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Abstract

Society relies more and more on technical systems. With the trust placed in these comes a high need
for safe systems. For safety critical systems it is necessary that they are particularly reliable. This thesis
describes an algorithm calculating the reliability of systems consisting of connected components. The
functionality of most of these components depends on the output of other components, which introduces
fault propagation. To avoid such problems, the system may also contain components for redundancy.
Evaluation of the reliability of the system can be used for identifying weak points in the system and
allows for improving the system by adding further redundancy components. The system’s information
flow may also contain loops and cycles. Therefore it is not possible to use the common Fault Tree
Analysis (FTA) method. Instead, this thesis uses a Bayesian Network approach. It describes the full
process starting at a UML model of the system, creates an intermediate Dependency Graph and proposes
an efficient way of applying cycle unrolling to such systems to receive a valid Bayesian Network. The
approach preserves the successor and descendant relationships in the graph in such a way, that the failure
probabilities are taken into account only once. Therefore it is necessary to use conditional probability for
evaluating the reliability of each component, for which we introduce an algorithm specific to Connected
Components Systems containing redundancy components. The thesis will be supported by examples
for the complete implementation of the whole process and concluded with an evaluation of real systems
using this implementation.





Contents

Contents iii

List of Figures vi

List of Listings vii

List of Examples ix

Credits xi

1 Introduction 1
1.1 What is Reliability and why is it important? . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 How can we measure Reliability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 How can we evaluate the reliability of a system? . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Difference between Faults and Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Distinction between qualitative and quantitative evaluation of a model . . . . . . . . . . 2
1.6 What kind of systems are we handling? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.7 The problem this thesis addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.8 How this thesis provides a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.9 Capabilities and Limitations of the solution . . . . . . . . . . . . . . . . . . . . . . . . 4
1.10 Potential applications of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.11 The Complete Process Described in this Thesis . . . . . . . . . . . . . . . . . . . . . . 4
1.12 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Failure Mode and Effects Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Type-Hierarchy of Reliability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Power-Hierarchy of Reliability Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Reliability Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 FTA: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Method for handling systems with acyclic loops . . . . . . . . . . . . . . . . . . 10
2.5.3 Handling Systems containing cycles . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.4 Evaluation of possible causes for a failure using Fault Tree Analysis . . . . . . . 10
2.5.5 Dynamic Fault Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.6 Priority Dynamic Fault Trees with Repeated Events . . . . . . . . . . . . . . . . 11

2.6 The Petri Net Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Reliability Analysis using Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Loop Unrolling in compiler construction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Loop Unrolling in Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Adaption Loop Unrolling to Cycle Unrolling . . . . . . . . . . . . . . . . . . . . . . . 13

i



3 The Input to our Analysis: The System and its Components 15
3.1 Definition of a Connected Components System . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Component’s Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Component Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The Dependency Graph: Structure and Creation 21
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Definition of the Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Nodes in the Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 The Forward Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Preprocessing Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Failure Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.4 Output Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Relations of Nodes in the Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 State of Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Transforming a Connected Components System’s Component into a Graph . . . . . . . 23
4.7 Creating the Graph from a full Connected Components System . . . . . . . . . . . . . . 24

5 Transformation into a Bayesian Network: Applying Cycle Unrolling 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Definition of a Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Definition of Graph Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Tarjan’s strongly connected component algorithm . . . . . . . . . . . . . . . . . . . . . 29
5.5 Unrolling Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5.1 Proof for limiting the number of unrolling iterations . . . . . . . . . . . . . . . 32
5.6 Determine the best way to cut as many cycles as possible . . . . . . . . . . . . . . . . . 33

6 Calculating the Reliability of Nodes in the Dependency Graph 41
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Definition of Failure Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.3 Calculating Probabilities of Independent Failure Events . . . . . . . . . . . . . . 44
6.1.4 Calculating Failure Probabilities with Random Variables . . . . . . . . . . . . . 46
6.1.5 Introducing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.6 Failure Rate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.6.1 Constant Failure Rate and Exponential Distribution . . . . . . . . . . 47
6.1.6.2 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.6.3 Further Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.7 Dealing with Conditional Dependence between Random Variables . . . . . . . . 51
6.1.8 Dominators and Shared Predecessors . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.8.1 Rules of d-Separation . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.8.2 Calculation of Failure Probability with Dependent Random Variables . 54

6.1.9 Calculating the Reliabilities in Complex Dependency Graphs . . . . . . . . . . . 55
6.1.9.1 Reliability at a Failure Node . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.9.2 Reliabilities at a Forward Node . . . . . . . . . . . . . . . . . . . . . 55
6.1.9.3 Reliability at a Node with two or more Parents . . . . . . . . . . . . . 56
6.1.9.4 Reliability at an Output Node . . . . . . . . . . . . . . . . . . . . . . 56
6.1.9.5 Reliability at AN Preprocessing Nodes . . . . . . . . . . . . . . . . . 57
6.1.9.6 Reliability at VOTER Preprocessing Nodes . . . . . . . . . . . . . . . 57

6.1.10 Algorithm for Reliability Calculation . . . . . . . . . . . . . . . . . . . . . . . 58

ii



7 Conclusions 63

iii



iv



List of Figures

2.1 Reliability Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 This Figure shows a simplification of the system input for the Fault Tree in Figure 2.3.
There exist multiple acyclic loops inside the system. There are for example three paths
from node "2to the next And Gate, passing through node "3", "4", or "5". . . . . . . . . . 9

2.3 The resulting Fault Tree for the system in Figure 2.2. The different parts between the
loops are combined via an Or Gate, as are the two And Gates combining the loop paths.
Source: https://en.wikipedia.org/wiki/Fault_tree_analysis
License: Public Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 A system containing a feedback - cycle between subsystem A and subsystem B. . . . . . 11

2.5 Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Fault Tree corresponding to Petri Net in 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Nested Connected Components Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Composition of a generic Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Connected Components System with Different Types of Components . . . . . . . . . . . 20

4.1 The Dependency Graph of a Single OR Component . . . . . . . . . . . . . . . . . . . . 24

4.2 The Dependency Graph of a Single VOTER Component . . . . . . . . . . . . . . . . . 24

4.3 Exmaple of a Basic Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 An Example of a Bayesian Network. Both Factors Driver Drunken and Malfunctioning
Car may cause a Car Accident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Strongly Connect Component Example: Input . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Strongly Connect Component Example: First Strongly Connected Component . . . . . . 30

