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Abstract

In recent years, deep learning methods gained much attention in the field of computer

vision. They achieve outstanding results in discriminative tasks like image classification,

where a high-dimensional input is mapped to a class label. In contrast, deep generative

models did not reach this level of success until recently. Generative models capture the

underlying generation process of the data and can be used to synthesize new samples.

A new approach based on artificial neural networks, called generative adversarial net-

works (GANs), represents an attractive alternative to existing generative models based

on maximum likelihood estimation and performs well on various datasets. However, the

internal generation process of GANs, from the initial noise vector to the resulting image

is relatively unexplored.

In this work we investigate the internals of adversarial nets more deeply and demon-

strate the universal usability of this model based on two applications. In the first part,

GANs are trained on depth-datasets and the resulting networks are analyzed in a variety

of ways. We explore the latent noise space to investigate how semantic properties of the

synthesized samples are encoded within this space. Moreover, we present two methods to

influence the generation process in order to synthesize depth-data with desired properties.

In the second part, GANs are applied to two fundamental computer vision tasks: The

first one is unsupervised feature learning where we demonstrate that the features learned

by the adversarial networks are useful for classification and regression tasks when labeled

data are scarce. Finally, GANs are applied to domain specific image super resolution

where we show that adversarial nets can be used to significantly increase the quality of

upsampled face images.
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Kurzfassung

In den letzten Jahren haben Deep Learning Methoden auf dem Gebiet des maschinellen

Sehens immer mehr Aufmerksamkeit auf sich gezogen. Vor allem bei diskriminativen Prob-

lemstellungen, wie der Bildklassifikation, haben diese Techniken herausragende Ergebnisse

erzielt. Im Gegensatz dazu konnten generative Modelle bisher nicht an diese Erfolge

anschließen. Generative Modelle versuchen den zugrunde liegenden Entstehungsprozess

zu modellieren und können dann auch dafür verwendet werden neue Daten zu erzeu-

gen. Mit Generative Adversarial Networks (GANs) gibt es einen neuen Ansatz basierend

auf künstlichen neuronalen Netzen, welcher eine attraktive Alternative zu bestehenden

Maximum-Likelihood Modellen darstellt und bereits auf mehrere Datensätze erfolgreich

angewandt wurde. Allerdings ist der interne Modellierungsprozess von einem Zufallsvektor

zum resultierenden Bild noch relativ unerforscht.

In dieser Arbeit untersuchen wir Eigenschaften von GANs genauer und zeigen deren

universelle Einsetzbarkeit anhand zweier Anwendungen. Im ersten Teil der Arbeit

trainieren wir GANs auf Tiefendaten und analysieren die resultierenden Netzwerke

auf unterschiedliche Weise. Dabei untersuchen wir unter anderem wie Eigenschaften

der synthetisierten Bilder in den Zufallsvektoren abgebildet werden. Des Weiteren

zeigen wir Wege auf, wie man den internen Modellierungsprozess beeinflussen kann

um gewünschte Tiefendaten zu erzeugen. Im zweiten Teil wenden wir GANs auf zwei

wichtige Problemstellungen des maschinellen Sehens an: Erstens zeigen wir, dass die

von GANs gelernten Datenrepresentationen auch für andere Anwendungen nützlich

sein können (Unsupervised Feature Learning) und danach demonstrieren wir wie GANs

verwendet werden können um die Qualität von stark vergrößerten Bildern zu erhöhen.
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1.1 Motivation

Today, machine learning is an active research topic in the field of computer science

with many practical applications. We often get in touch with this artificial intelligence

technique several times a day without us being aware of it. Whenever we use a web

search-engine, smart-phone voice commands or in-camera face detection, we benefit

from machine learning. Arthur Samuel (1959) defined it as the field of study that gives

computers the ability to learn without being explicitly programmed [47]. Learning in

this context, means to recognize patterns, make intelligent decisions and improve with

experience.

Especially deep learning methods have recently gained much attention in this field

of study. Conventional machine learning approaches are limited in their capability of

processing raw data and needed a preprocessing step called feature extraction. This is

necessary mainly for two reasons: Firstly, the input data is usually too high-dimensional

for direct use. A 128 × 128 pixels RGB image for instance, consists of 49, 152 variables.

In addition to the dimensionality reduction, the second purpose is to transform the

data into a representation where the machine learning algorithm is able to solve

the problem. For instance, the optimal feature space for classification would be a

representation with a minimal variance within a class (intra-class variance), and a

1
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(a)
Pre-

processing
Feature

Extraction

Machine
Learning

Model

Prediction

Turtle

(b)

Prediction

Deep Learning
Turtle

Figure 1.1: Difference between a classic machine learning pipeline and deep learning: (a) A
classic machine learning pipeline includes several hand-crafted steps to transform the input into
feature space before learning algorithms are used. In contrast to deep learning (b), where this data
transformation is also learned.

maximal separation between the classes (inter-class variance). The final performance

heavily relied on this features extraction step. However, for complex applications like

object detection or handwritten digit recognition it is difficult to know what features

should be used. Another problem is, that a useful representation for one dataset is

often useless for other data. This problems are addressed by deep learning, where also

the data representation is learned. It independently discovers the data representations

that are beneficial for the particular task. The difference between these machine

learning pipelines is visualized in Figure 1.1. It allows to model hierarchical data

representations, where complex high-level features are based on simpler ones. In terms

of an image, high-level features like shapes, are formed by lower ones, like edges or corners.

In the last years, deep neural networks have been successfully used in a variety of com-

puter vision applications. They achieved outstanding results in image classification [28],

object detection [12] or action recognition in videos [24], for instance. These networks

have in common that they are discriminative models and map a high-dimensional input

like an image to a class label. The aim of this models is to transform the input data into

a representation where clear decision boundaries between the classes can be found. In

contrast, deep generative models [13] learn the underlying structure of the input and how

the data was generated. They try to model the actual data distribution, and can be used

to generate new synthetic samples similar to existing data. The difference between these

models is visualized in Figure 1.2. Formally, a discriminative model learns the posterior

probability P (y | x) over labels y given the data x, and the generative model learns the

probability distribution of the data for each class P (x | y) (likelihood function). The
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Figure 1.2: A discriminative model tries to find as clear as possible decision boundaries between
the given classes. Aim of a generative model, on the other hand, is to model the actual data
distribution of each class. Image taken from web source1.

relation between these probability distributions is given by Bayes’ theorem:

P (y | x) =
P (x | y)P (y)

P (x)
. (1.1)

Compared to discriminative models, deep generative models did not reach this level of

success until recently. Challenging are intractable computations, which arise during the

maximum likelihood estimation or similar methods. Recent work introduced Generative

Adversarial Networks (GANs) [14], a new approach to train generative models with neural

networks. The idea is to pit two networks against each other in an adversarial game.

The generator network tries to produce synthetic data that looks as real as that the

discriminator network is not able to differentiate it from training data. This min-max game

is completed, when real and synthetic data are indistinguishable for the discriminator.

This approach sidesteps previous difficulties and performs very well on various datasets.

However, the internal generation process from the initial noise vector to the resulting image

is relatively unexplored. The aim of this thesis is to investigate the internals of GANs

more deeply in order to better understand what they learn and how the generation process

can be influenced to change semantic properties of synthesized samples. Moreover, the

applicability of this model to solve two fundamental generative computer vision problems

is analyzed.

1.2 Generative Models for Computer Vision

In this section, we will outline some applications of generative models in computer vision.

Their abilities to capture the underlying generation process and to synthesize new samples

are useful for many tasks.

1http://www.evolvingai.org/fooling Accessed: 21-01-2016
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(a) (b) (c)

Figure 1.3: Learned hierarchical data representation for faces: Each of these features can be seen
as a filter for particular structures within the input image. The first layer basically detects edges
in the images (a), while the second layer (b) builds object parts, like a nose, based on the lower
layer. The third layer (c) combines the parts of layer two into more complex features e.g. faces.
Images are taken from [33].

1.2.1 Unsupervised Feature Learning

As previously described, the performance of a machine learning algorithm heavily depends

on the data representation. Hand-crafted features are often designed for a particular

application, do not generalize well and rely on expert knowledge. Instead, generative

models can be used to learn reusable features from the data itself and automate the feature

extraction. The possibility to train them in an unsupervised way is an additional gain of

these models [5, 33]. In contrast to supervised learning, where human labor is necessary to

annotate samples, data acquisition for unsupervised algorithms is much easier. They can

benefit from the practically unlimited amount of unlabeled data and save the cumbersome

manual annotation.

Deep generative models attempting to learn hierarchical data representations are of

particular interest. Lower layers learn simple features and are then composed to model

high-level structures. In this way, it is possible to learn complex data representations,

that can then be used on a variety of supervised tasks, like object detection using a small

amount of labeled data. An illustration of a hierarchical data representation for faces is

shown in Figure 1.3.

1.2.2 Texture Synthesis

Textures are images with special characteristics. They describe a wide range of surfaces like

plants, paper, minerals or wood. The images usually contain similar pattern repeated over

and over again with a certain amount of random changes. The task of texture synthesis is,

given a small image patch (texture sample), to create a new larger synthetic image with

similar structural content. Similar in this context means, that for a human observer the

new generated image describes the same surface. The typical application is to simulate
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(a) (b) (c) (d)

Figure 1.4: Texture synthesis on two real-world textures: (a) and (c) are the original texture
samples, (b) and (d) are the larger synthesized images. Images are taken from [8].

3D surfaces in video games or computer graphics by mapping a texture to objects, instead

of explicitly modelling the surfaces.

Efros & Leung [8] for instance, perform texture synthesis by non-parametric sampling.

They start with an randomly chosen 3x3 pixel seed from existing texture. For every

new pixel, which borders already filled pixels, the algorithm finds similar patches in the

source image by observing the neighboring pixels. Then one of these patches is randomly

selected, and the center pixel is taken to be the newly synthesized pixel. Thereby, the

process grows a new image one pixel at a time. Two examples of synthesized textures are

shown in Figure 1.4.

1.2.3 Super-Resolution

To upscale an image, or increase the resolution of a given low-resolution image, is a fun-

damental operation in computer vision with high practical relevance. Many applications,

like medical imaging or surveillance, need high-resolution images. However, this problem

is inherently ill-posed, since for every low-resolution pixel, a vast number of possible solu-

tions exist. An often used method to upscale a given image is bicubic interpolation. This

method is very fast but leads to smooth edges and thus blurry high-resolution images.

Here, a generative model can be used to learn the probability distribution of the latent

high-resolution image, given the observed low-resolution image.

Recent super resolution approaches are usually example-based methods [48]. They

learn a mapping from low- to high-resolution images, and use it to create the most-likely

high-resolution version of a given input image. Dong et al. [6] for instance, train a deep

convolutional neural network to learn an end-to-end mapping between low- and high-

resolution images. An example of an upscaled image is shown in Figure 1.5.
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(a) (b)

Figure 1.5: Super-resolution example: (a) is the low-resolution input image and (b) the synthe-
sized high-resolution output. Images are taken from [6].

1.2.4 Inpainting

Old photographs often have damaged regions, like an aged corner or gaps through folds

that should be recovered. Another time, we want to remove objects from our photographs,

like a tower crane midst of a landscape. Inpainting, or scene completion, addresses these

problems. The task is to fill or replace an image region, such that the modification is not

visible for the human observer. A generative model can be used to synthesize new data

likely to the surrounding image region.

Millions of photographs are used by Hays & Efros [16] to inpaint holes in images. They

use a two-stage method to overcome computational and semantic challenges. Firstly they

use a scene descriptor to find images in the dataset showing semantically similar content,

and to reduce the amount of data from millions of images to a few hundred. Within these

samples, they use pixel-wise Sum of Squared Differences (SSD) around the missing part,

to find the best matching content for image completion. Two examples for inpainting are

shown in Figure 1.6.

1.2.5 Dataset Augmentation

The amount of training data is a critical point for many machine learning applications,

like image classification. Having not enough data can lead to a bad performance due to

over-fitting, and increases the influence of noise or outliers. To acquire a larger training

set is usually expensive and takes considerable effort. A generative image model can solve

this problem by synthesizing new training samples and augmenting the existing dataset

at little time and expense.
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(a) (b) (c)

Figure 1.6: Example for inpainting: (a) is the original input image, (b) shows the image region
that should be replaced and (c) is the synthesized output. Images are taken from [16].

1.3 Related Work

There are basically two approaches for generative image models: parametric and non-

parametric models. The number of parameters in a non-parametric model grow with

the amount of used training data. Examples for non-parametric models are shown in

the previous section [8, 16]. Parametric models, like Generative Adversarial Networks

(GANs), on the other hand have a finite number of parameters regardless of the observed

data points.

The dominant approaches for parametric generative models are based on maximum

likelihood estimation. The aim is to find a set of parameters Θ of a probability model

under which the data X = {x1, . . . ,xN}, xi ∈ Rd are most likely. The likelihood function

at a single data point xi is given by the probability density function at xi

P (xi | Θ). (1.2)

Under the assumption that x1, . . . ,xN are independent and identically distributed (i.i.d.),

the likelihood function for a set of points is given by the product over the individual

likelihoods

P (X | Θ) =
N∏
i=1

P (xi | Θ). (1.3)

By taking the logarithm, products are replaced by sums which can be differentiated more

easily. This does not change the optimization problem because the logarithm is a mono-
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8 Chapter 1. Introduction

tonic transformation. The log-likelihood is given by

L(X | Θ) = log(P (X | Θ)) =

N∑
i=1

logP (xi | Θ)). (1.4)

Hence, the goal of maximum likelihood estimation is to find the set of parameters Θ that

maximizes the log-likelihood

Θ̂ = arg max
Θ

L(X | Θ). (1.5)

1.3.1 Restricted Boltzman Machine

Generative models based on maximum likelihood estimation are Restricted Boltzmann

Machines (RBMs) [10, 21, 50]. They are undirected graphical models, consisting of two

layers and can be interpreted as stochastic artificial neural networks. They consist of a

layer of visible and a layer of hidden neurons, and a fully symmetric connection between

them. The difference to a Boltzmann machine is the restriction that the nodes form a

bipartite graph, which means there are no connections within one layer. The structure of

RBMs is shown in Figure 1.7. In terms of an image the visible nodes are image pixels and

the hidden variables can be seen as feature representations. The RBM is an energy-based

model [30], meaning it assigns a scalar energy to each configuration of variables. Learning

means to modify the energy function such that plausible configurations have low energy.

Figure 1.7: Structure of a restricted Boltzmann machine with m visible and n hidden nodes.
Image taken from [10].

The joint probability distribution for a set of visible random variables v and hidden

random variables h is given as

P (v,h) =
1

Z
e−E(v,h), (1.6)
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with the energy function

E(v,h) = −bᵀv − cᵀh− vᵀWh, (1.7)

where b are hidden nodes biases, c visible nodes biases and W are the weights between the

two layers. The partition function Z is a normalizing constant to ensure the distribution

sums to one:

Z =
∑
v

∑
h

e−E(v,h). (1.8)

The marginal distribution of the visible variables v is therefore given as the sum over all

possible hidden node configurations:

P (v) =
∑
h

P (v,h) =
1

Z

∑
h

e−E(v,h). (1.9)

Given a dataset of examples V = {v1, . . . ,vK}, the parameters of this model Θ =

{W,b, c} are estimated by maximizing the log-likelihood given as:

L(V | Θ) = log(P (V | Θ)) =

K∑
i=1

logP (vi)). (1.10)

Unfortunately, computing the exact gradient of this objective function is intractable be-

cause of the partition function. Since the number of possible configurations rise expo-

nentially with the number of variables, it is computationally impossible to calculate the

exact solution. These intractable partition functions are the major problem of this type

of models. However, the common way to train RBMs is to approximate the log-likelihood

gradient, for example using contrastive divergence [19].

1.3.2 Deep Boltzmann Machines

One possibility to build deep generative models are Deep Boltzmann Machines (DBMs)

introduced by Salakhutdinov & Hinton [46]. They can be seen as a multi-layer extension of

the Restricted Boltzmann Machine (RBM ). Each layer captures higher-order correlations

between the hidden features of the lower layer, and thereby the internal data representa-

tions become more complex.

In contrast to Deep Belief Networks (DBNs) [20], where RBMs are stacked and sep-

arately trained from bottom to top, a DBM is an entirely undirected graphical model

where information from higher to lower layers is used during training. Even though, a

greedy layer-by-layer pre-training is necessary to initialize the parameters. Figure 1.8

shows synthesized samples from a DBM trained on a 3D object dataset [46].
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10 Chapter 1. Introduction

(a) (b)

Figure 1.8: Synthesized samples from a Deep Boltzmann Machine (DBM ): (a) shows random
samples from the training set, and (b) are synthesized samples. Images are taken from [46].

