enum.

1 enum RobotState {
2 ACTIVE = 1;
3 MAINTENANCE = 2;
4 DISQUALIFIED = 3;
5 }
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Listing 6.15: BeaconSignal Protobuf message.

1 message BeaconSignal {
2 required Time time = 1;
3 required uint64 seq = 2;
4

5 required uint32 number = 8;
6 required string team_name = 4;
7 required string peer_name = 5;
8 optional Team team_color = 6;
9

10 optional Pose2D pose = 7;
11 }

Listing 6.16: OrderInfo Protobuf message.

1 message OrderInfo {
2 repeated Order orders = 1;
3 }

6.2.2.9 Order Info

The order info contains a list of orders (described in Listing 6.17) to produce
and is described in Listing 6.16. This message is sent by the refbox periodically
and informs about new orders. Therefore it contains all the information of these
orders, e.g. base color, ring color, cap color, quantity, delivery time-slot and
delivery gate.

6.2.2.10 Ring Info

The ring info contains the rings (defined in Listing 6.19) and is defined in List-
ing 6.18. This message is sent periodically by the refbox during the production
phase and supports information about the needed raw material for each ring.

6.2.2.11 Common Sub-Messages

Sub-messages used by the messages above are described in this section.

LightSpec Message The LightSpec message (defined in Listing 6.20) is used
to describe a pattern of light, i.e. the state of each single lightbulb (red, orange,
green).

Time Message To have a common sense of time, a time message is defined
in Listing 6.21. It contains two fields, for the seconds and nanoseconds since
the Unix epoch in UTC.
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Listing 6.17: Order Protobuf message.

1 message Order {
2 required uint32 id = 1;
3 required Complexity complexity = 2;
4

5 required BaseColor base_color = 3;
6 repeated RingColor ring_colors = 4;
7 required CapColor cap_color = 5;
8

9 required uint32 quantity_requested = 6;
10 required uint32 quantity_delivered_cyan = 7;
11 required uint32 quantity_delivered_magenta = 8;
12

13 required uint32 delivery_period_begin = 9;
14 required uint32 delivery_period_end = 10;
15

16 required uint32 delivery_gate = 11;
17

18 enum Complexity {
19 C0 = 0;
20 C1 = 1;
21 C2 = 2;
22 C3 = 3;
23 }
24 }

Listing 6.18: RingInfo Protobuf message.

1 message RingInfo {
2 repeated Ring rings = 1;
3 }

Listing 6.19: Ring Protobuf message.

1 message Ring {
2 required RingColor ring_color = 1;
3 required uint32 raw_material = 2;
4 }

Listing 6.20: LightSpec Protobuf message.

1 message LightSpec {
2 required LightColor color = 1;
3 required LightState state = 2;
4 }
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Listing 6.21: Time Protobuf message.

1 message Time {
2 required int64 sec = 1;
3 required int64 nsec = 2;
4 }

Listing 6.22: Pose2D Protobuf message.

1 message Pose2D {
2 required Time timestamp = 1;
3

4 required float x = 2;
5 required float y = 3;
6 required float ori = 4;
7 }

Pose2D Message To communicate the pose of a robot, the Pose2D message
is defined in Listing 6.22. Here the coordinates of the robot in the global frame
and the orientation of the robot is contained.

Machine Instruction Messages Each machine is capable to perform dif-
ferent types of production steps. To instruct the machines, different machine
instructions are defined in Listing 6.23.

6.2.2.12 Common enums

Enums used in multiple messages are defined the following section.

Team enum The two teams, CYAN and MAGENTA are defined with the
team enum described in Listing 6.24.

Light Color and State enum The different light colors and the possible
states of these lights are defined in Listing 6.25 and Listing 6.26.

Product Color enums The different colors for the rings, bases and caps are
defined in Listing 6.27.
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Listing 6.23: MachineInstructions Protobuf message.

1 message PrepareMachine {
2 required Team team_color = 1;
3 required string machine = 2;
4

5 optional PrepareInstructionBS instruction_bs = 4;
6 optional PrepareInstructionDS instruction_ds = 5;
7 optional PrepareInstructionRS instruction_rs = 6;
8 optional PrepareInstructionCS instruction_cs = 7;
9 }

10

11 enum MachineSide {
12 INPUT = 1;
13 OUTPUT = 2;
14 }
15

16 enum CsOp {
17 RETRIEVE_CAP = 1;
18 MOUNT_CAP = 2;
19 }
20

21 message PrepareInstructionBS {
22 required MachineSide side = 1;
23 required BaseColor color = 2;
24 }
25

26 message PrepareInstructionDS {
27 required uint32 gate = 1;
28 }
29

30 message PrepareInstructionRS {
31 required RingColor ring_color = 1;
32 }
33

34 message PrepareInstructionCS {
35 required CsOp operation = 1;
36 }

Listing 6.24: Team enum

1 enum Team {
2 CYAN = 0;
3 MAGENTA = 1;
4 }
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Listing 6.25: LightColor enum

1 enum LightColor {
2 RED = 0;
3 YELLOW = 1;
4 GREEN = 2;
5 }

Listing 6.26: LightState enum

1 enum LightState {
2 OFF = 0;
3 ON = 1;
4 BLINK = 2;
5 }

Listing 6.27: Product Color enums.

1 enum RingColor {
2 RING_BLUE = 1;
3 RING_GREEN = 2;
4 RING_ORANGE = 3;
5 RING_YELLOW = 4;
6 }
7

8 enum BaseColor {
9 BASE_RED = 1;

10 BASE_BLACK = 2;
11 BASE_SILVER = 3;
12 }
13

14 enum CapColor {
15 CAP_BLACK = 1;
16 CAP_GREY = 2;
17 }
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6.2.3 Communication between Scheduler and Mid-Level
Control

The communication between the scheduler and the mid-level is done with pro-
tobuf messages too. For this, a single channel is used, and only one message is
defined for this purpose, the PrsTask message.

6.2.3.1 PrsTask

The communication between the highest layer and the middle layer uses the
capability of Google’s protobuf to test if a field is filled. Therefore, only one
central message is needed to command tasks to the lower layer and return an
execution result to the upper layer. The message is defined in Listing 6.28.
This message contains the team color, a unique task ID, and a robot ID. Ad-
ditionally it can contain one or more tasks and an execution result. For the
RoboCup Logistic League, five of this optional messages are sufficient (can be
easily extended in this place for future improvements):

• ExploreMachineTask

• ReportAllMachinesTask

• GetWorkPieceTask

• PrepareCapTask

• DisposeWOrkPieceTask

• DeliverWorkPieceTask

These tasks are sent to the mid-level and invoke a plan there. Therefore, sending
such a message can be seen as the invocation of the corresponding plan as
described in Section 6.4.

