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Abstract

Accurate interpolation techniques for potential energy surfaces bear the potential to speed up quan-
tum chemistry calculations by reducing the number of necessary “ab initio” evaluations. The most
common interpolation methods, such as high dimensional cubic splines or interpolating moving least
squares, are motivated strictly by mathematical arguments and require a large number of ab initio
reference points.

In this thesis, alternative interpolation schemes based on physically motivated methods such as force
fields or extended Hückel theory, are investigated. Since these methods already predict the functional
course of the potential energy surface reasonably well, an interpolation to the same accuracy can be
done using fewer reference points than for mathematically motivated interpolation routines.
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Kurzfassung

Mit Hilfe präziser Interpolationsmethoden für Potentialenergieflächen können quantenchemische Rech-
nungen durch Einsparen von “ab initio” Auswertungen beschleunigt werden. Typische Interpolation-
smethoden wie mehrdimensionale kubische Splines oder die “Interpolating Moving Least Squares”
Methode, sind durch mathematische Argumente motiviert und benötigen große Mengen an Referen-
zwerten.

In der vorliegenden Arbeit werden alternative Interpolationsroutinen untersucht, die auf physikalisch
motivierten Ansätzen wie Kraftfeldern oder der erweiterten Hückel-Theorie basieren. Da diese Meth-
oden den Verlauf der Potentialenergiefläche bereits einigermaßen gut beschreiben, kann eine Inter-
polation zur selben Genauigkeit mit geringerer Anzahl an Referenzpunkten erreicht werden als für
mathematisch motivierte Interpolationsmethoden.
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1 Introduction

A key objective of quantum chemistry is to solve the Schrödinger equation for the molecular Hamil-
tonian:
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N∑
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For the problems discussed in this thesis it will be sufficient to use the time-independent Schrödinger
equation:

H|Ψ〉 = E|Ψ〉. (1.2)

Equation 1.1 is written in atomic units. These simplify the equations by absorbing natural constants
that appear in the equation into the definition of new units. An overview of the most important
quantities is given in Table 1.1.

Table 1.1: Relation of atomic units to SI units.

physical quantity conversion factor value in SI name of unit

energy Eh = h̄2

mea20
= e2

4πε0a0
4.359744650 · 10−18 J hartree

length a0 = 4πε0h̄
2

mee2
0.52917721067 · 10−10 m bohr

mass me 9.10938356 · 10−31 kg
charge e 1.6021766208 · 1019 C

This complicated many-body problem can not be solved without first employing several approxima-
tions. Only a selection of typical simplifications is presented in this short introduction. However,
note that for the concept of interpolation explored in this thesis the results of a quantum chemical
calculation will always be treated as an exact solution, no matter which approximations were employed.

1.0.1 Born-Oppenheimer approximation

A first simplification of the molecular Schrödinger equation is given by the Born-Oppenheimer approx-
imation. It decouples the electronic movement from the motion of the nuclei. A simple argument that
justifies such a separation is the ratio of the electron mass and the mass of nucleons mp/me ≈ 1838.
The mathematical derivation of the approximation can be found in chapter 7. The total molecular
Hamiltonian from equation 1.1 is simplified by neglecting the second term, the kinetic energy of the
nuclei, and by treating the last term, the nuclear repulsion, as a constant value added to the electronic
energy. The remaining terms are called the electronic Hamiltonian:

Helec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
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ria

+

N∑
i=1

N∑
j>i
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rij
(1.3)

The solution of 1.2 with 1.3 is the electronic wave function Φ(r,R), a function of the 3N electronic
coordinates r with the nuclear coordinates R as parameters. By solving the electronic Schrödinger
equation for various R, every nuclear geometry can be assigned a corresponding energy. This leads to
the picture of a potential energy surface (PES) on which the nuclear motion takes place.
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1 Introduction

1.1 Ab initio calculations

The term “ab intio” (latin: from the beginning) refers to calculations done without empirical parame-
ters or experimental results. Using Slater determinants as an ansatz to solve the electronic Schrödinger
equation leads to the Hartree Fock equations. This set of integrodifferential equations is solved by
transforming it into a set of algebraic equations using a basis set expansion for the electronic wave
function. In the following section some of the most widely used quantum chemistry methods and their
formal scaling with the number of basis functions K are described briefly.

Hartree Fock O(K4): The Hartree Fock (HF) method is the foundation of most quantum chemistry
calculations. In this method, the electron-electron interaction is simplified, only describing the motion
of one electron in the mean field created by the remaining electrons. This requires the HF equations
to be solved iteratively, because the positions of the electrons can only be known after solving for the
molecular orbitals. The HF method is often referred to as self-consistent field (SCF) method. Despite
this mean field approximation, the resulting HF wave function accounts for ∼ 99% of the total energy
of the system. Unfortunately, describing chemical phenomena often requires the knowledge of the
remaining 1%, typically referred to as electron correlation energy. The other methods presented here,
often called post-HF methods, try to improve on the Hartree Fock energy by recovering at least parts
of the correlation energy.

Møller-Plesset perturbation theory second order O(K5): Møller-Plesset perturbation theory (MPx,
where x is the perturbation order) reintroduces the exact electron-electron interaction as a perturba-
tion to the Hartree Fock Hamiltonian. In the context of perturbation theory the HF ansatz corresponds
to a first order treatment. Therefore, second order is the first correction to the HF energy. The scaling
of the computational effort O(K3+x) depends on the perturbation order x.

Configuration interaction with singles and doubles O(K6): In configuration interaction (CI) meth-
ods the total wave function is written as a linear combination of slater determinants. This linear
combination consists of the HF ground state and a selection of excited state determinants. The formal
scaling depends on the number of electrons that are excited from their ground state. The example
given here, with single and double excitations (CISD), gives O(K6). If triple excitations are included
(CISDT), the computational effort scales as O(K8).

Coupled cluster with singles and doubles O(K6): In perturbation theory, the corrections from all
types of excitations (S single, D double, T triple, ...) are calculated up to a specific order. In coupled
cluster methods (CC), the contributions of a given number of excitations are included to infinite order.
Using singles and doubles (CCSD) the method scales with O(K6). If triple excitations are included
(CCSDT), the computational effort O(K8) is too high for all but the smallest molecules. Therefore,
the triples contribution is typically calculated from perturbation theory (MP4) such as in CCSD(T),
the current “gold-standard” in quantum chemistry. CCSD(T) scales with O(K7).

Density functional theory O(K4): Density functional theory (DFT) is based on the Hohenberg-
Kohn theorems, which state that the ground state energy can be expressed as a functional of the
electron density. This could, in theory, decrease the computational effort significantly, as the density
is only a function in the three dimensional space, while the electronic wave function is a function of
all 3N electronic coordinates. However, to reach comparable accuracy, many DFT methods (hybrids)
calculate the kinetic energy as well as parts of the exchange contribution using wave function based
methods. These methods, therefore, typically scale O(K4) just as HF theory.

2



1.2 Interpolation techniques

1.2 Interpolation techniques

For a given set of reference values fi at corresponding reference points xi, a function f(x) is called a
interpolation function if it

(a) reproduces the reference values f(xi) = fi,

(b) is smooth (continuous and differentiable) on the whole definition area.

The following section presents the mathematical basics for several of the interpolation schemes com-
monly used for potential energy surfaces.

1.2.1 Shepard interpolation

This interpolation scheme, which is based on weighted averages, was first proposed by Donald Shepard
in 1968 [1]. Originally, it was intended for the interpolation of two-dimensional data taken from areas
such as meteorology and geography. In its simplest form, often referred to as inverse distance weighting,
the interpolation function is defined as follows:

f(x) =

{∑
i wi(x)fi∑
i wi(x) , if d(x,xi) 6= 0 for all i

fi, if d(x,xi) = 0 for some i
(1.4)

with d(x,xi) as the distance between two points and a weight function wi(x) defined as

wi(x) =
1

d(x,xi)p
, (1.5)

with power p ≥ 1. Note that for p < 1, the resulting interpolation function is not differentiable.
Shepard also considered alternative weight functions using a constant number of reference points, cut
off distances, and direction dependent weights.

One major problem of the Shepard method is so called “flat-spot” phenomenon. For any exponent
p > 1, the derivative of the interpolation function is zero at the reference points. Figure 1.1 illustrates
this problem for a sine curve.

0 2 4 6 8 10 12
x

−1.0

−0.5

0.0

0.5

1.0

f(
x)

p = 1
p = 2
p = 3
reference points

Figure 1.1: Problems of Shepard’s method when interpolating a sine wave.
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1 Introduction

For p = 1 the interpolation function has corners at the reference points. For p = 2 the “flat-spot”
phenomenon becomes obvious and gets even worse more for p = 3. One reason for this phenomenon
is the diverging weight function at the reference points. All interpolation functions plotted in figure
1.1 are calculated using normalized weights to eliminate the divergence:

vi(x) =
wi(x)∑
j wj(x)

(1.6)

The normalized weights have the following properties:

(a) vi(xj) = δij

(b) 0 ≤ vi(x) ≤ 1 for all x

(c)
N∑
i=0

vi(x) = 1 for all x

(d) vi(x)→ N−1 as d(x, 0)→∞

(1.7)

McLain [2] suggested a shift of the denominator in order to avoid the divergence:

wi(x) =
1

d(x,xi)p + ε
(1.8)

However, it turns out that the choice of the parameter ε has a large impact on the quality of the
interpolation. Due to this flaw and the lack of a non-empirical way of determining the parameter the
normalized weight function is preferable.

Figure 1.1 shows that the “flat-spot” phenomenon can not be eliminated solely by avoiding the diver-
gence in the weight function. Within the context of the simple Shepard method this problem can only
be solved by including first and second derivatives, which are often computationally too expensive for
high level ab initio calculations.

1.2.2 Interpolating moving least squares

The interpolating moving least squares (IMLS) method is the generalization of Shepard’s method to
higher order polynomials. Shepard’s method can be considered as zeroth order IMLS. This method
eliminates the “flat-spot” phenomenon for orders larger than zero, but involves more computational
effort, since a system of coupled linear equations has to be solved at every point the interpolation
function is evaluated. The derivation presented here, in one dimension for simplicity, follows Lan-
caster and Salkauskas [3] as well as Maisuradze and Thompson [4].

Using a polynomial of order m as basis for the interpolation function,

p(x) =

m∑
n=0

an(x)xn (1.9)

the coefficients an(x) are calculated by minimizing the weighted square deviations,

N∑
i=0

wi(x) [p(xi)− fi]2 !
= min, (1.10)
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1.2 Interpolation techniques

with fi as the values at the reference points xi. Taking the derivative of equation 1.10 with respect
to the coefficients an yields m+ 1 normal equations:[∑

i

wi(x)x0
i

]
a0 + · · ·+

[∑
i

wi(x)xmi

]
am =

∑
i

wi(x)fi[∑
i

wi(x)xi

]
a0 + · · ·+

[∑
i

wi(x)xm+1
i

]
am =

∑
i

wi(x)xifi

...[∑
i

wi(x)xmi

]
a0 + · · ·+

[∑
i

wi(x)x2m
i

]
am =

∑
i

wi(x)xmi fi

(1.11)

This set of equations 1.11 can be rewritten in matrix form as:

BT ·W ·B · a = BT ·W · f , (1.12)

where B contains the reference points taken to different powers, W contains the weights, a is the
coefficient vector and f is a vector of the reference values:

B =


1 x0 · · · xm0
1 x1 · · · xm1
...

...
. . .

...
1 xN · · · xmN

 W =


w0(x) 0 · · · 0

0 w1(x) · · · 0
...

...
. . .

...
0 0 · · · wN (x)

 a =


a0

a1
...
am

 f =


f0

f1
...
fN

 (1.13)

The matrix B, known as Vandermonde matrix, is ill conditioned. Instead of direct inversion of
BT ·W ·B, the equation should be solved by singular value decomposition (SVD). Just as in Shep-
ard’s method, the divergence of the weight function has to be avoided. In addition, the weight function
has to ensure that at least m+ 1 reference points are included in the calculation at every point. Oth-
erwise, the matrix equation 1.12 is underdetermined, which can lead to problems during interpolation.

Figure 1.2 shows that IMLS can solve the “flat-spot” phenomenon. Both plotted interpolation func-
tions use normalized inverse distance weights with p = 2.

0 2 4 6 8 10 12
x

−1.0

−0.5

0.0

0.5

1.0

f(
x)

m = 1
m = 3
m = 5
reference points

Figure 1.2: Interpolation of a sine wave using first and third order IMLS.
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1.2.3 Splines

One of the most widely used interpolation schemes is the spline method. The interpolation function
is build piecewise from n-th degree polynomials between the reference functions. The coefficients of
the polynomials are determined in a way to ensure (n-1 time) differentiability. The most widespread
version is the natural cubic spline interpolation. As the name suggests, it uses cubic polynomials as
interpolation functions. Every cubic spline, interpolating N + 1 reference points x0 < x1 < ... < xN ,
can be written in the form [3]

f(x) = αx3 + βx2 + γx+ δ +

N−1∑
i=1

ai|x− xi|3. (1.14)

This gives a total of N + 3 free parameters for only N + 1 reference points. Therefore, two more
conditions are needed to calculate a unique interpolation curve. Different solutions have been proposed
in the literature, depending on the specific application:

• “natural” cubic splines: the second derivative at the two outermost points is chosen to be zero
f ′′(x0) = f ′′(xN ) = 0.

• periodic boundary conditions: the first piecewise polynomial f1 is connected to the last fN
and the usual condition of continuous first and second derivative is enforced f ′1(x0) = f ′N (xN ),
f ′′1 (x0) = f ′′N (xN ).