1.3.3 Autoencoder

An autoencoder [21] is an artificial neural network used to learn a code representing

the input. The simplest form consists of three layers: an input layer, a hidden layer

representing the code and an output layer. The characteristic of autoencoders is that they

are trained to reconstruct their own input, thus the number of nodes in the output layer

is equal to the size of the input layer. The network can be seen as an encoder-decoder

system. A typical application is dimensionality reduction, in which the number of nodes

in the hidden layer is smaller than the number of nodes in the input and output layer.

Therefore, the small layer in the center works like an information bottleneck. This typical

structure of an autoencoder is shown in Figure 1.9. Thus, the model is forced to find the

important properties within the data that shall be encoded. Another way to prevent the

autoencoder from learning an identity function, is to add a sparsity penalty on the hidden

layer (sparse autoencoder [32]).

Of particular importance for generative models are denoising autoencoders [59].

The idea behind this approach is to corrupt the input data, and let the network learn

to reconstruct the uncorrupted version. Regarding images, the corruption could be to

add white noise or to delete pixels. To revoke this process, the network has to learn

the underlying distribution to capture the dependencies between the input neurons.

These autoencoders can be stacked and trained layer by layer, to learn a deep data

representation [60]. Further work explored methods to generate samples from a trained

denoising autoencoder [1, 2]. Figure 1.10 shows samples generated by a denosing

autoencoder trained on a handwritten digit dataset [2].
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Input Layer

Hidden Layer

Output Layer

Figure 1.9: Typical structure of an autoencoder: The number of nodes in the input layer is equal
to the size of the output layer. A smaller layer in the center works like an information bottleneck.

Figure 1.10: Samples generated by a denoising autoencoder, trained on a handwritten digit
dataset. Image taken from [2].

1.4 Contribution & Outline

The aim of the first part of this thesis is to investigate the internals of GANs. The goal

is to better understand what they learn and to find ways to manipulate the generation

process in order to synthesize samples with desired properties. After an introduction to

artificial neural networks and convolutional neural networks in Chapter 2, we describe

the principles of GANs in Chapter 3, including recent extensions. In Chapter 4 we train

adversarial nets on two common depth-datasets for head- & hand pose estimation and

analyze the generator networks in a variety of ways. Furthermore, two ways to manipulate

the generation process are presented, allowing the creation of depth-data for desired head-

or hand-poses.

In the second part of this work, the applicability of GANs to solve two fundamental

computer vision problems is analyzed. In the first experiment in Chapter 5 we show that

learned discriminator networks are a strong candidate for unsupervised feature learning.

The second experiment demonstrates that GANs can be used for super resolution to

significantly increase the quality of upsampled images.
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The aim of this Chapter is to introduce the principles of artificial neural networks

on which Generative Adversarial Networks (GANs) are based. In the first part we will

outline the development of neural networks, discuss the basic concepts like neurons or

layers and describe the training process. In the second part, we focus on convolutional

neural networks and show their advantages for computer vision tasks.

2.1 Feedforward Neural Networks

As their name suggests, artificial neural networks [13, 43] are inspired by biological neu-

ral systems. The mammalian brain ability to adapt to different tasks using the same

structures motivates this field of artificial intelligence research. Von Melchner et al. [61]

for instance, found that ferrets can learn to see with their auditory area of the brain, if

retinal projections were rewired. This suggests, that the brain is able to solve different

tasks using the same learning approach. Artificial neural networks originally attempt to

model this learning process based on neurons. Nowadays, the research in artificial neural

networks diverged from neuroscience, since we do not have enough information about the

activities of neurons in the mammalian brain to model them. Another reason is, that it is

not guaranteed that the biological model always leads to the optimal solution. Therefore,

it becomes more a topic of engineering, and a general approach to learn multiple levels of

representation. However, the basic idea to solve complex tasks using the interaction be-

tween many simple computational units is inspired by neuroscience. Therefore, we begin

this section with a short explanation of a biological neural system.

13
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14 Chapter 2. Artificial Neural Networks

Figure 2.1: Illustration of a biological neuron: Each neuron has several inputs (dendrites) and a
single output (axon) connected to dendrites of other neurons. Image taken from web source1.

2.1.1 Biological Neural Network

The core component of the brain is called neuron or nerve cell [62], illustrated in Figure 2.1.

This unit receives signals from other neurons and produces an output signal. Each neuron

consists of several input channels called dendrites, and a single output called axon, which

may split up into several branches. Neurons are connected to dendrites of other neurons

by synapses. Each of the synapses possesses a synaptic weight, indicating the strength of

the connection. Inputs, which can be excitatory or inhibitory, depending on their weight,

are carried toward the cell body where they are summed up. If the sum is greater than

a threshold, the neuron generates a brief pulse along its axon to stimulate other neurons,

also referred to as firing. The interconnection of a large amount of these neurons forms the

biological neural network. The important knowledge within such a network, is represented

by the synaptic weights between the neurons. This is a very coarse model of a biological

neuron, with several simplifications. For instance, the synapses in a real neuron are not

just a single weight, but a complex chemical system. However, this model shows the basic

biological concepts that inspired the development of artificial neural networks.

2.1.2 Artificial Neurons

The first artificial neuron was proposed by McCulloch and Pitts in 1943 [37]. In this

work, the neural activity is modeled as a threshold unit over a weighted sum of inputs.

The parameters of this model needed to be set manually. In 1958, Frank Rosenblatt [44]

extended this work, and introduced with the Perceptron a model that was able to learn

the parameters using an iterative learning algorithm. This work represents the base for

modern artificial neural networks.

Similar to a biological neuron, the computational model receives inputs from other

1http://biofoundations.org/?p=3283 Accessed: 31-01-2016
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Figure 2.2: Illustration of an artificial neuron: The inputs xi are weighted with wi, summed up,
and passed through the activation function to create the output y.

neurons, combines them in some way and outputs the final result. It consists of several

inputs xi, representing the dendrites. Each of these inputs is weighted by wi, equal to

the synaptic weights. These learnable parameters control the intensity and direction of

influence (excitatory or inhibitory) between the neurons. Usually, the input x0 is set to

1 modeling a bias input. This weighted sum over the inputs is then passed through a

transfer or activation function σ(·), to create the output y which corresponds to the axon

in a biological neuron. The structure of an artificial neuron is shown in Figure 2.2. This

means, each neuron calculates the dot product between the inputs x and the weights w,

and applies the activation function:

y = σ

(∑
i

wixi

)
= σ (wᵀx) . (2.1)

Learning the parameters w, given a set of input data and corresponding target values

t, means to solve an optimization problem. The loss function E, determines the error

between a target t and the output y, for instance:

E =
1

2
(t− y)2 =

1

2
(t− σ (wᵀx))2. (2.2)

The goal is to find the set of parameters w, that minimize the loss function. This is

usually done by gradient descent, where the parameters w are randomly initialized, and

iteratively refined until the loss is minimized. The direction of the update is given by the

gradient of the loss function. The update rule for the parameters is therefore

wt+1
i = wt

i + ∆wi = wt
i − α

∂E

∂wi
, (2.3)

where α is the step size or learning rate.
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Figure 2.3: The sigmoid activation function (a) maps real numbers into a range from 0 to 1.
Similarly, the hyperbolic tangent non-linearity (b) maps x to [-1,1].

2.1.3 Activation Functions

The first artificial neurons, like ADALINE [63], used linear activation functions like the

identity function. Their problem was, that a network consisting of these linear neurons,

remains a linear function over its inputs and has no benefit. This means, that a multi-

layer neural network of linear neurons, can always be replaced by a single layer network.

Therefore, it is the non-linearity, or the capability to learn non-linear representations, re-

spectively, that makes artificial neural networks so powerful. Another important property

for an activation function besides the non-linearity is, that it has to be differentiable or at

least sub-differentiable. This is necessary to use sub-gradient based optimization methods.

2.1.3.1 Sigmoid

A historically often used activation function is the sigmoid function σ(x) = 1/(1 + e−x).

It maps a real-valued number into a range from zero to one, see Figure 2.3a. The output

can be seen as the probability, that a neuron is firing, equal to the firing rate in biological

neurons. A major disadvantage of this function is, that it saturates across most of their

domain. Small values of x converge to zero and large values to one. Therefore, the

gradients in this border areas are almost zero and make gradient based optimization very

difficult.

2.1.3.2 Hyperbolic tangent

A similar activation function is the hyperbolic tangent, shown in Figure 2.3b. It maps a

real valued input to the range from minus one to one. Although this activation function

saturates similar to the sigmoid, it performs better because the output is zero centered

(tanh(0) = 0) [31].
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Figure 2.4: The Rectified Linear Unit (ReLU ) is zero for vallues smaller than zero and equal
to the identity function for values greater than zero (a). To guarantee a valid gradient also for
negative values, the Leaky Rectified Linear Unit (leaky ReLU ) has a small negative slope (b) for
x < 0.

2.1.3.3 ReLU

An often used activation function in the last years is the Rectified Linear Unit (ReLU) [39]

σ(x) = max(0, x), shown in Figure 2.4a. It is similar to the identity function used in a

linear neuron except that the output for negative values is zero. Due to this non saturating

linear form, the derivatives are large whenever the unit is active. This solves the gradient

vanishing problem in sigmoid or hyperbolic tangent functions. These large gradients lead

to a faster learning process. For instance, Krizhevsky et al. [28] showed that a neural net-

work for image classification trained six times faster using ReLUs compared to hyperbolic

tangent activation functions.

A drawback of this activation function is the dying ReLU problem [15]. This occurs,

when a large enough gradient changes the parameters such that the neurons output is

equal to zero for all training samples. From that point, the gradients will always be zero

and the unit can not be reactivated.

2.1.3.4 Leaky ReLU

The Leaky Rectified Linear Unit (leaky ReLU) σ(x) = max(αx, x) [36], shown in Fig-

ure 2.4b, addresses the previously described dying ReLU problem. For values smaller than

zero, a leaky ReLU has a small negative slope adjusted with α. This guarantees a small

gradient for negative inputs.

There exist several variations of this activation function, like the PReLU [18] where the

slope value is a learnable parameter. Other variants are the RReLU [64], where this value

is randomly chosen, or the ELU [3] which employs an exponential saturation function as

negative part.
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Figure 2.5: Illustration of a multilayer feedforward neural network: To evaluate this network, the
data is processed in one direction, from the input layer over the hidden nodes to the output layer.

2.1.4 Multilayer Neural Networks

A single artificial neuron as previously described, is a very simple model, computing a

non-linear input-output mapping. But, by composing them in a multilayer architecture,

they are able to learn very complex functions. This networks are called feedforward neural

networks or multilayer perceptron. A simple example for the architecture of this networks

is shown in Figure 2.5. The neurons are grouped into layers and connected in an acyclic

graph, where the output of a neuron becomes an input to other neurons, without building

cycles. Concretely, each neuron of one layer is connected to all neurons of the subsequent

layer. Neurons within a single layer do not have any connections. This type of layers are

also known as fully connected layer.

The first layer, the leftmost layer, is called input layer where the number of neurons is

equal to the dimension of the input data. On the opposite side of the graph, the rightmost

layer, is the output layer. In a classification task for instance, the number of neurons

in this layer is equal to the number of classes. The layers in between are called hidden

layers, because they do not have any connections to the outside. These networks are called

feedforward, because the information moves only in one (forward) direction. Starting at

the input layer, going through the hidden nodes to the output layer, without any loops.

One advantage of this network architecture is, that the forward path is very efficient

to compute using simple matrix vector multiplications. Consider the network shown in

Figure 2.5. The input can be represented as a vector x ∈ R3×1. All weights of the first

hidden layer can be stored in a matrix W1 ∈ R4×3, with row i representing the weights

of the i-th neuron. The output h1 ∈ R4×1 of the first hidden layer is then given as the

result of the matrix vector multiplication

h1 = σ(W1x), (2.4)
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where σ(·) is an arbitrary activation function. In the same way, h2 and the network output

y, can be computed. An important property is, that instead of a single input data point,

a whole batch of data can be passed through the network at once. In this case, the input

is a matrix X ∈ R3×d, where each column represents a data point.

2.1.5 Gradient Based Learning

So far we described the architecture of multilayer neural networks and how the

output for a given input-sample is computed. Now, we are going to show how

such a network can be trained. The idea is to define a loss function measuring the

network performance, and minimizing this cost by iteratively adapting the network

weights. The direction of the parameter update is given by the gradient of the loss function.

Forward Propagation

The first step is the already described forward propagation, where for a given sample x

the information is propagated from the input layer over the hidden layers to the output

nodes. Now, an error- or objective function E(W) is used to measure the difference

between the network output y and the desired output t, resulting in a scalar cost, for

instance using the sum of squared differences (Equation 2.2). Minimizing this loss by

adapting the network weights is the goal for the subsequent steps.

Backward Propagation

In order to minimize the objective function, it is necessary to compute the gradient of the

cost function with respect to the parameters ∂E/∂wi. It would be possible to compute

an analytical expression for the gradient, but numerically evaluating this expression is

computationally expensive and inefficient. For instance, several sub-expressions may be

used repeatedly and either needed to be stored or recomputed several times. This problems

are addressed by the backpropagation algorithm [45], which is based on the chain rule for

derivatives. The main principle is, that the gradient of the error function with respect

to the input weight of a neuron can be calculated using the gradient with respect to the

output of that neuron. This gradient is given by a weighted sum over the input gradients of

the neurons in the layer above. In this manner, the error can be back-propagated through

the network from the output layer to the input layer. This error backpropagation is shown

in Figure 2.6.

More formally this means if oj is the output of neuron j, and aj is the sum over all inputs

for this neuron, then oj = σ(aj), where σ(·) is an arbitrary activation function. The

gradient of the objective function with respect to weight i for neuron j is then based on

the chain rule
∂E

∂wij
=
∂E

∂oj

∂oj
∂aj

∂aj
∂wij

. (2.5)
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x0

x1

y1

Figure 2.6: Error Backpropagation: The error of the objective function is back-propagated (red)
from the output layer to compute the gradients of weights in previous layers (green).

The last term is the derivation of the sum over inputs with respect to weight wij

∂aj
∂wij

=
∂

∂wij

(
n∑

k=1

wkjok

)
= oi, (2.6)

where oi is the relevant output of the previous neuron. The second term is the derivation

of the activation function and the first term represents the impact of the current neurons

output to the error function. If the neuron is an output neuron, this is simply the derivation

of the loss function, otherwise it is given as

∂E

∂oj
=
∑
l∈L

(
∂E

∂al

∂al
∂oj

)
, (2.7)

where L are the neurons in the next layer using oj as input. Because of the error

back-propagation, the gradients with respect to ol are already known.

Gradient Descent

The gradients computed in the previous backpropagation step indicate the direction to-

wards an error function maximum. In order to minimize the loss, gradient descent updates

the parameters in the negative direction of the gradient

wt+1 = wt − α∇wE(wt), (2.8)

where α is the learning rate or step-size, and ∇wE(w) are the gradients of the error

function with respect to the parameters. This process is visualized in Figure 2.7.

The usually used gradient descent implementation is mini batch gradient descent, where

B samples out of the training set are used to compute the gradients. B is called batchsize

and is an important parameter. The advantages are less computational effort updating

the weights and efficient matrix × matrix multiplications to compute several samples
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w

E(w)

Figure 2.7: Gradient descent: In order to minimize the error function E, gradient descent take
steps in direction of the negative gradient, until the minimum is reached.

simultaneously. This method is sometimes also called stochastic gradient descent, even

though this variant usually uses only a single example (B = 1) in one step.

However, there is no guarantee that these methods converges to the optimal solution.

Choosing a proper learning rate for instance, heavily influences the process. A too small

step-size leads to very slow convergence, while a too large learning rate can cause a fluctu-

ation around the minimum or to divergence. Another challenge is, that the error function

is usually non-convex, which means there can be many local minima besides the global

minimum where the algorithm can converge to. Furthermore, saddle points can lead to

gradients close to zero and stop the optimization. In the following, we will outline exten-

sions to the stochastic gradient descent algorithm addressing these problems.

The first one is the momentum method [45], which prevents from oscillating gradients.

The update rule is given as

vt+1 = µvt − α∇wE(wt) (2.9)

wt+1 = wt + vt+1, (2.10)

where µ is the momentum parameter. If the error surface has the form of a narrow

valley with steep sides, the gradients tend to oscillate across these sides. To suppress this

behavior, the method incorporates the previous gradients into the current update.

