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Abstract

Vascular smooth muscle cells are one of the functional kestttnents in the human
abdominal aorta, located in the medial layer and forming ltices similar to collagen
fibers. During development, angiogenesis and vasculardehlmg, smooth muscle cells
experience changes in their orientation and alignment disasaeorganization of their
intracellular filament structure. In order to study the sonfat so well-known interrelation
between smooth muscle cell orientation and the intrageliilament structure in the hu-
man abdominal aorta a recently proposed chemo-mechawigpled model was modified
by introducing two families of muscle fibers and a non-symiodilament overlap beha-
vior, and implemented into a three-dimensional finite elenfimmework. Active material
parameters were obtained by fitting the model behavior terxgntal data for different
muscle fiber orientations. Fitting results highlighted tiin@ non-symmetry of the filament
overlap behavior depends on the muscle fiber orientatiordifidations of the smooth
muscle fiber orientations and the intracellular flamenitire, and their effects on the
human abdominal aorta were investigated using a realistte #lement model of the aorta
applyingin vivo boundary conditions. We showed how changes in the arteathb&havi-
or due to alteration in smooth muscle fiber orientation caredeced, and even prevented
by adjusting the filament overlap behavior or the smooth teusentractile unit densi-
ty. Thus, modifying the intracellular filament structuretbe smooth muscle cell content
could be used as a therapeutic approach in response to qgittadlvascular adaptation
processes where changes in smooth muscle fiber orientatiomalved. But this would
require further experimental and analytical studies.

VIl






Zusammenfassung

Glatte Muskelzellen sind mitunter einer der wichtigstenkiionellen Bestandteile der
menschlichen Bauchaorta. In der Tunica Media gelegen forsieezwei Helices ahnlich
jener Struktur, wie sie Kollagenfasern vorweisen. Wabrder GefaRentwicklung, An-
giogenese und Remodellierung erfahren glatte Muskelz&ganderungen in ihrer Ori-
entierung sowie eine strukturelle Umgestaltung ihreramgtlularen Filamente. Um die
bisher weitgehend unbekannten Wechselwirkungen zwisdeet®rientierung der Mus-
kelzellen und ihrer intrazellularen Struktur in der mearighen abdominellen Aorta zu un-
tersuchen, wurde ein kiirzlich publiziertes chemo-merdtlirgekoppeltes Materialmodell
modifiziert und in ein Finite Elemente Programm implementidas Modell ermoglicht
nun die Beriicksichtigung zweier Muskelfaserfamilienyi®oein unsymmetrischdsber-
lappungsverhalten der beteiligten Filamente. ZugeleOhitaterialparameter wurden aus
experimentellen Daten fur unterschiedliche vorgegeldduskelfaserorientierungen be-
stimmt. Ergebnisse dieser Parameterbestimmung habemgedass die Unsymmetrie
desUberlappungsverhaltens von der Muskelfaserorientiealngingig ist. Auswirkungen
von Modifikationen der Muskelfaserorientierung sowiearaérungen der intrazellularen
Struktur auf die menschliche Bauchaorta wurden unter Vedwreg eines realistischen
Finite Elemente Modells der Aorta anhand vionvivo Randbedingungen numerisch un-
tersucht. Es konnte gezeigt werden, dass Veranderungemeichanischen Verhalten der
Aortenwand, hervorgerufen durch eine Veranderung deer@@grung von Muskelzellen,
kompensiert und unter Umstanden sogar verhindert werdanda. Dies kann durch ei-
ne entsprechende Anpassung tieerlappungsverhalten von beteiligten Filamenten bzw.
durch eine Adaptierung der Dichte an kontraktilen Einhreitenerhalb einer Muskelzelle
erfolgen. Eine herbeigefiihrte Modifikation der intragiren Struktur oder Muskelmas-
se konnte somit als ein moglicher therapeutischer AnsatReaktion auf pathologische
Veranderungsprozesse von Gefallen verwendet werdeenenaine Umorientierung von
glatten Muskelzellen involviert ist. Dies erfordert jethodie Durchfihrung zahlreicher
weiterer experimenteller als auch analytischer Untersnghln.
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1. Introduction

Vascular smooth muscle cells play a significant role in skern as well as long-term
changes of the human abdominal aorta (Cox, 1975; Li et 881 During development,
angiogenesis and vascular remodeling, smooth muscle eglisrience changes in their
orientation and alignment (Mantella et al., 2015). A timeeiedent reorganization of vas-
cular smooth muscle cells perpendicular to the axis of thpdiegh cyclic stretch duringn
vitro experiments has been reported (Chen et al., 2003; Staridiey 2002) where the re-
orientation was dependent on the applied cyclic stretajuizacy (Liu et al., 2008)n vivo
experiments performed on basilar arteries of normotemaigaevealed an almost uniform
circumferential alignment of vascular smooth muscle cells contrast, spontaneously
hypertensive rats showed a significantly altered pattemr@ingement (distribution) and
main orientation of contractile smooth muscle cells (Aasket al., 1996). Numerous fac-
tors such as the frequency, direction and of course the anobapplied stretch have been
shown to play a major role in the reorientation of vasculaostn muscle cellén vivo as
well asin vitro (Mantella et al., 2015).

The healthy human abdominal aorta is a large elastic artetgansists of three distinct
layers: tunicaintima, tunica media and tunica adventfitfee tunica intima is the innermost
layer of the abdominal aorta and composed of a single layendbthelial cells. Endothe-
lial cells are integrated into several important physiadagprocesses such as regulating
the exchange of substances between blood and the undeebfisginhibition and activa-
tion of blood coagulation mechanisms (Butcher and Nerer@72@nd most importantly
production of important substances such as nitric oxide)(&l@ endothelini- (ET-1) be-
ing responsible for the modulation of the vascular tone. Mikedial layer of the abdominal
aorta (tunica media) is made up 4§ to 70 alternating layers of spindle-shaped smooth
muscle cells and elastic lamellae, composed of the exthalmematrix proteins elastin,
collagen 80% of type | and type 11l of70%, Holzapfel et al. (2000)) and proteoglycans.
The adventitia is the outermost layer of the arterial wall @omprises elastin, fibrob-
lasts (responsible for elastin and collagen productiod)taitk bundles of wavy collagen
fibrils which prevent the artery from overstretching andtaue at high blood pressure lev-
els. Smooth muscle cells in the human abdominal aorta haae teported to be oriented
symmetrically with a direction in the circumferential - akplane forming of two fibrous
helices in the medial layer (Holzapfel et al., 2002; Horbtale 2010). Findings of Horny
etal. (2010) suggest that the collagen fiber orientatiortla@drientation of smooth muscle
nuclei correlate.

Smooth muscle cells are able to produce active tension olemga range of muscle
lengths in the circumferential direction which can be disxt through a length-tension
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relationship (Cox, 1975, 1978; Dobrin, 1973). This lentghsion relationship, which
also can be described as a stretch-active stress relapohsis been modeled previously
(Carlson and Secomb, 2005; Gleason et al., 2008; Rachev apdsHi, 1999; Zulliger
et al., 2004), and described as a rearrangement of theefitrie filament structure, more
specifically the filament overlap between the actin and nmybkiments (Murtada et al.,
2012). The filament overlap set the maximal number of athchess-bridges in an aver-
age contractile unit.

Smooth muscle cells are known to be able to adapt their letegision behavior as a
relatively quick response when being subjected to a sweddathanged loading condition
(Gunst et al., 2003; Herrera et al., 2005; Syyong et al., 20@thg et al., 2001; Yamin and
Morgan, 2012). This adaption process is partly directed byoaganization of the intra-
cellular filaments such as the actin and myosin filamentsdtie flament overlap (Gunst
et al., 2003; Herrera et al., 2005; Yamin and Morgan, 2018)tae number of contractile
units (Herrera et al., 2005). However, most filament oveflaption studies have been
conducted for smooth muscle cells aligned in the circunnfimédirection and no detailed
analysis has been made investigating the relationshipiakdé&tween the extracellular
smooth muscle cell orientation and the intracellular filatngtructure. The relationship
between the smooth muscle cell orientation and the intkideefilament structure has not
yet been addressed and the effect and the role of theiroesdtip is not well known. In the
present study we address this structural connection rgrgitween different length-scales
to better understand the role of smooth muscle contractioimgl vascular adaptation. We
use a modified version of a chemo-mechanical coupled modpbged by Murtada et al.
(20104, 2012) and Stalhand et al. (2011) that we implenméniia three-dimensional finite
element framework. This framework is used to study how ckang the smooth muscle
cell orientation and intracellular filament structure affthe active behavior in the human
abdominal aorta.



