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Abstract

The theoretical prediction of a superconducting transition temperature of
200 K in high-pressure sulfur-hydride (H3S) [1], gave a considerable impulse to
the design of novel superconductors by means of first-principles calculations.
In this work, we investigate the high-pressure lithium-sulfur system up to
pressures of 700 GPa [2]. We search for thermodynamically stable phases
using methods from evolutionary crystal structure prediction. Furthermore,
the superconducting properties of the individual compounds are investigated
using density functional linear-response calculations. The simulations showed
that, besides the known lithium-sulfide (Li2S), several new stoichiometries are
stable at pressures higher than 20 GPa. Many phases display a high-pressure
electride-like behavior with electron-pair localization in the interstitial voids of
the lattice. The tendency to interstitial electron localization is a consequence
of the orthogonality condition of the valence states to the inner core states
of lithium. Thus, this behavior is not observed in H3S and related hydrogen-
chalcogen compounds. The investigation of the electron-phonon properties
of the Li-rich phases revealed that superconductivity is suppressed in most
compounds, either due to very small electron-phonon coupling matrix elements
or by an increased insulating behavior due to hybridization into the lithium
p-orbitals. The most striking difference in the electron-phonon properties
was observed between two cubic Li3S compounds, thermodynamically stable
in very different pressure regimes. In the simple cubic Pm3̄m phase (stable
between 20 and 225 GPa), the relevant states involved in the superconducting
pairing are localized in the interstitial space of the lattice. Thus, very small
electron-phonon coupling matrix elements are observed. At pressures higher
than 640 GPa, a face centered cubic Fm3̄m structure was identified as the
stable one. Here, interstitial electron localization is suppressed due to the high
coordination of the structure. An analysis of the electron-localization function
shows an accumulation of electrons along the lithium-sulfur bonds, giving them
a strong covalent character. This phase displays a critical temperature of 50 K
at 640 GPa, which increases to 80 K at 500 GPa, where it could exist as a
metastable phase [3].
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Kurzfassung

Die theoretische Vorhersage von Hochdruck-Schwefelhydrid (H3S), welches eine
supraleitende Sprungtemperatur von 200 K aufweist [1], war ein wesentlicher
Impuls für die Entwicklung neuer supraleitender Materialien auf der Grund-
lage von Ab-initio-Rechnungen. Diese Arbeit beschäftigt sich mit Hochdruck-
Lithium-Schwefel-Verbindungen, welche bei einem äußeren Druck von bis zu
700 GPa thermodynamisch stabil sind [2]. Um stabile Phasen innerhalb des
Lithium-Schwefel Systems aufzufinden, bedienen wir uns Methoden der evo-
lutionären Kristallstrukturvorhersage. Die supraleitenden Eigenschaften der
unterschiedlichen Verbindungen werden mittels Linear-Response-Rechnungen
auf der Grundlage der Dichtefunktionaltheorie untersucht. Unsere Simulatio-
nen zeigen, dass neben dem wohlbekannten Lithiumsulfid (Li2S), bei Drücken
über 20 GPa, mehrere stabile Hochdruck-Stöchiometrien auftreten. Sehr viele
der vorhergesagten Verbindungen zeigen ein elektridartiges Verhalten mit
lokalisierten Elektronenpaaren in den interstitiellen Hohlräumen des Kristall-
gitters. Die Tendenz zur Elektronenpaarlokalisation hat ihren Ursprung in der
Orthogonalitätsbedingung der Valenzzustände zu den Lithium-Kernzuständen,
und ist daher in den Hochdruck-Chalkogenwasserstoffen wie H3S nicht beobacht-
bar. Bei einem Großteil der Lithium-dominierten Verbindungen zeigte sich eine
Unterdrückung der Supraleitung. Die Ursache hierfür liegt zum Teil in sehr
kleinen Elektron-Phonon-Matrixelementen und zum Teil in einem verminderten
metallischen Charakter aufgrund der Hybridisierung der Valenzelektronen
in die Lithium p-Orbitale. Der markanteste Unterschied in den Elektron-
Phonon-Eigenschaften wurde in zwei Hochdruckphasen der Li3S-Stöchiometrie
beobachtet, welche in sehr unterschiedlichen Druckbereichen stabil sind. In
der einfach-kubischen Pm3̄m-Phase (stabil zwischen 20 und 225 GPa), sind
die relevanten Zustände welche an der supraleitenden Paarbildung beteiligt
sind, in den interstitiellen Poren des Kristallgitters lokalisiert. Dieser Umstand
führt zu geringer Elektron-Phonon-Kopplung und zu einer Unterdrückung der
Supraleitung. Bei Drücken über 640 GPa wird eine kubisch-flächenzentrierte
Fm3̄m-Phase energetisch bevorzugt. Durch die hohe Koordination wird hier die
interstitielle Lokalisation der Zustände unterdrückt. Eine Analyse der Elektro-
nenlokalisierungsfunktion zeigt eine Akkumulation der Elektronen entlang der
Lithium-Schwefel-Bindungen, wodurch diese einen starken kovalenten Charakter
erhalten. Aufgrund dieser Eigenschaften zeigt diese Phase Sprungtemperaturen
von 50 K bei einem Druck von 640 GPa, bzw. 80 K bei 500 GPa wo diese
Verbindung metastabil existieren könnte [3].
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Chapter 1

Introduction

The prediction of novel superconducting materials from first principles is one
of the most challenging tasks within the field of computational material sci-
ence. While the mechanism driving superconductivity in the cuprates and the
iron-pnictides remains still unclear, the electron-phonon mechanism causing
superconductivity in “conventional” materials is very well understood, and
accessible by theoretical methods. In the last few years, considerable progress
has been achieved using different crystal structure prediction techniques, in
combination with ab-initio methods for calculating electron-phonon properties
of solids. The rapid developments culminated in 2014, with the theoretical
prediction of an ultra-dense phase of sulfur-hydride (H3S), displaying a su-
perconducting transition temperature (Tc) of 203 K at an external pressure of
200 GPa [1]. This broke the record Tc previously held by the cuprates. The dis-
covery received an additional boost, when the theoretical results were confirmed
experimentally by Drozdov et.al. in Dec. 2014 [4]. This was the first time in the
history of superconductivity research that a superconducting material has been
predicted completely by ab-inito methods, and later discovered by experiment.
The results have risen the hope to attain room temperature superconductivity
in hydrogen-dominated compounds, and inspired a lot of people among the
community to put their efforts in the ab-inito design of novel materials.

While much progress has been made in discovering high-Tc conventional su-
perconductors in the hydrogen-chalcogens and related compounds, supercon-
ductivity in hydrogen-free materials is a largely unexplored field. The aim of
this thesis is the investigation of electron-phonon properties of high-pressure
lithium-sulfur compounds. Lithium is the atom most similar to hydrogen in
the periodic table. While other lithium compounds such as Li-H [5], Li-Be [6],
Li-B [7] or Li-N [8] have been investigated by other authors, Li-S is a natural
choice, because it permits a direct comparison with H-S. Lithium sulfide (Li2S),
which is the only compound known at ambient conditions, has attracted con-
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Introduction

siderable interest in the last few years, due to its potential use as a cathode
material in Li-S battery applications [9, 10]. The high pressure behavior of the
Li2S antifluorite structure has been investigated to pressures up to 20 GPa [11].
Apart from this insights, no further high-pressure data on Li-S compounds are
available.

This work is divided into four main parts: After the introductory chapter,
Chapter 2 gives an overview of the theoretical concepts for calculating electron-
phonon properties of various crystal structures. The first part gives an intro-
duction to density functional theory within the plane-wave pseudopotential
framework, followed by a discussion of density functional perturbation theory.
Finally, the effects of the electron-phonon interaction on superconductivity are
examined in more detail by describing the basic concepts of Migdal-Eliashberg
theory.

Chapter 3 gives a detailed description of the evolutionary crystal structure
prediction technique, as implemented in the Uspex-code [12, 13, 14]. We
discuss how the computational complexity of the crystal structure prediction
problem can be reduced by application of intelligent variation operators and
the introduction of intermediate local optimization steps. The prediction of
thermodynamically stable stoichiometries within binary systems is discussed.

Chapter 4 contains the results of our evolutionary structure search within
the Li-S system. We extensively describe the method used for finding thermo-
dynamically stable structures and their associated stability regimes. Special
attention will be given to the description of convergence properties in connec-
tion with the estimation of formation enthalpies. Finally, we summarize our
predictions by discussing the high-pressure phase diagram of the Li-S system
and by listing the structural properties of the different phases.

In Chapter 5 the electron phonon properties of the predicted phases, calculated
by density functional linear response methods, are summarized. We give a
detailed explanation of the superconducting properties with reference to the
unusual chemistry observed in many Li-S compounds. Electronic bands and
electron-phonon spectral functions are calculated for the individual structures.

The present thesis is based on our work on high-pressure lithium-sulfur com-
pounds which has been published as a Rapid-Communication in Physical-
Review-B [2].
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1.1 The discovery of high-Tc conventional superconductivity

1.1 The discovery of high-T c conventional su-

perconductivity

The first theory of the superconductivity with considerable predictive power
was the BCS-theory developed by Bardeen, Cooper and Schrieffer in 1957
[15]. Unlike the Ginzburg-Landau theory based on phenomenological second-
order phase transitions [16], BCS theory provides a microscopic description of
the superconducting state, regardless of the physical origin of the attractive
interaction between the electrons [17]. A complete many-body theory of electron
phonon mediated superconductivity based on thermodynamic Green’s functions
was derived by Migdal and Eliashberg [18, 19]. A detailed description of the
ideas underlying Migdal-Eliashberg theory is given in section 2.3.2.

The discovery of ceramic oxide superconductors in 1986 [20] was a major
landmark in superconductivity research. Very soon it became obvious that
theories based on electron-phonon interaction are not appropriate for describing
superconductivity, although phonons may still play an important role [21]. The
same is also true for the very recently discovered iron-based superconductors
[22, 23]. The record holder in the cuprate material class was identified as
the compound HgBa2Ca2Cu3O8+δ achieving a critical temperature of 138 K at
ambient pressure [24].

In 1968, Neil Ashcroft put forward the idea that molecular hydrogen may become
a high-Tc conventional superconductor at ultra-high pressures [25]. This work
can more or less be seen as the foundation of high-pressure superconductivity
research. Indeed, more recent theoretical as well as experimental investigations
support the idea of the appearance of a metallic high-Tc phase in compressed
hydrogen, with critical temperatures close to room temperature [26, 27, 28,
29, 30]. The high critical temperatures are a consequence of high vibrational
frequencies associated with the low mass of the hydrogen atoms, and the strong
coupling of conduction electrons to the lattice vibrations. Another prediction by
Ashcroft was that hydrogen compounds, sometimes used in hydrogen-storage
applications, can attain superconductivity at pressures available in diamond
anvil cell experiments [31].

So far, ultra-dense H3S at 200 GPa remains the record holder for high-Tc con-
ventional superconductivity in hydrogen compounds. It is now completely
understood that the spectacular superconducting properties of this compound
result from a “constructive interference” of Van-Hove singularities due to flat
bands at the Fermi level, large electron phonon coupling matrix elements due to
the presence of strong covalent bonds, and high vibrational frequencies due to
the low mass of the hydrogen atoms accompanied by large anharmonic effects
[32]. Shortly after the discovery of H3S, superconductivity was found in com-
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pressed phosphines, compatible with several metastable hydrogen-phosphorus
compounds identified by ab-initio calculations [3, 33, 34, 35].

1.2 Superconductivity in lithium dominated

materials

Lithium, being the first alkali-metal in the periodic table, can be considered a
prototype free-electron metal at ambient conditions. The question if high-Tc

conventional superconductivity can be attained in materials based on lithium,
can partly be answered by analyzing the high-pressure behavior of elemental
lithium. Although hydrogen and lithium belong to the same column in the
periodic table, the presence of core states in lithium produces a totally different
high-pressure behavior. The pioneering work of Neaton and Ashcroft [36]
revealed that lithium does not follow the naive expectation to become even
more free-electron-like at higher pressures. Instead, the electronic structure at
high pressures differs significantly from the free-electron-like behavior. Recent
theoretical as well as experimental investigations have shown, that with increas-
ing pressure, lithium undergoes a metal to semiconductor to metal transition
[37, 38, 39]. This behavior, completely different from hydrogen, is a consequence
of increasing s-p hybridization and connected localization of valence electrons
in the interstitial voids of the lattice [40]. As discussed in [41], lithium can be
considered as a high-pressure electride phase.

In 2002, Shimizu et.al reported that lithium becomes a superconductor with
a critical temperature of 20 K at 48 GPa [42]. This remarkable high value,
compared to the transition temperature at ambient pressure, is a consequence
of the departure of Li from the free-electron behavior with increasing pressure.
The pressure induced s-p orbital mixing induces a deformation of the 2s Fermi
surface, which develops more nested regions [43].

Pressure-induced superconductivity in lithium-dominated compounds has been
observed theoretically and experimentally in Be2Li [44], as well as in CaLi2
[45, 46]. In Be2Li the increasing electronic localization under pressure leads to
a reduced effective dimensionality of the system. The critical temperature was
calculated to 2.5 K at an external pressure of 80 GPa. CaLi2 is a Laves-phase
with a critical temperature of 1.1 K at ambient pressure [45]. This structure
is made up of two elements (Ca and Li) which both display anomalies under
pressure. Using evolutionary crystal structure prediction techniques, several
new phases were observed at elevated pressures [46]. It was demonstrated
that the critical temperature increases to 13 K at a pressure of approximately
80 GPa.

4



1.2 Superconductivity in lithium dominated materials

In this work, we investigate the high-pressure Li-S system using methods of
evolutionary crystal structure prediction and linear-response calculations for
the electron-phonon coupling. We will investigate how the unusual chemistry
of lithium influences the superconducting properties of Li-S compounds. As
it will turn out, the nature of the underlying core states in lithium produces
a completely different behavior, hardly comparable to the sulfur hydrides. In
lithium, the orthogonality condition of the valence states to the inner cores
states forces the electrons into the interstices. Because superconductivity in
high-pressure electride phases is a largely unexplored field, one of the objectives
of this thesis is to give new insights on the origin of the superconducting
properties of high-pressure alkali-metal compounds.
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Chapter 2

Elelctron-Phonon Properties
from First Principles

2.1 Introduction to Density Functional The-

ory

In this section we intend to provide a short overview over the basic concepts
of Density Functional Theory (DFT) within the framework of the projected
augmented wave method as it is implemented in the Vasp-code [47, 48, 49, 50].
In the subsequent sections, pseudopotential methods are discussed, accompanied
by a description of methods for sampling the Brilloin-zone for metallic systems.

2.1.1 The density variational principle

In its essential aspects, the following introduction to density functional theory
follows the presentation of John Perdew and Stefan Kurth [51]. We start by
introducing the many-body Schrödinger equation within the Born-Oppenheimer
approximation. This so called adiabatic approximation argues that the effect
of the dynamics of the nuclei on the electron quantum many-body problem can
be neglected due to the large disparity between the mass of the electrons and
the nuclear masses. Throughout the whole work, we will use Hartree atomic
units (~ = e = me = 1/(4πε0) = 1), as well as a shorthand notation for the
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Elelctron-Phonon Properties from First Principles

coordinates:

(r1σ1,r2σ2, . . . ,rNσN)→ r∑
{σi}

ˆ
d3r1d

3r2 · · · d3rN →
ˆ
dr

The all-electron Hamiltonian within the adiabatic approximation consists of
three terms:

Ĥ = Ĥel + Ĥel-el + Ĥel-ion. (2.1)

The term Ĥel represents the kinetic energy of the electrons:

〈r| Ĥel |Ψ〉 =

(
−1

2

N∑
i=1

∇2
i

)
Ψ(r), (2.2)

Ĥel-el represents the repulsive electron-electron interaction which, in real space,
reads

〈r| Ĥel-el |Ψ〉 =

(∑
i,j<i

u(ri,rj)

)
Ψ(r) where u(ri,rj) =

1

|ri − rj|
, (2.3)

and Ĥel-ion is the external potential, i.e. the interaction of the electrons with
the ions of the lattice.

〈r| Ĥel-ion |Ψ〉 =

(
N∑
i=1

v(ri)

)
Ψ(r) where v(ri) = −

∑
I

ZI
|ri −RI |

. (2.4)

Here ZI are the atomic numbers and RI denote the ion-coordinates. The
central object in DFT is the electron density for one spin component, i.e.
the probability density for finding any of the N electrons at position r with
spin σ normalized to the total number of electrons in the system. In order to
obtain this quantity, one has to sum up the contributions from all the electrons,
integrating out the remaining N − 1 coordinates from the other electrons:

nσ(r) =

ˆ
drΨ∗(r)

(
N∑
i=1

δ(r − ri)δσσi

)
Ψ(r) (2.5)

= N
∑
σ2...σN

ˆ
d3r2 · · · d3rN |Ψ(rσ,r2σ2, . . . ,rNσN)|2. (2.6)

Equation (2.6) descends from (2.5), because exchanging a pair of quantum
numbers rσ just produces an irrelevant phase factor. Therefore, all contribu-
tions are equivalent. The total energy of the system is obtained from equation

8



2.1 Introduction to Density Functional Theory

(2.1) multiplying with 〈Ψ| from the left side. The term 〈Ψ| Ĥel-ion |Ψ〉 can be
simplified further:

Eel-ion = 〈Ψ| Ĥel-ion |Ψ〉 =
N∑
i=1

ˆ
drΨ∗(r)v(ri)Ψ(r) =

ˆ
d3r v(r)n(r). (2.7)

Here we used the trivial transformation

v(ri) =
∑
σ

ˆ
d3r v(r)δ(r − ri)δσσi .

The term n(r) in Eq. 2.7 represents the total density:

n(r) = n↑(r) + n↓(r) . (2.8)

From (2.7), it is clear that Eel-ion is a functional of the density (Eel-ion =
Eel-ion[n(r)]), but this doesn’t hold for Eel and Eel-el. However, if |Ψ〉 is a
ground state of an arbitrary system, than Eel, Eel-el and thus the total energy
are functionals of nσ. This is a direct consequence of the Hohenberg and Kohn
theorem which is the foundation of density functional theory. According to
this theorem, there is a one-to-one correspondence between the ground-state
wave-function and the ground-state electronic charge density. Using this fact,
following the approach from Levy [52], we can use the standard Rayleigh-Ritz
variational principle to obtain an equivalent density variational principle. To
this end the standard variational principle

E = min
Ψ

〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉 (2.9)

is modified introducing a two-step process. In the first step we consider all
states |Ψ〉 which yield to given spin dependent densities nσ, and minimize over
those wavefunctions. For the numerator one obtains:

min
Ψ→n↑,n↓

〈Ψ| Ĥ |Ψ〉 = min
Ψ→n↑,n↓

〈Ψ| (Ĥel + Ĥel-el) |Ψ〉+

ˆ
d3r v(r)n(r). (2.10)

In the minimization process above, we took benefit from the fact that all
wavefunctions that yield the same n(r) also yield to the same external potential
v(r). The first term on the right side in (2.10) defines the so called the universal
functional F [n↑,n↓] which does not depend of the system under study [51]:

F [n↑,n↓] = min
Ψ→n↑,n↓

〈Ψ| (Ĥel + Ĥel-el) |Ψ〉 = 〈Ψmin
nσ | (Ĥel + Ĥel-el) |Ψmin

nσ 〉 , (2.11)

where |Ψmin
nσ 〉 is the state which delivers the minimum for given densities nσ.