Nesterov’s Accelerated Gradient [40] is a similar method, but the gradients are calculated

with respect to the approximated future position:

vt+1 = µvt − α∇wE(wt + µvt) (2.11)

wt+1 = wt + vt+1. (2.12)

The approximation is done using the previous gradients. Therefore, the algorithm can

detect an upcoming increase and react earlier.
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Adagrad [7] adapts the learning rate for each parameter based on the gradients history for

that parameter. The rescaling is done by dividing each gradient by the square root of the

sum over historical gradients. It reduces the step-size for parameters with constantly large

gradients and increases the learning rate for infrequent parameters. The advantage is a

larger weighting of rare but maybe useful features. A similar method is RMSProp [54],

where the learning rates are rescaled using a moving average of the squared gradients for

each weight. The recently proposed Adam algorithm [26] can be seen as a combination

of RMSProp and the momentum method. It also computes adaptive learningrates using

averaged squared gradients like RMSProp, but in addition, it also keeps an average over

past first order moments for smoothing the gradients similar to momentum.

2.1.6 Regularization

One problem using artificial neural networks is overfitting. It occurs especially when the

number of training samples is small compared to the network complexity. It is character-

ized by a very small training error but a large test error. This means, that the network

has memorized the training data, but is not able to generalize to new data. There are

several possibilities to prevent overfitting as described in the following.

2.1.6.1 Weight Decay

Weight decay, or L2 regularization is an often used technique to avoid overfitting. The

idea is to add a regularization term to the objective function:

ER = E +
λ

2

∑
w

w2. (2.13)

This term, the sum over all squared network weights, penalizes weight vectors with single

peaks and prefers small scattered weights. Smaller weights mean lower network complexity

and provide a simpler data representation. The strength of the regularization is determined

by the parameter λ. A similar method is L1 regularization, where in the regularization

term |w| is used instead of w2. This leads to sparse weight vectors, where many weights are

close to zero. Therefore, the network has to concentrate on a few important connections.

2.1.6.2 Dropout

A recent method to prevent overfitting is dropout [52]. It does not modify the objective

function like weight decay, instead it modifies the network architecture. The idea is to

randomly drop neurons during the training process in hidden layers, as shown in Figure 2.8.

Dropping means setting the outputs of these neurons to zero. Therefore, the neurons can

not rely on the existence of other neurons, and are forced to learn a more robust data

representation. A network, trained in this manner, can be seen as an ensemble of many

sub-networks sharing the same parameters. The number of active neurons is determined

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()



2.2. Convolutional Neural Networks 23

x0

x1

x2

y1

y2

Figure 2.8: An example for a thinned neural network by applying dropout to the hidden layers.

by a probability parameter p for each hidden layer. In each forward - backward iteration,

a new subset of neurons is chosen.

2.1.6.3 Batch Normalization

A problem in deep neural networks is, that the input data distribution of a layer changes

as the weights of the previous layers change. The common way to suppress this effect is to

use small learning rates and carefully initialized parameters. Another approach, proposed

by Ioffe & Szegedy [23], addresses this problem by normalizing the layer inputs. If the

inputs to each layer within one patch have zero mean and unit variance, the learning

process can by stabilized even for higher learning rates.

2.2 Convolutional Neural Networks

The history of Convolutional Neural Networks (CNNs) begins with experiments of

Hubel & Wiesel [22] in the 1960s. They were studying the visual cortex of cats. In

particular, they investigated an early visual area by recording neural activity while

the cat was looking at different patterns on a screen. The found that neighboring

cells in the visual cortex, process neighboring regions on the retina, which means that

the spatial information is preserved within the brain. In addition, they figured out

that there exists a hierarchical organization. Simple cells, responding to particular

orientation of edges in their region of the visual field, transmit their information

to complex cells. These cells respond to the same orientation of edges, but in a

larger region. All this suggests a hierarchical structure, where cells are build on top

of each other, from locally receptive fields to complex representations. Modelling

these concepts with artificial neural networks is the motivation for this type of architecture.

The difference between Convolutional Neural Networks (CNNs) and conventional neu-

ral networks is, that CNNs are designed to process data with a known grid-like organization
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like images [13]. This knowledge can be exploited to adapt the network architecture, such

that the spatial information within the input data can be preserved and used through

the computation. In a fully connected neural network, the input layer, as well as the

output of a subsequent layer, is represented by a single vector. In contrast, CNNs operate

over arrays, where the data are arranged in three dimensions, described by width, height

and channel. A RGB color image as input volume for example, has three channels, con-

sisting of 2D pixel arrays. All layers in a CNN take arrays as input, and output arrays

of activations, compared to vectors in fully connected networks. Connecting all neurons

in one layer to all neurons of the previous layer is impractical, when dealing with high-

dimensional inputs like images. Therefore, the neurons within a CNN process only small

input regions, similar to the receptive fields. But, if a neuron is able to detect a specific

type of feature at one location in the input, then the same weights are also useful at a

different location. This leads to parameter sharing, where neurons within one slice use

the same weights. This important constraint dramatically reduce the number of parame-

ters within the network. Nonetheless, CNNs consist of neurons with learnable parameters

and a non-linear activation function, as well as conventional neural networks. They can

be trained using the same principles by minimizing a scalar cost function. Therefore, all

techniques described in the previous section can also be used for CNNs.

2.2.1 Convolutional Layer

2.2.1.1 Overview

The convolutional layer is the key element for this type of networks. As already mentioned,

the input to a convolutional layer is a data array. The learnable parameters or weights

of this layers are a group of filters, also represented as arrays. These filters width and

height is usually small, compared to the input array, but they are always equal in the

number of channels. During the forward propagation, each of these filters is convolved

over the input array along its width and height. Convolving means to slide the filter

spatially over all possible locations in the input, and compute the dot-product between

input section and the filter repeatedly. This results in a two dimensional output, called

feature-map, representing the filter responses at every spatial location. An example for

the convolution using a single filter is shown in Figure 2.9a. Every learned filter is sensitive

to a particular type of structure in the input. Therefore, a high value in the activation

map is a sign for the presence of this feature at the corresponding input location. For

multiple filters, the resulting feature-maps are stacked along the channel axis, forming the

output array. Therefore, the neurons arrangement in a convolutional layer can be seen

as a three-dimensional volume, compared to a single vector in fully connected layers. An

example for a convolution layer with three filters is shown in Figure 2.9b.

Reference:

 ()



2.2. Convolutional Neural Networks 25

(a) (b)

Figure 2.9: (a) shows an example for a convolutional layer with one filter. By sliding the filter
over all possible locations in the input and computing dot-products between the input slice and the
filter weights, an output feature-map is created. If multiple filters are used, the resulting output
array is created by stacking the feature-maps along the channel dimension (b).

2.2.1.2 Convolution Operation

Formally, the convolution between a two-dimensional input X and a filter kernel F ∈
R(2k+1)×(2k+1) is given as

Y(i, j) =
k∑

u=−k

k∑
v=−k

X(i− u, j − v)F(u, v). (2.14)

Though, most neural network frameworks implement instead a related operation called

cross-correlation, given as

Y(i, j) =
k∑

u=−k

k∑
v=−k

X(i+ u, j + v)F(u, v), (2.15)

but call it convolution. The difference to a convolution is that the kernel is not flipped

during the cross-correlation computation. Thus, the cross-correlation is not commutative

which usually does not matter for the implementation. An example for a two-dimensional

convolution is shown in Figure 2.10. It shows that the convolution can be computed as

dot-products between the input slices and the filter kernel. The 2D convolution can easily

be extended to volumes by simultaneously performing 2D convolutions over all channels

and summing up the results.
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Figure 2.10: Example for a two-dimensional convolution. Each output element is computed as
sum over the elementwise multiplication between the input slice and the filter kernel. Image taken
from [13].

2.2.1.3 Shared Weights

As already mentioned, the neurons arrangement in a convolutional layer can be seen

as a volume. Each of these neurons processes only a small input region by computing

the dot-product with its filter coefficients, as shown in Figure 2.9a. The idea behind

parameter sharing is the following: If a filter is able to detect a specific type of feature,

like a horizontal edge, at one location in the input, then this filter can also be used at

a different location. Therefore all neurons within one channel (one slice of the volume)

share the same filter weights to reduce the number of parameters. This assumption is also

necessary to compute the forward propagation as convolution between the input and the

filters. Each channel in the resulting feature-map can be seen as response of the input to

the given filter. To compute the gradients for the filter weights using the backpropagation

algorithm, the gradients for each neuron are determined separately, and then summed up

across each channel.

2.2.1.4 Parameters

Consider an input of size Win×Hin×Cin, describing width, height and number of channels

of the input data array. The dimensions of the output Wout×Hout×Cout, depend on four

hyperparameters:
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Number of Filters

The convolution between a single filter and the input results in one channel of the

output feature map, see Figure 2.9b. Therefore, the number of output channels Cout

is determined by the number of used filters N . This parameter is usually a power of

2, ranging from 32 to 512, and increases from early layer to the output. It can also

be seen as the number of neurons that process the same input area using different

weights.

Filter Size

The filter dimensions determine the spatial input region for each neuron and can

be seen as the size of the receptive field. As already mentioned, the number of

filter channels is always equal to the number of input channels Cin. This means the

connections are local for width & height, but always cover all input channels, see

Figure 2.9a. Since the filters are always quadratic along width and height, the filter

size is given as a single parameter F . To ensure a definite filter center, the filter

size is usually odd-numbered. The convolution is only defined where the input array

and the filter are fully overlapping. This is not the case for the input edges, yielding

to an output array with smaller width and height than the input. Therefore, the

output dimensions are given as Wout = Win−F + 1 and Hout = Hin−F + 1. Karen

Simonyan and Andrew Zisserman [49] showed that it might be beneficial to use

multiple layers with very small receptive fields, instead of on layer with a large filter

size. First, they argue that incorporating three non-linearities instead of a single

one, leads to a more discriminative decision function. The second advantage is that

the number of parameters is decreased. For instance, three 3× 3 convolution layers

processing C input channels consist of 3(32C2) = 27C2 weights. At the same time,

a single convolution layer using 7× 7 filters would require 72C2 = 49C2 parameters,

while the effective receptive field size remains the same.

Padding

A possibility to prevent the spatial reduction is to symmetrically pad zeros around

the input. The padding parameter P , determines the number of rows or columns

added on both borders, leading to Wout = (Win + 2P − F ) + 1 and Hout = (Hin +

2P − F ) + 1.

Stride

The last parameter S, is called stride and defines the shift of the filter along width

and height at each convolution step. It can be seen as the distance between the

receptive field centers of two nearby neurons. Therefore, a stride of 1 means that

the filter heavily overlap. In contrast, higher strides will lead to larger gaps between

the receptive fields and to smaller outputs, where Wout = (Win + 2P −F )/S+ 1 and

Hout = (Hin + 2P − F )/S + 1.

In summary, the convolution layer has four parameters: The number of filters (N),
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Figure 2.11: MAX pooling with region size equal to 2 and a stride of 2. Each sub-region is
replaced by its maximum value to reduce the data dimensionality.

the filter size (F ), a stride parameter (S) and the amount of input padding (P ). The

dimensions of the output array are then given as:

Wout =
Win + 2P − F

S
+ 1 (2.16)

Hout =
Hin + 2P − F

S
+ 1 (2.17)

Cout = N (2.18)

2.2.2 Pooling Layer

In a typical CNN architecture, a convolutional layer is followed by a non-linear activation

function. The subsequent element is usually a non-linear downsampling layer, called pool-

ing layer, before the next convolutional layer is applied. The purpose of this downsampling

is to make the features invariant to small transformations and to reduce the data dimen-

sionality. It replaces the data at a particular location using statistics of neighboring data.

The data array is divided into small non-overlapping rectangles along width and height.

For each rectangle, the output is only a single value. In MAX-pooling for instance, the

output is the maximum value within the sub-region. Another variant is MEAN-pooling,

where the the mean value is used to represent the rectangle. Important is that the pooling

operation is applied on each channel separately, therefore the number of channels remains

the same. The parameters of a pooling layer are a stride, representing the distance be-

tween the rectangles, and the size of the sub-region. Usually, the stride is even-numbered

and equal to the rectangle size to ensure non-overlapping regions. An example for MAX

pooling is shown in Figure 2.11.
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2.2.3 Network Architecture

A typical Convolutional Neural Networks (CNN ) architecture for classification consists

of several blocks of convolutional and ReLU layers followed by pooling layers. These

blocks are stacked on top of each other until the spatial dimension of the output array is

small enough to use them as input to a fully connected layer. Usually, the number of

feature maps is increased while the spatial dimension is decreased from stage to stage.

The output of the last fully connected layer represents the class scores. Note that only

convolutional layers and fully connected layers contain learnable parameters. The ReLU,

as well as the pooling layers perform fixed operations. To control the network complexity,

all regularization methods described for conventional neural networks can be applied to

these networks as well. For instance, dropout is often used in the last fully connected

layers to prevent overfitting.

A famous architecture is the AlexNet from Alex Krizhevsky et al. [28], shown in

Figure 2.12. It won the Imagenet Large Scale Visual Recognition Challenge (ILSVRC) in

2012 and draw attention to convolutional neural networks. It classifies natural images into

one thousand different classes. The network contains approximately 650,000 neurons and

60 million learnable weights. It consists of five convolutional and three fully connected

layers. Three pooling layers in-between are used to reduce the data dimensionality. It was

the first network that used ReLU as non-linear activation function. For regularization,

they used dropout in the last fully connected layers.

A more recent architecture is the VGGNet, proposed by Karen Simonyan and Andrew

Zisserman [49] in 2014. They used only 3× 3 convolution layers in combination with 2× 2

pooling layers in their network, and demonstrated that increasing the depth is beneficial

for the network performance. In the same year, Szegedy et al. [53] won the ILSVRC with

their convolutional network called GoogLeNet. They introduced an Inception Module,

that significantly reduces the number of weights in the network. Instead of performing

a single convolution with a fixed kernel size, they us filters of several sizes to capture

features at different scales and concatenate the results. Moreover they use average pooling

layers instead of fully connected layers at the top of the network to reduce the amount

of parameters. In 2015, the ILSVRC was won by ResNet, a architecture proposed by

Kaiming He et al. [17]. They use a very deep residual network consisting of 152 layers.

The idea is to include skip-connections that shortcut a few convolutional layers, providing

a clear path for the gradients to reach early layers within the network during the error

back-propagation.

2http://www.cc.gatech.edu/hays/compvision/proj6/deepNetVis.png Accessed: 17-02-2016
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Figure 2.12: Alexnet: Convolutional neural network architecture to classify natural images into
1000 different classes. Image taken from web source2.

Figure 2.13: 96 learned filters (11×11×3) in the first convolution layer of Alexnet. Image taken
from [28].

2.2.4 Visualization

Visualizing the internals of convolutional neural networks is useful to get an intuitive

understanding of the internal behavior and to identify possible improvements. A simple

way is to look at the raw activations of the neurons. This is done by selecting an arbitrary

neuron, propagating several samples through the network and look at the inputs that

activate this neuron the most. However, these results are usually hard to interpret. A

better idea is to look at the neurons weights, instead of the activations. Figure 2.13 shows

the raw weights of the 96 filters in the first convolutional layer of Alexnet. In a well

trained network, these filters are similar to gabor filters, detecting edges or blobs in the

input image. Noisy structures within these filters would be indicators for overfitting or an

uncompleted training process. The problem is, that these visualizations only make sense

for the first convolutional. For subsequent layers, these filters are not that interpretable.

Another way is to use the output of the penultimate layer as a code for the input image.

To visualize these feature space, a variety of input samples are evaluated and the resulting

codes are transformed into a two-dimensional representation using t-SNE [58]. In this

visualization, two images are nearby if their codes generated by the network are close to

each other. Besides these methods, deconvolution approaches try to project the neuron

activations back to the input pixel space [51, 67].
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2.3 Summary

In this Chapter we introduced the principles of artificial neural networks. We recapitulated

the history of this machine learning approach, outlined the loose relation to biological

neural systems and explained the basic concepts. The idea is to solve a complex problem by

dividing it into simpler problems. Simple computational units are composed in a multilayer

architecture and interlinked by a system of connections to learn a complex function. The

training of the network, which simply speaking means tuning of the connection weights,

is done by minimizing a loss function, representing a measure of the error between the

network output and a target. Layer-by-layer backpropagation of this error in combination

with gradient descent algorithms is used to iteratively adapt the weights.