2. Methods

2.1. Continuum Mechanical Framework

In this section the basic continuum mechanical relatigrshissociated with the con-
stitutive models of the arterial wall presented in this these summarized. These are in
particular the finite deformation kinematics, the hypestitastress response, and the elas-
ticity tensor required for an implementation into a finiterakent program. The interested
reader is referred to Ogden (1997) and Holzapfel (2000) forendetailed information.

2.1.1. Kinematics

At time t, we assume a solid body being in a load- and stress-free nefenfigura-
tion Qy C R3. By means of the motiox, a material poinX € Q4 can be transformed to
a positionx = x,(X) in the deformed (current, spatial) configuration, define€® as R?
at the current time. In order to describe the deformation of a solid body the eédion
gradient, defined a8 = 0x,(X)/0X is mainly used in continuum mechanics. According
to the numerical issues reported in Flory (1961); Ogden §);.9Zienkiewicz and Taylor
(2000) regarding incompressibility we consider a multative decomposition of the de-
formation gradient into a volume-changing pst, = J'/?1 and a volume-preserving part
F = J~Y3F so thatF = F,,F, where/J is the volume ratio defined agX) = det F > 0,
anddet F = 1. Further,C andb are the right and left Cauchy-Green tensors, respectively,
together with their corresponding unimodular countesp@randb, defined in terms of the
deformation gradient as

C=FF=J%C, C=F'F
b =FF'=J%%b, b =FF" (2.1)

The three principal strain invariants and the corresponding modified principal strain
invariantsl;, i = 1, 2, 3, can be defined in terms of the right Cauchy-Green tensor as

L =trC=C:l = J??L, I, =trC=C:l, (2.2)
1 _ _o1. =
L=5 [0 =w(C)] =J"L, L= |i-u(C)], (2.3)
and
Iy = detC = (det F)?, Iy =detC = (detF)* = 1. (2.4)
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Finally, let us assume the existence of a vedodefined in the reference configuration,
with [M| = 1. The motiony, maps this vector into its current configuration, charazegti
by m = FM, wherejm|> = \2, = I,,, denotes the square of the stretch in the direatipn
with the pseudo-invariant,, = C:M ® M. The push-forward oM via the unimodular
part of the deformation gradieRtgives the vectom = FM, with the unimodular form of
the pseudo-invariant, i.d,,, = C: M ® M.

2.1.2. Hyperelastic Stress Response

In the context of finite hyperelasticity we assume the eristeof a Helmholtz free-
energy function?, defined per unit reference volume, which we additively degose into
its volumetric (dilational) part/(.J) and isochoric (distortional) pat (C) as (Holzapfel,
2000)

U =U(J)+¥(C). (2.5)

From the Clausius-Planck inequality (assuming a revezsgmthermal process) and by
applying the standard Coleman-Noll procedure, we recdieecbnstitutive equation for
the second Piola-Kirchhoff stress tensor as

9% (C)

S=2
oC

= SVol + §7 (26)

using the volumetric-isochoric split from Eq. (2.5). Theg@y volumetric stress contribu-
tion of Eq. (2.6) is specified as

L ou(J)  Jou(J)oJ _1
Swl = 25" = 25— om =pJCT (2.7)
with the hydrostatic pressugg.J) = dU(.J)/dJ and the derivative of with respect to the

symmetric tenso€, which isJC'. The purely isochoric part of Eq. (2.6) reads

—— — J23DevS, (2.8)

where we define the fictitious isochoric contribution of tleeand Piola-Kirchhoff stress
tensor as

g 28\1/(_C) ’
oC
and the fourth-order projection tensor with respect to #ierence configuration as

(2.9)

1
P=1I- gc—1 ® C. (2.10)

A detailed derivation of Egs. (2.7) and (2.8) can be foundhaAppendix A.
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2.1.3. Elasticity Tensor

In order to obtain results with reasonable accuracy forineal problems in the field
of computational finite elasticity an incremental or iteratsolution method (of Newton’s
type) in combination with an adequate convergence critda@equired (Wriggers, 2008).
Therefore, a consistent linearization of the constituégeation is needed, which yields
the so-called elasticity tensor. The material represimtadf the elasticity tensor can be
obtained from the total differentialS = C: 1/2 dC, in which the symmetric fourth-order
elasticity tensor in decoupled form is introduced as

0S(C) _ V()

C=2=c =4%cac

= Cyo + C, (2.11)

where we have used Egs. (2.5) and (2.6). The purely voluonedritribution of the elas-
ticity tensor in the Lagrangian description of Eq. (2.119de

. 0S4(C) 9 (pJC)
Cyol = 2 5C =2 7C (2.12)

d
= (pJ + J2£) Cl'eoc!'-2pjc'eoCc, (2.13)

with dp/dJ = d?U(J)/dJ?. A comprehensive derivation of Eq. (2.12) as well as the
definition of © is given in Appendix A. The purely isochoric contribution®©d. (2.11) is
defined as (Holzapfel, 2000)

2

2 (C'®S+SwC™), (2.14)

_ . 2 N\ -
C=P:C:P 4+ Tr (J—2/3S)P—
where the fourth-order fictitious elasticity tensor in thaterial description is

. 2y(C
C= 4‘]_4/363675()6)’ (2.15)

the modified Lagrangian projection tensor of fourth-order i
- 1
P=(C'oCc):P'=Cc'oC!- §C’1 ®C, (2.16)
and the trace igr (o) = (o) : C, together with

1
PT =1-— gc ®C™, (2.17)

according to Eqg. (2.10).
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2.2. Constitutive Models

As already mentioned in the continuum mechanical framewaak shown in Eq. (2.5),
we assume a possible split of the free-energy funclrocharacterizing the arterial wall
into two parts, a purely volumetric contribution, partiauzed as

U(J)==(nJ)>, (2.18)

Do =

and a layer specific isochoric paft which reflects the micro-structure and mechanical
properties of the arterial wall. Note that> 0, denoting the bulk modulus, serves here
as a penalty parameter, where an increase i@duces violation of the incompressibility
constraint. In the limiting case — oo the constraint is exactly enforced and the free-
energy functionV represents a functional for an incompressible materidl wit= 1. For
numerical reasons the penalty parameter is chosen to4el0® kPa for all subsequent
simulations.

Since it is only the medial layer of a healthy arterial waktltontains smooth mus-
cle cells, we additively decompose the isochoric plardf the free-energy function for
the media into an active part considering smooth muscleradtility and into a passive
contribution representing the structural and mechanicgbgrties of passive components
(ground matrix and collagen fibers), i.& = ¥, + ¥,. Hence, the isochoric part of the
second Piola-Kirchhoff stress tensBiand elasticity tensor in the material description
together with their corresponding fictitious expressioarated byS and C can also be
split into an active and passive part, according to

S=S.+S,, S

S.+S, (2.19)

and

C=C,+C,,  C=C,+C,. (2.20)

2.2.1. Constitutive Model of the Active Medial Smooth Musat Cells

We assumed the existence of active smooth muscle fibersstiogsof spindle-shaped
smooth muscle cells oriented with their longest axis aldregrhuscle fiber direction de-
noted in the reference configuration by the orientationaddt.,,, as illustrated in Fig. 2.1.
The medial layer was modeled as two helically arranged fasdf smooth muscle fibers
embedded in an extra-cellular matrix. The smooth muscle féomilies were oriented
symmetrically in the circumferential-axial plane, defitgdan anglex., with respect to
the circumferential directiory, see Fig. 2.1. No dispersion of the smooth muscle fibers in
each family was considered.

