
Bernd MALLE, BSc.
Mat.Nr. 0130547

GRAPHINIUS
A Web based graph exploration and

analysis platform

Master’s Thesis

to achieve the university degree of

Master of Science (MSc)

Master’s degree programme:

Software Development and Business Management

Supervisor:
Assoc. Prof. Dr. Andreas HOLZINGER

Institute for Information Systems and Computer Media
Graz University of Technology

Graz, May 2, 2016

This page intentionally left blank

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, 03.05.2016
Bernd Malle

3

This page intentionally left blank

4

Acknowledgements

First and foremost, I would like to thank my family, friends and colleagues for their
enduring mental and emotional support over the past several years while pursuing
my studies.

A special thank you also goes to my supervisor Prof. Andreas Holzinger, who
has not flinched when I changed the subject of my Master Thesis three times over
the past two and a half years.

Finally, I need to thank many students and professors I met while studying eco-
nomics at KF Uni Graz during the early 2000s. Without their continuous deterrent
this Master thesis in Software Development could never have come into existence.

5

This page intentionally left blank

6

Abstract

Graphs are a fundamental tool of mathematics and can be applied to a very diverse
field of modern scientific areas: network routing, social network & community anal-
ysis, image processing, even Anonymization of patient data or fraud detection via
belief propagation networks.

A relatively novel addition to that spectrum is the emerging field of computa-
tional biology, in which we can find protein-protein interaction networks, metabolics,
or connectome graphs. Since Biologists, Medical professionals or Privacy researchers
are usually no tech experts, an intuitive, GUI-based research platform could facili-
tate rapid experimental iterations. Graphinius aims to be such a Web-based, graph
theoretical platform offering real-time in-browser computations as well as tightly
integrated visualization, interaction, and manipulation of graphs.

In this thesis I will mainly introduce GraphiniusJS and its underlying design
principles; however, I am in the lucky position of already having guided the devel-
opment of a graph visualization library called GraphiniusVIS in the context of a
colleague’s Master’s Project.

Aside from presenting some real-world use cases I will also provide an outlook on
the whole, emerging Graphinius platform and its exciting capabilities for research
and education.

Keywords
Web based research platform, graph theory, graph visualization, graph mining, ma-
chine learning, data engineering, ML metrics, ML heuristics, algorithmic pipelines,
WebGL, interactive Machine Learning

ÖSTAT classification
1140 Software-Engineering

ACM classification
Software infrastructure

7

This page intentionally left blank

8

Kurzfassung

Graphen sind ein fundamentales, mathematisches Werkzeug und können in vielen
wissenschaftlichen Bereichen eingesetzt werden: Netzwerk routing, Soziale Netzwer-
ke, Bildverarbeitung sowie Anonymisierung von Patientendaten oder Betrugsanalyse
sind nur einige Beispiele.

Ein relativ neues Betätigungsfeld ist jenes der mathematischen Biologie, in wel-
cher wir Protein-Protein Interaktions-Netzwerke oder metabolische bzw. neuronale
Graphen vorfinden. Da Biologen, Ärzte und Datenschützer für gewöhnlich keine Ex-
perten in Programmierung sind, würde diesen eine GUI basierte Platform zur intuiti-
ven Berechnung von Graphen entgegenkommen. Dieses Ziel verfolgt Graphinius, in-
dem es eine Browser basierte Graphberechnungs, -interaktions sowie -visualisierungs
Plattform bereitstellt.

In dieser Diplomarbeit lege ich hauptsächlich die Kernbibliothek Graphinius-
JS und deren Designprinzipien dar; darüberhinaus hatte ich bereits die Ehre, ein
Masterprojekt zur Entwicklung einer integrierten Visualisierungsbibliothek names
GraphiniusVIS mitzubetreuen.

Nach der Präsentation dreier realistischer Anwendungsfälle und deren Ergebnis-
se, bildet ein Ausblick auf zukünftige Technologien und Potentiale für die weitere
Entwicklung von Graphinius den Abschluss dieser Arbeit.

Schlüsselwörter
Webbasierte Forschungsplattform, Graphentheorie, Graphenvisualisierung, Graph-
Auswertung, Maschinelles Lernen, Dateninfrastrukturen, ML Metriken, ML Heuri-
stiken, Algorithmische Sequenzen, WebGL, interaktives Machinelles Lernen

ÖSTAT Klassifikation
1140 Software-Engineering

ACM Klassifikation
Software infrastructure

9

This page intentionally left blank

10

Table of Contents

1 Motivation 17

1.1 Scientific motivation . 17

1.2 Engineering motivation . 18

1.3 Business motivation . 19

2 Introduction 20

2.1 What is Graphinius? . 20

2.2 The history of Graphinius . 21

2.3 How this thesis is structured . 24

2.4 Today’s Machine Learning / KDD approach 25

2.5 A Web based approach to benefit the world 27

3 Theoretical background / applications 29

3.1 Social networks . 29

3.1.1 Network recommendation analysis 29

3.1.2 The local sphere (idea) . 31

3.2 Graph based image processing . 34

3.2.1 Graph extraction . 35

3.2.2 Graph processing . 36

3.2.3 Graph visualization . 36

3.3 Anonymization . 37

3.4 Graph (social network) anonymization 39

3.5 Fraud detection . 41

4 The business case for Graphinius 43

4.1 Potential business models . 43

11

4.2 Potential business sectors . 44

4.2.1 Education . 44

4.2.2 Algorithm prototyping . 44

4.2.3 Community research platform 44

4.3 Remarks on potential competitor platforms 45

5 Graphinius as a platform 46

5.1 General Properties . 46

5.1.1 Online editor . 46

5.1.2 Build & mutate . 46

5.1.3 Save and fork experiments . 47

5.1.4 Distributable via (mini) URL 47

5.1.5 Example graph datastructures 47

5.1.6 Extendable algorithm DB . 47

5.2 Graph Properties . 48

5.2.1 Mixed mode graph . 48

5.2.2 Node and edge types (filters) 48

5.2.3 Object oriented . 49

6 Software Requirements & Survey 50

6.1 Preprocessing (compiling) JS Meta Languages 54

6.1.1 Javascript / ES6 . 54

6.1.2 Coffeescript (CS) . 55

6.1.3 Typescript (TS) . 56

6.2 CSS preprocessing . 57

6.3 Testing . 59

6.3.1 Jasmine . 59

6.3.2 Mocha / Chai . 60

6.3.3 Cucumber . 61

6.4 Automatic Documentation . 62

12

6.4.1 JSDoc & alternatives . 63

6.4.2 TypeDoc . 63

6.5 Build system for browsers / packaging 64

6.5.1 Browserify . 64

6.5.2 Webpack . 65

6.6 Task Runner . 65

6.6.1 Grunt . 66

6.6.2 Gulp . 67

6.7 Overview of technology choices . 68

7 Architecture / Implementation 69

7.1 Graphinius Base . 70

7.2 Graphinius JS . 70

7.2.1 Edges . 70

7.2.2 Nodes . 70

7.2.3 Graph . 71

7.2.4 Edge Generators . 71

7.2.5 Degree distribution . 72

7.2.6 Graph Traversal . 73

7.2.6.1 Breadth first search 74

7.2.6.2 Depth first search . 74

7.2.6.3 Best (priority) first search 74

7.2.7 Traversal-based algorithms . 75

7.2.8 Input / Output . 75

7.2.8.1 CSV Reader . 75

7.2.8.2 JSON reader . 76

7.3 The History system . 77

7.3.1 Timeline . 80

7.3.2 History Object . 80

13

7.3.3 Vocabulary . 81

7.4 Graphinius VIS . 81

7.4.1 WebGL rendering . 81

7.4.2 2D/3D Mode . 82

7.4.3 Navigation . 82

7.4.4 Graph Layouts . 82

7.4.5 Interaction / Manipulation . 82

7.5 Dependent Libraries . 83

7.6 Testing approach . 86

7.6.1 Unit tests . 87

7.6.2 Functional tests . 87

7.6.3 Mocks used for browser code testing 88

7.6.4 Stubs . 90

7.6.5 Spies (Sinon) . 91

7.7 Areas of Application . 92

7.8 Platform Services . 92

8 Implementation - Areas of Application 93

8.1 Manual editing (predefined structures) 93

8.1.1 Build a graph manually . 93

8.1.2 Load predefined graph and visualize 93

8.1.3 Run a BFS algorithm and visualize 94

8.1.4 Run a DFS algorithm and visualize 95

8.2 Graph extraction from images . 96

8.3 Anonymity: SaNGreeA . 98

9 Results 101

9.1 Size of the codebase . 101

9.1.1 GraphiniusJS . 101

9.1.2 Graph extraction demo code 101

14

9.1.3 Social network anonymization demo code 102

9.1.4 GraphiniusVIS . 102

9.2 Test coverage (just Graphinius JS) 102

9.3 Execution speed in various scenarios 103

9.3.1 Sample graph 1 . 103

9.3.2 Sample graph 2 . 103

9.3.3 Sample graph 3 . 103

9.4 Closing remarks about competitor libraries 104

10 Future Work 106

10.1 Parallel processing (CPU) . 106

10.2 Parallel processing (GPU) . 106

10.3 General processing / ML pipelines . 107

10.4 JSVM based grid computing . 108

10.5 Heterogeneous data linkage . 109

10.6 Meta machine learning . 109

10.7 Hyper heuristics . 111

10.8 Algorithmic recommender . 112

10.9 Interactive Machine Learning . 112

11 Conclusion 114

List of Figures 115

List of Listings 116

References 117

A Anonymization Table 122

B GraphiniusJS API 129

15

1. Motivation

Choosing a suitable topic for a Master’s Thesis is not a readily decided matter. On
one hand a student desires to show some insight into contemporary and maybe even
complex problems, but on the other hand the task has to be achievable within a
certain timeframe. The project should be theoretical enough to be of interest even
for professors while at the same time (at least in Software Development) be practical
enough to remaining motivating to the student. In the case of this Thesis I tried to
combine scientific and engineering aspects into a project which could be expanded
in future endeavors while keeping it sufficiently self contained to represent a work
of its own.

1.1 Scientific motivation

Having been a member of the HCI-KDD.org group for over 2 years now, I have de-
veloped a genuine interested in graph theory, machine learning, HCI as well as their
applications in modern information systems - not least in the context of biomedical
applications. Although finalizing my Master’s study at a relatively advanced age,
I am still open to pursuing a PhD in those areas. Therefore, it seemed logical to
tackle some problems related to those fields; however significant progress in such
matters are not easily achieved even by professional scientists, leave alone a single
MSc student on a deadline.

For this reason I intended to contribute to the future work of Professor Holzingers
Team by concerning myself with scientific matters without the pretension of being
capable of improving on complex research efforts. As a result, I built on work
already conducted in myMaster’s project by underpinning it with a more general and
expandable Software architecture. Assisting (data) scientists by providing a better
underlying infrastructure to accelerate their experimental iterations and making
demanding processing steps available to researchers outside the field of computer
science or software development, has been dubbed ’data engineering’ over the recent

17

years (Lorica, 2013a).

Popular projects like Apache Hadoop or Spark, Google’s recently released Ten-
sorFlow and many other, more specialized clowd-based research platforms, fall under
this category - albeit they boast very different properties and advantages and are
therefore suitable for different, although overlapping, use cases. The Graphinius
library (and future platform) presented in this thesis is unique in the sense that it
allows computations directly on the client, but without requiring any installation,
by utilizing a piece of software contained in any browser - the JavaScript virtual
machine (JSVM).

1.2 Engineering motivation

As a student of Software Development and Business Management the two aspects
of modern software architectures and their repercussions on the next generation
of business models are fascinating and of great importance to me. Especially the
emergence of powerful JavaScript virtual machines in modern browsers as well as
access to the GPU from inside the browser sandbox open up new opportunities
for startup companies in many fields that were hitherto restricted to conservative
Software Development paradigms. Physics simulations, graph theoretical machine
learning tasks, the visualization and manipulation of complex data structures as
well as console games can now be implemented on a general, ubiquitous platform
without much loss of performance or usability. In the field of traditional Web ap-
plications, servers can act more and more as simple database-abstracting backends
with near-zero computational and scalability requirements - especially if combined
with cheap, global content delivery networks. Several factors on the other hand, like
1) handing much of the business logic over to the client side, 2) an ever increasing
complexity in cooperation between backend services, as well as 3) emerging stan-
dards like websockets (enabling realtime communication through publish/subscribe
over traditional networking architectures) put new challenges to a guild of developers
used to mainly write server-side code such as Java, PHP or Ruby on Rails.

As a consequence, the following thesis is an attempt at merging my scientific
curiosity with my drive towards new, exciting Software Development methodologies
into a working, expandable prototype of a future Web based graph exploration,

18

analysis & research platform. I am glad if I was partially able to live up to that
goal.

1.3 Business motivation

Many people in our time might be disconcerted about today’s frantic pace of devel-
opment and progress in all areas related to science and engineering. To the flexible,
energetic, ambitious and well-educated mind however, those same processes hold
great promise for personal development, career opportunities and entrepreneurship.
Especially in the field of Web-based software development, it has never been easier
to achieve business success and acknowledgement than today. Supported by a tech-
nology infrastructure that is easy to use, easy to scale, powerful and at the same
time elegant to handle (not to forget exceptionally affordable), the modern web de-
veloper is always but one good idea away from potentially founding the ’next big
thing’.

On the other hand, as opportunities are to be found everywhere, developers
from all over the world are eager to jump on the newest trends, may they be social
or mobile or virtual. In this setting, it becomes ever more important to combine
programming knowledge with scientific and economic competency.

The successful software platform of the future will, in my humble opinion, consist
of three distinct pillars: 1) A real-time Web based communication platform, 2) Ma-
chine Learning capabilities, especially smart recommendations based on insights into
personal behavior and goals), and 3) Compelling interactive visualization. Based on
this insight and the fact that almost any modern system exhibits network character-
istics, I am motivated to develop Graphinius either into its own platform covering
all three areas mentioned above, or into one powerful client-side graph component
driving a larger system as described in Section 3.1.2.

19

2. Introduction

The following sections shall give a brief introduction into how and why project
Graphinius came into existence, what challenges we want to tackle building it, as
well as the general objectives and potential new applications it might enable or make
feasible in the future.

2.1 What is Graphinius?

Graphs are a fundamental tool of mathematics and can be applied to a very diverse
field of modern scientific areas: network routing (information, traffic, logistics),
social network / community analysis, image processing, NLP operating on graphs of
document spaces and topic clusters as well as fraud detection via belief propagation
networks (all of the mentioned and a few others will be described in Chapter 3).

A relatively novel addition to that spectrum is the emerging field of computa-
tional biology, in which we can find PPI, metabolics, or connectome graphs. Since
Biologists, Medical professionals as well as Health-Science or Privacy / Data Se-
curity Researchers are usually no tech experts, an intuitive, GUI-based research
platform could facilitate rapid experimental iterations. Graphinius aims to be such
a Web-based, graph theoretical platform offering real-time in-browser computations
as well as tightly integrated visualization, interaction, and manipulation of graph
structures.

In this thesis I will mainly introduce GraphiniusJS and its underlying design
principles; however, I am in the lucky position of already having guided the de-
velopment of a graph visualization library in the context of a colleague’s Master’s
Project. This WebGL / Three.js based library called GraphiniusVIS uses low-level
datastructures and concepts, enabling it to visualize up to 15k nodes / 40k edges
fluently (25 FPS) inside a web browser even on middle-class laptops. I will also
provide an outlook on the whole, emerging Graphinius platform and its exciting
capabilities for research and education.

20

2.2 The history of Graphinius

When I met Andreas Holzinger in November 2013 he presented me with a ’crazy’
idea: To analyze dermatological images not by traditional image processing meth-
ods, but by first transforming them into a graph structure and subsequently apply
graph mining algorithms with the goal of obtaining results at least comparable to
the quality achievable as of date. My first experiments in what I came to term
graph extraction from images were conducted in Matlab and progressed rather mod-
estly; being a developer used to employ C-style programing languages and Object
oriented paradigms, Matlab seemed a peculiar (and very costly) way to perform spe-
cific, handwritten algorithms which did not lend themselves especially well to matrix
representations and calculations. Moreover I was concerned with the fact that even
if I succeeded in doing a great job in extracting usable graphs (and it wasn’t even
clear what that meant) I would not easily be able to share my work with colleagues
outside the research community. Providing C++ / Python or Java Code in a Github
repository for developers having working installations of those environments to re-
produce, is standard by today. Installations of Matlab (or Octave with specific
add-on packages installed) however are not very widespread. Furthermore, in case
my results turned out to be interesting to the public, any live demonstration of the
software on unprepared systems would be clearly impossible.

After years of having utilizing Web based technologies and continuously research-
ing new frameworks and improvements in that area, it seemed to me that if a docu-
ment suite (Google Docs, Office365) could be implemented in JavaScript (and even
more demanding projects like an entire virtual box inside the browser (Bellard,
2015)), the time might be ripe to apply modern JavaScript Engines to the task of
graph extraction and processing too. Despite my expectations Professor Holzinger
did not have any objections and I was given green light to develop a prototype.

This early work was focused purely on extracting graphs out of images without
additional processing steps or subsequent graph analysis. Because I had to imple-
ment mathematical algorithms, I decided on using TypeScript, a typed superset of
JavaScript for the development process; no frameworks or numerical libraries were
used. Within a little more than a month, I had an example website up and run-
ning which could load images into a canvas, segment them by either a Watershed or

21

a Kruskal-based region merging algorithm and extract a graph from the label im-
age; the results are available at http://berndmalle.com/graphext and have partly
been published in Holzinger, Malle, and Giuliani, 2014. As far as performance was
concerned, our crude and unoptimized JavaScript implementation fell just a little
short of a comparable algorithm in Matlab, with great upward potential for using
in-browser optimizations or even GPU-accelerated processing.

Of course there were downsides too - JavaScript engines are naturally single-
threaded even in 2016, so long-running, intense computing tasks tend to block other
functions. This is even true for other Browser-intern modules like the rendering
engine or input event handling, so that the whole user experience is severely di-
minished when conducting excessive operations. However, a possibility to avert this
behavior is the usage of Web Workers which have been introduced as a working draft
as early as 2009, but until recently haven’t been widely supported. Also, possible
downsides to their usage in situations where large datastructures need to be copied
from the main thread to a worker (and back) have to be considered. More interest-
ingly though, it became clear rather soon that implementing our suite of algorithms
as a Web based platform would bring with it several major advantages over tra-
ditional software approaches: amongst others are 1) easy reproducibility, effortless
scalability and online meta machine learning opportunities; all of those advantages
will be discussed in detail in subsequent chapters.

Building upon those insights Professor Holzinger and I came up with a project
called iKNOdis.net - Interactive Knowledge Discovery in Networks - which was de-
signed to cover the whole processing pipeline from image preprocessing over graph
extraction to graph analysis and result visualization. In the process of defining
those modules it became clear that alternative algorithms at the same stage in the
processing pipeline would have to be interchangeable so that other developers could
contribute new algorithms to a common algorithmic database. This in turn would
benefit all users of the platform who would be able to apply ’community’-contributed
algorithms to their own problems (and at their own peril). The originally proposed
iKNOdis.net architecture can be seen in Figure 2.1.

In the process of creating an FWF proposal out of iKNOdis, the project was split
into two separate endeavors in order to make them amenable to independent, smaller
funding efforts as well as enabling separate groups of developers to work on their

22

http://berndmalle.com/graphext

Figure 2.1: Former project iKNOdis architecture overview
Whereas iKNOdis.net was meant to be used exclusively for image processing via graph-
theoretical approaches, we broadened the idea of application areas while reducing the aim
for specific scientific advances in image processing. The result is a Web-based, graph-
theoretical processing platform whose base functionality (an in-browser graph library
called GraphiniusJS) as well as visualization capabilities (GraphiniusVIS) are the main
subjects of the Master Thesis at hand.

respective areas of interest. This resulted in the formation of project Graphinius cov-
ering all graph-theoretical aspects and basic data-engineering infrastructure Lorica,
2013a by providing a Browser based graph processing and visualization platform.

As a side-effect, Graphinius follows no specific research goal itself; we rather
envision it as a future engineering infrastructure for data scientists, may they concern
themselves with Machine Learning, Biomedical applications or any other field. This
mental ’expansion’ to a diverse set of interesting areas of application is reflected
by an in-depth discussion of several potential candidates in Chapter 3 as well as 3
different demo applications described in Chapter 8.

23

As evolution (of ideas) never stops, there are already new ideas springing up
concerning the future of Graphinius - the most obvious one regarding a spin-off
company providing the platform as a hosting service for the community - such a
startup could profit from several different advantages over its competitors. Second,
GraphiniusJS alone (without integration into the larger platform) could power web
applications of the future (see Section 3.1.2), enabling graph-based recommender
systems for social networks that could be truly organized as peer networks - without
or with only a minimal server infrastructure.

2.3 How this thesis is structured

The rest of this chapter is composed of a short description of how scientific computing
/ machine learning tasks are handled today. We will explore the benefits individual
users as well as the whole research community could derive from conducting exper-
iments on such a platform; therefore we have to outline potential properties and
focal points of the proposed technology.

In Chapter 3, Theoretical background / applications we are introducing different
potential areas of application for Graphinius. The reader will notice that practically
all of the fields discussed may be of interest to researchers outside the ’hardcore’
Machine Learning or Data Science communities.

Chapter 4 deals with possible economic opportunities involving the Graphinius
platform and its conceivable business model, and will discuss some potential com-
petitors.

An outline of the basic functionality of Graphinius will be given in Chapter 5,
comprising technical features, graph-theoretical design decisions as well as handling
characteristics important to its users.

The modern web development process will be discussed in-depth in Chapter 6,
where we will become acquainted with a set of requirements for modern Web based
software and then go on to explore suitable technologies in each category and com-
pare them to one another. At the end of this chapter, we will have all the tools in
our hand to start building Graphinius.

I will go into details about the project implementation in Chapter 7, introducing

24

each relevant subsystem in sequence, pointing out its role in the larger context and
explain how and why it was built the way it was built.

In Chapter 8 the reader will find three demo applications that have been imple-
mented on top of Graphinius as a proof of feasibility of the platform. I will introduce
some specific (mathematical) background knowledge and provide the sample results
obtained using Graphinius.

Chapter 9 will provide some structural as well as performance metrics about the
Graphinius (JS) library and (proudly) present the test coverage achieved as of the
date of this writing.

Taking a look into the future in Chapter 10, we will discuss some promising new
concepts and technologies which hold great potential for the advancement of any
Web based, community-oriented research platform.

I will finish this thesis with a summary and conclusion in Chapter 11, and give
some additional information about anonymization outputs in Appendix A and pro-
vide the whole Graphinius API as of the time of this writing in Appendix B.

2.4 Today’s Machine Learning / KDD approach

When i was taking the famous Machine Learning MOOC tought by Prof. Andrew
Ng from Stanford University on Coursera in 2013, one story he conveyed during a
section on optimizing Machine Learning Pipelines had especially caught my atten-
tion. As a specialist in high demand Prof. Ng is frequently consulting for Silicon
Valley companies in matters of Machine Learning and Artificial Intelligence. On
one of these occasions, the client company had been trying to optimize their ML
pipeline for the better parts of 2 years without any significant improvements in
their results. After looking at the different stages of their pipeline and conducting
a so-called ceiling analysis, Prof. Ng concluded that two developers had spent 18
months on optimizing their background separation algorithm while the most signif-
icant potential for improvement really lay in a latter stage of the process. Based on
this analysis the company was able to remedy the shortcomings in a relatively short
period of time.

This incident shows how much effort is potentially squandered by trying to imple-

25

ment sophisticated algorithms within isolated teams in a non-standardized fashion:
Proprietary approaches - both in technology as in methodology - hinder the exchange
of information with other members of the research community, thus opening up vul-
nerabilities to making mistakes which could have easily been avoided by considering
the experience of other professionals. The following properties of data analysis /
ML projects seem to give rise to such vulnerabilities:

• Isolation. Working on common machine learning problems in isolated teams
without communication makes comparison of approaches as well as results un-
necessarily hard. Dealing with errors at any stage of the algorithmic pipeline
takes more effort than necessary due to a lack of reference values, while achiev-
ing superb results has little to no effect on the potential of other projects.

• Proprietary Software. Countless professionals prefer developing data anal-
ysis pipelines in highly proprietary software environments like Matlab or Math-
ematica. This prevents an influx of solid, community-tested algorithms while
preventing others from gaining knowledge acquired in such organizations (as
long as they are unwilling to pay horrendously for the software).

• Irreproducibility. As unpublished code cannot be perfectly reverse engi-
neered, experiments conducted in isolation can’t be easily corroborated. This
might be advantageous with respect to product development and patent pro-
cedures, but is usually detrimental to the efforts of researchers trying to get
published and spreading their insights.

• Lack of scalability. Last but not least, heterogeneous and highly customized
data processing pipelines might not lend themselves well to parallelization,
which might prevent the use of such algorithms on quickly expanding datasets.

This leads us to the insight that a readily available (no complex setup or con-
figuration), public and open source, standardized and scalable infrastructure which
promotes the cross-fertilization of ideas and insights from individual experiments,
would form the ideal model of a future, successful Machine Learning platform (graph-
theoretical or otherwise).

26

2.5 A Web based approach to benefit the world

Over the past several years, many platforms have emerged in the realm of data
engineering, providing means for researchers and data professionals to easily learn,
deploy and scale machine learning models Lorica, 2013b. The greatest disadvantage
of those platforms however, is that they all target the tech-savvy programming
experts and experienced system administrators. While this may not be a problem
for core ML researchers and programmers, it presents a serious obstacle to experts
in the Life Sciences etc.

Second, most modern frameworks allow for the setup of huge and very efficient
clusters on a hardware / filesystem virtualization level. They do not provide built-in
community networking functions, however, which could bridge the experience gap
between disciplines (e.g. via hyper heuristics) or allow for easy reproducibility of
results. The following list shall give a short overview of potential advantages of the
Graphinius Platform:

• Ease of access. With configuration and loading of binaries happening au-
tomatically from the outside, barely any costs for technical configuration and
conducting experiments arise.

• Effortless scalability As users of the platform provide their own computing
power via their browsers, the server role can initially be reduced to that of a
static document server / database server.

• Automatic grid potential. As browsers were intended to always be con-
nected to a larger network of computers, and 2-way communication via Web
Sockets has recently become commonplace, we can imagine the JavaScript Vir-
tual Machine (JSVM) as a natural node of a dynamic virtual grid computer -
akin to a client node in Berkeley’s BOINC framework (Seti@Home).

• Centralization of experiment meta data. As code and configuration will
be stored and transmitted by a Web servers anyways, nodes will be able to
send descriptions of conducted experiments back to the servers for storage and
evaluation. Given enough participants on the platform, this would lead to the
formation of ML meta knowledge, as to which algorithms in what sequence

27

would perform best given some inputs and specified problem class (prediction,
description, ...).

• Hyper Heuristics are a way of selecting or configuring algorithms by search-
ing a space of lower level heuristics instead of searching the solution space
itself. Hyper heuristics are different from Meta Learning in that they work
independent of the problem domain and therefore promise to be generally ap-
plicable; the challenges lie in producing algorithms with a good overall runtime
behavior - therefore, meta-data about diverse experiments are required.

• A Pipeline recommender with the ability to automatically instantiate and
execute the recommended (sequence) of algorithms could be built upon this
knowledge, which would further enhance a researcher’s capacity to conduct
more experiments faster, potentially leading to an increase in frequency or
quality of scientific output.

• Instant deployment. In traditional scientific programming, there is a large
gap between developing a model suitable for a specific research question and
actually deploying it in a production environment (Lorica, 2013c). Being Web
based, Graphinius’ development and production environment are one and the
same, reducing the deployment procedure to posting a link to an experiment
(for scalability, see above).

• Reproducibility / Corroboration of results This follows naturally con-
sidering the previous aspect, as clicking on a published link to an experiment,
automatically downloading its code to one’s browser and pressing the start
button is really all that is needed to run a colleague’s latest experiment on
one’s own computer.

• Great visual capabilities. Although there exist great visualization toolk-
its for many of the data science platforms out there today, the sheer mass of
2D and 3D libraries running in the browser enable completely new ways to
demonstrate, interact with, and even manipulate results in real time. More-
over, exchanging of ’live’ results (via simple bookmarks) instead of ’dead’
graphs (in scientific papers) would soon become standard amongst members
of such a community.