In the second part we introduced Convolutional Neural Networks (CNNs), and showed

how concepts like the local connectivity of neurons or shared weights are used to take

advantage of the two-dimensional structure of an input image. Finally, we discussed

recently proposed network architectures and the ideas behind these approaches. Next,

we introduce Generative Adversarial Networks (GANs) which are based on the concepts

described in this Chapter.
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3.1 Motivation

As shown in Chapter 1, generative models can be used for a variety of computer vision

applications. However, there are also many different ways to formulate and train these

models. The dominant approaches to train generative models so far, are maximum

likelihood based methods and related strategies, see Section 1.3. The challenges using

these models are difficult approximations of many intractable computations (partition

term) and a complex sampling procedure. Therefore, their ability to create large and

realistic images is limited.

Ian Goodfellow et al. [14] introduced with Generative Adversarial Networks (GANs)

a method to train a generative model based on artificial neural networks that sidesteps

these problems. Instead of finding a formulation for P (x), a GAN incrementally learns to

sample directly. This is realized by formulating an adversarial game between two networks.

The first network, called generator G, takes random noise as input and creates new data

samples. Its counterpart, the discriminator D, tries to distinguish between real data from

the training set and the synthesized samples from G. The generators goal is to maximally

confuse the discriminator. In this competition, both networks improve their methods until

the fake data is indistinguishable for the discriminator. This means that the generator is
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Reference:

 ()



34 Chapter 3. Generative Adversarial Networks

Generator

Discriminator
Noise Synthesized Sample

Dataset Real Sample

Real or
Synthesized ?

Figure 3.1: Generative adversarial networks: The generator G, takes random noise as input and
synthesizes new data samples. Goal of the discriminator D is to distinguish these samples from real
data. The generator on the other hand, is trained to make this differentiation as hard as possible.

able to produce new data that is similar distributed as the original data. An illustration

of GANs is shown in Figure 3.1.

The advantage of GANs is, that the entire model is based on artificial neural networks.

It can be trained using well studied techniques like backpropagation and stochastic gra-

dient descent. No difficult gradient approximations or sampling procedures are necessary

during the training process, like in other generative models. Furthermore, achievements

in recently very popular discriminative convolutional networks are applicable for GANs

as well. For instance, knowledge about efficient network architectures, regularization- or

optimization methods can also be used to design and train GANs.

3.2 Approach

The aim of GANs is to train a generative neural network such that it replicates the

empirical data distribution Pdata(x) of a given dataset as good as possible. For instance,

x could be a color image with x ∈ RW×H×C and Pdata(x) the distribution of car images.

As already mentioned the framework to train such a generative network consists of two

parts:

Generator G

The generator G(z) → x is a differentiable function, realized as multilayer neural

network. It takes as input a noise vector z and outputs an image x. The noise values

of z are sampled from a distribution Pnoise(z). The dimension of the noise vector,

which is usually normally or uniformly distributed, is a hyperparameter. Implicitly,

the generator defines a distribution PG(x) over the output samples.

Discriminator D

The second neural network, the discriminator D(x) → [0, 1], is a discriminative
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model, as the name suggests. It takes an image x as input and learns to distinguish

real from synthesized samples. The scalar output is the probability that x came

from the training set (Pdata), rather than from the generator (PG).

To achieve that PG ∼ Pdata, the two networks are pitted against one another in a min-max

game given by the objective

min
G

max
D

Ex∼Pdata

[
logD

(
x
)]

+ Ez∼Pnoise

[
log
(
1−D(G(z))

)]
, (3.1)

where Ex∼Pdata
denotes the expectation for samples with distribution Pdata. Regarding

the discriminator, this means that the output probability should be maximized for samples

from the dataset and minimized for synthesized data from G. At the same time, the gener-

ators objective is to maximize the probability that the discriminator assigns to its samples.

To train both networks using gradient based optimization methods, Equation 3.1 can

be rephrased as cost functions. For mini batch gradient descent, with batch size N , the

cost function for the discriminator is given as

ED = − 1

N

N∑
i=1

[
logD

(
xi

)
+ log

(
1−D(G(zi))

)]
, (3.2)

where {xi, . . . ,xN} are samples from the dataset, distributed with Pdata, and {zi, . . . , zN}
are noise vectors drawn from distribution Pnoise. This equation is also known as logistic

cross entropy loss. Similarly, the cost function for the generator is given as

EG =
1

N

N∑
i=1

log
(
1−D(G(zi))

)
. (3.3)

In practice, minimizing log(1−D(G(zi))) does not provide useful gradients, especially

in the beginning of the learning process, when D is confident in detecting the synthesized

samples. Instead, the generator can be trained to maximize log(D(G(zi))). This means,

that the probability that D makes a mistake is increased, instead of decreasing the prob-

ability that D makes the correct distinction. The corresponding cost function is given

as

EG = − 1

N

N∑
i=1

log
(
D(G(zi))

)
. (3.4)

During the training process, the discriminator and the generator are optimized

alternately. Optimizing the networks always to completion is ineffective and leads to

overfitting. In practice, k steps are used to train the discriminator, followed by one

optimization step for the generator. The complete learning process is summarized in

Algorithm 1.
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Algorithm 1: Generative adversarial networks training procedure using mini batch

gradient descent.

randomly initialize the parameters of discriminator (wD) and generator (wG)

for number of learning iterations do

for k steps do
- Get N data samples {xi, . . . ,xN} from the training set.

- Sample N noise vectors {zi, . . . , zN} from distribution Pnoise.

- Update the discriminator weights using the gradient:

∇wD

(
− 1

N

N∑
i=1

[
logD

(
xi

)
+ log

(
1−D(G(zi))

)])

end

- Sample N noise vectors {zi, . . . , zN} from distribution Pnoise.

- Update the generator weights using the gradient:

∇wG

(
− 1

N

N∑
i=1

log
(
D(G(zi))

))

end

This training procedure is repeated until the discriminator is maximally confused and

unable to differentiate between Pdata and PG. Goodfellow et al. [14] showed that the

optimal discriminator for a fixed generator is given as

D∗ =
Pdata(x)

Pdata(x) + PG(x)
. (3.5)

They also showed that the global optimum of this min-max game is reached when Pdata =

PG. Hence, for an optimally trained generator, the output of the discriminator is always

1/2. Therefore, the training process can be stopped when the mean output of D converges

to this value.

3.3 Network Architectures

As already mentioned, GANs consists of two networks, a generative and a discriminative

network. In a discriminative neural network, the data representations are contracted from

the input to the output layer. In contrast, a generative network expands rather than

contracts the data from layer to layer. Both networks can be realized as conventional

fully connected neural networks or as convolutional networks. Usually, generator as well

as discriminator use the same type of architecture.
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3.3.1 Fully Connected GANs

In fully connected neural networks, the data contraction or expansion can be easily realized

by decreasing or increasing the number of neurons from layer to layer. The output of these

networks are alway vectors, therefore the generator output must be reshaped to the desired

structure. For instance, a 3072 dimensional output vector can be reshaped to a 32×32×3

RGB color image. An example for a fully connected GAN is shown in Figure 3.2. Since

the number of weights significantly increases with the number of neurons per layer, this

type of network architecture is usually used for simple datasets containing small images.

Goodfellow et al. [14] trained a fully connected GAN on MNIST [29] and CIFAR-10 [27].

Resulting synthesized images are shown in Figure 3.3.

Figure 3.2: Fully connected GAN Architecture: In the generator network, the small noise vector
z ix expanded by fully connected layers to an 3072 dimensional output vector. This representation
is then reshaped to on 32 × 32 × 3 RGB image. In the discriminator, two fully connected layers
are used to determine the probability that the vectorized input image x is a real sample from the
training set.

(a) (b)

Figure 3.3: Synthesized samples from a fully connected GAN trained on MNIST (a) and CIFAR-
10 (b). Images taken from [14].
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3.3.2 Convolutional GANs

Recently very popular convolutional neural networks are usually discriminative networks.

In these architectures, the data dimensionality is decreased with every convolutional layer.

From width and height of the input volume, to spatially very small data representations

in the last convolutional layer. In generative neural networks it is the other way round.

Starting with a small noise vector, the amount of data increases with every layer to the final

output image. This upsampling is realized by so called deconvolution layers. Therefore,

we first describe this type of layer before we show the concrete architecture of generator

and discriminator.

3.3.2.1 Deconvolution Layer

The deconvolution layer [35] implements the inverse operation of a convolution layer. It

can be seen as an upsampling layer which expands the feature map in a learnable way.

In a convolutional layer with stride S, the filter is virtually placed on the image and a

dot product between filter and image is computed, resulting in one element of the output.

Now, the filter is S-times shifted along width and height respectively, to compute the next

output element. In contrast, in a deconvolution layer the filters are copied to the output

instead of computing a dot product. The filters are weighted by the input and then placed

on the output, as shown in Figure 3.4. The stride in this case determines the shift in the

output where the filters are placed. This means one step in the input corresponds to S

steps in the output. In the overlapping areas they are summed up for every position. This

operation is equivalent to the backward pass in a convolutional layer. More precisely, the

deconvolution forward operation is identical to the backward operation in a convolutional

layer and vice versa. Therefore, this layer is also called backward strided convolution or

fractional strided convolution.

Convolution

Filter = 3 × 3
Stride = 2
Pad = 1

Input Feature Map
4 × 4

Output Feature Map
2 × 2

Dot product
between input

and filter

(a)

Deconvolution

Filter = 3 × 3
Stride = 2
Pad = 1

Input Feature Map
2 × 2

Output Feature Map
4 × 4

Filter weighted
by input

(b)

Figure 3.4: The deconvolution layer (b) implements the inverse operation to the convolution
layer (a). Instead of contracting the data, the deconvolution layer upsamples the input.
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3.3.2.2 Architecture

The convolutional GAN architecture proposed in [14] uses a mixture of fully connected,

convolutional and deconvolution layers. The generator, shown in Figure 3.5a, firstly uses

two fully connected layers to expand the 100 dimensional input noise vector. This vector

is then reshaped into a data array and upsampled by a deconvolution layer to the final

output image G(z). On the other hand, the discriminator shown in Figure 3.5b, uses three

convolutional layers and one fully connected layer. The last layer outputs the probability

that the input image x is a real sample. Synthesized samples from a convolutional GAN

trained on CIFAR-10 [27] are shown in Figure 3.6.

(a)

(b)

Figure 3.5: Convolutional GAN framework: The generator (a) uses a combination of two fully
connected layers and one deconvolution layer to create the output image given a noise vector. In
the discriminator (b), three blocks consisting of a convolutional and a pooling layer are followed
by a single fully connected layer to compute D(x).

Figure 3.6: Synthesized images from a convolutional GAN trained on CIFAR-10. Image taken
from [14].
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3.4 Extensions

The results shown in Figure 3.3 and Figure 3.6 highlight the potential of the framework

to synthesize realistic images. But it can be seen that the GAN architectures used in [14]

perform very well on simple datasets like MNIST, but tend to produce noisy data on more

challenging datasets like CIFAR-10. Another problem of GANs is that they are hard to

train. The training process is often unstable, resulting in meaningless samples produced by

the generator. To avoid this scenario, generator and discriminator must be synchronized

well during training. Synchronizing in this context means to keep a balance between

the performances of generator and discriminator respectively. For instance, optimizing

the generator too frequently can lead to a G network that collapses many values of z

to the same output value G(z). These challenges are addressed by several extensions to

the GAN framework introduced in the last year. Furthermore, additional parameters are

incorporated into the model to influence the generation process. In the following we will

describe the most significant GANs extensions.

3.4.1 Conditional Generative Networks

Extensions to GANs that incorporate additional information are conditional generative

adversarial nets [11, 38]. In the unconditioned setting, as described before, there is no

possibility to control the generation process. This is addressed by providing contextual

data y to both networks, on which the networks should be conditioned on. Due to this

condition, the discriminator expects a specific input distribution and therefore restricts

the generator in its output. Thus, it is possible to use the generator in different modes

and to direct the generative process. For instance, a GAN trained on a handwritten digit

dataset can be conditioned using the class labels to synthesize a desired digit.

As already mentioned, in a conditional GAN the generator G(z,y) as well as the

discriminator D(x,y) are functions of the contextual data y. The min-max game between

generator and discriminator is described by the objective function

min
G

max
D

Ex,y∼Pdata(x,y)

[
logD

(
x,y

)]
+ Ez∼Pnoise,y∼Py

[
log
(
1−D(G(z,y),y)

)]
. (3.6)

The position where the additional information is incorporated is a design decision. For

instance, y could be incorporated only into the input layer or into all layers. In fully

connected networks, y is usually added by a simple vector concatenation. In convolutional

networks, the conditional information is integrated as additional channel into the feature

maps. An example architecture for a fully connected network is shown in Figure 3.7. Mirza

et al. [38] trained a conditional GAN on the MNIST Dataset [29], where the networks

are conditioned on the class labels, encoded as one-hot vectors. Figure 3.8 shows some

synthesized samples where each row corresponds to the same condition vector.
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Figure 3.7: Conditional fully connected GAN : In this example, the additional information y is
incorporated into generator and discriminator by a vector concatenation in the input layers.

Figure 3.8: Synthesized samples from a conditional GAN trained on the MNIST dataset. The
class labels, encoded as one-hot vectors, are used as conditional information. Each row corresponds
to the same conditional input y.

3.4.2 Laplacian Generative Adversarial Networks (LAPGAN)

To improve the image quality, Denton et al. [4] exploit the multi scale property of natural

images. Instead of a single GAN , that has to directly generate the high resolution output,

they use a series of GANs to break the problem into a sequence of smaller tasks. The

idea is that each network predicts the next finer scale and therefore the image is created

in a coarse-to-fine fashion. More precisely, each network starts with a coarsened image

and predicts only the necessary refinement to the high-resolution image. Each of these

networks captures the structures at a particular scale in a Laplacian pyramid. Therefore,

they called these framework Laplacian Generative Adversarial Networks (LAPGAN). The

framework is based on the conditional GAN as described in the last section.

The sampling procedure for a LAPGAN is shown in Figure 3.9. Starting with a noise

vector z3 (on the right), the first generator G3 creates Image Ĩ3. This image is upsampled

using bilinear interpolation (green) and then used as conditional input (orange) to the

next generator G2. Together with noise z2, this network creates the difference image h̃2.

By adding this residual image to the coarse input, the fine output image for this scale Ĩ2
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Figure 3.9: LAPGAN sampling procedure: Each generator, except the first one, is conditioned
on the coarse upscaled output of the previous scale. Note that each generator outputs a difference
image, representing the necessary refinements to the fine image. Image taken from [4].

Generator

-

Discriminator

Fine Image

Original

Coarse Image

Noise

Real Difference

Difference

Synthesized

Real or
Synthesized?

Figure 3.10: LAPGAN training procedure for one scale: Both networks are conditioned on
the coarse input image. Aim of the discriminator is to distinguish the high-frequency structures
synthesized by the generator from a real difference image.

is created. This procedure is repeated until the final full resolution output Image Ĩ0 is

reached.

The generators at each level within the Laplacian pyramid are learned separately.

All generative models are trained using the conditional GAN approach, except the first

one where no condition is necessary. The training procedure for one scale is shown in

Figure 3.10. First, the original fine image is downsampled and subsequently upsampled

to create the coarse low frequency image. The inputs to the generator are a noise sample

and the coarse image as conditional information. The network outputs the predicted

difference to the fine image. Aim of the discriminator, which is also conditioned on the

coarse image, is to distinguish between the real and the synthesized difference image.

By optimizing Equation 3.6, where y is the coarse input image, the generator learns to

synthesize realistic high frequency structures G(z,y).

Denton et al. [4] demonstrated the performance of their approach on the CIFAR-10 [27]

dataset. For the initial scale of 8×8 pixels, they used fully connected layers in combination
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(a) (b)

Figure 3.11: LAPGAN results: (a) shows samples of a model trained on the CIFAR-10 dataset,
(b) visualizes the coarse-to-fine evolution.

with ReLU non-linearities in the generator as well as the discriminator network. To reduce

overfitting, dropout is used in the second network. For the subsequent scales, G & D are

convolutional networks, where the discriminator uses also fully connected layers in the final

stages. Figure 3.11a shows samples synthesized by this LAPGAN trained on CIFAR-

10. The evolution of synthesized images over different scales is shown in Figure 3.11b.

Compared to the standard approach, a LAPGAN produces more noiseless and object like

images with cleaner defined edges.

3.4.3 Deep Convolutional Generative Adversarial Neural Networks

(DCGAN)

A disadvantage of the LAPGAN approach is that the learning process is cumbersome and

time consuming since each scale must be learned separately. Furthermore, incorporating

noise several times within the sampling chain is problematic and leads to unsteady

images. This motivated Alec Radford et al. [42] to explore different Convolutional

Neural Networks (CNN) architectures regarding their applicability for GANs. They

identified a family of architectures that allow deeper networks and a stable training

process even for high resolution images using only a single generator and discriminator

network. They called these architectures Deep Convolutional Generative Adversarial

Networks (DCGANs).