The contractile apparatus in the smooth muscle cell resiplerfsr the active contraction
was modeled by contractile units (CUs), consisting of thignagnd myosin filaments,
arranged in series oriented to the smooth muscle fiber drebt.,. The shortening of a
CU during activation was caused by ‘cross-bridges’ (CBgyvben the actin and myosin
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H. adv

NN/
ntitia

Figure 2.1 Schematic illustration of an abdominal aortaratwo layers (modified from
Holzapfel et al. (2000)): collagen and smooth muscle fibemaftwo helically
arranged families of fibers each represented by a corresmpduatection vec-
tor Mg, andM ., making angles;, andag, with the circumferential direc-
tion . Note, that collagen fibers have a large non-rotationalipregtric
dispersion around the mean direction vedtby,, which is laying in the tan-
gential plane (circumferential/axial plane). The normedction to that plane
is denoted by ,,.

filaments causing relative sliding between the filamentse Gbnstitutive model of the
smooth muscle cells is based on the work of Murtada and Ht#z&§p014) and Murtada
et al. (2010a, 2012) but modified in order to study the effetthe smooth muscle fiber
family orientation in the medial layer of the abdominal aorin the next sections, a brief
summary of the smooth muscle constitutive model is given.

The Chemical Model — Cross-Bridge Kinetics

The activation and kinetics of the CBs was described thrabhgHatch-state model pro-
posed by Hai and Murphy (1988). In the latch-state model tBe @Were defined through
four different functional states, denoted by their cormesfing chemical fractions; > 0:

(A) dephosphorylated and unattached CBg), (B) phosphorylated and unattached CBs
(nn,), (C) phosphorylated and attached CBs,y;,) and (D) dephosphorylated and at-
tached CBs1{an), Which is the so-called latch state, cf. Fig. 2.2. Note thdy attached
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CBs are able to bear loads. Hai and Murphy (1988) are mod#im@B kinetics through

-
o

ca?“j? savj k1
e & O -
§ - é
k %
A 2

- iR m} S

Figure 2.2 Structure of the model by Hai and Murphy (1988).diled from Murtada
et al. (2010a).

k5—k2

a set of ordinary differential equations, which is summegtihere in matrix notation

hM —kl ]{ZQ 0 k? nwm
Tvp | _ ki —(k2 + k) k4 0 N 591
NAMp 0 ks —(ky + ko) k1 namp | (2.21)
NAM 0 0 ko —(k1+k7)| | nam
whereky, ..., k, andk; are parameters describing the rate of transition betwewstitinal

states and the superimposed dots denote time derivatifiescanditiony (t) + na, () +
namp(t) + nam(t) = 1 needs to be satisfied at any timeAccording to Hai and Murphy
(1988) we assumed that at timg = 0 all CBs are in state A, hencey(t,) = 1 and
nap(to) = namp(to) = nam(to) = 0. The activating rate parametgy is related to the
intracellular calcium concentratidi€’a®"] and expressed as

K [Ca®"]; (2.22)

1=17 .
[Cazﬂ [ED50]

whereEDy is the half-activation constant for calcium, andnd# are fitting parameters.
For a more detailed description regarding the CB kineticseleh@ee Hai and Murphy
(1988) and Murtada et al. (2010a). The intracellular caicitansient is defined as

0 if t; < tq,
[Ca?t] = {bte(ti—t) +(a—b) " —cht] ™" ift > (t+1), (2.23)
a(t;—t)t;" else
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wheret, defines the temporal starting point of the transignis the duration unti{Ca®"].

reaches the maximum, andc defines the rate at whichCa®"] decreases to the steady
state valué.

The Mechanical Model

The mechanical model of the CBs is based on the smooth mustimdziel proposed
by Murtada et al. (2012). In that model, the attached loaatihg CBs are modeled as
elastic springs with a stiffness constdni,. Thereby the average elastic elongatinrof
the CBs is defined as

T = ey — Ugs — 1, (2.24)

where\., = l../ L., is the stretch of a CU ar, is the relative filament sliding between
actin and myosin filaments, see Fig. 2.3.

Dense body

Myosin filament

Figure 2.3 Schematic image of a contractile unit (CU). Ae@dpfrom Murtada et al.
(2012).

The free energy stored in two symmetric families of smootlsdrifibers oriented along
the unit vectoraM.,,, in the reference configuration, as depicted in Fig. 2.1, camb
pressed as

= /7 aLo /7 ?
\Ila ([Cu47 [cug Z Hatos (nAMp + nAM) ( [ - ﬁfsi — 1) ) (225)

1=4,6

where the modified pseudo-invariants are
Iy =C:Mey, ® My, = A, i = 4,6. (2.26)

The averaged total stiffness of all attached GBss thereby proportional to the referential
length of a single CUL.,, the elastic stiffness of a phosphorylated/dephosphiayi@B
E., and the number of CUs per unit area in the reference configarat.,. The active
force generated within a CU is proportional to the filamengértap L, and the relative
number of attached load-bearing CBs i, + nanm)-

The relative filament sliding between actin and myosin i€dbed through an evolution
law based on Hill's equation for tetanized muscle contaac(Hill, 1938), where the rela-
tionship between the shortening velocity and the afted-lafean isotonic quick-release test
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is described through a hyperbolic function. By assuming tiia shortening velocity cor-
relates with the behavior of filament sliding (Guilford anéihaw, 1998), the evolution
law for the relative filament sliding can be expressed by
- Pai - PCi
i
wherea andg are fitting parameters,,, is the external active first Piola-Kirchhoff stress
of one family of smooth muscle fibers in its local directiae, i
v, = —

Pai = I\ = ,uaLfoi (nAMp + nAM) [cui — Ufs; — L, (228)
andP., is the internal driving stress from the CBs, which dependghemmechanical state
of the contractile unit. The internal driving stress is odgpendent on the attached cycling
CBs (nanp) during contraction and dependent on both attached cyelmjnon-cycling
CBs (namp, nan) during relaxation. The internal stress of one family of sledibers in
its local direction is quantified as

(2.27)

)

J— - d T
Lo, KAMpT AMDp if PLe¢ < Lo, KAMpnAMp,
— T i d 1,
Pe, = ¢ Lio, (Kanmpnamp + savnanm)  if PR > Lo, (ampnanyg + camnam), (2.29)
P., else

with the stiffness-like material parameters,;, andxan. Note that according to Murtada
etal. (2016b) we setan = 0.3kaMp, iIMplying that cycling CBs determine a stronger con-
tractility than non-cycling CBs. For the relative flamehtisxg we consider both filament
sliding due to any external mechanical loading or deforomgtand filament sliding linked
to the active cycling CBs. In the case for no attached GBs= Ao, — 1.

Filament Overlap

The intracellular structure and organization of the actid anyosin filaments in the
smooth muscle CUs are modeled by using a filament overlagium@urtada et al.,
2012). The relative filament overldp,, between actin and myosin filaments has previ-
ously been described using a Gaussian function, which isragnt on the relative filament
sliding g, (Murtada et al., 2016b; Stalhand et al., 2011). We modefithment overlap
function using a similar Gaussian function, i.e.