ExploreMachineTask This message is used to command a robot to move to
a given machine, or if this machine is not known at the moment, to a defined
zone and to explore it, i.e. detect light and zone of the machine as described in
Section 6.5.2

ReportAllMachines To command the robot to send all it’s known machines
and their position in the game field (i.e. the zone), this message can be used.

GetWorkPieceTask With this command, the robot moves to the given sta-
tion and retrieves a workpiece. The result of this task (if succeeded) is holding
a workpiece in the gripper.
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Listing 6.28: PrsTask Message.

1 message PrsTask {
2 required Team teamColor = 1;
3 required uint32 taskId = 2;
4 required uint32 robotId = 3;
5

6 optional ExecutionResult executionResult = 4;
7

8 optional ReportAllMachinesTask reportAllMachinesTask = 5;
9 optional ExploreMachineTask exploreTask = 6;

10 optional GetWorkPieceTask getWorkPieceTask = 7;
11 optional PrepareCapTask prepareCapTask = 8;
12 optional DisposeWorkPieceTask disposeWorkPieceTask = 9;
13 optional DeliverWorkPieceTask deliverWorkPieceTask = 10;
14

15 enum ExecutionResult {
16 SUCCESS = 1;
17 FAIL = 2;
18 }
19 }
20

21 // Move to the given machine if known in TF or to the zone ←↩
otherwise and explore the machine there.

22 message ExploreMachineTask {
23 required string machine = 1;
24 required string side = 2;
25 required string zoneId = 3;
26 }
27 // Send all observations to the team server.
28 message ReportAllMachinesTask {
29 required bool report = 1;
30 }
31 // Get a workpiece at the given station and hold the product ←↩

in the gripper.
32 message GetWorkPieceTask {
33 required string providing_station = 1;
34 }
35 // Get to the cap station and put one base with cap into the ←↩

machine.
36 message PrepareCapTask {
37 required string cap_station = 1;
38 required string cap_color = 2;
39 }
40 // Get to the station and remove the workpiece and dispose it.
41 message DisposeWorkPieceTask {
42 required string station = 1;
43 }
44 // Deliver the product in the gripper to the given station.
45 message DeliverWorkPieceTask {
46 required string delivered_station = 1;
47 }
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Listing 6.29: Conveyor detection ROS action server message.

1 # Goal
2 string offset_id
3 ---
4 # Result
5 float32 distance_x
6 float32 distance_y
7 float32 angle
8 float32 machine_width
9 geometry_msgs/PoseStamped pose

10 ---
11 # Feedback
12 float32 progress

PrepareCapTask This command can be used to prepare a cap station to
mount a cap, i.e. to insert the right base with a cap.

DisposeWorkPieceTask To remove a workpiece from a machine, e.g. to
remove the empty base at the cap station, this task can be used. The robot
moves to the given machine and removes the workpiece.

DeliverWorkPieceTask If the robot holds a workpiece in its gripper, this
task can be used to transport the product to the given machine.

6.3 Low-Level Layer

In this layer, primitive functionality, i.e. simple skills, are implemented (as
this layer is the closest to the hardware and the physical world). We are us-
ing functionality provided by the ROS software stack to solve these problems.
The functionality developed is implemented (as commonly used when working
with ROS) as either an action server or as a node publishing information on a
particular topic.

6.3.1 Conveyor Detection Node

The conveyor detection is implemented as an action server (see Section 5.4). The
action is started by sending the corresponding goal containing a string defining
the point of interest. This can be the input of the conveyor, the output, for the
CS one of the three positions at the shelf, or the input for additional bases at
the RS. Having this, the MPS is detected as described in Section 6.3.1.1 and
the distance in x- and y-direction, as well as the angle θ to this point, and the
measured machine width, is returned. The used action message can be found
in Listing 6.29.
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Data: Array of laser beams L, maximum distance to machine dist_max,
maximal valid discontinuity epsilon

Result: Position of the most left point of the machine x
center_beam_index = floor(size(L)/2);
if L[center_beam_index] > dist_max then

throw exception that no machine is found;
end
if no AR-tag visible then

throw exception that object in front is no machine;
end
discontinuity = false; most_left_idx = size(L); old_point =
calc_coordinates(L[center_beam_index]);
for i = center_beam_index-1 to 0 do

new_point = calc_coordinates_(L[i]);
if euclid_distance(old_point, new_point) > epsilon then

most_left_idx = i;
discontinuity = true;
break;

end
end
if discontinuity is false then

throw exception that left corner of machine is not visible;
end
return x = calc_coordinates(L[most_left_idx]);

Algorithm 1: Detect most left coordinate of machine.

6.3.1.1 Machine Detection

As a first sanity check, it is ensured that there is an AR-tag visible and the
found machine is at a reasonable distance (i.e. limited by a maximum distance
dmax). If there is no AR-tag, there is no machine, and it is not reasonable to
align.

If there is a machine, a simple line detection algorithm is used to determine
the most left and most right coordinates of the machine (and therefore the
center or any other point defined relative to these outer points). The used
algorithm to detect the edges of the machine can be seen in Algorithm 1 as well
in Figure 6.3. The difference in calculating the counterpart, i.e. the right edge,
is simple iterating from the central laser beam upwards instead of downwards.
Therefore this can be packed into one function. For simplicity reasons, only the
left case is shown here.

The function, transforming the laser beam to coordinates in the robot’s frame,
uses the angle of the laser beam relative to the robot and the distance mea-
surement of this beam, to calculate the position of the reflection. Having this,
the Euclidean distance between adjacent beams can be calculated and used as
a termination criterion.



Chapter 6. Software Architecture 66

(a) The central laser beam
is used for the first detection
of the machine.

(b) Checking each laser
beam for continuity.

(c) Discontinuity as the
corresponding laser beam
misses the machine.

Figure 6.3: Line detection algorithm used for conveyor align-
ment.

Listing 6.30: Conveyor alignment ROS action server message.

1 # Goal
2 string offset_id
3 int16 state
4 int16 state_align_safe_dist = 3
5 int16 state_raw_alignment_safe = 2
6 int16 state_fine_alignment = 1
7 ---
8 # Result
9 bool success

10 ---
11 # Feedback
12 float32 progress

Having both points, the most left and the most right of this line, the coordinates
of the center between these points as well as the orientation of the machine can
be calculated.

6.3.2 Conveyor Alignment Node

To initiate the alignment in front of a machine, this action server can be used.
For this, three different alignment modes are available: alignment at a safe
distance, raw alignment, and fine alignment. These three states of alignment
can be passed as arguments of this action server as it can be seen in List-
ing 6.30. Here it can also be seen how an enumeration is defined such an
action message (state_align_safe_dist, state_raw_alignment_safe, and
state_fine_alignment).



