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Evaluation and improvement of an insulin dosing algorithm for application

in a computerized decision and workflow support system

DI Klaus Donsa, BSc

Doctoral Thesis

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic disease which highly affects the individual patient and
also represents a global health burden with a large financial impact. T2DM patients are common in
hospitals and their therapy requires complex and interdisciplinary cooperation of health care
professionals (HCPs). Improvement in diabetes management is related to lower rates of hospital
complications, but recent evidence suggests that especially therapy regimens involving insulin are
prone to error. Driven by the reported medical benefit of improved inpatient glycemic control, the
development of GlucoTab® - a computerized workflow and decision support system - was initiated to
support HCPs in diabetes management. This thesis is embedded in the development of GlucoTab® and
focuses on the evaluation and enhancement of an insulin dosing algorithm for T2DM patients, by

using retrospective statistical analysis and simulation.

Important parts of this work address the following topics: 1) development of a framework for data
processing, simulation and statistical analysis to evaluate and improve insulin dosing algorithms; 2)
evaluation and simulation of modifications/improvements of insulin dosing algorithms; 3) testing the
capability of continuous glucose monitoring to assess the clinical impact and safety of basal-bolus
insulin therapy; 4) estimating the impact of errors in diabetes management when using either paper-
based or computerized decision and workflow support; 5) identification of parameters and methods to
select optimal therapy settings and preliminary considerations for the use of machine learning and

decision support in the personalization of diabetes therapy.

Computerized algorithm-based decision support systems directly influence clinical practice and have
the potential to achieve significant and clinically relevant improvements. The data analyses in this PhD
thesis show that such systems reduce errors and therefore decrease the probability of patients
experiencing hypo- and hyperglycemia, but a potential for errors still remains. Ways to further reduce
error potential and to further improve insulin dosing algorithms in computerized diabetes

management systems are discussed.
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BG Blood glucose

CDSS Computerized decision support system
CE Conformité Européenne
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CHAPTER |

Introduction — Setting the scene

This chapter provides an introduction and is setting the scene for my scientific endeavors to
evaluate and improve inpatient treatment of type 2 diabetes mellitus patients using a
computerized workflow and decision support system. It also describes the objectives of this

PhD thesis and how this work contributed to the development of GlucoTab®



1. Inpatient diabetes management is in the need of improvement

Diabetes mellitus (DM) is a chronic illness of the metabolic system leading to high blood glucose (BG)
levels. DM can be classified into two main clinical categories. Type 1 diabetes mellitus (T1DM) is
caused by the loss of B-cells which are responsible for the storage and release of insulin and it mainly
occurs in children, adolescents and young adults. In contrast, type 2 diabetes mellitus (T2DM) is
determined by insulin resistance and develops due to a progressive insulin secretory defect, mostly in
elderly people with overweight or obesity [1]. In both conditions continuous medical care is required
to minimize the risk of acute (e.g. ketoacidosis) and long-term complications (e.g. diabetic foot
syndrome, nephropathy, retinopathy, cardiovascular diseases or stroke) [2]. T1IDM can only be treated
with insulin, whereas a wide range of therapeutic options are available for patients with T2DM [1].
Adhering to therapy in chronic diseases like DM requires active participation and is often very
burdensome for patients. Long-term complications take years to develop and the effects of a poor
controlled disease are not immediately evident in T2DM. Unfortunately, this does not promote the

adherence to therapy. [3]

DM is a growing global disease which highly affects the individual patient and also represents a global
health burden with financial impact on national health care systems. In 2013 approximately 382
million people were suffering from diabetes. It is estimated that in 2035 this number will reach 592
million. In the United States of America, the total estimated costs for diabetes were $174 billion for the
year 2007. The largest component of medical expenditures attributed to diabetes is hospital inpatient

care ($58 billion). [4], [5]

Around 20% of hospital inpatient days occur in patients having DM [5]. Over 90% of DM patients
admitted to hospitals have T2DM [6]. According to estimates from the United Kingdom, inpatients
with recorded DM stay up to 100% longer on average, are 50% less likely to be treated as day cases and
are almost 100% more likely to be readmitted as an emergency [4]. These patients require a higher
intensity of care which causes considerable additional costs [7]. The higher intensity of care is partly
attributable to higher severity of illness, as patients with diabetes often have several comorbidities

which leads to an increased risk to experience adverse events during hospital stay [8]-[10].

Observational and randomized controlled studies indicate that improvement in diabetes management
results in lower rates of hospital complications in general medicine and surgery wards [11], [12].

However, in-hospital diabetes management is often flawed. In a recent diabetes inpatient audit, 37% of
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diabetes patients experienced at least one diabetes medication error during hospitalization and were

more than twice as likely to have one or more severe hypoglycemic episodes [6].

Diabetes management requires complex and interdisciplinary cooperation of health care professionals
(HCPs) involving ordering doses and correction schemes, BG measurement and timely administration
of resulting insulin doses. To support this complex process recently published guidelines and studies
recommend the use of computerized decision support systems (CDSS) [8] and medication order entry
systems for diabetes therapy in hospitalized patients [13]-[15]. The combination of medication order
entry systems and CDSS has proven to reduce medication errors but clear evidence that this

combination reduces clinical adverse drug events is still missing [16].

Current evidence supports proactive, scheduled insulin regimens for any patient with consistent
hyperglycemia, not only patients with known diabetes and/or who were taking insulin before
hospitalization [17]. Therefore, international diabetes experts recommend a structured approach and
an algorithm-driven basal-bolus insulin regimen in hospitalized T2DM patients [1]. This regimen
involves long-acting insulin to supplement basal insulin requirements during periods of fasting and
separate injections of rapid-acting insulin to prevent rises in BG levels resulting from meals. Insulin
dosing algorithms aim to achieve BG levels in a desired range by accounting for meals and

unphysiological BG levels.

At present, personalization of T2DM therapy in hospitals plays a secondary role due to three factors: 1)
A short length of stay does not allow the empiric development of patient-specific factors which are
crucial for the personalization of diabetes therapy. 2) Rigid hospital workflows and excessive workload
of HCPs often prohibit the implementation of individualized diabetes therapies. 3) Diabetes therapy
regimens allowing personalization are complex and very often hospital wards are lacking the know-
how to implement them safely and effectively. Therefore, a sliding-scale insulin therapy regimen is still
often used in hospitals, because it is easy and convenient for the medical staft to administer, even
though it is known that it does not control BG very well [18]. Management of T2DM is therefore very
generic and is designed to operate safely for the majority of patients. Nonetheless, aside from these

restrictions personalization is possible to some extent and is recommended by current guidelines [1].



2. Start of the GlucoTab® development process

Although considerable efforts have been made to improve glycemic management, an adequate insulin
therapy in clinical practice is still lacking in many hospitals despite its recommendation by diabetes
experts and guidelines [19]. Contradictory to these recommendations, the management of T2DM in
hospitals with insulin compares poorly to non-insulin therapy options by using different outcome
measures. Comparing these diabetes management options is problematic because they target different
patient populations, but recent evidence demonstrated that by using insulin in T2DM therapy, patients
had significantly more medication errors, more hypoglycemic episodes and poorer glycemic control

[6].

As part of the 7th European Commission framework-program project REACTION (Remote
Accessibility to Diabetes Management and Therapy in Operational healthcare Networks) inpatient
diabetes management was identified as important field for improvement. Therefore ways for
improvement were sought and as consequence the development process of a mobile computerized
workflow and decision support system was initiated. In an initial clinical data review an insulin dosing
regimen for basal-bolus insulin therapy in hospitalized T2DM patients was identified which
demonstrated good glycemic control in non-critical care [20], [21]. This regimen involved
subcutaneous insulin injection of long- and rapid-acting insulin. Insulin dose calculations were based
on four BG measurements (three pre-meal and one bedtime) and consisted of insulin for meals and
supplemental insulin for high BG levels. It furthermore included a structured rule-based therapy
initialization and a daily rule-based therapy adjustment. The therapy protocol used in the original

study is provided in Appendix III - Supplemental Material (Initial insulin treatment protocol).

This basal-bolus insulin regimen was customized to account for complex processes during inpatient
care and was then integrated into the workflow of a general internal medicine ward [22]. In a proof-of-
concept study the efficacy, workflow integration and usability of a paper-based protocol for basal-
bolus insulin therapy in T2DM patients was assessed, and it served as data basis for improvements of
the insulin dosing algorithm. The workflow-integrated algorithm for basal-bolus therapy was effective
in establishing glycemic control compared to standard care and was well accepted by medical staff, but

room for improvement was discovered.

In an interdisciplinary development process the paper-based protocol was translated into a

computerized system for workflow and decision support. This system aims to overcome shortcomings
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of manual procedures. Specifically in preventing input-, calculation- and double data-entry- errors,
and providing automated therapy visualizations and traceable real-time documentation for time-

critical tasks.

The result of this development process is GlucoTab® - a mobile computerized client-server system,
supporting HCPs in diabetes management of hospitalized T2DM patients directly at the point of care.
The main function of the system is the provision of insulin dose recommendations for basal-bolus
insulin treatment of T2DM patients. GlucoTab® is a CE marked medical device software (Class I, risk
class C according to IEC 62304). It comprises the following functionalities which aid physicians and
nurses: 1) medication order entry with insulin dosing decision support for physicians, 2) workflow
management for physicians and nurses, 3) data entry at the bedside and 4) drug administration
support including insulin dose calculation for nurses. The GlucoTab® process is displayed in Figure 1.
The mobile system assists in organizing the treatment workflow, including display for open tasks,

facilitating documentation and providing visualization of BG values, nutrition and insulin doses.

Admission Noon
* Anamnesis » Blood glucose measurement
» Status - * Insulin administration (basal)
» Therapy initialization » Adjusted dose (bolus)

» Daily dose suggestion

Ward round NRI Evening
» Therapy review » Blood glucose measurement
» Daily dose adjustment + Adjusted dose (bolus)

Discharge

¢ Discharge management -
(planned) Morning

* Therapy suggestion » Blood glucose measurement
(planned) » Adjusted dose (bolus)

Figure 1: The GlucoTab® process - therapy workflow for basal-bolus therapy in hospitalized T2DM patients. The
BG measurement and the potential supplemental bolus insulin injection at night are not displayed

In the GlucoTab® process dosing decisions are based on four daily capillary BG finger-stick
measurements (three pre-meal and one bedtime measurement). Additional BG measurements are

performed if deemed necessary by HCPs. The system is used to calculate the initial total daily dose
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(TDD) of insulin based on the patient’s weight, age and renal function (serum creatinine level) as well
as to calculate a new TDD for the next 24 hours based on the previous TDD and BG values of the
preceding 24 hours. The calculated TDD is either accepted or modified by the physicians and is then
divided into a 50% daily basal and a 50% daily bolus insulin dose. The bolus dose is distributed among
the three meals (breakfast, lunch, dinner). In case pre-meal BG values are below the target range the
insulin bolus is reduced, whereas BG values above the target range induce an increased bolus dose. In
most patients the basal-bolus insulin algorithm aims for fasting and pre-meal BG levels of 100 - 140
mg/dL. In case of supplemental insulin suggested due to high BG, the algorithm further adjusts the
dose using an insulin sensitivity parameter. Insulin sensitivity (sensitive, normal and resistant) is
assessed by the attending physician during each morning round. Additional bolus injections are
performed if deemed necessary by the HCPs. This diurnal interdisciplinary workflow, the standard
measurement times and time of interventions are displayed in Figure 2. In the GlucoTab® process
continuous glucose monitoring (CGM) is not used routinely but was used in a subgroup of patients to

investigate the patients’ glycaemia in more detail.

200 - Workflow tasks:
? n <74 BGPOCT
g N— CGM
E 1V
3 1504 nse . Insulin injection
[=]
g "
w 1l
Therapy adjustment
100 - Az B merepy g
Physician
: | |:

1 ] 1 1 * * ] 1 * * ]
0:00 4:00 8:.00 12:00 16:00 20:00 24:.00

n Insulin:
Bolus insulin (meal)
morning noon evening night Bolus insulin (supplement)
X ' Cn - elpplement

Basal insulin

tr 1
> W W N N

Figure 2: Diurnal interdisciplinary treatment workflow of GlucoTab®. BG POCT...Blood Glucose Point of Care
Testing, CGM ... Continuous Glucose Monitoring

In the course of the development of GlucoTab® several areas of improvement were identified. These
areas ranged from - improvement of technical components of the system, like user management
integration from the hospital active directory etc. - to the support of new therapy regimens using

different insulin analogues. A central area for improvement was the decision support component of



GlucoTab® and its’ underlying rule-based insulin dosing algorithm. In combination with the workflow
management component there were many already known and unknown factors influencing the
performance of the system regarding safety and effectiveness. The analyses in this PhD thesis target the
evaluation and improvement of the insulin dosing algorithm used in GlucoTab®, by using simulation

and retrospective statistical analysis of data from clinical studies.

3. Objectives and research questions

The analyses in this PhD thesis were targeting in a holistic way the evaluation and improvement of the
insulin dosing algorithm used in GlucoTab’. Therefore the objectives of this thesis were structured as

follows:

Development of a framework for data processing, simulation and statistical analysis: Reusable tools
and methods had to be developed to import and pool data from different studies for evaluation of
safety and effectiveness of the GlucoTab® system and to allow a standardized integration of data from
future clinical studies. This framework had to be able to test and evaluate modifications/improvements
of the insulin dosing algorithm prior to implementation into GlucoTab® using a workflow simulator.
The impact of the modification on the patients’ BG levels had to be estimated and displayed. As part of
this PhD thesis following research questions were addressed: How to measure glycemic control? How

to measure the performance of an insulin dosing algorithm?

Evaluating modifications of the insulin dosing algorithm: The impact of modifications of the insulin
dosing algorithm had to be evaluated using simulation and retrospective statistical analysis. As part of
this PhD thesis following research question was addressed: Did the implemented modifications of the
insulin dosing algorithm have the intended beneficial effect on the patients’ diabetes therapy regarding

safety and effectiveness?

Testing the capability of continuous glucose monitoring (CGM) to assess the clinical impact and
safety of basal-bolus insulin therapy: A four point daily glucose profile is capable of safely running a
basal-bolus insulin algorithm. However, it does not picture the diverse glucodynamics of patients with
diabetes, in particular during the patient’s reconvalescence with various factors influencing the
carbohydrate metabolism. CGM could be useful to display the complete diurnal glycemic profile and
detect patterns of responsiveness to therapeutic efforts using GlucoTab®. As part of the dissertation

following research questions were addressed: Are we missing something by solely using BG spot



measurements for therapy decisions? Is a four point measurement scheme and the standard
measurement times (pre-meal and bedtime) adequate for decision making? Could the use of CGM be

justified for running a basal-bolus insulin algorithm for T2DM patients on a clinical ward?

Evaluation of the workflow and decision support system regarding safety, efficacy and usability:
The final version of GlucoTab® was evaluated in a clinical study on different wards. Additionally, the
diabetes management was investigated on a patient subgroup level. As part of this PhD thesis following
research question was addressed: Are there subgroups of patients where the diabetes management is

not working well using GlucoTab®?

Clinical benefits of computerized workflow and decision support: In the course of the GlucoTab®
development, a basal-bolus insulin regimen was first tested in a paper-based way and was then
implemented into GlucoTab®. The research questions addressed by this PhD thesis targeted the
investigation of medication errors in paper-based and computerized clinical decision and workflow
support. The analysis of medication errors related to inpatient diabetes management should lead to the
detection of possible improvements and should justify the use of computerized systems for insulin

dosing.

Personalization of the GlucoTab® algorithm - Preliminary considerations: Patient-centered care
and standardized algorithmic management are conflicting approaches. Individualization of the
patient’s diabetes therapy is often in conflict with the rigid workflows on clinical wards. The
investigations in this PhD thesis targeted the identification of parameters and methods to select
optimal therapy settings in diabetes therapy. Preliminary considerations for the use of machine

learning and decision support for personalization of diabetes therapy were performed.

4. Structure of the thesis

This thesis is organized in the following structure, addressing the objectives of this scientific work in
distinct chapters. Each chapter is based on peer-reviewed articles published as first-author or as co-
author and is discussed in a summary section at the end of each chapter. My work started with data
processing and initial statistical analyses of data from clinical studies related to the development of
GlucoTab’. Already in an early phase of my work the necessity to develop a framework for data
processing, simulation and statistical analysis was evident. Chapter II explains the purpose and

benefits of this framework. Chapters III to V summarize evaluations of the insulin dosing algorithm



improvements in different stages of the development. Chapter III deals with evaluations of algorithm
modifications and Chapter IV summarizes evaluations testing additional CGM for assessing the
clinical impact of a basal-bolus insulin regimen. Chapter V demonstrates the results of a study
investigating safety, efficacy and usability of using the current version of GlucoTab® on different
clinical wards. The clinical benefit of computerized workflow and decision support is investigated by a
post-hoc analysis of a before and after study comparing medication errors in paper-based and
computerized workflow and decision support in Chapter VI. Chapter VII addresses preliminary
considerations for the use of machine learning and decision support for personalization of diabetes
therapy. In the end the results of the previous chapters are discussed and directions of future research

are outlined (Chapter VIII).
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CHAPTER I

Development of a framework for data processing,
simulation and statistical analysis

This chapter is partly taken from a previously published article (Donsa et al. 2014, [23]) and
is complemented by so far unpublished data. Here, the developed framework which is basis

for further analyses presented in this PhD thesis is described.

11



1. How to measure the level of glycemic control?

The purpose of diabetes therapy is to mimic physiological BG profiles as close as possible which means
to avoid unphysiologically high and low BG levels. There are several ways to measure the success of
diabetes therapy (the level of glycemic control) using short- and long-term parameters or metrics. All
short-term parameters and metrics are also usable as long-term measures if averaged over a certain
period of time. This section provides the most common parameters and metrics and describes why the
development of new ways for measuring the level of glycemic control was necessary in improving the

insulin dosing algorithm used in GlucoTab".

Long-term parameters: A measure of compliance with diabetes therapy is provided by the level of the
patients’ glycated hemoglobin (HbAIc). It is a laboratory parameter which serves in specific situations
as a biomarker for the average BG levels in patients over the previous 2 to 3 months prior to the
measurement. Several analyses have shown a strong correlation between HbAlc and the patients’
average BG levels, with each 1% (10.9 mmol/mol) change in HbA1lc corresponding to a change of ~35
mg/dL (1.9 mmol/L) [24]. In DM, higher average BG levels have been associated with increased risk
for microvascular complications (nephropathy, retinopathy) and to a lesser extent with macrovascular
complications [3]. Even though HbA1lc serves as a good indicator for average BG levels based on pre-

meal BG levels it does not provide any information on short-term hypo- and hyperglycemia [24].

Short-term parameters and metrics: The level of appropriate glycemic control and therefore the BG
targets of diabetes therapy are strongly influenced by the setting in which the therapy occurs. For non-
critically ill hospitalized DM patients a target BG of less than 140 mg/dL (7.8 mmol/L) for pre-meal BG
levels and less than 180 mg/dL (10.0 mmol/L) for a random BG measurement is reccommended by the
American Diabetes Association (ADA) if patients are treated with insulin. More stringent targets may
be appropriate in stable patients with previous tight glycemic control. Less stringent targets may be
appropriate in those with severe co-morbidities. Therapy targets should only be realized if these targets
can be safely achieved [1]. The ratio of BG measurements in a well-defined target range (e.g. 100 — 140

mg/dL) serves as measure for glycemic control.

Hypoglycemia is feared by patients as well as HCPs and must be avoided in safe and effective diabetes
therapy. A plan for preventing and treating hypoglycemia should be established for each patient and
episodes in the hospital should be documented and tracked [1]. Documented symptomatic- and

asymptomatic hypoglycemia are defined as occurring at a plasma glucose concentration of <70 mg/dL
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(3.9 mmol/L) [25]. This BG level remains a common threshold for defining hypoglycemia, but there
are also other thresholds defined. Frequent hypoglycemia serves as an indicator for the necessity to

adjust the therapy.

Glycemic Variability (GV) is the fluctuation of the patients’ BG values and it is used as an indicator for
the quality of diabetes management, as a high GV leads to increased risk of hypo- and hyperglycemic
episodes [26]. Numerous metrics have been defined in the last decades, especially for CGM. Most
notably are: (1) SDr (total variability in a data set), (2) SDy (the average of the SDs within each day), or
(3) MAGE (average amplitude of up-strokes or down-strokes with magnitude greater than 1 SD), as a
measure of within-day variability, and (4) SDy numm (average of all SDs for all times of day), or (5)
MODD (mean difference between glucose values obtained at the same time of day on two consecutive

days under standardized conditions) as a measure of between-day variability. [27]

Good diabetes days (GDD) are a relatively new concept for measuring the level of glycemic control and
the “quality” of the BG measurement process. In the national diabetes inpatient audit in Great Britain
a good diabetes day is defined as when the frequency of BG monitoring was appropriate, there was no
more than one BG measurement of 11 mmol/L (198 mg/dL) or greater and no BG measurements of
less than 4 mmol/L (72 mg/dL). Appropriate BG testing was defined as four or more times a day for
patients who are unwell or have unstable diabetes or who are on a basal-bolus insulin regimen; twice a
day or more for patients on insulin, Exenatide, Sulphoyurea or more than one oral hypoglycemic agent
including DPP4-inhibitors and Glitazones; once a day or more for patients on Metformin or diet

management alone; or once a week or more for long stay patients with stable control [28].

A comprehensive assessment of the level of glycemic control was a prerequisite for seeking
improvements of the insulin dosing algorithm used in GlucoTab®. While these already established
long- and short-term parameters or metrics serve as a good basis for investigating the overall level of
glycemic control they were not designed to measure the performance of an insulin dosing algorithm.
The link between cause (algorithm component: e.g. bolus insulin dose calculation) and effect (e.g.
hypo- and hyperglycemia or GV) is often difficult to establish. Therefore new metrics for evaluating

safety and effectiveness of the insulin dosing algorithm had to be developed.
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1.1 From individual to pooled evaluation of safety and effectiveness of diabetes

therapy

Graphical interpretation of glucose and insulin therapy proofed to be very helpful for individual
assessment of the patients’ diabetes therapy. Especially at the beginning of the GlucoTab®
development, safety and effectiveness of diabetes therapy were discussed with diabetes experts on a
patient individual basis. Figure 3 displays glycemic and therapy information of one patient day of a
patient treated with the initial version of the GlucoTab® algorithm. A graphical demonstration of the
patients’ diabetes therapy systematically displays the level of glycemic control and the impact of the
therapy is immediately observable. Unfortunately, graphical demonstration lacks the objective
interpretation using single metrics or parameters for measuring the level of glycemic control.
Therefore, a penalty scoring system proofed to be a valuable tool for investigating the level of
individual glycemic control. The penalty scoring system evaluates the therapy of each patient
considering the average BG levels, hypo- and hyperglycemic events and GV. If the patient’s glycaemia
was within the target range the scoring system rewards credit points whereas BG values outside the
target range are given penalty points. Penalty points are weighted according to the severity of hypo- or
hyperglycemia. Hypoglycemia has a higher impact on the score. For comparisons of safety and
effectiveness of different versions of insulin dosing algorithms using retrospective workflow
simulations and BG estimations (see chapter 2.3 — Simulation), the impact of algorithm modifications
is measurable with a single score for each patient. The score is very sensitive to hypoglycemic events
which reduces this blind spot which is present for example by evaluating glycemic control using only

the patients’ average BG.
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Figure 3: Diurnal glycemic profile and course of diabetes therapy. (a) Green crosses indicate scheduled BG
measurements; red crosses indicate additional control measurements. The continuous course of BG is
displayed with continuous glucose monitoring. (b) Basal insulin administration is shown as text and blue circles
indicate scheduled bolus injections. The knife and fork symbol indicates if a meal was planned

This penalty scoring system worked very well to detect potential safety issues by “in-silico”-testing new
versions of the insulin dosing algorithm, but it lacks the level of detail for providing overall
information of the level of glycemic control. For this purpose the already established parameters and
metrics were very helpful. Figure 4 shows the diurnal glycemic profile of a patient cohort treated with
GlucoTab® and monitored with additional CGM. This graphical presentation of glycemic control was

inspired by the recommendations of Bergenstal et al. for standardizing the analysis and presentation of

glucose monitoring data [29].

-15-



Chapter II: Development of a framework for data processing, simulation and statistical analysis
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Figure 4: Diurnal continuous glucose monitoring (CGM) profiles and reference blood glucose (BG)
measurements (35 T2DM patients). CGM values are median — interquartile range (25-75% [Q25/75%)] and 10—
90% [Q10/90%]). BG values are median — interquartile range (25-75%), displayed as bars. Black dots indicate
hypoglycemic events (<70 mg/dL). Data from Neubauer et al. 2015 [30]. Q ... quantile; h ... hour

Figure 5 demonstrates BG levels in predefined ranges as a function of treatment days. This method
allows a very comprehensive evaluation of the progress of diabetes management and therefore to
measure the level of glycemic control. In the course of this PhD work a multitude of customized

graphic output functions has been developed or adapted to evaluate the safety and effectiveness of

diabetes therapy using GlucoTab".
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Figure 5: Distribution of BG values in predefined ranges of 37 T2DM patients treated with the initial version of
the insulin dosing algorithm (<70, 70-100, 100-140, 140-180, 180-300, >300 mg/dL) as a function of the
treatment days. Data from Mader et al. 2013 [22]
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1.2  Evaluation of safety and effectiveness of the insulin dosing algorithm

A method was developed to evaluate the “success” of individual decision support steps and to interpret
them in an aggregated form, Figure 6. The focus of this development was to investigate safety and
effectiveness of GlucoTab® in general, and specifically to investigate the algorithm component
calculating supplemental insulin (correction insulin) for too high BG levels. The intervention borders
of the supplemental insulin scheme are displayed on the x-axis. Higher BG levels are associated with
an increase of the supplemental insulin dose. For each intervention border the patients’ BG levels at
the start and at the end of the observation period are demonstrated on the y-axis. Each line
demonstrates two BG measurements and one decision support suggestion. By including additional
information such as the BG measurement interval (e.g. morning-noon etc.) the data is accessible in an
aggregated form for the interpretation of trends. The proportion of “successful” titrations into the
extended target range (ETR) ranging from 70 to 180 mg/dL is additionally demonstrated. Especially

for subgroup analyses this method provides very detailed information on the level of glycemic control.
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Figure 6: Target range approach: Evaluation of safety and effectiveness of the insulin dosing algorithm: The red
line is the mean of all lines within an intervention border. Supplemental insulin dose according to blood glucose
intervention border (mg/dL) and insulin sensitivity [sensitive / normal / resistant]; IU ... Insulin Unit, ETR ...
Extended Target Range (70-180 mg/dL)
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2. A toolbox to improve algorithms for insulin-dosing decision support

[Donsa et al. 2014]

The aims of this framework/toolbox development were: to improve the GlucoTab® algorithm which in
its initial form lacked flexibility, to test and optimize new ideas and hypotheses for algorithm
modifications to draw maximum benefit from future clinical studies, and to identify individualized
algorithm and workflow improvements for specific patient subgroups. We have now incorporated
several heterogeneous clinical data sources and implemented a standard procedure for statistical
analysis. This section summarizes the methods and technologies and the iterative process used to

develop the toolbox for improving algorithms for insulin-dosing decision support.
The toolbox consists of three main components (Figure 7):

1. Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in
a uniform data format.

2. Analysis: The algorithm performance is measured and visualized for all patients or patient
subgroups.

3. Simulation: Modified versions of the algorithm are applied in simulations of the treatment

workflow, based on real data from clinical studies.

2.1 Data preparation

The purpose of this component is to extract, transform and load (ETL) data from clinical studies and
other sources into a uniform data structure in a standardized process. One major challenge in the
performance of pooled data analyses is the varying structure of data from different clinical studies. We
designed a multi-step process to monitor and clean the data: the first steps are performed routinely as
part of clinical study data management according to Good Clinical Practice (GCP) and International
Conference on Harmonization (ICH) [31]. In each clinical study data is extracted from the sources and
transformed into a standardized format according to standard data management: data is first checked
for consistency and quality; applying for example summary statistics and row checks in the form of if-
clauses. Inconsistent, implausible or missing values are discussed with the clinical study team in the
database release meeting to achieve a clean dataset for statistical analysis. As part of the toolbox, during
the data preparation step, the data is extracted, cleaned and stored in a uniform data format for pooled

statistical analyses. Type and unit conversions as well as preparations for the simulations and analyses
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are performed in this step. Patient-specific profiles with baseline characteristics, concomitant

diagnoses and medications, overall glycemic information (mean BG levels, glucose variability, hypo-

and hyperglycemic events) and information on the algorithm version used are generated. “Virtual

insulin sensitivity” profiles are also generated which are required for BG estimations, performed in the

simulation component (see section 2.3 Simulation).

(1 Data
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: ETL : =
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reporting
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+ basal / bolus suggestion + supplemental insulin ((
» therapy adjustment + blood glucose estimations :E;)Java
[ modification of the algorithm J

Figure 7: Structure of the toolbox for improving algorithms for insulin-dosing decision support. ETL ... Extract,

Transform and Load

2.2 Analysis

In the analysis component, different methods of the toolbox (e.g. patient hazard analysis, what-if

analysis) are combined depending on the specific research question. Results from the analysis

component are summarized in a reporting tool. The following use cases demonstrate the possibilities

of the toolbox by using data from three clinical studies and comprise datasets from the following data

sources:

GlucoTab® server: 5,218 BG measurements (Roche Accu-Chek) from 166 patients on 1,124

patient days, suggested and confirmed bolus and basal insulin doses and information on

consumption of meals and insulin sensitivity
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- Clinical study data management system (OpenClinica): Diagnoses, medications and baseline
characteristics of 166 patients

- Laboratory information system: Hospital laboratory data of 99 patients

- Continuous Glucose Monitoring (CGM): 14,140 hours recorded with CGM (Medtronics

iPro®2) of 97 patients

Pooled data: The first use case demonstrates methods for the retrospective analysis of pooled patient
data. It aims to detect the quality of glycemic control when using the GlucoTab® system by identifying
individualized versions of insulin-dosing algorithms for specific patient subgroups. A penalty scoring
system evaluates the therapy of each patient considering the average BG levels, hypo- and
hyperglycemic events and glucose variability. If the patient’s glycaemia is within the target range the
scoring system rewards credit points whereas BG values outside the target range are given penalty
points. Penalty points are weighted according to the severity of hypo- or hyperglycemia. Hypoglycemia
has a higher impact on the score. Subgroup analyses using hierarchical clustering allow the detection

of “responder” or “non-responder” patient subgroups and their distinctive properties.

Algorithm modification: The second use case aims to evaluate algorithm modifications. In what-if
analyses, outcomes regarding BG levels and suggested insulin doses are investigated and visualized for
interpretation by clinical specialists. Patient hazard analyses for patients with low glycemic events are
performed to identify the safest version of the modified algorithm: insulin dose calculations are
simulated by using new variants of the algorithm. To detect potentially dangerous changes in the
algorithm, a potential increase of insulin doses prior to a low-glycemic event is investigated. Patient
hazard analyses are discussed with diabetes specialists to ensure that only safe variants of a new

algorithm are finally implemented.

Continuous glucose-monitoring data: The third use case considers additional input from continuous
glucose monitoring (CGM) data for algorithm evaluation. The clinical standard for monitoring the
patient’s BG levels is point of care testing (POCT) [32]. However, POCT provides only a snapshot of
the patient’s glycemic profile. With the use of CGM we investigated if these snapshots are sufficient for
the patient’s therapy. We identified low- and high glycemic episodes using CGM data. Another aim is
to relate CGM to the algorithm: in a subsequent what-if analysis the patient’s outcome is investigated

regarding suggested insulin doses and patient hazard.
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The reporting tool generates automated PDF reports using the R-project for Statistical Computing
[33] with Sweave and LaTeX. A multitude of customized graphic output functions has been developed
using ggplot and ggplot2 packages. Results can be reported as text, tables or figures by using the

customizable PDF reports.

2.3 Simulation

Simulation aims to estimate the effect of insulin dose changes on BG values due to algorithm
modifications. Simulations are performed with a simulator application implemented in Java which
integrates and uses original components from the GlucoTab® server implementation. This approach
was chosen because building on the original and well tested medical device software components is
much more reliable and resource-effective compared to completely rebuilding the entire workflow and
decision support algorithm in its full complexity in statistics software and keeping it in
synchronization with future modifications of the server. Furthermore, the source code developed for
the simulation is already available for implementation into the GlucoTab® system, in case of adopting
algorithm modifications after the simulation. After additional reviews and testing, the code can be

included in the medical device software.

Simulations are performed in two steps, with real patient data from the GlucoTab® clinical studies,
Figure 8. In the first step, the simulator uses BG measurements and insulin dose calculations, as well as
therapy adjustments, based on the original entries into the GlucoTab® system by the clinical personnel.
Sequentially new insulin dose calculations are performed by using the new algorithm. In a second step
BG estimations are performed. We identified several methods for BG estimations from a structured
literature research (see section 3.1 — Structured literature search). Neural networks (NN) have been
shown to be the most promising technologies [34], [35]. However, NN could not be used to achieve
accurate BG estimations using our data. The GlucoTab® approach for T2DM does not involve exact
carbohydrate counting. Therefore, exact amounts of carbohydrates consumed were not available and

could account for the inaccurate estimations achieved with NN.
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Figure 8: Steps performed in the workflow simulation for testing different versions of the insulin dosing
algorithm

Thus we developed a new method for BG estimations in the toolbox by using “virtual insulin
sensitivity” profiles. “Virtual insulin sensitivity” was defined as the difference between two BG
measurements divided by the injected insulin dose. A "virtual insulin sensitivity" value is estimated for
every measurement interval (e.g. noon to evening) for every patient on each hospital day. The
simulator uses the “virtual insulin sensitivity” profile of the patients and calculates the estimated BG
value for the next interval alongside the new insulin dose. An example of how BG estimations due to

algorithm modifications are performed is illustrated in Figure 9.
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Figure 9: Example of blood glucose estimations due to algorithm modifications. IU ... Insulin Unit

A patient with a noon BG level of 200 mg/dL, an evening BG level of 160 mg/dL received 10 insulin
units (IU) injected at noon, and thus has a “virtual insulin sensitivity” of 4 mg/dL/IU. In this example,
one IU lowers the BG level by 4 mg/dL. In the simulation the patient receives 15 IU at noon, following

the dose suggestion of the modified algorithm. Considering the “virtual insulin sensitivity” of the
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patient, the simulation estimates that the additional 5 IU would have lowered the BG level by

additional 20 mg/dl resulting in an evening BG level of 140 mg/dl.