_ (T, — 0)”
Lo, (Ugs;) = exp | —————35"|, (2.30)
2 (Sfo)

whereti;™ is the optimal relative filament sliding value for maximahfitent overlap, see

Fig. 2.4, ands;, defines the width of the filament overlap behavior. We modeb@a-n
symmetric filament overlap function by adjusting the widérgmeteg;, as

Se,,  if T < TPt
gfo _ _fOl fS'L fs (2.31)
Sto, €lse
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20000000C K J\'(/ “ )h(o

Lpo (727) =1

Figure 2.4 Filament overlap behavibg: schematic image (modified from Murtada et al.
(2012)) shows the initial filament overlap@t = 0 and the maximum fila-

ment overlap afig, = T,

Active Isochoric Stress and Elasticity Tensor

Since stress and elasticity tensors have already beeredexiithin the continuum me-
chanical framework section, we focus here on the specificesgons for the active iso-
choric stress and elasticity tensor, more precisely théidigs active contributions of
the second Piola-Kirchhoff stress tensor and Lagrangiastielty tensor, see Egs. (2.19)
and (2.20). Therefore, with the use of Eg. (2.26) we obtain

~ oV, — =\ Ol — =
=2—=2 U, (ley,) —= =2 U, (Len,) Moy, @ My, 2.32
Sa C Z a( z) Z a( z) 3 ® 7 ( )

0 i=4, 6 e i=4, 6
and
~ 82Ea T T TCU' fcu
Ca:4——:4 \I[;,(cul) = ® -
gcac - A ac = ac
=4 ﬁ;l (jcui) Mcui X Mcui ® Mcui X Mcuia (233)
i=4, 6

with the derivatives?’, (I..,,) and¥, (I.,) of Eq. (2.25) having the definitions

(\/ jcui - ﬁfsi - 1)

(T 665; Maffoi
¥, (o) = 5 L= g (et nan) = (2.34)
and
—n = 0*v, Lo, g, + 1
\I/Z (Icui) = RE — H 4f i (TLAMp +nAM) fli (2.35)

cu; (Tew,) 3
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2.2.2. Layer Specific Constitutive Model for the Passive Adrial Wall

To capture the layer-specific passive mechanical respdribe buman abdominal aorta
a micro-structural constitutive model recently proposgdHwlzapfel et al. (2015) was
used, with published mechanical and structural paramétBestrawska et al., in press).
Briefly, the arterial wall is treated as a thick-walled corsp® material, i.e. an isotropic
groundmatrix containing elastin which is reinforced by tgyonmetric families of colla-
gen fibers that form a helical structure along the axial diioecof the vessel, see Fig. 2.1.
Its free-energy functio®, can be additively decomposed into an isotropic gartepre-
senting the ground matrix and an anisotropic piagt characterizing the collagen fibers,
ie.

T, =T, + Ty, (2.36)

We consider the arterial wall as a two-layered structungesenting the media and the
adventitia. The intimal layer is neglected due to its mea®nnsignificance compared
with the media and the adventitia (Humphrey, 2002). Meddadiventitia are character-
ized by the same form of the free-energy function but witfedént structural and material
parameters. The contribution of the ground substance in(ZE86) is modeled with a
neo-Hookean material, i.e.

U, () = pp/2 (I = 3), (2.37)
wherey, is the shear modulus andd the modified principal strain invariant introduced
in Eq. (2.2). A second-order structure tensor for each gelfiber familyH;, i = 4,6,
is introduced in the material description, which is definedeirms of the mean (in-plane)
direction vectoMg,, lying in the tangential plane, the out-of-plane directicgtiorM,
and the second-order identity tensoiT hus,

H, = Al + BMg,, @ Mgy, + (1 —3A—B)M,, @ My, (2.38)

where A = 2k,ki, aNd B = 2k, (1 — 2k;;,) contain the in-plane dispersion parameter
kip and the out-of-plane dispersion parametgy. The anisotropic part of the free-energy
function as given in Eg. (2.36) is reflecting the mechaniaidvior of collagen fibers.
Thus,

ﬁﬁb(fgbi):%z lesp [o(F, ~ )] -1} i=46. (2.39)
i=4.6

where( is a positive stress-like material parameter @ids a positive dimensionless
material parameter. Further, the unimodular generalizeariants are defined as

I_Ebi = C:H,; = Al, + B, + (1 = 3A - B) I, (2.40)

together with the unimodular pseudo-invariahts = C: Mg, ® Mgy, = Xﬁbi andl, =

C:M,®M, = Xi, 1 = 4,6, representing the squares of the unimodular stretchesin th
mean fiber direction and the out-of-plane direction, respely.
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Note that according to Holzapfel et al. (2000) it is assunied the anisotropic term, as
shown in Eq. (2.39), only contributes g, if the corresponding fibers are under tension.
The fictitious passive contributions of the second Piolecktoff stress tensdg, and
the Lagrangian elasticity tens@p, as shown in Egs. (2.19) and (2.20), can be expressed
with the use of Egs. (2.2), (2.38) and (2.40) as

~ ov ov, oI, — o\ Ol
9P _9of 8- U, (I~ i
> = 255 <311 ac 2 Ty (G aC

i=4, 6
=2 (%' + Y Uy, (Ti,) HZ-) (2.41)
i=4, 6
and
- ] o, OIf,.  OIf
=d=—2=4> Uy (I3, L ®
" aca o w Un) 5" @ S
=4 Uy, (Ii,) Hi® H;, (2.42)
i=4, 6

with the derivativesFy, (I,.) andWy, (I, of Eq. (2.39) with respect tf;, defined as

. 8§ﬁb
n oI,

Ty, (72) = Cy (I, = 1) exp |Ca (I, —1)°] (2.43)

and

— = 82@13]3 5 2 Tx 2
Vi (Th) = 57" = C (142G, (B, = 1)*| exp o (T, = 1)°] . (2.44)

2.3. Parameter Identification

The stiffness parametety s, is expressed in terms of, through the relationship be-
tween the external mechanical force and the internal dgifance from the evolution law
at steady state, i.€, = 0. Therefore,

n s +n ss \ —
KJAMp (Ma) = Ha < AMp, AM, ) U—e,ssa (245)

T AMp,ss

wheren, s aNdnan s are the corresponding chemical fractions at steady state. T
active material parameteys, ﬁ?ft, S5, andsy,, for a given smooth muscle fiber orienta-
tion are obtained from the modified experimental tensiaretand length-tension behavior

using a nonlinear least-squares minimization of the errdefined as

2 2
m mod exp n mod,ss exp,ss
—opt —  — o P@e,z‘ - Pee,z' P@e,j - Pee,j 246
€ (,uaaufs ,SfolastQ) = T + poxpss , (2.46)
06 00

i=1 j=1
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whereP3%, ;% denote the first Piola-Kirchhoff stress in the circumfeiardirection as

a function of time for the model and experimental value, eesipely, ¢ is the number
of data points),P(,‘"ggd’ss, Pyy> are the first Piola-Kirchhoff stress in the circumferential
direction at steady state for different stretches for thel@eh@nd experimental value: (
is the number of length-tension data points, i.e. experimaesing different pre-stretches
Ao = [1.0,1.56]). The hat on the experimental stress values stands for tla@ vedues
over all data pointg andj. Explicit analytical expressions are used for the fittingl an
summarized in the Appendix B. A regression analysis is peréal inMATLAB using the
built-in functionlsgnonlinand assigning random initial guesses and appropriate qalysi
constraints on the parameters. A minimum of six minimizatigcles ensured that best-fit
parameters are independent of initial guesses (Ferruzti,é2015). The accuracy of the
experimental data fit of the proposed model is illustrateddtgrmining a squared residual
parameter (coefficient of determination), denoted by

(m+n) mod exp 2
$9 (e — )
2 res k=1 k k
=1- SStot =1- (m+n) exp 1 n exp 2 (247)

with 0 < R? < 1, where a value of one indicates a perfect fit to the experiatelata and
the more it tends towards zero the poorer the fit gets. Notefthacludes the data points
Py and Py, as used in Eq. (2.46).

2.4. Implementation into a Finite Element Program

The proposed constitutive models to describe the passitvactve arterial wall behav-
ior are implemented into the multipurpose finite elemengpam FEAP (Taylor, 2013).
For each time step)t = const) and at each integration point the update algorithm, as
shown in Table 2.1, is performed.
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Table 2.1 Update algorithm performed for each time step and integrapoint

1. Read history variablesiy, narp, 7AMps TAM; Teys Uegs Ufsy s Ussg

2. Update the calcium concentrati{)@azﬂ from Eq. (2.23) and calculate the current
rate constant; using Eq. (2.22)

3. Compute new fractions of attached cross-bridgas:{, nan) by solving the sys-
tem of ODEs given in Eq. (2.21), using an Euler scheme.