Chapter 6. Software Architecture 67

Figure 6.4: Results of each alignment step and used coordinate
system. Alignment at a safe distance (step 1), raw-alignment at

a safe distance (step 2), and fine-alignment (step 3).

6.3.2.1 Alignment Controller

The alignment in front of a machine is a critical part as it is necessary to be able
to interact with the machine. It is not possible to use the way-point navigation
for this for several reasons. First of all, the exact position of the machines is
not known, i.e. a exact way-point in front of this machine cannot be deduced.
Furthermore, it is necessary to enter the machine front in a specific way, i.e.
to move normal to the machine front as otherwise a collision with the machine
could happen. This leads to an other problem with the way-point navigation
for this issue, as it is necessary to drive “into” the machine, i.e. the collision
domain of the robot needs to overlap with the obstacle (in different heights, i.e.
the gripper needs to be over the machine, but as only 2D information is given,
this cannot be modeled) and this is an invalid state for the move-base.

To be able to overcome this, a multi-step solution was developed. First of
all, the robot drives to a defined way-point (relative to the machine) at a safe
distance using the way-point navigation. When arrived, a three-step alignment
procedure is started:

1. alignment at a safe distance.

2. raw-alignment at a safe distance.

3. fine-alignment.

The results of each of these steps are depicted in Figure 6.4.
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In each of these steps, a different controller structure is used as described below.
As the used robot is equipped with omni-directional wheels, independent control
rules can be formulated for each direction (x, y) and the rotation.

Alignment at a Safe Distance This mode can be used to align in front of a
machine at a safe distance where rotation of the robot is possible without collid-
ing with the MPS. This alignment mode ensures a safe state and is, therefore,
the first and last step of the alignment process.

The machine is detected and measured using the methods described in Sec-
tion 6.3.1.1. Having this, the robot can align relative to this machine at a safe
distance. This is necessary to allow the robot to rotate safely (i.e. if it would
be too close after the way-point navigation, it could interfere with the machine
by turning around). This is done using a simple P-controller structure for the
velocity in x-direction (normal to the machine) as

vx(t) = Pk (∆x(t)− dsafe) (6.1)

where ∆x(t) is the actual distance to the machine in x-direction (as it can be
seen in Figure 6.4) at time t and dsafe the defined safe distance to the machine.
Pk is a parameter defining how aggressive the controller reacts to differences in
the distances.

This movement is stopped as the difference between the actual position and the
safe distance becomes smaller than a certain value. This can be choses rather
high as this alignment have not to be precise at all, as only a safety distance
needs to be achieved and no precise position is needed.

Raw-Alignment at a Safe Distance To allow a fast alignment, a second
mode is introduced. Using this, a PI-controller is used for all the three param-
eters (velocity in x- and y-direction and angular speed). This mode should be
only used after an alignment at a safe distance has been performed as this con-
troller is optimized for fast alignment and can lead to a significant overshooting
if the control error is too big.

As the robot is now in a safe position, the orientation of the robot can be
corrected without the danger of a collision. So, in this step, the angle to the
machine is corrected as well as the position of the robot relative to the machine
in x- and y direction (as it can be seen in Figure 6.4). This can be formulated
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as a controller rule (PI-controller) in three variables as

vx(t) = Pk (∆x(t)− dsafe) + Ik

t∫
τ=0

(∆x(τ)− dsafe) dτ (6.2)

vy(t) = Pk (∆y(t)− yt) + Ik

t∫
τ=0

(∆y(τ)− yt) dτ (6.3)

ωx(t) = Pk (∆θ(t)− θt) + Ik

t∫
τ=0

(∆θ(τ)− θt) dτ (6.4)

where yt and θt denotes the target distance in y-direction (parallel to the ma-
chine) and the target angle relative to the machines (rotation about z, in terms
of a right hand coordinate system). Ik is the parameter to chose defining the
impact of the integral part.

Fine-Alignment The third and final step is different than the before taken
ones as it is close to the machine. Overshooting of the controller would mean
here a collision with the machines. Therefore, a special controller structure was
chosen limiting the overshooting using saturation (anti-windup strategy, based
on Astrom et al. in [59]).

For this, the saturation operator satxmax
xmin

needs to be defined as

satxmax
xmin

(x) := max(xmin,min(xmax, x)) (6.5)

where max(a, b) and min(a, b) is defined as

max(a, b) :=

{
a, if a > b

b, else
(6.6)

min(a, b) :=

{
a, if a < b

b, else.
(6.7)

With this, the controller rule can be written as

vx(t) = Ik

t∫
τ=0

(∆x(τ)− xt) dτ − Tk
(
vx(t−∆t)− satvmax

vmin
(vx(t−∆t))

)
(6.8)

vy(t) = Ik

t∫
τ=0

(∆y(τ)− yt) dτ − Tk
(
vy(t−∆t)− satvmax

vmin
(vy(t−∆t))

)
(6.9)

ω(t) = Ik

t∫
τ=0

(∆θ(τ)− θt) dτ − Tk
(
ω(t−∆t)− satωmax

ωmin
(ω(t−∆t))

)
(6.10)
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Listing 6.31: HOG detector ROS action server message.

1 # Goal
2 int32 num_images
3 ---
4 # Result
5 float32[] probabilities
6 ---
7 # Feedback
8 float32 progress

where vx(t − ∆t), vy(t − ∆t), and ω(t − ∆t) denotes the velocities in the last
time-step and Tk is a constant to tune the behavior of the anti-windup approach.

Implementation Details To implement the alignment controller described,
e.g. to calculate the integral parts as valid summations, a constant update pe-
riod is necessary. As we do not use a real-time system, it is not possible to guar-
antee this. The controller is updated as precise as possible using ros::Rate4.
An alternative would be to use the timer library5 provided by ROS (also no
real-time guarantees).

6.3.3 HOG Detector Node

Detecting the lights observed by the mounted camera is done using this action
server. The detection is done using a HOG detector with an support vector ma-
chine to extract the ROI (see Section 5.6.1) and an FF-NN (see Section 6.3.3.2)
to classify these regions. The result of this action is an array containing seven
probabilities for each combination of lights or all zeros if no lights are found as
it can be seen in Listing 6.31

6.3.3.1 ROI Extraction

The view of the robot standing in front of such a machine can be seen in
Figure 6.5. With this, the extracted ROI found with the HOG detector (as
described in Section 5.6.1) is shown in Figure 6.6.