This class of architectures are characterized by four properties:

Strided Convolution

Motivated by [51] they remove all deterministic spatial pooling layers like maxpool-

ing. Instead, the discriminator uses strided convolutional layers to learn its own

spatial downsampling. Similarly, the generator learns the upsampling using back-

ward strided convolution, see Section 3.3.2.1.
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Fully Convolutional

Following a recent trend to remove fully connected layers, both networks use only

convolutional layers. The highest convolutional layers in discriminator and generator

are directly connected to the outputs. This is achieved by setting the kernel size, the

stride parameter and the amount of padding such that the output of the generator

has the correct image dimensions. Similarly, the discriminator parameters are chosen

such that the output is of dimension 1× 1× 1, representing the probability of a real

input sample.

Batch Normalization

Alec Radford et al. identified batch normalization as essential to get deep generator

architectures to begin learning. Furthermore, it prevents the generator from map-

ping all outputs to a single point, which is a common problem in GANs. They use

batch normalization in both networks, except for the generators output layer and

the discriminators input layer.

Activation Functions

In the generator they use Rectified Linear Unit (ReLU) as activation function for all

hidden layers and a tanh function in the output layer. They argued that a bounded

activation function in the last layer allows the network to learn more quickly to

saturate and to cover the color space. For the discriminator network, they found that

a Leaky Rectified Linear Unit (leaky ReLU) as non-linearity works well, especially

when higher resolutions are used.

Figure 3.12 shows an example architecture for an DCGAN generator. The 100

dimensional uniformly sampled noise vector is reshaped to a feature map with 100

channels (1×1×100) and represents the start of a convolution stack. Each deconvolution

layer uses a stride of 2 to double the spatial dimensions until the final output size is

reached. In contrast, the number of feature maps is halved from layer to layer. The

discriminator architecture is always the exact mirrored version of the generator. Starting

with the input image, a stack of convolutional layers with stride 2 is used to reduce the

spatial dimensions from layer to layer. The number of feature maps as well as the kernel

sizes are equal to the generator. The only difference is that the output of the final layer has

only one channel (1×1×1) instead of 100 representing the probability of a real input image.

To show the potential of their approach, they trained a DCGAN on the LSUN bedroom

dataset [66]. This dataset contains about 3 million samples of 64×64 images. The resulting

synthesized images are shown in Figure 3.13. This demonstrates that a DCGAN is able

to generate high quality images for even high resolutions using only a single generator-

discriminator pair.
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Figure 3.12: Architecture of a DCGAN generator: The 100 dimensional noise vector is extended
by four deconvolution layers to the final output. Image taken from [42].

Figure 3.13: Synthesized images from a DCGAN trained on the LSUN bedroom dataset. Image
taken from [42].

3.5 Summary

In this Chapter we described the principles of Generative Adversarial Networks (GANs).

Instead of finding a formulation for the data distribution, adversarial nets incrementally

learn to synthesize samples that are similar distributed. This is realized by a min-max

game between a generator network that creates new samples, and a discriminative network

that tries to distinguish between real and synthesized data. The training objective for the

generator is to maximally confuse the discriminator by producing data-like samples.

We formally described this approach and explained the training procedure where both

networks are trained simultaneously. Then, we discussed the originally proposed network

architectures and finally, we present recent extensions to GANs. On the one hand, these

extensions incorporate additional information to the networks to control the generation

process, and on the other hand, they adapt the network architecture to stabilize the

training process and to increase the image quality. In the next Chapter we investigate the

internals of GANs and try to manipulate adversarial nets trained on depth-datasets.
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In this Chapter we investigate properties of Generative Adversarial Networks (GANs)

trained on depth datasets. Therefore, we apply them to two common datasets for head-

and hand-pose estimation and analyze the resulting generator networks in a variety of

ways. On the one hand, we evaluate the quality of synthesized samples and on the other

hand, we investigate the internal generation process. This is done by exploring the latent

noise space and studying the influences on the resulting output images. Furthermore, we

try to manipulate the generator in order to change properties of the synthesized samples.

Finally, we train the GANs in a conditional setting to predefine the generated pose.

4.1 Datasets & Preprocessing

We use two common datasets to train the GANs: The Biwi database and the NYU dataset,

containing data of head- & hand-poses, respectively. Note that both datasets provide

RGBD-samples, consisting of a RGB image and the corresponding depth-information. In

the following experiments we only use the depth-data samples. Details on these datasets

and our preprocessing steps are given below.

4.1.1 Biwi Kinect Head Pose Database

The Biwi dataset [9] contains depth data of head poses captured with a Kinect sensor. It

consists of roughly 15k frames showing 20 different persons (14 men and 6 woman). The

47
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participants were sitting in front of the sensor and were asked to rotate their head around

to span all possible yaw and pitch angles. Each frame includes a RGB image (Figure 4.1a),

the corresponding depth data (Figure 4.1b) and an annotation. The latter contains the

head center location, a binary mask for the face region and the rotation angles. The

rotations range around ±75◦ for yaw, ±60◦ for pitch and ±50◦ for roll. The background

is removed using a threshold on the distance.

In order to use this data as training set for a GAN , we apply the following pre-

processing steps. First, we segment the face in the depth data using the provided mask.

Then, we cut out a quadratic patch around the provided head center, where the patch size

depends on the depth. This guarantees a similar head size within all training samples.

Then, each patch is resized to 64 × 64 pixels using nearest-neighbor interpolation. To

normalize the data into a range from -1 to 1, we scale the depth values such that all face

points are between -1 and 0.5 and the background pixels are equal to 1. To augment the

dataset to twice the size, we mirror all samples horizontally. Figure 4.1c shows resulting

training samples. To train our GANs we use the samples of all 20 persons. It can be seen

that several samples are noisy and partially distorted. The reasons are a poor signal-to-

noise ratio of the used consumer depth sensor and missing pixels due to occlusions. They

arise from the displacement between the sensor and the IR light.

(a) (b)

(c)

Figure 4.1: Biwi Kinect Head Pose Database: The dataset contains about 15k frames of 20 people
recorded with a Kinect depth sensor while turning their heads arround. Each frame consists of a
RGB image (a) and the corresponding depth data (b). During the preprocessing, we segment the
face region and cut out quadratic patches (c).
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4.1.2 NYU Hand Pose Dataset

The NYU Hand Pose Dataset [56] contains RGBD data for hand pose estimation. It

includes roughly 80k frames showing different hand poses. For each frame, they provide a

RGB image (Figure 4.2a) and the corresponding depth data (Figure 4.2b). Additionally,

a synthetic rendering of the hand and the ground truth position of 36 hand locations are

available (Figure 4.2c).

As training-set for the GAN we use the synthetic data samples where we apply the

following pre-processing steps. First, we cut out a quadratic region around the hand center

location, where the size depends on the depth to guarantee a similar hand size within the

training set. Then, we resize the extracted data to 64× 64 pixels using nearest neighbor-

interpolation. Finally, we scale the depth values such that the nearest location is equal

to -1 and the farthest hand point corresponds to 0.5. The background pixels are set to

1 to achieve clear boundaries. Resulting training samples are shown in Figure 4.2d. To

train the unconditional GAN we use the 72,757 training samples as well as the 8,252 test

samples. In case of the conditional GAN , we exclude 500 samples from the test-set for

later analyses.

(a) (b) (c)

(d)

Figure 4.2: The NYU Hand Pose Dataset contains about 80k RGBD samples. In addition to
the RGB image (a) and the depth data (b), they provide a synthetic hand rendering as well as
positions of 36 key hand locations (c). During the pre-processing we cut-out quadratic patches
and scaled them to [-1,1] (d).



50 Chapter 4. Exploring Internals of Generative Adversarial Nets

4.2 Unconditional GANs

To analyze the performance of adversarial nets on depth data, we train two unconditional

GANs on the previously described datasets (Biwi & NYU). The network topology is

similar to a DCGAN, see Section 3.4.3. We explored a variety of architectures and

optimization parameters for each dataset and selected the best performing model

regarding the visual quality of the samples. In the following, we will first describe the

used models in detail and analyze the resulting samples for each dataset. Then, we will

investigate both trained generators in order to obtain a better understanding of the

generation process.

4.2.1 Architectures & Results

4.2.1.1 Biwi

The detailed GAN architecture for the Biwi dataset is shown in Table 4.1. The generator as

well as the discriminator are fully convolutional networks and consist of 5 layers each. The

input noise vector z is sampled from a uniform distribution [-1,1]. The networks are trained

using a mini-batch size of 64 and Adam [26] as optimizer. Samples generated by this

model are shown in Figure 4.3. Compared with original data, shown in Figure 4.1c, these

samples appear very similar. In most cases, the human face shapes are clearly observable.

All possible poses are covered, even though the center position is dominant. The reason

is that this pose is also most frequent in the original dataset. The samples have sharp

defined edges and small face structures, like noses & eye-holes, are recognizable. Moreover,

partial distortions in the original data are also modeled by the network. Although most of

the samples contain comprehensible data, about 15% of the samples are destroyed, where

no clear head pose is observable. The reason might be the small number of samples for

large rotation angles.

Figure 4.3: Synthesized samples from an unconditional GAN trained on the Biwi headpose
dataset.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Generator Type Deconv. Deconv. Deconv. Deconv. Deconv.
Input 1 × 1 × 100 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32
Parameters: filter = 256 filter = 128 filter = 64 filter = 32 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 1 stride = 2 stride = 2 stride = 2 stride = 2
pad = 0 pad = 1 pad = 1 pad = 1 pad = 1

Output: 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X -

Discrminator Type Conv. Conv. Conv. Conv. Conv.
Input 64 × 64 × 1 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256
Parameters: filter = 32 filter = 64 filter = 128 filter = 256 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256 1 × 1 × 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0003;
noise distribution: uniform; batch size = 64;

Table 4.1: Detailed description of the unconditional GAN trained on the Biwi headpose dataset.

4.2.1.2 NYU

The unconditional GAN trained on the NYU dataset is described in Table 4.2. Similar to

the previous GAN , generator as well as discriminator consist of five convolutional layers.

The difference is that the number of feature maps is twice the size in each layer compared

to the Biwi dataset. The reason is that this dataset is much more complex compared to

the head pose data, because of the many degrees of freedom a hand has and the finer

structures that must be modeled. Figure 4.4 shows samples generated by this model.

At first glance, these samples look similar to the original data shown in Figure 4.2d. In

the majority, the human hand and the represented pose are recognizable. They have clear

defined edges and the depth value patterns are comprehensible. But on closer examination,

it is apparent that several samples, about 25-30%, contain invalid data like unrecognizable

poses or hands with three fingers. The reason might be the small number of training

samples compared to the data complexity.

Figure 4.4: Synthesized samples from an unconditional GAN trained on the NYU handpose
dataset.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Generator Type Deconv. Deconv. Deconv. Deconv. Deconv.
Input: 1 × 1 × 100 4 × 4 × 512 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64
Parameters: filter = 512 filter = 256 filter = 128 filter = 64 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 1 stride = 2 stride = 2 stride = 2 stride = 2
pad = 0 pad = 1 pad = 1 pad = 1 pad = 1

Output: 4 × 4 × 512 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X -

Discrminator Type Conv. Conv. Conv. Conv. Conv.
Input: 64 × 64 × 1 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512
Parameters: filter = 64 filter = 128 filter = 256 filter = 512 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512 1 × 1 × 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0002;
noise distribution: uniform; batch size = 64;

Table 4.2: Detailed description of the unconditional GAN trained on the NYU dataset.

(a)

(b)

Figure 4.5: Sample evolution during training: For both datasets, Biwi (a) and NYU (b), we fixed
two random noise vectors. During the training, we repeatedly created samples using these starting
points. From the first output noise of the untrained network on the left, to the final output on the
right.

4.2.2 Analysis

In order to better understand the generation process, we first look at the evolution of

synthesized samples during the adversarial game. Therefore, we sample two random noise

vectors for each dataset, before we start the learning process. During the training, we

periodically use these vectors as input to the generator and save the corresponding output

samples. Figure 4.5 shows the resulting sample evolution at noticeable points.

The training process corresponds to the intuitively expected behavior. In the begin-

ning, the generator outputs noise. After a few iterations, the network has learned from
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(a)

(b)

Figure 4.6: Linear interpolation between two random points in the noise space. In each row, we
calculated six intermediate points and created the corresponding samples. For both datasets, (a)
Biwi and (b) NYU, the transitions between the samples are smooth, indicating that the network
did not just memorize existing samples. .

the discriminator that important properties of real samples are the white background and

dark centered blobs. To mimic this characteristics, the network tries to light up the edge

regions. In the next phase, the generator adds structures to confuse its counterpart, even

tough they are incoherent or wrongly located. At this point, the discriminator has to focus

on more complex properties like correct poses or sharp edges to distinguish real from fake

samples. When the generator has learned to model these properties as well, the training

process is finished.

Noticeable are mosaic like patterns in early stages of the training process. The

reasons are the used deconvolution layers within the generator. Since they use a kernel

size of 4 and a stride of 2 pixels, they overlap significantly. In the beginning, the network

has not yet learned to coordinate these kernels properly to realize smooth transitions for

these overlapping regions.

The aim of the next experiment is to better understand the latent noise space. We

randomly sample two z vectors and linearly interpolate six points in-between. Each row

in Figure 4.6 shows the corresponding synthesized depth data. It can be seen that the

transitions between the samples are smooth, indicating that the generator did not just

memorize samples from the training set. If this would have been the case, the transitions

would be sharp and discontinuous.

4.2.3 Manipulating the Generator

Now we try to control the generator in order to synthesize data with desired properties.

For instance, to create depth data of persons looking into a specific direction or to rotate
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a given sample. The idea is to explore the latent noise space, investigate the impacts on

the resulting output data and use this findings to manipulate the generation process.

4.2.3.1 Enhancing Single Noise Components

First, we evaluate the significance of single values within the noise vector. In order to

visualize the impact of the i-th component, we use the following approach: First, we

randomly sample noise vectors in a small range [-0.1,0.1]. Then, we set the i-th position

within the z vectors to zero and pass them through the generator. Now, we increase

the i-th values linearly to 1 and analyze the transformations on the output data. In

summary, we found that enhancing single values within the noise vector did not lead

to consistent results. It seems that the information for the generation process is rather

encoded in combinations of multiple values than in individual components. Figure 4.7

shows examples for the variable influences of single values within the noise vector. In

Figure 4.7a the impact of the third z component to the output of the GAN trained on the

Biwi dataset is illustrated. Although the initial outputs on the leftmost column are very

similar, an increase of this single value has different effects. In the first case the head is

rotated to the right, while in the second case the opposite rotation is performed. A similar

example for the GAN trained on the NYU dataset is shown in Figure 4.7b. In this case an

increase of the fifth component can either lead to a closure of the open hand or that thumb

and index finger move toward each other. These examples illustrate that manipulating

the generation process by enhancing single noise components is not reasonable.

0 1

(a)

0 1

(b)

Figure 4.7: Examples for the variable influences of single noise components to the output: In case
of the GAN trained on the Biwi dataset, an increase of the third z value leads to different head
rotations (a). A similar example exists for the GAN trained on the NYU dataset (b): Although
the initial points are similar, increasing the fifth noise component leads towards different poses.
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4.2.3.2 Vector Arithmetic

In this Section we investigate the applicability of arithmetic vector operations in the

latent noise space, to identify and manipulate properties encoded over multiple z

positions. Alec Radford et al. [42] showed that these operations can be used to influence

a GAN trained on human faces in order to add or remove attributes. Similarly, we want

to use this vector arithmetic to control the pose modeled by the generator.

In the first experiment we try to synthesize depth data of persons in a similar pose.

We generate several samples, select four noise vectors where the corresponding outputs

show poses directed to the right side and average them. Finally, we use this mean vector

as base direction and add uniform noise, ranging from -0.2 to 0.2, to produce new samples.

As shown in Figure 4.8a, the head poses of these new samples are also orientated to the

right side, although they contain varying head shapes. This example suggests that it is

possible to force desired properties in the output by adding specific directions to the input

vector.

Now, we try to extend this approach and use arithmetic operations on multiple di-

rections within the noise space to combine properties. The aim is to synthesize partially

distorted depth-data of poses directed to the left side. Therefore, we average the noise

vectors of four undistorted left-orientated samples and add the mean vector of distorted

centered data. To suppress direction changes, without losing the distortion property, we

subtract the average of four undistorted centered poses. As shown in Figure 4.8b, this

results in consistent and stable generations of left-orientated and partially distorted data.