We end up with a energy density-functional that has to be minimized with

9



Elelctron-Phonon Properties from First Principles

respect to all densities in order to obtain the ground-state. The variation is
restricted to the condition that the particle number has to be conserved:

δ

δnσ(r′)

{
F [n↑(r),n↓(r)] +

ˆ
d3r v(r)n(r)− µ

ˆ
d3r n(r)

}
= 0, (2.12)

with a Lagrange multiplier µ that turns out to be the chemical potential of the
system [51]. Equation (2.12) results into the Euler equations:

δF [n↑,n↓]

δnσ(r)
+ v(r) = µ. (2.13)

In the above formulation, we explicitly considered the spin dependence of the
charge density. This formulation remains valid for a spin-dependent external
potential, such as an external magnetic field.

2.1.2 An auxiliary noninteracting system

We consider an auxiliary system of N noninteracting electrons (Ĥ = Ĥel +
˜̂H)

with

˜̂H =
N∑
i=1

ṽ(r̂i). (2.14)

The single particle Schrödinger-equations for the orbitals ψασ read:(
−1

2
∇2 + ṽ(r)

)
ψασ(r) = εασψασ(r), (2.15)

where α represents a set of quantum numbers and σ is a spin index. The
spin-dependent density of such a system is given by

nσ(r) =
∑
α

f(εασ)|ψασ(r)|2, (2.16)

in which f(εασ) denotes the occupation numbers which ensure that only states
below the chemical potential are occupied. The universal functional of equation
(2.10) reduces to

E
(non)
el [n↑,n↓] = min

Ψ→n↑,n↓
〈Ψ| Ĥel |Ψ〉 = 〈Φmin

nσ | Ĥel |Φmin
nσ 〉 . (2.17)

and so the Euler equations (2.13) for the noninteracting system read

δE
(non)
el [n↑,n↓]

δnσ
+ ṽ(r) = µ. (2.18)
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2.1 Introduction to Density Functional Theory

Because the system is non-interacting, |Φmin
nσ 〉 can be written as a linear combi-

nation of Slater-determinants, constructed from single particle states |ψασ〉. In

this case, it is easy to verify that the kinetic energy E
(non)
el can be written as

the sum of the kinetic energy contributions from the occupied states:

E
(non)
el [n↑,n↓] =

∑
α,σ

f(εασ)

ˆ
d3r ψ∗ασ(r)

(
−1

2
∇2

)
ψασ(r). (2.19)

In the next step we introduce the Hartree energy, that is the classical interaction
energy of the charge distribution n(r) [51]:

EH[n(r)] =
1

2

ˆ
d3rd3r′

n(r)n(r′)

|r − r′| . (2.20)

Taking the functional derivative with respect to the density, it can be verified
that this produces the classical electrostatic potential of the charge distribution.
Now, our intention is to express the total energy according to (2.10) using the
quantities of the noninteracting system:

E = (Eel + Eel-el)[n↑,n↓] + Eel-ion[n]

= E
(non)
el [n↑,n↓] + EH[n] + Eel-ion[n] + (Eel − E(non)

el + Eel-el − EH)[n↑,n↓]

= E
(non)
el [n↑,n↓] + EH[n] + Eel-ion[n] + Exc[n↑,n↓]. (2.21)

In equation (2.21), we defined the so called exchange-correlation energy Exc.
As it can be seen, Exc is defined to include all the unknown effects omitted
from the first three terms in (2.21). Using (2.13) we find

µ =
δE

(non)
el [n↑,n↓]

δnσ
+
δEH[n]

δnσ
+
δExc[n↑,n↓]

δnσ
+ v(r)

=
δE

(non)
el [n↑,n↓]

δnσ
+ vH[n] + vσxc[n↑,n↓] + v(r)︸ ︷︷ ︸

vσKS[n↑,n↓;r]

. (2.22)

Comparing (2.22) to (2.18) yields an expression ṽ for the interacting system.
Finally, we arrive at the so called Kohn-Sham equations of density functional
theory: (

−1

2
∇2 + vσKS[n↑,n↓; r]

)
ψασ(r) = εασψασ(r). (2.23)

In (2.22), we introduced the exchange-correlation potential vσxc[n↑,n↓]. It is
important to note that if the exact dependence upon the densities nσ(r)
where known, equation (2.23) would predict the exact ground-state energy and
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Elelctron-Phonon Properties from First Principles

densities of the interacting many electron system. In practice, approximations
have to be introduced for treating the exchange-correlation term (see below).

Equation (2.23) in combination with (2.16), represents a system of nonlinear
differential equations that has to be solved self-consistently. The iteration
process is started using a starting density n0(r), which can be an arbitrary
strictly positive function, normalized to the total number of electrons in the
system [53]. Usually, a linear combination of atomic densities is adopted.

In order to avoid instabilities during the iteration process, a linear mixing
scheme is applied, instead of just taking the output density from the previous
run. Let i be the actual iteration step, then the new density is obtained from:

n(i+1) = βn(i) + (1− β)n(i−1), (2.24)

where β is chosen to be approximately 0.7. The self-consistency cycle is
stopped if the values of

∣∣E(i) − E(i−1)
∣∣ or
´
d3r
∣∣n(i) − n(i−1)

∣∣ are falling below
user-defined tolerances [53].

At the end of the self-consistency cycle, the obtained density can be used to
calculate several groundstate expectation values. The most important turns
out to be the total energy of the system, given by Eq. (2.21). This quantity
can be used to calculate dynamical properties of the system (see sec. 2.2.1), or
to select the lowest energy configuration from several others. In both cases, we
have to add an additional term to the energy functional, taking into account
the interaction energy of the ions:

Eion-ion(R1,R2, . . . ) =
∑
I,J<I

ZIZJ
|RI −RJ |

. (2.25)

Summing up the 2.25 for extended or periodic systems is a nontrivial task.
Because of the long ranged Coulomb interaction the sum would converge
exceedingly slow. A method widely used in quantum chemistry applications to
bypass this problem is the Ewald summation [54, 55].

2.1.3 The exchange-correlation term

The exchange-correlation energy Exc can be divided into two distinct parts, an
exchange and a correlation term [51]:

Exc[n↑,n↓] = Ex[n↑,n↓] + Ec[n↑,n↓], (2.26)

where Ex is defined by

Ex[n↑,n↓] = 〈Φmin
nσ | Ĥel-el |Φmin

nσ 〉 − EH[n] (2.27)
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2.1 Introduction to Density Functional Theory

which represents the analogue expression to the Hartree-Fock exchange energy
[51]. The correlation energy can be calculated by inserting Ex into the expression
for the total energy. One finds that

Ec[n↑,n↓] = 〈Ψmin
nσ | (Ĥel + Ĥel-el) |Ψmin

nσ 〉 − 〈Φmin
nσ | (Ĥel + Ĥel-el) |Φmin

nσ 〉 . (2.28)

The great success of density functional theory based methods can be partly
attributed to the fact that several very accurate approximations to Exc are
available. One of the most widespread approximations is based on the idea that
each small fraction of the system contributes the same amount of exchange-
correlation energy as an equivalent fraction of a homogeneous electron gas at
the same density [56]. This is the so called local density approximation (LDA).
In this work, more recently developed generalized gradient approximations
(GGA) are applied, where the gradient of the density is taken into account.
The most general expression for a GGA energy-functional reads as follows:

EGGA
xc [n↑,n↓] =

ˆ
d3r f(n↑(r),n↓(r),∇n↑(r),∇n↓(r)). (2.29)

In this work, if not mentioned explicitly, we use the Perdew-Burke-Ernzerhof
(PBE) exchange correlation functional [57].

2.1.4 Plane waves and pseudopotentials

In the following sections we discuss concepts related with the practical imple-
mentation of DFT-codes within the plane-wave pseudopotential scheme. For
a more detailed description of the essential aspects, the reader is referred to
the explanatory notes presented in [53]. In order to make the statements more
clear, and because it is dispensable for the following representation, we will
exclude the spin-index from the equations.

In order to solve the Kohn-Sham equations numerically, we have to expand
the Kohn-Sham orbitals from equation (2.23), using an appropriate basis set.
Because the systems studied in this thesis obey translational symmetry, a
plane wave (PW) basis set is a natural choice. Moreover, according to Bloch’s
theorem, the Kohn-Sham orbitals can be written as a product of a plane wave
and a lattice periodic function.

A complete and orthonormal PW basis is given by the set of functions

〈r|k +G〉 =
1√
V
ei(k+G)T r . (2.30)
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Elelctron-Phonon Properties from First Principles

where V is the crystal volume. In total, for the expansion of the Kohn-Sham
orbitals we obtain

ψkn(r) = eik
T r
∑
G

ckn(G)eiG
T r with ckn(G) =

1

Vu

ˆ
d3r e−i(G+k)T rψkn(r) ,

(2.31)

in which n is the band-index, k the Bloch vector, G the reciprocal lattice
vectors and Vu the volume of the unit cell. Obviously, it is not possible to
employ an infinite PW basis set due to the limited computational resources.
In practice, a cutoff energy Ecut has to be introduced such that the expansion
(2.31) gets truncated at a wave vector that obeys 1

2
|k +G|2 < Ecut.

The wavefunctions describing the valence electrons of the system show strong
oscillations in the vicinity of the ion cores due to the orthogonalization to the
inner core states [58]. In order to describe these oscillations, an extremely large
PW basis would be required, resulting in a high computational effort. In fact,
the PW-expansion only becomes practicable, if the atomic all-electron potential
is replaced by an appropriate pseudopotential, effectively eliminating the core
states. Within this approximation, the wave functions inside a cutoff radius
rc around the ions are described by much smoother pseudo-wavefunctions,
such that a drastically reduced basis set is required. This is a reasonable
approximation because the inner core electrons are almost inert and only the
valence electrons are chemically active [53]. However, especially at increased
pressures where a significant core-valence overlap is present, one has to ensure
to include the relevant states in the valence.

The most common pseudopotentials used in DFT applications are norm con-
serving [59] and ultrasoft pseudopotentials [60]. In the norm-conserving case,
the potential is constructed in such a way, that inside the cutoff-radius rc the
norm of the pseudo wave function is the same to the norm of the corresponding
all-electron wave function. In case of ultrasoft pseudopotentials, the norm-
conservation condition is relaxed, resulting in larger cutoff-radii rc and a smaller
basis set. In general, a pseudopotential consists of a local and a non-local part
[60, 56]:

v̂ξPP = V ξ
loc(r̂) +

∑
nm

Dξ
nm |βξn〉 〈βξm| , (2.32)

in which the βξn as well as the coeffitients Dξ
nm determine the pseudopotential

for a specific atomic species labeled by ξ. The total electron-ion potential is the
sum of all pseudopotentials of the individual atoms. Because of the projector
term on the right hand side of equation (2.32), the external potentials acquires
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2.1 Introduction to Density Functional Theory

a non-local form in real space [53]:

v(r,r′) =
∑
lκ

vξPP(r −Rl − τ κ,r′ −Rl − τ κ,). (2.33)

Here Rl are the real-space lattice vectors and τ κ are the coordinates of the
atomic species ξ within the unit cell.

An alternative approach to the pseudopotential technique is provided by the
projector augmented-wave (PAW) method. The method was introduced by
Blöchl in 1994 [61], and is closely related to ultrasoft pseudopotentials [62]. In
this work, in all calculations performed by the Vasp-code, the PAW method
was adopted.

Within the PAW method, real space is divided into augmentation spheres,
centered on the positions of the atoms, labeled by a, and a bonding region
between the spheres. One can show that it is possible to define a linear operator
T̂ , which transforms a set of smooth wave functions {|ψ̃kn〉} into the real
all-electron Kohn-Sham orbitals [63]:

|ψkn〉 = T̂ |ψ̃kn〉 . (2.34)

This operator can be expressed as

T̂ = 1 +
∑
a

∑
i

(
|φai 〉 − |φ̃ai 〉

)
〈p̃ai | (2.35)

in which the double sum on the right side has no effect outside the augmentation
region, i.e. for |r−Ra| > rac [63]. The partial waves {|φai 〉} form a complete basis
inside the spheres and are usually chosen to be eigenstates of the Schrödinger
equation for an isolated atom [63]. The corresponding smooth partial waves
{|φ̃ai 〉} are expanded using an appropriate basis like Gaussians or spherical
Bessel functions. The set {|p̃ai 〉} are some projector functions which satisfy∑

i

|φ̃ai 〉 〈p̃ai | = 1. (2.36)

Finally, using the transformation T̂ , the Kohn-Sham equation for the smooth
wave functions can be cast into the form of a generalized eigenvalue problem:

T̂ †ĤKST̂ |ψ̃kn〉 = εknT̂ †T̂ |ψ̃kn〉 . (2.37)

The gain of this additional complexity is that the |ψ̃kn〉 can be expanded using
a comparatively small plane wave basis, which leaves us with a system of linear
equations that have to be solved for a particular k-point. In practice, the
operators appearing in ĤKS, are transferred to reciprocal space by means of
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Elelctron-Phonon Properties from First Principles

fast fourier transform (FFT). The Hamiltonian is diagonalized using efficient
iterative matrix diagonalization schemes. For a more detailed representation of
the PAW-method, as well as for technical instructions on implementation, the
reader is referred to [63].

By performing the Fourier transform of the potentials, it turns out that the local
part of the pseudopotential, as well as the Hartree-potential diverge at G = 0,
so one has to exclude the G,G′ = 0 terms from the plane wave expansion in
equation (2.37) [53]. However, one can show that if the system is electrically
neutral, the sum of the diverging terms is a constant independent of the electron
density, hence it can be calculated at the beginning of the self-consistency cycle
[53].

2.1.5 Sampling the Brillouin-zone

Due to the Born-van-Kàrmàn boundary conditions, the Bloch vector k is a
quasi-continuous variable. In practice, the Kohn-Sham system (2.37) has to be
solved for a discrete set of k-points within the first Brillouin-zone (BZ). There
are different methods for sampling the BZ. The two most common sampling
methods are Γ-centered meshes, which include the Γ-point of reciprocal space,
as well as Monkhorst-Pack meshes [64], which are shifted away from the origin.
Within this approximation, integrals over the BZ are replaced by discrete sums
over k-points. Usually, the sums are performed over irreducible k-points in the
first BZ by including appropriate weighting factors wk. For the charge density
this reads as follows:

n(r) =
1

VBZ

ˆ
BZ

d3k

[∑
n

f(εkn) |ψkn(r)|2
]

→
∑

k∈ IBZ

∑
n

f(εkn)wk|ψkn(r)|2,
(2.38)

where VBZ is the Brillouin-zone volume, and IBZ means irreducible Brilloin-zone.

The above description shows that within any plane wave DFT-code, there are
two parameters that have to be fine-tuned for every calculation, which are the
k-points sampling and the cutoff energy for the PW expansion. In practice,
one tunes this parameters until convergence with respect to the total energy is
achieved.

A very important topic is the extension of the described plane wave DFT to
metallic systems. For metals, sums over the irreducible part of the BZ converge
exceedingly slowly with increasing number of k-points. This has to do with
the fact that the occupation numbers f(εkn) drop discontinuously to zero for
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2.2 Linear response theory

eigenvalues above the Fermi level. One possible solution to this problem is to
replace this step-function by a smooth function, similar to the finite temperature
behavior of the Fermi-Dirac distribution. In this so called smearing approach,
each Kohn-Sham energy value is broadened, so that the local density of states
Nloc(r,ε) takes the form [56]:

Nloc(r,ε) =
∑

k∈ IBZ

∑
n

δσ(ε− εkn)wk|ψkn(r)|2, (2.39)

in which δσ(x) = 1
σ
δ̃(x/σ) represents a smearing function that converges to the

Dirac δ function as σ approaches zero [56]. δ̃(x) can be a an arbitrary function
that integrates to one. Usually Gaussian-functions, or more sophisticated
methods like Mathfessel-Paxton broadening are adopted [65]. The generalization
of the electron density (2.38) to metallic systems can be obtained by integrating
(2.39) to the Fermi-level [56]:

n(r) =

εFˆ

−∞

dεNloc(r,ε) =
∑

k∈ IBZ

∑
n

Θσ(εF − εkn)wk|ψkn(r)|2, (2.40)

where Θσ(x) is a “smeared out” version of the step function.

The most accurate method for dealing with the problem of Brillouin-zone
integration in metals is the so called linear tetrahedron-method with Blöchl-
corrections [66]. Here the term εkn is interpolated linearly between 2 k-points.
Corrections introduced by Blöchl et.al. remove the quadratic errors inherent in
the linear interpolation scheme.

2.2 Linear response theory

In the following section we discuss how phonon- as well as electron-phonon prop-
erties can be obtained within density functional perturbation theory (DFPT)
[56]. Electron-phonon properties contain the essential information for describing
the properties of conventional superconductors, such as the superconducting
gap or the critical temperature. The section starts with a summary of the phe-
nomenological theory of phonons, followed by a description of how interatomic
force constants are obtained by DFPT.

2.2.1 Phenomenological theory of lattice vibrations

Within the adiabatic approximation introduced in (2.1), only electrons are
treated quantum mechanically. The total potential that the ions experience
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is given by the energy contribution from the adiabatic Hamiltonian plus the
interaction energy among the ions:

EBO(R) = E(R) + Eion-ion(R). (2.41)

Here Eion-ion was introduced in equation (2.25) and R denotes the full ensemble
of ion coordinates. EBO(R) is often referred to as the Born-Oppenheimer energy
surface [56]. The atomic coordinates are described by

Rκl = Rl + τ κ + uκl, (2.42)

in which the Rl are the real space lattice vectors, the τ κ label the equilibrium
positions of the κ-th atom in the unit cell and the uκl are the displacement-
vectors from the equilibrium positions.

In the following, we expand the Born-Oppenheimer energy surface around the
equilibrium positions of the ions (u = 0).

