
Josef Mihael KOLLER

Image Shading Corretion via TGV and DCT with

Appliation to MRI

Master Thesis

Graz University of Tehnology

Institute of Medial Engineering

Stremayrgasse 16/III, A - 8010 Graz

Head: Univ.-Prof.Dipl.-Ing.Dr.tehn. Rudolf Stollberger

Supervisor: Univ.-Prof.Dipl.-Ing.Dr.tehn. Rudolf Stollberger

Graz, Otober 2016



Image Shading Corretion via TGV and DCT with Appliation to MRI

Abstrat

Magneti Resonane Imaging is a measurement method whih produes representative data of

the insight of human bodies. In this work a retrospetive orretion method for the inhomogeneity

artifat is omposed of other approved image proessing tehniques, extended and evaluated.

The proposed method performs denoising and simultaneous bias estimation by the TGV-L

1

Primal-Dual algorithm for volumetri data. Bias orretion is done by solving a Poisson Equation

via a diret form solution in the osine domain. The algorithm is implemented for general TGV

order and e�iently alulates most operations in parallel.

Several image types are proessed inluding 3D MR measurement data. The results inlude

a quantitative omparison to ground truth data and metri values. Additionally a qualitative

evaluation by intensity pro�le line plots and an estimate of the probability density funtions is

given.

Under the assumption of pieewise onstant objets of interest and a slowly and smoothly

varying bias �eld the proposed method suessfully estimates higher-order bias �elds. The

method outperforms the referene method N4ITK in several aspets and may improve the per-

formane of other imaging tasks, and ould be applied to several other imaging modalities.

Keywords: MR Inhomogeneity orretion, bias, shading, TGV, DCT

Bildbeleuhtungskorrektur via TGV und DCT mit Anwendung auf MRI

Zusammenfassung

Magnetresonanzbildgebung ist eine Messmethode, welhe representative Daten vom inneren

des menshlihen Körpers produziert. In dieser Arbeit wird eine retrospektive Korrekturmethode

für das Inhomogenitätenartefakt aus anderen bewährten Bildverarbeitungstehniken zusammen-

gestellt, erweitert und evaluiert.

Die vorgeshlagene Methode entfernt gleihzeitig Signalraushen und shätzt das Inhomoge-

nitätenfeld mittels TGV-L

1

Primal-Dual Algorithmus für Volumsdaten. Die Inhomogenitätenkor-

rektur wird durh die Lösung einer Poisson-Gleihung in der Kosinusdomäne durhgeführt. Der

Algorithmus ist für eine generelle Ordnung von TGV implementiert und die meisten Operationen

werden parallel ausgeführt.

Vershiedene Bildtypen � auh 3D MR Messdaten � werden verarbeitet. Die Resultate ent-

halten einen quantitativen Vergleih mit Ground Truth Daten und die Berehnung von mehreren

Metrikwerten. Weiters wird eine qualitative Evaluierung durh visuelle Darstellung von Intensi-

tätspro�len entlang einer Linie und der Wahrsheinlihkeitsdihtefunktion durhgeführt.

Unter der Annahme von stükweise konstanten Objekten und einen sih langsam und ste-

tig ändernden Inhomogenitätenfeldes shätzt die vorgeshlagene Variationsmethode erfolgreih

Inhomogenitäten höherer Ordnung. Die Methode übertri�t in einigen Aspekten die Referenzme-

thode N4ITK, und könnte die Leistung von anderen Bildverarbeitungsaufgaben verbessern und

auh auf andere Bildmodalitäten angewendet werden.

Shlüsselworte: MR Inhomogenitätenkorrektur, Trift, Shatten, TGV, DCT
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List of Abbreviations and Symbols

Abbreviations Desription

CG Conjugate Gradient

CV Coe�ient of Variation

DCT Disrete Cosine Transform

DICOM Digital Imaging and Communiations in Mediine

FT Fourier Transform

GPU Graphi Proessing Unit

HSV Hue Saturation Value

KDE Kernel Density Estimation

MR Magnet Resonane

PDE Partial Di�erential Equation

PDF Probability Density Funtion
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TE Eho Time

TGV Total Generalized Variation

TI Inversion Time

TR Repetition Time
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T1 Spin-Lattie Relaxation Time
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Table 1: List of Abbreviations

Symbol Meaning

k TGV order

|x| L

1

-norm of x

αi maximum step size for the i-th derivative

λ optimization weight for the data term

Nvoxel voxel ount

σk kernel bandwidth for KDE

σs parameter for the spatial distane for Bilateral Filter
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△ Laplae Operator
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1 Introdution

1.1 Problem Desription

Images of the inside of the human body provide ruial information for medial diagnosis,

therapy and researh. Magneti Resonane Imaging is one non-invasive measurement

method to produe suh information. Besides MR, todays mediine bene�ts from other

imaging modalities like mirosopy, omputer tomography and ultrasound. A hallenging

problem � whih is ommon to these tehniques � is the intensity inhomogeneity. This

phenomena is disussed in the review of Vovk et al. 2007 [1℄.

It is an undesired signal omponent due to an inhomogeneous exitation �eld or oil

sensitivity pro�le. In MR it espeially appears with inreasing �eld strength. This artifat

is ommonly de�ned to be slowly and smoothly varying. In other words the spatial

intensity gradient is low and it does not ontain sharp edges.

Partiularly for quantitative analysis intensity values must not depend on the loation

of the objet of interest within the measurement devie. Furthermore a bias orre-

tion method should preserve the absolute intensity values of the image. Inhomogeneity

orretion improves the performane of other image proessing tasks like segmentation,

registration and lassi�ation as well as visual inspetion.

1.2 Common Solutions

1.2.1 Prospetive Methods

Several methods to estimate and orret the oil sensitivity pro�le have been developed.

During devie manufaturing inhomogeneities of the strong stati �eld are minimized by

passive shimming. The oil �eld arises due to the urrent �ow through the iruit paths

of the ondutor board. Additionally all other paramagneti elements interat with the

�eld. Therefore the �eld inhomogeneity is an important riterion in devie design. Ative

shimming is an automati step whih is usually performed one the measurement objet

hanges. The system measures the inhomogeneity and optimizes the oil parameters.

Additionally other retrospetive ations are performed. The �eld an be alibrated

by ground truth data. Phantoms are aurately manufatured measurement objets.

For example doped water, pure oils or gels in a test-tube. The inhomogeneity �eld an

be approximated by the measurement of multiple equal samples split aross the image,

segmentation of the ontent, averaging and spline interpolation.

MR san parameters in�uene the strength of this bias artifat. Belaroussia et al.

2006 [2℄ mention the in�uene of the slie distane, repetition time and number of ehoes.

The authors list some orretion methods and propose a protool for the evaluation of

these. Speial pulse sequenes � for example inversion reovery � ompensate the e�et

of inhomogeneities partly. The oil sensitivity estimation is also an important part in
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Parallel Imaging. This tehnique uses multiple oils for the image aquisition. In Knoll

et al. 2012 [3℄ the TGV algorithm is used for the reonstrution of suh data.

Inhomogeneities additionally originate due to the measurement objet. Certainly this

is intended sine the signal should represent objet strutures. Nevertheless there are

additional slow variations whih are objet-indued.

1.2.2 Retrospetive Methods

Retrospetive inhomogeneity orretion methods aim to deompose the measured image.

This is an underdetermined problem. Eah voxel intensity value of the bias and objet

volume is a degree of freedom and only the measured intensities are known. Suh a prob-

lem an only be solved with prior knowledge or assumptions about the imaging sequene,

�eld distribution or the imaged objets. The ommon signal model of MR de�nes a mul-

tipliative bias �eld and an independent additive noise term [1℄. It is frequently found in

literature that the multipliative omposition is transformed to an additive one by taking

the logarithm [1, 4�13℄.

The ommon assumptions used in retrospetive methods is that the bias �eld is slowly

and smoothly varying and the imaged objets are pieewise onstant. Hene it follows

that sharp edges in the measured image orrespond to the objets of interest. Usually the

shape of the bias �eld is ontrolled by the parameters of the orretion method.

The simplest method for the estimation of the bias �eld is a lowpass �lter. This teh-

nique assumes the bias to ontain low frequeny information and that a uto� frequeny

exists, whih splits the bias from objet information. The lowpass an be implemented in

the Fourier domain by an ideal or a butterworth �lter.

Homomorphi Unsharp Masking �rst blurs the image by a Gaussian �lter. This low

frequeny image is subtrated in the logarithm domain. The resulting high frequeny

information is multiplied by a onstant fator and added to the soure image. This

tehnique weights edge information stronger and thus redues slow variations. Axel et al.

1987 [14℄ do not use the logarithm transform and apply this �lter for intensity orretion

of surfae-oil MR images.

The N3 algorithm by Sled et al. 1998 [15℄ is an implementation of an inverse �lter for

MR inhomogeneity orretion. It approximates the bias �eld in the logarithm domain by

spline interpolation and iteratively performs deonvolution of the intensity histogram. A

multi-sale extension of N3 is the N4ITK method by Tustison et al. 2010 [16℄. It uses a

Gaussian Pyramid of the soure image and suessively �ts the bias �eld on inreasing

sales. Manjón et al. 2007 [17℄ also use spline interpolation with a multi-sale approah to

estimate the bias �eld, and optimize their parameters by an entropy related performane

measure.

In Land and MCann 1971 [18℄ the retinex model is introdued and Horn 1974 further

desribes the theoretial bakground. Retinex is an aronym for retina and ortex. The

8



human visual pereption does somehow inlude an illumination orretion method. We

reognize equal objets under di�erent illumination situations. This phenomena is denoted

by the term olor onstany. Nevertheless the retinex algorithms � whih are desribed

in the following paragraphs � basially only have the idea of a pixel-wise omposition in

ommon. Most methods proess the input image in the logarithm domain. In that way a

multipliative omposition beomes additive.

Similar to Homomorphi Unsharp Masking the Single Sale Retinex method uses a

lowpass kernel to extrat shading information. Multisale Retinex ontains a linear om-

bination of multiple kernels. These two methods are used by Shen and Hwang 2009 [19℄,

Chao et al. 2012 [20℄, Wang and Huang 2014 [21℄ as well as Morel et al. 2014 [22℄. Zhao

et al. 2012 [5℄ derive a lose-form solution for a quadrati energy funtional based on

retinex.

A method ommonly found as a preproessor in fae reognition tasks is Empirial

Mode Deomposition. Xie 2014 [23℄ desribe this method whih inludes speial basis

funtions known as Intrinsi Mode Funtions. The author explains the method for one-

dimensional data, ombines it with the retinex idea and applies it for fae reognition.

Damerval et al. 2005 [24℄ extended Empirial Model Deomposition to two-dimensional

images. In Liang and Si 2015 [25℄ this method is used for MR inhomogeneity orretion.

Variational image proessing methods are widely applied and approved today. Tikanov

et al. 1992 [26℄ desribe PDE based methods to solve imaging tasks by the minimization

of a Lagrange funtion. Maximum a posteriori probability (MAP) methods inlude a

model of the probability distribution of the intensity values. Gaussian, Rayleigh, Gibbs

and Riian distributions are used. Fu et al. 2015 [13℄ show how a MAP problem is

transformed into an energy minimization problem. Another probabilisti approah is

used by Wang et al. 2014 [27℄ and ompared to several other retinex methods. The

energy funtional usually onsists of multiple weighted integral terms of the image data.

These inlude the L

1

- or L

2

-norm of image omponents (soure, denoised, bias, deshaded),

the gradient or higher order derivatives of those.

The pioneer work of Kimmel et al. 2003 [6℄ is based on an energy funtion whih uses

the L

2

-norm of the gradient of the illumination, the deshaded image and the gradient

of the deshaded image. The authors hoose a speial Steepest Desent algorithm to

minimize their ost funtion. Their work shows that bias orretion an be done with few

assumptions and parameter values on a PDE basis. Ma and Osher 2010 [7℄ introdue the

L

1

-norm of the resulting image in the energy funtion. Their motivation is to preserve

edges in the resulting image similar to the ROF model by Rudin et al. 1992 [28℄. This

requires a more omplex optimization routine, but highly improves the quality of the

result. They use the Bregman methods to solve the minimization problem. In Morel et

al. 2010 [8℄ a muh simpler optimization algorithm is introdued, whih alulates the bias

by the thresholded gradient and the FT. This method is further improved by Limare et
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al. 2011 [29℄. Ma et al. 2011 [9℄ inlude the L

1

-norm of the deshaded image in the energy

funtional. They extended their optimization method to use the thresholded gradient to

split bias from objet information. Their method is evaluated with MR medial images

and ompared to the N3 algorithm by Sled et al. 1998 [15℄.

Liang and Zhang 2015 [11℄ add additional terms to the energy funtional. Their model

inludes the deshaded and the bias omponent. They use the split inexat Uzawa method

whih is a variant of the alternating diretion method of multipliers (ADMM). Similarity

to TGV

2

-L

1

by Bredies et al. 2010 [30℄ is also disussed by these authors.

MR inhomogeneity orretion is also ombined with simultaneous segmentation by

variational level set methods. Suh algorithms are used by Verma et al. 2012 [31℄,

Shahvaran et al. 2012 [32℄ and Ivanovska et al. 2016 [33℄ for the segmentation of biologial

tissue.

Gilboa and Osher 2009 [34℄ introdue non-loal di�erential operators to variational

image proessing. Non-loal operators were desribed earlier by Yaroslavsky 1994 [35℄.

Zhang et al. 2013 [10℄ ombine non-loal di�erentiation and retinex and Zosso et al.

2015 [36℄ further generalize this idea.

10



2 Methods

In this work an additive deomposition method is evaluated. The fundamental ost fun-

tion is based on the idea of Liang and Zhang 2015 [11℄. It is optimized by the Primal-Dual

algorithm developed by Chambolle and Pok 2010 [37℄. This algorithm is extended to se-

ond order TGV in Knoll et al. 2011 [38℄ and applied to the problem of image denoising

and MR reonstrution.