5.4 Strongly Connect Component Example: Next Strongly Connected Component . . . . . . 30

5.5 Replacing a Cycle by a Strongly Connected Component . . . . . . . . . . . . . . . . . . 31

5.6 Abstraction of Strongly Connected Components used for cycle unrolling proof . . . . . 33

5.7 Proof that two unrolling iterations are enough . . . . . . . . . . . . . . . . . . . . . . . 34

5.8 Strongly Connected Component after applying Cycle Unrolling . . . . . . . . . . . . . . 35

5.9 Dependency Graph with Unrolled Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.10 Strongly Connected Component containing more than one cycle . . . . . . . . . . . . . 37

5.11 If we cut the wrong edge of a cycle, we might duplicate further cycles contained in
the same Strongly Connected Component. Here the cycle with dashed edges is copied
because we chose the wrong edge (between cyc2.out and cyc1.in2). . . . . . . . . . . . 38

v



5.12 The edges in towards the node cyc1.out are the better choice, because all cycles can be
solved in one step. We can determine this node by looking at the number of edges inside
the Strongly Connected Components ending in this node. The node with the most of
these edges is the best choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Sample Space Ω with Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Reliability of Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Reliability of Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4 Failure Rate of Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Dependency Graph containing Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 d-Separation Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.7 d-Separation Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.8 d-Separation Rule 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Listings

5.1 Tarjan’s strongly connected component algorithm . . . . . . . . . . . . . . . . . . . . . 29

vii



viii



List of Examples

3.1.1 Connected Component System with two Components . . . . . . . . . . . . . . . . . . . 16

3.1.2 Two nested Connected Components Systems . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Connected Components System with Different Types of Components . . . . . . . . . . . 20

4.7.1 Generation a Dependency Graph from a Connected Components System . . . . . . . . . 25

5.2.1 Exmaple of a Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.1 Strongly Connected Component Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.2 Cycles and Strongly Connected Components . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5.1 Unrolling applied to a small Dependency Graph . . . . . . . . . . . . . . . . . . . . . . 33

5.6.1 Strongly Connected Component containing more than one cycle . . . . . . . . . . . . . 34

6.1.1 Sample Space Ω of the System in Example 4.7.1 . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Failure Event in the System in Example 4.7.1 . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.3 Union and Intersection of Failure Events . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.4 Dependency Graph containing a Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.5 d-Separation rules applied to Example 6.1.4 . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.6 Reliabilities in Example 6.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.7 Repetition of Closest Branching Predecessors in the Dependency Graph of Figure 6.5 . . 58

6.1.8 Relative Reliability in the Dependency Graph of Figure 6.5 - I . . . . . . . . . . . . . . 59

6.1.9 Relative Reliability in the Dependency Graph of Figure 6.5 - II . . . . . . . . . . . . . . 60

6.1.10Relative Reliability in the Dependency Graph of Figure 6.5 - III . . . . . . . . . . . . . 61

6.1.11Absolute Reliability in the Dependency Graph of Figure 6.5 - I . . . . . . . . . . . . . . 62

ix



x



Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews, 2012].

xi



xii



Chapter 1

Introduction

1.1 What is Reliability and why is it important?

In these days, we depend a lot on machines. For some of them it is extremely important to operate
reliably. This can be because they could put us into danger, if not working properly, like for example
car [Grabert and Luy, 2012] or a medical system. On the other hand there are systems, which are not
safety critical, but still need to be highly functional since they are very difficult to maintain, like offshore
wind turbines[Arabian-Hoseynabadi, Oraee and Tavner, 2010]. Safety methods are also very important
for nuclear [Commission, 1998] and aeronautic [Vesely et al., 2002] technologies. Reliability defines
how likely a system is to be able to perform its functions.

1.2 How can we measure Reliability?

Høyland and Rausand [2004] define measurements of Reliability Engineering including Reliability,
Availability, Mean Time To Failure and Maintainability. While Reliability is the ability to provide a
required function over a time period t considering environmental and operational conditions, Availability
also takes possible maintenance of the system into account. The Mean Time To Failure defines the mean
time until a failure is happening in the system. Maintainability defines, how much effort it is to maintain
the system, meaning to either retain or restore its functionality. In this thesis Maintainability is neglected,
in which case Reliability is equivalent to Mean Time To Failure.

Reliability can be therefore defined as the probability that a system’s function is provided after a time
period t, R(t) = Pr(item is functioning after time period t)

In a car, the reliability of for example the airbag would be the probability, that the airbag is working
properly at time t, given all environmental conditions like abrasion of the cables and deviation of sensor
accuracy. A malfunctioning airbag could be both the absence of a airbag activation as also an inadvertent
activation of it. Availability would also considers maintenance, like for example recalibration of the
sensors. The Mean Time To Failure would describe the average time passing until the airbag starts
to malfunction. This time span gives an indication on how often the system should be maintained or
replaced.

1.3 How can we evaluate the reliability of a system?

The process of evaluating the reliability of a system is a field of Reliability Engineering. For safety
critical systems it is important to know, how likely it is, that some of its components are not available
any more after a certain time. Once such weak points in the system are identified, their function’s
reliability can be improved for example by introducing additional redundancy components. Redundancy
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2 1. Introduction

components are additional components providing the same functionality as the existing components
allowing to maintain the intended behaviour if the existing component fails. The output of the original
and the redundant component is evaluated by another component, which decides which observed output
is correct. Another application of reliability engineering is the evaluation of the impact of a failure. This
means to calculate all influenced components of a failure. Similarly it is also possible to calculate the
most likely causes of a failure. This thesis describes algorithms for the reliability calculation.

1.4 Difference between Faults and Failures

IEEE Standard Glossary of Software Engineering Terminology [1990] defines a fault as a defect in a
hardware device or component and a failure as the inability to perform its required functions. The error
describes the deviation between the desired value and the output of a faulty component. Contrarily,
Høyland and Rausand [2004] defines so called failure events. This event occurs as soon as a so far
properly working component enters a fault state, meaning a defect occurs and the the component stops
to provide its required functions in a correct way.

1.5 Distinction between qualitative and quantitative evaluation of a
model

According to Blischke and Murthy [2000] there exist two types of reliability analysis: The qualitative
and the quantitative analysis. The first is used to find possible failure modes and or causes, while the
later describes methods of measuring metrics like the Reliability, Availability and Mean Time To Failure.
A typical example for a qualitative method is the Failure Mode and Effects Analysis, while a Fault Tree
Analysis can be used for both applications. This thesis concentrates on a quantitative evaluation, while
the described structures also provide potential for a qualitative analysis.

1.6 What kind of systems are we handling?

The systems this thesis covers are so called Connected Components Systems. Those are systems which
consist of multiple hardware components, which are sending information over directed connections.
Each component performs calculation on their received input and forwards the output to the next com-
ponents. These calculations might fail, because the component might be in a fault state. A cause for a
failure can be for example a hardware failure - which is very likely to happen after a certain time span. If
a component receives incorrect information - because of a fault in one of its ancestors - its calculations
will always fail.