EBO(R) = EBO(R)|u=0 +
∑
lκα

∂EBO(R)

∂uακl

∣∣∣∣
u=0

uακl

+
1

2

∑
lκα
l′κ′α′

∂2EBO(R)

∂uακl∂u
α′
κ′l′

∣∣∣∣
u=0

uακlu
α′
κ′l′ + · · ·

(2.43)

where the greek superscripts α and α′ represent the cartesian components. The
first derivative of the Born-Oppenheimer surface represents the components of
the force acting on the atoms labeled by κl

Fα
κl = −∂EBO(R)

∂uακl
. (2.44)

The second term on the right side of equation (2.43) vanishes because the
expression has to be evaluated at u = 0. The second order term in the
expansion represents the matrix of the interatomic force constants. Since the
system obeys translational invariance, the matrix can depend on the indices l
and l′ only through the difference of the lattice vectors [56]:

Cαα′
κκ′,ll′ =

∂2EBO(R)

∂uακl∂u
α′
κ′l′

∣∣∣∣
u=0

= Cαα′
κκ′ (Rl −Rl′). (2.45)

The Fourier transform of this quantity can be written as the derivative with
respect to the amplitudes related to a specific phonon wave vector q [56]:

Cαα′
κκ′ (q) =

∑
l

e−iq
TRlCαα′

κκ′ (Rl) =
1

Nc

−q∂ακ
q∂α

′
κ′EBO(R)

∣∣∣
u=0

, (2.46)
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where we defined the operator q∂ακ to act like:

q∂ακ ≡
∑
l

eiq
TRl

∂

∂uακl
. (2.47)

In (2.46), Nc denotes the number of unit cells and the prefactor 1/Nc corrects
the error from the double summation inherent in (2.46). Eq. (2.47) defines
a linear operator for which the standard rules of differentiation apply. The
phonon dispersion ωqν , where ν is the band index, can be obtained solving the
eigenvalue problem for the dynamical matrix Dαα′

κκ′ (q) = Cαα′
κκ′ (q)/

√
MκMκ′ , in

which Mκ is the mass of the κ-th ion:∑
κ′α′

Dαα′
κκ′ (q)cα

′
κ′ (qν) = ω2

qνc
α
κ(qν). (2.48)

Here, the cακ(qν) are the components of the eigenvectors associated to the node
qν. Eq. 2.48 comprises the full information of the phonon spectrum. It can be
used to construct the partial phonon density of states for the κ-th atom in the
unit cell:

Z(ω,κα) =
∑
qν

δσ(ω − ωqν)|cακ(qν)|2. (2.49)

In order to obtain the dynamical matrix Dαα′
κκ′ within DFT, we first look at

the expression for the first derivative of the Born-Oppenheimer energy surface
associated with a lattice displacement of wave vector q:

q∂α
′

κ′EBO(R) = 〈Ψ(R)| q∂α′
κ′ ĤBO(R) |Ψ(R)〉 , (2.50)

where we used the Hellmann-Feynman theorem. The Born-Oppenheimer
Hamiltonian depends on the atomic coordinates only through the electron-ion
interaction term (2.7), and through the ion-ion interaction energy introduced
in (2.25). Therefore, the derivative can be written as

q∂α
′

κ′EBO(R) =

ˆ
d3r n(r)q∂α

′
κ′ v(r) + q∂α

′
κ′Eion-ion(R). (2.51)

Finally, using expression (2.45) for the dynamical matrix, we obtain:

Dαα′
κκ′ (q) =

1

Nc

√
MκMκ′

[ˆ
d3r [q∂ακ n(r)]∗ q∂α

′
κ′ v(r)

+

ˆ
d3r n(r) −q∂ακ

q∂α
′

κ′ v(r) + −q∂ακ
q∂α

′
κ′Eion-ion(R)

]
u=0

.

(2.52)
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This expression shows that, in order to obtain the dynamical matrix of the
system, we need to calculate the linear response of the electron density to a
distortion of the lattice geometry: q∂ακ n(r). In order not to overburden the
notation with indices, we did not indicate explicitly the dependence of n(r) as
well as of v(r) on the atomic configuration. The linear response of the density
and the external potential can be obtained by means of density functional
perturbation theory [56].

2.2.2 Density Functional Perturbation Theory

In the following we will discuss the situation in which all electronic states are
either full or empty i.e. the density of a spin degenerate system is given by

n(r) = 2
∑
k∈BZ

N/2∑
n=1

|ψkn|2, (2.53)

where N is the total number of electrons and the sum over n extends over
all occupied states. The extension to metallic systems requires a few more
technical expedients, which are discussed at the end of this section.

The linear response of the density in equation (2.52), can be obtained applying
q∂ακ to (2.53):

q∂ακ n(r) = 4 Re
∑
kn

ψ∗kn(r)q∂ακ ψkn(r). (2.54)

The variation of the orbital q∂ακ ψkn(r) is constructed through first-order per-
turbation theory:

|q∂ακ ψkn〉 =
∑
m

∑
k′∈BZ

|ψk′m〉
〈ψk′m| q∂ακ v̂KS |ψkn〉

εkn − εk′m
. (2.55)

Here, q∂ακ v̂KS is the linear response of the Kohn-Sham potential to a lattice
distortion with wave vector q [56]:

q∂ακ v̂KS[n; r] = q∂ακ v(r) +

ˆ
d3r′

q∂ακ n(r)

|r − r′| +
dvxc[n]

dn

∣∣∣∣
n=n(r)

q∂ακ n(r) (2.56)

Eq. (2.56) is usually referred to as the lattice-periodic scattering potential [67].
Reinserting (2.55) into equation (2.53) leads to the following expression for the
variation of the density:

q∂ακ n(r) = 4 Re
∑
kk′
∈BZ

∑
n(occ.)m

ψ∗kn(r)ψk′m(r)
〈ψk′m| q∂ακ v̂KS |ψkn〉

εkn − εk′m
. (2.57)
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2.2 Linear response theory

Because the sum over k extends over all Bloch vectors in the first BZ, terms
with band indices originating from the manifold of occupied states cancel each
other, due to the opposite sign from the denominator. Eq. (2.57) will be non-
zero only if |ψk′m〉 is an empty state, hence the sum over m can be restricted
to the subspace of conduction states. Moreover, because of conservation of
momentum, the Bloch vector of the final state in the transition matrix element
appearing in Eq. (2.57), has to be equal to k′ = k + q + G, where G is a
reciprocal lattice vector [68]. In general, the normal scattering contributions
(G = 0) are larger than those from Umklapp-scattering, hence only the k + q
contribution survives from the sum over k′ [56].

Instead of solving (2.57) directly, one can show that it is more convenient to
calculate the variation of the Kohn-Sham orbitals through a system of linear
equations [56]. To this end, one applies the operator ĤKS−εkn to the perturbed
state (2.55), where the summation is restricted to the conduction space:

(ĤKS − εkn) |q∂ακ ψkn〉 = −
∑
m

|ψk+qm〉 〈ψk+qm|︸ ︷︷ ︸
P̂k+q
c

q∂ακ v̂KS |ψkn〉

= (P̂ k+q
v − 1)q∂ακ v̂KS |ψkn〉 ,

(2.58)

where P̂ k+q
c and P̂ k+q

v are projection operators on the conduction, respectively
on the valence space, with respect to the k + q manifold.

The left hand-side of equation (2.58) cannot be inverted directly because the
operator therein has a vanishing eigenvalue. This problem can be fixed by adding
a projection-operator on the valence space with respect to the k + q manifold
[56]. This term has no effect on the solution because P̂ k+q

v |q∂ακ ψkn〉 = 0, which
is obvious from (2.55). The result is often called Sternheimer equation:

(ĤKS + βP̂ k+q
v − εkn) |q∂ακ ψkn〉 = (P̂ k+q

v − 1)q∂ακ v̂KS |ψkn〉 . (2.59)

In conclusion, (2.54), (2.56) and (2.59) form a set of equations that have to be
solved self-consistently, to obtain the electron density response and the variation
of the Kohn-Sham potential caused by the lattice displacements. The major
advantage of the above formulation is that perturbations of different periodicity
are completely decoupled from each other. Hence, phonon perturbations of
different q can be treated independently [56].

It turns out that the elements appearing in the matrix of interatomic force
constants (IFC’s) (2.46) are rather smooth functions of the phonon wave vector
q [56]. This means, that the real-space IFC’s, obtained by inverse Fourier
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Elelctron-Phonon Properties from First Principles

transform:

Cαα′
κκ′ (R) =

1

Nc

∑
l

eiq
T
l RCαα′

κκ′ (ql), (2.60)

show a short-range behavior in real space. Thus, for calculations of phonon
dispersions and related properties, the method of Fourier interpolation can
be used. Here, dynamical matrices are calculated on a comparatively coarse
q-point grid. These matrices are transformed to real space (2.60) by means
of fast Fourier transform. Once the real space IFC’s have been obtained, one
can calculate dynamical matrices at an arbitrary q-point (independent by the
choice of the original grid) in reciprocal space.

The extension of DFPT to metallic systems as implemented in Quantum
Espresso, was introduced by de Gironcoli in [69]. Equation (2.56) shows the
first order change in the self-consistent potential due to lattice displacements.
Atomic displacements lead to shifts in the single particle energies, as well as
in the Fermi energy. These shifts must be taken into account explicitly for
metallic systems. For the variation of the charge density, introduced in (2.40),
one obtains for metals [56]:

q∂ακ n(r) =
∑
kn

Θσ
F,n [ψ∗kn(r)q∂ακ ψkn(r) + c.c.]

+
∑
kn

|ψkn(r)|2δσF,n(q∂ακ εF − q∂ακ εkn).
(2.61)

where we used a short-hand notation for the smearing function: Θσ
F,n =

Θσ(εF − εkn), and analogously for δσF,n. The second part of (2.61) contains the
variation of the Fermi energy and the single particle energies. Treating the
variation of the density in the same manner as described above, one ends up
with a modified Sternheimer equation for the system. The equations are solved
in the same way as in the non metallic case.

For practical aspects of the implementation of DFPT within the plane wave
pseudopotential method, as well as for a more detailed discussion for the
treatment of metals, we refer the reader to [56] and [69].

2.3 Electron-phonon interaction and supercon-

ductivity

In this section we describe the calculation of superconducting properties like the
critical temperature and the superconducting energy gap. In a conventional su-
perconductor, the effective pairing between electrons results from the interplay
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2.3 Electron-phonon interaction and superconductivity

between the repulsive Coulomb interaction and the exchange of virtual phonons.
The calculation of superconducting properties requires a detailed knowledge
of the phonon dispersions and the electronic states involved in the supercon-
ducting pairing i.e. those at the Fermi level. In this work, we estimate the
critical temperature for different compounds by calculating the electron phonon
coupling matrix elements with DFPT and using the semi-empirical approach of
McMillan, Allen and Dynes [70, 71]. There are several other approaches to this
issue, such as first-principles Green’s function methods [18, 72, 73] or, more
recently, methods based on the extension of density functional theory to the
superconducting state (SCDFT) [74, 75].

In the next section we give an introduction to the linearized electron-phonon
coupling Hamiltonian, followed by an overview of Migdal-Eliashberg theory of
superconductivity.

2.3.1 The electron-phonon coupling Hamiltonion

In order to derive the Hamiltonian that describes the electron-phonon interac-
tion, we expand the Kohn-Sham potential in the collective lattice displacements
to linear order:

v̂KS = v̂KS|u=0 +
∑
καl

∂v̂KS

∂uακl

∣∣∣∣
u=0

uακl +O(uακl
2). (2.62)

Since the Kohn-Sham potential describes the effective potential of a single-
particle Schrödinger equation, the total Hamiltonian of the all-electron system
can be seen as the sum of Kohn-Sham single-particle operators which commute
pairwise. Therefore, the formalism of second quantization can be used, in the
same way as for single particle-operators. One obtains:

Ĥel-ph =
∑
καl

ûακl
∑

kk′,nn′

〈ψk′n′ | ∂v̂KS

∂uακl

∣∣∣∣
u=0

|ψkn〉 ĉ†k′n′ ĉkn. (2.63)

Here ĉ†
k′n′ (ĉkn) are creation (destruction) operators for electrons in a Bloch

state kn, satisfying the standard fermionic commutation relations:

[ĉkn,ĉ
†
k′n′ ]−ε = δkk′δnn′ and [ĉkn,ĉk′n′ ]−ε = [ĉ†kn,ĉ

†
k′n′ ]−ε = 0 (2.64)

in which [Â,B̂]−ε = ÂB̂ − εB̂Â, and ε = −1 for fermions. As before, using
conservation of momentum and ignoring the Umklapp scattering processes, only
the k + q contribution survives from the sum over k′. From elementary theory
of phonons it is known that the amplitudes can be expressed as a collective
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kn

qν
k + q n

′

(a) ĉ†k+q n′ ĉknb̂qν

kn

−qν

k + q n
′

(b) ĉ†k+q n′ ĉknb̂
†
−qν

Figure 2.1: Feynman-diagrams describing the terms that appear in the electron-
phonon Hamiltonian Ĥel-ph. In the absorpion diagram (a), energy
conservation requires that εkn + ωqν = εk+q n′ ; (b) describes the
emission of a phonon of wave vector q and energy conservation
reads: εkn = ωqν + εk+q n′ .

creation and destruction of phonons [76]:

ûακl =
∑
qν

1√
NcMκ2ωqν

cακ(qν)
(
b̂qν + b̂†−qν

)
eiq

TRl (2.65)

where b̂qν destroys a phonon of wave vector q in the branch ν. The operators b̂qν
are describing bosons, hence they are satisfying the commutation relations (2.64)
with ε = +1. Inserting (2.65) in (2.63) we arrive at the linear electron-phonon
coupling Hamiltonian:

Ĥel-ph =
1√
Nc

∑
k,nn′

∑
qν

gνk+q n′,knĉ
†
k+q n′ ĉkn

(
b̂qν + b̂†−qν

)
, (2.66)

where gνk+q n′,kn are the screened electron phonon coupling matrix elements.
They describe the scattering of an electron from an initial Kohn-Sham state
|ψkn〉 to a final state |ψk+q n′〉 by a phonon of wave vector q and frequency ωqν :

gνk+q n′,kn =
∑
κ,α

1√
Mκ2ωqν

cακ(qν) 〈ψk+q n′ | q∂ακ v̂KS|u=0 |ψkn〉 . (2.67)

The matrix elements appearing in equation (2.67) are accessible by density func-
tional perturbation theory. Fig. 2.1 shows the Feynman-diagrams describing
the electron-phonon interaction.
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2.3 Electron-phonon interaction and superconductivity

2.3.2 Migdal-Eliashberg theory

The first complete microscopic theory of electron phonon mediated supercon-
ductivity was developed by Bardeen, Cooper and Schrieffer (BCS) in 1957
[15]. In BCS theory, electrons are understood as quasiparticles within the
Landau Fermi liquid theory. It is assumed that the effective interaction energy
between two quasiparticles of Bloch vectors k and k′ is a negative constant, if
k and k′ are located within a region of width 2ωD around the Fermi surface,
and zero otherwise [17]. Migdal Elishberg theory [77] goes well beyond this
approximation including the details of the electron-phonon interaction. The
theory provides an accurate treatment of the effects of time retardation of
phonon exchange between quasiparticles, as well as of the finite lifetime of
quasiparticle states [21]. The theory is accurate to O(M− 1

2 ), where M is the
ion mass in electron mass units [78].

In order to construct the theory of strong-coupling superconductivity, the
language of thermodynamic Green’s functions is adopted. It is convenient to
formulate the theory using Nambu-Gor’kov formalism [79] which treats the
“normal” and the “pairing” part of the self energy on equal footing [80]. One
introduces a two-component field spinor [72]:

Ψ̂kn =

(
ĉkn↑
ĉ†−kn↓

)
, (2.68)

which is used to define a generalized thermodynamic Green’s function G [72]:

G(kn,τ) = −〈TτΨ̂kn(τ)Ψ̂
†
kn(0)〉 . (2.69)

Here, the expectation value represents the trace over the grand-canonical
ensemble, Tτ is the Wick time-ordering symbol in imaginary time τ and the
time evolution of the spinors is obtained by

Ψ̂kn(τ) = eĤτΨ̂kn(0)e−Ĥτ , (2.70)

in which Ĥ represents the total Hamiltonian of the system including electron-
electron interactions. Inserting the spinor representation (2.68) into equation
(2.69), we see that G takes the form of a generalized 2×2 matrix Green’s
function:

G(kn,τ) = −
(
〈Tτ ĉkn↑(τ)ĉ†kn↑(0)〉 〈Tτ ĉkn↑(τ)ĉ−kn↓(0)〉
〈Tτ ĉ†−kn↓(τ)ĉ†kn↑(0)〉 〈Tτ ĉ†−kn↓(τ)ĉ−kn↓(0)〉

)
. (2.71)

Here the diagonal elements are the standard electron quasiparticle propagators,
describing single-particle excitations of the system. The off-diagonal elements
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Elelctron-Phonon Properties from First Principles

can be understood as symmetry-breaking fields which only take finite values
in the superconducting state. They are often referred to as the anamolous
propagators, and describe pairing correlations of the system.

From the trace in equation (2.69), it is straightforward to show that the
thermodynamic Green’s function has a periodicity of 2β, where β = 1

kBT
. Here

kB is Boltzmann’s constant and T is the absolute temperature. Hence, it is
possible to expand the generalized Green’s function in a Fourier series:

G(kn,τ) =
1

β

∞∑
j=−∞

e−iωjτG(kn,iωj), (2.72)

where ωj = (2j + 1)π/β (j ∈ Z) are the fermion Matsubara frequencies which
include the temperature T . Due to this expansion, the generalized Green’s
function depending on Matsubara frequencies can be written as [72]:

G(kn,iωj) =

(
G(kn,iωj) F (kn,iωj)

F ∗(kn,iωj) −G(−kn,− iωj)

)
. (2.73)

As before, the F (kn,iωj) take nonzero values only below the critical tempera-
ture Tc. As we will see below, those off-diagonal elements are related to the
superconducting energy gap.

To get insights into the superconducting state, the next step is to evaluate the
matrix Green’s function (2.73). This is achieved by using Dyson’s equation:

G−1(kn,iωj) = G−1
0 (kn,iωj)− Σ(kn,iωj), (2.74)

where G0(kn,iωj) is the noninteracting propagator, which acquires the well
known form:

G−1
0 (kn,iωj) = iωjσ0 − εknσ3 (2.75)

where σ0 and σ3 denote Pauli matrices1. The chemical potential is set to zero
in this equations.

Within Migdal-Eliashberg theory, a number of approximations are introduced
in writing the self-energy. In general, the self-energy can be split up into a
contribution from the electron phonon interaction and a Coulomb contribution
[72]:

Σ(kn,iωj) = Σep(kn,iωj) + ΣC(kn,iωj). (2.76)

1We use the following definition for the Pauli matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
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2.3 Electron-phonon interaction and superconductivity

According to Migdal’s theorem, it is sufficient to include the first term in the
Feynman diagram expansion of the self energy, because all higher terms are on
the order of λωD

εF
, where ωD is a characteristic phonon frequency [78]. Moreover,

the self-energy is considered to be diagonal in the band index [72, 81]. This is
a reasonable approximation, because the energy scale of the superconducting
pairing is small compared to the band separation. Therefore, mixing of different
band indices does not have to be taken into consideration. Finally, because
Coulomb effects are already included in the diagonal elements of the non-
interacting propagator, only off-diagonal elements in the Coulomb contribution
to the self-energy are taken into account. Using the approximations discussed
in [72, 80, 82, 83, 84], the following expressions for the self-energy contributions
are obtained:

Σep(kn,iωj) ≈

G(k′n′, iωj′)
gνkn,k′n′ g∗νkn,k′n′

Dν(k − k′, iωj − iωj′)

= − 1

β

∑
k′n′,j′,ν

σ3G(k′n′,iωj′)σ3|gνkn,k′n′ |2Dν(k − k′,iωj − iωj′),

(2.77)

and

ΣC(kn,iωj) ≈

Goff-diag(k′n′, iωj′)

VC(kn,kn
′)

= − 1

β

∑
k′n′,j′

σ3G
off-diag(k′n′,iωj′)σ3VC(kn,k′n′).