All records resulting from the simulations are stored in the relational GlucoTab® database, and are
then extracted by the data preparation component and prepared for pooled statistical analysis in the

analysis component.

3. Blood glucose estimations

Parallel to the development of the toolbox suitable methods for the estimation/simulation of the effect
of insulin dosing algorithm modifications on the patients’ BG level were searched. Therefore a
structured literature search was carried out in February 2013. The aim was to identify methods for BG
estimation, which are: applicable in T2DM patients on intensified insulin therapy using subcutaneous
insulin injections, for long-term BG estimations to the next meal, and which use input parameters also
available in our data base. Identified methods were evaluated in terms of expectable results (accuracy),

reliability and feasibility.

3.1 Structured literature search

Sources used:

PubMed (National Center for Biotechnology Information)

- IEEE Xplore (Institute of Electrical and Electronics Engineers and Institution of Engineering
and Technology)

- Google Scholar (Google Inc.)

- Google Web (Google Inc.)

Search strategy:

Initially, most recent review articles, PhD and master theses or books were searched. Based on the
identified overview works, individual studies were identified and their abstracts were screened.
Relevant sources were identified for critical appraisal. To identify also the most novel work a keyword
search was performed. Again, abstracts were screened and relevant sources were included for critical

appraisal.
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Search results:

Two master theses, 3 PhD theses and one book chapter were initially identified. The identified
overview work included state of the art analyses until 2012. 28 relevant published publications were

selected for critical appraisal. The search results were categorized according to:

- Prediction algorithm/technology

- Diabetes type

- Glycemic source: CGM or capillary BG data
- Forecast period

- Method tested in a clinical trial

- Data base (subjects)

Twenty-one published new articles were identified meeting the keyword search criteria. For critical
appraisal 10 new articles were additionally selected. The keyword queries and the critical appraisal are

listed in Appendix III - Supplemental Material (Structured Literature Search: Critical Appraisal).

3.2 Identified methods for BG estimation

Models of glucose dynamics for predictive purposes can mainly be divided into two categories:
physiologically-oriented models and data-driven methodologies. The latter category can furthermore be
divided into time-series analysis using auto-regressive models and machine learning (ML)
methodologies (e.g. neural networks (NN), support vector regression). Combinations of data-driven

methods incorporating physiological sub-models present an additional approach.

Forecast period: The forecast period can be divided into three ranges according to the identified

literature:

1. Short-term predictions (10 to 30 minutes)
2. Post-prandial predictions (30 to 120 minutes)

3. Long-term predictions(>120 minutes or to the next meal/interval)

Short-term predictions target especially online closed loop insulin systems using insulin pumps. Post-

prandial and long-term predictions could also be used for basal-bolus insulin therapy.

Data input: The identified forecast methodologies significantly differ in the used input variables. The

major difference is if glycemic monitoring was performed with a quasi-continuous data source (CGM)
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or with point of care glucose testing, e.g. four times a day in case of a basal-bolus therapy. Additional
information like consumed carbohydrates, physical activity, level of stress and relevant medications is

often used in the predictive models.

3.2.1 Physiologically-oriented models

Previous work in this field dates back to the early 1960s. A historical background and summary of
previous work can be found in Cescon (2011) and Stahl (2012) [36], [37]. Physiologically-oriented
models are based on differential equations and are exclusively used for short-term glucose predictions.
For example, a predictive capacity with a root mean square error (RMSE) of 4 mg/dL for a prediction
horizon of 15 minutes was achieved [38]. The main advantages are that the models require no training
and that their output is continuously explainable. But then, these models are only valid for TIDM and
only achieve good prediction performance in short-term glucose predictions. No individualization of
the used models is possible if they are not explainable with the model parameters. Therefore,

physiologically-oriented models cannot “simply” be trained for different patients.

3.2.2 Data-driven methodologies

Glucose forecasting using data-driven methodologies is relatively new compared to physiologically-
oriented methodologies. These technologies advanced in the late 1990s, similar to the development of
the personal computer. Data-driven methodologies applied for glucose forecasting can be roughly

divided into:

1. Time series analysis
a. Regression (linear models and higher order polynomial models)
b. Regression with learning components (exogenous inputs)
2. Machine learning methods
a. Neural networks
b. Support vector regression

c. Gaussian processes

Gani et al. developed an auto-regressive (AR) model which is able to yield 30 minutes ahead glucose
level predictions with a RMSE of 1.8 mg/dL and 60 min ahead glucose level predictions with a RMSE
of 12.6 mg/dL [39]. One disadvantage using AR or auto-regressive moving average (ARMA) methods

is that exogenous input, such as injected insulin or consumed carbohydrates does not influence the
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prediction, which excludes them from being used in a model-based control framework. An extension
to the AR concept is to include exogenous inputs, transforming these models into ARX or ARMAX
models (X stands for exogenous input). In Percival et al. they demonstrated that a 3 hour look ahead
with a RMSE of 26 mg/dL is possible using a multi-parametric model predictive control algorithm in

virtual patients [40].

Neural networks (NN) are an additional option for glucose predictions. In Daskalaki et al. a NN model
was compared to AR and ARX models on a dataset with 30 patients. The NN outperformed AR and
ARX models in this study. The NN had a RMSE of 4.9 mg/dL versus 29 mg/dL (AR) and 26 mg/dL

(ARX) for 45 minute glucose predictions. [41]

Long-term predictions with different NN topologies were performed in T1IDM patients. In Quchani
and Tahmai, the study aimed the prediction of the glucose concentration before lunch. The data were
obtained from 10 T1DM patients treated with a conventional subcutaneous insulin regimen. The
results showed that the Elman recurrent NN outperformed the multilayer perceptron network (mean
absolute error 10.4 mg/dl vs. 24.15 mg/dl) [35]. Zainuddin et al. compared wavelet NN against other
NN topologies. The system outperformed others for morning, noon, evening and night BG predictions

with a RMSE < 0.04 mmol/L (<1 mg/dL) [34].

The biggest advantage, but the biggest disadvantage is that data-driven models can and have to be
trained. Therefore no complex physiological model has to be developed to model the influence of
parameters according to e.g. complex metabolic processes. The “nature” of these models is very
patient-specific. However, the validity of the prediction is dependent on the quality of the training data
(garbage in, garbage out problem). Furthermore, for exact predictions in the critical low-glycemic
range the model has to be trained also with low BG values. Because low-glycemic events are rare, the

training-dataset has to be very large.

3.3 Discussion

Reliable physiologically-oriented models for BG estimation are only available for short-term
predictions in TIDM. Data-driven methodologies provide a broad array of options also for T2DM, but
also primarily for short-term predictions. None of the identified methods for long-term predictions
has been validated in clinical studies with T2DM patients. NN approaches using very detailed sets of
data from T1DM showed very promising results [34]. Unfortunately, NN could not be used to achieve

accurate BG estimations using our less detailed dataset of hospitalized T2DM patients. The GlucoTab®
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approach for T2DM does not involve exact carbohydrate counting. Therefore, exact amounts of
carbohydrates consumed were not available and could account for the inaccurate estimations achieved
with NN. Patients were on average only for 8 days in the hospital in our studies testing the insulin
dosing algorithms. By having only this short period of time available, the development and test of a
patient-specific NN was problematic. Additionally, the development of a generic NN model using a
pooled data source would probably not sufficiently take into account intra- and inter-personal

variations and should therefore not be used for BG estimations.

Because of the lack of suitable methods for long-term BG level estimation in T2DM patients by using
our data source, a rather simple but explainable and reliable method was developed - “virtual insulin
sensitivity” profiles. For analyses of the impact of possible modifications of the insulin dosing
algorithm on the patients’ BG levels a linear relationship between the magnitude of the insulin dose
and the effect on BG levels was used [42]. Most bolus insulin calculators work according to this
principle. By using this approach also unreported events, e.g. unreported snacks and stress are
automatically considered in the retrospective what-if estimation of the potential impact on the
patients’” individual BG level. Like in Zainuddin et al. “estimators” were developed for individual

intervals (bedtime to morning, morning to noon, noon to evening, evening to bedtime) [34].

The accuracy of the BG estimation method using “virtual insulin sensitivity” profiles may be limited by
the non-linearity of the BG lowering effect of insulin across the patients’ BG range. In the
normoglycemic range insulin sensitivity can be considered as a constant [43], [44], but the BG
lowering effect may be amplified in hypoglycemia and dampened in hyperglycemia. In a clamp study
performed in T1DM patients the BG lowering effect increased by 75% when BG dropped from 90 to 50
mg/dL and decreased by 10% when BG was increased from 100 to 200 mg/dL [45]. However, no data is
available to support these findings in T2DM patients. The vast majority of simulations were performed
with BG levels in a range were the BG lowering effect of insulin can be considered as linear. Therefore,
the validation of the BG estimations was demonstrating a good agreement between simulation and
clinical data, (Chapter III). Future versions of the BG estimation component could use non-linearity of

the insulin lowering effect, providing reliable data for T2DM are available.
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4. Summary

Especially for comparison with other studies already established parameters and metrics for the
evaluation of the level of glycemic control have been identified, and were incorporated into the
analysis component of the toolbox as reusable methods. Furthermore, newly developed methods,
measures and metrics provide detailed insight into individual and pooled analyses of the level of

glycemic control and allow the evaluation of safety and effectiveness of insulin dosing algorithms.

In the course of this PhD work a framework/toolbox was developed incorporating methods for: 1) data
preparation of heterogeneous data sources from clinical studies; 2) analysis and evaluation of the
performance of insulin dosing algorithms; and 3) simulation and estimation of the impact of
modifications of insulin dosing algorithms. The toolbox currently comprises data of 258 patients. 92
additional patients have been included into the database since the publication of Donsa et al. 2014 [23].
Furthermore, new methods for reporting of analyses and simulation have been developed and the
reporting tool was changed from Sweave/LaTeX to Markdown. By using Markdown it is now possible
to create reports in different file formats, including PDF, Microsoft Word and HTML. Markdown as

the newer technology facilitates the development of interactive documents and graphs.

The use of “virtual insulin sensitivity” profiles allows simple but explainable and reliable estimations of
BG levels. In combination with the workflow simulator it is possible to investigate modifications of
insulin dosing algorithms “in-silico” prior to testing them in a clinical study. Chapter III provides
validations of simulation results using clinical data of patients treated with modified versions of the

insulin dosing algorithm.

Also in repeatedly performing the literature keyword search to identify the most novel methods for BG
estimation, no studies were identified testing long-term BG estimation methodologies in a clinical
study in T2DM patients. However, the main focus of this work was not the estimation of BG levels, but
the evaluation and improvement of an insulin dosing algorithm. For the purpose of estimating the
impact of modifications of the insulin dosing algorithm on the patients’ BG levels the used method

proofed to be sufficient.
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CHAPTER 11l

Evaluating modifications of the insulin dosing algorithm

This chapter is based on data and analyses of previously published articles (Donsa et al. 2014;
Schaupp®, Donsa* et al. 2015; Neubauer, Mader, Holl, Aberer, Donsa et al. 2015) and is

complemented by so far unpublished investigations.

Methods for data processing and statistics are described in detail in the original articles.

* Both authors contributed equally to this study.
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1. Evaluation of the initial version of the insulin dosing algorithm -

Room for improvement

The initial version of the insulin dosing algorithm used in GlucoTab® was tested in a proof-of-concept
study using a paper-based protocol for basal-bolus insulin therapy [22]. Seventy-four T2DM patients
were either assigned to algorithm-based treatment with a basal-bolus insulin therapy or to standard
glycemic management. The following investigations were performed with data from 37 T2DM patients
on algorithm-based diabetes therapy. Detailed clinical characteristics on admission, preexisting

diabetes therapy and admission diagnosis are provided in the originally published study [22].

Glycemic control:

The percentage of BG values in the target range (100 - 140 mg/dL) was significantly higher in the
algorithm group compared to the standard glycemic management group (34% vs. 23%, p<0.001) [22].
The number of BG readings in the desired range 100 — 140 mg/dL increased during the progression of
the therapy in the algorithm group, (Figure 5, Chapter II). In the course of the therapy, the mean daily
BG levels in the algorithm group were significantly reduced from 204+65 mg/dL (baseline) to 148+32
mg/dL (last 24h), p<0.001. But 30% of the patients in the algorithm group had at least one low
glycemic event (<70 mg/dL) which indicated room for improvement to establish a safer and more

effective glucose management.

More detailed analysis of the patient’s glycaemia, including additional CGM data, revealed on average
high BG levels at noon and an increased number of low glycemic events (<70 mg/dL) in the afternoon,
Figure 10. CGM profiles were stable during night, but glucose levels at noon were frequently outside
the target range. This was presumably caused by an elevated morning BG excursion which was not
satisfactorily controlled by the administered morning bolus insulin dose. Also a rise of BG levels in the
early morning hours (4:00 - 7:00) indicated an additional insulin need in the patients treated with the
basal-bolus insulin regimen. To fit into the workflow of the clinical ward, basal insulin was
administered at noon and therefore fading basal insulin action in the morning could also have
contributed to elevated BG levels at noon [46]. As a consequence elevated BG values at lunch required
higher bolus insulin doses and could have caused hypoglycemia in the afternoon [22]. Although there
are hurdles regarding CGM accuracy which are discussed in Chapter IV [47], CGM data provided

information that would not have been recognized by only using capillary BG measurements.
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Chapter Ill: Evaluating modifications of the insulin dosing algorithm
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Figure 10: Diurnal glycemic profile of patients treated with the initial version of the insulin dosing algorithm.
CGM values are median — interquartile range (25-75% [Q25/75%)] and 10-90% [Q10/90%]). BG values are
median — interquartile range (25-75%), displayed as bars. Black dots indicate hypoglycemic events (<70 mg/dL).
Q ...quantile, h ... hour

Basal-bolus insulin therapy:

The basal-bolus insulin regimen in T2DM patients targets a 50:50 ratio of basal and bolus insulin.
Figure 11 shows the development of the basal and bolus insulin as a function of treatment days.
Especially in the first days of therapy some patients required significant amounts of supplemental
insulin to account for high BG values disregarding this 50:50 ratio, Figure 11a. On the first day the
displayed average amount of bolus insulin is lower because patients were enrolled at different times of
the day and did not receive all 3 planned bolus insulin injections. By investigating the diurnal bolus
insulin distribution a proportional higher supplemental insulin requirement at noon was discovered,
Figure 11b. Sixty-four percent of mealtime bolus insulin doses were adjusted for too high or too low
BG values, and the majority of positive corrections of bolus insulin doses were performed at noon.
Only 11% of bolus doses at noon were reduced in the patient cohort. A negative correction is, if the
mealtime bolus insulin dose is reduced by 50% when the patients’ BG level is between 70 and 100

mg/dL, or if the bolus is withheld when the BG level is below 70 mg/dL.

Also a detailed investigation of “correction patterns” revealed that a large proportion of bolus insulin
calculations were supplemented by additional corrective insulin, Table 1. This indicated that some
patients required more insulin than the algorithm initially provided to account for high BG levels.

Furthermore, although some patients were constantly in the need of supplemental bolus insulin
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compensating high BG levels, the patient’s TDD was not increased by the insulin dosing algorithm due
to morning and evening BG values slightly below 100 mg/dL, Table 2. In 14% (29 of 204) of “therapy
patterns” the TDD was increased two times in a row, but in only 18% (42 of 235) of all therapy

adjustments the TDD was decreased.
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Figure 11: a) Composition of the injected insulin. Mean injected bolus insulin (blue) and mean injected basal
insulin (red) as a function of study days. b) Composition of the bolus insulin and frequency of bolus corrections
over the day. The error bars are the standard error of the mean

Table 1: Correction pattern histogram (top 10): Sequence of adjustments of bolus insulin doses to compensate
for high and low BG levels in patients treated with the initial version of the insulin dosing algorithm. (+)
indicates additional corrective insulin; (-) indicates a decrease of the bolus dose suggestion; (0) indicates no
bolus adjustment. In total 235 correction patterns and 59 unique patterns

) Correction bolus Frequency

Correction pattern 1. Noon 2. Evening 3. Night 4. Morning n %
++++ + + + + 27 115
+000 + 0 0 0 18 7.7
++00 + + 0 0 13 5.5
++0+ + + 0 + 12 5.1
+00 + - 0 0 11 4.7
+0++ + 0 + + 11 4.7
+-0- + - 0 - 10 4.3
0000 0 0 0 0 10 43
+0+0 + 0 + 0 34
+00+ + 0 0 + 34

-32-




Table 2: Therapy pattern histogram (top 10): Sequence of adjustments of mealtime bolus insulin doses and
adjustments of the patients’ TDD to compensate for high and low BG levels in patients treated with the initial
version of the insulin dosing algorithm. (+) indicates additional corrective insulin; (-) indicates decrease of bolus
dose suggestion; (0) indicates no bolus adjustment; (n) indicates a missed insulin injection; (UP) indicates a TDD
increase; (==) indicates no adjustment of the TDD; (DW) indicates a decrease of the TDD. In total 204 therapy
patterns and 83 unique patterns

Correction pattern 0. TOD Correction bolus DIEBURY | AR
adjustment 1. Noon 2. Evening 3. Morning | adjustment n %
UP+++UP up + + + UP 17 8.3
==+++UP == + + + UpP 13 6.4
==+00== == + 0 0 == 12 5.9
——+-0—= — + - 0 == 10 | 49
==000== == 0 0 0 == 10 4.9
==+--DW == + - - DW 7 34
==++0== == + + 0 == 6 2.9
==00-== == 0 0 - == 6 2.9
==4+0+== == + 0 + == 5 2.5
==n++UP == n + + UP 5 2.5

2. Evaluating the impact of modifications of the insulin dosing algorithm

After the initial evaluation of the first version of the insulin dosing algorithm different approaches for
improvement were identified, simulated and evaluated. This section provides an overview of the
sequence of implemented algorithm improvements and provides evaluations based on simulations and
validations with real patient data. Finally, a comparison regarding safety and effectiveness of the initial

insulin dosing algorithm with the currently used version was performed.
2.1  Redistribution of daily bolus insulin

The use of the first version of the insulin dosing algorithm resulted in frequent relatively high BG
values at noon, requiring significantly more corrective bolus insulin which resulted in an increased
number of hypoglycemic episodes in the afternoon. The first step for improving the insulin dosing
algorithm was to redistribute the amount of bolus insulin over the day. Originally, each meal
(breakfast, lunch and dinner) was accounted for with an equally large bolus insulin dose in relation to
the patients’ TDD. Because of high BG levels at noon the idea was to increase the morning bolus
insulin dose to account for additional insulin need. For safety reasons the TDD was not increased and
therefore the amount of insulin was reduced for the other two boluses. The in Chapter II described

framework for workflow simulation was used to estimate the effect of redistributing daily bolus insulin
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on the patients’ BG levels. Therefore several combinations of redistributing the daily bolus insulin
were simulated and patient hazard was investigated by using what-if analyses. The amount of bolus
insulin at noon was reduced to lower the risk of potentially dangerous insulin stacking leading to
hypoglycemia in the afternoon. The final distribution of bolus insulin over the day resulted in 45% for
breakfast, 25% for lunch and 30% for dinner of half of the patients’ TDD, and the other half was still
administered as basal insulin at noon. Workflow simulations with BG estimations were indicating no

additional BG levels below 70 mg/dL by redistributing daily bolus insulin accordingly.

Figure 12a shows the initial problem of high BG levels at noon in data of 52 patients treated with the
initial version of the insulin dosing algorithm. Figure 12b demonstrates the results of the simulation
with the proposed change of the daily bolus insulin distribution. The simulation predicted a reduction
of BG levels at noon without causing additional hypoglycemia. Results of the simulation were validated
using data of the first 15 patients treated in a clinical study with the redistributed daily bolus insulin,

Figure 12c. In these patients the predicted significantly reduced noon BG levels were confirmed,

p=0.014. [23]
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Figure 12: Diurnal distribution of average blood glucose levels per hospital stay — clinical data and simulation
results. Data from Donsa et al. 2014 [23]

2.2  Modification of the TDD adjustment (therapy adjustment)

In some patients the need for insulin was noticeable higher than initially calculated at the start of the
therapy, and moreover the adjustment of the therapy was not dynamic enough to adjust the TDD to

the required amount of insulin during the patients’ short hospital stay. The therapy pattern analysis of
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the initial insulin dosing algorithm revealed that in some patients, therapy adjustments resulted in no
increase of the TDD even though they became significant amounts of supplemental insulin. The
additional supplemental insulin requirement compensating high BG levels is not considered in the
adjustment of the TDD for safety reasons. To make the method for adjusting the TDD more dynamic
without compromising safety, different versions were simulated by using the framework for workflow
simulation described in Chapter II. Consequently, patient hazard analyses were performed to identify

safe and effective modifications.

Description of potential new versions for adjustment of the TDD:

e Version 1 (V1): In addition to the initial therapy adjustment scheme (see Table 3), the TDD is
increased when the morning and evening BG values are >100 mg/dL and additionally the
mean/median BG value of all four standard measurements is >140 mg/dL, Table 3

e Version 2 (V2): In addition to the initial therapy adjustment scheme, the TDD is increased
when the morning and evening BG values are >70 mg/dL and additionally the mean/median
BG value of all four standard measurements is >140 mg/dL, Table 4

e Version 3 (V3): In addition to the initial therapy adjustment scheme, the TDD is increased
when all four standard BG measurement values are >100 mg/dL and additionally the

mean/median BG value of all four standard measurements is >140 mg/dL, Table 3

Table 3: Adjustment of the TDD (initial, version 1 and version 3): Initially the adjustment of the TDD was based
on morning and evening BG values and considered if the patient had any BG value <70 mg/dL. Version 1 of the
proposed new methods for TDD adjustment would increase additionally the TDD by 10% in the green marked
fields in the table if the mean/median of all 4 standard BG measurements is >140 mg/dL. Version 3 requires all
4 available BG standard measurements >100 mg/dL and the mean/median >140 mg/dL to increase the TDD.
The availability of morning and evening BG measurements is obligatory for adjustment of the TDD

Morning
Range (mg/dL): 70-100 | 101-140 | 141-180 | .
(7]
<70 c 3
3 >
- 70 - 100 -10% 3 =
2 =3
< 101 - 140 +0% +0%/410% | +0%/+10% +10 % cE
] 38
141 -180 _\ +0% +0%/+10% +10% +10% 2
<
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Table 4: Adjustment of the TDD (version 2): The proposed new method for TDD adjustment would increase
additionally the TDD by 10% in the green marked fields in the table if the mean/median of all 4 available
standard BG measurements is >140 mg/dL. The availability of morning and evening BG measurements is
obligatory for adjustment of the TDD

Morning

Round down
new total daily dose

Range (mg/dL): 101 -140 141 -180 >180
<70
o 70-100 -10% +0%/#10% = +0%/+10% = +0%/+10%
§ 101 -140 _\ +0%/#10% = +0%/%¥10% | +0%/+10% +10%
“ 1 141-180 10%/¥10%  +0%/+10% +10% +10%
>180 +0%/+10% +10% +10% +20%

To determine the effect of modifications of the above described versions for adjustment of the patients’

TDD, workflow simulations were performed with data from the initial pilot study (37 patients, 235

adjustments of the TDD). Table 5 shows a summary of the frequency of the TDD adjustments based

on initial and recalculated modified versions.

Table 5: Recalculations of the TDD based on different versions for adjustment of the TDD. The numbers
indicate the frequency of TDD adjustments and the sign and number implies the increase/decrease and
percentage of change of the TDD. (+10%n) are dose adjustments according to the new rules

TDD adjustment (new)

Initial
Type TDD adjustment | V1 Mean | V1 Median | V2 Mean | V2 Median | V3 Mean | V3 Median
+-0% 118 81 88 75 83 84 90
+10% 60 60 60 60 60 60 60
+10%n 0 37 30 43 35 34 28
+20% 15 15 15 15 15 15 15
-10% 13 13 13 13 13 13 13
-20% 29 29 29 29 29 29 29

Potential patient hazard (hypoglycemia) was analyzed to evaluate the safety of the new versions for

adjustment of the TDD. Therefore, if a TDD prior to a hypoglycemic event would have been increased

was investigated. Additionally, the impact of increased insulin as calculated by the new version of TDD

adjustment was investigated, and the in Chapter II described BG estimation methodology was used to

identify potential additional hypoglycemia.
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Four cases were identified where the new versions for adjustment of the TDD would increase the
insulin dose prior to a hypoglycemic event, Table 6. The impact of increased doses on hypoglycemia
and the impact of modified rules for adjustment of the TDD on insulin dose calculations are shown in
Table 7. Only few BG values were influenced by additional 10% of daily insulin and lowering the BG
levels below 70 mg/dL. The average change of the TDD was small and comparable between the
different versions. The maximum of additional insulin was lower in version 3 compared to the other
versions. It has also to be considered that the 10% increase of the TDD is not a single insulin injection,
but is divided into a basal and a bolus part, and the bolus part is furthermore divided into 3 meal
boluses. Therefore, the amount of additional insulin is relatively small. In most cases the basal dose

would only be increased by 1-2 IU and the bolus accordingly.

According to this analysis, version 3 (mean) of the proposed new methodologies for adjustment of the
patients TDD was implemented into the final version of GlucoTab®. Analyses and simulations
confirmed that it is safe and it is more dynamic compared to the initial methodology. By considering
all 4 BG measurements and their mean, this method is increasing in complexity and therefore it is only

advisable to use this method in a computerized system to prevent user calculation errors.

Table 6: Increased TDD adjustments prior to hypoglycemic events. The numbers demonstrate the amount of
insulin for the initially calculated TDD and the recalculation with the proposed modified versions. The bottom
row indicates how many calculations were deviating from the original TDD calculation

Subject i::izl V1 mean V1 median V2 mean | V2 median V3 mean V3 median
ID Insulin Units (1U)
119 22 24 22 24 22 22 22
135 46 50 50 50 50 50 50
135 36 39 39 39 39 39 39
136 46 46 46 50 50 46 46

3/4 2/4 4/4 3/4 2/4 2/4
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Table 7: Effect of the modified adjustment of the TDD on hypoglycemia and calculation of insulin doses. The
average difference between originally calculated and recalculated TDD is demonstrated as meantSD and as
median and range. Impact of increased doses on hypoglycemia (<70 mg/dL) was investigated by using the BG
estimation process described in Chapter Il

Version Events <70 mg/dL MeantSD ‘ Median ‘ Range
n Insulin Units (IU)

Original 31 = = =

V1 mean 32 4.3%¥2.3 4 1-11
V1 median 31 4.612.1 4 1-11
V2 mean 34 4.3+2.4 4 1-11
V2 median 33 4.612.4 4 1-11
V3 mean 31 4.2+¥1.9 4 1-7
V3 median 31 4.6£1.6 4 1-7

2.3 Safety features

Insulin on board:

Insulin on board is a safety feature used in modern bolus insulin calculators to protect DM patients
from potentially dangerous insulin stacking. Basal-bolus insulin therapy allows flexibility by frequent
injections of small precise doses at any time that a need arises. As a consequence, this may result in an
overlap of insulin action times. In determining how much insulin from earlier boluses is still “active”,
the calculation of subsequent bolus insulin calculations is influenced. The still remaining “active”
insulin is estimated and subtracted from the current bolus calculation according to the
pharmacodynamics of the used insulin. In many cases a linear relationship for insulin on board over

time is used. [42], [48]

The use of computerized workflow and decision support systems allow the handling of time-critical
calculations such as the reduction of bolus insulin due to still “active” insulin on board. GlucoTab®

automatically subtracts still “active” insulin when calculating a new bolus insulin dose.

In a post-hoc analysis using data from Neubauer et al. [30] the frequency of bolus reduction due to
insulin on board was investigated. Even in a highly standardized environment under study conditions
18.8% of bolus insulin calculations were reduced by at least one IU due to the insulin on board safety

feature. The average reduced bolus insulin dose was 3.2+3.0 IU (mean+SD).
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Reduced insulin for belated basal insulin administration:

The GlucoTab® approach for basal-bolus insulin therapy in T2DM patients requires basal insulin
administration at noon. Because of patients enrolling to therapy e.g. in the afternoon, or workflow
deviations due to larger medical procedures it is sometimes necessary to administer basal insulin
belated. GlucoTab® supports automated handling of belated basal insulin administration by reducing

the amount of insulin according to a formula.
2.4 Comparison of the initial with the refined insulin dosing algorithm

Both versions of the insulin dosing algorithm were tested in clinical studies and have been thoroughly
evaluated [22], [30]. The initial dosing algorithm was tested in a paper-based way in a pilot study.
Results regarding efficacy and usability were published by Mader et al. 2014 [22] and additionally so

far unpublished investigations have been presented in the previous sections of this PhD thesis.

After integration of the redistribution of daily bolus insulin, modification of the method for daily
insulin dose adjustment and implementation of safety features, the refined insulin dosing algorithm
was tested in a computerized way on 4 hospital wards [30]. Results of this study regarding safety,

efficacy and usability can be found in Chapter V.

The aim of this section is to compare the already published results of both versions of the insulin
dosing algorithm and to complement analyses by so far unpublished data. Originally published results
are clearly marked. The patient population did not differ in any relevant parameters between patients

treated with the initial and the refined version of the insulin dosing algorithm.

Glycemic control:

Overall glycemic control was comparable between the groups, Table 8. As the simulation predicted
(section 2.1, [23]), the redistribution of the daily bolus insulin resulted in significantly lower BG levels
at noon. The use of the refined algorithm did not increase hypo- or hyperglycemia. There is a trend
towards a reduction of hypoglycemia when using the refined algorithm. This may have two different,
but unfortunately inseparable explanations: Insulin dosing errors due to manual insulin dose
calculation have a strong influence on the likelihood to experience hypoglycemia ([6], Chapter VI). As
the refined computerized algorithm prohibits manual dose calculation errors, the rate of hypoglycemia

may be reduced in this group. Additionally, the refined algorithm with redistributed daily bolus insulin
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and safety features may have prevented hypoglycemia. Unfortunately, it is not possible to measure one

effect without the other and the impact cannot be considered separately.

Table 8: Glycemic control established with the original and the refined algorithm. The rate of values <70 mg/dL
of the initial algorithm was published in Mader et al. 2014 [22] and the glycemic profile of the refined algorithm
was published in Neubauer et al. 2015 [30]

Profile Initial Refined |p-
algorithm | algorithm | value

Patients (n) 37 99

Mean daily BG and SD (mg/dL) 155+46 154435 | 0.475
Mean prebreakfast 138+21 147+43 | 0.861
Mean prelunch 190440 170454 |0.014*
Mean predinner 14741 153+39 | 0.805
Mean bedtime 144+37 153+39 | 0.932

<70 mg/dL (%) 3.0 1.9

70-180 mg/dL (%) 72.9 72.5 0.2

100-140 mg/dL (%) 32.5 33.0 '

>180 mg/dL (%) 23.5 25.6

*statistically significant difference (p<0.05)

In a subgroup of patients additional CGM was performed. CGM data processing is described in
Chapter IV [47]. By using CGM data the diurnal distribution of glucose levels on the last treatment
day was investigated and compared between patients treated with the initial and refined insulin dosing
algorithm, Table 9 and Figure 13. In patients treated with the refined version of the insulin dosing
algorithm a reduction of the patients’ mean daily glucose on the last treatment day was observed
(CGM: 145.1+37.3 mg/dL vs. 132.6+34.0 mg/dL, p=0.081). The refined algorithm led to less glucose
values in the range >180 mg/dL and an increase of glucose values in the extended target range 70 — 180

mg/dL.

Using only information from capillary BG measurements for comparisons would detect a higher
proportion of BG values <70 mg/dL in patients treated with the refined insulin dosing algorithm on
the last day of treatment. The detected low glycemic events (<70 mg/dL) were all during nighttime. A
previous study demonstrated that during nighttime the number of low glycemic events detected by
CGM was 15-fold higher than the number detected with capillary BG measurements [47]. By using
additional information from CGM the rate of low glycemic events on the last day of treatment was
comparable between patients treated with the initial and the refined version of the insulin dosing

algorithm.

-40 -



Chapter Ill: Evaluating modifications of the insulin dosing algorithm

a) Initial algorithm
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Figure 13: Last full treatment day with continuous glucose monitoring (CGM): a) Initial algorithm b) refined
algorithm. CGM profiles and reference blood glucose (BG) measurements. CGM values are median —
interquartile range (25-75% [Q25/75%] and 10-90% [Q10/90%]). BG values are median — interquartile range
(25-75%), displayed as bars. Small black dots indicate hypoglycemic events (<70 mg/dL). Q ...quantile, h ... hour
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Table 9: Ambulatory glucose profile of patients on the last study day under basal-bolus insulin therapy.
Comparison between continuous glucose monitoring (CGM) and capillary blood glucose (BG) measurements for
patients treated with the initial and refined insulin dosing algorithm. Data from Schaupp, Donsa et al. 2015
[47].

Profile Initial algorithm Refined algorithm
CGM BG CGM BG
Patients (n) 28 28 35 35
Glucose values (n) 7,601 100 9,846 140
Mean daily glucose (mg/dL) 145.1 149.0 132.6 143.9
Glucose variability SD (mg/dL) 37.3 40.6 34.0 64.5
Coefficient of variation CV (%) 25.7 27.2 25.6 44.8
<50 mg/dL (%) 1.18 0.00 0.02 0.00
<60 mg/dL (%) 1.66 0.00 0.56 1.43
<70 mg/dL (%) 2.62 0.00 3.31 2.86
70-180 mg/dL (%) 74.92 78.00 82.96 84.29
100-140 mg/dL (%) 39.65 39.00 40.84 36.43
>180 mg/dL (%) 22.46 22.00 13.73 12.86
>250 mg/dL (%) 4.41 5.00 1.98 1.43
>350 mg/dL (%) 0.16 1.00 0.24 0.71

Basal-bolus insulin therapy:

The progression of the patients’ starting bolus and basal insulin over the study period was significantly
different between patients’ treated with the initial and refined version of the insulin dosing algorithm,
Figure 14a. The investigation of the progression of the TDD over the study period by including an
interaction relationship with the used version of the insulin dosing algorithm in a linear regression
model confirmed these differences, p<0.05. The refined version of the insulin dosing algorithm
constantly increased the average TDD compared to patients treated with the initial version, Figure
14b. This is probably due to the new more dynamic methodology for adjustment of the TDD described

in section 2.2.
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Figure 14: a) Progression of basal (red) and bolus (blue) insulin in patients using the initial (squares and solid
lines) and the refined (circles and dashed lines) insulin dosing algorithm. b) Progression of the total daily insulin
dose and linear regression line of patients treated with the initial (red squares) and refined (black circles)
algorithm.

