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Abstract

In recent years, lithium ion batteries have become widely used energy sources for
various battery-powered applications. Particularly for high-power automotive and
storage applications, lithium iron phosphate (LiFePO4) proved to be a promising
cathode material for lithium ion batteries since it features low raw material costs,
a high availability and an outstanding thermal stability. Especially the latter is of
great significance for the automotive industry as the risk of battery fires in case of
a traffic accident is significantly reduced compared e.g. to the hazard potential of
LiCoO2 batteries. Moreover, LiFePO4 batteries offer high power density and are
therefore preferably used for hybrid electric vehicle drive trains.

However, the user experiences a major drawback. Since the mechanism of in-
sertion/depletion of lithium ions in the LiFePO4 electrode proceeds according to a
two-phase process, the electrode potential and, thus, the battery’s terminal voltage
shows a in wide ranges flat dependence on the state of charge. Additionally, hystere-
sis phenomena significantly influence the battery’s open circuit voltage which are
most likely caused by multiple thermodynamical equilibria in the LiFePO4 electrode.
Thus, the mapping between battery’s state of charge and its open circuit voltage is
not unique and strongly depends on the cycling history. This circumstance proves
to be problematic if the task is to determine the battery’s state of charge. Since
this quantity is not directly accessible, state-of-the-art methods for condition mon-
itoring infer the state of charge from measurements of the operating current and
the battery’s terminal voltage. Due to the mentioned mapping between the state of
charge and the battery’s open circuit voltage, these methods perform poorly in the
case of LiFePO4 batteries.

This thesis focuses on the task of the determination of the state of charge of
LiFePO4 batteries, by analyzing two different approaches. The first approach tack-
les the problem with Bayesian filtering. Thereby the open circuit voltage hysteresis is
incorporated into the dynamic model and a joint estimation framework utilizing a se-
quential Monte Carlo method is used. The second approach is based on the basically
novel idea of inferring the state of charge from the battery’s magnetic properties.
This approach is motivated by the role of the transition ion in the FePO4 crystal.
Hence, the feasibility of a state of charge sensor concept based on magnetic princi-
ples is investigated by an experimental determination of the concomitant change of
the magnetic susceptibility of the LiFePO4 electrode during/charging.



Kurzfassung

Lithium-Ionen-Batterien sind mittlerweile weitverbreitete Energiespeicher für zahl-
reiche batteriebetriebene Anwendungen. Besonders im Bereich von Hochleistungsan-
wendungen, wie zum Beispiel elektrische Antriebe im automotiven Bereich oder
stationäre Energiespeicher in regionalen Verbrauchernetzen, hat sich Lithiumeisen-
phosphat (LiFePO4) als vielversprechendes Kathodenmaterial für Lithium-Ionen-
Batterien etabliert. Begründet wird dies durch die gute Verfügbarkeit der Rohstoffe,
die damit verbundenen moderaten Herstellungskosten sowie die herausragende ther-
modynamische Stabilität. Letztere ist im Speziellen für die Automobilindustrie von
großer Bedeutung, da von LiFePO4-Batterien, im Gegensatz zu anderen Lithium-
Ionen-Zellchemien wie z.B. LiCoO2, im Falle eines Verkehrsunfalles ein geringes
Gefährdungspotenzial ausgeht. Des Weiteren weisen LiFePO4-Batterien eine hohe
spezifische Leistungsdichte auf und werden daher bevorzugt in elektrischen Hybrid-
fahrzeugen eingesetzt.

Nachteilig im Gebrauch von LiFePO4-Batterien erweist sich jedoch der für diese
Zellchemie charakteristische Verlauf der Zellruhespannung. Dies wird durch die Tat-
sache begründet, dass die Einlagerung/Verarmung von Lithium-Ionen in der LiFePO4-
Elektrode über weite Bereiche des möglichen Ladungszustandes anhand eines Zwei-
phasenprozesses stattfindet. Folglich weist die Zellspannung einen sehr flachen Ver-
lauf in Abhängigkeit des Ladezustandes auf. Des Weiteren ist die Zellspannung sig-
nifikant von einem Hystereseeffekt beinflusst, was vermutlich mit dem Auftreten
mehrfacher thermodynamischer Gleichgewichte in der LiFePO4-Elektrode zusam-
menhängt. Zusammenfassend muss angemerkt werden, dass die Abbildung des Lade-
zustandes auf die Zellspannung nicht eindeutig ist und stark von der Ladehistorie
abhängt. Entsprechend schwierig ist es, den nicht messbaren Ladezustand der Bat-
terie mithilfe der etablierten Methoden zu bestimmen, was in der Regel nur ungenau
gelingt.

In der vorliegenden Arbeit soll der Ladezustand von LiFePO4-Batterien exakt
bestimmt werden, wofür zwei grundverschiedene Ansätze verfolgt werden. Der erste
Ansatz beruht im Wesentlichen auf der Zustandsschätzung mit Hilfe von Bayesscher
Statistik. Dabei wird die Mehrdeutigkeit in Zusammenhang mit der Zellruhespan-
nung im Zuststandsraummodell integriert, und mit Hilfe einer sequenziellen Monte-
Carlo-Methode werden der zeitliche Verlauf der Zustände, sowie der Modellparam-
eter simulatan ermittelt. Alternativ basiert der zweite Ansatz auf der grundsätzlich
neuen Idee, den Ladezustand mit den magnetischen Eigenschaften des Kathoden-
materials zu korrellieren. Dieser Ansatz ist im Wesentlichen durch die Rolle des
Übergangsmetalls im FePO4-Kristall begründet. Die Realisierbarkeit eines Ladungs-
sensors, basierend auf der Bestimmung der magnetischen Materialeigenschaften des
LiFePO4-Kathodenmaterials, wird in dieser Arbeit anhand einer Machbarkeitsstudie
untersucht. Folglich wird der Zusammenhang zwischen Lithierungsgrad und der
magnetischen Suszeptibilität der LiFePO4-Elektrode experimentell nachgewiesen und
die benötigte magnetische Sensitivität eines entsprechenden Sensors bestimmt.
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1. Introduction

1.1. Motivation

In the past few years, an increasing demand for portable energy storage systems
has emerged. This is due to the fact that the markets for both portable consumer
electronics as well as automotive high-power applications have steadily risen.

There were major achievements in the field of pervasive computing and the grad-
ually extending infrastructure of information technology enables to continuously
extend the field of applications for portable consumer electronics. Furthermore, the
development of a middle class in emerging countries entailed a significant increase
of sales figures for portable consumer electronics.

With respect to high-power automotive applications, the steadily increasing mar-
ket share of e-mobility is not only caused by increasing wealth or the achievements
of electric vehicle drive trains in recent years, but also by political reasons. Gov-
ernments of developed and emerging countries face growing pressure to reduce CO2

emissions as well as the constantly increasing air pollution in urban regions. It is
a well-known fact that the traffic based on conventional mobility technologies sig-
nificantly contributes to these emissions. Consequently, attention is drawn to find
alternatives to the established mobility concepts based on conventional combustion
engines. The field of e-mobility as a whole is nowadays generally accepted as such
an alternative. Unfortunately, the energy storage is still one of the limiting fac-
tors which hampers the changeover from combustion engines to electric drive trains.
Thus, it is not surprising that mobile energy storage systems have recently been
subject of intense research.

By extending the field of applications for portable energy storage systems, also
the requirements to the energy storage have grown with respect to storage capac-
ity, specific power, safety and lifespan. Among the electrochemical energy storage
systems, lithium ion (Li-ion) batteries proved to be the most promising candidates
to meet the higher requirements. Hence, it is not surprising that the majority of
electric vehicles nowadays utilize a storage system based on lithium ion technology.
Equipped with such a battery system, the range of electric vehicles today reaches
almost the scale of vehicles using conventional combustion engines.

First introduced in 1976 by Whittingham [1], extensive research efforts were made
of the lithium ion technology to improve the storage capacity and broaden the
range of applications toward more-energy consuming applications. Due to emerging
markets of high-power automotive and storage applications, the available power
became a significant parameter in the design of energy storage systems. Lithium
ion technology turned out to be suitable to design both high-power and high-energy
batteries, which is shown in the Ragone chart in Figure 1.1.

1



1 Introduction 2

Figure 1.1.: Ragone chart comparing different rechargeable battery technologies
with respect to specific power and specific energy. Modified from [2].

A key element which mainly determines the performance of a lithium ion battery
is the active material of its positive electrode. Layered structures (e.g. LiCoO2) are
preferably used for high-energy batteries, while spinel oxides and olivines (LiMPO4,
M = Fe, Mn, Co or Ni) are considered as positive electrode active material for high-
power systems [3]. Among the olivine cathode materials, lithium iron phosphate
(LiFePO4) is nowadays widely used in storage systems for high-power automotive
applications. In addition to the distinctive specific power, LiFePO4 batteries provide
a feature which is of significant relevance for automotive applications. Due to the
strong P-O bounds in LiFePO4 positive electrode material, oxygen is prevented from
internal release. In case of a battery’s abuse, a thermal runaway is therefore less
likely and thus associated with much less exothermic energy [4,5]. This circumstance
proves to be of great importance since a persistent risk of mechanical deformation
of the energy storage induced by traffic accidents exists in automotive applications.

Moreover, economical reasons suggest the usage of LiFePO4 for high energy-
consuming applications. The active material of the positive electrode contributes
most to a battery’s total mass and as a consequence also to the production costs.
Compared to expensive active materials like e.g. LiCoO2, LiFePO4 shows high avail-
ability of excellent raw material and can be produced inexpensively.

So far, only the electrochemical and economical benefits of LiFePO4 active ma-
terial were pointed out. However, some problems arise from the user’s perspective.
Due to the characteristic potential of the LiFePO4 electrode, the task of condition
monitoring, for example estimating the state of charge (SOC) or the state of health
(SOC), is extremely challenging. Especially for hybrid electric vehicle drive trains,
this circumstance proves to be crucial. With respect to battery management, the
SOC is a key quantity for battery management systems (BMS) and is not only re-
quired to quantify the stored energy level but also to provide maintenance tasks like
cell balancing. The necessity for the latter arises from the fact that high-power bat-
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1 Introduction 3

tery systems consist of a large number of individual batteries which are connected
in serial and parallel configurations.

Unfortunately, these individual batteries tend to wear out in an unbalanced man-
ner. On the one hand, the temperature distribution in the battery system is not
completely uniform, causing batteries to wear out faster when operated at higher
temperature levels. On the other hand, the individual batteries differ slightly with
respect to the electrochemical properties due to production tolerances and are there-
fore characterized by slightly different storage capacities. The impact of the mis-
match of the storage capacities is best illustrated by an example. Consider the
case of an energy storage system consisting of several mismatched batteries being
connected in serial. During the operation, the mismatch of the individual storage
capacities results in the situation that batteries with lower storage capacity perform
at higher cycle rates. As a consequence, the weaker batteries wear out faster, which
in turn further increases the mismatch of the storage capacities. Hence, this effect
is self-increasing. In the worst case, individual batteries are operated at critical cell
voltages (under- or overcharging). In any case, these batteries are destroyed, and in
the case of overcharging, an immanent safety risk exists.

In order to circumvent this problem, it is necessary that battery management
systems equalize the charge levels of the individual batteries from time to time.
However, in order to efficiently provide this measure, battery management systems
require an accurate estimate of the SOC of each individual battery. As mentioned
before, in case of LiFePO4 batteries, the determination of this quantity is challenging.

1.1.1. State of the Art in State of Charge Estimation

As already mentioned above, the battery’s SOC is a key quantity and inter alia
required by battery management systems to efficiently provide maintenance tasks.
Since the SOC of a battery cannot be measured directly, it must be inferred from a
directly accessible quantity.

Usually, the SOC of a battery is defined as the stored charge level normalized
by the battery’s storage capacity. Hence, the most intuitive approach is to simply
integrate the battery’s operating current and to normalize the result by the storage
capacity. This approach is known as coulomb counting and causes two fundamental
problems. Firstly, the initial condition must be known a priori. Secondly, the
accuracy of the estimate decreases progressively. This circumstance is due to the
fact that coulomb counting is an open loop method and consequently very prone to
systematic errors of the current measurements. If the result of an operation mode
is that the battery’s end-of-charge voltage is periodically reached, e.g. by charging
portable consumer electronics or electric vehicles, the estimate of the SOC can easily
be corrected by SOC = 1 and the shortcomings associated with coulomb counting
are of minor impact.

However, the situation is different if the battery is used for temporarily buffering
smaller energy quantities. For example, consider the energy storage in a hybrid elec-
tric vehicle drive train. Depending on the control strategy, the battery is alternately
used to provide the electrical power needed for acceleration or for recuperating the
vehicle’s kinetic energy during braking. Consequently, the SOC oscillates around a
specific operating point. In this operation mode, the systematic error of the current
measurements is of great relevance for the accuracy of the SOC estimate derived by

3



1 Introduction 4

coulomb counting. This is caused by the integration of the bias component of the
current measurement’s systematic error. Thus, the deviation of the SOC estimate
increases steadily.

In order to overcome the shortcomings of the coulomb counting method, it is de-
sirable to incorporate a feedback path in the SOC estimator. Since the electrode
potentials relate to the SOC, the battery’s terminal voltage can be used for inference.
However, due to the transport kinetics of the charged species, the battery’s termi-
nal voltage is not solely a static function of the SOC but also exhibits a transient
contribution, depending on the operating current and the temperature, to name but
a few. Consequently, the battery is treated as dynamic system and the SOC can be
derived by state estimation techniques. The majority of reviews of SOC estimation
in battery systems can be classified by means of the dynamic models used for the
state inference.

The most immediate approach is to derive a dynamic model based on the un-
derlying electrochemical principles. Unfortunately, due to the high complexity of
the transport kinetics, this way of modeling proves to be extremely challenging and
usually leads to a set of nonlinear coupled partial differential algebraic equations. In
order to reduce the computational demands, dynamic battery models constructed by
electrochemical principles usually consider only the dynamics along the axis perpen-
dicular to the electrode/separator boundary surface (1D-spatial model). A common
simplification is done by treating the particles of the battery’s active material as
spheres of a known diameter and to model the concentration of the charged species
in the electrodes by single particle models [6–10]. Alternatively, dynamic models
derived by equivalent circuits provide a much simpler set of equations. In contrast
to electrochemical models, in most cases, one deals with linear ordinary differential
equations. Hence, it is not surprising that equivalent circuit models are the most
adopted models in practice. Various types of equivalent circuit models exists, and
the majority of these models are of the same origin. Randels published an equivalent
circuit modeling the kinetics of electrode reactions in 1947 [11]. This model is still
the basis for equivalent circuit models nowadays. An overview of the most adopted
equivalent circuit models can be found e.g. in [12–14]. For the sake of completeness,
it should be mentioned that some authors proposed black-box models derived by
artificial neural networks [15,16] or fuzzy logic [17–19].

The diversity among the algorithms used for estimation is seldom pronounced.
The majority of reviews of SOC estimation, extended Kalman filtering or unscented
Kalman filtering is used for the state estimator. Since the dynamics of modern bat-
tery systems is usually not entirely modeled by the models used for state inference,
adaptive approaches are increasingly becoming popular [20]. In most cases, a low
order equivalent circuit model is used for the state inference by means of Kalman
filtering and the parameters of the model are tracked by a recursive leasts square
or a least mean squares estimator in order to cope with the battery’s nonlinear
dynamics [21,22].

4
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However, the performance of the SOC estimator strongly depends on the map-
ping between the SOC and the battery’s open circuit voltage UOCV. If charg-
ing/discharging entails a significant alternation of the open circuit voltage UOCV,
e.g. in the case of LiCoO2 or LiMn2O4 batteries, the SOC can be estimated accu-
rately by state inference incorporating the battery’s terminal voltage. Unfortunately,
this is not the case for LiFePO4 batteries, since the mapping between the SOC and
the battery’s open circuit voltage is in wide ranges extremely flat and strongly in-
fluenced by hysteresis phenomena. As a consequence, the inverse mapping covers
a long range of the possible SOC range, causing state-of-the-art SOC estimation
methods to fail.

Hence, it is the goal of this thesis to investigate two different methods to determine
the SOC of LiFePO4 batteries. Firstly, a joint estimation framework is introduced,
incorporating the transition of the open circuit voltage UOCV induced by the hys-
teresis phenomena. Secondly, the feasibility of a radically different approach aiming
to correlate the SOC with the magnetic properties of the positive electrode’s active
material is analyzed.

1.2. Definitions

Some terms are defined in several ways in the literature. Before proceeding with
the electrochemical principles of LiFePO4 batteries, the following terms should be
clarified first.

Open Circuit Voltage

Throughout this thesis, the battery’s open circuit voltage UOCV is defined as the
battery’s terminal voltage at zero load after a theoretically infinite settling period.
In other words, the battery’s electrodes are assumed to be in the state of thermo-
dynamical equilibria.

As mentioned before, the open circuit voltage UOCV is greatly influenced by hys-
teresis phenomena. In this context, the open circuit voltage hysteresis defines the
voltage gap between the open circuit voltage charge and discharge curve at the
same charge level. The open circuit voltage charge and discharge curves are defined
as the open circuit voltage UOCV obtained by fully charging and fully discharging,
respectively.

Nominal Capacity

Manufactures usually state the battery’s nominal capacity Cn as a minimum guar-
anteed or typical value. In this thesis, as opposed to the name, the nominal capacity
Cn denotes the maximum charge which can be stored in the battery.

State of Charge

Similar to the nominal capacity, the SOC is often defined as the normalized remain-
ing charge level retrievable at certain load conditions. Hence, the SOC denotes the
theoretically retrievable charge level normalized by the nominal (maximal) capacity.
Consequently, SOC = 1 and SOC = 0 relate to the maximum and minimum values
of the open circuit voltage charge and discharge curve, respectively.

5
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1.3. The Lithium Iron Phosphate Battery

In this thesis, methods for determining the SOC of LiFePO4 batteries are investi-
gated. As already mentioned in the previous section, the task of determining the
SOC by measurements of the battery’s terminal Uterm voltage proves to be challeng-
ing. This is due to the LiFePO4 battery’s characteristic mapping between the SOC
and the open circuit voltage UOCV. This section provides an brief overview of the
phenomena associated with the open circuit voltage of LiFePO4 batteries. However,
it should be mentioned that this section (as well as the entire thesis) only touches
upon the electrochemical principles associated with lithium insertion/depletion in
batteries of this chemistry.

1.3.1. Working Principle

The working principle of rechargeable lithium ion batteries is based on the conver-
sion between electrical and chemical energy regarding the redox reactions between
a ionic-connected negative host electrode and a positive electrode1 containing the
charged species (lithium ions). In simplified terms, the working principle can be
summarized as follows: During charging, a surface overpotential is applied to the
electrodes, which implies that lithium ions are progressively depleted from the posi-
tive electrode’s active material and move towards the negative electrode where they
finally enter the host particles. Thus, the transport kinetics is influenced by the
imposition of the electric potential difference between the electrodes (migration),
the concentration gradient of solved lithium ions (diffusion) and bulk fluid motion
(convection) [23]. As a consequence, the electric potentials of the electrodes change
in such a way that the negative electrode’s potential is decreased, whereas the posi-
tive electrode’s potential is raised. This process is accompanied by the oxidation of
the particles of the active material of the positive electrode and the reduction of the
host particles of the negative electrode, which is associated with an external current
density. The discharge process takes place in reverse order.

In the case of the battery chemistry investigated here, carbon (C6) and LiFePO4

serve as active material of the negative and positive electrode, respectively. Conse-
quently, the redox equations of the reaction couples are given by

Li0FePO4 + yLi+ + ye-
discharge

�
charge

LiyFePO4, (1.1)

LixC6

discharge

�
charge

Li0C6 + xLi+ + xe-. (1.2)

Figure 1.2 schematically illustrates the working principle of the battery by an
arrangement of a C6 and LiFePO4 electrode being surrounded by an electrolyte.

1In electrochemistry, it is common to denote the oxidizing electrode anode and the reducing elec-
trode cathode. In the case of rechargeable batteries, this definition can be quite misleading since
the electrodes change the role of reaction in dependence of the current direction. Therefore, it
is common practice to define the terms anode and cathode from the perspective of an energy
source. For the sake of simplicity, anode and cathode are in this thesis denoted as negative and
positive electrode, respectively.

6



1 Introduction 7

Figure 1.2.: Illustration of the working principle of an LiFePO4 battery [24]. While
charging Li+-ions are detached from the LiFePO4 particles and inter-
calate in the C6 electrode. This is followed by the reduction of the C6

particles of the negative electrode and the oxidation of the iron atom
in the remaining FePO4 crystal, which is associated with the current in
the external circuit. The discharge process takes place in reverse order.

Let us take a closer look at the structure of the LiFePO4 battery. Both electrodes
possess a porous structure and are composed of a compound of particles of active
material, binder and filler additives being coated on electrically well conducting
metal foils. The metal foils are used to apply the surface overpotential to the
electrodes’ active material and to provide the external exchange current density by
the external electric circuit. Hence, these metal foils are often denoted as current
collectors. In lithium ion batteries, copper and aluminum are prevalently used for the
current collector of the negative and positive electrode, respectively. The binder and
filler particles are electrochemical inactive additives. Nevertheless, these materials
are of great importance since they minimize the mechanical strain induced by the
volume expansion associated with the lithium insertion in the active materials.

According to the redox equations shown above, C6 and LiFePO4 serve as inter-
calation2 material for the negative and positive electrode, respectively. In order
to minimize diffusion paths, the electrodes are structured as many-particle systems
with an active material’s particle size between 20 and 100 nm [25]. However, pure
LiFePO4 nanoparticles are not suitable for the use as active material in insertion
batteries. The reason for that is that the electric conductivity of LiFePO4 is too
low to provide acceptable charging rates. In order to circumvent this problem, the
LiFePO4 nanoparticles are coated with an additional carbon layer. This measure
significantly increases the electric conductivity within the structure of the positive
electrode. Consequently, the surface overpotenial can be applied to a much larger
number of LiFePO4 particles.

In order to enable the transport of the charged species, an electrolyte is required.
In most cases, the liquid electrolyte consists of LiPF6 as conduction salt and an
organic solvent. The solvent is often a combination of a linear and a cyclic carbon-
ate (e.g. ethylene carbonate and dimethyl carbonate) which provide a better ionic

2Intercalation denotes a reversible inclusion or insertion of molecules or ions into a host system.
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1 Introduction 8

conductivity and a better formation of the solid electrolyte interphase (SEI) [26].
Nevertheless, the ionic conductivity is poor compared e.g. to aqueous electrolytes.
Hence, the stretches of the ionic transport must be minimized to achieve acceptable
charging rates. Consequently, the electrodes are stacked, only separated by an elec-
trically isolating but ionic conducting separator membrane.

As indicated above, the ability of a good solid electrolyte interphase (SEI) forma-
tion is an essential decision criteria for the choice of the electrolyte. The quality of
the SEI is essential for the function and lifespan of lithium ion batteries.

This circumstance is due to the fact that the operation of lithium ion batteries is
actually far beyond the thermodynamical stability limits of the organic electrolyte.
During initial charging, decomposition of the organic electrolyte occurs in the vicin-
ity of the negative electrode. The products of decomposition adhere to the surface
of the graphite particles and, thus, form a passivation layer which prevents the elec-
trolyte from further decomposition. This passivation layer is known as solid elec-
trolyte interphase which is due to the fact that the SEI is formed between the solid
intercalation material and the liquid electrolyte and acts as an intermediate phase.
The SEI consists of two films. The first consists of organic decomposition products
and forms a thick and porous layer being permeable for the electrolyte. The second
thin film is of inorganic decomposition products and electrolyte-impermeable [27].
Figure 1.3 schematically illustrates the composition and function of the SEI.

lithium
inorganic (nm)

organic (µm)
electrolyte

solvent

Li

Figure 1.3.: Schematic illustration of the passivating surface film denoted as solid
electrolyte interphase (SEI) on the negative electrode formed by prod-
ucts of decomposition of the organic electrolyte. Modified from [27].

Since the quality of the formation of the SEI is crucial for the performance and the
lifespan of the battery, the formation of the SEI is provided by the manufacturers
by means of initial cycling. Hence, lithium ion batteries are always dispatched in a
charged condition.

8
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1.3.2. Open Circuit Voltage Characteristics of LiFePO4 Batteries

As previously stated, the LiFePO4 battery’s open circuit voltage UOCV proves to be
problematic if the task is to determine the SOC by means of voltage measurements.
Hence, let us take a closer look at the phenomena which are associated with the
open circuit potentials of the insertion electrodes in LiFePO4 batteries.

The open circuit voltage of batteries utilizing LiFePO4 active material shows an
in wide ranges flat dependence on the SOC, which is characterized by three voltage
plateaus. Additionally, hysteresis phenomena significantly influence the open circuit
voltage UOCV. See, for example, the experimentally determined open circuit volt-
age characteristic of an A123 26650m1B LiFePO4 battery shown in Figure 2.1 in
chapter 2. Since the terminal voltage Uterm of a battery equals the difference of the
potentials of the positive and the negative electrode, the course of the open circuit
voltage UOCV can be deduced by investigating the electrode potentials separately.

Negative Electrode Potential

As mentioned above, lithium ion batteries prevalently use graphite as intercalation
material in the negative electrode. Depending on the order of the crystal structure,
it is distinguished between hard and soft carbon graphite. Since this introducing
chapter does not claim to provide an in-depth treatment of the electrochemical
phenomena in lithium ion batteries, only the prevalent case of hard carbon graphite
is described.

The crystal structure of hard carbon graphite insertion material is characterized by
a layered lattice. The layers are formed by a planar network of carbon atoms which
are symmetrically ordered in hexagonal patterns and the layers are arranged in such
a way that every second layer is displaced by half of the crystallographic spacing.
Consequently, this configuration minimizes electrostatic repulsion since every carbon
atom points at the neighboring planes in the center of a hexagonal pattern. In the
literature, this (prevalent) structure of graphite is denoted as AB configuration. Less
common is the rhombohedral structure known as ABC configuration.