6.3.3.2 Feed-Forward Neural Network

The results of the HOG-detector, i.e. the ROI, is normalized to a defined
size (e.g. 192 × 64 pixels). This color image can then be interpreted as an
192 × 64 × 3-matrix as there are 3 color channels. Due to the fact that after
the preprocessing this classification problem is rather easy, the features are

4wiki.ros.org/roscpp/Overview/Time
5wiki.ros.org/roscpp/Overview/Timers
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Figure 6.5: View of the robot in front of a machine as seen by
the light detection camera.

Figure 6.6: Region of interest found using a histogram of ori-
ented gradients detector.
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Listing 6.32: Gripper controller ROS action server message.

1 # Goal
2 bool open
3 ---
4 # Result
5 bool successfull
6 ---
7 # Feedback
8 float32 progress

chosen to be the serialized matrix, i.e. all rows with all columns and all colors
concatenated as a vector.

The used Network structure can be seen in Figure 5.3 in Section 5.6.2. As the
serialized image is used as feature vector F , I is given as the product of image
width, image height and number of colors and the additional constant feature
representing the bias, i.e. I = 192 · 64 · 3 + 1 = 36865. The number of outputs
O is given as the number of possible combinations of the three lights green,
yellow and red, each with the binary states on and off, except the state where
all lights are off, i.e. O = 23 − 1 = 7. The number of hidden units needs to
be chosen empirically. As the number of features used is high and therefore
the complexity of the network increases enormously with increasing number of
hidden neurons (each input neuron is connected to each hidden neuron), 8 units
are chosen.

Training Having this configuration, such a neural network is trained using
the scaled conjugate gradient algorithm [60]. Additionally, a validation set
is used to avoid overfitting. Training of the network is done using Matlab’s
neural network toolbox6. Therefore the training samples (100 per class) are
split randomly into training- (70%), validation- (15%) and test-set (15%).

6.3.4 Gripper Controller Node

The gripper controller node offers a interface to the motors of the gripper to
allow the opening and closing of this. For this purpose, again the action server
approach is used. The server accepts messages containing whether the gripper
should close or open as it can be seen in Listing 6.32. The used stepper motor
allows to detect if the opening or closing procedure has worked or not (desired
position is reached). This information is used to give a feedback, i.e. if the
operation was successfully or not. Further sensors are not available and so this
node is kept simple.

6de.mathworks.com/help/nnet/
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Listing 6.33: Move to way-point ROS action server message.

1 # Goal
2 string wayPoint
3 ---
4 # Result
5 bool success
6 ---
7 # Feedback

6.3.5 Navigation Node

To navigate through the game-field, ROS move_base framework7 is used. A
simple interface to this navigation capabilities is achieved via an action server
accepting strings describing defined way-points, e.g. at the corner of a zone or
at the front of a machine as it is defined in the action message in Listing 6.33.
For all of these way-points, a transformation (ROS tf8) is defined in an config-
uration file. The result of calculating the transformation from this point to the
global can then be used as the target position for for the move_base.

6.3.6 Machine Position Publisher Node

To map the machines into the game-field and to allow movement targeted to
a machine dynamically, the machine position publisher subscribes to the topic
published by the AR framework and converts these points (i.e. tag for input, tag
for output) to one single machine and publishes the transformation of this ma-
chine center. To make this work reliable, the found tag positions, and therefore
the deduced machine position is filtered by an exponential decay filter.

The result of this node is a pair of way-points for each seen machine, one for
the input and one for the output. As all the relevant machine parts (conveyor
input, shelf) are defined relative to this machine center as transformation too
(in a configuration file), this has the effect, that if a valid transformation for
the machine center is published, all the derived transformations become valid
too.

6.3.7 Check Existance of Way-Point Node

To check if a robot has already seen a machine (i.e. to be able to move relative to
this machine, e.g. in front of it during the exploration phase), this action server
can be used. Here, the transformation tree of the robot is checked determining
if this position is already known. This functionality can be called with an action
message as described in Listing 6.34.

7wiki.ros.org/move_base
8wiki.ros.org/tf
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Listing 6.34: Way-point exists ROS action server message.

1 # Goal
2 string wayPoint
3 ---
4 # Result
5 bool exists
6 ---
7 # Feedback

Listing 6.35: Zone of way-point ROS action server message.

1 # Goal
2 string tf_string
3 ---
4 # Result
5 string zone_name
6 ---
7 #Feedback

6.3.8 Get Corresponding Zone of Way-Point

This action server can be used to derive the zone a given way-point is in, i.e. to
perform a discretization as it is defined in the game-field layout to deduce e.g.
the zone a machine is in. This is needed during the exploration phase to find the
zone a machine is located in. If the way-point is not existent, an empty string
is returned. This functionality can be used with the action massage defined in
Listing 6.35.

6.4 Mid-Level Layer

The mid-level layer implements intermediate actions, i.e. combines primitive
low-level skills and first error recovery and is implemented using the BDI engine
open PRS9 described in Section 5.3.2. Therefore, this section is focused on the
implementation of some functionality using this paradigm. As examples for the
idea behind this, three plans are described. One allow to align the robot in front
of a machine (Section 6.4.2.1), the plan to retrieve a base (Section 6.4.2.2), as
well as the procedure to explore a machine on the game-field (Section 6.4.2.3).

6.4.1 Abstraction of the Physical World

Having this additional layer between the hardware and the high-level allows a
more fine-grained abstraction process. Within this layer, no knowledge about

9git.openrobots.org/projects/openprs
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poses (i.e. x-, y-, z-position and orientation) is needed. The world is modeled
in this sense using abstract way-points and the movement between these points
is a simple call of an action. This enables us to model complex skills the robot
is able to do and to provide these functionality to the high-level control.

6.4.2 Examples

To discuss the function of the mid-level actions, three examples are used to do
so. With these examples, the used procedural reasoning engine is explained in
an practical way.

6.4.2.1 Align in Front of a Machine

To align in front of a machine, the plan shown in Figure 6.7 can be used.
This plan (started internally as the subgoal of an other plan) is started, if
the invocation part is called and the context is true. In this case, the plan is
started by posting e.g. the goal (!(align C-CS1 input shelf1 10)) only if
the predicate running is in the database (set if the game is in running mode).
In this example, the robot would move to the input of the first CS of team cyan
and aligns at the first position at the shelf. The action to move to the way-point
will retry ten times, e.g. if the goal is not reachable as another robot is in the
path or something similar. The plan consists therefore of several subgoals. As it
can be seen, after the start the robot tries to move to the given way-point using
(!(failSafeWaypoint ...)). If this fails, the predicate (moveToWayPoint
failed) is written to the database to allow execution observation. If not, using
the evaluable predicate facemachine, it is checked if after the movement the
correct machine is in front of the robot. Is this correct, the robot aligns at a
safe distance as described in Section 6.3.2.1 and sends the result SUCCESS to the
high-level or FAIL if it failed. The plan is exited in the fail state if something
went wrong ((!(fail)), otherwise the plan exits in success state.