• clamped string: The first derivative at the endpoints is set to a fixed value f ′1(x0) = f ′0, f ′N (xN ) =
f ′N .

• not-a-knot: The third derivative, which is a constant for cubic polynomials, is set to the same
value from the second to the penultimate reference point.

0 2 4 6 8 10 12
x

−1.0

−0.5

0.0

0.5

1.0

f(
x)

natural cubic spline
reference points

Figure 1.3: Natural cubic spline interpolating a sine wave.

While the natural cubic spline excels at interpolating the simple sine function, it often shows oscilla-
tions at points of high curvature in the reference function and has a bad limiting behaviour for low
reference point densities. Extrapolation from a given set of reference points can only be done using
prior knowledge of the reference function.
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1.2.4 Neural networks Input 

layer 

Hidden 

layer 

Output 

layer 

x

1

2

9

10

Bias

f(x)
...

Figure 1.4: Schematic depiction of a single-
hidden-layer neural network

It can be shown that using a sigmoid neural network
with one hidden layer any function can be fitted to arbi-
trarily high precision [5]. Figure 1.4 shows a schematic
of such a single-hidden-layer network.

Recently, this rapidly growing field of computer sci-
ence has been applied in various forms to quantum
chemistry. One of the possible applications is to train
neural networks to completely replace ab initio calcu-
lations. In the approach of Behler and Parrinello [6] a
whole system of subnets is trained to reproduce the en-
ergy contributions of each atom in a local environment.
Their goal is to give a generally applicable method
without the need for further ab initio evaluations. Even
though reference points are needed for the training, this
approach goes far beyond what is typically considered
as fitting or interpolation. Neural networks can also be used for fitting and interpolating of given po-
tential energy surface data points. Manzhos et al. [7] presented a molecule-independent fitting method
based on a single-hidden-layer sigmoid neural network. They do, however, acknowledge that their ap-
proach needs large numbers of reference points to determine the many parameters of the network.

Figure 1.5 shows the results of two single-hidden-layer feed forward neural networks with six and
ten neurons in the hidden layer respectively trained to interpolate the 10 reference points of the sine
curve. Supervised learning by back-propagation with a learning rate η = 0.05 and a momentum
α = 0.1 is used. A neural network with six hidden neurons does not reproduce the reference values
and therefore only fits the reference curve, but can not be considered as interpolation technique. In
order for a neural network to be able to interpolate the N given target values at least N hidden neurons
are needed.

0 2 4 6 8 10 12
x

−1.0

−0.5

0.0

0.5

1.0

f(
x)

NN, 6 hidden neurons
NN, 10 hidden neurons
reference points

Figure 1.5: Interpolation of the sine curve using single-hidden-layer feed forward neural networks with
6 and 10 hidden neurons.
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1 Introduction

1.3 Methodology and outline of this thesis

In the course of this thesis, different physically motivated models are used to interpolate the PES.
Ideally, the parameters of the model are constant throughout large parts of the PES, because the
interpolation function would then only require few reference points. In order to test the parameter
dependence of the models, they are first fitted to a reference trajectory (see section 1.3.1). If the
model is flexible enough to fit the reference curve, ideally using only few parameters, an IMLS-
inspired variation of the linear parameters of the model is investigated. The accuracy of the fit and
interpolation functions is quantified by the root mean square deviation (RMSD) from the reference
curve:

RMSD =

√∑N
i=1(f(xi)− fi)2

N
. (1.15)

The structure of the thesis roughly follows our work chronologically. Starting from the simplest chem-
ically informed models, the force fields, we tried to incorporate increasingly sophisticated molecular
orbital theory approaches in order to take advantage of additional information provided during typical
“ab initio” evaluations of energies at the reference points. Increasing the level of theory in the models
does, however, come with the trade off of larger computational effort.

The goal for the accuracy is set to about 1 kcal/mol, which is typically referred to as “chemical
accuracy”. Depending on the field of application, different requirements on the accuracy of interpola-
tion functions are set.

1.3.1 Reference curve

Throughout this thesis, the discussed methods are evaluated and compared using a reference curve
for the butadiene molecule. This reference curve corresponds to an ab initio molecular dynamics
trajectory calculated with the velocity Verlet algorithm. Starting from the equilibrium geometry, the
atoms are assigned a velocity based on a Boltzmann distribution for T = 298.0 K. A total of 200
time steps of 0.48 femtoseconds each were evaluated based on the ab initio forces from a Hartree-Fock
calculation using a cc-pVDZ basis set [8].
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Figure 1.6: Reference trajectory of butadiene evaluated using cc-pVDZ and STO-3G basis sets.
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1.4 Potential applications for interpolation

Figure 1.6 shows the reference curve plotted over the trajectory. Note that the x-axis shows the
trajectory point index and not the time in femtoseconds as to emphasize the discrete nature of these
evaluations. While the potential curve itself is smooth, the reference curve shows jagged peaks due to
this discretization.

These calculated reference geometries were also evaluated using a smaller basis (STO-3G [9]). This
second reference curve has been used in the extended Hückel interpolation approach (see chapter 3)
for the sake of simplified and less costly integral evaluation in the “home-grown” code.

1.3.2 Used programs

The TINKER molecular modeling software [10] and the LAMMPS Molecular Dynamics Simulator [11]
are used to verify the correct implementation of the used force fields in the “home-grown” Python
based molecular mechanics code. The extended Hückel molecular orbital package YAeHMOP (yet
another extended Hückel molecular orbital package) [12] is used as reference for an extended Hückel
theory implementation in Python. The ab initio packages Qchem [13] and Molpro [14] are used to
generate the Hartree-Fock reference potential energy surfaces. The quantum chemistry programs
PyQuante [15] and PySCF [16] (both in the Python language) are used (in modified form) for integral
evaluations.

1.4 Potential applications for interpolation

PES interpolation bears the potential to accelerate quantum chemistry calculations by reducing the
number of necessary ab initio evaluations. Depending on the particular type of calculation, different
interpolation methods prove to be most useful.

1.4.1 Total or partial potential energy surface

Interpolating the total potential energy surface is the ultimate goal of all interpolation techniques.
This requires the interpolation function to be flexible enough to represent any possible functional
form. Typical applications include the fitting and interpolating of ab initio calculations to experimental
values as well as the calculation of spectroscopic data such as vibrational frequencies. Another possible
application is the interpolation of the total PES prior to a molecular dynamics simulation. If the PES
can be evaluated cheaply, molecular dynamics can be done for large time scales or large systems.
However, note that all of these applications require a highly accurate interpolation, i.e. a very large
number of reference points.

1.4.2 On-the-fly interpolation

While interpolation is typically done after the calculation of ab initio points, an on-the-fly interpolation
may prove useful for certain types of applications. The information gained from the interpolation
function could be used to determine the molecular geometry for the next ab initio evaluations. Possible
applications include transition state searches, reaction coordinate following and ab initio molecular
dynamics, in particular for studying of anharmonic effects such as internal vibrational relaxation via
normal mode projection techniques [17]. The number of available reference points in these calculations
is significantly smaller (< 50). Also, the requirements on the accuracy are not as demanding. The
interpolation function is only supposed to give qualitatively correct estimates of the local shape of the
PES.
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2 Force fields

2.1 Introduction

Force field methods describe the energy of a given nuclear configuration as an expansion in the internal
coordinates of the molecule. The total energy is constructed by a sum of contributions from distortions
of the molecule.

E = Estr + Ebend + Etors + Eoop + Ecross + Eelec + Evdw . . . (2.1)

These contributions can be classified as either bonded (directional) or non-bonded terms. The three
simplest examples for bonded terms are the bond stretch energy, the angle bend energy and the tor-
sional energy. They are the backbone of any force field and describe the interaction of a limited number
of atoms with each other. Examples for non-bonded interactions include the electrostatic energy and
the Van der Waals energy. They describe long range intra- as well intermolecular forces.

The individual energy contributions are described by physically motivated expansions in their re-
spective internal coordinates. The expansion coefficients are fitted to high level ab initio data or
experimental data and are typically optimized for a whole class of molecules. Depending on the spe-
cific force field, atoms are assigned an atom type not only based on their physical nature, but also on
their environment and bonding state. While a force field designed for small molecules may, for exam-
ple, only differentiate between different hybridization states of carbon, a force field developed for the
calculation of protein structures might implement different atom types for every possible functional
group surrounding a carbon atom.

(a) Type 1: sp3-carbon (b) Type 2: sp2-
carbon in alkenes

(c) Type 3: sp2-
carbon in carbonyl
group

(d) Type 3: sp-carbon

Figure 2.1: Different carbon types in the MM2 force field

2.1.1 Bond stretch energy

The potential energy curve for bond stretching energy Estr is often modeled by a Morse potential [18],

Emorse = De(e
−2a(l−l0) − 2e−a(l−l0)), (2.2)

where l is the bond length and l0 the equilibrium bond length. This equation not only includes
the anharmonicity of the actual potential, but also shows the correct dissociation behaviour. Even
though the Morse potential only uses three parameters it outperforms most four-coefficient-models.
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2 Force fields

Nonetheless, most force fields use power series expansions of the potential curve due to the lower
computational effort.

Estr =

mmax∑
m=2

km(l − l0)m (2.3)

Even a simple harmonic (mmax = 2) expansion is often sufficient as force fields are typically used only
for evaluations near the equilibrium geometry. In order to account for the anharmonicity of the actual
potential, cubic and quadratic terms can be included if necessary.

2.1.2 Angle bending energy

Figure 2.2: Angle between three atoms

The energy contribution Ebend due to distortions of the
angle between three atoms is typically modeled as a power
series expansion around the equilibrium geometry angle:

Ebend =

mmax∑
m=2

km(θ − θ0)m (2.4)

Most force fields truncate the expansion after the second
order. The resulting harmonic potential is typically valid
for deviations ±30◦ around θ0 [19]. In the force fields
by Norman Allinger (MM2, MM3) [20] [21], which are
frequently discussed throughout this thesis, the angle bending energy is expanded up to sixth order.
It is also important to note that the angle θ is measured in plane for planar molecules, for example
around a sp2 hybridized carbon. The energy penalty due to bending out of the plane is accounted for
by the out-of-plane energy contribution.

2.1.3 Torsional energy

Figure 2.3: Dihedral angle

The torsional energy Etors is the contribution due to twist-
ing of the dihedral angle ω between four atoms as shown
in Figure 2.3. It was first introduced to explain the differ-
ent energies of cis and trans (or gauche and anti) confor-
mational isomers of small molecules and is an important
contribution in any force field. Due to the periodic na-
ture of this potential it is typically expanded in a Fourier
series:

Etors =
∑
m=1

Vm cos(mω). (2.5)

Depending on the symmetry of the molecule different
terms are used in the expansion. The ethane molecule, for
example, has C3 rotational symmetry with respect to the
C-C bond axis. Therefore, only coefficients corresponding
to multiples of three (m = 3, 6, 9) can enter in the Fourier
expansion. For the C2 symmetric ethene only even num-
bered Vm are non zero. Since the coefficients Vm depend
on all four atom types involved in the dihedral angle, the number of necessary parameters in the force
field grows quickly with the number of atom types. To counteract this rapid increase many force
field implementations use Vm coefficients that are only dependent on the atom type of the two center
atoms.
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2.1 Introduction

2.1.4 Out-of-plane energy

Figure 2.4: Out-of-plane bending

The out-of-plane energy Eoop gives an energy penalty for
the distortion of planar atom arrangements. This is, for
example, of importance for sp2 hybridized carbon atoms.

Eoop = kd2

Eoop = kθ2
(2.6)

There are two possible ways to quantify out-of-plane bend-
ing, either by the distance d, by which one of the atoms
protrudes from the plane spanned by the remaining three atoms, or by the angle θ enclosed by the
bond and its projection onto the plane. Both methods are depicted in Figure 2.4. Using the Taylor
series expansion of the sine function it can be shown that the two descriptions are equal for the har-
monic expansion of the out-of-plane energy. Another method to account for the out-of-plane energy
is based on improper torsional contributions. However, the definition of this improper torsional angle
is not unique and therefore not used in this thesis.

2.1.5 Cross terms

Cross terms are contributions to the force field energy that couple the bonded contributions. One of
the simplest examples is the stretch-bend cross term,

Estr−bend = k(θ − θ0)[(lab − lab,0) + (lbc − lbc,0)], (2.7)

where θ is the angle between two bonds with lengths lab and lbc and equilibrium bond lengths lab,0
and lbc,0. This contribution is motivated by the fact that, at large bond distances, a variation in the
angle will not give a large energy contribution. However, for very short bond lengths relatively small
angle distortions can lead to a large change in the distance between the outer two atoms.

In theory, any combination of the standard energy contributions is possible for a cross term. Force
fields are classified by the number of contributions that are used for cross terms. A class 2 force field,
for example, only contains cross terms coupling at most two other contributions. Following Jensen [19],
other examples for cross terms include:

Estr,str = k(lab − lab,0)(lbc − lbc,0),

Ebend,bend = k(θabc − θabc,0)(θbcd − θbcd,0),

Estr,tors = k(lab − lab,0) cos(nωabcd),

Ebend,tors = k(θabc − θabc,0) cos(nωabcd),

Ebend,tors,bend = k(θabc − θabc,0)(θbcd − θbcd,0) cos(nωabcd).

(2.8)

2.1.6 Electrostatic energy

The electrostatic energy Eelec in force fields can be viewed from the point of a multi-pole expansion.
The first order expansion, which is used in most force fields, is the interaction of point charges. While
the functional form of the coulomb potential of two point charges is simple,

Eelec =
qaqb

4πε0εrrab
, (2.9)

it remains difficult to assign a partial charge to the atoms involved. The values assigned are typically
taken from ab-initio calculations and assumed constant.
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2 Force fields

Higher order multi-pole expansions would be dipole or quadrupole expansions. In the dipole ex-
pansion, the electrostatic energy is a function of three parameters, the distance and the two angles
the dipoles enclose with the vector connecting the atoms. Due to this increased computational effort
most force fields use the simple point charge expression.