Evaluation of safety and effectiveness of the insulin dosing algorithms:

Individual decision support steps of the insulin dosing algorithms were evaluated using the method
described in Chapter II (section 1.2). The initial problem of high BG levels at noon and the increased
number of hypoglycemic events in the afternoon is also evident in Figure 15a. However, already a high
proportion of calculated insulin doses resulted in BG levels in the extended target range (ETR) using
the initial insulin dosing algorithm. Additionally, the impact of algorithm modifications is observable,
Figure 15b. There are proportionally fewer dosing decisions resulting in hypoglycemia using the
refined algorithm, especially in the noon-evening interval. The increased bolus insulin dose in the
morning resulted in a better control of noon BG values, Figure 16. A small number of BG values in the
hypo- and hyperglycemic range limit the interpretation of the average correctness of BG level

“titrations” with supplemental insulin.
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Figure 15: Target range approach: Evaluation of safety and effectiveness of the initial (a) and the refined (b)
insulin dosing algorithm: The red line is the mean of all lines within an intervention border. Supplemental
insulin dose according to blood glucose intervention border (mg/dL) and insulin sensitivity [sensitive / normal /
resistant]; IU ... Insulin Unit, ETR ... Extended Target Range (70-180 mg/dL)
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Comparison of the initial and refined insulin dosing algorithm
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Figure 16: Average correctness of BG level “titrations” with supplemental insulin. Initial insulin dosing
algorithm (solid lines) and refined insulin dosing algorithm (dashed lines). The red line is the mean of all lines
within an intervention border. Numbers indicate the amount of underlying data for calculation of the averages.
Supplemental insulin dose according to blood glucose intervention border (mg/dL) and insulin sensitivity
[sensitive / normal / resistant]; IU ... Insulin Unit

3. Summary

Evaluations of the already implemented modifications of the insulin dosing algorithm confirmed their
safety and effectiveness. Moreover, the results of the “in-silico” simulations of modifications of the
insulin dosing algorithm were confirmed with clinical data. Results of the “in-silico” simulation of the
redistribution of the daily bolus insulin were validated using clinical data of the first 15 patients treated
in a clinical study with the redistributed daily bolus insulin, but might have also been affected by the
difference in glycemic control prior to the clinical study [23]. HbAlc in patients treated with the initial
version of the insulin dosing algorithm was 76+30 mmol/mol compared to 62+18 mmol/mol in
patients treated with the modified version. However, the amount of the by the simulation predicted

BG reduction was once more confirmed in 42 patients on an Endocrinology ward with on average
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poor glycemic control prior to the study (HbAlc: 70+24 mmol/mol) [30]. Modification of the
methodology for adjustment of the patients TDD significantly changed the overall progression of the
amount of daily injected insulin. Despite on average more ordered insulin due to the modified more
dynamic adjustment of the TDD, no additional hypoglycemia was caused when compared to the initial
insulin dosing algorithm. Glycemic control on the last study day was improved by using the refined
insulin dosing algorithm. The patients’ mean daily BG level was lower and the percentage of high BG
levels was reduced compared to patients treated with the initial insulin dosing algorithm. Furthermore,
the insulin on board safety feature in GlucoTab® reduced 18.8% of bolus insulin calculations which

highlights the need for more elaborate workflow and decision support even under study conditions.

The comparisons of diabetes management were performed in best practice clinical studies. Both, the
initial and the refined insulin dosing algorithm showed at least similar BG control without an increase
of hypoglycemic episodes compared to computerized [13], [15] and paper-based [21], [49], [50] best

practice studies.

Even though the insulin dosing algorithm compared similar or superior to best practice studies room
for improvement was detected. Especially the detailed evaluation of safety and effectiveness of
individual decision support steps of the insulin dosing algorithms revealed that there were still bolus
injections resulting in BG levels outside the extended target range. The vast majority of BG values
outside the extended target range was in the hyperglycemic range, and potentially resulted from too
small insulin doses not covering the patients’ meal BG rise. Especially in the first days some patients
received too little insulin calculated by the insulin dosing algorithm. For these patients the safety
measure of restricting the TDD increase by 20% limited the optimal dose finding during the patients’
short hospital stay. Therefore, improvement in dose finding at the patients’ therapy enrollment would

significantly improve the patients’” diabetes therapy.

The methodology for calculating the first TDD is very generic and therefore based only on the patients’
weight, age and serum creatinine level. This rule based methodology is based on the initial treatment
protocol of Umpierrez et al. [21]. By comparing the patients’ insulin starting dose with the dose on the
6" study day and relating age and serum creatinine in a linear regression model, no significant
relationship between these parameters and the patients’ “true” insulin demand could be established. In
this preliminary and unpublished investigation, “true” insulin demand was defined as the insulin dose
on the 6" study day, because the TDD on the 6" study day had sufficient time to develop into a steady

state and to achieve a 50:50 basal to bolus ratio. Validations of age and serum creatinine in the model
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did not confirm the rules for therapy initialization by Umpierrez et al. using clinical data. However, to
minimize the risk for hypoglycemia in elderly patients the insulin starting dose is reduced, which is
also recommended by Pozzilli et al. [51]. Future versions of the insulin dosing algorithm should target
to improve this insulin dose finding process at the start of the diabetes therapy and should incorporate

more relevant and patient-specific parameters.

Unfortunately, also by using the refined version of the insulin dosing algorithm in some patients mild
hypoglycemic events occurred indicating that these patients received too much insulin. Hypoglycemia
occurred during all times of the day and was not only emerging from patients with already low BG
levels, but also occurred in patients with initially high BG values. The initial problem of an increased
probability to experience hypoglycemia in the afternoon was reduced by redistributing the daily bolus
insulin. Reasons for hypoglycemia may be manifold and my investigations to derive predictors failed.
However, one reason for too much insulin in some patients could be the generic supplemental insulin
scheme. In patients with a small TDD the rigid scheme results in proportionally larger supplemental
insulin doses than in patients with a high TDD. Furthermore, only few HCPs modified the insulin
sensitivity parameters in GlucoTab® and left out possibilities for personalization of the patients’
therapy. That may be reasons for insufficiently controlled hyperglycemia, but may also be reasons for
too much insulin resulting in hypoglycemia. Figure 16 indicates that on average the amount of
supplemental insulin in the higher glycemic regions was not sufficient to control hyperglycemia. But
by additionally considering the individual dosing decisions in these regions, a few patients received too
much insulin which resulted in hypoglycemia, Figure 15. Assisted selection of the patients’ parameter
for insulin sensitivity may be a way to achieve safer and better control by using the current
supplemental insulin scheme. For example, if on two days in a row the glycemic targets were not
achieved with additional corrective insulin the treating physician gets a suggestion to adjust the
parameter of the patients’ insulin sensitivity. Individualization of the supplemental bolus insulin
scheme, e.g. by using corrective bolus insulin in relation to the patients’ TDD could also potentially

increase safety and effectiveness of the therapy.

Personalization of diabetes therapy is key to further improve the patients’ diabetes therapy. However,
many factors are affecting the therapy of T2DM patients and especially in institutional care
personalization only plays a secondary role due to the patients’ short hospital stay and rigid workflows.
Chapter IIV discusses relevant parameters for personalization of diabetes therapy and how decision

support systems could support this process. Future work for improving the insulin dosing algorithm
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should focus especially on deriving robust parameters for dose finding on the first therapy day, and to
identify problematic patients in advance, e.g. to increase the BG measurement interval and to make

HCPs aware of factors for therapy personalization.
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CHAPTER IV

Testing the capability of continuous glucose monitoring to assess
the clinical impact and safety of basal-bolus insulin therapy

This chapter is partly taken from a previously published article (Schaupp*, Donsa* et al. 2015
[47]) and is complemented by so far unpublished data. For the first time we investigated
safety and clinical impact of an algorithm driven basal-bolus insulin therapy using CGM in a

large sample of hospitalized T2DM patients to derive improvements for insulin dosing.

Glucose values in the published article (Schaupp*, Donsa* et al. 2015) are displayed in
mmol/L. All other investigations in this PhD thesis are displayed in mg/dL. Conversions

between the units are provided where necessary.

* Both authors contributed equally to this study.
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1. Taking a Closer Look - Continuous Glucose Monitoring in Non-
Critically Ill Hospitalized Patients with Type 2 Diabetes Mellitus Under
Basal-Bolus Insulin Therapy [Schaupp, Donsa et al. 2015]
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Abstract

Background: Inpatient glucose management is based on four daily capillary blood glucose (BG) measurements.
The aim was to test the capability of continuous glucose monitoring (CGM) for assessing the clinical impact and
safety of basal-bolus insulin therapy in non-critically ill hospitalized patients with type 2 diabetes mellitus (T2DM).
Materials and Methods: Eighty-four patients with T2DM (age, 6810 years; glycosylated hemoglobin,
72 +28 mmol/mol; body mass index, 317 kg/mz) were treated with basal-bolus insulin. CGM was performed
with the iPro®2 system (Medtronic MiniMed, Northridge, CA) and calibrated retrospectively.

Results: A remarkable consistency between CGM and BG measurements and therapy improvement was shown
over the study period of 501 patient-days. The number of CGM and BG measurements (CGM/BG) in the range
from 3.9-10 mmol/L increased from 67.7%/67.2% (on Day 1) to 77.5%/78.6% (on the last day) (P <0.04). The
number of low glycemic episodes (3.3 to <3.9 mmol/L) during nighttime detected by CGM was 15-fold higher,
and the number of episodes >13.9 mmol/L detected by CGM during night was 12.5-fold higher than the values
from the BG measurements. Ninety-nine percent of data points were in the clinically accurate or accept-
able Clarke Error Grid Zones A+B, and the relative numbers of correctly identified episodes of <3.9 and
>13.9 mmol/L detected by CGM (sensitivity) were 47.3% and 81.5%, respectively.

Conclusions: Our data exhibit a good agreement between overall CGM and BG measurements, but there were a
high number of missed hypo- and hyperglycemic episodes with BG measurements, particularly during night-
time. Overall assessment of glycemic control using CGM is feasible, whereas the use of CGM for individu-
alized therapy decisions needs further improvement.

Background

AROUND 20% OF HOSPITAL INPATIENT days occur in pa-
tients with diabetes. These patients have an increased
risk to undergo adverse events such as hyper- or hypoglyce-
mia during a hospital stay.'™ Observational and randomized
controlled studies indicate that improvement in glycemic
control results in lower rates of hospital complications in
general medicine and surgery.*®

Nevertheless, glucose management in the hospital setting
is still far from ideal.® One of several obstacles for im-
provement of glycemic control in the hospital is the common
belief that short-term poor glycemic control is an unavoid-
able consequence of acute illness rather than a condition in
need of treatment.”

Current guidelines recommend the implementation of a
standardized insulin order set in the inpatient glucose manage-
ment and favor a scheduled subcutaneous basal and nutritional

1Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
2Joanneum Research GmbH, HEALTH—Institute for Biomedicine and Health Sciences, Graz, Austria.

*The first two authors contributed equally to this study.

Parts of this study were presented at the 7" International Conference on Advanced Technologies and Treatments for Diabetes, held

February 5-8, 2014, in Vienna, Austria.

This study is registered with ClinicalTrials.gov with clinical trial registration numbers NTC01407289, NCT01766752, and

NCTO01932775.
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bolus insulin therapy with a premeal blood glucose (BG) value
of less than 7.8 mmol/L and a random BG value of less than
10 mmol/L.® In this regimen, prandial insulin dosing decisions
are facilitated by four capillary finger-stick BG measurements:
one before each meal and one at bedtime. This four-point daily
BG profile is capable of safely running a basal-bolus insulin
regimen.” ~ However, it only provides a sequence of snapshots
of the patient’s glycemia and does not represent the complete
complex pattern of the various BG levels.'>!?

In contrast, continuous glucose monitoring (CGM) is ca-
pable of displaying the complete diurnal glycemic profile and
of detecting patterns of responsiveness to therapeutic ef-
forts.!* In addition, with real-time CGM, the incidence of
hypo- and hyperglycemic events could be reduced. In a recent
randomized controlled trial insulin treatment was even gui-
ded by CGM in critically ill patients.'®> Although designed to
be a management tool for individuals with diabetes, CGM is
also a potentially valuable tool for the assessment of the
outcomes of clinical studies.'® Therefore we used CGM to
closely monitor glucose excursions generated by an inte-
grated basal-bolus insulin dosing algorithm based on capil-
lary BG measurements.

The aim of the present investigation was to test the capa-
bility of CGM for assessing the potential clinical impact and
safety of an algorithm-driven basal-bolus insulin regimen
including the detection of hypo- and hyperglycemic episodes
in non-critically ill hospitalized patients with type 2 diabetes
mellitus (T2DM).

Materials and Methods
Research design

The investigation was conducted at the general ward of the
Division of Endocrinology and Metabolism at the Depart-
ment of Internal Medicine (Medical University of Graz,
Graz, Austria), was approved by the local ethics committee,
and was performed in accordance with the Declaration of
Helsinki and the principles of Good Clinical Practice. Pa-
tients gave written informed consent after the purpose, na-
ture, and potential risks of the study had been explained and
before any study-related activities were started.

Adult patients with an age of 218 years with T2DM who
were treated with diet alone and/or with any oral or injectable
antihyperglycemic therapy and who were admitted to the
general ward were included in the trial. Main exclusion cri-
teria were as follows: any mental condition rendering the
patient incapable of giving consent, pregnancy, type 1 dia-
betes, or any disease or condition that the investigator or
treating physician felt would interfere with the trial or the
safety of the patient. The study ended with hospital dis-
charge, with the transfer of the patient to a different ward, or
after 21 days.

Algorithm-driven basal-bolus insulin treatment

Patients were treated with a workflow-integrated basal-
bolus insulin algorithm that aims for fasting and premeal
glucose levels of 5.6—7.8 mmol/L and that has been described
in detail previously.>!! In brief, total daily dose was adjusted
once daily by the algorithm based on the BG values of the
preceding 24 h. The calculated total daily dose was divided in
a 1:1 ratio into daily basal and daily bolus insulin dose. The
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bolus dose was distributed among the three meals (breakfast,
lunch, dinner). In case premeal glucose values were below
the target range, the insulin bolus was reduced, whereas
glucose values above the target range induced an additional
corrective bolus dose.

Glucose measurements (capillary BG, CGM)

Glucose control was based on four daily capillary BG
finger-stick measurements (three premeal and one bedtime
measurement) using a point-of-care testing device (ACCU-
CHEK® Inform system; Roche Diagnostics, Basel, Switzerland)
integrated into the hospital information system. In addition
to these scheduled BG measurements, nurses were able to
perform further glucose measurements at any time, if con-
sidered necessary.

Additionally, glucose was monitored with a blinded CGM
system (iPro®2 system; Medtronic Minimed, Northridge,
CA) that records a glucose value in the interstitial fluid every
5 min. CGM sensor insertion was performed according to the
manufacturer’s instructions on the first study day. If a pa-
tient’s participation in the study exceeded the manufacturer-
specified sensor lifetime of 6 days, a new sensor was inserted
to allow CGM throughout the whole study period. CGM was
only temporarily discontinued when patients had to undergo
diagnostic procedures (e.g., computed tomography, magnetic
resonance imaging). Anonymized data were processed using
the Medtronic CareLink™ software. Sensor data were cali-
brated retrospectively based on the four daily BG measure-
ments. Thereby, neither the staff nor the patients were able to
see the CGM glucose values, trends, and profiles during the
insulin treatment.

Definition of the target range and hypo-
and hyperglycemic episodes

The target range for the insulin-dosing algorithm was de-
fined to be from 5.6 to 7.8 mmol/L. For the analysis, a re-
commended extended target range from 3.9 to 10.0 mmol/L
was used.®*!! Hypo- and hyperglycemic episodes were de-
fined as at least three consecutive CGM readings below or
above a given threshold.'” Thresholds for hypoglycemia
were glucose values of <2.8/3.3/3.9 mmol/L, and hypergly-
cemia was defined by glucose values of >13.9 mmol/L.

Data analysis

The dataset consisted of the BG measurements and the
CGM readings. To be eligible for analysis, at least 70% of the
CGM measurements had to be available per day. Further-
more, at least two eligible days of CGM measurements had to
be available per subject. The data selection process is dis-
played in Supplementary Figure S1 (Supplementary Data are
available online at www.liebertonline.com/dia). Glucose
profiles were analyzed based on the recommendations for
standardizinF the analysis and presentation of glucose mon-
itoring data.'” The analysis was performed with all CGM and
BG values, and the values from the first and the last full 24-h
treatment day were compared with each other. The average
glucose value over the 24-h profile was calculated for the
CGM data. The average of the premeal, the bedtime, and
additional measurement values was calculated from the BG
measurements. In addition, the quantile ranges (25-75% and
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Chapter IV: Testing the capability of continuous glucose monitoring to assess the clinical impact and safety of

basal-bolus insulin therapy

CGM IN HOSPITALIZED PATIENTS WITH T2DM

10-90%) were displayed graphically (Fig. 1). Glucose vari-
ability was calculated either as SD or as coefficient of vari-
ation ([SD/mean]x 100%) of the CGM and the BG data.
Values in different ranges were defined as ‘% of readings”’
within a well-defined range.

Clinical point accuracy was evaluated using the Clarke
Error Grid.'® Sensitivity and specificity were calculated with
paired CGM and capillary BG values as described by Zijlstra
et al.'® Pearson’s y2 tests were used to analyze the nominal
data. Fisher’s exact test was computed when a table had a cell
with an expected frequency of <5. Prior to data analysis, all
metric outcome variables were checked for normality by
means of a Shapiro-Wilk’s test. Nonparametric tests were
applied if the metric variables were not distributed normally.

We used the Wilcoxon’s signed-rank test for matched sam-
ples. The level of significance was set to 5% for all tests.
Spearman correlations were used to compare BG measure-
ments and CGM metrics. Statistical analysis was performed
using R version 2.15.0 software.?®

Results

Included in the analysis were 140,424 CGM and 2,066 BG
measurement values. This corresponds to 501 patient-days of
84 patients under basal-bolus insulin treatment in hospital
care. Except otherwise stated all analysis was done with the
full dataset. The detailed baseline characteristics are given in
Table 1.
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FIG. 1.

Continuous glucose monitoring (CGM) profiles and blood glucose measurements for the first and the last day of

algorithm-guided basal-bolus insulin treatment. The line at the glucose level of 3.9 and 10 mmol/L marks the threshold for
hypo-/hyperglycemia, and the lines at 5.6 and 7.8 mmol/L represent the recommended target range. CGM values are
median * interquartile range (25-75% [Q25/75%] and 10-90% [Q10/90%]). Blood glucose values are median + interquartile

range (25-75%), displayed as bars.
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TABLE 1. CLINICAL CHARACTERISTICS

Characteristic Value
n 84
Gender (F/M) (n) 32/52
Age (years) 68.5£10.3
BMI (kg/m?) 31.0+6.6
Weight (kg) 89.1+18.8
Race (white/other) (n) 82/2
Serum creatinine (mg/dL) 1.5+£1.0
HbAlc (mmol/mol) 72.8+£28.2
Diabetes duration (years) 15.1£11.1
Admission diagnosis (%)
Cardiovascular disease 31.3
Endocrine disorder 25.0
Infectious diseases 30.2
Gastrointestinal disease 1.0
Other 12.5
Length of stay (days) [median 7.5 (6; 12)
(25™; 75" percentile)]
Total daily insulin (first/last day) (IU)
Basal 24+16/27+24
Bolus 32+£21/29+22
Patients with corticosteroids 4/3

first/last day (n)

Data are mean+ SD values unless otherwise indicated.
BMLI, body mass index; F, female; HbAlc, glycated hemoglobin;
M, male.

Glucose profile and hypo- and hyperglycemic episodes

The 24-h glucose profile is shown for the first and the last
treatment day (Fig. 1), including the 3.9 and 10 mmol/L
threshold and the target range from 5.6 to 7.8 mmol/L. The
parameters of the quantitative assessment of glycemic con-
trol by CGM and BG measurements are shown in Table 2.

Overall, 75.8% and 73.2% of CGM and BG readings were
within the range from 3.9 to 10.0 mmol/L, with a significant
improvement over time from 67.7%/67.2% (CGM/BG) on
the first day to 77.5%/78.6% (CGM/BG) on the last day

SCHAUPP ET AL.

(P <0.04). This improvement was not associated with a sig-
nificant increase of hypoglycemic episodes <3.9 mmol/L
from the first day (2.6%/1.7%, CGM/BG) to the last day (2.8/
1.2%, CGM/BG) (P>0.2). Furthermore, there was a signif-
icant decrease of BG values >10.0 mmol/L from the first
(29.7/31.1%, CGM/BG) to the last (19.7/20.1%, CGM/BG)
day (P <0.04). Glucose variability expressed by the coeffi-
cient of variation significantly improved over time from 39.6/
40.6% (CGM/BG) on the first day to 36.9/36.8% (CGM/BG)
on the last day (P <0.03 and P=0.05, respectively [CGM/
BG]) which is also reflected by the reduced interquartile
ranges in Figure 1.

A distribution of episodes <2.8, from 2.8 to <3.3, from 3.3
to <3.9, and >13.9 mmol/L assessed by BG and CGM glucose
values is given in Figure 2. The number of observed glycemic
episodes during night between 3.3 and <3.9 mmol/L increased
15-fold, and the number of observed episodes >13.9 mmol/L
increased 12.5-fold by using CGM compared with the BG
measurements. During daytime this difference was not that
pronounced. Most episodes <3.9 mmol/L. occurred during
nighttime, whereas most episodes >13.9 mmol/L were re-
corded during daytime. Duration of low glycemic events was
longer during nighttime (Supplementary Table S1).

Accuracy of CGM versus capillary BG measurements

For assessment of the CGM accuracy, 2,007 pairs of BG
and CGM values were available. The absolute differences
between the data from the CGM and the BG measurements
are shown in Figure 3. The median difference over all data
was Ommol/L, but a systematic bias with too high CGM
values in the hypoglycemic range and too low CGM values
in the hyperglycemic range has been observed. In the low
glycemic range the median offset was up to +0.5 mmol/L;
in the high glycemic range the median offset was up to
—0.8 mmol/L. Numerical point accuracy stratified by glu-
cose level is given in Supplementary Table S2, expressed by
mean absolute difference, mean absolute relative difference,
median absolute difference, and median absolute relative
difference.

TABLE 2. COMPARISON BETWEEN CONTINUOUS GLUCOSE MONITORING AND THE CAPILLARY
BLOOD GLUCOSE MEASUREMENTS

Overall First day Last day

CGM BG CGM BG CGM BG
Patients (n) 84 84 84 84 84 84
Glucose values (n) 140,424 2,066 23,686 351 23,301 323
Average glucose (mmol/L) 8.1 8.3 8.7 8.9 7.9 8.1
Glucose variability SD (mmol/L) 3.1 3.2 3.5 3.6 2.9 3.0
Coefficient of variation (%) 37.7 38.6 39.6 40.6 36.9 36.8
<2.8 mmol/L (%) 0.3 0.2 0.5 0.0 0.4 0.0
<3.3 mmol/L (%) 0.8 0.7 1.2 0.3 0.9 0.6
<3.9 mmol/L (%) 24 2.7 2.6 1.7 2.8 1.2
3.9-10.0 mmol/L (%) 75.8 73.2 67.7 67.2 71.5 78.6
5.6-7.8 mmol/L (%) 36.2 33.5 30.7 319 37.9 37.5
>10.0 mmol/L (%) 21.9 24.1 29.7 31.1 19.7 20.1
>13.9 mmol/L (%) 5.6 5.9 8.6 10.0 3.7 3.4
>19.4 mmol/L (%) 0.5 0.6 0.9 1.1 0.4 0.6

Blood glucose (BG) and continuous glucose monitoring (CGM) measurements over the whole study period (overall) and for the first and

the last day of treatment are shown.
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FIG. 2. Diurnal distribution of glycemic episodes <2.8, from 2.8 to <3.3, from 3.3 to <3.9, and >13.9 mmol/L detected
by continuous glucose monitoring (CGM) and blood glucose (BG) measurements.

Clarke Error Grid analysis was performed to assess the
clinical accuracy (Supplementary Fig. S2). The percentage of
clinically accurate (Zone A) or acceptable (Zone B) values was
98.7%, with 88.2% of the values located within Zone A. The
remaining values were in the not acceptable Zone D (1.4%).
No values were found in Zone C or E. The correlation coef-
ficient between CGM and corresponding BG values was 0.94.

Characteristics for the CGM system to detect episodes for
different thresholds are given in Supplementary Table S3.
The sensitivity to detect glucose below 3.9 mmol/L. was
47.3% (CGM could accurately identify 26 out of the 55 total
hypoglycemic events identified by BG measurements).
However, 25 of the 51 CGM values <3.9 mmol/L were not
confirmed with BG values, which would result in a false
alarm rate of 49.0%. In contrast, the sensitivity to detect
glucose values greater than 13.9 mmol/L was 81.5% (CGM
could accurately identify 97 out of the 119 total events
>13.9 mmol/L identified by BG measurements).

Discussion

Clinical impact and consistency

Basal-bolus insulin therapy improved patients’ glycemia,
which is demonstrated by a high number of CGM as well as

BG readings (77.5%/78.6% CGM/BG) in the range of 3.9—
10.0 mmol/L at the end of the hospital stay without com-
promising hypoglycemia. Furthermore, the therapy led to a
decrease of hyperglycemia and a stabilization of the BG
values, as expressed by a low coefficient of variation, which
is associated with a better clinical outcome.?'?* A possible
explanation is the titration of insulin to the actual insulin need
by adapting the basal and bolus insulin. The total daily in-
jected insulin did not change between the first and the last
day, but the ratio between basal and bolus insulin: basal
insulin was slightly increased, whereas bolus insulin was
decreased during the hospital stay (Table 1). A remarkable
consistency between the parameters describing the overall
therapy performance obtained by CGM and BG measure-
ments was found, even though the number of CGM values
was 70-fold higher than the number of BG measurements.

Safety

The amount of detected hypo- and hyperglycemic episodes
differs significantly between the two methods. By using
CGM, a substantial additional proportion of low glucose
values during nighttime (00:00-06:00 h) was identified: the
number of episodes between 3.3 to <3.9 mmol/L increased

-55-



SCHAUPP ET AL.

< -
o -
[ T —_ : —_—
— —— 1 [
= ! ' : 1 : T [
(E) - - ! 1 1 ! 1 ! !
£ 1 ! 1 ! !
5 | | 1 N !
@ ! { 1
g © ! T E '
£ r—te !
£ 1 1 ;
= T el ' : y '
Q i |
(8] 1 1 1
e 1 1 [
N ' | ' P
R - 1 1
! |
? =
1
1
<+ 1
T
<3.9 3.9-55 56-7.7 7.8-9.9 10.0-16.6 >=16,7 All
Glucose ranges [mmol/L]

FIG. 3. Differences between continuous glucose monitoring (CGM) and blood glucose (BG) measurements over the different
glycemic ranges. The bottom and top of the box represents the first and third quartile, the line in the box is the median, and the ends of

the whiskers are the minimum and maximum of the data.

15-fold using CGM compared with BG measurements (62
vs. four episodes). With both measurements (CGM and BG),
the number of hypoglycemic episodes <3.3/2.8 mmol/L was
low, which implies that the algorithm can be considered
as safe.

Because the CGM system was used for retrospective
analysis, it was not possible to confirm all low CGM readings
with BG measurements. Although this is a limitation of the
study, a request to confirm low glycemia with BG measure-
ments would have influenced the study due to possible in-
terventions to correct for better glycemic control. Some
reports in patients with type 1 diabetes suggest that CGM
sensor inaccuracy overestimates the frequency of asymp-
tomatic nighttime hypoglycemic episodes, and thus findings
may be interpreted with caution.

From a clinical perspective it is of great interest if the un-
detected low glycemic episodes during nighttime would have
any influence on clinical decisions or even on the clinical
outcome.”> %’ The present study did not aim to provide an
answer to this, and it is therefore not possible to derive any
conclusions referring to that from the available data.

As expected, the episodes <3.9 mmol/L lasted longer
during nighttime, which may be explained by the fact that
these episodes were not realized by the patient (asymptom-
atic) and that the periods without any BG measurements to
correct for low glycemia are longer. Although the absolute
number of observed episodes >13.9 mmol/L was low during

nighttime (25 by CGM vs. two by BG), the number of epi-
sodes detected with CGM increased 12.5-fold compared with
BG measurements. These findings suggest that high numbers
of possibly clinically relevant episodes are missed because of
the low number of measurements during nighttime, which is
in good agreement with previous studies.'****3

Accuracy

Although the overall performance of the CGM system was
acceptable as demonstrated with the error grid analysis and the
numerical point accuracy (Supplementary Table S3), a closer
look at the CGM data on the different glucose zones® revealed a
positive bias for glucose values <5.6 mmol/L. and a negative
bias for values >10 mmol/L (Fig. 3). This leads to an underes-
timation of the number of hypo- as well as hyperglycemic ep-
isodes. Even with this finding high numbers of additional
glycemic episodes <3.9 mmol/L and >13.9 mmol/L. were de-
tected with CGM as described previously. This implies that the
number of undetected hypo- and hyperglycemic episodes could
even be larger.

Reliable real-time CGM would enable timely detection
and prevention of hyper- and hypoglycemia by triggering
alarms. The theoretical false alarm rate and the ability to
detect episodes with the CGM system used in the study were
poor but comparable to the findings of Zijlstra et al."” Only
every second episode <3.9 mmol/L was correctly detected.
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Consequently, every second alarm would have been false,
which is not acceptable from a clinical point of view.

It may be argued that the accuracy of the CGM system is
influenced by the different days of wear (accuracy is lowest
on Day 1 after insertion of the sensor); thus the length of stay
may influence the accuracy analysis. Because the CGM
systems were calibrated retrospectively, the possible drifts of
the sensors were leveled out, which was confirmed by the fact
that the difference between CGM and BG measurements was
not increased during the first days after sensor insertion (data
not shown). Furthermore, after 6 days a new sensor was in-
serted, which means that a longer length of stay is not nec-
essarily associated with a longer wear time of a single sensor.

The limitations of the poor measuring accuracy of the
CGM system are partly compensated for by the fact that data
were derived in a highly standardized environment at a
general ward with strict adherence to everyday procedures.
This is a prerequisite to average the individual data of the
subjects, which combines intra- as well as intersubject vari-
ability.30 Therefore, the data describe very well the overall
daily routine, such as the BG level rise after meals and the
impact of the applied therapy on glucose management. This is
also reflected by the good agreement between the CGM and
BG measurements as shown in Figure 1 and by the Clarke
Error Grid analysis.

One of the key issues of good glycemic control is to have
enough data available for the decision making to be able to
assess the quality of the glycemic control with an acceptable
effort.’! Standard care is currently based on four capillary BG
measurements (three premeal measurements and one mea-
surement before bedtime). Possibly clinically relevant epi-
sodes, such as hypo- or hyperglycemia between the spot
measurements, are missed. Manpower issues and inconve-
nience for the patient restrict frequent BG monitoring, and
thus CGM could be an attractive alternative to the BG mea-
surements or can be used as a supplementary method."
Although promising, CGM alone is not recommended for
glucose management by the guidelines for hospitalized
patients at this time until further studies provide sufficient
evidence for its accuracy and safety.*>?

In conclusion, it was demonstrated that the CGM and BG
data showed overall high consistency over the whole study
period, which enables assessment of the clinical impact of
insulin therapy with CGM in more detail. Undetected hyper-
and hypoglycemic episodes during periods of low frequency
of BG measurements suggest the use of CGM in the hospital.
However, the poor performance of the existing systems on an
individual basis and the lack of evidence for the clinical rel-
evance of the missed episodes lead to the conclusion that more
accurate systems and further clinical studies are needed before
CGM can be recommended for use in this patient population.
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Supplementary Data

Full CGM: 70% of CGM

97 patients using CGM
—+ Mmeasurements are

855 patient days available per day

|

Minimum 2 days with full 92 patients

CGM per hospital stay 509 patient days

84 patients
501 patient days

SUPPLEMENTARY FIG. S1. Data selection. CGM, continuous glucose monitoring.
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SUPPLEMENTARY FIG. S2. Clarke Error Grid analysis. BG, blood glucose; CGM, continuous glucose monitoring.
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SUPPLEMENTARY TABLE S1. NUMBER OF GLYCEMIC EPISODES (<2.8, 2.8 TO <3.3, 3.3 TO <3.9, AND >13.9 MMOL/L)
AND DURATION (<1, 1-2, AND >2 H) DETECTED BY CONTINUOUS GLUCOSE MONITORING

00:00-06:00 06:00-12:00 12:00-18:00 18:00-24:00
Level (mmol/L) <lh 1-2h >2h <lh 1-2h >2h <Ilh 1-2h >2h <Ilh 1-2h >2h
<2.8 1 1 1 0 2 0 0 1 1 0 1 0
2.8 to <3.3 1 0 7 2 1 1 0 4 1 2 0 1
3.3 to <3.9 31 15 11 19 3 1 18 5 2 30 11 6
>13.9 8 4 13 44 23 46 15 20 19 9 18 8
SUPPLEMENTARY TABLE S2. NUMERICAL POINT
ACCURACY EXPRESSED BY MEAN ABSOLUTE
DIFFERENCE, MEAN ABSOLUTE RELATIVE DIFFERENCE,
MEDIAN ABSOLUTE DIFFERENCE, AND MEDIAN
ABSOLUTE RELATIVE DIFFERENCE
Reference glucose MAD  MARD MedAD MedARD
(mmol/L) (mmol/L) (%) (mmol/L) (%)
All 0.76 9.6 0.50 6.5
<3.9 0.73 21.3 0.50 16.3
3.9-10.0 0.66 9.6 0.44 6.8
>10.0 1.08 8.4 0.72 5.8
MAD, mean absolute difference; MARD, mean absolute relative
difference; MedAD, median absolute difference; MedARD, median
absolute relative difference.
SUPPLEMENTARY TABLE S3. CONTINUOUS GLUCOSE MONITORING SENSOR CHARACTERISTICS
TO DETECT EPISODES FOR DIFFERENT THRESHOLD
Threshold (mmol/L) TP TN FP FN Sensitivity (%) Specificity (%) Accuracy (%)
<39 26 1,927 25 29 47.3 98.7 97.3
<33 5 1,988 5 9 35.7 99.7 99.3
<2.8 0 2,001 3 3 0 99.9 99.7
>13.9 97 1,863 25 22 81.5 98.7 97.7

There were 2,007 paired continuous glucose monitoring and blood glucose readings to be analyzed. The first column represents the
thresholds to be detected by the sensor. Sensitivity was defined as (TP/[TP+FN])x100%, specificity was defined as (TN/
[FP+TN])Xx 100%, and accuracy was defined as ([TP+TN]/n)x100%, where TP is number of true positives, TN is number of true
negatives, FP is number of false positives, FN is number of false negatives, and n is number of paired glucose readings (continuous glucose
monitoring and blood glucose measurements).