A Connected Components System can be hierarchically structured, meaning it may have multiple
nested Connected Components Systems. These nested Connected Component Systems are abstracted
into one so called Super Component, in order to split the model into its main parts and provide a method
for structuring the system.

Like in the paper by A. Bobbio et al. [2001], the systems contain gate components. The covered
gate types are the And Gate, the Or Gate and the Voter Gate. These Gates are taken from the Fault Tree
Analysis concept.

• An AND Gate’s input is considered correct, if at least one input is valid.

• An OR Gate’s input is considered correct, if all input connections send valid information

• A n-VOTER Gate’s input is considered correct, if at least n input connections send valid informa-
tion.



1.7. The problem this thesis addresses 3

Every gates’ calculations might fail, independent of their type. Additionally to the type a component
provides information about its failure probabilities at time t.

An example for a safety critical Connected Component System would be the airbag system in a
car. Airbags provide a protection against injuries in case of an accident but could cause severe threat if
triggered while driving. According to Aljazzar et al. [2009] an airbag system consists of multiple crash
sensors, which forward their measured data to two redundant microcontrollers. Both microcontrollers
evaluate the data independently and decide, whether the airbags should be triggered or not. Only if
both agree on triggering, the airbag is activated. The sensors would therefore be OR gate components,
the microcontrollers can be modelled by OR gate components or voter components, depending on how
they analyze their input data and the output of the microcontrollers is then evaluated by an AND gate
component.

1.7 The problem this thesis addresses

Since reliability engineering is a very important topic, a lot of approaches already exist. The most
common of them are the Fault Tree Analysis and the Failure Mode and Effects Analysis.

This thesis is providing an approach for a quantitative reliability evaluation of a system. Therefore
Failure Mode and Effects Analysis - as a qualitative method - cannot be applied [Chiozza and Ponz-
etti, 2009]. The Fault Tree Analysis [Kapur and Pecht, 2014] provides methods for both quantitative
and qualitative evaluation and is therefore more suitable. The reason why it still cannot be applied is,
that it is operating on a tree like structure. Although it is capable of handling common cause failures,
it comes with the cost of diverging from a model of the information flow between components and the
need to restructure the tree. As a consequence, the model is hard to interpret. This drawback is the
reason, why researchers came up with more expressive solutions including the Bayesian Network ap-
proach [Khakzad, Khan and Amyotte, 2011].

This thesis is aiming to provide a solution for even more arbitrary system structures. In these systems
it is not only possible to model common cause failures, but also feed back cycles in the information flow.
These cycles can be neither handled by a Fault Tree, nor by a Bayesian Network, which is defined as an
directed acyclic graph [Koski and Noble, 2009a].

1.8 How this thesis provides a solution

This thesis is going to handle the cycles by applying Cycle Unrolling, an algorithm originating from
compiler construction. In compiler construction it is used to evaluate program code loops. The main
idea is to process or evaluate a fixed number of cycle loops, before continuing with the further program.
If a cycle is unrolled infinitely often, it will converge to the real solution. In the case handled case it is
possible to fix the number of iterations to two to reach the exact values for the reliability.

In a graph based application, for every processed cycle, the nodes are duplicated and the recursive
edges directed to the duplicated nodes. In the end, the recursive edges are dropped to cut the cycle. The
main problem is not only to determine the correct number of processing cycles to keep, but also to decide
on an edge to cut the cycle. This is even more important, if multiple cycles sharing some nodes exist. In
the worst case, this implies a exponential growth of the graph. If there are cycles sharing some nodes, the
number of duplicated nodes is depending on the edge selection algorithm. By cutting the cycles in front
of the node with the most incoming edges from inside the cycles, one can resolve at least two nested
cycles at the same time.

As soon as there are no cycles left, the resulting the reliability of each node can be evaluated using the
created Bayesian Network. This can be done using conditional probability. For identifying the node, on
which the probability is conditioning, the so called rules of d-separation are used to identify dependence
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between the nodes. Afterwards, we provide an algorithm to calculate the reliability of every component
in three steps. The first step is to calculate the relative reliability, which corresponds to the probability,
that the component is functional at time t, given some specific components are working. In step two,
we calculate the reliability given the same components are malfunctioning. In the end the product rule
provides a method for deriving the absolute reliability of each component.

There are still drawbacks in this solution. For calculating the relative reliability, we need to iterate
over all possible states of the condition components. Therefore the algorithm still has an exponential run
time in the worst case.

1.9 Capabilities and Limitations of the solution

Using the Bayesian Network and Cycle Unrolling, it is possible to handle complex systems containing
loops and feedback cycles. For the approach this thesis uses the reliability is calculated for a given time
snapshot, disregarding the time it takes for one information to reach the next node. Therefore at each
time snapshot, a component can either be working or malfunctioning, but this state cannot change within
the calculation.

The application developed in the course of this thesis supports two different reliability probability
distributions. These so called failure rate shapes, namely the Exponential Distribution and the Weibull
Distribution are described in detail in this thesis. Every component has a failure rate shape information
and the values of its parameters for each calculation it performs.

Calculating the reliability in dependence of time, it is not possible to consider reparation of com-
ponents, since the exact time of failure is unknown. Therefore after a failure, a component will always
remain in the fault state.

To simplify the calculation, this thesis neglects recovery from faults and masking failures. It will
never be the case, that a second failure will correct another failure. This means only AND and VOTER
gate components can interrupt fault propagation.

1.10 Potential applications of the results

The calculated reliability can be used to identify weak points in the system and add additional redund-
ancy components if necessary. Further applications would be to combine this method of calculating the
reliability with a method for calculating a possible cause for a fault in a production system. For this, there
are methods like the cut set algorithm. This algorithm calculates all possible failures resulting in a fault
in the component in question. Combining this knowledge with the calculated reliability, it is possible to
determine the most likely cause for the fault.

Another potential application of the dependency graph would be to calculate the impact of a failure
in one component. This can be done by a straightforward algorithm calculating every non-recursive path
starting at the node with the failure.

1.11 The Complete Process Described in this Thesis

The process covered by this thesis starts from a System defined as a UML model, and transforms it into
an intermediate graphical representation, called the Dependency Graph. This graph may still contain
cycles. The next step is to transform it into an acyclic version, using cycle unrolling. The resulting graph
is a valid Bayesian Network. The Rules of d-Separation define, which nodes are conditional dependent in
the graph. With the knowledge of dependencies between nodes this thesis proposes a way of calculating
the reliability of each node. The first step is to identify the closest potential common cause nodes and
calculate the conditional reliability given all possible states of these nodes. The real reliability is given by
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the product of the conditional probability and the real probability of the conditioning nodes This thesis
provides an algorithm for identifying those nodes and calculating the real reliability of each node, given
the Bayesian Network. This approach is more efficient than a state space search on all possible failure
cause nodes, assuming there a less loops in the system.