(2.78)

Equations (2.77) and (2.78) are obtained from standard Feynman rules [85].
In these equations gνkn,k′n′ are the electron-phonon coupling matrix elements
introduced in (2.67). The double wiggly line in 2.77 indicates the dresses
phonon propagator: Dν(q,iωj) = 2ωqν/[(iωj)

2 − ω2
qν ]. The double-dashed line

indicates the screened Coulomb potential VC(kn,k′n′) between Bloch states
|ψkn〉 and |ψk′n′〉 [72].

In the next step one makes use of the fact that the Pauli matrices form a
complete basis set for the space of 2×2 matrices. Hence one can expand the
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self-energy in terms of the Pauli matrices using a set of scalar functions as
coefficients [83]:

Σ(kn,iωj) = iωj[1− Z(kn,iωj)]σ0 + φ(kn,iωj)σ1 + φ̄(kn,iωj)σ2

+ χ(kn,iωj)σ3.
(2.79)

In this expansion, Z(kn,iωj) turns out to be the quasiparticle mass renor-
malization, χ(kn,iωj) causes a shift in the single particle energies εkn, and
φ(kn,iωj) can be seen as the order parameter for the superconducting state.
For φ = φ̄ = 0, the system is in the normal state. The gauge can be chosen
in such a way that φ̄ = 0 [83, 72]. Inserting (2.79) into the Dyson equation
and inverting the resulting matrix, one obtains the following expression for the
matrix Green’s function [72]:

G(kn,iωj) = − 1

Θ(kn,iωj)
{iωjZ(kn,iωj)σ0 + [εkn + χ(kn,iωj)]σ3

+ φ(kn,iωj)σ1}
(2.80)

in which Θ(kn,iωj) is the determinant of the inverse Green’s function matrix
which reads as [72]

Θ(kn,iωj) = [ωjZ(kn,iωj)]
2 + [εkn + χ(kn,iωj)]

2 + φ2(kn,iωj). (2.81)

Finally, one can replace the matrix Green’s function in the self-energy equations
(2.77) and (2.78) with the expansion (2.80). Equating the coefficients on the
two sides results in a set of self consistent equations for the scalar functions
introduced. These equations are called anisotropic Eliashberg equations [72, 80,
83]:

Z(kn,iωj) = 1 +
1

βωjN(εF)

∑
k′n′,j′

ωj′Z(k′n′,iωj′)

Θ(k′n′,iωj′)
λ(kn,k′n′,j − j′) (2.82)

χ(kn,iωj) = − 1

βN(εF)

∑
k′n′,j′

εk′n′ + χ(k′n′,iωj′)

Θ(k′n′,iωj′)
λ(kn,k′n′,j − j′) (2.83)

φ(kn,iωj) =
1

βN(εF)

∑
k′n′,j′

φ(k′n′,iωj′)

Θ(k′n′,iωj′)

× [λ(kn,k′n′,j − j′)−N(εF)VC(kn,k′n′)].

(2.84)

Here N(εF) represents the density of states at the Fermi level. Moreover,
in equations (2.82)-(2.84) the anisotropic electron-phonon coupling constant
λ(kn,k′n′,j − j′) was introduced [72, 80]:

λ(kn,k′n′,j − j′) =

ˆ ∞
0

dω
2ω

(ωj − ωj′)2 + ω2
α2F (kn,k′n′,ω) (2.85)

28
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in which α2F (kn,k′n′,ω) is the anisotropic Eliashberg electron-phonon spectral
function [72]:

α2F (kn,k′n′,ω) = N(εF)
∑
ν

|gνkn,k′n′|2δ(ω − ωk−k′ ν). (2.86)

The poles of the Green’s function (2.80) determine the possible excitation
energies of the system. Calculating the poles by setting the denominator to
zero provides an expression for the superconducting gap in terms of the order
parameter and the quasiparticle renormalization [83]:

∆(kn,iωj) =
φ(kn,iωj)

Z(kn,iωj)
. (2.87)

In order to calculate the critical temperature Tc one has to find the temperature
where the superconducting gap approaches zero, i.e. the highest temperature
for which a nontrivial solution is obtained [72].

In practice, it turns out that it is sufficient to confine the important properties
of the system to the Fermi surface [80]. This is a reasonable approximation
because the energy of the states involved in the superconducting pairing are
located in a small energy window around the Fermi surface [72]. Under this
approximation the shift in the single-particle energies χ(kn,iωj) becomes zero,
and only two equations are left in the Eliashberg system. Averaging the scalar
functions over the Fermi surface results in the isotropic Eliashberg equations
[72, 21]:

Z(iωj) = 1 +
π

βωj

∑
j′

ωj′√
ω2
j + ∆2(iωj)

λ(j − j′), (2.88)

Z(iωj)∆(iωj) =
π

β

∑
j′

∆(iωj′)√
ω2
j + ∆2(iωj)

[λ(j − j′)− µ?C]. (2.89)

In equation (2.89), the term N(εF)VC(kn,k′n′) has been replaced by the renor-
malized Coulomb pseudopotential µ?C. This parameter describes the effective
Coulomb interaction between the electrons which is significantly weakened due
to retardation effects. Under some approximations [86] µ?C is given by

µ?C =
µC

1 + µC ln(εF/ωcut)
, (2.90)

where µC = N(εF) 〈〈VC(kn,k′n′)〉〉 is the double Fermi-surface average of the
Coulomb transition matrix-elements and ωcut is a cutoff phonon frequency on
the order of 1 eV [72]. In practice the renormalized Coulomb pseudopotential
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is taken as a free parameter and is used to fit the superconducting properties
to the experimental results.

The auxiliary function λ(j − j′) is defined analogously to (2.85), with the
difference that the Fermi surface averaged Eliashberg function α2F (ω) enters the
equation. This quantity plays a fundamental role in calculating superconducting
properties. If we use the electron-phonon coupling matrix elements derived in
equation (2.67), the Fermi surface average of equation (2.86) takes the form

α2F (ω) =
1

N(εF)

∑
kq

∑
nn′ν

|gνkn,k+q n′ |2δ(ω − ωqν)

× δ(εkn − εF)δ(εk+q n′ − εF).

(2.91)

This function describes the coupling of phonon modes of frequency ω to elec-
tronic states at the Fermi level. As pointed out in the following section, it
contains the essential information for obtaining the superconducting transition
temperature Tc. It is noteworthy that the Eliashberg function (2.91) is related
to the phonon linewidths γqν which can be derived from Fermi’s golden rule
[87]:

γqν = 2πωqν

∑
k

∑
nn′

|gνkn,k+q n′ |2δ(εkn − εF)δ(εk+q n′ − εF). (2.92)

From equation (2.92), it can be seen that the matrix elements gνkn,k+q n′ are
multiplied by a double-delta summation which is referred to as the Fermi
surface nesting function. The linewidths take high values if there are parallel
regions in the Fermi surface related by a wave vector q, together with high
electron phonon coupling matrix elements. Using the defined linewidths, the
Eliashberg function takes the form:

α2F (ω) =
1

2πN(εF)

∑
q

∑
ν

γqν
ωqν

δ(ω − ωqν) (2.93)

2.3.3 Estimation of the critical temperature

In order to calculate the Fermi-surface-averaged Eliashberg function (2.91),
one needs a detailed knowledge of the phonon dispersion, the electronic states
at the Fermi level, and the electron-phonon coupling matrix elements. The
latter are in principle accessible by density functional based methods. As it can
be seen from equation (2.67), we need the linear response of the Kohn-Sham
potential due to phonon perturbation of wave vector q according to equation
(2.56). As pointed out in section 2.2.2, the linear response of the Kohn-Sham
potential is an ingredient of density functional perturbation calculations. The
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electron-phonon coupling matrix elements, as well as the double integral over
the fermi surface (2.91) are calculated in a second step in which a dense k-grid
is used to sample the Kohn-Sham states.

A detailed review how those matrix elements are calculated in practice has been
given by Savrasov et.al. in [88, 89]. In this review, calculations are performed
within a linear–muffin-tin–orbital basis set. It is shown how the matrix elements
(2.67) are obtained directly from the linear response of the Kohn-Sham states,
including corrections for the incompleteness of the basis.

In practice, the double delta integral in equation (2.91) is evaluated using several
values of Gaussian broadening for the δ-functions. This procedure quickly shows
wether the results are converged with respect to k-point sampling and the
smearing-parameter.

As discussed in the previous section, in order to obtain the critical temperature
Tc, in principle the Eliashberg equations (2.82)-(2.84) have to be solved. In this
work we use a simplified semi-empirical approach for estimating Tc using the
Allen-Dynes [70] modified McMillan [71] formula. The Allen-Dynes modification
is based on more than 200 numerical solutions of the Eliashberg equations [21],
covering a large range of electron-phonon coupling constants. The resulting
expression is:

Tc =
ωlog

1.2kB

exp

[
− 1.04(1 + λ)

λ− µ?C(1 + 0.62λ)

]
(2.94)

where λ is the electron-phonon coupling constant defined by

λ =

ˆ ∞
0

dω
α2F (ω)

ω
, (2.95)

and ωlog is the logarithmic average phonon frequency:

ωlog = exp

[
2

λ

ˆ ∞
0

α2F (ω) ln(ω)

ω

]
. (2.96)

As already mentioned, the renormalized Coulomb pseudopotential µ?C is used
as a parameter taking values between 0.1 and 0.15. Although Eq. (2.94) is
based on quantities averaged over the Fermi surface, it provides results in
good agreement with experiments [90], even for systems with anisotropic Fermi
surfaces [91, 92].

2.4 The electron localization function (ELF)

An extremely useful tool for characterizing chemical bonding in crystals as well
as in molecular systems is provided by the electron localization function (ELF)
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introduced by Becke and Edgecombe in 1990 [93]. This quantity is based on
the conditional same-spin pair probability function and provides a measure of
real space electron pair localization.

The starting point of the derivation is an extension of equation (2.6) to the
case of two electrons. The expression can be considered as the diagonal element
of the second order reduced density matrix:

γ(2)
σ1σ2

(r1,r2) = N(N − 1)
∑
σ3...σN

ˆ
d3r3 · · · d3rN

× |Ψ(r1σ1,r2σ2, . . . ,rNσN)|2.
(2.97)

This gives the probability density of finding an electron at position r1 with spin
σ1 and, simultaneously an electron at position r2 with spin σ2. If we ignore
the fermionic character of the electrons, the latter would just be the product
of the spin dependent densities nσ1(r1)nσ2(r2). However, because of the Pauli
exclusion principle, there is a correlation hole associated to the electrons and
thus the probability of finding an electron with the same spin in the vicinity
of another electron will be low. The same-spin conditional pair probability
function, i.e. the probability of finding a spin σ electron at r2, knowing with
certainty that a second electron with spin σ is located at r1 is given by [94]:

Pσ(r2|r1) =
γ

(2)
σσ (r1,r2)

nσ(r1)
. (2.98)

To obtain the probability density of finding a second electron with the same
spin within a sphere of radius s around the reference electron at r1, one can
integrate out the angular dependence in r2:

pσ(r1,s) =
1

4π

ˆ 2π

0

dϕ

ˆ π

0

dϑ sinϑPσ(r1 + ser|r1), (2.99)

where er = (sinϑ cosϕ, sinϑ sinϕ, cosϑ)T . For small s one can Taylor-expand
Pσ(r1+ser|r1) in s. The zero order term vanishes because of the Pauli exclusion
principle. Also the first-order term drops out when performing the expansion.
We skip the Taylor expansion of (2.99) which can be found in [94] and just
state the final result. One obtains

pσ(r1,s) =
1

3
s2Cσ(r1) +O(s3) (2.100)

where Cσ(r1) is given by

Cσ(r1) =
1

2

∇2
r2
γ

(2)
σσ (r1,r2)|r2=r1

nσ(r1)
. (2.101)
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in which ∇r2 indicates the nabla operator with respect to the r2-coordinate.
The function (2.101) is used to define the electron localization function [93]:

ELFσ(r) =
1

1 + {Cσ(r)/Ch
σ [nσ(r)]}2 (2.102)

where Ch
σ [nσ(r)] denotes the expression (2.101) evaluated for the homogenous

electron gas [94, 95]. The ELF takes values between 0.5 and 1, where 1
corresponds to perfect localization and 0.5 corresponds to the homogenous
electron gas. In practice, one plots an isocontour at some value between 0.5
and 1 which provides information on electron pair localization.

So far, the derivation of the ELF was very general. Within density functional
theory one makes the approximation that the wave-function in (2.97) is a single
Slater determinant constructed from Kohn-Sham orbitals. In general it turns
out that the ELF is quite insensitive of the method used for obtaining the
orbitals, as long as the single-particle wavefunctions involved properly reflect
the Pauli exclusion principle [96]. Within the DFT framework, in the absence of
magnetic fields and spin orbit coupling [94], the following expression is obtained
for Cσ(r) [95, 96]:

Cσ(r) = τσ(r)− 1

4

[∇nσ(r)]2

nσ(r)
, (2.103)

where τσ(r) is the kinetic energy density:

τσ(r) =
∑
kn

|∇ψknσ(r)|2. (2.104)

Eq. (2.103) can be viewed as the eccess kinetic energy density due to the Pauli
repulsion [96]. The dominant term in (2.103) is the kinetic energy density
(2.104), which takes high values in regions between those where orbitals localize,
thus (2.103) indicates the boundaries of electron localization [96].
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Chapter 3

Evolutionary Crystal Structure
Prediction

Crystal structure prediction from first principles has long been remained a
problem of intractable complexity. Until the late 1990’s it was generally claimed
that it is not possible to predict crystal structures of a given stoichiometry,
without additional information from experiment. In the last few years, many
attempts have been made to address this problem using different optimization
schemes such as simulated annealing [97], metadynamics [98, 99], particle swarm
optimization [100] as well as the minima hopping method [101]. Some of the
most advanced methods upon this field make use of evolutionary or genetic
algorithms [12, 13, 14, 102, 103, 104, 105].

Evolutionary algorithms for crystal structure prediction are inspired from the
basic mechanisms of biological evolution such as selection, mutation and repro-
duction. A classical simulation starts with an initial population of structures,
produced randomly, if necessary by using information from previous knowledge.
The individuals are assessed by a fitness function, which is usually chosen to
be the specific enthalpy or the free energy. From the best structures, new child
structures are produced applying various variation operators (see below). In
this sense, the new structures inherit the properties from the parent structures
which are carried onto the next generation. The best individuals from this new
generation are again chosen to be parent structures of the next one. The great
success of this method can be attributed to the fact that it is not necessary to
sample the full energy landscape i.e. the full configuration space of geometries.
The initial population gradually evolves towards a generation which includes
structures close to the global minimum of the energy landscape.

Nowadays, evolutionary algorithms are widely used in the field of crystalogra-
phy and quantum chemistry. Applications range from prediction of novel high
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pressure-phases to applications in drug design in the field of computational
pharmaceutics [106]. Recent developments allow the prediction of thermody-
namically stable compositions without an initial knowledge of the compound
stoichiometry. In the following paragraph we point out two applications of the
method and their experimental justification.

3.1 Predictive power of evolutionary crystal

structure prediction

Sodium is usually considered an almost perfect free-electron metal at ambient
conditions. Calculations performed by Y. Ma et.al. predicted that sodium will
transform into a transparent insulating phase at pressures of approximately
200 GPa. The emergence of this insulating phase can be attributed to p-d
hybridization of the valence electrons, and their repulsion by the core states.
These results where confirmed experimentally by Eremets et.al. [107].

In the hydrogen-sulfur system, at ambient conditions, the only stable com-
pound is molecular H2S. Calculations by Duan et.al. [108] using evolutionary
algorithms, revealed the thermodynamical stability of a new H3S compound
at increased pressures. At pressures of 200 GPa, first-principle-calculations
indicated that this compound shows a superconducting critical temperature of
∼ 200 K. The results where later confirmed by experiments of Drozdov et.al.
In fact, this was the first example of a conventional high-Tc superconductor
predicted completely from first principles and later confirmed by experiment.

3.2 Computational complexity of crystal struc-

ture prediction

Crystal structure prediction can be considered as an optimization problem, i.e.
the problem of finding the global minimum of the free-energy landscape. It
turns out that a crucial issue in evolutionary algorithms for crystal structure
prediction is the representation of the individuals. Unlike ordinary genetic
algorithms, where the information contained in the unit cells is mapped to a
binary string, modern crystal structure prediction techniques are using real
number representations for the atom positions and the cell parameters [109].
For a complete representation we need 6 numbers for the unit cell (3 lattice
constants and 3 angles), as well as 3(N−1) numbers for the atomic coordinates,
where N is the number of atoms in the unit cell. Therefore, the dimensionality
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3.2 Computational complexity of crystal structure prediction

of the search space is given by

d = 3N + 3. (3.1)

The number of points in the search space can be estimated in the following
way: The volume of the unit cell is divided into voxels of volume δ3, where one
voxel represents the space an atom occupies in the unit cell. The number of
points C in the energy landscape is than given by the number of ways the N
atoms can be distributed over these elements. Taking into account the different
types of atoms one finds [14, 109]:

C =

(
Vu/δ

3

N

)∏
ξ

(
N

nξ

)
, (3.2)

where nξ is the number of atoms with atomic species ξ. The number C can
be astronomically high, even for small systems. Applying Stirling’s formula to
(3.2) shows that C grows exponentially with the dimensionality of the system
[14]:

C ∝ eβd, (3.3)

where β is a system-dependent constant. Eq. (3.3) shows that the scaling
of the system with dimensionality is faster than any polynomial, hence the
crystal structure prediction problem belongs to the complexity class of NP-hard
problems [14, 109].

A tremendous improvement of the situation is achieved including local opti-
mization steps in the algorithm. Within one optimization step, the parameters
of the system are adjusted around a local energy minimum, using optimization
methods like the conjugate gradient or the quasi-Newton algorithm. After
performing local relaxations, certain degrees of freedom of the system such as
atomic positions, lattice parameters etc. are no longer uncorrelated, which
effectively reduces the possible number of configurations. Fig. 3.1 schematically
shows how the energy landscape is reduced due to local relaxations of the
individuals. The overwhelming amount of possible configurations C is reduced
to physically meaningful crystal structures.

Because of correlations between the parameters of the individuals, the dimen-
sionality (3.1) is reduced to the intrinsic dimensionality d? [109]:

d? = 3N + 3− κ, (3.4)

where κ, in general, is a non-integer number. The decrease in dimensionality
can be significant for some systems. Oganov et.al. found a reduction from 99
to 11.6 for Mg16O16 [110]. The reduction for more chemically complex systems
is less substantial.
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Figure 3.1: Schematic illustration of the energy landscape as a function of one
order parameter. The dashed line indicates the reduced landscape
due to local relaxation of the individuals. The figure has been taken
from [109].