4. Calculate the current unimodular pseudo-invaridgtsand!.,, from Eq. (2.26)

5. Mechanical update of the relative filament slidings andtg, according to step
(3) by means of Eq. (2.24) using the average elastic elomgafrom the previous
time step (history variables,, andt,,)

6. Calculate the filament overlaps,, andLy,,, the active external stressBs, and
P.,, the internal driving stressdy, andP.,, using Egs. (2.30), (2.31), (2.28) and
(2.29)

7. Chemical update of the relative filament slidings andtdg,, by solving the evolu-
tion law (2.27) using an Euler scheme

8. Update the average elastic elongatiapsandt,,, the filament overlapg,, and
L¢os, USiNg EQgs. (2.24), (2.30) and (2.31)

9. Compute the stress tensdand the elasticity tensdz, using Egs. (2.6) and (2.11)

8. Store updated history variablesy, nyp, 7anp, 7AM, Teys Ueg» Ussys Utsg

2.5. Representative Finite Element Simulations

Two representative examples are simulated and analyzed ti finite element imple-
mentation of the proposed smooth muscle fiber model, anduénseguently described.

2.5.1. Uniaxial Isometric Contraction of an Aortic Medial Strip

The isometric contraction of smooth muscles in a medigb stfithe human abdominal
aorta, activated through a calcium transient is simulatethe first example. The main
purpose of this numerical example is a validation of the rhadelementation. There-
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fore, finite element results are compared with the one-dsioeal simulation solved with
MATLAB. Due to symmetry, only one half of the medial strip is model&#& use1000
eight-node hexahedral elements, applying the mixed Ql#0ent formulation through-
out the computation, to avoid locking phenomena. All nodescanstrained in all direc-
tions at one end of the strip and constrained only in the nifevential direction at the other
end of the modeled strip. A linearly increasing circumfeiarstretch is initially applied
to the modeled strip, and subsequently contracted througdliatic calcium concentration
transient. The calcium transient is identical to that useditting, see Eq. (2.23).

2.5.2. Inflation and Contraction of an Arterial Ring

In the second example the pressure-radius relationshitharichnsmural stress distribu-
tions of a residually stressed arterial ring with two lay@nedia and adventitia), subjected
to axial pre-stretch, internal pressure and smooth musceigraction are studied. The im-
pact of the smooth muscle fiber orientatiof on the mechanical behavior of the human
abdominal aorta is investigated for different sets of sihontiscle material parameters.
In particular the effects of the smooth muscle stiffngs@and the filament overlap func-
tion (ﬁ?spt, Sto;» Sto,) ON the pressure-radius relationship and the transmurklsivasses
are analyzed. In order to consider residual stresses (eaidt the stress-free reference
configuration of the arterial ring is modeled with an openamgjle 3, see Fig. 2.1. The
symmetrical boundary conditions constrained the crosses&l surfaces of the arterial
ring in the circumferential direction. The axial stretclképt constant during inflation and
contraction.
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3.1. Parameter Identification

Parameters for the chemical model (see Egs. (2.21) and){2a&2 taken from Mur-
tada and Holzapfel (2014) and summarized in Table 3.1. Ieramestimate the material
parameters for the proposed active constitutive modekmx@ntal active length-tension
data of the pig common carotid arteries presented in Mugadh (2012) are adopted. Due
to the fact that there are no suitable experimental datdadlaion the contractile behavior
of human aortic tissue so far the active length-tension ansion-time data are chosen and
modified slightly, see Appendix C.

Table 3.1 Parameters for the chemical model, taken from Murtada antz&jgiel (2014)

Kinetics model
nis™'l h[-] EDso[uMol]  ky[s™']  k3[s™'] ky[s™'] kr[s™']
0.35917 4 0.37 0.16267 0.06667 0.00083 0.00667
Calcium transient
t1[s] ts[S] a[nMol] b[nMol] c[(uzMol s)™']
60 6 400 300 1

The average elastic elongation at steady state is setfo= 0.02, according to Arner
(1982), and the parametersand/ used in Eq. (2.27) are set to values which are taken from
Murtada et al. (2012), i.ex = 26.68 kPa and3 = 0.00833 s~!. Material and structural pa-
rameters for the proposed passive constitutive model va&entfrom Niestrawska et al. (in
press), and are summarized in Table 3.2. Micro-structavalstigations (second-harmonic
generation imaging) as well as biaxial mechanical tensséstof healthy abdominal aortas
are performed, and the experimental data are fitted to the semm-symmetric collagen
fiber dispersion model used in this work.

17



18 3 Results

Table 3.2 Passive material and structural parameters for the medid adgventitia of the
healthy abdominal aorta (median), taken from Niestrawskal.€in press)

Layer Material parameters Structural parameters
pp [KPa] O [kPa] Cs -] Kip [l Kop [l asn [°]
Media 16.08 11.68 7.18 0.208 0.487  6.91

Adventitia  3.77 0.36 45.88 0.232 0.466 77.53

3.2. The Impact of Smooth Muscle Fiber Orientation and
Filament Overlap Behavior on the Fitting of Active
Material Parameters

The relationship between the filament overlap function &edtmooth muscle cell orien-
tation was investigated by studying the squared residuahpeter’:? of the stretch-active
stress behavior for different smooth muscle cell orientatinglesy.,,. The non-symmetric
filament overlap function resulted in a better fit for smallalues of the smooth muscle
fiber orientation. However, no difference in the simulatexdgth-tension behavior using
the symmetric and non-symmetric filament overlap functi@s wbserved fot., > 30°,
see Fig. 3.1(a). Figure 3.1(b) shows that for a smooth miiggeorientation oty = 0°
a non-symmetric filament overlap function (solid curve) \abke to simulate a better fit to
the experimental active length-tension behavior (cipdlean a symmetric filament overlap
function (dashed curve), especially at higher stretches.

The fitted active material parameters for different smoottscie fiber orientations are
presented in Fig. 3.2. An increase in the stiffness paramegtevas estimated with in-
creasing muscle fiber orientatian, in order to maintain the same circumferential iso-
metric contractile tension as observed for the circumfigaitiy aligned smooth muscle
fibers. Figure 3.2(b) illustrates the behavior of the matgrarameters used in the filament
overlap function, Eq. (2.30). All three paramet&t$’, s, ands;,, decreased with an
increasing smooth muscle fiber orientatiar. The filament overlap function parameters
decreased with increasing,, where the width parameters reached equivalent values for
smooth muscle fiber angles larger thzi?. Interestingly, the optimal filament parame-
terﬁ‘f’slDt decreased for increasing values of smooth muscle fibertatien.,, suggesting
that the optimal stretch for maximal filament overlap washea closer to resting muscle
length for smooth muscle fiber orientation values negr= 40°. In Tab. 3.3 material
parameters for the proposed active constitutive modelarersarized for several different
smooth muscle fiber orientations,.
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Table 3.3 Set of active material parameters for different smooth rieusgentations

N Fitted parameters Related and fixed parameters
@ MPa] [ Sw [ Sl rawplkPal alkPal B[S ]

0° 6.768 0.260 0.305 0.402 319.995

6.91° 6.895 0.256  0.302 0.380 326.010

10° 7.026 0.250 0.299 0.362 332.221

20° 7.683 0.211 0.284 0.305 363.262 26.68 - 0.00833
30° 8.671 0.136  0.268 0.268 409.976

40° 10.126 0.014  0.238 0.238 AT78.776

3.3. Uniaxial Isometric Contraction of an Aortic Medial
Strip — Validation of Model Implementation

A medial strip is modeled with a referential length= 15.0 mm (circ. direction), ref-
erential widthiW = 3.0 mm (axial direction) and referential thicknegg,.q = 0.8467 mm
(Niestrawska et al., in press). All finite element resules @ken from a central node lo-
cated at the end of the modeled strip, where only one degr&eaedom is constrained,
and then they are compared with the one-dimensional sala#&bculated inMATLAB.
The implementation of the cross-bridge kinetics model isfieel by comparing the fi-
nite element analysis with the one-dimensional simulati@ygered by one specific cal-
cium concentration, see Fig. 3.3(a). The circumferentalc@y stress is also compared
and verified between the two simulations of a strip with srhaatscle fiber orientation
ae = 30°, see Fig. 3.3(b). The relative error between the finite efgrsienulation and the
one-dimensional solution for all smooth muscle fiber oaéinhs was less thanpercent.