28

3. Theoretical background / applications

As graphs occur almost everywhere in reality (physics, chemistry, biology, society
etc.) there are obviously countless opportunities for applying graph theoretical
models to problems that were either graph-related from their inception / formulation
as well as to cross-disciplinary challenges. The following is a microscopic selection of
contemporary opportunities to apply graph theory to interesting problems - in areas
that the author believes could be suitable to in-browser exploration and processing,
thereby presenting ideal incentives for the development of Graphinius.

3.1 Social networks

Social networks are today’s natural candidates for graph based algorithms, as they
have been rising to power and fame over the previous decade and a half. Of course
most social graphs in use today are far too big for any client or server side appli-
cation to handle, and are therefore only interesting to programmers and architects
of database clusters, high performance grid-computing developers and data-center
engineers. Because of this, I am going to confine myself to the topic of local sphere
recommenders, where I believe small graph computing to be able to have some real
world influence. In order to get to this point, we will first need to take a look at the
shape and size of typical recommendation processes (themselves forming subgraphs
of larger networks), which in the following section will be termed ’cascades’.

3.1.1 Network recommendation analysis

Leskovec, Singh, and Kleinberg (2006) have examined recommendation networks
crystallizing from purchases based upon previously received product recommenda-
tions. In order to do this, they employed an online shopping system observing the
product categories of DVDs, Music, Books and Videos (VHS). Users of that system
were modelled as nodes in a graph, with the graph initially being completely uncon-
nected. In this system people who bought a product (and only actual purchasers)

29

were able to recommend the bought product to as many people as they wanted via
email; this resulted in a temporary recommendation edge added between the two
(user) nodes. This edge was then handled according to the following two criteria:

1. Recommendations received after a product was already bought by the receiving
person were immediately deleted.

2. Recommendations received which did not result in the product being bought
(during the observational period) were also deleted.

This procedure resulted not in a graph comprising all of the users and products
bought throughout the system, but only a collection of - fragmented - subgraphs
representing the recommendation cascades. The main question of the study then
was to the size distribution of those cascades w.r.t. their count, and if properties of
the original social network (e.g. density, degree distribution) had any influence on
that distribution.

A second point of interest concerned the isomorphism classes of cascades, mean-
ing their shape and size similarity. Therefore, a similarity measure had to be es-
tablished, as the graph isomorphism problem is NP-hard and therefore impractical
to use on a real-world study. This is why exact isomorphism matching was only
used on cascades up to a graph size of 9 nodes; above that a graph signature was
computed including singular values (via SVD) of the graph adjacency matrix up to
a size of 500 nodes. Above that, the signature only consisted of the number of nodes
and edges as well as a histogram of in- and out-edges per node (degree distribution).
The relation between cascade amount and size can be seen in Figure 3.1 on page 31.

The results of this study after a two-year period can be summarized as follows:

• The largest cascade (which also form connected components) accounted for
less than 2.5% of all nodes.

• Cascades did not only come in the form of trees (snowball effect) but form
arbitrary graphs with splits, collisions as well as cycles.

• Splits are more common than collisions, however (as one would expect).

30

• The frequency of a cascade type (as computed by graph isomorphism) is not a
strict monotonic function of cascade size, which points to the recommendation
propagation process to be influenced by more subtle factors of the underlying
social graph than just the network structure alone.

• Most cascades observed exhibited fewer than 9 nodes (with the exception of
DVD recommendation cascades) and were of very small degree (just a little
over 1 according to the visual representation found in the paper

Figure 3.1: Size distribution of recommendation cascades for four product
categories

This diagram was taken from (Leskovec, Singh, and Kleinberg, 2006), page 7.

The above analysis holds several insights which in combination lead to a remark-
able conclusion:

1. The cascades presented in the paper represent only ’successful’ recommenda-
tions, i.e. the ones which receivers perceived as valuable enough to actually
buy the product.

2. The goal of any recommender algorithm (regardless on which item space it
operates) is to produce exactly such valuable recommendations.

3. Because most cascade sub-graphs were of very small size and degree, ’success-
ful’ recommendations can be assumed to originate from places in the direct
neighborhood of a node.

3.1.2 The local sphere (idea)

The concept of a local sphere and computations applied to it comes from the author’s
(possibly incorrect, but natural) insight that the relevance of recommendations be-

31

haves as a function of node vicinity:

• Lets call the whole social graph and all interactions in it the ’global sphere’.

• Recommendations to users are then computed over the global sphere, which
takes an amount of resources exponential to the size of the underlying graph.

• Let’s further assume that 95% of all relevant (accepted) recommendations in
a social network like facebook are those that are derived from the immediate
local neighborhood of a node (less than 2 degrees, see section above..)

• This assumption is corroborated by the fact that two degrees are also what
Facebook allows programmers (as of 2013) to query via their graph API from
any authenticated user, apparently in an effort to prevent automatic traversal
/ exploration of their most valuable business asset.

• Let’s call this immediate local neighborhood the ’local sphere’

Now let’s also consider how modern publish/subscribe based frameworks (like
Sails, Meteor, Hapi or Derby, only to mention some JavaScript libraries) handle
data communication between server and client:

• The server offers some subscriptions on it’s data, usually limiting access to
items based on identity, authorization or user role provided by the client.

• The client defines some subscriptions on server-side data collections (tables),
representing the client’s wish for information regardless of it’s status or au-
thority.

• Publication as well as subscription can be seen as a mathematical subset of
all the data in the database.

• An algorithm inside the respective framework resolves those (potentially con-
flicting) interests by computing the intersection set of the data provided /
requested.

• The intersection data set is then pushed to the client (in our case the browser)
as soon as it becomes available or is updated, which makes this model ideal
for real-time interaction and communication between clients.

32

• The sum total of all the data pushed to the client is equivalent to the ’local
sphere’ we described earlier - HOWEVER - their inherent graph structure is
lost during the transmission, so that the client can only see them as isolated
fragments without context.

The combination of those two ideas now enables us to envision the following
scenario:

• Instead of interpreting all data items in the local sphere as isolated entities,
we retain their graph structure enabling the client to gain hitherto unachieved
knowledge and insights into its already available data.

• We therefore need a graph library in the browser, not only to represent the
local sphere graph, but also to analyze it in order to take intelligent actions
that were previously reserved for the server-side (data center) infrastructure.

• No complex graph partitioning algorithm on the server is necessary, as we can
use the natural set contraints inherent in any web application:

– e.g. in a social network, the client will have access to all its immediate
friends, social activities and interest groups

– in a project management tool, the client naturally has access to the data
of all team members, to-do lists, milestones, resources etc.

If our 95%-relevance assumption mentioned earlier holds, we can achieve great
scaling efficiency by introducing the local sphere concept:

– the client can immediately perform computations like recommendations
on the subgraph of the local sphere.

– only recommendations accepted will have to be stored on the server (that
is, cause additional network traffic).

– the client is easily able to recompute the relatively small local graphs
in real-time, offering responsiveness far beyond today’s best (server-side)
infrastructures.

– as modern web frameworks transport all of the required data into the
client store anyways, we do not add extra complexity to our servers and
databases.

33

• On the other hand, questions of data security / privacy will have to be dealt
with, as we are talking about preemptively filling the client memory with
possibly otherwise unnecessary or superfluous data.

Figure 3.2: Local sphere projected from the global sphere

Only a very small portion of the global graph is actually visible from any connected client.
The sum of all viewable items however, if properly conveyed to the client (i.e. with their
connection information preserved), could form a subgraph of the whole network called the
’local sphere’, which would allow the browser to utilize the underlying graph structure to
extract hidden knowledge and perform graph computations on its own.

Needless to say, GraphiniusJS would be an ideal candidate to explore this con-
cept further and could, if used appropriately on carefully modeled local spheres,
enable start-ups to compete with much larger companies employing complex and
very expensive machine learning infrastructures.

3.2 Graph based image processing

The overall goal of working with images using graph theory contains 3 different
aspects: 1) Extracting graphs out of images, thereby laying the groundwork for
applying the wealth of graph theory to a hitherto different problem domain, 2)
Actually processing the resulting graph with appropriate methods in order to achieve

34

usable (interpretable) results, and 3) visualizing every step of the pipeline, thereby
enabling researchers and domain experts to learn valuable lessons from new methods
applied. Figure 3.3 illustrates how a prototypical workflow could look like.

Figure 3.3: Graph based image classification example

1) a laser scan image of a nevus is oversegmented and 2) a graph extracted by interpreting
region centroids as nodes and region adjacency as edges. 3) A belief propagation algorithm
is applied to the resulting graph yielding 2) a converged state representing the nevus
classification as benign or malignant.

3.2.1 Graph extraction

In the attempt to extract graphs out of images, aside from traditional image segmen-
tation approaches (Felzenszwalb and Huttenlocher, 2004), there have been methods
proposed for constructing object graphs from images, e.g. (Lee and Grauman, 2012).
As for the task of merging several extracted graphs into one, we might build upon
the work of (Schneevoigt, Schroers, and Weickert, 2014), in which they propose a
3-step pipeline for the reconstruction of 3D objects from 2D image structures by
solely utilizing dense methods of correlation analysis (global energy features instead
of sparse local feature vectors. For purposes of the latter, (Demetz, Hafner, and
Weickert, 2013) proposes a new local descriptor called Complete Rank Transform
which is morphologically as well as illumination invariant, while containing a max-
imally possible amount of information (Bobylev and Rjasanow, 2014). It would be
interesting to see if those methods can also be applied to graphs while still retaining
sufficient feature information. Moreover, any point cloud data (Holzinger et al.,
2014) could be interpreted as graphs by enriching them with connections in order
to form networks.

35

3.2.2 Graph processing

Lee and Grauman, 2012 propose to conduct object recognition based on pre-existing
models of known object primitives and to construct object graphs in order to infer
global scene understanding from local information.

Another way is to see graphs extracted from image sources as topographic maps.
On such "landscapes" autonomous multi-agents (Kasaiezadeh and Khajepour, 2013)
(Olfati-Saber, Fax, and Murray, 2007), e.g. ant-robots (Wagner and Bruckstein,
2001) could explore the terrain and leave markings on interesting spots.

From the field of topology, (Cerri, Fabio, and Medri, 2012) describe a method of
shape comparison based on Topological Persistence utilizing Persistence Diagrams -
collections of shape descriptors - and computing a distance function between them,
while (Di Fabio and Landi, 2012) applies this idea to shape retrieval by showing
partial similarity of such descriptors.

3.2.3 Graph visualization

As far as visualization is concerned, Graph layouts have been often applied, but
because of the scale and complexity of real world data, these layouts tend to be
dense and often contain difficult to read edge configurations (Herman, Melançon, and
Marshall, 2000). Much previous work on graph layouts has focused on algorithmic
approaches for the creation of readable layouts and on issues such as edge crossings
and bends in layout aesthetics (Purchase, 1997). As an algorithm designer, the
decision whether or not to preserve the mental map is more dependent on the tasks
likely to be performed by users than previously assumed, however, much further
experimentation is needed (Archambault and Purchase, 2013; Stahl et al., 2013).

In the context of Graphinius (VIS), an additional question presents itself in
the form of 3D visualization of large data structures, especially since most layout
algorithms to date are specifically limited to 2D projections.

36

3.3 Anonymization

The amount of patient-related data produced in today’s clinical setting poses many
challenges with respect to collection, storage and responsible use. For example, in
research and public health care analysis, data must be anonymized before transfer,
for which the k-anonymity measure was introduced and successively enhanced by
further criteria like L-diversity, T-closeness as well as delta-presence (the latter of
which is used to model the background knowledge of potential attackers).

Taking a look at Figure 3.4 will help the reader in understanding the original
(tabular) concept of anonymization: Given an input table with several columns, we
will probably encounter three different categories of data:

• Personal identifiers are data items which directly identify a person without
having to cross-reference or further analyze them. Examples are first and
last names, but even more so an (email) address or social security number
(SSN). As personal identifiers are dangerous and cannot be generalized (see
Figure 3.5) in a meaningful way (e.g. one could generalize the address field,
which would only result in some kind of Zip code), this category of data is
usually removed. The table shows this column in a red background color.

• Sensitive data, also called ’payload’, which is the kind of data we want to
convey for statistics or research purposes. Examples for this category would
be disease classification, drug intake or personal income level. This data shall
be preserved in the anonymized dataset and can therefore not be deleted or
generalized. The table shows this column in a green background color.

• Quasi identifiers, colored in the table with an orange background, are data
that in themselves do not directly reveal the identity of a person, but might be
used in aggregate to reconstruct it. For instance, (Sweeney, 2002) mentioned
that 87% of U.S. citizens in 2002 had reported characteristics that made them
vulnerable to identification based on just the 3 attributes zip code, gender
and date of birth. But although this data can be harmful in that respect, it
might also hold vital information for the purpose of research (e.g. zip code
could be of high value in a study on disease spread). The solution - and this

37

is the actual point of all anonymization efforts - is to generalize this kind of
information, which means to lower its level of granularity. As an example,
one could generalize the ZIP codes 41074, 41075 and 41099 to a generalized
version 410**, as shown in Figure 3.6.

Figure 3.4: The three types of data considered in (k-)anonymization

As described in (Ciriani et al., 2007), k-anonymization requires that in each data
release every combination of values of quasi-identifiers must be identical to at least
k−1 other entries in that release, which can be seen as a clustering problem with each
cluster’s (in the context of anonymization also called an ’equivalence class’) internal
quasi-identifier state being identical for every data point. This can be achieved via
suppression and generalization, where suppression means simply deletion, whereas
in generalization we try to retain some usable value.

The process of generalization works through a concept called generalization hi-
erarchies, which form a tree whose root denotes the most general value available
for a data category (usually the ’all’ value) and then branches to more and more
specific occurrences, with its leafs representing the set of exact, original values (see
Figure 3.5). In generalizing some original input value, one traverses the tree from
the leaf level upwards until a certain prerequisite is fulfilled. Usually, this prerequi-
site comes in the form of the k-anonymity requirement, so that we want to find a
group of other data rows (=vectors) whose (generalized) quasi identifiers match the
data point being processed.

Each level of generalization involves a certain cost in information loss though,
which means we do not just want to construct our clusters in any sequence possible,
but minimize the overall information loss. This makes k-anonymization an NP-hard
optimization problem (because of an exponential number of possible generalized
quasi-identifier combinations), leaving us to conclude that the k-Anonymity problem
is to lose as little information as possible in a dataset while ensuring that the release

38

Figure 3.5: Example of a typical generalization hierarchy
taken from (Aggarwal et al., 2005)

(the anonymized, publishable version of the dataset) satisfies the k-anonymization
criterion (Aggarwal et al., 2005).

Figure 3.6: Tabular anonymization: input table and anonymization result

3.4 Graph (social network) anonymization

The whole last sections would have been out of place in a thesis regarding a graph
platform and library, as it holds no direct references to graph computations. How-
ever, as social networks have gained huge popularity over the previous decade, and
even modern medical databases come in the form of graph structures, the question
of how to efficiently anonymize networks has gained ever more significance over the
years.

As a start, one could see a graph just as a collection of nodes, where each node
contains some kind of feature vector, akin to the row in a data table. Adopting that

39

view, we could be tempted to simply ignore the existence of edges and apply some
kind of algorithm suitable to the anonymization of tabular data. The main problem
with this however lies in the fact that the structural environment of a node (the
constellation of its neighbors within the greater network) provides some additional
information. That is, even if we successfully (k-)anonymize the feature vectors of a
graph according to the methods found in the previous chapter, we still run the risk
of leaving to much information in the form of a known local subgraph structure.

Consider Figure 3.7 for example, in which the nodes of a graph have already been
k-anonymized into groups of size 3 and 7, respectively. In this figure, local subgraphs
b) and c) are actually (3)-anonymized, because as each node has the exact same local
neighborhood structure, the additional information of a node possessing a degree of
0 (or 2) is of no additional value. For local subgraphs a) and d) on the other hand,
the additional information of a node being of degree (x) has the potential to reveal
its identity, as it is not indistinguishable from its neighbors within the equivalence
class any more.

Figure 3.7: Local subgraph neighborhoods as additional anonymization ob-
stacle.

(Example taken from Campan and Truta, 2009.)

Several methods have been proposed to make re-identification of nodes in anonymized
social graphs harder. Chester et al., 2011 for example introduce the idea of vertex
addition to labeled and unlabeled datasets. While an algorithm on the former re-
mains NP complete, they provide an efficient (O(nk)) algorithm for unlabeled data.

40

Experimenting on several well known datasets, they show that commonly-studied
structural properties of the network, such as clustering coefficient, are only minorly
distorted by their anonymization procedure.

The authors of (Kapron, Srivastava, and Venkatesh, 2011) take the approach of
adding edges to an edge-labeled graph like the Netflix movie database (with users
and movies being nodes and edge weights representing movie ratings). They define
tables as bipartite graphs and prove NP-hardness for the problems of neighborhood
anonymity, i-hop anonymity and k-symmetry anonymity.

Campan and Truta, 2009, whose local subgraph problem we already encountered,
proposed a solution in the form of a greedy clustering algorithm which takes into
account not only the information loss incurred by generalizing features of nodes, but
also introducing a structural loss function based on the local neighborhood within an
equivalence class (and between them). The author of this thesis implemented that
approach utilizing GraphiniusJS and will demonstrate the algorithm in Section 8.3
as well as the anonymized results in Appendix Section ??.

3.5 Fraud detection

Anomaly detection via belief propagation in a Markov random field (BP-MRF) has
been shown to work on large networks with high accuracy and realistic performance
(Pandit et al., 2007), and can also be adapted to scale to hundreds of parallel
machines as described in (Kang and Horng, 2010).

The idea behind this approach is that each node in a graph holds some belief
about itself and is capable of forming opinions of its neighbors. Let’s assume a group
of people represented by nodes and edges denoting friendships between those nodes;
let’s further assume that a small subgroup of people are criminals and that criminals
usually engage in friendship with other criminals, while non-criminals prefer to stay
amongst themselves as well.

Given this model we can infer that if a node has a lot of edges to criminals,
there is a higher chance for the underlying person to be a criminal as well. We first
initialize this system with a certain belief structure (some nodes believe they are
criminals, others don’t) and we let nodes form opinions about each other ("you are

41

connected to me and I am a criminal, therefore you must be a criminal also"). If we
subsequently initiate a turn-based exchange of those opinions with a slight chance
per turn of "convincing" a neighboring node, that system might (but not necessarily
has to) converge to a stable state - a final belief distribution about who is a criminal
and who is not.

Although the example given might sound exotic at first, Belief Propagation has
already successfully been applied to email spam classification and fraud detection in
auction systems in 2007, improving the methods previously employed by significant
margins.

42

4. The business case for Graphinius

An exciting new software project would only be half exciting if there was not the
promise of economic success as well. In the case of an online platform, we are
already somewhat limited in our options here. Basically, there are three business
models that companies building on large quantities of individual users (in contrast
to highly-specialized pro software or business services) can employ.

4.1 Potential business models

1. The Facebook model. Giving away the platform services completely for
free, attracting potentially extremely large audiences, then trying to cash-in
on services offered to external businesses - like advertisement or data analysis.
The downside of this model is that it only works in areas where potential
applications are so generic as to be of interest to many millions, even billions of
people. A graph-theoretical research platform does not fall into that category...

2. The pay-as-you-go model. Many services, especially in the realm of cloud
data centers, embrace this model as it gives them the opportunity to charge
for their services in a very fine-grained manner, as in CPU hours or units of
data traffic consumed. This model however requires the offering company to
have very precise measuring capabilities in place, which makes it attractive for
Amazon but rather uninteresting to small startups.

3. The Premium membership model. Giving away a base service for free,
thereby trying to attract larger audiences, then cashing in on premium-offerings
is another way of conducting business. It is suitable especially for smaller
companies, as it requires only monthly billings via credit card payment which
can be easily and cheaply performed today. In case the Graphinius platform
should ever develop into a commercial offering, this model would certainly be
the preferred choice.

43

4.2 Potential business sectors

Another important consideration in taking a product to the market is some form of
potential analysis. Although we are not going to calculate possible user bases here,
I want to at least mention some general market segments that might profit from a
platform like Graphinius.

4.2.1 Education

Graph theory is an integral part of every Computer Science / Software Engineering
degree and will extend more and more into Biology, BioMed, Medicine and the
Social Sciences in the future. This means that millions of university students will at
some point come into contact with graph-theoretical assignments, which on the other
hand have to be designed, deployed, collected and assessed by university employees.
Graphinius as an online, Web based platform would not only alleviate the hassle for
students to setup their own development libraries and environments, but could also
function as a central point of assignment submission & correction / grading.

4.2.2 Algorithm prototyping

Many companies have to apply their algorithms to graphs of enormous size (e.g.
Facebook’s going into the many billions, but biological networks are growing ex-
ponentially as well, if only for the progress in detection technology). However,
designing new algorithms on a production graph of that magnitude is hardly prac-
tical, which means that much smaller test setups are usually used for algorithmic
prototyping. Graphinius could offer such an environment either for open source
development or as a premium service for closed source projects.

4.2.3 Community research platform

Representing essentially our base case, we already discussed in detail how a Web
based approach holds many advantages over closed-source, isolated Machine Learn-
ing islands (see Section 2.5). In addition to this, let us just mention the success and
influence Kaggle has gained within the data science community over the previous

44

years. If a platform only concerned with distributing interesting competitions can
gain such a widespread reach, how great a potential would a platform hold which
promotes not only communication and awareness, but enables code sharing and easy
reproduction as well?

4.3 Remarks on potential competitor platforms

There are several cloud based services in the world offering machine learning APIs
connected to elaborate computing / data center infrastructures. A recent article An-
alytics, 2016 discussed no fewer than a dozen of these, which differ in their service
offerings by either providing just computational resources, community aspects (al-
gorithm DB, user experience sharing, communication), predictive services including
pre-learned models or by focusing on specialized ML tasks (deep learning applied to
videos etc.).

While all of those platforms may have their pros and cons, they all rely on
server-side computation of the actual experiments, which is not surprising given the
extensive availability of supporting software in that area (Hadoop, Spark, external
backend cloud services like Tensor flow etc.). Graphinius on the other hand uses
the server only as an access point to an algorithmic DB delivering snippets of code
to the connecting JSVM. This is of great advantage to the delivering company, as
it allows for almost effortless scaling, but hold the disadvantage of being dependent
on the processing power of the connecting machine (mobile devices?). Experiments
have yet to be conducted concerning the feasibility of such a platform; the author
will be excited to setup such tests in the future.

45

5. Graphinius as a platform

This section contains an overview description of the proposed Graphinius platform
and some of its core features envisioned, as well as basic graph-theoretical properties
it will support.

5.1 General Properties

5.1.1 Online editor

Front-end web-developers know the great joys and advantages tools like JSFiddle
or CodePen provide: Simply by navigating to their site or - more commonly - being
referred to an ’experiment’ via a link somebody has posted, one is presented with
an online code editor supporting HTML5, CSS and JS on one side of the browser,
and a live result window on the other. The code gets executed as soon as it has
finished loading, and the live result is updated on every save (and sometimes every
few seconds). In modern browsers those tools go as far as being able to preview
and live-reload complex scenes written in WebGL, which was the author’s basic
inspiration to come up with a graph-theoretical counterpart.

5.1.2 Build & mutate

As a consequence, one should be able to go to the Graphinius website, be presented
with a console that is pre-loaded with all background objects and functionality
needed to build, interact with, mutate and visualize graphs. Upon making changes
to the underlying graph structure in the Online Code Editor (which would follow the
REPL principle: Read-evaluate-print-loop) the live-visualization will update imme-
diately, so a CodePen-like workflow is offered to the user. This feature - although
not yet implemented in a particular UI - is partly already available simply by using
the debugging console every modern browser provides.

46

5.1.3 Save and fork experiments

Following the online web-developer coding example platforms mentioned above,
Graphinius will enable users to change experiments, automatically forking them
in the background. This way, every user can compile their own extendable library
of exchangeable graph experiments over time.

5.1.4 Distributable via (mini) URL

Sharing ones insights with colleagues (investors, the public...) or preparing a live
demonstration should be as easy as pressing a ’publish’ button upon a mini URL
would be generated by the platform. Then simply publish or email that URL to
somebody and re-create your experiment on any device capable of handling HTML5
/ WebGL through a modern browser anywhere!

5.1.5 Example graph datastructures

In order to help users get started with new experiments, we will provide a database
of example graph structures, covering graphs from diverse fields of potential interest
(traffic infrastructure graphs, protein interaction networks, sample social networks)
as well as different graph classes (tree-shaped graphs, disconnected components,
spherical graphs etc.).

5.1.6 Extendable algorithm DB

In the process of working on their experiments, users of the platform will undoubt-
edly come op with their own graph-theoretical algorithms. In order not to squander
those pearls, Graphinius will provide a community-based, extendable algorithm DB
which people can upload their algorithms to (with a description of necessary pre-
and postconditions), so that other users can easily choose from a wealth of graph-
theoretical computations.

47

5.2 Graph Properties

5.2.1 Mixed mode graph

A mixed mode graph is a graph that may contain directed as well as undirected
edges at the same time. While many algorithms are defined on just undirected (e.g.
Minimum spanning tree) or directed (e.g. percolation) edges exclusively, for many
real world applications it is required to consider a combination of both - imagine
traffic simulations with one-way streets or social networks in which people can be
friends (undirected) and / or follow each other (directed). As Graphinius should be
able to cover such applications, its core needs to be designed as a mixed-mode graph;
the problem with this is that many algorithms have no standard implementation for
a mix of both edge types, and so here and there it was necessary to come up with
a logical and pragmatic solution, even if it could not be verified by any textbook.

5.2.2 Node and edge types (filters)

A mixed-mode graph alone however, is not enough for more complex scenarios.
Assuming a social network again, we would first think of humans as participating
entities. Depending on the particular use case of the network however, other nodes
might be resources such as books, movies, or any type of commodity. Moreover,
edges in such a network cannot only differ in mode of direction, but might represent
a specific type as well (following someone vs. movie recommendation). From this
emerges the need for graph filtering - or graph views - which expose only a spec-
ified subgraph to an executing algorithm, suitable to the particular situation. To
stay with our example, if we need to find all users within three hops of friendship
connections, we do not want to traverse all the edges representing recommendations
(or messages, as there might be orders of magnitudes more of those present). In
this case, we would execute a Breath-first-search against a view of the graph, which
would present the BFS’s logic with only the connections it is required to ’see’.

48

5.2.3 Object oriented

One design decision in writing any new (graph) library - as far as the author can
judge from his personal research - lies in speed and memory vs usability. This con-
cerns not so much the handling of nodes and edges themselves (many libraries have
very good wrapper functions for dealing with basic primitives), but requirements like
additional payload - e.g. the k-gram vector of a node representing a text document -
or node & edge types themselves. In order to speed up execution of graph algorithms,
advanced libraries use specialized data types like sparse matrices or fixed-length ar-
rays; this on the other hand forces a programmer to hold additional data structures
at hand for whenever more complex computations are needed. A good example for
this would be computing the ’distance’ of two nodes when defined not as the length
of the shortest path between them, but as the cosine distance between their feature
vectors. Taking into account the special language properties of JavaScript with its
great emphasis on first-order functions and closures which makes it ideal for a nat-
ural callback-driven algorithmic approach (see Listings 7.2 and 7.3), the author
believes that an object oriented approach realized in JavaScript idiomatic callback
style is the suitable one for Graphinius, which is backed by 3 different properties of
the language:

• Despite not being ’traditionally’ object oriented like Java or C++ for its ab-
sence of constructs like classes etc., Javascript is firmly OO - in fact, everything
except primitives is always an object, including and especially functions.

• Accessing objects instead of flat memory should not incur too much runtime
overhead anymore, since modern JSVMs have abandoned the flat model in
favor of an object memory model themselves.

• As Graphinius is intended to be part of a learning, teaching and research plat-
form, and not designed to handle large graphs of many millions of nodes and
edges (upwards), the OO approach seems a natural fit since it allows imple-
menting algorithms in a very intuitive way - Meaning that the programmer
can access all properties of graph objects directly via their methods instead
of having to handle diverse, different datastructures (sparce matrices, lists,
hashmaps) in coordination.