The three-dimensional structure is evoked by the van der Waals force. Conse-
quently, the bound between the layers is relatively weak, which is beneficial for the
intercalation of lithium ions between the layers. As a consequence, the lithation
of the positive electrode is accompanied by a significant volume expansion of the
graphite particles. The order in which layers in the graphite particle are filled first
with lithium ions is defined by the staging mechanism which is schematically illus-
trated in Figure 1.4. The staging mechanism can be deduced from the energy which
is required to “open” a new gap for intercalation. As depicted in Figure 1.4, the
LiCx stoichiometry of the stages I, II, III and IV is given as LiC6, LiC12, LiC18 and
LiC30, respectively. However, due to safety reasons stage IV is usually not reached
in battery systems.

9
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Figure 1.4.: Stage formation of a hard carbon graphite electrode potential versus a
lithium reference electrode in the case of lithium intercalation induced
by a small and constant current. Modified from Winter et al. [28].

In practice, the electrode potential of the negative electrode does not entirely
match with the course shown in Figure 1.4. However, the characteristic plateaus of
the battery’s open circuit voltage UOCV are caused by the staging phenomenon of
the negative electrode.

Positive Electrode Potential

The reason why the voltage plateaus of the C6 electrode are so remarkable in the
LiFePO4 battery’s open circuit voltage characteristics is that the electrode potential
of the positive electrode remains in wide ranges nearly constant. This is due to the
positive electrode’s flat potential profile which was identified in several reviews by a
two-phase reaction with LiFePO4 and FePO4 end members (see e.g Matsui et al. [29]
or Zaghib et al. [25]). The review of Zaghib et al. gives a good overview of the phe-
nomena associated with the lithium insertion in olivine-based lithium batteries and
was used as a basis for the following explanations.

For example, consider an intercalation electrode where a solution of guests inter-
calates in a host lattice. The potential variation of the redox couple in the host
lattice in dependence of the composition x is given by

V (x) = − 1

zF

∂ (∆G)

∂x
+ const. (1.3)

where z denotes the number of electrons involved in the reaction, F the Faraday
constant and ∆G is the variation of the Gibbs energy3 of the system. Gibbs’ phase

3In thermodynamics, the Gibbs energy denotes a thermodynamic potential which is used to
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rule states that if a closed system is in the state of an thermodynamical equilib-
rium, the number of degrees of freedom of the system f is related to the number
of independent components c, the number of phases p and the number of intensive
variables n according to

f = c− p+ n. (1.4)

In the present case, c = 2 since the positive electrode can be treated as a binary
system consisting only of FePO4 and LiFePO4. In electrochemical systems, the
intensive variables are always pressure and temperature, hence p = 2. By further
assuming isobar and isothermal conditions for experiments in the lab, the expression
for the system’s number of degrees of freedom simplifies to f = 2−p. Consequently, if
only one phase exists in the host particle, the associated potential varies depending
on the guest concentration. By contrast, if two phases are present in the host
particle, the electrochemical potential is invariant with respect to the concentration
of the guest species. Figure 1.5 schematically illustrates this circumstance with α
and β denoting the width of the according single phase regions [30].

α β
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Figure 1.5.: Schematic illustration of the Gibbs’ phase rule for a bulk two-phase
system. The Gibbs energy depending on the guest concetration in the
host lattice is shown on the left. The according electrode potential
derived from the Gibbs energy is depicted on the right. Modified from
Zaghib et al. [25].

It is a proven fact, that insertion/depletion in LiFePO4 bulk material proceeds
according to a two-phase process. Hence, the width of the nearly constant electrode
potential is directly related with the width of the two-phase regions. As a conse-
quence, the size of the host particles has an great influence on the width of the
voltage plateau. This circumstance is in agreement with the review of Yamada et
al. [30], in which a shrinking two-phase region was observed for nanoparticles.

The fact that the two-phase region dominates the insertion/depletion of lithium
ions not only in the bulk material but also in nanoporous LiFePO4 multi-particle

express the reversible work which may be performed by a thermodynamical system on isobar
and isothermal conditions.
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electrodes was confirmed by several reviews of this topic. However, the exact mecha-
nism of insertion/depletion at the nanoscopic scale has not yet been fully understood
and is still subject of intense research efforts.

The controversy within the scientific community encompasses at least four models
of the insertion/depletion mechanism of the charged species which more or less
coexist nowadays.

Among these models, the core-shell model (also known as shrinking core model)
presented by Padhi et al. [31] was the first promising candidate to model the problem.
Padhi and coworkers proposed the transportation of the lithium ions proceeds by an
intercalation process depending on the radius of the host particle. With progressive
delithation of the host particle, the LiFePO4/FePO4 interphase is assumed to move
inwards as the outer region converts to the FePO4 phase to incorporate the diffusion-
limiting character of the LiFePO4 electrode in the model. A slightly modified version
of the core-shell was proposed by Andersson and Thomas [32] denoted as mosaic
model, which considers the feasibility that the lithium ions intercalate/deintercalate
at many sites of the LixFePO4 nanoparticles.

Later, the core-shell model was adopted by Srinivasan and Newman [33], who
demonstrated an asymmetry between the insertion and depletion process. The in
situ X-ray diffraction study provided by Shin et al. [34] confirmed this circumstance.
However, they reported that the results obtained in the lab are “significantly smaller
than those predicted by the model.” Hence, they concluded that the core-shell model
may be inappropriate to model the behavior of the LiFePO4 electrode.

A short time thereafter, based on experiments by means of electron loss spec-
troscopy and transmission electron microscopy, Laffont et al. [35] reported that
LixFePO4 nanoparticles always consist of an FePO4 core, independent of the charg-
ing history. Based on their observations, they proposed the radial core-shell model,
which is an anisotropic modification of the classical core shell model. The radial
core-shell model takes into account that the insertion of the lithium ions starts at
the edges of the particle but during delithation, the lithium ions are extracted from
the middle first.

In 2008, Delmas et al. [36] surprised with a completely different approach which
was derived by a X-ray diffraction and a high resolution transmission electron spec-
troscopy study, respectively. The results of the first study essentially confirmed the
two-phase transformation, whereas the high resolution transmission electron spec-
troscopy study offered surprising results since the LixFePO4 proved to either be fully
lithated or fully delithated. Based on these results, Delmas and coworkers devel-
oped the domino-cascade model, which basically models the deintercalation process
by a transversal elastic wave moving along the a-direction of the olivine LixFePO4

crystal, while the lithium ions migrate along the b-direction. In their review, they
explained that the elastic wave accelerates the phase transition by accelerating the
displacement of the LiFePO4/FePO4 boundaries. They further remarked that “at
the agglomerate scale, a core-shell is likely to occur.” In 2011, Brunetti et al. [37]
presented a study based on precession electron diffraction which essentially confirms
the domino-cascade model presented by Delmas and coworkers.

12
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Strongly linked to the insertion/depletion mechanism in the LiFePO4 electrode is
the phenomenon of open circuit voltage hysteresis. Unfortunately, since the inser-
tion/depletion mechanism has not yet been entirely understood, it is not surprising
that there are only a few reviews of this topic available. The controversy within the
scientific community encompasses two different causes for the voltage gap between
the charge and discharge potential of the LiFePO4 electrode.

For example, the review Matsui et al. [29] concluded that the voltage gap between
the charge and discharge potential may be caused by phases with extremely slow
relaxation at the late stage of the electrochemical reaction for both the insertion and
the depletion process. Furthermore, they proposed that the thermodynamical equi-
librium may was not reached at the moment the open circuit voltage was sampled.
In contrast to this theory, Dreyer and coworkers [38,39] presented an approach which
is based on the presence of multiple thermodynamical equilibria, corresponding to
the number of particles involved. They further claimed that the presence of these
multiple thermodynamical equilibria is characteristic for all multi-particle insertion
electrodes.

1.4. Contributions

As stated previously, the open circuit voltage characteristics of LiFePO4 batteries
prove to be crucial if the task is to determine the SOC of these batteries. This cir-
cumstance entails that the majority of state-of-the-art SOC determination methods
exhibit poor performance. Therefore, the thesis focuses on this problem, whereby
two approaches based on completely different principles are investigated.

The first approach is premised on Bayesian filtering and utilizes measurements
of the operating current and the terminal voltage for state inference. Thereby, at-
tention is drawn to the ambiguous mapping between the SOC and the open circuit
voltage UOCV. Based on experiments investigating the open circuit voltage charac-
teristics of LiFePO4 batteries, a dynamic model incorporating the influence of open
circuit voltage hysteresis was developed. The hysteresis model enables not only to
distinguish between the open circuit voltage charge and discharge curves but also
models the transition of the open circuit voltage between the 2 curves, which is the
case in applications which rely on small charge and discharge quantities. Hence,
the ambiguous mapping between the SOC and the open circuit voltage is tackled
by means of an additional nonlinear integrating state. Since the parameters of the
used dynamics model are not known a priori, a sequential Monte Carlo method
was utilized to estimate the states (and thus the SOC) and the model parameters
simultaneously [40].

The second approach is based on the change of the battery’s electromagnetic
properties accompanied by charging/discharging. In an early stage, a change of the
electric conductivity of the battery’s negative electrode was suspected. A first ex-
perimental evaluation obtained promising results since the inductance of an air coil
attached to an LiFePO4 battery showed a nearly linear dependence on the SOC [41].
It turned out later that the change of inductance arose most likely due to the exper-
imental setup as the sensitivity of the available measurement equipment was much
too low to detect the alternation of the electromagnetic properties. The search for
better equipped lab facilities concluded with a cooperation with the Institute of
Physics at the University of Graz. By means of a there available superconducting

13



1 Introduction 14

quantum interference device (SQUID) magnetometer, 2 studies were performed. In
a first step, the magnetic moment of samples of differently concentrated mixtures
of phase-pure LiFePO4 and FePO4 were investigated. The experiment revealed sur-
prising results, since the magnetic moment of the samples with the lower lithium
content showed the lower magnetic moment [42]. As mentioned in the previous sec-
tion, LiFePO4 and FePO4 do not exist in phase-pure form in real batteries. Hence,
the experiment was repeated and samples of the positive electrode of 9 identical but
differently charged LiFePO4 were extracted. The outcome of this second SQUID
study essentially confirmed the results of the first and proved the feasibility to
deduce the LiFePO4 battery’s SOC from the magnetic properties of the positive
electrode [43].

1.5. Outline

The structure of this thesis is as follows: Chapter 2 presents the results of the
experimental evaluation of the open circuit voltage characteristics of the investigated
LiFePO4 battery type. Based on these results, a model for the open circuit voltage
incorporating open circuit voltage hysteresis will be derived.

In chapter 3, a joint estimation approach based on Rao-Blackwellized particle fil-
tering will be described. After a short introducing section, the dynamics of the
battery will be modeled by means of open circuit voltage model developed in chap-
ter 2 and the performance of the estimator will be validated by simulations and real
measurements.

Chapter 4 deals with a feasibility study for determining the LiFePO4 battery’s
SOC based on magnetic principles. Therefore, the underlying theory will briefly
be presented, followed by the discussion of the results of the 2 performed SQUID
studies. Based on these findings, the required magnetic sensitivity of an induction
sensor will be evaluated. Therefore, the total alternation of the magnetic B-field
will be computed for the case of a homogeneous magnetization of a battery-like
geometry.

Finally, the shortcomings and advantages of the findings presented in this thesis
will be concluded in chapter 5. Additionally, a short outlook will be given which
essentially specifies the required measures to successfully determine the SOC of
LiFePO4 batteries.
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2. Open Circuit Voltage Modeling

As mentioned in chapter 1, the mapping between the SOC and the battery’s open
circuit voltage UOCV is of significant relevance for the performance of the SOC
estimator. Hence, the aim of this chapter is to develop a model of the open circuit
voltage UOCV incorporating the ambiguous mapping associated with open circuit
voltage hysteresis.

As a requirement, the model of the open circuit voltage must cover the transition
of the open circuit voltage UOCV from one open circuit voltage curve to the other
depending on charging/discharging. In order to meet this requirement, the open
circuit voltage UOCV is modeled not only as a function of the SOC but also as a
second charge-dependent quantity. Since the charging history implicitly influences
the open circuit voltage UOCV, this quantity is represented by an additional dynamic
state denoted as “hysteresis state” xH. Later, it will be focused on the dynamic
behavior of the hysteresis state but at this point it is only necessary that xH is of a
value between −1 and 1. The model of the open circuit voltage is given by

UOCV(SOC, xH) = UOCV,avg(SOC) + UOCV,diff(SOC)xH (2.1)

where UOCV,avg(SOC) and UOCV,diff(SOC) are given by

UOCV,avg(SOC) = 0.5(UOCV,ch(SOC) + UOCV,dis(SOC))

UOCV,diff(SOC) = 0.5(UOCV,ch(SOC)− UOCV,dis(SOC)),

respectively.

However, the functions UOCV,ch(SOC) and UOCV,dis(SOC) are not available in
closed form, hence, an experimental determination of these functions is required.
For this purpose, the open circuit voltage of an A123 26650m1-B LiFePO4 was in-
vestigated. Initially, the battery was fully charged to the specified end-of-charge
voltage of 3.6 V using a constant-current constant-voltage charging (CCCV)1 pro-
cedure. To ensure a/an (almost) settled terminal voltage, an idle time of 24 hours
was scheduled before performing charge and discharge experiments to obtain the
functions UOCV,ch(SOC) and UOCV,dis(SOC), respectively.

Unfortunately, due to the long relaxation period (up to 72 hours [44]) of batteries
utilizing LiFePO4 active material, the experimental determination of the true open
circuit voltage UOCV by measuring the totally relaxed terminal voltage Uterm is chal-
lenging. This circumstance is due to the fact that stepwise charging/discharging
followed by the necessary extensive settling period after each charge action leads
to an experimental duration for a sufficiently large number of open circuit voltage

1CCCV is a common charging procedure for Li-ion rechargeable batteries. Firstly, the battery
is charged with a constant current until the battery’s terminal voltage Uterm reaches the end-
of-charge voltage. Secondly, the terminal voltage is held constant until the (exponentially
decreasing) charging current drops below a certain threshold.
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2 Open Circuit Voltage Modeling 16

samples over the years. Due to the phenomena of self-discharge and calendrical
aging, the uncertainty with respect to the state of charge of the thus obtained mea-
surements would increase with proceeding experimental duration.

In order to circumvent this problem, the battery was charged and discharged with
a small constant current. A magnitude of 20 mA proved to be a reasonable trade-
off between measurement time and accuracy since the magnitude of 60 mA yield
similar results. Therefore, it is reasonable to assume that the transient contribution
Utrans to the terminal voltage Uterm and voltage drop across the internal resistance
UR is negligibly small. In order to accelerate the diffusion processes associated with
charging/discharging, the experiments in the lab were carried out in a temperature
stable cabinet at 40 ◦C. This measure mainly serves the purpose to minimize contri-
butions to the terminal voltage Uterm which are not attributable to the open circuit
voltage UOCV.

Figure 2.1 shows the measured approximated open circuit voltage charge curve
UOCV,ch (solid) and open circuit voltage discharge curve in dependence of the state
of charge2. Besides, due to the internal thermodynamical processes, the open circuit
voltage UOCV is implicitly influenced by the temperature. However, in the case
of the investigated battery, this influence proved to be of minor significance. For
instance, the terminal voltage Uterm of the totally relaxed battery was measured
in a temperature stable cabinet at 20 ◦C and 40 ◦C. The deviation between these
measurements was less than 1.1 mV.
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Figure 2.1.: Measured approximated open circuit voltage charge curve UOCV,ch

(solid) and open circuit voltage discharge curve (UOCV,dis) (dashed) of
an A123 26650m1-B 2.5 Ah cylindrical LiFePO4 battery.

2For reasons of simplicity, the same nomenclature is used for real and the measured approximated
open circuit voltage charge and discharge curves. Since the model of the open circuit voltage is
based on these curves, the same considerations apply to all functions related to the open circuit
voltage model.
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Figure 2.2.: Courses of the functions UOCV,avg and UOCV,diff in dependence of the
SOC. The courses were determined by means of the measured approxi-
mated open circuit voltage charge and discharge curves.

2.1. Open Circuit Voltage Hysteresis

In order to complete the modeling of the battery’s open circuit voltage, the dynamics
of the hysteresis state xH is described in this section. By investigating the battery’s
open circuit voltage charge and discharge curves, there were indications that the
open circuit voltage UOCV proceeds from one open circuit voltage charge curve to
the other along an exponential-like function.

Unfortunately, reviews concerning hysteresis phenomena associated with the am-
biguous mapping between the SOC and the open circuit voltage UOCV are underrep-
resented compared to papers investigating the battery’s short-term dynamics. This
circumstance is not surprising since in order to investigate the mentioned hystere-
sis phenomena measurements of the open circuit voltage UOCV at different charge
levels are required. As mentioned before, these measurements are extremely time-
consuming. Nevertheless, in order to investigate the influence of the hysteresis
phenomena on the open circuit voltage UOCV, an experimental study was carried
out. The results essentially confirm the findings presented in [45].

The hysteresis phenomena were investigated by measuring the open circuit voltage
UOCV of nine charge/discharge cycles which are assumed to perform loop-shaped
transitions from one open circuit voltage charge curve to the other. Thereby, each
loop consists of 13 individual measurements of the open circuit voltage UOCV. As a
trade-off between accuracy and experimental duration, a settling time of 24 hours
was kept after each individual charge/discharge action before the battery’s terminal
voltage Uterm was measured in order to obtain a sample of the open circuit voltage
UOCV. By analogy with the investigations in the previous section, the experiments
were carried out in a temperature stable environment at 40 ◦C to accelerate the
thermodynamical processes associated with charging/discharging.
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2 Open Circuit Voltage Modeling 18

However, the problem of the exhaustive settling time proved to be challenging
since the experimental duration is mainly determined by this quantity. By neglecting
the time span required to charge/discharge the battery with the according state of
charge, the time exposure for the experiment with the mentioned configuration is at
least 117 days. Unfortunately, this fact evokes a series of problems since it is hard
to provide the same experimental conditions over this long period.

Hence, the investigation of the open circuit voltage hysteresis was partitioned
into three individual and simultaneously performed experiments. For this purpose,
12 A123 26650m1-B LiFePO4 batteries were tested with respect to their nominal
capacity Cn. A subset of three batteries which exposed the smallest difference with
respect to the nominal capacity Cn was chosen for the experiment. Figure 2.3 depicts
the testing procedure for investigating the hysteresis-related alternation of the open
circuit voltage UOCV. Each color represents an individual experiment, consisting
of three hysteresis loops. Starting either on the upper or the lower open circuit
voltage curve (circular unfilled markers), the batteries were charged (solid line) or
discharged (dashed line) in seven steps by a total charge level corresponding to 10%
of the battery’s nominal capacity Cn. After the last sample (asterisk markers), the
current direction was changed and the transition of the open circuit voltage UOCV

to the opposite direction was investigated with the same number of samples. For
the sake of clarity, it should be mentioned that the loops shown in Figure 2.3 were
obtained by simulation. The transition from one open circuit voltage curve to the
other was assumed to be completed by taking the last sample, which is why the
start and end markers overlap.
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Figure 2.3.: Illustration of the test procedure to investigate the transition of the
open circuit voltage UOCV from one open circuit voltage curve to the
other. Each color corresponds to an experiment investigating the open
circuit voltage of an individual A123 26650m1-B LiFePO4 battery. The
unfilled circular and the asterisk markers denote start and end values,
respectively. The filled markers represent intermediate measurements.
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With the mentioned configuration, the duration of the experiments related to the
investigation of the open circuit voltage hysteresis is reduced by the factor of three
but still demands thirty-nine days. In order to cope with the challenges associated
with the long test duration, highly accurate battery testing units were developed at
the Institute of Electrical Measurement and Measurement Signal Processing. Since
the development of these testing units is not within the scope of this thesis, interested
parties are referred to Grubmüller [46]. For the sake of completeness, it should be
mentioned that all battery tests related to charging and discharging were performed
with these custom battery testing units.

The results of the first, second and third triple of investigated hysteresis loops are
depicted in Figure 2.4, Figure 2.5 and Figure 2.6, respectively. The shown transitions
of the open circuit voltage essentially confirm the assumption that the transition of
the open circuit voltage proceeds along an exponential-like function from one open
circuit voltage curve to the other. However, it is noticeable that the first and last
sample of each individual transition curve show a distinct deviation with respect
to the according open circuit voltage curve. There are several possible reasons for
this circumstance. Firstly, the width of the true hysteresis loops may be larger than
10% of the battery’s nominal capacity Cn. This scenario, however, is unlikely since
the slope of the transitions appears to decline along the slope of the according open
circuit voltage curve in the vicinity of the open circuit voltage plateaus. Secondly,
the deviation is caused by the approximation of the open circuit voltage charge and
discharge curves. The fact that the experimental evaluations of the open circuit volt-
age with constant currents of 20 mA and 60 mA yielded similar results contradicts
this assumption. Third, the deviation is due to horizontal misalignments caused by
the different nominal capacities of the investigated batteries. The misalignment of
the fist loop shown in Figure 2.5 strongly indicates this circumstance.
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Figure 2.4.: Measured open circuit voltage UOCV of the first triple of hysteresis loops
with starting SOC values of 0.05, 0.15 and 0.25, respectively. The blue
lines show the charge (solid) and discharge (dashed) transition, while
the black lines correspond to UOCV,ch and UOCV,dis.
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Figure 2.5.: Measured open circuit voltage UOCV of the second triple of hysteresis
loops with starting SOC values of 0.35, 0.45 and 0.55, respectively. The
green lines show the charge (solid) and discharge (dashed) transition,
while the black lines correspond to UOCV,ch and UOCV,dis.
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Figure 2.6.: Measured open circuit voltage UOCV of the third triple of hysteresis loops
with starting SOC values of 0.65, 0.75 and 0.85, respectively. The red
lines show the charge (solid) and discharge (dashed) transition, while
the black lines correspond to UOCV,ch and UOCV,dis.

To summarize, since the the presented results relate to four individual experiments
investigating four individual batteries, the source of the mentioned deviation in the
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open circuit voltage cannot be clarified at this point. In the case of the hystere-
sis loops, this circumstance is of minor relevance since the presented investigation
aimed to provide of an idea how the open circuit voltage behaves between the open
circuit voltage charge and discharge curves. Nevertheless, it should be mentioned
that the approximation of the open circuit voltage charge and discharge curves is
indeed a source of uncertainty.

In order to complete the model of the open circuit voltage UOCV, state update
equations for the SOC and the hysteresis state xH are required. According to the
definition section in chapter 1, the SOC corresponds to the stored charge level,
normalized by the nominal capacity Cn. Hence, the state update of the SOC is
given by

dSOC

dt
=
i(t)

Cn
. (2.2)

Based on the findings shown in Figure 2.4-2.6, the functions

x+
H(t) = −2e

−α
(∫ t
t0
i(τ)dτ−QH

)
+ 1 (2.3)

x−H(t) = 2e
α
(∫ t
t0
i(τ)dτ+QH

)
− 1 (2.4)

are used for the derivation of the hysteresis state xH where α is a strictly positive
parameter. Hence, the state space representation of the hysteresis state xH is found
by differentiation of these functions with respect of time according to

dxH

dt
=

{
α (1− xH(t)) i(t) if i(t) ≥ 0

α (1 + xH(t)) i(t) if i(t) < 0
. (2.5)

The fact that xH is not continuously differentiable is of minor significance since
the estimation algorithm presented in the next chapter relies on a discrete dynamic
model. With sample time Ts, the state update equation of the hysteresis state is
given by

xH,k+1 = xH,k + αTs (1− sign (ik)xH,k) ik. (2.6)

Obviously, eq. 2.6 corresponds to a nonlinear integrator which is bounded to ±1 if
the initial value is bounded to ±1 and α is a strictly positive. If these requirements
are fulfilled, the trajectory of the hysteresis state xH,k performs exponential loops for
consecutive charge and discharge pulses. Since this nonlinear integrator utilizes only
a one-dimensional space, the extension of state-of-the-art models by this additional
dynamics comes at minor computational costs.
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3. Bayesian Filtering for Battery
Monitoring

As mentioned in chapter 1, a common way to estimate the SOC of a battery system
is to infer the SOC from current and voltage measurements by applying Bayesian
filtering methods. According to this approach this chapter deals with a Bayesian
filtering approach, which considers the ambiguous mapping between the SOC and
open circuit voltage UOCV discussed in the previous chapter. Hence, a joint estima-
tion framework based on a sequential Monte Carlo method will be used.

This chapter is structured as follows: First, the underlying principles of the used
estimation framework will be presented in a short introducing section before the
performance of the proposed estimator will be validated for both simulated and
measured data records. In order to provide realistic load scenarios, the according
current profiles of the battery’s operating current will be derived by commonly used
driving cycles for hybrid electric vehicles.

3.1. Prerequisites

The aim of this section is to offer the reader a rough overview of the principles of
the used joint estimation framework utilizing Rao-Blackwellized particle filtering.
Note that the explanations in this chapter cannot compete with a comprehensive
description of sequential Monte Carlo integration used for identification and state
inference.

3.1.1. Joint/Dual Estimation

With state estimation one often encounters the problem that the state space model
required by the estimator is uncertain. Depending on the application, the degree
of uncertainty can vary between some uncertain parameters of a potentially well-
modeled process (gray-box models) and a priori completely unknown parameteriza-
tion of a white-box model (e.g. a neural network). The goal of joint/dual estimation
is to simultaneously estimate the states and the parameters. This approach might
be motivated by different reasons. On the one hand, the parameters of the model are
tracked in order to improve the state space representation and, thus, the accuracy
of the state estimates. On the other hand, the approach of simultaneous state and
parameter estimation might be only due to the system identification perspective as
e.g. regression problems are conceivably solved more easily in the state space.

In any case, one faces the problem to estimate simultaneously the states and pa-
rameters of a dynamic system. Since the states and the parameters are functionally
dependent on each other, an optimal solution for the estimates of the states and
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the parameters does not exist.1 Thus, only suboptimal estimators are available to
tackle the problem of simultaneous state and parameter estimation. In the literature,
the common algorithms can be divided into dual and joint estimation. Figure 3.1
schematically illustrates the fundamental differences the two concepts.

xk+1 = f(xk,θk,uk) + wx,k 

yk = h(xk,θk) + vk

θk+1 = θk + wθ,k 

yk = g(xk,θk) + ek

yk

uk

xk̂

θk
̂

(a) Dual estimation

yk

uk xk̂

θk
̂

xk+1 = f(xk,θk,uk) + wx,k 

θk+1 = θk + wθ,k 

yk = h(xk,θk) + vk

(b) Joint estimation

Figure 3.1.: Illustration of the two concepts for simultaneously estimating the states
xk and the parameters θk of a state space model.