-60 -



2. Use of CGM for insulin dosing decisions - What-if analysis

This chapter provides analyses investigating the effect on insulin dose calculations based on glycemic
information from CGM instead of BG measurements obtained by hospital glucose monitoring devices.
The previous section already provided detailed analysis on the performance of the used CGM system
(iPro®2 system; Medtronic Minimed, Northridge, CA). Clarke error grid analysis was performed to
assess the clinical accuracy. Numerical point accuracy for different glycemic ranges was assessed,
expressed by mean absolute difference, mean absolute relative difference and median absolute relative
difference. Additionally, characteristics for the CGM system to detect episodes for different thresholds
were derived. However, theses analyses do not relate the effect of deviating glucose information on the

calculation of insulin doses.

The following analyses aim to investigate if the used CGM system could be used for running a basal-
bolus insulin regimen. Different methods were developed to display the effect of insulin dose
calculations based on CGM when comparing them to reference calculations. Recalculations of insulin

doses were performed with the framework for workflow simulation described in Chapter II.

For analysis, all patients (n=59) treated with the initial version of the insulin dosing algorithm and
where additional CGM was performed were included. In 13 patients the redistribution of the daily
bolus insulin (Chapter III, section 2.1) was already tested. However, this did not influence the

following investigations.

Recalculation of supplemental bolus insulin:

Recalculations of the supplemental bolus insulin dose using CGM data at the time of capillary BG
measurement were possible for 84% of dose calculations. For the remaining supplemental insulin
calculations was no CGM information available. The used supplemental insulin scheme is described in

Table AIII-2 in Appendix III.

Thirty-one percent of supplemental bolus insulin calculations were deviating from the reference
calculations based on capillary BG, Table 10. The “degree of deviation” indicates if the insulin dose
calculation based on CGM would have been in a higher or lower intervention border according to the

used supplemental insulin scheme. A positive “degree of deviation” indicates an insulin dose increase
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and a negative “degree of deviation” indicates a reduction. The supplemental insulin scheme is also

demonstrated on the axes of Figure 17.

Table 10: Frequency of supplemental insulin calculations deviating from reference calculations based on
capillary BG. The “degree of deviation” indicates if the insulin dose calculation based on CGM would have been
in a higher or lower intervention border according to the used supplemental insulin scheme. Supplemental
insulin dose according to glucose intervention border and insulin sensitivity [sensitive/normal/resistant]. All
bolus insulin calculations; IU ... Insulin Unit

Degree of Change of supplemental o
deviation insulin dose n %
+3 +6/8/10 IU 2 0.1
+2 +4/6/8 IU 27 1.8
+1 +2/4/6 1U 204 13.8
10 +0/0/0 IU 1,015 68.6
-1 -2/4/6 U 220 14.9
-2 -4/6/8 1U 12 0.8
Total 1,480

To assess the potential clinical impact of the deviating supplemental insulin calculations, an error grid
was developed in cooperation with diabetes experts, Figure 17. The area “unacceptable treatment”
indicates deviations resulting in ineffective treatment but unlikely potential patient harm. The area
“major violations” indicates deviations resulting in very ineffective treatment or into moderate
potential patient harm. The area “life threatening” indicates deviations leading to potential patient
harm. The frequency of deviating mealtime bolus insulin calculations according to their potential

clinical impact is demonstrated in Table 11.

Table 11: Potential clinical impact of calculations of mealtime bolus insulin based on CGM and compared to
calculations based on capillary BG (reference). Areas according to the error grid indicate the severity of
deviation from the reference calculation.

. 5 Deviations
Area according to error grid:
n %

Acceptable treatment 830 81.9
Unacceptable treatment 59 5.8
Major violation 110 10.8
Life threatening 15 1.5
Total 1,014
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Figure 17: Error grid for evaluation of the potential clinical impact of bolus insulin calculations based on CGM.
Areas indicate the severity of deviation. Only mealtime bolus insulin calculations displayed. Supplemental
insulin dose according to glucose intervention border and insulin sensitivity [sensitive/normal/resistant]

Recalculation of the adjustment of the TDD:

Recalculations of the TDD using CGM data were possible for 78% of TDD calculations. For the
remaining TDD adjustments no CGM information was available. The methodology for recalculation
and analysis is illustrated in Figure 18 and the procedure for adjustment of the TDD is described in
Chapter III (section 2.2). The patients’ TDD was recalculated in a what-if analysis using glycemic
information from CGM and was compared to the originally calculated TDD based on capillary BG

measurements.
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Figure 18: Methodology for recalculation and analysis of the adjustment of the TDD based on two different
sources of glycemic information (CGM: continuous red line; BG: finger prick test symbol). Standard
measurement times are demonstrated on the x-axis. BG values <70 and >250 mg/dL on the following day were
used to detect potential patient hazard

A detailed comparison of the frequency of the TDD increase or decrease based on the used source of
glycemic information is displayed in Table 12. Thirty-one percent of TDD calculations were deviating
from the reference calculations. Thirty-two percent of TDD calculations would have been increased
and 68% would have been decreased compared to the original calculations. The mean positive
deviation was 6.5+3.3 IU (mean+SD) and the median positive deviation and range were 6 (1 - 14) IU.

The mean negative deviation was 9.3+6.9 IU (mean+SD) and the median negative deviation and range

were 7 (1 - 28) IU.

Table 12: Adjustment of the TDD based on glycemic information from CGM or capillary BG (reference).
Numbers indicate the frequency. Sign and number imply percentage of TDD increase or decrease

Based on capillary BG
TDD adjustment
-20% -10% +0 +10% +20%

s +20% 1 0 0 1 18
3 +10% 1 0 10 62 3

5 +0 13 5 130 12 0
o

% -10% 2 3 0 0 0
- -20% 15 5 38 8 2

Potential patient hazard was investigated by relating glycemic information (hypoglycemia and
hyperglycemia) of the following day to the recalculation of the TDD, Figure 19. For this analysis the
patients’ last study day was excluded because on the last day no patient hazard analysis was possible.

The recalculation of the adjustment of the TDD based on glycemic information from CGM for days
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with hypo- or hyperglycemia is displayed in Table 13. Up to 14 additional IU (25.9% of the reference
TDD calculation) would have been additionally ordered on days with hypoglycemia. Up to 28 IU
(20.6% of the reference TDD calculation) would have been withheld on days with hyperglycemia. In
22.9% of days with hypoglycemia the use of glycemic information from CGM would have increased
the insulin dose. In 26.9% of days with hyperglycemia the use of glycemic information from CGM

would have decreased the insulin dose.

Table 13: Recalculation of the adjustment of the TDD based on glycemic information from CGM for days with
hypoglycemia (<70 mg/dL) or hyperglycemia (>250 mg/dL)

Hypoglycemia on the Hyperglycemia on the
following day following day
Days with TDD calculation based on CGM and hypo- or
. 35 52
hyperglycemia: (n)
Reduced TDD compared to reference calculation: n / (%) 6/(17.1%) 14 /(26.9%)
Increased TDD compared to reference calculation: n / (%) 8/(22.9%) 3/(5.8%)
Maximum additionally ordered: IU / (% of reference TDD) 14 /(25.9%) 9/(27.3%)
Maximum withheld: IU / (% of reference TDD) 28/ (20.6%) 25 /(20.2%)
0 50 100 150
! | | |
S - X <70 mg/dL following day | &
+40% e >250 mg/dL following day
+30%

Difference TDD calculation: CGM vs. capillary BG [IU]

0 50 100 150

TDD based on capillary BG [IU]

Figure 19: Difference of calculating the TDD based on CGM and capillary BG measurements over the reference
TDD calculation. Patient hazard analysis by relating glycemic information of the following day.
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3. Summary

A remarkable consistency was found between parameters that evaluate the performance of the basal-
bolus therapy based on glycemic information from CGM and capillary BG measurements, even
though the number of CGM values was 70-fold higher than the number of BG measurements. Pre-
meal and bedtime BG measurements described the overall patients’ glycaemia under basal-bolus

insulin therapy sufficiently.

However, the amount of detected hypo- and hyperglycemic episodes differed significantly between the
two methods. Especially during nighttime, a substantial additional number of glycemic events below
70 mg/dL were detected using CGM. These episodes lasted longer during nighttime, which may be
explained by the fact that these episodes were not realized by the patient (asymptomatic
hypoglycemia), and that there is a longer period without any BG measurement to correct for low
glycaemia. This suggests that a high number of possibly clinically relevant episodes are missed. Staff
shortages and inconvenience for the patients restrict more frequent capillary BG monitoring, and
CGM could therefore be an attractive alternative to BG measurements or could be used as a

supplementary method.

Although promising, CGM alone is not recommended for diabetes management by clinical guidelines
[11], [52]. Also according to the investigations performed in the work of this PhD thesis, including
analyses of the accuracy of the used sensor system and the effect of sensor inaccuracy on insulin dose
calculations, the use of CGM for insulin dosing decisions in hospitals is currently not recommended.
Although the overall performance of the CGM system was acceptable as demonstrated with the Clarke
error grid analysis and numerical point accuracy, sensitivity to identify episodes <70 and >250 mg/dL
were only 47.3% and 81.5%. Only every second episode <70 mg/dL would have been detected and if
the system would have been used for alarming, every second alarm would have been false. This system

performance is inacceptable from a clinical point of view.

Also in the what-if analysis recalculating insulin dosing decisions based on glycemic information from
CGM, several potentially dangerous deviating insulin calculations were identified by comparing them
to the reference calculations based on capillary BG measurements. Although this investigation is only
hypothetical because the used CGM system was calibrated retrospectively and therefore no real-time

use would have been possible, the sensor performance was comparable to sensor systems available at
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the time of the clinical study [53]. For the evaluation of the potential impact of differences in
calculation of insulin doses based on glycemic information from CGM, two methods were developed
in collaboration with clinical diabetes experts. The first method is an error grid which categorizes
deviations of bolus insulin calculations and relates their potential clinical impact. The use of CGM
would have resulted in potentially life threatening insulin dose calculations (1.5%) and ineffective
treatment (16.6%). The second method illustrates the deviation of calculating the patients’ TDD based
on CGM and BG measurements and relates glycemic information of the following day (hypo- and

hyperglycemia).

Thirty-one percent of adjustments of the TDD were deviating from the reference calculations based on
capillary BG measurements. By using CGM the TDD would have been decreased more often
compared to the reference calculations, Table 12. This could have resulted in less insulin and
potentially cause less hypoglycemia. But the investigation of the effect of the adjustment of the TDD
based on CGM for days with hypoglycemia revealed, that only on few days with hypoglycemia the
TDD would have been decreased. More often, in 22.9% of days with hypoglycemia, the use of glycemic
information from CGM would have increased the insulin dose leading to potential patient harm. In
26.9% of days with hyperglycemia the use of glycemic information from CGM would have decreased

the insulin dose leading to potentially ineffective treatment.

Hence, the results of these investigations highlight both opportunities and challenges for wider
implementation of CGM, particularly if diabetes treatment and early hypoglycemia detection are the
main drivers. Even though single point accuracy is limited, the information of glucose trends may still
provide value [54]. In a randomized controlled trial at an intensive care unit (ICU) with 124 patients,
hypoglycemia was reduced from 11.5% to 1.6% (p=0.03) when using real-time CGM compared to
blinded CGM, with no difference in mean glucose levels [55]. This reduction in hypoglycemia was
attributed to the use of the rate of change in glucose level to adjust the insulin infusion. In the
recalculations of the patients’ insulin doses no information of glucose trends was considered. The
combination of BG measurements with high accuracy and CGM systems with high measurement
frequency and trend information could also be beneficial for non-critically ill hospitalized patients
with unstable glycaemia on a basal-bolus insulin regimen. The development of smart insulin dosing
algorithms that consider glycemic trend information from CGM could improve insulin dosing and

reduce hypo- and hyperglycemia.
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By considering that CGM systems need frequent calibration based on capillary BG measurements and
frequent sensor replacement, and additionally their high additional costs and their current lack of
accuracy, the benefit of using CGM is limited in the majority of hospitalized T2DM patients [56]. New
technological advances in this field, such as the introduction of a flash glucose monitoring device
(FreeStyle® Libre™, Abbott Diabetes Care, Alameda, CA), providing high accuracy without the need of
calibration by the user and a two week period of constant use, raise hopes that in near future these

sensors will be approved for calculation of insulin doses [57].
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CHAPTER V

Evaluation of the workflow and decision support system regarding
safety, efficacy and usability — A clinical study

This chapter reprints the study findings as originally peer-reviewed published by Neubauer,
Mader, Holl, Aberer, Donsa et al. 2015 [30]. Safety, efficacy and usability of GlucoTab® - a
computerized workflow and decision support system - were investigated in a clinical study

on different wards.
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1. Standardized Glycemic Management with a Computerized Workflow
and Decision Support System for Hospitalized Patients with Type 2
Diabetes on Different Wards [Neubauer, Mader, Holl, Aberer, Donsa et al.

2015]
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Abstract

Background: This study investigated the efficacy, safety, and usability of standardized glycemic management
by a computerized decision support system for non-critically ill hospitalized patients with type 2 diabetes on
four different wards.

Materials and Methods: In this open, noncontrolled intervention study, glycemic management of 99 patients
with type 2 diabetes (62% acute admissions; 41 females; age, 67+ 11 years; hemoglobin Alc, 6521 mmol/
mol; body mass index, 30.4 6.5kg/m?) on clinical wards (Cardiology, Endocrinology, Nephrology, Plastic
Surgery) of a tertiary-care hospital was guided by GlucoTab® (Joanneum Research GmbH [Graz, Austria] and
Medical University of Graz [Graz, Austria]), a mobile decision support system providing automated workflow
support and suggestions for insulin dosing to nurses and physicians.

Results: Adherence to insulin dosing suggestions was high (96.5% bolus, 96.7% basal). The primary outcome
measure, percentage of blood glucose (BG) measurements in the range of 70-140 mg/dL, occurred in
50.2+22.2% of all measurements. The overall mean BG level was 154+35mg/dL. BG measurements in the
ranges of 60-70 mg/dL, 40-60 mg/dL, and <40 mg/dL occurred in 1.4%, 0.5%, and 0.0% of all measurements,
respectively. A regression analysis showed that acute admission to the Cardiology Ward (+30mg/dL) and
preexisting home insulin therapy (+26 mg/dL) had the strongest impact on mean BG. Acute admission to other
wards had minor effects (+4 mg/dL). Ninety-one percent of the healthcare professionals felt confident with
GlucoTab, and 89% believed in its practicality and 80% in its ability to prevent medication errors.
Conclusions: An efficacious, safe, and user-accepted implementation of GlucoTab was demonstrated. How-
ever, for optimized personalized patient care, further algorithm modifications are required.
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Graz, Graz, Austria.
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Background

P TO 35% OF ALL HOSPITALIZED PATIENTS suffer from

diabetes,z‘3 and hospital management costs for these
patients place a serious financial burden to public healthcare
systems.* In addition, patients with diabetes have an in-
creased risk of infections,” prolonged hospital stays, and
increased mortality due to insufficient insulin dosing man-
agement, which is caused by a varying degree of knowledge
on glycemic control, clinical inertia, and the fear of hypo-
glycemia.® Considerable efforts have been made to improve
glycemic management regarding blood glucose (BG) mea-
surements, but an adequate insulin therapy in clinical
practice is still lacking in many hospitals.®”

Guidelines have been developed to improve glycemic
management in hospitals that recommend a target range of
less than 140 mg/dL for premeal BG and less than 180 mg/dL
for a random BG measurement for non-critically ill patients
treated with insulin.®® These target ranges should be
achievable by scheduled subcutaneous insulin dosing with
basal, nutritional, and a correctional component.&9 The
guidelines also suggest the development and evaluation of
evidence-based computerized decision support systems, in-
cluding computerized insulin and BG data display that will
not only improve glycemic control but also workflow and
communication among healthcare professionals.®

Paper-based algorithms for basal bolus insulin therapy
have been developed that increase the quality of glycemic
control and reduce hospital complications.!?-12 Within the
framework of a European Commission—funded project (FP7
248590), we have modified and tested standardized rec-
ommendations of a paper-based insulin dosing algorithm
to comply with daily workflow requirements on general
wards."” This modified algorithm was then implemented in
a mobile decision support system for basal bolus insulin
dosing, the GlucoTab™ system (Joanneum Research GmbH
[Graz, Austria] and Medical University of Graz [Graz,
Austria]), which was subscqucntl?l customized and tested in
a clinical study with 30 patients.'

In the current study, the final mobile version of the Glu-
coTab system was used for the first time to guide the gly-
cemic management process on four different general wards in
the Departments of Internal Medicine and Surgery. The
purpose of this study was to investigate the efficacy, safety,
and usability of a standardized glycemic management with
the GlucoTab system for non-critically ill patients with type 2
diabetes mellitus.

Materials and Methods

This study was an open, noncontrolled interventional
study in hospitalized patients with type 2 diabetes mellitus.
The study was conducted on four general wards of a tertiary-
care hospital (Medical University of Graz). The partici-
pating wards were Endocrinology, Cardiology, Nephrology
and Plastic Surgery, which are each independently managed
by the respective division. All patients gave written in-
formed consent prior to any study activity, and the study was
approved by the ethical board of Medical University of Graz
(protocol number EK-No. 25-344 ex 12/13). This study was
conducted in full accordance with the principles of the
Declaration of Helsinki.

NEUBAUER ET AL.

Patient characteristics

The GlucoTab system was subsequently implemented on
the four participating general wards. In total, 99 hospitalized
patients were competitively recruited from May 2013 to
December 2013. Hospitalized patients who met the inclusion
criteria were included in the study after they consented to
participate. The demographic and clinical characteristics of
the study participants are presented in Table 1. Inclusion
criteria were as follows: age =18 years and type 2 diabetes
(treated with diet, oral antidiabetes drugs, non—insulin-
injected antidiabetes drugs, insulin therapy, or any combination
of the four therapies) or newly diagnosed hyperglycemia
requiring subcutaneous insulin therapy. Patients were swit-
ched to insulin therapy in the case of hyperglycemia judged
by the treating physician according to evidence-based rec-
ommendations to use insulin therapy as the preferred method
for glycemic control in hospitalized patients.®® Glycemic
management with the GlucoTab system was not performed
for patients with the following exclusion criteria: type 1 di-
abetes, gestational diabetes, any condition which the inves-
tigator or treating physician felt would interfere with the
study or the safety of the patient, pregnancy, any mental
condition rendering the patient incapable of giving consent,
known or suspected allergy to insulin glargine or insulin
aspart, continuous parenteral nutrition, or participation in
another study that could interfere with this study.

Standardized glycemic management with GlucoTab

GlucoTab is a mobile computerized clinical decision
support system for subcutaneous insulin therapy that supports
nurses and physicians in glycemic management of hospital-
ized patients in two main tasks: First, it assists clinical
healthcare professionals in organizing the treatment work-
flow of patients with type 2 diabetes mellitus by providing
automated workflow support, including display for open
tasks, facilitating documentation and providing visualization
of BG values, nutrition and insulin doses. Second, it provides
two standardized recommendations based on a basal-bolus
insulin titration protocol'®'%'* for (1) the total daily insulin
dose, which is prescribed by the treating physician during the
ward round, and (2) insulin dose suggestions for individual
insulin administrations before each meal, at bedtime, and
after intermediate BG measurements, if required. After
confirmation of the suggested insulin dosage, the insulin is
injected subcutaneously by an authorized nurse.

The standardized recommendations for insulin dose cal-
culation, based on the modified basal bolus insulin titration
protocol,'®'*'* consist of a daily dose of basal insulin (in-
sulin glargine; Sanofi-Aventis, Frankfurt am Main, Germany),
bolus insulin (insulin aspart; NovoNordisk, Bagsverd, Den-
mark) before each meal, and a correctional dose at bedtime to
achieve fasting and premeal BG values of less than 140 mg/
dL.>° Insulin therapy was started with a total daily dose of 0.5
units/kg of body weight. The initial total daily dose was re-
duced to 0.3 units/kg of body weight in patients 270 years of
age and/or with creatinine values of 22.0 mg/dL. In case the
patient had already been on insulin therapy, the protocol al-
lowed use of the former total insulin dose as the initial dose,
which could be adjusted by the treating physician. One-half of
the total daily dose was administered as basal insulin once a
day before lunch. The other half was administered as bolus
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TABLE 1. CLINICAL CHARACTERISTICS OF THE STUDY POPULATION

Total ~ Nephrology Cardiology Endocrinology Plastic surgery

Variable (n=99) (n=15) (n=30) (n=42) (n=12) P

Gender, female [n (%)] 41/41 3/20 12/40 20/48 6/50 0.28

Ethnicity (Caucasian/African) 98/1 15/0 30/0 42/0 11/1 0.13

Age (years) 67x11 64+8 7012 67x11 65+10 0.31

Body mass index (kg/m?) 30.4+£6.5 31.0£54 294168 31.1£6.8 29.4+6.3 0.57

Weight (kg) 88121 922+17 84124 89+20 8617 0.22

Serum creatinine (mg/dL) 1.8+1.5 3.81x2.1 1.4£0.9 1.6+1.3 1.0+£0.2 <0.05%

Renal dialysis () 9 6 1 2 0 —

HbAlc 0.13
mmol/mol 65+21 5710 65+21 7024 55+13
% 8.1+4.1 74431 8.1x4.1 8.6+4.4 72433

Diabetes duration (years) 13.6£89 13.2+8.3 11.4+£7.7 15.1£9.6 13.9+£9.6 0.51

Pre-admission diabetes therapy [n (%)] 0.60
Diet only 3(3) 0 (0) 1(3) 2(5) 0 (0)

OAD only 16 (16) 0 () 6 (20) 8 (19) 27
Insulin only 55 (56) 12 (80) 13 (44) 24 (58) 6 (50)
OAD, GLP-1 analogs 1(D) 0 (0) 0 (0) 1(2) 0 (0)
Insulin, OAD 22 (22) 3 (20) 9 (30) 6 (14) 4 (33)
Insulin, GLP-1 analogs 2(2) 0 (0) 1) 1(2) 0 (0)

Admission type [n (%)] <0.05"
Planned 38 (38) 6 (40) 17 (57) 8 (19) 7 (58)

Acute 61 (62) 9 (60) 13 (43) 34 (81) 5 (42)

Admission diagnosis [n (%)] —
Hematological disease 1(1) 1(7) 0 (0) 0 (0) 0 ()
Gastrointestinal discase 1(1) 1(7) 0 (0) 0 (0) 0(0)

Endocrine disease 11 (11) 0 (0) 1) 10 (24) 0 (0)
Cardiovascular disease 44 (44) 4 (27) 29 (97) 11 (26) 0 (0)
Neurological disease 1(1) 1(7) 0 (0) 0 (0) 0 (0)
Infectious disease 23 (23) 1) 0 (0) 19 (45) 3 (25)
Renal disease 8 (8) 7 (47) 0 (0) 1(2) 0 (0)
Musculoskeletal disease 9(9) 0 (0) 0 (0) 1(2) 8 (58)
Other 1(1) 0 (0) 0 (0) 0 (0) 1(8)

“Significant difference between Cardiology and Nephrology, Cardiology and

Plastic Surgery, Endocrinology and Nephrology,

Endocrinology and Plastic Surgery, and Nephrology and Plastic Surgery.
Significant difference between Cardiology and Endocrinology and between Endocrinology and Plastic Surgery.
GLP-1, glucagon-like peptide-1; HbAlc, hemoglobin Alc; OAD, oral antidiabetes drug.

insulin three times a day (45% of the total dose for breakfast
bolus, 25% for lunch bolus, and 30% for dinner bolus). The
total daily dose was adjusted by the treating physician during
the ward round. Therefore the basal insulin was administered
after the ward round at lunchtime.

The following safety features were implemented into the
GlucoTab system: if a patient would not eat, basal insulin was
administered, but the prescribed bolus insulin was withheld,
and correctional bolus doses were administered for the regu-
lation of particular BG values if required. The GlucoTab
system also took into account the amount of bolus insulin that
was still active in the patient’s body from a previous dose
(“insulin on-board”), by reducing bolus insulin by 25% per
hour."® Another safety feature was to reduce the dose of basal
insulin if the current basal dose injection was delayed. At any
time, the healthcare professionals could overrule the suggested
insulin dose and perform additional BG measurements.

At the beginning of the standardized glycemic manage-
ment, a patient’s preexisting antidiabetes therapy with gli-
nides, sulfonylureas, and glitazones was stopped, and patients
were assigned to receive standardized glycemic management
according to the GlucoTab recommendations. Metformin
and/or incretin-based therapies were maintained if there was

no contraindication. At discharge, patients returned to their
previous antidiabetes treatment, unless the treating physician
prescribed continuing the insulin therapy performed during
the study or changing to another insulin therapy.

All nurses and physicians were instructed on the study
protocol, study-specific procedures, handling the GlucoTab
system, and Good Clinical Practice before the start of the
study. Healthcare professionals were invited to participate in
a workshop about diabetes before study start and to fill out an
usability questionnaire at the end of the study.

Capillary BG values were measured by using a point-of-
care testing device (ACCU—CHEK® Inform system; Roche
Diagnostics, Rotkreuz, Switzerland), which is integrated into
the laboratory quality management system. Capillary BG
measurements and insulin dosing were performed and
documented by the nurse on duty.

CGM (iPro™2; Medtronic, Northridge, CA) data were
available for a subset of 35 patients from 42 patients in total
on the Endocrinology Ward; one patient lost the sensor, three
patients had too few data points for analysis, and for another
three patients no sensor transmitter was available. As CGM
data were analyzed retrospectively, the treatment was not
influenced by these data.
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Statistical analysis

A sample size calculation was performed in order to test
the study hypothesis by using a one-tailed one-sample ¢ test
weighted by the total number of BG measurements per sub-
ject, with a 5% level of significance and a power of 95%.

In order to test whether the mean percentage of BG mea-
surements in the target range 70-140 mg/dL (primary out-
come) was greater than the recent best-practice study with the
criterion value of 42%,'? we applied an one-tailed one-
sample 7 test, weighted by the total number of BG measure-
ments per subject. The level of significance was set to 5%.

The wards were compared by using the nonparametric
Kruskal-Wallis rank sum test (metric variables) for analysis
of secondary outcomes because patients were unequally
distributed among the wards, with some table cells being
unacceptably small for an analysis of variance. In case of a

NEUBAUER ET AL.

significant Kruskal-Wallis test, we performed pairwise
comparisons by using the (nonparametric) Mann—Whitney U
test. Fisher’s exact test was used for nominal scales. No
corrections for multiple testing were used, and the level of
significance was set to 5% for all tests.

Finally, a multiple regression model to predict the mean
daily BG value over all study days, except study Day 1, was
fitted to the data. Study Day 1 was excluded because of in-
complete datasets. Variables were sex, age, creatinine, he-
moglobin Alc (HbAlc), body mass index, first total daily
insulin dose per kilogram of body weight, diabetes duration,
preexisting home insulin therapy at admission (yes, no), oral
antidiabetes drugs at admission (yes, no), clinical ward, ad-
mission type (planned, acute), and the interaction between
admission type and clinical ward. Model simplification was
performed by using Akaike’s information criterion. Statistical
analysis was performed using R version 2.13.1 software.'

TABLE 2. EFFICACY, SAFETY, AND USABILITY OF THE GLUCOTAB SYSTEM ON DIFFERENT GENERAL WARDS

Total Nephrology Cardiology ~ Endocrinology  Plastic surgery
Variable (n=99) (n=15) (n=30) (n=42) (n=12)
Length of study (days) 7.8+4.5 8.5+54 6.814.1 8.8+4.4 5.9+3.7
Implementation (%)
Performance of expected
BG measurement 95.2 92.4 97.2 94.8 98.4
Bolus insulin injections 94.2 96.8 97.4 93.2 86.5
Basal insulin injections 99.4 100 100 98.7 100
Adherence to
Total daily insulin dose 97.5 98.5 97.5 98.0 92.9
Bolus dose suggestion 96.5 94.3 97.2 96.3 95.1
Basal insulin suggestion 96.7 91.1 96.3 96.8 91.0
Efficacy and safety
BG (mg/dL)
Mean daily 154+35 162134 163+33 15035 13431
Mean prebreakfast 147+43 151£38 15647 147144 119+£28
Mean prelunch 170+54 197 +59 17958 16350 137+36
Mean predinner 15341 141£51 16440 146£36 16442
Mean bedtime 153+£39 165+41 164+31 146+£39 136142
Pre-enrollment 188+73 185+43 173 £58 204+ 88 158 +55
BG in target 70-140 mg/dL (%)* 50.2+£22.2 393+13.7 40.7+£18.9 52.3+£20.7 64.9+£24.6
BG in different ranges (%)
<40 mg/dL 0.0 0.0 0.0 0.0 0.0
40 to <60 mg/dL 0.5 0.2 0.0 0.8 0.4
60 to <70 mg/dL 1.4 0.8 0.3 2.2 13
70 to <180 mg/dL 72.5 64.6 70.6 74.4 83.7
180 to <300 mg/dL 22.9 294 27.2 20.0 14.2
=300 mg/dL 2.7 5.0 1.9 2.6 04
Antihyperglycemic therapy
First calculated TDD (IU)° 38.9+21.7 33.6%11.3 33.5+16.6 44.8+27.5 38.3+15.1
First TDD/kg of body weight IU)  0.43+0.19 0.36+0.10 0.39+0.11 0.49+0.24 0.4410.14
Mean daily injected insulin dose during study (IU)
Injected bolus insulin dose 28.5+19.2 27.3+14.9 25.8+12.3 32.5+25.1 21.0+6.7
Injected basal insulin dose 22.9+18.2 21.0%7.6 17.8+8.6 28.7+25.0 17.1+£7.4
Concomitant drugs (n)
Patients with OADs 36 2 13 14 7
Patients with GLP-1 analogs 6 0 2 4 0
Patients with steroids 4 1 1 1 1

*Primary end point. Significant differences occurred between Endocrinology and Cardiology (P=0.02), Plastic Surgery and Nephrology
(P=0.01), Plastic Surgery and Cardiology (P=0.02), and Nephrology and Endocrinology (P=0.01).
Total daily dose (TDD) might deviate from the injected total insulin dose of Day | depending on the time of day when a patient was

started on GlucoTab therapy.

BG, blood glucose; GLP-1, glucagon-like peptide-1; IU, international units; OAD, oral antidiabetes drug.
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Results
Implementation of standardized glycemic management

The standardized workflow support with the GlucoTab
system was highly accepted by healthcare professionals on all
participating clinical wards as indicated by the performance
of the expected BG measurements and the adherence to in-
sulin dose suggestions (Table 2).

In total, physicians adhered to the suggested total daily
insulin doses in 97.5% of cases (Table 2 and Fig. 1), and
nurses’ adherence rates with suggested bolus insulin doses
and basal insulin doses were 96.5% and 96.7%, respectively.
If corrections were performed by healthcare professionals,
the changes were relatively small: 0.7 = 1.6 international inits
(IU) for bolus insulin and 0.9+ 2.8 IU for basal insulin.

Efficacy of standardized glycemic management

By using the GlucoTab system, the percentage of BG
values in the target range increased over time in all partici-
pating clinical wards (Fig. 1). Overall, the mean percentage
of BG measurements in the target range 70-140 mg/dL was
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50.2+22.2%, which was significantly higher than the crite-
rion value of 42% deriving from a recent best-practice study
(P=0.001)."2 Of the patients, 72.2% had a reduction of the
mean BG during hospital stay compared with the estimated
BG based on HbAlc at admission.!” In all patients with an
estimated average BG of >200 mg/dL, based on the HbAlc,
the mean BG during the study was improved (Fig. 1C). The
overall mean of 2,466 BG measurements was 154 =35 mg/
dL. Details of glycemic management across the clinical
wards are shown in Table 2.

The percentage of BG in the target range 70-140 mg/dL
was highest on the Plastic Surgery Ward (64.9+24.6%).
The lowest value was found on the Nephrology Ward
(39.3£13.7%). Analysis of the CGM data of patients on
the Endocrinology Ward indicated that more than half of
the study time (54.0%) subcutaneous BG values were in the
target range of 70-140 mg/dL (Fig. 2) and confirmed that
reference BG values were representative (52.3% in the
target range; Table 2).

Although these observations suggest variations within
glycemic management among the clinical wards, a regression
analysis to predict the mean daily BG value showed that the
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FIG. 1. (A) Mean percentage of premeal and bedtime
blood glucose (BG) values in different ranges of standard-
ized glycemic management for patients on different wards.
(B) Total, bolus, and basal insulin dose (mean=*SE) of
standardized glycemic management for patients on different
wards. Insulin dose on Day 1 was lower depending on the
time of day when a patient was started on GlucoTab therapy.
IU, international units. (C) Comparison of estimated BG
based on hemoglobin Alc level at admission with mean BG
during hospital stay.
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FIG. 2. Daily continuous glucose monitoring profiles and reference blood glucose values (black circles =reference blood
glucose values) in 35 patients on the Endocrinology Ward. Q, quartile.

BG value was not affected by a specific clinical ward. Pa-
tients with preexisting home insulin therapy at admission
had, on average, higher (+26 mg/dL) mean daily BG values
during the standardized glycemic management than patients
without preexisting home insulin therapy. Particularly on the
Cardiology Ward the type of admission had a strong impact
on the mean daily BG value. Acutely admitted patients on the
Cardiology Ward had on average higher (+30 mg/dL) mean
daily BG values than patients with acute admissions at the
other wards (+4 mg/dL). Furthermore, the regression analysis
showed that a higher first insulin dose per kilogram of body
weight by 0.11U or a lower HbAlc value at admission by
10 mmol/mol was associated with a lower mean BG by 5 mg/
dL and 4 mg/dL, respectively.