49

6. Software Requirements & Survey

In order to assess which technologies to use for a new project, one first has to take
into account the kind of software product to build, the sector of the economy it will
be used in as well as the specifics and constraints of the environment it’s going to
operate and interconnect in. Let us first take a closer look at those points:

• The kind of product to construct will often determine some core technolo-
gies: Building a messenger app requires real-time behavior some statistical
product suite would never make use of. Likewise, an autonomous control sys-
tem of a space probe will also depend on time-critical components, but in a
different way than a messenger app, relying strongly on a constant rate of
throughput, whereas a message flow will not be critically disturbed by a lag
or latency disruption every now and then.

• The industry sector largely determines requirements in the form of compli-
ance or industry certification. For instance, whereas the security concerns in a
normal end-user centered application might be dealt with with relatively mod-
erate levels of effort, applications employed in the financial or even medical
sectors will in all probability have to satisfy additional security demands such
as audit trail systems or compliance to specific data formats and standards.

• The technical environment a system is operated in will influence its shape
and behavior as well. A relatively disconnected and isolated system like a
statistical module (which e.g. outputs some results on a nightly basis) will
be modeled differently than a web-based, cloud-oriented service incorporating
many interfaces and API calls to dependent background or partner services.

In the following sections, we are not considering the entire SW development
workflow from an economic / managerial point of view, but just the technological
aspects of it. Let us first realize the differences between software development today
and the way it was routinely conducted as short as 2 decades ago. The traditional

50

software development process has been relatively simple: upon setting a goal for
functionality or any other measurable entity (code module, UI section), a continuous
iterative process of writing some lines of code, re-compiling, testing (automated or
manual) and bug fixing was all, or most, that was necessary to arrive at some
usable product. Modern applications, however, especially web-based ones (and that
includes all kinds of mobile apps that have seen their rise over last decade) operate
on many different moving parts:

• Some server-side backend which coordinates incoming requests and provides
consistency across business logic and database layers. This is probably the part
with the greatest similarity to traditional, client-only or centralized software
(development). I would also include old-fashioned web ’applications’ (and
certainly websites) in this environment, as a browser-based GUI alone without
much processing or business logic going on, does not really fall into the category
of a distributed application.

• A client part in the form of a modern in-browser based app (like GMail, Google
Docs or Office365) or any mobile app executing on a contemporary mobile
device.

• Some background-services, mostly in separated modules distributed over one
or many servers worldwide, including interfaces to dependent services, isolated
REST services (like a search portal for medical professionals inside a larger
healthcare application) or microservices: sub-components of the business logic
implemented directly on a database level, as implemented in the Foxx appli-
cation micro-framework inside the multi-model database ArangoDB (Dohmen
and Hackstein, 2014).

• Where needed, a visualization module will have to be provided which resides
on the client side but is logically separated from the ’normal’ business and
communication logic of that module. In browsers, this can either be written
in normal DOM code, SVG, Canvas, or WebGL (we don’t want to mention
earlier technologies that are fortunately falling from grace rapidly...).

In addition to this generic complexity, we have to deal with a different workflow
cycle even on the level of individual developers: Whereas 15 years ago somebody

51

could set up some HTML files, include some JavaScript files, iteratively add new
snippets of code and check the results by reloading the browser, even this small
part of the development cycle has changed dramatically over the past 10 years -
new Meta-languages like Typescript or Coffeescript on the language side, HTML-
meta-markups like HAML, CSS preprocessors like Sass/Scss/Less as well as the
integration of modern testing libraries makes a simple browser reload a technique of
the past.

Those new methods provide great opportunities (but also challenges) even for the
single programmer, which require a whole execution and deployment infrastructure,
as depicted in Figure 6.1 and described in the following sections.

52

Modern Web
Development
Infrastructure

Preprocessing
Stylesheets

S[A|C]SS

Browser

Task Runner

• Watch files for changes
• Run compilations
• Execute tests
• Re-package
• Bundle & Minify
• Clean up…
• Etc. etc.

CSS

JS (ES5)

PDF /
HTML

PASS FAIL

JS

Bundle

Figure 6.1: Modern Web Development Component Diagram

53

6.1 Preprocessing (compiling) JS Meta Languages

6.1.1 Javascript / ES6

Although the JavaScript language was put together by Brendan Eich of the Netscape
company within 3 weeks in 1994 (when it was initially called LiveScript, and in
1995 renamed to JavaScript in a marketing attempt to jump on the Java-hype band-
wagon), it turned out to be a nifty little language for general in-browser development
and computations. JavaScript is a prototype based language, which means that it
uses pointers to parent objects instead of class instantiations, features first-order
functions (functions which can generate functions) and function-as-object passing,
which is ideal for callback-based implementations of the visitor pattern, even more
so as JS functions are automatically closures (functions or lambdas that have, re-
gardless of their execution context, full access to their original definition scope).

After almost two decades however, the JS development community felt that
requirements on modern web-based products had increased so drastically that tra-
ditional JavaScript could only partially serve them anymore. Problems are, amongst
others: 1) the lack of an explicit type system (which is crucial for larger software
projects), 2) the lack of an internal module system allowing for requiring other files
or packages (except in the form of browser script tags), 3) the lack of a chaining
system for async callbacks (which resulted in the notorious ’pyramid of doom’),
4) the somewhat peculiar functional scoping, which is mostly an entrance barrier
to developers of other languages, as well as 5) a general lack of elegant language
constructs (like deconstruction of objects into variables etc.).

While some of those problems have been addressed even in the context of EC-
MAScript 5 (like the introduction of promises to replace nested callback functions),
many shortcomings could only be addressed by external libraries, which polluted the
workflow with additional dependencies not needed in more sophisticated languages
and often increased the JS download size by hundreds of kilobytes, which routinely
becomes a problem on mobile devices.

ECMAScript 6 (codename harmony) is an overhaul of the JavaScript language
featuring classes, a new keyword for the familiar block scoping (let), as well as an
integrated module system allowing to require external files even inside the browser.

54

The greatest obstacle to using ES6 today is the lack of complete support across
all browser vendors - this is where ES6-to-ES5 compilers like Traceur or the more
popular Babel come in. As far as syntax goes, ES 6 cleans up some keyword usages
in order to make code more readable.

1 odds = evens.map(function (v) { return v + 1; });

2 pairs = evens.map(function (v) { return { even: v, odd: v +

1 }; });

3 nums = evens.map(function (v, i) { return v + i; });

Listing 6.1: ECMAScript 5 (usually referred to as ’JavaScript’) version of

functional programming using the natively built-in mapping

function.

1 odds = evens.map(v => v + 1)

2 pairs = evens.map(v => ({ even: v, odd: v + 1 }))

3 nums = evens.map ((v, i) => v + i)

Listing 6.2: ECMAScript 6 equivalent to the above code.

(Examples taken from (Engelschall, 2016))

Although ES6 is a great improvement over ES5 in many respects, it still lacks an
explicit type system and interfaces (which can guide an IDE in it’s analysis regarding
Code Completion and IntelliSense). It was therefore not considered the best option
for the development of a potentially large library as GraphiniusJS.

6.1.2 Coffeescript (CS)

Coffeescript was an attempt to make JavaScript code more readable as well as
writable. It was apparently inspired by the clean syntax used in modern script-
ing languages like Ruby or Python and adopted the use of whitespace as control
characters like Python (but not Ruby). Most of the language was based on using
’syntactic sugar’ to abbreviate otherwise verbose JS code. For instance, the this
variable was replaced by the @ sign, the return statement at the end of a function
became superfluous, and the lambda operator -> was introduced as a shortcut for
the function keyword in normal JS.

55

1 [1..10]. map (i) -> i*2

2 i * 2 for i in [1..10]

Listing 6.3: Two versions of the same mapping functionality in

CoffeeScript

(Example taken from CoffeeScript)

Like ES6, Coffeescript is compiled down to ES5 through it’s own coffee compiler. As

much as the idea of CS is neat and very justified for individual developers, the use of

whitespace as control characters can add some additional hassles if working in a team;

only slight deviations in the individual setup can cause serious problems, like the use

of editors that use different representations for tabs (tab vs. 2 spaces vs. 4 spaces) or

different line ending symbols (Windows vs. Mac vs. Linux). Furthermore, CS did not

resolve the lack of an internal module system or the lack of an explicit type system, and

was therefore not considered for Graphinius JS.

6.1.3 Typescript (TS)

The greatest obstacle to large-scale web-development in ES5 was the lack of an explicit

type system and built-in module system, which would allow an IDE to scan dependent

files and constructs and infer a valid type-flow, enabling the development environment

to assist the programmer with code completion and type error hints. This was realized

by Microsoft when they ported part of their Office suite to the web (Office365), which

consumed not only years of manpower but took hundreds of thousands of lines of code

before a stable product could be released. As a consequence, they formed a group around

their lead C# / .NET developer Anders Hejlsberg (the former creator of TurboPascal

and chief software engineer at Borland until 1996) with the mission to develop a JS meta

language incorporating those characteristics for large scale web development in 2012. The

result of those efforts is Typescript, which of 2016 is a superset of ES6 with the additional

benefits of allowing for the declaration of interfaces, enums, and in-place type annotations

(amongst many others features like default and optional function parameters):

1 import * as $N from "./ Nodes";

2

3 export interface IConnectedNodes {

4 a: $N. IBaseNode ;

56

CoffeeScript

5 b: $N. IBaseNode ;

6 }

7

8 class BaseEdge implements IBaseEdge {

9 protected _directed : boolean ;

10 protected _weighted : boolean ;

11 protected _weight : number ;

12 protected _label : string ;

13

14 constructor (protected _id ,

15 protected _node_a :$N.IBaseNode ,

16 protected _node_b :$N.IBaseNode ,

17 options ?: EdgeConstructorOptions) {...}

18 }

Listing 6.4: Typescript sample featuring import of an external module.

..., an exported interface definition, type annotations, instance variable setting via con-

structor specifiers (protected) as well as optional parameters. (Example taken from the

Graphinius JS Edge Class.)

Furthermore, the Typescript compiler can output TS code to ES6, ES5 or even ES3,

and already incorporates some features currently only found in the ES7 draft specification

(which will take several years to become the next standard). With all the benefits offered

by ES6, no additional compile step (over ES6 with traceur/babel) and additional typings

support (which comes in the form of separate typing files that even exist for most external

libraries like underscore, lodash or jquery), Typescript made an ideal candidate as the

base language for Graphinius JS.

6.2 CSS preprocessing

Just like the requirements on JavaScript underwent a steady evolution as project sizes

went from very small-scale Webpages to full-blown in-browser application suites, so did

the demands on Cascading Style Sheets (CSS) increase over time. The original CSS

specification did not offer any possibilities of abstraction or code-reuse, for example. There

were no modules that could be included and shared, no parameters one could pass to

57

instructions (like the pixel width a border-radius should exhibit) nor any variables one

could set as defaults (for the purpose of color-scheme definitions, for instance). Several

projects have sprung up in order to amend that situation. Let’s briefly take a look at

2 options, namely SCSS (SASS, which is just SCSS without braces and semicolons) and

LESS, which runs the pre-processing step on the client rather than the server:

1 $font - stack: Helvetica , sans -serif;

2 $primary -color : #333;

3 @mixin border - radius ($radius) {

4 -webkit -border - radius : $radius ;

5 -moz -border - radius : $radius ;

6 -ms -border - radius : $radius ;

7 border - radius : $radius ;

8 }

9 body {

10 font: 100% $font -stack;

11 color : $primary -color;

12 }

13 .box { @include border - radius (10 px); }

Listing 6.5: SCSS example demonstrating the use of variables and mixings

(Example taken from (Hampton, Natalie, and Eppstein., 2016))

1 @base : # f938ab ;

2 .box - shadow (@style , @c) when (iscolor (@c)) {

3 -webkit -box - shadow : @style @c;

4 box - shadow : @style @c;

5 }

6 .box - shadow (@style , @alpha : 50\%) when (isnumber (@alpha)) {

7 .box - shadow (@style , rgba (0, 0, 0, @alpha));

8 }

Listing 6.6: LESS example demonstrating the use of variables and default

parameters

(Example taken from (Page and Mikhailov, 2016))

58

While CSS preprocessors are important in every contemporary web project, the work

described in this Master Thesis is focused on the underlying graph library, which features

no (built-in) graphical component and therefore did not require any such module.

6.3 Testing

With the increase in size and complexity of JavaScript codebases, testing became essential

in the modern web development cycle. While there are several other JS (unit) test frame-

works available (like JSUnit, QUnit, YUI-Test), we will mention only two contemporary

libraries in detail, which both allow for behavior driven development (BDD) style testing

as well as mocking, stubbing, and spying. Both have very similar syntax and are intermix-

able with different assertion libraries; it seems to the author that a choice between those

libraries is more a question of taste than necessity, and for GraphiniusJS, a combination

of Mocha with Chai has been chosen.

6.3.1 Jasmine

Jasmine (Hahn, 2013) is modeled after the Ruby RSpec Gem and refers to its tests as

specs. It allows for nesting of describe blocks in order to distinguish different levels of

test suites, follows the should approach by providing it functions taking a description of a

test as well as it’s test body in the form of a callback. An assertion library is built right

into Jasmine and uses the expect style of writing assertions. Let’s have a look at a small

example:

1 describe (’calculator ’, function () {

2 describe (’add ()’, function () {

3 it(’should add 2 numbers togoether ’, function () {

4 expect (calculator .add (1, 4)). toEqual (5);

5 });

6 });

7 });

8 // now for spying ...

9 var userSaveSpy = spyOn(User.prototype , ’save ’);

10 // and stubbing ...

11 spyOn(user , ’isValid ’). andReturns (true);

59

Listing 6.7: Jasmine example of a nested test suite containing one simple

assertion in expect style as well as a spy and a stub

(Example taken from (Tang, 2015))

6.3.2 Mocha / Chai

The Mocha test runner basically provides the same functionality as Jasmine in that it

provides describe blocks, should-style it functions and several ways to output reports

(spec-style, list, dots, the nyan cat...) as well as handle pending tests (via not handing

a callback to the it function) or skipping tests (via it.skip();). The greatest difference to

Jasmine is the fact that Mocha does not ship with a built-in assertion library. There are

several compatible alternatives, like should.js, expect.js or unexpected. The most popular

and widely used, however, clearly seems to be Chai, which provides the should, assert as

well as expect styles of writing assertions. In addition to that, we also need a library called

sinon.js that allows for spying and stubbing. We will be seeing some in-depth examples

of Mocha, Chai (expect style) and Sinon in the Chapter 7, so let’s limit ourselves to the

same use case as above:

1 describe (’calculator ’, function () {

2 describe (’add ()’, function () {

3 it(’should add 2 numbers togoether ’, function () {

4 // expect style

5 expect (calculator .add (1, 4)).to.equal (5);

6 // should style

7 calculator .add (1, 4). should .equal (5);

8 // assert style

9 assert .equal(calculator .add (1, 4), 5);

10 });

11 });

12 });

13 // now for spying ...

14 sinon.spy(user , ’isValid ’);

15 // and stubbing ...

16 sinon.stub(user , ’isValid ’). returns (true);

60

Listing 6.8: Mocha example of a nested test suite containing one simple

assertion in expect style as well as a spy and a stub

(Example taken from (Tang, 2015))

6.3.3 Cucumber

Cucumber describes itself as ’An open-source tool for executable specifications’, which

means it wants to be understood less as a testing tool but rather as a group communication

tool. The idea behind cucumber is the ’single source of truth’ concept, which means that

both the specifications handed down to the developers by their customers or management

as well as the technical test definitions that execute test suites and determine the project’s

progress from the programmers’ viewpoint, should be one and the same document.

The first and foremost implication of this approach is that the specifications must be

formulated in plain English (or any other common-language), so that collaborators from

outside the immediate project team can read, but ideally also write and modify them. It

is then the job of developers to transfer those common-language statements via so-called

step definitions into executable test code. In invoking this test code, the cucumber test

runner receives feedback on the internal state of test case completion, which is translated

back up to the semantic common-language level and displayed as progress of the original

specification. This way, both programmers as well as customers / managers can monitor

the progress of the project, and tests become both functional as well as acceptance tests

(with unit tests usually not being expressed via cucumber).

A cucumber feature file is written using the so-called Gherkin syntax (a business read-

able, domain specific language) consisting of Feature and Scenario definitions. Features

are general statements of intent describing the business value of a certain feature from the

perspective of a potential user. Scenarios then describe different aspects of that feature in

the form of usage scenarios the user might find herself in.

1

2 Feature : Example feature

3 As a user of Cucumber .js

4 I want to have documentation on Cucumber

5 So that I can concentrate on building awesome

applications

61

6

7 Scenario : Reading documentation

8 Given I am on the Cucumber .js GitHub repository

9 When I go to the README file

10 Then I should see "Usage" as the page title

Listing 6.9: Cucumber example describing a Feature containing a simple

Scenario

The step definition file implementing the first of the three lines in the scenario could

be implemented as follows:

1 module . exports = function () {

2 this.Given (/^I am on the Cucumber .js GitHub repository$

/, function (callback) {

3 this.visit(’https :// github .com/ cucumber /cucumber -js

’, callback);

4 });

5 };

Listing 6.10: Cucumber example describing a Feature containing a simple

Scenario

(Examples taken from (Biezemans, 2016))

Cucumber can be utilized from many different languages and has been used by the

author as far back as 2009. In the case of Graphinius it will certainly be used once the

platform module (browser UI) begins to take shape, as cucumber is very well suited to be

used in combination with the browser DOM. For the scope of the underlying Graphinius JS

library however, there was no reason to employ such a tool as collaboration with end-users

on that level seems neither necessary nor sensible.

6.4 Automatic Documentation

Writing manual documentation on a software library is absolutely necessary if one desires

their product to be used by other developers; writing documentation files separately from

one’s code files however is a burden not many programmers want to accept. This is were

automated documentation generators come in - they scan the source code of a project for

62

comments above a function or class definition and auto-generate the required documents

in a convenient output format like HTML or PDF.

6.4.1 JSDoc & alternatives

In the realm of JavaScript there are several candidates for pure, JS-based auto-doc gen-

eration; in a review conducted by (Das Modak, 2016), the four libraries JSDoc, DOCCO,

doxx and ui were examined for several properties, the most important of which were:

• Does it support structured syntax (like Javadoc)?

• Can the appearance be customized (via CSS or CSS frameworks like Bootstrap)?

• Does the output contain a search feature?

• Does it parse the entire source code or only the comment blocks?

The interested reader may be referred to the resource mentioned above; as we are

using Typescript for Graphinius JS, we do not want to limit ourselves to capturing just

the information present in the output JS, but also the type information as well as interface

specifications only found in the original TS sources.

6.4.2 TypeDoc

Currently, there is only one library available for automatically scanning through Type-

script sources and generating an appropriate documentation - TypeDoc. It extracts all

type annotations found in interfaces or method specifications and scans Javadoc-like com-

ment blocks. Its output is HTML5 with a convenient search function and customizable

appearance as well as a practical legend for different types of entities (class, interface,

function etc.); as of yet, it neither supports simple double-slash comments nor output to

PDF.

A very nice feature to mention comes to bear in combination with a github project - in

this case Typedoc is capable of directly linking an item’s documentation to the appropriate

place in the github repository, which makes switching from documentation to code a

convenient experience. As the whole documentation for Graphinius JS exists in the form

of extracted Typedoc and is readily available to the reader in Appendix B, we can forgo

the display of a sample at this point.

63

6.5 Build system for browsers / packaging

Within the server-side JavaScript version of NodeJS (which uses Google’s V8 under the

hood), one can easily require other files as modules through the CommonJS module spec-

ification. This of course is a superior way of building JS applications, as modules are

thereby testable in isolation, dependencies can be required without adding some script tag

into an HTML file, and dependency resolution is done via the built-in module framework

as opposed to having to take care of including script tags in the right order (or other-

wise they might overwrite each others’ variables within the global namespace, which is a

frequent source of attrition amongst web developers).

Unfortunately, there is no native way to require JavaScript files or parts thereof from

another JS file in the browser. With the advent of ECMAScript 6 this shortcoming will

finally be corrected; however due to the fact that most browsers do not fully support that

standard yet, and given the benefits of a ’normal’ SW-development process, it has become

commonplace to develop one’s webapp in NodeJS (including all necessary libraries from the

Node Package Manager’s repositories), and then utilizing an external tool to package the

software for its final release. Those tools have then to collect all the source files including

dependencies, resolve any potential conflicts in the dependency graph, wrap each file’s

content with a require mechanism that works in the browser, and finally concatenate (and

maybe minify / uglify) the result in order to save space.

Although there are a few more candidates (RequireJS, SystemJS, JSPM) that could

be mentioned in this section, we are only going to take a look at two libraries which

characterize the differences in this field pretty well:

6.5.1 Browserify

Browserify is easily the most popular amongst the various packaging libraries available,

and probably also the most powerful in its ability of dependency checking and conflict

resolution. Throughout the first months of developing GraphiniusJS, the author used

browserify to conveniently package all of the code files into a bundle readable by the

browser. The library is especially handy since it can deal with NodeJS specific dependen-

cies like the Filesystem module, which provide no additional use in the browser but can be

hard to extract out manually from the packaging process. In addition it resolves circular

dependencies on its own, which is especially practical for less experienced programmers.

The great disadvantage or browserify is the file size of its output: in order to offer all

64

the benefits it provides, it generates in excess of 30k lines of boilerplate code for even the

tiniest of JavaScript programs. This results in a file size easily in excess of 1MB, which

renders browserify practically unusable for mobile applications.

6.5.2 Webpack

Webpack, in many respects, is the opposite of Browserify. It does not offer a no-hassle,

work-the-first-time experience for today’s stressed web developer, requires some (often

much) configuration of loaders for different file types, easily capitulates in the event of cir-

cular dependencies (and does not even fire an error or warning) and has serious problems

including all kinds of NodeJS (server-side) libraries. Despite the greater configuration ef-

fort and necessary developer’s care however, Webpack’s require wrapper around JavaScript

files and functions is microscopic compared to browserify. This way, the author was capable

of packaging all of Graphinius JS (as of this writing) into 67.8 kilobytes of uncompressed

and 25 kilobytes of minified JavaScript, with further down-potential in using a better

compression library like Google’s Closure compiler in the future (which requires its own

delicate handling...).

6.6 Task Runner

Finally, all of the above components have to work in perfect coordination in order to make

the web development experience convenient and leave the programmer to their most im-

portant job: focusing on the problems to solve rather than manually operating different

libraries in the various preparation steps. Therefore, task runners (the JavaScript vocab-

ulary’s version of Makefiles) have been invented, which offer several standard tasks to be

executed and countless more to be added via their respective plugin systems. The main

duty of a task runner is to watch local files for changes (happening every time they are

saved to disk) and execute different, predetermined tasks in a given order. In the context

of Graphinius JS, this development cycle consisted of the following phases (only 1 and 2

are executed on every save, the rest required a separate ’make’ call):

1. Build: Compile TypeScript to JavaScript.

2. Test: Run all synchronous Mocha tests; for performance reasons, a few asyn-

chronous tests like remote JSON graph structure loading were not periodically ex-

ecuted.

65

3. Generate Typedoc and output the resulting HTML to a subfolder.

4. Assemble JS output files and write them to the dist directory for requiring from

a NodeJS console.

5. Package & bundle (compress) the dist folder’s content using webpack and out-

put a minified JavaScript file consumable by any standard web browser.

Figure 6.2: The GraphiniusJS Bundling process

In addition to those standard tasks, a library called Istanbul was used to capture the

progressing test coverage.

In order to execute those tasks, the following two task runners were considered:

6.6.1 Grunt

The Grunt JS task runner has been around since early 2012 and follows the principle

of Configuration over code. This means that instead of writing executable code, the

library takes a configuration file in the form of a Gruntfile.js. Although this file is of

generic JavaScript format, no real computations or control flows take place inside it;

instead, Grunt takes instructions in the form of JSON object blocks, which makes writing

a Gruntfile easy and intuitive, but severely limits the developer’s possibilities to fine-tune

desired functionalities.

66

6.6.2 Gulp

Gulp JS, as a slightly more recent contender (the first commit logged on github stems

from July 2013) represents the opposite approach to Grunt JS - it is based on the idea of

Code over configuration. This implies that instead of writing an extensive configuration

file, a Gulpfile.js is written like a normal JavaScript program, making extensive use of the

NodeJS-native streaming capabilities to pass results of an earlier processing step on to a

later (much like the Unix kernel pipes can be used). This gives developers greater power

over their build process, enabling them to use normal language constructs like branches

and conditional assignments.

Figure 6.3: Comparison between Grunt & Gulp build systems

67

6.7 Overview of technology choices

In summary, the chosen technologies / libraries for developing Graphinius JS came to be:

• JS Preprocessor: Typescript

• CSS Preprocessor: N/A

• Testing libraries: Mocha + Chai (expect style) + Sinon

• Doc generator: Typedoc

• Packaging: Webpack

• Task Runner: Gulp

68

7. Architecture / Implementation

The Graphinius Platform consists of four main components as depicted in the following

diagram. Of those 4, the practical parts of this Master thesis mainly consider Graphinius

Base, with all graph construction and analysis functionality residing in GraphiniusJS.

Core

Input CSV / EdgeList Input JSON (Spec)

Edges Nodes Graph

Traversal

Edges

Centralities Generators etc...

Algorithms

 Clustering MinSpanTrees etc...

History System

Timeline

Vocabulary

History {}

Rendering

2D/3D Mode

Graphinius VIS

Navigation

Interaction / Manipulation

renders

Graphinius JS

Graphinius Base

Areas of Application (AoA)

SN Anonymization

Graph based NLPOnline Code Editor

Platform Services

 Profiles Reports

Base APIs support

Input / Output

Input CSV / Adj List Output CSV / JSON

 Teams etc... etc...Biomedical Apps

 Network Analyses

 Graph Layout Methods

Timeline rewind / repeat

The Graphinius Platform

Figure 7.1: Graphinius platform architecture overview

69

7.1 Graphinius Base

As the name suggests, the Base module offers all the functionality necessary to develop

graph-based applications on top of it, including basic graph-computations and algorithms

as well as real-time, in-browser visualization. It is therefore logically composed of the two

main modules GraphiniusJS and GraphiniusVIS as well as a mechanism of communication

between those two, the History System.

7.2 Graphinius JS

Graphinius JS deals with graph loading via Input Readers for CSV and JSON file formats,

instantiation as well as mutation of graphs through the graph, nodes and edge classes as

well as some basic graph algorithms, including degree distributions, edge generators and

traversal via breath-first, depth-first and best-first (priority-first) search algorithms. As

not all components depicted in Figure 7.2 are of equal importance (or implemented yet),

the following substructure does not fully comply with the organization of that diagram.

7.2.1 Edges

Edges are the most basic class within the GraphiniusJS library. They depend on the

Nodes class solely in order to be able to check if their endpoints consist of valid graph

nodes. Edges can never instantiate nodes themselves, so in order to add a valid edge to

a graph, the connected nodes must already exist in the structure. Edges can be directed

or undirected, weighted or unweighted, hold an ID and can be given a label. Apart from

that, they contain no other internal logic.

7.2.2 Nodes

Nodes are already a lot more complex in Graphinius JS. They consist of an ID, an optional

label, and have datastructures to hold the directed as well as undirected edges connected

to them; When adding and removing connected edges they measure and update their

own degrees (according to the mixed-graph nature of Graphinius, we always differentiate

between in-, out-, and undirected degree) and are the lowest-level objects used in graph

traversal, as they contain the necessary functionality to return their neighboring nodes

(according to outgoing, incoming, or undirected edges).

70

7.2.3 Graph

The Graph class is the main component at the core of Graphinius JS as it contains all

necessary functionality to create as well as add and remove nodes and edges to a graph.

It keeps track of its size in number of nodes and edges, holds datastructures to look up

those objects as well (as always it differentiates between directed and undirected edges),

can return a random node or edge, clean nodes from all incoming, outgoing or undirected

edges and contains helpers to print statistics or the degree distribution over its nodes.