The aim of the last experiment is to transform an existing pose without loosing

properties like the head shape. For the GAN trained on the Biwi dataset, we compute a

turn vector by subtracting the mean noise vector of four right-orientated samples from

the mean vector of four poses directed to the left side. By adding linearly increased

portions of this vector to existing examples, we are reliably able to transform their

pose to the left side without modifying their head shapes, as shown in Figure 4.9a.

Remarkable is that the rotation is linearly modeled in the latent noise space. In the same

way, we compute a transformation for the GAN trained on the hand pose dataset. In

this case, we create a vector from four averaged depth-data samples of open vs. closed

hands. By adding linearly increased portions of this vector to existing samples showing

closed poses, we are able to linearly open the hand, as shown in Figure 4.9b.

In summary, these examples demonstrate that averaging samples with similar charac-

teristics leads to directions within the noise space that represent the particular property.

Combining these directions using vector arithmetic is a reliable approach to generate sam-

ples with desired properties, even though these networks are trained in an unsupervised

manner.
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+ noise [-0.2,0.2] =

(a)

left
undistorted

+
center

distorted
− center

undistorted
+ noise

[-0.2,0.2]
= left

distorted

(b)

Figure 4.8: Noise space vector arithmetic: (a) By averaging four right-orientated poses and
adding small uniform noise, we are able to generate new samples in a similar pose but with varying
face structures. (b) By joining several mean vectors, representing different characteristics, we are
reliable able to synthesize new samples with combined properties.

(a)

(b)

Figure 4.9: Pose transformation: (a) By subtracting the noise vectors of right-orientated samples
from noise vectors of left-directed poses, we compute a turn vector. Increasingly adding this vector
to existing samples leads to a linear transformation of their pose without a modification of their
head shape. (b) The same approach applied to the GAN trained on the NYU dataset to transform
closed to opened poses.
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4.3 Conditional GANs

Both depth datasets additionally provide ground-truth pose information for each frame.

In case of the Biwi head pose database, this information contain the pitch, yaw and roll

angle of the current pose. The NYU dataset on the other hand, provides the u,v position

and the depth of 36 hand locations. In this Section we use these additional data to

train conditional GANs on both datasets. Thus, it should be possible to determine the

synthesized pose by passing the corresponding parameters to the generator.

4.3.1 Biwi Head Pose Database

As already mentioned, the provided ground truth information for this dataset are the

head rotation angles. These values range between ±75◦ for yaw, ±60◦ for pitch and

±50◦ for roll. To use them as input, we scale each angle to -1 to 1. In a conditional

GAN , described in Section 3.4.1, the additional contextual information must be

provided to both networks. In case of the generator, the three pose angles can be

added to the noise input using a simple vector concatenation. On the other hand,

the inputs to the discriminator are two dimensional data. Therefore, we first have

to replicate each of these angles to the dimensions of the input (64 × 64), and then

add them as additional channels to the input, as shown in Figure 4.10. The network

architecture, described in Table 4.3, is similar to the unconditional network except the

first layers. We found that reducing the noise dimension to 30 leads to more stable results.

Resulting synthesized samples are shown in Figure 4.11a. By providing the desired

angles to the network, we are reliably able to determine the synthesized pose. Similar to

the unconditional GAN , there was a decline in the sample quality for large angles. The

reason is that for these areas the number of samples is significantly smaller compared

to the center. As expected, since the whole pose information is now excluded from the

noise vector, variations in the latent z space do not influence the head pose, as shown in

Figure 4.11b.

z

pitch
yaw
roll

Generator Discriminator

Real or Synthesized
considering

pitch , yaw & roll ?

Figure 4.10: Conditional GAN : The desired pose parameters are provided to the generator as
extension of the noise vector. In case of the discriminator, we incorporate them as additional input
channels, where each condition value is replicated to the spatial dimensions of the input.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Generator Type Deconv. Deconv. Deconv. Deconv. Deconv.
Input 1 × 1 × 33 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32
Parameters: filter = 256 filter = 128 filter = 64 filter = 32 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 1 stride = 2 stride = 2 stride = 2 stride = 2
pad = 0 pad = 1 pad = 1 pad = 1 pad = 1

Output: 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X -

Discrminator Type Conv. Conv. Conv. Conv. Conv.
Input 64 × 64 × 4 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256
Parameters: filter = 32 filter = 64 filter = 128 filter = 256 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256 1 × 1 × 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0002;
noise distribution: uniform; batch size = 64;

Table 4.3: Detailed description of the conditional GAN trained on the Biwi dataset.

yaw

p
itch

(a)

(b)

Figure 4.11: (a) Synthesized samples from a conditional GAN trained on the Biwi dataset. By
passing the desired angle parameters to the network, we are able to determine the synthesized
pose. (b) Noise variations for fixed yaw, pitch & roll angles do not influence the modeled pose.
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4.3.2 NYU Hand Pose Dataset

To train a conditional GAN on the NYU dataset, we use the ground truth information

of seven hand locations: the finger-tips, the hand center and the heel of the hand. Each

of these labels consists of three values, including the u,v position within the image and

the depth. Therefore, the conditional information that we provide to both networks is

21-dimensional. The reason why we use seven locations instead of all 36 joint locations is

to reduce the network complexity due to limited resources. As described in Section 4.1.2,

we initially exclude a test set of 500 samples for later analyses. The detailed network

architecture is shown in Table 4.4.

To evaluate the trained network performance, we use the test set annotations as

input to the network. On the one hand, this ensures that the conditional inputs are new

and on the other hand, that the pose information is plausible. In addition it allows an

easy comparison between the synthesized samples and the real depth-data, shown in

Figure 4.12. The upper samples in each row are the original depth-data, and the lower

samples are the generator outputs. It can be seen that the pose modeled by the network

is very similar to the ground truth pose. The real samples differ only on fine details,

like cleaner defined edges and smoother transitions. This experiment demonstrates

that passing contextual pose information to the GAN is a reliable way to influence the

network output, even for complex datasets.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Generator Type Deconv. Deconv. Deconv. Deconv. Deconv.
Input: 1 × 1 × 121 4 × 4 × 512 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64
Parameters: filter = 512 filter = 256 filter = 128 filter = 64 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 1 stride = 2 stride = 2 stride = 2 stride = 2
pad = 0 pad = 1 pad = 1 pad = 1 pad = 1

Output: 4 × 4 × 512 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X -

Discrminator Type Conv. Conv. Conv. Conv. Conv.
Input: 64 × 64 × 22 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512
Parameters: filter = 64 filter = 128 filter = 256 filter = 512 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512 1 × 1 × 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0002;
noise distribution: uniform; batch size = 64;

Table 4.4: Detailed description of the conditional GAN trained on the NYU dataset.
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Figure 4.12: Conditional GAN trained on the NYU dataset: The upper rows show the original
test samples and the lower rows the synthesized data, where the annotations of the test samples
are used as conditional input to the generator.

4.4 Summary

In this Chapter Generative Adversarial Networks (GANs) were investigated in order to

identify ways to manipulate the generation process. We trained unconditional GANs

on two depth-datasets and demonstrated that they were able to synthesize new realistic

samples of human poses. In order to investigate how semantic properties of the synthesized

samples are encoded in the initial vector, the latent noise space was explored. We found

that relevant information for the generation process is rather encoded in combinations

of multiple values than in single components. Then, we show that a reliable way to

identify semantic properties within the latent space is to average the noise vectors of

synthesized samples sharing the same property. Moreover, by combining these directions

using vector arithmetic it was possible to synthesize samples with desired properties.

Finally, conditional GANs were trained on both datasets, where the pose information

was provided to generator and discriminator, allowing a more precise control over the

synthesized pose. However, the disadvantage of this method is that data annotations are

necessary to train the conditional adversarial nets. In the next Chapter we analyze the

applicability of GANs to solve two fundamental computer vision tasks.
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The aim of this Chapter is to investigate the applicability of Generative Adversarial

Networks (GANs) to solve two fundamental computer vision problems. First, we ana-

lyze the potential of GANs for unsupervised representation learning by reusing parts of

trained discriminator and generator networks. In the second part, we try to use adversarial

networks for domain specific image upsampling.

5.1 Unsupervised Feature Learning

Learning feature representations from unlabeled data is an active research area in com-

puter vision. The goal is to reduce the data dimensionality by learning representations

that capture latent structures within the high dimensional input without using any data

annotations. The extracted features can later be reused to learn the supervised tasks of

interest.

One possibility to realize this unsupervised encoding-task is to train an artificial neural

network like an autoencoder. Lower layers detect simple features which are then used by

subsequent layers to model more complex features. This network can then be reused to

initialize parts of a larger network for some supervised task. Another approach is to reuse

this network as fixed feature extractor and train a second supervised network on top of it.

However, the idea is that most of the work to extract useful features is already done by

the initial unsupervised training, and less labeled data is necessary to learn the supervised

task.

61
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In the context of computer vision, it is often easy to collect unlabeled images or videos,

for instance using web search engines. The problem, though, is that annotations are ex-

pensive to collect. Therefore, aim of unsupervised feature learning is to take advantage

of these large amounts of unlabeled data. Since GANs can be trained without any an-

notations, they are a candidate for unsupervised feature learning. In this Section we

investigate the capabilities of adversarial nets to build good image representations for

supervised classification or regression tasks.

5.1.1 Methods

To utilize GANs for unsupervised feature learning, we reuse parts of trained generator and

discriminator networks as fixed feature extractor or as initialization for the supervised task

of interest.

5.1.1.1 Discriminator as Feature-Extractor

Aim of the discriminator network within a GAN framework is to distinguish real data

from synthesized samples. In the final phase of the training process, the samples from

the generator network are very similar to the original data. Therefore, the discriminator

has to focus on fine details and extract features that allow this distinction. The idea

now is, that these learned image representations could also be useful for other supervised

tasks. Therefore, we remove the last layer and use the remaining network as fixed feature

extractor. Thus, the dimension of the representation is defined by the output dimensions

of the penultimate discriminator layer. In a Deep Convolutional Generative Adversarial

Networks (DCGANs) architecture, see Section 3.4.3, the penultimate layer is a convolu-

tional layer which outputs a feature map. This volume can either be flattened to a vector,

or directly used as input to a convolutional layer in the subsequent network. However,

essential is that the feature extracting network is fixed and will not be changed during the

following supervised learning process.

5.1.1.2 Discriminator Fine-Tuning

Another way is to incorporate the trained discriminator into a larger network and fine-

tune all layers to solve the supervised problem. Similarly to the previous method, the last

layer of the trained discriminator is removed first. Then, depending on the supervised

task, new classification or regression layers are added on top of it. The difference to the

last approach is that during the supervised learning, the weights of the pretrained network

are also updated by continuing the back-propagation. This process is known as parameter

fine-tuning and illustrated in Figure 5.1. Compared to a fixed feature-extractor, this allows

an adaption of the data representations depending on the given task.
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Figure 5.1: Discriminator Parameter Transfer: First, an unconditional GAN is trained on a large
unlabeled dataset. Then, all layers of the discriminator except the last layer are transferred into a
new network, where a new output layer is added for supervised learning. The discriminator part
can then either be used as fixed feature extractor or fine-tuned during the supervised training.

5.1.1.3 Inference Network

The idea behind this approach is to exploit the property of a generative model to synthesize

huge amounts of new data samples. This is realized as follows: First, an unconditional

GAN is trained on a large unlabeled dataset. Then, the generator is fixed and a third

network, an inference net, is trained in order to learn the inverse operation to the generator.

This network predicts the input noise vector, given a synthesized sample. Reconstructing

this z vector might lead to good feature representations, since all properties of a generated

sample must be encoded within this vector. It can be seen as an autoencoder, where the

encoding part is trained after the decoding part. The advantage is that the inference net

can be trained on an infinite training set, since the generator can be used to synthesize

unlimited samples. During the training process, illustrated in Figure 5.2, we produce on

the fly new data samples using the previously learned generator network.

The architecture of this network is the exact inverse to the generator and identical

to the discriminator, except the output dimension of the last layer. After completion of

the training process, the last layer is removed and the remaining network can be used as

fixed feature extractor or as an initialization for supervised tasks, similar to the previous

methods.
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Figure 5.2: Inference Network: After completion of the GAN training, we exploit the fixed
generator to produce new data samples. These are used to train a subsequent network, an inference
net, which tries to reconstruct the input noise vector. The advantage is, that the training set is
theoretically infinite. Afterwards, the learned data representations can be reused for supervised
tasks.

5.1.2 Classification

To evaluate the capabilities of the previously described unsupervised feature learning meth-

ods for classification tasks, we train a GAN on the Street View House Numbers (SVHN)

dataset [41], and then reuse the learned data representations to train a supervised classi-

fication network. The SVHN dataset is a real-world database and contains color images

of house numbers obtained from a large amount of Google Street View images. In total,

the dataset consists of over 600k labeled digits, available in two formats: The first variant

contains the original house-number images as they appear in Google Street View with

variable resolutions. We use the second format, the cropped digits, where all numbers are

resized to 32× 32 pixels. Therefore, the bounding boxes are extended to square windows,

which may result in images containing multiple numbers. Compared with the handwritten

digit classification problem on the MNIST dataset, this problem is significantly harder.

The reasons are on the one hand corrupted images due to blur, distortion or illumination

effects, and on the other hand, font and style variations. The dataset is divided into train

(73, 257 images), test (26, 032 images) and extra-train (531, 131 images) subsets. For each

digit they provide a ground-truth label. Figure 5.3a shows samples of this dataset.

We use the digits of the train and the extra-train subset, 604, 388 digits in total, to

learn an unsupervised GAN . The detailed architecture is described in Table 5.1. The

noise vector is uniformly distributed between -1 and 1. As optimization algorithm, we

use Adam with a learning rate of 0.0002 and a mini-batch size of 128. We apply no

pre-processing to the images except scaling them to [−1, 1]. Synthesized samples from

this model are shown in Figure 5.3b.
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(a) (b)

Figure 5.3: SVHN dataset: It contains color images of house numbers obtained from Google
Street View, resized to 32 × 32 pixels (a). Synthesized samples from an unconditional GAN
trained on this dataset are shown in (b).

Layer 1 Layer 2 Layer 3 Layer 4

Generator Type Deconv. Deconv. Deconv. Deconv.
Input 1 × 1 × 100 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64
Parameters: filter = 256 filter = 128 filter = 64 filter = 3

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 1 stride = 2 stride = 2 stride = 2
pad = 0 pad = 1 pad = 1 pad = 1

Output: 4 × 4 × 256 8 × 8 × 128 16 × 16 × 64 32 × 32 × 3
Nonlinearity: ReLU ReLU ReLU tanh
Batchnorm.: X X X -

Discrminator Type Conv. Conv. Conv. Conv.
Input 32 × 32 × 1 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256
Parameters: filter = 64 filter = 128 filter = 256 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 0

Output: 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256 1 × 1 × 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0002;
noise distribution: uniform; batch size = 128;

Table 5.1: Detailed description of the unconditional GAN trained on the SVHN dataset.

After completion of the GAN training, we set up a classification net similar

to the discriminator. The network architecture for this supervised task, shown in

Table 5.2, differs only in the output dimension. Instead of one neuron, indicating

a real input sample, the classification network has 10 output neurons representing all digits.

To experimentally compare the unsupervised feature learning methods described

in the previous section, we initialize layer 1 to layer 3 with the weights of the trained

discriminator and inference net, respectively. On the one hand, we use these layers as

fixed feature extractor where the weights are not changed during the training process,

and on the other hand, we fine-tune all parameters within the network to solve the

classification task. Therefore, we end up with four different networks in total. As
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Layer 1 Layer 2 Layer 3 Layer 4

Type Conv. Conv. Conv. Conv.
Input 32 × 32 × 1 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256
Parameters: filter = 64 filter = 128 filter = 256 filter = 10

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 0

Output: 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256 1 × 1 × 10
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU -
Batchnorm.: - X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.001;
batch size = 100;

Table 5.2: Detailed description of the classification network trained on the SVHN dataset.
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Figure 5.4: Classification error rate on the SVHN dataset as a function of the amount of labeled
training samples for different unsupervised feature learning methods.

baseline we train a fifth network from scratch, where the weights of all layers are

randomly initialized. All networks are trained until convergence, using Adam as

optimization algorithm with a learning rate of 0.001 and a mini-batch size of 100.

We do this for different amounts of training data, from 100 to 16,000 images, where

these subsets are always class uniformly sampled from the original training set. For

each trained network, we evaluate the classification performance on the 26, 032 test images.