1.12 Structure of this thesis

Chapter 2 describes related work on the field of Reliability Engineering. In the beginning it summarizes
Failure Mode and Effects Analysis. Afterwards it continues with a type hierarchy of reliability models
according to Reibman and Veeraraghavan [1991], followed by the more detailed power hierarchy of
different models introduced by Malhotra and Trivedi [1994]. These reliability models are described in
the order of their expressiveness. Since the Bayesian Network approach is the most significant for this
thesis and not covered by in the power hierarchy, the next chapter is describing already existing solutions
using this approach and cites papers comparing their expressiveness to other models.

The description of the related work in the field of reliability engineering is followed by two sections
on work related to cycle unrolling. Both applications - namely Compiler Construction and Bounded
Model Checking - inspired the idea of applying cycle unrolling in this thesis.

The last section connects the related work with the new concepts of this thesis.

In the Chapter 3 we describe the so called Connected Components System describing the system
handled by the algorithms. The chapter defines the different types of components and the computation
units of each component.

The first step of the process is to construct an intermediate graph called the Dependency Graph.
The Chapter 4 explains the different nodes in it and includes an algorithm for creating the graph from a
Connected Components System as described in chapter 3.

Next, we need to transform the Dependency Graph into a Bayesian Network. First this chapter
provides the definitions of a Byesian Network including a general example. This transformation consists
of two steps: The first step is to identify so called Strongly Connected Components using and algorithm
invented by Tarjan [1972]. Afterwards the cycles are processed using cycle unrolling, a method derived
from loop unrolling known from compiler construction. In the end of the chapter the result is a valid
Bayesian Network. Additionally, this chapter provides a proof of the validity of unrolling cycles only
two times.

Chapter 6 goes into detail on how to calculate the reliability. First the preliminaries of probability
theory used are explained. Afterwards, we start with simple examples of reliability rules derived from
Fault Tree Analysis. The next sections are about the different Failure Rate Distributions. Since the
previously explained rules are only suited for networks without Common Cause Failures, we need to
provide rules, which can also handle conditional dependent nodes. We explain the rules of d-Separation
and how they can be used for identifying dependent nodes in the graph. We introduce some functions
returning a special type of nodes. If we provide the state of these nodes, the parents of the input node are
always conditional independent. Finally, this chapter provides formulae to calculate the reliability of each
node and provides an efficient algorithms, as well as examples of it applied to an example Dependency
Graph.

The last chapter is still work in progress.
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Chapter 2

Related Work

2.1 Failure Mode and Effects Analysis

One common approach in Reliability Engineering is the Failure Mode and Effects Analysis (FMEA).
Arabian-Hoseynabadi, Oraee and Tavner [2010] describe it as powerful tool to identify possible Root
Causes and Failure Modes. The causes of are failure are called Root Causes, while Failure Modes are the
different ways in which a component might fail. Every Root Cause has an assigned Severity, Occurrence
and Detection. The Severity measures the risk of the failure to cause harm, while the Occurrence defines
the frequency of a root cause. The Detection is a value, which defines how likely a Root Cause is
detected, before a failure is occurring.

Snooke and Price [2012] explain, how FMEA can be done in an on-board aeronautic system. They
describe, how Model Based generation of FMEA is performed. For this every potential failure is simu-
lated in order to determine abstract high-level consequences.

2.2 Type-Hierarchy of Reliability Models

There exist different types of Reliability Models [Reibman and Veeraraghavan, 1991]:

• Parts-Count Models:

These are the least expressive models. They assume, if any of the components in the system fail,
the whole system cannot provide its functionality anymore. This type of models is not suited for
systems which contain redundancy components.

• Combinatorial Models:

These models are an extension of the Parts-Count Model, which are able to handle fault-tolerant
systems. Fault Trees and the Reliability Block Diagrams are examples of this type.

• State-space models:

State-Space Models, such as Markov Chains, evaluate the state-space of a system. Every com-
bination of components working or malfunctioning is considered a state of the Markov Chain.
These models support the calculation of the mean time to failure (MTTF) and the availability of
the model, taking maintainability into account.

7
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2.3 Power-Hierarchy of Reliability Methods

Malhotra and Trivedi [1994] compared some of the different methods for reliability analysis. They
discussed four methods, namely Reliability Block Diagrams, Fault Trees Without Repeated Events, Fault
Trees with Repeated Events and Reliability Graphs. According to them, there exists a hierarchy between
those models, where Fault Trees with Repeated Events are the most powerful technique, followed by the
Reliability Graph. Third are two equally expressive techniques, namely the Fault Trees Without Repeated
Events and Reliability Block Diagrams. They described even more expressive options as Continuous
Time Markov Chains, Generalized Stochastic Petri Nets, Markov Reward Models and Stochastic Reward
Nets. Between those, the Continuous Time Markov Chains and Generalized Petri Nets are equivalent,
since they can be converted from one to another without loss of capability. Equally, Markov Reward
Models and Stochastic Reward Nets are convertible.

2.4 Reliability Block Diagram

The Reliability Block Diagram describes the function of a system [Rausand and Høyland, 2003]. The
model represents the logical connections between components involved in a function of a system. If a
system has multiple functions, each function has its own Reliability Block Diagram.

Every component in a Reliability Block Diagram is indicated by a Block. If there exists a connection
between a system input a and its output b, the specific function of the system is provided. This does
not necessarily mean that all functions of the components connecting a and b are achieved. Instead it is
sufficient if some specific failure modes do not occur. An example of a Reliability Block Diagram can
be seen in Figure 2.1.

Figure 2.1: An example for a Reliability Block Diagram
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2.5 Fault Tree Analysis

2.5.1 FTA: Basics

According to Commission [1998], the fault tree is a graphical model, which views the interrelationships,
leading to one specific undesired event. They state that it is not a model of all possible system failures or
all possible causes for a specific failure. There exist many different nodes, which mainly depend on the
application. The main nodes, which inspired the Dependency Graph of this thesis are:

• Basic Event:

This event symbolizes the introduction of a new fault.

• Intermediate Event:

The Intermediate Event, which occurs, if one or more antecedent causes are triggered.

• And Gate:

The output of an And Gate is faulty, if all inputs are faulty.

• Or Gate:

The Or Gate outputs faulty information, if any of its inputs is faulty.