The distribution of the circumferential Cauchy stress oiad from the finite element
analysis for half the volume of a medial strip is presenteti vélaxed smooth muscle fibers
(Fig. 3.4(a)), and with contracted smooth muscle fibersrwfiber orientations., = 0°
(Fig. 3.4(b)) andv., = 30° (Fig. 3.4(c)). Note that for both simulationa{ = 0° and
e = 30°) different active material parameters are used, see TaBle Bhe medial strip
simulation with a smooth muscle fiber orientatiom@f = 30° resulted in a larger change
in width and increased thickness at the contracted stat@amd with the simulation with
smooth muscle fiber orientatien, = 0°.
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Figure 3.3 Verification of the material model implementatiochanges of chemical and
mechanical quantities in a medial strip during contractear a time period
of 300 seconds: (a) time dependent intra-cellular calcium comagan and
chemical fractions of myosin heads for the states A, B, C an(bpCauchy
stress in the circumferential direction; circles reprédmite element results,
while the solid curve is an analytical result for the one-ginsional solution.

(a) Pre-stretchedyg, = 6.91° (b) Fully contractedv., = 0°  (c) Fully contracteda,, = 30°
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Figure 3.4 Three-dimensional Cauchy stress distributidhé circumferential direction
of the medial strip with two symmetric families of collagemdassmooth mus-
cle fibers. Results are shown at the end of the passive @isiphase: (a)
att = 60 seconds; (b),(c) at the end of the active smooth muscle actian
phase at = 300 seconds for,, = 0° anda,, = 30°.
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3.4. Inflation and Contraction of an Arterial Ring

For this numerical investigation the abdominal aorta wasletexr as a half ring under
plane strain conditions with an opening angle- 60°. The inner radius of the ring was set
to R; = 6.8375 mm (Holzapfel and Ogden, 2010; Holzapfel et al., 2007), tleelial wall
thicknesses i$/,,.q = 0.8467 mm and the adventitial wall thicknessig,y, = 0.5884 mm
(Niestrawska et al., in press) in the reference configunatibue to symmetry only one
half of the whole arterial ring was simulated and discretibg 640 eight-node hexahe-
dral elements (320 elements per layer), applying the medP0 element formulation
throughout the simulation. All nodes at the media/adventiterface were linked together.
The collagen and smooth muscle fiber orientations were dkiimthe unloaded and stress-
free reference configuration, and the values are provid@dltes 3.2 and 3.4.

Table 3.4 Set of active material parameters used for the simulations

Set Aoy Ua [M Pa] RKAMp [kpa] ﬁ?spt [_] gfo1 [_] gfoz [_]

1 0.26 0.30 0.40
2 0.14 0.27  0.27
2a 0° 6.8 320 0.14 0.27  0.80
2b 0.14 0.80 0.27
2c 0.07 0.27  0.27
3 8.7 410 0.26 0.30 0.40
4 0.26 0.30 0.40
5 30° 08 320 0.14 027  0.27
6 8.7 410 0.26 0.30 0.40

The meshed arterial ring in the load- and stress free refereanfiguration is presented
in Fig. 3.5(a). The opening angle of the arterial ring wasiafly closed and then the
ring was pre-stretched with0675 in the axial direction (Horny et al., 2014) (Fig. 3.5(b)),
pressurized to a certain level (Fig. 3.5(c)), and contch¢keg. 3.5(d)). The contraction
was triggered with a constant calcium concentratiod @fnMol. This procedure was
repeated for different pressure values. The circumfeaesiiess distribution of the arterial
wall at different simulation states is presented in Fig. 3.5

The internal pressure-inner radius relationship of arriaiteng at the relaxed and the
contracted states was analyzed for different structuchha@chanical smooth muscle prop-
erties as defined in Tab. 3.4, see Fig. 3.6(a). Eight diftarases were studied: two passive
pressure-radius relationships with and without residtralsses and six active pressure-
radius relationships with different smooth muscle fibeeotations and sets of material
parameters. A change in the smooth muscle fiber orientatithhout changing the material
parameters resulted in a reduced contraction in the cirerenfial direction, and hence a
larger inner radius compared to simulations with circuremgially aligned smooth muscle
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Figure 3.5 Contour plots representing the circumferer@alchy stress distribution of
the human abdominal aortic ring at different simulatiorteta (a) the load-
and stress-free reference configuration; (b) the resiglstaitssed and axially
pre-stretched state; (c) at an internal blood pressuf® ofmHg; (d) when
smooth muscle cells are fully contracted. Note that in (&) @M as well as in
(c) and (d) the same stress legend is used.

fibers. A decrease in the filament overlap paran'@?g@rresulted in a stronger contraction
at the low pressure domair<(90 mmHg), and the filament overlap width parametgss
andsy,, had a significant effect on the shape of the pressure-radliatsanship.

Figure 3.6(b) shows corresponding transmural circumtakand axial Cauchy stress
distributions of the medial layer at an internal pressurelahmHg. The negative trans-
mural circumferential stress gradient, with larger streslsies closer to the lumen was
reduced after inclusion of residual stresses in the rind,isoompletely vanished by in-
cluding the active tone contributed by the smooth muscle.c@lith increasing active tone,
the transmural stress gradient could even turn positivida, svhaller stress values closer to
the lumen. The residually stressed and axially pre-steetahflated arterial ring had a
slightly negative axial stress gradient with a positiveraged axial stress value, i.e. axial
tensile stress. This stress gradient is again smaller tteegradient of the arterial ring that
does not consider residual stresses. After smooth museteaction it becomes marginally
positive. The arterial ring simulations with a muscle fibgenotation ofa,,, = 30° showed
an averaged axial stress similar to that of the relaxed statentrast to the arterial rings
having circumferentially aligned muscle fibers.
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Figure 3.6 Influence of changes in smooth muscle orientamoiactive material parame-
ters on the mechanical behavior: (a) blood pressure as adaraf the current
inner radius for the relaxed and contracted state; (b)idigton of the cir-
cumferential (circles) and axial (asterisks) Cauchy stm&r the normalized
medial wall thickness at an internal blood pressurégdohmHg. Curves of the
same color are based on the same material parameters, fen¢lifsmooth
muscle orientations, i.ea., = 0° (solid), a., = 30° (dashed). The solid
black curve represents the passive mechanical respons&ledng residual
stresses, while the dash-dotted black curve does not cartbieim.

Figures 3.7 and 3.8 highlight the influence of alterationtheffilament overlap param-
eters on the filament overlap behavior and the pressuragaéiationship. A significantly
increased non-symmetry of the filament overlap functionseduby an increase Gf,,
shows a slightly stronger contractile behavior at the presslomain abov®0 mmHg,
while the increasest,, resulted in a very strong muscle contraction at the preskurain
below 90 mmHg. Whenu;™ was reduced the active length-tension behavior was shifted
towards smaller stretches and a stronger contractile l@hatvthe low pressure domain
together with a weaker contraction at the high pressure dowes observed.