The �rst step of the proposed PDE inhomogeneity orretion method is to minimize the

funtional stated in Equation 1. It only di�ers to the formulation of the image denoising

problem by Knoll et al. 2011 [38℄ in the norm of the data term, and the parameters α0 and

α1. The stated ost funtion onsists of three parts inluding the L

1

-norm of salar �elds

and vetor �elds, whih are weighted by ontrol parameters. First of all it minimizes the

distane from the denoised image u to the measured image f . Aording to the notation

of Chambolle and Pok 2010 [37℄ this term is weighted by the parameter λ. Low values

of this parameter allow the denoised image to highly di�er from the input image. Higher

values of λ inrease the weight of the di�erene in the overall ost funtion and therefore

result in more similar images and less denoising.

Next the regularization funtional inludes the L

1

-norm of the gradient of the denoised

image subtrated by a vetor �eld v. The subtrated vetor �eld v is not just totally equal

to the gradient of the denoised image. The last term minimizes the seond order gradient

of this vetor �eld. These two terms ounterat in the properties of the �nal vetor �eld

v. The ompromise is balaned by the spei� values hosen for the elements of the

parameter vetor α. High values of α1 result in less edges, whih is equal to a smoother

�eld. If the previous term is weighted stronger the �eld v will ontain the edge information

of u. Knoll et al. 2011 [38℄ prevent the image from ontaining the stairasing artifat

whih usually evolves by using the TV-norm of the gradient.

min
u,v

{

λ

ˆ

Ω

|u− f | dx+ α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v| dx
}

(1)

This ost funtion in Equation 1 desribes two properties of the denoised image u.

The vetor �eld v is introdues as an auxiliary variable to ontain pieewise smooth image

information and to prevent the TV-norm from minimizing all gradients of the denoised

image.

Liang and Zhang 2015 [11℄ have invented a PDE retinex method. The authors desribe

the similarity of their ost funtion to the TGV-L

2

denoising funtional of Bredies et al.

2010 [30℄. They interpret the vetor �eld v as the gradient of the inhomogeneity �eld

l, and perform inhomogeneity orretion of MR images by using the simple omposition

model stated in Equation 3. While these authors estimate the images r and l at the

same time, TGV-L

1

(Equation 1) results in the gradient of the bias v and the denoised

image u. Liang and Zhang 2015 [11℄ mention the idea to solve a Poisson Equation for

11



the transformation of the vetor �eld v to the bias salar�eld l. This results from the

derivative of the Lagrange Equation of minimizing the L

2

-norm of the di�erene of the

gradient of the bias image l and this vetor �eld v (Equation 2). The Poisson solver �

whih is implemented in this work � is based on the idea of Limare et al. 2011 [29℄ and

desribed in Setion 2.3 in more detail.

min
l

{
ˆ

Ω

‖∇l − v‖ dx
}

(2)

u = r + l (3)

After solving the minimization of Equation 1 and then Equation 2, the estimate of

the bias-free image r an be alulated by subtrating the estimated bias l from the

estimated noise-free image u. For better understanding it is mentioned at this point, that

the amount of denoising is ontrolled by the parameter λ and the smoothness of the bias

by α1.

Prior experiments have shown that the logarithm - whih is usually used to transform

the multipliative ombination of r and l to an additive one - is not neessary and omitted

in this work. The MR inhomogeneity is therefore not approximated by an multipliative

term in the logarithm domain, but diretly as an additive one.

The following setions desribe eah single step of the inhomogeneity orretion method

under investigation. For some presented samples in Setion 3 prior denoising is applied

to the data to simplify the interpretation of the results. Bias estimation is done based on

the TGV-funtional whih is desribed in Setion 2.2 in detail. The DCT Poisson solver

is derived step-by-step in Setion 2.3.

With these omponents an inhomogeneity orretion method is omposed. In Se-

tion 2.4 this method is extended by the idea of proessing the algorithm on lower sales.

This additionally ontrols the shape of the estimated bias �eld and highly improves the

required omputation time and memory usage. Another extension of the method is de-

sribed in Setion 2.5. This powerful Primal-Dual improvement is very spei� to the

implementation hoosen and allows to fully exploit the hardware resoures.

Pseudo ode of the overall method and its modules is listed in Setion 2.6. These algo-

rithms are implemented in CUDA (Nvidia Corporation, Santa Clara, USA) to e�iently

estimate inhomogeneity omponents of 3D data. The proposed method is qualitatively

evaluated by visual inspetion of the resulting images, histograms and line pro�le plots.

Quantitative evaluation is done based on several metri values, whih are further desribed

in Setion 2.7.
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2.1 Preproessing

The following proedure outlines the general way how preproessing is done. If the pipeline

for a spei� sample di�ers from this desription the reason will be explained in Setion 3.

First a region of interest of the measurement data is foused. This inludes the extration

of in planar oordinates and the desired slies. Then the intensity values are normalized to

the range 0 to 1. The prepoessing �lter, desribed in Setion 2.1.2, requires parameters

whih depend on the absolute intensity spetrum values.

The proposed method performs denoising and shading extration simultaneously. Nev-

ertheless evaluation is onentrated on the deshading properties. Therefore prior denoising

is done. First TGV-L

1

removes most of the small strutures and then a Bilateral Filter

is applied. With less details the resulting line pro�le plots are easier to analyze. For

example Figure 11 inludes suh a pro�le plot, whih representatively shows the e�et of

the proposed inhomogeneity orretion algorithm.

2.1.1 Total Generalized Variation Denoising

Sine TGV-L

1

is part of the overall method no additional implementation is neessary

to use this proedure for prior denoising. The implemented bias orretion method an

therefore additionally be used for prior denoising, beause it outputs the estimated noise

and bias free volumes. The denoising problem is stated in Equation 4 as a minimization

of the L

1

-data term and the TGV. The data term is saled by the fator λ and the

regularization term is de�ned in Equation 8. The parameter λ balanes the regularization

and the data term. This parameter is adjusted to the level of noise and desired sale of

interest.

min
u

{

λ

ˆ

Ω

|u− f | dx+ TGV k
α (u)

}

(4)

A pseudo-ode for TGV-L

1

of third and higher order is listed in Algorithm 4. Based

on this ode the algorithm is implement in CUDA for 3D images. The TGV funtional is

desribed in Setion 2.2 and disussed in Setion 4.1.7.

2.1.2 Bilateral Filtering

Additional denoising is done using a Bilateral Filter. This �lter is desribed by Tomasi

and Manduhi 1998 [39℄. Parameters are the kernel size, the bandwidth of the exponential

term for the spatial distane σs and the bandwidth of the seond exponential term for the

intensity di�erene σi. Equation 5 shows the underlying model. The denoised intensity

value at the position x is alulated by the summation of weighted pixel values in a

neighbourhood Nx around x. Also the fator Kx depends on the loation of the pixel. It

normalizes the sum of the weights for eah neighbourhood.
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Idenoised (x) =
1

Kx

Nx
∑

k

Ik e
(xk−x)2

σk e
(I(xk)−I(x))2

σi
(5)

This algorithm is an extension of the Gaussian Filter. The seond exponential term

ontrols the ontrast of edges whih should not be blurred. It ontrols whih edges are

preserved in the denoised image. The implementation is done in CUDA sine the resulting

intensity value of eah pixel an be alulated in parallel.

Bilaterial Filtering is also used as an edge-preserving lowpass �lter for Multisale

Retinex by Chang and Bai 2015 [12℄ and as the solution of a quadrati minimization

problem by Elad 2005 [40℄. In this work it is only used for denoising purposes.

2.2 Shading Estimation

2.2.1 Total Generalized Variation

The TGV funtional de�ned by Bredies et al. 2010 [30℄ is shown in Equation 6. This

regularization term is generally formulated for d-dimensional real data. It inludes the

supremum of the integral of the produt of the data u and the k-th order divergene of a

vetor �eld v. Constraints are de�ned by the maximum norm of symmetri tensors of v

of order up to k − 1.

TGV k
α (u) =

= sup

{
ˆ

Ω

u divkv dx | v ∈ Ck
c

(

Ω, Symk
(

R
d
))

,
∥

∥divlv
∥

∥

∞

≤ αl, l = 0, . . . , k − 1

}

(6)

TGV is suessfully used for several imaging tasks like denoising, reonstrution, zoom-

ing, inpainting and ompression. This regularization term minimizes the L

1

-norm of

higher order derivatives. For digital image proessing quantization to disrete spatial

positions is usually done. The following setions will desribe this funtional for �rst,

seond, third and higher order in more detail.

2.2.2 First Order Total Generalized Variation

First order TGV is equal to the TV term weighted by the fator α. It is de�ned as

the L

1

-norm of the gradient aording to Equation 7. For two-dimensional images the

gradient produes a vetor �eld with two elements in eah �eld point. The L

1

-norm is

the magnitude of this vetor. Integrating all these magnitudes gives overall information

about intensity hanges in the image. For example zero-based normally distributed noise

or salt-and-pepper noise inreases the TV. Suh noise variants an be suessfully removed

by the Primal-Dual algorithm by Chambolle and Pok 2010 [37℄.
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TGV 1
α (u) = αTV (u) = α

ˆ

Ω

|∇u| dx (7)

TV is usually ombined with a data term. It ontains the L

1

- or L

2

-norm of the

di�erene to the input data (for example Equation 4). The data term and the regulariza-

tion are usually weighted by parameters. These parameters balane between the desired

properties. In ase of �rst order TGV these properties are the similarity to the input

image and a low TV. Implementations of this minimization extrat pieewise onstant

objets. For input images ontaining a slowly and smoothly varying bias the algorithm

outputs a ompromise whih usually inludes the stairasing artifat. This �rst order

TGV funtional produes pieewise onstant objets, but suh model �tting is maybe not

the indented result.

2.2.3 Seond Order Total Generalized Variation

In the work of Knoll et al. 2011 [38℄ the seond order TGV funtional is used for MR

image denoising and reonstrution. This funtional extrats pieewise linear objets. It

is shown in Equation 8. In omparison to the previously stated Equation 7 it inludes a

vetor �eld v whih is subtrated from the gradient before the L

1

-norm and integration is

performed. Furthermore the funtional aims to minimize the L

1

-norm of the seond order

gradient of this vetor �eld v. The two energy terms are weighted by the fators α0 and

α1 respetively.

TGV 2
α (u) = min

v

{

α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v| dx
}

(8)

Starting at seond order, the TGV energy funtional itself is a minimization. The

Primal-Dual algorithm alternates between minimization of the TGV and the data term.

In the Primal-Dual implementation the maximum step sizes αi are used in the projetion

subroutine whih is part of Algorithm 4. Eah point in the vetor �eld is normalized

separately. If the magnitude of the vetor divided by the maximum step size is greater

than 1, the vetor is shrinked. This enfores the onstraint de�ned in Equation 6.

Seond order TGV solves the problem of stairasing artifats. It does not prefer

pieewise onstant images for u whih would diretly minimize the TV. This method

rather uses the additional vetor �eld v to hold the non-pieewise onstant information

and therefore indiretly minimizes the TV. A more detailed disussion an be found in

Setion 4.1.7.

2.2.4 Third Order Total Generalized Variation

Third order TGV is used for denoising in Bredies et al. 2010 [30℄. The resulting images

ontain pieewise quadrati objets. The implementation of TGV

3

-L

1

of this work is
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based on the energy funtional in Equation 9. This de�nition is based on the general

TGV minimization funtional stated in Holler and Kunish 2014 [41℄. An additional

vetor �eld w is introdued and the L

1

-norm of the third order gradient is weighted by

α2.

TGV 3
α (u) = min

v

{

α1

ˆ

Ω

|∇u− v| dx+ α0

ˆ

Ω

|∇2v − w| dx+ α2

ˆ

Ω

|∇3w| dx
}

(9)

In omparison to TGV

2

-L

1

the 3D Primal-Dual implementation of TGV

3

-L

1

introdues

30 additional variables of the size of the input image. These are neessary for the gradient,

divergene, projetion and overrelaxation operation. Analysis of the memory usage is done

in Setion 3.3.1. The resulting denoised image u and the divergene of the vetor �eld v

are used in the next step for shading extration. That means shading extration does not

di�er between seond and higher order TGV-DCT. The di�erene is how the values of

the vetor �eld v are alulated. Note that if the input image would ontain data whih

results in a zero vetor �eld for w (by the minimization of the L

1

-norm of the third order

gradient) the result would be equal to the one produed by seond order TGV.

This method requires more memory and omputation time per iteration. But it pro-

dues good results in less iterations. Surely there exists a problem usually known as

over�tting. So it is lear at this point that inreasing the order of TGV will not generally

end up in better performane of the algorithm.

Based on the seond order TGV

2

-L

1

Matlab (Mathworks In., Natik, USA) imple-

mentation for 2D images by Chambolle and Pok 2010 [37℄ the algorithm is extended for

3D data. Then a third order version is implemented based on Equation 9. This requires

additional primal and dual variables, but most of the subroutines needed have already

been implemented at this time. The main extension is the third order gradient and

divergene operation. Pseudo ode for these operations is listed in Algorithms 8 and 9.

2.2.5 Third and Higher Order Total Generalized Variation

By inreasing the order of the TGV de�nition and the Primal-Dual implementation a gen-

eral pattern beomes visible. Based on the assumption that the gradient and divergene

are symmetri, any higher order derivative is idential to the one for the third order.

Those funtionals transform a six-dimensional image to a vetor in the same domain.

Subroutines for the gradient, divergene, primal and dual update an be reused. Similar

to the step from TGV

2

to TGV

3

inreasing the order by one requires 30 additional image

volume variables. The general minimization funtion is shown in Equation 10 based on

Holler and Kunish 2014 [41℄. The third and higher order TGV Primal-Dual pseudo-ode

is shown in Algorithm 4. By default the elements of the maximum step size vetor αi

are set to (i+ 1) for i = 0 . . . k − 1. Thus higher order information is added up faster.
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This hoie for the parameter α is disussed later in Setion 4.1.7. These values for the

maximum step size lead to aeptable onvergene for the proessed images.