6.4.2.2 Retrieve a Base

The plan to retrieve a base can be called e.g. by posting the goal
(retrieve_base C-BS RED 10). Here, the starting exclamation mark is not
used as this plan needs to be callable via the message passer (i.e. the passer
adds this as predicate to the database and then the plan is invoked) by the
scheduler. In the shown example, the robot would try to get a red base from
the BS of team cyan and would retry the movement ten times. As a first step
in this plan, the ID of the robot is fetched from the database. Having this,
the robot moves to the given machine. Arriving there, the station is configured
using the action (!(configureBS)). If all this worked, the robot aligns in front
of this machine, grabs the product and aligns at a safe distance again. If one of
the steps fails, the reason for the failure is written to the database.
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Figure 6.7: OP to align in front of a machine.
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Figure 6.8: OP to retrieve a base.
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Figure 6.9: OP to explore a waypoint.

6.4.2.3 Explore a Machine

The plan to explore machines during the exploration phase (triggered by the
scheduler) can be seen in Figure 6.9. This plan can be called by posting e.g.
the goal (explore_machine_at_waypoint C-CS1 Z10 10). This goal can be
interpreted as to explore the machine C-CS1 at zone Z10. The machine is
optional here, it is just a initial guess. If the robot already have seen this
machine, i.e. the corresponding way-point (by checking the evaluable predicate
waypointExists), the robot moves directly to this machine. Otherwise, the
robot will move to the given zone. Arriving at the zone, the procedure checks
again if now the machine is known, i.e. if the robot has seen the machine on the
way to the zone. If so, the robot moves to the way-point in front of the machine
to detect the shown light-pattern. If not, failed is returned. If the machine is
detected, and it is possible to align to it, the zone the machine is in is checked
again (the given zone is a guess only) and the light-pattern is classified. If this
works, the collected data is sent to the calling instance and the plan exits in
the succeeded state, otherwise failed is returned.
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6.5 High-Level Layer

The highest layer of our architecture is written in Java. The previous version
was written using C++. The current implementation is described in this section
as well as the used algorithms to distribute the tasks for the exploration phase.

6.5.1 Granularity and Flexibility

To keep the scheduler flexible, it is split up into two parts: the team-server and
the scheduler (or several schedulers). The team-server is therefore responsible
for the communication to the referee box and to the robots and collects the
information received. The second part, the scheduler uses this data to generate
new tasks. With this, several independent schedulers can be developed to fulfill
specific tasks (e.g. different exploration scheduler approaches).

6.5.1.1 Team-Server

The team server opens the connection to the referee box and offers the con-
nection to arbitrary many robots. This is done using TCP sockets in both
directions. The used serialization protocol is Google’s Protocol Buffer using
the protobuf_comm library. For the communication, different handler are im-
plemented for the different channels. Data arriving from the robots is handled
within the RobotHandler. Here beacon messages, task results, and collected
data are received, parsed and stored in a central database (using Structured
Query Language (SQL)) containing independent tables (conversion between
the protobuf message and the shown objects below is done using the Dozer
framework10). With this, the data persistence can be managed. Data arriving
from the referee box is handled similarly. Here, data is arriving at two channels.
As some messages arrive at both channels, an generic handler and two derived
handler are implemented as shown in Figure 6.10. The received data is here
parsed as described in Section 5.1.

Some of the used database schemes can be seen in Table 6.2, 6.3, 6.4, 6.5, 6.6,
6.7, 6.8, 6.9, 6.10, and 6.11 and are described in this section. In these tables,
the table name is at the top row followed by the primary key in the second row.

BeaconSignal One of the fundamental information sent is the so-called bea-
con signal. This message is sent by the robots and the referee box periodically.
To save all the received data in an database, two different tables are defined
to store these two messages. As they overlap in some elements, a base class
BeaconSignal is used to handle the common elements as it can be seen in
Table 6.2. The additional elements are handled separately in Table 6.3 and
Table 6.4. Here e.g. the time is stored and can be used to derive if a robot is
active, i.e. if it has sent a beacon signal in the last few seconds.

10dozer.sourceforge.net
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Figure 6.10: Inheritance of the RefBoxHandler.

BeaconSignal
Long beaconSignalID
Long seq
TeamColor teamColor
long timeNanoSeconds

Table 6.2: BeaconSignal Table.

BeaconSignalFromRefbox : BeaconSignal
Long beaconSignalID
String refBoxName
String refBoxTeamName

Table 6.3: BeaconSignalFromRefbox table extending the Bea-
conSignal table sharing the same primary key.

BeaconSignalFromRobot : BeaconSignal
Long beaconSignalID
Long robotId
String robotName
String teamName
double poseX
double poseY
double poseTheta

Table 6.4: BeaconSignalFromRobot table extending the Bea-
conSignal table sharing the same primary key.

GameState The referee box publishes information about the game periodi-
cally. To log this information and to provide it in a defined way to the scheduler,
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the scheme defined in Table 6.5 is used. Here, information about the actual game
time, team names and points is stored.

GameState
Long Id
String teamCyan
String teamMagenta
Long pointsCyan
Long pointsMagenta
Long gameTimeNanoSeconds

Table 6.5: GameState table to be filled with information re-
ceived from the referee box.

LightSignal To report a machine’s light signal, it is necessary to report a
defined random string. This mapping from pattern to string is provided by the
refbox and is stored as it can be seen in Table 6.6.

LightSignal
Long Id
String code
LightPattern pattern

Table 6.6: LightSignal table containing the dynamic mapping
between the light pattern and the string to report.

Ring Some rings need additional raw material to be mounted. The amount of
this raw material is defined per game in a randomized fashion. This information
is distributed by the referee box and stored in Table 6.7.

Ring
RingColor ringColor
long rawMaterial

Table 6.7: Ring table containing the amount of raw-material
to provide for each ring.

MachineInfoRefBox During the exploration phase, the referee box distributes
information about the game-field. This information is collected and made ac-
cessible to the scheduler via a scheme defined in Table 6.8.

ProductOrder Orders during the production phase are sent by the referee
box at random time points. To collect this information, it is stored in the
scheme depicted in Table 6.9.
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MachineInfoRefBox
Long ZoneId
String name
String type
String state
TeamColor teamColor
Boolean correctlyReported
ExplorationState explorationTypeState
ExplorationState explorationZoneState
RingColor ring1
RingColor ring2

Table 6.8: MachineInfoRefBox table to be filled with informa-
tion about the machines received by the referee box.

ProductOrder
Long Id
Complexity complexity
Long deliveryPeriodBegin
Long deliveryPeriodEnd
BaseColor baseColor
CapColor capColor
RingColor ring1
RingColor ring2
RingColor ring3
Long quantityRequested
Long quantityDeliveredCyan
Long quantityDeliveredMagenta

Table 6.9: ProductOrder table to model the orders received
from the referee box.