Using the arterial ring model, the change of the averageiciferential wall stress of
the media was studied for different values of smooth museés Brientation, and how the
smooth muscle parametat.,, and the filament overlap behavior could reverse this change
at different pressures. The smooth muscle fibers wereligitieodeled to be oriented in
the circumferential direction. It is assumed that the grigin a homeostatic stress state.
A change in the smooth muscle fiber orientation led to a weednstractile behavior at
all pressure domains compared to this healthyivo case and therefore to an increasing
wall stress, as shown in Fig. 3.9. The stress increase wassexy by &80% increase of
the smooth muscle paramet¥®f, or by modifying the filament overlap parametess%
decrease ofi;”* and a switch to a symmetric filament overlap behavior). Atrgernal
pressure 060 mmHg, the smooth muscle parameéy, and the filament overlap parame-
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Figure 3.7 Influence of filament overlap parameh?e?g%, Sto, andsyg,, on the pressure-
radius relationship of the arterial ring.
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ter were able to reduce the increase in the wall stress. Hawat90 and120 mmHg only
the smooth muscle parametdf,, was able to reduce the increase in the circumferential
wall stress, see Fig. 3.9.
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4. Discussion

In the present work we performed finite element analysesderato study the quasi-
static effects of smooth muscle remodeling, as reportedunsGet al. (2003); Herrera
et al. (2005); Syyong et al. (2008); Wang et al. (2001); Yaand Morgan (2012) on the
mechanical behavior of the human abdominal aorta. In paaticthe influence of different
smooth muscle fiber orientations, muscle contents (numb@tis) and different filament
overlap behaviors on the pressure-radius relationshighentfansmural stress distribution
of the arterial wall was investigated. The recently propasechano-chemical constitutive
model by Murtada et al. (2012) was modified in order to captueenechanical behavior of
two individual smooth muscle fiber families with a certaimeotation and combined with
a non-symmetric bell-shaped function in order to take tha@adength-tension behavior
into account (Murtada et al., 2012). Active material parearsawere obtained by fitting the
model behavior to experimental data published by Murtadd. €2012) and Niestrawska
et al. (in press), for different smooth muscle fiber origotad. Due to the lack of available
human active length-tension data sets, data from pig chesteries were scaled so as
to represent the human active behavior. Fitting resultsliggted trends for all active
model parameters with respect to the smooth muscle orientaHence, an increasing
a., led to monotonically increasing stiffness parametgrsands an,) and monotonically
decreasing filament overlap parametei§’( 5;,, andss,,), because of decreasing muscle
fiber stretches.

A non-symmetric filament overlap function was necessarysfoooth muscle fibers
aligned in the circumferential direction to capture the®tn-active stress behavior, sug-
gesting a non-symmetry in the experimental stretch-adixess behavior. When fitting
the model for different smooth muscle fiber orientationéxperimental stretch-active
stress behavior, the non-symmetry in the filament overl&yaier decreased with increas-
ing a.,, and finally vanished for,., = 30° and above. We also found that simulations
with higher values of.., undergo a larger rotation of the smooth muscle fibers foriagpl
stretches in the circumferential direction than in simola with smaller values ofi,,.
These findings agree well with data presented by Chen etGl3j2where they measured
the current orientation of vascular smooth muscle cells fasetion of the internal pres-
sure. These results suggest that the non-symmetric belebhserved in the stretch-active
stress behavior is more driven by the reorientation of smouiscle fibers for,, > 30°,
and more driven by a non-symmetric filament overlap fundiwmy., < 30°. Based on the
stretch-active stress behavior which we kept constant,tahimg combination of smooth
muscle fiber orientation and filament overlap behavior fost it could be determined.
Results suggest a symmetric-like filament overlap behaor an optimal stretch value
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closer to the resting stretch for smooth muscle fiber ortearta deviating further away
from the circumferential direction. Based on these reauitthe assumption that smooth
muscle cells work close to its optimal stretch, vasculaugswith smooth muscle fiber ori-
entation not aligned in the circumferential direction @bk less pre-stretched. The active
force produced by these smooth muscle cells would also leainave in a symmetric-like
manner as a function of the applied stretch.

In the FE simulation of the medial strip, different smoothsde fiber orientations
were simulated. Medial strips with two symmetric musclersbeith orientation of-30°
showed a significantly increased wall thickness compareal ieedial strip with muscle
fibers aligned in the circumferential direction as a restiithe active contraction in the
axial direction and the incompressibility condition. Thlastrates the importance of the
smooth muscle fiber orientation on the contractile respafigbe arterial tissue. There
have been several reports of the existence of active sgré@sd®oth circumferential and
axial directions in arteries indicating that smooth musatraction is responsible for a
multiaxial response in the vascular wall (Agianniotis ef 2012; Chen et al., 2013; Mur-
tada et al., 2016a; Takamizawa et al., 1992). Structuralstigations performed by Chen
et al. (2013) and Holzapfel et al. (2002) also suggest thaiosmmuscle cells form two
symmetric helically arranged fiber families in the arteryhwa orientation distribution sim-
ilar to that of collagen fibers. A statistical orientatiostibution of smooth muscle fibers
has been addressed previously (Murtada et al., 2010b) bwisimy a FE implementation
to study the three-dimensional effects of the orientatistrithution.

The interrelation between extracellular smooth muscle filsientation and intracellu-
lar filament structure, and their influence on the human alinaorta was investigated
using an analytical approach. By using the proposed modélave shown the influence
of the smooth muscle fiber orientation on the mechanicagjitieof the arterial wall. But
also, how changes in the arterial wall behavior due to dlran smooth muscle fiber
orientation can be reduced, and even prevented by adjubinijament overlap behavior
or the smooth muscle contractile unit density. Thus, mauigfiythe intracellular filament
structure or the smooth muscle cell content could be usedthsrapeutic approach in
response to pathological vascular adaptation processesevwchanges in smooth muscle
fiber orientation is involved. However, this would requitether experimental and analyt-
ical studies.

Reports have suggested that an increase in smooth musict®ctnt, here presented
by an increase in numbers of CUs, is a part of a response dwestoilar adaptation such
as hypertension (Cox, 1981; Delbosc et al., 2008; Fridek,&2@01; Zulliger et al., 2004).
However, only a few studies have investigated if a couplezhgle in the smooth muscle
orientation and intra-cellular structure occurred dutimg adaptive changes of the smooth
muscle cells. Studying the orientation of smooth musclés ailring vascular adaptive
processes could provide additional information and coldd be used as a precursor for
changes in smooth muscle cell content and intracellulangésiin the myofilament struc-
ture.

In general, the incorporation of residual stresses in tltm@adinal aorta does not only
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effect the pressure-radius relationship it also reducesrémsmural stress gradients, a find-
ing which is in agreement with, e.g., Holzapfel et al. (20863 Humphrey (1995). The
transmural circumferential stress distribution withire thnedial layer showed an almost
horizontal line at the fully contracted state of smooth nteisells compared to the relaxed
state. Humphrey and Na (2002); Murtada and Holzapfel (2@hd)Rachev and Hayashi
(1999), for example, reported that a combination of redidtr@sses and basal smooth
muscle contraction is responsible for a more homogeneansrrural stress distribution
along the wall thickness, which also our results predicttt@r, Humphrey and Na (2002)
suggested that continuous adaptation processes of intahoanstituents may seek to ho-
mogenize the stresses through the arterial wall thickneHsad cells sense the same stress
value independent of the radial location. That means, wiesrleading conditions sig-
nificantly alter, stress gradients change so that cellseséifferent stresses along the wall
thickness, and remodeling mechanisms are triggered. Al98Y] states that at homeosta-
sis the strain energy, and hence the strain of every vassmlaoth muscle cell is uniform,
known as the principle of optimal operation. In contrastioresults, several studies which
also considered residual stresses as well as vascularlsmaogtle tone (Huo et al., 2013;
Zulliger et al., 2004) predicted a positive stress gradiesat an increase of the transmural
stress from the inner to the outer surfaces at a physiolblgioad pressure level. However,
in their models smooth muscle contraction also leads to acestlaveraged wall stress in
the circumferential direction as well as a slightly redust@ss gradient compared to the
fully relaxed state, which is in agreement with our results.