Since the coulomb energy between bonded atoms is already taken into account by bonded energy
contributions such as the stretch or the bend energy the electrostatic, the electrostatic energy is scaled
depending on the number of bonds between the interacting atoms. This bond distance is denoted as
1,X where X is the number of bonds in between the atoms plus one. A 1,2 interaction, for example,
is the interaction of two atoms bonded to each other. Typically, the calculation of non-bonded inter-
actions is only done for bond distances greater than the 1,4 interaction. The 1,4 interaction itself is
scaled down by a factor between 1 and 2 in most force fields. In addition to that, most force field
codes implement a cut-off radius for non-bonded interaction to reduce the computational effort.

2.1.7 Van-der-Waals energy

The Van-der-Waals interaction between two atoms can be modeled using different functions. They
typically involve an r−6 dependence for the attractive part of the potential. This is physically moti-
vated by dipole-dipole interactions which vary as r−6 with distance. Additional terms proportional
to r−8 and r−10 occur if dipole-quadrupole and quadrupole-quadrupole interactions are taken into
account.

One of the most frequently used functional forms is the Lennard-Jones potential [22]:

Evdw = ε

[(r0

r

)12
− 2

(r0

r

)6
]

(2.10)

The r−12 dependence of the repulsive part is not motivated by physical arguments but convenient
from an (antiquated) computational point of view. The actual repulsive potential is better modelled
using an exponential function. This functional form is often referred to as Buckingham potential [23].

Evdw = Ae−Br − C

r6
(2.11)

The exponential repulsion describes the Van-der-Waals interaction better than the r−12 potential.
It does, however, give rise to a new problem: The attractive r−6 diverges for short distances. This
causes the potential to yield an attractive force for small distances. However, in actual calculations
this region of the potential is never reached. This problem can be avoided by using a Morse potential
to model the Van-der-Waals interaction. The Morse potential excels at describing the interactions for
short distances but does not show the correct r−6 asymptotic dependence.

2.1.8 Commonly used force fields

Depending on the application, different force field implementations are used. These vary not only in
the energy contributions used but also in the number of atom types that are parameterized.

MM2, MM3: The “Molecular Mechanics” force fields by Norman Allinger are general force fields
for small molecules. The relatively simple MM2 force field [20] is used in many of the calculations
presented in this thesis. MM3 [21] improves upon MM2 by the introduction of more cross terms and
more atom types.

MMFF: The “Merck Molecular Force Field” [24] is a general purpose force field similar to MM3. A
notable feature is the untypical 7-14 Van-der-Waals potential used in MMFF.
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2.2 Comparison of common force fields

AMBER: The “Assisted Model Building with Energy Refinement” family of force fields was first
introduced by Peter Kollman [25]. There exist many variations for different use cases, most notably
the “General AMBER force field” (GAFF).

CHARMM: The “Chemistry at Harvard Macromolecular Mechanics” is a family of force fields for
calculations of large systems [26]. Different versions are available for proteins, nucleic acids and lipids.

UFF: Most force fields are parameterized for a certain class of molecules. The “Universal Force
Field” [27], on the other hand, is a general force field for all elements on the periodic table. The
parameters are derived from atomic properties such as atom radius or electronegativity.

2.2 Comparison of common force fields

Comparing different force field energies is hard to justify, as they often include different contributions
and different expansion orders. The test set of molecules the force fields were parametrized with differ
widely as well. Figure 2.5 shows such a comparison of MM2, MM3, MMFF and GAFF energies along
the reference trajectory as they all were designed for small molecules like butadiene.
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Figure 2.5: Reference energy compared to force field energies from MM2, MM3, MMFF and GAFF.

In order to quantify the accuracy the RMSD from the reference curve is calculated. All energy
curves are shifted to the value 0 for the first reference point. MM2 and MMFF give nearly the same
accuracy with a RMSD of 6.5 and 6.4 kcal/mol, respectively. MM3, as expected, improves upon the
MM2 energy with a RMSD of 5.5 kcal/mol. For this specific reference curve GAFF outperforms the
other force fields significantly. The RMSD for GAFF is about 2.4 kcal/mol, even though it has the
simplest functional form of all force fields presented here. This indicates that, given an adequate set
of parameters, high expansion orders and numerous cross terms are not necessary.
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2.3 Contributions to the total energy

In order to investigate the size of the different energy contributions the quadratic average of the energy
contributions of the different force fields are calculated for the butadiene reference curve. The results
are plotted in a bar chart in Figure 2.6.
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Figure 2.6: Quadratic average of the MM2 force field contributions for the butadiene reference curve

The largest contributions stem from the three most basic force field terms: The bond stretch energy,
the angle bend energy, and the torsional energy. The electrostatic and Van-der-Waals energy, here
summarized as non-bonded contributions, have a small contribution for small molecules like butadiene,
because they are only calculated between pairs of atoms which are separated by at least 3 bonds. In
larger molecules or molecule ensembles these contribution play a significantly larger role.

2.4 Improvements by individualization

Standard force fields are parameterized for whole classes of molecules. This in turn means that the
description for individual molecules is not as accurate as it could be for a given functional form. The
effects of individualization are demonstrated using the MM2 force field due to its relatively simple
functional form and yet high expansion orders. This gives the MM2 force field the functional flexibility
to be refitted to a specific molecule. For two of the major contributions in the butadiene reference
curve, the bond stretch energy and the angle bend coefficients, the expansion coefficients up to sixth
order are determined. This refitting was done using additional SCF-calculations, in which the respec-
tive internal coordinates are varied near the equilibrium geometry. The remaining internal coordinates
are fixed to the optimized values. The contribution of the non-bonded interactions was subtracted
from the SCF-energies to avoid double counting of these energy contributions.

Figure 2.7 shows the refitting of the bond stretch parameters. In butadiene there are a total of
five different bond types. This distinguishment is an improvement to the standard MM2 force field
which only uses two bond types. The comparison with standard MM2 bond energy curves shows
that the refitted curves reproduce the SCF-energy better over a great range. Most notable is the
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2.4 Improvements by individualization

energy curve for the CC2-stretch, which is the stretching of the central C-C-bond in butadiene. The
standard MM2 parameters underestimate the equilibrium bond length by over 0.1 Å. In addition, the
bond potentials for GAFF are plotted. Refitting the simple harmonic expansion to the anharmonic
reference potential does not improve the GAFF energy. It does, however, show that the significant
advantage of GAFF over the other presented force fields is the better discrimination of different types
of bonds.
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Figure 2.7: Optimization of the bond stretch coefficients by fitting the potential curves.

Figure 2.8: Naming of the atoms and the four
angles varied for the refitting.

Refitting the angle bend parameters involves more ef-
fort as the angles can not be varied individually. Every
carbon atom in butadiene has three bonded partners
and three angles enclosed by these bonds. Since the
sum of all angles has to be 360◦, only two of them have
to be varied. Figure 2.8 shows the four angles that are
varied in order to extract all angle bend coefficients.
In addition, the atom numbering that is used to re-
fer to the individual atoms of the butadiene molecule
throughout this thesis, is depicted in Figure 2.8.

Figure 2.9 shows the fitting of the two-dimensional angle bending potential. The parameters of all six
different angle types in butadiene can be determined using these fits.
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Figure 2.9: Optimization of the angle bend coefficients by fitting a two-dimensional slice of the PES.

Using the coefficients extracted from these fits, the force field energy predictions for the butadiene
reference curve can be improved significantly. Figure 2.10 shows a comparison between the standard
MM2 force field and its individualized version. The MM2 RMSD of 6.53 kcal/mol is reduced to 2.97
kcal/mol for the refitted force field. This method of individually varying the internal coordinates in
order to refit the force field parameters becomes increasingly difficult for the other energy contributions
and is therefore not feasible in actual applications. Another approach to extract force field parameters
from ab initio calculations would be to use the Hessian matrix that is computed during a frequency
calculation. When transformed into internal coordinates, the values of the Hessian matrix provide the
force constants in the harmonic expansion.
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Figure 2.10: Refitted bond stretch and angle bend coefficients in MM2 force field for butadiene in
comparison to the reference curve and standard MM2.

The idea of automatically deriving a molecule specific force field from ab-initio calculations as sug-
gested here has recently been the topic of several publications [28] [29] [30] [31] [32]. Depending on the
system these algorithms are applied to, different fitting techniques are employed and different force
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fields are used.

Chapter 5 builds upon the results of this section and investigates the possibility of an IMLS scheme
to adjust the MM2 force field along the PES.

2.5 Improvements by additional energy contributions

Ab initio reference points contain information beyond the total energy which can be used to support
the parametrization of a force field. Examples for quantities that can be extracted from these ab initio
calculations are the electron density and the molecular orbital energies. The difficulty in including
them into the force field energy is that large parts of their energy contributions are already taken
into account by standard force field contributions, and a clear separation of contributions turns out
difficult.

2.5.1 Mulliken charges

In a first attempt of improving the force field energy, we consider the inclusion of Mulliken charges from
SCF data. Mulliken charges are partial charges calculated by assigning parts of the electron density
to each atom. These charges are used as partial charges in the electrostatic energy contribution of the
force field. Note that according to Figure 2.6 non-bonded energy contributions account for less than
5% of the total energy for the butadiene molecule. However, it seems worth to test whether a slight
improvement of the energy prediction can be achieved or not. Figure 2.11 shows a comparison of the
standard MM2 energy to a MM2 force field calculation augmented by Mulliken charges. The partial
charge interaction is only calculated between atoms with at least three bonds between them (in MM2:
1,4 scaling = 1). The resulting correction of the total energy is very small. As shown in Figure 2.6,
this is true for all non-bonded energy contributions in a small molecule.
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Figure 2.11: Comparison of the standard MM2 force field to an calculation using the ab initio Mulliken
charges for the Coulomb interaction

All three curves in Figure 2.11 are shifted to give an energy of 0 kcal/mol at the starting geometry.
Indeed, the RMSD for the standard MM2 force field of 6.53 kcal/mol is slightly reduced to a value of
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6.39 kcal/mol by inclusion of Mulliken charges, which is an even larger improvement than what was
to be expected given the small overall contribution of non-bonded terms.

Incorporating Mulliken charges into the larger force field contributions is not straightforward. One
of the investigated schemes, for example, is varying the bond stretch coefficient based on the charge
difference of the bonded atoms,

Estr = (k − c∆q)(l − k0)2. (2.12)

This gives slightly larger improvements even though it is not strictly motivated by physical arguments.
The slight improvements, however, do not justify the effort of modeling the change in Mulliken charges
at a force field level. For the simple test in Figure 2.11 the Mulliken charges are taken from the ab initio
calculation at every geometry. For a possible application, the geometry dependence of the charges
would have to be modeled in a force field inspired expansion in the internal coordinates. However, an
inconvenient complexity of the geometry dependence of the Mulliken charges appears as is shown in
Figures 2.12a and 2.12b.
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Figure 2.12: Mulliken charges of the atoms in butadiene as a function of (a) the CH bond length
between atom C1 and atom H1, (b) the CC bond length between atom C1 and atom C2.

Figure 2.12a shows that for small CH bond lengths the electron pair of the covalent bond is assigned
in larger part to the hydrogen atom. This results in a negative partial charge. At the equilibrium
distance of about 2.1 bohr the carbon has a small negative charge. After a maximal negative charge at
a distance of about 3 bohr, the partial charge on the carbon tends towards the equilibrium situation
for large distances. In Figure 2.12b, the Mulliken charges of the atoms are plotted as a function of one
of the double bonds in butadiene. A sudden change in the behaviour can be seen at about 4.3 bohr.
The conjugated pz orbitals in the molecule break apart at the given distance. This affects the partial
charges of all atoms.

From the analytical form of expression 2.12 it follows that any attempt of modeling the changes
in the Mulliken charges, which then in turn are used to improve the force field energy, can be ab-
sorbed into cross terms in the force field contributions. The gain in information from the ab initio
points is annulled by the additional effort that is needed to model these new quantities. This is equally
true for the electron density and the molecular orbital energies.

In conclusion, it is difficult to find a physically motivated way to include the partial charge infor-
mation that can be gained from each reference point, especially because it remains unclear which
interactions are already taken into account by the bonded contributions. An additional problem is
the modeling of changes in these quantities. Interestingly, it turns out that this most often leads to
contributions similar to cross terms in the force field energy.
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3 PES derived from Hückel approach

In an attempt to use more information from the SCF data points we leave the force field ansatz for a
moment before exploring a possible force field based interpolation scheme in chapter 5.

3.1 Introduction

In this chapter we investigate the question whether ab initio reference points have more to offer than
energies and charges. However, this comes at the cost of a deeper entanglement with basic concepts
of SCF theory.

The term extended Hückel theory (EHT) was coined by R. Hoffmann [33]. Previously, the method was
simply referred to as molecular orbital (MO) method. It generalizes the simple Hückel method, which
was intended just for conjugated π-bonds, to include all valence electrons. In the original form, the
Wolfsberg-Helmholz [34] formula is used to approximate the off-diagonal elements of the Hamiltonian.