For the evaluation of the fitness function, as well as for the local optimization
of the individuals, ab-inito methods are used. Since those methods are compu-
tationally expensive, efficient evolutionary algorithms should be able to avoid
sampling unpromising regions of the energy landscape. This is achieved by an
intelligent adaptation of parent-selection which generates the new population
(see below). In conclusion, the minimum thresholds inherent in the intermediate
relaxation steps (such as cutoff-energy and k-points sampling) turn out to be
the main limiting factor for the convergence speed of the algorithm.

3.3 Elements of evolutionary algorithms

As already mentioned, the language for describing the essential elements of
evolutionary algorithms is inspired by biological evolution. In the following we
summarize the important terms [109]:

• Individual. A single point in configuration space (one unit cell).

• Population (generation). A set of points in configuration space or of
candidate structures for the global minimum. The number of individuals
within the set is called population size.

• Selection. A process that divides the current population into individuals
that are discarded and individuals which form the basis of the next
generation.
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• Parents. A subset of structures from a population that “survived” the
selection process. The new generation is created from these structures by
means of variation operators.

• Offspring. Structures created from parents by means of variation opera-
tors.

• Heredity. The Heredity operator combines characteristic properties
from one ore more parents into an offspring-structure.

• Mutation. Mutation operators produce a child structure from a single
parent by altering some degrees of freedom.

Fig. 3.2 shows a flowchart of a typical evolutionary algorithm [111]. After
initialization of the first population, the structures are relaxed using several
ab-initio simulation steps with gradually increasing precision. After the first
optimization step the selection procedure is applied, resulting in a new popu-
lation. The individuals in the new population, undergo again the structural
relaxation process. The procedure is repeated until convergence with respect
to some halting criteria has been achieved.

In the following sections we will describe the elements of the evolutionary
algorithm in more detail, going from the top to the bottom of the flowchart in
Fig. 3.2.

3.3.1 Initialization and constraints

One of the most important success factors for evolutionary algorithms is the
initialization of the initial population. The first set of crystal structures should
be characterized by a high diversity, an uniform distribution over the energy
landscape and a physically meaningful representations of the individuals.

If there is no previous knowledge from earlier runs or experiment, a common
way to initialize the first population is a uniform random generation of crystal
structures [12, 109]. In this case, the lattice vectors of the unit cell as well as
the positions of the atoms within the cell are chosen randomly. However, such
a random initialization produces also unphysical individuals which have to be
discarded from the population.

Within the Uspex-code [12], a structure is considered to be unphysical if one
of several constraints is violated. First of all, the distance between two atoms
should not be less than a user-defined value. Even at extreme pressures, there
are no known bonds shorter than 0.5 Å [109]. Second, the length of the lattice
vectors should not below a predefined threshold. One can set the shortest lattice
vector to the ionic diameter of the largest atom. Furthermore, a structure is
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Figure 3.2: Simplified flowchart of typical evolutionary algorithm [111]

considered unphysical, if one of the unit cell angles is too small. Oganov et.al.
[103] introduced a cell transformation where the lattice vectors are rescaled in
such a way, that all angles fall in the (60◦,120◦)-range.

Random initialization causes a problem for large systems (N > 20) [112].
With an increasing number of atoms, randomly-generated structures become
more and more similar and disordered. Structures of this type show similar
thermodynamic properties and are in general energetically poor [113]. A simple
strategy to overcome this problem is cell splitting [113]. Here a translational
pseudosymmetry is introduced splitting the unit cell into subcells that are filled
randomly with atoms and vacancies [111].
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The method to set up the first population was improved by Lyakhof et.al.
including the symmetries of the space groups. Within this scheme, the structure
is constructed by choosing one of the 230 space groups consistent with the
predetermined number of atoms in the unit cell. After rescaling the unit cell to
the desired volume, an atom is placed randomly on a general Wyckoff position
and the symmetry operations of the space group are applied. If this procedure
results in a situation where the distance of two atoms violates the constraint,
the atoms are merged into a single atom by averaging the coordinates. This
is equivalent to putting a single atom directly into a high-symmetry position
and applying the symmetry operations afterwards. During the procedure of
adding atoms, one has to ensure not to exceed the desired number of atoms,
which involves moving atoms on Wyckoff positions with lower multiplicity. This
method has proven to be a significant enhancement for the structure prediction
of large systems [111].

3.3.2 Selection and fingerprint functions

One of the crucial steps of evolutionary algorithms turns out to be the selection
of appropriate parent structures. The trade-off one has to deal with is that
on the one hand, the algorithm should gradually converge to populations
comprising structures of higher fitness and on the other hand one has to ensure
a high diversity of structures in the population.

A naive way to select parents would just be to take the best structures according
to their fitness ranking. However, the best structures of a population are usually
located in the same basin of attraction of a local minimum and variation
operators will produce individuals close to that basin [113]. Because of this, the
population is gradually flooded with structures from the same basin and the
algorithm gets trapped in a local minimum. This phenomenon is called genetic
drift [114], and is a common problem associated with evolutionary and genetic
algorithms. One possible solution that maintains a relatively high diversity
in the population is the stochastic selection scheme [109]. Here, a relatively
large fraction (∼ 60%) of the best individuals is chosen as a possible pool of
parent structures. The probability for an individual to be chosen as a parent is
proportional to its fitness ranking.

More modern and sophisticated selection schemes are based on fingerprint
functions [110]. In order to determine the similarity between different individu-
als reliably, a unique function is needed, which is independent of the crystal
structure representation. Moreover, the function should be quite insensitive to
numerical errors, and should give a considerable response if two or more atoms
are interchanged [109]. The following definition for the fingerprint function was
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introduced by Oganov, Valle et.al. [109, 110, 112]. The function is related to
the radial distribution function and to diffraction spectra [109]:

f(R) =
1

N
∑
〈µ,ν〉
ν 6=µ

ZµZν
4πR2

µν

Vu

N
δσ(R−Rµν)− 1, (3.5)

where Zµ are the atomic numbers for atom µ, Rµν = |Rµ −Rν | is the distance
between atoms µ and ν, Vu is the unit cell volume, N is the total number
of atoms in the unit cell and δσ(x) is a Gaussian function of width σ. The
notation 〈µ,ν〉 for the sum index means that the sum over ν is restricted within
a cutoff radius around atom µ. The prefactor of the double sum in (3.5) is
given by

N =
∑
ξ,η

ZξZηnξnη, (3.6)

where the double sum runs over all distinct atom types and nξ denotes the
number of atoms with atomic number Zξ.

The function (3.5) only depends on interatomic distances and is therefore
independent of the representation. In order to compare the fingerprint functions
of different structures one introduces a vector vFP, whose entries correspond
to the panel elements of the discretised fingerprint. The i’th vector element is
obtained by

{vFP}i =
1

D

(i+1)Dˆ

iD

f(R)dR, (3.7)

where D describes the width of a discretization interval. Eq. (3.7) can be
used to define a metric in fingerprint space. Two structures have the same
fingerprint if the scalar product of the normalized vectors vFP/‖vFP‖ is equal
to one. Therefore, a natural choice for the distance measure between two
structures denoted by πi and πj, is the cosine metric [109, 113, 112]:

d(πi,πj) = 0.5

(
1− vTFP(πi)vFP(πj)

‖vFP(πi)‖‖vFP(πj)‖

)
. (3.8)

Eq. (3.8) takes values between 0 and 1 and provides a “similarity” criteria for
the individuals. This distance metric can also be used to define a measure of
disorder and diversity for the structures within a population. This is the so
called quasi-entropy S [109, 110, 112, 113]:

S = − 1

N2
pop −Npop

∑
i,j 6=i

[1− d(πi,πj)] ln[1− d(πi,πj)], (3.9)

42



3.3 Elements of evolutionary algorithms

where i and j run over all structures within a population and Npop is the
number of individuals in the population. High values of the quasi-entropy
correspond to a uniform distribution of fingerprint metrics and hence to high
diversity in the population. The quasi-entropy can be used as an indicator for
premature convergence.

Using the introduced fingerprint metric (3.8), the selection process can be
improved significantly. To avoid genetic drift, one just takes different structures
and ignores all similar ones [109]. This is achieved by means of the clustering
technique [111]. Here, the population is divided into a predefined number of
groups. Starting from an arbitrary structure πi, all structures that are located
within some threshold distance around πi are put into a group. The process is
repeated for all remaining individuals until all of them belong to some group.
If the resulting number of groups differs from the desired one, the threshold
distance is modified and the population is reclustered. In the end, the best
structure from each group survives into the next generation.

In general it turns out that it is a good idea to keep the best structures from a
population unchanged into the next one. Different investigations indicate that
this enhances the learning character of the algorithm [109]. However one has
to be careful not to take to many structures from the same energy funnel.

3.3.3 Variation operators

Variation operators are used to construct the new population from the selected
parent structures, and hence play a crucial role in all evolutionary algorithms.
There are basically three different types of variation operators: Mutation,
heredity and permutation.

Mutation operators generate a child structure from a single parent by distorting
the atom positions or the lattice vectors. In lattice mutation, the new lattice
vectors are obtained applying a symmetric strain matrix [109]:

a′ =

1 + ε11
ε12
2

ε13
2

ε21
2

1 + ε22
ε23
2

ε31
2

ε32
2

1 + ε33

a. (3.10)

Here, the εij are random numbers from a Gaussian distribution with mean
value zero and a user-predefined deviation. Because lattice mutation does not
conserve volume, after applying (3.10), the volume is rescaled to Vu. Lattice
mutation is used to explore the vicinity of energetically good structures and
helps to prevent premature convergence [109].

In recent years, mutation of atomic coordinates has become part of the evo-
lutionary structure prediction technique [112, 113]. Using a projection of the
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fingerprint function for single atoms [113], it is possible to calculate the con-
tribution of individual atoms to the total degree of order. In the mutation
process, random numbers with a Gaussian distribution are added to the atomic
coordinates. For atoms in high-symmetry positions, the width of the Gaussian
is smaller, i.e. they are influenced less than atoms associated with a low degree
of local order. It has been demonstrated that such an “intelligent” distortion
of atomic positions can increase the efficiency of the algorithm [113].

Soft mutation represents a powerful variant of the mutation operator and is used
as a standard operation in the Uspex code [111]. The underlying principle of
this operator was first investigated by Roy et.al. in [115]. They discovered that,
if a system is located in a local energy minimum, lower-lying minima are usually
separated by small energy barriers. Hence, the basic idea of soft mutation is to
move the atoms along the direction of the eigenvector of the softest phonon
mode, because low-frequency eigenmodes correspond to directions with low
curvature in the Born-Oppenheimer energy surface. The amplitude of the ionic
displacements is an user-defined parameter, but should be chosen to be of the
order of the average bond length [111].

Fortunately, it is not necessary to move the atoms exactly in the direction of
to the eigenvector associated with the softest mode [111]. Otherwise, the huge
computational effort for calculating the dynamical matrix would by far exceed
the gain of the soft-mutation operator. The dynamical matrix can be estimated
from the bond-hardness coefficients, which can be calculated from bond lengths
and tabulated atomic properties like ionic radii and electronegativity [111]. It
turns out that this very crude approximation yields surprisingly good results
for the soft mutation operator.

Heredity operators are used to merge the characteristic properties of two or
more individuals into one child structure. Within the Uspex-code, the heredity
operator combines spatially coherent slabs of two parent structures. In more
detail the method works as follows. In the beginning, the atomic positions of
the atoms are shifted by a vector w(p) = x

(p)
1 a

(p)
1 + x

(p)
2 a

(p)
2 + x

(p)
3 a

(p)
3 , where

a
(p)
i are the lattice vectors of the parents (p), and x

(p)
i are uniformly distributed

random numbers from the interval [0,1]. If an atom falls outside the unit cell,
it is mapped back to the unit cell, subtracting the corresponding lattice vectors.
After this, two planes are constructed, defined by the point xa

(p)
i , where x is a

random number from [0,1] and a
(p)
i are randomly chosen lattice vectors, and

the two remaining lattice vectors of the corresponding parents. The offspring is
formed by the atoms below the plane of the first parent structure, and the atoms
above the plane of the second parent structure [13]. In the process of putting
the slabs together, the child structure can end up with too few or too many
atoms in the unit cell. In this case, atoms are added or removed depending
on their local degree of order [113]. As in the case of atomic mutation, atoms
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Figure 3.3: Schematic representation of a projection of the energy landscape
with two well seperated energy funnels. Combining structures π1

and π2 results in an energetically bad offspring. [111]

located in high-symmetry positions are more likely kept. It has also been shown
that the performance can be enhanced slicing the parent structures into several
slabs of random thickness and using the slabs with the highest average order
to construct the child.

The heredity operator can further be improved using the fingerprint metric
(3.8). Usually, if structures from different energy funnels are combined, it is
very likely that the offspring will be located at a barrier between the two funnels
(see Fig. 3.3). This can be avoided by combining only structures by a distance
below a given threshold dcut(πi,πj) [109].

Permutaion operators interchange the chemical identities of two randomly
selected atoms, hence this operator has an effect only on systems with at least
two different types of atoms. It has been demonstrated that this operator is
very useful for systems where chemically similar atoms are present [109].

In practical calculations, the fraction of the population produced by the various
variation operators is set manually by the user. It turned out that good
convergence properties are obtained by keeping the fraction of heredity-produced
structures comparatively high (∼ 50%), an produce more individuals by soft
mutation than by lattice mutation operators. In order to maintain the diversity
continuously on a high level, a small fraction of structures is produced randomly
using space group symmetries.
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3.3.4 Halting criteria

As in every iterative method, the evolutionary cycle is repeated until some
halting criteria has been achieved. A possible exit condition would be to stop
the cycle if a maximum number of generations has been produced. An even
better method is to stop if the best structure hasn’t changed over a number of
generations.

A different approach involves the use of fingerprint functions (3.5) and the quasi-
entropy (3.9). One can stop the loop if a certain amount of diversity is reached,
or if the diversity of the structures has not changed over a predefined number
of generations [109]. Alternatively, one can incorporate previous knowledge
from experiment, or from a previous evolutionary run and stop the cycle if all
individuals are converged to a single energy funnel. Because the energy funnels
that can be reached crucially depend on the initial population, it is advisable
to repeat simulations using different starting configurations.

3.4 Extensions for predicting stable stoichiome-

tries

An extension of great relevance is the simultaneous prediction of thermody-
namically stable stoichiometries, which is referred to as variable composition
technique [109]. The basic ideas, as well as guidelines to practical implementa-
tion, are outlined in [116, 117].

Obviously, upon discarding the restriction of fixed stoichiometry, the config-
uration space becomes much more complex. However, with an appropriate
extension of selection rules and variation operators, it is possible to obtain
results of similar quality as for standard evolutionary structure prediction.
One of the early successes of the method was the prediction of stable Fe-Mg
compounds in the inner core of the earth [117], in agreement with the work in
[118].

The first modification of the standard technique concerns the sampling of
structures for the initial population. Here one samples all structures from a
range of desired stoichiometries specified in the beginning. It is also possible to
partially restrict the range of possible compounds. For instance, for a three-
component system (A,B,C), one can sample all stoichiometries of the form:
xAnA

BnB
+ yBn′

B
CnC

. The most stable structures of to the compounds AnA
BnB

and Bn′
B
CnC

, from which all individuals under study can be constructed, are
denoted as boundary phases. Within the Uspex-code, variable composition
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runs can be performed within a desired range for the number of atoms in the
unit cell.

Another major modification in the variable-composition technique is that the
fitness evaluation as well as the selection process becomes history-dependent.
Instead of the free energy, the fitness function is replaced by the free energy
of the individual minus the free energy of the most stable boundary phases
from the entire pool of sampled structures [109], i.e. the new fitness function is
the history-dependent formation energy of the structures. Because of the high
dimensionality of the search space, the current population is usually insufficient
for representing an appropriate subspace for the whole amount of degrees of
freedom. Instead, one takes into account all structures from the previous
generations, and selects parents after discarding chemically similar structures
by means of fingerprint functions [117].

In order to effectively scan the search space, variation operators are modified
to no longer preserve the chemical constraints. The permutation operator is
changed into a chemical transmutation operator that is allowed not only to
interchange different types of atoms, but also to transform one atom type into
another [109]. For variable-composition runs, a new heredity operator is intro-
duced. First of all, heredity does no longer conserve the stoichiometry. When
combing spatially-coherent slabs of two individuals with different stoichiometry,
the resulting structure will consist of two chemically different blocks, and a
subsequent relaxation will probably cause the structure to decompose into
separated phases. Thus, many slices are cut from both parents and combined
into one child [117].

3.4.1 Thermodynamically stable phases in a binary sys-
tem at a given pressure

In this work we will study binary lithium-sulfur compounds at ultrahigh
pressures, hence we restrict our discussion to explain how thermodynamically-
stable high-pressures binaries can be obtained using the variable composition
technique.

In general, for calculations at a fixed pressure, the fitness function characterizing
a structure πi is the enthalpy per atom:

H(πi)

[
eV

at.

]
= E(πi)

[
eV

at.

]
+ P

[
eV

Å
3

]
· Vu

N

[
Å

3

at.

]
, (3.11)

where E(πi) is the total energy, P is the external pressure and Vu/N is the unit-
cell volume divided by the number of atoms in the unit cell. In the end of the
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Figure 3.4: Section from a fictitious convex hull. If a structure π(i) is located
above the convex hull, a linear mixture of phases π(a) and π(b) will
have a lower formation enthalpy.

variable composition simulation process, the formation enthalpy with respect
to the boundary phases π(B1) and π(B2) is calculated for all structures of all
generations. If the stoichiometry of the structure πi is given by: xB1B1 +xB2B2,
the formation enthalpy is given by:

∆H(πi) = H(πi)−
xB1H(π(B1)) + xB2H(π(B2))

xB1 + xB2

. (3.12)

All structures for which (3.12) gives a negative value are thermodynamically
stable against decomposition into the boundary phases. The data points
resulting from this process are plotted against the B2-content denoted by
x = xB2/(xB1 + xB2). For all data points, for which ∆H < 0, we draw the most
convex envelope which is referred to as the convex hull. The situation is shown
in Fig. 3.4. A sample comprising N

(i)
f.u. formula units of structure type π(i) will

decompose into N
(a)
f.u. formula units of π(a) and N

(b)
f.u. formula units of π(b), where

the ratio between the number of formula units of the neighboring phases a and
b is given by a modified lever principle:

N
(a)
f.u.

N
(b)
f.u.