Safety of standardized glycemic management

The number of hypoglycemic events on the different wards
using the GlucoTab system was comparable (Table 2). No
severe hypoglycemic event below 40 mg/dL was observed.
Of all measurements in the range 40 to <60 mg/dL, 0.5%
occurred in nine different patients. Of the measurements in
the range of 60 to <70 mg/dL, 1.4% occurred in 24 different
patients. In patients on the Endocrinology Ward, the analysis
of the CGM data confirmed a low risk for developing hypo-
glycemia: 0% and 1.2% for measurements in the ranges
<40 mg/dL and 40 to <60 mg/dL, respectively (Fig. 2).

Twenty-eight mild and moderate adverse events and one
serious adverse event (stent thrombosis) occurred. None of
these events was recognized as related to the GlucoTab
system.

Usability of standardized glycemic management

At the end of the study, 65 healthcare professionals com-
pleted a questionnaire (54 women and 11 men; mean age,
36+11 years; S1 nurses, 14 physicians). Forty-two health-

care professionals had previous experience with the use of
mobile devices. Fifty-nine healthcare professionals (91%)
felt confident in performing glycemic management with the
GlucoTab system. Fifty-eight healthcare professionals (89%)
believed that the system was practical to use in daily clinical
routine. Fifty-two participants (80%) stated that using Glu-
coTab could prevent medical errors associated with drug
prescriptions. Fifty-six healthcare professionals (86%) an-
swered that when using the system, physicians had to be
consulted less often about glycemic management. Fifty-five
healthcare professionals (85%) stated that glycemic control
was more efficient when using the GlucoTab system. Dif-
ferent perceptions of workload were assessed. Thirteen
healthcare professionals indicated a workload increase, 33
indicated a workload decrease, and 12 indicated no change in
the workload, when using the GlucoTab system. Seven
healthcare professionals did not answer this question.

Discussion

Our data indicate that standardized glycemic management
guided by the GlucoTab system for workflow and decision
support can be implemented efficiently and safely and is user-
accepted in different wards in a tertiary-care hospital. Of the
BG measurements, 50.2+22.2% were in the target range (70—
140mg/dL) by using the GlucoTab. Morcover, the system
was implemented without any occurrence of severe hypogly-
cemia and with a high acceptance rate among healthcare
professionals.

The high number of BG measurements and insulin injec-
tions performed according to suggested standardized care
showed that the GlucoTab system was highly accepted and
continuously used by healthcare professionals and that it was
able to successfully guide the glycemic management process.
This was also confirmed by the user questionnaire and by the
tight adherence of healthcare professionals to the suggested
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insulin doses. Adherence of healthcare professionals was
considerably higher than in previous studies.'®'® Schnipper
et al.' performed a study on computerized order sets and
reported that 67% of the patients received an adequate initial
dose of nutritional insulin and that in only 37% of the pa-
tients’ insulin orders were changed.

In our study, differences regarding glycemic control
among the wards were observed, although adherence rates to
insulin dosing and BG measurement suggestions of the
GlucoTab system were comparable on the participating
clinical wards. However, a regression analysis revealed that
ward assignment was not an appropriate variable to predict
the mean BG value. In this analysis, an acute admission
influenced the glycemic control on all wards, and the stron-
gest influence of an acute admission on BG was found on the
Cardiology Ward (+30 mg/dL). We assume that these find-
ings may be related to myocardial infarction, which is the
predominant diagnosis of acute admission on the Cardiology
Ward and which is associated with local and systemic in-
flammation®° leading to impaired glycemic control and
possible linkage to poor cardiac outcome.?!

According to our regression analysis, further modification
of the basal bolus algorithm may be required for a more
personalized care in the acute phase of cardiac events.

Higher mean BG measurements were observed not only on
the Cardiology Ward, but also on the Nephrology Ward. It is
surprising that the creatinine value did not influence the mean
daily BG value according to the regression analysis. Thus, we
assume that the lower first total daily insulin dose may be
responsible for the less stringent glycemic control in patients
on the Nephrology Ward. This lower first total insulin dose
was a strong predictor for impaired glycemic control in the
model. According to the algorithm design, the initial dose
was reduced from 0.5 to 0.3 1U/kg of body weight if a cre-
atinine value was >2 mg/dL. However, a recent randomized
controlled trial in patients with a glomerular filtration rate of
<45 mL/min showed that an insulin starting dose of 0.25 IU/
kg of body weight did not worsen glycemic control when
compared with the control group that used an insulin starting
dose of 0.5 IU/kg of body weight. The authors speculated that
in these patients the insulin resistance might be a key element
of impaired glycemic control.?*

According to the regression analysis, preexisting home
insulin therapy and the HbAlc values in addition to the type
of hospital admission and the first total daily insulin dose are
essential factors that influence the mean BG values during
hospitalization. Thus, these factors have the potential to be
used for a more personalized algorithm.

In our study the risk of hypoglycemia was low. None of the
BG values was below 40 mg/dL. Hypoglycemic events were
evenly distributed among patients. The percentages of BG
measurements in the different hypoglycemic ranges and in
the target range were similar to those found in comparable
studies, 111122324

Several limitations of our study have to be addressed. The
present study was a noncontrolled clinical study. However, a
retrospective assessment of glycemic control on two wards
participating in this study achieved 57% (Endocrinology) and
51% (Cardiology) in the range of 70-180 mg/dL in routine
care. In addition, the results of a previously published pro-
spective controlled study on these two wards showed that
patients in a paper-based basal bolus algorithm group had a

significantly higher percentage of BG measurements in the
range of 70-180 mg/dL than patients in routine care group
(73% vs. 53%). These data indicate that glycemic control was
improved by the use of the GlucoTab system compared with
routine care.””!

Because of the competitive recruiting process, the number
of included patients per ward differed considerably, and re-
sults from the different wards and the regression analysis can
only be interpreted with caution. The implemented target
range of less than 140 mg/dL for premeal BG measurements
may have to be reconsidered for certain populations in hos-
pital care. Modified algorithms (e.g., for geriatric patients
with individualized target ranges>>) need to be developed and
evaluated.

In conclusion, our data demonstrate that the GlucoTab
system allowed an efficacious, safe, and user-accepted im-
plementation of standardized glycemic management in dif-
ferent general wards of a tertiary-care hospital. Consequently,
the system can support healthcare professionals in improving
glycemic management relying on evidence-based guidelines
for non-critically ill hospitalized patients.
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2.  Summary

The study reported in this chapter was the first application of GlucoTab® on more than one hospital
ward. The aim of the clinical study was to investigate efficacy, safety and usability of the system which
was used for glycemic management in non-critically ill T2DM patients. The overall patients’ mean BG
level was 154+35 mg/dL and 72.5% of BG measurements were within the accepted extended target
range for analysis (70-180 mg/dL). Only 1.9% of BG measurements were below 70 mg/dL and these
low glycemic events were evenly distributed in the patient population and did not occur clustered.
There was no severe hypoglycemic episode below 40 mg/dL. The adherence to the insulin dosing
decision support by HCPs was high (96.5% for bolus insulin, 96.7% for basal insulin). Also the
adherence to the planned workflow was high which is reflected in the high performance of expected

BG measurements and insulin injections.

Comparing the primary endpoint of the study (“% BG measurements in the range 70 to 140 mg/dL)
revealed statistically significant differences between the study sites. To further investigate these
differences, a multiple regression model to predict the mean daily BG value over all study days, except
study day 1, was developed. Following predictor variables of the model had significant influence on the

patients’ mean daily BG:

- High HbAlc at admission was associated with higher mean daily BG
- Patients with preexisting home insulin therapy at admission had higher mean daily BG
- A higher first insulin TDD per kilogram body weight was associated with lower mean daily BG

- Type of admission (acute or planned) had a significant influence on mean daily BG

Patients with preexisting home insulin therapy had on average higher (+26 mg/dL) mean daily BG
values, than patients without preexisting home insulin therapy. Particularly on the Cardiology ward,
the type of admission had a strong impact on the mean daily BG. Acutely admitted patients on the
Cardiology ward had on average higher mean daily BG values (+30 mg/dL) than patients with acute
admissions at the other wards (only +4 mg/dL). A 0.1 IU higher first insulin dose per kilogram of body
weight was associated with a 5 mg/dL lower mean daily BG level, and a 10 mmol/mol lower HbAlc
value at admission was associated with a 4 mg/dL lower mean daily BG level. Surprisingly, renal
function estimated by the patients’ serum creatinine level did not influence the model, even though the

laboratory parameter is used in the calculation of the patients’ initial TDD. In patients with a serum
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creatinine level above or equal 2 mg/dL the initial TDD is decreased. It was assumed that the lower
first total daily insulin dose in patients on the Nephrology ward may be responsible for the higher

mean daily BG levels.

Subgroup analyses revealed that although mean daily BG was higher for some patient subgroups, the
occurrence of BG values below 70 mg/dL was comparable in all subgroups. The insulin dosing
algorithm in its current form was safe in all patient subgroups, but was not equally effective for all

patients.

-80-



CHAPTER VI

Clinical benefit of computerized workflow and decision support

This chapter presents the findings of a previously published article (Donsa et al. 2016 [58]).
In this post-hoc analysis a comparison of error rates was performed when using a paper-
based and a computerized way of clinical decision and workflow support. Furthermore, this

chapter elaborates on clinical benefits of using computerized workflow and decision support.
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1. Impact of errors in paper-based and computerized diabetes
management with decision support for hospitalized patients with type 2

diabetes. A post-hoc analysis of a before and after study [Donsa et al. 2016]
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Objective: Most preventable adverse drug events and medication errors occur during medication order-
ing. Medication order entry and clinical decision support are available on paper or as computerized
systems. In this post-hoc analysis we investigated frequency and clinical impact of blood glucose (BG)
documentation- and user-related calculation errors as well as workflow deviations in diabetes manage-
ment. We aimed to compare a paper-based protocol to a computerized medication management system
combined with clinical workflow and decision support.
Methods: Seventy-nine hospitalized patients with type 2 diabetes mellitus were treated with an algorithm
driven basal-bolus insulin regimen. BG measurements, which were the basis for insulin dose calcula-
tions, were manually entered either into the paper-based workflow protocol (PaperG: 37 patients) or
into GlucoTab®—a mobile tablet PC based system (CompG: 42 patients). We used BG values from the lab-
oratory information system as a reference. A workflow simulator was used to determine user calculation
errors as well as workflow deviations and to estimate the effect of errors on insulin doses. The clinical
impact of insulin dosing errors and workflow deviations on hypo- and hyperglycemia was investigated.
Results: The BG documentation error rate was similar for PaperG (4.9%) and CompG group (4.0%). In
PaperG group, 11.1% of manual insulin dose calculations were erroneous and the odds ratio (OR) of a
hypoglycemic event following an insulin dosing error was 3.1 (95% Cl: 1.4-6.8). The number of BG values
influenced by insulin dosing errors was eightfold higher than in the CompG group. In the CompG group,
workflow deviations occurred in 5.0% of the tasks which led to an increased likelihood of hyperglycemia,
OR 2.2 (95% CI: 1.1-4.6).
Discussion: Manual insulin dose calculations were the major source of error and had a particularly strong
influence on hypoglycemia. By using GlucoTab®, user calculation errors were entirely excluded. The
immediate availability and automated handling of BG values from medical devices directly at the point
of care has a high potential to reduce errors. Computerized systems facilitate the safe use of more complex
insulin dosing algorithms without compromising usability. In CompG group, missed or delayed tasks had
a significant effect on hyperglycemia, while in PaperG group insufficient precision of documentation
times limited analysis. The use of old BG measurements was clinically less relevant.
Conclusion: Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome.
Diabetes management systems including decision support should address nurses as well as physicians in
a computerized way. Our analysis shows that such systems reduce the frequency of errors and therefore
decrease the probability of hypo- and hyperglycemia.

© 2016 Published by Elsevier Ireland Ltd.
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1. Introduction

Most preventable adverse drug events and medication errors
are related to the medication process itself and mainly occur
during ordering [1-3]. Computerized systems (medication order
entry, patient data management) are cost effective [4], significantly
reduce prescribing errors [5-8] and charting time [9]. Addition-
ally, clinical decision support systems (CDSS) support calculation
of drug doses and management of the increasing number of drugs,
treatment regimens and side effects. The combination of medica-
tion order entry systems and CDSS reduces medication errors [5]
and their use has also been recommended for diabetes therapy in
hospitalized patients [10-13].

Around 20% of hospital inpatient days occur in diabetes patients
who have an increased risk to experience adverse events during
hospital stay [13-15]. An improvement in diabetes management
results in lower rates of hospital complications in general medicine
and surgery wards [16,17]. But a recent diabetes inpatient audit
showed that 37% of diabetes patients experienced at least one
diabetes medication error during hospitalization and that these
patients were more than twice as likely to experience severe
hypoglycemia [18]. International diabetes experts recommend a
structured approach and an algorithm-driven basal-bolus insulin
regimen for hospitalized type 2 diabetes mellitus (T2DM) patients
[19]. This regimen involves long acting insulin to supplement basal
insulin requirements during periods of fasting and separate injec-
tions of rapid acting insulin to prevent rises in blood glucose (BG)
levels resulting from meals. Diabetes management requires com-
plex and interdisciplinary cooperation of health care professionals
(HCPs) involving ordering doses and correction schemes, BG mea-
surement and timely administration of resulting insulin doses.
Clear evidence that the combination of computerized medication
order entry systems and CDSS reduces clinical adverse drug events
is still missing [5].

We have integrated a customized version of a previously pub-
lished algorithm for basal-bolus insulin therapy in T2DM patients
[20-22] into the workflow of a general internal medicine ward.
We first tested the basal-bolus insulin regimen in a paper-based
version of a medication management protocol with insulin dosing
decision support [23]. In a second step, the algorithm was refined
and implemented in a computerized workflow and decision sup-
port system which was additionally tested in a clinical study on 4
different wards [24].

In the present post-hoc analysis we aimed to determine the fre-
quency and clinical impact of blood glucose (BG) documentation-,
user-related calculation errors and workflow deviations in dia-
betes management. We compared the paper-based protocol to the
computerized medication management system including clinical
workflow and decision support. The data collected in the clinical
studies was analyzed to describe errors. To further analyze clinical
impact of these errors a workflow simulator was used to estimate
their effect on insulin doses.

2. Methods
2.1. Study design and patient characteristics

We used a subset of data (one ward) from two previously pub-
lished clinical studies [23,24]. Both studies were conducted at the
general ward of the Division of Endocrinology and Metabolism at
the Department of Internal Medicine (Medical University of Graz,
Austria). On this ward additional continuous glucose monitoring
(CGM) was performed in both clinical studies. Both studies were
approved by the local ethics committee and performed in accor-
dance with the Declaration of Helsinki and the principles of Good

Clinical Practice. Adult patients (>18 years of age) with T2DM who
were treated with diet alone and/or with any oral or injectable
antihyperglycemic therapy and who were admitted to the general
ward were included in the study. The study ended with hospital
discharge, the transfer of the patient to a different ward, or after 21
treatment days.

For the post-hoc analysis we used a before and after study
design: First, diabetes management was performed using a paper-
based protocol for an algorithm driven basal-bolus insulin therapy
from July 2011 to April 2012, (PaperG group). After 12 month of
using routine care diabetes management to unlearn the procedures
of the algorithm driven basal-bolus insulin therapy, diabetes man-
agement was conducted using a computerized system from May
2013 to December 2013, (CompG group). The paper-based pro-
tocol and the computerized system for medication management
were specifically designed to support basal-bolus insulin therapy
of T2DM patients. Both methods comprise the following function-
alities which aid physicians and nurses: 1) medication order entry
with insulin dosing decision support for physicians, 2) workflow
management for physicians and nurses, 3) data entry at the bedside
and 4) drug administration support including insulin dose calcula-
tion for nurses.

This study included data from 79 T2DM patients. BG measure-
ments were entered manually, either into a paper-based workflow
and medication management protocol (PaperG: 37 patients)or into
GlucoTab®—a mobile Android tablet PC based system (CompG: 42
patients). The true measured BG values and measurement times
were retrospectively extracted for both groups from the Labora-
tory Information System (LIS) and compared with the manually
entered data. Insulin dose calculations were performed manually
in the PaperG group and with GlucoTab® in the CompG group. In
both groups, the users were trained in the correct use of the proto-
col/system and the insulin dosing algorithm. HCPs were unaware
of the fact that medication errors were investigated.

2.2. Clinical workflow and insulin dosing algorithm

In both groups, dosing decisions were based on four daily
capillary BG finger-stick measurements (three pre-meal and
one bedtime measurement). Additional measurements were per-
formed if deemed necessary by the HCPs. The algorithm was used to
calculate the initial total daily dose (TDD) of insulin based on patient
weight, age and renal function as well as to calculate a new TDD for
the next 24 h based on the previous TDD and BG values of the pre-
ceding 24 h. The calculated TDD was either accepted or modified by
the physicians and the ordered TDD was divided into 50% daily basal
and 50% daily bolus insulin dose. The bolus dose was distributed
among the three meals (breakfast, lunch, dinner). If pre-meal BG
values were below the target range, the insulin bolus was reduced
whereas BG values above the target range induced an increased
bolus dose. The basal-bolus insulin algorithm aims for fasting and
pre-meal BG levels of 100-140 mg/dL. In case of additional insulin
suggested due to high BG, the algorithm further adjusted the dose
using an insulin sensitivity parameter. Insulin sensitivity (sensi-
tive, normal and resistant) was assessed by the attending physician
during each morning round. Additional bolus injections were per-
formed if deemed necessary by the HCPs. Authorized nurses were
able to modify the suggestion of the decision support algorithm
and after confirmation of the suggested insulin dose the insulin
was injected subcutaneously. The underlying workflow and the
sequence of operations of the used algorithm driven basal-bolus
insulin regimen were identical in both groups (Fig. 1).

Paper-based workflow and decision support (PaperG group)
The use of the insulin dosing algorithm requires only basic arith-
metic operations and HCPs were trained in the correct use. BG
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Fig. 1. Interdisciplinary clinical workflow for diabetes management in the hospital using basal-bolus insulin therapy.

Table 1
Patient characteristics.
Variable Total (n=79) PaperG (n=37) [23] CompG (n=42) [24] P
Gender, female (n/%) 31/39.2% 11/29.7% 20/47.6% 0.024"
Race: caucasian/other (n) 77(2 35/2 42/0 0.127
Age (years) 68411 70412 67+11 0.277
Body Mass Index (kg/m?) 304+6.8 29.7+6.8 31.1+6.8 0.615
Serum creatinine (mg/dL) 1.5+£1.0 1.5+£0.5 1.6+£1.3 0.572
HbAlc
mmol/mol 73+27 76+7 70+24
% 88+46 91+28 8644 0.407
Diabetes duration (years) 15+£11 14+£12 15+£10 0.523
Pre-admission diabetes therapy (n)
Diet only 7 5 2
OAD only 20 8
Insulin only 42 18 24 >0.05
Combination therapy 10 2 8
Admission diagnosis (n)
Endocrine disease 19 9 10
Cardiovascular disease 25 14 11
Infectious disease 28 9 19 >0.05
Other 7 5 2
Patients with CGM (n) 67 32¢ 35°
Length of study (days) 82+45 75+4.6 8.8+44 0.201

a 2 of the 5 patients without CGM data were not willing to use CGM, 2 patients lacked sufficient subcutaneous adipose tissue and 1 patient lost the sensor during the study

period.

b 1 patient lost the sensor, 3 patients had too few data for analysis and for another 3 patients no sensor transmitter was available.

" Statistically significant difference (p <0.05).

values, calculated and accepted insulin doses were recorded in the
paper-based diabetes management protocol [23].

To calculate insulin bolus doses, nurses had to consult a correc-
tion scheme and consequently execute additions or subtractions.
To calculate the TDD, physicians had to calculate percentage
increase or decrease of a previous TDD. Calculation of the initial
TDD required multiplications, divisions and ratios [23]. HCPs were
equipped with pocket calculators to calculate insulin doses.

GlucoTab®—computerized workflow and decision support
(CompG group)

GlucoTab® (Joanneum Research GmbH and Medical University
of Graz, both Graz, Austria) is a mobile computerized client-server
clinical workflow and decision support system supporting HCPs in
diabetes management of hospitalized T2DM patients directly at the
point of care. The client is connected over the hospital WiFi to the
GlucoTab® server which has a HL7 interface to receive hospital
patient master data. It assists in organizing the treatment work-
flow by providing automated workflow support, including display

for open tasks, facilitating documentation and providing visualiza-
tion of BG values, nutrition and insulin doses. The main function
of the system is the provision of insulin dose recommendations for
basal-bolus insulin treatment of T2DM patients. GlucoTab® is a CE
marked medical device software [24].

Although additional safety features have been implemented in
the computerized version of the algorithm for insulin dosing, the
underlying workflow and the sequence of operations were iden-
tical between the two groups. GlucoTab® also takes into account
the amount of insulin that is still active in the patient’s body from
a previous dose (‘Insulin on Board’). Another additional feature is
the reduction of the basal insulin dose for delayed basal insulin
administrations. Furthermore, the rules to calculate therapy adjust-
ments were slightly altered in the CompG group, leading to a more
dynamic therapy adjustment.

Glucose measurements
Measurements were conducted using a Point of Care Testing
(POCT) device (Roche Accu-Chek® Inform System, Roche Diagnos-
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Table 2
Detection of errors and their frequency.
PaperG CompG

All BG values: (n) 1042 1337

Correct match: (n/%) 972 (93.3%) 1265 (94.6%)
Automated match 913 (87.6%) 1257 (94.0%)
Manual match 59 (5.7%) 8(0.6%)

No Match: (n/%) 19(1.8%) 19 (1.4%)

BG documentation errors (incorrect match): (n/%) 51(4.9%) 53 (4.0%)
Average absolute error +SD (mg/dL) 6.8+12.2 122+£214
Median absolute error and range (mg/dL) 3(1-64) 3(1-100)

Workflow deviations *: 0.9% 5.0%

Missed BG measurements ” 1/796 (0.1%) 52/1156 (4.5%)
Missed bolus insulin injections " 1/597 (0.2%) 49/867 (5.7%)
Missed therapy adjustments/basal injections 12/247 (4.9%) 19/367 (5.2%)

Insulin dose calculations with old BG measurements (older than 30 min): (n/%) nfa 231/1251 (18.5%)
Average time lag 4+ SD (min) n/a 48.8+21.6
Median lag and range (min) n/a 42.8 (30.0-230.5)

User calculation errors: 11.1% 0.0%

All simulated calculations: 1190 1648

Bolus insulin calculations 98/943 (10.4%) 0/1251 (0.0%)
Daily insulin dose adjustments (basal insulin calculations) 29/210(13.8%) 0/325(0.0%)
Initial total daily insulin dose calculation 5/37 (13.5%) 0/42 (0.0%)

2 Not comparable between groups.
b Excluding first and last study day.

tics, Switzerland) which automatically transmitted the BG values
and measurement times to the LIS via a data interface. Data could
not be made available in a timely manner through this interface for
therapy. Therefore, manual data entry into the GlucoTab® was also
required in the CompG group.

To present the complete pattern of daily BG levels, glucose was
additionally monitored with CGM (iPro®2 system; Medtronic Min-
imed, Northridge, CA)[25]. CGM was only temporarily discontinued
when patients had to undergo certain diagnostic procedures. CGM
data were calibrated retrospectively based on the four daily BG
measurements.

The target range for the insulin-dosing algorithm was defined
in the range of 100-140 mg/dL. A recommended extended tar-
get range from 70 to 180 mg/dL was used for analysis [19,20,23].
Hypoglycemia was defined as glucose values <70 mg/dL and hyper-
glycemia >250 mg/dL.

2.3. Data processing and analysis

In our analysis we: A.) detected the number and frequency of
errors, B.) investigated the effect of BG documentation errors and
user calculation errors on insulin dose calculation, and C.) inves-
tigated the clinical impact of insulin dosing errors and workflow
deviations. The complete structure of data processing and analysis
is shown in Fig. 2.

We investigated the following types of errors:

BG documentation errors: occurred during the manual transfer
of BG values from the POCT device to the diabetes management
protocol/system and also include the use of old BG measurements
for insulin dose calculations. An old BG measurement was defined
as a BG measurement older than 30 min which was used for the
calculation of an insulin dose. The computerized system allowed
a maximum time difference of 30 min from BG measurement data
entry to insulin dose calculation. 30 min were derived from clinical
experience and based on a previous study [26]. Analysis of old BG
measurements could only be performed in the CompG group.

User calculation errors: occurred during calculation of insulin
doses. These include calculation of bolus and basal insulin and ther-
apy initializations and adjustments of the TDD.

Workflow deviations: included missed tasks or tasks not per-
formed on time. This was the case for BG measurements, insulin
injections and therapy adjustments.

A. Detection of errors

To determine if BG documentation errors occurred, BG val-
ues from the LIS were matched with the corresponding manually
entered values (step A.1). User calculation errors and workflow
deviations were determined by using a workflow simulator (step
A.2). The frequency of BG documentation errors, user calculation
errors and workflow deviations was investigated in both groups.
For a correct analysis of workflow deviations we included only full
treatment days.

A.1. BG data matching

BG data matching was performed to retrieve the correct BG
value and time of measurements from the POCT devices. The
BG measurements stored in the LIS were matched with the data
entered in the paper-based protocol and computerized system.
Matching of the BG values was performed in an automated and
in a manual step. Due to a lack of precision of documentation times
in the PaperG group, slightly different matching criteria were used
for the paper-based and computerized sources.

We defined the following cases by using matching criteria
derived in cooperation with HCPs:

e Correct automated match: if BG value entry exactly equals LIS
value and if time difference meets the match criteria.

e PaperG group: time differences from data entry to correctly
recorded entryin the LIS were allowed between —30 and 90 min
(negative differences resulted from rounding to next full hour
by the HCPs).
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Data processing and analysis
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Fig. 2. Data processing and analysis (workflow chart).

e CompG group: only positive time differences smaller than
90 min were allowed.

e Correct manual match: if BG value entry exactly equals LIS value
but the time difference does not meet the match criteria and no
other BG measurements were performed in the interval.

e No match: if no corresponding value was found in the LIS due
to inaccessible BG measurement values e.g. use of the patients
personal glucometer instead of POCT device, problems with the
POCT device.

® BG documentation errors (incorrect match):

e [fBGvalues deviate (A BG)and time difference meets the match
criteria.

e [f BG values deviate but time difference doesn’t meet the match
criteria and no other BG measurements were performed in this
interval.

A.2. Workflow simulator—recalculation of insulin doses

The workflow simulator uses original GlucoTab® server soft-
ware components which were developed and tested according to
regulatory requirements for medical device software [27]. Recalcu-
lations were performed with the workflow simulator for all insulin
dose decision support steps provided to HCPs to compare all man-
ually entered data to an automatically calculated reference value.
Firstly, the simulator was used to determine the frequency and
amount of user calculation errors. Secondly, the simulator was used
toretrace the original workflow and to recalculate insulin doses and
therapy adjustments based on correct BG values and times.

B. Effect on insulin dose

Using the identified erroneous BG documentations and user
calculation errors, we investigated their effect on insulin dose cal-
culations (insulin dosing errors). In a what-if analysis performed
with the workflow simulator, the frequency and amount of change
of insulin doses (A insulin dose) was determined for both groups.
For BG documentation errors, recalculations were performed using
the correct measurement values from the LIS. For old BG measure-
ments, the glucose levels at the time of insulin dose calculation
(obtained by CGM) were used for the recalculation of insulin doses.

C. Clinical impact

C.1. Insulin dosing errors

Only errors resulting in changes of insulin doses were consid-
ered in the impact analysis. If two independent errors led to a
correct insulin dose by coincidence, this error was excluded from
the impact analysis. We investigated the impact of errors on subse-
quent BG levels by calculating the odds ratio (OR) of hypoglycemia
and hyperglycemia after insulin dosing errors. We used insulin
dosing errors leading to increased insulin doses for calculation of
the impact on hypoglycemia and insulin dosing errors leading to
decreased insulin doses in case of hyperglycemia. Modifications
of the decision support suggestions by HCPs were accounted for
in the impact analysis but not considered as errors. Insulin dos-
ing errors affecting long acting insulin doses were considered to
have an impact for 24 h on the patients’ BG levels. This was the
case for insulin dosing errors affecting therapy adjustments, ther-
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Table 3
Effect on insulin dose.

63

BG documentation errors affecting insulin dose calculations PaperG CompG

Bolus insulin calculations (errors/calculations) (%) 5/45 (11.1%) 11/46 (23.9%)
Average absolute error &+ SD (IU) 2+14 34420
Median absolute error and range (IU) 2(2-4) 4(2-8)
Median absolute error and range/TDD (%) 5.6 (3.6-9.5) 5.3(1.3-16.7)
Maximum additionally ordered (IU; IU/TDD) 2;5.6% 8;13.6%
Maximum withheld (IU; IU/TDD) 4;9.5% 4;16.7%

Daily insulin dose adjustments (basal insulin calculations) 0/51 (0.0%) 8/53 (15.1%)
Average absolute error + SD (IU) - 48+29
Median absolute error and range (IU) - 3.5(1-9)
Median absolute error and range/TDD (%) - 8.0(5-26.9)
Maximum additionally ordered (IU; IU/TDD) - 9; 15.8%
Maximum withheld (1U; IU/TDD) - 7;26.9%

0ld BG affecting insulin dose calculations *

Bolus insulin calculations n/a 41/157 (26.1%)
Average absolute error +SD (IU) nfa 53472
Median absolute error and range (IU) n/a 3(1-35)
Median absolute error and range/TDD (%) n/a 8.2(0.6-25.0)
Maximum additionally ordered (IU; IU/TDD) n/a 35; 25.0%
Maximum withheld (1U; IU/TDD) n/a 30; 16.7%

Daily insulin dose adjustments (basal insulin calculations) nj/a 10/157 (6.4%)
Average absolute error + SD (IU) n/a 4.6+2.0
Median absolute error and range (IU) n/a 4(2-8)
Median absolute error and range/TDD (%) n/a 8.7(6.9-26.7)
Maximum additionally ordered (IU; IU/TDD) n/a 8;26.7%
Maximum withheld (IU; IU/TDD) nfa 8;9.2%

User calculation errors affecting insulin dose 11.1% 0.0%

Bolus insulin calculations 98/943 (10.4%) 0/1251 (0.0%)
Average absolute error + SD (IU) 22+14 -

Median absolute error and range (1U) 2(1-8)5.6 -
Median absolute error and range/TDD (%) (0.8-27.3) -
Maximum additionally ordered (IU; IU/TDD) 5;17.4% -
Maximum withheld (IU; IU/TDD) 8;27.3% -

Total daily insulin dose calculation 34/247 (13.8%) 0/367 (0.0%)

Average absolute error + SD (IU) 7.7+£120 -
Median absolute error and range (1U) 2.5(1-58) -
Median absolute error and range/TDD (%) 8.3(1.1-49.2) -
Maximum additionally ordered (IU; IU/TDD) 58, 49.2% -

Maximum withheld (IU; IU/TDD) 31, 25.6% -

2 Not comparable between groups.

apy initializations and basal insulin administrations. Insulin dosing
errors affecting rapid acting insulin doses were considered to have
an impact until the next standard measurement interval (maxi-
mum 5 h). These were insulin dosing errors affecting bolus insulin
injections and therapy adjustments.

C.2. Workflow deviations

The effect of missed or not on time performed insulin injections
and the effect of the use of old BG measurements on subsequent
hypo- and hyperglycemia was investigated.

2.4. Statistical analysis

Glucose profiles were analyzed based on recommendations for
standardizing analysis and presentation of glucose monitoring data
(ambulatory glucose profile) [28]. Glucose variability was calcu-
lated either as standard deviation (SD) or as coefficient of variation
(CV) (SD/mean) x 100 of the BG data. For the ambulatory glucose
profile, BG values in different ranges was defined as ‘% of BG read-
ings’ within a well-defined range e.g. 100-140 mg/dL. Errors are
expressed as mean absolute values with SD and as median abso-
lute errors with the corresponding range. In addition, insulin dosing
errors are related to the patients’ current TDD. This relative error
indicates potential patient hazard. For example an increase of an
insulin dose by 5 insulin units (IU) in a patient with a TDD of 201U
is proportionally larger and more dangerous than in a patient with
aTDD of 501U.

In the clinical impact analysis the effect size for the strength
of association is reported as OR for hypo or hyperglycemic events
following an error. The OR expresses odds in favor of hypo- or
hyperglycemic events relative to odds in favor of euglycemic
events.

Pearson’s X2 test was used to analyze nominal data. Fisher’s
exact test was computed when a Table had a cell with an expected
frequency of<5. Prior to data analysis, all metric outcome vari-
ables were checked for normality by means of a Shapiro-Wilk’s
test. Nonparametric tests (unpaired Wilcoxon’s signed-rank test)
were applied if the metric variables were not distributed normally.
We used unpaired t-tests in case of normal distribution and vari-
ance homogeneity. Confidence interval (CI) is given at 95% and
p-values less than 0.05 were deemed significant. Statistical analysis
was performed using R-Statistics version 3.0.1 software [29].

3. Results

We included 2379 BG values and 2838 dosing decisions from
79 patients into data analysis. Except for gender, there were no
statistically significant differences in the baseline characteristics
between PaperG and CompG group (Table 1). We matched 98.2%
(PaperG) and 98.6% (CompG) of the patients’ BG values. The auto-
mated match process with electronic entries resulted in notably
more matches in the CompG group (Table 2).
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gilr]\lii:l impact: Hypo- or hyperglycemic events following different types of errors.
Type of error 0dds ratio
Hypoglycemia Hyperglycemia
PaperG:

Insulin dosing errors
Workflow deviations "
CompG:
Insulin dosing errors -
0Old BG measurements (what-if) —¢
Workflow deviations 1.1(95% CI: 0.3-4.7)
Old BG measurements 1.0 (95% CI: 0.4-2.4)

3.12 (95% CI: 1.4-6.9)
1.5 (95% Cl: 0.4-6.5)

0.4 (95% CI: 0.1-1.6)
0.8 (95% CI: 0.2-4.4)

1.6 (95% CI: 0.2-12.9)
0.8 (95% CI: 0.1-6.0)
2.27(95% CI: 1.1-4.6)
1.1(95%Cl: 0.7-1.9)

a Statistically significantly different from 1.
b Lack of precision of documentation time.
¢ One cell of the contingency Table was 0.