Moreover, it contains the GraphMode setting which has two different meanings: As

a metric of the graph, it tells a caller if the graph contains no edges at all (Graph-

Mode.INIT), holds only undirected (GraphMode.UNDIRECTED) or directed (Graph-

Mode.DIRECTED) edges, or a mixture of both (GraphMode.MIXED). As a setting for

graph traversal, it enables graph views by allowing algorithms operating on it to only see

a subset of all the existing edges in the graph.

1 if (dir_mode === $G. GraphMode .MIXED) {

2 bfsScope . adj_nodes = bfsScope . current . adjNodes ();

3 }

4 else if (dir_mode === $G. GraphMode . UNDIRECTED) {

5 bfsScope . adj_nodes = bfsScope . current . connNodes ();

6 }

7 else if (dir_mode === $G. GraphMode . DIRECTED) {

8 bfsScope . adj_nodes = bfsScope . current . nextNodes ();

9 }

10 else {

11 bfsScope . adj_nodes = [];

12 }

Listing 7.1: Graph traveral dependent on GraphMode.

7.2.4 Edge Generators

There are many graph generators found in more established graph libraries and even

specialized generator-only components (like (Bader and Madduri, 2006)), which can be

used to generate random graphs or graphs following a specific layout (trees, circles, spheres,

arc diagrams etc.). For the emerging GraphiniusJS library, complete graph generators

71

were not yet considered, but edge generators implemented. This allows us to take generic

point cloud data (coming from diverse sources like tabular datasets, range images etc.)

and convert them into a graph structure by adding random connections according to two

different approaches:

• Per probability. This algorithm goes through all node combinations in the graph

and adds an edge between them with a certain probability. By its very nature, the

algorithm runs in quadratic runtime in the number of nodes.

• Per node. Considering every node in sequence and adds a certain number of edges

between that node and another, randomly chosen one. This algorithm could take

quadratic runtime in the number of nodes (if the random node algorithm chooses

so poorly that it tries to add the same edge over and over again) but in practice

should perform considerably faster.

7.2.5 Degree distribution

Probably the easiest algorithm performable on a graph is to compute the degree distri-

bution over its nodes. It simply walks over the internal node structure, counting all the

ingoing, outgoing, and undirected edges returning some (numerical) histogram. The fol-

lowing figure depicts how to obtain a degree distribution in GraphiniusJS via a browser

debugging console.

Figure 7.2: Degree distribution of a graph with 13859 nodes and 41541 edges

72

7.2.6 Graph Traversal

Graph traversal is the general term for exploring a graph from a given start node (also

called ’root’ node in this context). There are three basic forms of traversal differentiating

by the order by which new nodes are visited. In GraphiniusJS, graph traversal is im-

plemented using the visitor pattern by defining callback functions for specific ’hooks’ in

the traversal procedure. The graph traversal algorithm is thus reduced to only running

its particular node-expansion scheme on the data structures necessary for its purpose;

the actual information ’extraction’ and result ’compilation’ is then done by executing the

injected callbacks at the aforementioned, pre-determined hooks. Let’s take a look at an

example callback initializing the result set of a Breadth first search algorithm at the start

of it’s invocation and pushing that callback onto the init_bfs callback array inside the

algorithm’s config.callbacks object:

1 // Standard INIT callback

2 var initBFS = function (context : BFS_Scope) {

3 // initialize all nodes to infinite distance

4 for (var key in context .nodes) {

5 config . result [key] = {

6 distance : Number . POSITIVE_INFINITY ,

7 parent : null ,

8 counter : -1

9 };

10 }

11 callbacks . init_bfs .push(initBFS);

Listing 7.2: Defining a callback function for traversal.

During the actual BFS run, this callback is then executed as follows:

1 // Execute INIT callback

2 if (callbacks . init_bfs) {

3 $CB. execCallbacks (callbacks .init_bfs , bfsScope);

4 }

Listing 7.3: Executing a callback function during traversal.

73

7.2.6.1 Breadth first search

BFS traverses a graph by expanding one ’shell’ of nodes after the other, which means that

it progresses outwards from a starting node like the layers of an onion until all reachable

nodes have been visited. It is primarily used for getting a sense of distances in a graph

(although it does not compute shortest paths by itself) and uses a queue datastructure to

add nodes it’s list of future visitations.

In GraphiniusJS, BFS makes use of the following hooks: 1) init_bfs at the start

of the algorithm, 2) node_unmarked when an encountered node has not yet been

marked as visited, 3) node_marked in case such a node has already been visited, and

4) sort_nodes in the case the user wants to imply a certain order by which to add nodes

to the queue - this does not change the nature of BFS, however.

7.2.6.2 Depth first search

DFS explores new nodes in a recursive fashion, which makes it advance ’deep’ into the far

reaches of the graph structure before exploring the immediate vicinity of the start node.

For this purpose it uses a stack as its basic datastructure; moreover, if no more nodes

are reachable from a given departure node, but the graph structure has not been entirely

explored yet, DFS (via an outer loop) will randomly choose one of the remaining nodes,

thereby arriving at a (random) segmentation of the entire graph.

In GraphiniusJS, DFS provides the following hooks: 1) init_dfs at the start of the

outer loop, 2) init_dfs_visit at the start of a ’visit’ (the inner loop), 3) node_popped
for any callbacks to execute directly after a node has been taken from the stack, 4)

node_marked which behaves as in BFS, 5) node_unmarked which behaves as in BFS,

6) sort_nodes which behaves as in BFS, and 7) adj_nodes_pushed which executes

directly after a node has been expanded and its neighbors pushed to the stack.

7.2.6.3 Best (priority) first search

PFS always picks from its available nodes the one that evaluates to an optimal value (e.g.

the minimal distance given an edge weight) - it therefore uses a (MIN / MAX) heap as its

underlying datastructure, which in GraphiniusJS has been implemented with injectable

heuristics (via callback functions as described in the Graph Traversal 7.2.6 section).

PFS lets the caller inject the following callbacks: 1) init_pfs is invoked at the start

of the algorithm, 2) node_open in case an encountered node is already contained in

74

the OPEN set, 3) node_closed in case an encountered node is already contained in the

CLOSED set, 4) better_path in case a more optimal path to a node under test has been

discovered, and 5) goal_reached if we have encountered a specified end goal causing the

algorithm to immediately return.

7.2.7 Traversal-based algorithms

Although as of the time of this writing, no more algorithms have been implemented in

Graphinius JS, most of the commonly used techniques are building upon one or the other

form of basic graph traversal. This includes shortest paths, cycle testing, topological

sorting of nodes, strongly connected component analysis, minimum spanning trees, some

centralities (closeness and betweenness for instance) as well as many more than the author

(or reader) will be able to recollect.

Building all traversal-based algorithms on top of either BFS, DFS or PFS utilizing

their callback & hook structure will enable us to easily add new graph-views defined on

node or edge types (and other criteria) to the library in the future, without having to

re-adapt each and every single component to the respective improvement.

7.2.8 Input / Output

There are two basic input readers implemented in GraphiniusJS:

The CSV Reader, which takes adjacency lists or edge lists in CSV format and

supports the most simple, but widely used, formats as well a a few additional options, and

The JSON Reader, which operates on a custom, Graphinius-related JSON file format

in order to support additional features specific to the use cases of the platform.

As of the time of this writing, standard output filters have not been implemented, but

would follow the same principles outlined below for their input counterparts.

7.2.8.1 CSV Reader

The CSV Reader class supports to widely used graph representation formats, namely

adjacency lists and edge lists. An adjacency list is usually composed of lines indicating

a StartNode at position one, followed by a series of connected EndNodes at the follow-

ing positions in the line, where the connections can be interpreted as either directed or

undirected edges:

75

1 A, B, C, A, D

2 B, A

3 C, A

4 D, A

Listing 7.4: Sample Adjacency list, no edge direction.

In addition to that, the Graphinius CSV Reader can be configured to consider explicitly

defined edge directions, as in the following listing, or instructed to interpret all edges as

either directed or undirected regardless of the direction specified in a file.

1 A, B, u, C, u, A, d, B, d, D, d

2 B, A, u

3 C, A, u, A, d

4 D, A, d

Listing 7.5: Sample Adjacency list including edge direction.

CSV Edge Lists work analogously but are even simpler and use the format (StartNode,

EndNode [,directed]).

7.2.8.2 JSON reader

The Graphinius JSON reader is a more complex class as it uses it’s own data format specific

to the use cases targeted by the platform. It uses a nested object structure defining an

array of node objects potentially containing different arrays of sub-objects:

An edge array containing objects specifying a to node, a direction specifier as well

as some weight; direction and weight are optional; a coordinates array containing the x,

y, and z coordinates of a node; the z coordinate is optional; a feature vector contain-

ing a hashmap of arbitrary length containing objects of arbitrary type including nested

structures. The feature vector is solely used by applications building on GraphiniusJS and

ignored by the standard suite of algorithms as described in the previous section. A sample

of a valid graph in the Graphinius JSON file format is depicted in Figure 7.3.

76

7.3 The History system

The idea of a history subsystem came from the concept of a real-time in-browser graph

exploration platform, in which every action performed via an online editor or some GUI

action should result in some immediate, visible change in the graph visualization. Ideally,

such real-time changes would also be reversible, so that a user could progress step-by-step

forward and backward in time - either to grasp more clearly what some algorithm does to

the structure of a graph, or to ’simulate’ the behavior of an algorithm on the whole.

In order to guarantee smooth behavior as well as separation of concerns in the software,

placing this functionality directly in either the GraphiniusJS or GraphiniusVIS libraries

would violate sound architectural principles. Therefor, the author proposes (but has not

implemented yet) the following general module:

77

Figure 7.3: Sample graph in the Graphinius JSON format
Apart from the ’to’ node, direction and weight, any node can exhibit an arbitrarily large
feature vector containing any type of information (like patient data, word vectors, etc.).
Another special sub-object which the input reader is looking for is the ’coords’ object,

which specifies the coordinates used in the constant layout renderer of the
GraphiniusVIS library.

78

Graphinius JS  History  Graphinius VIS

History Object serving as timeline

G.JS checks history for
changes at current

timestep

G.JS increments timestep
and continues to output

graph muations

Calls G.VIS’s render
method with timestep +

direction

G.VIS examines timestep
object for changes

G.VIS renders changes in
forward / rewind mode

timestep_i : {
“added” : {

“nodes” : {
…..

},
“edges” : {

…..
}

},
“removed” : {
“nodes” : {

…..
},
“edges” : {

…..
}

},
“modified” : {

“nodes” : {
“55” : {
color: {

from: #ff0000,
to: #ff00ff,

}
}

}
}

var timestep = history[current_timestep]
if (timestep == “empty”)
{

doNothing()
else {
current_timestep++
vis.render(timestep, direction=“forward”)

}

Every graph can be hooked up to one
history object.
Every VIS instance can render one history
object to a GUI element (canvas)

Figure 7.4: Graphinius JS <-> VIS communication via Op-Log

79

7.3.1 Timeline

The basic idea in implementing the system is to organize all graph mutations along the

time axis, if only to imply chronological order. While it is less important to be able to

specifically ’audit’ some action in the sense of being able to exactly locate its temporal

occurrence, we need some mapping of actions to a timestep (object) in order to be able to

traverse the timeline back and forth. This is what determines the structure of the history

object.

7.3.2 History Object

The history object is a simple JavaScript object (which behaves like a hashmap in other

languages’ vocabulary) and holds entries in the form of timestep(timestep:number =>

actions:JSObject). These actions sub-objects then contain all the mutations which took

place at a certain timestep. It is important to realize that this timestep is not an exact

moment in time, but can span an arbitrarily long interval. Its value is determined by a

global timestep variable, which is only incremented when the rendering of the currently

’active’ timestep has commenced. The actual procedure take the form of the following

loop:

1. Graphinius Platforms runs recursive calls to window.requestAnimationFrame(renderFunc)

which simulates a main GUI loop

2. At the beginning of each invocation, the algorithm checks for the current value of

the global timestep variable, and checks if the respective entry in the history object

is empty or populated.

3. In case it is empty, the algorithm breaks, laying inactive until the next time-tick

from requestAnimationFrame (16.67 milliseconds on a 60Hz monitor).

4. In case it is populated, the algorithm increments the global timestep value - from

this point onwards, GraphiniusJS will not write to that entry any more (’locking’ it

so that the rendering process can finish).

5. All items in the current timestep object will be evaluated resulting in calls to the

GraphiniusVIS library updating the in-browser visualization.

In order to be able to replay / rewind the mechanism, the history subsystem must

have a sense of direction in time - which in our case simply translates to possessing a

80

vocabulary expressing graph mutations in such a way that the respective inverse function

is easily obtainable.

7.3.3 Vocabulary

In order to achieve this, the timestep entries must be as simple and specific as possible. For

most of the primitive graph mutations, this is practically going to happen automatically:

For instance, given the command ’addNode(nodeId, arguments)’, the inverse is logically

’deleteNode(nodeId)’. For more complex actions like changing coordinates, colors or shape,

the original values would have to be stored. In the case of actions regarding whole clusters

or changing the structure of the entire graph (run mincut..), the timestep entries will have

to be broken down into atomic units and inverse actions defined in beforehand.

7.4 Graphinius VIS

The author was fortunate to receive the opportunity to guide the Master’s Project of Nicole

Neuhold in implementing a visualization module for the emerging Graphinius platform.

We were working on research, experiments, and the foundation of a future implementation

from early January 2016 to the end of March of the same year, and I am proud to be

able to say that we surpassed our initial expectations - in brevity and conciseness of

implementation as well as performance - by leaps and bounds and are not able to visualize

graphs of 15k nodes / 40k edges fluently (25 FPS) even on middle class laptops (22k

nodes / 65k edges fluently on the author’s desktop machine featuring a low-middle-class

Geforce 650TI with 2GB of video RAM).

7.4.1 WebGL rendering

The core component of the GraphiniusVIS module is the WebGL renderer. Although we

experimented with SVG and Canvas (2D) as well, we quickly realized that both alternatives

were either too slow or didn’t provide us with the experience we desired: SVG has the great

advantage of working with normal browser (DOM) objects, which enables easy interaction

and selection via JS / CSS selectors, but stops rendering fluently at only a few hundred

nodes / a few thousand edges.

Canvas, on the other hand, is fine and fast enough for visualizing logical graph struc-

tures of thousands of nodes / edges in 2D. Nevertheless, because our project originated

81

from the need to render structures inherently 3D (like nevi and organs) and there was

no easy possibility to project a 3D space onto a 2D canvas (except for computing the

projection ourselves), we finally decided against it.

Our Three.js / WebGL based renderer now uses low-level data structures like buffer

geometries, statically typed JavaScript arrays and particle systems instead of 3D objects

for nodes, which enables us to transfer our (pre-)computed data to the GPU in one single

copy operation - this alone increases performance easily 10-fold over earlier attempts at

progressively adding new objects to the scene.

7.4.2 2D/3D Mode

GraphiniusVIS supports both 2D and 3D visualization of graph structures. However, since

we are using WebGL which is inherently 3D, when switching to 2D mode we are not falling

back to SVG or canvas but instead just ’fix’ all z-coordinates of nodes / edges to zero, so

we end up with a 2D object floating in 3D space.

7.4.3 Navigation

Our module supports panning (via mouse click-and-move), zooming (via mouse-wheel),

rotating (via Shift + mouse click-and-move), and also provides any of those actions via

keyboard commands.

7.4.4 Graph Layouts

The field of graph drawing has been an active area of research for several decades now,

and many graph layouts have been developed for diverse areas of applications. Apart from

constant (coordinate-based) layouts and force-directed layouts for physical simulations,

there exist circular, spherical, tree-based, and arc diagrams, to name only a tiny fraction.

Our basic implementation supports a constant layout per default, and allows switching to

a force-directed layout as well, although the latter is currently implemented as a simple

mathematical sine function instead of making use of attracting / repulsive forces.

7.4.5 Interaction / Manipulation

There are almost endless possibilities to interact with and manipulate a graph structure,

so we were limited to offering just a small selection in order to demonstrate the viability

82

of our GraphiniusVIS module. We chose to implement node and edge addition as well

as deletion, changing the color of nodes and edges, updating their coordinates as well as

switching from constant to our (simplified) force-directed layout.

In addition to that, in order to demonstrate seemless interaction (without a history

object for now) between GraphiniusJS and GraphiniusVIS, one can visualize distances

computed by BFS as well as segments computed by DFS (on a directed graph) from any

random or chosen node. This even works during constant re-rendering in force-directed

mode, although the algorithm is not yet implemented as a background thread (WebWorker

/ WebAssembly) and therefore causes the animation to lag for a fraction of a second.

The following diagram summarizes some demo interactions / control flows contained

in our base implementation.

Figure 7.5: Graphinius VIS control flow

7.5 Dependent Libraries

As described in the last chapter 6, modern web development processes utilize a wealth

of external modules and helpers to achieve a seamless, convenient development workflow.

Whereas GraphiniusJS does not depend on any external libraries at runtime (as can be

83

seen in the "dependencies" section of Figure 7.6), the author has been using a diverse

collection of dependencies at development time, which shall be only introduced in all

brevity:

The chai library handles assertions in mocha tests, gulp is the main taskrunner library,

gulp-clean provides for deletion of compilation- and other results, gulp-concat manages

file concatenations, gulp-istanbul integrates istanbul into the gulp process, gulp-mocha
integrates mocha into the gulp process, gulp-rename handles renaming of one or many

sources to a single destination file, gulp-typedoc integrates typedoc into the gulp process,

gulp-uglify integrates uglify into the gulp process, gulp-watch provides file watching

capabilities, istanbul provides test coverage reports, jsdom simulates a DOM environ-

ment in pure JavaScript (NodeJS), jsdom-global provides global variable support for

jsdom, json-loader is a submodule of webpack allowing for integration of JSON files

into a minified JS bundle, merge2 merges file contents, mocha is the main test run-

ner, sinon provides spies and stubs for testing, sinon-chai integrates sinon with the

chai assertion library, typedoc automatically generates documentation from Typescript

sources, webpack-stream is necessary for running a webpack process inside a (stream-

based) gulp task, and xhr-mock provides a mocking service for simulating browser-based

XMLHTTPRequest objects in server-side NodeJS.

84

Figure 7.6: GraphiniusJS development and runtime dependencies

As is clearly visible, I focused on managing all complexity during development time,

resulting in zero dependencies for the runtime JS bundle.

85

7.6 Testing approach

Behavior Driven Development (BDD) is a testing philosophy that approaches the devel-

opment of a new feature from a high level view on the expected end-result and then

works it’s way down from spec’s through functional to unit tests, until the feature is fully

implemented, tested and covered. The ideal methodology would consist of the following

steps:

1. Define the expected behavior of a feature (=module) in a form that both clients as

well as developers understand and formulate them using (executable) specifications.

The Cucumber framework introduced in the last chapter is an ideal candidate for

this high level of abstraction. Executing the spec immediately will naturally fail

because no code was actually written.

2. From the specs defined in step one, we then derive functional tests which span the

execution of several functions or methods in sequence in order to produce a certain

result. Again, any test execution will expectedly fail as we have still not written the

code yet.

3. From the functional tests defined in step two, we finally derive low-level tests cov-

ering single units of code. Once more the tests will fail initially, upon which we

endeavor to fill in the single pieces of code until all tests at that level are passing.

4. Once the unit-test level is done, we work our way upwards to the next functional

test on our todo-list. This process is repeated until all functional tests required for

our initially specified features are covered.

5. We then move on to the next feature on our product requirements list.

As already mentioned, because a software library intended to be used by other pro-

grammers usually has only technical clients, feature specification (testing) was omitted in

programming Graphinius JS. For this reason, we will only take a look at unit and func-

tional tests in this section (as well was mocking and spying). Furthermore, in developing

a web application using the Mocha and Chai test libraries, there is no fundamental differ-

ence between unit and functional tests. Let us therefore take a look at instances of both

categories to see how we would structure our approach:

86

7.6.1 Unit tests

As stated, unit tests cover the low-level constructs of functions or methods which them-

selves do not depend on any lower-level functions.

In the example below, we see two test cases: the first calls a binary Heap evalInput-

Priority function on line 2, whose job it is to cast any input to a (sortable) number, if

possible. As the string "55" can be cast to the number 55, this test will be successful. In

the second example on lines 5 and 6, we pass boolean values which - employing the JS

parseInt(arg) function - will evaluate to NaN (which is JS shorthand for Not a Number).

1 it(’should accept String encoded Integers as input and

evaluate to their Integer value ’, () => {

2 expect (binHeap . evalInputPriority ("55")).to.equal (55);

3 });

4 it(’should not accept booleans as input values (makes no

sense ...) ’, () => {

5 expect (binHeap . evalInputPriority (true)).to.be.NaN;

6 expect (binHeap . evalInputPriority (false)).to.be.NaN;

7 });

Listing 7.6: Unit tests covering the functionality of one simple function.

(Sample taken from the GraphiniusJS binaryHeapTests.ts file.)

7.6.2 Functional tests

In functional testing we invoke some procedure which in turn will call other functions or

methods, in any sequence or call depth required in order to fulfill its purpose.

In the example below, we instantiate a new JSON reader, specify some configuration

options and hand it a JSON file. We then expect the resulting graph to be of a certain

size in number of nodes and edges. The readFromJSONFile function will itself call several

subordinate functions for reading a file from disk, processing the character sequence it

receives, instantiating a GraphiniusJS graph object etc.

1 it(’should correctly generate our small example graph out

of a JSON file with direction _mode set to undirected ’,

() => {

87

2 json = new JSON_IN ();

3 json. _explicit_direction = false ;

4 json. _direction = false ;

5 graph = json. readFromJSONFile (small_graph);

6 expect (graph. nrNodes ()).to.equal (4);

7 expect (graph. nrDirEdges ()).to.equal (0);

8 expect (graph. nrUndEdges ()).to.equal (4);

9 });

Listing 7.7: A functional test covering the whole instantiation process of

a graph from a JSON input structure.

(Sample taken from the GraphiniusJS JSONInputTests.ts file.)

7.6.3 Mocks used for browser code testing

Mocks are a useful construct for testing functionality that would involve some non-trivial

behavior. For instance, if we would like to test a snippet of code (as in the following code

example) which loads a JSON file remotely over the network before instantiating a graph,

we are assuming the existence of a server, the existence of the remote file, as well as a

working Internet connection. Moreover, in this specific case, the code under test is also

meant to be executed inside a browser environment, whereas we would like to invoke our

test from the NodeJS console.

The solution to this problem is to mock the XMLHTTPRequest object used by a

browser to send AJAX requests over the internet, which - again in this specific case - re-

places the object with a NodeJS request object and simulates the original XMLHTTPRe-

quest API through a delegating wrapper around it. The exact sequence in this example is:

1) requiring the mocking library on line 3, 2) initializing a browser environment (providing

the window and document objects) on line 4, 3) injecting browser globals into the Node

environment on line 13, 4) requiring filesystem capabilities for local file loading on line 16

as well as loading the file on line 17, 5) initiating the mock on line 20 and finally setting

up a fake web server responding to a certain URL on lines 23 through 30. The rest of

the procedure (not shown in this exmaple) behaves exactly as an equivalent test inside a

browser environment would.

1 describe (’Loading graphs in simulated browser environment ’,

() => {

88

2 // Mocking the XHR object

3 var mock = require (’xhr -mock ’);

4 var jsDomCleanup = null ,

5 mocked = false ;

6

7 // URL to replace with path

8 var small_graph_url = REMOTE_HOST + " small_graph .json";

9 var small_graph_path = ’test/input/ test_data /

small_graph .json ’;

10

11 beforeEach (() => {

12 // Injecting browser globals into our Node

environment

13 jsDomCleanup = require (’jsdom - global ’)();

14

15 // Access to local filesystem for mocking service

16 var fs = require (’fs’);

17 var json = fs. readFileSync (small_graph_path).

toString ();

18

19 // replace the real XHR object with the mock XHR

object

20 mock.setup ();

21

22 // Mocking Browser GET request to test server

23 mock.get(small_graph_url , function (req , res) {

24 mocked = true;

25 return res

26 . status (200)

27 . header (’Content -Type ’, ’application /

json ’)

28 .body(json);

29 });

30 });

31

89

32 afterEach (() => {

33 mock. teardown ();

34 jsDomCleanup ();

35 mocked = false ;

36 });

37

38 // Rest of tests are the same as in non -mocked , local

reader based input tests

39 });

Listing 7.8: A mocking setup simulating a Web Server GET response.

... to an XML-HTTP GET Request in order to read a graph structure from a remote

JSON file from inside a browser environment. (Sample taken from the GraphiniusJS

JSONInputAsyncTests.ts file.)

7.6.4 Stubs

There is another concept often confused with mocks called stubs. Stubs are used when the

response of a function is not supposed to be complex but rather boolean in nature. E.g. an

authorization module could internally use a method checking if a user has sufficient permis-

sions to be allowed to access a resource. This functionality could be implemented rather

simply, or it could invoke elaborate tests involving diverse software modules throughout

the whole system. For testing some function building upon it however, only the distinc-

tion between allowed and not allowed is are really of interest. Therefore, a stub can be

instantiated and told to forgo any real authority checks but instead simply return a true

or false value.

The difference between stubs and mocks is therefore that stubs replace potentially

complex implementations with trivial ones, whereas mocks can act as a proxy but do not

necessarily reduce complexity - reading a graph from a local file is as complex as reading

it from a remote one (not considering the underlying complexity of the network stack, of

course).

90

7.6.5 Spies (Sinon)

Spies are test wrapper objects that observe the original function or method and record any

activity regarding it, e.g. how often it was called, which argument values it was called with,

which values were returned or if an error was thrown. In the example below, we instantiate

a local backup object original, then instantiate a spy on line 10, store the original function

reference in our backup object on line 12, and replace the original function with our spy

on line 14. In calling $DFS.prepareDFSVisitStandardConfig on line 25, we expect to see

the original function invoked in the process, which we check on line 28. The after block

from lines 18 through 21 then restores the original objects.

1 describe (’testing config preparation functions - ’, () => {

2 var prepForDFSVisitSpy ,

3 prepForDFSSpy ,

4 original = {

5 prepareDFSStandardConfig : null ,

6 prepareDFSVisitStandardConfig : null

7 };

8

9 before (() => {

10 prepForDFSSpy = sinon.spy($DFS.

prepareDFSStandardConfig);

11 prepForDFSVisitSpy = sinon.spy($DFS.

prepareDFSVisitStandardConfig);

12 original . prepareDFSStandardConfig = $DFS.

prepareDFSStandardConfig ;

13 original . prepareDFSVisitStandardConfig = $DFS.

prepareDFSVisitStandardConfig ;

14 $DFS. prepareDFSStandardConfig = prepForDFSSpy ;

15 $DFS. prepareDFSVisitStandardConfig =

prepForDFSVisitSpy ;

16 });

17

18 after (() => {

19 $DFS. prepareDFSStandardConfig = original .

prepareDFSStandardConfig ;

91

20 $DFS. prepareDFSVisitStandardConfig = original .

prepareDFSVisitStandardConfig ;

21 });

22

23

24 it(’preprareDFSVisitStandardConfig should correctly

instantiate a DFSConfig object ’, () => {

25 var config = $DFS. prepareDFSVisitStandardConfig ();

26

27 // Here the spy is finally used to check internal

method invocation

28 expect (prepForDFSVisitSpy).to.have.been. calledOnce ;

29 });

30 });

Listing 7.9: A functional test making use of a spy.

... to test internal method invocation, restoring the original method afterwards. (Sample

taken from the GraphiniusJS DFSTests.ts file.)

7.7 Areas of Application

The implementation of 3 demo applications will be described in the next Chapter, Imple-

mentation - Areas of Application) 8.

7.8 Platform Services

As of the time of this writing, the Graphinius Platform has not taken shape yet, so there

is no available implementation to discuss.

92

8. Implementation - Areas of Application

As described in earlier chapters of this thesis, there are countless applications of graph

theory in diverse fields of research and engineering; in order to prove the feasibility of

the Graphinius platform, it was necessary to implement a few concrete examples. Con-

sequently, in this chapter we are going to take a look at 3 different Areas of Application

that Graphinius (JS, VIS, and eventually the platform) is already able to serve. Amongst

these, only the first one can be considered a toy application (although interesting for

teaching platforms etc. in itself); graph extraction from images as well as social network

anonymization however have been hitherto firmly situated in the realm of servers or entire

processing infrastructures.