Figure 2.2: This Figure shows a simplification of the system input for the Fault Tree in Figure 2.3.
There exist multiple acyclic loops inside the system. There are for example three paths
from node "2" to the next And Gate, passing through node "3", "4", or "5".
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Figure 2.3: The resulting Fault Tree for the system in Figure 2.2. The different parts between the
loops are combined via an Or Gate, as are the two And Gates combining the loop paths.
Source: https://en.wikipedia.org/wiki/Fault_tree_analysis
License: Public Domain

2.5.2 Method for handling systems with acyclic loops

An example of a fault tree is depicted in Figure 2.3.
This example also provides a solution for Systems, which contain acyclic loops. A system containing

such loops has multiple paths between two nodes. This is a problem, because the fault tree as a tree graph
cannot contain such acyclic loops.

This can be handled by splitting the tree into the part before the loop, and the loop itself. These parts
are afterwards combined using an Or Gate Node [Commission, 1998]. Figure 2.2 shows the input of a
system containing multiple paths between some nodes. This system results in the Fault Tree shown in
Figure 2.3.

2.5.3 Handling Systems containing cycles

Vesely et al. [2002] describe a way to cut cycles for the fault tree approach. Since Fault Trees are focusing
on one specific fault, they suggest to split a system as shown in in Figure 2.4 into two possible causes
for a failure. If the fault in question is in component B, we would combine the two causes "Failure in
component B" and "Failure in signal towards B".

2.5.4 Evaluation of possible causes for a failure using Fault Tree Analysis

A commonly used method for finding all possible causes for a failure is called the Minimal Cut Set
Algorithm. A Cut Set is a set of all needed primary events, such that the top event will occur. A Cut Set
is called minimal, if there exist no other Cut Set for the considered Fault Tree, which is a subset of it.
[Kapur and Pecht, 2014]

For example the Minimal Cut Sets of the Fault Tree in Figure 2.3 would be:

{1}, {2}, {3, 4, 5}, {6}, {7, 8} (2.1)

This algorithm can be used for evaluating all possible causes for a fault. If combined with the
probability for each failure, one could calculate the most likely causes for a fault. The probability for
each failure is equivalent to 1 − Rel(Component).
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Figure 2.4: A system containing a feedback - cycle between subsystem A and subsystem B.

2.5.5 Dynamic Fault Tree

To be able to handle more complex Networks and sequence dependency, Dugan, Bavuso and Boyd
[1992] describe in their paper a so called Dynamic Fault Tree. They introduced special gates, namely the
Functional Dependency Gate, the Cold Spare Gate, the Priority And Gate and the Sequence Enforcing
Gate.

• The Functional Dependency Gate has a trigger input, as well as some dependent input, in addition
to one or multiple non dependent inputs. This trigger can be used to disable the dependent inputs.
It can be used to turn off faulty inputs.

• Cold Spare Gates have one primary active unit and one or multiple alternate units. As soon as the
active unit’s input is triggered, the gate waits until all alternate units are triggered as well. The
output of the gate is true, as soon as all inputs have been triggered.

• The Priority And Gate specifies that not only all input events need to be triggered, but they also
need to be triggered in the correct order.

• Like the Priority And Gate, the Sequence Enforcing Gate takes multiple inputs, and requires them
to occur in a specific order. Contrary to the Priority And Gate, this Gate enforces the events to
occur in this specific sequence, all other possible sequences are never considered in the evaluation
of the model.

Usually, those Dynamic Fault Trees are analyzed after an automatic conversion to Markov mod-
els [Amari, Dill and Howald, 2003]. Amari, Dill and Howald [2003] propose an efficient algorithm
for performing an analysis on Dynamic Fault Trees directly, but this method is limited to a qualitative
evaluation [Merle et al., 2010].

Andrea Bobbio et al. [2008] show a way how every Dynamic Fault Tree can be modeled by a
Bayesian Network as well.

2.5.6 Priority Dynamic Fault Trees with Repeated Events

A restricted version of the Dynamic Fault Tree, the so called Priority Dynamic Fault Tree was described
in the paper by Merle et al. [2010]. They limited the dynamic components of the Dynamic Fault Tree and
only considered the Priority And Gate and the Functional Dependency Gate. By calculating the so called
Sequence Cut Set and transforming it into a canonical form, they are able to calculate the Probability of
the Top Event for any failure time distribution of the Basic Events.
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2.6 The Petri Net Approach

Petri Nets are defined as a directed Graph consisting of Places P, Transitsions T , directed Edges E
and Markings of the graph M [Hura and Atwood, 1988]. Every Transition has an input and an output
function, which defines the set of input - or equally output - places. The input places define the conditions
before a transition event happens, while the output places describe the conditions that are met afterwards.
The markings of the graph represents (data) tokens at a place. They can be used to perform a state-space
search for reliability analysis. Figure 2.5 shows an example Petri Net. The transitions in this Figure are
for example t1 and t2, while places are prefixed with a p like p1 and p2.

This Petri Net is derived from the Fault Tree in Figure 2.6. Every AND Gate was transformed to one
transition with multiple input places, while the OR Gates correspond to one transitions for each input
place.

Figure 2.5: This Figure shows an example of a Petri Net. Places are indicated by circles, while the
block t symbolizes a transition. This Petri Net corresponds to the Fault Tree shown in
Figure 2.6
Source: Paper by Hura and Atwood [1988]©1988 IEEE

Figure 2.6: This Fault Tree is equivalent to the Petri Net as shown in Figure 2.5. AND Gates are
symbolized by the dot below, while OR Gates are indicated by an plus symbol.
Source: Paper by Hura and Atwood [1988]©1988 IEEE
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2.7 Reliability Analysis using Bayesian Networks

A. Bobbio et al. [2001] described in their paper the advantages of using the Bayesian Network approach.
They state that Bayesian Networks are more powerful than Fault Trees, since they can handle statistical
dependence between inputs. They provided an algorithm for converting a Fault Tree containing And, Or
and Voter Gates into a Bayesian Network. Additionally, Bayesian Networks are able to handle uncer-
tainty in the network. This means the gates do not need to be deterministic. They just need to provide a
probability for their behavior.

An additional advantage is the simplification of evaluating common cause failures. Common Cause
Failures are failures, which are combined in a gate node, with a cause in one commonly shared node.
This is equal to the previously described acyclic loop, as shown in Figure 2.2. For example a common
cause failure in the first and gate could have a failure in component 2 as root cause.

Khakzad, Khan and Amyotte [2011] support these statements with a case study to compare Fault Tree
Analysis and the Bayesian Network approach. They concluded their work stating that Bayesian Networks
are more suitable for complex networks and networks containing uncertainty. Bayesian Networks would
also be capable of modelling systems with multi-state failures.