A. Detection of errors

The number of BG documentation errors and the median abso-
lute error were similar in both groups (p > 0.2). 64.7% (PaperG) and
43.4% (CompG) of BG values with documentation error were docu-
mented as too high.

In the CompG group we detected 5% workflow deviations and
18.5% of BG measurements used for dose calculations were older
than 30 min.

B. Effect on insulin dose

88.2% (PaperG) and 86.8% (CompG) of BG measurements with
documentation errors were used to calculate bolus insulin doses
(Table 3). The remaining BG measurements were additional control
measurements not used for dose calculations. Only 11.1% (PaperG)
and 23.9% (CompG) of the BG documentation errors affected the
results of bolus insulin dose calculations. The median absolute
insulin dosing error was 2 IU (PaperG) and 4 IU (CompG).

In the CompG group CGM data was available for 157 out of 231
old BG measurements which were used for bolus calculations. The
use of old BG measurements affected 41 bolus dose calculations
and 10 daily dose adjustments with basal dose calculation. Up to
351U were additionally ordered and up to 30 IU were withheld due
to insulin dose calculations using an old BG measurement.

In the PaperG group 11.1% user calculation errors were detected.
The average absolute user calculation error for bolus doses was
2.2+ 1.41U. User calculation errors having an impact for 24 h on
the patients’ BG levels resulted in an average absolute insulin dos-
ing error of 7.7+12.01U (TDD). Up to 581U (TDD) per day were
additionally ordered due to user calculation errors. Recalculation
of insulin doses in the CompG group using the workflow simulator
confirmed correctness of all insulin doses calculated by GlucoTab®.

C. Clinical impact

In the PaperG group, insulin dosing errors had a statistically
significant influence on hypoglycemia but not on hyperglycemia
(Table 4). In the CompG group, no statistically significant effect
of insulin dosing errors on hypo- or hyperglycemia was observed,
probably due to the rare occurrence of these events. We observed
no statistically significant relationship with hypo- or hyper-
glycemia in the what-if analysis, when using the correct glucose
values from CGM in old BG measurements used for insulin dose
calculations.

In the CompG group we observed a statistically significant rela-
tionship with workflow deviations only for hyperglycemia. The fact
that 18.5% of the BG measurements used for insulin dose calcula-
tions were older than 30 min had no statistically significant effect
on hypo- or hyperglycemia.

8 times more BG measurements (23.0% PaperG vs. 2.9% CompG)
and 3 times more patients (89.2% vs. 28.6%) were influenced by
insulin dosing errors in the PaperG group. Overall, the mean BG
was similar in the PaperG and CompG group, (p=0.763). The rate
of hypoglycemic events was low in both groups (Table 5).

In the PaperG group 89.2% of the patients experienced at least
one insulin dosing error. BG values affected by insulin dosing
errors were more likely in the hypoglycemic range, 5.1% vs 2.8%
(p=0.082).

In the CompG group 57% of the patients experienced insulin
dosing errors or workflow deviations. Insulin dosing errors and
workflow deviations caused a significantly higher number of BG
values in the hyperglycemic range (p=0.017) and led to an increase
of mean BG (p=0.058) and a larger glycemic variability expressed
as CV.

4. Discussion

In the PaperG group we detected 8 times more BG values and 3
times more patients that were influenced by insulin dosing errors
compared to the CompG group. Manual dose calculations were the
major source of insulin dosing errors and had a particularly strong
influence on hypoglycemia in the PaperG group where the OR of
hypoglycemic events following insulin dosing errors was 3.1 (95%
CI: 1.4-6.8). Even though the dosing algorithm was simple, 11.1%
of the calculations performed by HCPs were erroneous. Up to 49.2%
of the TDD was additionally ordered and up to 27.3% of the TDD
was withheld due to previous user calculation error.

The paper-based insulin-dosing algorithm was prone to error
despite a highly standardized environment on a general ward with
users trained in medication order entry and decision support. The
majority of insulin dosing errors could have been easily prevented
by implementing computerized insulin dose calculation. It is likely
that the frequency of insulin dosing errors would have been even
higher if our investigation was performed in standard hospital con-
ditions. The high frequency of user calculation errors suggests that
advanced insulin dosing algorithms should only be used with com-
puterized decision support systems.

The rate of BG documentation errors was comparable in both
groups, and even though these errors rarely affected insulin dose
calculations, errors ranged up to 100 mg/dL in the CompG group.
As a scroll wheel was used to enter BG values, we assume that the
major source of the error were values that were falsely remembered
or temporarily falsely noted during manual transfer. The absence
of instant automated transfer of BG measurements from POCT BG
meters to GlucoTab® presents a potential risk. Together with hos-
pital staff and the manufacturer we will search for a way to provide
BG values in a timely manner because immediate availability and
automated handling of BG values directly at the point of care can
eliminate these errors.

One reason for the larger average absolute insulin dosing error
in the CompG group may be the use of a mobile tablet device for
BG documentation whereas in the PaperG group BG values were
recorded in case report forms as part of the clinical study documen-
tation. In the CompG group routine BG documentation probably
influenced the average absolute BG documentation error which had
an impact on the frequency and amount of insulin dosing errors.
Additionally, a more dynamic adjustment of the TDD was partly
responsible for a higher number of affected insulin dose calcula-
tions in the CompG group.

Only the data provided by GlucoTab® and the workflow sim-
ulator allowed us to take a closer look at clinical workflows and
to investigate the clinical impact of workflow deviations. The OR
of a hyperglycemic event following a workflow deviation was 2.2
(95% CI: 1.1-4.6), probably because the majority of workflow devi-
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Table 5
Ambulatory glucose profile: glucose values in different ranges.
PaperG CompG
All No error Error® All No error Error®
Glucose values (n) 1023 788 235 1318 1208 110
Patients (n) 37 36 33 42 42 24
Mean BG (mg/dL) 1472 1483 1435 149.1 147.9 162.0
Glucose variability SD (mg/dL) 54.2 54.1 54.3 60.7 59.5 724
Coefficient of variation CV (%) 36.8 36.5 37.8 40.7 40.2 447
Glucose values in different ranges
<50 mg/dL (%) 0.3 0.1 0.8 0.2 0.2 0.0
<60 mg/dL (%) 0.8 0.6 13 0.8 038 0.0
<70 mg/dL (%) 33 2.8 5.1 28 29 1.8
70-180 mg/dL (%) 73.0 73.0 73.2 74.0 743 70.0
100-140 mg/dL (%) 33.0 339 302 338 335 373
>180mg/dL (%) 23.7 242 21.7 232 22.8 282
>250 mg/dL (%) 5.2 5.3 47 7.1 6.6 12.7
>400 mg/dL (%) 0.1 0.1 0.0 03 03 0.0

o

Insulin dosing error.
Insulin dosing errors and workflow deviations.
Statistically significant difference (p<0.05)" difference (p<0.1).

<o

ations were missed insulin injections leading to elevated BG levels.
This is in line with other findings in our study, such as the signif-
icantly higher number of values in the hyperglycemic range and
larger glycemic variability due to errors. One measure to prevent
hyperglycemia could be the implementation of a more intrusive
form of reminders. In line with Horsky et al. we doubt the effec-
tiveness of such measures due to alert fatigue and user acceptance
problems. Excessive alarming should be reduced and should be
performed only in the most dangerous conditions [30]. Compared
to Lee et al. GlucoTab® does not introduce blocking interventions
but aims to reduce the need for alerts by continuously optimizing
insulin doses during ordering and administration [31]. In future
versions of GlucoTab® this problem will be addressed by imple-
menting feedback to HCPs about adherence to decision support.

In the PaperG group we observed a markedly lower number of
workflow deviations compared to the CompG group due to the pos-
sibility to append BG data at a later time. Added data were not
detectable and old BG measurements which were used for insulin
dose calculation could not be identified due to the lack of precision
of documentation times in the PaperG group. The actual frequency
of workflow deviations is assumed to be comparable between the
groups due to similar workflows. In our setting and probably also
in general, paper-based documentation is not suitable to analyze
errors of time critical tasks.

No influence of old BG measurements on hypo- or hyper-
glycemia was observed in the CompG group. Also, the what-if
analysis of insulin doses with corrected BG levels from CGM at
the time of dose calculation showed no effects. Hypoglycemic
events and old BG measurements affecting insulin doses were rare
events and the investigations were performed in an already well-
structured ward with a small average delay of tasks. In the CompG
group the use of measurements which were on average 18.8 min
older than the allowed 30 min by the diabetes management system,
did notlead toclinically relevant effects. Workflow deviations in the
CompG group had a far larger influence on hyperglycemia in T2DM
patients than dosing decisions based on old BG measurements.

BG documentation errors identified in this study did not influ-
ence the validity of our already published clinical data [23,24].
Compared to recent studies in computerized hospital diabetes
management, we found a considerably lower rate of hypoglycemia
and at the same time lower or at least equal overall mean BG lev-
els [10,12]. In these previous studies, medication order entry and
clinical decision support was directed at physicians only, although
diabetes management tasks performed by nurses usually outnum-
ber the tasks performed by physicians. Furthermore, the order set

used in these studies did not involve regular follow-up using an
algorithm for daily dose adjustment [20,24]. In our study, nurses
performed 85% of all tasks (bolus insulin calculations and enter-
ing of BG measurements) and 80% of tasks including insulin dose
calculations. This led to a majority of errors affecting insulin dose
calculations performed by nurses when using paper-based medi-
cation management. However, the relative frequency and absolute
amount of insulin dosing errors were higher for physicians. In con-
trast to the current version of GlucoTab® nursing assistants in the
CompG group did not have access to directly input BG values into
the system which may have contributed to BG transmission errors.
It is essential to include all relevant people in medication manage-
ment of diabetes when using a basal-bolus insulin regimen [32].
Access to therapy relevant information should be available to all
HCPs on duty at all times and at multiple locations [33]. Therefore,
we are currently working on a web-frontend to allow access from
a web browser e.g. in a nurses station, to facilitate an improved
integration into hospital workflows.

A poor user interface is the most common cause for technology-
related errors [34]. Therefore, the iterative development process
for GlucoTab® included usability tests in a clinical environment
with diabetes specialists [35]. Paper-based documentation allows
deviations from workflow and therefore high flexibility. The imple-
mentation of computerized systems supporting clinical workflows
is challenging and a large number of special cases have to be con-
sidered without compromising usability. GlucoTab® allows manual
correction of BG levels and insulin doses and belated entry of val-
ues with a time stamp. Impact on the algorithm is automatically
handled and appropriate user interaction is initiated if required.
In addition, active insulin (‘Insulin on Board’) is considered to
prevent unwanted insulin stacking and in case of delayed adminis-
tration, long acting insulin doses are reduced. Our analyses did not
detect any additional sources of error when using GlucoTab® which
showed similar BG control without an increase of hypoglycemic
episodes compared to paper-based best practice studies [21,36,37].

Our analysis is limited by non-randomized study groups, but
selection bias was minimized because the groups were recruited
from all T2DM patients hospitalized at the general ward during
a certain period. Patient population did not differ in any relevant
parameter. Especially in the CompG group, that had no user calcu-
lation errors, the small number of observations limited the analyses
regarding the impact of insulin dosing errors on hypoglycemia. The
comparison of the overall glycemic control between the two groups
may also be influenced by the fact that the distribution of bolus
insulin for meals differed in the studies. However, the difference in
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Summary table
What was already known on the topic?

® 37% of diabetes patients in a recent diabetes inpatient audit
experienced at least one diabetes medication error during
hospitalization.

® Medication order entry systems in combination with clinical
decision support systems (CDSS) reduce medication pre-
scribing errors, but clear evidence that these systems also
reduce adverse drug events is missing.

® Recent guidelines recommend the use of CDSS and medica-
tion order entry systems for diabetes therapy in hospitalized
patients.

What this study added to our knowledge?

* Manual dose calculations are prone to error and increase the
risk of hypoglycemia in diabetic patients. These errors could
be entirely excluded by using computerized systems.

® Using medication order entry with decision support includ-
ing dose calculations reduces the risks considerably,
although data transcription of blood glucose measurements
still may lead to improper insulin doses.

® In our setting and probably also in general, paper-based doc-
umentation is not suitable to analyze errors of time critical
tasks.

distribution of bolus insulin did not influence the investigation of
frequency of errors and clinical impact of BG documentation- and
user-related calculation errors and workflow deviations.

5. Conclusion

We were able to show that the use of a computerized diabetes
management system that includes insulin dosing decision support
prevents insulin dose calculation errors. Manual insulin dose cal-
culations were the major source of error and had a particularly
strong influence on hypoglycemia. A computerized system facil-
itates the use of more complex insulin dosing algorithms with
additional safety features such as ‘Insulin on Board’ without com-
promising usability and introducing additional risk for calculation
errors. The low number of errors in the CompG group, were pre-
dominantly missed insulin injections leading to elevated BG levels.
This highlights the importance of a structured approach to hospital
diabetes management recommended by clinical guidelines [19]. In
our analysis, workflow deviations in the CompG group had a far
larger influence on hyperglycemia in T2DM patients than dosing
decisions based on old BG measurements.

The performance of diabetes management in both groups was
comparable to best practice paper-based clinical studies. Insulin
dosing errors and workflow deviations led to measurable changes
in clinical outcome. Due to the complexity of inpatient diabetes
management, diabetes management systems including decision
support should address nurses as well as physicians in a com-
puterized way. Our analysis shows that such systems reduce
the frequency of errors and therefore decrease the probability of
patients experiencing hypo- and hyperglycemia.
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2.  Summary

The post-hoc analysis of a before and after study reported in this chapter was investigating frequency
and clinical impact of errors in BG documentation and user-related calculation errors as well as
workflow deviations in diabetes management. This analysis is based on two previously published
clinical studies and was comparing a paper-based protocol to a computerized medication management
system combined with clinical workflow and decision support. Using data from several sources
different categories of errors were analyzed in a very detailed way and their effects on medication
dosing decisions and clinical relevance were estimated. The outcome of this analysis show that even in
a highly standardized environment under study conditions, errors in diabetes management occur.
Computerized systems reduce errors, but a potential for errors still remains. The benefit of

computerized diabetes management and ways to further reduce error potential were discussed.

Examples for sources of error were falsely remembered or temporarily falsely noted BG values during
manual transfer from the POCT device to the medication order entry. Here, the immediate availability
and automated handling of BG values from medical devices directly at the point of care has the
potential to reduce errors. In contrast to the current version of GlucoTab’, nursing assistants did not
have access to directly input BG values into the system which may have contributed to BG
transmission errors. It is essential to include all relevant people in medication management of diabetes
using a basal-bolus insulin regimen. Access to therapy relevant information should be available to all
HCPs on duty, at all times and at multiple locations. Currently, a web-frontend is under development
to allow access from a web browser e.g. in a nurses station, to facilitate an improved integration into
hospital workflows. Initially during system integration, problems with system performance were due
to low Wi-Fi signal strength. The system stayed connected to a Wi-Fi access point with a weak signal
even though access points with better signal strength were available. Therefore, a routine was
developed which continuously measures signal strength and automatically switches to the strongest

signal.

Manual insulin dose calculations were the major source of error in the paper-based group and had a
particularly strong influence on hypoglycemia. User calculation errors were entirely excluded by using
GlucoTab®. Computerized systems furthermore facilitate the safe use of more complex algorithms with
additional safety features, without compromising usability or inducing additional sources of error. In

the computerized group, missed or delayed tasks had a significant effect on hyperglycemia, whereas
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the use of BG measurements older than 30 minutes for insulin dose calculation was clinically less
relevant. Only data provided by GlucoTab® enabled detailed investigations of clinical workflows, and
to investigate the clinical impact of workflow deviations. Unfortunately, a lack of precision of
documentation times limited analysis of workflow deviations in the paper-based group. In our setting
and probably also in general, paper-based documentation is not suitable to analyze errors of time-

critical tasks.

Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome. Due to
the complexity of inpatient diabetes management, diabetes management systems including decision
support should aid nurses as well as physicians in a computerized way. Such systems reduce the
frequency of errors and therefore decrease the probability of patients experiencing hypo- and

hyperglycemia.
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CHAPTER VII

Personalization of the GlucoTab® algorithm
- Preliminary considerations

This chapter presents the book chapter “Towards Personalization of Diabetes Therapy Using
Computerized Decision Support and Machine Learning: Some Open Problems and

Challenges” by Donsa et al. 2015 [59].

95



1. Towards Personalization of Diabetes Therapy Using Computerized
Decision Support and Machine Learning: Some Open Problems and

Challenges [Donsa et al. 2015]
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Abstract. Diabetes mellitus (DM) is a growing global disease which highly
affects the individual patient and represents a global health burden with financial
impact on national health care systems. Type 1 DM can only be treated with
insulin, whereas for patients with type 2 DM a wide range of therapeutic options
are available. These options include lifestyle changes such as change of diet and
an increase of physical activity, but also administration of oral or injectable anti-
diabetic drugs. The diabetes therapy, especially with insulin, is complex. Therapy
decisions include various medical and life-style related information. Computer-
ized decision support systems (CDSS) aim to improve the treatment process in
patient’s self-management but also in institutional care. Therefore, the personal-
ization of the patient’s diabetes treatment is possible at different levels. It can
provide medication support and therapy control, which aid to correctly estimate
the personal medication requirements and improves the adherence to therapy
goals. It also supports long-term disease management, aiming to develop a
personalization of care according to the patient’s risk stratification. Personaliza-
tion of therapy is also facilitated by using new therapy aids like food and activity
recognition systems, lifestyle support tools and pattern recognition for insulin
therapy optimization. In this work we cover relevant parameters to personalize
diabetes therapy, how CDSS can support the therapy process and the role of
machine learning in this context. Moreover, we identify open problems and chal-
lenges for the personalization of diabetes therapy with focus on decision support
systems and machine learning technology.

Keywords: Personalization - Machine learning - Decision support - Diabetes
mellitus
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1 Introduction

Diabetes mellitus (DM) is a growing global disease which highly affects the individual
patient but it also represents a global health burden with financial impact on national
health care systems. In 2013 approximately 382 million people were suffering from
diabetes. It is estimated that this number will have reached 592 million in 2035. In
addition, approximately 175 million diabetes patients are estimated to remain undiag-
nosed. In the U.S., the total estimated costs for diabetes were $174 billion for the year
2007 [1-3].

DM is a chronic illness of the metabolic system leading to high blood glucose levels.
DM can be classified into two main clinical categories. Type 1 diabetes mellitus
(T1DM) is caused by the loss of f-cells which are responsible for the storage and release
of insulin and it mainly occurs in children, adolescents and young adults. In contrast,
type 2 diabetes mellitus (T2DM) is determined by insulin resistance and develops due
to a progressive insulin secretory defect, mostly in elderly people with overweight or
obesity [4].

In both conditions continuous medical care is required to minimize the risk of acute
(e.g. ketoacidosis) and long-term complications (e.g. diabetic foot syndrome, nephrop-
athy, retinopathy, cardiovascular diseases or stroke) [5]. TIDM can only be treated with
insulin, whereas a wide range of therapeutic options are available for patients with T2DM
[4]. Adhering to therapy in chronic diseases like T2DM requires active participation and
is often very burdensome for patients. Furthermore the effects of non-adherence are not
immediately evident. Long-term complications like a diabetic foot syndrome or retin-
opathy take years to develop [6]. Diabetes therapy is complex and therapy decisions
comprise various medical and life-style related information.

The availability of smart health technology [7] like continuous glucose monitoring
(CGM) [8], physical activity detection [9], location and movement data, image recog-
nition for planned meals [10], data from computerized diabetes diaries offer large data
sets which can be used for therapy initialization or the further improvement of the
therapy of an individual person suffering from diabetes. The large amount of generated
data shows the importance of knowledge discovery in data handling/processing for
therapy personalization [11]. Computerized decision support systems (CDSS) aim to
improve the treatment process in the hospital [12] as well as at home [13].

In this work we cope with the potential of CDSS in the personalization of diabetes
therapy to support the therapy process in different health care sectors and the role of
machine learning. Moreover, open problems and challenges for the personalization of
the diabetes therapy focusing on CDSS and machine learning technology are identified.

2 Glossary and Key Terms

Clinical Computerized Decision Support systems (CCDSS): ‘Clinical Decision Support
systems link health observations with health knowledge to influence health choices by
clinicians for improved health care’ - this definition has been proposed by Robert
Hayward of the Centre for Health Evidence.
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Computerized Physician Order Entry (CPOE) is a specialized sub-category of hospital
electronic patient records for the management of physician orders. Such systems in
general can offer reminders or prompts or even go further and perform calculations and
offer decision support [14].

Diabetes Mellitus (DM) is a group of metabolic diseases in which high blood sugar
levels over a prolonged period occur. DM is classified into two main clinical categories.
Type 1 diabetes mellitus (T1DM) results from the body’s failure to produce enough
insulin. This form was previously referred to as “insulin-dependent diabetes mellitus”
(IDDM) or “juvenile diabetes”. The source is unknown. In contrast, type 2 diabetes
mellitus (T2DM) develops due to a progressive insulin secretory defect in mostly
elderly people with overweight or obesity [4, 6].

Diabetes Therapy: The success of a diabetes therapy depends on various factors. Regular
measurement of the blood glucose level is the basal requirement for patients suffering
from diabetes. The amount of necessary measurements depends on the intensification
of the therapy and the progress of the diabetes disease. In contrast to type 1 DM that can
only be treated with insulin, a wide range of therapeutic options are available for patients
with type 2 DM. These are in the best case lifestyle change with change of diet and
increased physical activity, but therapy options also include oral or injectable antidia-
betic drugs and insulin administration. Furthermore insulin therapy itself opens a wide
variety of different treatment options. The options range from an once-daily injection
of a basal insulin dose (least intensive insulin therapy) to basal-bolus-insulin therapy,
where a basal insulin dose and several bolus insulin doses are administered every day
(intensified insulin therapy).

Glycated Hemoglobin (HbAlc) is a laboratory parameter which serves as a biomarker
for the average blood glucose levels in patients over the previous 2 to 3 months prior to
the measurement. In specific situations it can also be used as a measure of compliance
with diabetes therapy. In diabetes mellitus, higher amounts of glycated hemoglobin have
been associated with increased risk for microvascular complications (nephropathy,
retinopathy) and to a lesser extend with macrovascular complications [6].

Glycemic Variability (GV) is the fluctuation of the blood glucose values and it is used
as an indicator for the quality of diabetes management, as a high GV leads to increased
risk of hypo- and hyperglycemic episodes.

Machine Learning (ML) is an algorithm-based and data-driven technique to automati-
cally improve computer programs by learning from experience. Training of machine
learning is performed by the estimation of unknown parameters of a model by using
training sets. Literature separates between three main ML groups: supervised, unsuper-
vised and reinforced learning.
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3 Personalization of Diabetes Therapy

Individualized glycemic management of diabetes patients using insulin or oral antidia-
betics is only possible due to recent advances in diabetes therapy, which increased the
therapy safety and efficacy. The development of new insulin analogs led to a more
predictable behavior of the drugs’ blood glucose lowering effect [15, 16]. The first type
of oral antidiabetic agents were developed in France in the 1940s [6]. Since then a
multitude of new oral antidiabetic agents has been developed using different pharma-
cological and physiological strategies. Furthermore a paradigm shift happened in
diabetes therapy over the past decades which led to patient empowerment and therapy
personalization due to improved patient education.

The choice of therapy and potential personalization especially depends on the DM
type. TIDM patients exclusively get insulin treatment. They either receive insulin via
pump or by multiple daily injections. Here, personalization is possible by fine-tuning
the parameters which drive the algorithms for the patient’s individual insulin dose
calculation [17]. Patients with a high risk of developing T2DM (pre-diabetes) are treated
by lifestyle changes (diet change and increase of physical activity). T2DM patients have
a broader array of therapeutic choices. Early onset of T2DM is treated by lifestyle
changes or oral antidiabetic agents. If an intensification of the diabetes therapy is neces-
sary different strategies involving insulin are treatment options. Here, personalization
is possible by setting different treatment goals for the different stages of intensification
(stepwise approach) of the insulin therapy [4, 16]. Less intensive insulin therapies
comprise fixed insulin doses once a day, either adjusted by the physician at the next
routine appointment or by the patient according to a schema. More intensive insulin
regimens require multiple insulin doses per day and the consideration of carbohydrate
intake and correction insulin for blood glucose levels outside of a target range. Here,
personalization is also possible by fine-tuning the parameters which drive the algorithms
for the patient’s insulin dose. These algorithms are usually less complex than the ones
used for TIDM and consequently they allow fewer options for personalization.

Recent guidelines recommend individualized diabetes therapy goals for people with
DM [4]. In the current position statement for the management of T2DM the American
Diabetes Association (ADA) and the European Association for the Study of Diabetes
(EASD) placed great emphasis on patient-centered and personalized diabetes care [18].
Personalization of glycemic control targets is based on clinical parameters, including
age, duration of DM, prevailing risk of hypoglycemia, presence of DM associated
complications or co-morbidities and eco-system components [19]. In specific situations,
the patient’s glycated hemoglobin (HbAlc) serves as a measure of adherence with
diabetes therapy. Itis a biomarker for average blood glucose levels over the 2 to 3 months
prior to the measurement. In diabetes therapy, certain blood glucose target values and
HbA 1c targets are defined for the patient’s therapy. These targets are also determined
by the choice of the patient’s therapy option. Insulin for example is very effective in
lowering HbA 1¢ but insulin administration also increases the risk of hypoglycemia [16].

Individual therapy goals are set to avoid co-morbidities caused by poor glycemic
control. To avoid the deterioration of a retinopathy, a better glucose control which means
achievement of lower blood glucose levels and HbA 1c targets is recommended [20, 21].
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Two other important factors in personalizing diabetes therapy are age and diabetes
duration. Consequently, lower targets should be achieved in younger patients to reduce
the long-term risk of DM associated complications. In contrast, therapy should aim for
safer targets and achieving them more slowly in older patients [22].

The setting in which the therapy is performed also strongly influences the therapy
targets. Patients in a nursing home setting have typically less stringent targets to
avoid hypoglycemia and less frequent blood glucose monitoring compared to
patients in intensive care units [23]. Even though the exact therapy goals for patients
in intensive care units are discussed controversially, intensive insulin therapy to
maintain blood glucose at lower targets reduces morbidity and mortality in critically
ill patients [24, 25].

In this article we focus on personalization of diabetes treatment rather than on all
strategies of Personalized Medicine for Diabetes (PMFD), because widespread adoption
of this global approach will only occur when the identification of risk factors through
genotype or through biomarkers is accompanied by an effective therapy [26]. PMFD
uses information about the genetic makeup of a person with diabetes to customize strat-
egies for preventing, detecting, treating and monitoring their diabetes.

The vast amount of parameters for personalization makes diabetes management
increasingly complex and diabetes complications remain a great burden to individual
patients and the society [27]. Therefore it is hypothesized that the quality of these
medical decisions can be enhanced by personalized decision support tools that summa-
rize patient clinical characteristics, treatment preferences and ancillary data at the point
of care [28].

4 Towards Personalization Using Decision Support Systems

Diabetes therapy takes place in different health care sectors. Every sector has different
goals for the patients’ diabetes therapy, as mentioned in the previous chapter. This
results in specialized solutions for diabetes management available on the market, each
specifically targeting a particular sector. Diabetes decision support systems are used in
the following sectors:

1. Patient self-management

a. At home
b. Primary care
C. Outpatient care

2. Institutional care

a. Nursing homes
b. Hospital

1. Inpatient care
1. Intensive care
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Decision support aiding health care professionals can primarily be found in insti-
tutional care, whereas decision support targeting decisions performed by patients can
mostly be found in the patient self-management sector. DM patients outside of insti-
tutional care settings are on average younger, more independent and the focus of the
therapy lies predominately on the diabetes disease. Patients in institutional care are
primarily not admitted because of having DM, but for the complications associated
with having DM (diabetic foot syndrome, nephropathy, retinopathy, cardiovascular
diseases or stroke). DM is mostly regarded as concomitant disease and should therefore
cause the least possible additional effort. Strategies for personalization of the diabetes
therapy are therefore very different in the health care sectors. The following chapters
summarize decision support systems and tools which facilitate a personalization of the
diabetes therapy.

4.1 Diabetes Decision Support Applications for Self-Management

Medication support and therapy control: Self-management of the patient’s insulin
therapy requires the frequent measurement of blood glucose levels and the adjustment
of the patient’s medication. In insulin therapy, the calculation of the required insulin
dose involves the use of more or less complicated mathematical formulas. Therefore
mathematical aides, integrated into insulin pumps and glucose meters, have been devel-
oped which model evidence based protocols for insulin dosage [29], so called Automated
Bolus Calculators (ABC). A recent review summarized the current state of the art on
‘Glucose meters with built-in automated bolus calculator’ [30]. The authors concluded
that ABC incorporated in glucose meters can be regarded as bringing real value to insulin
treated patients with diabetes. Software apps are not recommended up to now as they
generally are of poor quality [31]. ABC allow very detailed personalization of the insulin
dosing decision support. Aside from blood glucose levels, ABC also consider carbohy-
drate intake and physical activity or health events to estimate insulin requirements.
‘Automated’ bolus calculation means that no manual bolus calculation is necessary. The
identification of the correct parameters for personalization of the bolus calculation is a
very individual and time consuming process for every user [29].

In the context of insulin-based diabetes therapy, a controller is an algorithm that
controls the blood glucose values by titrating the amount of insulin. ABC are either rule
or model based open-loop diabetes control methods. Independent of the used diabetes
control method, it is categorized open-loop system, when a patient has the final power
of decision [32].

Artificial pancreas systems are used for automated insulin injections. This type of
diabetes control is characterized as closed-loop. Using these systems, model-predictive
control algorithms are applied which use predictions of future glucose levels to estimate
insulin requirement in insulin-pump therapy [33]. In these applications the input for the
prediction models is continuous glucose monitoring data of T1DM patients.

Models of glucose dynamics for predictive purposes can mainly be divided into two
categories; physiologically-oriented models and data-driven methods. The latter
approach can furthermore be divided into time series analysis, using auto regressive
models and machine learning methodologies [34]. Physiological models for blood
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glucose estimations are very accurate for short time predictions. They achieve a predictive
capacity with a root mean square error (RMSE) of 3,6 mg/dl for a prediction horizon of
15 min [35]. Main advantages of these models compared to data-driven models are that
there is no need to train these models and that their output is physiologically explainable.
The main disadvantage is that if the difference is not explainable with the input variables
no personalization of the algorithm is possible. Data-driven glucose prediction is a
relatively new methodology compared to physiological glucose prediction. Similar to the
development of the personal computer these technologies advanced in the late 1990s [36].
Main advantages of these models are that they are adaptive (self-learning) and patient
specific without the need for developing a physiological model. Main disadvantages are
that the system depends on the training data quality (garbage in and garbage out problem)
and that the output of the system is not physiologically explainable.

For artificial pancreas systems relatively short prediction horizons and therefore a
comprehensive monitoring using CGM are needed to enable closed-loop diabetes
control [37]. But also patients without CGM which are not so intensively monitored
could benefit from the prediction of future blood glucose levels. In [38—40] the authors
devised an engine that predicts the expected blood glucose level at the next meal and
the pending risks of hypoglycemia. They performed a study for safety and efficacy of
using predicted data in dosing decision support for routine patient care. The prediction
engine was used in patients who were referred to begin basal-bolus-insulin therapy.
HbA 1c levels fell significantly from 9.7 + 1.7 % (baseline) to 7.9 + 1.2 % (end of study),
and hypoglycemia dropped fourfold.

Decision support tools for physicians: The patient’s diabetes therapy is performed in
close collaboration with primary care physicians and/or outpatient clinics. In [41] a
computer application which helps primary care physicians in diabetes therapy decision
making was developed and validated in a cluster-randomized clinical trial. The appli-
cation was used to make decisions when starting, continuing or changing insulin and its
dosage. The HbAlc in the intervention group was significantly reduced by the use of
the decision support application (-0.69 %; p = 0.001). Electronic decision support tools
for primary care physicians are summarizing information about patients’ diabetes state,
they provide reminders to required diabetes care and a support to patient education [42].
In [66] a CDSS was designed to help outpatient clinicians manage glycaemia in patients
with T2DM. A rule-based expert system generates recommendations for changes in
therapy and accompanying explanations. As mentioned earlier, T2DM is in contrast to
T1DM a disease where a variety of different treatment options exist. Therefore, the
system considers 9 classes of medications and 69 regimens with combinations of up to
4 therapeutic agents. The program is integrated in a web-based system for diabetes case
management and supports a method for uploading data from glucose meters via tele-
phone network. The system provides a report to the clinician regarding the overall
quality of glycemic control and identifies problems, e.g., hyperglycemia, hypoglycemia,
glycemic variability, and insufficient data.

Therapy aids and lifestyle support: To aid diabetes patients in the difficult task of esti-
mating the correct personalized insulin requirement and to meaningful perform person-
alized control of therapy several tools are available.

-103 -



244 K. Donsa et al.

Carbohydrate estimation: The success of the patient’s insulin therapy is significantly
dependent on the correct estimation of how nutrition influences insulin requirements
[43]. This relationship is used in insulin therapy and it is called the Carbohydrate
Factor. The factor is patient specific and may vary over the time of the day. Once accu-
rate patient specific factors have been developed for different times of the day, correct
estimation of the number of carbohydrates in a meal represents another obstacle in
insulin therapy. Many patients might not estimate carbohydrates accurately and
commonly either over or underestimate carbohydrates in a given meal [44, 45]. Another
source of inaccuracy in estimating the patient’s insulin requirement for meals based on
carbohydrate counting is the composition of foods. Not only the number of carbohy-
drates influences the physiological glycemic response but also how the meal is absorbed.
For example rich-in-fat meals need more time to be absorbed. Therefore these meals
lead to prolonged hyperglycemia or the risk of hypoglycemia, if the insulin dose to cover
the expected blood glucose rise for these meals is administered at once [46]. To approach
the these problems, bolus calculators with nutrition data base software integrated into
an insulin pump have been developed which are able to control the type of bolus [47].
In rich-in-fat meals the bolus is administered using a wave profile to administer insulin
over a longer period of time compared to a single bolus.