Hij =
1

2
kij(Hii +Hjj)Sij (3.1)

The diagonal elements Hii are considered as model parameters. Typically, they are assigned based
on the valence state ionization potentials (VSIPs) [35], which can be determined experimentally. For
the diagonal elements the proportionality constant kij is set to 1. A typical choice for the off-diagonal
elements is kij = 1.75. The overlap matrix Sij is calculated in an atomic orbital basis using Slater-type
orbitals:

φ(r)nml = Nrn−1e−ζrY (r)ml (3.2)

Using this Hamiltonian, the molecular orbitals and their energy are calculated from the Hückel equa-
tions, which can be related to the Roothaan-Hall equations [36] of restricted SCF methods:

HC = SCε. (3.3)

In the extended Hückel theory the total energy of a system is a simple sum of the molecular orbital
energies of the occupied orbitals,

E = 2
∑
i

εi. (3.4)

The approximation of the integrals used in the Wolfsberg-Helmholz formula was first introduced by
Mulliken [37]. Blyholder and Coulson conclude from their investigation [38] that the Wolfsberg-
Helmholz formula gives a reasonable approximation to the SCF Fock matrix for uniform charge dis-
tributions. They do note, however, that the exchange integrals can not be written in the form c× Sij
and that the approximated electron-core-interaction integrals show inaccuracies of about 10− 20 %.

There have been numerous attempts to improve the EHT using more elaborate approximations of
the Hamiltonian. A few examples are the weighted Wolfsberg-Helmholz formula [39],

Hij =
1

2

[
kij + ∆2 + ∆4(1− kij)

]
(Hii +Hjj)Sij , (3.5a)
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with,

∆ =
Hii −Hjj

Hii +Hjj
, (3.5b)

the Cusachs formula [40],

Hij =
1

2
Sij(2− |Sij |)(Hii +Hjj), (3.6)

the exsin formula [41],

sgn(Sij)
1

2
{(1 + |Sij |) [1 + c sin(π|Sij |) exp(b|Sij |)]− 1}(Hii +Hjj), (3.7a)

b = −π cot(π|Sm|), (3.7b)

with parameters c and Sm, and the Calzaferri formula [42],

Hij =
1

2

[
1 + (κ+ ∆2 −∆4κ) exp(−δ(Rij − d0))

]
Sij(Hii +Hjj), (3.8)

with additional parameters κ and δ. ∆ is defined same as in equation 3.7b and d0 is the sum of the
orbital radii rn(A) + rn(B) defined by

rn =
1∫∞

0 (1/r)R2
nl(r)r

2dr
, (3.9)

where Rnl(r) refers to the radial part of the atomic orbital wave function. Note, however, that none
of these parametrizations goes beyond a simple proportionality to the overlap matrix S.

3.1.1 Comparison of different parametrizations

Figure 3.1 shows a comparison of the sum of molecular orbitals energies for the different formulas
presented in section 3.1. The Hartree Fock reference is a sum of the molecular orbital energies of the
11 valence orbitals.
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Figure 3.1: Comparison of the sum of molecular orbital energies for the different Hamiltonian
parametrizations.
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All calculations in Figure 3.1 use 21.4, 11.4, and 13.6 eV as VSIPs for the carbon 2s, the carbon
2p and the hydrogen 1s orbitals respectively [43]. In both the Wolfsberg-Helmholz formula and the
weighted Wolfsberg-Helmholz formula a constant kij of 1.75 is used. For the Calzaferri approach,
which is based on the weighted Wolfsberg-Helmholz formula, κ = 0.75 and δ = 0.1 is used. These
three parametrizations are successive improvements and, as a consequence, give similar total energies.
The energies calculated from these formulas show the correct functional course but underestimate the
relative change in energy. The Cusachs and the exsin formula (which is based on the former) share a
similar functional course. For the exsin formula the parameters suggested by Kalman in his original
publication of the formula are used [41]. The functional course of these approaches shows opposite
behaviour to the reference, exhibiting minima where the reference shows maxima and the other way
round.
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Figure 3.2: Comparison of the Fock matrices for different Hamiltonian parameterizations, calculated
for the first geometry of the butadiene trajectory.

Figure 3.2 shows a graphical representation of the Fock matrices for the first geometry of the butadiene
trajectory, constructed by the different formulas. The Fock matrix of the HF reference was projected
onto the smaller EHT basis. In addition, the contribution of the core electrons on the carbon atoms
was removed. A more detailed discussion of this process can be found in section 7.3. The general
shape of the Fock matrix is reproduced correctly by all parameterizations. The RMSDs of the matrix
elements for all 200 trajectory geometries are 0.0438, 0.0440, 0.0445, 0.0436, and 0.0444 hartree for
the Wolfsberg-Helmholz, the weighted Wolfsberg-Helmholz, the Calzaferri, the Cusachs and the exsin
method, respectively.

One notable deficiency of all formulas is their simple dependence of the off-diagonal elements on
the overlap matrix. Due to the orthogonality of the basis functions on one atom, the Fock matrix
elements for those basis functions can not be approximated. Another source of the deviations are the
diagonal elements themselves. The VSIPs used in all of the formulas are assumed constant through-
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3 PES derived from Hückel approach

out the trajectory and the same for all three p-type orbitals. However, the comparison with the HF
reference shows that both these assumptions are wrong for the butadiene molecule. This problem
can be addressed by the self-consistent Hückel method (SC-EHT), first introduced by Harris [44]. In
its simplest form, the SC-EHT diagonal elements are adjusted based on the calculated charge of the
corresponding atom,

Hii = H0
ii − aiqA, (3.10)

where H0
ii is the initial value of the diagonal element (the VSIP), ai is a parameter and qA is the

charge of the atom the basis function i is centered on. Typically, Mulliken charges [45] calculated
from the density matrix are used, which makes the method iterative. While the SC-EHT introduces a
geometry dependence of the diagonal elements and corrects the assumption that all atoms of a certain
atom type, regardless of their environment, share the same ability to attract electrons, it does not
differentiate between the different types of p orbitals.

The iterative nature of the SC-EHT makes the formulation of an interpolation scheme based on
this method difficult and inefficient. The remaining of this thesis, therefore, focuses on non-iterative
variants of the EHT.

C1 2s
C1 2px
C1 2py
C1 2pz

C2 2s
C2 2px
C2 2py
C2 2pz

C3 2s
C3 2px
C3 2py
C3 2pz

C4 2s
C4 2px
C4 2py
C4 2pz

H1 1s
H2 1s
H3 1s
H4 1s
H5 1s
H6 1s

Wolfsberg-Helmholz weighted Wolfsberg-Helmholz Calzaferri

C
1

2s
C

1
2p

x
C

1
2p

y
C

1
2p

z
C

2
2s

C
2

2p
x

C
2

2p
y

C
2

2p
z

C
3

2s
C

3
2p

x
C

3
2p

y
C

3
2p

z
C

4
2s

C
4

2p
x

C
4

2p
y

C
4

2p
z

H
1

1s
H

2
1s

H
3

1s
H

4
1s

H
5

1s
H

6
1s

C1 2s
C1 2px
C1 2py
C1 2pz

C2 2s
C2 2px
C2 2py
C2 2pz

C3 2s
C3 2px
C3 2py
C3 2pz

C4 2s
C4 2px
C4 2py
C4 2pz

H1 1s
H2 1s
H3 1s
H4 1s
H5 1s
H6 1s

Cusachs

C
1

2s
C

1
2p

x
C

1
2p

y
C

1
2p

z
C

2
2s

C
2

2p
x

C
2

2p
y

C
2

2p
z

C
3

2s
C

3
2p

x
C

3
2p

y
C

3
2p

z
C

4
2s

C
4

2p
x

C
4

2p
y

C
4

2p
z

H
1

1s
H

2
1s

H
3

1s
H

4
1s

H
5

1s
H

6
1s

exsin

C
1

2s
C

1
2p

x
C

1
2p

y
C

1
2p

z
C

2
2s

C
2

2p
x

C
2

2p
y

C
2

2p
z

C
3

2s
C

3
2p

x
C

3
2p

y
C

3
2p

z
C

4
2s

C
4

2p
x

C
4

2p
y

C
4

2p
z

H
1

1s
H

2
1s

H
3

1s
H

4
1s

H
5

1s
H

6
1s

Hartree-Fock reference

−0.60

−0.45

−0.30

−0.15

0.00

0.15

0.30

0.45

0.60

Figure 3.3: Comparison of the density matrices for different Hamiltonian parameterizations, calculated
for the first geometry of the butadiene trajectory.

Figure 3.3 shows the density matrices, for the first geometry of the butadiene trajectory, calculated by
the different formulas and the HF reference. Again, the qualitative shape of the matrices is reproduced
correctly. The RMSDs of the matrix elements for all 200 trajectory geometries are 0.030, 0.027, 0.028,
0.035, and 0.047 for Wolfsberg-Helmholz, weighed Wolfsberg-Helmholz, Calzaferri, Cusachs, and exsin,
respectively. Comparing this to the RMSD for the Fock matrix elements shows no correlation. Certain
Fock matrix elements seem to have a larger influence on the density than others. This is to be
expected, because the density matrix is constructed only from the eigenvectors corresponding to the
lowest eigenvalues. Therefore, information that is contained in the eigenvectors of virtual orbitals is
not used.
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Figure 3.4: Comparison of the 11 valence orbitals of butadiene for the different Hückel parametrization
schemes.
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Figure 3.4 shows a comparison between the valence molecular orbitals calculated by the different EHT
methods and the HF reference. The isosurfaces of the eleven molecular orbitals for the value 0.02 are
plotted using the program Avogadro [46]. Energetically lower lying orbitals are described better than
the outermost. In the range from molecular orbital number seven to number eleven a clear assignment
of nodal structure and energy is not straightforward. However, the total electron density, composed of
a sum of all occupied molecular orbitals, is almost indistinguishable from the reference density for all
of the parametrizations. A similar trend can be observed for the molecular orbital energies, plotted
in Figure 3.5. For the energetically lower lying orbitals the parametrizations give reasonable results,
but show increasing deviations for the higher lying valence orbitals.
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Figure 3.5: Comparison of the molecular orbital energies for different Hamiltonian parameterizations,
calculated for the first geometry of the butadiene trajectory.

Concluding this introduction, all of the presented formulas reproduce the valence molecular orbitals
of a Hartree-Fock calculation qualitatively, but can not estimate the molecular orbital energies to a
sufficient accuracy using the standard parameters. A further complication to be treated later is given
by the fact that the total energy of the SCF-calculations can not be replicated at all without additional
energy expressions, even if the molecular orbital energies were exact.
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3.2 Improvements through parameter refitting

3.2 Improvements through parameter refitting

Refitting the parameters of the different formulas to the valence orbital energies of the HF reference
gives significant improvements. Table 3.1 shows an overview of the optimized parameters for the
various formulas.

Table 3.1: Optimized EHT parameters see equations 3.1 to 3.8.

default Wolf.-Helm. weighted Wolf.-Helm. Calzaferri Cusachs exsin

HC2s [eV] 21.40 8.34 8.33 5.75 22.12 18.10
HC2p [eV] 11.40 5.30 5.30 3.50 7.97 3.42
HH1s [eV] 13.60 6.55 6.53 3.80 17.09 12.76

k [1] 1.75 5.74 5.73
κ [1] 0.75 8.94
δ [Å−1] 0.1 0.56

RMSD [hartree] 0.07 0.07 0.02 0.13 0.03

The twelve additional parameters of the exsin formula are tabulated separately in Table 3.2 for im-
proved readability.

Table 3.2: Optimized parameters for the exsin formula.

reference [41] fit reference [41] fit
Overlap Sm c Sm c Overlap Sm c Sm c

1s1s 0.674 0.030 0.237 1.281 2s2s 0.342 0.480 0.653 0.185
1s2s 0.518 0.161 -0.217 0.797 2s2p 0.255 0.432 0.273 1.674
1s2p 0.334 0.420 0.133 0.524 2p2p 0.500 0.265 0.802 1.132

Figure 3.6 shows the sum of molecular orbital energies for the refitted formulas along the reference
trajectory.
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Figure 3.6: Comparison of the sum of molecular orbital energies for the different Hückel-Hamiltonian
formulas after refitting of their respective parameters.
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The fitted parameters for the different formulas deviate significantly from default values. For strictly
mathematical models this would not be a problem. However, in the EHT, the parameters do have a
physical meaning and should not deviate too much from the experimentally determined values.

Comparing the formulas is difficult because of the different number of parameters. The functional
course is best reproduced by the Calzaferri formula and the exsin formula. The Wolfsberg-Helmholz
and the weighted Wolfsberg-Helmholz give similar refitted parameters and, as a consequence, a similar
functional course. The Cusachs formula still shows opposite behaviour after refitting.

There are suggestions for most of the formulas to improve the quality of the approximation by
introducing additional parameters. The Wolfsberg-Helmholz formula, for example, could be improved
by using a different factor kij for each type of bond [47] [48]. We conclude from our investigation
of these suggestions that, while they do improve the accuracy (as can be expected when using more
parameters), they can not improve the geometry dependence of the formulas. Therefore, they can not
correct the remaining deviations in the functional course.

3.3 Improvements based on ab initio data

In this section we link the extended Hückel approach to our goal of improved fitting of ab initio
reference points. The Hückel Hamiltonian can be related to the Fock matrix in the SCF method. In
other semi-empirical methods such as MNDO (Modified Neglect of Diatomic Overlap [49]) and AM1
(Austin Model 1 [50]) the parametrization happens at the level of the integral evaluation, while in
EHT the Fock matrix itself is parametrized.