For dual estimation, two separate estimators are used: one to estimate the states,
and one for the parameters. Since the state process and the parameter process are
functionally dependent on each other, the estimate of the states is fed back to the
parameter estimator and vice versa. The role of the estimates can be interpreted
as additional measurements. Consequently, the dimensionality of the state and
parameter estimators only depend on the dimensionality of the state vector and the
parameter vector, respectively.

The alternative approach is joint estimation, whereby the state and the parameter
vector are augmented and the state update equation is (in most cases) expanded by
a random walk model. Hence, the model order increases by the dimensionality of the
parameter vector θ. As a result, the estimation is done by only one estimator which
targets the augmented system. Since the augmented state space model is certainly
nonlinear, this approach is compared to dual estimation much more restrictive with
respect to the choice of the estimator.

Unfortunately, there is no common rule which approach should be pursued. From
a practical point of view, the dual approach is often easier to implement since it
is more likely that the problem can be tackled by (suboptimal) Kalman filtering
(see e.g. Wan et al. [47–50]). Alternatively, by augmenting the parameters and
the states, the corresponding statistics is entirely taken into consideration for the
estimate of the state vector which is not the case for dual estimation. As for the
approach for estimating the SOC of an LiFePO4 battery presented herein, it was
decided to constitute an estimator on the principle of joint estimation similar to the
reviews by Gustafsson and Schön [51] or Schön et al. [52].

1In this context, the term “optimal” denotes the closed form solution in the Bayesian sense
which basically corresponds to the expectation value with respect to the according posterior
distribution.
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3.1.2. Sequential Monte Carlo

Bayesian filtering denotes a probabilistic method for estimating the posterior dis-
tribution of the states of a hidden Markov model at time instant xk, based on all
available observations y0:k and some prior information about the initial states rep-
resented by a prior probability density function p(x0). The estimate of the states
is given by the conditional expectation value with respect to the posterior density
p(xk|y0:k) according to2

x̂k = E{xk|y0:k} =

∫
xkp(xk|y0:k)dxk (3.1)

where the posterior density is found by applying Bayes’ rule according to

p(xk|y0:k) =
p(yk|xk)p(xk|y0:k−1)

p(yk|y0:k−1)
. (3.2)

Since p(xk|y0:k−1) and p(yk|y0:k−1) are not directly accessible, these densities must
be expressed in terms of accessible ones. By means of the Chapman-Kolmogorov
equation, the prediction density p(xk|y0:k−1) can be expressed in terms of the state
update density p(xk|xk−1) and the posterior density of the previous time instant
p(xk−1|y0:k−1) according to

p(xk|y0:k−1) =

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1. (3.3)

The probability density p(yk|y0:k−1) is found by marginalization and integration
of the joint probability density p(xk,yk|y0:k−1) with respect to xk. By using the
expression for the prediction density (eq. 3.3), p(yk|y0:k−1) can be expressed in
terms of accessible probability densities and the expression for the posterior density
is given by

p(xk|y0:k) =
p(yk|xk)

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1∫

p(yk|xk)
(∫

p(xk|xk−1)p(xk−1|y0:k−1)dxk−1

)
dxk

, (3.4)

where p(yk|xk) is the likelihood function and is defined by the observation model.
Usually, the problem is tackled in a two-stage procedure. In the first step (time
update), the prediction p(xk|y0:k−1) density is computed. In the second step (mea-
surement update), the conditioning on the observation yk is performed and the
posterior density is computed.

Eq. 3.1 can be solved in closed form only if the following conditions are met: The
prior density p(x0) as well as the probability densities associated with the process
and measurement noise are Gaussian. The state update and the observation model
correspond to affine transformations. This circumstance is based on the fact that
the Gaussian distribution is preserved by an affine transformation. Thus, the rules
for operating with Gaussian probability densities (see Appendix A) can be applied
and the integrals must not explicitly be solved. In such cases, the Kalman filter

2Since this chapter deals with probability density functions, the integral operators shown herein
relate to definite integrations with respect to the support of the associated probability density
functions. For the sake of clarity, the boundaries of these integrals are not shown.
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optimally estimates the sequencing of the posterior density. Since this algorithm is
highly prevalent these days, interested parties are referred to [53,54] for an in-depth
treatment of Kalman filtering. If the mentioned conditions are not met while in
a certain sense “mild conditions” emerge, suboptimal estimators like the extended
Kalman filter (EKF) or the unscented Kalman filter (UKF) are a good choice to pro-
vide an acceptable approximation of the sought expectation value. Unfortunately,
in the case of the joint estimation approach presented in this thesis, these “mild
conditions” are not met. Concerning the Bayesian filtering problem, the only option
left is to estimate the expectation value of the posterior density with a Monte Carlo
estimator. As the name suggests, Monte Carlo estimators are based on the principle
of Monte Carlo integration, which is a pure simulation based approach to evaluate
definite integrals by statistical sampling. In the literature, these samples are often
referred to as particles which the denotation particle filtering is derived from. In-
terested parties should refer to according introducing literature (see e.g. [55–59]) for
an in-depth treatment of particle filtering.

Monte Carlo Integration

Consider the multidimensional definite integral

I =

∫
S

g(x)dx (3.5)

where x ∈ Rn is a high-dimensional space and the function g(x) is not integrable in
closed form. If g(x) can be divided into a product of an arbitrary test function ϕ(x)
and a probability density π(x) with support S, the definite integral I is given by the
expectation value of the test function ϕ(x) with respect to the probability density
π(x). The key idea of Monte Carlo integration is to sample a set of N independent
samples {xi}Ni=1 generated by the density π(x) and to approximate Eπ{ϕ(x)} by the
empirical average

Î =
1

N

N∑
i=1

ϕ(xi). (3.6)

By the Strong Law of Large Numbers, Î converges almost surely to Eπ{ϕ(x)}
whereby the variance of the estimate is given by

var(Î) =
1

N

(∫
ϕ2(x)π(x)dx− I2

)
. (3.7)

Obviously, the dimension of the vector x does not influence the variance of the es-
timated integral. Therefore, Monte Carlo integration is the only feasible method in
the case of high-dimensional integrals.

At first glance, the Monte Carlo approach appears to be straight forward and easy
to implement. Unfortunately, this is not entirely true since direct sampling from
the distribution associated with the target density π(x) is in most cases infeasible.
In situations when the computation time is of minor relevance, this problem can be
tackled by Markov Chain Monte Carlo (MCMC) algorithms. However, in the case of
particle filtering, the computational demand of the sampler plays a major role as the
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approximation of the conditional expectation integral with respect to the posterior
density p(xk|y0:k) is required at every time instant k. Hence, most implementations
of the particle filter utilize a statistical sampler based on importance sampling.

Importance Sampling

The concept of importance sampling is premised on the approach to sample from
an easily accessible distribution (proposal or importance distribution) instead of the
target distribution. If the support of the proposal density γ(x) is at least as great
as the support of the target density, the target density can be partitioned according
to

π̃(x) = w̃(x)γ(x) (3.8)

where w̃(x) corresponds to a weight function and π̃(x) denotes the unnormalized

target density. It is beneficial to use the notation π(x) = π̃(x)
απ

since in many cases
the target density is only known up to proportionality. The factorization of the
target density is given by

π(x) =
w̃(x)γ(x)∫
w̃(x)γ(x)dx

(3.9)

where the integral of the denominator corresponds to the normalization constant απ
and can be interpreted as the expectation value of the unnormalized weight function
w(x) = π̃(x)

γ(x)
with respect to the importance density γ(x). By sampling a set of N

independent samples {xi}Ni=1 generated by this density, the normalization constant
can be approximated by the empirical average

α̂π =
1

N

N∑
i=1

π̃(xi)

γ(xi)
. (3.10)

It can easily be shown that this estimator is unbiased with variance

var(α̂π) =
α2
π

N

(∫
π2(x)

γ(x)
dx− 1

)
. (3.11)

In a similar way, the expectation value Eπ{ϕ(x)} and, thus, the sought integral is
approximated according to

Î IS =
N∑
j=1

π̃(xj)

γ(xj)∑N
i=1

π̃(xi)
γ(xi)︸ ︷︷ ︸

=wj

ϕ(xj) (3.12)

where wj denotes the jth normalized weight. In the literature, the set {xi, wi}Ni=1 is
often referred to as particle set or particle system. If the normalization constant απ
is not known, the importance estimate I IS is biased. According to [56], in this case,
the asymptotic variance is given by

lim
N→∞

var
(
Î IS
)

=
1

N

∫
π2(x)

γ(x)
(ϕ(x)− I)2 dx. (3.13)
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Compared to the native Monte Carlo estimator, the variance of the estimator is not
only influenced by the size of the sample set but also by the choice of the proposal
distribution. Hence, the proposal distribution is a significant design parameter.

Figure 3.2 illustrates the concept of importance sampling. The blue line shows a
multimodal unnormalized target distribution derived by a Gaussian mixture model.
A Gaussian proposal distribution (green) was used to generate the particle system
of 100 samples (red). The test function was set to ϕ(x) = x. The true expectation
value of the test function with respect to the target density is I = 0.833. The result
obtained by the importance sampling estimator is Î IS = 1.09.

−15 −10 −5 0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

 

 

target

proposal

weights

Figure 3.2.: Illustration of the principle of importance sampling. The blue line cor-
responds to the unnormalized target density π̃(x). The samples and
the associated normalized weights (red) were generated by means of a
Gaussian proposal density γ(x) (green line).

Sequential Importance Sampling

In most particle filter implementations, the sampler targets the posterior smooth-
ing density p(x0:k|y0:k) instead of the posterior filtering density p(xk|y0:k). As for
the computational demands, this circumstance is beneficial since the complexity of
targeting p(x0:k|y0:k) is O(N) compared to O(N2) for targeting the filtering dis-
tribution p(xk|y0:k) [60]. However, by targeting the smoothing posterior density, a
fundamental problem arises. Obviously, the dimension of the posterior smoothing
density increases every time instant k by the dimension of the state vector. Con-
sequently, the computational complexity increases at least linearly, which makes
native importance sampling infeasible to track the sequencing of the posterior mean
values.

This problem is tackled by sequential importance sampling which admits a fixed
computational complexity with each time step. This can be achieved by choosing
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the proposal density at time step k to be of the structure

γk(x0:k) = γ0(x0)
k∏
i=1

γi(xi|x0:i−1). (3.14)

By plugging the proposal density γk(x0:k) in eq. 3.8, a sequential update formula
can be derived for the weight function according to

w̃k(x0:k) =
π̃k−1(x0:k−1)

γk−1(x0:k−1)︸ ︷︷ ︸
=w̃k−1(x0:k−1)

π̃k(x0:k)

π̃k−1(x0:k−1)γk(xk|x0:k−1)
. (3.15)

Since only the conditional marginal proposal density γk(xk|x0:k−1) appears in
eq. 3.15, it looks like that the Bayesian filtering problem is essentially solved by
applying the sequential update scheme. Unfortunately, this is not true since the
variance of the estimator increases exponentially with k.

This phenomenon is denoted as sample degeneracy or weight degeneracy problem
in the literature. The problem in this context is that after some time steps all
samples except for one will have negligible weight. It is certainly clear that the
approximation of any integral by an empirical average, based on one single sample,
is left to perform poorly. The tutorial by Doucet and Johansen [56] provides an
intuitive toy example which illustrates the problem of sample degeneracy. One
way which partially solves this problem is to introduce a mechanism for selection
which is most commonly done by resampling. This introducing section refrains from
treating the resampling step in detail. Interested parties should refer to e.g. [61–63]
to gain an overview of the existing resampling strategies. However, it should be
highlighted that the selection step must be performed either at each time step (e.g.
the bootstrapping filter) or if the estimate of the effective sample size

N̂eff =
1∑N

i=1(wik)
2

(3.16)

drops below a certain threshold.

Particle Filtering

Particle filtering is (at least in most implementations) nothing else than using
the sequential Monte Carlo estimator by choosing the unnormalized target den-
sity π̃k(x0:k) = p(x0:k,y0:k) and the normalization constant απ = p(y0:k). Hence, the
sequential update scheme for the weight function (eq. 3.15) is given by

w̃k(x0:k) = w̃k−1(x0:k−1)
p(yk|x0:k,y0:k−1)p(xk|x0:k−1,y0:k−1)

γk(xk|x0:k−1,y0:k)
(3.17)

where the more general notation γ(x0:k,y0:k) is used for the proposal density. Due
to the properties of hidden Markov models, the update for ith weight is given by

w̃ik = w̃ik−1

p(yk|xik)p(xik|xik−1)

γk(xik|xi0:k−1,y0:k)
. (3.18)

This expression can be simplified if the state update density p(xik|xik−1) is used as
proposal density. In combination with the selection by multinomial resampling at
each time step, this approach is known as bootstrapping (see e.g. Gordon et al. [64]
or Candy [65]).
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3.1.3. Rao-Blackwellization

Before explaining the concept of Rao-Blackwellization in detail, attention is drawn
to the following two quotes which often appear in conjunction with Monte Carlo
estimators in the literature and encourage Rao-Blackwellization.

“Anyone who considers arithmetic methods of producing random digits is, of
course, in a state of sin,” John Von Neumann, 1951

“The only good Monte Carlos are dead Monte Carlos”, Trotter & Tukey, 1954

The conclusion which can be drawn from these quotes is not that Monte Carlo
methods should not be taken into consideration, but what is more important: they
should be avoided whenever it is possible. In other words, this means whenever an
expression can be calculated in closed form, it should be calculated in closed form
instead of using the purely random approach of Monte Carlo estimators. Of course,
if one faces a nonlinear or/and non-Gaussian filtering problem, the closed form is
in general intractable. However, the idea which was suggested by Doucet et al. [66]
and Schön et al. [52] is to use the concept of Rao-Blackwellization to compute parts
of the filtering problem analytically and, thus, reduce the variance of the estimator.

The Rao-Blackwell theorem says that if θ̂(x1:N) is an estimator for θ with finite
variance and T (x1:N) is a sufficient statistic3 for θ, then the estimator

θ̂RB(T ) = E{θ̂(x1:N)|T (x1:N)} (3.19)

typically performs better than every other estimator. In other words, the estimator
θ̂RB(T ) defines the lower bound of the mean squared error since

E
{(

θ̂RB − θ
)2
}
≤ E

{(
θ̂ − θ

)2
}
. (3.20)

At the beginning of this chapter, an estimator was already mentioned which em-
ploys this concept. If the Bayesian filtering problem is tractable in closed form, the
Kalman filter denotes the minimum mean squared error estimator with the sufficient
statistic being the mean and the covariance function derived by the Kalman filter
equations.

The concept of Rao-Blackwellization in the context of nonlinear filtering, which is
also known as marginalization, is illustrated by the following simple example.

Toy Example

Suppose the joint probability density p(x, z) can be factorized according to

p(x, z) = p(z|x)p(x) (3.21)

3A statistic is a measure of a sample’s (certain) attribute which is calculated by applying a
function to values of the sample. A statistic is said to be sufficient if there exists no other
statistic calculated from the same sample which provides further information [67].
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where p(x) is an arbitrary probability density and the conditional probability density
is assumed to be Gaussian p(z|x) = N (µz(x), σ2

z(x)). In the present case, p(x) is
chosen to be a Gaussian mixture density given by

p(x) =
5∑
i=1

miN (µx,i, σ
2
x,i) (3.22)

with mixture weights, mean values and standard deviations according to

m = [0.12, 0.16, 0.24, 0.24, 0.24]

µx = [−3,−2, 0, 2, 3]

σx = [0.4, 0.6, 0.6, 0.6, 0.8] .

Figure 3.3 illustrates the multimodal character of this probability density function.
The functions for the conditional mean and the conditional standard deviation of
p(z|x) are given by

µz(x) = 0.8− e−0.4605(x+5) (3.23a)

σz(x) = 0.1e−
x2

100 . (3.23b)
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Figure 3.3.: Marginal probability density function p(x) derived by a 5th order Gaus-
sian mixture model.

The joint probability density function p(x, z) is visualized in Figure 3.4. Ob-
viously, this function is non-symmetric and multimodal, whereby the modes are
spread over a relatively wide range. This situation entails some serious problems if
an optimization-based approach is pursued for estimation. For instance, the sim-
plest case is considered and the mean values are estimated by means of a max-
imum likelihood estimator. Even though the problems associated with the non-
convexity of p(x, z) are solved, this approach yields to estimated mean values of
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x̂MLE = 2.244 and ẑMLE = 0.764, which is exactly the location of the highest mode.
The true expectation value4 with respect to the test function ϕ(x, z) = [x, z]T is
E{ϕ(x, z)} = [0.52, 0.668]T .

(a) Surface plot of p(x, z)

x

z

 

 

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
(x

,z
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Filled 2D contour plot of p(x, z)

Figure 3.4.: Visualization of the joint probability density function p(x, z).

Hence, the problem is tackled by statistical sampling. Since this toy example is
aimed to introduce the concept of Rao-Blackwellized particle filters, the statistical
samples are provided by an importance sampler instead of an MCMC sampler. Of
course, the latter would provide more accurate estimates.

Targeting the joint probability density function p(x, z) with an importance sampler
requires to sampleN samples from an two-dimensional multivariate proposal density.
For instance, consider a sample set of N = 100 samples. It is clear that importance
sampling provides a poor approximation of the expectation integral with respect
to the two-dimensional target density p(x, z), if the particle set consists only of
100 samples. The key idea of Rao-Blackwellization is to tackle this problem by
sampling from a different, lower dimensional target density. Recall the factorization
of the joint probability density function p(x, z) (eq. 3.21). It was claimed that
the marginal probability density function p(x) can be arbitrary but the conditional
marginal probability density p(z|x) is restricted to be Gaussian. Thus, instead of
targeting the joint probability density function p(x, z), the importance sampler can
be used to target the marginal probability density function p(x) by the particle
approximation

p(x)dx ≈
N∑
i=1

wiδXi(x). (3.24)

Since the Rao-Blackwellized sampler utilizes only a one-dimensional sample space,
the particle approximation of this target density is much denser (see Figure 3.5).

4The desired expectation value cannot be obtained by analytical integration. Thus, the attribute
“true” is not entirely correct. However, due to the chosen structure of p(x, z) and the fact that
the normalization constant is known, the expectation integral can be accurately evaluated by
numerical quadrature techniques. Usually, this comfortable situation is not met in practice.
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Figure 3.5.: Sampled particles and associated importance weights targeting the one-
dimensional marginal probability density function p(x).

The estimates of the Rao-Blackwellized importance sampler are derived by plug-
ging the particle approximation of p(x) (eq. 3.24) into the desired expectation inte-
grals according to

E{x} =

∫∫
xp(z|x)p(x)dxdz ≈

N∑
i=1

wixi

∫
p(z|xi)dz =

N∑
i=1

wixi (3.25a)

E{z} =

∫∫
zp(z|x)p(x)dxdz ≈

N∑
i=1

wi

∫
zp(z|xi)dz =

N∑
i=1

wiµz(xi). (3.25b)

By comparing the Rao-Blackwellized estimators with the ones obtained by native
importance sampling, two circumstances are striking. First, the Rao-Blackwellized
estimator of E{x} appears formally the same as the according native importance
sampling estimator. The only difference is that the samples {xi}Ni=1 were generated
by targeting p(x) instead of p(x, z). Second, the Rao-Blackwellized estimator of E{z}
is a sum of the weighted mean values of z conditioned on the according particle.
This is basically the reason why p(z|x) was initially restricted to be Gaussian. In
the case of this toy example, p(z|x) can be any probability density function as long
as its mean function is evaluable. However, in the context of Bayesian filtering, the
sequencing of the mean function of p(zk|x0:k, y0:k) is tracked. Hence, to benefit from
a (partly) closed form solution, p(zk|x0:k, y0:k) must be Gaussian to be feasible for
Kalman filtering.

The improvement of estimation accuracy by the Rao-Blackwellized setting is demon-
strated in Figure 3.6, in which the results of a Monte Carlo analysis of 100 trails
are shown. The blue lines correspond to the true expectation values, the green and
the red line to the according native and Rao-Blackwellized importance estimates,
respectively. Both estimators utilize a particle set of N = 100 samples. Appar-
ently, the variance of the Rao-Blackwellized importance estimator is much smaller
compared to the variance of the native importance estimator.
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Figure 3.6.: Estimated and true values of E{x} and E{z}. A Monte Carlo analysis of
100 trials was carried out to evaluate the performance of the native and
the Rao-Blackwellized importance estimators. The blue lines indicate
the true values of 0.52 and 0.668, respectively. The green lines corre-
spond to the native importance estimators, while the red lines represent
the results obtained by Rao-Blackwellized importance sampler.

Conditionally Linear Gaussian State Space Models

Before proceeding with the equations of the Rao-Blackwellized particle filter, it
should be clarified first which class of nonlinear state space models can be taken
into consideration for this framework. As mentioned before, the conditional marginal
probability density function must be Gaussian. The class of nonlinear state space
models which meet this requirement are conditionally linear Gaussian state space
(CLGSS) models. Characteristic for this kind of state space models is that the state
vector can be partitioned into a nonlinear and a conditionally linear part according

to xk =
[
(xN

k )T , (xL
k )T
]T

. Regarding the nonlinear states xN
k , no restrictions with

respect to the according state update equation and measurement equation apply. In
contrast, the states xL

k are restricted to linearly enter both the state update equation
and the measurement equation.

In general, different types of CLGSS models exist and differ with respect to the
state update equation of the nonlinear states xN

k . The joint estimation framework
presented in this thesis is based on a mixed linear/nonlinear state space model (see
see e.g [52,68,69]) with a functional form according to

xN
k+1 = fN

k (xN
k ) + AN

k (xN
k )xL

k + wN
k (3.26a)

xL
k+1 = fL

k (xN
k ) + AL

k (xN
k )xL

k + wL
k (3.26b)

yk = hk(x
N
k ) + Ck(x

N
k )xL

k + vk. (3.26c)

The distributions of the process noise, the measurement noise and the prior distri-
bution of the conditional linear process are given by[

(wN
k )T , (wL

k )T
]T ∼ N (0,Qk(x

N
k )) (3.27a)

vk ∼ N (0,Rk(x
N
k )) (3.27b)

xL
0 |xN

0 ∼ N (x̂L
0|−1(xN

0 ),P0|−1(xN
0 )) (3.27c)
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where the covariance of the process noise is partitioned according to

Qk

(
xN
k

)
=

[
QNN
k (xN

k ) QNL
k (xN

k )(
QNL
k (xN

k )
)T

QLL
k (xN

k )

]
. (3.27d)

The initial distribution of the nonlinear states xN
0 can be arbitrary.

Rao-Blackwellized Particle Filter (RBPF)

At this point, the equations of the Rao-Blackwellized particle filter can be derived.
With the mentioned partition of the state vector, the minimum mean squared error
estimates x̂N

k|k and x̂L
k|k are given by

E{xN
k ,x

L
k |y0:k} =

∫∫ [
xN
k

xL
k

]
p
(
xN
k ,x

L
k |y0:k

)
dxN

k dx
L
k . (3.28)

In order to benefit from the Rao-Blackwellized setting, this expectation integral is
reformulated in such a way that the probability density function associated with the
linear states xL

k is Gaussian. The posterior expectation value does not change if the
joint filtering posterior probability density is expanded according to p

(
xN

0:k,x
L
k |y0:k

)
and the trajectory up to time step k − 1 is subsequently integrated out of the
expectation integral. Hence, marginalization of p

(
xN

0:k,x
L
k |y0:k

)
with respect to the

conditionally states xL
k leads to the desired expectation integral according to

E{xN
k ,x

L
k |y0:k} =

∫∫ [
xN
k

xL
k

]
p
(
xL
k |xN

0:k,y0:k

)
p
(
xN

0:k|y0:k

)
dxN

0:kdx
L
k . (3.29)

By targeting the marginal smoothing posterior density p
(
xN

0:k|y0:k

)
with a sequential

importance sampler, the particle approximation

p
(
xN

0:k|y0:k

)
dxN

0:k ≈
N∑
i=1

wk,iδxN
0:k,i

(xN
0:k) (3.30)

is used to approximate the conditional expectation values according to

x̂N
k|k = E{xN

k |y0:k} ≈
N∑
i=1

wk,ix
N
k,i (3.31a)

x̂L
k|k = E{xL

k |y0:k} ≈
N∑
i=1

wk,i E{xL
k |xN

0:k,i,y0:k}︸ ︷︷ ︸
x̂L
k|k,i

. (3.31b)

At a first glance, it looks like the estimate of the nonlinear states is independent
from the linear states. However, eq. 3.31a shows an implicit dependency on the
linear states since the conditional mean and covariance functions enter the update
equation for the importance weights. Before focusing on the computation of the im-
portance weights, the recursions for the computation of the conditional mean values
x̂L
k|k,i will be presented first [70].
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Let us start to derive the update equations for the prediction and posterior mean
and covariance functions by claiming that the conditional marginal posterior den-
sity at time instant k = 0 is a Gaussian probability density function according to

p(xL
0 |xN

0 ,y0) = N
(
xL

0 ; x̂L
0|0(xN

0 ),P0|0(xN
0 )
)

. Hence, according to the definition of the

mixed linear/nonlinear state space model p(xL
k−1|xN

0:k−1,y0:k−1) is also Gaussian with
mean and covariance functions x̂L

k−1|k−1(xN
0:k−1) and Pk−1|k−1(xN

0:k−1), respectively.