8.1 Manual editing (predefined structures)

The first and foremost use case for Graphinius is simply to be able to interactively build,

mutate, and visualize graphs in the browser. Although the final Graphinius Platform will

feature a full-blown code editor with code completion and online documentation, the basic

functionality can be demonstrated even using a form of REPL every modern browser is

automatically equipped with: the debugging console.

8.1.1 Build a graph manually

As depicted in Figure 8.1, the basic case is to create a new graph structure, add some

nodes and edges, and then run different computations on it.

8.1.2 Load predefined graph and visualize

Using either the CSV or JSON Reader build into GraphiniusJS, we can also request to

instantiate a graph from a remote file. Here we use the JSON Reader to load a graph

depicting a nevus and render it using GraphiniusVIS (Figure 8.2). Apart from the visual-

ization, we also compute its degree distribution.

93

Figure 8.1: Manually building a new graph in the console.

Figure 8.2: Loading a JSON graph and visualizing it via the browser console.

8.1.3 Run a BFS algorithm and visualize

After loading a (undirected) graph according to the previous section, we choose a random

start node and invoke a breadth-first-search algorithm resulting in a distance map center-

ing around that node. The following lines of code (Figure 8.3) show distances and parents

of a selection of nodes (note the parent / distance chain...) while the accompanying visu-

94

alization colors the graph according to the obtained distances via gradient computations

(the start node being colored green and the node with maximum distance being colored

red).

Figure 8.3: Computing a BFS in a live browser REPL & visualizing the result.

8.1.4 Run a DFS algorithm and visualize

Lastly, in Figure 8.4 we load the same graph as before, this time interpreted as a directed

graph, choose a random start node again and invoke a DFS algorithm. This returns to

us an array of graph segments representing the node sets reachable from each start node

of a respective DFS Visit run (had we chosen an undirected graph, there would only be a

single segment). We then output the size of each segment and again visualize the result,

assigning to each segment a different color.

95

Figure 8.4: Computing a DFS in a live browser REPL & visualizing the result.

8.2 Graph extraction from images

In order to be able to apply graph theory to problems originating in the realm of image

processing, first we need to extract a graph structure out of an image. There are poten-

tially many different ways of doing this; as described in our paper (Holzinger, Malle, and

Giuliani, 2014), we are executing the following steps:

1. Image preprocessing. Many image segmentation algorithms use gray scale values

to compute distances between neighboring pixels, gradients etc. (it seems that using

3 color channels per pixel is not much superior over using just one).

2. Input image as graph. The resulting image is simply interpreted as a graph, which

is possible because every pixel-based image naturally forms a graph structure, in

which pixels are represented by nodes and neighborhoods are represented by edges.

We then extract an edge list where the entries is sorted according to edge weight (=

differences in the intensity values of neighboring nodes).

3. Graph based (over-)segmentation. As the next step, a Kruskal MST based

algorithm developed by (Felzenszwalb and Huttenlocher, 2004) is applied. It takes

the approach of merging regions from pixel level (= inital nodes) ’upwards’ instead

of recursively partitioning the whole image ’downwards’ - essentially, at every step

it compares an intra-region coherence measure to an inter-region similarity measure:

96

Int(C) = max
e∈MST(C,E)

ω(e)

is the intra-region coherence value, given by the maximum edge weight of the region’s

MST.

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

ω(vi, vj)

denotes the intra-region similarity measure, given by the minimum edge weight

connecting any two nodes between them.

Finally,

D(C1, C2) =

 true if Dif(C1, C2) > MInt(C1, C2)

false otherwise

determines if two regions should be merged, based on the relation of their intra-

region coherence and inter-region similarity measures.

Once all edges have been considered, the final graph partition represents the seg-

mentation (merging) result

4. A Delauney triangulation is computed once the final region map has been es-

tablished, taking each region’s centroid to become a node in the new graph, as well

as the (non-overlapping, as the algorithm is producing a tessellation of the region

map) connections between those centroids to be their respective edges. The edge

weight is computed from the difference in average intensity value of two adjacent

regions.

5. Graph output. Those data are finally transferred into a JSON structure consum-

able by Graphinius JS, as depicted by the sample JSON graph in Figure 7.3.

With the exception of manually written micro-graphs for the sake of rapid unit testing,

this procedure was used for practically all JSON graphs employed in the development and

testing of GraphiniusVIS. Due to the flexibility of the algorithm - it features 3 separate

parameters which control the granularity of the partition, and therefore the granularity of

the graph structure - it was possible to extract graphs from a few hundred nodes and edges

to up to 22k nodes / 66k edges. The average execution time on the author’s quad-core i5

machine lay in the range of 3-5 seconds.

97

Figure 8.5: Kruskal MST based region merging & graph extraction.

Result of applying a Kruskal based region merging algorithm to an image of numerous

small scale regular structures. (1) Input image, (2)

8.3 Anonymity: SaNGreeA

SaNGreeA stands for Social network greedy clustering and was introduced by Campan

and Truta, 2009. In addition to ’clustering’ nodes of a graph according to the minimum

general information loss (GIL) incurred as described in Section 3.4, this algorithm also

considers the structural information loss (SIL) by assigning a node to a certain cluster.

The SIL quantifies the probability of error when trying to reconstruct the structure of the

initial graph from its anonymized version.

The SIL is composed of two different components: 1) the intra-cluster structural loss,

signifying the error probability in trying to reconstruct the original edge distribution within

an equivalence class (= anonymized cluster), and 2) the inter-cluster structural loss which

represents the error probability in trying to reconstruct the original configuration of edges

between two equivalence classes.

In implementing and demonstrating this algorithm, I recreated the paper’s original

experiment:

1. Process input data into suitable structure. The adults dataset was selected

and all but six columns deleted - only Age, Workclass, Country of origin, Gender,

Race and Marital status remained (a sample containing the first 19 rows can be

seen in Figure 8.6). Furthermore, in order to obtain repeatable results, the first 300

’pure’ rows (no missing or mis-formatted values) in the dataset were chosen as input

set.

98

2. Enhance structure with graph information (random edges). Using GraphiniusJS’s

capability of randomly adding edges to nodes, a connected graph was created out

of the assortment of nodes (using between 1 and 10 outgoing edges per node).

3. Compute GIL & NGIL. The general information loss with respect to a cluster

is given by the following formula (repeating from the original paper):

GIL(cl) = |cl|·(
s∑
j=1

size(gen(cl)[Nj])
size(minxεN (X[Nj]),maxxεN (X[Nj]))

+
t∑

j=1

height(Λ(gen(cl)[Cj]))
height(HCj))

where:

- |cl| denotes the cluster cl’s cardinality;

- size([i1, i2]) is the size of the interval [i1, i2], i.e., (i2− i1);

- Λ(w), wεHCj is the subhierarchy of HCj rooted in w;

- height(HCj) denotes the height of the tree hierarchy HCj ;

The total generalization information loss is then given by:

GIL(G,S) =
v∑
j=1

GIL(clj)

And the normalized generalization information loss by:

NGIL(G,S) = GIL(G,S)
n · (s+ t)

4. Compute SIL & NSIL. For the exact mathematical definitions of SIL & NSIL the

reader is kindly referred to the original paper. Because the structural information

loss cannot be computed exactly before the final construction of clusters, the exact

computations were replaced by the following distance measures:

Distance between two nodes:

dist(Xi, Xj) = |{l|l = 1..n ∧ l 6= i, j; bil 6= bjl |
n− 2

Distance between a node and a cluster:

dist(X, cl) =
∑
Xjεcl dist(X,Xj)

|cl|

The algorithm starts with initializing a first cluster by simply adding a randomly chosen

99

node to it. Then, for every new node encountered, the weighted sum of the above two

information loss metrics will yield a certain overall information loss value if the node was

added to that cluster - the node with the minimal cost is then chosen as the candidate and

expands the cluster. This is repeated until the first cluster reaches a certain requirement

(e.g. size == k-factor) upon which another random node is chosen to constitute a next

cluster. This procedure is repeated until all nodes have been assigned (if a cluster of size

< k-factor remains, its member nodes are dispersed amongst the others).

Since the algorithm does not take ALL possible node combinations into account, but

simply start with a node and compares all the candidates in a loop, the algorithm runs

in quadratic time w.r.t. the input size in number of nodes. This worked well within mil-

liseconds for an input problem size of a few hundred nodes. An example output of the

implemented algorithm can be found in Appendix A.

Figure 8.6: Excerpt: the first 25 rows of the Adult census data set

100

9. Results

Testing the software is one part, testing its performance on real-world scenarios an other.

The following sections give a few metrics of Graphinius as of the time of this writing.

9.1 Size of the codebase

Lines of codes never accurately measure the complexity involved in a software project, as

different languages and programming styles produce very diverging measures in that area

(Java e.g. being much more ceremonial than Ruby or JavaScript). Nevertheless, here are

the metrics in LOCs for the different parts of Graphinius as of May, 2nd, 2016, amounting

to a total of 11,858 lines of code:

9.1.1 GraphiniusJS

The core JS library was split into source code as well as testing code, with the testing

code again split into 3 different categories: 1) Synchronous tests are the ones that run

fast enough so they can be continually re-executed on every file save, 2) Asynchronous

test code for testing graph instantiation via remote file loading, and 3) Performance test

code loading different graphs and executing some basic algorithms on them, measuring

the time at every step.

Source code: 2,557 LOC

Test code synchronous: 5,160 LOC

Test code, asynchronous: 321 LOC

Test code, performance: 76 LOC

Total: 8,114 LOC.

9.1.2 Graph extraction demo code

The Anonymization demo library building on top of GraphiniusJS is split into source as

well as synchronous test code, there was no need to introduce asynchronous test code in

its case.

101

Source code: 602 LOC

Test code synchronous: 448 LOC

Total: 1,050 LOC

9.1.3 Social network anonymization demo code

The Anonymization demo library building on top of GraphiniusJS is split into source as

well as synchronous test code, there was no need to introduce asynchronous test code in

its case.

Source code: 778 LOC

Test code synchronous: 455 LOC

Total: 1,233 LOC

9.1.4 GraphiniusVIS

The visualization library was written in pure JavaScript instead of TypeScript and due to

its optical nature does not feature any automated test suite.

At the time of this writing the code base comprises 1,461 lines of code.

9.2 Test coverage (just Graphinius JS)

Testing is a great practice to guide the development and programming effort while con-

ducting a software project, but it is of equal importance as a documentation tool allowing

the technical staff to demonstrate to their clients (customers and managers alike) the care

they exercised in constructing their codebase. Coverage testing detects if parts of the

codebase were either just partly tested or not tested at all, taking into account LOC cov-

erage, percentage of functions / methods invoked as well as branch or general statement

coverage.

As can be seen in Figure 9.1, Graphinius JS has been exhaustively tested, reaching

100% coverage for all but the branches department. The lower value in this section is a

result of else-branches not taken, in cases when there was no else-branch to take. This

can be remedied by re-writing all if-statements in the form of (boolean condition &&

consequent), so that the code coverage tool does not recognize the if keyword. The author

has successfully tested this practice on the PFS.ts file (as can be seen in Figure 9.1) but at

102

the time of this writing considers it inappropriate to alter perfectly good code throughout

the library just for the sake of artificially achieving 100% coverage.

9.3 Execution speed in various scenarios

All tests were executed on the author’s Sandy Bride Quad Core i5, 8GB RAM, Ubuntu

16.04LTS, NodeJS version 5.5.0, bash console. All graphs were given as a simple CSV

edge list. Experiments were run 10 times and average times (in milliseconds) taken;

the measurements were conducted via JavaScript which translates to system real time

(including all other processes running). The respective system time (only this process)

was measured by the Unix time utility and refers to a whole ’run’, that means all of

computations listed above it in sequence:

9.3.1 Sample graph 1

The first sample graph consisted of 19,878 nodes and 49,062 edges:

Time to instantiate: 450ms

Calculating degree distribution: 28ms

Calculating BFS: 265ms

Calculating degree distribution: 260ms

Average system time: 48ms

9.3.2 Sample graph 2

The first sample graph consisted of 52,537 nodes and 140,868 edges:

Time to instantiate: 1,260ms

Calculating degree distribution: 51ms

Calculating BFS: 680ms

Calculating degree distribution: 790ms

Average system time: 170ms

9.3.3 Sample graph 3

The first sample graph consisted of 238,986 nodes and 797,115 edges:

Time to instantiate: 7,703ms

103

Calculating degree distribution: 208ms

Calculating BFS: 3568ms

Calculating degree distribution: 4993ms

Average system time: 454ms

9.4 Closing remarks about competitor libraries

The author contemplated writing a whole chapter about performance comparisons with

other graph libraries as there are many of them out there (BGL, iGraph, GraphTool,

NetworkX, Loom, some old Java based libraries, etc.). However, given the fact that none
of those libraries were designed to run inside a browser including tight integration with a

real-time 3D, Open/WebGL based visualization library, such comparisons would have been

meaningless in any situation in which a user would require a non-effort, easily-configurable

platform as ours.

104

Figure 9.1: GraphiniusJS test coverage

105

10. Future Work

Considering GRAPHINIUS an arbitrarily extendable computing platform (which uses

graphs as underlying, universal data structures), there are many possibilities to build

upon this work, ranging from small improvements to the introduction of fundamentally

new infrastructure, transcending the use of contemporary graph libraries.

The use of a centralized, Web based graphical workflow system will prove especially

useful in exploiting and propagating the experience of individual users, as it bundles not

only data, but also the settings and results of all experiments conducted on that platform.

10.1 Parallel processing (CPU)

At the time of this writing (early 2016), real parallel processing inside the browser cannot

be achieved without falling back to proprietary technologies like Google’s native client

(Yee et al., 2009). Although it is true that the Web Worker specification has allowed for

parallel execution of threads inside the browser for several years now, this model prohibits

the use of a shared space of memory. This limitation renders any serious attempt at

multiprocessing futile, as not does the main thread have to copy each argument over to a

Web Worker, the Workers would also constantly have to communicate their progress back

to the main thread. It is obvious that such an approach will simply result in unmanageable

overhead.

A new model for SMMT (shared memory multi-threading) revolves around the emerg-

ing standard of WebAssembly (WASM), which can be compiled down to ASM and directly

passed to the host kernel by the JavaScript Virtual Machine. Instead of writing WASM

manually (which will be possible, too) the ideal approach is to rather code in a different

language (C++, Typescript etc.) and compile the resulting code to WASM.

10.2 Parallel processing (GPU)

An even faster - and already feasible - alternative is to conduct computations directly on

the graphics hardware, which on modern computers (and even mobile devices) is capable

106

of astonishing performance. The only hindrances to programming directly on the GPU via

the web browser are 1) the mandatory usage of the GLSL (OpenGL Shader Language), 2)

only complicated copying of data to and from the graphics card (no shared memory with

the JSVM) as well as 3) the possible emergence of far superior ways of GPU coding (like

WebCL), which would render extensive investments & efforts today relatively useless in

the near-future.

10.3 General processing / ML pipelines

As existing stacks indicate, there are several possible levels of pipelines which can be sorted

by increasing homogeneity amongst their stages as well as decreasing technical demands

on their users:

• Level 0: Writing all of the pipeline manually. As every combination of technologies

are usable, this approach gives the most flexibility but is hard to maintain and

almost impossible to reproduce. As (Sculley et al., 2014) perfectly states: “Using

self-contained solutions often results in a glue code system design pattern, in which

a massive amount of supporting code is written to get data into and out of general-

purpose packages.”

• Level 1: Automated, but self designed and coded. This entails the usage of tools

like Unix Make, which is language agnostic and therefore supports any number of

technologies as long as they are executable from a Shell. Apart from slightly better

decoupling, same problems as Level 0.

• Level 2: Establishing a common understanding of the components and structure of

a pipeline while still using individual technologies. Such a common standard exists

in the form of PMML - the Predictive Model Markup Language. PMML defines

stages of pipelines as well as their inputs, parameter types and ranges, the output

format etc. Thus, developers can use their favorite technologies during development

while PMML-consuming tools then produce familiar code (Hadoop, Spark etc.).

• Level 3: Language specific libraries exposing an API to conveniently assemble a

pipeline. Such libraries have been released by projects like scikit-learn or Apache

Spark. While currently becoming popular, APIs still restrict the creation of data

applications to experts capable of coding.

107

• Level 4: The use of a custom DSL would widen the ability to create complex data

pipelines to any kind of domain expert. Similar in nature to SQL, it is able to either

compile itself into code or an intermediate representation like PMML.

• Level 5: A fully integrated data analysis platform that offers intuitive, visual pipeline

assembly. Ideally, tools for reporting, reproduction and collaboration would also be

included. In addition, the platform could offer experts the means to write stages

themselves via an online code editor.

As many areas of applications for graph theory could make use of integrated process-

ing pipelines (Sparks, 2014), the future of Graphinius could lie in providing a Level 5

experience.

10.4 JSVM based grid computing

In order to process large graphs, single instances of the JSVM will no be sufficient. In order

to make this scenario possible, it will be necessary to implement some form of internet-

based cluster-approach, which is probably best defined by the term ’grid computing’.

Unfortunately, most ML libraries are still not natively designed for distributed computing

(Meng, 2015).

A survey of economic models for grid brokers and schedulers was conducted in (Abram-

son, Buyya, and Giddy, 2002). Although interesting in the long run, we will use a simple

queue mechanism to demonstrate our platform.

(Huang et al., 2006) argues that VM’s for cloud computing have desirable properties

including security, isolation and ease of configuration, but that the overhead of having

to start/stop/migrate those instances impacts performance. Graphinius’ virtual machines

will be completely lightweight and can be managed by opening/closing a browser tab.

A list of top 10 obstacles for cloud computing can be found in (Armbrust et al.,

2010). Although an exhaustive comparison to our approach is not possible at this point

and matter of our research, most of these arguments stem from the fact that cloud data

security as well as scalability are usually in the hands of powerful vendors.

(Youseff, Butrico, and Da Silva, 2008) define an ontology of cloud computing encom-

passing five layers: hardware (fabric), software kernel (fabric management), cloud infras-

tructure (communication), cloud software environment (PaaS) as well as cloud application

(SaaS, configuration without programming). This view is similar to our proposed pipeline

108

levels before, where the implementation of Graphinius will start at about level 3.

(Liu et al., 2012) and (Liu et al., 2014) describe a distributed, scientific workflow system

for bioinformatics based on a platform called Galaxy and its deployment to Amazons

EC2 service via the Globus Provisioning framework; it supports graphical composition of

workflows without requiring programming knowledge, which is especially interesting for

less tech-savvy researchers. The concept of Galaxy is a very interesting one, although

the author believes that client-side, GPU-enabled computations in coordination with one

another are the future of personal and institutional grids.

10.5 Heterogeneous data linkage

Many research fields comprise several sub-problems which are amenable to different ma-

chine learning approaches and feature their own, distinctive input data sets. Coming from

various, different data sets featuring their distinct attribute domains, they probably are

- via their time-, space- or other dimensions, interlinkable with one another. Usually,

studies are only concerned about using a single one of those data sources and applying

different methods to it. However, a more holistic approach would be to fuse those data

sets along one or more dimensions (or any other meaningful ruleset) in order to achieve a

richer representation of the underlying problem. A resulting data-set might take the form

of a graph structure, in which individual entities from the originating sets are linked by

meaningful connection rules, which in themselves will have to be learned.

10.6 Meta machine learning

There are many papers in the Machine Learning community, Artificial Intelligence Plan-

ning, Operations Research and Hyper Heuristics (mostly for the optimization of search

problems). From those papers it is clear that this field has a very rich history and therefore

offers a plethora of research venues to be explored. As one of the first papers regarding this

topic, (Rice, 1975) defined the "Algorithm Selection Problem", which was first recognized

as a meta learning problem by the machine learning community. He describes several

spaces in which the Algorithm Selection Problem plays out:

• The problem space: This is the set of all possible input problems (datasets +

desired result class).

109

• The feature space: Features of a specific problem or family of problems. In

dermatological imaging those would be defined by the imaging method (laser-scan

vs. stanza), the scale of the objects to be detected (single cells vs nevi) etc.

• The algorithm space: The set of all algorithms suitable for the specific problem

(features) to be worked on.

• The performance measures (the metric space): The set of possible measurements

that could describe the quality of a solution (runtime performance, accuracy, ..).

• The criteria space: The weighing of different performance measures considered

for a particular solution.

Horvitz et al., 2001 proposes a Bayesian learning algorithm that takes as input the

generator function (assuming a generative model) of problem instances, the structure of

input problems before solving, as well as the runtime behavior of a solver during execution

in order to compute a Bayesian (posterior) score. The model was trained to predict

runtime, but experiments showed that classification accuracy of the trained models could

be significantly higher than that of the respective marginal model.

Hutter et al., 2007 note that manually sifting through parameter spaces of optimization

algorithms is tedious work best suited for automated exploration. Interestingly, they see

the selection of suitable building blocks in an algorithmic sequence (e.g. a preprocessing

phase) as the same problem as setting parameters.

Smith-Miles, 2008 proposes a meta-learning inspired framework for analyzing meta-

heuristic algorithm performance by learning the correlation between fitness function eval-

uations (of a chosen lower-level algorithm) and search space characteristics. The sequence

in this approach works as follows: Based on 1) definition of a problem and 2) its features,

3) different problem instances are instantiated (training data). 4) Applying different al-

gorithms to those instances, 5) outcomes are measured by suitable performance metrics,

thereby 6) gaining meta-knowledge about algorithmic performance. An experiment to

learn those correlations by ANN showed that performance could be predicted rather ac-

curately for different algorithms on instances of the Quadratic Assignment Problem.

In most scenarios concerning Graphinius we will be concerned with the selection of

algorithmic components and their parameters based on the nature of the specific area of

application, previously tackled problems, their features, available algorithms, preprocess-

ing methods, parameters as well as performance measures.

110

10.7 Hyper heuristics

Burke et al., 2003 introduce hyper heuristics as being different from meta-heuristics in

that they concern themselves with families / classes of problems rather than one specific

problem domain. They search a heuristics space instead of a solution space and often the

goal is finding general-purpose heuristics that do not need to be optimal, but rather good-

enough, soon-enough, cheap-enough. They also describe the ’Domain barrier’, a concept

which refers to a hyper heuristics approach being oblivious of the underlying problem

domain, but simply receiving a collection of low level heuristics and deciding which one(s)

to use, based solely on past history of heuristics applied and objective function values

returned.

From (Burke et al., 2010), we can take the idea of three ’dimensions’ of the hyper

heuristics recommendation problem:

Selection vs. generation, where selecting means applying existing heuristics to

different (families of) problems, whereas generating new heuristics by assembling them

from existing heuristic components (which first need to be decomposed from already known

heuristics).

Construction vs. perturbation, where construction means starting with an algo-

rithmic component and developing it iteratively by putting more and more components

together. In contrast, perturbation means starting with a whole solution (or sequence of

algorithms) and gradually transmuting it into a new solution.

Online vs. offline learning, where online means testing each new combination of

algorithmic components on several problem instances to determine their fitness during the

learning phase. This seems to be a good approach when immediate recommendation is not

required and computing power is abundant. Offline learning, on the other hand, means

selecting a ready-to-use (sequence of) heuristics and applying them to a set of training

instances in the hope of gaining helpful insights from those experiments.

Although many research fields in themselves are not broad enough to be a suitable

proving ground for hyper heuristic research, the Graphinius platform will provide us with

meta-data about experiments in many diverse areas. We fully agree with Burke et al.,

2013 who concludes that there is still little interaction between research communities, a

problem whose solution could lead to the extension of algorithms to both new problem

domains and new methodologies through cross-fertilization of ideas.

111

10.8 Algorithmic recommender

As a natural consequence of the previous sections, a recommender for graph theoretical

Machine Learning pipelines would ideally take arbitrary problem instances and output a

suitable processing pipeline which has worked well for similar problems in the past. In

addition, the pipeline would also be directly configured in code and downloaded into a

researcher’s browser, making it available to immediate execution.

10.9 Interactive Machine Learning

Last (but certainly not least), the problem of interactive machine learning lies in enabling a

human domain-expert to exercise influence over the internal optimization considerations of

a ML algorithm. For instance, if we take the SaNGreeA algorithm example of Section 8.3,

we can imagine multiplying the cost vector (representing the information loss of a data

point’s generalized quasi-identifiers) by an arbitrary weight vector, giving either one or the

other data attribute precedence of being preserved. Following the approach in Figure 10.1,

we could use an appropriate UI to intervene it that process: everytime the algorithm has to

make a clustering decision, it would instead (with a certain probability) present the domain

expert with that choice - and learn the human’s preferences by taking into account their

answers, thereby manipulating the weights of the cost vector. It would be interesting to

see how anonymization results would change, not only in appearance, but especially in

their resilience against background-knowledge attacks as a result of such customizations.

112

Figure 10.1: Anonymization augmented by IML (human in the loop)

113

11. Conclusion

In this thesis we have introduced the Graphinius platform for graph-theoretical Machine

Learning experiments built on Web technologies, employing in-browser computations as

well as visualization, focusing on a community centered approach.

After discussing some theoretical advantages such a platform could offer in the first

chapter and delving into more specific descriptions of the theoretical underpinnings of

potential application areas, we also took an interest in how such a product could be

marketed, what business models would support it, and where the main advantages lie over

its foreseeable competitors.

A generic description of the platform characteristics was given, followed by an in-depth

survey of the modern web development cycle, its components and supporting infrastruc-

ture. Sifting through a wealth of open source alternatives, we finally decided on how to

build every component of the Graphinius ecosystem including the base library, visualiza-

tion, and communication (history) module.

We saw how three different use cases, theoretically tackled in earlier chapters, can be

implemented using Graphinius and presented the output of their respective computations.

Following the presentation of some implementation metrics, such as size of the codebase

and performance measurements on different graphs, we finally conducted a rather extensive

sweep of interesting challenges and the promise emerging technologies hold for future

developments of the platform.

The Graphinius development is still in its early phases, with just a groundwork having

been laid as of May, 2016. Remembering the first conception of Graphinius only about

six months earlier however, the author is remarkably pleased with the progress and dares

to take a very optimistic look into the future.

114

List of Figures

2.1 Former project iKNOdis architecture overview 23

3.1 Size distribution of recommendation cascades for four product categories . . 31

3.2 Local sphere projected from the global sphere 34

3.3 Graph based image classification example 35

3.4 The three types of data considered in (k-)anonymization 38

3.5 Example of a typical generalization hierarchy 39

3.6 Tabular anonymization: input table and anonymization result 39

3.7 Local subgraph neighborhoods as additional anonymization obstacle. 40

6.1 Modern Web Development Component Diagram 53

6.2 The GraphiniusJS Bundling process . 66

6.3 Comparison between Grunt & Gulp build systems 67

7.1 Graphinius platform architecture overview 69

7.2 Degree distribution of a graph with 13859 nodes and 41541 edges 72

7.3 Sample graph in the Graphinius JSON format 78

7.4 Graphinius JS <-> VIS communication via Op-Log 79

7.5 Graphinius VIS control flow . 83

7.6 GraphiniusJS development and runtime dependencies 85

8.1 Manually building a new graph in the console. 94

8.2 Loading a JSON graph and visualizing it via the browser console. 94

8.3 Computing a BFS in a live browser REPL & visualizing the result. 95

8.4 Computing a DFS in a live browser REPL & visualizing the result. 96

8.5 Kruskal MST based region merging & graph extraction. 98

8.6 Excerpt: the first 25 rows of the Adult census data set 100

9.1 GraphiniusJS test coverage . 105

10.1 Anonymization augmented by IML (human in the loop) 113

115

Listings

6.1 ECMAScript 5 (usually referred to as ’JavaScript’) version of functional
programming using the natively built-in mapping function. 55

6.2 ECMAScript 6 equivalent to the above code. 55

6.3 Two versions of the same mapping functionality in CoffeeScript 56

6.4 Typescript sample featuring import of an external module. 56

6.5 SCSS example demonstrating the use of variables and mixings 58

6.6 LESS example demonstrating the use of variables and default parameters . 58

6.7 Jasmine example of a nested test suite containing one simple assertion in
expect style as well as a spy and a stub . 59

6.8 Mocha example of a nested test suite containing one simple assertion in
expect style as well as a spy and a stub . 60

6.9 Cucumber example describing a Feature containing a simple Scenario . . . 61

6.10 Cucumber example describing a Feature containing a simple Scenario . . . 62

7.1 Graph traveral dependent on GraphMode. 71

7.2 Defining a callback function for traversal. 73

7.3 Executing a callback function during traversal. 73

7.4 Sample Adjacency list, no edge direction. 76

7.5 Sample Adjacency list including edge direction. 76

7.6 Unit tests covering the functionality of one simple function. 87

7.7 A functional test covering the whole instantiation process of a graph from
a JSON input structure. 87

7.8 A mocking setup simulating a Web Server GET response. 88

7.9 A functional test making use of a spy. 91

116

Bibliography

Abramson, David, Rajkumar Buyya, and Jonathan Giddy (2002). “A computational
economy for grid computing and its implementation in the Nimrod-G resource
broker”. In: Future Generation Computer Systems 18.8, pp. 1061–1074. issn:
0167739X. doi: 10.1016/S0167-739X(02)00085-7. arXiv: 0111048 [cs].