3.3.1 Improvements using the Fock matrix diagonal

A simple way to incorporate SCF information into the Hückel formalism is to use the diagonal of
the converged Fock matrix to populate the diagonal of the Hückel matrix. Obviously, a full use of
the Fock matrix would lead to the exact molecular orbital energies; however, by using only diagonal
elements in combination with the parametrization formulas of Section 3.1, larger deviations are to be
expected. If one method for the calculation of non-diagonal elements from diagonal elements proves
useful, future improvements of the energy predictions as a function of geometry can be achieved by a
simple fitting of the main diagonal elements.
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Figure 3.7: Comparison of the sum of molecular orbital energies along the butadiene trajectory for the
different Hamiltonian parametrizations using the Fock matrix diagonal instead of VSIPs.
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Figure 3.7 shows the sum of molecular orbital energies for the different formulas using the Fock ma-
trix diagonal at every SCF data point. The remaining parameters are set to the same values as in
3.1.1. The new functional course shows that choosing geometry independent Hückel matrix diagonal
elements is an incorrect assumption. This is due to the fact that largest contributions to the molecular
orbital energies, at least in the atomic orbital basis, are the diagonal elements. The absolute value of
the sum of molecular energies is underestimated and the geometry dependent variation overestimated.

In order to correct these deviations, the energies are shifted by their value at the first trajectory
point, and the remaining parameters fitted to the reference energy. Figure 3.8 shows the refitted sum
of molecular orbital energies.
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Figure 3.8: Comparison of the sum of molecular orbital energies along the butadiene trajectory. The
different Hamiltonian parametrization formulas use the exact Fock matrix diagonal in-
stead of VSIPs along the main diagonal and the parameters for the off-diagonal element
approximations are fitted to the reference energy.

The resulting RMSDs are 0.045, 0.048, 0.048, 0.068, and 0.017 hartree for the Wolfsberg-Helmholz,
the weighted Wolfsberg-Helmholz, the Calzaferri, the Cusachs, and the exsin formula, respectively.
Note that the Cusachs formula does not include any additional parameters into the off-diagonal ap-
proximation and therefore refitting this parametrization is not possible. The RMSD is reduced in
comparison to the simple fitting in section 3.2 for all approximations with exception of the Calzaferri
formula.
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3.4 From molecular orbitals to the total energy

Many approaches to solve the problem of linking the molecular orbitals to the total energy in extended
Hückel theory have been proposed over the years.

Blyholder and Coulson [38] argue that a total energy expression similar to the one in the SCF-scheme
should be used. In order to avoid the calculation of two electron integrals they suggest using

E =
∑
i

εi +
∑
i

~ci
Th~ci +

∑
a<b

QaQb
Rab

, (3.11)

with molecular orbital energies εi, the molecular orbital coefficients ~ci, the core Hamiltonian h as a
K×K matrix in the atomic basis, and nuclear charges Za screened by the number of core electrons nca:
Qa = Za − nca. This method increases the computational effort significantly as the core Hamiltonian
has to be evaluated for each geometry. Note that formula 3.11 is a exact expression of the SCF energy
if SCF molecular orbitals are used.

Calzaferri, Forss, and Kamber developed a formula that can be interpreted as an approximation
to the core Hamiltonian integrals [42].

E =
∑
i

εi +
∑
a<b

Eab, (3.12)

with

EAB =
QAQB
RAB

− 1

2

[
QA

∫
ρB

|RAB − r|
dr +QB

∫
ρA

|RAB − r|
dr

]
. (3.13)

This two-body interaction term covers the interaction of the electron density with the nuclei, but
neglects the kinetic energy part of the core Hamiltonian.

Dixon and Jurs proposed what they call the EHNDO (Extended Hückel Neglect of Differential Over-
lap) method [51]. Two-body interaction terms between pairs of atoms are added to the total energy
expression:

E = 2
∑
i

εi +
∑
A<B

[EAB,elec + EAB,nuc] . (3.14)

The two-body interaction is split into two terms. The electronic interaction is given by

EAB,elec = zAzB
e−(aA+aB)R

bA+bB
AB

RAB + cA + cB
, (3.15)

with aA, aB, bA, bB, cA and cB as atomic parameters of the method. The numbers of valence electrons
on the atoms A and B are denoted as zA and zB. The nuclear interaction is given by

EAB,nuc = zAzB
e−(δA+δB)R

εA+εB
AB

RAB
, (3.16)

with δA, δB, εA and εB as atomic parameters. Here, zA and zB are the net charges not screened by
inner-shell electrons. The method was parametrized for H, C, N, O, and F.

Figure 3.9 shows a comparison of the three suggested methods. The HF results projected onto the
EHT basis are used as a basis in order to compare solely the influence of the additional energy expres-
sions. Note that using the core Hamiltonian expression of equation 3.11 does not reproduce the exact
HF energies due to this projection. The integrals for the Calzaferri formula are evaluated using the
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3.4 From molecular orbitals to the total energy

formulas given by reference [42]. For the EHNDO method the parameters given in the original publica-
tion are used. These parameters were fitted simultaneously with the remaining EHT parameters and
probably work best when used together. Refitting the ten parameters reduces the RMSD from 0.045
hartree to a value of 0.013 hartree but worsens the description of the functional course. Including the
exact kinetic energy expression in the Calzaferri method does not yield any improvements.
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Figure 3.9: Comparison of three approaches for additional EHT energy expressions along the butadiene
trajectory.

Despite the fact that both of the approximate formulas give a reasonable functional course, we will be
focusing on the approach proposed by Blyholder and Coulson during the rest of this work because of
its proximity to the SCF formalism.

3.4.1 Introduction of effective core potentials

The approach of modelling valence electrons only reminds of an other area of quantum chemistry:
the treatment of molecules containing heavy atoms via the introduction of effective core potentials
(ECPs). In this simplification, the core electrons are replaced by a pseudo-potential and the electronic
Hamiltonian takes the form

Helec = −
Nv∑
i=1

[
1

2
∇2
i +

M∑
a=1

(
−Qa
ria

+ V ECP
a (ria)

)]
+

Nv∑
i=1

Nv∑
j>i

1

rij
+

M∑
a=1

∑
b>a

QaQb
Rab

. (3.17)

The summation runs over the Nv valence electrons, and the nuclear charges are reduced by the number
of of core electrons Qa = Za −Nc,a. The total energy can then be written as

E =
∑
i

εi +
∑
i

~ci
T (h+ V ECP )~ci +

∑
a<b

QaQb
Rab

(3.18)

A typical one-component effective core potential is a sum of potentials for the different angular mo-
mentum numbers:

V ECP
a (ria) =

L−1∑
l=0

V ECP
a,l (ria)Pa,l, (3.19)
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with the projection operator for the spherical harmonics centered on the nucleus a,

Pa,l =
l∑

ml=−l
|lml〉〈lml|. (3.20)

For the potentials, an expansion in terms of Gauss-functions is used:

V ECP
a,l (ria) =

∑
k

alkr
nlk
ia e

−αlkr2ia . (3.21)

For most ECPs the exponents nlk are set zero. Following the convention of the EHT to set integrals
proportional to the overlap matrix S we present two possible approximations of the V ECP matrix:

〈φi|V ECP
a |φj〉 = aij

∑
m

Sim ∗ Smj , (3.22a)

〈φi|V ECP
a |φj〉 =

∑
m

aimSim ∗ Smjamj . (3.22b)

In the approach of equation 3.22a, the proportionality factor aij depends on the type of the valence
basis functions i and j. The potentially more complicated approach in equation 3.22b uses a propor-
tionality factor that is also dependent on the type of the core basis function m. For the butadiene
molecule there is only one type of core basis function, the 1s basis function on the carbon atoms.
This yields three aim parameters: a1s,2s, a1s,2p, and a1s,1s. For the sake of comparability we use three
parameters in the approach of equation 3.22a: ass, asp, and app.

In a simple, preliminary test both approaches are fitted using the butadiene reference curve. The
projected HF-calculations are used as a basis, again representing an ideal EHT result. Figure 3.10
shows the results of the fits. The optimized parameters are: ass = 12.78, asp = 16.40, and app = 7.67
for the first variant and a1s,2s = 3.53, a1s,2p = 3.39, and a1s,1s = 3.29 for the second variant. The
RMSD is 0.0029 and 0.0017 hartree, respectively.
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Figure 3.10: Comparison of energies along the trajectory for the two overlap matrix dependent formu-
lations of the ECP.
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3.4 From molecular orbitals to the total energy

Note the similarity of both approaches for the simple butadiene molecule: Since there is only one type
of core basis function, the aim formally do not depend on the index m. Equation 3.22b can therefore
be rewritten as

〈φi|V ECP
a |φj〉 = aiaj

∑
m

Sim ∗ Smj . (3.23)

This expression looks similar to 3.22a, with the additional restriction that the factor aij is represented
by a product aiaj . The product based approach still outperforms the more general one because of the
restriction we made to allow just for three parameters ass, asp, and app instead of using all six possible
combinations of the three basis function types: a1s1s, a1s2s, a1s2p, a2s2s, a2s2p, and a2p2p. Fitting all
six parameters gives an RMSD of 10−3 hartree. The approach of equation 3.22b might still be a viable
alternative using significantly fewer parameters.

3.4.2 Integration of ECPs in an EHT approach

This section focuses on combining the results of the previous investigations to find a EHT model that
can be used as the basis for an interpolation scheme. In an effort to keep the number of parameters low,
the Calzaferri formula for the Fock matrix is combined with the ECP motivated approach of equation
3.22b. The resulting model is fitted to the total energy for the reference curve. The Calzaferri formula
is restricted to two parameters fixing the diagonal elements to the VSIPs of reference [43]. Optimizing
the remaining five parameters yields: a1s,2s = 3.26, a1s,2p = −2.11, a1s,1s = 3.54, κ = 2.73, and
δ = 0.44.
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Figure 3.11: Results of the simultaneous fit of the EHT and ECP parameters compared to the reference
curve.

Figure 3.11 shows a comparison of the fitted model to the reference curve. The RMSD for the entire
trajectory is 0.021 hartree. It is important to note that while the absolute accuracy is not comparable
to the force field methods, this model shows the correct functional course using significantly fewer
parameters.
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4 Direct interpolation of SCF ingredients

In section 3.2 we could demonstrate that the Wolfsberg-Helmholz formula seems promising for evalua-
tion of non-diagonal elements based on the diagonal elements of the Hückel matrix. In section 3.4.1 we
showed that a replacement of core electrons by a simplified ECP ansatz (sporting a series expansion in
the overlap matrix S) is capable of reproducing the total energies if exact ingredients for the molecular
orbital coefficients and energies are provided (taken from the SCF data points). What needs to be
shown now in order to obtain a competitive fitting algorithm is that the geometry-dependent variation
of the main diagonal of the Hückel matrix can be captured as well. Note the double importance of
these matrix elements for a correct evaluation of non-diagonal elements in the EHT approach as well
as for the generation of an appropriate eigenset (molecular orbital energies and coefficients) for the
evaluation of the ECP-dependent total energy expression.

4.1 A few words on SCF ingredients

The physical information of a molecule is contained in the converged SCF Fock matrix. The total
energy of a converged SCF calculation is:

E =
∑
i

εi +
∑
i

~ci
Th~ci + VNN , (4.1)

with the molecular orbital energies εi and the molecular orbital coefficients ~ci. Using the eigenvalue
equation and splitting the Fock matrix into the one-electron part h (core Hamiltonian) and a two-
electron contribution G (F = h+G), the equation can be rewritten as

E =
∑
i

~ci
T (F + h) ~ci + VNN =

∑
i

~ci
T (2h+G) ~ci + VNN . (4.2)

Introducing the electronic kinetic energy T , the electron-core interaction V , the electron-electron
interaction J , and the exchange energy K, we obtain

E =
∑
i

~ci
T (2T + 2V + 2J −K) ~ci + VNN . (4.3)

The difficulty of interpolating these contributions is illustrated in Figures 4.1 and 4.2, which show
evaluations of these quantities along the butadiene reference curve. For simplicity, all calculations
presented in this chapter use the STO-3G basis set [9]. Figure 4.1 contains energy contributions that
vary on a large scale with the geometry. These large contributions are the three Coulomb interactions:
the electron-electron interaction EJ , the electron-core interaction EV , and the core-core interaction
VNN .
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4 Direct interpolation of SCF ingredients
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Figure 4.1: Energy comparisons between the three Coulomb contributions along the butadiene refer-
ence trajectory.

The three energies are shifted by their respective value at the first trajectory point to make them
easier to compare. In addition, the attractive electron-core interaction was flipped to the same sign
as the repulsive contributions. The functional course of all three contributions is very similar. Their
cancellation at this scale can be argued by fact that the electrons position around the nuclei to screen
the nuclear potential. The slight deviations between these energies are nevertheless an important
contribution to the course of the total energy. Therefore, the quantities have to be combined (EV +2EJ
and EV +VNN ) in order to compare them to the remaining contributions of the kinetic and the exchange
energy.
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Figure 4.2: Plot of the various contributions to the SCF energy plotted over the butadiene reference
curve.

36



4.2 Fitting of Fock matrix elements

Figure 4.2 shows a comparison between the individual contributions and the total energy along the
reference curve. The cancellation of different contributions becomes obvious at this scale as well. The
kinetic energy seems to almost cancel the contributions from the exchange energy and the combination
of electron-electron and electron-core interaction. The remaining part, the combination of electron-
core attraction and core-core repulsion, already shows most of the features of the total energy curve.
While it may seem like many of this quantities are not too expensive to compute (with the exception
of the core-core interaction), all of them require the knowledge of the converged SCF electron density.

Recently, Martinez et al. [52] presented a scheme (dSCF) to separate the Fock matrix into a part
originating from the superposition of atomic densities (SAD) and a deformation due to chemical
bonding. They suggest that this method can eliminate the problem of large scale contributions as
they are already contained in the SAD contribution. However, this approach requires the calculation
of two-electron integrals which is too computationally expensive in the context of PES interpolation.