For easier estimation of the meals’ carbohydrate content, it has been proposed to
implement nutrition data bases in food recognition systems. These systems use machine
learning algorithms to categorize images of food [10, 48]. Therefore it is possible to
identify the food by taking a picture of the meal using a smartphone. The systems are
now able to detect food with an accuracy of up to 81 %. The final systems for diabetes
therapy should include food segmentation such that images with multiple food types can
also be addressed. Furthermore, to be eligible for diabetes therapy, the food volume
should be estimated using multi-view reconstruction and the carbohydrate content
should be calculated based on the computer vision results and nutrition data bases.

Activity recognition: The patient’s insulin requirement and therefore the blood glucose
levels are strongly influenced by the amount of physical activity and the health status.
In diabetes therapy, establishing health benefits from physical activity is primarily done
on the basis of self-reported data; typically surveys asking patients to recall what phys-
ical activity they performed according to their diabetes treatment plan. This is usually
performed in T2DM patients. In TIDM patients using bolus calculators, physical
activity often plays a major role in insulin calculation. The extent of change rate of the
insulin dose depends on the intensity and duration of physical activity and varies among
the patients [49]. Currently, this estimation process is very imprecise due to inaccurate
reporting of physical activities. One solution to improve the accuracy of reporting could
be automated activity recognition. Such systems consist of [50]:

(1) A sensing module that continuously gathers information about activities using
accelerometers, microphones, light sensors, heart rate sensors, etc.

(2) A feature processing and selection module that processes the raw sensor data into
features which categorize by activities.

(3) A classification module that uses the features identified in the previous data proces-
sion step to infer which activity has been performed.
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Methods to predict activity-related energy expenditure have advanced from linear
regression to innovative algorithms capable of determining physical activity types and
the related metabolic costs. These novel techniques can measure the engagement in
specific activity types [51]. Integrated into T2DM therapy, the therapy adherence to
physical activity lifestyle interventions could be monitored. In T1DM, these new tech-
niques could help to estimate the possibly required insulin reduction prior to sports using
earlier recordings of similar intensive activities.

Activity recognition can also be implemented in a smart home-based health platform
for behavior monitoring. In order to recognize activities being performed by smart home
residents, machine learning algorithms could be used to classify sensor data streams.
The smart home platform could be used to monitor the activity, diet, and exercise adher-
ence of diabetes patients and evaluate the effects of alternative medicine and behavior
regimens [52].

Lifestyle support/promotion: In TIDM patients, the loss of the insulin-producing beta
cells of the islets of Langerhans in the pancreas results in the body to fail to produce
insulin. T2DM is characterized by insulin resistance which, as the disease progresses,
may be combined with a relatively reduced insulin secretion [6]. Therefore, the patho-
genesis of T2DM, as a not rapidly progressing disease, can be prolonged by lifestyle
interventions. Lifestyle intervention options are diets and/or increase of physical activity
used to effectively manage patients in the pre-diabetes phase. Nevertheless, lifestyle
management remains challenging for both, patients and clinicians. To track lifestyle
events a variety of web- or mobile phone-based diabetes diaries are available. Petrella
et al. developed a lifestyle support system which facilitates personalized, data-driven
recommendations for people living with pre-diabetic and T2DM conditions [53]. The
system suggests subtle lifestyle changes to improve overall blood glucose levels. To
improve and support therapy adherence, a mobile phone app with lifestyle diary for
coaching of the patient based on multiple psychological theories for behavior change
has been recently developed. The user automatically receives generated messages with
persuasive and personalized content [54]. Such systems can be used to enforce patient’s
therapy adherence and to help the patient to better understand their diabetes.

Pattern recognition for optimization of insulin therapy: Diabetes therapy leads to an
accumulation of data. Sources are glucose data from blood glucose meters or CGM
devices, records of diabetes diaries and therapy plans in more or less structured forms
and data from different kinds of therapy aids like bolus calculators. The sources of data
are often complex and weakly structured resulting in massive amounts of unstructured
information. The data interpretation by the physicians and the patients is often performed
without or with only weak decision aids. Currently few products enable data analysis
using state of the art technologies which could be found for example in predictive
analytics.

In a state of the art article targeting emerging applications for intelligent diabetes
management, machine learning classification of blood glucose plots was highlighted
[55]. The authors cope with the identification of excessive glycemic variability (EGV).
The focus of diabetes therapy is to mimic physiological blood glucose profiles as close
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as possible. This means to avoid too high and too low blood glucose levels. But, to
some extent high and low blood glucose levels are physiologically normal e.g. blood
glucose rise after meals. Both upward (postprandial) and downward (interprandial)
acute fluctuations of glucose around a mean value activate oxidative stress. As a conse-
quence, it is strongly suggested that a global antidiabetic strategy should be aimed to
reduce HbAlc, pre- and post-prandial glucose, as well as glucose variability to a
minimum [56]. To the best of our knowledge no guideline-defined metric for classifying
glycemic variability exists [57], nor a decision support system which aids in the detec-
tion of EGV [58]. Wiley et al. describe an automatic approach to detect EGV from
CGM data [59]. Therefore, two physicians independently built a knowledge data base
from CGM data which was used for the training of machine learning algorithms for
EGYV detection. The best performing prediction model achieved an accuracy of 93.8 %.
The results of EGV predictions could inform clinical disease management, if a patient
used CGM for the week preceding a routine appointment and therefore propose a
personalization of the diabetes therapy approach.

Pattern recognition can be used to meaningfully identify blood glucose patterns,
highlighting potential opportunities for improving glycemic control in patients who self-
adjust their insulin [60]. Skrgvseth et al. conducted a study to identify how self-gathered
data can help users to improve their blood glucose management [61]. The participants
were equipped with a mobile phone application, recording blood glucose, insulin, dietary
information, physical activity and disease symptoms in a minimally intrusive way. Data-
driven feedback to the user in form of graphic representation of results from scale-space
trends and pattern recognition methods may help patients to gain deeper insight into
their disease. Blood glucose pattern analysis can also be found in ABC.

Long-term disease management: During the last decades, research in medicine has
given increasing attention to the study of risk factors for diabetes complications. A
practical application of risk factor studies is the development of risk assessment models
(UKPDS model [62], Framingham model [63]). These models are able to provide a
prediction, based on patient characteristics, of the patient’s risk to develop diabetes
associated complications [64].

In care management, which is facilitated from a payer perspective by health insur-
ance companies, patients receive a personalization of care according to risk stratification.
Stratification focuses on whether patients are ill enough to require ongoing support from
a care manager. Having less serious chronic conditions warrant more intensive inter-
ventions to prevent them from worsening. Fairly healthy patients just need preventive
care and education [65].

Risk preventive modelling enables the prognosis of future high-risk and/or high-cost
patients, in patients having a chronic disease like T2DM. The models use a combination
of factors, such as demographics, clinical parameters, lifestyle factors, family history of
diabetes and metabolic traits [66]. Several machine learning techniques have been
applied in clinical settings to predict disease progression and have shown higher accu-
racy for diagnosis than conventional methods [67]. Risk models have been integrated
in guidelines and are increasingly advocated as tools to assist risk stratification and guide
prevention and treatments decisions in diabetes care [68, 69]. It is hypothesized that with
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the prior knowledge of disease risk, the incidence of T2DM could be reduced consid-
erably by implementing preventive measures in high-risk patients [4].

4.2 Diabetes Decision Support Applications for Institutional Care

Systems used in hospitals for management of diabetes care are very generic and they
are designed to operate safely for the majority of patients. Currently personalization
for patient characteristics plays a secondary role due to two factors: (1) A short length
of stay does not allow the empiric development of patient specific factors which are
crucial for the personalization of diabetes therapy. (2) Rigid hospital workflows and
excessive workload of clinical personnel often prohibits the implementation of indi-
vidualizations in diabetes therapies. Nonetheless, aside from these restrictions person-
alization is possible to some extent. Clinical computerized decisions support systems
(CCDSS) often model evidence based guidelines which facilitate personalization of
the estimation of medication requirements according to laboratory and demographic
parameters [70-73].

Medication and workflow support: Clinical physician order entries (CPOE) are a speci-
alized sub-category of hospital electronic patient records for the management of physi-
cian orders. They can be configured to support glucose management besides many other
things. Such systems generally can offer reminders or prompts or go even further and
perform calculations and offer decision support [14].

Arecentreview dealing with CCDSS’ impact on healthcare practitioner performance
and patient outcomes displayed significant evidence that CCDSS can positively impact
healthcare providers’ performance with drug ordering and preventive care reminders
[74]. Furthermore, a recent diabetes guideline emphasizes the use of CCDSS and CPOE
for insulin dosing [75]. This is a particularly important field of decision support because
the correct handling of insulin in diabetes patients is prone to error. In a recent audit
which investigated the quality of inpatient diabetes care, 36.7 % of the patients experi-
enced at least one diabetes medication error during hospital stay [76]. A current review
estimated that an adoption of CPOE systems in hospitals alone without decision support
function leads to a 12.5 % reduction in medication errors [77]. A Cochrane Review
assessed whether computerized advice on drug dosage has beneficial effects on patient
outcomes compared with routine care. The review led to the conclusion that computer-
ized advice on drug dosage (oral anticoagulants and insulin) results in a physiological
parameter more often in the desired range. Furthermore, it tends to reduce the length of
hospital stay compared to the length of hospital stay in routine care. Furthermore
comparable or better cost-effectiveness ratios were achieved with computerized advice
on drug dosage [78]. Diabetes medication CCDSS in the hospital range from adminis-
tering and managing oral antidiabetic agents in non-critically ill patients to adjusting
insulin infusion in critically ill patients. Insulin infusion in intensive care units is
performed according to paper based nurse-directed insulin nomograms that adjust rates
of insulin infusion according to the current rate of infusion and the blood glucose reading.
These nomograms usually do not take patient-specific blood glucose trends into consid-
eration and patients may oscillate between hypoglycemia and hyperglycemia [79].
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By using a computerized insulin infusion algorithm in a CCDSS which also takes
into account the patient’s sensitivity to insulin, this system was used to safely achieve
near normoglycemia in hospital inpatients. Additionally, there was lower incidence of
hypoglycemia compared to initial studies [80].

The success that a CCDSS or CPOE is accepted by clinical staff greatly depends on
the implementation into existing workflows [81, 82]. Automatic provision of decision
support should be performed as part of the clinicians’ workflow. Overall, the use of
CCDSS and CPOE systems lead to a standardization of processes in clinical workflows.

Recently, a survey to map the current state of implementation of CPOE and CCDSS
in Switzerland was performed. According to this survey, the introduction of CPOE in
Swiss healthcare facilities is increasing. The types of CCDSS currently in service usually
include only basic decision support related to drug, the co-medication or the setting, and
only scarcely taking into account patient characteristics [83]. Future decision support
tools must be designed to account for both clinical and patient characteristics [28].

S Decision Support Using Machine Learning Technology

5.1 A Glimpse into Machine Learning Methods for Health Care

Advances in medical signal, image and text acquisition led to an extensive improvement
of available patient-related medical data. These amounts of data make it difficult for
health care professionals or patients to provide a timely treatment decision [84]. CDSS
support the medical decision making process in diagnostics, therapeutics and prognos-
tics in main medical disciplines [74]. Typical CDSS applications can be found for
example in radiology, emergency medicine and intensive care, cardiovascular medicine,
internal medicine or oncology [85-91].

In CDSS machine learning is an important underlying technology in many applica-
tions. For example radiology-based CDSS usually apply pattern recognition techniques
based on machine learning for detection of medical conspicuities [92-94]. ECG signal
processing used in cardiology is another promising machine learning approach in
medical decision support applications [88, 95].

Machine learning is concerned with the question how computer programs automat-
ically improve with experience [96]. Witten et al. [97] proposed “Things learn when
they change their behavior in a way that makes them perform better in future.” Practi-
cally, training of machine learning algorithms is performed by estimation of unknown
parameters using training sets.

Duda et al. [98] separates between supervised, unsupervised and reinforced
learning. In supervised learning (classification) category labels are manually assigned
to each pattern by human experts. The set is divided into a training and a test set. The
algorithm learns from the training set, which means that discriminating features of the
patterns are identified. The test set is used for evaluation of classification quality. High
accuracy means, that the features maximize the difference between patterns of different
categories and underline the similarity of patterns in the same category. Typical super-
vised machine learning models are for example Support Vector Machines (SVM), k-
Nearest Neighbors (K-NN), Decision Trees, Naive Bayes, Random Forests and Neural
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Networks. Unsupervised learning (clustering) is important if no human expert could or
should label patterns. Unsupervised learning models build clusters based on the features
of patterns. K-means, hierarchical clustering or expecting-maximization are typical
algorithms to solve clustering problems. Reinforced learning follows a feedback mech-
anism. A feedback is given if a category is correct or incorrect. Based on this feedback,
the algorithm should ‘take new paths’ and consequently improves with experience.

In the following section, typical applications of machine learning in the field of
diabetes therapy are presented.

5.2 Application of Machine Learning for Diabetes Therapy

Diabetes therapy depends on medical, demographic and lifestyle-related parameters.
These parameters include diabetes type, age, weight, diabetes duration, co-morbidities,
blood glucose, physical activity and diet, to name a few examples. Latest innovations
in sensor technology (CGM, clothes integrated movement sensors, smartphone-based
image recognition) together with improved documentation effort of medical history in
electronic patient records, diabetes-related patient diaries or telemonitoring systems
provide large and valuable datasets for therapy-related decision making. Machine
learning is regarded to be a helpful technology to support diabetes therapy. In the
following, selected fields of machine learning in diabetes therapy are described.

Data-driven blood glucose prediction: No information about the physiology of diabetes
is necessary in the data-driven blood glucose prediction. This is in contrast to systems
which simulate the human physiology of the glucose-insulin regulatory systems. Data-
driven techniques mainly rely on collected data and exploit hidden information in the
data to predict future blood glucose levels [99].

With the availability and improved accuracy of tight glucose monitoring using CGM
devices, research postulated the question if recent and future blood glucose values can
be predicted from glucose history [100]. If this would be possible, hypoglycemic events
could be detected or short and long term medication could be titrated.

The data-driven prediction of blood glucose can be considered as nonlinear regres-
sion problem between medication, food intake, exercise, stress etc. as input parameters
and blood glucose value as output parameter [34]. Besides regression models [101,
102] and time series analysis [103], especially machine learning methods like artificial
neural networks (ANN) [102, 104—107], support vector machines [108] and Gaussian
models [105] have proven to be successful. Daskalaki et al. [109] presented a prom-
ising ANN model with a RMSE of only 4.0 mg/dl for a prediction horizon of 45 min
for adults with TIDM. 94 % of the predictions were clinically accurate in the hypo-
glycemic range. Instead of conducting evaluation with real patients in a clinical study
already measured data from patients were used for training and evaluation of the
models. Thus, real patient data is needed for a final conclusion on the very good
performance of the model. Pappada et al. [110] reported a RMSE of 43.9 mg/dl in his
study with ten TIDM patients using a neural network model. The model predicted
88.6 % of normal glucose concentrations (>70 and <180 mg/dl), 72.6 % of hypergly-
cemia (>=180 mg/dl), but only 2.1 % of hypoglycemia (<=70 mg/dl) correctly within
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a prediction horizon of 75 min. Data-driven prediction approaches often lack on esti-
mation of hypoglycemic and/or hyperglycemic events due to limited data on low and
high blood glucose values [110]. Another problem of blood glucose prediction is the
decreasing performance with increasing prediction horizon. Sufficient prediction is
only possible in a 5 to 75 min. range [34, 109].

Data-driven prediction methods depend on the frequency and accuracy of available
data. CGM measurements are not state-of-the-art in diabetes therapy due to the lack of
accuracy and the missing reimbursement by health insurance companies [111].

Hypo-/Hyperglycemia detection: In contrast to the regression problem of blood glucose
prediction, the detection of hypo- or hyperglycemic events can be treated as a typical
classification problem. For a given set of input parameters, the model should detect if a
hypo- or hyperglycemic event will take place. The prediction can be reduced to a binary
classification problem which is easier to achieve than a continuous prediction of blood
glucose values.

Sudharsan et al. [112] showed that the detection of hypo- and hyperglycemic events
for patients with T2DM is achievable with high accuracy, even if only sparse blood
glucose values based on self-monitored blood glucose (SMBG) readings once or twice
a day are available. They trained the model with data from approximately 10 weeks.
The prediction, if a hypoglycemic event will occur within the following 24 hours was
achieved with a sensitivity of 92 % and a specificity of 70 %. By including medication
information of the past days the specificity was improved to 90 %, although the predic-
tion was narrowed to the hour of hypoglycemia.

Machine learning can also be used to improve the accuracy of CGM systems. Espe-
cially in the hypoglycemic range incorrect measurements can occur. Bondia et al. [113]
successfully used Gaussian SVM to detect incorrect CGM blood glucose values with a
specificity of approximately 93 % and sensitivity with 75 %.

Glycemic variability detection: Glycemic variability (GV), the fluctuation of blood
glucose values, is an indicator for the quality of diabetes management due to increased
risk of hypo- and hyperglycemic episodes [114]. In order to rate the quality of GV,
numerous metrics have been defined in the last decades. Rodbard [58] rated metrics
according to their importance and concluded that many metrics are overlapping. He
suggested the following five metrics as the most relevant:

(1) SDy (total variability in data set), (2a) SDy, (the average of the SDs within each
day), or (2b) MAGE (average amplitude of upstrokes or downstrokes with magnitude
greater than 1 SD), as a measure of within-day variability, and (3a) SDy, yp.mm (average
of all SDs for all times of day), or (3b) MODD (mean difference between glucose values
obtained at the same time of day on two consecutive days under standardized conditions)
as a measure of between-day variability.

Based on these metrics automated classification tasks can support healthcare profes-
sionals to identify patients at risk and to provide therapy suggestions [58]. Detection of
GV is usually based on CGM signals which provide a comprehensive dataset of blood
glucose values. Machine learning proved to be a valuable method to support the
consensus building for a GV metric and to categorize CGM data according to this metric.
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Marling et al. [57] applied multilayer perceptrons (MPs) and support vector
machines for regressions (SVR) on 250 CGM plots of 24 h on a consensus perceived
glycemic variability metric (CPGV) which have been manually classified into four CV
classes (low, borderline, high, or extremely high) by twelve physicians. The manual
classification was averaged and ten-fold cross validation was used for evaluation. SVR
performed better than MPs. This CPGV metric obtained an accuracy of 90.1 %, with a
sensitivity of 97.0 % and a specificity of 74.1 % and outperformed other metrics like
MAGE or SD.

Controller for insulin-based diabetes therapy: Besides rule-based and model-based
control methods, machine learning can be used to control blood glucose values. Machine
learning is categorized as model-free method which means that it does not need a math-
ematical model of the glucose-insulin interaction [32, 115].

Zitar et al. [116] applied two different artificial neural network models; the
Levenberg-Marquardt training algorithm of multilayer feed forward neural network
(LM-NN) and a polynomial network (PN) as controller for insulin dose titration.
Simulations were performed with a data set of 30,000 BG samples from 70 different
patients. LM-NN proofed to be superior over PN. The authors stated that LM-NN has
the potential to be used as model-free insulin controller.

Lifestyle support: Carbohydrate intake and physical activity are important parameters
for the treatment of diabetes. While the former case increases the blood glucose values,
the latter is glucose-lowering. Anthimopoulos et al. [10] presented an automated food
recognition system using computer vision. They adapted the well-known bag-of-words
approach from natural language processing to describe the identified features of the
images. The classification was performed with three different supervised classifiers:
SVM, ANN and Random Forests (RF). In total 5,000 images of typical European food-
sets were available in 11 food classes. 60 % of the images were used for training and the
remaining 40 % built the evaluation set. SVM performed best with an overall accuracy
of 78 % for the image classification task. Future work will include automated food
segmentation and food volume estimation to count carbohydrates. A smartphone-based
real-time mobile food recognition system was presented by Kawano et al. [48]. They
used bounding boxes to identify food items which have been classified in one of fifty
food categories using SVM. Accuracy was 81.55 % taking the top five candidates into
account. The automated system also showed better performance than the manual food
selection from a hierarchical menu which has been tested in a small user study.

Physical activity detection is an important pre-requisite to estimate the energy
expenditure. Ruch et al. [117] used a tri-accelerometer together with parameters like
age, gender and weight, to train a decision tree based activity-specific prediction equa-
tion (Tree-ASPE) and an artificial neural network for energy expenditure estimation
(ANNEE). Tree-ASPE outperformed ANNEE.

Ellis et al. [118] showed that RF classifier can be used to predict physical activity
type and energy expenditure using accelerometers. In this study wrist accelerometers
were more successful in physical activity detection, while hip accelerometers were
superior in energy expenditure estimation.
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6 Open Problems

In this chapter we highlight the main challenges for personalization of diabetes therapy.
The focus lies on the problems regarding technical implementation rather than on the
medical issues of therapy personalization.

Problem 1: Often DM is regarded with secondary importance especially in the clinical
domain. This is very understandable because primarily the patients are not hospitalized
because of having DM and the clinicians need to focus on the reasons for the admission.
The clinicians are often not able to spend much time for the patient’s diabetes therapy
due to heavy workload and rigid clinical workflows. Therefore one focus in development
of CDSS is the optimization of the devices’ usability. In a systematic review investi-
gating features critical to the success of CCDSS, the authors discovered that 75 % of
interventions succeeded when the decision support was provided to clinicians automat-
ically. None succeeded when clinicians were required to seek out the advice of the
decision support system [82].

Problem 2: Modelling the human insulin system is a complex task. Different approaches
have been developed in recent decades. The artificial pancreas is still a field of research
and no end-consumer system is available on the market. The main reason for this is that
precision and usability of continuous blood glucose (CGM) in daily use currently does
not meet the needs for such a system.

Problem 3: Diabetes therapy is complex and varies from patient to patient. Success of
diabetes therapy depends on many different factors. Nutrition intake, physical activity and
current health status influences the specific therapy. Whereas T1DM can only be treated
withinsulin, for patients with T2DM a wide range of therapeutic options are available. The
combination of factors influencing the therapy and the therapeutic options makes person-
alized therapy initialization and optimization a complex task. In addition, physicians and
patients are often reluctant to start insulin donation and to intensify insulin treatment
regimens dueto the fear of hypoglycemia. Thus, the use of continuous monitoring with on-
body sensors (blood glucose, nutritionintake, physical activity, healthstatus) together with
intelligent therapy prediction and optimization models can help to initiate and to optimize
therapy with reduced risk of safety critical events like hypoglycemia.

Problem 4: Currently there are many freestanding software applications (apps) available
for smartphones which calculate bolus doses of insulin. These apps regulate dosing of
potentially dangerous insulin, which puts them in the domain of the Food and Drug
Administration (FDA). But none have been approved by the FDA. Patients should not
use such non-approved medical software because of the risk of being instructed to
administer an unsafe dose of insulin [31]. Also in the institutional care sector, systems
with decision support functionality are developed in this “grey area”. CPOE systems in
Europe have not yet been classified as Medical Devices [119]. A discussion is on-going
whether vendors classify their products as Medical Devices Class Ila, Class I or not at
all. The development process of CDSS is complicated and expensive due to requirements
of Medical Device Directive (MDD) conform development.
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Problem 5: Especially for the personalization of insulin therapy new sensor technologies
integrated in applications like wearable devices are very promising. Using intelligent
controllers which are available for example in integrated machine learning approaches
[120] in combination with an arrangement of different sensors can lead to a significant
improvement of insulin therapy. However, the problematic lies in the accuracy of
currently available minimal intrusive sensor systems. Sensors have to be very accurate
to prevent errors in insulin dose calculations. Also food and activity recognition systems
have to be improved to be eligible for insulin therapy. Closed loop systems, such as
artificial pancreas systems face the same problem. Currently, the biggest obstacle for
safely running these systems is not the controller algorithm but the accuracy of CGM
Sensor systems.

Problem 6: Personalization of the patient’s diabetes treatment demands patient involve-
ment. The development of factors for personalization requires frequent documentation
of relevant events (e.g. blood glucose, meals, physical activity, health status etc.) and
adherence to the therapy goals. This human-in-the-loop situation demands special adap-
tations of CDSS [121]. For elderly, or unexperienced or less motivated patients this may
quickly lead to a therapy overload. Unfortunately, the majority of T2DM patients are
part of this group. The main challenge is the development of therapy aids which are as
least intrusive and interactive as possible.

Problem 7: The treatment of diabetes takes place in different health care sectors (at
home, outpatient care, nursing home, hospital care ...). Borders between the health care
sectors make it difficult to provide a decision support that can be seamless used in every
sector. Consequently, the developed CDSS are focused on a special sector and usually
interfaces for data-transfer are lacking. These developments make it difficult for patients
and for healthcare professionals to initialize and optimize therapy. Future research
should focus on cross-border treatment of patients with diabetes.

Problem 8: Machine learning is used to predict blood glucose values. As machine learning
is a data-driven method quality of prediction depends on the quality of available data.
Very low blood glucose (hypoglycemia) is an adverse event. Consequently, data is sparse
which leads to unsatisfactory prediction results for these safety critical situations.

7 Future Outlook

Recent DM guidelines and advances in research and development of diabetes therapy
highlight the importance of therapy personalization.

The ultimate goal of technical research in the field of diabetes therapy is to develop an
artificial pancreas system. Butaslong as artificial pancreas systems are still aresearch field
and no commercial productis available, CDSS are valuable tools to assist in the personal-
ized decision making process. On the one hand, machine learning used within the CDSS
(e.g. short-term glucose prediction, pattern recognition, physical activity detection) has
provento be a valuable method to support personalized therapy, but on the other hand ithas
shortcomings in terms of accuracy and usability in the daily routine (e.g. long-term blood
glucose predictions, energy expenditure calculation, carbohydrate estimation).
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Consequently, future CDSS using machine learning need to improve to be eligible

for DM therapy. Personalization of DM therapy using CDSS is a promising future issue
and various promising research routes exist.
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2.  Summary

Individualized glycemic management of diabetes patients using insulin or oral antidiabetic drugs is
only possible due to recent advances in diabetes therapy, which increased the therapy safety and
effectiveness. The predictable behavior of the insulin analogs BG lowering effect is probably the most
noteworthy achievement. As a result, personalization of the patients’ DM therapy is recommended by
guidelines and diabetes organizations. There are several patient-specific, but also institutional factors
which have to be considered in diabetes therapy. TIDM can only be treated with insulin, whereas for
patients with T2DM a wide range of therapeutic options are available. These options include lifestyle
changes, such as change of diet and an increase of physical activity, but also administration of oral or
injectable antidiabetic drugs. The diabetes therapy, especially with insulin, is complex and therapy

decisions include various medical and life-style related information.

Computerized decision support systems aim to improve diabetes therapy in patient’s self-
management, but also in institutional care. Every health care sector has different goals for the patients’
diabetes therapy and therefore different strategies for personalization. Personalization of the patient’s
diabetes treatment is possible at different levels. It can provide medication support and therapy
control, which aid to correctly estimate the personal medication requirements and improves the
adherence to therapy goals. It also supports long-term disease management, aiming to develop a
personalization of care according to the patient’s risk stratification. Personalization of therapy is also
facilitated by using new therapy aids like food and activity recognition systems, lifestyle support tools

and pattern recognition for insulin therapy optimization.

Latest innovations in sensor technology (CGM, clothes integrated movement sensors, smartphone-
based image recognition) together with improved documentation effort of medical history in
electronic patient records, diabetes-related patient diaries or tele-monitoring systems provide large
and valuable datasets for therapy-related decision making. Considering these large and detailed
datasets machine learning is regarded to be a helpful technology, but currently plays only a minor role

in diabetes therapy, especially in inpatient diabetes therapy.

There are several challenges associated with the introduction of new technologies for personalization
of the diabetes therapy by using computerized decision support and machine learning. New glucose
sensors and activity or food recognition systems have to be very accurate to be eligible for insulin

dosing decision support. For example, artificial pancreas systems are not limited by the reliability of
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predictive control algorithms, but by the accuracy of the currently available CGM systems.
Furthermore, because of the special requirements of the users there has to be a strong focus on the
usability of such systems. Devices for patient self-management have to be developed for elderly, or
unexperienced or less motivated patients to prevent therapy overload. In institutional care, systems
have to be developed to perfectly fit into workflows to achieve maximum acceptance by HCPs. As
machine learning is a data-driven method, quality of model output depends on the quality of available
data. Very low BG levels are adverse events and consequently data is sparse, which leads to
unsatisfactory prediction performance in these critical situations. An additional challenge is the
development according to the standards of the Medical Device Directive. Many developers try to avoid
these regulatory challenges. Especially, many software apps were developed in a “grey area”, where it is
not certain if they are regulated by the standards of the Medical Device Directive. Given the rapid
expansion and broad applicability of mobile apps, the FDA was recently issuing guidance to which the
FDA intends to apply its authority. It is only a matter of time until the European Commission catches

up with the FDA and closes these regulatory uncertainties.
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1. Conclusions and Outlook

Driven by the reported medical benefit of improved inpatient glycemic control, the development of
GlucoTab”® - a computerized workflow and decision support system - was initiated to support HCPs in
diabetes management. This thesis was embedded in the development of GlucoTab® and focused on the
evaluation and enhancement of an insulin dosing algorithm for T2DM patients. This chapter
summarizes the main findings of this PhD thesis. Detailed technical and methodological discussions

can be found in the previous chapters and in the individual publications.

A toolbox to improve algorithms for insulin dosing decision support:

Work for this PhD thesis created a framework/toolbox to evaluate and to “in-silico” test potential
modifications of insulin dosing algorithms and to simulate their potential impact on the patients’ BG
levels. Novel methods for detailed investigations of the performance of the used insulin dosing
algorithms were developed. These methods aim to identify ways to make insulin dosing algorithms
safer and more effective for all patients. The framework facilitates a standardized integration of data
from clinical studies which will facilitate more detailed analysis with larger patient subgroups. The
developed framework has successfully been used to derive modifications of a treatment algorithm from
clinical data in an effective and reproducible way. The combination of simulation, evaluation and new
clinical studies facilitates an improved development process of insulin dosing algorithms. The most
promising algorithms can be identified by using simulation before they are being implemented in
medical device software and are being tested in expensive clinical studies. For certain modifications of
the insulin dosing algorithm a clinical study can be avoided altogether by performing simulations and

evaluations with data from previous clinical studies.

Evaluation - Simulation - Improvement:

Evaluations of the patients’ glycemic control were performed by using clinical data that describe a
diabetes management performance comparable to best practice clinical studies. Therefore,
improvements of the insulin dosing algorithm were performed on an already high level. The initial
paper-based version of the insulin dosing algorithm already improved diabetes therapy considerably
compared to standard care: Average BG levels were significantly reduced and a significantly higher
percentage of BG values were in the target range in patients treated with the insulin dosing algorithm

compared to standard care [22]. However, detailed investigations of the initial insulin dosing
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algorithm using retrospective statistical analysis with additional CGM data and therapy pattern
analysis revealed room for improvement, (Chapter III). The potentially safest and most effective
versions of modifications of the insulin dosing algorithm were identified by using simulation and

patient hazard analysis.

By redistributing the daily bolus insulin a statistically significant reduction of the patients’ relatively
high noon BG levels and simultaneously reduced afternoon hypoglycemia was achieved. The amount

of BG reduction at noon that was predicted by the simulation was confirmed in two clinical studies.

The therapy pattern analysis performed in the work for this PhD thesis detected in some patients a
higher need for insulin than initially calculated at the start of the therapy. Moreover, the adjustment of
the therapy was not dynamic enough to adjust the TDD to the required amount of insulin during the
patients’ short hospital stay. Even though the patients received significant amounts of supplemental
insulin to correct for high pre-meal BG values, the TDD was not increased. To achieve a more
dynamic adjustment of the TDD, different versions for adjustment of the TDD were simulated and the
impact of the modifications on the patients’ BG level was estimated. The finally selected version

demonstrated a more dynamic and safe adjustment of the patients’ TDD, (Chapter III, section 2.4).

Taking a closer look by using additional CGM:

One aim of the work for this PhD thesis was to test the capability of CGM to assess the clinical impact
and safety of a basal-bolus insulin therapy. Overall a remarkable consistency was found between
parameters that evaluate the performance of the basal-bolus therapy based on glycemic information
from CGM and capillary BG measurements. Pre-meal and bedtime BG measurements seemed to
describe the overall therapy sufficiently, but the amount of the detected hypo- and hyperglycemic
episodes differed significantly between CGM and capillary BG measurements. CGM can be used to
describe the overall daily routine such as the rise of BG levels after meals and the impact of the applied
diabetes therapy [47]. Although there were hurdles in sensor accuracy, CGM provided information
that would not have been recognized by solely using capillary BG measurements. Especially during
nighttime a substantial additional number of glycemic events below 70 mg/dL was detected using
CGM which suggests that a high number of possibly clinically relevant episodes are missed by using
only standard BG measurements. Staff shortages and inconvenience for the patients restrict more
frequent capillary BG measurements especially at night and CGM could therefore be an attractive

alternative or could be used as a supplementary method.
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The analyses in this PhD thesis also aimed to identify if the sole use of CGM could be justified for
running a basal-bolus insulin algorithm for T2DM patients on a clinical ward. Therefore, methods to
evaluate the potential impact of CGM sensor inaccuracies on insulin dose calculation were developed
in collaboration with clinical experts, (Chapter IV, section 2). Potential patient hazard was revealed in
what-if analyses that recalculated the patients’ insulin doses when using glycemic information from
CGM. According to these analyses the use of a CGM system with the observed sensor accuracy could

lead to potentially life threatening insulin dose calculations and to ineffective treatment.

Even though CGM sensor accuracy is currently limited, the information of glucose trends could still be
useful. However, in the recalculations of the patients’ insulin doses no information of glucose trends
was considered. The combination of BG measurements with high accuracy and CGM systems with
high measurement frequency and trend information could be beneficial for hospitalized patients with
unstable glycaemia on a basal-bolus insulin regimen. The development of smart insulin dosing
algorithms that consider glycemic trend information from CGM could improve insulin dosing and

reduce hypo- and hyperglycemia.

Although promising, the sole use of CGM is not recommended for diabetes management by clinical
guidelines. The benefit of using CGM is currently limited for the majority of hospitalized T2DM
patients, because CGM systems need frequent calibration based on capillary BG measurements and
frequent sensor replacement, and additionally CGM is limited by high additional costs and lack of
sensor accuracy. But, new technological advances in this field could soon lead to accurate sensors

approved for insulin dosing.