The state transition density function defined by the model (eq. 3.26 and eq. 3.27) is
given by

p(xN
k ,x

L
k |xN

k−1,x
L
k−1) = N

([
xN
k

xL
k

]
;αk−1(xN

k−1),Qk−1(xN
k−1)

)
(3.32a)

where the mean function at time step k is given by

αk(x
N
k ) =

[
fN
k−1(xN

k−1)
fL
k−1(xN

k−1)

]
+

[
AN
k−1(xN

k−1)
AL
k−1(xN

k−1)

]
xL
k−1. (3.32b)

Due to Markov properties of the state space model, the conditional probability den-
sity function p(xN

k ,x
L
k |xN

0:k−1,x
L
k−1,y0:k−1) equals the state transition density. Since

Gaussianity is preserved by affine transformations, this probability density function
can be used in combination with p(xL

k−1|xN
0:k−1,y0:k−1) to derive the following con-

ditional probability density function by applying lemma A.1.1 (see Appendix A)

p(xN
k ,x

L
k |xN

0:k−1,y0:k−1) = N
([

xN
k

xL
k

]
;

[
βN
k|k−1(xN

0:k−1)

βL
k|k−1(xN

0:k−1)

]
,Sk|k−1(xN

0:k−1)

)
(3.33a)

with the mean functions

βN
k|k−1(xN

0:k−1) = fN
k−1(xN

k−1) + AN
k−1(xN

k−1)x̂L
k−1|k−1(xN

0:k−1) (3.33b)

βL
k|k−1(xN

0:k−1) = fL
k−1(xN

k−1) + AL
k−1(xN

k−1)x̂L
k−1|k−1(xN

0:k−1) (3.33c)

and covariance function

Sk|k−1(xN
0:k−1) =

[
AN
k−1(xN

k−1)
AL
k−1(xN

k−1)

]
Pk−1|k−1(xN

0:k−1)

[
AN
k−1(xN

k−1)
AL
k−1(xN

k−1)

]T
+ Qk−1(xN

k−1)

=

[
SNN
k|k−1(xN

0:k−1) SNL
k|k−1(xN

0:k−1)(
SNL
k|k−1(xN

0:k−1)
)T

SLL
k|k−1(xN

0:k−1)

]
. (3.33d)

By applying the rules for marginalization and conditioning for Gaussian multivari-
ate probability densities (see lemma A.1.2 in Appendix A), the probability density
functions

p(xN
k |xN

0:k−1,y0:k−1) = N
(
xN
k ;βN

k|k−1(xN
0:k−1),SNN

k|k−1(xN
0:k−1)

)
(3.34)

and

p(xL
k |xN

0:k,y0:k−1) = N
(
xL
k ; x̂L

k|k−1(xN
0:k),Pk|k−1(xN

0:k−1)
)

(3.35a)
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can be derived, whereby the mean and covariance functions of the conditional
marginal prediction density p(xL

k |xN
0:k,y0:k−1) are given by

x̂L
k|k−1(xN

0:k) = βL
k|k−1(xN

0:k−1) + Lk(x
N
0:k−1)

(
xN
k − βN

k|k−1(xN
0:k−1)

)
(3.35b)

Pk|k−1(xN
0:k−1) = SLL

k|k−1(xN
0:k−1)− Lk(x

N
0:k−1)SNL

k|k−1(xN
0:k−1) (3.35c)

Lk(x
N
0:k−1) =

(
SNL
k|k−1(xN

0:k−1)
)T (

SNN
k|k−1(xN

0:k−1)
)−1

. (3.35d)

Obviously, the mean and covariance functions show similarities to the recursions
obtained by a Kalman filter time update. This circumstance is not surprising since
the conditional marginal posterior density is restricted to be Gaussian. However,
there is a difference compared to standard Kalman filtering, namely the terms as-
sociated with Lk(x

N
0:k−1), which arise from the conditioning on the nonlinear state

trajectory. The predicted mean value obtained by evaluating the state transition
equation of the linear state (eq. 3.26a) is corrected by a term which evaluates the
prediction of the nonlinear states at time instant k. As for the conditional linear pro-
cess, xN

k can be interpreted as an measurement. By analogy with Kalman filtering,
Lk(x

N
0:k−1) plays the role of a Kalman gain. Therefore, this correction is sometimes

denoted as “additional or extra measurement update.”
Of course, xN

k is not known, thus, the calculation of the conditional mean and
the covariance function conditioned on the nonlinear trajectory is not directly pos-
sible. However, this circumstance is not problematic since according to eq. 3.31b,
the expectation values conditioned on the samples of the nonlinear trajectory are
required. Hence, the recursions derived in this section hold if the conditioning on
the nonlinear trajectory xN

0:k is replaced by the conditioning on the samples of the
nonlinear trajectory xN

0:k,i. Consequently, this sample must first be provided by the
sequential importance sampler before the time update recursion can be completed.

However, in order to simplify the equations, xN
k is assumed to be available and

the derivation of the p
(
xL
k |xN

0:k,y0:k

)
is completed first before dealing with the issue

of sampling. For this purpose, a measurement update must be performed which es-
sentially conditions the conditional prediction density on all available observations
at time instant k. With respect to the calculation of the posterior mean and co-
variance functions, the fact that the state space model is Markovian proves to be
beneficial. Since p

(
yk|xN

0:k,x
L
k ,y0:k−1

)
equals p

(
yk|xN

k ,x
L
k

)
, which is defined by the

measurement model (eq. 3.26c), the conditional measurement prediction density can
be derived by applying lemma A.1.1 with the equivalents p

(
xL
k |xN

0:k,y0:k−1

)
=̂p(x),

p
(
yk|xN

0:k,x
L
k ,y0:k−1

)
=̂p(z|x) and p

(
yk|xN

0:k,y0:k−1

)
=̂p(z) according to

p
(
yk|xN

0:k,y0:k−1

)
= N

(
yk; ŷk(x

N
0:k),Uk(x

N
0:k)
)

(3.36a)

where the mean and the covariance functions are given by

ŷk(x
N
0:k) = hk(x

N
k ) + Ck(x

N
k )x̂L

k|k−1(xN
0:k) (3.36b)

Uk(x
N
0:k) = Ck(x

N
k )Pk|k−1(xN

0:k−1)CT
k (xN

k ) + Rk(x
N
k ). (3.36c)

By applying again lemma A.1.1 with the density equivalents p
(
xL
k |xN

0:k,y0:k−1

)
=̂p(x),

p
(
yk|xN

0:k,y0:k−1

)
=̂p(z) and p

(
xL
k |xN

0:k,y0:k

)
=̂p(x|z), the conditional posterior den-

sity is given by

p
(
xL
k |xN

0:k,y0:k

)
= N

(
xL
k ; , x̂L

k|k(x
N
0:k),Pk|k(x

N
0:k)
)

(3.37a)
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where the mean and covariance functions are given by

x̂L
k|k(x

N
0:k) = x̂L

k|k−1(xN
0:k) + Kk(x

N
0:k)
(
yk − ŷk(xN

0:k)
)

(3.37b)

Pk|k(x
N
0:k) = Pk|k−1(xN

0:k−1)−Kk(x
N
0:k)Ck(x

N
k )Pk|k−1(xN

0:k−1) (3.37c)

Kk(x
N
0:k) = Pk|k−1(xN

0:k−1)CT
k (xN

k )U−1
k (xN

0:k). (3.37d)

Apparently, these recursions are identical with those associated with the measure-
ment update in standard Kalman filtering.

As mentioned before, the trajectory of the nonlinear states is not directly available
and is, thus, sampled by a sequential importance sampler. For this purpose, the
proposal density is partitioned similar to the equations of native particle filtering
shown above, according to

γk(x
N
0:k|y0:k) = ηk(x

N
k |xN

0:k−1,y0:k)γk−1(xN
0:k−1|y0:k−1) (3.38)

where N samples are drawn according to xN
k,i ∼ ηk(x

N
k |xN

0:k−1,i,y0:k). Hence, the ith

importance weight can be recursively updated according to

wk,i =
p
(
xN

0:k,i|y0:k

)
γk
(
xN

0:k,i|y0:k

) ∝ λk,i
p
(
xN

0:k−1,i|y0:k−1

)
γk−1(xN

0:k−1,i|y0:k−1)︸ ︷︷ ︸
=wk−1,i

(3.39a)

where the innovation term is given by

λk,i =
p
(
yk|xN

0:k,i,y0:k−1

)
p
(
xN
k,i|xN

0:k−1,i,y0:k−1

)
ηk(xN

k,i|xN
0:k−1,i,y0:k)

. (3.39b)

The innovation term can significantly be simplified if the one-step predictive density
p
(
xN
k |xN

0:k−1,y0:k−1

)
(see eq. 3.34) is chosen for the proposal density ηk. Essentially,

this is directly analogous to the bootstrapping approach mentioned when discussing
the native particle filter.

Finally, we are now in the position to determine approximations of the sought ex-
pectation values (eq. 3.31a and eq. 3.31b). The variance of the estimates is guaran-
teed lower than or equal to the variance obtained by a native particle filter. However,
this gain in performance involves higher computational demands. This circumstance
is due to the fact that with every time step N individual conditional posterior den-
sities must be calculated, each of them conditioned on an individual trajectory of
the nonlinear states xN

0:k. In other words, at every time step, N Kalman filter-like
algorithms must be computed. Since Rao-Blackwellized particle filtering utilizes a
sequential importance sampling scheme and targets a smoothing posterior density,
the algorithm suffers, similar to the native particle filter, from the sample degen-
eracy problem. Hence, resampling is necessary. In contrast to the native particle
filter, prediction and a posterior mean vectors and covariances are associated with
each individual particle. As a consequence, these quantities must be taken into
consideration when the resampling step is done.
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3.2. Validation Data

As already stated several times, the problems associated with the LiFePO4 battery’s
characteristic flat and ambiguous mapping between the SOC and the open circuit
voltage UOCV prove to be challenging if the task is to estimate the battery’s SOC in
an application which relies on short and consecutive charge and discharge quantities.
Since hybrid electric vehicle drive trains belong to this class of applications, driving
cycles developed to examine the power flow in these drive trains are accordingly
ideally suited to validate the performance of the proposed estimator, which will be
shown in the upcoming section.

In order to meet the operating conditions in a hybrid electric vehicle drive train,
the course of the battery’s operating current, required for validation, is derived
by the analysis of the power flow of an according drive train simulation. Thereby
a backward simulation was performed by means of velocity profiles corresponding
to the Braunschweig, Manhatten and ARTEMIS-urban driving cycle, respectively.
This choice of velocity profiles is due to the fact that these driving cycles were devel-
oped to emulate the velocity profile of urban traffic situations. Since urban traffic is
associated with short and consecutive acceleration and recuperation (braking) peri-
ods, the battery’s open circuit voltage UOCV is assumed to steadily move from one
open circuit voltage curve to the other. This is exactly the desired behavior to vali-
date the model of the open circuit voltage UOCV presented in chapter 2. Figure 3.7
depicts the velocity profiles as well as the obtained courses of the battery operating
current corresponding to the three investigated driving cycles.

For the simulation of the power flows, a simple drive train model was used which
roughly models the dynamics of a Volvo 7900 hybrid electric bus. In order to cover
a wide range of the battery’s SOC, the following control strategy was chosen for the
backward simulation. The simulation started with the battery being 80% charged.
For the first period, the required power was preferably taken from the battery until
the SOC drops below 30%. During this period, the power used for charging the
battery was entirely generated by recuperation. Afterwards, the combustion engine
was preferably used and the battery was on average charged. This control strategy
entailed that the SOC on average changed from 80% to 30% and back to almost
80%, but performed oscillations which caused the open circuit voltage UOCV perma-
nently to move from one open circuit voltage curve to the other.

The courses of the battery’s operating current derived by backward simulation will
be later used for the validation of the proposed estimator. In a first step, the feasi-
bility of the Rao-Blackwellized estimation framework will be investigated by means
of a simulation study. Furthermore, the estimator’s performance will be validated
by means of measured data records which were obtained by the experimental evalu-
ating the mentioned current courses in the lab. Similar to the experiments presented
in the previous chapter, an A123 26650m1-B LiFePO4 battery was investigated by
means of the custom battery testing units developed at the Institute of Electrical
Measurement and Measurement Signal Processing [46].
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(a) Vehicle velocity (ARTEMIS-urban)
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(b) Battery current (ARTEMIS-urban)
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(d) Battery current (Braunschweig)

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

Time (h)

V
e

lo
c
it
y
 (

k
m

/h
)

(e) Vehicle velocity (Manhatten)
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(f) Battery current (Manhatten)

Figure 3.7.: Velocity profiles (left) and corresponding battery operating current
(right) derived by power flow analyses of a hybrid electric vehicle drive
train. The shown velocity profiles correspond to the ARTEMIS-urban,
Braunschweig and Manhatten driving cycle and were used to perform
backward simulations by means of a simplified dynamic model of the
Volvo 7900 hybrid electric bus drive train.
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3.3. Rao-Blackwellized Particle Filtering for
Condition Monitoring

Dynamic Battery Model

In order to adopt the Rao-Blackwellized framework to the problem of SOC estima-
tion, the battery’s dynamics must be modeled by a conditional linear Gaussian state
space model (CLGSSM). In section 2, it was highlighted that hysteresis phenomena
have a distinct influence on the open circuit voltage UOCV. Hence, this circumstance
is considered to model the battery’s terminal voltage according to

Uterm = UOCV + Utrans (3.40)

where eq. 2.1 is used to model the open circuit voltage and Utrans corresponds to
the transient voltage contribution. The latter is obtained by a first order biproper
linear subsystem. The parameters of this linear subsystem are allowed to vary with
respect to time, which is in consistency with the adaptive approaches presented e.g.
in [20–22,71,72] where the battery’s transient dynamics is modeled by an RC-parallel
circuit connected in series with an ohmic resistor. However, the interpretation of
the linear subsystem by an equivalent circuit model can be quite misleading since
the lumped components appear to be in an unphysical range. Consequently, it will
be refrained from explicitly parameterizing equivalent circuits, and the model of the
transient dynamics is parameterized by its eigenvalue β, the gain parameter γ and
the feedthrough parameter d.

By defining y(t) = Uterm(t) and u(t) = i(t), the state space representation of the
battery’s dynamics in the discrete time domain is given by

xk+1 =

1 0 0
0 1 0
0 0 eβkTs

xk +

 Ts
Cn

αkTs (1− sign(uk)x2,k)
γk
(
1− eβkTs

)
uk (3.41)

yk = UOCV,avg(x1,k) + UOCV,diff(x1,k)x2,k + x3,k + duk (3.42)

where Ts denotes the sampling period. The nominal capacity is given by Cn and
the state vector xk is composed of the SOC, the hysteresis state (see eq. 2.6) and
a transient state associated with the linear time variant subsystem. In addition to
the sample period Ts, the nominal capacity Cn is assumed to be known a priori.
This assumption is due to the fact that by investigating the battery’s open circuit
voltage UOCV (see section 2), the open circuit voltage charge and discharge curves
were experimentally determined. For the given dynamic model, the difference of the
charge levels associated with maximum and minimum open circuit voltage UOCV

equals the nominal capacity Cn. Admittedly, this is a slight abuse of notation since
Cn represents rather a maximum value than a typical or minimum guaranteed value
usually stated by the manufacturer. The other parameters are not known a priori
and are assumed to vary with respect to SOC and temperature. In addition, the
used dynamic model (and especially the linear subsystem) is too simple to cover
the battery’s entire nonlinear dynamics. In order to deal with these dependencies
and imperfections, the unknown parameters are allowed to vary with respect to time
and are incorporated in the estimation framework by the definition of the parameter
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vector according to

θk =
[
αkTs, e

βkTs , γk
(
1− eβkTs

)
, dk
]T
. (3.43)

Since the parameter vector linearly enters eq. 3.41 and eq. 3.42 and the random
walk model used to update the parameter vector is linear, the proposed state space
model is a conditional linear Gaussian space state model (GLGSSM) and can be
rewritten in the desired form (see eq. 3.26a - eq. 3.26c) according to

xk+1 =

x1,k + Ts
Cn

x2,k

0


︸ ︷︷ ︸

=̂fNk

+

 0 0 0 0
(1− sign(uk)x2,k)uk 0 0 0

0 x3,k uk 0


︸ ︷︷ ︸

=̂AN
k

θk + wx
k (3.44)

θk+1 = 0︸︷︷︸
=̂fLk

+ I︸︷︷︸
=̂AL

k

θk + wθ
k (3.45)

yk = UOCV,avg(x1,k) + UOCV,diff(x1,k)x2,k + x3,k︸ ︷︷ ︸
=̂hk

+
[
0 0 0 uk

]︸ ︷︷ ︸
=̂Ck

θk + vk (3.46)

where the state vector xk and the parameter vector θk correspond to the nonlinear
states xN

k and linear states xL
k , respectively. Hence, this formulation makes the prob-

lem of SOC estimation accessible for the Rao-Blackwellized framework for particle
filtering shown in section 3.1.3.

Estimation Algorithm

Before proceeding with the validation of the performance of the proposed estimator,
a proposal density must be chosen first. The choice

ηk(xk,i|x0:k−1,i, y0:k) = p(xk|x0:k−1, y0:k−1) (3.47)

entails that the innovation term λk,i (see eq. 3.39b) is reduced to

λk,i = p (yk|x0:k,i, y0:k−1)

= N
(
yk;hk (xk,i) + Ck (uk) θ̂k|k−1,i,Ck (uk) Pk|k−1,iC

T
k (uk) +Rk

)
. (3.48)

As mentioned before, this choice of the proposal density is directly analogous to
the choice of the proposal density in bootstrapping. The benefits of this choice are
obvious: Instead of the evaluation three probability density functions, only the mea-
surement prediction density must be evaluated. Since the innovation term must be
calculated for every individual particle, the reduction of the computational demands
can be significant. Of course, this simplification has consequences since the 1-step
predictive density might not be the best choice for the proposal density. This cir-
cumstance is due to the fact that the information of the current measurement yk is
not incorporated in this proposal density. In order to circumvent this problem, some
authors suggest a construction of the proposal kernel based on local linearization
of the measurement equation, incorporating the information of the current mea-
surement (see e.g. Doucet [66] or Lindesten [70]). However, since this procedure
significantly increases the computational demands of the algorithm, it will be re-
frained from adopting this concept for the proposal construction herein.
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With respect to the expression of the update of the importance weights, eq. 3.39a
is slightly modified given by

wk,i ∝ λk,iκ(xk,i)wk−1,i (3.49)

where κ(x) is an indicator function and is defined as

κ(x) =

{
1 if 0 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1

0 else
. (3.50)

This approach can be interpreted by incorporating prior knowledge in the recursion
of the weight update. The SOC is per definition a positive quantity and limited
to 1. Moreover, the hysteresis state is limited to ±1. Violating the first condition is
of minor relevance for the performance of the estimator since the missing values of
UOCV,avg and UOCV,diff can be obtained by extrapolation. However, if the second con-
dition is violated, the trajectory of the hysteresis state becomes unstable and quickly
diverges. Although diverging paths correspond to small values of the measurement
prediction density and are therefore replaced by the mutation step (resampling), it
was observed that the Rao-Blackwellized particle filter converges to a highly biased
estimate. The role of the indicator function κ(x) can be interpreted by restricting
the support of the measurement prediction density to valid values with respect to x1

and x2. By applying this measure, the Gaussianity of the measurement prediction
equation is lost and the equations of the Rao-Blackwellized particle filter derived
above do not hold anymore. In practice, this circumstance is of minor relevance,
and by applying the explained measure, the performance of the estimator increases
significantly.

The stability of the dynamic model x2,k is tightly coupled to θ1,k, thus, it is
mandatory that θ1,k takes a positive value. Since the estimate of the parameters
implicitly implies Gaussian distributions, it is challenging to guarantee that this
constraint will not be violated. Although the possibility of Kalman filtering with
inequality constraints exists (see [73–76]), the computational demands would be
immense for the Rao-Blackwellized particle filter framework, since an individual
inequality constraint optimization problem must be solved for every particle at every
single time step. By incorporating the indicator function, the N individual Kalman
filter-like estimators used to adapt the parameter vector are hampered to estimate
negative values for θ1,k since negative values cause the individual trajectories of the
hysteresis state to diverge quickly. According to the explanation above, zero weight
is assigned to the corresponding particles while the diverging paths are replaced in
the resampling step.

So far little attention was drawn to the resampling procedure. In accordance with
the introducing section, it will be refrained from going into details of resampling.
Interested parties may refer to [61–63]. Nevertheless, the necessity of resampling
to avoid sample degeneracy is emphasized. In the present case, a resampling step
is carried out if the effective sample size Neff (see eq. 3.16) drops below a certain
threshold Nt. As resampling procedure, systematic resampling was chosen for the
proposed estimator since it is easy to implement, and the computational complexity
isO(N). Algorithm 1 illustrates the concept of systematic resampling for the present
case.
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Algorithm 1 Systematic Resampling

pick a random sample rk ∼ U (0, 1)
calculate cumulative weight vector q and comparison vector p
for i = 1 : N do
qi =

∑i
n=1wk,i

pi = i−1+r
N

end for
initialize index candidate l = 1
for i = 1 : N do

while ql < pi do
l = l + 1

end while
set resampling index ji = l

end for
resample state vectors, posterior mean values and posterior covariances
for i = 1 : N do

xk,i = xk,ji
θk|k,i = θk|k,ji
Pk|k,i = Pk|k,ji
assign uniform weight wk,i = 1

N

end for

3.3.1. Simulation Studies

In order to verify the suitability of the proposed estimation framework for SOC
estimation of LiFePO4 batteries, a simulation study was carried out. According to
section 3.2, the current signal as well as the available temperature signals of the
experimentally determined driving cycle records were used to simulate the battery’s
terminal voltage Uterm. As mentioned before, the parameter vector θ is assumed to
vary with respect to the SOC and the temperature. The latter dependency can be
argued that one of the main contributions to the transport of the charged species
between the electrodes is diffusion. The rate of diffusion is strongly influenced by
the ionic conductivity of the electrolyte which itself is strongly influenced by the
temperature: the higher the temperature, the faster the transport of the charged
species. In section 2, it was mentioned that the influence of the temperature on
the battery’s open circuit voltage UOCV proved to be negligible for the investigated
LiFePO4 battery. Hence, it is assumed that the temperature dependency of the bat-
tery’s terminal voltage Uterm is entirely covered by the transient voltage contribution
Utrans, represented by the linear subsystem.

Since it is not within the scope of this thesis to develop novel models for the
temperature dependency of the terminal voltage Uterm, a simple temperature model
is used for simulation which is basically motivated by the principles of reaction
kinetics expressed by the Arrhenius equation. Adopted to the linear subsystem, this
dependency is incorporated by a temperature-dependent eigenvalue. By analogy
with the widespread RC-models, this relates to an according time constant which is
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modeled as a function of the temperature ϑ according to

τ(ϑ) = exp

(
ln (τ20)− ln(0.5)

293
303
− 1

)
exp

(
ln(0.5)
ϑ

303
− ϑ

293

)
(3.51)

where τ20 denotes the time constant at 20 ◦C and is chosen to be 12 s. Basically,
eq. 3.51 provides that the time constant τ(ϑ) is approximately halved per 10 ◦C
increase of temperature. The functional relationship of the parameter vector θ used
for simulation is given by

θ1,k = 4e−4 (1− x1,k) (3.52a)

θ2,k = exp

(
− Ts
τ(ϑk)

)
(3.52b)

θ3,k = 15e−3

(
1− exp

(
− Ts
τ(ϑk)

))
(3.52c)

θ4,k =
1e−3

ϑk
(3.52d)

where the hysteresis gain θ1 is assumed to vary with respect to the SOC. θ2 and
θ3 represent the eigenvalue and gain parameter of the linear subsystem, respec-
tively. These parameters relate to the diffusion ratio and are therefore assumed to
be functionally dependent on τ(ϑ). By analogy with the widespread RC models, the
feedthrough parameter θ4 corresponds to a serial resistance. Since this parameter re-
lates directly to the ionic conductivity, a reciprocal dependence on the temperature
is assumed. To avoid confusion, it should be emphasized that these equations are
solely used for simulation purposes and the proposed Rao-Blackwellized estimator
utilizes a random walk model to update the estimate of the parameter vector θk.

Performance Evaluation for Unbiased Current Signals

In a first step, the performance of the proposed Rao-Blackwellized estimator was
evaluated in the case of ideal measurements. For this purpose, the current signal
obtained by the experimental evaluation of the three driving cycles (section 3.2)
was directly used for the simulation of the trajectories of the state vector xk and
the terminal voltage Uterm according to eq. 3.44 and eq. 3.46, respectively. For each
experiment, the (cylindric) battery’s temperature was measured on each face sur-
face to approximately obtain the temperature on the current collector foils of both
electrodes. The arithmetic average of these temperature signals and the simulated
SOC were used to adapt the parameter vector θk.

As mentioned in the introducing section above, the Rao-Blackwellized particle
filter uses the concept of sufficient statistics for estimating the conditionally linear
states. Nevertheless, this estimator relies on statistical sampling. Thus, the estima-
tor itself is a stochastic process and the performance of the estimator should also
be accessed statistically. Hence, a Monte Carlo analysis was carried out to access
the performance of the estimator for all three driving cycle records. Unfortunately,
the size of every individual data record is huge and the proposed estimator is com-
putationally costly. As a trade-off between computational demands and statistical
power, the state and parameter courses were estimated in 50 individual trials for
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every driving cycle record. Thereby, the size of the particle set was N = 1000 and
the resampling threshold was set to Nt = 900. This size of the particle set proved
to be reasonable for the initial conditions indicated below since attempts to solve
the joint estimation problem by means of a significantly smaller particle set failed to
converge. On the other hand, increasing the size of the particle set to multiples of
thousands did not result in a noticeable improvement of the estimator’s performance.

The estimator for the simulated terminal voltage was parameterized as follows.

The ith initial particle x0,i =
[
x1,0,i x2,0,i x3,0,i

]T
was sampled according to

x1,0,i ∼ U (0, 1) (3.53a)

x2,0,i ∼ U (−1, 1) (3.53b)

x3,0,i ∼ N (0, 0.01) . (3.53c)

This choice of the prior distribution of the particles relates to little prior knowledge
since the support of the initial densities of the SOC x1,0 and the hysteresis state
x2,0 are only limited to the valid range. With other words, with respect to x1,0 and
x2,0, all possible values are equally likely to be sampled. The support of the prior
distribution of the transient state x3,0 is not known a priori. As the transient voltage
contribution to the terminal voltage is expected to be in the range of millivolts, a
zero-mean Gaussian distribution with a standard deviation of 100 mV is used for
prior sampling.