=
x(b) − x
x− x(a)

x
(b)
B2

+ x
(b)
B1

x
(a)
B2

+ x
(a)
B1

. (3.13)

Here, x
(b)
B2

and x
(b)
B1

denote the number of B1,2-units in the phase b. In this
way, thermodynamically stable Li-S compounds are identified analyzing the
formation enthalpies of all phases.
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3.5 Antiseeds

A very efficient way to prevent the algorithm from being “trapped” in a local
minimum is the antiseeds technique, presented in [111]. In most evolutionary
simulations performed in this thesis, we make use of this method. The basic idea
is to impose an additional evolutionary pressure on already sampled structures.
The method is inspired from metadynamics simulations [111].

In the antiseeds technique the energy landscape is modified adding Gaussian
functions to regions of the phase space which have been already sampled in
previous runs. The method allows the algorithm to overcome energy barriers if
the simulation starts to get trapped in an energy funnel. The parameters Wj

and σj of the Gaussian depend on the history of the individuals. The fitness
function F (πi,t) for the structure πi at a time t is evaluated through

F (πi,t) = F (πi,t = 0) +
∑
j

Wj exp

[
−d(πi,πj)

2

2σ2
j

]
, (3.14)

where Wj is proportional to the fitness variance and σj is a user specified
constant cp multiplied with the average pair fingerprint-distance within a
population: σj = cp 〈d(πi,πj)〉i [111]. The sum runs over all stored antiseed-
structures. The analogous of the antiseeds-technique in a classical evolutionary
process is the ageing of the individuals. Since (3.14) is time-dependent, the
fitness of the individuals is progressively reduced, causing the individuals to
“die” after a certain number of generations.
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Chapter 4

The Lithium-Sulfur Phase
Diagram

In this chapter we outline the evolutionary predictions for the high pressure
lithium-sulfur phase diagram. As already discussed in the opening chapter, the
lithium-sulfur system is a natural choice for the search of high-Tc conventional
superconductors, because lithium has a low mass and is chemically similar to
hydrogen. The difference in electronegativity between lithium and sulfur is
such that one comes to the conclusion that those atoms will form ionic bonds at
ambient pressure. However, it is known that at elevated pressures the s-valence
electrons of lithium hybridize into the p-orbitals [40], thus at high pressures we
expect the emergence of more covalent bonds.

In this work the Li-S phase digram is investigated to pressures up to 700 GPa.
Although this is almost twice the pressure in the inner core of the earth,
nowadays such extremely high pressures can be attained experimentally by
means of diamond anvil cell experiments [119]. The current world record from
2015 is 750 GPa, achieved in a double-stage diamond anvil cell experiment on
osmium [120].

In the following sections, the method for constructing the high pressure phase
diagram is outlined and the stability regimes, as well as the crystallographic
properties, of the observed phases are discussed. As we will see, several novel
high-pressure phases are stabilized at increased pressures. Most of the phases
exhibit a metallic behavior, which leaves us with a very large pool of potentially
high-Tc superconductors.
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4.1 Constructing the phase diagram and com-

putational details

The possible high-pressure stoichiometries within the lithium-sulfur system
were explored by means of the Uspex evolutionary crystal structure prediction
technique [12, 14, 111], extensively described in chapter 3. The underlying
structural relaxations were performed using the Vasp code [47, 48, 49, 50]
within the generalized gradient approximation [57]. In all calculations the
all-electron projector-augmented wave method was employed [61, 62]. In order
to avoid core overlap in lithium at high pressures, we used a PAW-potential
which treats the 1s and 2s states as valence.

For constructing the exact phase diagram, we followed a four-step process,
accurately described in the following subsections. For practical purposes and
because of time limitations, the search space was restricted to phases with
maximally 24 atoms per unit cell, as well as to phases with 6 atoms per formula
unit.

4.1.1 Investigation of the search space using the vari-
able composition technique

In order to identify thermodynamically stable stoichiometries in the Li-S system,
we performed a preliminary scan of the search space using the Uspex variable
composition technique described in section 3.4. The runs were executed in the
pressure range from 0 to 600 GPa in steps of 50 GPa. In order to keep the
search space of a manageable size, the upper limit for the difference between
the maximum an minimum number of atoms was set to 4, and several runs were
performed using different ranges. In order to sample all possible stoichiometries
at the respective pressures, we used pure lithium and sulfur as boundary phases
of the system. The following list outlines a representative input-file for a
variable composition Uspex run at a pressure of 50 GPa.

The input file 4.1 is divided in several sections, each of which controls a certain
subelement of the evolutionary algorithm. The subsection POPULATION specifies
the number of individuals per generation, the halting criteria and the details
of the selection process. In all variable composition runs, a relatively large
population size between 50 and 60 individuals was used. In the vast majority of
phases, between 15 and 20 generations were produced by the algorithm, until
convergence has been achieved. The number of best structures that survive
into the next generation was defined to be 15% of the population size. The tag

52



4.1 Constructing the phase diagram and computational details4.1 Constructing the phase diagram and computational details

******************************

* TYPE OF RUN AND SYSTEM *

******************************

USPEX : calculationMethod

301 : calculationType

1 : optType (1=enthalpy)

1 : AutoFrac

% atomType

Li S

% EndAtomType

% numSpecies

1 0

0 1

% EndNumSpecies

6 : minAt

8 : maxAt

******************************

* POPULATION *

******************************

55 : populationSize

70 : initialPopSize

23 : numGenerations

12 : stopCrit

0 : reoptOld

0.6 : bestFrac

******************************

* VARIATION OPERATORS *

******************************

0.50 : fracGene

0.20 : fracRand

0.20 : fracAtomsMut

0.10 : fracLatMut

******************************

* CONSTRAINTS *

******************************

% IonDistances

0.95 1.05

1.05 1.2

% EndDistances

******************************

* ANTISEED SETTINGS *

******************************

9 : antiSeedsActivation

0.01 : antiSeedsMax

0.005 : antiSeedsSigma

******************************

* DETAILS OF AB INITIO CALCS *

******************************

% abinitioCode

1 1 1 1 1

% ENDabinit

% KresolStart

0.15 0.13 0.10 0.07 0.04

% Kresolend

% commandExecutable

mpirun -np (#c) vasp >& out1

mpirun -np (#c) vasp >& out2

mpirun -np (#c) vasp >& out3

mpirun -np (#c) vasp >& out4

mpirun -np (#c) vasp >& out5

% EndExecutable

0 : whichCluster

1 : numParallelCalcs

50 : ExternalPressure

The input file above is subdivided into several sections, each of which is responsi-
ble to control a certain subelement of the evolutionary algorithm. The sub-card
POPULATION controls the number of individuals per generation, the halting
criteria and the details of the selection process. In all variable composition runs,
a relatively large population size between 50 and 60 individuals was adopted.
In the vast majority, between 15 and 20 generations were produced by the
algorithm, until convergence has been achieved. The number of best structures
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Figure 4.1: Typical Uspex input file for an evolutionary variable-composition
run at an external pressure of 50 GPa. The file is devided into
several subsections, each of which controls a certain subelement of
the evolutionary algorithm.
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bestFrac defines the fraction of the current population used to construct the
next generation.

The segment VARIATION OPERATORS controls the details for the production of
the next generation. The tag fracGene determines the number of individuals
produced by heredity, 20% of the individuals are produced by soft mutation
(fracAtomsMut) and 10% are generated using lattice mutation. In each gen-
eration, 20% of the structures were produced randomly from space groups.
These settings were used for all variable and fixed stoichiometry runs. Our
investigations revealed that these options exhibit good convergence properties
for all investigated systems and pressure regimes.

The CONSTRAINTS segment contains a 2×2 matrix, specifying the smallest
distance between the different types of atoms; the diagonal elements contain
the distances between atoms of the same type. It turned out that these settings
are very sensitive to disturbances in the performance of the algorithm, hence
they have to be adjusted individually for different systems and pressures.

In order to avoid that the system gets trapped in a local energy funnel, we
adopted the antiseeds technique described in section 3.5. In all simulations the
automatic antiseeds activation was adopted. Here, after a certain number of
generations, all structures within a population are treated as antiseeds.

For the intermediate structural optimizations, 4 consecutive relaxations with
increasing precision for the energy, the forces and the k-point resolution were
adopted. For the first and third relaxation step the conjugate gradient method,
for the second and fourth step the quasi-Newton algorithm was used. As a
final stage of the process, we performed one self consistent calculation with an
energy cutoff of maximally 800 eV and a k-point resolution between 0.06 and
0.04 2π/Å.

At the end of the variable-composition simulation processes, the formation
enthalpy with respect to pure lithium and sulfur was calculated an plotted
against the sulfur content. In order to identify possible candidates for thermo-
dynamically stable phases, we analyzed the convex hull (see section 3.4.1) of
all data points.

4.1.2 Restricted evolutionary runs at fixed stoichiome-
try

On the basis of the results of the variable composition runs, described in the
previous section, we performed additional evolutionary simulations at fixed
composition, for all stoichiometries located on the convex hull. The calculations
were performed in 100 GPa intervals starting from 0 GPa. Such simulations
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allow a much more precise determination of stable crystal structures at a given
stoichimetry.

As in the variable composition runs, we adopted the automatic aniseeds tech-
nique to panelize already sampled structures. For all fixed-composition calcula-
tions we used a population size of 50 and a maximum number of generations of
20. The maximum and minimum number of atoms were adjusted depending
on the number of atoms per formula unit. As an example, for the Li3S stoi-
chiometry we selected a minimum number of 8 atoms and a maximum number
of 20 atoms to sample the phases: Li6S2, Li9S3, Li12S4 and Li15S5. For all
stoichiometries we adjusted the range for the number of atoms in such a way
that between 4 to 5 different system sizes are investigated. To further ensure the
correctness of the individual simulations we repeated runs at selected pressures
with different ranges for the maximum and minimum number of atoms.

For the structural optimization steps we used the same procedure as for the
variable composition runs. We used kinetic energy cutoffs up to 800 eV and
Monkhorst-Pack k-meshes with a resolution of 0.03 2π/Å.

4.1.3 Hierarchy of the crystal structures

In order to ensure the correct stability hierarchy, the best 3 structures from
each fixed composition run were relaxed further with stricter convergence
thresholds. To this end we performed extensive convergence tests with respect
to plane-wave cutoff and k-points sampling. Some of the results for the most
stable high-pressure phases are summarized in the figures 4.10a - 4.11c at the
end of this chapter. Here we showed the convergence of the total energy with
respect to energy cutoff and the number of k-points in the irreducible part of
the first Brillouin zone. All plots correspond to a external pressure of 500 GPa.
We used the Monkhorst-Pack scheme for generating the k-meshes, as well as
Γ-centered k-point grids for phases crystallizing in the hexagonal and trigonal
crystal systems. For a better readability we adjusted the width of the bins on
the energy axis to be 2 meV on the cutoff-axis, and 0.5 meV on the k-points
axis. The results show that for the vast majority of phases, an energy cutoff of
1200 eV leads to a total energy convergence better than 1 meV/at.

In order to estimate reliable values for the formation enthalpy, we ensured that
all forces are converged to values better than 1 meV/Å. For all investigated
structures, we obtained a diagonal and isotropic stress tensor, with fluctuations
in the diagonal elements smaller than 0.5 kbar. The diagonal elements of the
stress tensor were used to estimate the enthalpy of the structures using equation
(3.12).
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4.1.4 Analytical determination of structural phase tran-
sitions

In order to evaluate the pressures where structural phase transition occur,
the phases resulting from the process described in section 4.1.3 were relaxed
further using the predetermined convergence parameters in pressure intervals
of 50 or 100 GPa. The total energy versus volume data E(V ) were fit to a
Birch-Murnaghan equation of state [121, 122]:

E(V ) = E0 +
9V0B0
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The pressure versus volume dependence can be obtained from (4.1) by taking
the derivative with respect to volume:
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(4.2)

where V0 is some reference volume in [Å
3
/at.], B0 represents the bulk modulus,

and B′0 = ∂B0/∂P . In order to obtain an analytical expression for the enthalpy
versus pressure H(P ), we calculated the corresponding volumes for a set of
desired pressures by numerically searching for the zeros of Eq. 4.2. Subsequently,
the expression H(P ) was used to accurately determine the stability regimes of
the different phases.

4.2 Analysis of the Li-S phase diagram

4.2.1 Predictions for elemental lithium and sulfur

Before discussing the novel phases predicted by our evolutionary search, show
that our calculations reproduce accurately literature results for elemental
lithium and sulfur, as well as for the only known stable lithium-sulfur compound
Li2S.
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Figure 4.2: Enthalpy difference of the different lithium phases with respect to
the fcc phase, calculated from fitting the data to a Birch-Murnaghan
eqution of state.

For elemental lithium, we performed extensive fixed-composition evolutionary
runs in pressure intervals of 50 GPa. To identify thermodynamically stable
phases, we applied the process described in section 4.1.3 and 4.1.4. The results
essentially reproduce the predictions in [123]. Fig. 4.2 shows the predicted
high-pressure phase diagram of elemental lithium. The standard bcc-phase
gets destabilized at very low pressures, and transforms into an fcc structure.
In the pressure interval from 20 to 40 GPa, the difference in energy between
the fcc phase and the trigonal R3̄m phase is less than 1 meV/at., which is
smaller than our calculation accuracy. At 40 GPa we observe a transition
to a cubic cI16-phase (space group I 4̄3d) with 16 atoms per unit cell. The
existence of this structure was confirmed experimentally in [37]. The structure
can easily be derived from the bcc lattice: The bcc lattice can be seen as a
packing of non-intersecting cylinders running along the [111]-directions. A shift
of the cylinders along their axis lowers the symmetry to I 4̄3d and changes the
coordination of the structure. The cI16 structure remains stable up to 100 GPa,
where a Cmca-24-structure with 24 atoms in the unit cell takes over. This
structure, previously predicted by other ab-initio calculations [38], can be seen
as helical chains of lithium atoms, running along the long unit cell axis. Within
our restrictions, we found this phase to be the most stable up to a pressure of
330 GPa. However, more recent calculations, using a larger number of atoms in
the unit cell reveal the existence of two new phases in the pressure regime from
60 to 270 GPa. Using a particle swarm optimization technique, Jian Lv et.al.
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Figure 4.3: Enthalpy difference of the different sulfur phases with respect to
the β-polonium phase, calculated from fitting the data to a Birch-
Murnaghan eqution of state.

[39] predicted an Aba2-40 structure (60 to 80 GPa), and a Cmca-56 structure
(80-270 GPa) to be more stable than Cmca-24. According to Jian Lv et.al [39],
the Cmca-56 structure can be described as a alternated stacking of Cmca-24
structures with intermediate layers of the P42/mbc type. We conclude that
the difference in enthalpies are too small to affect the convex hull at high
pressures. The stability range of the Aba2-40 is comparatively small, hence it
can be ignored for the subsequent investigations. At a pressure of 330 GPa,
we observe a transition to cubic P4132 phase with 4 atoms per unit cell. This
structure was extensively investigated in [123]. The phase displays interstitial
localization of electron pairs as observed in the other Li-phases in certain
pressure regimes. Our investigations suggest that this phase remains the most
stable up to pressures of at least 700 GPa [2].

The high-pressure behavior of elemental sulfur is one of the most complex
of all elements. There are still many open questions concerning the exact
stability regimes and structural details [124]. In order to investigate the sulfur
phase diagram in the pressure regime from 0 to 100 GPa, we performed Uspex
fixed composition runs with steps of 10 GPa. The resulting lowest enthalpy
structures were relaxed further with stricter convergence thresholds and fitted
to a Birch-Murnaghan equation of state. The resulting phase diagram is shown
in Fig. 4.3. At ambient pressure, we observed the well known α-sulfur phase
consisting of S8 molecular rings. Because of the large volume inside the rings,
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this phase is very unstable upon compression and transforms into a polymeric
phase consisting of spiral trigonal chains [2]. In reference [12], this is referred
to as the SII-phase. At pressures of approximately 20 GPa we predicted a
phase consisting of polymers made up from S3 molecules as the most stable
[2]. Structurally, this phase is related to the bco-type high pressure allotrope of
sulfur [124]. Above 80 GPa our simulations repeatedly confirmed the stability
of the β-Polonium structure, whose existence has been confirmed in several
experiments [125]. Despite many attempts, we could not confirm the stability of
the base centered orthorhombic (bco) type structure, whose stability regime has
been measured experimentally to lie within 83 and 162(5) GPa [126, 125]. At
pressures of approximately 510 GPa, the β-Po structure continuously transforms
into a bcc structure, stable up to the highest pressure investigated. This is
consistent with previous calculations [127]. The β-Po polonium phase is a
superconductor with a maximum transition temperature of 17 K at 200 GPa
[128].

4.2.2 Predictions for Li2S

The only stable compound known in the lithium-sulfur system is Li2S, crys-
tallizing in a cubic Fm3̄m antifluorite structure. This material has attracted
great interest in the last years, due to possible applications as a nano structured
[9] or liquid [10] cathode material in battery applications. On the other hand,
there is very little available knowledge on the high-pressure phase transitions
in Li2S.

Our variable-composition evolutionary simulations predicted correctly the Li2S
as the most stable structure at ambient pressure. The variable composition
runs, preformed at 0 GPa, suggest that Li2S is the only stable stoichiometry at
ambient conditions. The lattice constant obtained from the structural relaxation
process of a = 5.711 Å matches very closely the experimental observations [129].

Grzechnik et.al. detected a reversible antifluorite to anticotunnite phase transi-
tion at 12 GPa using Raman spectroscopy and synchrotron angle- dispersive
powder X-ray diffraction [11]. In good agreement with this observation, our
simulations confirmed the existence of the Pnma anticotunnite structure [2].
We were able to locate the transition pressure at 13 GPa. According to our
calculations, the Pnma structure continuously transforms into a Ni2In-type
structure of space group P63/mmc at a pressure of approximately 25 GPa [2].
This structure is an insulator until 221 GPa, where it is metalized by band
overlap [2]. Fig. 4.4 shows the band gap as a function of external pressure.
The calculations were performed using a kinetic energy cutoff of 1200 eV and
25× 25× 25 Γ-centered k-point grid for sampling the first Brilloin zone.
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Figure 4.4: band gap against external pressure for Li2S P63/mmc

It is noteworthy that, the observed phase transitions in Li2S are consistent
with transition sequences observed in other alkali metal sulfides like Na2S and
K2S [130, 131]. The reversible antifluorite to anticotunnite transition is also
observed in the closely related compound Li2O [132]. A feature of this transition
is that it shows a relatively large hystereses upon pressure reversal [132, 11].

4.2.3 Stability regimes and structural properties of novel
high pressure Li-S compounds

The calculations performed within the variable structure prediction scheme
revealed that for pressures higher than 20 GPa, several new Li-S compounds
are stabilized [2]. Fig. 4.5 shows the predicted convex hulls for pressures of 0,
50, 100 and 500 GPa, including metastable phases. The formation enthalpies
for the points located on the convex hulls were calculated using the analytical
expression for the Birch-Murnaghan equation of state. The convex hulls
indicate that within the Li-S system we find a deep formation enthalpy funnel
(∼ -2.3 eV/at. for P = 100 GPa), which means that Li-S compounds are in
general energetically preferable against the boundary phases. For pressures
smaller than 100 GPa, we observed several Li-rich stoichiometries like Li7S and
Li9S. Those phases are formed by intercalating sulfur into a lithium matrix.
Structures of this kind are of minor interest for further investigations of electron-
phonon properties due to rare occurrence of strong covalent Li-S bonds. Thus,
these structures are discarded through our restrictions of maximally 6 atoms
per formula unit. In general it was discovered that phases of this type have no
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significant influence on the predicted convex hulls.