TGV k
α (u) =

= min
v







α0

ˆ

Ω

|∇u− v| dx+ α1

ˆ

Ω

|∇2v − w0| dx+
k−3
∑

i=0, wk−2=0

αi+2

ˆ

Ω

|∇3wi − wi+1| dx







(10)

The �rst term in Equation 10 � whih is weighted by α0 � shows that the algorithm

aims to minimize the TV of the image. If it would just minimize the TV � as is done

by �rst order TGV in Equation 7 � pieewise onstant images would be approximated.

For biased images this would lead to the stairasing artifat. Therefore higher order

derivatives are subtrated suessively.

Seond order TGV in Equation 8 orrets the TV term by the seond order derivative

only. This is su�ient for purely linear bias �elds. In other words, if the shape of the bias

�eld ould be desribed by a linear polynomial with respet to the spatial dimensions, the

seond order method would suessfully perform inhomogeneity orretion. In Equation

10 the seond term inludes the seond order derivative and additionally a vetor �eld �

whih holds third and higher order information � is subtrated.

The third term in Equation 10 desribes suessive orretion of higher order deriva-

tives in a general form. This is possible beause it is assumed that the higher order

gradient and divergene operation an be approximated by the respetive symmetrized

third order operation. Setion 2.6 ontains a more detailed desription of this assumption.

Note that these higher order vetor �elds have the same variable name w with an index

for further identi�ation.

Finally TGV

k

ontains k parameters for the maximum step size whih weight k terms

of the energy funtional. These terms ontain the L

1

-norm of orreted gradients of order

up to k-1. Minimization is done by the Primal-Dual algorithm whih alternates between

primal and dual update of all inluded terms. Additionally a L

1

-data term is added to

this optimization. The resulting TGV

k

-L

1

proedure is listed in Algorithm 4.

By using the regularization funtional in Equation 10, image denoising and shading

estimation is performed simultaneously. Noise is assumed to be unorrelated and additive.

TGV

k

-L

1

approximates pieewise regions of order k-1 to the image and therefore removes

suh noise whih beomes part of the residual.

Shading estimation is done under the following onditions. First the objets of interest

are assumed to be pieewise onstant. In other words, the measured objets onsist of

homogeneous regions whih are onneted by sharp edges. An arti�ial example of suh

an image is shown in Figure 1. Seond the bias �eld is assumed to ontain all higher
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order information. The samples in Setion 3 demonstrate the performane of this shading

estimation routine. Interpretation and disussion is done in Setion 4.

Note that the energy funtional above (Equation 10) is the minimization of the L

1

-

norm of the gradient of the denoised image u subtrated by a vetor �eld v. It does

neither inlude the estimated bias-free image nor the bias �eld diretly. Only the gradient

of the bias is approximated. For inhomogeneity orretion � whih is interpreted as the

deomposition of pieewise onstant regions and higher order information in this work

� there are additional steps neessary. The following Setion 2.3 ontains two possible

solutions for shading extration based on TGV

k

-L

1

. These alternatives are evaluated and

ompared later in Setion 3.3.7.
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2.3 Shading Extration

2.3.1 Poisson Equation

As desribed above the gradient of the bias �eld l is approximated by the vetor �eld v.

Equation 2 states this approximation in the form of the minimization of the L

2

-norm of

the di�erene of those two variables. Derivation of the Lagrange Equation with respet to

the spatial dimensions leads to a Poisson Equation whih is shown in Equation 11. The

extration of the bias �eld l is therefore done by the inversion of the Laplae Operator

(Equation 12).

△l = div v (11)

l = △−1 (div v) (12)

2.3.2 Laplae Operator

The �rst step to numerially solve the Poisson Equation is the disretization of the Laplae

Operator. Aording to the �rst Primal-Dual algorithm by Chambolle and Pok 2010 [37℄

the gradient is approximated by the forward di�erene with Neumann boundary ondi-

tions and the divergene by the bakward di�erene with Dirihlet Boundary-Conditions.

The Laplae Operator is approximated by the divergene of the gradient.

2D images are stored into a vetor in row-major order. 3D images are reshaped and

ontain the 2D slies one after another. The Laplae onvolution kernel shown in Table 3

transforms this image vetor. At the boundaries of the image the enter value of the kernel

ontains the number of neighbouring pixels whih are inside the image and have non-zero

values in the kernel. This results from the boundary onditions previously mentioned.

In the orners of a 2D image there are two and at the other boundaries there are three

neighbours ontaining non-zero values.

0 -1 0

-1 4 -1

0 -1 0

Table 3: The disrete Laplae Operator kernel for a 2D image.

For 3D volumes the Laplae Operator is performed by the onvolution with a 3x3x3

kernel. For eah resulting voxel � exept at the boundaries � the intensity values of six

neighbour voxels are taken under onsideration.
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2.3.3 Fourier Transform

A diret form solution an be stated for the inversion of the Laplae Operator by using

the di�erentiation rule of the Fourier Transformation. Equation 13 de�nes the forward

di�erene in the spatial and Fourier domain. For the one-dimensional ase the next

Equation 14 performs the Laplae Operator in the Fourier Domain and simpli�es the

two exponential terms by the osine funtion. Aording to these identities Equation 15

performs the inversion of the Laplae Operator for 3D images.

u [x+ 1]− u [x] = ∇xu = FT−1
(

FT (u)
(

eikx − 1
))

(13)

2 u [x]− u [x+ 1]− u [x− 1] = △xu = FT−1
(

FT (u)
(

2− eikx − e−ikx
))

=

= FT−1 (FT (u) (2− 2 cos (kx))) (14)

△−1 = FT−1

(

FT (u)

6− 2 (cos (kx) + cos (ky) + cos (kz))

)

(15)

2.3.4 Disrete Cosine Transform

Another simpli�ation an be done by the assumption of symmetri images. In other

words the image is assumed to extend symmetrially aross the boundaries. Even real data

does not ontain an imaginary part in the Fourier Domain. Laplae Operator inversion is

therefore implemented aording to Equation 15 by using the osine transform instead of

the omplex Fourier Transform. A similar step is inluded in the 2D shading orretion

algorithm of Limare et al. 2011 [29℄. The authors use the FFTW-library by Frigo and

Johnson 2005 [42℄ for the osine transform.

In this work the transformation is implemented in CUDA for 2D and 3D data. The op-

eration is separated to eah single dimension to ahieve better performane. The forward

transform is a DCT-II and the inverse transform a DCT-IV. Additionally a normaliza-

tion fator is introdued to the inverse transform. Sequential forward and bakward

transformation does not sale the image's intensity values. The pseudo-ode for these

transformations is listed in Algorithms 5 and 6.

Only the gradient of the bias v is known from solving Equation 1. There are in�nite

possible solutions to Equation 2, beause any onstant image added to l does not hange

the gradient. Therefore the proposed orretion method an estimate the shape of the

inhomogeneity, but a global onstant o�set is missing in the result.

The salar bias �eld an be alulated by using Equation 15. Division by zero is

omitted by setting the �rst voxel value in the Fourier Domain to zero [29℄. In the spatial
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domain this sets the mean intensity value to zero. Finally the bias omponent is subtrated

from the denoised image.

2.3.5 Alternative Poisson Solver

An iterative referene method for the DCT Poisson solver is additionally developed. With

the boundary onditions mentioned above the Laplae Operator is written in matrix form.

The Conjugate Gradient algorithm is implemented in CUDA to invert the linear equation

system. Hestenes and Stiefel 1952 [43℄ developed this numerial method. The matrix

multipliation is done by simply performing the forward model (Laplae Operator) using

a CUDA kernel. The pseudo-ode for this method is listed in Algorithm 7.

2.4 Downsampled TGV-DCT Bias Corretion

The algorithm is further extended by using the fundamental assumption that the bias

�eld is slowly and smoothly varying. Similar to an option of the referene method N4ITK

by Tustison et al. 2010 [16℄ bias orretion is done on a lower sale. The input image size

is dereased for proessing. The downsampled image size beomes the original image size

multiplied by a downsampling fator fdownsampling. This further dereases the omputation

time and makes the estimation of the maximum step size parameter α easier. For example

it is notied during experiments that a general fator for α of 1 leads to good onvergene

for image sizes up to 128 pixels and a fator of 0.1 for image sizes of about 256. The

downsampling step generally has lowpass harater. Therefore fousing of low frequeny

information is done earlier.

After the TGV-DCT algorithm onverges with the downsampled image (and mask)

volume, the resulting bias �eld is upsampled. The algorithm additionally ensures that

the upsampling proedure ends in the same image size as the one of the original image.

This prevents rounding errors with the sampling fator. The upsaled bias �eld is then

subtrated from the input image. Note that this proedure does not perform denoising.

The implementation performs ubi B-spline interpolation between existing voxels to

resample the input volume. These splines ontain three onditions at every node. The

intensity values, the �rst and the seond spatial derivative of onneted polynomials are

equal respetively. This additionally improves smoothness of the estimated bias �eld.

The downsampled version of the bias orretion algorithm introdues one additional

parameter fdownsampling, but highly redues omputation time and the amount of required

memory. Therefore proessing higher order TGV-DCT algorithms and bigger volumetri

data beomes feasible.
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2.5 Masked TGV-DCT Bias Corretion

Another extension of the algorithm is introdued to further improve the performane.

During preproessing fousing on a region of interest is usually done. First this involves

the extration of a volume of interest. A start- and an end-index for eah spatial dimension

is hosen. Next the alulation of a foreground mask is performed.

In this work mask alulation is done by a region growing segmentation algorithm.

Several segments with multiple seed points are the input of the algorithm. Eah seed

point an de�ne a tolerane value. The algorithm reursively grows to unsegmented left,

right, top, bottom, front and bak diret neighbours until it �nds a value greater than

the tolerane. To omit stak over�ows a maximum reursion depth is used. If this depth

is reahed the urrent voxel is added to a queue and later handled as a new seed point

of the urrent segment. Mask generation is done based on the input image, the non-

loal gradient of the input image and also based on region growing segmentation results,

inverted and dilated images.

Some volumes have millions of voxels, but only half of them hold foreground infor-

mation. Biologial tissue is not aligned on straight lines and beause of that the slies

expand di�erently and the overall volume inludes many bakground voxels. The pro-

posed algorithm is implemented in CUDA. Algorithm 4 desribes all operations in detail.

To alulate only neessary foreground values the following extension is done.

The algorithm loops over all voxels of the mask and builds up several index-vetors.

First it searhes all indies inside of the mask. Next multiple subsets of these indies

are additionally stored. To e�iently alulate the gradient- and divergene-operations

prior determination of boundary voxels is done. The forward and bakward di�erene

in 3D requires 2x2x3 index vetors. For example the forward di�erene in x-diretion

is alulated for voxels inside of the mask whih are not loated at the right boundary.

Another subroutine applies the Neumann zero �ux boundary ondition in parallel.

Other operations than the gradient and divergene (i.a. projetion, overrelaxation...)

are done for all voxels inside of the mask. The implementation therefore stores 13 index-

vetors built out of the mask volume. The kernel funtions are speially designed and do

not ontain any branhes. Consequently the threads are in syn, whih fully exploit the

resoures of the graphi ard.
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2.6 Algorithms

The overall method is formulated in Algorithm 1. For a hoie of the step size vetor α and

denoising parameter λ the TGV-L

1

Primal-Dual algorithm of order k ≥ 2 is proessed.

The output of this subroutine is the denoised image u and vetor �eld v. Next the inversion

of the Laplae Operator is done. Finally the bias �eld is subtrated from the denoised

image. The seond step is either done by Algorithm 2 or Algorithm 3. In Setion 3.3.7

these two alternatives are ompared in detail.

The third or higher order TGV-L

1

Primal-Dual pseudo-ode is listed in Algorithm 4. In

this work the TGV-L

1

Primal-Dual algorithm of general order and the DCT and CG Bias

Extration algorithms are implemented for 3D images in CUDA. The forward transform

of the DCT is listed in Algorithm 5 and the inverse transform in Algorithm 6. Pseudo-

ode for CG is shown in Algorithm 7. The variable ND is used to denote the size of the

image in the dimension D.

Algorithm 1 TGV Bias Corretion

hoose k ≥ 2, αi > 0, i = 0 . . . k − 1, λ > 0
u, v← TGV k

αL1 (f, λ)
l← △−1 (div v)
r ← u− l

Algorithm 2 DCT Bias Extration

l← DCT−1
(

DCT (div v)
6−2 (cos(kx)+cos(ky)+cos(kz))

)

, kD ← π iD
ND

, iD = 1 . . . ND − 1, D = {x, y, z}

Algorithm 3 CG Bias Extration

hoose ǫconvergence > 0
de�ne the forward model Mlaplace

l← CG (div v, Mlaplace, ǫconvergence)
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Algorithm 4 TGV k
α − L1 Primal-Dual of order k ≥ 3 for 3D images

funtion projection (p, αi)
p← p

max
(

1,
‖p‖
αi

)

end

funtion dataL1 (u, f, τ, λ)
u← u− τλ, u− f > τλ
u← u+ τλ, u− f < τλ
u← f , ‖u− f‖ < τλ
end

funtion overrelaxation (u, uprevious)
ū← 2 u− uprevious

end

funtion TGV k
αL1 (f, λ)

u, ū← f
p, v, v̄ ← 0 ∈ R

Nvoxel·3

q, wi, w̄i, ri ← 0 ∈ R
Nvoxel·6

, i = 0 . . . k − 3
hoose τ, σ > 0
repeat

p← projection ((p+ σ (∇ū− v̄)) , α0)
uprevious ← u
u← dataL1 ((u+ τ div p) , f, τ, λ)
ū← overrelaxation (u, uprevious)
q ← projection ((q + σ (∇2v̄ − w̄0)) , α1)
vprevious ← v
v ← v + τ (p+ div2 q)
v̄ ← overrelaxation (v, vprevious)
ri ← projection ((ri + σ (∇3w̄i − ¯wi+1)) , αi+2), i = 0 . . . k − 3, wk−2 = 0
wi,previous ← wi, i = 0 . . . k − 3
w0 ← w0 + τ (q + div3 r0)
wi ← wi + τ (ri−1 + div3 ri), i = 1 . . . k − 3
w̄i ← overrelaxation (wi, wi,previous), i = 0 . . . k − 3
until onvergene of u
end
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Algorithm 5 DCT for 3D images using separability in eah dimension

funtion DCTx (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

kx +
1
2

)

x
Nx

)