Aggarwal, Gagan et al. (2005). “Approximation algorithms for k-anonymity”. In:
Journal of Privacy Technology (JOPT).

Analytics, Butler (2016). 10+ Machine Learning as a Service Platforms. Butler
Analytics. url: http://www.butleranalytics.com/10-machine-learning-

as-a-service-platforms/.
Archambault, Daniel and Helen C Purchase (2013). “The map in the mental map:

Experimental results in dynamic graph drawing”. In: International Journal of
Human-Computer Studies 71.11, pp. 1044–1055.

Armbrust, Michael et al. (2010). “A view of cloud computing”. In: Communications
of the ACM 53.4, p. 50. issn: 00010782. doi: 10.1145/1721654.1721672. arXiv:
05218657199780521865715.

Bader, David A and Kamesh Madduri (2006). “Gtgraph: A synthetic graph generator
suite”. In: Atlanta, GA, February.

Bellard, Fabrice (2015). Javascript PC Emulator. Fabrice Bellard. url: http://

bellard.org/jslinux/tech.html.
Biezemans, Julien (2016). Cucumber for JavaScript. cucumber.io. url: https://

github.com/cucumber/cucumber-js.
Bobylev, A and S Rjasanow (2014). “Universit at des Saarlandes”. In: math.uni-

sb.de. url: http://www.math.uni-sb.de/PREPRINTS/preprint03.ps.gz.
Burke, Edmund et al. (2003). Hyper-Heuristics: An Emerging Direction in Modern

Search Technology. Ed. by Fred Glover and GaryA Kochenberger. New York:
Springer, pp. 457–474. doi: 10.1007/0-306-48056-5_16. url: http://dx.

doi.org/10.1007/0-306-48056-5_16.
Burke, Edmund K et al. (2010). “A Classification of Hyper-heuristics Approaches”.

In: Handbook of Metaheuristics 57, pp. 449–468. issn: 0884-8289. doi: doi :

10.1007/978-1-4419-1665-5_15.

117

http://dx.doi.org/10.1016/S0167-739X(02)00085-7
http://arxiv.org/abs/0111048
http://www.butleranalytics.com/10-machine-learning-as-a-service-platforms/
http://www.butleranalytics.com/10-machine-learning-as-a-service-platforms/
http://dx.doi.org/10.1145/1721654.1721672
http://arxiv.org/abs/0521865719 9780521865715
http://bellard.org/jslinux/tech.html
http://bellard.org/jslinux/tech.html
https://github.com/cucumber/cucumber-js
https://github.com/cucumber/cucumber-js
http://www.math.uni-sb.de/PREPRINTS/preprint03.ps.gz
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/doi:10.1007/978-1-4419-1665-5_15
http://dx.doi.org/doi:10.1007/978-1-4419-1665-5_15

Burke, Edmund K et al. (2013). “Hyper-heuristics: a survey of the state of the art”.
In: Journal of the Operational Research Society 64.12, pp. 1695–1724. issn: 0160-
5682. doi: 10.1057/jors.2013.71. url: http://www.palgrave-journals.

com/doifinder/10.1057/jors.2013.71.
Campan, Alina and Traian Marius Truta (2009). “Data and structural k-anonymity

in social networks”. In: Privacy, Security, and Trust in KDD. Springer, pp. 33–
54.

Cerri, Andrea, Barbara Di Fabio, and Filippo Medri (2012). “Multi-scale approxi-
mation of the matching distance for shape retrieval”. In: Computational Topology
in Image Context, pp. 1–10. url: http://link.springer.com/chapter/10.

1007/978-3-642-30238-1_14.
Chester, Sean et al. (2011). “k-Anonymization of Social Networks by Vertex Addi-

tion.” In: ADBIS (2) 789, pp. 107–116.
Ciriani, Valentina et al. (2007). “κ-anonymity”. In: Secure data management in

decentralized systems. Springer, pp. 323–353.
Das Modak, Kaustav (2016). Choosing a JavaScript Documentation Generator – JS-

Doc vs YUIDoc vs Doxx vs Docco. FusionBrew. url: http://www.fusioncharts.

com/blog/2013/12/jsdoc-vs-yuidoc-vs-doxx-vs-docco-choosing-a-

javascript-documentation-generator/.
Demetz, Oliver, David Hafner, and Joachim Weickert (2013). “The Complete Rank

Transform: A Tool for Accurate and Morphologically Invariant Matching of
Structures”. In: Procedings of the British Machine Vision Conference 2013, pp. 50.1–
50.11. doi: 10.5244/C.27.50. url: http://www.bmva.org/bmvc/2013/

Papers/paper0050/index.html.
Di Fabio, Barbara and Claudia Landi (2012). “Persistent homology and partial sim-

ilarity of shapes”. In: Pattern Recognition Letters 33.11, pp. 1445–1450. issn:
01678655. doi: 10.1016/j.patrec.2011.11.003. url: http://linkinghub.

elsevier.com/retrieve/pii/S0167865511003783.
Dohmen L., Edlich I.S. and M. Hackstein (2014). “A Declarative Web Framework

for the Server-side Extension of the Multi Model Database ArangoDB”. In:
Engelschall, Ralf S. (2016). ECMAScript 6 - New Features: Overview & Comparison.

es6-features.org. url: http://es6-features.org/.
Felzenszwalb, Pedro F and Daniel P Huttenlocher (2004). “Efficient graph-based im-

age segmentation”. In: International Journal of Computer Vision 59.2, pp. 167–
181. doi: 10.1023/B:VISI.0000022288.19776.77.

Hahn, Evan (2013). JavaScript Testing with Jasmine. " O’Reilly Media, Inc.".

118

http://dx.doi.org/10.1057/jors.2013.71
http://www.palgrave-journals.com/doifinder/10.1057/jors.2013.71
http://www.palgrave-journals.com/doifinder/10.1057/jors.2013.71
http://link.springer.com/chapter/10.1007/978-3-642-30238-1_14
http://link.springer.com/chapter/10.1007/978-3-642-30238-1_14
http://www.fusioncharts.com/blog/2013/12/jsdoc-vs-yuidoc-vs-doxx-vs-docco-choosing-a-javascript-documentation-generator/
http://www.fusioncharts.com/blog/2013/12/jsdoc-vs-yuidoc-vs-doxx-vs-docco-choosing-a-javascript-documentation-generator/
http://www.fusioncharts.com/blog/2013/12/jsdoc-vs-yuidoc-vs-doxx-vs-docco-choosing-a-javascript-documentation-generator/
http://dx.doi.org/10.5244/C.27.50
http://www.bmva.org/bmvc/2013/Papers/paper0050/index.html
http://www.bmva.org/bmvc/2013/Papers/paper0050/index.html
http://dx.doi.org/10.1016/j.patrec.2011.11.003
http://linkinghub.elsevier.com/retrieve/pii/S0167865511003783
http://linkinghub.elsevier.com/retrieve/pii/S0167865511003783
http://es6-features.org/
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77

Hampton, Catlin, Weizenbaum Natalie, and Chris Eppstein. (2016). Sass Basics.
sass-lang.com. url: http://sass-lang.com/guide.

Herman, I., G. Melançon, and M.S. Marshall (2000). “Graph visualization and nav-
igation in information visualization: A survey”. In: IEEE Transactions on Visu-
alization and Computer Graphics 6.1, pp. 24–43.

Holzinger, Andreas, Bernd Malle, and Nicola Giuliani (2014). “On graph extraction
from image data”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8609
LNAI, pp. 552–563. issn: 16113349. doi: 10.1007/978-3-319-09891-3_50.

Holzinger, Andreas et al. (2014). “On the Generation of Point Cloud Data Sets: the
first step in the Knowledge Discovery Process”. In: Interactive Knowledge Dis-
covery and Data Mining: State-of-the-Art and Future Challenges in Biomedical
Informatics, Springer Lecture Notes in Computer Science LNCS 8401. Berlin,
Heidelberg: Springer, pp. 57–80.

Horvitz, Eric et al. (2001). “A Bayesian Approach to Tackling Hard Computational
Problems (Preliminary Report)”. In: Electronic Notes in Discrete Mathematics
9, pp. 376–391. issn: 15710653. doi: 10.1016/S1571-0653(04)00335-X.

Huang, Wei et al. (2006). “A Case for High Performance Computing with Virtual
Machines”. In: Proceedings of the 20th annual international conference on super-
computing ICS 06, pp. 125–134. doi: 10.1145/1183401.1183421.

Hutter, Frank et al. (2007). “Automatic Algorithm Configuration based on Local
Search”. In: BMC Bioinformatics, pp. 1152–1157.

Kang, U and Duen Horng (2010). “Inference of beliefs on billion-scale graphs”. In:
url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.

5276.
Kapron, Bruce, Gautam Srivastava, and S Venkatesh (2011). “Social network anonymiza-

tion via edge addition”. In: Advances in Social Networks Analysis and Mining
(ASONAM), 2011 International Conference on. IEEE, pp. 155–162.

Kasaiezadeh, A. and A. Khajepour (2013). “Multi-agent stochastic level set method
in image segmentation”. In: Computer Vision and Image Understanding 117.9,
pp. 1147–1162.

Lee, Yong Jae and Kristen Grauman (2012). “Object-graphs for context-aware vi-
sual category discovery.” In: IEEE transactions on pattern analysis and machine
intelligence 34.2, pp. 346–58. issn: 1939-3539. doi: 10.1109/TPAMI.2011.122.
url: http://www.ncbi.nlm.nih.gov/pubmed/21670480.

119

http://sass-lang.com/guide
http://dx.doi.org/10.1007/978-3-319-09891-3_50
http://dx.doi.org/10.1016/S1571-0653(04)00335-X
http://dx.doi.org/10.1145/1183401.1183421
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5276
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5276
http://dx.doi.org/10.1109/TPAMI.2011.122
http://www.ncbi.nlm.nih.gov/pubmed/21670480

Leskovec, Jure, Ajit Singh, and Jon Kleinberg (2006). “Patterns of Influence in a
Recommendation Network”. In: Proceedings of the 10th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining. PAKDD’06. Singapore:
Springer-Verlag, pp. 380–389. isbn: 3-540-33206-5, 978-3-540-33206-0. doi: 10.

1007/11731139_44. url: http://dx.doi.org/10.1007/11731139_44.
Liu, Bo et al. (2012). “Deploying Bioinformatics Workflows on clouds with galaxy

and globus provision”. In: Proceedings - 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, SCC 2012, pp. 1087–1095. doi:
10.1109/SC.Companion.2012.131.

Liu, Bo et al. (2014). “Cloud-based bioinformatics workflow platform for large-scale
next-generation sequencing analyses”. In: Journal of Biomedical Informatics 49,
pp. 119–133. issn: 15320464. doi: 10.1016/j.jbi.2014.01.005. url: http:

//dx.doi.org/10.1016/j.jbi.2014.01.005.
Lorica, Ben (2013a). Data Analysis: Just one component of the Data Science work-

flow. O’Reilly Media, Inc. url: http://radar.oreilly.com/2013/09/data-

analysis-just-one-component-of-the-data-science-workflow.html.
Lorica, Ben (2013b). Data Science Tools: Fast, easy to use, and scalable. O’Reilly

Media, Inc. url: http://radar.oreilly.com/2013/03/fast-easy-to-use-

scalable-data-science-tools.html.
Lorica, Ben (2013c). Data scientists tackle the analytic lifecycle. O’Reilly Media,

Inc. url: http://radar.oreilly.com/2013/07/data-scientists-and-the-

analytic-lifecycle.html.
Meng, Xiangrui (2015). ML Pipelines: A New High-Level API for MLlib. Databricks

Inc. url: https://databricks.com/blog/2015/01/07/ml-pipelines-a-

new-high-level-api-for-mllib.html.
Olfati-Saber, R., J. A. Fax, and R. M. Murray (2007). “Consensus and cooperation

in networked multi-agent systems”. In: Proceedings of the IEEE 95.1, pp. 215–
233.

Page, Lukas and Max Mikhailov (2016). An overview of Less, how to download and
use, examples and more. lesscss.org. url: http://lesscss.org/.

Pandit, Shashank et al. (2007). “Netprobe: a fast and scalable system for fraud
detection in online auction networks”. In: Proceedings of the 16th . . . 42, pp. 210,
201. doi: 10.1145/1242572.1242600. url: http://dx.doi.org/10.1145/

1242572.1242600\backslashnhttp://dl.acm.org/citation.cfm?id=

1242600.

120

http://dx.doi.org/10.1007/11731139_44
http://dx.doi.org/10.1007/11731139_44
http://dx.doi.org/10.1007/11731139_44
http://dx.doi.org/10.1109/SC.Companion.2012.131
http://dx.doi.org/10.1016/j.jbi.2014.01.005
http://dx.doi.org/10.1016/j.jbi.2014.01.005
http://dx.doi.org/10.1016/j.jbi.2014.01.005
http://radar.oreilly.com/2013/09/data-analysis-just-one-component-of-the-data-science-workflow.html
http://radar.oreilly.com/2013/09/data-analysis-just-one-component-of-the-data-science-workflow.html
http://radar.oreilly.com/2013/03/fast-easy-to-use-scalable-data-science-tools.html
http://radar.oreilly.com/2013/03/fast-easy-to-use-scalable-data-science-tools.html
http://radar.oreilly.com/2013/07/data-scientists-and-the-analytic-lifecycle.html
http://radar.oreilly.com/2013/07/data-scientists-and-the-analytic-lifecycle.html
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
http://lesscss.org/
http://dx.doi.org/10.1145/1242572.1242600
http://dx.doi.org/10.1145/1242572.1242600\backslashnhttp://dl.acm.org/citation.cfm?id=1242600
http://dx.doi.org/10.1145/1242572.1242600\backslashnhttp://dl.acm.org/citation.cfm?id=1242600
http://dx.doi.org/10.1145/1242572.1242600\backslashnhttp://dl.acm.org/citation.cfm?id=1242600

Purchase, Helen (1997). “Which aesthetic has the greatest effect on human under-
standing?” In: Graph Drawing, Lecture Notes in Computer Science LNCS 1353.
Ed. by Giuseppe DiBattista. Berlin Heidelberg: Springer, pp. 248–261.

Rice, John R (1975). “The algorithm selection problem”. In: Advances in Computers
15, pp. 65–117.

Schneevoigt, Timm, Christopher Schroers, and Joachim Weickert (2014). “A Dense
Pipeline for 3D Reconstruction from Image Sequences”. In: Pattern Recognition
8753, pp. 629–640. url: http://link.springer.com/chapter/10.1007/978-

3-319-11752-2_52.
Sculley, D. et al. (2014). “Machine Learning: The High Interest Credit Card of

Technical Debt”. In: SE4ML: Software Engineering for Machine Learning (NIPS
2014 Workshop).

Smith-Miles, Kate a. (2008). “Towards insightful algorithm selection for optimisa-
tion using meta-learning concepts”. In: Proceedings of the International Joint
Conference on Neural Networks, pp. 4118–4124. issn: 1098-7576. doi: 10.1109/

IJCNN.2008.4634391.
Sparks, Evan (2014). ML Pipelines. UC Berkeley. url: https : / / amplab . cs .

berkeley.edu/ml-pipelines/.
Stahl, F. et al. (2013). “An overview of interactive visual data mining techniques

for knowledge discovery”. In: Wiley Interdisciplinary Reviews-Data Mining and
Knowledge Discovery 3.4, pp. 239–256.

Sweeney, Latanya (2002). “k-anonymity: A model for protecting privacy”. In: Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.05,
pp. 557–570.

Tang, David (2015). Jasmine vs. Mocha, Chai, and Sinon. THE JS GUY. url: http:

//thejsguy.com/2015/01/12/jasmine-vs-mocha-chai-and-sinon.html.
Wagner, Israel A and Alfred M Bruckstein (2001). “From ants to a (ge) nts: A special

issue on ant-robotics”. In: Annals of Mathematics and Artificial Intelligence 31.1,
pp. 1–5.

Yee, Bennet et al. (2009). “Native client: A sandbox for portable, untrusted x86
native code”. In: Security and Privacy, 2009 30th IEEE Symposium on. IEEE,
pp. 79–93.

Youseff, Lamia, Maria Butrico, and Dilma Da Silva (2008). “Toward a unified on-
tology of cloud computing”. In: Grid Computing Environments Workshop, GCE
2008. issn: 15347362. doi: 10.1109/GCE.2008.4738443.

121

http://link.springer.com/chapter/10.1007/978-3-319-11752-2_52
http://link.springer.com/chapter/10.1007/978-3-319-11752-2_52
http://dx.doi.org/10.1109/IJCNN.2008.4634391
http://dx.doi.org/10.1109/IJCNN.2008.4634391
https://amplab.cs.berkeley.edu/ml-pipelines/
https://amplab.cs.berkeley.edu/ml-pipelines/
http://thejsguy.com/2015/01/12/jasmine-vs-mocha-chai-and-sinon.html
http://thejsguy.com/2015/01/12/jasmine-vs-mocha-chai-and-sinon.html
http://dx.doi.org/10.1109/GCE.2008.4738443

A. Anonymization Table

Age range Workclass Country Gender Race Marital status

39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
39 * United-States Male White Never-married
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[50 - 53] Self United-States Male White Married-civ-spouse
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[38 - 50] Private United-States Male White Divorced
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[53 - 60] Private United-States Male * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse

122

Age range Workclass Country Gender Race Marital status

[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[28 - 46] Private America Female * Married-civ-spouse
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[49 - 54] Private America Female * *
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[31 - 36] Private United-States Female White Never-married
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[42 - 45] Private United-States Male White Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse

123

Age range Workclass Country Gender Race Marital status

[37 - 38] Private United-States Male * Married-civ-spouse
[37 - 38] Private United-States Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[30 - 49] * * Male * Married-civ-spouse
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[23 - 25] Private United-States Female White Never-married
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[32 - 41] * United-States Male Black *
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[25 - 27] Self United-States Male White Never-married
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced

124

Age range Workclass Country Gender Race Marital status

[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[43 - 44] Self United-States Female White Divorced
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[59 - 66] * United-States Female White *
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[56 - 64] * United-States Male White Married-civ-spouse
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[19 - 22] Private United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[23 - 28] * United-States Male White Never-married
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse

125

Age range Workclass Country Gender Race Marital status

[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[22 - 41] Gov United-States Male * Married-civ-spouse
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[48 - 70] Private America Male White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[19 - 36] Private United-States Female White *
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[31 - 35] Private United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse
[24 - 40] Self United-States Male White Married-civ-spouse

126

Age range Workclass Country Gender Race Marital status

[24 - 40] Self United-States Male White Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
[57 - 76] * North-America Male * Married-civ-spouse
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
50 * America Male White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
46 * * * White *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[29 - 42] Private * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *

127

Age range Workclass Country Gender Race Marital status

[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
[79 - 90] * * * * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
43 * America Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *
[28 - 34] Private * Female * *

128

B. GraphiniusJS API

The following section provides the API documentation automatically extracted from the
source code utilizing the TypeDoc library.

129

Graphinius
Generic	graph	(analysis)	library	in	Typescript

Index

External	modules

External	modules

"core/Edges"
"core/Graph"
"core/Nodes"
"datastructs/binaryHeap"
"datastructs/fibonacciHeap"
"input/CSVInput"
"input/JSONInput"
"search/BFS"
"search/DFS"
"search/PFS"
"utils/callbackUtils"
"utils/remoteUtils"
"utils/structUtils"

"core/Edges"

Defined	in	core/Edges.ts:1

"core/Edges":

BaseEdge

Graphinius 	

Defined	in	core/Edges.ts:47

BaseEdge:

constructor
new	BaseEdge(_id:	any,	_node_a:	IBaseNode,	_node_b:
IBaseNode,	options?:	EdgeConstructorOptions):	BaseEdge

Defined	in	core/Edges.ts:51

Parameters

_id:	any

_node_a:	IBaseNode

_node_b:	IBaseNode

Optional 	options:	EdgeConstructorOptions

Returns	BaseEdge

_directed

Defined	in	core/Edges.ts:48

_directed:	boolean

_id

Defined	in	core/Edges.ts:53

_id:	any

_label

Defined	in	core/Edges.ts:51

_label:	string

_node_a

Defined	in	core/Edges.ts:54

_node_a:	IBaseNode

_node_b

Defined	in	core/Edges.ts:55

_node_b:	IBaseNode

_weight

Defined	in	core/Edges.ts:50

_weight:	number

_weighted

Defined	in	core/Edges.ts:49

_weighted:	boolean

getID
getID():	string

Implementation	of	IBaseEdge.getID
Defined	in	core/Edges.ts:66

Returns	string

getLabel
getLabel():	string

Implementation	of	IBaseEdge.getLabel
Defined	in	core/Edges.ts:70

Returns	string

getNodes
getNodes():	IConnectedNodes

Implementation	of	IBaseEdge.getNodes
Defined	in	core/Edges.ts:97

Returns	IConnectedNodes

getWeight
getWeight():	number

Implementation	of	IBaseEdge.getWeight
Defined	in	core/Edges.ts:86

Returns	number

isDirected
isDirected():	boolean

Implementation	of	IBaseEdge.isDirected
Defined	in	core/Edges.ts:78

Returns	boolean

isWeighted
isWeighted():	boolean

Implementation	of	IBaseEdge.isWeighted
Defined	in	core/Edges.ts:82

Returns	boolean

setLabel
setLabel(label:	string):	void

Implementation	of	IBaseEdge.setLabel
Defined	in	core/Edges.ts:74

Parameters

label:	string

Returns	void

setWeight
setWeight(w:	number):	void

Implementation	of	IBaseEdge.setWeight
Defined	in	core/Edges.ts:90

Parameters

w:	number

Returns	void

EdgeConstructorOptions

Defined	in	core/Edges.ts:40

EdgeConstructorOptions:

directed

Defined	in	core/Edges.ts:41

directed:	boolean

label

Defined	in	core/Edges.ts:44

label:	string

weight

Defined	in	core/Edges.ts:43

weight:	number

weighted

Defined	in	core/Edges.ts:42

weighted:	boolean

param

param

IBaseEdge

Defined	in	core/Edges.ts:15

Edges	are	the	most	basic	components	in	graphinius.	They	control
no	other	elements	below	them,	but	hold	references	to	the	nodes
they	are	connecting...

internal	id,	public
edge	label,	public

IBaseEdge:

getID
getID():	string

Defined	in	core/Edges.ts:16

Returns	string

getLabel
getLabel():	string

Defined	in	core/Edges.ts:17

Returns	string

getNodes
getNodes():	IConnectedNodes

Defined	in	core/Edges.ts:29

Returns	IConnectedNodes

getWeight
getWeight():	number

Defined	in	core/Edges.ts:25

Returns	number

isDirected
isDirected():	boolean

Defined	in	core/Edges.ts:21

Returns	boolean

isWeighted
isWeighted():	boolean

Defined	in	core/Edges.ts:24

Returns	boolean

setLabel
setLabel(label:	string):	void

Defined	in	core/Edges.ts:18

Parameters

label:	string

Returns	void

setWeight
setWeight(w:	number):	void

Defined	in	core/Edges.ts:26

Parameters

w:	number

Returns	void

IConnectedNodes

Defined	in	core/Edges.ts:3

IConnectedNodes:

a

Defined	in	core/Edges.ts:4

a:	IBaseNode

b

Defined	in	core/Edges.ts:5

b:	IBaseNode

"core/Graph"

Defined	in	core/Graph.ts:1

"core/Graph":

GraphMode

Defined	in	core/Graph.ts:8

GraphMode:

DIRECTED

Defined	in	core/Graph.ts:10

DIRECTED:

INIT

Defined	in	core/Graph.ts:9

INIT:

MIXED

Defined	in	core/Graph.ts:12

MIXED:

UNDIRECTED

Defined	in	core/Graph.ts:11

UNDIRECTED:

BaseGraph

Defined	in	core/Graph.ts:85

BaseGraph:

constructor
new	BaseGraph(_label:	any):	BaseGraph

Defined	in	core/Graph.ts:92

Parameters

_label:	any

Returns	BaseGraph

_dir_edges

Defined	in	core/Graph.ts:91

Type	declaration

[key:	string]:	IBaseEdge

_dir_edges:	object

_label
_label:	any

Implementation	of	IGraph._label
Defined	in	core/Graph.ts:99

_mode

Defined	in	core/Graph.ts:89

_mode:	GraphMode

_nodes

Defined	in	core/Graph.ts:90

Type	declaration

[key:	string]:	IBaseNode

_nodes:	object

_nr_dir_edges

Defined	in	core/Graph.ts:87

_nr_dir_edges:	number

_nr_nodes

Defined	in	core/Graph.ts:86

_nr_nodes:	number

_nr_und_edges

Defined	in	core/Graph.ts:88

_nr_und_edges:	number

_und_edges

Defined	in	core/Graph.ts:92

Type	declaration

[key:	string]:	IBaseEdge

_und_edges:	object

addEdge
addEdge(id:	string,	node_a:	IBaseNode,	node_b:	IBaseNode,
opts?:	EdgeConstructorOptions):	IBaseEdge

Defined	in	core/Graph.ts:300

Parameters

id:	string

node_a:	IBaseNode

node_b:	IBaseNode

Optional 	opts:	EdgeConstructorOptions

Returns	IBaseEdge

addEdgeByNodeIDs
addEdgeByNodeIDs(label:	string,	node_a_id:	string,
node_b_id:	string,	opts?:	object):	IBaseEdge

Defined	in	core/Graph.ts:286

Parameters

label:	string

node_a_id:	string

node_b_id:	string

Optional 	opts:	object

Returns	IBaseEdge

addNode
addNode(id:	string,	opts?:	object):	IBaseNode

Defined	in	core/Graph.ts:162

Parameters

id:	string

Optional 	opts:	object

Returns	IBaseNode

checkConnectedNodeOrThrow
checkConnectedNodeOrThrow(node:	IBaseNode):	void

Defined	in	core/Graph.ts:532

Parameters

node:	IBaseNode

Returns	void

clearAllDirEdges
clearAllDirEdges():	void

Implementation	of	IGraph.clearAllDirEdges
Defined	in	core/Graph.ts:423

Remove	all	the	(un)directed	edges	in	the	graph

Returns	void

clearAllEdges
clearAllEdges():	void

Implementation	of	IGraph.clearAllEdges
Defined	in	core/Graph.ts:435

Returns	void

clearAllUndEdges
clearAllUndEdges():	void

Implementation	of	IGraph.clearAllUndEdges
Defined	in	core/Graph.ts:429

Returns	void

createRandomEdgesProb
createRandomEdgesProb(probability:	number,	directed?:
boolean):	void

direction

Implementation	of	IGraph.createRandomEdgesProb
Defined	in	core/Graph.ts:448

Simple	edge	generator:	Go	through	all	node	combinations,	and
add	an	(un)directed	edge	with

true	or	false	CAUTION:	this	algorithm	takes	quadratic
runtime	in	#nodes

Parameters

probability:	number
and

Optional 	directed:	boolean

Returns	void

createRandomEdgesSpan
createRandomEdgesSpan(min:	number,	max:	number,	directed?:
boolean):	void

Implementation	of	IGraph.createRandomEdgesSpan
Defined	in	core/Graph.ts:476

Simple	edge	generator:	Go	through	all	nodes,	and	add	[min,
max]	(un)directed	edges	to	a	randomly	chosen	node	CAUTION:
this	algorithm	could	take	quadratic	runtime	in	#nodes	but
should	be	much	faster