As already mentioned, the transition pressures between different phases within
a given stoichiometry were calculated sorting the lowest enthalpy structures
according to their fitness, and fitting the data to an equation-of-state [2]. As a
representative example, we show the results of this process for Li3S in Fig. 4.6.

In the end we obtained the phase diagram in Fig. 4.7, showing the stability
regimes of the different Li-S compounds in the pressure range from 0 to 700 GPa
[2]. In order to determine pressures where the individual structures become
thermodynamically stable, we calculated convex hulls in pressure intervals of
1 GPa, using the analytic Birch-Murnaghan equation of states, and determining
the pressures where the phases start to occur on the convex hull. It can be
seen that most of the phases exhibit a metallic behavior. We are thus left with
a large pool of potentially superconducting structures. The electron-phonon
properties of the observed structures are further investigated in chapter 5. In
the following, we outline the most important crystallographic properties of the
structures, starting the discussion from the Li-rich side. In figures 4.8 and 4.9,
we plotted the electron localization functions of all predicted Li-S compounds
at an ELF-isovalue of 0.65.

For Li5S, we observed structures in the orthorhombic space group. Li5S Cmmm
(12 atoms per unit cell) starts to appear on the convex hull at a pressure of
15 GPa. This is a very open structure, displaying a weakly metallic behavior.
Hence, this structure is not investigated further in the following sections. At
a pressure of ∼130 GPa, the Cmmm structure transforms in a more closely
packed Immm structure, which is thermodynamically stable over a very large
pressure range until 650 GPa, where it disappears from the convex hull. The
electron localization function of this structure shows well separated maxima
around the centers of the tetragonal faces, indicating localized interstitial
electron pairs. The electron-phonon properties of this structure are discussed
in more detail below [2].

The Li4S stoichiometry only gets stabilized at extreme pressures (P > 290 GPa).
This phase crystallizes in the trigonal crystal system with 10 atoms per unit cell,
and is structurally related to Li2S P63/mmc. Due to the low symmetry and
poorly metallic behavior, this structure is not investigated further. However,
we keep this phase on the convex hull because it has a strong influence on the
stability regimes of the other phases [2].

The Li3S compound is of particular interest for our investigations because it
has the same stoichiometry as the high-Tc compound H3S. Starting from a
pressure of 20 GPa, Li3S is present on the convex hull up to the highest pressure
investigated. Below 225 GPa, the structure identified as the most stable is of
the simple cubic Pm3̄m-type (see Fig. 4.6) [2]. The unit cell of this structure
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Figure 4.5: Convex hulls at pressures of 0,50,100 and 500 GPa. Red points indi-
cate metallic, blue points nonmetallic, and gray points metastable
phases.
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Figure 4.6: Enthalpy difference of the different Li3S phases with respect to the
Pm3̄m phase, calculated fitting the data to a Birch-Murnaghan
eqution of state.

can be viewed as a cube where the Li atoms occupy the face centered positions,
and S atoms are located at the cube corners, thus all atoms are sitting at
the surface of the unit cell. As shown in Fig. 4.8, the large empty spaces are
localization-attractors for interstitial electron pairs. We observe strong maxima
in the ELF close to 1, corresponding to almost perfect localization. This issue
is analyzed further in the subsequent sections. At 225 GPa, the Pm3̄m is
destabilized towards a tetragonal I4/mmm structure [2]. This unit cell can be
described as a stacking of three simple cubic structures, in which the one in
the middle is shifted by a distance of

√
3a/2 along the cube diagonal, where

a is the short lattice parameter in the tetragonal cell. Besides the different
symmetry properties, the similar interatomic distances and the tendency to
interstitial charge localization relates this structure closely to the Pm3̄m [2].
The I4/mmm structure, stable in a wide pressure range between 225 and
640 GPa, finally transforms into a high symmetry face centered cubic Li3Bi
like structure (space group: Fm3̄m) [2]. The same structure has been reported
theoretically and experimentally in the Li-N system [133]. As we will see in the
following, the electronic properties of this structure are profoundly different
compared to the properties of the Pm3̄m and I4/mmm phases. This can be
attributed to the high coordination and the associated suppression of interstitial
electron pairs. As it can be seen from Fig. 4.8, the electron localization function

63



The Lithium-Sulfur Phase Diagram

0 100 200 300 400 500 600 700

Li

Li5S

Li4S

Li3S

Li2S

LiS2

LiS3

S

cI16 Cmca-24 P4132

bcc fcc+R3̄m

fcc

R3̄m

Cmmm Immm

Pm3̄m

I4/mmm Fm3̄m

Fm3̄m

Pnma

P63/mmc

I4/mmmIm3̄m

S8

SII, S3-polymer

R3̄m (β-Polonium) Im3̄m (bcc)

complex R3̄m (β-Po) Im3̄m

external pressure [GPa]

C
om

p
os

it
io

n
s

metal i.c.a. insulator

Figure 4.7: Phase diagram of the lithium-sulfur system predicted via ab-initio
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shows isolated maxima accumulating along the long lithium sulfur bonds, giving
them a strong covalent character [2].

On the sulfur-rich side we observed the stoichiometries LiS2 and LiS3, stable
in two totally different pressure ranges. LiS2, crystallizing in the tetragonal
crystal system with space group I4/mmm, appears on the convex hull for
pressures higher than 350 GPa [2]. The isocontour of the electron localization
functions (Fig. 4.9) indicates that the charge is mainly localized between the
sulfur atoms, forming a network in the sulfur sublattice. Thus, as we will see
later in more detail, the dynamical properties of this phase are dominated from
the sulfur phonons.

The LiS3 phase is stabilized in a comparatively small pressure range between
20 and 80 GPa. This phase crystallizes in the same Im3̄m structure as the
high-Tc H3S, with the difference that lithium occupies the 2a Wyckoff positions
of sulfur, and sulfur the 4i positions of hydrogen [2]. As in the LiS2 case, it
may be assumed that the dynamical properties of tis structure are essentially
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determined by the sulfur sublattice.

In order to provide more detailed information on the structural properties,
table 4.1 summarizes the Wyckoff-positions and the lattice constants of the
observed phases at selected pressures.
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Table 4.1: Wyckoff position and structural properties of all predicted Li-S com-
pounds. For all presented phases, the angles between the lattice
vectors are determined by the space group. Wyckoff symbols are de-
noted in round brackets. (The table is taken from the supplementary
material in [2])

x y z lattice parameters

Cmmm (100 GPa)

L
i 5

S

Li(1) (4h) 0.344 0 1
2

a = 7.457 Å

Li(2) (2d) 0 0 1
2

b = 3.196 Å

Li(3) (4g) −0.177 0 0 c = 3.247 Å

S (2b) 1
2

0 0

Immm (500 GPa)
a = 4.939 Å

Li(1) (8n) −0.325 −0.265 0
b = 3.390 Å

Li(2) (2a) 0 0 0
c = 2.542 Å

S (2d) 1
2

0 1
2

L
i 4

S

R3̄m (500 GPa)

Li(1) (6c) 0 0 −0.408 a = 2.766 Å

Li(2) (6c) 0 0 0.211 c = 8.174 Å

S (3a) 0 0 0

L
i 3

S

Pm3̄m
a(100 GPa) = 3.003 Å

Li (3d) 1
2

0 0
a(500 GPa) = 2.504 Å

S (1b) 1
2

1
2

1
2

I4/mmm (500 GPa)

Li(1) (4d) 0 1
2

1
4 a = 2.589 Å

Li(2) (4e) 0 0 −0.372
c = 9.245 Å

Li(3) (4c) 0 1
2

0

S (4e) 0 0 0.128

Fm3̄m (500 GPa)

Li(1) (4a) 0 0 0
a = 3.929 Å

Li(2) (8c) 1
4

1
4

1
4

S (4b) 1
2

1
2

1
2

Continued on next page
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x y z lattice parameters
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Figure 4.10: Energy cutoff and k-point convergence for (a) Li (P4132), (b) Li5S
(Immm) and (c) Li3S (Fm3̄m) at 500 GPa
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Figure 4.11: Energy cutoff and k-point convergence for (a) Li2S (P63/mmc),
(b) LiS2 (I4/mmm) and (c) β-Polonium sulfur at 500 GPa

71



The Lithium-Sulfur Phase Diagram

72



Chapter 5

Electron-Phonon Properties of
High-Pressure Li-S Phases

In this chapter we analyze the high-pressure compounds using density functional
linear response calculations, as discussed in section 2.2. Furthermore, electronic
band structures are calculated for all structures of interest. The goal of this
chapter is to give an overview of the superconducting properties of high-pressure
lithium-sulfur phases, as well as to explain their microscopic origin. We will
partly answer the question if high-pressure compounds based on lithium are a
promising choice for the search of high-Tc conventional superconductors.

The chapter is divided into three parts: In the first section we outline the
physics of high-pressure lithium compounds, which underlies their fascinating
properties. The second part presents a summary of the obtained properties and
their relation to high-pressure hydrides. As we will see, there is a fundamental
counter-intuitive difference to high-pressure hydrides that is not explainable by
simple arguments based on the different ionic masses of lithium and hydrogen.
In the last part we give an extensive explanation of the observed properties
analyzing the electronic structures and the electron-phonon spectral functions.

5.1 Origin of the underlying physical proper-

ties

In the search for high-Tc lithium-sulfur compounds that are related to the
observed high pressure hydrides, we focus on the Li-rich phases such as Li5S,
Li3S and Li2S. Obviously, it is of particular interest to analyze the Li3S phases,
because they have the same stoichiometry and electron count as the record

73



Electron-Phonon Properties of High-Pressure Li-S Phases

superconductor H3S. In these phases, the electronic as well as the dynamical
properties are largely determined by Li sublattice. As it can be seen from
equation (2.94), the superconducting critical temperature implicitly depends on
the mass of the ions through the logarithmic average phonon frequency. Hence,
Li-rich solids fulfill at least one of the conditions, necessary to observe high
superconducting transition temperatures, i.e. due to the small Li mass, they
have large vibrational frequencies. Besides this very important condition the
nature of the electronic states at the Fermi level and their intrinsic coupling to
phonons plays a crucial role in order to observe conventional superconductivity.
The behavior of those quantities, can be partially understood by analyzing
the high-pressure properties of elemental lithium. The following very general
discussion largely applies also to other alkali metals [41, 107, 123, 134].

5.1.1 Interstitial electron localization and s-p hybridiza-
tion

As outlined in the opening chapter, although lithium and hydrogen have been
assigned a common column in the periodic table, they display profoundly
different chemical properties. Lithium, which can be considered a prototype
free-electron metal, becomes more insulating under pressure, running through
a metal to semiconductor to metal transition [39, 37]. This counter-intuitive
behavior can be explained by s-p hybridization of the valence electrons and
their associated localization into the interstitial voids of the lattice. In fact, at
high pressures the alkali metals can be considered as high-pressure electrides
[41]. Within some approximations these very unusual materials can be seen
as ionic crystals, in which the anions are effectively replaced by interstitial
electron pairs.

The increasing tendency to s-p hybridization has been investigated in [41], using
ab-initio methods mimicking the external pressure using a compressed helium
lattice. The reason for using helium is that it is a chemically very inert element,
displaying a minimal orbital overlap even at very high pressures. This model
has also been used to investigate the tendency to interstitial charge localization
(see below). The s-p hybridization in lithium can easily be explained by the
orthogonality condition of the 2s and 2p orbitals. The 2p orbitals have no nodes
in the radial part of the wave functions, whereas the 2s orbitals have nodes. As
pressure is applied reducing the lattice constant of the auxiliary helium lattice,
the 2s as well as the 2p states rise in energy, but the 2p states rise less steeply.
This is because, when the spatial extend of the wave-function is reduced due
to compression, the kinetic energy of the 2p states rise less steeply than the
energy of the 2s states. At a certain point, the 2p level drops below the 2s level,
and electrons are transferred into the p states. A related argument for reaching
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this conclusion is that the 2s orbitals always have a larger electron density far
away from the nucleus. Therefore the 2s states are more destabilized upon
compression [40]. Within the helium-containment model mentioned above, it
has been shown that the transition pressure for lithium, where the 2p state
falls below the 2s state, is achieved at approximately 100 GPa [41]. It has to be
mentioned that 2s-2p hybridization usually is accompanied by an increasingly
insulating behavior, which can lead to suppression of high-Tc conventional
superconductivity. This is because hybridization with the p orbitals leads
to a deformation of the 2s Fermi surface, which causes deviations from the
free-electron like behavior.

In order to explain the tendency to interstitial charge localization observed
in high-pressure Li-S compounds (Fig. 4.8), one can make use of a simplified
model in which the localized electron pairs are viewed as interstitial quasi-
atoms, having their own quantized energy levels [41]. Although the shape of
the interstitial voids differ significantly from a sphere, Miao et.al [41] have
shown that the low-lying eigenstates of the interstitial quasi-atoms are very
well described by a “spherical container model”, where the potential inside
the sphere is zero, and infinite outside. Treating the corresponding eigenvalue
problem is a straightforward task in quantum mechanics, and the solution
can even be obtained in arbitrary dimensions [135]. The radial part of the
wavefunctions are given by spherical Bessel functions, and the energy levels,
depending on a principal and an orbital quantum number (n,l), can be written
as follows [41]:

E(n,l) = z2
n,l

2π2

R2
(5.1)

where R is the radius of the potential sphere and zn,l are dimensionless constants
which represent the zeros of the Bessel functions. An important question is how
to choose the radius R of the interstitial space in order to model correctly the
energy levels of the quasi-atom. A very reasonable approach was suggested in
[41]. Here a single vacancy is included in the helium-containment model which
represents the interstitial quasi atom, and the radius R is written in terms of
the atomic distance between the helium atoms D0 and a cutoff radius Rc:

R = D0 −Rc. (5.2)

The radius Rc is adjusted so that the 1s energy of the spherical container
model exactly reproduces the energy of the helium vacancy model with one
electron in the interstitial space. Having specified the value of R at a certain
pressure, one can compare the valence energies of the atom under study (Li),
with the 1s-state energy of the interstitial quasi-atom. For Li, as pressure
is increased, the valence states of Li as well as the states of the interstitial
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quasi atom both rise in energy. However, at some point (in the helium-cavity
experiment approximately at 80 GPa [41]) the energy of the valence states in Li
exceeds the 1s energy of the spherical container model, and the valence charge
is transferred into the interstitial space. On can think that the electrons have
less effective space on the Li sites, hence the increase in kinetic energy forces
them into the interstices. This mechanism is denoted as avoided core-valence
overlap because the orthogonality condition to the core-states prevents the
valence electrons to maintain on the Li sites.

Obviously, the ionization potential has a large influence for the appearance of
interstitial electron pairs. The more weakly valence electron are bound to an
atom, the more easy it is for them to get transferred to the interstitial voids [41].
Furthermore, it has been demonstrated that high-pressure electrides are more
likely observed if the s and p valence electrons are moving around a relatively
incompressible core [41]. This is one of the main reasons why the high-pressure
phases of lithium and sodium display an electride-like behavior. It has been
demonstrated in [41] that the increase in energy is greatest for the s-orbitals,
less for the p-orbitals and even less for the d-orbitals. In general, the energy
dependence of the d-orbitals is relatively flat in a wide pressure range. This
is the reason why some of the heavy elements with high ionization potentials
don’t form high-pressure electrides [41]. As pressure is increased the valence
s-electrons are transferred into the next available d-orbital [41]. However,
potassium (K) is an exception due to pressure induced s-band ferromagnetism
[136].

In the following sections we will try to relate the exceptional behavior of the
observed high-pressure Li-S compounds to their dynamical properties. We will
see how the formation of interstitial electron pairs an the s-p hybridization
effects the superconducting pairing.

5.2 Computational details

The dynamical properties of the predicted Li-S phases were calculated using
density functional perturbation theory, as implemented in Quantum Espresso
[137]. To model the correct high-pressure behavior of lithium as well as sulfur, we
used ultrasoft pseudopotentials with semi-core states in the valence, generated
with the Rappe-Rabe-Kaxiras-Joannopoulos method [138]. Lattice relaxations
at selected pressures displayed good agreement for the lattice constants with
the structures relaxed within the Vasp-code using the projector augmented
wave method. In order to treat exchange and correlation effects, we used the
same PBE functional within the generalized gradient approximation as in the
Vasp runs.
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As described below in more detail, we performed calculations at representative
pressures of 100 and 500 GPa. At those pressures, several tests confirmed that
the kinetic energy cutoffs of 80 Ryd (∼ 1100 eV) for the wave functions, as well
as 800 Ryd for the charge density gave reasonable convergence properties. We
adopted an 8×8×8 Γ-centered k-point grid for sampling the first Brillouin-
zone and approximated the δ-functions by Gaussians using a smearing width
of 0.01 Ryd. The smearing was estimated comparing the density of states
at the Fermi level to calculations with the linear tetrahedron method with
Blöchl-corrections.

The dynamical properties were calculated using a 8×8×8 q-point mesh for
sampling the Brillouin-zone. In order to calculate the phonon density of states
we used the Fourier-interpolation technique described in section 2.2.2.

In order to calculate the electron phonon coupling matrix elements, we have
used meshes with up to 38×38×38 k-points for sampling the electronic states
at the Fermi level. To find an appropriate smearing width to approximate the
double δ-integral in Eq. (2.91), several calculations using different k-grids were
performed, using different parameters for the Gaussian smearing.

5.3 Summary of superconducting properties

Fig. 4.7 shows that there are fundamentally three different pressure regimes in
the predicted high-pressure phase diagram of the lithium-sulfur system [2]:

i.) A low-pressure regime (P < 15 GPa), where Li2S is the only stable
compound.

ii.) An intermediate-pressure regime (P < 200 GPa) where new structures
are stabilized. In this regime we observe the bcc LiS3 structure, which
disappears from the convex hull at a pressure of 80 GPa.

iii.) A high-pressure regime starting from 200 GPa up to the highest pressure
investigated. Within this pressure range, new structures and stoichiome-
tries are stabilized.

Since linear response calculations within the framework of density functional
perturbation theory are computationally very demanding, we restrict all cal-
culations to two representative pressures of 100 and 500 GPa and perform all
calculations for phases that are stable at this pressures or in the immediate
vicinity [2]. This also gives the opportunity to compare the different phases
against each other. Table 5.1 summarizes our findings for all investigated Li-S
compounds. The table includes the most important properties such as the
logarithmic average phonon frequency, the electron-phonon coupling constant
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Table 5.1: Superconducting properties of the metallic Li-S phases taken from [2].
Critical temperatures are estimated from Eq. (2.94), with µ? = 0.1.
P represents the external pressure; ωlog is the logarithmic avarage
phonon frequency according to Eq. (2.96); λ represents the electron
phonon coupling constant (2.95); Ñ(εF) is the density of states at
the Fermi level in states/Ry devided by the number of atoms in
the unit cell; η = λ/Ñ(εF) represents the lattice contribution to
the electron phonon coupling. The data for H3S are taken from
reference [139].