The results of this experimental comparison are shown in Figure 5.4. It can be seen

that for small labeled training sets, the classification networks initialized with the weights

of discriminator or inference net, perform significantly better than the randomly initialized

network. Especially the performance gap to the fixed discriminator network at very small

training-sets (< 1000 samples), indicates that the discriminator is able to learn generic
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features. Only at about 5,000 labeled training samples, the randomly initialized network

is able to close the gap to the fine-tuned networks. As expected, for large datasets, the

fixed networks perform worse compared to the fine-tuned versions. The reason is that for

large amount of training samples, the network is able to learn features beneficial for the

particular task. However, a final error rate of 18.6%, based on the fixed discriminator

features, indicates that GANs are a strong candidate for unsupervised feature learning.

5.1.3 Regression

Now, we analyze the applicability of features learned by a GAN for regression tasks.

Similar to the last section, we first train GANs on unlabeled data samples and then

reuse parts of the discriminator and generator networks for supervised tasks when labeled

samples are scarce. For these experiments we use the pose estimation depth datasets from

Chapter 4.

5.1.3.1 Head Pose Estimation

In the first experiment we train a GAN on the Biwi dataset, and then reuse the learned

features to train a supervised regression network to estimate the head pose. The dataset

and the pre-processing steps are described in Section 4.1.1. The GAN architecture,

as well as the training parameters are similar to the unconditional GAN used in

Section 4.2.1.1. The only difference is, that this time we split the dataset into a training-

and a test-subset. The training set consists of depth data from 18 persons, the samples

of the remaining two persons represent the test set. To train the GAN , we use only the

training subset.

After completion of the GAN training, we set up a regression network to estimate

the head pose. The network architecture is described in Table 5.3. Layer 1 to layer 4

are identical to the discriminator or inference net, respectively. The output layer consists

of three neurons representing the yaw, pitch and roll angle of the head pose. Similar to

the classification experiment, we initialize the first four layers with the parameters of the

trained discriminator or inference net and use them as fixed feature extractor or for fine-

tuning. To analyze the quality of these pretrained features, we train a fifth network with

randomly initialized parameters for comparison. We vary the number of training samples

from 100 to 27,000 and train the networks until convergence, using Adam as optimization

algorithm. For each trained network, we evaluate the performance on the test set by

computing the mean angle error, given as

E = ‖ytarget − ypredicted‖2 y =

 yaw

pitch

roll

 . (5.1)
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Type Conv. Conv. Conv. Conv. Conv.
Input 64 × 64 × 1 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256
Parameters: filter = 32 filter = 64 filter = 128 filter = 256 filter = 3

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 32 16 × 16 × 64 8 × 8 × 128 4 × 4 × 256 1 × 1 × 3
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU -
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0005;
batch size = 50;

Table 5.3: Detailed description of the regression network trained on the Biwi dataset to estimate
the head pose.
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Figure 5.5: Mean angle error on the Biwi dataset as a function of the amount of labeled training
samples for different unsupervised feature learning methods.

The results of this experimental comparison are shown in Figure 5.5. The large gap

between the randomly initialized network and the networks based on discriminator or

inference net for small training sets, demonstrates that GANs are able to learn reusable

data representations. Especially the features learned by the inference net work very well for

this regression task. Using the randomly initialized network, about 15-times more labeled

samples are needed to achieve the performance of the model based on the inference net at

100 training samples.

Noticeable is also, that the networks based on the inference net perform better than

the discriminator-based models. The reason might be that in the final phase of the GAN

training, the discriminator focus on fine details that are useful to distinguish the fake

samples from real data, but not do determine the pose. Only at about 8, 000 labeled
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Figure 5.6: Accuracy of the head pose estimation on the Biwi dataset for a training set of 1,000
labeled samples and different unsupervised feature learning methods. The curves show the fraction
of correct samples over an increasing success threshold.

training samples, the network trained from scratch is able to close the gap to the pre-

initialized networks.

Another common evaluation is to compute the percentage of correctly predicted test

samples over an increasing success threshold. Figure 5.6 shows the results of this evaluation

for a fixed training-set size of 1000 labeled samples. For a success threshold of 20◦, the

fine-tuned inference network achieves an accuracy of 85.43%, compared to 48.29% using

the randomly initialized network.

5.1.3.2 Hand Pose Estimation

In the second regression experiment, we try to reuse features learned by a GAN to

estimate hand poses on the NYU dataset. The dataset and the preprocessing steps

are described in Section 4.1.2. The network architecture and the training parameters

are similar to the unconditional GAN described in Section 4.2.1.2. The only dif-

ference is, that this time only the samples of the training-subset are used to learn the GAN .

Similar to the last experiment, we set up a supervised regression network after

completion of the GAN training, and reuse the parameters learned by the discriminator

or inference net to initialize the network. As pose annotation we use the ground truth

information of seven hand locations: the finger-tips, the hand center and the heel of

the hand. The reason why we use only these seven locations is to reduce the network
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Type Conv. Conv. Conv. Conv. Conv.
Input: 64 × 64 × 1 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512
Parameters: filter = 64 filter = 128 filter = 256 filter = 512 filter = 21

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32 × 32 × 64 16 × 16 × 128 8 × 8 × 256 4 × 4 × 512 1 × 1 × 21
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU -
Batchnorm.: - X X X -

Training Parameters optimization algorithm: Adam; learning rate = 0.0003;
batch size = 100;

Table 5.4: Detailed description of the regression network trained on the NYU dataset to estimate
the hand pose.

complexity for the following extensive analysis due to limited resources. Each of these

annotations consists of three values, including the u,v position within the image and

the depth. Therefore, the output layer consists of 21 neurons. The detailed network

architecture is summarized in Table 5.4. Since layer 1 to layer 4 are identical to the

discriminator and inference architecture, we could transfer the pretrained weights and

use these layers either as fixed feature extractor, or for fine-tuning. Again, a fifth network

is trained from scratch as reference. All networks are trained until convergence for

different amounts of labeled training samples. After completion of the training process,

we compute the mean Euclidean distance between the seven predicted joint locations and

the ground truth annotations over the test set.

Figure 5.7 shows the results of this comparison. Similar to the head pose estimation

experiment, initializing the network with the weights of the trained discriminator or

inference net leads to significantly better results for small training sets. Again, the

networks based on the inference net perform better than the discriminator-based. But,

unlike the previous experiment, the randomly initialized network is not able to close the

gap to the fine-tuned inference network. Also noticeable is that the randomly initialized

network needs about 10, 000 labeled training samples to achieve the same performance as

the model based on the inference net, trained with only 100 labeled training samples.

Similar to the head pose estimation, the second evaluation metric computes the fraction

of correctly predicted test samples. Correct means that the distance between the predicted

position and the ground truth is below a given maximal Euclidean distance for all joint

locations. Figure 5.8 shows the results of this evaluation for a fixed training set of 10, 000

labeled samples. Initializing the regression network with the weights of the inference net,

increases the fraction of correct samples from 15.56% to 45.5%, at a distance threshold of

50 mm.
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Figure 5.7: Mean Euclidean distance between predicted and ground truth joint locations on the
NYU test-set as a function of the amount of labeled training samples for different unsupervised
feature learning methods.
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Figure 5.8: Accuracy of the hand pose estimation on the NYU dataset for a training set of 10,000
labeled samples and different unsupervised feature learning methods. The curves show the fraction
of correct samples over an increasing success threshold.
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5.2 Domain Specific Super Resolution

Aim of single image super resolution is to recover a high-resolution image from a

single low-resolution input image. This classical computer vision problem is inherently

ill-posed, since for every low-resolution pixel, a vast number of possible solutions exist. In

practice, linear or bicubic interpolations are used to upsample an image. These methods

are very fast but lead to blurry high-resolution images because they are not edge aware.

More powerful methods are usually example based methods. These approaches learn

a mapping from low- to high-resolution images and use it to create the most-likely

high-resolution version of a given input image. These techniques are also known as image

hallucination, since there is no guarantee that the high resolution details are equal to the

(unknown) true details.

There are two classes of single image super resolution algorithms: generic and

domain-specific methods. The former make no assumptions about the input and can be

applied to all kinds of natural images, while the latter are designed for domain specific

tasks, according to the used training dataset. In this Section we propose an upsampling

approach based on DCGANs for face hallucination. Aim of this domain specific task is

to upsample face images when the input resolution is very low. Solving this problem is

especially difficult when the head poses and the illumination conditions vary. The idea

is that the adversarial loss could increase the quality of the reconstructed images by

incorporating characteristic details.

In the following we will first describe the dataset we use to train and test our network.

Then, we present the network architectures and the training procedure and finally, we

compare the results qualitatively and quantitatively.

5.2.1 CelebA Dataset

The CelebA dataset [34] is a large scale face dataset containing more then 200k celebrity

images of over 10k identities. The color images cover large pose and illumination varia-

tions. We use the align & cropped version, where the images are aligned using a similarity

transformation according to the eye locations and then resized to 218 × 178 pixel. The

dataset is partitioned into two parts: a training-set containing 182,637 samples of nine

thousand identities and a test-set containing the remaining 19,962 images of thousand

identities. To augment the training-set to twice the size we mirror all samples horizontally.

During the preprocessing we crop out 115× 115 patches covering only the face region

and resize them to 64 × 64 pixel. The gray images are created by considering only the

luminance channel in the YCrCb color-space. Finally, all samples are scaled into a range

from -1 to 1. Figure 5.9 shows some resulting training samples.
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Figure 5.9: The CelebA dataset contains about 200k celebrity images covering different head
poses and illuminations.

5.2.2 Network Architectures

We use three generator architectures, following different super resolution methods. In the

first approach, deconvolution layers are used to upsample the low-resolution input image.

In the second method, a deconvolutional network is used to predict a residual image that

contains only the high-frequencies. Finally, in the last approach a convolutional network

is used to synthesize this difference image from a coarse, mid-resolution input image.

5.2.2.1 Deconvolutional Network

The first method uses a deconvolutional network similar to the DCGAN , described in

Section 3.4.3. The difference is, that the input to the generator is a low-resolution

image instead of a noise vector. Similar to a conditional GAN , the generation process is

therefore controlled by providing contextual information to the network. An example

generator architecture is shown in Figure 5.10. Deconvolution layers are used to

upsample the input image to the desired resolution. But in contrast to the DCGAN ,

intermediate convolution layers are used to increase the network depth. The kernel size

and the padding parameter of these convolution layers have been chosen such that the

spatial output dimensions are equal to the input dimensions.

The training procedure is shown in Figure 5.11. First, the original high-resolution

image is down-sampled and used as input to the generator, which outputs the predicted

high-resolution image. Like in a standard GAN , aim of the discriminator is to distinguish

between the real image and the up-sampled image.
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Figure 5.10: Super Resolution - Deconvolutional Network: The generator network uses deconvo-
lution layers in combination with intermediate convolution layers to upsample the low-resolution
input image.
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Figure 5.11: Super resolution training procedure: Input to the generator network is a downsam-
pled version of the original image. Aim of the discriminator is to distinguish the upsampled image
from the original high-resolution image.

5.2.2.2 Deconvolutional Network - Residual Image

The generator network in the first approach directly models the high-resolution image.

Basically, a high resolution image can be decomposed into low- and high-frequency in-

formation. The first contains smooth variations and corresponds to the low-resolution

image. The second part, also known as residual image, contains the image details. In the

previously described approach, the generator has to reconstruct the image details, and

in addition, carry the low-frequency information to the output. Another super resolution

approach is to predict only the residual image containing the high-frequency part instead

of predicting the final high-resolution image [48, 55]. Kim et al. [25] showed that this is

also beneficial for neural network approaches. They argued that otherwise training time

might be wasted to learn the low-resolution output and the convergence rate of learning

the more important image details decreased.

Following this idea, we adapt the GAN framework, shown in Figure 5.12 as follows:

Similar to the previous approach, the input to the generator is a downsampled version of

the original high resolution image. But, this time the generator predicts only the image

details. The network architecture is equal to the last generator (Figure 5.10). Aim of the
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Figure 5.12: Super resolution training procedure (residual image): Input to the generator is
a downsampled version of the original fine image. The discriminator, conditioned on the coarse
image, tries to distinguish real image details from residuals synthesized by the generator.
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Figure 5.13: Super Resolution - Convolutional Network: Input to the generator is a coarse mid-
resolution image of the same size as the desired output. Several convolutional layers of the same
type are used to synthesize the corresponding residual image.

discriminator, which is conditioned on the coarse mid-resolution image, is to distinguish

between real and synthesized residual images. The contextual information, the coarse

image, is created by upsampling the low-resolution image using bicubic interpolation.

5.2.2.3 Convolutional Network - Residual Image

In this approach, we use a generator architecture similar to the network described by

Kim et al. [25]. Input to this network is an interpolated coarse mid-resolution image

with the same spatial dimensions as the desired output. This input is created by bicubic

upsampling the low-resolution image. The network consists of several convolutional layers

whereas all layers are of the same type (equal kernel-size & equal number of feature maps),

as shown in Figure 5.13. Similar to the last method, the network is trained to output the

residual image. Except the changed generator input, the training procedure is equal to

the last approach.
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5.2.3 Loss Function

The commonly used loss function to train a convolutional neural network for image super

resolution is the Mean Squared Error (MSE) loss, given as

EMSE =
1

N

N∑
i=1

‖G(xLR
i ) − xHR

i ‖22, (5.2)

where X = {(xLR
1 ,xHR

1 ), . . . , (xLR
N ,xHR

N )} is a training-set of N low- & high-resolution

image pairs and G(·) is the upsampling network. The problem using this

error function is, that it leads to blurry predictions since it does not preserve

discontinuities like edges. If an output pixel has two equally probable values y1 and

y2, then the MSE loss would lead to yavg = (y1 +y2)/2, even if this output is very unlikely.

On the other hand, the loss to train a generator network within a GAN framework,

see Section 3.2, is given as

EGAN = − 1

N

N∑
i=1

log
(
D(G(xLR

i ))
)
, (5.3)

where D(·) is the discriminator network. In contrast to the MSE loss, this error

function does not explicitly include the corresponding high-resolution image xHR
i . The

generators objective is to create a sample that the discriminator can not distinguish

from real high-resolution face images, without taking the true high-resolution image into

account. Since the generator is not restricted, this might lead to a strongly hallucinating

upsampling network.

An obvious way to limit this behavior is to combine both loss functions [57]. The

idea is that the MSE loss acts as regularization term, and the adversarial loss function

increases the quality of the reconstructed images by incorporating characteristic details.

The corresponding loss function is therefore given as

E = EMSE + λ EGAN . (5.4)

In our experiments we will use all three error functions and compare the resulting images

qualitatively to verify this approach.

5.2.4 Results

In the following we evaluate the performance of our approaches in combination with the

earlier described loss functions for ×4 and ×8 upsampling on the celebA dataset. All
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Type Conv. Conv. Conv. Conv. Conv.
Input: 64× 64× 1(2) 32× 32× 64 16× 16× 128 8× 8× 256 4× 4× 512
Parameters: filter = 64 filter = 128 filter = 256 filter = 512 filter = 1

kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4 kernelsize = 4
stride = 2 stride = 2 stride = 2 stride = 2 stride = 1
pad = 1 pad = 1 pad = 1 pad = 1 pad = 0

Output: 32× 32× 64 16× 16× 128 8× 8× 256 4× 4× 512 1× 1× 1
Nonlinearity: Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU Sigmoid
Batchnorm.: - X X X -

Table 5.5: Detailed description of the discriminator network used in the super resolution GAN .
For the residual generator networks, the discriminator is conditioned on the coarse mid-resolution
image, incorporated as second input channel.

networks are trained using Adam as optimization algorithm with a learning rate of 0.0002

and a mini-batch size of 64. For all experiments we use a similar discriminator archi-

tecture, described in Table 5.5. They differ only in the number of input channels, since

the conditional discriminators used to distinguish real residuals from synthesized image

details, receive the coarse mid-resolution image as second input (see Figure 5.12).

5.2.4.1 Deconvolutional Network

In the first experiment, we analyze the performance of the deconvolutional network

that directly predicts the high-resolution image, given the low-resolution input. The

used network architectures for ×4 and ×8 upsampling are summarized in Table 5.6.

Figure 5.14 shows the results for ×4 upsampling. The two leftmost columns show the

nearest-neighbor & bicubic uspampled input for comparison. In the next three columns,

the results of the upsampling network in combination with the different error functions

are shown. The ground truth high-resolution image is shown in the last column.