, kx = 0 . . .Nx − 1

end

funtion DCTy (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

ky +
1
2

)

y

Ny

)

, ky = 0 . . . Ny − 1

end

funtion DCTz (finput)
for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← 2 finput [x, y, z] cos
(

π
(

kz +
1
2

)

z
Nz

)

, kz = 0 . . . Nz − 1

end

funtion DCT (finput)
foutput ← DCTx (finput)
foutput ← DCTy (foutput)
foutput ← DCTz (foutput)
end

Algorithm 6 Inverse DCT for 3D images using separability in eah dimension

funtion DCT−1
x (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

x+ 1
2

)

kx
Nx

)

, kx = 1 . . . Nx − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [0, y, z]

foutput [x, y, z]← foutput[x, y, z]

2Nx

end

funtion DCT−1
y (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

y + 1
2

)

ky
Ny

)

, ky = 1 . . .Ny − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [x, 0, z]

foutput [x, y, z]← foutput[x, y, z]
2Ny

end

funtion DCT−1
z (finput)

for x = 0 . . . Nx − 1, y = 0 . . . Ny − 1, z = 0 . . .Nz − 1

foutput [x, y, z]← finput [x, y, z] cos
(

π
(

z + 1
2

)

kz
Nz

)

, kz = 1 . . . Nz − 1

foutput [x, y, z]← 2 foutput [x, y, z] + finput [x, y, 0]

foutput [x, y, z]← foutput[x, y, z]
2Nz

end

funtion DCT−1 (finput)
foutput ← DCT−1

x (finput)
foutput ← DCT−1

y (foutput)
foutput ← DCT−1

z (foutput)
end
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Algorithm 7 Conjugate Gradient

funtion CG (f, A, ǫ)
x← 0
r ← Ax− f
p← r
ρ0 ← ‖r‖
stop if ρ0 < ǫ2

for k = 0 . . .Nvoxel − 2
s← Ap
σ ← (s, p)
a← ρ

σ

x← x− a p
r ← r − a s
ρk+1 ← ‖r‖
stop if ρk+1 < ǫ2ρ0
b← ρk+1

ρk
p← r + b p
end

The CG Algorithm 7 solves a linear equation system whih is desribed by the vetor

of the right side f and the symmetri and positive de�nite matrix A. Note that the initial

guess of x = 0 is usually not part of the CG algorithm itself. The third parameter ǫ

is the onvergene threshold whih is ompared to the L

2

-norm of the residual vetor r.

The algorithm iteratively performs the forward model with the urrent searh diretion

p and alulates a step size a via the inner-produt. In the worst ase it onverges after

Nvoxel-1 iterations. In this work the CG algorithm is used to invert the disrete Laplae

Operator. Setion 3.3.7 ontains results of this algorithm and omparison to the DCT

Poisson solver. In that way the performane is evaluated.

In general all pixel-wise operations are performed in CUDA. The forward DCT in Al-

gorithm 5 sequentially transforms the input image aording to eah dimension. Therefore

after DCTx and DCTy a CUDA thread synhronization is neessary. The same applies

to the inverse DCT in Algorithm 6. These implementations are based on the desription

on the FFTW website [44℄.

The TGV k
α − L1 Primal-Dual method in Algorithm 4 performs most operations in

parallel. Synhronization is basially only needed before and after eah gradient and

divergene subroutine all. The resulting voxels are dependent on their neighbourhood

and therefore multiple Primal-Dual iterations an not be alulated in parallel. The three

subroutines projection, dataL1 and overrelaxation do not need a synhronization point.

For the variables wi, ri and all auxiliary ones a dynami array of images is alloated. The

higher order gradient and divergene operations are desribed in the following paragraph.

Aording to Bredies et al. 2010 [30℄ the TGV disretization is based to the forward

δ+ and bakward δ− di�erene. Depending on the order, the higher order gradient and
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divergene alternate between those two di�erenes. For example the third order gradient

uses forward di�erene and the fourth order gradient performs bakward di�erene opera-

tions. For three spatial dimensions there are six image variables if it is assumed that other

ross terms are nearly zero. The gradient operation for even orders (bakward di�erene)

is listed in Algorithm 8 and the divergene in Algorithm 9. This makes it possible to

e�iently implement the TGV k
α − L1 Primal-Dual algorithm of order three and above.

Algorithm 8 Gradient operation for 3D images for even order (k = 4, 6 . . .)

∇ : RNvoxel·6 → R
Nvoxel·6

∇x := δx− (w̄x)
∇y := δy− (w̄y)
∇xy :=

1
2
(δx− (w̄xy) + δy− (w̄xy))

∇z := δz− (w̄z)
∇xz :=

1
2
(δx− (w̄xz) + δz− (w̄xz))

∇yz :=
1
2
(δy− (w̄yz) + δz− (w̄yz))

Algorithm 9 Divergene operation for 3D images for even order (k = 4, 6 . . .)

div : RNvoxel·6 → R
Nvoxel·6

divx := δx+ (rx)
divy := δy+ (ry)
divxy := δx+ (rxy) + δy+ (rxy)
divz := δz+ (rz)
divxz := δx+ (rxz) + δz+ (rxz)
divyz := δy+ (ryz) + δz+ (ryz)

2.7 Evaluation

Qualitative evalution is done by visual inspetion of the image, a representative line

pro�le plot and the histogram of the foreground pixels. The oe�ient of variation, total

variation and entropy are alulated to present quantitative measures of the performane.

These evaluation methods for bias orretion algorithms are disussed in Arnold et al.

2001 [45℄, Belaroussi et al. 2006 [2℄ and Vovk et al. 2007 [1℄.

2.7.1 Kernel Density Estimation

To alulate meaningful entropy values the probability density funtion of the image

is approximated by Kernel Density Estimation. A quadrati Epanehnik-Kernel with

bandwidth σk = 3% of the intensity spetrum is generally used and the spetrum is

quantized to

√
Nvoxel steps. This KDE kernel is analyzed in detail by Huang and Kong

2012 [46℄. For eah spetrum value a CUDA funtion loops over the image and sums

up the voxel values weighted by the kernel. Additionally uniform, Gaussian and osine
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kernels are implemented. KDE results in a smoother and better omparable PDF. An

example is inluded in Figure 13.

Bakground voxels are usually not taken into aount for KDE estimation. The bak-

ground an be ignored by speifying an intensity window or a mask image.

2.7.2 Entropy Calulation

Based on the probability density funtion the entropy H is alulated aording to Equa-

tion 16. The implementation only takes probability values p greater than 10−7
for the

summation of the intensity values a.

H = −
∑

a

(p (a) log2 (p (a))) (16)

From the viewpoint of the histogram narrow peaks have low entropy. The bias �eld

is assumed to make peaks wider and thus inrease entropy. In the extreme ase the

orretion algorithm minimizes the information of the image to a single narrow peak for

the foreground pixels.

The following omparisons in Setion 3 generally apply a mask image and a window

ontaining all intensities of voxels inside of the mask.

2.7.3 Coe�ient of Variation

Another metri ommonly used for the quantitative evaluation of bias orretion is the

oe�ient of variation. It is alulated due to Equation 17 as the fration of the standard

deviation and the mean µ of the intensity values.

CV =
std

µ
(17)

Bias orretion is assumed to minimize the standard deviation. To make the metri

value less dependent on the absolute intensity values normalization by the mean is done.

2.7.4 Total Variation

The third metri used is the TV. The implementation performs a gradient operation and

sums up the magnitude value in eah voxel. This metri is used to evaluate the degree

of pieewise-onstant objets of the image. Homogeneous regions ontain low TV values.

The bias �eld also inreases this metri value.

2.7.5 Loal Contrast

The previously desribed metris entropy, CV and TV have a theoretial minimum for

a single intensity value in the image. However the image is assumed to ontain multiple
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pieewise-onstant regions. One may perform segmentation during the evaluation and

alulate the metri values for eah region separately. But the performane of segmenta-

tion would highly in�uene the result. And the segmentation performane may depend on

the previously proessed algorithm. In this work another approah is used. Additionally

to the metris entropy, CV and TV the loal ontrast of several tissue lasses is analyzed.

It is simply the intensity di�erene of neighbouring regions and is approximated based on

the line pro�le plot.

The bias orretion method should therefore redue the values of CV, TV and entropy.

Furthermore ontrast between several pieewise-onstant regions should be preserved. In

other words it should simply remove the bias without destroying the information of the

objets of interest. The ombination of the listed metris quanti�es this objetive.

2.7.6 Trivial Solutions of Inhomogeneity Corretion

Small Constant Fator If an inhomogeneity orretion method would just multiply

all voxels by a onstant muh smaller than 1, the metri values desribed above would

hange in the following way. The entropy would not be hanged, if the applied window

is also saled. The CV would also not be altered, beause the mean and the standard

deviation are multiplied by the same fator. But suh a global operation would sale the

TV and the loal ontrast.

An Additive Constant Another method may just add a global onstant to all voxels.

In fat this would derease the CV, beause the mean inreases and the standard deviation

remains the same. Again the entropy is not altered, if the window is shifted by the same

onstant. And the TV also remains the same, beause the gradient operation removes

suh global additive onstant.

Subtrat or Divide the Input Image Another trivial solution is to subtrat the

input from itself. Dividing the input by itself is similar. Surely that results in a perfetly

uniform image. At this point this trivial solution may seem to be total nonsense.

But in fat many inhomogeneity methods roughly perform suh operations. The trik

is to �lter spei� information. For example Homomorphi Unsharp Masking [14℄ removes

low frequeny omponents. If one does not well on�gure the proposed algorithm of this

work, it may result in a nearly uniform image. The parameter α1 in Equation 1 ould

be on�gured too low. The last regularization term would not have any e�et, and the

estimated bias �eld would be very similar to the denoised image.

Avoid Trivial Solutions To avoid the trivial solutions previously mentioned in the

quantitative evaluation of inhomogeneity orretion methods, a ombination of the listed

metris is used. For qualitative evaluation the pixel values of images shown in this work
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are always resaled from the minimum to the maximum intensity value. A white pixel

orresponds to the maximum and a blak pixel to the minimum. The histogram is based

on an intensity-windowed spetrum as desribed above. And line pro�le plots inlude the

input and output image with the same axis saling.

Some authors additionally perform some kind of statisti normalization. For example

Limare et al. 2011 [29℄ attempt to resale the output image to preserve the mean and

the standard deviation. The authors argue that the 'global ontrast' remains the same

in that way. This is not neessary with the ations desribed in the previous paragraph.

And in this work the CV is used to quantify the amount of inhomogeneity.

Trivial additive onstants ould be avoided by preserving the mean only. Mean pre-

serving an either be done by an additive onstant or a global fator. Additive mean

preserving has the drawbak, that a method ould apply a global fator smaller than 1,

whih result in a dereasing CV. Multipliative mean preserving would hange the loal

ontrast and the TV.

Quantitative evaluation avoids trivial global fators and additive onstants by per-

forming KDE as desribed in Setion 2.7.1 and no additional transformation is done.

30



3 Results

The method is applied to 2D simulated images, 3D simulated MR volumes, standard

test images, olor photographs and 3D MR tissue measurements. The following setions

inlude suh data whih is proessed by the methods desribed above. The results are

later disussed in Setion 4.

3.1 Simulated Images

3.1.1 Ground Truth Evaluation

Ground truth data is essential for a proper evaluation. With known bias �eld and objet

omponent the result of the algorithm an be evaluated with a quantitative metri. The

�rst sample in Figure 1 is a pieewise onstant omposition of geometrial objets with

an additive �eld. There are triangles, squares and irles whih ontain a single intensity.

The bias is generated using the formula and parameters of Keeling et al. 2011 [47℄. It

ontains linear and quadrati terms with respet to the spatial dimensions.

Resaling the intensity values is omitted for this sample. The alulation of the RMSE

is done based on the di�erene of the ground truth to the estimate. Beause of the missing

onstant o�set � whih is desribed in Setion 2.3.4 � the zero-frequeny is removed from

this error. In this work this metri is used to evaluate the error of the shape of the

bias �eld only. Additionally no denoising is done for this sample. The estimated bias is

subtrated from the input image, instead of using the denoised image.

The TGV

2

-DCT algorithm nearly perfetly estimates and orrets the bias �eld. Pa-

rameters are set to λ = 1, α0 = 0.1 and α1 = 0.2. This line pro�le plot of Figure 1 ontains

the input in blue and output in green. The line starts at the top-left and reahes to the

bottom-right orner. It is additionally painted as an overlay in the two orresponding

images. Image dimensions are 256x256 and the intensity values are in the range of 0 to

2. The RMSE of the image and the bias is 0.153e-3.

Sample 2 in Figure 2 evaluates the performane with respet to a multipliative in-

homogeneity omponent whih spawns between 0.4 and 1.6. The input image has the

same intensity range than sample 1. The previously used algorithm with the same pa-

rameter values is used. Inhomogeneity redution is learly visible in the line pro�le plot

of Figure 2.

For omparison of the estimated bias �eld the ground truth image is subtrated from

the input to get an additive bias. The RMSE of the image and the bias is 0.963e-1.
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Figure 1: Sample 1: From top-left

to bottom-right: estimated bias-free

image, bias �eld, algorithm input,

output, estimated bias �eld, line

pro�le plot of input (blue) and out-

put (green).

Figure 2: Sample 2: From top-left

to bottom-right: estimated bias-free

image, multipliative bias �eld, al-

gorithm input, output, estimated

additive bias �eld, line pro�le plot

of input (blue) and output (green).

These samples are additionally proessed by the referene method N4ITK. This method

is developed by Tustison et al. 2010 [16℄ and orrets inhomogeneities of MR images. The

results for the two arti�ial samples do not look very promising and are neither listed nor

ompared to the proposed method. Evaluation and omparison is later done using MR

samples in Setion 3.3.