A further Paper on this topic was published by Langseth and Portinale [2007], where they explain
the main methods necessary for calculating the probability in such a Bayesian Network.

2.8 Loop Unrolling in compiler construction

The concept to unroll the cycle was inspired by the so called Loop Unrolling used in compiler construc-
tion. In compiler construction the loops in question are program code parts, which are executed multiple
times, like for example a while-loop, or a for-loop. The number of iterations the loop is processed can be
either fixed or a variable. These loops can be represented by cycles in an information flow graph. This
graph is quite similar to the Dependency Graph of this thesis, which also represents an information flow
- not between code statements, but between hardware components.

Cooper and Torczon [2004] describe Loop Unrolling as an old technique, where the body of a loop is
replicated multiple times and the logic controlling how often the loop is process is adapted. This concept
minimizes the number of comparisons and branches necessary for processing the loop. The loop can be
processed more efficiently, since the computer may execute multiple statements in parallel.

2.9 Loop Unrolling in Model Checking

Another application of loop unrolling is Bounded Model Checking for Software [Biere et al., 2009]. The
goal of bounded model checking is to verify the correctness of a model, in this case a software project.
The principle of bounded model checking to form a propositional formula of the program. A SAT
Solver can use this formula to find counter examples violating the correctness properties of the model.
If a program contains infinite loops or loops bounded by the user input Bounded Model Checking only
takes a limited number of cycle iterations into account. The more efficient way is to unwind each loop
separately instead of unwinding the whole program. Again, the loop body is replicated k times, and the
while condition is transformed into an if statement.

2.10 Adaption Loop Unrolling to Cycle Unrolling

Software loops are control flow cycles. The cycles we are handling are corresponding to never terminat-
ing loops. Therefore we cannot unwind them as often as they are processed. Nevertheless it is possible
given some assumptions to show that the reliability of each node in the cycle does not change after
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processing the loop two times. In the provided proof, this thesis considers only fixed snapshots of the
system, where every component may be either working or not working at a fixed point in time. This
feature is used in this thesis to create an acyclic Bayesian Network from a cyclic system by unwinding
the cycles two times.



Chapter 3

The Input to our Analysis: The System
and its Components

3.1 Definition of a Connected Components System

In this work, we are evaluating so called Connected Components Systems.

Definition 3.1.1 (Connected Components System). A Connected Components System is a tuple< C, I,O, λ >
of a set of components C, a set of input ports I , a set of output ports O and a set of directed connectors
λ ⊆ IxO.

A port belonging to an embedded component is denoted with the component name followed by a dot
and the port ID like ob j.in1.

The set of ports must fulfill the following conditions, where IC are all input ports belonging to the
component C and OC are all its output ports:

• Ic ⊂ I ∀ c ∈ C

• Oc ⊂ O ∀ c ∈ C

• Ic1 ∩ Ic2 = ∅ ∀ c1, c2 ∈ C : c1 6= c2

• Oc1 ∩ Oc2 = ∅ ∀ c1, c2 ∈ C : c1 6= c22

• I =
⋃

c ∈ C Ic ∪ Isystem

• O =
⋃

c ∈ C Oc ∪ Osystem

Definition 3.1.2. A component is a part of the system which provides some functions. It may hold a
infinite positive number of input and output ports and has a unique identifier.

While each component represents a single element in the system, it is possible to arrange components
belonging together in groups.

Definition 3.1.3 (Super Component). A Super Component is simplified representation of an underlying
group of components.

A Super Component provides input and output ports, over which its inner components receive or send
information from or to components outside the group. An underlying Connected Components System
specifies, how these input and output ports and the contained components are connected.

A Super Component may contain another Super Component, such that it is possible to structure the
model in a hierarchical way. This feature supports the user because he can understand the system more
intuitively and multiple knowledge engineers can work on creating one system simultaneously.

15
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Definition 3.1.4 (Ports). A Port is an interface between a component and its environment.

We distinguish between Input Ports for receiving information and Output Ports for sending informa-
tion.

Definition 3.1.5 (Connectors). The Ports of two components communicate over a directed Connector.

Every Connector must diverge from either a component’s output port or an input port of the Connec-
ted Components System itself. Likewise its target must be either a component’s input port or an output
port a the Connected Components System.

Definition 3.1.6 (Functions of the system). A system’s function is to output specific values of any arbit-
rary type.

These values are calculated by the components of the system. Consequently a system’s failure is
always caused by a failure in a component.

Definition 3.1.7 (System Failures). A System Failure happens if any of the output values of the system
deviate from their intended value by an error exceeding a fixed threshold.

We do neither consider the severity of a failure in different output values nor their variance.

Definition 3.1.8 (Functions of the component). Every component besides super components performs
calculations on its input. These calculations produce new values, where each different output is forwar-
ded over a separate output port.

These calculations of a component can fail independently. The user has to define a probability of
a components function breaking down within a certain time span. He can provide this information by
annotating every output port with a probability distribution and its parameters. If he does not provide
any, we assume an ideal component.

Definition 3.1.9 (Fault Propagation). Ever component’s calculation is based on its input values. If any is
incorrect, the component cannot provide its functions anymore. If no redundant component corrects this
error, it will spread through the model. We call this phenomenon Fault Propagation.

This thesis limits itself to faults, which never mask nor repair themselves nor are repairable.

Example 3.1.1: Connected Component System with two components
An example for a connected component system is a tuple < C, I,O, λ >, with

C = {ob j1, ob j2},

I = {in, ob j1.in, ob j2.in},

O = {out1, out2, ob j1.out1, ob j1.out2, ob j2.out}

λ = {[in, ob j1.in], [ob j1.out1, out1], [ob j1.out2, ob j2.in], [ob j2.out, out2]}

3.2 Component’s Composition

Figure 3.2 shows the composition of a generic component. It consists of n input ports i1, ..., in, a pre-
processing function f (.) and m output calculations g1(.), ..., gm(.). The output calculation might fail due
to environmental influences or hardware faults, such that the output of the calculation gk(.) can derive
from the ideal value by an error ek. If this error exceeds a certain threshold, the calculation’s output is
incorrect. We say a failure occurred in the calculation.