4.2 Fitting of Fock matrix elements

Section 3.1 showed that the Wolfsberg-Helmholtz formula gives good estimates for the structural form
of the Fock matrix. An IMLS formalism for the Fock matrix elements, based on the ideas from extended
Hückel theory, will be presented in section 4.3. In this section, different power series expansions are
suggested for the diagonal and the off-diagonal elements of the matrix.

4.2.1 Off-diagonal elements

The off-diagonal elements can be expanded in terms of the overlap matrix S.

Fij = k0,ij + k1,ijSij +
∑
l

k2,ijlSilSlj +
∑
l

∑
m

k3,ijlmSilSlmSmj (4.4)

An averaging of diagonal elements similar to the Wolfsberg-Helmholz formula is not used because is
restricts the functional freedom and complicates the fitting procedure.

We further simplify equation 4.4 by restricting the coefficients kn,ijl... to be dependent on the ex-
pansion order and the position in the matrix given by the indices i, j but not on the indices summed
over (l,m, . . . ).

k2,ijl = k2,ij k3,ijlm = k3,ij . . .

This is done to reduce the number of parameters for a given order. Without this simplification, the
number of parameters would also be dependent on the number of basis functions. Equation 4.4 can
be rewritten using the definition of the power of a matrix Am = A · ... ·A︸ ︷︷ ︸

m

. The constant factor is

separated out since A0 = 1 is zero for off diagonal elements:

Fij = k0,ij +
∑
m=1

km,ij(S
m)ij . (4.5)

4.2.2 Diagonal elements

The interpolation of the diagonal matrix elements is more difficult due to higher requirements on
precision. Two possible expansions are investigated here: The expansion in an inverse power series of
internuclear distances and, again, an expansion in terms of the overlap matrix.

As a first approximation only nearest neighbor distances are used for the inverse power series.

Fii =
∑
B

∑
m=0

cm
RmAB

, (4.6)
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4 Direct interpolation of SCF ingredients

with A denoting the atom the basis function i is centered on, B as the neighboring atoms, and RAB
as the distance between A and B.

The second approach tries to incorporate an angular dependence by using the overlap matrix ele-
ments as basis for the expansion,

Fii =
∑
B

∑
j∈B

∑
m

cjmS
m
ij . (4.7)

In order to compare the functional form of these two approaches the diagonal elements of the butadiene
Fock matrix are fitted along the reference trajectory.
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Figure 4.3: Comparison of the two different expansion approaches. Fit of the diagonal elements for
the 1s basis functions of the hydrogen atoms in butadiene on the reference curve.

Figure 4.3 shows the fits for the diagonal elements corresponding to the 1s basis functions on the six
hydrogen atoms. For these fits only the distance to the neighboring carbon atoms and the overlap
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4.2 Fitting of Fock matrix elements

between the 1s orbital on the hydrogen and the 2s orbital on the carbon are used. Both fitting
functions are of first order and therefore have the same number of degrees of freedom. Judging by the
RMSD, the expansion in terms of the orbital overlap gives slightly better results.
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Figure 4.4: Comparison of the two fit approaches for diagonal elements belonging to basis functions
on a carbon atom along the butadiene reference curve.

Figure 4.4 shows similar calculations for the diagonal elements corresponding to the basis functions on
the first carbon atom. The fits shown are based on first order expansions of the inverse distance to the
three neighboring atoms and the overlap of the 2s orbitals with the highest radial symmetric orbital
on the neighboring atoms, respectively. Again, the overlap based approach performs slightly better
with respect to the RMSD. For the sake of comparability, the possible advantage of the overlap based
expansion, which is the addition of an orientational dependence through non-radial symmetric orbitals,
was not used. In a tentative implementation the inclusion of these orbitals lead to a unreasonably high
number of parameters. Using the p orbitals on the carbon would, for example, increase the number
of parameters from 4 to 13 without giving significant improvements in accuracy.
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4 Direct interpolation of SCF ingredients

4.3 Fock matrix IMLS

The expansions used in section 4.2 are used in an IMLS scheme for the individual Fock matrix elements.
As a first test, the same distance-dependent weight function is used for all matrix elements. In theory,
it would be possible to use only local distortions in the definition of the weight function. It is important
to note that this method is an interpolation to the Fock matrix. A direct interpolation of the energy
would not be possible because of the complicated energy expression occuring in SCF calculations.
The computational effort of this method is comparatively high. The overlap matrix and the core
Hamiltonian have to be calculated in the full basis (STO-3G) at every geometry.
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Figure 4.5: Results of the IMLS calculation for the Fock matrix elements. The upper figure shows
the sum on molecular orbital energies on the left hand side axis and the remaining energy
contributions on the right hand side axis. The lower figure compares the total energies of
interpolation and reference. The off-diagonal elements are expanded to sixth order, the
diagonal elements to first order.
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4.3 Fock matrix IMLS

Figure 4.5 shows the results of an IMLS interpolation of the Fock matrix elements. A total of 20
reference points from the butadiene reference trajectory are used. The off-diagonal elements are
expanded to sixth order in terms of the overlap matrix. The diagonal elements are interpolated using
a first order inverse nuclear distance expansion. The simple inverse Euclidean distance weight function
from equation 1.5 (with p = 4) is used. This example again illustrates the problems of fitting SCF-
ingredients: The individual contributions to the SCF-energy are large quantities but almost cancel
each other. Therefore, the energy changes only by about a thousandth of the absolute energy along
the trajectory and very high relative precision is needed for all contributions.
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Figure 4.6: Accuracy of the trajectory interpolation using Fock matrix IMLS, plotted as a function of
the number of reference points used.

Figure 4.6 shows the accuracy of the interpolation as a function of the number of reference points,
measured by the RMSD. Expansion order and weight function are the same as in the prior example.
The accuracy is compared to the accuracy of a spline interpolation along the trajectory coordinate.
The behaviour of the cubic spline interpolation is discussed in detail in section 5.2.3. The Fock matrix
interpolation is slightly more accurate for the region from 20 to 56 reference points. Nevertheless, it
can not be considered a viable alternative due to the vastly greater computational effort and the fact
that the goal of an accuracy of ≈ 1 kcal/mol seems out of reach.
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5 A last promising approach: IMLS + FF

5.1 General concept

In this approach the interpolating moving least squares formalism is combined with a force field
expansion of the potential energy surface. Most of the force field contributions are simple power series
expansions in the internal coordinates, similar to the polynomial basis used in classic IMLS. The
advantage of this approach is that an expansion based on physical arguments can reduce the number
of coefficients necessary. For example, the knowledge of a good expansion point for a bond stretching
contribution (the equilibrium distance) saves the effort of calculating the linear coefficient in a power
series expansion:

E = k (l − l0)2 = kl2 − 2kl0l + l20
!

= al2 + bl + c. (5.1)

Another example is the Fourier series employed in the torsional contribution which includes the peri-
odicity of this internal coordinate by definition:

E =
∑

dihedrals

∑
n

Vn cos(nω) (5.2)

Using a sufficiently large number of cross interaction contributions in the force field energy, any ar-
bitrarily shaped PES can be represented and therefore be interpolated. The computational effort
(or the necessary number of reference points) can be reduced if further refinement is built on top of
already parameterized force fields, giving a good estimate of which cross interactions to include and
which contributions to consider most important for interpolation. They also provide starting values
for all parameter optimizations. For small numbers of reference points, this approach also offers the
possibility to optimize just a selection of the coefficients and use the standard force field parameters
for the remaining.

The mathematical derivation for this approach can be found in the appendix 7.4 and does not differ
much from the derivation of classic IMLS (section 1.2.2). It uses a force field based trial function

Etrail = E0 +
∑
bonds

k (l − l0)2 +
∑
angles

k (θ − θ0)2 +
∑

dihedrals

∑
n

Vn cos(nω) + Enon−opt. (5.3)

Enon−opt refers to all of the force field contributions that are not optimized during the interpolation.
Using the trial function in equation 5.3, the weighted sum of square deviations is minimized as follows:

∆ =

N∑
i=0

wi(r) [Etrial(ri)− Ei]2 !
= min (5.4)

In the presented formulation (matrix equation solved with SVD) only linear coefficients of the force field
energy can be adjusted. For this reason, equilibrium lengths of bonds l0 or parameters of the Van-der-
Waals potential can not be optimized this way. They would require a non-linear minimization of the
distance function ∆, which would increase the computational effort of the interpolation significantly.
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5 A last promising approach: IMLS + FF

5.2 Tests

As a prove of concept, the force field based IMLS was applied to the butadiene reference curve. For
all of these simple tests an inverse distance weight function (with p = 4) was used:

wi(r) =
1

d(r, ri)4
. (5.5)

In classic IMLS the complexity of the interpolation function is given by the degree of the multi-
variable polynomials used. In the force field based approach one has to differentiate not only by
degree of the individual contributions, but also by the type of contributions that are incorporated into
the interpolation.

5.2.1 Zeroth order

Analogous to Shepard’s method, in zeroth order IMLS-FF only an additional constant is adjusted
during the interpolation. By rearranging the optimization function it becomes obvious that this
method can be considered as a Shepard’s interpolation for the deviations of the force field energy from
the reference energy:

Etrial = E0 + Eff

∆ =

N∑
i=0

wi(r) [Etrial(r)− Ei]2 =

N∑
i=0

wi(r) [E0 − (Ei − Eff (ri))]
2

(5.6)

Zeroth order IMLS-FF therefore suffers from the same problems as the original Shepard’s method.
The impact of these shortcomings of Shepard’s method on the quality of the interpolation are reduced
because the deviation of the force field energy from the reference curve varies on a smaller scale than
the total molecular energy itself. The presented results are based on the MM2 and GAFF force fields.
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Figure 5.1: Comparison of IMLS-MM2 and IMLS-GAFF zeroth order (using 20 reference points), the
MM2 and GAFF force field energy and the butadiene reference curve.
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5.2 Tests

Figure 5.1 shows a comparison of the MM2 and GAFF force field energy and the zeroth order IMLS-
MM2 and IMLS-GAFF, both interpolating 20 reference points of the butadiene reference curve. The
’flat-spot’ phenomenon of Shepard’s method is not as notable in this approach as the interpolation
function will have the same derivative as the force field at the reference points. It does, however, still
appear in the interpolated deviations of force field energies from the reference values. While there are
notable improvements in comparison to the MM2 force field, the interpolation function is restricted
by the functional form of the force field. The peak height of features in the potential energy surface
can easily be adjusted using this formalism. However, changing the functional course would take a
very high number of reference points.

5.2.2 Interpolating the stretching energy

As shown in section 2.3, the largest contribution to the total energy for small molecules typically is
the bond stretching energy. Including the bond stretch coefficients into the interpolation scheme is
therefore the obvious next step. The trial function is adapted to also incorporate the bond stretching
energy as an optimized contribution:

Etrial = E0 +
∑
bonds

nmax∑
n=2

kn(l − l0)n + Enon−opt. (5.7)

The Enon−opt in equation 5.7 refers to the sum of all force field contributions but the stretch energy.
Again, this can be interpreted as fitting the bond energy (and a constant) to the difference between
the reference energy and the sum of all the other force field contributions.
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Figure 5.2: Comparison of IMLS-FF with interpolated bond coefficients (using 20 reference points),
the MM2 force field energy and the butadiene reference curve.

For the butadiene reference curve using the MM2 force field as a basis this gives a total of four bond
parameters to interpolate. The two types of bonds (C-C and C-H) are expanded to third order.
GAFF distinguishes four bond types but only expands them to the harmonic order, resulting, again,
in 4 parameters. The first order terms for these potentials are not optimized but the equilibrium
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5 A last promising approach: IMLS + FF

distances from the respective force field are used. Figure 5.2 shows the result for such an interpolation
using 20 equidistant reference points along the trajectory. The comparison with the reference curve
and the standard force fields again shows significant improvements. Increasing the expansion order
in MM2 does not yield further improvement. This is probably because the bond stretch energy is
already sufficiently taken care of, and the remaining error is due to a wrong description of other
energy contributions. In order to further improve the bond stretch contribution the bond types would
have to be distinguished in more detail.

5.2.3 Limiting behaviour

Using the butadiene reference curve, the accuracy of the two presented approaches was calculated
for a given number of reference points. Comparison to any of the classic interpolation techniques is
difficult given the low number of reference points. A cubic spline in 24 dimensions would not even be
reasonable using all 200 reference points, and first degree IMLS would still involve the optimization of
25 parameters. In order to give a comparison to mathematically motivated interpolation functions we
calculate a one-dimensional cubic spline along the trajectory coordinate. The accuracy is measured
using the RMSD from the points of the reference curve that were not used as reference points in the
interpolation.
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Figure 5.3: The accuracy of different interpolation schemes measured by the RMSD for the butadiene
reference curve

In Figure 5.3 the RMSD for different interpolation methods as a function of the number of reference
points is compared. For low numbers of reference points the zeroth order IMLS-FF methods show
the best accuracy. Both of the other methods, the one-dimensional spline and the bond optimized
IMLS-FF, need a certain minimum of reference points in order to work properly. Both bond optimized
IMLS-FFs have a total of five parameters and surpass the accuracy of the zeroth order IMLS-FFs at
about ten to twenty reference points. The two force field based methods are more accurate than the
spline by almost an order of magnitude for up to 60 reference points. The Nyquist–Shannon sampling
theorem states that the sampling rate needs to be at least twice the frequency of the fastest vibration
in the system in order to capture all information of the signal. This is exactly what can be seen at
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about 65 reference points, where the accuracy of the spline interpolation drastically increases.

5.3 Outlook

The tests of section 5.2 show that one important addition would be to include additional information
in the form of gradients at the reference values. The reformulation of the force field based IMLS
approach to incorporate gradients can be done analogous to the modified Shepard’s method [53].
Since this would restrict the method to reference calculations where gradient information is easily
accessible, the number possible applications would be reduced. In this first investigation no special
application was to be preferred.