Towards personalization of diabetes therapy:

By developing a multiple regression model to predict the patients’ mean daily BG value per hospital
stay, significant predictor variables were identified that influence the level of glycemic control,
(Chapter V). Especially noteworthy predictors are HbAlc, preexisting home insulin therapy, and the
type of admission (acute or planned). Subgroup analyses revealed that although mean daily BG was
higher for some patient subgroups, the occurrence of BG values below 70 mg/dL was comparable in all
subgroups. The insulin dosing algorithm in its current form was safe in all patient subgroups but was

not equally effective for all patients [30].

Personalization of the patients’ diabetes therapy is recommended by guidelines and diabetes

organizations. In a state of the art review relevant parameters to personalize diabetes therapy were
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identified, (Chapter VII, [59]). There are several patient-related but also institutional factors which
have to be considered in diabetes therapy. Especially therapy of T2DM patients has a wide range of
different therapeutic options and their therapy is very individual and influenced by e.g. the patients’
insulin resistance, the progression of the chronic disease, prevailing risk of hyperglycemia, co-
morbidities, age etc. Additionally, the setting in which the therapy is performed also strongly
influences therapy targets. Patients in a nursing home or at home have less stringent therapy targets

than patients admitted to an ICU.

Therefore, computerized decision support systems aim to improve the treatment process in patient’s
self-management but also in institutional care. Latest innovations in sensor technology (clothes
integrated movement sensors, smartphone-based image recognition) together with improved
documentation effort of medical history in electronic patient records, diabetes-related patient diaries
or tele-monitoring systems provide large and valuable datasets for therapy-related decision making.
Considering these large and detailed datasets, machine learning is regarded to be a helpful technology,
but currently plays only a minor role in diabetes therapy. Machine learning could be helpful for
diabetes therapy that applies methods requiring predictive analytics. The identification of relevant
patient-specific parameters influencing therapy and the optimization of the patients’ therapy by

pattern recognition could also be fields of application using our pooled data source.

Clinical benefit of computerized workflow and decision support:

The clinical benefit of computerized systems for medication order entry and clinical decision support
is controversially discussed [60], [61]. There is clear evidence that systems for medication order entry
and clinical decision support reduce medication errors, but clear evidence that the combination of
these systems reduce clinical adverse drug events is still missing [16]. However, recently published
guidelines and studies recommend the use of CDSS and medication order entry systems for diabetes

therapy in hospitalized patients 8], [13]-[15].

One aim of the work performed in this PhD thesis was to investigate the frequency and clinical impact
of errors in BG documentation and manual insulin dose calculation as well as workflow deviations in
diabetes management. In the course of the GlucoTab® development, diabetes management was first
tested in a paper-based way and was then implemented into GlucoTab® [22], [30]. Medication errors in
the two previously published studies were compared in a post-hoc analysis of a before and after study,

(Chapter VI). By using data from several sources, different categories of errors were analyzed in a very
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detailed way and their effects on medication dosing decisions and clinical relevance were estimated.
The outcome of this analysis show that even in a highly standardized environment under study
conditions, errors in diabetes management occur. Computerized systems reduce errors, but a potential
for errors still remains. The benefit of computerized diabetes management and ways to further reduce

error potential were discussed.

Insulin dosing errors and workflow deviations led to measurable changes in clinical outcome in this
study. The analyses show that manual dose calculations are prone to error and increase the risk of
hypoglycemia in diabetic patients. These errors could be entirely excluded by using computerized
systems. The use of medication order entry with decision support including dose calculations reduces
the risks in diabetes management considerably, although data transcription of BG measurements still
may lead to improper insulin doses. Therefore the immediate availability and automated handling of
BG values from medical devices directly at the point of care has the potential to reduce errors.
Implementing a computerized system into the complex workflow of a hospital is challenging and a
large number of special cases have to be considered without compromising usability. But if the
implementation is performed thoroughly, computerized systems facilitate the use of more advanced
insulin dosing algorithms without inducing potential user-errors. An example for a safety feature of an
insulin dosing algorithm which requires computerized handling is “insulin on board” in GlucoTab’,
which frequently led to insulin dose reductions even under study conditions, (Chapter III, section 2.3).
Additionally, the need for computerized assistance in diabetes management is evident in the high
number of user-related calculation errors performed by HCPs using paper-based insulin dosing

algorithms, (Chapter VI).

Outlook - Improvement in diabetes therapy:

The desired predicted behavior of the simulated modifications of the insulin dosing algorithm was
confirmed in clinical studies. Even with these promising results there still remains room for
improvement especially at an individualized level. The preliminary investigations of the used rules for
calculating the patients’ starting TDD, based on age and serum creatinine level, demonstrated that they
have to be questioned and that more relevant patient-specific parameters have to be derived. Future
versions of the insulin dosing algorithm should improve this dose-finding process at the start of the

patient’s diabetes therapy to enable a safer and more effective therapy start.
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Additionally, the detailed evaluation of safety and effectiveness of the insulin dosing algorithm
revealed that even with the refined algorithm in some patients the glycemic targets were not
accomplished. One reason for too much or too little insulin in some patients could be the generic
insulin scheme. In patients with a small TDD the rigid scheme results in proportionally larger
supplemental insulin doses than in patients with a high TDD. Furthermore, only few HCPs modified
the insulin sensitivity parameters during the patients’ diabetes therapy. That may be reasons for
insufficiently controlled hyperglycemia, but may also be reasons for too much insulin resulting in
hypoglycemia. On average patients with high BG levels needed more supplemental insulin than
currently is provided, but in a few patients this could lead to hypoglycemia. Unfortunately we are
currently not able to classify these patients in advance. In a first step, assisted selection of the patients’
parameters for insulin sensitivity may be a way to achieve safer and better control by using the current
supplemental bolus insulin scheme. In a subsequent step, individualization of the supplemental bolus
insulin scheme, e.g. by using corrective bolus insulin in relation to the patients’ TDD could also

potentially increase safety and effectiveness of the therapy.

The GlucoTab® approach in its current version requires the injection of long-acting insulin around
noon and the insulin dosing algorithm is adjusted to this. However, it is foreseeable that on some
wards, the administration of long-acting insulin will be favored in the evening or in the morning.
Additionally, there are also medical reasons for the injection of the long-acting insulin at other
daytimes than noon. The requirement of insulin to control high BG levels is highest in the morning-
noon interval. This is physiologically normal in patients, but is also partly attributable to a fading basal
insulin action in the morning because of the administration of long-acting insulin at noon [46]. To
compensate this fading basal insulin action the bolus insulin dose in the morning was increased. Here,
the administration of long-acting insulin at other daytimes than noon would prevent a fading basal
insulin action in the morning and could help to control high BG levels in the morning-noon interval.
However, by preventing fading basal insulin action in the morning by changing the time of long-acting
insulin administration, in some patients the increased bolus insulin dose in the morning could result
in hypoglycemia around noon. Before testing this feature in a clinical study, “in-silico” simulation and
evaluation of the impact of this modification should be performed and again fine-tuning of the daily

bolus insulin distribution should be considered.

The consideration of relevant patient-related and institutional factors in the insulin dosing algorithm

could furthermore improve the therapy in patient subgroups. Hypoglycemia did not occur clustered in
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patient subgroups, but a significant relationship with the patients’ average daily BG and factors such as
HbAIc, preexisting insulin home therapy or type of admission was observed. In future versions of the
insulin dosing algorithm fine-tuning of algorithm parameters according to the impact of these

predictive factors could improve the therapy.

The ADA recently released a new guideline for diabetes care in hospitals [62]. Compared to the more
stringent target range of 100 — 140 mg/dL recommended in previous years, a target range of 140 — 180
mg/dL is currently recommended for non-critically ill patients treated with insulin. However, this
recommendation is only based on supportive evidence from poorly controlled or uncontrolled studies
or on conflicting evidence with the weight of evidence supporting the recommendation. The current
version of the GlucoTab® system aims for therapy targets of 100 — 140 mg/dL, but customizable

therapy targets are already planned to achieve them safely in all patients.

The successful implementation of computerized decision support systems in clinical wards is often
impaired by acceptance problems of HCPs with new devices or new procedures. Especially in diabetes
management which requires complex and interdisciplinary cooperation of HCPs, a strong focus
during the development of decision support systems should be placed on usability and workflow
integration. A better integration of the GlucoTab® system into hospital workflows, facilitated through
better accessibility of the system by using a web-frontend, and the automated availability of BG
measurements from POCT devices, has the potential to reduce errors. Additionally, the support of
other therapy regimens, such as basal-only and basal plus, is under development. In combination, with
the already planned algorithm-supported therapy regimen for pre-mixed insulin, features like
discharge management, and the integration into the hospital electronic medical record, this should

maximize the acceptance of the GlucoTab® system on clinical wards.

The insulin dosing algorithm used by GlucoTab® proofed to be very adjustable, and additional
modifications are already planned. In the future it may be necessary to modify the insulin dosing
algorithm to support: long-acting insulin analogues with a duration of action longer than 24 hours, the
combination of insulin with GLP-1 analogues, insulin pumps in the hospital, or insulin dosing with
additional BG trend information from CGM. Additionally, the discovery of new biomarkers which
predict for example the patients’ insulin sensitivity could lead to modifications of the insulin dosing
algorithm. Linear regression models to identify relevant predictor variables for diabetes therapy were

limited by potential nonlinear or random dependencies in our data source. Future versions of the
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GlucoTab*® insulin dosing algorithm could be improved by the use of more complex regression models

which are found for example in mixed-effects models or machine learning.

The combination of the evaluation and simulation process with the very adjustable insulin dosing
algorithm provides a good preparation for necessary future modifications. Algorithm based
computerized decision support systems directly influence clinical practice and have the potential to

achieve significant and clinically relevant improvements.
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Summary

Background: Standardized insulin order sets for subcutaneous basal-bolus insulin therapy are rec-
ommended by clinical guidelines for the inpatient management of diabetes. The algorithm based
GlucoTab system electronically assists health care personnel by supporting clinical workflow and
providing insulin-dose suggestions.

Objective: To develop a toolbox for improving clinical decision-support algorithms.

Methods: The toolbox has three main components. 1) Data preparation: Data from several hetero-
geneous sources is extracted, cleaned and stored in a uniform data format. 2) Simulation: The ef-
fects of algorithm modifications are estimated by simulating treatment workflows based on real
data from clinical trials. 3) Analysis: Algorithm performance is measured, analyzed and simulated by
using data from three clinical trials with a total of 166 patients.

Results: Use of the toolbox led to algorithm improvements as well as the detection of potential in-
dividualized subgroup-specific algorithms.

Conclusion: These results are a first step towards individualized algorithm modifications for spe-
cific patient subgroups.
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1. Introduction

Poor glycemic control has been associated with poor clinical outcome and increased mortality in pa-
tients with and without history of diabetes [1]. Recently performed audits in Great Britain demon-
strated that glycemic control is not established satisfactorily. Nearly 40% of patients included in the
audit experienced at least one diabetes medication error while in hospital. Patients with medication
errors were more than twice as likely to experience a severe hypoglycemic episode (16.8%) than pa-
tients who did not have a medication error (7.5%) [2]. Implementing a standardized subcutaneous
insulin order set promoting the use of scheduled basal and nutritional insulin therapy is a key inter-
vention in the inpatient management of diabetes. Observational and randomized controlled studies
indicate that when glycemic control improves, hospital complication rates are lowered in general
medical and surgery patients [3-7].

GlucoTab, an algorithm based workflow and decision support system for non-critically ill pa-
tients with diabetes mellitus type 2, was developed in the EU-funded project REACTION. It is a mo-
bile Android-based tablet PC which interacts with a Java Enterprise server to provide workflow and
insulin dosing support to physicians and nurses directly at the point of care. The GlucoTab system
was developed by an interdisciplinary team of engineers, physicians and nurses. Design input was
provided by clinical specialists and technical experts, and the system was improved in an iterative
approach involving end user feedback.

Four clinical trials regarding patient safety, efficacy of glycemic control and usability have already
been performed using the GlucoTab system. The first trial evaluated the underlying workflow-inte-
grated algorithm for basal-bolus insulin therapy in a paper-based form. The algorithm was effective
in establishing glycemic control, and was well accepted by medical staff [8]. Subsequently, this algo-
rithm was integrated into the GlucoTab system and applied and evaluated in clinical trials. Although
the overall glycemic control was good (73% of blood glucose readings in the accepted glycemic
range 70-180 mg/dl), some patient subgroups did not reach the glycemic target range or experi-
enced hypoglycemic episodes.

We now report on a new toolbox for analyzing and simulating GlucoTab system modifications.
The ultimate aims of this toolbox development were: to improve the GlucoTab algorithm which in
its initial form lacked flexibility, to test and optimize new ideas and hypotheses for algorithm modi-
fications to draw maximum benefit from future clinical studies, and to identify individualized algo-
rithm and workflow improvements for specific patient subgroups. We have now incorporated sev-
eral heterogeneous clinical data sources and implemented a standard procedure for statistical analy-
sis.

2. Methods

This section summarizes the methods and technologies and the iterative process used to develop the

toolbox for improving the algorithms for insulin-dosing-decision support. The toolbox consists of

three main components (P Figure 1):

o Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in a
uniform data format.

o Simulation: Modified versions of the algorithm are applied in simulations of the treatment work-
flow, based on real data from clinical trials.

o Analysis: The algorithm performance is measured and visualized for all patients or patient sub-
groups.

2.1 Data preparation

The purpose of this component is to extract, transform and load (ETL) data from clinical trials and
other sources into a uniform data structure in a standardized process. One major challenge in the
performance of pooled data analyses is the varying structure of data from different clinical trials. We
designed a multi-step process to monitor and clean the data: the first steps are performed routinely
as part of clinical trial data management according to Good Clinical Practice (GCP) and Inter-
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national Conference on Harmonisation (ICH) [9]. In each clinical trial data is extracted from the
sources and transformed into a standardized format according to standard data management: data
is first checked for consistency and quality; applying for example summary statistics and row checks
in the form of if clauses. Inconsistent, implausible or missing values are discussed with the clinical
trial team in the database release meeting to achieve a clean dataset for statistical analysis. As part of
the toolbox, during the data preparation step, the data is extracted, cleaned and stored in a uniform
data format for pooled statistical analyses. Type and unit conversions as well as preparations for the
simulations and analyses are performed in this step. Patient-specific profiles with baseline character-
istics, concomitant diagnoses and medications, overall glycemic information (mean blood glucose
levels, glucose variability, hypo- and hyperglycemic events) and information on the algorithm ver-
sion used are generated. “Virtual insulin sensitivity” profiles are also generated which are required
for blood glucose estimations, performed in the simulation component (see chapter 2.2 Simulation).

2.2 Simulation

Simulation aims to estimate the effect of insulin dose changes on blood glucose values due to algo-
rithm modifications. Simulations are performed with a simulator application implemented in Java
which integrates and uses original components from the GlucoTab server implementation. This ap-
proach was chosen because building on the original, well tested medical device software compo-
nents is much more reliable and resource-effective compared to completely rebuilding the entire
workflow and decision support algorithm in its full complexity in statistics software and keeping it
in synchronization with future modifications of the server. Furthermore, the source code developed
for the simulation is already available for implementation into the GlucoTab system, in case of
adopting algorithm modifications after the simulation. After additional reviews and testing, the
code can be included in the medical device software.

Simulations are performed in two steps, with real patient data from the GlucoTab clinical trials.
In the first step, the simulator uses blood glucose measurements and insulin dose calculations, as
well as therapy adaptations, based on the original entries into the GlucoTab system by the clinical
personnel. Sequentially new insulin dose calculations are performed by using the new algorithm. In
a second step the blood glucose estimations are performed. We identified several methods for blood
glucose estimations from a structured literature research. Neural networks have been shown to be
the most promising technologies [10, 11]. However, neural networks could not be used to achieve
accurate blood glucose estimations using our data. The GlucoTab approach for type 2 diabetes mel-
litus does not involve exact carbohydrate counting. Therefore, exact amounts of carbohydrates con-
sumed were not available and could account for the inaccurate estimations achieved with neural
networks. Thus we developed a new method for blood glucose estimations in the toolbox by using
“virtual insulin sensitivity” profiles. “Virtual insulin sensitivity” was defined as the difference be-
tween two blood glucose measurements divided by the injected insulin dose. A ,virtual insulin sen-
sitivity value is estimated for every measurement interval (e.g. noon to evening) for every patient
on each hospital day. The simulator uses the “virtual insulin sensitivity” profile of the patients and
calculates the estimated blood glucose value for the next interval alongside the new insulin dose. An
example of how blood glucose estimations due to algorithm modifications are performed is illus-
trated in P> Figure 2. A patient with a noon blood glucose level of 200 mg/dl, an evening blood glu-
cose level of 160 mg/dl received 10 insulin units (IU) injected at noon, and thus has a “virtual insulin
sensitivity” of 4 mg/dl/IU. In this example, one unit of insulin lowers the blood glucose level by 4
mg/dl. In the simulation the patient receives 15 IU at noon, following the dose suggestion of the
modified algorithm. Considering the “virtual insulin sensitivity” of the patient the simulation esti-
mates that the additional 5 IU would have lowered the blood glucose level by additional 20 mg/dl re-
sulting in an evening blood glucose level of 140 mg/dl.

All records resulting from the simulations are stored in the relational GlucoTab database, and are
then extracted by the data preparation component and prepared for pooled statistical analysis in the
analysis component.
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2.3 Analysis

In the analysis component, different methods of the toolbox (e.g. patient hazard analysis, what-if
analysis) are combined depending on the specific research question. Results from the analysis com-
ponent are summarized in a reporting tool. The following use cases demonstrate the possibilities of
the toolbox by using data from three clinical trials and comprise datasets from the following data
sources:

o GlucoTab server: 5,218 blood glucose measurements (Roche Accu-Chek) from 166 patients on
1,124 patient days, suggested and confirmed bolus and basal insulin doses and information on
consumption of meals and insulin sensitivity

e Clinical trial data management system (OpenClinica): Diagnoses, medications and baseline
characteristics of 166 patients

e Laboratory information system: Hospital laboratory data of 99 patients

o Continuous Glucose Monitoring (CGM): 14,140 hours recorded with CGM (Medtronics iPro2)
of 97 patients

Pooled data

The first use case demonstrates methods for the retrospective analysis of pooled patient data. It aims
to detect the quality of glycemic control when using the GlucoTab system by identifying individua-
lized versions of insulin-dosing algorithms for specific patient subgroups. A penalty scoring system
evaluates the therapy of each patient considering the average blood glucose levels, hypo- and hyper-
glycemic events and glucose variability. If the patient’s glycemia is within the target range the scoring
system rewards credit points whereas blood glucose values outside the target range are given penalty
points. Penalty points are weighted according to the severity of hypo- or hyperglycemia. Hypoglyce-
mia has a higher impact on the score. Subgroup analyses using hierarchical clustering allow the de-
tection of “responder” or “non-responder” patient subgroups and their distinctive properties.

Algorithm modification

The second use case aims to evaluate algorithm modifications. In what-if analyses, outcomes regard-
ing blood glucose levels and suggested insulin doses are investigated and visualized for interpre-
tation by clinical specialists. Patient hazard analyses for patients with low glycemic events are per-
formed to identify the safest version of the modified algorithm: insulin dose calculations are simu-
lated by using new variants of the algorithm. To detect potentially dangerous changes in the algo-
rithm, a potential increase of insulin doses prior to a low glycemic event is investigated. Patient haz-
ard analyses are discussed with diabetes specialists to ensure that only safe variants of a new algo-
rithm are implemented.

Continuous glucose-monitoring data

The third use case considers additional input from continuous glucose monitoring (CGM) data for
algorithm evaluation. The clinical standard for monitoring the patient’s blood glucose levels is point
of care testing (POCT) [12]. POCT provides only a snapshot of the patient’s glycemic profile. With
the use of CGM we investigated if these snapshots are sufficient for the patient’s therapy. We ident-
ified low glycemic episodes using CGM data. A low glycemic episode was defined as a signal drop
below the threshold level of 70 mg/dl for at least three consecutive measurements (5 min sampling).
If the sensor level was above the threshold for less than one hour between two below-threshold epi-
sodes, this was counted as one episode. Additionally, to compensate data processing of the CGM
sensor manufacturer, offset correction was applied to the CGM sensor data to increase the sensitiv-
ity for detection of low glycemic events in a post-processing step. The sensitivity is defined as the
relative number of true low glycemic episodes that have been detected. It is calculated as the propor-
tion of the number of detected true low glycemic episodes divided by the number of detected and
missed low glycemic episodes [13]. Another aim is to relate CGM to the algorithm: in a subsequent
what-if analysis the patient’s outcome is investigated regarding suggested insulin doses and patient
hazard.

The reporting tool generates automated PDF reports using the R project for Statistical Comput-
ing [14] with Sweave and LaTeX. A multitude of customized graphic output functions has been de-
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veloped using ggplot and ggplot2 packages. Results can be reported as text, tables or figures by using
the customizable PDF reports (e.g. P Figure 3 and P> Figure 4 in this paper).

3. Results

Pooled data

Since low glycemic events are the most dangerous in blood glucose management, first analyses were
conducted to investigate and visualize the glycemic range which is most likely resulting in low blood
glucose events. »Figure 3 shows data from all patients treated with the first version of the algorithm
(n = 52), revealing that low glycemic events do not only emerge from patients with low blood glu-
cose levels but also occur in patients with initially high blood glucose values.

Algorithm modification

An example of validating the simulation results of the toolbox is demonstrated in »Figure 4. The
use of the first version of the algorithm in previous clinical trials has resulted in relatively high mean
blood glucose values at noon [8] (P Figure 4a). A blood glucose estimation was performed to simu-
late a change of the bolus ratio for morning, noon and evening, for all 52 patients treated with the
first version of the algorithm (P> Figure 4b). The new algorithm (v2) was clinically validated after im-
plementing the proposed bolus ratio changes into the GlucoTab system. The results for the first 15
patients (P Figure 4c) showed a significantly reduced mean noon blood glucose level (t-test, p =
0.014).

Continuous glucose-monitoring data

The toolbox was used to assess if POCT provides all necessary information for the patient’s glycemic
control, especially low glycemic events. Low glycemic events were identified according to the
method described (see CGM in the methods section) using 1,480 paired blood glucose sensor read-
ings (8,578 hours recorded with CGM) of 59 patients. After adjusting for the offset of sensor data,
134 events below 70 mg/dl were detected with CGM compared to 35 detected by blood glucose
POCT. The majority of low glycemic events that were detected with CGM occurred during the
night. Sensitivity to detect low glycemic events using CGM was 42%.

4. Discussion

This work created a toolbox with three main components to improve an insulin dosing algorithm
used in a decision support system. The data preparation component enabled a fast and standardized
way to incorporate additional clinical data for the simulation component and the analysis compo-
nent. Based on the uniform data structure and standardized processes, algorithm changes were
simulated, evaluated and optimized before being implemented in the decision support system.
Three particularly important examples for the use of the analysis component during algorithm de-
velopment are demonstrated in this paper.

The toolbox was used for pooled data analyses and indicated that low glycemic events occur not
only in patients with low blood glucose levels but also in patients with initially high blood glucose
levels. A further increase of insulin doses would lead to an increased hypoglycemia risk in some pa-
tients. Pooled data analyses and visualization of results were successfully used to investigate a hy-
pothesis and discuss results with clinical experts for a further improvement of the algorithm.

Simulated bolus ratio changes and blood glucose estimations in the toolbox were confirmed with
real patient data after the algorithm changes had been implemented in the GlucoTab system. Algo-
rithm changes resulted in a statistically significant reduction of blood glucose levels at noon as esti-
mated by the toolbox, but might have also been affected by the difference in glycemic control prior
to the trial. HbAlc in patients treated with the initial version of the algorithm was 7630 mmol/mol
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compared to 62+18 mmol/mol in the first 15 patients treated with the modified version of the algo-
rithm. Further analyses with a bigger sample size are still ongoing.

CGM data indicate that a high number of low glycemic events (<70 mg/dl) are not detected with
standard glucose POCT, in particular during the night when fewer POCT reference measurements
are available for confirmation. The high number of low glycemic events has to be interpreted cau-
tiously due to the low sensitivity of the commercially available CGM sensor. The sensitivity of the
CGM sensor system applied in the studies to detect low glycemic events (42%) is comparable to a re-
cently published study using a similar CGM system (CGM-sensor sensitivity: 37.5%) [13].

The presented toolbox provides the technical foundation for the development of more individua-
lized algorithms. Already planned clinical trials using the GlucoTab system will provide more data
for the toolbox and enable us to perform simulations of algorithm changes for various patient sub-
groups. We will continue in-depth analyses and carefully test algorithm modifications by simu-
lations, before any changes are implemented in the software, and are applied in the therapy of pa-
tients in clinical evaluation trials.

Clinical Relevance

Algorithm based decision support systems directly influence clinical practice and have the potential
to achieve significant and clinically relevant improvements. The developed toolbox has successfully
been used to derive modifications of a treatment algorithm from clinical data in an effective and re-
producible way. The safest and best performing algorithms can be identified by simulation, before
being implemented in medical device software and being applied in the therapy of patients.
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1. Initial insulin treatment protocol

Table Alll-1: Initial insulin treatment protocol

1.

Basal Bolus Regimen with Insulin Glargine and Glulisine

1.A. Insulin Orders

Discontinue oral antidiabetic drugs (sulfonylureas, repaglinide, nateglinide,
metformin, pioglitazone, rosiglitazone, sitagliptin) and non-insulin injected
antidiabetic medication (pramlinitide, exenatide) on admission.

Starting insulin total daily dose (TDD): 0.5 units per kg of body weight.

e Reduce insulin TDD to 0.3 units per kg of body weight in patients > 70 years of
age and/or with a serum creatinine > 2.0 mg/dL.

Give half of total daily dose as insulin glargine and half as insulin glulisine.

Give insulin glargine once daily, at the same time of the day.

Give insulin glulisine in three equally divided doses before each meal. Hold insulin
glulisine if patient not able to eat.

1.B. Supplemental insulin

Give supplemental insulin glulisine following the “sliding scale” protocol (1E) for
blood glucose > 140 mg/dl.

If a patient is able and expected to eat all, give supplemental glulisine insulin before
each meal and at bedtime following the “usual” column.

If a patient is not able to eat, give supplemental glulisine insulin every 6 hours (6-12-
6-12) following the “sensitive” column.

1.C. Insulin adjustment

o If the fasting and predinner BG is between 100 - 140 mg/dl in the absence of
hypoglycemia the previous day: no change

o If the fasting and predinner BG is between 140 - 180 mg/dl in the absence of
hypoglycemia the previous day: increase insulin TDD by 10% every day

o If the fasting and predinner BG is >180 mg/dl in the absence of hypoglycemia the
previous day: increase insulin TDD dose by 20% every day

o If the fasting and predinner BG is between 70 - 99 mg/dl in the absence of
hypoglycemia: decrease insulin TDD dose by 10% every day

o If a patient develops hypoglycemia (BG <70 mg/dL), the insulin TDD should be
decreased by 20%.

1.D. Blood glucose monitoring. Blood glucose will be measured before each meal and
at bedtime (or every 6 hours if a patient is not eating) using a glucose meter
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Table Alll-2: Initial insulin treatment protocol — Supplemental insulin scale

O O O
Blood Glucose (mg/dL) Insulin Sensitive Usual Insulin Resistant
141-180 2 4 6
181-220 4 6 8
221-260 6 8 10
261-300 8 10 12
301-350 10 12 14
351-400 12 14 16
> 400 14 16 18
** Check appropriate column below and cross out other columns
The numbers in each column indicate the number of units of glulisine or regular insulin
Ii)ne;:ilicl)]se. Supplemental” dose is to be added to the scheduled dose of glulisine or regular
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2. Structured Literature Search: Critical Appraisal

Keyword queries:

Pubmed search:

("Estimating glucose"[Title/Abstract] OR "glucose estimation" title/abstract OR "Predicting
glucose"[Title/Abstract]) OR "glucose prediction"[Title/Abstract] OR "forecast

glucose"[Title/Abstract] OR "glucose forecasting"[Title/Abstract] AND "diabetes"[Title] AND
("2012/01/01"[PDAT] : "2013/02/04"[PDAT])

IEEE Xplore metadata search:

(glucose prediction OR predicting glucose OR glucose estimation OR estimating glucose OR glucose
forcast* OR forcasting glucose) AND diabetes

Filter: ("2012/01/01"[PDAT] : "2013/02/04"[PDAT])
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Table Alll-3: Overview work: theses/books

Thesis / Book Prediction algorithm Diabetes Glycemic source: CGM or | Forecast Algorithm Study
/technology type capillary BG data period testedina | population
clinical trial
2004 Peter Kok Predicting blood glucose
. . . i . Next
levels of diabetics using artificial neural NN 1 capillary BG No 1
> measurement
networks (Master Thesis)
2011 Matthew T Wiley Machine Learning for | Support Vector Regression, No / pilot
Diabetes Decision Support (Master thesis) Autoregressive Integrated Moving 1 CGM 30, 60 min P 10
study
Average
2011 Marzia Cescon Linear Modeling and Autoregressive moving average with
Prediction in Diabetes Physiology (PhD exogenous inputs, state-space 1 capillary BG Up to 120 min | No 9
thesis) models
2009 David Duke Intelligent Diabetes ) ) . 2h post No / pilot
Assistant (PhD thesis) Linear and Gaussian kernel 1+2 capillary BG orandial study 16
2012 Frederik Stahl Diabetes Mellitus
Glucose Prediction by Linear and Bayesian Autoregressive model, ARMA 1 CGM 20,40,60 min No 47
Ensemble Modeling (PhD thesis)
2011 Georga et al. Glucose Prediction in
+
Type 1 and Type 2 Diabetic Patients Using Compartment model + Support 1+2 CGM 15.’ 30, 60, 120 No 7

Data Driven Techniques (Book chapter)

Vector Regression

min
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Table Alll-4: Critical appraisal: selected publications

Publication Prediction algorithm Diabetes Glycemic source: | Forecast period Algorithm Subjects
/technology type CGM or capillary tested ina
BG data clinical trial
Prediction engine in software:
(Albisser, Baidal, et al. 2005) Lith(;%:f(?clzIt::;;?suiis%ulation
(Albisser, Sakkal, et al. 2005) ! 1 capillary BG Next interval Yes 54
(Albisser 2005) procedures. The methods are
similar to the dynamic systems used
in weather research and forecasting
(Baghdadi & Nasrabadi 2007) Radial basis function NN 1 capillary BG Next interval No 1
(Balakrishnan 2012) mu'ltl-lnput single-output time 1 CGM Short No 12 children
series models
(Bremer & Gough 1999) Linear, non-linear, compartment 1 CGM 10, 30 min No Summary of
model papers
Non-linear state space model, NN,
Monte-Carl lized
(Briegel & Tresp 2002) onte-tar o.genera .|ze. . 1 CGM - No 1
EM(expectation maximization)
algorithm
(Chemlal et al. 2011) Fit high order polynomial, Log-
(Chemlal et al. 2010) normal and Weibull distribution, 2 - Short No -
) Learning algorithm
(Chernetsov et al. 2012) 20,40,60,80,
NN 1 CGM N 1
(Chernetsov et al. 2009) 100, 120 min °
(Daskalaki et al. 2012) AR, ARX, NN 1 CGM 30, 45 min No Virtual patients
30 healthy, 7
| ,
(Eren-Oruklu et al. 2009) AR, ARMA, forgetting factor 142 CGM 20, 30 min No glucose
intolerant, 25
type ll
(Eskaf et al. 2008) NN 1 CGM 30 min No 1
(Gani et al. 2009) AR 1 CGM <60 min No 9
(Gani et al. 2010) AR modelling universal models 1+2 CGM 30 min No Izirl)jrlt;r? +12
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Publication Prediction algorithm Diabetes Glycemic source: | Forecast period Algorithm Subjects
/technology type CGM or capillary tested ina
BG data clinical trial
Type 2:7
(Georga et al. 2012) Random Forests 1 CGM 15, 30, 60, 120 min | No 27
(Georga et al. 2013) Support Vector Regression 1 CGM 15, 30, 60, 120 min | No 27
(Hovorka et al. 2004) Physiologic-oriented model 1 CGM Up to 240 min No 15 cI|r'1|caI
experiments
(lancu et al. 2009) NN 1 CGM Short No 22 + 8 healthy
subjects
(Lu et al. 2011) AR 1+2 CGM 20 min No 34
(Mougiakakou et al. 2005) Hybrid model, compartment + NN 1 capillary BG Next measurement | No 1
(Otto et al. 2000) Neural network, fuzzy system 1 capillary BG Next measurement | No -
(Pappada et al. 2011) NN 1 CGM 75 min No 10
(Percival et al. 2011) multi-parametric model predictive 1 CGM 3h No 14 ertual
control patients
(Quchani & Tahami 2007) NN, MLP, Elman 1 capillary BG Long time No 10
28 datasets f
(Robertson et al. 2011) NN 1 capillary BG Next measurement | No AIDAa asets from
(Rollins et al. 2010) Block-oriented Wiener network 2 CGM NA No 1
(Shanthi 2012) NN 1+2 CGM 30, 45 60 min No 2 data sets
(Sparacino et al. 2007) AR 1 CGM Max 30 min No 28
(Stahl & Johansson 2010) Comblneq compartment system 1 CGM 20, 40, 60 min No 1
(glucose, insulin)
(Stahl & Johansson 2012) Comblnatlon'of multiple plasma 1 CGM Up to 60 min No Simulated 20
glucose predictors data sets
(Stahl et al. 2012) Bayesian combination of multiple | CGM 20,40,60 min No 12
plasma glucose predictors
(Valletta et al. 2009) Gaussian processes 1 CGM 25, 60, 240 min No 19
(Zainuddin et al. 2009) NN, W'avelet, principal component 1 capillary BG Next interval No 1
analysis
(Zecchin et al. 2012) NN 1 CGM Short No 9 + 20 simulated
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Publication

Prediction algorithm Diabetes Glycemic source: | Forecast period Algorithm Subjects
/technology type CGM or capillary tested ina
BG data clinical trial
(Zhao et al. 2012a) Latent-variable-based statistical 1 CGM 30 min No 7
method
(Zhao et al. 2012b) Multivariate statistical analysis 1 CGM 30 min No 26
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