The parameterization of the parameter prior distributions is less straightforward.
On the one hand, there is little prior knowledge about the parameters available.5

On the other hand, it is hardly possibly to restrict the support of the parameter
distributions to valid ranges since the Rao-Blackwellized setting requires Gaussian
distributions for the conditionally linear states. Hence, the prior mean values of the
parameter vector are chosen according to

θ0|−1,i =
[
0 0.9 0 0

]T
(3.54a)

where the nontrivial value corresponds to a relatively slow relaxing transient state
and proves to be necessarily nontrivial, positive and smaller than 1 to achieve conver-
gence. The situation is even worse with respect to the according covariance matrix
given by

P0|−1,i =


10−6 0 0 0

0 10−4 0 0
0 0 10−6 0
0 0 0 10−4

 , (3.54b)

which was admittedly found through an empirical analysis. In native state esti-
mation, little prior knowledge is usually expressed by large variance entries of the
corresponding covariance matrix. However, in the case of the joint filtering problem
presented herein, it was observed that the convergence rate drops rapidly if the prior

5Of course, the parameter courses are obtained by simulation and the initial conditions are there-
fore exactly known. However, the results of the simulation are used to prove the applicability
of the RBPF estimator for SOC estimation. Thus, this prior knowledge is neglected since it is
not available when the measured voltage course is investigated.
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parameter covariance is too large. This is in agreement with the observations by
Lindsten [70, 77] and is presumably caused by slow mixing properties of the used
conditionally linear state space model [78–81].

The state and parameter process noise is assumed to be uncorrelated with constant
state covariance given by

Qxx
k =

10−8 0 0
0 10−8 0
0 0 10−6

 (3.55a)

and time-variant parameter covariance according to

Qθθ
k =


10−12 + 10−8

k
0 0 0

0 10−10 + 10−6

k
0 0

0 0 10−10 + 10−6

k
0

0 0 0 10−10 + 10−6

k

 . (3.55b)

The aim of the reciprocal time-dependent parts of the diagonal elements of Qθθ
k is

to add artificial dynamic evolution to the slow varying (or static) parameter states
in order to achieve faster convergence of the parameter process. In the literature,
this technique is often referred to as jittering or roughening (see e.g. Gordon et.
al [64], Kitagawa [82] or Gustafsson and Schön [51]).

The last outstanding issue of the parameterization of the estimator is the vari-
ance of the Gaussian measurement noise vk. In this context, the simulated termi-
nal voltage was distorted by additive zero-mean white Gaussian noise with variance
Rk = 10−6, corresponding to relatively inaccurate voltage measurements. The choice
of this measure is motivated by two facts. First, the direct usage of the simulated
courses of the battery’s terminal voltage is in contradiction to the actual purpose
of simulation, namely validating whether the proposed estimator is applicable to
estimate the SOC of real battery systems. Second, the used Rao-Blackwellized
particle filter for joint estimation requires uncertain output measurements for its
operation since the estimator tends to diverge quickly if the variance of the output
measurement Rk is too small. This circumstance is due to the fact that accord-
ing to eq. 3.48, the ith measurement prediction density p (yk|x0:k,i, y0:k−1) is used to
update the weight innovation term. If the parameter prediction covariance Pk|k−1,i

decreases rapidly, the variance of this Gaussian density is mainly determined by the
variance of the measurement noise Rk. As a consequence, if Rk is chosen to small,
negligible importance weights are assigned to the particles which are not located in
the immediate vicinity of the true state vector xk. Especially during the first recur-
sions, the particles are (depending on their initial distribution) relatively widespread
across the particle space. Thus, it is highly likely that there is no particle located
in the immediate vicinity of the true state vector xk. In this case, negligible weight
(zero due to machine precision) is assigned to all particles. As a consequence, the
importance weights cannot be normalized anymore and the algorithm fails to assign
a real number to the importance weights. Hence, the algorithm diverges since the
weight update recursion can not be evaluated anymore and there are no particles
left for the resampling procedure. Note that even if a few particles remain after the
weight update, the number of these particles might not be large enough to avoid the
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sample degeneracy problem by the selection step (resampling). Hence, increasing
the measurement variance Rk entails that the measurement prediction density is
broadened and the number of remaining particles is increased.

The results of the Monte Carlo studies assessing the performance of the proposed
estimator for the simulated data assuming ideal current measurements are given
below. The according SOC error courses, derived by the simulation of the state
trajectories by means of the ARTEMIS-urban, the Braunschweig and the Manhat-
ten driving cycle are shown in figures 3.8, 3.9 and 3.10, respectively. The blue lines
depict the SOC error courses obtained by the individual estimation trials, while the
red lines illustrate the average error course (solid) and the estimated 2σ confidence
interval (dashed). With regard to the little prior knowledge gained through the pa-
rameterization of the estimator, the shown error courses promise a good detectability
of the SOC. After a more or less slow converging period, the absolute value of the
average error signal stays below 1% most of the time. According to the chosen prior
distribution of the particles, every valid SOC value is equally likely sampled at the
beginning of the recursion. Hence, the results prove that the proposed estimator is
in principle capable of inferring the SOC from the simulated terminal voltage Uterm

despite the flat and ambiguous mapping between the SOC and the open circuit
voltage UOCV.
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Figure 3.8.: Results of the Monte Carlo analysis to assess the performance of the
RBPF estimator by estimating the course of the SOC simulated by
means of an ideal current signal derived by the ARTEMIS-urban driving
cycle. The blue lines show the individual error courses while the red lines
depict the average error course (solid) and the estimated 2σ confidence
interval (dashed) for 43 converging estimation trails.
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Figure 3.9.: Results of the Monte Carlo analysis to assess the performance of the
RBPF estimator by estimating the course of the SOC simulated by
means of an ideal current signal derived by the Braunschweig driving
cycle. The blue lines show the individual error courses while the red lines
depict the average error course (solid) and the estimated 2σ confidence
interval (dashed) for 46 converging estimation trails.
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Figure 3.10.: Results of the Monte Carlo analysis to assess the performance of the
RBPF estimator by estimating the course of the SOC simulated by
means of an ideal current signal derived by the Manhatten driving cy-
cle. The blue lines show the individual error courses while the red lines
depict the average error course (solid) and the estimated 2σ confidence
interval (dashed) for 48 converging estimation trails.
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However, it should be mentioned that none of the three Monte Carlo studies
concluded in converging estimates for all 50 trials. In case of the Monte Carlo
analysis associated with the current signal derived from the ARTEMIS-urban driving
cycle, the estimator failed to converge in seven trials. A slightly better convergence
rate was obtained by the investigation of the Braunschweig driving cycle (four fails)
and the Manhatten driving cycle (two fails). This result is not surprising since
this estimator is based on statistical sampling and consequently suffers from the
shortcomings of randomized estimators as mentioned in the introducing section.
This is especially true for joint estimation since the parameter courses perform only
small variations which correspond to relatively slow mixing properties of the state
space model.6 In addition, the random walk model used in the absence of alternatives
is a poor update model for the simulated parameter courses. Both circumstances
provide an explanation for the occasional divergence of the estimator.

However, it was observed that common to all of the “fail” cases is that the esti-
mator diverges quickly after a few time steps. As far as engineering is concerned,
there is, hence, the opportunity of simply restarting the estimator with new initial
particles if the divergence of the estimator is detected.

Performance Evaluation for Inaccurate Current Measurements

The Monte Carlo analyses carried out above show that the proposed estimation
framework is in principle capable of estimating the simulated SOC almost correctly
independently of the charge/discharge quantities applied to the battery model. It
was furthermore assumed that the true battery’s operating current is available.
However, this situation never occurs in practice and the battery’s operating current
i(t) is obtained by measurements which are of course associated with a certain
level of uncertainty. The accuracy of the measurement system might depend on
various influences, like e.g. temperature or long-term drift, to name but a few. In
addition to noise, the measurement suffers on a systematic error. Since the state
update equation of the used state space model integrates the operating current, an
immanent risk exists that the performance of the estimator is influenced by the
systematic error of the current measurement.

In order to investigate the performance of the estimator in case of inaccurate
current measurements, the current signal is distorted with a temperature-dependent
systematic error due to both a bias and a gain component according to

isens (i(t), ϑ(t)) =
0.1 + 10−4 (ϑ(t)− 20)

0.1
i(t) + 3 · 10−4

(
|ϑ(t)− 20|

60
+ 1

)
. (3.56)

The battery testing unit used for the experiments in the lab measures the tempera-
ture of the shunt resistor to provide highly accurate current signals by correcting the
temperature-induced drift of the measurements [46]. This offers the opportunity to
feed a realistic temperature course (see e.g. Figure 3.11) to the senor model above
in order to simulate low accurate current measurements.

6In the concluding chapter, it will explained which shortcomings appear in context with slow
mixing systems and particle filtering.
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Figure 3.11.: Measured temperature of the shunt resistor during the experimental
evaluation of the ARTEMIS-urban driving cycle.

Again, three separate Monte Carlo analyses were carried out to assess the per-
formance of the proposed estimator in case of current measurements distorted by a
significant systematic error. The same parameterization as before was used which
yielded in the results shown in the figures below.
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Figure 3.12.: Results of the Monte Carlo analysis estimating the simulated SOC
(ARTEMIS-urban driving cycle) in the case of inaccurate current mea-
surements. The blue lines show the individual error courses the red
lines depict the average error (solid) and the corresponding 2σ con-
fidence interval (dashed) for 47 converging trails. The yellow curve
represents the SOC error obtained by coulomb counting.
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Figure 3.13.: Results of the Monte Carlo analysis estimating the simulated SOC
(Braunschweig driving cycle) in the case of inaccurate current mea-
surements. The blue lines show the individual error courses the red
lines depict the average error (solid) and the corresponding 2σ con-
fidence interval (dashed) for 43 converging trails. The yellow curve
represents the SOC error obtained by coulomb counting.
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Figure 3.14.: Results of the Monte Carlo analysis estimating the simulated SOC
(Manhatten driving cycle) in the case of inaccurate current measure-
ments. The blue lines show the individual error courses the red lines
depict the average error (solid) and the corresponding 2σ confidence
interval (dashed) for 50 converging trails. The yellow curve represents
the SOC error obtained by coulomb counting.
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Apparently, the systematic error of the current measurements proves to be of minor
relevance with respect to the performance of the estimator since both the average
SOC errors as well as the associated 2σ confidence intervals appear to be in the same
range, compared to results obtained due to the ideal current measurements. At a
first glance, the only difference is that the average SOC error curves tend to oscillate
in the case of the distorted current measurements. This behavior can be interpreted
as follows: Due to the systematic error (and especially the bias component) of
the current measurement, the SOC error steadily increases since the current error
is integrated by the state update equation. This fact is exactly the reason for
estimating the SOC by means of Bayesian filtering and, thus, to infer the states
from the voltage measurements. Due to the in wide ranges flat characteristic of
the open circuit voltage, it takes some time until the integral component of the
SOC error reaches a certain level, while the associated particles are consequently
weighted with negligible weight by evaluating the measurement prediction density
p (yk|x0:k,i, y0:k−1). In other words, the estimate of the SOC temporarily drifts due
to the distorted current measurements but is corrected if the deviation exceeds a
certain level.

In addition to the SOC error courses, the convergence rate of the estimator is also
in the same range as before. The Monte Carlo analysis associated with ARTEMIS-
urban driving cycle converges slightly better than before (three fails), while the
convergence rate of the study utilizing the Braunschweig record is slightly worse
(seven fails). In the case of the current profile derived by the Manhatten driving
cycle, convergence was achieved for all 50 individual trials. However, it should be
mentioned that the number of Monte Carlo trails is too low in order to draw any
conclusion concerning the dependency of the current signal’s accuracy on the con-
vergence rate of the estimator.

The estimation results of all three states are exemplarily shown in Figure 3.15, 3.16
and 3.17, respectively, while the state and parameter courses of the most suitable
ARTEMIS-urban trial is used for visualization.

0 1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8

Time (h)

S
ta

te
 o

f 
C

h
a

rg
e

 (
−

)

0 1 2 3 4 5 6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Time (h)

E
s
ti
m

a
te

d
 S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n
 o

f 
x 1

 (
−

)

Figure 3.15.: Estimation results of the course of the state x1,k (SOC) of the simu-
lated ARTEMIS-urban record for the case of inaccurate current mea-
surements. Left: estimated (blue) and simulated (green) course of x1,k.
Right: estimated standard deviation of x1,k.
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Figure 3.16.: Estimation results of the course of the state x2,k (hysteresis state) of the
simulated ARTEMIS-urban record for the case of inaccurate current
measurements. Left: estimated (blue) and simulated (green) course of
x2,k. Right: estimated standard deviation of x2,k.
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Figure 3.17.: Estimation results of the course of the state x3,k (transient state) of the
simulated ARTEMIS-urban record for the case of inaccurate current
measurements. Left: estimated (blue) and simulated (green) course of
x3,k. Right: estimated standard deviation of x3,k.

As can be seen from the left figures, the estimates reach an acceptable level of
accuracy for each component of the state vector xk since the simulated courses
(blue lines) nearly coincide with the estimated courses (green lines). The right
figures show the corresponding courses of the estimated standard deviations of the
state estimates which were derived by using the particle approximation to estimate
the second central moment similar to eq. 3.31a.

Since the proposed estimator is based on the concept of joint estimation, the
question is how accurate the estimates of the associated model parameters are. As
can be seen from the figures below, the obtained parameter courses appear to be
less accurate compared to the estimated state trajectories shown above.
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This behavior is characteristic for the joint estimation framework and caused by
the poor update model (random walk) for the parameter vector θk (see eq. 3.45).
Unfortunately, due to the absence of alternatives, the random walk model is (more
or less) indispensable.

In the case of the gain parameter for the hysteresis state θ1,k and the eigenvalue
of the transient state θ2,k, the estimates appear to be at least in the range of the
simulated courses. Apparently, the gain parameter of the transient state θ2 proves
to be detectable more easily since the estimator succeeded in tracking the simulated
course of this parameter quite accurately.
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Figure 3.18.: Estimation results of the course of the parameter θ1,k (gain hysteresis
state) of the simulated ARTEMIS-urban record for the case of inac-
curate current measurements. Left: estimated (blue) and simulated
(green) course of θ1,k. Right: estimated standard deviation of θ1,k.
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Figure 3.19.: Estimation results of the course of the parameter θ2,k (eigenvalue tran-
sient state) of the simulated ARTEMIS-urban record for the case of
inaccurate current measurements. Left: estimated (blue) and simu-
lated (green) course of θ2,k. Right: estimated standard deviation of
θ2,k.
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Figure 3.20.: Estimation results of the course of the parameter θ3,k (gain transient
state) of the simulated ARTEMIS-urban record for the case of inac-
curate current measurements. Left: estimated (blue) and simulated
(green) course of θ3,k. Right: estimated standard deviation of θ3,k.

1 2 3 4 5 6

7.5

8

8.5

9

9.5

10

10.5

11

11.5

x 10
−4

Time (h)

θ
4
 (

O
h

m
)

0 1 2 3 4 5 6
0

1

2
x 10

−4

Time (h)

E
s
ti
m

a
te

d
 S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n
 o

f 
θ

4
 (

O
h

m
)

Figure 3.21.: Estimation results of the course of the parameter θ4,k (feedthrough)
of the simulated ARTEMIS-urban record for the case of inaccurate
current measurements. Left: estimated (blue) and simulated (green)
course of θ4,k. Right: estimated standard deviation of θ4,k.

The estimated course of the feedthrough parameter θ4,k shows quite a number of
variations on the true simulated course. Thus, the simulated course appears to be
nearly constant in Figure 3.21, which is due to the fact that the feedthrough parame-
ter is not associated with the internal dynamics and, scaled by the current sample at
time step k, enters directly into measurement prediction density p (yk|x0:k,i, y0:k−1).
Depending on the current signal, as a consequence, this probability density varies
significantly with respect to the dimension associated with the feedthrough param-
eter. Since this probability density is used for both the update of the importance
weights and the measurement update step for the parameter process, the estimate
of the parameter vector also fluctuates with respect to this dimension.
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In principle, the results demonstrate a good detectability of the SOC in the case
of distorted current measurements. The question which may arise is how sensitive
the estimator on inaccurate voltage measurements is. With respect to noise, the
performance of the estimator should be more or less invariant as long as the voltage
measurements provide a certain signal-to-noise ratio and are at least “Gaussian-like”
distributed. Remember, that the variance of the voltage measurements was param-
eterized relatively largely being R = 10−6 in order to broaden the measurement
prediction density p (yk|x0:k,i, y0:k−1) and, thus, to increase the robustness of the
estimator. Unfortunately, deviations of the voltage measurements induced by sys-
tematic errors are more critical. In this context, the flat characteristic dependence
of the SOC on the open circuit voltage UOCV proves to be problematic since the
inverse mapping shifts the measurement prediction density p (yk|x0:k,i, y0:k−1) used,
inter alia, for the update of the importance weights far away from the location of the
true SOC. As a consequence, the estimate is expected to be biased. This is especially
true for the chosen parameterization of the estimator as with respect to the SOC
(x1,k) and the hysteresis state (x2,k), the initial distribution of the particles is only
restricted to valid ranges. Hence,the influence of the biased voltage measurements
was not investigated.

3.3.2. Estimation Results

Encouraged by the results of the simulation studies, the next logical step is to
evaluate the performance of the Rao-Blackwellized estimation framework for real
measurements. For this purpose, the current profile derived by the ARTEMIS-
urban driving cycle was used for the experimental evaluation of an A123 26650m1B
LiFePO4 battery. Consequently, the measured courses of the operating current and
the terminal voltage were fed to the estimator.7

In contrast to the simulation studies, the less restrictive choice of the initial distri-
bution of the particles does not work anymore. Since the battery was initially fully
charged and discharged by a charge level of 0.5 Ah, corresponding to an initial SOC
of approximately 80%, the components of the ith initial particle associated with the
SOC and hysteresis state were sampled according to

x1,0,i ∼ U (0.5, 1) (3.57a)

x2,0,i ∼ U (−1,−0.5) , (3.57b)

which reflects the prior knowledge that the battery was initially at least half charged
and the hysteresis state x2,0 is expected to take an negative value due to the major
discharge pulse immediately before the experiment. The initial distribution of the
remaining component x3,0,i was unchanged (N (0, 0.01)). Similarly, the previous
choice of the prior parameter distribution was altered in order to achieve a converging

7Interested parties may wonder why the simulation studies were performed on all three driving
cycles introduced in section 3.2, but in case of real measurements, the performance of the
estimator is only evaluated by means of the data record obtained by testing the ARTEMIS-
urban driving cycle. This circumstance is due to a mishap in conjunction with the empirical
determination of the open circuit voltage charge and discharge curves. Since the driving cycles
were tested with three different batteries, the open circuit voltage charge and discharge curves
are required for all three batteries. Unfortunately, the data records of the batteries associated
with the Braunschweig and Manhatten driving cycle were lost accidentally.
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configuration. Hence, except for the initial mean value associated with the eigenvalue
of the transient state, the mean vector was altered according to

θ0|−1,i =
[
10−4 0.9 10−3 10−3

]T
. (3.58a)

By analogy with the parameterization for the simulation studies, the prior parameter
covariance was found by progressively decreasing the variance entries according to

P0|−1,i =


10−8 0 0 0

0 10−6 0 0
0 0 10−6 0
0 0 0 10−6

 . (3.58b)

Except for the number of particles N and the threshold for resampling Nt, the re-
maining parameterization stayed unchanged. As for the first, the size of the particle
set could be reduced to N = 500. This is presumably due to the fact that the
modified parameterization provides much more prior information than before. The
resampling threshold was set to Nt = 500 (bootstapping) since no substantial differ-
ence in the performance of the estimator was discovered compared to smaller values
leading to a converging configuration.

Performance Evaluation for Unbiased Current Signals

Similar to the simulation studies, the performance of the estimator was evaluated in
a first step by means of undistorted current measurements and 50 individual Monte
Carlo trials. The outcome of this study is shown in the figure below.
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Figure 3.22.: Results of the Monte Carlo analysis to assess the performance of the
RBPF estimator by means of the measured ARTEMIS-urban data
record. The blue lines show the individual SOC error courses while
the red lines depict the average error course (solid) and the estimated
2σ confidence interval (dashed) for 41 converging estimation trials.

57



3 Bayesian Filtering for Battery Monitoring 58

The convergence of the estimator was not successful for all trials. In the case of
41 trials, the estimator converged after a few recursions, which is comparable to the
convergence rate of the previous studies.

However, the obtained error curves do not fulfill the intended estimator accuracy.
Although the average SOC error is in the same range as in the studies before, the
estimator achieved significantly biased estimates in the case of 4 trails. At a first
glance, this circumstance proves to be crucial since, in contradiction to the case of a
diverging estimator, the detection of biased estimates is challenging. A closer look
on the obtained results reveals that in most cases the estimator achieves acceptable
accuracy with a SOC error being in the range of some percent. Hence, this infor-
mation can be used in order to detect highly biased estimates and to simply restart
the estimator if necessary.

In order to achieve this goal, the proposed estimator is modified and runs in
two consecutive operating modes. Since the modification circumvents the problems
associated with the significantly biased estimates, the attribute “enhanced” refers
to this estimator.

The working principle of the proposed “enhanced” Rao-Blackwellized estimator
is as follows: During a defined initial period (k < NmedNwin), the estimator is
sequentially restarted and the settled SOC estimate is sampled.

In this context the term settled refers to the converged SOC estimate and should
not be mistaken for the transient voltage contribution to the battery’s terminal volt-
age. The parameters Nmed and Nwin denote the number of settled SOC samples and
the duration of the individual settling periods, respectively. During the initial pe-
riod, a cumulative charge information is calculated by means of coulomb counting.
Since, the duration of the initial period is chosen to be sufficiently short, the influ-
ence of the systematic error of the current measurements on the cumulative charge
information is negligible.

The cumulative charge information serves two purposes. First, the sampled set-
tled SOC estimates can be related to the end of the initial period by correcting the
according difference of the SOC. Second, the initial distribution of the uniformly
distributed initial particles is corrected by adapting the according limits, which en-
tails denser initial distributions for the initial particles related to the SOC and the
hysteresis state. Finally, a median estimate is calculated by means of the Nmed

corrected SOC estimates and a upper and lower threshold can be computed. Algo-
rithm 2 illustrates the initial period of the “enhanced” Rao-Blackwellized estimator.

Afterwards the operating mode is switched to the regular mode. At the first itera-
tion in this operating mode, the current SOC estimate is compared to the previously
computed median estimate. If the SOC estimate exceeds one of the two thresholds,
the estimator is restarted whereby the distribution of the initial particles is adapted
in the same way as mentioned before.
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Algorithm 2 Initialization period of the “enhanced” RBPF estimator

Update cumulative charge information: ∆SOCk+1 = ∆SOCk + Ts
Cn
ik

if mod(k,Nwin) == 0 then
Calculate limits for uniformly distributed inital particles:

ax1 = 0.5 + ∆SOCk, bx1 = 1 + ∆SOCk

ax2 = −1 + ∆SOCk, bx2 = −0.5 + ∆SOCk

Truncate limits to valid ranges
Initialize RBPF estimator

end if
Calculate RBPF recursions
if mod(k + 1, Nwin) == 0 then

Sample SOC estimate: x̃1,l = x̂1,k, ∆l = ∆SOCk

l = l + 1
end if
if k == NmedNwin − 1 then

Relate sampled SOC estimates to the last sample:
for i = 1 : l do
x̃1,i = x̃1,i + (∆l −∆i)

end for
end if
Calculate median SOC estimate: SOCmed = med ({x̃1,1, . . . , x̃1,l})
Calculate upper and lower threshold:

SOCu = SOCmed − µemed
+ 0.025

SOCl = SOCmed − µemed
− 0.025

Figure 3.23 shows a histogram of the median estimate error with respect to the true
SOC at the end of the initial phase obtained by a Monte Carlo analysis of 50 trials
investigating the ARTEMIS-urban driving cycle data record. Nmed = 10 settled
SOC samples were used for the median estimate whereby the settling duration was
assumed to be less than Nwin = 200 iterations. Apparently, the median estimator
achieves acceptable accuracy with an error being bounded between -1 % and +1.4 %.
For the given configuration, the median estimate is biased with a value of µemed

=
+0.61 %, depicted by the red line.

The initial period of one trail is shown in Figure 3.24. The green and blue lines
show the true SOC and the SOC estimate, respectively. The settled SOC estimates
(red markers) are used in combination with the cumulative charge information to
compute the median SOC estimate at the end of the initial period (solid cyan line).
The according threshold levels (dashed lines) are found by parameterizing an error
band ±2.5 % with respect to the median estimate. As shown in Figure 3.23, the
median estimates is biased. Hence, the thresholds are shifted by the empirical found
error bias µemed

= +0.61. Reducing the error band to significantly smaller values
than ±2.5 % yields to a poor performance of the algorithm, since the acceptance
probability rapidly drops if the error band is too small.
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Figure 3.23.: Histogram of the deviation of the median SOC estimate with respect to
the true SOC at k = NmedNwin − 1 = 1999. The results were obtained
by means of a Monte Carlo analysis (50 trials) using the measured
ARTEMIS-urban data record. The red line depicts the (sample) mean
of the deviations of the median estimates.
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Figure 3.24.: Initial period of the “enhanced” Rao-Blackwellized estimator. The
blue line shows the SOC estimate provided by the Rao-Blackwellized
estimator started 10 times. The according settled SOC estimates (red
markers) were sampled after 200 iterations. The true course of the SOC
is shown by the green line, while the solid and dashed cyan lines depict
the median estimate and the according threshold levels, respectively.
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Figure 3.25 shows the SOC error plot of the mentioned Monte Carlo study. Ap-
parently, the provided measure significantly improves the accuracy of the SOC es-
timator. As intended, significantly biased estimates can be ruled out. Moreover,
the majority of the error is kept between -2 % and 2.5 %. This circumstance is
also confirmed by the 2σ confidence interval depicted by the red dashed lines in
Figure 3.25. Additionally, the convergence rate improved significantly, since all 50
trials converged. This fact can be explained by the adaptation of the initial distri-
bution during the initial period and the resulting progressively denser distributed
initial particles.
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Figure 3.25.: Results of the Monte Carlo analysis to assess the performance of the
“enhanced” RBPF estimator by means of the measured ARTEMIS-
urban data record. 2000 iterations (666 seconds) were chosen for the
initial period. Within this period, the algorithm was restarted 10
times. The blue lines show the individual SOC error courses, while
the red lines depict the average error course (solid) and the estimated
2σ confidence interval of the remaining period.