The task of the preprocessing function is to detect and discard invalid input values. The capabilities
of this function depend on the type of the component. Some are able to handle an arbitrary number
of incorrect inputs, as long as one is valid, others require a specific number of inputs to be correct.
Components without a type do not perform any preprocessings.
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Example 3.1.2: Two nested Connected Components Systems
Figure 3.1 shows a connected component system containing a nested Connected Components System.
They are defined as:

S ystem :<{superComponent},

{in1, in2, superComponent.in1, superComponent.in2},

{out, superComponent.out},

{[in1, superComponent.in1], [in2, superComponent.in2], [superComponent.out, out]} >

superComponent :<{basic1, basic2},

{in1, in2, basic1.in, basic2.in1, basic2.in2},

{out, basic1.out, basic2.out},

{[in1, basic1.in], [in2, basic2.in2], [basic1.out, basic2.in1], [basic2.out, out]} >

3.3 Component Types

To avoid incorrect information spreading over the system a system can contain redundant components.
These component or groups of components calculate the same value. If any of these values deviate from
their intended value, special components can preprocess their input and discard invalid values. This
thesis supports the following types of components:

• OR Components

• AND Components

• VOTER Components
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Figure 3.1: UML Diagram of two nested Connected Components Systems. The formal definition
of these systems is included in Example 3.1.2
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Figure 3.2: This Figure shows the composition of every component. Components receive input
values over an arbitrary number of input ports i1, ..., in. Those inputs are preprocessed by
a special function f (i1, ..., in). This function depends on the type of the component. The
output of the function is then forwarded to the main calculation unit. Every calculation
gk is influenced by an error ek, which can make the calculation fail. Afterwards the
component sends the output of each calculation unit - which can be either valid or
invalid - over a separate output port to its children.

OR components are the most basic type of components. They do not perform any additional calcu-
lation of the received information. If any of its input ports delivers incorrect information, it will always
produce incorrect outputs. It forms a logical OR between faults in its input values.

Contrary an AND Gate component forms an AND relationship between its inputs. If and only if all
input values of the component are incorrect, it will propagate a fault. This means as long as any input is
correct, the components can perform its calculations correctly.

Last, a VOTER component has a so called vote count. It defines how many inputs need to be correct
such that the component performs its calculations on the correct value. The vote count needs to be a
natural number greater equal zero and smaller or equal the number of inputs to the component.

Regardless of the input preprocessing type, any of these component’s function can fail.

Definition 3.3.1 (Typed Connected Components System). A Typed Connected Components System is a
specialization of a Connected Components System, which allows to specify additional types of compon-
ents. The additional parameter T in the tuple < C, I,O, λ,T > defines the type of each component.

T may be incomplete or not specified. We assume that any component c without a type tc ∈ T is a
OR component.
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Example 3.3.1: Connected Components System with different types of basic components
Figure 3.3 shows a system containing an AND Component and a 2- VOTER component. The system is
defined as:

S ystem :

<C = {and, vote},

I = {in1, in2, in3, in4, and.in1, and.in2, vote.in1, vote.in2, vote.in3},

O = {and.out, vote.out, out},

λ = {[in1, and.in1], [in2, and.in2], [in3, vote.in2], [in4, vote.in3], [and.out, vote.in1], [vote.out, out]}

T = {Tand = AND,Tvote = 2 − VOT ER} >

Figure 3.3: UML Diagram of a Connected Components System with and AND and a 2-Voter com-
ponent 3.3.1.



Chapter 4

The Dependency Graph: Structure and
Creation

4.1 Introduction

The algorithm we are using to evaluate the reliability operates on a Bayesian Network. This chapter
describes how to transform a Connected Components System as defined in Chapter 3 into an intermedi-
ate representation called the Dependency Graph. This intermediate representation is already a directed
graph, but if the system contains feedback loops, it will not be acyclic. Different from the Bayesian
Network, we do not only consider one type of nodes. Depending on their probability distribution, we
classify the nodes into different types. Every type of node has its own visual representation. We call this
type of graph Dependency Graph.

4.2 Definition of the Dependency Graph

Definition 4.2.1 (Dependency Graph). A Dependency Graph is a Tuple < N, E >, where N is a set of
nodes and E a set of directed edges between those nodes.

As in a Bayesian Network, a Node can take two states: True and False. These states are not known
at the time of the evaluation. Instead the goal is to calculate the probability for each node to be in either
state True or False.

Definition 4.2.2 (Node). Every Node n ∈ N is an object with the meta data name, type, type annotation.
As in a Bayesian Network, every node has to provide a probability distribution.

The name of a Node is its unique identifier, while its type must be one of the following values:

• Failure

• Forward

• Preprocessing

• Output

If the type of a node is Preprocessor it needs an additional type annotation. This annotation represents
the vote count of the corresponding component.

21
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The probability distribution specifies the probability of a node being in state True given its parent’s
states. If a node’s type is Failure, it never has parents. Instead it’s probability distribution takes the time
as parameter.

It is possible to perform a reliability analysis using only the structure of the graph and the probability
distributions of each node. The meta data is only used for the graphical representation and limits the
capabilities of the applied technique to the application described in this thesis.

4.3 Nodes in the Dependency Graph

The nodes of the Dependency Graph are derived from the structure of the components. Every part of the
component is represented by a separate node. Consquently there are four main types of nodes:

• Forward Nodes (created from ports)

• Preprocessing Nodes (created from the preprocessing calculation)

• Failure Nodes (created from the error influence on the calculation)

• Output Nodes (created from the output calculation)

4.3.1 The Forward Nodes

Every Forward Node represents a port in the Connected Components System. They may only have one
parent and their state is always equal to their parent’s state. The visual representation of this kind of
nodes is a ellipse with a dotted border containing the ID of the port.

4.3.2 Preprocessing Nodes

If a component is of the type AND or VOTER, it performs a preprocessing on its input values. This pre-
processing is capable of eliminating invalid values. In the graph, a trapezium symbolizes a Preprocessing
Node. The annotatations AND and k:n specify, which type of proprocessing the component performs. In
this case AND stands for an and preprocessing type, and k:n for a k-out-of-n voter type. Additionally, the
node usually displays the name of the component. Every Preprocessing Node has at least one parent and
its state depends on both the parents’ states and the type of the preprocessing function. This is defined
via

4.3.3 Failure Nodes

As explained in Chapter 3, ever main calculation inside a component can fail due to environmental
influences or hardware failures. This is indicated by an error, which falsifies the calculation results.
In the graph we display this influence by an Failure Node. A Failure is never depending on any other
component or component part. Therefore a Failure Node has no parents. Their state depend solely on
the time span the system has been operating so far. The visual representation for this node is a box
containing a lightning bolt.

4.3.4 Output Nodes

Finally, an Output Node represents the final calculation of the data send over one output port. This Nodes
state is both influenced by the output of the Preprocessing Node and the failure influence from the Failure
Node. If any of these values is invalid, the calculation will fail. Therefore the Output Node is a logical
OR of all parent states.
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4.4 Relations of Nodes in the Dependency Graph

In order to describe the operations used on this graph, it is necessary to define the relation of nodes in
the Dependency Graph.