The two samples above demonstrate the algorithms performane for the simple ase of

perfetly pieewise onstant measurement objets and a bias �eld whih is generated by a

single polynomial funtion. The seond sample is orrupted by a multipliative �eld whih

is a bit more similar to real MR measurements. The following samples will ontinue to get

more omplex and therefore gradually approximate MR volumes of biologial tissue. In

that way the algorithms performane is evaluated and an be ompared to other methods

whih proess the same or similar samples.

3.1.2 Simulated MR volumes

MR phantom data is simulated using the BrainWeb online interfae version 1.4 by Cooso

et al. 1997 [48℄. Sample 3 is generated with the following parameters: slie thikness

1mm, san tehnique SFLASH , TR 18ms, TE 10ms, �ip angle 30◦, one eho, magnitude

image, zero additional noise, bias �eld A and bias strength 100%. Preproessing inludes

volume extration (slie 59 to 125) and further fousing. A foreground mask is generated

by region-growing-segmentation based on the non-loal gradient. The resulting volume

ontains 180x216x67 voxels.

Shading orretion is done by the TGV

2

-DCT algorithm with α0 = 1, α1 = 2 in

1300 iterations. To preserve small lobs in the image the denoising parameter is inreased

to λ = 2. Figure 3 shows slie 34 of this sample. The line pro�le plot of this sample
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demonstrates that the intensity of the white matter beomes more homogeneous. For

quantitative evaluation Table 4 inludes the CV, TV and entropy of the input and output

volume. Entropy alulation is done for an intensity window from 0.1 to 1 with 128

histogram bins. All three metri values derease and therefore on�rm inhomogeneity

redution.

Sample 4 demonstrates simultaneous bias orretion and denoising. The brain phan-

tom is generated using the same parameters as for sample 3, exept the noise level is 3%.

To eliminate this additional noise the parameter λ is set to 1.2. Figure 4 qualitatively

presents the results for this sample. The orreted image has redued noise and inhomo-

geneity. Table 5 shows the metri values of the input and output image. The relative

di�erene of the TV is greater than 45% and also the entropy is highly redued. The CV

value also dereases.

Figure 3: A representative slie of sample

3: algorithm input, output, line pro�le plot

of input (blue) and output (green) and bias

�eld.

Sample 3

CV TV Entropy

1.207 0.552e-1 7.629

1.192 0.463e-1 7.045

1.267 % 16.104 % 7.657 %

Table 4: CV, TV and entropy of the

input and output image of sample 3.

The last row shows the relative dif-

ferene of the orresponding metri

value.

Figure 4: Sample 4: algorithm input, output,

line pro�le plot of input (blue) and output

(green) and bias �eld. This sample is equal to

the one in Figure 3 above expet additional

noise is added to the input image.

Sample 4

CV TV Entropy

1.21 0.509-1 7.4

1.189 0.263-1 6.996

1.705% 48.1937% 5.46%

Table 5: CV, TV and entropy of the

input and output image of sample 4.

The last row shows the relative dif-

ferene of the orresponding metri

value.

In omparison to the previously shown samples the simulated MR volumes demon-

strate the orretion of 3D data sets. Beause no ground truth data is available for these

samples the metris CV, TV and entropy are used to quantitatively evaluate the algo-

rithm's performane. Again the seond order algorithm is hosen beause it produes
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promising results. It is therefore not neessary to inrease the order in these ases.

3.1.3 Standard Test Images

The next sample in Figure 5 shows the Adelson-Chekboard [49℄. This olor image is

transformed to the HSV spae using the OpenCV framework [50℄ version 3.1. Only the

value hannel is proessed, resaled and written bak to the olor image �le. Sample 5

inludes two regions marked by an A and B. The line pro�le plot beneath this image shows

that those ontain the same intensity value. Again the seond order algorithm TGV

2

-

DCT with λ = 1, α0 = 1, α1 = 2 is proessed. Entropy alulation is based on KDE as

desribed in Setion 2.7.1. In the orresponding line pro�le plot ontrast improvement

between the region A and B is visible. The three metri values in Table 6 underpin a

redution of inhomogeneity.

A similar example is the Logvinenko-Illusion shown in Figure 6. Again the loal

ontrast is enhaned by the extration of the illumination. Table 6 inludes the metri

values for this sample.

Figure 5: Image and line pro�le plot of

sample 5. In the �rst row the denoised

image is shown. The position of the line

pro�le is visible in the image. It spreads

from the red square (top left) to the yellow

one (bottom right). The next row ontains

the extrated shading omponent and the

third one the orreted data.

Figure 6: Image and line pro�le plot of

sample 6. In the �rst row the denoised

image is shown. The position of the line

pro�le is visible in the image. It spreads

from the red square (top left) to the yellow

one (bottom right). The next row ontains

the extrated shading omponent and the

third one the orreted data.
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Sample 5 Sample 6

CV TV Entropy CV TV Entropy

23.8 4.53 6.5 17.7 10.3 7.22

17.9 4.43 6.69 8.76 7.01 6.93

25% 2.2% 2.85 51% 32% 4%

Table 6: CV, TV and entropy for sample 5 and 6. The �rst row ontains the metri values

of the denoised data. The seond row shows the values for the shading orreted image

and the third row the relative di�erene.

3.2 Natural Images

3.2.1 Standard Color Photographs

The next two test images are published in Fu et al. 2015 [13℄ and used to evaluate

and ompare several shading orretion algorithms. In omparison to those methods the

proposed algorithm does not inlude a gamma orretion step. For the sample in Figure 7

the TGV

3

-DCT algorithm is proessed with λ = 2, α0 = 1, α2 = 2 and α3 = 3. The

darker areas of the image beome brighter and the overall shading is partly ompensated.

Figure 8 shows the next sample whih is orreted by TGV

k

-DCT of order 2 to 8 with the

α value desribed in Setion 2.2.5. With inreasing order the gold globe beomes more

and more homogeneous.

Figure 7: Input and output image of sample 7.

input 2 3 4 5 6 7 8

Figure 8: Input and output images of sample 8. The number beneath

the output images is the TGV-DCT order.

This setion demonstrates the shading orretion performane of the algorithm for

olor photographs. Higher order TGV-DCT is proessed to extrat pieewise onstant

regions of the image. The two samples show outdoor senarios whih are illuminated by

sunlight. Light re�etion and refration our at material boundaries. The shape of the
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shading �eld might be muh more ompliated than the bias �eld in MR measurements.

The samples are inluded here to make it possible to qualitatively ompare the algorithm

to other variational methods found in literature.

Note that inreasing the order does not lead to more parameters to adjust, beause

default values are used. Therefore shading extration is simply done by hoosing a value

for the denoising parameter λ and the order of the TGV funtional.

3.2.2 Color Photographs

The e�et of inreasing TGV

k

-DCT order is additionally analyzed in sample 9. The

algorithm is proessed with the default parameter values up to the order of 15. Results

are presented in Figure 9. With inreasing order the image beomes more and more

pieewise onstant as the algorithm �ts a pieewise polynomial of order k -1 to the image

and extrats only the onstant information. Although the di�erene beomes smaller

there are details whih hange. The ar in the top-left orner beomes darker. This is the

brightest region of the estimated shading image. With inreasing order the algorithm �ts

an illumination �eld with piees of smaller size.

Figure 10 inludes another sample whih ontains approximately pieewise onstant

objets. The blak and white pattern of the �oor, red and white ball and otton tissues

on the wall onsist nearly of single olors in reality. With inreasing order shadows on the

wall and �oor disappear. Contrast of the pattern on the �oor dereases. The behaviour

of the algorithm for inreasing order is evaluated and desribed later in more detail.

input 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 9: Input and output images of sample 9. The number beneath

the output images is the TGV-DCT order.
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input 5 10 15 20 25

Figure 10: Input and output images of sample 10. The number beneath

the output images is the TGV-DCT order.

The samples above are proessed by the algorithm of order up to 25. These results

further demonstrate the e�et of inreasing order for olor images and are disussed later

in Setion 4.1.1. The proposed algorithm primarily aims to orretion inhomogeneities of

MR images. The following setions demonstrate the performane for suh samples and

inlude omparison to a referene method.

3.3 3D MR Measurements

MR measurements have been performed using a Skyra (Siemens AG Österreih, Wien)

3T devie at the IMT Graz. The data inlude images of the right knee done by a knee

oil. Sample 11 is a volume of 384x384x60 voxels. In the physial spae the voxel size

is 0.49mm · 0.49mm · 1.4mm. TR is set to 7790ms and TE to 10ms. This turbo spin

eho sequene generates ρH - and T2-weighted intensity values. To omit spatial details

� and therefore make the line pro�le plots easier to ompare � the volume is denoised

in a preproessing step. First TGV

2

-L

1

-Primal-Dual denoising with λ = 1 is proessed.

Additionally a Bilateral-Filter with a onvolution kernel of 32iso is applied. The parameter

for the spatial distane is σs = 25 to remove details (wide neighbourhood) and the one

for the intensity di�erene is σi = 0.01 (low gradients) to preserve edges. Figure 11

shows the results for this sample. Bias orretion is done by TGV

2

-DCT with λ = 2,

α0 = 1, α1 = 2. The shading image partly ontains the struture of the bone, musle

and surrounding tissue. In the line pro�le plot the resulting image does show pieewise

onstant regions. The metri values in Table 7 derease due to the orretion proess.

Sample 12 has equal dimensions and parameter values despite of the TR (625ms) and

TE (18ms). This generates T1-weighted intensity values. No prior denoising is done for

this sample. Figure 12 shows slie 27 of this volume and Table 8 the metri values.
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Figure 11: Results for sample 11. The arrange-

ment of the images is the same as in Figure 5.

Sample 11

CV TV Entropy

0.233 0.299e-1 7.32

0.201 0.229e-1 7.05

13% 23% 3.7 %

Table 7: CV, TV and entropy for

sample 11. Rows: denoised data,

deshading and relative di�erene.

Figure 12: Results for sample 12. The arrange-

ment of the images is the same as in Figure 5.

Sample 12

CV TV Entropy

1.061 0.635e-1 7.394

1.01 0.633e-1 7.256

4.807% 0.315% 1.866%

Table 8: CV, TV and entropy for

sample 12. Rows: denoised data,

deshading and relative di�erene.

Figure 11 demonstrates inhomogeneity orretion for previously denoised MR mea-

surements. The resulting image ontains pieewise onstant regions for several tissues. In

Figure 12 smaller strutures are foused and preserved by the method. For these samples

the seond order algorithm is proessed and improves the quality of the images as an be

seen by the redution of the metri values in Tables 7 and 8.

Next sample 13 ontains only slie 11 of the seond measurement volume. A foreground

mask is generated by region-growing-segmentation and applied to the input and output

image. TGV

k

-DCT of order 2 to 8 with the α value desribed in Setion 2.2.5 is proessed.

Figure 13 shows that with inreasing order the bias �eld inludes more and more of the

tissue struture, the histogram peak around 0.45 beomes narrower and the pro�le line

straighter. The histogram peak around 0.11 and the pro�le line of the musle are less

modi�ed.
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Figure 13: The �rst row inludes the input image sample 13 and the orresponding

histogram. The following rows inlude the TGV-DCT order, output image, histogram of

the output image, bias �eld and line pro�le plot of the input image (blue) and output

image (green).
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3.3.1 Downsampled TGV-DCT Bias Corretion

For the evaluation of the downsampled version of the TGV-DCT bias orretion algorithm

the following MR volume is proessed. After fousing a region of interest sample 14 has

the dimensions 200x186x65. It shows a transversal magnitude image resulting from a 3D

gradient inversion reovery sequene (MP-RAGE) with TE set to 2.66ms, TR to 1430ms

and TI to 900ms. This results in T1 weighted intensity values.

This volume is proessed by the downsampled TGV-DCT bias orretion algorithm

with multiple values for the downsampling fator fdownsampling and the TGV order k. For

better omparison the number of TGV iterations is set to 1e4 for all ombinations of the

input parameters. Negative intensity values of the resulting volume are lamped to a

value of zero. The absolute omputation time is ompared between several downsampling

fators. Computation is done on a omputer with a Gefore GTX 1070 (Nvidia Corpora-

tion, Santa Clara, USA) dediated graphi ard with 8GB memory, a quadore i5-4690U

(Intel Corporation, Santa Clara, USA) with 3.5GHz and 16GB working memory. During

proessing nearly 100% of the proessors apaity is used.

The masked input volume has the following metri values: CV is 0.987, TV is 0.068

and entropy (alulated with 256 intensity bins and a minimum threshold of 0.01) is

6.963. Figure 14 shows slie 33 of the input and shading-orreted volumes. A set of

three values for k and fdownsampling is proessed whih results in nine estimated bias-free

volumes (Figure 14) and bias �elds (Figure 15). The bias �elds shown inlude more details

with inreasing order and less details with dereasing downsampling fator fdownsampling.

Downsampling redues the omputation time and GPU memory usage whih is shown

in Table 9. As desribed above in Setion 2.2.5 the memory usage inreases with inreasing

TGV-DCT order. For the proessed sample 14 inreasing the order by one requires

288MB, 38MB and 5MB additional storage for this image size and three downsampling

fators respetively. Downsampling the volume dimensions by

1/4 dereases the needed

omputation time by about 95% for all three TGV-DCT orders. Also the required memory

is more than 90% less.

Table 10 inludes performane metri values for sample 14. All parameter sets show

an improvement of the image quality exept for TGV

2

-DCT with fdownsampling set to

1/4. For this setting the TV inreases in omparison to the masked input volume. The

quantitatively best result is obtained by TGV

4

-DCT without downsampling. In that ase

the CV is redued by about 13%, the TV by 2.5% and the entropy by 11%. These

resulting volumes are alulated in about 15min and require 872MB GPU memory

(Table 9). The fastest version is seond order with

1/4 downsampling fator whih requires

about 15 s.
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Figure 14: Slie 33 of the estimated bias-free volumes for sample 14. The top-left image

shows the input. Rows inlude the estimated bias-free image for TGV orders of 2, 3 and

4. In the olumns the fdownsampling parameter is set to 1,

1/2 and 1/4.