Performance Evaluation for Inaccurate Current Signals

As demonstrated by the SOC error curves shown in Figure 3.25, the proposed “en-
hanced” Rao-Blackwellized estimation framework provides sufficiently accurate es-
timates of the battery’s SOC. The question is if the proposed estimation framework
overcomes also the problems associated with the systematic error of the current
measurements. In order to answer this question, similar to the corresponding simu-
lation study, the current measurements were distorted according to eq. 3.56 and the
Monte Carlo analysis was repeated with the same parameterization as just before.
The outcome of this study is shown in Figure 3.26.
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Figure 3.26.: Results of the Monte Carlo analysis to assess the performance of the
enhanced RBPF estimator by means of the measured ARTEMIS-urban
data record with artificially distorted current measurements. The blue
lines show the individual SOC error courses while the red lines depict
the average error course (solid) and the estimated 2σ confidence inter-
val (dashed). The yellow curve represents the SOC error obtained by
coulomb counting.

Similar to the previous results, the “enhanced” Rao-Blackwellized estimator pre-
vents from significantly biased estimates. Furthermore convergence was achieved for
all 50 trials. However, the influence of the systematic error of the current measure-
ments is only partly compensated by the estimator. Compared to the SOC error
obtained by coulomb counting, the slopes of the error curves are reduced. Never-
theless, the deviation of the SOC estimate may be significant after several hours.
Hence, the proposed estimator fails to circumvent the shortcomings of the inaccu-
rate current measurements. Consequently, the current measurement system has to
provide a high accuracy, particularly avoiding integrator offset errors.

Let us take a closer look at the obtained estimates. Similar to the according sim-
ulation study, the figures below illustrate the estimated state and parameter trends
as well as the corresponding standard deviations of the most suitable estimation
trial.

As shown in Figure 3.27, only small deviations of the SOC estimate (x1,k) are
noticeable at the beginning of the regular estimation period. As mentioned before,
the accuracy of the this estimate progressively decreases due to the systematic error
of the current measurement. Moreover, the estimate of the according standard
deviation is reduced by a factor of 5 and is presumably significantly underestimated.

The estimate of the hysteresis state x2,k, (Figure 3.28) rapidly oscillates between
the minimum and maximum value. This is presumably due to the fact that the
corresponding hysteresis gain parameter θ1,k (see Figure 3.30) appears to be much
larger than expected. Of course, the true amount of charge which is required to move

62



3 Bayesian Filtering for Battery Monitoring 63

entirely from one open circuit voltage curve to the other is not known and probably
influenced, inter alia, by the SOC, the temperature or the operating current, to
name but two. However, the shown course of the parameter θ1,k corresponds with
the given sample time Ts to less than 1% of the battery’s nominal capacity Cn.
According to the results obtained in section 2, this value is presumably too small.
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Figure 3.27.: Estimation results of the trajectory of the state x1,k (SOC) for the
measured ARTEMIS-urban record with numerically distorted current
measurements. Left: estimated (blue) and simulated (green) course of
x1,k. Right: estimated standard deviation of x1,k.
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Figure 3.28.: Estimation results of the trajectory of the state x2,k (hysteresis state)
for the measured ARTEMIS-urban record with numerically distorted
current measurements. Left: estimated course of x2,k. Right: esti-
mated standard deviation of x1,k.

Also less pleasing is the estimated trajectory of the transient state (x3,k) shown in
Figure 3.29. Although the estimate of the according eigenvalue θ2,k appears to be in
a realistic range, the estimate of x3,k does not exclusively exhibit the characteristic
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transient behavior. By comparing Figure 3.27 and Figure 3.29, the dependence of the
SOC on the estimate of the transient state is apparent. Metaphorically speaking,
this can be interpreted in a way that the algorithm compensates the inaccurate
estimates of the states associated with the open circuit voltage UOCV by adapting
the transient state which linearly enters into the expression for the terminal voltage
Uterm.
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Figure 3.29.: Estimation results of the trajectory of the state x3,k (transient state)
for the measured ARTEMIS-urban record with numerically distorted
current measurements. Left: estimated course of x3,k. Right: esti-
mated standard deviation of x3,k.
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Figure 3.30.: Estimation results of the course of the parameter θ1,k (hysteresis gain)
for the measured ARTEMIS-urban record with numerically distorted
current measurements. Left: estimated course of θ1,k. Right: esti-
mated standard deviation of θ1,k.
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Figure 3.31.: Estimation results of the course of the parameter θ2,k (eigenvalue tran-
sient state) for the measured ARTEMIS-urban record with numerically
distorted current measurements. Left: estimated course of θ2,k. Right:
estimated standard deviation of θ2,k.

Due to the shortcomings associated with the estimate of the transient trajectory
x3,k, it is not surprising that the estimated course of the current gain parameter
of the transient state θ3,k is also less convincing. As illustrated in Figure 3.32, the
adaptation of this parameter is associated with large temporal variations. Since
there is no indication that the kinetics of the charge transport in the battery alters
that rapidly, this parameter is presumably estimated inaccurately, which is also
indicated by the according estimated standard deviation. Another striking aspect is
that the estimate appears in an unphysical range as also negative values are detected.
However, negative values of this parameter can be ruled out since otherwise the
power dissipation associated with charging/discharging would be negative.

Moreover, the same situation is encountered with respect to the feedthrough pa-
rameter θ4,k (see Figure 3.33). Since, this quantity directly enters scaled by the
operating current the expression for the terminal Uterm, the algorithm presumably
compensates deviations of the estimated open circuit voltage by preferably adapt-
ing this parameter similar to the considerations with respect to the transient state.
However, this behavior is characteristic for biproper systems, which was already
mentioned when discussing the results obtained by simulation (see Figure 3.21).
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Figure 3.32.: Estimation results of the course of the parameter θ3,k (gain transient
state) for the measured ARTEMIS-urban record with numerically dis-
torted current measurements. Left: estimated course of θ3,k. Right:
estimated standard deviation of θ3,k.
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Figure 3.33.: Estimation results of the course of the parameter θ4,k (feedthrough) for
the measured ARTEMIS-urban record with numerically distorted cur-
rent measurements. Left: estimated course of θ4,k. Right: estimated
standard deviation of θ4,k.
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Finally, the findings presented in this chapter should be summarized. Based on
simulation studies emulating realistic operating conditions it was shown that the
Rao-Blackwellized particle is capable to estimate the SOC accurately independent
of the charge quantities associated with charging/discharging. The experimental
evaluation of the proposed estimator, presented in [40] essentially confirmed the
performance of the proposed estimator whereby a detailed statistical analysis of the
performance of the estimator was omitted in this review. However, the Monte Carlo
analysis performed in this thesis demonstrated that the proposed Rao-Blackwellized
particle filter suffers from some shortcomings, since in some cases inaccurate esti-
mates were achieved.

In order to circumvent this problem, a modification of the proposed estimator was
suggested. The “enhanced” Rao-Blackwellized estimator circumvents the problem.
This circumstance was confirmed by another Monte Carlo analysis.

The Monte Carlo analysis investigating the performance of the “enhanced” Rao-
Blackwellized estimator revealed in case of biased current measurements in bad re-
sults, since the influence of the systematic error of the current measurement proved
to be only partly compensated by the estimator. Hence, high accurate current mea-
surements are required in order to achieve an acceptable level of accuracy. Moreover,
the estimates of the hysteresis state and the transient state as well the estimates of
the parameters proved to be less convincing. This circumstance is due to the fact
that the battery’s dynamics, and in particular the transient dynamics, is presumably
poorly modeled by the used dynamic model.

However, at this point the discussion of the estimator’s performance is postponed
to the concluding chapter and the reader’s attention is drawn to the upcoming chap-
ter. In contrast to estimating the battery’s SOC by Bayesian filtering, a completely
different approach is introduced in chapter 4, namely by investigating whether the
SOC can be determined by magnetic sensing.
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4. Magnetism vs. SOC – A
Feasibilty Study

In chapter 4, a Bayesian joint filtering framework was proposed to estimate the SOC
of LiFePO4 batteries by means of a sequential Monte Carlo method. Simulation
studies carried out in a first step yielded promising results for accurately estimating
the SOC independent of the charge quantities associated with charging/discharging.
However, the experimental evaluation of the proposed estimation framework resulted
in less accurate estimates in case of significantly biased current measurements.

The approach introduced in this chapter is based on a completely different prin-
ciple. Instead of current and voltage measurements the magnetic properties of the
positive electrode are utilized to constitute a relationship with the battery’s SOC.
This approach is mainly motivated by the role of the Fe atom in the LiFePO4 par-
ticle. The Fe-stoichiometry and its state of oxidation is proportional to the number
of lithium ions removed/inserted in the positive electrode’s active material.

In the periodic table, iron belongs to the group of transition metals. Character-
istic of these elements is that their electron configuration includes partially filled d
orbitals. As a consequence, an alteration of the electron configuration by means of
oxidation/reduction entails a significant modification of the element’s intrinsic mag-
netic moment. Since the positive electrode of the LiFePO4 battery is (except for the
current collector foil) a nanoporous compound of carbon-coated LiFePO4, binder
and filler particles, the magnetic susceptibility of the battery’s positive electrode is
directly influenced by the battery’s SOC. Note that this relationship is not solely a
property of LiFePO4 batteries but of all battery chemistries using transition metals
for the positive electrode (e.g. LiCoO2 or LiMn4O2). Chernova et al. [83] pointed
out the connection between magnetism and the electronic and atomic structures of
solids used in modern batteries. They suggest that the SOC is determinable by
magnetic sensing which circumvents the problems associated with biased current
measurements and the LiFePO4 battery’s characteristic open circuit voltage.

This chapter mainly describes a feasibility study to prove whether the SOC can
be determined by induction sensors in case of a homogeneous magnetized battery.
Thereby, the content of this chapter is organized as follows: First, a short introduc-
tion to magnetism in condensed matter is provided. Afterwards, the results of two
SQUID studies are presented, whereby the magnetic susceptibility is investigated
by means of both LiFePO4 powder samples and samples examined from differently
charged LiFePO4 batteries. Finally, the required magnetic sensitivity of an induction
sensor is determined based on the example of a commercially widespread battery
package.
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4.1. A Brief Introduction to Magnetism of
Condensed Matter

As mentioned before, in order to expose the motivation of magnetic-based SOC
sensing, a brief introduction to magnetism in condensed matter is provided first.
Clearly, the explanations herein cannot compete with a comprehensive description
of magnetism of condensed matter and are restricted to the special case of paramag-
netic ions in octahedral environments. Since magnetism of condensed matter relies
on quantum mechanical phenomena, the corresponding operators are used without
reference to the underlying theory. This circumstance applies especially for the elec-
tron spin and all operators associated with this quantity. For an in-depth treatment
of magnetism in condensed matter interested parties may refer e.g. to [84–86]. The
latter was used as reference textbook for the following explanations.

4.1.1. Magnetic Moments

As mentioned above, magnetism in condensed matter is mainly derived from quan-
tum mechanical principles. Nevertheless, let us start by introducing the fundamental
quantity, the magnetic moment µ, by applying the laws of classic physics in order
to gain a first insight into magnetic moments. In classic electromagnetism, the
magnetic moment induced by a current I in a loop of finite size is given by

µ = I

∮
S

dS. (4.1)

Since current occurs by the motion of charged particles which possess mass, the
magnetic moment is associated with the angular momentum L of these particles
according to µ = γL, with γ being a known constant and in the literature often
referred to as the gyromagnetic ratio. In a magnetic B-field, a torque T = µ × B
is exerted and the energy of the magnetic moment is given by E = −µ · B. If
no angular momentum is present, the magnetic field aligns the magnetic moment
towards its direction turning the energy of the magnetic moment into a minimum
value. However, this is not the case and since torque is equal to the temporal
alteration of the angular momentum, the relationship between the magnetic moment
µ and the magnetic B-field is given by

µ̇ = γµ×B. (4.2)

By solving this system of ordinary differential equations for the case of a mag-
netic B-field being aligned with the z-axis (B = Bez), the components of the mag-
netic moment µ are given by µx(t) = |µ| sin (θ) cos (ωt), µy(t) = |µ| sin (θ) sin (ωt)
and µz(t) = |µ| cos (θ), respectively. Obviously, the magnetic moment µ pre-
cesses around the magnetic B-field with precession angle θ and precession frequency
ω = γB. The latter is often called Larmor precession frequency in the literature.

The question is now how these relationships are incorporated in the magnetism
of matter. One may think of the simplest case in which one electron with charge
−e, mass me and velocity v performs a circular orbit around a hydrogen nucleus.
Consequently, this corresponds to a current I = −e|v|/2π. Moreover, if the electron
is in ground state, the magnitude of its angular momentum must be equal to the
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reduced Planck constant ~, while the magnitude of the magnetic moment of the
precessing electron is given by

µ = − e~
2me

≡ −µB = −9 274 · 10−24 Am2. (4.3)

It is not surprising that this result is utilized to define a measure of a quantized
magnetic moment and that the Bohr magneton µB was established as convenient
unit for expressing electron magnetic dipole moments.

4.1.2. Isolated Magnetic Moments

As already mentioned several times, magnetism in matter is mainly derived by
quantum mechanical principles. As a consequence, classic physics is insufficient to
provide an accurate mathematical formulation of the phenomena associated with
magnetism. This is due to the fact that additionally to the orbital angular momen-
tum, electrons possess an intrinsic momentum called spin. Both moments depend
on the state occupied by the electrons and are hence quantized quantities with quan-
tum numbers l, ml, s and ms, and ml and ms are defined by the quantum numbers
l and s, respectively. Consequently, the possible values of these quantities are given
by the sets ml = {−l,−l + 1, ..., l − 1, l} and ms = {−1

2
, 1

2
}1.

By means of the quantum numbers l and ml, the magnitude of the orbital momen-
tum’s contribution is

√
l (l + 1)µB. The according component along a fixed axis (e.g.

z-axis similar to the assumption before) is given by −mlµB. Similarly, the quantum
numbers s and ms are used to constitute a relationship with the spin’s contribution
to the magnetic moment. The according magnitude equals

√
s (s+ 1)gµB and the

component along the fixed axis is −msgµB, while g ≈ 2 is a constant and often
referred to as g-factor for the spin-momentum.

Next, the magnetic properties of atoms shall be examined, whereby the interac-
tions between different atoms and their environments are ignored. Hence, it is as-
sumed that the atoms appear to be isolated. In addition, effects like the spin-orbit
interaction are not taken into account. The Hamiltonian2 provides an informative
insight for the interaction of the magnetic moment of an atom with a magnetic
B-field and is given by eq. 4.4 where Ne is the number of electrons, S denotes the
spin operator, pi is the ith momentum without the presence of the magnetic field
and Vi is a potential energy function associated with the ith electron. A denotes the
magnetic vector potential and the term pi+eA(ri) defines the canonical momentum
of the ith electron.

Ĥ =

(
Ne∑
i=1

||pi + eA(ri)||22
2me

+ Vi

)
+ gµBS ·B (4.4)

1For the sake of completeness, the possible values for the magnetic spin quantum number ms are
s, (s− 1), ...,−s. Since s = 1

2 for electrons, this set is reduced to two possible values.
2The Hamiltonian Ĥ defines a sum of operators corresponding to the kinetic and potential energy

of a system. In quantum-mechanics the state of a system is described by a wave function
ψ, which can be evaluated by solving Schrödinger’s equation. The solution of this partial
differential equation is mainly determined by the corresponding Hamiltonian and boundary
conditions.
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By using the gauge A(r) = 1
2

(B× r), the definition for the total angular momentum

L = 1
~
∑Ne

i=1 ri × pi and the rules for permuting a scalar triple product according to
a · (b× c) = b · (c× a), the Hamiltonian can be split up into three terms according
to

Ĥ =

(
Ne∑
i=1

||pi||22
2me

+ Vi

)
+ µB (L + gS) ·B︸ ︷︷ ︸

paramagnetic term

+
e2

8me

Ne∑
i=1

||B× ri||22︸ ︷︷ ︸
diamagnetic term

. (4.5)

The first part on the right-hand side of eq. 4.5 describes the bare Hamiltonian
without the presence of a magnetic field, the second term defines the paramagnetic
contribution, and the third term arises from the diamagnetic moment of the system.
In the case of a linear and isotropic material, the magnetization3 is equal to M = χH
where χ is a dimensionless scalar quantity called the magnetic susceptibility. If
the paramagnetic term dominates, the magnetic susceptibility is positive and the
matter is said to show paramagnetic behavior. In this case, the temperature has
a significant influence on the magnetic susceptibility. Although µB (L + gS) · B
often exceeds the field-free Hamiltonian, it sometimes vanishes. This is the case if
the atom does not posses unfilled shells. Hence, the remaining contribution to the
Hamiltonian is the diamagnetic term. Without further treatment, the magnetization
induced by diamagnetism displays a negative value and is only marginally influenced
by the temperature. Since the approach introduced in this chapter deals with a
paramagnetic material, only this case is considered.

4.1.3. Paramagnetism

So far, it has been assumed that the atoms possess zero magnetic moment unless a
magnetic field is applied. However, this is not the case in general, and atoms with
unpaired electrons show a magnetic moment even in the absence of a magnetic field.
In the case of paramagnetic material, these moments point into random directions
since neighboring atoms interact only very little with each other. From this point of
view, the influence of the temperature on the magnetic susceptibility is obvious. The
application of a magnetic field lines up the spins, while an increase of temperature
ϑ will randomize them. Consequently, the magnetization of paramagnetic material
is approximately proportional to the ratio B/ϑ (ϑ in Kelvin), which can be easily
demonstrated by applying the principles of statistical mechanics4. For this purpose,
the operator for the total angular momentum J = L + S is introduced. Since L and
S are defined by the quantum numbers l and s, respectively, the operator J and
the component of the magnetic moment along a fixed axis are similarly determined
by the quantum numbers J and mJ . With the definitions mentioned above, the
influence of the temperature ϑ on the magnetic susceptibility can now be derived

3Since matter consists of a large number of atoms associated with magnetic moments, the mag-
netization M was introduced to provide a macroscopic measure and is defined as the magnetic
moment per unit volume.

4In the case of a paramagnetic material, the magnetization is aligned to the magnetic field. For
the explanations herein, it suffices to consider only the magnitudes B, H and M of the field
vectors B, H and M.
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by using the partition function

Z =
J∑

mJ=−J

e
mJgJµBB

kBϑ (4.6)

where J is the angular atomic momentum, kB denotes the Boltzmann constant and
gJ is the Landé g-factor defined as

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (4.7)

The thermal average of the component of the angular momentum along the magnetic
field is given by

E{mJ} =

∑J
mJ=−J mJe

mJgJµBB

kBϑ∑J
mJ=−J e

mJgJµBB

kBϑ

(4.8)

and equals to JBJ

(
gJµBB
kBϑ

)
where BJ is the Brillouin function.5 Let N be the

number of atoms per unit volume, then the magnitude of the magnetization is
given by M = NgJµBE{mJ}. As for the most practical cases, the temperature
is not very low and the magnetic field is not extremely large. If these conditions
are met, the Brillouin function can be expressed by a Taylor series. Furthermore,
if the assumption gJµBB � kBϑ is true, then the magnetic susceptibility can be
approximated by

χ ≈ Nµ0µ
2
eff

3kBϑ
(4.9)

where µeff denotes the effective magnetic moment given by

µeff = gJµB

√
J(J + 1). (4.10)

4.1.4. Environments

So far, the interaction of isolated atoms with their local environments has been ne-
glected. However, some magnetic ions in certain crystal environments significantly
interact with their environment. Consequently, by investigating the magnetic prop-
erties of such ions, the respective environment must be taken into account. In the
following an iron ion in an octahedral environment is investigated.

The electronic configuration of the iron atom is [Ar]3d64s2. This notation denotes
that the state of a completely filled shell corresponds to the electronic configuration
of argon and two valence shells are present additionally. The 3d valence shell is
filled with six electrons and the 4s valence shell contains two electrons. In the ionic
state, iron can be found either as Fe2+ or Fe3+. In both cases, the 4s shell is empty.
Depending on the ionic state, the 3d shell consists of six (Fe2+) or five electrons
(Fe3+), respectively. Since iron belongs to the class of 3d transition metals6, the
alteration of the electron configuration of the 3d shell in dependence of the oxidation

5 BJ(y) = 2J+1
2J coth

(
2J+1

2J y
)
− 1

2J coth
(

y
2J

)
6Transition metal compounds are paramagnetic if one ore more electrons are unpaired.
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state is accompanied by a change of the effective magnetic moment µeff. By solving
Schrödinger’s equation for the 3d shell electrons, one obtains five orbitals defining
the electron probability density in space. The orientation of these orbitals plays
a key role for the interaction with the environment and is therefore of significant
relevance for cooperative magnetism.

Basically, two theories are common to treat the problem of ions in a crystal envi-
ronment. In crystal field theory, neighboring orbitals are modeled as negative point
charges. As an alternative, ligand field theory improves crystal field theory and is
essentially an extension of molecular orbital theory with respect to d orbitals of the
central ion overlapping with the orbitals of the surrounding ions. For the sake of
simplicity, the explanations herein are only based on crystal field theory and are
solely used to provide a short overview of the interaction between the local environ-
ment and the central ion. For this purpose, the situation of 3d orbitals in octahedral
crystal field is demonstrated in Figure 4.1. The three orbitals dxy, dxz and dyz are
lowered in energy associated with the threefold t2g levels but the dx2 − y2 and the dz2
orbitals are raised in energy denoted by the twofold eg levels. This circumstance is
due to the fact that the t2g orbitals point between the coordinating x, y and z axis,
while the eg orbitals are aligned along them. Therefore, the electrostatic repulsion
is less operative in the case of the t2g orbitals than in case of the eg orbitals resulting
in the splitting of the corresponding energy levels.

Figure 4.1.: Angular distribution of d-orbitals in an octahedral crystal field. [87]
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The question is the occupation of the 3d by the valence electrons. In order to
minimize the electrostatic repulsion, the orbitals associated with the t2g levels are
preferably filled first (low-spin). This is only the case if a strong crystal field is
present since the same orbital is occupied by two electrons at the cost of Coulomb
energy denoted as spin pairing energy. If the crystal field is weak, it is energetically
more favorable to fill all orbitals first before pairing the electrons with anti-parallel
spins leading to high-spin configuration. As for the case of Fe2+ and Fe3+ ions, both
situations are illustrated in Figure 4.2 and Figure 4.3, respectively.

eg

t2g

free
Fe2+ ion

Δ

(a) low-spin Fe2+, S = 0

eg

t2g

free
Fe3+ ion

Δ

(b) low-spin Fe3+, S = 1
2

Figure 4.2.: Electronic configuration of an Fe2+ (a) and Fe3+ (b) ion for the low-spin
(strong crystal field) case in an octahedral environment.
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Δ
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2

Figure 4.3.: Electronic configuration of an Fe2+ (a) and Fe3+ (b) ion for the high-spin
(weak crystal field) case in an octahedral environment.

In case of 3d transition metals, one often encounters the situation that solely the
spin configuration determines the magnetic properties of the central ion. This is
due to the fact that the ground state of such systems is chosen in a way that orbital
magnetism is quenched (L = 0). Consequently, the expression for the effective
magnetic moment reduces to µeff = 2µB

√
S(S + 1).

The theory discussed here allows an rough estimate of the effective magnetic mo-
ment and, thus, the magnetic susceptibility for the case of LiFePO4 particles in the
battery’s positive electrode. The iron ions change the state of oxidation from Fe2+

to Fe3+ dependent on lithium insertion/depletion and vice versa. In the crystal
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environment of LiFePO4, the iron ions are located in the center of an octahedron,
composed of PO4 molecules acting as ligands at the corners via their magnetic re-
sponse. Consequently, the spin configuration of the Fe2+ and Fe3+ ions can be
determined. In the case of a low-spin configuration, the spin momentum and, thus,
the paramagnetic contribution to the magnetic susceptibility vanishes. Based on
previous measurements, this situation can be ruled out [83, 88]. Hence, it is most
likely that the ground state for both the Fe2+ and Fe3+ ion is the high-spin config-
uration. Consequently, the total spin is assumed to change from S = 2 to S = 5

2
if

the lithium ion is removed. Since the orbital momentum is assumed to be quenched,
the spin-only formula for the effective moment can be utilized. Thus, the mag-
netic susceptibility of the cathode’s active material is expected to increase up to
approximately 45% from a totally discharged to a totally charged battery.

4.2. Experimental Evaluation

In the previous section, the relationship between the state of oxidation and the
effective magnetic moment of an iron ion centered in an octahedral PO4 environment
was carried out, whereby the high-spin configuration was assumed as ground state
for both the Fe2+ and the Fe3+ ion. The question is now how much agreement
is reached with the lithium insertion/depletion-induced alteration of the magnetic
susceptibility in the positive electrode’s active material of real LiFePO4 batteries.
Note that the presented theory relies on some constraints which are presumably
not met in practice. The local environment is assumed to form a symmetric and
undistorted octahedron, the orbital momentum is expected to be totally quenched
and the crystal field energy ∆ is supposed to be not too large to provide the high-spin
electronic configuration of the iron ion, to address just a few.

However, the actual composition of the LiFePO4 battery’s positive electrode sug-
gests that at least some of the mentioned constraints are violated. This circumstance
is due to the fact that the positive electrode’s active material consists of carbon
coated nanoporous LiFePO4 particles and is therefore not directly comparable to
the case of mono-crystal LiFePO4. Additionally, the influence of binder and filler
additives in the cathode may not be negligible. A further source of uncertainty is the
intercalation process in the active material since insertion/depletion of lithium ions
causes deformations in the local environment [89,90]. Hence, the orbital contribution
to the magnetic moment might not be fully quenched.