RobotObservation Each robot explores the game-field during the explo-
ration phase and reports its observations to the high-level. Here, the team-server
collects this data in a scheme defined in Table 6.10.

RobotObservation
Long observationId
Long robotId
String machineName
String machineZone
Double machineZoneConfidence
Long observationTimeAbsolut
Long observationtimeGame

Table 6.10: RobotObservation table containing all the obser-
vations received from the robots during the exploration phase.
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LightObservation If a robot discovers a machine and detect the light pattern
of it, it reports its observations. This information is collected as a table too,
shown in Table 6.11.

LightObservation
Long observationId
Long internId
String machineName
String machineType
String machineZone
LightPattern lightPattern
Double confidence
Long observationTimeAbsolut
Long oversvationTimeGame

Table 6.11: LightObservation table containing all the light ob-
servations received from the robots during the exploration phase.

This team server contains one or more schedulers. These schedulers have an
defined interface, i.e. they have to define a method to generate the next task
and can access the database described above.

6.5.1.2 Scheduler

The scheduler(s) can be implemented completely independent of the team-
server, i.e. the communication part of the high-level control. For this, two
interfaces need to be defined. The scheduler has access to the database gener-
ated by the team-server containing all collected data, i.e. all observations sent
by the robots and all the data provided by the refbox in a central point. On
the other side, each scheduler needs to implement the scheduler-interface, i.e. a
method which returns the next tasks to perform as a PrsTask as described in
Section 6.2.3.1 and defined in Listing 6.28. Having this, the scheduler can be
easily exchanged and different schedulers for different scenarios can be devel-
oped independently. This complies with the overall design of this framework to
be as modular and flexible as possible. One specific implementation of such a
scheduler is presented in Section 6.5.2.

6.5.2 Exploration Scheduler

The developed exploration scheduler implements the defined scheduler interface
and can therefore be used by the team-server to generate new tasks. To do this,
the scheduler uses the information collected by the team-server in the database
to generate a knowledge-base. This knowledge-base is modeled in a way it makes
it easy to derive the next task. The class diagram of this scheduler can be seen
in Figure 6.11. In this diagram, the most important classes and its members
(reduced to those necessary for understanding) are shown. In this diagram, the
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interface can be seen, i.e. the defined scheduler interface to communicate to the
team-server and the interface to the database the Data Access Object (DAO)
design pattern, e.g. the gameStateDao. A central point in this architecture is
the GameField acting as a central knowledge representation.

6.5.2.1 Knowledge-Base

The knowledge of the game is modeled as a matrix of zones representing the
game-field. This leads to a very natural way of looking at it and makes it easy
to infer information. Each of these zones holds the information about it, i.e.
the zone number, its physical neighbors, its mirrored zone (as the game-field is
symmetric), the zone center, and its exploration state. Furthermore, each zone
contains a list of observations made at this zone. This means, that information
about observed machines (as their type, time of observation and the observing
robot, optionally the shown light pattern) is stored. Having this, a belief of the
game-field can be derived, i.e. a set of machines distributed in the game area
which does not conflict with the constrains defined in Section 3.

As the game field has to be symmetric, the information of both sides can be
merged to one half of the field. For this, the right one is chosen. The algorithm
to merge the information is described in Algorithm 2. Here, the information of
the zones in the right half are merged with those on the other side. For this, the
affiliation of the machines observed need to be inverted for the mirrored ones,
i.e. magenta becomes cyan and vice versa.

Input: gamefield
Output: gamefield
1: for all z ∈ gamefield.rightHalf do
2: z.addObsMirrored()
3: end for
4: gamefield.mirrorRightHalfToLeft()
5: return gamefield
Algorithm 2: Algorithm to merge the observations in the symmetric game-field
halves.

Having this, conflicts in this knowledge-base needs to be found and eliminated.
Therefore, a metric needs to be defined to chose those observations that are
treated as correct. For this, the number of observations of a machine in a zone
is used. This procedure is described in Algorithm 3. Here, for each machine
the zone with the highest observation count is searched. Having this, all other
observations of this machine are discarded. The result of this is a game field
with no inconsistencies.

This belief of the world can then be used to generate the next task to perform,
i.e. to explore the zone where it is optimal to go to for the robot next. For this,
the zones have different exploration states:

• UNEXPLORED: No robot has been at this zone.
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Figure 6.11: Class diagram of the exploration phase scheduler.
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Input: gamefield, MPS
Output: gamefield
1: mergeMirroredObservations(gamefield)
2: for all m ∈ MPS do
3: (zone, count) = getZoneWithHighestCount(gamefield, m)
4: removeAllObsForMachine(gamefield, m)
5: addObsCountForMachineInZone(zone, count, m)
6: end for
7: return gamefield
Algorithm 3: Algorithm to generate a conflict-free game field given all possible
machines (MPS).

• EXPLORED: A robot already has been at this zone but no light pattern was
detected.

• LIGHT_FOUND: A robot already has been at this zone and a light pattern
was detected but is not reported to the referee box yet.

• REPORTED: A robot already has been at this zone and a light pattern was
detected and it already reported to the referee box.

• SCHEDULED: The zone is scheduled at the moment, i.e. a robot tries to
explore it.

With this, the zones are scheduled in this order, i.e. first, zones where no
robot has been are scheduled, than the explored ones, and so on. To exploit
the knowledge of the two swapped zones as described in Section 2.4 (the own
zones are advertised but the contained machine type and shown light pattern
not), these zones are scheduled first (i.e. a special heuristic). The algorithm
is described in Algorithm 4. As it can be seen, the fall-back solution if no
machine has been detected so far (and the swapped zones are already reported
or scheduled) is to chose a random one.

Having these tasks generated, the robots explore the given zones and report their
observations. If no machine is detected in this zone, the count of this machine
is reduces by a decay factor k, e.g. for k = 0.5, the number of observations is
reduced by a half. The arriving observations are collected by the team-server,
and as a certain confidence is achieved, i.e. the number of observations of a
machine in a particular zone reaches a threshold Omin, these zones are reported.
For the light observation, it is necessary that the machine of the observed light is
observed in the zone, the machine is in using the derived belief. If this is correct
the light pattern is reported. As it can be seen, there are two major parameters
for the exploration phase to be chosen, i.e. k and Omin. The influence of this
parameters is evaluated in Section 7.
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Input: gamefield
Output: zone
1: belief = getConflictFreeGameField(gamefield)
2: mirr = getSwappedZonesNotExplored()
3: unex = getUnexploredZonesSortByMCount(belief)
4: ex = getExploredZonesSortByMCount(belief)
5: light = getZonesWLightReportSortByMCount(belief)
6: zones = queue(mirr, unex, ex, light)
7: removeZonesWithZeroCount(zones)
8: if zones = ∅ then
9: nZone = randomZone()
10: else
11: nZone = zones.firstElement()
12: end if
13: nZone.state = SCHEDULED
14: return nZone

Algorithm 4: Algorithm to get next zone to explore.
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Chapter 7

Evaluation

In the context of this thesis, a complete robot framework for autonomous agents
in the context of Industrie 4.0 was developed. Therefore, it is only possible to
evaluate specific parts of this software.