1

1/2 1/4

TGV

2

-DCT

TGV

3

-DCT

TGV

4

-DCT

Figure 15: Slie 33 of the estimated bias volumes for sample 14. Rows inlude the

estimated bias slie for TGV-DCT orders of 2, 3 and 4. In the olumns the fdownsampling

parameter is set to 1,

1/2 and 1/4.
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TGV-DCT order fdownsampling omputation time GPU memory usage

[1℄ [1℄ [s℄ [%℄ [MB℄ [%℄

2

1 334.57 100 317 100

1/2 43.297 87.059 61 80.757

1/4 14.898 95.547 27 91.483

3

1 584.166 100 595 100

1/2 75.1473 87.136 99 83.361

1/4 25.2603 95.676 32 94.622

4

1 833.148 100 872 100

1/2 106.413 87.228 136 84.404

1/4 35.715 95.713 37 95.757

Table 9: Computation time in seonds and GPU memory usage in megabytes for the

proessed sample 14. The fourth olumns shows the relative di�erene of the omputation

time of downsampling and the last olumn the relative di�erene of GPU memory usage.

The bold values mark the optimum.

TGV-DCT order fdownsampling CV TV Entropy

[1℄ [1℄ [1℄ [%℄ [1℄ [%℄ [1℄ [%℄

2

1 0.915 7.295 0.675e-1 0.735 6.683 4.021

1/2 0.936 5.167 0.678e-1 0.294 6.819 2.068

1/4 0.978 0.912 0.683e-1 - 0.441 6.942 0.302

3

1 0.869 11.955 0.667e-1 1.912 6.351 8.789

1/2 0.889 9.929 0.673e-1 1.029 6.55 5.931

1/4 0.924 6.383 0.677e-1 0.441 6.735 3.274

4

1 0.858 13.07 0.663e-1 2.5 6.178 11.274

1/2 0.875 11.348 0.671e-1 1.324 6.429 7.669

1/4 0.902 8.612 0.675e-1 0.735 6.624 4.869

Table 10: Metri values for the proessed sample 14. The referene for the relative values

is the masked input volume. The bold values mark the minimum.

3.3.2 Masked TGV-DCT Bias Corretion

The masked version of the TGV-DCT bias orretion algorithm � desribed in Setion 2.5

� also highly redues the omputation time. It is ompared to the previously proessed

downsampled algorithm by using the same sample volume. Table 11 lists the omputation

time and GPU memory required. In all proessed ases the masked algorithm is muh

faster (72 to 80% relative di�erene). It is also shown that the required GPU memory in-

reases for the three TGV-DCT orders and downsampling fators. The relative di�erene

of the required memory is between 5 and 15%.

After multiplying the input image with the mask, the outomes for the following three

versions of the algorithm are idential. First the algorithm whih alulates all operations

on all voxels is used. Seond the masked version is proessed with a mask inluding all
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pixels. Third a mask � generated by region growing segmentation � is taken to e�iently

perform the neessary operations on the foreground pixels only.

TGV-DCT order fdownsampling omputation time GPU memory usage

[1℄ [1℄ [s℄ [%℄ [MB℄ [%℄

2

1 75.284 77.498 360 13.565

1/2 11.789 72.771 70 14.754

1/4 3.452 76.826 29 7.407

3

1 125.97 78.436 638 7.227

1/2 19.453 74.114 108 9.091

1/4 5.231 79.291 34 6.25

4

1 176.433 78.823 915 4.931

1/2 27.117 74.517 145 6.618

1/4 7.022 80.337 39 5.405

Table 11: Computation time in seonds and GPU memory usage in megabytes for the

proessed sample 14 using the masked version of the algorithm. The relative di�erene

in omparison to the downsampled algorithm (Table 9) is shown in olumn four and six.

The values in bold represent the optima.

3.3.3 Comparison with the referene method

In this setion the method is ompared to the N4ITK algorithm by Tustinson et al.

2010 [16℄. Data proessing is done by the ANTs [51℄ binary (version 2.1) using the default

parameter values: number-of-histogram-bins 200, wiener-�lter-noise 0.1e-1, bias-�eld-

fwhm 0.15, maximum-number-of-iterations 50, spline-order 3, number-of-�tting-levels 4.

For sample 15 the onvergene measure (oe�ient of variation) at the �nal iteration is

0.285e-3. Figure 16 shows the resulting orreted MR slie and bias �eld. The histogram

of the orreted image ontains a single narrow peak. For better omparison the additive

bias �eld of the proposed method is onverted into a multipliative one. This is done

by thresholding and onditional pixel-wise division (omitting zero division) of the input

and the output image. In Figure 17 the results of the proposed method for the same

input image and mask are shown. The �rst row ontains a line pro�le plot of the bias

�eld of both methods. On the one hand the histogram of the orreted image ontains

a less narrow peak but on the other the line pro�le plot shows a straighter intensity line

ompared to the one of the N4ITK result. Table 12 shows slightly lower entropy and CV

values and a higher TV value for the referene method.

A seond MR sample is used to ompare the two methods. This one is not previously

denoised and ontains 7 equal phantom ylinders whih are a hint for the bias �eld.

Both methods are proessed without a mask. N4ITK onverges with a CV of 0.653e-3.

Figure 18 ontains the results for the N4ITK method. A seond peak for the musle is

visible in the spetrum and is preserved in both methods. In Figure 19 the line pro�le

plot of the two bias �elds show that N4ITK an produe fast varying bias �elds too. The
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metri values of Table 13 are similar to those of the previous sample in Table 12 .

Figure 16: Results of the N4ITK-method

for sample 15: First row: input image

and the orresponding histogram. Se-

ond row: the shading orreted image

and the histogram. Third row: the mul-

tipliative bias �eld and a line pro�le plot

of the input and the orreted image.

Figure 17: Results of the proposed TGV-

DCT-method for sample 15: First row:

line pro�le plot of the bias �eld of both

methods. Seond row: the shading or-

reted image and the histogram. Third

row: the multipliative bias �eld and a

line pro�le plot of the input and the or-

reted image.

CV TV Entropy

N4ITK 1.11 0.443e-1 5.96

TGV-DCT 1.14 0.37e-1 6.04

Table 12: CV, TV and entropy of the orreted sample 15 for the methods N4ITK and

TGV-DCT.
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Figure 18: Results of the N4ITK-method

for sample 16: First row: input image

and the orresponding histogram. Se-

ond row: the shading orreted image

and the histogram. Third row: the mul-

tipliative bias �eld and a line pro�le plot

of the input and the orreted image.

Figure 19: Results of the proposed TGV-

DCT-method for sample 16: First row:

line pro�le plot of the bias �eld of both

methods. Seond row: the shading or-

reted image and the histogram. Third

row: the multipliative bias �eld and a

line pro�le plot of the input and the or-

reted image.

CV TV Entropy

N4ITK 1.21 0.582e-1 6.33

TGV-DCT 1.25 0.509e-1 6.61

Table 13: CV, TV and entropy of the orreted sample 16 for the methods N4ITK and

TGV-DCT.

The previous sample 16 is also proessed by TGV-DCT of order 3 to 5. Figure 20

shows the resulting image, histogram, line pro�le plot and bias �eld. Table 14 inludes

the dereasing metri values for these results. The histogram peak of the musle merges

with the one for the other foreground pixels and the bias omponent inludes more and

more details. So ontrast between the musle and the surrounding tissue dereases.

The bias of the seven ylinders is partly removed by the proessed methods. Beause

these regions are separated the PDF domain based method N4ITK performs muh better

than the others whih orreted the image in the spatial domain. The line pro�le plot

of Figure 20 shows that TGV-DCT removes the bias inside eah ylinder, but it does

not estimate a meaningful bias �eld in the bakground. Nevertheless it produes similar
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results than N4ITK for the biologial tissue.

Figure 20: Results of the proposed TGV-DCT-method for sample 16: resulting image,

histogram, line pro�le plot of input and output and bias image. The rows ontain the

results for TGV-DCT with order 3,4 and 5.

TGV-DCT Order CV TV Entropy

3 1.157 0.399e-1 7.188

4 1.15 0.389e-1 7.025

5 1.14 0.383e-1 6.949

Table 14: CV, TV and entropy of the orreted sample 16 for the method TGV-DCT

with inreasing order.

3.3.4 Estimation with Denoising and Corretion based on the Input Image

In the following experiment the downsampled version of the TGV-DCT bias orretion

algorithm is used to estimate the bias �eld with simultaneous denoising and orret the

input image without denoising. This is ahieved by hoosing a low value for the denois-

ing parameter λ = 1 and estimating a vetor �eld v with this TGV-L

1

parameter. As

desribed above in Setion 2.4 the estimated bias is subtrated from the input image

if downsampling is applied. Figure 21 shows the estimated bias-free image, probability

funtion and a representative line pro�le plot. Again sample 16 is proessed using N4ITK

and several versions of the proposed algorithm. N4 generates two main peaks in the

intensity spetrum and a straight line in the pro�le plot. The seond order TGV-DCT

algorithm generates a similar result. It di�ers in the width and position of the two in-

tensity lasses. The proposed method does not alter the position of the peaks. In other
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words the absolute intensity values are preserved. Third order TGV-DCT introdues ad-

ditional inhomogeneities on the left fat, the bottom bone and top right fat tissue regions.

Nevertheless the intensity peak is narrower than the one of the result of the seond order

algorithm. Downsampling the input by one half produes a qualitatively better result

with two (symmetri) Gaussian distributions in the estimated PDF.

The last two olumns of Figure 21 show the estimated bias �elds for these alulations.

N4 works in the logarithm domain and therefore produes a multipliative bias �eld. For

better omparison the input image is subtrated by the resulting estimate of the bias-free

image. And the additive bias �elds estimated by the proposed algorithm are transformed

to multipliative ones. This is done by dividing the input image with the resulting bias free

image. To omit division by a value near zero the bias-free estimate is �rst thresholded and

division is only done if the divisor is not equal to zero. Although the multipliative bias

�eld of N4 and TGV

2

-DCT look similar (for example the gradient at the green line) they

are not easy to ompare. In general all output images are resaled to ontain blak pixels

for the minimum intensity and white ones for the maxima. The alulated multipliative

bias inludes a few bright pixels. One an also see blak pixels for regions where no

bias �eld is estimated. N4 interpolates the bias in those regions using B-splines. The

bias �elds show more details for inreasing the TGV-DCT order and less for a dereasing

downsampling fator.

Table 15 ontains metri values for this experiment. In fat N4 generates the worst

CV and TV but a good entropy value. Quantitatively the third order method without

downsampling produes the best result. In the following Setion 3.3.5 an additional metri

will be introdued to ount for the loal ontrast between several regions. The estimated

multipliative bias �eld ontains low values in the enter of the image and the fators

inrease with the distane from the enter. Maximum bias is visible at the top and right

edge.
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Figure 21: The resulting estimated bias-free image, the histogram and a representative

line pro�le plot of the input (blue) and output(green) intensities, the additive and multi-

pliative bias �eld for the referene method N4ITK and several versions of the proposed

TGV-DCT algorithm. The position of the line is additionally painted to the image. The

rows ontain the result of the algorithms and parameters listed in Table 15.

CV TV Entropy

N4ITK 1.144 0.588e-1 7.183

TGV

2

-DCT 1.139 0.524e-1 7.237

TGV

3

-DCT 1.101 0.512e-1 7.03

TGV

3

-DCT fdownsampling = 1/2 1.093 0.534e-1 7.242

Table 15: CV, TV and entropy of the orreted sample 15 for the method TGV-DCT

with inreasing order.
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3.3.5 Simultaneous Denoising and Bias Corretion

First the authors of the N4ITK algorithm refer to the proposal of the original N3 by

Sled et al. 1998 [15℄ about the intensity spetrum. Beause these algorithms work in the

logarithm domain, zero and very small intensity values are not reommended. Therefore

the input image is not resaled and the DICOM integer values are proessed. Beause no

prior denoising by a Bilateral Filter is performed, the parameters is not in�uened.

In this the TGV-DCT algorithm will perform simultaneous denoising. This means

no downsampling and a value for the denoising parameter λ smaller than 2. Only the

ombined e�et of denoising and deshading are evaluated by the inspetion of the resulting

estimated bias-free image.

Figure 22 shows sample 17 whih is equal to sample 16 exept the oil ylinders are

removed. This �gure inludes the estimated bias-free image, the PDF, a representative

line pro�le plot and the additive and multipliative bias. The line pro�le plot spawns from

the musle through the bone to the fat tissue. PDF estimation is done by KDE with 256

intensity values, a bandwidth of 40 and a window from 150 (to suppress low bakground

pixels) to the maximum intensity value of 2135.

The proessed algorithms and parameters are shown in Table 16. It inludes the

hosen value for λ and the number of iterations proessed. Furthermore the required

omputation time and metri values are listed. In addition to the three metri values

used above the loal ontrast (desribed in Setion 2.7.5) is evaluated. This is done by

approximating the intensity di�erene from musle to bone and from bone to fat based

on the line pro�le plot. In the input image the di�erene from the last pixel of the musle

to the �rst pixel of the bone is 400 for example.

The input image ontains a slow bias whih inreases the intensity values from top-left

to bottom-left at the position of the pro�le line. This widens the PDF peak for the bone

and fat tissue. Nevertheless, there are still two separate peaks visible. As mentioned above

N4 produes two very narrow peaks and a smooth and slow varying multipliative bias

�eld. It improves the ontrast between musle and the other pixel values to 700 but there

is no ontrast between bone and fat tissue anymore. The maximum values of the bias

�eld are visible at the top and right edge. This �eld is interpolated by B-splines, to allow

values in the bakground to be estimated. As mentioned above in Setion 3.3.3 N4ITK

proesses 200 iterations by default. Table 16 lists the proessed algorithms, parameters,

required omputation time and metri values. N4 requires about 3.8 s and generates the

maximum ontrast for the musle tissue, but inreases the TV of the image.