The concomitant change of the magnetic moment of the transition ion spins in
the positive electrode’s active material has not yet been fully understood to draw
essential conclusions from the available reviews of this subject for a practical detec-
tion of the SOC by magnetic principles [83, 91, 92]. Consequently, an experimental
evaluation of the relationship between the magnetic susceptibility and the level of
lithiation of the battery’s positive electrode is indispensable to prove the usability
of the proposed physical effect for SOC sensing. In this context, two studies with
different sample configurations were carried out. In both studies, the magnetic prop-
erties of the battery’s positive electrode were examined by means a SQUID-based
measurement system. The results of the experiments are reported in [42] and [43],
respectively.
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4.2.1. Experimental Setup

In a first trial, an arrangement of an LiFePO4 battery (pouch package) and an at-
tached air coil was used to investigate whether the battery’s SOC can be derived
from electromagnetic field quantities. In this early stage and inspired by a white
paper of Cadex Electronics Inc. [93], the negative electrode’s electrical conductiv-
ity was taken into consideration to constitute, inter alia, a relationship with the
SOC. Hence, charge and discharge experiments were carried out and the air coil
was fed by a sine-wave current and the coil’s inductance was measured by a LCR-
bridge. According to the mentioned white paper, the electric conductivity of the
negative electrode was supposed to increase with an increased level of lithiation.
Consequently, eddy currents induced by the air coil were supposed to be increased
in higher SOC, which causes a reduction of the air coil’s inductance according to
Lenz’s law. In order to investigate the influence of the skin depth, the excitation
frequency was varied between 20 kHz and 200 kHz.

Although small in magnitude, a linear relationship between the inductance of the
sense coil and the SOC was measured [41]. Encouraged by these results, the same
experiments were carried out in a cylindrical LiFePO4 battery and yielded ambigu-
ous results. As a possible explanation, the battery’s charge-dependent expansion is
assumed to be responsible for the different outcomes. The intercalation of lithium
ions in the negative electrode’s active material (usually graphite) is accompanied by
a volumetric expansion of the electrode up to 10%. It turned out that the change
of inductance arose most likely from this charge dependent expansion rather than
from the alteration of the magnetic and electrical properties of the battery’s active
materials. Since the cylindrical package is significantly more stiff than the soft pouch
package, the expansion is reduced and the internal arrangement of the metal foils
remains unchanged. The conclusion which can be drawn from the results is that
the sensitivity of the LCR-bridge method is much too low to detect the alteration
of electromagnetic quantities of the battery’s active material.

Nevertheless, according to the theory presented before, the level of lithiation has
distinct influence on the magnetic properties of the positive electrode’s active ma-
terial. Hence, more refined laboratory facilities were sought, which concluded in
a fruitful cooperation with the Department of Experimental Physics at the Insti-
tute of Physics at the University of Graz. Prof. Dr. Heinz Krenn established the
research area of magnetometry and photonics there and operates a cryogenic labora-
tory equipped with a Quantum Design MPMS XL7 magnetic property measurement
system. The operation of this measurement system is based on a superconducting
quantum interference device (SQUID) magnetometer, cooled with liquid helium,
and is consequently best suited to detect the smallest deviations of the magnetic
susceptibility for temperatures between 1.7 K and 400 K.

However, the sample chamber and the arrangement of the coils of the MPMS XL7
measurement system restrict the samples to be cylindric and less than 8 mm in
diameter and 8 mm of maximum height. Unfortunately, since LiFePO4 batteries are
preferably used in high-power applications, there are no commercial LiFePO4 batter-
ies available on the market which fulfill these constraints. As a workaround, it was
decided to examine the charge-dependent alteration of the magnetic susceptibility
of the positive electrode by investigating differently oxidized nanoporous LiFePO4

samples. For this purpose, samples were extracted from both powder mixtures and
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commercial available LiFePO4 batteries.
Unfortunately, the sample preparation proved to be challenging. Since the aim of

the experimental evaluation was to investigate the change of magnetic susceptibility
related to the oxidation state of the transition metal ions in the positive electrode,
the samples had to be prevented from uncontrolled oxidation. A professional sample
preparation was performed in a cooperation with Ass. Prof. Dr. Roland Fischer from
the Institute of Inorganic Chemistry at Graz University of Technology. Thanks to
his efforts, two studies could be carried out.

In a first step, differently concentrated LiFePO4/FePO4 powder mixtures were an-
alyzed, followed by a study of samples of positive electrodes from differently charged
identical batteries. In the case of the latter, the disassembly of the charged batter-
ies proved to be challenging since short circuits do not only represent an immanent
safety risk but also distort the desired level of lithiation in an irreproducible manner.

For both experiments, the samples were packed in cylindrical aluminum capsules
which were sealed using epoxy adhesives. Aluminum was chosen for the capsules
for two reasons. First, it provides a steam-tight housing, necessary to prevent the
samples from uncontrolled oxidation. Second, the magnetic moment of aluminum
is mainly determined by a temperature-independent diamagnetic contribution to
the magnetic susceptibility. Consequently, the capsule contributes to the measured
magnetization only with a small and temperature-independent negative ground sig-
nal. To place the samples in the sample chamber of the MPMS XL7 measurement
system, a thin-walled sealed aluminum tube was used as sample holder. In order to
minimize contaminations, especially the importing of oxygen, the installation of the
sample capsule was done in a helium atmosphere. The arrangement of the sample
capsule in the sample holder is schematically illustrated in Figure 4.4.

aluminium sample capsule

helium-filled aluminium tube

(~1bar pressure)

bottom sealing plug

top sealing plug
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Figure 4.4.: Scheme of the SQUID sample holder. A thin-walled aluminum tube of
7 mm outer diameter was used to put the sample capsule into the SQUID
magnetometer. In order to minimize contaminations, the capsules were
installed in a helium atmosphere [43].
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4.2.2. Powder Samples

Due to the challenges associated with the preparation of the samples extracted
from charged batteries, samples of differently concentrated LiFePO4/FePO4 pow-
der mixtures were investigated in a first step. For this purpose, (battery grade)
pure LiFePO4 powder was chemically delithiated employing NO2BF4 following the
reaction

LiFePO4 + NO2BF4 � FePO4 + LiBF4 + NO2 .

The thus obtained FePO4 powder was used in combination with the LiFePO4 pow-
der to prepare samples of different LiFePO4/FePO4 concentrations by mechanically
mixing of both materials. This approach was chosen as major parts of the electrode
reaction are dominated by the coexistence of a lithium rich phase and a lithium
poor phase. Consequently, such prepared samples should yield a magnetic response
which is directly comparable to materials prepared via electrochemical lithiation or
delithiation, respectively. As can be seen in Table 4.1, 7 samples of powder mix-
tures have been prepared, whereby the levels of lithiation were chosen to be nearly
uniformly distributed between 0% (sample #7) and 100% (sample #1).

As already mentioned several times, LiFePO4 batteries are preferably used in high-
power automotive applications. Hence, an SOC sensor based on magnetic principles
is required to operate in a relatively wide temperature range. In order to meet
the conditions of such applications, the experiment was carried out with tempera-
tures between −20◦C and +60◦C. Since tension-induced influences on the magnetic
moment could not be ruled out, the temperature’s influence on the magnetic sus-
ceptibility was investigated with both a heating and a cooling cycle.

Sample # Mass (mg) LiFePO4 (%) FePO4 (%)

1 205 0 100

2 185 13 87

3 201 27.5 72.5

4 211 52.8 47.2

5 206 76.4 23.6

6 222 90 10

7 194 100 0

Table 4.1.: Sample mass, LiFePO4 and FePO4 concentrations of the investigated
powder mixtures. The samples were prepared by mechanically mixing
single-phase LiFePO4 and FePO4 powder. The latter was obtained by
chemically delithiating nanoporous LiFePO4 powder.

Figure 4.5 shows the obtained courses of the temperature-dependent magnetic
volume susceptibilities of the investigated powder mixtures. Apparently, in this low
temperature span a small deviation from the expected results seems to appear. Al-
though the magnetic volume susceptibility decreases with increasing temperature,
the curves are approximated by an affine function of temperature rather than a re-
ciprocal function which is characteristic for paramagnetism in a broader temperature
range.
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Figure 4.5.: Magnetic volume susceptibilities χ of differently delithiated LiFePO4

and FePO4 powder mixtures for both a cooling (solid line) and a heating
(dashed line) cycle [42].

Although a direct correlation between the level of delithiation and the magnetic
susceptibility can be observed, the fact that the measured magnetic susceptibility
decreases with increasing level of delithiation is in direct contradiction to the as-
sumptions made in section 4.1.4. Instead of an oxidation-induced increase in mag-
netic susceptibility of approximately 45%, a decrease of 45% is noticed at 20 ◦C.
Consequently, the high-spin configuration can be ruled out for the delithiated case
(Fe3+). As possible explanation, the crystal field splitting energy ∆ is presumably
too low for the low-spin state but at the same time too high for the high-spin state,
resulting in an energetically more favorable intermediate state. Hence, an electronic
configuration of the Fe3+ ion accompanied by the total spin of S = 3

2
reaches much

better agreement with the results of the experiment. Assuming an alteration of the
total spin number from S = 2 to S = 3

2
corresponds to a decrease in magnetic

susceptibility of 37.5% in the case of a totally quenched angular momentum. Since
the measured magnetic susceptibility of the totally delithiated sample is even lower
by 7.5% , this mismatch can be interpreted by a non-vanishing contribution of the
orbital momentum to the effective magnetic moment µeff.

4.2.3. Battery Samples

The results reported in the previous section showed a direct relationship between the
magnetic susceptibility and the level of delithiation of the powder mixture. How-
ever, positive electrodes are considerably more complex than simple binary mixtures
of single-phase materials. Therefore, the question arises how representative these
results for real batteries are. In order to answer this question, a second study was
carried out. For this purpose, nine identical and “virgin” A123 26650m1B 2.5 Ah
batteries were selected for sample extraction. Initially, ten full charge cycles were
performed in order to guarantee full formation of the batteries. Afterwards, the
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batteries were fully charged to the end-of-charge voltage of 3.6 V by means of a
constant-current constant-voltage charging scheme corresponding to the minimum
level of lithium in the positive electrode. Finally, the batteries were discharged
by a certain charge amount Qdis (see Table 4.2) to achieve approximately linear-
distributed levels of lithiation.

Sample # Mass (mg) Qdis (Ah) CLiFePO4 in (%)

A 284 -2.5 100

B 329 -2.1875 87.5

C 320 -1.875 75

D 342 -1.5625 62.5

E 327 -1.25 50

F 329 -0.9375 37.5

G 314 -0.625 25

H 320 -0.415 16.6

I 324 0 0

Table 4.2.: Sample mass, level of discharge and corresponding LiFePO4 concentra-
tions with respect to the nominal capacity of the disassembled batteries
of 2.5 Ah. The samples were prepared by extracting parts of the positive
electrode of differently charged identical LiFePO4 batteries.

The charged batteries were disassembled in nitrogen atmosphere in a glove box
and samples were extracted by stamping out snippets of different parts from the
positive electrodes of the batteries. These snippets were filled into sealed aluminum
capsules and the same experimental conditions were applied similar to the study of
the powder samples. On the assumption of nearly identical batteries7, the magnetic
susceptibility of these samples should show a direct relationship to the level of dis-
charge. According to the previous study on intermediate spin states, the effective
magnetic moment µeff is expected to increase with the level of lithiation from the
lithium rich (#A) to lithium depleted (#I) samples.

As can be seen in Figure 4.6, the measured magnetic volume susceptibilities show
a reciprocal temperature dependence characteristic for paramagnetism. Compared
to the results of the previous experiment, the overall alteration of susceptibility
with respect to the level of delithiation is reduced by the factor of five. Since the
battery’s positive electrode is not entirely composed of nanoporous LiFePO4 (filling
factor < 1), the magnetic susceptibility is expected to be reduced. In addition to
the active material, nonmagnetic carbon, binder and filler materials, parts of the
aluminum current collector foil as well as non-volatile constituents of the electrode
contribute to the sample’s mass without magnetic response. LiFePO4 contributes
about 60% to the total mass of the battery. Accordingly, the reduction of magnetic
susceptibility to this extent is not surprising at all.

7This assumption is due to the fact that all disassembled batteries stemmed from the same
production batch.

80



4 Magnetism vs. SOC – A Feasibilty Study 81

250 260 270 280 290 300 310 320 330 340
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12
x 10

−4

#A

#B

#C

#D

#E

#F

#G
#H

#I

Temperature (K)

M
a
g
n
e
ti
c

S
u
s
c
e
p
ti
b
ili
ty

(S
I)

(−
)

∆χ
293K

=2.25e
−4

Figure 4.6.: Magnetic volume susceptibilities χ of samples extracted from the posi-
tive electrodes of differently charged identical A123 26650m1-B batter-
ies in dependence of the temperature. Both a cooling (solid line) and a
heating cycle (dashed line) was investigated [43].

It is also striking that the curves are not uniformly distributed according to the
charge levels specified in Table 4.2. A smaller magnetic moment has been measured
for sample #A than for sample #B and the distance between the curves of samples
#G and #H appears to be much smaller than expected. This can be interpreted as a
deviation which is most likely caused by imprecisions in the sample preparation. In
view of the challenging sample preparation in the nitrogen glove box, such deviations
cannot be avoided. In order to demonstrate the alteration of the paramagnetic
contribution to the magnetic volume susceptibility, the results of the heating cycle
were taken to adapt a

ϑ
-reciprocal curves (see eq. 4.9). By means of these curves, the

measurements can be deliberated from parasitic magnetic components in order to
determine the remaining paramagnetic contribution (= mapping to a filling factor
of 1). As can be seen in Figure 4.7, the fitted curves coincide very well with the
measurements. This confirms the paramagnetic behavior of the positive electrode
within the given range of temperature. In addition, the nearly equidistant spaces
between the curves indicate a quadratic increase of the effective magnetic moment
µeff with a linearly increasing level of lithiation in the positive electrode. This
circumstance is in agreement with the specified levels of discharge shown in Table 4.2.
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Figure 4.7.: Paramagnetic contribution to the magnetic volume susceptibilities of
differently charged samples of LiFePO4 electrodes in dependence of the
temperature. The results of the heating cycle (Figure 4.6) were used
to fit a

ϑ
-reciprocal curves (dashed lines). By means of these curves, the

measured magnetic magnetic volume susceptibilities were freed from the
magnetic bias components (solid lines). Apparently, the fitted curves
nearly coincide with the measurements.

After normalization to a filling factor of 1 in the specimens, the magnetic volume
susceptibility can be expected to decrease down to 51.3% with increasing lithium
content. Although the total variation is slightly increased, this can be interpreted by
the alteration of the total spin number from S = 2 to S = 3

2
. Similar to the results

presented before, the difference to the theoretical value obtained by the spin-only
formula can be explained by an additional contribution to the effective magnetic
moment induced by non-vanishing orbital moments.

The findings presented in this section prove that the level of lithiation of the
battery’s positive electrode is directly related to the active material’s magnetic sus-
ceptibility. In contradiction to the theoretical values obtained by assuming the
high-spin electronic configuration of the transition ion and a totally quenched or-
bital momentum, the magnetic susceptibility is enhanced with an increasing level
of lithiation corresponding to an intermediate spin state S = 3

2
of the Fe3+-ions.

Additionally, the total alteration is slightly larger than expected, indicating that
the orbital momentum is not entirely quenched.

However, the aim of these experiments was to derive the order of magnitude of
the charge dependent alteration of the magnetic susceptibility in view of a novel
sensor concept. Consequently, the detailed theoretical interpretation of the findings
is closed at this point.
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4.3. Sensor Placement

So far, the magnetic properties of the battery’s cathode material has been investi-
gated. The question is how these findings can be utilized to measure the SOC with
an induction sensor. In order to determine the required magnetic field sensitivity as
well as the optimal sensor placement for an induction sensor, the spatial distribu-
tion of the magnetic B-field is evaluated for the case of a cylindrical geometry. For
parametrization, the actual dimensions of the investigated A123 26650m1B batteries
were used.

y

x

z

ro
ri

L
H

Figure 4.8.: Simplified cylindrical geometry of a 26650-battery package. The compo-
nents of the battery are represented by a cylinder of homogeneous mag-
netization. In order to meet realistic conditions, a production-related
coaxial hole was placed in the center of the battery with an inner radius
ri. The cylinder is assumed to be exposed to a homogeneous H-field
oriented along the z-direction.

4.3.1. Mathematical Formulation

In magnetostatics, the magnetic vector potential A of a magnetized body is given
by

A(r) =
µ0

4π

∫
V

JV (r′)

|r− r′|
dV ′ +

µ0

4π

∮
S

JS(r′)

|r− r′|
dS ′ (4.11)

where JV (r) = ∇×M denotes an equivalent magnetization current density in the
body, and JS(r) = M × n is an equivalent current density on the surface of the
body with surface normal vector n. Let us assume a homogeneously magnetized
rigid body shown in Figure 4.8. The first term of eq. 4.11 vanishes due to the
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homogeneous magnetization. The second term is reduced to a surface integral with
respect to the outer and inner cylindrical surface since the surfaces at the top and
bottom do not contribute due to symmetry. Consequently, the expression for the
magnetic vector potential is represented by the magnetization distributions on the
shell surfaces.

A(r) =
µ0

4π

∫
So

M(r′)× n′o
|r− r′|

dS ′︸ ︷︷ ︸
=:Ao(r)

+
µ0

4π

∫
Si

M(r′)× n′i
|r− r′|

dS ′︸ ︷︷ ︸
=:Ai(r)

. (4.12)

The expressions for Ao(r) and Ai(r) for the outer and inner shell differ only with
respect to the radius at the surfaces and the radial orientation of surface normal
vector. For the sake of clarity, only the solution for Ao(r) is presented in the fol-
lowing.

The geometry of the battery package suggests an evaluation of the surface integral
in cylindrical coordinates. Consequently, the observation and source point are given
by r = rer +zez and r′ = ro cos(ϕ′)er + ro sin(ϕ′)eϕ+z′ez, respectively, ro being the
radius of the outer surface. The surface normal vector is given by n′ = cos(ϕ′)er +
sin(ϕ′)eϕ and the magnetization is assumed to be homogeneous and in z-direction
orientated according to

M(r′) =

{
Mez for |z′| ≤ L

2

0 else
. (4.13)

Consequently, the contribution to the magnetic vector potential related to magne-
tization currents M× no on the outer surface is given by

Ao(r) =
µ0roM

4π

[∫ 2π

0

∫ L
2

−L
2

− sin(ϕ′)dϕ′dz′√
r2 + r2

o + (z − z′)2 − 2ror cos(ϕ′)
er +

∫ 2π

0

∫ L
2

−L
2

cos(ϕ′)dϕ′dz′√
r2 + r2

o + (z − z′)2 − 2ror cos(ϕ′)
eϕ

]
. (4.14)

The radial component of Ao(r) vanishes, which can easily be demonstrated using
the substitution cos(ϕ′) = x and evaluating the integral with respect to x.∫ 2π

0

− sin(ϕ′)dϕ′√
r2 + r2

o + (z − z′)2 − 2ror cos(ϕ′)
=

−1

ror

√
r2 + r2

o + (z − z′)2 − 2rorx

∣∣∣∣x1
x0

=

−1

ror

√
r2 + r2

o + (z − z′)2 − 2ror cos(ϕ′)

∣∣∣∣2π
0

= 0

Unfortunately, the determination of the azimuthal component of Ao(r) is less
straightforward since an analytical treatment of the according integral is not tractable.
However, Ao(r) can be expressed in terms of complete elliptic integrals of the first
and second kind which at least allows a closed evaluation of (4.14).
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By means of the identity cos(α) ≡ 2 cos(α
2

2
)− 1 and the definition

k2
ro :=

4ror

(r + ro)2 + (z − z′)2
, (4.15)

the term under the square root can be expressed according to

r2 + r2
o + (z − z′)2 − 2ror cos(ϕ′) =

k2
ro

4ror

(
1− k2

ro cos2

(
ϕ′

2

))
. (4.16)

Again, using the identity cos(α) ≡ 2 cos(α
2

2
)− 1 and the substitution θ′ = ϕ′

2
allows

a formulation of the integral with respect to ϕ′ given by∫ 2π

0

cos(ϕ′)dϕ′√
r2 + r2

o + (z − z′)2 − 2ror cos(ϕ′)
=

4
√
ror

kro

∫ π

0

2 cos2(θ′)− 1√
1− k2

ro cos2(θ′)
dθ′.

(4.17)

Since the integrand on the right-hand side is a symmetric and periodic function in
θ′ with periodicity π, it suffices to integrate only from 0 to π

2
. In conjunction with

the substitution t = cos(θ′), this circumstance allows to express eq. 4.17 in terms
of complete elliptic integrals of the first and second kind, respectively according to
Appendix B (see eq. B.4 and eq. B.5).

4
√
ror

kro

∫ π

0

2 cos2(θ′)− 1√
1− k2

ro cos2(θ′)
dθ′ =

8
√
ror

k3
ro

(2− k2
ro)

∫ π
2

0

dθ′√
1− k2

ro cos2(θ′)︸ ︷︷ ︸
=K(kro )

−2

∫ π
2

0

√
1− k2

ro cos2(θ′)dθ′︸ ︷︷ ︸
=E(kro )

 (4.18)

Consequently, the contribution to the magnetic vector potential from the total outer
surface is given by

Ao(r) =
2µ0

√
rM

π
r

3
2
o

∫ L
2

−L
2

(2− k2
ro)K(kro)− 2E(kro)

k3
ro

dz′eϕ. (4.19)

According to eq. 4.12 the overall magnetic vector potential for both shells expressed
in terms of complete elliptic integrals of the first and second kind is given by

A(r) =
2µ0

√
rM

π

(
r

3
2
o − r

3
2
i

)∫ L
2

−L
2

(2− k2
ro)K(kro)− 2E(kro)

k3
ro

−

(2− k2
ri

)K(kri)− 2E(kri)

k3
ri

dz′eϕ. (4.20)
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Once this integral is computed, the components of the magnetic B-field can be
determined. In cylindrical coordinates these are

B (r) = ∇×A = −∂Aϕ
∂z

er +
1

r

∂

∂r
(rAϕ) ez. (4.21)

Since the problem is rotationally symmetric with respect to the z-axis, the compo-
nents of the B-field are restricted to the xz-plane to:

Bx(x, z) = −∂Aϕ
∂z

(4.22a)

By(x, z) = 0 (4.22b)

Bz(x, z) =
1

x
Aϕ +

∂Aϕ
∂x

(4.22c)

4.3.2. Numerical Evaluation

The following results were obtained by numerically integrating eq. 4.20 by using an
adaptive Gaussian quadrature method. The geometry of a 26650-battery package
(ro = 13 mm, L = 65 mm) was used for parametrization. The disassembly of
the investigated A123 25550 LiFePO4 batteries revealed an inner diameter of the
center’s bore of 4 mm. According to eq. 4.13, the magnetized part in the battery
is assumed as M = const. The magnitude of the magnetization was chosen to
be M = ∆χH where ∆χ is parameterized by means of the charge induced total
variation in magnetic suceptibility at 20 ◦C highlighted in Figure 4.7. Since LiFePO4

contributes approximately 60% to the total mass of the battery, the experimentally
determined value was modified to ∆χ = 2.28·10−4. By analogy with the experiments
in the lab, the magnitude of the H-field is parametrized byH = 50 Oe (≈ 3979 A/m).

For the given configuration the numerical determination of the emanating B-field
in the xz-plane results in the radial and axial false color represented perspective
components shown in Figure 4.9 and Figure 4.10, respectively. Except for the en-
hanced contributions at the edges of the hollow cylinder, the azimuthal x-component
almost vanishes. Except from these overemphasized contributions (caused by ignor-
ing demagnetization effects at the edges as well the numerical approximation of the
curl operator), the x-component of the emanating B-field can be assumed to be neg-
ligible. By contrast, the false color representation of the z-component proves to be
more informative. As can be seen in Figure 4.10 and Figure 4.11, the alteration of
the magnetic susceptibility causes a dominant alteration of the z-component inside
the magnetized matter of the hollow cylinder. If the magnetization is homogeneous,
the optimal location for an induction sensor is centered in the horizontal sense but
shifted in the vertical sense in such a way that the induction sensor is placed just in
the middle of the battery’s stacked and coiled structure.

In this position, the swing of the B-field is in the range of tenths of mT and
therefore promises good detectability by state-of-the-art induction sensors. Unfor-
tunately, the placement of an induction sensor between the stacked electrodes proves
to be disadvantageous due to production-related reasons. Hence, the central bore
is the most natural choice for the sensor placement. However, Figure 4.10 demon-
strates that the magnetic sensitivity of an induction sensor is much more restricted
if the sensor is located in the bore.
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Figure 4.9.: False color representation of the azimuthal x-component of the emanat-
ing B-field for the battery-like cylinder (26650-battery package with a
centered 4 mm bore) in the case of a homogeneous magnetization in-
duced by an H-field of 50 Oe and for a total alteration of the volumetric
magnetic susceptibility of ∆χ = 2.28 · 10−4. The misleading contribu-
tions at the edges (black circles) are caused by ignoring demagnetization
effects and the numerical approximation of the curl operator.
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Figure 4.10.: False color representation of the z-component of the emanating B-field
for the battery-like cylinder (26650-battery package with a centered
4 mm bore) in the case of a homogeneous magnetization induced by
an H-field of 50 Oe and for a total alteration of the volumetric magnetic
susceptibility of ∆χ = 2.28 · 10−4.
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Figure 4.11.: Absolute values of the numerically determined z-component of the em-
anating B-field for the battery-like cylinder (26650-battery package
with a centered 4 mm bore) as shown in Figure 4.10 to illustrate the
optimum for locating an SOC sensor based on magnetic principles.