The complete software stack is used during the exploration phase, i.e. high-level
scheduling algorithms, the mid-level using the procedural reasoning engine down
to the low-level components to perform e.g. way-point navigation. Therefore, it
makes a lot of sense to use this as an evaluation testbed. For this purpose, the
RoboCup Logistic League simulation using Gazebo with the Referee Box can
be used to generate some kind of evaluation criteria, e.g. the awarded points
during this phase.

As described in Section 6.5.2, for the exploration scheduler there are two main
parameters defining the behavior: the penalizing factor k reducing the number
of observations for a machine in a zone if there is no machine detected; and
the threshold Omin defining when a machine is reported. The performance is
compared to a similar approach that was used in the RoboCup Logistics League
championship in 2016.

7.1 Evaluation Setup

The used base-line for the developed scheduler and the overall testing environ-
ment is described in this section. Furthermore, the chosen reward values are
motivated and defined.

7.1.1 Base-Line Scheduler

To have a reference value for the implemented approach, a similar scheduler as
it was used in the last competition was implemented for comparison purpose.
This scheduler distributes the zones to explore in a random fashion, i.e. which
zone next is chosen randomly. Having one zone, one of the free robots is chosen
to perform this task. If a machine is found in this zone, the robot tries to detect
the light pattern. The zone of the machine is then derived from the accumulated
observations (i.e. maximum votes) and reported.
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If a machine of the opponent team is detected, the result is mirrored and re-
ported. With this, we have a rather advanced base-line for our scheduler (using
this approach, we were able to achieve the third place in the RoboCup world
championship).

7.1.2 Evaluation Criteria

First of all, an Evaluation Criteria (EC) needs to be found reflecting the per-
formance of the system. The resulting numbers after each game are:

• Number of correct reported zones Zr.

• Number of wrong reported zones Zw.

• Number of correct reported lights Lr.

• Number of wrong reported lights Lw.

Having this, derived values can be calculated (as described in Section 2.5 and
the rulebook1). First of all, the gained points due to correct reported zones Pz
as

Pz = 3 · Zr − 2 · Zw. (7.1)

Similarly, the points for correct reported lights Pl can be calculated as

Pl = 5 · Lr − 4 · Lw (7.2)

and finally, the overall points P as

P = Pz + Pl. (7.3)

The number of achieved points depend strongly on the chosen game-field ar-
rangement. Therefore, an other factor is needed to describe the overall accuracy
of the system. For this, the number of zones reported is defined as

Rz = Zr + Zw (7.4)

and the number of lights reported is defined as

Rl = Lr + Lw. (7.5)

With this, the accuracy of the system can be defined as

accZ =
Zr
Rz

(7.6)

accL =
Lr
Rl

(7.7)

1www.robocup-logistics.org/rules
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To analyze the influence of different scheduling/perception parameters, several
combinations are tested:

• k ∈ (0.0, 0.5, 1.0)

• Omin ∈ (0, 25, 50)

For each of the parameter pairs, ten runs are performed (i.e. 3 · 3 · 10 = 90
simulations). The bar notation (e.g. accz) is used to denote an average over the
runs.

7.1.3 Experiment Procedure

To ensure independent runs, between all the simulations the complete software
stack was restarted. To allow reconstruction of the experiments, the complete
information flow was logged in a SQL database. The dump of this database as
well as the output of the referee box is saved.

For this evaluation, 90 runs have been performed with the proposed scheduler
using different parameter pairs. Additionally, 20 runs are performed with the
base-line scheduler for comparison reasons.

7.2 Influence of the Parameters

In this section, the influence of the parameters k and Omin is examined and the
results are compared to those of the base-line approach.

7.2.1 Dependency Between the Factors

With the defined evaluation criteria in Section 7.1.2, we can examine the de-
pendency of these two factors on the performance. With this, the dependency
of the accuracy to report a zone can be seen in Figure 7.1. Here it is clearly
visible that the influence of the threshold Omin is very strong on the mean of
the accuracy. This behavior is further examined in Section 7.2.3. On the other
hand, the penalizing factor k do not have such a big influence. This is further
examined in Section 7.2.3.

7.2.2 Influence of the Threshold Factor

The influence of the threshold factor on the accuracy can be seen in Figure 7.2.
Here, the influence of the penalizing factor is very small.

To get the influence of the threshold factor only, the results of the different
values for k are combined. Having this, a box plot can be used to visualize
the results in an structured way. In such a plot, the median (red line), a box
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Figure 7.1: Influence of the penalizing factor k and the min-
imum observations threshold Omin on the averaged (10 runs)

accuracy accZ of the zone reports.
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Figure 7.3: Box plot of the the zone reporting accuracy accZ
over the minimum observations threshold Omin.

limited by the upper and lower quartile (blue box), the whiskers (black lines)
defining the overall value range, and outliers (red plus) defined as values as far
away from the median as 1.5 times the difference between the upper and lower
quartile are illustrated. Such a plot for the overall accuracy over the different
values of Omin can be seen in Figure 7.3. Here, the accuracy increases with
increasing threshold. This behavior makes sense as more and more observations
of a machine in a zone are needed before the zone is reported. Therefore, this
factor also influences the overall number of reported zones. This relation can
be seen in Figure 7.4. Here, for Omin = 0 almost every time all six machines are
reported with only some outliers at five. On the other hand, reporting six zones
is seen as an outlying value for the configuration with Omin = 50. Therefore, a
compromise needs to be made between a good accuracy, and therefore reliable
and correct reports and the readiness to take risks (i.e. to send a wrong report).
A good way to find such a value is to take a look at the achieved points due to
zone reports. This reflects the game policies of “how bad” a wrong report is, i.e.
how much penalty is given. A box plot of the received points over the parameter
Omin can be seen in Figure 7.5. This picture gives us several options to chose
the value Omin depending on the willingness to take risks. As it can be seen,
the highest points are achieved using Omin = 25 as a threshold for reporting,
but this can lead to lower overall points too. The median of the configuration
using a threshold of 50 is almost the same as the one of 25, but here it is not
very likely to achieve more points. Therefore, a value around 25 or between 25
and 50 might be chosen for a good compromise.