The presented results show that the proposed constituinkehis able to predict the
expected mechanical behavior, in particular the stregslaions throughout the medial
wall thickness, and it is therefore well suited for studyimgre complex physiological
boundary-value problems in vascular mechanics. The predeesults show that the pro-
posed constitutive model is able to predict the expectedchargcal behavior, in particular
the stress distributions throughout the medial wall theds) and is therefore well suited
for studying more complex physiological boundary valuebtems in vascular mechanics.
Furthermore, it allows a detailed quasi-static analysithefeffects of morphological and
functional smooth muscle and collagen fiber alterationsiooty during a disease devel-
opment on then vivo mechanical behavior of the human abdominal aorta, e.geesia
hypertension and abdominal aortic aneurysms. Neverthead&act triggering mechanisms
of these diseases as well as corresponding complex caoredaif alterations between ac-
tive and passive constituents of the arterial wall with ee$o the disease development
are still objects of investigation.
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A. Detailed Derivation of the Stress and
Elasticity Tensors

The purely volumetric stress contributi®p,, is specified by Eq. (2.7), where the deriva-
tive of J with respect to the symmetric teng0ris
aJ 0 12 O 1 i
A )—:—1 LC! =
dC 8]3(3 oc 2% 7
where we have used Eq. (2.4). B
In order to derive the isochoric stress tenSpias shown in Eq. (2.8), it is necessary
to introduce the derivative of the modified right Cauchy-&rdensorC relative to the
symmetric tenso€, in which we use the fourth-order projection ten®an the reference
configuration. Thus, the projection tendand its properties are

1

1
L*ct=2yct Al
9 3 2J ) ( )

1 1
P:H—§C_1®C:H—§(C®C_1)T

1 1/2 T
:H—§C1®C:H—§(C®Cl> , (A.2)

together with the fourth-order identity tensor

(D agep = (0acdsp +dapdse) /2, (A.3)

wheredac, dpp, dap anddpc denote the Kronecker delta. By means of Egs. (A.1)-(A.3),
the standard result of the derivative@fwith respect taC is

C 0(J23C ~2/3
8_C — QIJ*Q/K?@_C_FC@L
oC oC /ac oC
0J7239] 1
— J2B1+C = J(1--CgC!
H YIS 3@
= J2PPT, (A.4)

in whichP* defines the transpose of the fourth-order tefsdnith the use of Egs. (A.1)-
(A.4), the purely isochoric stress contribution can bedstias

S= 28\1/(0) - 6\1'(_(:) : oC _ 28\1'7(_@ - J2BPT = J2p zaL(_C)
oCc = agC ‘9Cc  ~ 4C dC
= J3 [28\1'7(_@ _1 <6:28\I’(_C)) 6‘1} . (A.5)
oC 3 oC
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40 A Detailed Derivation of the Stress and Elasticity Tessor

Finally, by introducing the deviatoric operator in the Laggian description, defined as

Dev [e] = (o) il’) [(e) : C] c (o) — % [C: (o)] C ' =P: (o) = (o) : P, (A.6)

a rather convenient short-hand notation can be used foistahoric contribution of the
second Piola-Kirchhoff stress, as shown in Eqg. (2.8).

The purely volumetric contribution of the elasticity tengothe Lagrangian description
of Eq. (2.12) can be derivated as

., 9(pJ) oc™!
_ 1
(CVOI =2 (C X oC +pJ oC

d
—2C'® (p + J£> g—é —2pJC e C,

(A.7)
where the definition for the fourth-order tensor
acl)
=—(Cl'eoct
( 8C ABCD ( )ABCD 1
1, . o oCy
has been used.



B. Analytical Expressions for Fitting

As already mentioned the proposed active model is fitted tdified experimental
data obtained from uniaxial isometric contraction testégmed on circumferential strips
which are cut out from the dissected medial layer. Hencelyaoal expressions are pre-
sented which are required for the subsequent fitting praeedUherefore, the purely in-
compressible formulation of a hyperelastic material issidered where the free-energy
function ¥ for the medial layer is characterized by = ¥, + ¥, with the active contri-
bution according to Eqg. (2.25) (without bars on the variapbnd the passive contribution
according to Egs. (2.36)-(2.40) (again without bars on gmables). The incompressible
formulation of the analytical expression for the secondaRiGrchhoff stress tensd® then
reads

ov

S=2— —pC
aoc ?

=2 {\If; (I + D [, (Ii,) Hi + O, (Lo, ) My, © Mcui]} —pC™', (B.1)

i=4, 6

wherep is a Lagrange multiplier to enforce incompressibility. T®&uchy stress tenser
can then be computed lay = FSF'.

We consider now a circumferential specimen (medial layetf) 'wo symmetric fiber
families and with mean fiber directions in the reference gumétion denoted by

[Mﬁb4] = [O, COS Qigp, Sin aﬁb]T, [Mﬁb6] = [0, COS Qigp, — Sin aﬁb]T, (B.2)

while the normal direction to the circumferential/axiaqpé coincides with the radial di-

rection vectoe, given by [M, ] = [1, 0, O}T, see Fig. 2.1. Further, two symmetric smooth
muscle fiber families are oriented along the direction vecamd characterized by

[Mcu4] = [O, COS Oy, SN acu]T, [MCUS} = [0, COS Qlgy, — SN Oécu]T, (B.3)

defined in the reference configuration, see also Fig. 2.1.e Nwit the anglesy, and

o, are always measured with respect to the circumferentiatdon. The corresponding
deformation gradient for uniaxial extension or compression as well as the rigltlaft
Cauchy-Green tenso(€, b) can be expressed in terms of the principal stretches byr(shea
is neglected)

[F] = diag [\, Ao, A2, [C] = diag [X2, A2, A2] = [b]. (B.4)
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The required invariants are also expressed in terms ofipahstretches, and read

L=X+MN+), L=C:M, M, =)\, (B.5)
Isp, = C: Mgy, @ Mg, = A2 cos? agy, + A2 sin? agp, (B.6)
Iey, = C:Mey, ® My, = A cos? ey + A2 8in? reyy, (B.7)

with i = 4, 6. The derivatives of the free-energy functions relativéhdefined invariants
necessary for Eq. (B.1) are then given by

6\11 1% Ef B ]cu~ — ﬁfs. —1 .
U (I,.) = 2 = : . =4,6, (B.8
a ( z) a[cui 9 (nAMp + nAM) \/E ) t ( )
ov 1
w0y = P o ®9)
/ * 6\Ilp * * 2 .
U, () = 502 = O (I, = exp |G (I, = 1) i=46.  (B10)
fib

Hence, the non-zero components of the Cauchy stress matnigad

G = —p+2 -xp; )+ Y (1-24-B)W, (Igbi)] A2, (B.11)
I i=4, 6
Ogg = —p + 2 \I/;) ([1) —+ Z (A —+ B cos? Oéﬁb) \I’; ([Ebl)
L i=4, 6
+ Z W (Iey,) oS aey) | A2, (B.12)
i=4, 6
0.. = —p+2 |V, (L) + Z (A + Bsin? aﬁb) v ([gbi)
i=4, 6
+ 3 W, (Ly,) sin® aw] A2, (B.13)
i=4, 6

By solving this system of equations, so that the boundargitom o,.., = ¢.. = 0 and
the incompressibility conditiod = 1 = A\ A\p\. are satisfied, the normal stress in the
circumferential direction of the tested medial specimgncan be expressed as a function
of the principal stretch in the circumferential directidn The first Piola-Kirchhoff stress
Pyy can then be calculated froRyy = 04/ Ne-



C. Experimental Data Scaling

According to Murtada et al. (2012) we assume that the maximantractility is ex-
pected to be within the physiological blood pressure rangearoundd0 mmHg. Numer-
ical investigations (see arterial ring example) indicatezircumferential stretch df.28 at
the inner radius of a healthy abdominal aorta under an iat@nessure 00 mmHg and an
axial pre-stretch of .0675 (Horny et al., 2014) without considering smooth muscletc
tion. This result is in good agreement with experimentaagaesented in Labrosse et al.
(2009). Thus, the original length-tension behavior isadah the horizontal direction so
that the maximum is situated at this obtained circumfeatstretch. Further, itis assumed
that the ratio between the active stress peak and the comésg passive stress is the
same for both pig carotid artery and human abdominal aanthfteerefore the experimen-
tal length-tension behavior is scaled in the vertical dicecaccordingly, see Fig. 3.1(a).
Moreover, we also scale the corresponding active tensmea{tehavior, as shown in Mur-
tada et al. (2012), according to the latter assumption. Buotidified length-tension and
tension-time data of a medial strip are used for the paramndatification.
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