Next, seond order TGV-DCT with λ = 1.75 is proessed until onvergene. It redues

the CV, TV and entropy value and preserves the original ontrast between musle and

bone tissue. The additive estimated bias �eld in Figure 22 also shows maximum bias at

the top and right edge. The PDF ontains 2 main peaks, but there are two additional
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distributions very lose to the seond peak. These represent the intensities of the bone,

fat and details in those two tissue lasses. Simultaneous denoising additionally redues

the metri values, the straightness of the intensity pro�le line and allows to selet a sale

of interest. Therefore unwanted details whih are assumed to be noise are removed from

the image.

The next algorithm proessed is third order TGV-DCT with the previous denoising

parameter. Only 700 iterations and less than 0.2 s are required for the alulation. The

bias in the bone tissue is greater than the previous one. This generates brighter pixel

values in the resulting bias-free estimate. In the PDF there are three main peaks visible.

Using the previous denoising parameter value another alulation performs denoising

and simultaneous bias orretion by only 1000 iterations of TGV

15

-DCT. This requires

less than 1.5 s omputation time and generates the best CV and entropy values of this

experiment. There are three very narrow peaks visible in the PDF and muh more details

in the estimated bias �eld.

The next three alulations perform intensive denoising by setting λ to 1. Again the

maximum step size parameter α ontains the values alulated by the series de�ned in

Setion 2.2.5. These results ontain very low TV values and require less iterations. Seond

order TGV-DCT runs 1000 iterations in 0.2 s. The e�et of denoising is learly visible in

the line pro�le plot. The third order algorithm produes the best TV metri value and

also best ontrast between bone and fat. The PDF shows three very narrow peaks. The

last omputation demonstrates intensive denoising in just 600 iterations by TGV15

-DCT.

All metri values are good in omparison to the another results. This parameters set

runs faster than the referene method and produes better results. The resulting bias-free

estimate shows three homogeneous regions and the PDF three very narrow and symmetri

peaks. There are many details ontained in the estimated bias whih is removed from the

denoised image.

These alulations show that the proposed algorithm an perform simultaneous bias

orretion and denoising. This additionally redues the metri values and therefore im-

proves the quality of the results. Furthermore the absolute intensity values and ontrast

between spatially separated regions is preserved.
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Figure 22: In the �rst row the input image and an estimate of the PDF is shown. The

following rows ontain the resulting estimated bias-free image, the orresponding PDF, a

line pro�le plot of the input and orreted image, the bias and denoised image for sample

17. Table 16 lists the algorithms and parameter values used.
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Algorithm λ #iter

Required

CV TV Entropy

Contrast Contrast

Time [s℄ M-B B-F

Input 1.046 129.587 7.612 400 200

N4ITK 2e2 3.873 0.992 136.725 7.111 700 0

TGV

2

-DCT 1.75 5e4 9.65 0.961 90.158 7.254 400 100

TGV

3

-DCT 1.75 7e2 0.229 0.96 100.342 7.23 300 100

TGV

15

-DCT 1.75 1e3 1.463 0.923 86.139 6.962 300 120

TGV

2

-DCT 1 1e3 0.2 0.962 70.187 7.2 200 220

TGV

3

-DCT 1 1e3 0.303 0.942 66.834 7.074 300 250

TGV

15

-DCT 1 6e2 0.91 0.934 67.033 7.033 200 150

Table 16: Metri values for sample 17. The �rst three olumns ontain input values:

algorithm, parameter and number of iterations proessed. Column four shows the required

omputation time. The following olumns present the metri values: CV, TV, Entropy

and Contrast between two di�erent tissue edges. These are musle-bone (M-B) and bone-

fat (B-F).

3.3.6 In�uene of the Parameters on the Inhomogeneity Shape

In priniple the shape of the bias �eld depends on the input image and the hosen pa-

rameters. As mentioned above in Setion 3.3.1 the downsampling fator fdownsampling an

also be used to fous on low frequeny information. In this setion only the in�uene

of the maximum step size parameter for the seond order gradient α1 in Equation 1 is

investigated.

In the following experiment the seond order TGV-DCT inhomogeneity orretion

algorithm is proessed with λ = 1, α0 = 1 and multiple values for the analyzed parameter

α1. No denoising is performed by subtrating the estimated bias from the input image.

Figure 23 shows the resulting bias free estimate, the estimated bias and line pro�le plots

for a set of parameter values.

A similar e�et might be reahed by hoosing smaller values for λ and λ0. But for

parameter estimation it is muh simpler to resale the intensities and �x α0 to 1. In

Setion 4.3 a reommendation for a strategy to hose a value for the parameter vetor α

is given.
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Figure 23: Results of the proposed TGV-DCT-method for sample 16: In eah olumn

resulting bias free estimate, the bias, and the line pro�le plots of the input image and bias

free estimate are shown. The results of olumns are alulated with α1 ∈ {2, 3, 4, 5}.

3.3.7 Inversion of the Laplae Operator

The two alternative methods for the inversion of the Laplae Operator are ompared as

follows. Sample 12 � whih is shown in Figure 12 � is proessed by TGV

2

-L

1

with the

default parameters. The �rst input image has the dimensions 251x251 and intensity range

from 0 to 1. The TGV-L1

algorithm generates a denoised image and additionally a vetor

�eld v. The divergene of this vetor �eld is the input for the two extration methods listed

in Algorithm 2 and Algorithm 3. Both methods are exeuted 20 times. The CG-algorithm

onverges with an error threshold of ǫ = 10−3
after 207 iterations. Additionally sample

13 in Figure 13 is proessed. This image has the dimensions 156x156. The parameters

for CG are the same and onvergene is reahed after 342 iterations. Table 17 inludes

the required omputation time and alulated metri values for the estimated bias-free

images.

Method Duration CV TV Entropy

Sample 12

DCT 44.8ms± 4.238ms 0.578 0.534e-1 7.284

CG 358.35ms± 41.473ms 0.59 0.54e-1 7.306

Sample 13

DCT 160.25ms± 20.760ms 0.632 0.554e-1 7.012

CG 1432ms± 151.344ms 0.638 0.554e-1 7.018

Table 17: CV, TV and entropy of the two alternative bias �eld extration methods for

sample 12 and 13.
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4 Disussion

4.1 Interpretation

4.1.1 Proessed Samples

For the simulated ground truth data in Setion 3.1.1 the TGV

2

-DCT bias orretion al-

gorithm suessfully restores the pieewise onstant regions of sample 1 and 2. These

samples really are pieewise onstant ompositions without any kind of noise. The al-

ulated bias �eld ontains only linear and quadrati terms with respet to the spatial

dimension. The RMSE for the multipliative �eld in sample 2 is higher than the value

for sample 1. Nevertheless the algorithm improves the homogeneity of the image shown

in Figure 2.

The next step is the simulation and proessing of MR volumes in Setion 3.1.2. For

sample 3 the algorithm onverges fast and strongly redues inhomogeneity. Even for the

noisy MR phantom (sample 4) bias orretion is suessful and additionally performs

denoising. The huge redution of the TV and entropy in Table 5 on�rms this behavior.

The CV metri is less in�uened by this zero-mean noise.

The olor images Adelson Chekerboard (sample 5) and Logvinenko Illusion (sample

6) are also used for evaluation in the work of Liang and Zhang 2015 [11℄. The methods

disussed in their work are qualitatively ompared to the results in Figure 5 and Fig-

ure 6. The three methods do not estimate the shading on the ylinder as well as the

proposed TGV-DCT method does. In sample 6 the pieewise onstant information is

better preserved in the result.

The standard test photograph sample 7 is ompared to 4 di�erent methods in Fu et

al. 2015 [13℄ and sample 8 is inluded in Kimmel et al. 2003 [6℄. Beause no ground

truth and metri values are available the results are again only qualitatively ompared.

The olors of the shaded regions of sample 7 in Figure 7 are better restored. For sample

8 it is di�ult to de�ne the desired goal. The statue basially onsists of white stone and

golden metal. An objetive omparison is not done here. Inreasing the TGV-DCT order

does redue inhomogeneity as an be seen in Figures 8 to 10.

Next the algorithm is proessed using a measured MR volume. To analyze only the

bias orretion prior denoising is done. Figure 11 representatively shows that the resulting

image ontains pieewise onstant regions and the shading omponent pieewise higher

order intensity shapes. Also without prior denoising (sample 12) the bias �eld extrated

by TGV

2

-DCT improves the image quality.

Figure 13 shows the e�et of inreasing the TGV-DCT order for a measured MR slie.

Up to order 9 the algorithm performs better whih is visible in the histogram of the

foreground pixels and line pro�le plot. Prior foreground masking and intensity resaling

drastially in�uenes the results. Figure 20 inludes the results of the TGV-DCT higher
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order algorithmwhih may not be near the desired goal. In the histogram the two intensity

lasses merge together.

In Setion 3.3.6 the in�uene of the parameter α1 is under investigation. With in-

reasing value the bias beomes more smooth. The third term of Equation 1 is weighted

stronger whih minimizes the seond derivative faster. There are less sharp edges in the

bias �eld, and it is less similar to the gradient of the denoised image.

4.1.2 Downsampled TGV-DCT Bias Corretion

Downsampling generally dereases the required omputation time and GPU memory (Ta-

ble 9). Therefore the algorithm an be proessed muh faster and higher order TGV-DCT

beomes feasible for a spei� hardware setting. Figure 15 shows that downsampling also

highly in�uenes the shape of the resulting bias �eld. As desribed above in Setion 2.4

the low-pass harater of the B-spline interpolation of smaller volumes produes slower

and smoother �elds. The metri values derease with inreasing TGV-DCT order from

2 to 4 (Table 10). On the one hand the results quantitatively get worse with inreasing

downsampling but on the other fdownsampling is an additional parameter to ontrol the

smoothness. Therefore the results may qualitatively get loser to the desired goal by

spei�ally adjusting this parameter.

4.1.3 Masked TGV-DCT Bias Corretion

Foreground masking does not in�uene the resulting volumes as shown in Setion 3.3.2.

It requires additional GPU memory for the 13 index-vetors, but highly redues the

omputation time. It di�ers in the way the boundary onditions of the �nite di�erenes

are applied. The CUDA kernels are in general only launhed for neessary voxels. Cheks

for the image dimension and boundary are done previously and not in eah iteration.

Basially this version of the algorithm is reommended. It is also ombined with the

previously disussed downsampled algorithm. For ases where the GPU memory is not

su�ient, the slower TGV-DCT bias orreton algorithm an be used. Note that the

performane improvement depends on the ount of foreground voxels and therefore on

the mask volume.

4.1.4 Comparison to N4ITK

The N4ITK algorithm is designed for inhomogeneity orretion of MR images. It assumes

a slow varying bias �eld. This onstrained is fored by using spline interpolation. Third

order splines have equal intensity values, �rst and seond order derivatives at the nodes.

Intensity values between the nodes are interpolated by third order polynomials. The TGV-

DCT method minimizes the TV of the resulting image. Noise is removed by iteratively

subtrating the projeted derivative and all other non-pieewise-onstant ontributions
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beome part of the illumination omponent. Although these two goals are totally di�erent,

the results are omparable for the proessed samples.

Figure 20 shows the results for inreasing TGV-DCT order. In this ase higher order

algorithms do not improve the results qualitatively, if one is interested in the ontrast of

the musle to its surrounding tissue. Nevertheless the metri values in Table 14 derease.

Simultaneous denoising and bias orretion � as desribed in Setion 3.3.5 � greatly

improves the metri values. Previous experiments have shown that redution of the metri

values CV, TV and entropy is not enough to quantize good image restoration. The extreme

ase of bias orretion would generate a single intensity value whih would end up in the

theoretially best metri values. This would surely not be the intended result. Qualitative

inspetion of the image, PDF and line pro�le plot would learly show that the result is

getting worse, but the metri values improve (Figure 21 and Table 15). The loal ontrast

between several separated tissue type regions is introdued to quantitatively ount for the

distane between multiple intensity distributions in the PDF. It is approximated based on

the line pro�le plot. This measurement is assumed to be aurate enough for a meaningful

omparison of the proessed samples.

The results of Table 16 and Figure 22 are interpreted as follows. N4 very well performs

bias orretion. It generates maximum ontrast between the musle tissue and all other

pixel intensities. The estimated multipliative bias �eld is smoothly and slowly varying

in the whole image. The downside of the result is that all other tissue lasses than musle

get the same intensity value. This produes maximum homogeneity but totally removes

the ontrast.

Several results of the proposed TGV-DCT algorithm shown in Figure 22 outperform

the referene method. Simultaneous denoising additionally produes more homogeneous

regions in the image. In ontrast to N4 the TGV-DCT algorithm works in the spatial

and not the PDF domain. Therefore, it an use the information of spatial separations in

the image and thus images with better ontrast for multiple very lose tissue intensities

an be produed. On the other hand it does not estimate a meaningful bias �eld between

isolated objets (oil ylinder in Figures 19 and 20). The algorithm an produe similar

results as N4 with default parameter values. Furthermore, it allows to selet the amount

of denoising and shape of the bias �eld and hene the parameters an be adjusted to

spei� situations and desired outomes.

4.1.5 Evaluation

The alulated metri values show an improvement in most of the tested samples. Al-

though this is generally a hint for good performane, redution of these values does not

diretly imply well performed shading orretion. In ase of very inhomogeneous illu-

mination � more spei� if some regions are strongly illuminated and others very less �

the spetrum ontains many intensity values at the beginning and another group at the

56



end. This means the entropy is low in the overall image. Shading orretion inreases the

entropy in suh ase. A more representative metri for these senarios is the oe�ient

of variation.

Furthermore, the outome of the experiments shows that if one is interested in the

ontrast of several tissue lasses evaluation should inlude other metri values � as the

loal ontrast � or some kind of segmentation proedure. In that way the CV, TV and

entropy metri ould be alulated for several separated regions and ombined metris

like the joint oe�ient of variation an be used. The problem of bias orretion is losely

onneted to segmentation of homogeneous regions and lassi�ation of several intensity

distributions in the image.

Note that the ontrast metri is even improved by a bias �eld in some ases. The

slowly and smoothly varying �eld may streth the intensity di�erene between di�erent

regions. Therefore bias orretion ould also derease the ontrast by generating good

estimates for the real bias-free data.