Parameters

min:	number

max:	number

Optional 	directed:	boolean

Returns	void

degreeDistribution
degreeDistribution():	DegreeDistribution

Implementation	of	IGraph.degreeDistribution
Defined	in	core/Graph.ts:118

We	assume	graphs	in	which	no	node	has	higher	total	degree
than	65536

Returns	DegreeDistribution

deleteAllEdgesOf
deleteAllEdgesOf(node:	IBaseNode):	void

Implementation	of	IGraph.deleteAllEdgesOf
Defined	in	core/Graph.ts:415

Parameters

node:	IBaseNode

Returns	void

deleteDirEdgesOf
deleteDirEdgesOf(node:	IBaseNode):	void

Implementation	of	IGraph.deleteDirEdgesOf
Defined	in	core/Graph.ts:388

Parameters

node:	IBaseNode

Returns	void

deleteEdge
deleteEdge(edge:	IBaseEdge):	void

Implementation	of	IGraph.deleteEdge
Defined	in	core/Graph.ts:327

Parameters

edge:	IBaseEdge

Returns	void

deleteInEdgesOf
deleteInEdgesOf(node:	IBaseNode):	void

Implementation	of	IGraph.deleteInEdgesOf
Defined	in	core/Graph.ts:354

Parameters

node:	IBaseNode

Returns	void

deleteNode
deleteNode(node:	any):	void

Implementation	of	IGraph.deleteNode
Defined	in	core/Graph.ts:209

Parameters

node:	any

Returns	void

deleteOutEdgesOf
deleteOutEdgesOf(node:	IBaseNode):	void

Implementation	of	IGraph.deleteOutEdgesOf
Defined	in	core/Graph.ts:371

Parameters

node:	IBaseNode

Returns	void

deleteUndEdgesOf
deleteUndEdgesOf(node:	IBaseNode):	void

Implementation	of	IGraph.deleteUndEdgesOf
Defined	in	core/Graph.ts:394

Parameters

node:	IBaseNode

Returns	void

getDirEdges
getDirEdges():	object

Implementation	of	IGraph.getDirEdges
Defined	in	core/Graph.ts:278

Returns	object

[key:	string]:	IBaseEdge

getEdgeById
getEdgeById(id:	string):	IBaseEdge

Implementation	of	IGraph.getEdgeById
Defined	in	core/Graph.ts:252

Parameters

id:	string

Returns	IBaseEdge

getEdgeByLabel
getEdgeByLabel(label:	string):	IBaseEdge

Implementation	of	IGraph.getEdgeByLabel
Defined	in	core/Graph.ts:264

Use	hasEdgeLabel	with	CAUTION	->	it	has	LINEAR	runtime	in
the	graph's	#edges

Parameters

label:	string

Returns	IBaseEdge

getMode
getMode():	GraphMode

Implementation	of	IGraph.getMode
Defined	in	core/Graph.ts:101

Returns	GraphMode

getNodeById
getNodeById(id:	string):	IBaseNode

Implementation	of	IGraph.getNodeById
Defined	in	core/Graph.ts:183

Parameters

id:	string

Returns	IBaseNode

getNodeByLabel
getNodeByLabel(label:	string):	IBaseNode

Implementation	of	IGraph.getNodeByLabel
Defined	in	core/Graph.ts:191

Use	getNodeByLabel	with	CAUTION	->	it	has	LINEAR	runtime
in	the	graph's	#nodes

Parameters

label:	string

Returns	IBaseNode

getNodes
getNodes():	object

Implementation	of	IGraph.getNodes
Defined	in	core/Graph.ts:198

Returns	object

[key:	string]:	IBaseNode

getRandomDirEdge

getRandomDirEdge():	IBaseEdge

Implementation	of	IGraph.getRandomDirEdge
Defined	in	core/Graph.ts:520

CAUTION	-	This	function	is	linear	in	#	directed	edges

Returns	IBaseEdge

getRandomNode
getRandomNode():	IBaseNode

Implementation	of	IGraph.getRandomNode
Defined	in	core/Graph.ts:205

CAUTION	-	This	function	takes	linear	time	in	#	nodes

Returns	IBaseNode

getRandomUndEdge
getRandomUndEdge():	IBaseEdge

Implementation	of	IGraph.getRandomUndEdge
Defined	in	core/Graph.ts:527

CAUTION	-	This	function	is	linear	in	#	undirected	edges

Returns	IBaseEdge

getStats
getStats():	GraphStats

Implementation	of	IGraph.getStats
Defined	in	core/Graph.ts:105

Returns	GraphStats

getUndEdges
getUndEdges():	object

Implementation	of	IGraph.getUndEdges
Defined	in	core/Graph.ts:282

Returns	object

[key:	string]:	IBaseEdge

hasEdgeID
hasEdgeID(id:	string):	boolean

Implementation	of	IGraph.hasEdgeID
Defined	in	core/Graph.ts:234

Parameters

id:	string

Returns	boolean

hasEdgeLabel
hasEdgeLabel(label:	string):	boolean

Implementation	of	IGraph.hasEdgeLabel
Defined	in	core/Graph.ts:242

Use	hasEdgeLabel	with	CAUTION	->	it	has	LINEAR	runtime	in
the	graph's	#edges

Parameters

label:	string

Returns	boolean

hasNodeID

hasNodeID(id:	string):	boolean

Implementation	of	IGraph.hasNodeID
Defined	in	core/Graph.ts:169

Parameters

id:	string

Returns	boolean

hasNodeLabel
hasNodeLabel(label:	string):	boolean

Implementation	of	IGraph.hasNodeLabel
Defined	in	core/Graph.ts:177

Use	hasNodeLabel	with	CAUTION	->	it	has	LINEAR	runtime	in
the	graph's	#nodes

Parameters

label:	string

Returns	boolean

nrDirEdges
nrDirEdges():	number

Implementation	of	IGraph.nrDirEdges
Defined	in	core/Graph.ts:154

Returns	number

nrNodes
nrNodes():	number

Implementation	of	IGraph.nrNodes
Defined	in	core/Graph.ts:150

Returns	number

nrUndEdges
nrUndEdges():	number

Implementation	of	IGraph.nrUndEdges
Defined	in	core/Graph.ts:158

Returns	number

pickRandomProperty
pickRandomProperty(obj:	any):	any

Defined	in	core/Graph.ts:557

Parameters

obj:	any

Returns	any

updateGraphMode
updateGraphMode():	void

Defined	in	core/Graph.ts:539

Returns	void

DegreeDistribution

Defined	in	core/Graph.ts:16

DegreeDistribution:

all

Defined	in	core/Graph.ts:21

all:	Uint16Array

dir

Defined	in	core/Graph.ts:19

dir:	Uint16Array

in

Defined	in	core/Graph.ts:17

in:	Uint16Array

out

Defined	in	core/Graph.ts:18

out:	Uint16Array

und

Defined	in	core/Graph.ts:20

und:	Uint16Array

GraphStats

Defined	in	core/Graph.ts:25

GraphStats:

mode

Defined	in	core/Graph.ts:26

mode:	GraphMode

nr_dir_edges

Defined	in	core/Graph.ts:29

nr_dir_edges:	number

nr_nodes

Defined	in	core/Graph.ts:27

nr_nodes:	number

nr_und_edges

Defined	in	core/Graph.ts:28

nr_und_edges:	number

IGraph

Defined	in	core/Graph.ts:34

IGraph:

_label

Defined	in	core/Graph.ts:35

_label:	string

addEdge
addEdge(label:	string,	node_a:	IBaseNode,	node_b:
IBaseNode,	opts?:	object):	IBaseEdge

Defined	in	core/Graph.ts:53

Parameters

label:	string

node_a:	IBaseNode

node_b:	IBaseNode

Optional 	opts:	object

Returns	IBaseEdge

addEdgeByNodeIDs
addEdgeByNodeIDs(label:	string,	node_a_id:	string,
node_b_id:	string,	opts?:	object):	IBaseEdge

Defined	in	core/Graph.ts:54

Parameters

label:	string

node_a_id:	string

node_b_id:	string

Optional 	opts:	object

Returns	IBaseEdge

addNode
addNode(id:	string,	opts?:	object):	IBaseNode

Defined	in	core/Graph.ts:42

Parameters

id:	string

Optional 	opts:	object

Returns	IBaseNode

clearAllDirEdges
clearAllDirEdges():	void

Defined	in	core/Graph.ts:75

Returns	void

clearAllEdges
clearAllEdges():	void

Defined	in	core/Graph.ts:77

Returns	void

clearAllUndEdges
clearAllUndEdges():	void

Defined	in	core/Graph.ts:76

Returns	void

createRandomEdgesProb
createRandomEdgesProb(probability:	number,	directed?:
boolean):	void

Defined	in	core/Graph.ts:80

Parameters

probability:	number

Optional 	directed:	boolean

Returns	void

createRandomEdgesSpan
createRandomEdgesSpan(min:	number,	max:	number,	directed?:
boolean):	void

Defined	in	core/Graph.ts:81

Parameters

min:	number

max:	number

Optional 	directed:	boolean

Returns	void

degreeDistribution
degreeDistribution():	DegreeDistribution

Defined	in	core/Graph.ts:39

Returns	DegreeDistribution

deleteAllEdgesOf
deleteAllEdgesOf(node:	IBaseNode):	void

Defined	in	core/Graph.ts:72

Parameters

node:	IBaseNode

Returns	void

deleteDirEdgesOf
deleteDirEdgesOf(node:	IBaseNode):	void

Defined	in	core/Graph.ts:70

Parameters

node:	IBaseNode

Returns	void

deleteEdge
deleteEdge(edge:	IBaseEdge):	void

Defined	in	core/Graph.ts:63

Parameters

edge:	IBaseEdge

Returns	void

deleteInEdgesOf
deleteInEdgesOf(node:	IBaseNode):	void

Defined	in	core/Graph.ts:68

Parameters

node:	IBaseNode

Returns	void

deleteNode
deleteNode(node:	any):	void

Defined	in	core/Graph.ts:50

Parameters

node:	any

Returns	void

deleteOutEdgesOf
deleteOutEdgesOf(node:	IBaseNode):	void

Defined	in	core/Graph.ts:69

Parameters

node:	IBaseNode

Returns	void

deleteUndEdgesOf
deleteUndEdgesOf(node:	IBaseNode):	void

Defined	in	core/Graph.ts:71

Parameters

node:	IBaseNode

Returns	void

getDirEdges
getDirEdges():	object

Defined	in	core/Graph.ts:59

Returns	object

[key:	string]:	IBaseEdge

getEdgeById

getEdgeById(id:	string):	IBaseEdge

Defined	in	core/Graph.ts:57

Parameters

id:	string

Returns	IBaseEdge

getEdgeByLabel
getEdgeByLabel(label:	string):	IBaseEdge

Defined	in	core/Graph.ts:58

Parameters

label:	string

Returns	IBaseEdge

getMode
getMode():	GraphMode

Defined	in	core/Graph.ts:37

Returns	GraphMode

getNodeById
getNodeById(id:	string):	IBaseNode

Defined	in	core/Graph.ts:45

Parameters

id:	string

Returns	IBaseNode

getNodeByLabel
getNodeByLabel(label:	string):	IBaseNode

Defined	in	core/Graph.ts:46

Parameters

label:	string

Returns	IBaseNode

getNodes
getNodes():	object

Defined	in	core/Graph.ts:47

Returns	object

[key:	string]:	IBaseNode

getRandomDirEdge
getRandomDirEdge():	IBaseEdge

Defined	in	core/Graph.ts:64

Returns	IBaseEdge

getRandomNode
getRandomNode():	IBaseNode

Defined	in	core/Graph.ts:49

Returns	IBaseNode

getRandomUndEdge

getRandomUndEdge():	IBaseEdge

Defined	in	core/Graph.ts:65

Returns	IBaseEdge

getStats
getStats():	GraphStats

Defined	in	core/Graph.ts:38

Returns	GraphStats

getUndEdges
getUndEdges():	object

Defined	in	core/Graph.ts:60

Returns	object

[key:	string]:	IBaseEdge

hasEdgeID
hasEdgeID(id:	string):	boolean

Defined	in	core/Graph.ts:55

Parameters

id:	string

Returns	boolean

hasEdgeLabel
hasEdgeLabel(label:	string):	boolean

Defined	in	core/Graph.ts:56

Parameters

label:	string

Returns	boolean

hasNodeID
hasNodeID(id:	string):	boolean

Defined	in	core/Graph.ts:43

Parameters

id:	string

Returns	boolean

hasNodeLabel
hasNodeLabel(label:	string):	boolean

Defined	in	core/Graph.ts:44

Parameters

label:	string

Returns	boolean

nrDirEdges
nrDirEdges():	number

Defined	in	core/Graph.ts:61

Returns	number

nrNodes

nrNodes():	number

Defined	in	core/Graph.ts:48

Returns	number

nrUndEdges
nrUndEdges():	number

Defined	in	core/Graph.ts:62

Returns	number

"core/Nodes"

Defined	in	core/Nodes.ts:1

"core/Nodes":

BaseNode

Defined	in	core/Nodes.ts:59

BaseNode:

constructor
new	BaseNode(_id:	any,	features?:	object):	BaseNode

Defined	in	core/Nodes.ts:81

Parameters

_id:	any

Optional 	features:	object

[k:	string]:	any

Returns	BaseNode

_features

Defined	in	core/Nodes.ts:68

Type	declaration

[k:	string]:	any

_features:	object

_id

Defined	in	core/Nodes.ts:83

_id:	any

_in_degree

Defined	in	core/Nodes.ts:64

degrees	-	let's	hold	them	separate	in	order	to	avoid
Object.keys(...)

_in_degree:	number

_in_edges

Defined	in	core/Nodes.ts:78

Design	decision:	Do	we	only	use	ONE	_edges	hash	-	OR	-
separate	hashes	for	_in_edges,	_out_edges,	_und_edges	As
getting	edges	based	on	their	type	during	the	execution	of
graph	algorithms	is	pretty	common,	it's	logical	to	separate	the
structures.

_in_edges:	object

Type	declaration

[k:	string]:	IBaseEdge

_label

Defined	in	core/Nodes.ts:81

_label:	string

_out_degree

Defined	in	core/Nodes.ts:65

_out_degree:	number

_out_edges

Defined	in	core/Nodes.ts:79

Type	declaration

[k:	string]:	IBaseEdge

_out_edges:	object

_und_degree

Defined	in	core/Nodes.ts:66

_und_degree:	number

_und_edges
_und_edges:	object

Defined	in	core/Nodes.ts:80

Type	declaration

[k:	string]:	IBaseEdge

addEdge
addEdge(edge:	IBaseEdge):	void

Implementation	of	IBaseNode.addEdge
Defined	in	core/Nodes.ts:167

We	have	to:

1.	 throw	an	error	if	the	edge	is	already	attached
2.	 add	it	to	the	edge	array
3.	 check	type	of	edge	(directed	/	undirected)
4.	 update	our	degrees	accordingly	This	is	a	design	decision

we	can	defend	by	pointing	out	that	querying	degrees	will
occur	much	more	often	than	modifying	the	edge
structure	of	a	node	(??)	One	further	point:	do	we	also
check	for	duplicate	edges	not	in	the	sense	of	duplicate
ID's	but	duplicate	structure	(nodes,	direction)	?	=>	Not
for	now,	as	we	would	have	to	check	every	edge	instead
of	simply	checking	the	hash	id...	ALTHOUGH:	adding
edges	will	(presumably)	not	occur	often...

Parameters

edge:	IBaseEdge

Returns	void

adjNodes
adjNodes():	Array<NeighborEntry>

Implementation	of	IBaseNode.adjNodes
Defined	in	core/Nodes.ts:363

Returns	Array<NeighborEntry>

allEdges
allEdges():	object

Implementation	of	IBaseNode.allEdges
Defined	in	core/Nodes.ts:234

Returns	object

clearEdges
clearEdges():	void

Implementation	of	IBaseNode.clearEdges
Defined	in	core/Nodes.ts:296

Returns	void

clearFeatures
clearFeatures():	void

Implementation	of	IBaseNode.clearFeatures
Defined	in	core/Nodes.ts:134

Returns	void

clearInEdges
clearInEdges():	void

Implementation	of	IBaseNode.clearInEdges
Defined	in	core/Nodes.ts:286

Returns	void

clearOutEdges
clearOutEdges():	void

Implementation	of	IBaseNode.clearOutEdges
Defined	in	core/Nodes.ts:281

Returns	void

clearUndEdges
clearUndEdges():	void

Implementation	of	IBaseNode.clearUndEdges
Defined	in	core/Nodes.ts:291

Returns	void

connNodes
connNodes():	Array<NeighborEntry>

Implementation	of	IBaseNode.connNodes
Defined	in	core/Nodes.ts:336

Returns	Array<NeighborEntry>

degree
degree():	number

Implementation	of	IBaseNode.degree
Defined	in	core/Nodes.ts:147

Returns	number

deleteFeature
deleteFeature(key:	string):	any

Implementation	of	IBaseNode.deleteFeature
Defined	in	core/Nodes.ts:125

Parameters

key:	string

Returns	any

dirEdges
dirEdges():	object

Implementation	of	IBaseNode.dirEdges
Defined	in	core/Nodes.ts:230

Returns	object

getEdge
getEdge(id:	string):	IBaseEdge

Implementation	of	IBaseNode.getEdge
Defined	in	core/Nodes.ts:210

Parameters

id:	string

Returns	IBaseEdge

getFeature
getFeature(key:	string):	any

Implementation	of	IBaseNode.getFeature
Defined	in	core/Nodes.ts:109

Parameters

key:	string

Returns	any

getFeatures

getFeatures():	object

Implementation	of	IBaseNode.getFeatures
Defined	in	core/Nodes.ts:105

Returns	object

[k:	string]:	any

getID
getID():	string

Implementation	of	IBaseNode.getID
Defined	in	core/Nodes.ts:93

Returns	string

getLabel
getLabel():	string

Implementation	of	IBaseNode.getLabel
Defined	in	core/Nodes.ts:97

Returns	string

hasEdge
hasEdge(edge:	IBaseEdge):	boolean

Implementation	of	IBaseNode.hasEdge
Defined	in	core/Nodes.ts:202

Parameters

edge:	IBaseEdge

Returns	boolean

hasEdgeID
hasEdgeID(id:	string):	boolean

Implementation	of	IBaseNode.hasEdgeID
Defined	in	core/Nodes.ts:206

Parameters

id:	string

Returns	boolean

inDegree
inDegree():	number

Implementation	of	IBaseNode.inDegree
Defined	in	core/Nodes.ts:139

Returns	number

inEdges
inEdges():	object

Implementation	of	IBaseNode.inEdges
Defined	in	core/Nodes.ts:218

Returns	object

[k:	string]:	IBaseEdge

nextNodes
nextNodes():	Array<NeighborEntry>

Implementation	of	IBaseNode.nextNodes
Defined	in	core/Nodes.ts:319

Returns	Array<NeighborEntry>

outDegree
outDegree():	number

Implementation	of	IBaseNode.outDegree
Defined	in	core/Nodes.ts:143

Returns	number

outEdges
outEdges():	object

Implementation	of	IBaseNode.outEdges
Defined	in	core/Nodes.ts:222

Returns	object

[k:	string]:	IBaseEdge

prevNodes
prevNodes():	Array<NeighborEntry>

Implementation	of	IBaseNode.prevNodes
Defined	in	core/Nodes.ts:302

Returns	Array<NeighborEntry>

removeEdge
removeEdge(edge:	IBaseEdge):	void

Implementation	of	IBaseNode.removeEdge
Defined	in	core/Nodes.ts:238

Parameters

edge:	IBaseEdge

Returns	void

removeEdgeID
removeEdgeID(id:	string):	void

Implementation	of	IBaseNode.removeEdgeID
Defined	in	core/Nodes.ts:260

Parameters

id:	string

Returns	void

setFeature
setFeature(key:	string,	value:	any):	void

Implementation	of	IBaseNode.setFeature
Defined	in	core/Nodes.ts:121

Parameters

key:	string

value:	any

Returns	void

setFeatures
setFeatures(features:	object):	void

Defined	in	core/Nodes.ts:117

Parameters

features:	object

[k:	string]:	any

Returns	void

setLabel

setLabel(label:	string):	void

Implementation	of	IBaseNode.setLabel
Defined	in	core/Nodes.ts:101

Parameters

label:	string

Returns	void

undEdges
undEdges():	object

Implementation	of	IBaseNode.undEdges
Defined	in	core/Nodes.ts:226

Returns	object

[k:	string]:	IBaseEdge

IBaseNode

Defined	in	core/Nodes.ts:11

IBaseNode:

addEdge
addEdge(edge:	IBaseEdge):	void

Defined	in	core/Nodes.ts:30

Parameters

edge:	IBaseEdge

Returns	void

adjNodes
adjNodes():	Array<NeighborEntry>

Defined	in	core/Nodes.ts:55

Returns	Array<NeighborEntry>

allEdges
allEdges():	object

Defined	in	core/Nodes.ts:40

Returns	object

clearEdges
clearEdges():	void

Defined	in	core/Nodes.ts:49

Returns	void

clearFeatures
clearFeatures():	void

Defined	in	core/Nodes.ts:22

Returns	void

clearInEdges
clearInEdges():	void

Defined	in	core/Nodes.ts:47

Returns	void

clearOutEdges
clearOutEdges():	void

Defined	in	core/Nodes.ts:46

Returns	void

clearUndEdges
clearUndEdges():	void

Defined	in	core/Nodes.ts:48

Returns	void

connNodes
connNodes():	Array<NeighborEntry>

Defined	in	core/Nodes.ts:54

Returns	Array<NeighborEntry>

degree
degree():	number

Defined	in	core/Nodes.ts:27

Returns	number

deleteFeature
deleteFeature(key:	string):	any

Defined	in	core/Nodes.ts:21

Parameters

key:	string

Returns	any

dirEdges
dirEdges():	object

Defined	in	core/Nodes.ts:39

Returns	object

getEdge
getEdge(id:	string):	IBaseEdge

Defined	in	core/Nodes.ts:33

Parameters

id:	string

Returns	IBaseEdge

getFeature
getFeature(key:	string):	any

Defined	in	core/Nodes.ts:18

Parameters

key:	string

Returns	any

getFeatures

getFeatures():	object

Defined	in	core/Nodes.ts:17

Returns	object

[k:	string]:	any

getID
getID():	string

Defined	in	core/Nodes.ts:12

Returns	string

getLabel
getLabel():	string

Defined	in	core/Nodes.ts:13

Returns	string

hasEdge
hasEdge(edge:	IBaseEdge):	boolean

Defined	in	core/Nodes.ts:31

Parameters

edge:	IBaseEdge

Returns	boolean

hasEdgeID
hasEdgeID(id:	string):	boolean

Defined	in	core/Nodes.ts:32

Parameters

id:	string

Returns	boolean

inDegree
inDegree():	number

Defined	in	core/Nodes.ts:25

Returns	number

inEdges
inEdges():	object

Defined	in	core/Nodes.ts:35

Returns	object

[k:	string]:	IBaseEdge

nextNodes
nextNodes():	Array<NeighborEntry>

Defined	in	core/Nodes.ts:53

Returns	Array<NeighborEntry>

outDegree
outDegree():	number

Defined	in	core/Nodes.ts:26

Returns	number

outEdges
outEdges():	object

Defined	in	core/Nodes.ts:36

Returns	object

[k:	string]:	IBaseEdge

prevNodes
prevNodes():	Array<NeighborEntry>

Defined	in	core/Nodes.ts:52

Returns	Array<NeighborEntry>

removeEdge
removeEdge(edge:	IBaseEdge):	void

Defined	in	core/Nodes.ts:42

Parameters

edge:	IBaseEdge

Returns	void

removeEdgeID
removeEdgeID(id:	string):	void

Defined	in	core/Nodes.ts:43

Parameters

id:	string

Returns	void

setFeature
setFeature(key:	string,	value:	any):	void

Defined	in	core/Nodes.ts:20

Parameters

key:	string

value:	any

Returns	void

setFeatures
setFeatures(features:	object):	void

Defined	in	core/Nodes.ts:19

Parameters

features:	object

[k:	string]:	any

Returns	void

setLabel
setLabel(label:	string):	void

Defined	in	core/Nodes.ts:14

Parameters

label:	string

Returns	void

undEdges
undEdges():	object

Defined	in	core/Nodes.ts:37

Returns	object

[k:	string]:	IBaseEdge

NeighborEntry

Defined	in	core/Nodes.ts:6

NeighborEntry:

edge

Defined	in	core/Nodes.ts:8

edge:	IBaseEdge

node

Defined	in	core/Nodes.ts:7

node:	IBaseNode

"datastructs/binaryHeap"

Defined	in	datastructs/binaryHeap.ts:1

"datastructs/binaryHeap":

BinaryHeapMode

Defined	in	datastructs/binaryHeap.ts:4

BinaryHeapMode:

MAX

Defined	in	datastructs/binaryHeap.ts:6

MAX:

MIN

Defined	in	datastructs/binaryHeap.ts:5

MIN:

BinaryHeap

Defined	in	datastructs/binaryHeap.ts:28

BinaryHeap:

constructor
new	BinaryHeap(_mode?:	BinaryHeapMode,	_evalPriority?:
(Anonymous	function),	_evalObjID?:	(Anonymous	function)):
BinaryHeap

Defined	in	datastructs/binaryHeap.ts:29

Mode	of	a	min	heap	should	only	be	set	upon	instantiation	and
never	again	afterwards...

Parameters

Default	value 	_mode:	BinaryHeapMode
=	BinaryHeapMode.MIN
MIN	or	MAX	heap

Default	value 	_evalPriority:	(Anonymous	function)

=	(obj:any)	=>	{if	(typeof	obj	!==	'number'	&&	typeof	obj
!==	'string')	{return	NaN;}return	parseInt(obj)}
the	evaluation	function	applied	to	all	incoming	objects	to
determine	it's	score

Default	value 	_evalObjID:	(Anonymous	function)
=	(obj:any)	=>	{return	obj;}
function	to	determine	the	identity	of	the	object	we	are
looking	for	at	removal	etc..

Returns	BinaryHeap

_array

Defined	in	datastructs/binaryHeap.ts:29

_array:	Array<any>

_evalObjID

Defined	in	datastructs/binaryHeap.ts:47

function	to	determine	the	identity	of	the	object	we	are	looking
for	at	removal	etc..