5.3.1 Reactive force fields

The argument for using force fields as a basis for the interpolation scheme was based on the fact
that they can reproduce the PES reasonably well. This in turn restricts the possible applications
to regions of the PES where this is known to be true. Classical force fields are an expansion at the
equilibrium geometry and can not properly describe bond breaking or large amplitude motions. It
would, therefore, be of interest to apply the formalism presented in this work to so called reactive
force fields which allow for bond breaking by introducing variable bond order [54].

5.3.2 Adaptive complexity

Figure 5.3 shows that improvements in the accuracy fade out after a certain number of reference
points is reached. As discussed, this is caused by the limited flexibility of the interpolation function,
which does not allow for a better description. As soon as this density of reference points is reached
other contributions of the force field energy would need to be optimized as well. The aim of further
investigations will therefore be the implementation of an automatic scheme to adapt the complexity
of the interpolation function depending on the density of reference points.

5.3.3 Alternative weight functions

In his original publication Shepard [1] already suggested alternative weight functions. For the IMLS-
FF approach new types of weight functions would be of interest. A property of the normalized inverse
distance weight function is:

vi(x)→ N−1 as d(x, 0)→∞, (5.8)

which gives equal weight to all reference points at infinite distance. This corresponds to having no
prior knowledge at all. However, in a force field based interpolation, it would be best to reproduce
the original coefficient of the optimized contributions at large distances from the reference values.

Another aspect to consider is that the Euclidean distance might not be the best distance function
for the weights. Distortions at the one end of the molecule are not of important for bond stretching
coefficients at the other end of the molecule. Weights for the interpolation of individual contributions
could be based on distortions in the nearby environment.
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6 Conclusion

During the course of this thesis several concepts of the wide field of computational quantum chemistry
were investigated for their suitability in the context of PES interpolation.

Among them, the simplest ansatz is given by force field methods. The intuitive description of the
molecular energy as a sum of contributions proved to be the most viable for interpolation. Its greatest
advantage is the simple and straight forward energy expression as a function of the internal coordinates.
On the downside, the energy contributions are an abstraction of the physical processes happening at
the quantum mechanical level, and therefore incorporating more information of the SCF reference cal-
culations than just the total energy, such as molecular orbital energies or the electron density, proves
to be difficult. The lack of a consistent way to incorporate more information from the SCF reference
was the motivation to investigate more sophisticated quantum chemistry methods.

It was shown that the energy expression of force fields is flexible enough to reproduce the ab intio
PES for geometries near the equilibrium. By refitting the largest energy contributions the deviations
of the MM2 force field from the reference values could be reduced significantly.

Building on the investigations of the individualization of force fields for a specific molecule, a force
field based IMLS scheme (IMLS-FF) was presented. It allowed to adjust linear parameters of the
energy contributions over the course of the PES. First tests showed that the approach excels at low
numbers of reference points, where common interpolation techniques could not be employed. How-
ever, there are still numerous restrictions that need to be overcome any possible application. In its
current implementation the algorithm can, for example, not handle bond breaking and other large
amplitude phenomena. A possible solution would be to use reactive force fields. Another challenge is
to incorporate adaptive complexity in order get the flexibility needed to interpolate high densities of
reference points while maintaining the ability to interpolate low numbers of SCF evaluations. Both
problems could possibly be solved by weight functions that are more tailored to the application of
IMLS to the force field energy expression.

The extended Hückel theory was chosen from the large variety of semi-empirical methods because
of its proximity to the SCF formalism. Our investigations confirmed the predictive power of this
theory, which explains its ongoing well-established use for qualitative descriptions of electron densities
in modern quantum chemistry. However, the method does not provide a sufficiently accurate enough
description of the molecular orbital energies. Refitting the parameters can reduce the deviations sig-
nificantly, but can not improve the incorrect functional course. Our study revealed that this is largely
due to a false assumption of constant Hückel matrix diagonal elements. Unfortunately, a simple fitting
the diagonal elements using a series expansion in terms of the overlap matrix does not yield the desired
accuracy. In addition, the total energy of an SCF calculation can not be reproduced using the simple
energy expression of the Hückel theory.

A few of the numerous improvements to the total energy expression that had been suggested over
the years were reviewed in this thesis. However, none of them proved to be competitive to the force
field approach for the description of the molecular energy.

Inspired by the concept of effective core potentials a new contribution for the total energy expression
was presented. The suggested simplification of ECPs based on the overlap matrix showed promising
results if the exact SCF electron densities were used. However, combining this new approach with
classic EHT proves unsuccessful as the molecular orbitals are not sufficiently well described by the
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Hückel methods.

The investigated approach to interpolate the ingredients of a SCF calculation directly suffers from
the problem of different scaling in the energy contributions. Relative accuracies better than 10−5

would be necessary in order to achieve the desired interpolation quality. Based on ideas of the EHT,
namely the expansion in terms of the overlap matrix, the presented IMLS formalism for the Fock
matrix also encounters the limits of the EHT approximations. Relating the integrals which define
the Fock matrix to the overlap matrix is only valid for the homogeneous electron densities exhibited
by valence electrons. Ultimately, the studied concepts based on the interpolation of SCF ingredients
prove to be computationally very demanding but offer only minimal gain in accuracy, which makes
them hardly competitive in their current form.
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7 Mathematical derivations

7.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is a fundamental assumption that is made in most quantum
chemistry calculations. It states that the motion of the electron and the nuclei can be treated sepa-
rately. This derivation follows lecture notes of W. Domcke [55]. The total molecular Hamiltonian in
atomic units is:

Htot = −
N∑
i=1

1

2
∇2
i︸ ︷︷ ︸

TE

−
M∑
a=1

1

2Ma
∇2
a︸ ︷︷ ︸

TN

−
N∑
i=1

M∑
a=1

Za
ria︸ ︷︷ ︸

VNE

+

N∑
i=1

N∑
j>i

1

rij︸ ︷︷ ︸
VEE

+

M∑
a=1

∑
b>a

ZaZb
Rab︸ ︷︷ ︸

VNN

. (7.1)

The wave functions and the corresponding energies can be calculated from the Schrödinger equation:

(Htot − E)Ψ(r,R) = 0. (7.2)

For fixed nuclear positions R the nuclear kinetic energy TN vanishes. The nuclear positions R are
parameters in the electronic Hamiltonian,

Helec = TE + VNE + VEE + VNN . (7.3)

The solutions of the corresponding electronic Schrödinger equation,

(Helec − Em(R))Φm(r,R) = 0, (7.4)

are a complete set of functions. The total wave function |Ψ(r,R)〉 can therefore be expanded in terms
of the electronic wave functions:

Ψ(r,R) =
∞∑
m=0

χm(R)Φm(r,R). (7.5)

Plugging 7.5 into equation 7.2 yields:

(Htot − E)
∞∑
m=0

χm(R)Φm(r,R) = 0. (7.6)

Multiplying by Φ∗n and integrating over the electron coordinates r gives:

∞∑
m=0

∫
dr Φ∗n(r,R) (TE + TN + VNE + VEE + VNN − E)χm(R)Φm(r,R) = 0. (7.7)

Using equation 7.4 and the orthogonality of the electronic wave functions one obtains

∞∑
m=0

[∫
dr Φ∗n(r,R)TNΦm(r,R) + (Em(R)− E) δmn

]
χm(R) = 0. (7.8)
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Applying the differential operator Tk to both Φm(r,R) and χm(R) yields∫
dr Φ∗n(r,R)TNΦm(r,R)χm(R) = −

M∑
a=1

1

2Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂2Φm(r,R)

∂R2
aj

χm(R)

−2
M∑
a=1

1

2Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂Φm(r,R)

∂Raj

∂χm(R)

∂Raj
−

M∑
a=1

1

2Ma

3∑
j=1

∫
dr

∂2χm(R)

∂R2
aj

χm(R)δmn

(7.9)

− M∑
a=1

1

2Ma

3∑
j=1

∫
dr

∂2χm(R)

∂R2
aj

+ Em(R)− E

χn(R) =

M∑
a=1

1

2Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂2Φm(r,R)

∂R2
aj

χm(R) +
M∑
a=1

1

Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂Φm(r,R)

∂Raj

∂χm(R)

∂Raj

(7.10)

[TN + En(R)− E ]χn =
∑
m

Λnmχm(R) (7.11)

Λnm =
M∑
a=1

1

2Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂2Φm(r,R)

∂R2
aj

+
M∑
a=1

1

Ma

3∑
j=1

∫
dr Φ∗n(r,R)

∂Φm(r,R)

∂Raj

∂

∂Raj
(7.12)

This is a system of coupled differential equations. Neglecting the dependency of the Φn on the nuclear
coordinates R (Λnm = 0) gives the Born-Oppenheimer approximation:

[TN + En(R)− Enν ]χnν(R) = 0

Ψnν(r,R) = Φn(r,R)χnν(R)
(7.13)

The total wave function is a product of the nuclear and the electronic wave function. A criterion for
the quality of the approximation can be given in the context of perturbation theory:

|〈χnν |Λnm|χmν′〉|
|Enν − Emν′ |

� 1 for every ν 6= ν ′, n 6= m (7.14)

The matrix elements have to be small compared to the energy difference of the states. The approxi-
mation will therefore break down if the energy difference of two states is on the order of magnitude of
the vibronic frequencies. An exception to this are states for which Λnm is zero because of symmetry
considerations.
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7.2 Projection of molecular orbitals

7.2 Projection of molecular orbitals

This section explains the method used to project the molecular orbitals obtained from the SCF-
calculations onto a smaller basis in order to use them in the context of the EHT. In the larger
SCF-basis {|φ1〉, . . . , |φN 〉} the molecular orbitals are expanded using the coeffients cai:

|ψa〉 =
N∑
i=1

cai|φi〉 (7.15)

In the reduced extended-Hückel-basis {|φ̄1〉, . . . , |φ̄K〉} the molecular orbitals are represented using
new expansion coefficients dai:

|ψ̄a〉 =
K∑
i=1

dai|φ̄i〉 (7.16)

A suitable projection is found by minimizing the sum of the squared deviations with the constraint of
maintaining the orthogonality for the new wavefunctions:

M∑
a

(
〈ψa| − 〈ψ̄a|

) (
|ψa〉 − |ψ̄a〉

)
(7.17)

〈ψ̄a|ψ̄b〉 − δab = 0 (7.18)

The problem is solved using the method of Lagrange multipliers:

L =

M∑
a

(
〈ψa| − 〈ψ̄a|

) (
|ψa〉 − |ψ̄a〉

)
−

M∑
a

M∑
b

λab
(
〈ψ̄a|ψ̄b〉 − δab

)
=

M∑
a

(
〈ψa|ψa〉 − 2〈ψ̄a|ψa〉+ 〈ψ̄a|ψ̄a〉

)
−

M∑
a

M∑
b

λab
(
〈ψ̄a|ψ̄b〉 − δab

)
=

M∑
a

 N∑
i

N∑
j

caicaj〈φi|φj〉 − 2
N∑
i

K∑
j

caidaj〈φi|φ̄j〉+
K∑
i

K∑
j

daidaj〈φ̄i|φ̄j〉


−
∑
a

∑
b

λab

 K∑
i

K∑
j

daidbj〈φ̄i|φ̄j〉 − δab



(7.19)

the expressions 〈φi|φj〉, 〈φi|φ̄j〉, and 〈φ̄i|φ̄j〉 are replaced by the typical symbol for the overlap matrix
Sij , S

∗
ij , and S′ij , respectively.

0
!

=
∂L
∂dck

=

M∑
a

−2

N∑
i

K∑
j

cai
∂daj
∂dck︸ ︷︷ ︸
δacδjk

S∗ij +

K∑
i

K∑
j

∂dai
∂dck︸ ︷︷ ︸
δacδik

daj + dai
∂daj
∂dck︸ ︷︷ ︸
δacδjk

S′ij



−
∑
a

∑
b

λab

K∑
i

K∑
j

∂dai
∂dck︸ ︷︷ ︸
δacδik

dbj + dai
∂dbj
∂dck︸ ︷︷ ︸
δbcδjk

S′ij =

−2
N∑
i

cciS
∗
ik +

K∑
j

dcjS
′
kj +

K∑
i

dciS
′
ik −

M∑
b

λcb

K∑
j

dbjS
′
kj −

M∑
a

λac

K∑
i

daiS
′
ik =

−2

N∑
i

cciS
∗
ik + 2

K∑
i

dciS
′
ik − 2

M∑
a

λac

K∑
i

daiS
′
ik

!
= 0

(7.20)
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K∑
i

dciS
′
ik −

M∑
a

λac

K∑
i

daiS
′
ik =

N∑
i

cciS
∗
ik (7.21)

In matrix notation, this can be written as

S′d− S′dΛ = S∗c, (7.22)

where the S′ is the K ×K overlap matrix in the reduced basis, d is a K ×M matrix consisting of the
expansion coefficients in the reduced basis as column vectors, Λ is the M ×M matrix of the Lagrange
multipliers, S∗ is a K ×N overlap matrix and c is a N ×M matrix consisting of the expansion coef-
ficients in the original basis as column vectors.