Composition P (GPa) ωlog (K) λ Tc (K) Ñ(0) η = λ/Ñ(0)

Li3S (Pm3̄m) 100 754 0.08 0.0 0.62 0.13

LiS3 (Im3̄m) 100 409 0.52 5.4 1.45 0.36

Li (P4132) 500 546 0.40 2.2 0.25 1.64

Li5S (Immm) 500 420 0.53 8.6 0.48 1.10

Li3S (Pm3̄m) 500 702 0.25 0.0 0.67 0.37

Li3S (Fm3̄m) 500 773 1.43 80.0 1.67 0.85

Li3S (Fm3̄m) 600 826 1.01 55.9 1.30 0.78

Li3S (Fm3̄m) 640 842 0.90 50.1 1.20 0.75

Li2S (P63/mmc) 500 374 0.22 0.0 0.27 0.85

LiS2 (I4/mmm) 500 494 0.54 7.6 1.35 0.40

H3S (Im3̄m) 200 1200 2.40 180 1.83 1.31

Li3SH (Fm3̄m) 500 1156 1.43 169 1.67 0.86
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Figure 5.1: Calculated critical temperatures of Li-S compounds. The red
symbols correspond to the high-pressure compounds (500 GPa);
Green symbols denote intermediate pressure compounds (100 GPa);
Blue symbols represent values for high-pressure hydrides as well
as for elemental hydrogen, taken from the literature [140, 141].
Values inside the gray bar, plotted in the negative direction denote
phases with no superconductivity. The errorbars indicate pressure
variations in Tc with respect to presseure, when known. The figure
is taken from [2].

and the critical temperature calculated via equations (2.94), (2.95) and (2.96).
The Fermi energy is set to zero in the following considerations. The simplified
Hopfield expression for the electron-phonon coupling constant:

λ =
N(0)I2

Mω2
= N(0)η (5.3)

where N(0) is the DOS at the Fermi level, I is an average electron-phonon
matrix element and Mω2 is an average lattice force constant, suggests to
separate the electron-phonon coupling into a purely electronic contribution,
given by the DOS at the Fermi level, and a contribution related to the crystal
lattice given by η [2]. The corresponding values for η are shown in the last
column of Table 5.1. In order to compare the properties to those of the hydrides,
the lower section of table 5.1 includes literature values for H3S.

Fig. 5.1 shows that only very few phases display a finite critical temperature. It
is very peculiar that especially Li-rich compounds such as Li5S, Li3S (Pm3̄m), as
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well as high-pressure phases of pure lithium display Tc’s two orders of magnitude
smaller than observed for the hydrides. The only real high-Tc compound
predicted by our evolutionary search is Li3S, stabilized at pressures higher than
640 GPa [2]. At 500 GPa, the critical temperature is about 80 K. As it can be
seen, we performed additional calculations at 600 and 640 GPa to investigate how
the superconducting properties evolve with pressure. One observes decreasing
critical temperatures that can be attributed to the decreasing DOS at the Fermi
level. As it can be seen from table 5.1, the DOS at the Fermi level decreases
by approximately 30% in the pressure range from 500 to 640 GPa where this
structure gets stabilized. The lattice contribution to the electron-phonon
coupling constant only decreases by approximately 10%.

In order to prove that this structure is directly comparable to the hydrides,
we performed one calculation at 500 GPa, where we replaced the lithium by
hydrogen atoms. This phase is denoted as Li3S

H in Table 5.1. The observed
critical temperature is 170 K, which is comparable to that of H3S. However,
it has to kept in mind that the pressure necessary to stabilize this structure
is approximately three times higher than the corresponding pressure for the
hydrides [2]. This issue is discussed in more detail in the following sections.

Looking at the properties of the other Li-rich phases, one comes to the conclusion
that there is a fundamental difference in the physics underlying the electron-
phonon coupling. Indeed, the extremely low critical temperatures of these
phases are not explainable by a mass effect. Considering the fact that the
phonon frequencies are inversely proportional to the ionic masses, one can
estimate the ratio in the Tc’s between hydrides and Li-rich compounds to be
approximately [2] √

MLi

MH

' 2.6. (5.4)

Obviously, as it is evident from Table 5.1, this is not the main limiting effect,
responsible for the suppression of superconductivity. We will clear up this
question in the following by analyzing the electronic structures, as well as the
electron phonon spectral functions.

On the sulfur-rich side, both phases, LiS2 as well as LiS3 display moderate
critical temperatures. Here the dynamical properties are dominated by S-
sublattice, thus these phases are not related directly to the hydrides.
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5.4 Electronic structures and Eliashberg spec-

tral functions

In the following we will explain the origin of the observed properties in more
detail, starting the discussion from Li-rich side. The band structures and the
electron-phonon spectral functions are taken from the supplementary material
in [2].

5.4.1 Analysis of the Li-rich high-pressure phases Li and
Li5S

According to our calculations (see Table 5.1), Li as well as Li5S display a very
small, but finite critical temperature of 2.2 and 8.6 K at 500 GPa respectively.
The reason can be deduced directly by analyzing the different contributions to
the electron-phonon coupling constant. Table 5.1 shows that the high pressure
structures of Li and Li5S have the highest lattice contribution to λ among all
phases investigated. The reason for the suppressed superconductivity is the
very low density of states at the Fermi level due to the pressure induced s-p
charge transfer.

In Fig. 5.2a and 5.2b we plotted the band structures and the density of states
for the high-pressure phases of Li and Li5S. In addition to the total DOS, we
also depicted the state-resolved, or projected, DOS (PDOS). In general this
quantity is defined by

Nµ(ε) =
∑

k∈ IBZ

∑
n

| 〈φµ|ψkn〉 |2wkδ
σ(ε− εkn) (5.5)

in which wk are weighting factors describing the multiplicity of the k-points, ψkn

are the Kohn-Sham orbitals, and δσ(x) are gaussian-smeared delta functions as
introduced in Eq. (2.39). The φµ are properly chosen localized functions, whose
overlap with the Kohn-Sham orbitals is given by the scalar product 〈φµ|ψkn〉.
In this way, the total DOS can be projected on different angular momentum
channels, as well as on different atomic sites. In Fig. 5.2a we plotted the s, p
and d contributions of Li (P4132) to the total DOS. It has to be mentioned that
the electronic properties of this structure were investigated earlier in a work
from Ma et.al. [123]. The Li5S Immm-structure includes two non-equivalent
Li-atoms in the basis. In Fig. 5.2b we plotted the partial p and d contributions
of the two Li-atoms as well as for S.

Fig. 5.2a shows that the Li P4132 structure is a metal with a very low density
of states at the Fermi level. In the whole energy range, the states are dominated

81



Electron-Phonon Properties of High-Pressure Li-S Phases

Γ X M Γ R
−6

−4

−2

0

2

4

6

E
−

ε F
[e

V
]

0 0.2 0.4 0.6 0.8

DOS per f.u. [1/eV]

total
s
p
d

(a) Li (P4132) at 500 GPa

Γ T Γ
−12

−10

−8

−6

−4

−2

0

2

4

6

E
−

ε F
[e

V
]

0 1 2 3

DOS per f.u. [1/eV]

total
Li1 p
Li1 d
Li2 p
Li2 d
S p
S d

(b) Li5S (Immm) at 500 GPa

Figure 5.2: Electronic band structures and total, as well as projected DOS
on differnt angular momentum channels for Li (P4132) and Li5S
(Immm) at 500 GPa.
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Figure 5.3: Eliashberg electron phonon spectral functions (blue) and total DOS,
as well as partial Li-contribution to the phonon DOS (red) for Li
(P4132) and Li5S(Immm) at 500 GPa. The dashed curve represents
the electron phonon coupling constant, integrated up to frequeny
ω.

by the p contributions. Looking at the bands at the Fermi level, it is obvious
that due to the pressure-induced s-p hybridization, there is no trace of the
free-electron behavior at ambient conditions. Fig. 5.3a shows the Eliashberg
spectral function according to Eq. (2.91) and the phonon density of states.
The dashed line represents the electron phonon coupling constant as a function
of frequency according to Eq. (2.95). The normalization of the Eliashberg
function is chosen so that Eq. (2.95) is satisfied. Due to small density of states
at the Femi level, the Eliashberg function α2F (ω) displays very small values
over the whole spectral range [2].

Also for Li5S, Fig. 5.2b shows that Li p-states are dominating at the Fermi
level. Fig. 5.3b shows the Eliashberg function and the total as well as the
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partial phonon density of states for Li. It can be seen that the dynamical
properties are dominated by the Li sublattice. In conclusion, the situation is
very similar as it is for elemental lithium.

5.4.2 Li3S compounds at 500 GPa: Pm3m vs. Fm3m

Interestingly, the most striking difference in the superconducting properties
was observed between the low-pressure Pm3̄m and the high-pressure Fm3̄m
structures of Li3S [2]. In order to compare the electron-phonon characteristics,
we present the results at a pressure of 500 GPa, where both structures are
dynamically stable. We also investigated the electron-phonon properties of
the simple-cubic Pm3̄m structure in its stability regime at 100 GPa. The
calculations showed that all superconducting properties are suppressed at this
pressure.

Table 5.1 shows that the Pm3̄m structure exhibits an extremely low electron-
phonon coupling constant of λ = 0.08 at 100 GPa, which slightly increases with
pressure, reaching a value of λ = 0.25 at 500 GPa. Due to the low electron
phonon-coupling, superconductivity is completely suppressed in this phase. On
the other hand, the high-Tc Fm3̄m structure displays a high electron-phonon
coupling constant of λ = 1.43 at 500 GPa and λ = 0.90 at 640 GPa where it has
the lowest formation enthalpy. For Fm3̄m, large superconducting transition
temperatures are observed at all pressures investigated. With respect to our
findings for the high-pressure phases of elemental Li and Li5S, Table 5.1 shows
that there is a large difference in the lattice contribution to the electron-phonon
coupling constant. The suppressed superconductivity in the Pm3̄m structure is
only partially caused by the low DOS at the Fermi level. The underlying reason
for this significant difference in the superconducting properties between the
low- and high-pressure Li3S phases, can be attributed to the different nature of
the electronic states involved in the superconducting pairing [2].

Eq. (2.91) shows that the important states that are involved in the supercon-
ducting pairing are those at the Fermi level. If these sates have a large intrinsic
coupling to phonons, as it is in covalently bound solids, large values of η and
thus large λ-values will be observed [2]. In Fig. 5.4a and 5.4b we plotted the
band structures, as well as the total and the projected density of states on the
different angular momentum channels. Fig. 5.4a shows that the three bands
located below the Fermi level can be mostly attributed to sulfur states. The
band with the positive curvature that crosses the Fermi level can no longer be
assigned uniquely to specific atomic contributions by analyzing the projected
density of states. As we will see below, this band can be identified as an
interstitial band, corresponding to interstitially localized electrons in real space.
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Figure 5.4: Electronic band structures and total, as well as projected DOS on
differnt angular momentum channels for Li3S (Pm3̄m) and Li3S
(Fm3̄m) at 500 GPa. The red points indicate states for which
Kohn-Sham orbitals are plotted in Fig. 5.6.
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(a) Li3S (Pm3̄m) at 500 GPa
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Figure 5.5: Eliashberg electron phonon spectral functions (blue) and total
DOS, as well as partial Li-contribution to the phonon DOS (red)
for Li3S (Pm3̄m) and Li3S(Fm3̄m) at 500 GPa. The dashed curve
represents the electron phonon coupling constant, integrated up to
frequeny ω; The striped red function in the lower panel represent
the Li2 contribution to the phonon DOS.

The Fm3̄m structure can be seen as layered system of alternating two-dimensional
lithium and lithium-sulfur layers. Therefore there are two non-equivalent lithium
atoms in the unit cell, denoted as Li1 and Li2. There are 8 atoms of the Li1
type inside the fcc cube (see Fig. 4.8). The Li2 atoms occupy the cube corners
and the face centered positions within the fcc unit cell. Fig. 5.4b shows that
the structure displays a comparatively high DOS at the Fermi level due low-
curvature bands around the Fermi level - a situation similar as in the high-Tc

H3S compound.

Fig. 5.5a and 5.5b show the Eliashberg electron-phonon spectral functions
and the partial DOS’s for the two phases at a pressure of 500 GPa. Both
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Figure 5.6: Electron localization functions (isocontour:0.65) and Kohn-Sham
orbitals at the Fermi level (see Fig. 5.4a and 5.4b), for Li3S Pm3̄m
(left) and Fm3̄m (right). For Pm3̄m the orbitals are localized in
the interstitial space; for Fm3̄m the orbitals localize along the long
Li-S bonds on the cube edges.

spectra extend up to approximately 180 meV, but the intensity and the spectral
distribution display a totally different behavior [2]. As can be seen, the Pm3̄m-
spectrum has an intensity which is about 5 times smaller than for Fm3̄m
and displays a very uniform contribution over the whole spectral range. In
contrast, the Fm3̄m spectrum shows a strong enhancement in the spectral
region corresponding to phonon modes of Li2 atoms in the [001]-direction [2].
In order to give an optical impression of the electronic states involved in the
superconducting pairing, we have choosen two representative k-points, indicated
by red points in Fig. 5.4a and 5.4b, and plotted the real-space Kohn-Sham
wavefunctions for the states close to εF. Fig. 5.6 shows the orbitals together
with isocontours of the electron localization function. Indeed, in the Pm3̄m
case, the states at the Fermi level correspond to interstitial electron pairs. Since
electrons localized in the interstitial voids of the lattice are barely affected by
lattice displacements, very small electron-phonon matrix elements are observed.
In contrast, for Fm3̄m the orbitals localize along the second-nearest neighbor
Li-S bonds. The different nature of the electronic states leads to a significant
increase in the lattice contribution η for the Fm3̄m structure (see Table 5.1).
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The difference in λ is even more remarkable [2].

The example above has shown that pressure-induced interstitial electron local-
ization can be an important limiting factor for conventional superconductivity,
if the charge transfer affects states at the Fermi level. This is an important issue
that has to be taken into account when searching for high-Tc superconductivity
in high-pressure electride phases.

5.4.3 Discussion of the S-rich phases: Li2S (P63/mmc),
LiS2 (I4/mmm) and LiS3 (Im3m)

In the following we compactly summarize the properties of the remaining phases
on the sulfur-rich side (see Fig. 4.8). In Fig. 5.7, 5.8a and 5.8b we plotted
the bands along the high symmetry directions in the first Brillouin and the
projected DOS’s as for the other phases. Fig. 5.9a, 5.9b and 5.9c show the
Eliashberg spectral functions.

Li2S (P63/mmc) displays a moderate lattice contribution to the electron-phonon
coupling constant. However, this phase is a semiconductor at pressures smaller
than 221 GPa which has been metallized by band overlap, thus the DOS at the
Fermi level and the electron-phonon coupling constant λ are intrinsically low
[2].

LiS2 and LiS3 both display moderate critical temperatures. Fig. 5.9b and 5.9c
display a clear separation between the S and the Li modes in the phonon density
of states. The intensity in the Eliashberg function is very low for the Li modes,
thus the coupling to electronic states at the Fermi level is very weak. Here, the
low critical temperatures are mainly caused by the mass effect, i.e by the small
logarithmic average phonon frequencies [2].
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Figure 5.7: Electronic band structure and total, as well as projected DOS
on differnt angular momentum channels for Li2S (P63/mmc) at
500 GPa
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Figure 5.8: Electronic band structures and total, as well as projected DOS on
differnt angular momentum channels for Li2S (P63/mmc) and LiS2

(I4/mmm) at 500 GPa.
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Figure 5.9: Eliashberg electron-phonon spectral functions (blue) for Li2S and
LiS2 at 500, and for LiS3 at 100 GPa. Phonon DOS’s are plot-
ted in negative direction. The red functions represent partial Li
contributions.
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Chapter 6

Conclusions

In conclusion, we extensively investigated the high-pressure Li-S system to
pressures up to 700 GPa using techniques of evolutionary crystal structure
prediction. Our calculations revealed that at elevated pressures several new
stoichiometries become thermodynamically stable. By analytically calculating
the transition pressures, we were able to obtain a high-pressure phase diagram
of the system, formed by phases with a maximum of 24 atoms per cell and
6 atoms per formula unit. It has to be mentioned that the calculated phase
boundaries can be shifted by taking into account the phonon zero point en-
ergies. Except Li2S below 221 GPa, all predicted phases exhibit a metallic
behavior. Most phases located on the Li-rich side of the phase diagram are
high-pressure electrides, with clear maxima in the electron localization function
in the interstitial space.

We investigated the superconducting properties of the predicted phases, using
density functional linear response calculations. We found that most phases
exhibit no or low-Tc superconductivity [2]. We attribute this behavior mainly
to two detrimental effects due to the presence of core states in lithium:

i.) An increasing insulating behavior due to 2s-2p hybridization of the valence
electrons.

ii.) The tendency to interstitial electron localization due to avoided core-
valence overlap, which can bring states to the Fermi level that are not
intrinsically coupled to lattice vibrations and cause the appearence of
very small electron-phonon matrix elements.

High-Tc conventional superconductivity as in the hydrides was only observed
in the Li3S Fm3̄m structure, where the external pressure is high enough that
close-packed structures with extremely low specific volume are energetically
preferable with respect to electride phases. This phase displays a critical
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temperature of 50 K at 640 GPa, where it is thermodynamically stable, which
increases to 80 K at 500 GPa. One has to note that the stability range of this
phase could be changed by large anharmonic effects, as observed in the hydrides
[28].

We thus find that high-Tc conventional superconductivity can be observed in
Li-rich compounds. However, the tendency of 2s-2p hybridization and the
associated localization of electron pairs in the interstitial region will limit the
possible range of pressures an dopings.

As an outlook for future investigations we suggest the extension to ternary
systems. It is easy to see, that atoms with smaller ionic radii could easily fit into
the interstitial voids of the Li-S lattice. Therefore, the ternary H-Li-S system
would be a natural choice. Because of the comparatively high electronegativity
of hydrogen with respect to lithium, we don’t expect that hydrogen atoms will
force the charge away from the interstitial space. However, if the charge is
localized on the hydrogen-sites, large electron-phonon matrix elements could
be observed due to lattice vibrations in the hydrogen sublattice.

The ideas described in the paragraph above should in principle be applicable
to other H-Li-X ternaries. As described by Zurek et.al [5], a small amount
of lithium can significantly reduce the metallization pressure of hydrogen.
Hence, H-Li-X ternary compounds are an interesting alternative to search
for high-Tc conventional superconductivity. Additionally, the hybridization
of the 2s-orbitals in lithium can produce Fermi surface nesting effects, which
could possibly enhance the superconducting properties, as it is the case in pure
lithium.
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