7.2.3 Influence of the Penalizing Factor

The influence of the of the penalizing factor k is examined in the same way
as the threshold before. For this, the impact on the zone reporting accuracy
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Figure 7.4: Box plot of the the number of reported machines
(correct and wrong) RZ over the minimum observations thresh-
old Omin. Results of the base-line approach drawn dotted in red

for the median and blue for the quartiles.

Omin/1
0 25 50

P
z
/1

-10

-5

0

5

10

15

Figure 7.5: Box plot of the the number of received points Pz
over the minimum observations threshold Omin. Results of the
base-line approach drawn dotted in red for the median and blue

for the quartiles.
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Figure 7.6: Box plot of the the zone reporting accuracy accZ
over the penalizing factor k.

is shown for all values of Omin in Figure 7.6. Here, again, a higher value of k
leads to a better accuracy. With this result alone, k = 1 would seem ideal, but
if we take a look at the influence on the overall reported machines, we need to
make a compromise again. This dependence depicted in Figure 7.7 suggests a
value around 0.5. Again, the way to find a compromise is to take a look at the
gained points for the reports, depicted in Figure 7.8. Similar to the case for
the threshold, the decision to chose this factor depends on the readiness to take
risks. A reasonable value for this factor would be between 0.5 and 1.0.

7.2.4 Influence on the Reported Lights

The influence on the number of reported lights needs not to be taken into
account for two reasons: the accuracy of the reports is at almost 1.0, inde-
pendent of the parameters and the points gained through reported lights be-
have like those described above for the reported zones. With this, the chosen
parametrization for a good result in zone exploration leads to a high number of
points for the lights too. This can be again seen in the plots for the achieved
points through light reporting in Figure 7.9 and Figure 7.10.

7.3 Comparison with Base-Line Scheduler

The results of the base-line scheduler are drawn with dotted lines in the plots,
i.e. red dotted line for the median, and blue dotted lines for the upper and
lower quartile. The results are the combination of 20 independent runs.

As it can be seen in the figures before (evaluating the different parameters of
the scheduler), the developed scheduler works for almost all parameters chosen
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Figure 7.7: Box plot of the the number of reported machines
(correct and wrong) RZ over the penalizing factor k. Results of
the base-line approach drawn dotted in red for the median and

blue for the quartiles.
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Figure 7.8: Box plot of the the number of received points Pz
over the penalizing factor k. Results of the base-line approach
drawn dotted in red for the median and blue for the quartiles.



Chapter 7. Evaluation 96

Omin/1
0 25 50

P
l/
1

-5

0

5

10

15

20

Figure 7.9: Box plot of the the number of received points Pl
over the minimum observations threshold Omin. Results of the
base-line approach drawn dotted in red for the median and blue

for the quartiles.
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Figure 7.10: Box plot of the the number of received points Pl
over the penalizing factor k. Results of the base-line approach
drawn dotted in red for the median and blue for the quartiles.
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Figure 7.11: Box plot of the the number of overall received
points P over the minimum observations thresholdOmin. Results
of the base-line approach drawn dotted in red for the median and

blue for the quartiles.

better (i.e. higher median) and with less variance. Therefore, the approach
works more reliable. This can be further analyzed by viewing at the overall
points gained as it can be seen in Figure 7.11 and Figure 7.12. Here, the same
behavior can be observed: the median of the achieved overall points is higher
and the result is more stable if the correct parameters are used (smaller quantiles
and therefore lower variance).

The results show, that the implemented scheduler works better than the previ-
ous implementation used at the RoboCup Logistic world championship, espe-
cially with parameters k between 0.5 and 1 and Omin = 25.
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Figure 7.12: Box plot of the the number of overall received
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approach drawn dotted in red for the median and blue for the

quartiles.
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Chapter 8

Conclusion

In this master’s thesis, a robot framework for a fleet of autonomous robots was
presented. The framework is designed in a layered and flexible way as each
layer can be exchanges easily. The architecture consists of a centralized high-
level control and distributed mid- and low-level layers. The communication is
mainly based on TCP using Google’s protocol buffers for the serialization. As an
practical example, the software stack needed for the RoboCup Logistics league
is implemented and tested. Furthermore, the problem to explore an unknown
factory hall is formalized and an exploration scheduler is implemented.

8.1 Modularity

The modularity of the developed framework has already shown its advantages
as the high-level is already implemented in a second version. The first imple-
mentation used C++, and the presented version, in this thesis, Java for this.
This change in the programing language was possible due to the clear layered
architecture and the use of the language independent serialization protocol.

With this, the power of this framework is not limited, i.e. all of the layers can be
redesigned and new functionality can be added very easy. This makes this work
a great fundamental for future projects in the scope of autonomous multi-robot
systems with a centralized high-level. The abstraction between the levels allows
independent development and evaluated.

8.2 Improvement of Reliability in Industrie 4.0

With this framework, each layer can be tested individually. This lead to a
huge increase in testability. For this, an adjacent layer can simply be mocked
up by implementing the interfaces, e.g. the low-level can be modeled using
deterministic behavior to test the mid-level and high-level components. On the
other side, actions can be sent to the low-level from a test-engine as well, testing
the behavior of the hardware components.
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8.3 Participation and Results

The described architecture has already been tested by participating in the
RoboCup 2016 in Leipzig, Germany. The software version used there was in
a beta state with a minimalist scheduler as described in the team description
paper in [61]. The architecture and low-level components were able to show off
their robustness and efficiency, and therefore it was possible to reach the third
place as a newcomer against opponents competing in this league for already
several years.



101

Chapter 9

Future Work

With this robot framework as a basis, more complex functionality can be added
in each of the three layers. The next evolution steps of this framework contains
such improvements in all three layers. A short preview of the main planned
additional functionality is given in this chapter.

9.1 Production Scheduler

At the high-level control, i.e. the highest layer, at the moment only a scheduler
to explore the game-field is implemented. To be able to produce ordered prod-
ucts during the production phase, a production scheduler needs to be developed
too. For this, the arriving orders need to be split up into atomic subtasks. These
tasks can then be scheduled using a earliest-deadline-first approach or one of
the presented algorithms in Section 4

This additional scheduler can be added to the present schedulers as described
in Section 6.

9.2 Diagnosis for Error Detection and Handling

The low-level layer of the developed framework starts to become rather complex,
i.e. a lot of different processes are started there. To be able to detect errors,
different approaches can be used as described in [62] or [63]. As an example,
the nominal behavior of the processes (e.g. frequency of communication, used
bandwidth) can be used to model a normal operating mode. Deviations from
this behavior can therefore be recognized and an error handling or error recovery
can be started. This would introduce an enormous improvement in stability and
reliability.
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