4.1.6 Convergene of the optimization algorithms

Convergene of the proposed bias orretion method depends on the optimization algo-

rithms used. Bias estimation and denoising is done by a TGV-L

1

Primal-Dual implemen-

tation. TGV is desribed in Bredies et al. 2010 [30℄. The authors de�ne onvergene due

to the L

2

-norm of the �rst term in the TV-norm in Equation 8. A onvergene estimate

for TGV-L

2

is derived whih is dependent on the image dimension, number of iterations

and α0. Unfortunately this estimate an not be used for the TGV-L

1

funtional. But it

is known that it dereases monotonially. In this work onvergene is heked visually

by the inspetion of the image, histogram and line pro�le plots. Additionally statistial

values like the minimum, maximum, mean, standard deviation and CV are examined. If

the result hanges just in a ertain fration (1e-3) of the intensity bandwidth, onvergene

is assumed.

The seond step of the bias orretion algorithm transforms the vetor �eld v into the

salar bias l. This problem is stated as a minimization in Equation 2. Convergene of

v in the previous step is therefore important. The CG-solver onvergenes for a positive

de�nite matrix afterNvoxel−1 iterations whih is proofed by Hestenes and Stiefel 1952 [43℄.
The DCT-solver for the Poisson Equation � desribed in Setion 2.3.3 � is a losed

form solution. It diretly alulates the optimum solution in the osine domain.

4.1.7 Conditions for Suessful Bias Corretion by TGV-DCT

To state some onditions for suessful bias estimation using TGV-DCT it is important to

understand the role of eah single term of the underlying TGV regularization funtional.

Setion 2.2.2 desribes the �rst order version. It is known that TV-L

1

generates pieewise
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onstant images. Why does it extrat suh pieewise onstant regions? The following

disussion about TGV-DCT is based on the fat that every funtion an be deomposed

by Taylor series expansion. For disretized images on a regular grid the distane from

the parameter for whih the funtion is approximated to the origin parameter is onstant

and usually de�ned to be simply one. This more spei� version of the Taylor series is

shown in Equation 18. It is based on the Taylor expansion method desribed by Dahmen

and Reusken 2008 [52℄. The salar funtion value for the parameter x+ 1 is equal to the

funtion value left to it plus an in�nite series of weighted derivatives.

f (x+ 1) = f (x) +

∞
∑

i=1

f (i) (x)

i!
(18)

Putting the �rst term to the left side of the equation shows that the �nite forward

di�erene is equal to the weighted sum of all derivatives. Note that the gradient operator

is usually approximated by the forward di�erene with Neumann zero �ux boundary

onditions. The implementation of TV-L

1

minimizes the L

1

-norm of this gradient. Sine

L

1

is a speial p-norm the minimization funtional an be transformed by the Minkowsky

Inequality to the separate minimization of all derivatives. The aim of TV-L

1

is therefore

interpreted to be the minimization of really all derivatives. In ombination with the data

term the optimization produes pieewise onstant (all derivatives near zero) images whih

are similar to the input image.

For the investigation of seond order TGV-DCT the previously stated Taylor Series

Equation 18 is transformed to additionally ontain the �rst derivative of the funtion on

the left side. After this transformation the weighted sum of all higher order derivatives

(starting at order two) is equal to the forward di�erene minus the �rst derivative. If

one would minimize the terms on the left side this would minimize all derivatives exept

the �rst one. Suh an optimization would therefore extrat linear funtions. The �rst

term of the TGV

2

-DCT energy funtional in Equation 8 desribes the minimization of

the L

1

-norm of the gradient of the denoised image u subtrated by a vetor �eld v. The

seond term fores the minimization of the gradient of this vetor �eld. Aording to the

disussion of TV in the previous paragraph if v would ontain the �rst order derivative

the seond term would minimize all derivatives of v.

Algorithm 4 iteratively minimizes all terms of Equation 8. The derivative of the

Lagrange with respet to u and v is required to obtain the update terms for the iterative

minimization. The dual variable for u is p. It ontains the summed up projeted forward

di�erene of u minus the vetor �eld v. The information of p is used for the primal update

of u and v. Note that both terms of TGV

2

-DCT in Equation 8 ontain v. The primal

update of v is therefore done by summing up p (the derivative of the �rst TGV2

-DCT term

with respet to v) and a seond term ontaining q. The role of q is the minimization of

the L

1

-norm of the gradient of v. At the beginning v̄ is initialized with zero. The variable
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p therefore ontains the projeted weighted sum of all derivatives in early iterations. And

the vetor �eld v stores the forward di�erene of u (as part of p) and the weighted sum of

all higher order derivatives (part of p and q). Aording to Equation 18 this is equal to

the �rst order derivative. The information of the �rst derivative slowly transfers from p to

v with inreasing iterations. TGV

2

-L

1

therefore approximates pieewise linear regions in

the input image. Note that the approximated bias �eld by TGV

2

-DCT does not ontain

the residual of this linear approximation. In ontrast the downsampled version of the

algorithm does ontain the residual in the bias �eld. The maximum step size for q has to

be greater than the one for p. The vetor �eld v quikly beomes the �rst order derivative

and the primary minimization of all derivatives exept the �rst one is done via the vetor

�eld p.

Third order TGV-DCT extrats pieewise quadrati funtions. In ontrast to TGV

2

-

DCT the seond term does not fore all derivatives of v to be minimized. It rather

subtrats another vetor �eld w whih ontains the quadrati information of u. This

seond term of TGV

3

is therefore similar to the �rst term of TGV

2

.

In the following paragraph this argumentation is extended to the general ase of any

higher order TGV-DCT. Equation 10 desribes the TGV funtional as a minimization.

For higher order terms it ontains a general series whih fores the minimization of higher

order derivatives up to the order k. Sine the maximum step sizes inrease for higher order

terms the algorithm extrats higher order information �rst. Additionally higher order

derivation is done by the derivation of one order less as desribed above. Continuing with

higher order terms suessively desribes the approximation of pieewise higher order

polynomials in the image. Note that the vetor �eld v still ontains all non-onstant

information left in the salar �eld u. If the objets under interest are assumed to be

pieewise onstant, this vetor �eld v an be used to approximate the bias �eld of the

image.

With inreasing order the algorithm �ts pieewise regions with intensity distributions

of more omplex shape. The downside of inreasing order is that if the bias omponent

does not onsist of suh higher order polynomials the algorithm starts to �t the pieewise

onstant objets with higher order terms. This behaviour is known under the name

over�tting. Therefore parts of the objet information ontribute to the bias and are

removed.

Inreasing step size values from the �rst to higher derivatives (Setion 2.2.5) mean

that higher order information is minimized faster. Therefore it onverges earlier and

lower order information needs to be re�ned in later iterations. A general fator for α is

introdued in the algorithm input subroutine. Too large step sizes blur the image in the

early iterations and sharp edges return later. Lower step sizes do not blur the image and

lead to faster onvergene. But too low step sizes an result in a very slow orretion

proess. This behavior is interpreted as follows. Too large step sizes let the algorithm
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make large updates whih may pass over the desired result of the optimization. Suh

steps introdue error to the result whih may remain in the data. On the one hand small

steps are more aurate, but on the other they are slower.

The ommon assumption about the bias �eld (slow varying and smooth) is inluded

in the TGV-DCT model by α0 < α1. These two weights are fators of energy terms in

Equation 10. If the �rst step size is smaller, seond order derivatives of the bias �eld

are minimized faster. The e�et is less edge-information and therefore smoothness of the

bias. In this work the shape of the �eld is ontrolled by the TGV-DCT order and the

downsampling fator only.

Eah term in the energy funtional of TGV

k

(Equation 10) is weighted. The fator

for the data term of TGV-L

1

is λ and for the L

1

-norm of the derivatives is α. The shape

of the estimated bias �eld depends on the relative value of eah integral ompared to

the others. The weights an therefore be adjusted due to the spei� image dimensions,

inluded noise and shape of the bias �eld.

The proposed TGV-DCT bias orretion method is based on the fundamental as-

sumption that the objets under interest are pieewise onstant and higher order ontent

orresponds to the bias omponent. Seond order TGV-DCT �ts a pieewise linear in-

homogeneity �eld. If the order is inreased and there is no higher order bias, the e�et

desribed in the previous paragraph ours. Objet information wrongly ontributes to

the higher order bias. This leads to dereasing ontrast and a very narrow single his-

togram peak. It is therefore reommended to start with seond order TGV-DCT and

inrease the order if it is neessary and helpful.

4.1.8 MR Coil Sensitivity Estimation

The MR signal model usually ontains a multipliative bias omponent as desribed in

Setion 1.2.2. In ontrast to that, the proposed method approximates an additive bias

�eld. Nevertheless it is possible to transform this estimate to a multipliative one. This

is shown in Figure 17 and further desribed in Setion 3.3.3.

Anyway this estimate may ontain several disturbing omponents. If the assumption

of pieewise onstant objets is not perfetly ful�lled, the sensitivity pro�le ontains part

of the information of the imaged objets.

The algorithm �ts the optimal pieewise onstant image to the data. Multiple regions

of the same tissue type � whih are not onneted � may not get equal intensity values.

Espeially if the bias values in suh regions are highly varying. Tuning the α param-

eter may help in suh ases. It ontrols the shape of the bias �eld, and the proposed

bias orretion algorithm does inlude the assumption of smoothly and slowly varying

inhomogeneities (α0 < α1).

A method based on a multipliative bias model might result in better performane in

suh situations. But optimization beomes more di�ult for inreasing orrelation of the
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estimated parameters.

4.2 Logarithm Transform

In setion Setion 1.2.2 the logarithm transform of the input image is mentioned. The

multipliative bias �eld is transformed into an additive one by many authors [1, 4�13℄.

Simply taking the logarithm ould beome problemati with very low values [15℄. Usually

the intensities are resaled to values from 1 to 2. The inverse transform - whih is neessary

to estimate the bias-free image - is the exponential funtion and subtrating 1 from the

resulting values.

Experiments have shown that the TGV-DCT outome does not hange if the data is

proessed in the logarithm domain. Note that the logarithm transform alters the image in

the PDF domain. This independently alters eah voxel of the image. Pieewise onstant

funtions remain pieewise onstant after taking the logarithm. In the range from 1 to 2

the logarithm is nearly linear. Nevertheless pieewise linear funtions beome nonlinear.

And the value range of the bias free and the bias image is usually not known.

In this work this transformation is omitted. The proposed TGV-DCT algorithm ap-

proximates an additive bias �eld. As an be seen in Figure 1, this model suessfully

orrets an additive bias. The following samples in Figures 2 to 4 show that also multi-

pliative orruptions are partly restored. And �nally the model also orrets measured

MR volumes (Figures 11 to 14, 20 and 21).

4.3 Reommendation for Choosing the Parameters

The outome of the algorithm is ontrolled by the hoie of the parameters. For the

seond order TGV-DCT algorithm these are the denoising parameter λ (in Equation 4)

and the weights for TGV terms α0 and α1 (in Equation 10).

The seond term in Equation 10 inludes the denoised image and the gradient of the

shading omponent. It is therefore reommended to �x α0 to 1, beause both images

depend on this parameter.

The �rst parameter to adjust is the denoising parameter. Run about 1e3 iterations

with the setting λ = 1, α0 = 1 and α1 = 2. The result may not onverge totally, but the

e�et of the denoising parameter will be visible quite soon. For more intensive denoising

(less details) hoose a value in the range of (0; 1]. If the algorithm should perform less

denoising, λ has to be inreased. Values smaller than 3 are reommended.

Finally hoose the shape of the bias �eld by setting the parameter α1. This is shown in

Figure 23. Bigger values weight the seond term of Equation 10 stronger, whih makes the

bias more smooth. Experiments have shown that a value in the range of (2; 5] is a feasible

hoie. This reommendation assumes that the intensity values are in the standard range

of the DICOM spetrum.
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4.4 Conlusion

Even with the default parameter set the algorithm produes meaningful results for the

listed samples. Furthermore the parameters an be adjusted to spei� situations. The

fundamental assumption is that the objets under interest are pieewise onstant. TGV

k

-

L

1

ombined with the DCT solver for the Poisson Equation approximates suh pieewise

onstant images.

The DCT Poisson solver is preferred over the CG-solver. The results of both methods

are nearly equal (Table 17). But the diret form solution of the DCT-solver is muh faster.

The proposed method orrets most of the bias without destroying interesting details and

ontrast between di�erent regions.

Based on the idea of Liang and Zhang 2015 [11℄ the TGV-L

1

algorithm of Bredies et

al. 2010 [30℄ is ombined to the DCT Poisson solver by Limare et al. 2011 [29℄. Then the

algorithm is extended to perform higher order TGV-DCT. Furthermore, a downsampled

and a masked version is introdued. The overall method is implemented in CUDA for 3D

images and suessfully evaluated due to several data sets.

4.5 Outlook

The maximum step size vetor α balanes the regularization terms and therefore ontrols

the shape of the extrated bias �eld. Analysis, tuning and optimization of this parameter

is a topi for future researh. Based on the insights of this work investigation of optimal

TGV-DCT order is another open task. This may be done by a histogram based lustering

algorithm, whih evaluates the ontrast of several intensity distributions.

For general olor photographs the higher order TGV-DCT algorithm shows potential

for further investigations. As a preproessor step this method may improve the per-

formane of other imaging tasks like segmentation, registration and lassi�ation. Bias

information may also be removed due to lowering the entropy and thus ompress image

�les. By removing slow biases, 3D volume rendering of MR data an be presented for a

more intuitive view of tissues under interest.

The seond order TGV regularization term is suessfully used for radial MR data

reonstrution by Knoll et al. 2011 [38℄. Similar to the denoising task the TGV of

the resulting image is minimized. The proposed method ould therefore be inluded

in the reonstrution step whih would simultaneously perform transformation of the

measurement data from the k-spae, denoising and bias orretion.

Inhomogeneity orretion is an important step for quantitative imaging and also the

generation of multimodal images. The algorithm may also be used for other imaging

modalities like mirosopy, omputer tomography, ultrasound sine these tehniques on-

tain similar non-uniform sensitivity pro�les.
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