After rearranging equation 7.22,

S′d (1− Λ)︸ ︷︷ ︸
=:B

= S∗c (7.23)

d = S′−1S∗cB−1 (7.24)

it can be plugged into the orthogonality relation 7.18 to calculate B:

dTS′d = 1 (7.25)(B−1
)T︸ ︷︷ ︸

=B−1

cTS∗T
(
S′−1

)T︸ ︷︷ ︸
=S′−1

S′
(
S′−1S∗cB−1

)
= 1

B−1cTS∗TS′−1S∗cB−1 = 1

cTS∗TS′−1S∗c = B2

(7.26)

B = (cTS∗TS′−1S∗c)1/2. (7.27)

Finally, combining equation 7.24 and 7.27 gives

d = S′−1S∗c
(
cTS∗TS′−1S∗c

)−1/2
. (7.28)

7.3 Projection of the Fock matrix

In order to construct the Fock matrix in a different basis, the spectral representation for the generalized
eigenvalue problem,

F ~da = S′~daεa, (7.29)

is derived in the following section. The spectral representation in terms of the molecular orbitals is
simple because the molecular orbitals are orthogonal:

F̂ =
∑
a

εa|ψa〉〈ψa| (7.30)

Using the representation of the molecular orbitals in the basis {|φ̄1〉, . . . , |φ̄K〉} yields:

F̂ =
∑
a

εa
∑
k

dak|φ̄k〉
∑
l

dla〈φ̄l| =

=
∑
a

εa
∑
k

∑
l

dakdla|φ̄k〉〈φ̄l|
(7.31)
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Evaluating the matrix elements in the new basis gives:

Fij = 〈φ̄i|F̂ |φ̄j〉 =
∑
a

εa
∑
k

∑
l

dakdla 〈φ̄i|φ̄k〉︸ ︷︷ ︸
S′ik

〈φ̄l|φ̄j〉︸ ︷︷ ︸
S′lj

=

=
∑
a

εa
∑
k

dakS
′
ik︸ ︷︷ ︸

=S′T ~da

∑
l

dlaS
′
lj︸ ︷︷ ︸

~dTa S
′

, (7.32)

which can be rewritten in matrix notation as

F =
∑
a

εaS
′T ~da~d

T
a S
′. (7.33)

Multiplying (7.33) by ~db and using the symmetry of the overlap matrix (S′T = S′) leads to the
generalized eigenvalue problem we started with

F ~db =
∑
a

εaS
′T ~da ~d

T
a S
′~db︸ ︷︷ ︸

δab

= εbS
′T ~db = εbS

′~db. (7.34)

Using equation 7.33 the Fock matrix, can be constructed for a subset of the orbitals. In the EHT
only valence electrons are considered. To construct a Fock matrix without the core electrons the
corresponding eigenvalues can be set to zero. In the case of the four core and eleven valence orbitals
of the butadiene molecule this yields

Fred =

15∑
a=4

εaS
′T ~da~d

T
a S
′. (7.35)

This Fock matrix has the eleven valence molecular energies as eigenvalues. The remaining eigenvalues
are degenerate, having all the value zero.

The information contained in the virtual orbitals is not used throughout this thesis. The corre-
sponding eigenvectors are therefore chosen at random. This is done by creating a random vector and
orthogonalizing it with respect to all the other eigenvectors. By introducing the scalar product,

〈~v, ~w〉 = ~vTS ~w, (7.36)

the standard Gram-Schmidt algorithm can be used:

~d′n = ~x−
n−1∑
i=1

〈~di, ~x〉~di,

~dn =
~d′n

〈~d′n, ~d′n〉
,

(7.37)

with a random starting vector ~x.
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7.4 IMLS based on force fields

Analogous to the derivation of IMLS in section 1.2.2 this derivation for IMLS-FF follows Lancaster
and Salkauskas [3] as well as Maisuradze and Thompson [4].

The trial function is a sum of force field contributions,

Etrail = E0+
∑

b ∈ bonds

kb (l−l0)2+
∑

a ∈ angles

ka (θ−θ0)2+
∑

d ∈ dihedrals

∑
n

Vd,n cos(nω)+Enon−opt, (7.38)

in which only some of the coefficients (and a constant) are optimized during the moving least square
procedure. The other contributions are collected in the Enon−opt term. For this trial function the
weighted sum of square deviations has to be minimized:

∆ =

N∑
i=0

wi(r) [Etrial(ri)− Ei]
2

=

N∑
i=0

wi(r)

E0 +
∑
bonds

kb (li − l0)2 +
∑

angles

ka (θi − θ0)2 +
∑

dihedrals

∑
n

Vd,n cos(nωi) + Enon−opt − Ei

2

.

(7.39)

Ei are the values at the reference points ri. In order to simplify the notation all types of parameters
are relabeled and numerated continuously:

{E0, kb=1, kb=2, ..., ka=1, ka=2, ..., Vd=1,n=1, Vd=1,n=2, ...} = {k0, k1, ..., km}. (7.40)

Deriving equation 7.39 with respect to the coefficients ki yields m+ 1 normal equations,∑
i

∂Etrial
∂k0

∣∣∣∣
ri

wi(r)
∂Etrial
∂k0

∣∣∣∣
ri

k0 + · · ·+
∑
i

∂Etrial
∂k0

∣∣∣∣
ri

wi(r)
∂Etrial
∂km

∣∣∣∣
ri

km =
∑
i

wi(r)
∂Etrial
∂k0

∣∣∣∣
ri

(Ei − Enon−opt(ri))

∑
i

∂Etrial
∂k1

∣∣∣∣
ri

wi(r)
∂Etrial
∂k0

∣∣∣∣
ri

k0 + · · ·+
∑
i

∂Etrial
∂k1

∣∣∣∣
ri

wi(r)
∂Etrial
∂km

∣∣∣∣
ri

km =
∑
i

wi(r)
∂Etrial
∂k1

∣∣∣∣
ri

(Ei − Enon−opt(ri))

...∑
i

∂Etrial
∂km

∣∣∣∣
ri

wi(r)
∂Etrial
∂k0

∣∣∣∣
ri

k0 + · · ·+
∑
i

∂Etrial
∂km

∣∣∣∣
ri

wi(r)
∂Etrial
∂km

∣∣∣∣
ri

km =
∑
i

wi(r)
∂Etrial
∂km

∣∣∣∣
ri

(Ei − Enon−opt(ri)).

(7.41)

The equations 7.41 can be rewritten as a matrix equation,

BT ·W ·B · k = BT ·W · Ẽ (7.42)

where B contains the derivates of the trail function with respect to the coefficients k evaluates at the
reference points rr, W contains the weights, k is the coefficient vector and Ẽ is a vector of the energy
difference between the non optimized force field contributions and the reference energies:

B =



∂Etrial
∂k0

∣∣∣
r0

∂Etrial
∂k1

∣∣∣
r0
· · · ∂Etrial

∂km

∣∣∣
r0

∂Etrial
∂k0

∣∣∣
r1

∂Etrial
∂k1

∣∣∣
r1
· · · ∂Etrial

∂km

∣∣∣
r1

...
...

. . .
...

∂Etrial
∂k0

∣∣∣
rN

∂Etrial
∂k1

∣∣∣
rN
· · · ∂Etrial

∂km

∣∣∣
rN

 W =


w0(r) 0 · · · 0

0 w1(r) · · · 0
...

...
. . .

...
0 0 · · · wN (r)



k =


k0

k1
...
km

 Ẽ =


E0 − Enon−opt(r0)
E1 − Enon−opt(r1)

...
EN − Enon−opt(rN)



(7.43)

56



Bibliography

[1] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced data,” Proceedings
of the 1968 23rd ACM national conference, 1968.

[2] D. H. McLain, “Drawing Contours from Arbitrary Data Points,” The Computer Journal, vol. 17,
p. 318–324, Nov 1974.

[3] P. Lancaster and K. Salkauskas, Curve and Surface Fitting. Academic Press, 1986.

[4] G. G. Maisuradze and D. L. Thompson, “Interpolating Moving Least-Squares Methods for Fitting
Potential Energy Surfaces: Illustrative Approaches and Applications,” The Journal of Physical
Chemistry A, vol. 107, p. 7118–7124, Sep 2003.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks Are Universal
Approximators,” Neural Networks, vol. 2, pp. 359–366, July 1989.

[6] J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-Dimensional
Potential-Energy Surfaces,” Physical Review Letters, vol. 98, Apr 2007.

[7] S. Manzhos, X. Wang, R. Dawes, and T. Carrington, “A Nested Molecule-Independent Neural
Network Approach for High-Quality Potential Fits †,” The Journal of Physical Chemistry A,
vol. 110, p. 5295–5304, Apr 2006.

[8] T. H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. I. The atoms
boron through neon and hydrogen,” Journal of Chemical Physics, vol. 90, no. 2, p. 1007, 1989.

[9] W. J. Hehre, R. F. Stewart, and J. A. Pople, “Self-Consistent Molecular-Orbital Methods. I. Use
of Gaussian Expansions of Slater-Type Atomic Orbitals,” Journal of Chemical Physics, vol. 51,
no. 6, p. 2657, 1969.

[10] J. W. Ponder and F. M. Richards, “An efficient newton-like method for molecular mechanics en-
ergy minimization of large molecules,” Journal of Computational Chemistry, vol. 8, p. 1016–1024,
Oct 1987. http://dasher.wustl.edu/tinker/.

[11] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Com-
putational Physics, vol. 117, p. 1–19, Mar 1995. http://lammps.sandia.gov.

[12] G. A. Landrum and W. V. Glassey. bind (ver 3.0). bind is distributed as part of the
YAeHMOP extended Hückel molecular orbital package and is freely available on the WWW
at; http://overlap.chem.cornell.edu:8080/yaehmop.html.

[13] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange,
A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z.
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O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone,
R. Tarroni, T. Thorsteinsson, and M. Wang, “MOLPRO, version 2015.1, a package of ab initio
programs,” 2015. see.

[15] R. P. Muller. PyQuante, Version 1.6.3; from: http://pyquante.sourceforge.net/.

[16] Q. Sun. PySCF, Version 1.1; from: http://sunqm.net/pyscf/.

[17] X. Li, D. T. Moore, and S. S. Iyengar, “Insights from first principles molecular dynamics studies
toward infrared multiple-photon and single-photon action spectroscopy: Case study of the proton-
bound dimethyl ether dimer,” Journal of Chemical Physics, vol. 128, no. 18, p. 184308, 2008.

[18] P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,”
Physical Review, vol. 34, pp. 57–64, jul 1929.

[19] F. Jensen, Introduction to computational chemistry. Chichester New York: Wiley, 1999.

[20] N. L. Allinger, “Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and
V2 torsional terms,” Journal of the American Chemical Society, vol. 99, p. 8127–8134, Dec 1977.

[21] N. L. Allinger, Y. H. Yuh, and J. H. Lii, “Molecular mechanics. The MM3 force field for hydro-
carbons. 1,” Journal of the American Chemical Society, vol. 111, p. 8551–8566, Nov 1989.

[22] J. E. Jones, “On the Determination of Molecular Fields. II. From the Equation of State of a Gas,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 106,
p. 463–477, Oct 1924.

[23] R. A. Buckingham, “The Classical Equation of State of Gaseous Helium, Neon and Argon,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 168,
p. 264–283, Oct 1938.

58



Bibliography

[24] T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and perfor-
mance of MMFF94,” Journal of Computational Chemistry, vol. 17, p. 490–519, Apr 1996.

[25] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer,
T. Fox, J. W. Caldwell, and P. A. Kollman, “A Second Generation Force Field for the Simulation
of Proteins, Nucleic Acids, and Organic Molecules,” Journal of the American Chemical Society,
vol. 117, p. 5179–5197, May 1995.

[26] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus,
“CHARMM: A program for macromolecular energy, minimization, and dynamics calculations,”
Journal of Computational Chemistry, vol. 4, no. 2, p. 187–217, 1983.

[27] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “UFF, a full
periodic table force field for molecular mechanics and molecular dynamics simulations,” Journal
of the American Chemical Society, vol. 114, p. 10024–10035, Dec 1992.

[28] O. Akin-Ojo, Y. Song, and F. Wang, “Developing ab initio quality force fields from condensed
phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching
method,” Journal of Chemical Physics, vol. 129, no. 6, p. 064108, 2008.

[29] S. K. Burger, M. Lacasse, T. Verstraelen, J. Drewry, P. Gunning, and P. W. Ayers, “Automated
Parametrization of AMBER Force Field Terms from Vibrational Analysis with a Focus on Func-
tionalizing Dinuclear Zinc(II) Scaffolds,” Journal of Chemical Theory and Computation, vol. 8,
p. 554–562, Feb 2012.

[30] L.-P. Wang, J. Chen, and T. Van Voorhis, “Systematic Parametrization of Polarizable Force
Fields from Quantum Chemistry Data,” Journal of Chemical Theory and Computation, vol. 9,
p. 452–460, Jan 2013.

[31] S. Grimme, “A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules
and Condensed Phase Simulations,” Journal of Chemical Theory and Computation, vol. 10,
p. 4497–4514, Oct 2014.

[32] L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier, and V. Van Spey-
broeck, “QuickFF: A program for a quick and easy derivation of force fields for metal-organic
frameworks from ab initio input,” Journal of Computational Chemistry, vol. 36, p. 1015–1027,
Mar 2015.

[33] R. Hoffmann, “An Extended Hückel Theory. I. Hydrocarbons,” Journal of Chemical Physics,
vol. 39, no. 6, p. 1397, 1963.

[34] M. Wolfsberg and L. Helmholz, “The Spectra and Electronic Structure of the Tetrahedral Ions
MnO4-, CrO4–, and ClO4-,” Journal of Chemical Physics, vol. 20, no. 5, p. 837, 1952.

[35] R. S. Mulliken, “A New Electroaffinity Scale; Together with Data on Valence States and on
Valence Ionization Potentials and Electron Affinities,” The Journal of Chemical Physics, vol. 2,
no. 11, p. 782, 1934.

[36] C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Reviews of Modern Physics,
vol. 23, p. 69–89, Apr 1951.

[37] R. S. Mulliken, “Quelques Aspects de la Théorie des Orbital Moléculaires,” Journal de chimie
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