_evalObjID:	(Anonymous	function)

_evalPriority

Defined	in	datastructs/binaryHeap.ts:41

the	evaluation	function	applied	to	all	incoming	objects	to
determine	it's	score

_evalPriority:	(Anonymous	function)

_mode
_mode:	BinaryHeapMode

Defined	in	datastructs/binaryHeap.ts:40

MIN	or	MAX	heap

evalInputObjID
evalInputObjID(obj:	any):	any

Implementation	of	IBinaryHeap.evalInputObjID
Defined	in	datastructs/binaryHeap.ts:76

Parameters

obj:	any

Returns	any

evalInputPriority
evalInputPriority(obj:	any):	number

Implementation	of	IBinaryHeap.evalInputPriority
Defined	in	datastructs/binaryHeap.ts:68

Parameters

obj:	any

Returns	number

getArray
getArray():	Array<any>

Implementation	of	IBinaryHeap.getArray
Defined	in	datastructs/binaryHeap.ts:56

Returns	Array<any>

getEvalObjIDFun

getEvalObjIDFun():	Function

Implementation	of	IBinaryHeap.getEvalObjIDFun
Defined	in	datastructs/binaryHeap.ts:72

Returns	Function

getEvalPriorityFun
getEvalPriorityFun():	Function

Implementation	of	IBinaryHeap.getEvalPriorityFun
Defined	in	datastructs/binaryHeap.ts:64

Returns	Function

getMode
getMode():	BinaryHeapMode

Implementation	of	IBinaryHeap.getMode
Defined	in	datastructs/binaryHeap.ts:52

Returns	BinaryHeapMode

insert
insert(obj:	any):	void

Implementation	of	IBinaryHeap.insert
Defined	in	datastructs/binaryHeap.ts:93

Insert	-	Adding	an	object	to	the	heap

Parameters

obj:	any
the	obj	to	add	to	the	heap

Returns	void

the	objects	index	in	the	internal	array

orderCorrect
orderCorrect(obj_a:	any,	obj_b:	any):	boolean

Defined	in	datastructs/binaryHeap.ts:177

Parameters

obj_a:	any

obj_b:	any

Returns	boolean

peek
peek():	any

Implementation	of	IBinaryHeap.peek
Defined	in	datastructs/binaryHeap.ts:80

Returns	any

pop
pop():	any

Implementation	of	IBinaryHeap.pop
Defined	in	datastructs/binaryHeap.ts:84

Returns	any

remove
remove(obj:	any):	any

Implementation	of	IBinaryHeap.remove
Defined	in	datastructs/binaryHeap.ts:102

Parameters

obj:	any

Returns	any

size
size():	number

Implementation	of	IBinaryHeap.size
Defined	in	datastructs/binaryHeap.ts:60

Returns	number

trickleDown
trickleDown(i:	number):	void

Defined	in	datastructs/binaryHeap.ts:127

Parameters

i:	number

Returns	void

trickleUp
trickleUp(i:	number):	void

Defined	in	datastructs/binaryHeap.ts:159

Parameters

i:	number

Returns	void

IBinaryHeap
IBinaryHeap:

Defined	in	datastructs/binaryHeap.ts:10

evalInputObjID
evalInputObjID(obj:	any):	any

Defined	in	datastructs/binaryHeap.ts:18

Parameters

obj:	any

Returns	any

evalInputPriority
evalInputPriority(obj:	any):	number

Defined	in	datastructs/binaryHeap.ts:16

Parameters

obj:	any

Returns	number

getArray
getArray():	Array<any>

Defined	in	datastructs/binaryHeap.ts:13

Returns	Array<any>

getEvalObjIDFun
getEvalObjIDFun():	Function

Defined	in	datastructs/binaryHeap.ts:17

Returns	Function

getEvalPriorityFun
getEvalPriorityFun():	Function

Defined	in	datastructs/binaryHeap.ts:15

Returns	Function

getMode
getMode():	BinaryHeapMode

Defined	in	datastructs/binaryHeap.ts:12

Returns	BinaryHeapMode

insert
insert(obj:	any):	void

Defined	in	datastructs/binaryHeap.ts:21

Parameters

obj:	any

Returns	void

peek
peek():	any

Defined	in	datastructs/binaryHeap.ts:23

Returns	any

pop

pop():	any

Defined	in	datastructs/binaryHeap.ts:24

Returns	any

remove
remove(obj:	any):	any

Defined	in	datastructs/binaryHeap.ts:22

Parameters

obj:	any

Returns	any

size
size():	number

Defined	in	datastructs/binaryHeap.ts:14

Returns	number

"datastructs/fibonacciHeap"

Defined	in	datastructs/fibonacciHeap.ts:1

"datastructs/fibonacciHeap":

"input/CSVInput"

Defined	in	input/CSVInput.ts:1

"input/CSVInput":

CSVInput

Defined	in	input/CSVInput.ts:27

CSVInput:

constructor
new	CSVInput(_separator?:	string,	_explicit_direction?:
boolean,	_direction_mode?:	boolean):	CSVInput

Defined	in	input/CSVInput.ts:27

Parameters

Default	value 	_separator:	string	=	","

Default	value 	_explicit_direction:	boolean	=	true

Default	value 	_direction_mode:	boolean	=	false

Returns	CSVInput

_direction_mode

Implementation	of	ICSVInput._direction_mode
Defined	in	input/CSVInput.ts:31

_direction_mode:	boolean

_explicit_direction

Implementation	of	ICSVInput._explicit_direction
Defined	in	input/CSVInput.ts:30

_explicit_direction:	boolean

_separator
_separator:	string

Implementation	of	ICSVInput._separator
Defined	in	input/CSVInput.ts:29

checkNodeEnvironment
checkNodeEnvironment():	void

Defined	in	input/CSVInput.ts:207

Returns	void

readFileAndReturn
readFileAndReturn(filepath:	string,	func:	Function):	IGraph

Defined	in	input/CSVInput.ts:86

Parameters

filepath:	string

func:	Function

Returns	IGraph

readFromAdjacencyList
readFromAdjacencyList(input:	Array<string>,	graph_name:
string):	IGraph

Implementation	of	ICSVInput.readFromAdjacencyList
Defined	in	input/CSVInput.ts:94

Parameters

input:	Array<string>

graph_name:	string

Returns	IGraph

readFromAdjacencyListFile

readFromAdjacencyListFile(filepath:	string):	IGraph

Implementation	of	ICSVInput.readFromAdjacencyListFile
Defined	in	input/CSVInput.ts:76

Parameters

filepath:	string

Returns	IGraph

readFromAdjacencyListURL
readFromAdjacencyListURL(fileurl:	string,	cb:	Function):
void

Implementation	of	ICSVInput.readFromAdjacencyListURL
Defined	in	input/CSVInput.ts:35

Parameters

fileurl:	string

cb:	Function

Returns	void

readFromEdgeList
readFromEdgeList(input:	Array<string>,	graph_name:	string):
IGraph

Implementation	of	ICSVInput.readFromEdgeList
Defined	in	input/CSVInput.ts:156

Parameters

input:	Array<string>

graph_name:	string

Returns	IGraph

readFromEdgeListFile
readFromEdgeListFile(filepath:	string):	IGraph

Implementation	of	ICSVInput.readFromEdgeListFile
Defined	in	input/CSVInput.ts:81

Parameters

filepath:	string

Returns	IGraph

readFromEdgeListURL
readFromEdgeListURL(fileurl:	string,	cb:	Function):	void

Implementation	of	ICSVInput.readFromEdgeListURL
Defined	in	input/CSVInput.ts:40

Parameters

fileurl:	string

cb:	Function

Returns	void

readGraphFromURL
readGraphFromURL(fileurl:	string,	cb:	Function,	localFun:
Function):	void

Defined	in	input/CSVInput.ts:45

Parameters

fileurl:	string

cb:	Function

localFun:	Function

Returns	void

ICSVInput

Defined	in	input/CSVInput.ts:13

ICSVInput:

_direction_mode

Defined	in	input/CSVInput.ts:16

_direction_mode:	boolean

_explicit_direction

Defined	in	input/CSVInput.ts:15

_explicit_direction:	boolean

_separator

Defined	in	input/CSVInput.ts:14

_separator:	string

readFromAdjacencyList
readFromAdjacencyList(input:	Array<string>,	graph_name:
string):	IGraph

Defined	in	input/CSVInput.ts:19

Parameters

input:	Array<string>

graph_name:	string

Returns	IGraph

readFromAdjacencyListFile
readFromAdjacencyListFile(filepath:	string):	IGraph

Defined	in	input/CSVInput.ts:18

Parameters

filepath:	string

Returns	IGraph

readFromAdjacencyListURL
readFromAdjacencyListURL(fileurl:	string,	cb:	Function):
any

Defined	in	input/CSVInput.ts:20

Parameters

fileurl:	string

cb:	Function

Returns	any

readFromEdgeList
readFromEdgeList(input:	Array<string>,	graph_name:	string):
IGraph

Defined	in	input/CSVInput.ts:23

Parameters

input:	Array<string>

graph_name:	string

Returns	IGraph

readFromEdgeListFile
readFromEdgeListFile(filepath:	string):	IGraph

Defined	in	input/CSVInput.ts:22

Parameters

filepath:	string

Returns	IGraph

readFromEdgeListURL
readFromEdgeListURL(fileurl:	string,	cb:	Function):	any

Defined	in	input/CSVInput.ts:24

Parameters

fileurl:	string

cb:	Function

Returns	any

"input/JSONInput"

Defined	in	input/JSONInput.ts:1

"input/JSONInput":

JSONInput

Defined	in	input/JSONInput.ts:42

JSONInput:

constructor

new	JSONInput(_explicit_direction?:	boolean,	_direction?:
boolean,	_weighted_mode?:	boolean):	JSONInput

Defined	in	input/JSONInput.ts:42

Parameters

Default	value 	_explicit_direction:	boolean	=	true

Default	value 	_direction:	boolean	=	false

Default	value 	_weighted_mode:	boolean	=	false

Returns	JSONInput

_direction

Implementation	of	IJSONInput._direction
Defined	in	input/JSONInput.ts:45

_direction:	boolean

_explicit_direction

Implementation	of	IJSONInput._explicit_direction
Defined	in	input/JSONInput.ts:44

_explicit_direction:	boolean

_weighted_mode

Implementation	of	IJSONInput._weighted_mode
Defined	in	input/JSONInput.ts:46

_weighted_mode:	boolean

checkNodeEnvironment
checkNodeEnvironment():	void

Defined	in	input/JSONInput.ts:170

Returns	void

readFromJSON
readFromJSON(json:	JSONGraph):	IGraph

Defined	in	input/JSONInput.ts:98

In	this	case,	there	is	one	great	difference	to	the	CSV	edge	list
cases:	If	you	don't	explicitly	define	a	directed	edge,	it	will
simply	instantiate	an	undirected	one	we'll	leave	that	for	now,
as	we	will	produce	apt	JSON	sources	later	anyways...

Parameters

json:	JSONGraph

Returns	IGraph

readFromJSONFile
readFromJSONFile(filepath:	string):	IGraph

Implementation	of	IJSONInput.readFromJSONFile
Defined	in	input/JSONInput.ts:49

Parameters

filepath:	string

Returns	IGraph

readFromJSONURL
readFromJSONURL(fileurl:	string,	cb:	Function):	void

Implementation	of	IJSONInput.readFromJSONURL
Defined	in	input/JSONInput.ts:56

Parameters

fileurl:	string

cb:	Function

Returns	void

IJSONInput

Defined	in	input/JSONInput.ts:31

IJSONInput:

_direction

Defined	in	input/JSONInput.ts:33

_direction:	boolean

_explicit_direction

Defined	in	input/JSONInput.ts:32

_explicit_direction:	boolean

_weighted_mode

Defined	in	input/JSONInput.ts:34

_weighted_mode:	boolean

readFromJSON
readFromJSON(json:	object):	IGraph

Defined	in	input/JSONInput.ts:37

Parameters

json:	object

Returns	IGraph

readFromJSONFile
readFromJSONFile(file:	string):	IGraph

Defined	in	input/JSONInput.ts:36

Parameters

file:	string

Returns	IGraph

readFromJSONURL
readFromJSONURL(fileurl:	string,	cb:	Function):	void

Defined	in	input/JSONInput.ts:38

Parameters

fileurl:	string

cb:	Function

Returns	void

JSONEdge

Defined	in	input/JSONInput.ts:11

JSONEdge:

directed

Defined	in	input/JSONInput.ts:13

directed:	string

to

Defined	in	input/JSONInput.ts:12

to:	string

type

Defined	in	input/JSONInput.ts:15

type:	string

weight

Defined	in	input/JSONInput.ts:14

weight:	string

JSONGraph

Defined	in	input/JSONInput.ts:24

JSONGraph:

data

Defined	in	input/JSONInput.ts:28

Type	declaration

[key:	string]:	JSONNode

data:	object

edges

Defined	in	input/JSONInput.ts:27

edges:	number

name

Defined	in	input/JSONInput.ts:25

name:	string

nodes

Defined	in	input/JSONInput.ts:26

nodes:	number

JSONNode

Defined	in	input/JSONInput.ts:18

JSONNode:

coords

Defined	in	input/JSONInput.ts:20

Type	declaration

[key:	string]:	Number

coords:	object

edges

Defined	in	input/JSONInput.ts:19

edges:	Array<JSONEdge>

features

Defined	in	input/JSONInput.ts:21

Type	declaration

[key:	string]:	any

features:	object

DEFAULT_WEIGHT

Defined	in	input/JSONInput.ts:9

DEFAULT_WEIGHT:	number

"search/BFS"

Defined	in	search/BFS.ts:1

"search/BFS":

BFS_Callbacks

Defined	in	search/BFS.ts:23

BFS_Callbacks:

init_bfs
init_bfs:	Array<Function>

Defined	in	search/BFS.ts:24

node_marked

Defined	in	search/BFS.ts:26

node_marked:	Array<Function>

node_unmarked

Defined	in	search/BFS.ts:25

node_unmarked:	Array<Function>

sort_nodes

Defined	in	search/BFS.ts:27

sort_nodes:	Function

BFS_Config

Defined	in	search/BFS.ts:9

BFS_Config:

callbacks

Defined	in	search/BFS.ts:11

callbacks:	BFS_Callbacks

dir_mode
dir_mode:	GraphMode

Defined	in	search/BFS.ts:12

filters

Defined	in	search/BFS.ts:14

filters:	any

messages

Defined	in	search/BFS.ts:13

Type	declaration

messages:	object

result

Defined	in	search/BFS.ts:10

Type	declaration

[id:	string]:	BFS_ResultEntry

result:	object

BFS_ResultEntry

Defined	in	search/BFS.ts:17

BFS_ResultEntry:

counter

Defined	in	search/BFS.ts:20

counter:	number

distance

Defined	in	search/BFS.ts:18

distance:	number

parent

Defined	in	search/BFS.ts:19

parent:	IBaseNode

BFS_Scope

Defined	in	search/BFS.ts:30

BFS_Scope:

adj_nodes

Defined	in	search/BFS.ts:38

adj_nodes:	Array<NeighborEntry>

current

Defined	in	search/BFS.ts:34

current:	IBaseNode

marked

Defined	in	search/BFS.ts:31

Type	declaration

[id:	string]:	boolean

marked:	object

next_edge

Defined	in	search/BFS.ts:36

next_edge:	IBaseEdge

next_node

Defined	in	search/BFS.ts:35

next_node:	IBaseNode

nodes

Defined	in	search/BFS.ts:32

Type	declaration

[id:	string]:	IBaseNode

nodes:	object

queue

Defined	in	search/BFS.ts:33

queue:	Array<IBaseNode>

root_node

Defined	in	search/BFS.ts:37

root_node:	IBaseNode

BFS
BFS(graph:	IGraph,	v:	IBaseNode,	config?:	BFS_Config):	object

constructor

Defined	in	search/BFS.ts:55

Breadth	first	search	-	usually	performed	to	see	reachability	etc.
Therefore	we	do	not	want	'segments'	or	'components'	of	our	graph,
but	simply	one	well	defined	result	segment	covering	the	whole
graph.

Parameters

graph:	IGraph
the	graph	to	perform	BFS	on

v:	IBaseNode
the	vertex	to	use	as	a	start	vertex

Optional 	config:	BFS_Config
an	optional	config	object,	will	be	automatically	instantiated	if	not
passed	by	caller

Returns	object

[id:	string]:	BFS_ResultEntry

prepareBFSStandardConfig
prepareBFSStandardConfig():	BFS_Config

Defined	in	search/BFS.ts:151

Returns	BFS_Config

"search/DFS"

Defined	in	search/DFS.ts:1

"search/DFS":

DFSVisit_Scope

Defined	in	search/DFS.ts:33

DFSVisit_Scope:

adj_nodes

Defined	in	search/DFS.ts:35

adj_nodes:	Array<NeighborEntry>

current

Defined	in	search/DFS.ts:37

current:	IBaseNode

current_root

Defined	in	search/DFS.ts:38

current_root:	IBaseNode

stack

Defined	in	search/DFS.ts:34

stack:	Array<StackEntry>

stack_entry

Defined	in	search/DFS.ts:36

stack_entry:	StackEntry

DFS_Callbacks

Defined	in	search/DFS.ts:17

DFS_Callbacks:

adj_nodes_pushed

Defined	in	search/DFS.ts:23

adj_nodes_pushed:	Array<Function>

init_dfs

Defined	in	search/DFS.ts:18

init_dfs:	Array<Function>

init_dfs_visit

Defined	in	search/DFS.ts:19

init_dfs_visit:	Array<Function>

node_marked

Defined	in	search/DFS.ts:21

node_marked:	Array<Function>

node_popped

Defined	in	search/DFS.ts:20

node_popped:	Array<Function>

node_unmarked

Defined	in	search/DFS.ts:22

node_unmarked:	Array<Function>

sort_nodes

Defined	in	search/DFS.ts:24

sort_nodes:	Function

DFS_Config

Defined	in	search/DFS.ts:8

DFS_Config:

callbacks

Defined	in	search/DFS.ts:10

callbacks:	DFS_Callbacks

dfs_visit_marked

Defined	in	search/DFS.ts:12

Type	declaration

[id:	string]:	boolean

dfs_visit_marked:	object

dir_mode

Defined	in	search/DFS.ts:11

dir_mode:	GraphMode

filters

Defined	in	search/DFS.ts:14

filters:	any

messages

Defined	in	search/DFS.ts:13

Type	declaration

messages:	object

visit_result

Defined	in	search/DFS.ts:9

visit_result:	object

Type	declaration

DFS_Scope

Defined	in	search/DFS.ts:41

DFS_Scope:

marked

Defined	in	search/DFS.ts:42

Type	declaration

[id:	string]:	boolean

marked:	object

nodes

Defined	in	search/DFS.ts:43

Type	declaration

[id:	string]:	IBaseNode

nodes:	object

StackEntry

Defined	in	search/DFS.ts:27

StackEntry:

node

Defined	in	search/DFS.ts:28

node:	IBaseNode

parent

Defined	in	search/DFS.ts:29

parent:	IBaseNode

weight

Defined	in	search/DFS.ts:30

weight:	number

DFS
DFS(graph:	IGraph,	root:	IBaseNode,	config?:	DFS_Config):
Array<object>

constructor

Defined	in	search/DFS.ts:198

Depth	first	search	-	used	for	reachability	/	exploration	of	graph
structure	and	as	a	basis	for	topological	sorting	and	component	/
community	analysis.	Because	DFS	can	be	used	as	a	basis	for	many
other	algorithms,	we	want	to	keep	the	result	as	generic	as	possible
to	be	populated	by	the	caller	rather	than	the	core	DFS	algorithm.

Parameters

graph:	IGraph

root:	IBaseNode

Optional 	config:	DFS_Config

Returns	Array<object>

[]}

DFSVisit
DFSVisit(graph:	IGraph,	current_root:	IBaseNode,	config?:
DFS_Config):	object

constructor

Defined	in	search/DFS.ts:57

DFS	Visit	-	one	run	to	see	what	nodes	are	reachable	from	a	given
"current"	root	node

Parameters

graph:	IGraph

current_root:	IBaseNode

Optional 	config:	DFS_Config

Returns	object

prepareDFSStandardConfig
prepareDFSStandardConfig():	DFS_Config

Defined	in	search/DFS.ts:328

First	instantiates	config	file	for	DFSVisit,	then	enhances	it	with	outer
DFS	init	callback

Returns	DFS_Config

prepareDFSVisitStandardConfig
prepareDFSVisitStandardConfig():	DFS_Config

Defined	in	search/DFS.ts:284

This	is	the	only	place	in	which	a	config	object	is	instantiated

(except	manually,	of	course)

Therefore,	we	do	not	take	any	arguments

Returns	DFS_Config

"search/PFS"

Defined	in	search/PFS.ts:1

"search/PFS":

PFS_Callbacks

Defined	in	search/PFS.ts:25

PFS_Callbacks:

better_path

Defined	in	search/PFS.ts:29

better_path:	Array<Function>

goal_reached

Defined	in	search/PFS.ts:30

goal_reached:	Array<Function>

init_pfs

Defined	in	search/PFS.ts:26

init_pfs:	Array<Function>

node_closed

Defined	in	search/PFS.ts:28

node_closed:	Array<Function>

node_open

Defined	in	search/PFS.ts:27

node_open:	Array<Function>

PFS_Config

Defined	in	search/PFS.ts:10

PFS_Config:

callbacks

Defined	in	search/PFS.ts:12

callbacks:	PFS_Callbacks

dir_mode

Defined	in	search/PFS.ts:13

dir_mode:	GraphMode

filters

Defined	in	search/PFS.ts:16

filters:	any

goal_node

Defined	in	search/PFS.ts:14

goal_node:	IBaseNode

messages

Defined	in	search/PFS.ts:15

messages:	PFS_Messages

result

Defined	in	search/PFS.ts:11

Type	declaration

[id:	string]:	PFS_ResultEntry

result:	object

PFS_Messages

Defined	in	search/PFS.ts:33

PFS_Messages:

better_path_msgs

Defined	in	search/PFS.ts:37

better_path_msgs:	Array<string>

goal_reached_msgs

Defined	in	search/PFS.ts:38

goal_reached_msgs:	Array<string>

init_pfs_msgs

Defined	in	search/PFS.ts:34

init_pfs_msgs:	Array<string>

node_closed_msgs

Defined	in	search/PFS.ts:36

node_closed_msgs:	Array<string>

node_open_msgs

Defined	in	search/PFS.ts:35

node_open_msgs:	Array<string>

PFS_ResultEntry

Defined	in	search/PFS.ts:19

PFS_ResultEntry:

counter

Defined	in	search/PFS.ts:22

counter:	number

distance

Defined	in	search/PFS.ts:20

distance:	number

parent

Defined	in	search/PFS.ts:21

parent:	IBaseNode

PFS_Scope

Defined	in	search/PFS.ts:41

PFS_Scope:

CLOSED

Defined	in	search/PFS.ts:45

Type	declaration

[id:	string]:	boolean

CLOSED:	object

OPEN

Defined	in	search/PFS.ts:44

Type	declaration

OPEN:	object

[id:	string]:	boolean

OPEN_HEAP

Defined	in	search/PFS.ts:43

OPEN_HEAP:	BinaryHeap

adj_nodes

Defined	in	search/PFS.ts:52

adj_nodes:	Array<NeighborEntry>

current

Defined	in	search/PFS.ts:48

current:	NeighborEntry

next_edge

Defined	in	search/PFS.ts:50

next_edge:	IBaseEdge

next_node

Defined	in	search/PFS.ts:49

next_node:	IBaseNode

nodes

Defined	in	search/PFS.ts:47

Type	declaration

[id:	string]:	IBaseNode

nodes:	object

root_node

Defined	in	search/PFS.ts:51

root_node:	IBaseNode

PFS
PFS(graph:	IGraph,	v:	IBaseNode,	config:	PFS_Config):	object

config

Defined	in	search/PFS.ts:67

Priority	first	search

Like	BFS,	we	are	not	necessarily	visiting	the	whole	graph,	but	only
what's	reachable	from	a	given	start	node.

a	config	object	similar	to	that	used	in	BFS,	automatically
instantiated	if	not	given..

Parameters

graph:	IGraph
the	graph	to	perform	PFS	only

v:	IBaseNode
the	node	from	which	to	start	PFS

config:	PFS_Config

Returns	object

[id:	string]:	PFS_ResultEntry

preparePFSStandardConfig
preparePFSStandardConfig():	PFS_Config

Defined	in	search/PFS.ts:175

Returns	PFS_Config

"utils/callbackUtils"

Defined	in	utils/callbackUtils.ts:1

"utils/callbackUtils":

execCallbacks
execCallbacks(cbs:	Array<Function>,	context?:	any):	void

Defined	in	utils/callbackUtils.ts:4

Parameters

cbs:	Array<Function>

Optional 	context:	any
this	pointer	to	the	DFS	or	DFSVisit	function

Returns	void

"utils/remoteUtils"

Defined	in	utils/remoteUtils.ts:1

"utils/remoteUtils":

retrieveRemoteFile

retrieveRemoteFile(url:	string,	cb:	Function):	ClientRequest

todo

Defined	in	utils/remoteUtils.ts:10

:	Test	it	!!!

Parameters

url:	string

cb:	Function

Returns	ClientRequest

"utils/structUtils"

Defined	in	utils/structUtils.ts:1

"utils/structUtils":

clone
clone(obj:	any):	any

Defined	in	utils/structUtils.ts:8

Method	to	deep	clone	an	object

Parameters

obj:	any

Returns	any

findKey
findKey(obj:	Object,	cb:	Function):	string

todo

Defined	in	utils/structUtils.ts:84

Test	!!!

Parameters

obj:	Object

cb:	Function
Returns	string

mergeArrays
mergeArrays(args:	Array<Array<any>>,	cb?:	Function):	Array<any>

args

cb

Defined	in	utils/structUtils.ts:30

an	Array	of	any	kind	of	objects
callback	to	return	a	unique	identifier;	if	this	is	duplicate,	the
object	will	not	be	stored	in	result.

Parameters

args:	Array<Array<any>>

Default	value 	cb:	Function	=	undefined

Returns	Array<any>

mergeObjects
mergeObjects(args:	Array<Object>):	object

Defined	in	utils/structUtils.ts:60

Overwrites	obj1's	values	with	obj2's	and	adds	obj2's	if	non	existent
in	obj1

Parameters

args:	Array<Object>
Array	of	all	the	object	to	take	keys	from

Returns	object

result	object

Legend

Generated	using	TypeDoc

Module
Object	literal
Variable
Function
Function	with	type	parameter
Index	signature
Type	alias

Enumeration
Enumeration	member
Property
Method

Interface
Interface	with	type	parameter
Constructor
Property
Method
Index	signature

Class
Class	with	type	parameter
Constructor
Property
Method
Accessor
Index	signature

Inherited	constructor
Inherited	property
Inherited	method
Inherited	accessor

Protected	property
Protected	method
Protected	accessor

Private	property
Private	method
Private	accessor

Static	property
Static	method

	Motivation
	Scientific motivation
	Engineering motivation
	Business motivation

	Introduction
	What is Graphinius?
	The history of Graphinius
	How this thesis is structured
	Today's Machine Learning / KDD approach
	A Web based approach to benefit the world

	Theoretical background / applications
	Social networks
	Network recommendation analysis
	The local sphere (idea)

	Graph based image processing
	Graph extraction
	Graph processing
	Graph visualization

	Anonymization
	Graph (social network) anonymization
	Fraud detection

	The business case for Graphinius
	Potential business models
	Potential business sectors
	Education
	Algorithm prototyping
	Community research platform

	Remarks on potential competitor platforms

	Graphinius as a platform
	General Properties
	Online editor
	Build & mutate
	Save and fork experiments
	Distributable via (mini) URL
	Example graph datastructures
	Extendable algorithm DB

	Graph Properties
	Mixed mode graph
	Node and edge types (filters)
	Object oriented

	Software Requirements & Survey
	Preprocessing (compiling) JS Meta Languages
	Javascript / ES6
	Coffeescript (CS)
	Typescript (TS)

	CSS preprocessing
	Testing
	Jasmine
	Mocha / Chai
	Cucumber

	Automatic Documentation
	JSDoc & alternatives
	TypeDoc

	Build system for browsers / packaging
	Browserify
	Webpack

	Task Runner
	Grunt
	Gulp

	Overview of technology choices

	Architecture / Implementation
	Graphinius Base
	Graphinius JS
	Edges
	Nodes
	Graph
	Edge Generators
	Degree distribution
	Graph Traversal
	Breadth first search
	Depth first search
	Best (priority) first search

	Traversal-based algorithms
	Input / Output
	CSV Reader
	JSON reader

	The History system
	Timeline
	History Object
	Vocabulary

	Graphinius VIS
	WebGL rendering
	2D/3D Mode
	Navigation
	Graph Layouts
	Interaction / Manipulation

	Dependent Libraries
	Testing approach
	Unit tests
	Functional tests
	Mocks used for browser code testing
	Stubs
	Spies (Sinon)

	Areas of Application
	Platform Services

	Implementation - Areas of Application
	Manual editing (predefined structures)
	Build a graph manually
	Load predefined graph and visualize
	Run a BFS algorithm and visualize
	Run a DFS algorithm and visualize

	Graph extraction from images
	Anonymity: SaNGreeA

	Results
	Size of the codebase
	GraphiniusJS
	Graph extraction demo code
	Social network anonymization demo code
	GraphiniusVIS

	Test coverage (just Graphinius JS)
	Execution speed in various scenarios
	Sample graph 1
	Sample graph 2
	Sample graph 3

	Closing remarks about competitor libraries

	Future Work
	Parallel processing (CPU)
	Parallel processing (GPU)
	General processing / ML pipelines
	JSVM based grid computing
	Heterogeneous data linkage
	Meta machine learning
	Hyper heuristics
	Algorithmic recommender
	Interactive Machine Learning

	Conclusion
	List of Figures
	List of Listings
	References
	Anonymization Table
	GraphiniusJS API