As expected, the bicubic interpolation results in very blurry images. The upsampling

network, trained using the MSE loss, significantly increases the image quality. However,

on closer examination it is apparent that the images are still slightly blurry, especially

around the eyes or lips. On the other hand, the network trained using only the

adversarial loss creates images with clear defined edges and enhances characteristic

details. But, since this loss does not contain an explicit reconstruction term, the network

tend to hallucinate more. Combining both error functions seems to represent a good

compromise, where the images are sharp, but nonetheless close to the ground truth

high-resolution image.

The results of the ×8 upsampling network, shown in Figure 5.15 are similar

to the first experiment. Again, incorporating the adversarial loss leads to cleaner

edges and stronger accentuated face details. Due to the very low input resolution
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(8 × 8 pixel), the amount of hallucination is increased. Especially the network

optimized on the adversarial loss is strongly hallucinating, which sometimes result

in unrecognizable identities. However, despite the very coarse input, the iden-

tities reconstructed by the MSE based networks are surprisingly close to the ground truth.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 5

4× Type Conv. Conv. Conv. Conv. Deconv. Deconv.
Input: 16 × 16 × 1 16 × 16 × 16 16 × 16 × 32 16 × 16 × 64 16 × 16 × 128 32 × 32 × 64
Parameters: filter = 16 filter = 32 filter = 64 filter = 128 filter = 64 filter = 1

kernelsize = 3 kernelsize = 3 kernelsize = 3 kernelsize = 3 kernelsize = 4 kernelsize = 4
stride = 1 stride = 1 stride = 1 stride = 1 stride = 2 stride = 2
pad = 1 pad = 1 pad = 1 pad = 1 pad = 1 pad = 1

Output: 16 × 16 × 16 16 × 16 × 32 16 × 16 × 64 16 × 16 × 128 32 × 32 × 64 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X - -

8× Type Conv. Conv. Deconv. Conv. Deconv. Deconv.
Input: 8 × 8 × 1 8 × 8 × 128 8 × 8 × 256 16 × 16 × 128 16 × 16 × 128 32 × 32 × 64
Parameters: filter = 128 filter = 256 filter = 128 filter = 128 filter = 64 filter = 1

kernelsize = 3 kernelsize = 3 kernelsize = 4 kernelsize = 3 kernelsize = 4 kernelsize = 4
stride = 1 stride = 1 stride = 2 stride = 1 stride = 2 stride = 2
pad = 1 pad = 1 pad = 1 pad = 1 pad = 1 pad = 1

Output: 8 × 8 × 128 8 × 8 × 256 16 × 16 × 128 16 × 16 × 128 32 × 32 × 64 64 × 64 × 1
Nonlinearity: ReLU ReLU ReLU ReLU ReLU tanh
Batchnorm.: X X X X X -

Table 5.6: Deconvolutional generator architecture for ×4 and ×8 uspampling.

Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.14: Results ×4 upsampling - Deconvolutional Network
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Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.15: Results ×8 upsampling - Deconvolutional Network

5.2.4.2 Deconvolutional Network - Residual Image

In the next experiments we analyze the residual deconvolutional network. The generator

architectures for ×4 and ×8 upsampling are similar to the last experiments and described

in Table 5.6. As already mentioned, the discriminator is conditioned on the coarse mid-

resolution image, see Table 5.5. The results for ×4 & ×8 upsampling, shown in Figure 5.16

and 5.17, are comparable with the non-residual network. However, the images upsampled

by the adversarial networks seem to contain more high-frequency artifacts compared to

the non-residual net. Since the network predicts only the difference to the high-resolution

image, the amount of hallucination seems to be reduced.

5.2.4.3 Convolutional Network - Residual Image

The last network architecture we investigate uses convolutional layers to transform the

bicubic upsampled coarse input image to the high-resolution output. The detailed gen-

erator architecture is summarized in Table 5.7. The results, shown in Figure 5.18 and

5.19, are slightly worse compared to the previous network architectures. While the up-

sampled images of the network trained on the MSE loss are comparable with the previous

experiments, the adversarial networks produce significantly more high-frequency artifacts.
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Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.16: Results ×4 upsampling - Residual Deconvolutional Network

Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.17: Results ×8 upsampling - Residual Deconvolutional Network
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Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.18: Results ×4 upsampling - Residual Convolutional Network

Nearest Neighbor Bicubic MSE Loss Combined Loss

λ = 1 · 10−4

GAN Loss Ground Truth

Figure 5.19: Results ×8 upsampling - Residual Convolutional Network
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Layer 1 Layer 2 - 8 Layer 9

Type Conv. Conv. Conv.
Input: 64 × 64 × 1 64 × 64 × 32 64 × 64 × 32
Parameters: filter = 32 filter = 32 filter = 1

kernelsize = 3 kernelsize = 3 kernelsize = 3
stride = 1 stride = 1 stride = 1
pad = 1 pad = 1 pad = 1

Output: 64 × 64 × 32 64 × 64 × 32 64 × 64 × 1
Nonlinearity: ReLU ReLU -
Batchnorm.: X X -

Table 5.7: Residual convolutional generator architecture for ×4 and ×8 uspampling

5.2.4.4 Qualitative Comparison

The previous experiments suggest that combining both error functions seems to represent

a good compromise, where the images have clear defined face details but are nonetheless

close to the ground truth high-resolution image. For a better comparison of the different

architectures, Figure 5.20 shows upsampled images from all three approaches trained

using the combined loss with λ = 1 · 10−4. The top rows show ×4 upsampling results and

the lower ×8 usampled images. This comparison confirms the earlier findings. Differences

in the upsampled images of the residual and the non-residual deconvolutional network are

hard to find. Moreover, the high-resolution images of the convolutional residual network

seem to be less sharp and contain more artifacts compared to the deconvolutional networks.

Nearest Neighbor Bicubic Deconv. Deconv.
Residual

Conv.
Residual

Ground Truth

Figure 5.20: Architecture Comparison: All networks are trained using the combined loss with
λ = 1 · 10−4. The top two rows show ×4 upsampled images and the lower rows ×8 upsampling
results.
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5.2.4.5 Quantitative Comparison

To quantitatively compare the different approaches, we compute the Peak Signal-to-Noise

Ratio (PSNR) over the test-subset. This metric describes the ratio between the maximum

of a signal and the corrupting noise and is usually used to measure the quality of a

reconstructed image. The PSNR is given as

20 · log10

(
MAX

‖G(xLR) − xHR‖2

)
, (5.5)

where MAX is the maximum possible value, 255 for a 8-bit image. In addition we use a

second metric called Weighted Peak Signal-to-Noise Ratio (WPSNR), which uses weights

for perceptually different image areas and better matches the human perception [65].

The results of this comparison are summarized in Table 5.8 (×4 upsampling) and Ta-

ble 5.9 (×8 upsampling). It can be seen that for both upsampling factors, the networks

trained using the MSE loss achieve the highest PSNR, even though the combined loss

leads to cleaner edges and sharper images. The first reason is that the PSNR is defined

via the MSE . Therefore, this loss is the optimal error function for this criterion. However,

this leads to blurry reconstructions in regions with strong ambiguity like edges (see Sec-

tion 5.2.3). The second reason is that the adversarial loss only evaluates the image quality

and does not contain a reconstruction term. Therefore, incorporating the adversarial loss

increases the image quality, but leads to a stronger hallucinating network and reduces the

PSNR.

As seen in the qualitatively results of the previous experiments, the networks trained

using only the adversarial loss are strongly hallucinating, resulting in a significantly lower

PSNR. The results for the WPSNR are very similar, since this metric also evaluates the

difference to the ground-truth image. The slight changes of the identities due to the

adversarial loss decreases the reconstruction score, although the images appear cleaner

for the human observer.

MSE Loss Combined Loss Adversarial Loss
PSNR/WPSNR PSNR/WPSNR PSNR/WPSNR

Deconv. 26.52/29.36 25.47/28.36 21.19/18.88
Deconv. (Residual) 26.67/30.25 25.57/29.73 24.02/27.73
Conv. (Residual) 26.29/29.47 25.75/28.97 24.07/27.67

Table 5.8: Quantitative comparison of the different network architectures for ×4 upsampling on
the celebA test-subset. For comparison, bicubic upsampling leads to PSNR 23.92 / WPSNR 24.82
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MSE Loss Combined Loss Adversarial Loss
PSNR/WPSNR PSNR/WPSNR PSNR/WPSNR

Deconv. 22.73/21.23 22.55/21.11 16.99/13.08
Deconv. (Residual) 22.87/21.49 22.56/21.19 19.86/18.46
Conv. (Residual) 21.84/19.87 21.72/19.84 21.24/19.39

Table 5.9: Quantitative comparison of the different network architectures for ×8 upsampling on
the celebA test-subset. For comparison, bicubic upsampling leads to PSNR 20.01 / WPSNR 16.83

λ = 0 λ = 5 · 10−5 λ = 1 · 10−4 λ = 5 · 10−4 λ = 1 · 10−3 Ground Truth

Figure 5.21: To analyze the impact of the adversarial loss, we trained the non-residual deconvo-
lutional network with different values for λ.

λ 0 5 · 10−5 1 · 10−4 5 · 10−4 1 · 10−3

PSNR [dB] 26.52 25.77 25.47 24.50 24.03

Table 5.10: Impact of the adversarial loss on the peak signal-to-noise ratio (PSNR).

5.2.4.6 Adversarial Loss Impact

To demonstrate the effects of incorporating the adversarial loss, we train the non-residual

deconvolutional network with different values for λ. The results are shown in Figure 5.21.

Similar to the previous experiments, the upsampled images of the network trained using

only the MSE loss (λ = 0) are slightly blurry. As expected, increasing the weight of the

adversarial loss improves the image quality. The images appear sharper and face charac-

teristics are enhanced. This effect is particularly noticeable around the eyes and hair. But,

increasing the weight of the adversarial loss leads also to a stronger hallucinating network

and more high-frequency artifacts, hence the PSNR decreases as shown in Table 5.10.
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5.2.4.7 Color Images

Since the human eye is less sensitive to chrominance than to luminance, a often used

method to upsample color images is to process only the luminance channel Y in the

YCbCr color space and bicubic upsample the chrominance channels. Another way is

to use all three color channels as input to a network and directly upsample the color

image. In order to compare these approaches, we train a non-residual deconvolutional

network for color image upsampling. The architecture is similar to the network that

processes only the luminance channel, see Table 5.6. The only difference is that this

network has three input & output channels. We train the network to minimize the

MSE error function and the combined loss with λ = 1 · 10−4. For comparison, we use

the results from Section 5.2.4.1 and add bicubic-upsampled chrominance channels. The

results for ×4 and ×8 upsampling are shown in Figure 5.22 and 5.23. At first glance,

there is no difference between the two approaches. Similar to the previous experiments,

incorporating the adversarial loss leads to sharper images and enhanced face details. But

on closer examination, it is apparent that in a few samples, the bicubic interpolation of

the chrominance channels modifies the eye or lip color, whereas the network is able to

reconstruct these details.

Nearest Neighbor Bicubic Only Luminance

(MSE Loss)

Only Luminance

(Comb. Loss)

Color Net

(MSE Loss)

Color Net

(Comb. Loss)

Ground Truth

Figure 5.22: Results×4 color upsampling: The first method processes only the luminance channel
and uses bicubic interpolation to upsample the chrominance channels. In the second approach the
network directly predicts the color high-resolution image.
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Nearest Neighbor Bicubic Only Luminance

(MSE Loss)

Only Luminance

(Comb. Loss)

Color Net

(MSE Loss)

Color Net

(Comb. Loss)

Ground Truth

Figure 5.23: Results ×8 color upsampling

5.3 Summary

In this chapter the usability of Generative Adversarial Networks (GANs) to solve two

fundamental computer vision problems was investigated. The first application was un-

supervised feature learning where we reused parts of the trained discriminator network

as initialization for the supervised task of interest. In addition, we used the data rep-

resentations of a third network called inference net, which learned the inverse operation

to the generator. The capabilities of these methods were evaluated for classification and

regression tasks. In both cases performed the pre-initialized networks significantly better

than a randomly initialized network when labeled samples were scarce.

In the second part GANs were applied to domain specific super resolution. We used

non-residual & residual approaches, where either the high-resolution image was directly

predicted or only the image details were synthesized. All networks were trained using

three loss functions: the commonly used MSE loss, the adversarial loss and a combination

of both functions. We showed that for both approaches, incorporating the adversarial

loss leads to sharper images and increases the image quality by enhancing characteristic

details. Summing up, these experiments demonstrated the high flexibility of adversarial

nets and showed their potential for other computer vision applications.



6
Conclusion & Outlook

Generative Adversarial Networks (GANs) represent an attractive alternative to existing

generative models based on maximum likelihood techniques, or related strategies. The

advantage of adversarial nets is that the entire model is based on artificial neural networks.

They can be trained using well studied techniques like backpropagation and no difficult

sampling procedure is necessary. They perform well on various image datasets and are

able to generate plausible natural images. However, the internal generation process of

GANs, from the initial noise vector to the resulting image, as well as the learned data

representations are relatively unexplored.

The aim of the first part of this thesis was to investigate the internals of adversarial

nets more deeply and to identify ways to manipulate the generation process. We trained

unconditional GANs on two depth-datasets and demonstrated that they were able to

synthesize new realistic samples of human poses. Then, we explored the latent noise

space and found that the relevant information for the generation process is rather encoded

over multiple components than in individual values. One reliable way to identify semantic

properties within this space was to average the noise vectors of synthesized samples sharing

the same property. Moreover, by combining these directions using vector arithmetic it was

possible to synthesize samples with desired properties, even though these networks were

trained in an unsupervised manner. The second approach to control the generation process

was to use conditional GANs where the ground-truth pose information was provided to

both networks during the training. Using this method, the desired pose can be determined

more precisely. However, the disadvantage of this method is that data annotations are

necessary to train the GANs.

In the second part of this thesis, the applicability of GANs to solve two fundamental

computer vision problems was investigated. First, we analyzed the potential of adversar-

ial nets for unsupervised feature learning. Therefore, parts of the unsupervised trained

discriminator network were reused as fixed feature extractor or as initialization for the

supervised task of interest. In addition, a third network, called inference net, was trained

to learn the inverse operation to the generator. The advantage is that this network can be
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trained on an infinite training set, since the generator can synthesize unlimited samples.

Similar to the discriminator, the learned data representations of this network were reused

for the subsequent supervised task. We evaluated the capabilities of these methods for

classification and regression tasks. In both cases performed the pre-initialized networks

significantly better than a randomly initialized network when labeled samples were scarce.

Especially the good performances of the fixed feature extractors demonstrated that GANs

are a strong candidate for unsupervised feature learning.

Finally, we applied GANs to face hallucination. The aim of this domain specific super

resolution task is to upsample face images when the input resolution is very low. We

used non-residual & residual approaches to upsample the input. The first method directly

predicts the high-resolution image and the latter synthesizes only the image details, called

residual image. All networks were trained using three loss functions: the commonly used

Mean Squared Error (MSE) loss, the adversarial loss and a combination of both functions.

We demonstrated that for both approaches, incorporating the adversarial loss increases

the image quality compared to the MSE loss, since the images appear sharper and face

characteristics are enhanced.

Summing up, we presented new insights into the generation process of GANs, proposed

two ways to influence this process in order to synthesize depth-data with desired properties

and demonstrated the universal applicability of this generative model. Future work could

further explore operations in the latent noise space of unconditional GANs to control the

generation process more precisely. This would avoid the need of large labeled datasets to

train conditional GANs. The new data, synthesized in this manner, could then be used to

augment the dataset for subsequent tasks. Moreover, there are several generative computer

vision problems where adversarial nets might be beneficial. A possible application is

image colorization, where the color version of a gray-scale image is hallucinated. Similar

to the approach used for super resolution, both networks could be conditioned on the

gray-scale input. The goal of the discriminator would be to distinguish between the real

color channels and the color information synthesized by the generator. Another possible

application for GANs is to predict future frames given a video sequence, where generator

and discriminator could be conditioned on previous frames. This might also lead to data

representations that could be useful for other supervised tasks, like action recognition in

videos.



A
List of Acronyms

CNN Convolutional Neural Networks

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DCGAN Deep Convolutional Generative Adversarial

Networks

GAN Generative Adversarial Networks

i.i.d. independent and identically distributed

ILSVRC Imagenet Large Scale Visual Recognition

Challenge

LAPGAN Laplacian Generative Adversarial Networks

leaky ReLU Leaky Rectified Linear Unit

MSE Mean Squared Error

PSNR Peak Signal-to-Noise Ratio

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

SSD Sum of Squared Differences

SVHN Street View House Numbers

WPSNR Weighted Peak Signal-to-Noise Ratio
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