The formulation of the problem by means of complete elliptic integrals of the first
and second kind proves to be problematic if the axial dependence of the magnetic
B-field is considered. This circumstance is due to the fact that the expression of
the magnetic vector potential (see eq. 4.20) cannot be evaluated if r = 0 since
the elliptic moduli kro and kri vanish. Consequently, the expression in the integral
becomes singular. Fortunately, for just this case, the magnetic B-field can easily
be determined in a closed analytic form. Similar to the derivation of the magnetic
vector potential shown above, the B-field is derived by means of an equivalent
magnetic surface current density (M × n) on the outer and inner lateral surface
of the battery-like cylinder. Since the radial components vanish alongside the z-
axis, the infinitesimal small contribution to the axial B-field is given by applying
Biot-Savart’s law according to

dBz(z) =
µ0∆χH

4π

[∮
ez (dso × (r− r′o))

|(r− r′o)|
3 −

∮
ez (dsi × (r− r′i))

|(r− r′i)|
3

]
dź. (4.23a)

By using the definitions

dso = rodϕeϕ (4.23b)

dsi = ridϕeϕ (4.23c)

r− r′o = −roer + (z − ź)ez (4.23d)

r− r′i = −rier + (z − ź)ez, (4.23e)
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the axial magnetic B-field is obtained by integrating eq. 4.23a with respect to the
length of the battery-like cylinder according to

Bz(z) =

∫ L
2

−L
2

dBz(z)dź =
µ0∆χH

4π

 z + L
2√

r2
o +

(
z + L

2

)2
−

z − L
2√

r2
o +

(
z − L

2

)2
−

z + L
2√

r2
i +

(
z + L

2

)2
+

z − L
2√

r2
i +

(
z − L

2

)2

 . (4.23f)

By evaluating this closed form solution, the distribution of the magnetic B-field is
determined for the entire interesting space. Additionally, by means of the analytic
solution, the accuracy of the numerically determined distribution of the B-field
can easily be verified. In Figure 4.12, both the analytic solution (blue line) and the
numerically derived curve of the z-component of the B-field (red line) are compared.
As mentioned before, eq. 4.20 cannot be evaluated for r = 0, therefore, the latter
is evaluated for the closest numerically determined locus being shifted by 650 µm
(the grid size was 1.3 mm) from the z-axis. Since the curves shown in Figure 4.12
nearly coincide, it is justified that the numerical integration of eq. 4.20 converges to
the correct values.
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Figure 4.12.: Emanating axial B-field for the battery-like cylinder (26650-battery
package with a centered 4 mm bore) in the case of a homogeneous
magnetization induced by an H-field with 50 Oe in magnitude and
a total alteration of the volumetric magnetic susceptibility of ∆χ =
2.28 · 10−4. The blue line shows the analytical solution obtained by
applying Biot-Savart’s law, while the red line corresponds to closest
(x = 650 µm) axial numerical data using eq. 4.20 and 4.21.
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For the sake of completeness, however, it should be mentioned that the ratio be-
tween the inner and the outer radius has a distinct influence on the accuracy of
the numerically determined values of the B-field. Reducing the inner radius by e.g.
0.5 mm causes the quadrature integration method to converge to a wrong value
and the numerically determined z-component of the B-field is strongly biased in the
vicinity of the z-axis.

Finally, it must be clarified that the magnetization of the cylindric shell was cho-
sen to be homogeneous in order to efficiently calculate the corresponding surface
integrals by means of complete elliptic integrals of the first and second kind. This
situation is presumably not encountered in practice since the application of a ho-
mogenous magnetic H-field is required to detect the alteration of the magnetic
susceptibility χ. However, the H-field in the magnetized body of the battery is
most likely non-homogeneous and not completely aligned along the z-axis, with the
consequence of a deformation of the axial magnetic field.

Nevertheless, the results presented in this chapter proved that the level of lithiation
has a measurable influence on the magnetic properties of the LiFePO4 battery’s
positive electrode. Furthermore, it was demonstrated that the expected alteration
of the positive electrode’s magnetic susceptibility is principally detectable by state-
of-the-art induction sensors in a (sub-)Microtesla field range at moderate biasing
fields of 50 Oe.
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5. Conclusion and Outlook

The motivation for writing this thesis arises from the challenge to monitor the state
of charge (SOC) of LiFePO4 batteries in high-power applications. As mentioned
several times, the shortcomings of the state-of-the-art methods for SOC estimation
stem from the LiFePO4 battery’s characteristics depending mapping of the SOC
on the open circuit voltage UOCV. Based on the experimental evaluation of the
open circuit voltage in the lab, it was demonstrated in chapter 2 that the open
circuit voltage shows a flat dependence on the state of charge in large ranges and is
significantly influenced by hysteresis phenomena.

In the thesis, two different approaches were investigated to tackle the problems
associated with the above mentioned SOC-mapping. Although both approaches
support the same purpose, they differ significantly with respect to the underlying
principles. According to this circumstance, the thesis is finalized by summarizing
both approaches separately.

Bayesian Filtering

Based on the empirically obtained findings of the mapping between the state of
charge and the open circuit voltage UOCV presented in chapter 2, a nonlinear state
space model for the battery’s dynamics was introduced which is capable to cope
with the ambiguous mapping between the state of charge and the open circuit volt-
age UOCV. In chapter 3, a joint estimation framework utilizing a sequential Monte
Carlo method (particle filtering) was presented in order to simultaneously estimate
the states xk and parameters θ of this state space model. Since the dimension-
ality of the augmented state space model exceeds the practical range of particle
filtering, a variance reduction method based on the concept of sufficient statistics
(Rao-Blackwellization) was applied.

Simulation studies carried out in a first step by means of realistic load scenarios,
which are typical of hybrid electric vehicle drive trains, yielded promising results.
The trajectories of the states and, thus, the simulated state of charge, as well as the
parameters were accurately estimated independent of the charge quantities associ-
ated with charging/discharging. In order to investigate whether the proposed esti-
mator overcomes the shortcomings of state-of-the-art methods in connection with
inaccurate current measurements, the current signal was artificially distorted by
significant systematic errors. The simulation studies showed that the proposed esti-
mation framework overcomes the problems associated with the current distortions.
This circumstance proves the applicability of methods invoking statistical inference
associated with the problematic correlation between the state of charge and the open
circuit voltage UOCV.

Encouraged by the outcomes of the simulation studies, the performance of the pro-
posed joint estimation framework was compared with real measurements obtained
by experimentally evaluating a hybrid test cycle in the lab. Unfortunately, this in-
vestigation yielded sobering results since significantly biased estimates are achieved

91



5 Conclusion and Outlook 92

by the proposed estimator with non-negligible probability. Fortunately, a modifi-
cation of the proposed estimator by estimating an acceptance threshold solved the
problem of the significantly biased estimates.

However, the impact of distorted current measurements proved to be only partly
compensated by the estimator. Consequently, the estimator requires similar to state-
of-the-art SOC estimation methods highly accurate current measurements. More-
over, the estimates of the remaining trajectories as well the parameter courses do not
meet the expected courses. In order to investigate this circumstance, two possible
causes can be taken into consideration.

The first cause may arise from problems associated with Rao-Blackwellized particle
filters and poor mixing dynamic systems. In this context, the mixing property
quantifies the dependency of the linear states of the conditionally Gaussian state
space model at time instant k on the history of the nonlinear states. Good mixing
systems are characterized by the fact that the time lag in which this dependency
is detectable is limited to some time steps. Hence, the conditionally linear states
significantly vary with respect of time. In contrast, in poor mixing systems, this
time lag corresponds to large parts of the trajectories of the nonlinear states.

In practice, the latter case proves to be problematic since Rao-Blackwellized par-
ticle filtering is usually based on a particle representation targeting the marginalized
smoothing posterior density p (x0:k|y0:k). If the mixing property is poor, the exact
target distribution must be approximated by the importance sampler for time lags
which reach far back into the past. However, due to the sample degeneracy problem
and the associated workaround (resampling), this requirement can not be ensured.
Consider, for example, the case of jointly estimating the states and static param-
eters of a linear Gaussian state space model. According to the explanation above,
it is clear that Rao-Blackwellized particle filters fail to provide accurate estimates
for this case. This circumstance is exactly the reason why the battery’s nominal
capacity is not incorporated in the estimation framework and must be known a
priori. Nevertheless, the temporal alternation of the remaining parameters might
also be too low in practice, causing the estimator potentially to converge to biased
solutions.

In order to overcome the shortcomings associated with poor mixing systems in
the context of Rao-Blackwellized particle filtering, Lindsten et al. [77] presented an
alternative approach. The Rao-Blackwellized marginal particle filter is premised on
the factorization p (θk,xk|y0:k) = p (θk|xk,y0:k) p (xk|y0:k), which is basically mo-
tivated by the approach of Klaas et al. [60]. Instead of targeting the marginal
smoothing posterior density, the particle filter’s task is to target the marginal filter-
ing density p (xk|y0:k). Since sample degeneracy is not a problem for this case, the
mixing properties of the state space model are of minor relevance. At first glance,
the factorization used by Lindsten et al. looks like a simplification. Unfortunately,
the opposite is the case since the conditional marginal density p (θk|xk,y0:k) is not
generally Gaussian but can be expressed by a Gaussian mixture model. As the com-
ponents of this Gaussian mixture model increases exponentially with time, Lindsten
et al. solved the problem by a single Gaussian density derived by means of moment
matching. The major drawback of this approach is the significant increase of the
computational demands. Native particle filtering (and, thus, the Rao-Blackwellized
particle filter) operates in a complexity class of O(N), whereas the versions target-
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ing p (xk|y0:k) possess a quadratic computational complexity O(N2). Hence, this
approach is clearly unfeasible for the practical implementation in a state of charge
estimator.

Nevertheless, the concept of Rao-Blackwellized marginal particle filtering was
adopted for joint estimating the states and parameters (including the nominal capac-
ity Cn) of the state space model used in chapter 3. Due to the high computational
demands, the performance of Rao-Blackwellized marginal particle filter was only
evaluated by a few individual trails. The obtained results, not shown in this thesis,
appeared to be improved but still significantly influenced by the systematic error
of the current measurements. The conclusion which can be drawn is that the mix-
ing properties of the proposed conditionally linear Gaussian state space model are
presumable not (entirely) responsible for the poor performance of the proposed es-
timation framework in case of significantly biased current measurements.

The second potential cause is the presumably inaccurate model of the LiFePO4

battery’s dynamics. This circumstance is based on two facts. First, due to the
exhausting relaxation periods, the upper and lower open circuit voltage curves were
empirically determined by continuously charging/discharging the battery by means
of a small operating current and measuring the battery’s terminal voltage Uterm.
Hence, the obtained courses are rather approximations than the true open circuit
voltage curves are. Due to the mentioned mapping between the state of charge and
the open circuit voltage UOCV, the inverse mapping relate small deviations of the
open circuit voltage UOCV to large deviations of the state of charge. Consequently,
even small deviations of the open circuit voltage model prove to be problematic.

Furthermore, the battery’s transient dynamics are modeled insufficiently. Recall
that the transient contribution Utrans to the terminal voltage was incorporated by
a time-varying linear subsystem of the first order. This is in agreement with most
adaptive state-of-the-art approaches but apparently too simple to entirely cover the
battery’s transient dynamics.

Among the mentioned possible reasons for the poor performance of the Rao-
Blackwellized joint estimation framework in case of significantly biased current mea-
surements, the shortcomings associated with the dynamic model are presumably
more serious than the slow mixing of the associated parameter courses. Conse-
quently, it is necessary to consider a better dynamic model based on electrochemical
principles. Thus, it is not surprising that modeling of LiFePO4 batteries has recently
been subject of extensive research. However, since some phenomena have not yet
been understood, accurate dynamic models for LiFePO4 batteries are still missing.

Another issue is the applicability of the dynamic model in practice. Consider,
for example, a high-power application like a hybrid electric drive train of a public
traffic bus. Since operating voltages up to 700 V are not unusual for these appli-
cations, at least 212 individual LiFePO4 batteries connected in serial are required
to nominally guarantee this voltage. This circumstance evokes special requirements
for the battery management and explains why simple lumped component RC mod-
els are that widespread in this field. As a consequence, battery models derived
from electrochemical (or other) principles are required to be as simple as possible
to be applicable in a battery management system. With respect to the high level of
complexity, this poses significant challenges by modeling the battery’s dynamics.
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Magnetic Sensing

In chapter 4, a novel approach for the determination of the state of charge of LiFePO4

was presented. In contrast to the state-of-the-art methods for state of charge deter-
mination in battery systems, it was proposed to monitor the state of charge by the
battery’s magnetic properties. The motivation to determine the state of charge by
magnetic sensing arises from the role of iron in the LiFePO4 octahedral complex in
the positive electrode’s active material. The stoichiometry of Fe2+ versus Fe3+ ions
and, thus, the state of oxidation is proportional to the amount of lithium removed
from the positive electrode’s active material. Since iron (a transition metal ion) is
located in an octahedral crystal environment of PO4

3+ complex, it is influenced by
the ligands at the corners of the octahedron. The change of the iron ion’s oxidation
state from Fe2+ to Fe3+ is accompanied by a change of the compounds’ magnetic
moment.

The advantages of the proposed approach are clear: Since the amount of lithium
ions removed from the positive electrode is indirect proportional to the battery’s
charge level, the positive electrode’s magnetic susceptibility is directly related to
the state of charge. Consequently, the shortcomings associated with the battery’s
flat and ambiguous mapping between the state of charge and the open circuit voltage
UOCV are canceled. Furthermore, this approach does not rely on an accurate model
of the battery’s dynamics or precise measurements of the operating current and the
terminal voltage Uterm.

However, the concomitant change of the magnetic moment of the transition ion
spins has not yet been fully understood for practical detection of the state of charge
in view of a sensor concept based on magnetic principles. Consequently, the results
shown in chapter 4 correspond rather to a feasibility study than to the development
of an serviceable state of charge sensor. Hence, the question is: How does the pos-
itive electrode’s magnetic susceptibility alter with respect to the level of lithiation,
and what is the sensitivity required by induction sensors in order to detect SOC-
related magnetic susceptibility?

For this purpose, two SQUID studies of different sample configurations were car-
ried out. In a first step, samples of differently oxidized powder mixtures were inves-
tigated. The obtained results confirmed the expected paramagnetic behavior but
showed in contrast to the expected dependency a decrease of the magnetic moment
with decreasing level of lithiation. In order to meet more realistic conditions, it was
decided to carry out a second SQUID study of samples extracted from the positive
electrode of identically and differently charged commercial LiFePO4 batteries. Both
studies yielded comparable results in-so-far, that the paramagnetic behavior and the
direct relationship between the level of lithiation and the magnetic moment showed
satisfactory agreement.

Finally, the results of the second study were used to quantify the change of the
magnetic B-field accompanied by the charge-induced swing of magnetic susceptibil-
ity for the case of a homogeneously magnetized body. The geometry of a cylindrical
26650-battery package was used as input parameters, whereby a production-related
hollow shell geometry was incorporated. The aim of this investigation was to ex-
amine the most locations for the placement of an induction sensor and to prove the
minimum sensitivity which must is required by the induction sensor. Depending on
the location, the swing of induction proved to be in the range of some hundreds nT,
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which affirms that the state of charge can be detected by state-of-the-art induction
sensors.

However, the concept of determining the state of charge of LiFePO4 batteries based
on magnetic principles is still far from any practical realization of an according sensor
concept since many details have not yet been clarified. For example, solely the posi-
tive electrode was considered for the investigations in this thesis. Thus, the question
is how the magnetic properties of the entire battery are influenced. Furthermore,
the used simulation of the magnetic vector potential is significantly inconvenient in
the case of a non-homogeneous magnetized body, even if the battery was assumed
to be magnetized by a homogeneous magnetic field of the order of 50 Oe. However,
in view of a practical sensor implementation, the magnetization by a homogeneous
magnetic field is presumably hard to realize. Moreover, disturbances like the earth’s
magnetic field or fields from the operating current presumably hamper in practice
the determination of the battery’s magnetic susceptibility.

To summarize, the findings presented here demonstrate the potential of state of
charge sensing based on magnetic susceptibility monitoring. However, it must be
mentioned that a series of further investigations are required to prove the applica-
bility of a state of charge sensor in view of a novel sensor concept.
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A. Multivariate Gaussian
Distributions

A.1. Affine Transformations

Lemma A.1.1. Let x and z conditioned on x be Gaussian distributed according to

p(x) = N (x;µx,Σx) (A.1a)

p(z|x) = N
(
z; Ax + b,Σz|x

)
. (A.1b)

Then, the marginal probability density function of z is given by

p(z) = N (z; Aµx + b, Σz|x + AΣxA
T
)
. (A.1c)

Furthermore, the conditional probability density function p(x|z) is given by

p(x|z) = N
(
x;µx|z,Σx|z

)
(A.1d)

with

µx|z = µx + ΣxA
TΣ−1

z (z− (Aµx + b)) (A.1e)

Σx|z = Σx −ΣxA
TΣ−1

z AΣx. (A.1f)

Lemma A.1.2. Let u be a partitioned random vector according to u =
[
xT , zT

]T
with a joint probability density function according to

p(u) = N
([

x
z

]
;

[
µx

µz

]
,

[
Σx Σxz

ΣT
xz Σz

])
. (A.2a)

Then, the marginal probability density function p(x) and the conditional probability
density function p(x|z) are given by

p(x) = N (x;µx,Σx) (A.2b)

and

p(x|z) = N
(
x;µx + ΣxzΣ

−1
z ,Σx −ΣxzΣ

−1
z ΣT

xz

)
, (A.2c)

respectively.
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B. Elliptic Integrals

If s2(x) is a cubic or quadratic polynominal in x with simple zeros and r(s, x) is a
rational function of s and x containing at least one odd power of s, then∫

r(s, x)dx (B.1)

is called an elliptic integral [94]. Two important elliptic integrals of the class of
Legendre’s integrals are given by

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2(θ)

=

∫ sin(φ)

0

dt√
1− t2

√
1− k2t2

(B.2)

E(φ, k) =

∫ φ

0

√
1− k2 sin2(θ) =

∫ sin(φ)

0

√
1− k2t2√
1− t2

dt. (B.3)

If φ = π
2
, these integrals are called complete ellptic integtrals of the first and

second kind, respectively.

K(k) =

∫ π
2

0

dθ√
1− k2 sin2(θ)

=

∫ 1

0

dt√
1− t2

√
1− k2t2

(B.4)

E(k) =

∫ π
2

0

√
1− k2 sin2(θ)dθ =

∫ 1

0

√
1− k2t2√
1− t2

dt. (B.5)

97



Bibliography

[1] S.M. Whittingham. Electrical energy storage and intercalation chemistry. Sci-
ence, 192(4244):1126–1127, 1976. 1

[2] International Energy Agency. Technology roadmap: Electric and plug-in hybrid
electric vehicles (ev/phev), 2011. 2

[3] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult. Comparative issues of
cathode materials for Li-ion batteries. Inorganics, 2:132–154, 2014. 2

[4] B. Scrosati and J. Garche. Lithium batteries: Status, prospects and future.
Journal of Power Sources, 195:2419–2430, 2010. 2

[5] F. Larsson and B. Mellander. Abuse by external heating, overcharge and short
circuiting of commercial lithium-ion battery cell. Journal of the Electrochemical
Society, 161(10):A1611–A1617, 2014. 2

[6] K.A. Smith, C.D. Rahn, and C. Wang. Control oriented 1d electrochemical
model of lithium ion battery. Energy conversion and Management, 48:2565–
2578, 2007. 4

[7] K.A. Smith. Electrochemical control of lithium-ion batteries. IEEE Control
Systems Magazine, 30:18–25, 2010. 4

[8] N.A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic. Algorithms
for advanced battery-management systems. IEEE Control Systems Magazine,
30:49 – 68, 2010. 4

[9] M. Corno, N. Bhatt, S.M. Savaresi, and M. Verhaegen. Electrochemical model-
based state of charge estimation for li-ion cells. IEEE Transactions on Control
Systems Technology, 23:117 – 127, 2015. 4

[10] T. Dao C. Schmitke. Developing mathematical models of batteries in modelica
for energy storage applications. In 11th International Modelica Conference,
2015. 4

[11] J.E.B. Randels. Kinetics of rapid electrode reactions. Discussions of the Fara-
day Society, 1:11–19, 1947. 4

[12] H. He, R. Xiong, and J. Fan. Evaluation of lithium-ion battery equivalent circuit
models for state of charge estimation by an experimental approach. Energies,
4:582–598, 2011. 4

[13] S. Li, C. Liao, and L. Wang. Research progress of equivalent circuit models for
soc estimation of batteries in electric vehicles. In 2014 IEEE Conference and
Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014. 4

98



Bibliography 99

[14] G. Liu, L. Lu, H. Fu, and J. Hua. A comparative study of equivalent circuit
models and enhanced equivalent circuit models of lithium-ion batteries with
different model structures. In 2014 IEEE Conference and Expo Transportation
Electrification Asia-Pacific (ITEC Asia-Pacific), 2014. 4

[15] C.C. Chan, E.W.C. Lo, and S. Weixiang. The available capacity computa-
tion model based on artificial neural network for lead–acid batteries in electric
vehicles. Journal of Power Sources, 87:201–204, 2000. 4

[16] M. Charkhgard and M. Farrokhi. State-of-charge estimation for lithium-ion
batteries using neural networks and ekf. IEEE Transactions on Industrial Elec-
tronics, 57(12):4178–4187, 2010. 4

[17] A.J. Salkind, C. Fennie, P. Singh, T. Atwater, and D.E. Reisner. Determination
of state-of-charge and state-of-health of batteries by fuzzy logic methodology.
Journal of Power Sources, 80:293–300, 1999. 4

[18] P. Singh, C. Fennie, and D. Reisner. Fuzzy logic modelling of state-of-charge
and available capacity of nickel/metal hydride batteries. Journal of Power
Sources, 136:322–333, 2004. 4

[19] M. Shahriari and M. Farrokhi. Online state-of-health estimation of vrla bat-
teries using state of charge. IEEE Transactions on Industrial Electronics,
60(1):191–202, 2013. 4

[20] N. Watrin, B. Blunier, and A. Miraoui. Review of adaptive systems for lithium
batteries state-of-charge and state-of-health estimation. In 2012 IEEE Trans-
portation Electrification Conference and Expo (ITEC), 2012. 4, 40

[21] H. Rahimi-Eichi, F. Baronti, and M. Chow. Online adaptive parmeter identifi-
cation and state-of-charge coestimation for lithium-polymer battery cells. IEEE
Transactions on Industrial Electronics, 61:2053–2061, 2014. 4, 40

[22] C. Zhang, L.Y. Wang, X. Li, W. Chen, G.G. Yin, and J. Jiang. Robust and
adaptive estimation of state of charge for lithium-ion batteries. IEEE Transac-
tions on Industrial Electronics, 62:4948–4957, 2015. 4, 40

[23] J. Newman and K.E. Thomas-Alyea. Electrochemical Systems. John Wiley and
Sons, Inc., 3rd edition, 2004. 6

[24] M. Sommer. Implementation of an Electrochemical Model for Lithium-Ion Bat-
tery Condition Monitoring. PhD thesis, Graz University of Technology, 2012.
7

[25] K. Zaghib, A. Guerfi, P.Hovington, A. Vijh, M. Trudeau, A. Mauger, J.B.
Goodenough, and C.M. Julien. Review and analysis of nanostructured olivine-
based lithium rechargeable batteries: Status and trends. Journal of Power
Sources, 232:357–369, 2013. 7, 10, 11

[26] M.D. Bhatt and C. O’Dwyer. The role of carbonate and sulfite addi-
tives in propylene carbonate-based electrolytes on the formation of sei lay-
ers at graphitic Li-ion battery anodes. Journal of Electrochemical Society,
161(9):A1415–A1421, 2014. 8

99



Bibliography 100

[27] J.O. Besenhard and M. Winter. Insertion reactions in advanced electrochemical
energy storage. Pure and Applied Chemistry, 70(3):603–608, 1998. 8

[28] M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novák. Insertion electrode
materials for rechargeable lithium batteries. Journal of the Electrochemical
Society, 10(10):725–763, 1998. 10

[29] H. Matsui, T. Nakamura, Y. Kobayashi, M. Tabuchi, and Y. Yamada. Open-
circuit voltage study on LiFePO4 olivine cathode. Journal of Power Sources,
195:6879–6883, 2010 2010. 10, 13

[30] A. Yamada, H. Koizumi, S. Nishimura, N. Sonoyama, R. Kanno, M. Yone-
mura, T. Nakamura, and Y. Kobayashi. Room-temperature miscibility gap in
Li4FePO4. nature materials, 5:357–360, 2006. 11

[31] A.K. Padhi, K.S. Nanjundaswamy, and J. B. Goodenough. Phospho-olivines
as positive-electrode materials for rechargeable lithium batteries. Journal of
Electrochemical Society, 144:1188–1194, 1997. 12

[32] A.S. Andersson and J.O. Thomas. The source of first-cycle capacity loss in
LiFePO4. Journal of Power Sources, 97:498–502, 2001. 12

[33] V. Srinivasan and J. Newman. Existence of path-dependence in the LiFePO4
electrode batteries, fuel cells, and energy conversion. Electrochemical and Solid-
State Letters, 9(3):A110–A114, 2006. 12

[34] H.C. Shin, K.Y. Chung, W.S. Min, D.J. Byun, H. Jang, and B.W. Cho. Asym-
metry between charge and discharge during high rate cycling in LiFePO4 –
in situ X-ray diffraction study. Electrochemistry Communications, 10:536–540,
2008. 12

[35] L. Laffont, C. Delacourt, P. Gibot, M. Yue Wu, P. Kooyman, C. Masque-
lier, and J.M Tarascon. Study of the LiFePO4/FePO4 two-phase system by
high-resolution electron energy loss spectroscopy. Chemistry of Materials,
18(23):5520–5529, 2006. 12

[36] C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill. Lithium
deintercalation in LiFePO4 nanoparticles via a domino-cascade model. nature
materials, 7:665–671, 2008. 12

[37] G. Brunetti, D. Robert, P. Bayle-Guillemaud, J. L. Rouvière, E. F. Rauch, J. F.
Martin, J. F. Colin, F. Bertin, and C. Cayron. Confirmation of the domino-
cascade model by LiFePO4/FePO4 precession electron diffraction. Chemistry
of Materials, 23(20):4515–4524, 2011. 12

[38] W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J., and M. Gaberšček. The thermo-
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