Definition 4.4.1 (Parent Nodes). The Parent of a node n ∈ N are all nodes p ∈ P(n) ⊂ N, if there exists
a directed edge e ∈ E, from p towards n.

Definition 4.4.2 (Child Nodes). The Child of a node n ∈ N are all nodes c ∈ C(n) ⊂ N, for which there
exists a directed edge e ∈ E, from n towards c.

Definition 4.4.3 (Predecessors). The Predecessors of are node are all node, which are a parent of the
node itself, or a parent of any other predecessor of the node.

Definition 4.4.4 (Successors). The Successor of a Node are all Nodes, which are children of the node
itself or a child of any other successor of the node.

4.5 State of Nodes

As described in the Introduction, each Node can either take the value True or False. In the case of this
application, the state of each node represents the corecctness of the underlying calculation. In detail this
means:

• A Forward Node with the state True signals, that the port it corresponds to sends invalid informa-
tion.

• A Preprocessor Node’s state is set to True, if and only if the preprocessing fails, due to too many
incorect input values.

• A Failure Node’s state is true, when hardware failures or environmental influences are enough to
alter the main calculation, such that it outputs incorrect results.

• If either the output of the preprocessor - or the component’s input if none - is faulty or the calcula-
tion is badly influenced by the environment or hardware faults, its output will always be incorrect.
Therefore an Output Node takes the logical OR of all its parents’ states to calculate its own one.

4.6 Transforming a Connected Components System’s Component into
a Graph

We transform a Connected Components System’s component into a graph by replacing one part of the
component after each other and connecting them in the correct order. Input ports’ Forward Nodes are
usually contained in the graph, because they give it a clearer structure, but output ports’ Forward Nodes
are usually neglected. After creating the Forward Nodes, we add an Preprocessing Node if the component
has an preprocessing unit. Afterwards, we direct an edge from a Failure Node and the edge starting at
the Preprocessing Node to the Output Node.

A generic composition of a component is shown in Figure 3.2 (Chapter 3). Figure 4.2 depicts the
graph generated from the component. If a component does not contain a preprocessing unit - meaning it
is neither a AND nor a VOTER component - there is no Preprocessing Node in the graph (Figure 4.1).
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inn

out1

in1 ...

outm
...

Figure 4.1: If transforming a single OR component into a Dependency Graph, it consists of nodes
for the input ports (Forward Nodes), nodes for the failure influence (Failure Nodes) and
nodes for the output calculation (Output Nodes).

inn

out1

in1 ...

outm
...

k:n
component

Figure 4.2: In contrast to the OR Component, a VOTER or AND Component has an additional
Preprocessing Node between its input Forward Nodes and its Output Nodes. This node
has an annotation for the user, which is either the string "AND", or of the Form "k:n",
where k is the vote count of the component and n the number of input ports on the
component.

4.7 Creating the Graph from a full Connected Components System

When we generate a Dependency Graph from a Connected Components System, we create a subgraph
for every component and link them together according to the connections in the model. If there exists
a super component in the model, its inner system is first generated and afterwards linked into the outer
graph using Forward Nodes at the position of the ports.
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Example 4.7.1: Generation a Dependency Graph from a Connected Components System
Chapter 3 provides some example Connected Components System. One of it - Example 3.1.1 - is defined
as:

C = {ob j1, ob j2},

I = {in, ob j1.in, ob j2.in},

O = {out1, out2, ob j1.out1, ob j1.out2, ob j2.out}

λ = {[in, ob j1.in], [ob j1.out1, out1], [ob j1.out2, ob j2.in], [ob j2.out, out2]}

The resulting Dependency Graph consists of the nodes

N = {S ystem.in,Ob j1.in,Ob j1.out1,Ob j1.out2,Ob j2.in,Ob j2.out, S ystem.out1,

S ystem.out2, Failure(Ob j1.out1), Failure(Ob j1.out2), Failure(Ob j2.out)}

The graph with nodes and edges is depicted in Figure 4.3.



26 4. The Dependency Graph: Structure and Creation

System.in

Obj1.in

Obj1.out1 Obj1.out2

Obj2.in

Obj2.out

System.out1

System.out2

Figure 4.3: This Figure shows the Dependency Graph corresponding to the Example 4.7.1



Chapter 5

Transformation into a Bayesian Network:
Applying Cycle Unrolling

5.1 Introduction

The previous chapter described how to generate a Dependency Graph from a Connected Components
System. Unfortunately this graph does not fulfill all properties of a Bayesian Network. It still contains
the feedback loops contained the Connected Components System. These cycles in the graph need to
be resolved. Otherwise we cannot use the algorithms based on Bayesian Networks for evaluating the
reliability. The approach we take for resolving the cycles is called Cycle Unrolling, inspired from the
method Loop Unrolling known from Compiler Construction.

5.2 Definition of a Bayesian Network

The goal of this chapter is to transform a Dependency Graph into a valid Bayesian Network.
According to Khakzad, Khan and Amyotte [2011] a Bayesian Network is defined as follows:

Definition 5.2.1 (Bayesian Network). A Bayesian Network is a directed acyclic graph. Each node in the
graph represents a variable and arcs in the graph stand for direct casual relationships between the linked
nodes.

Therefore a Bayesian Network is a Tuple <N,E,P>, where N is a set of Nodes, E is a Set of directed
Edges and P are the conditional probabilities of each Node taking the value 1 or 0 given the value of its
parent nodes.

5.3 Definition of Graph Structures

The imported Dependency Graph is already a directed graph, but it may contain cycles.

Definition 5.3.1 (Paths). A Path P(n1, n2) from node n1 towards node n2 in a graph is a sequence of
connected nodes, where the first is n1 and the last is n2. For a directed Path all edges between the nodes
must direct from the prior node to the subsequent node.

Barber [2012, chapter 1, section 2.1] distinguishes in his book between Loops and Cycles. He defines
them as:

Definition 5.3.2 (Loops). A Loop in a graph is a undirected path, which starts and ends in the same node.

27
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Example 5.2.1: Example of a simple Bayesian Network
An example Bayesian Network would be the relationship between a car accident and the possible factors
Drunken Driver and Malfunctioning Car. Both factors can occur independent of each other, but
both have an influence on the likelihood of a car accident. Therefore there leads a directed edge from
both factors towards the Car Accident node (Figure 5.1).
Some fictitious values for P would be:

P(DD) = 0.85

P(MC) = 0.95

P(CA | DD = T,MC = T ) = 0.75

P(CA | DD = F,MC = T ) = 0.70

P(CA | DD = T,MC = F) = 0.65

P(CA | DD = F,MC = F) = 0.05

Driver drunken Malfunctioning Car

Car Accident

Figure 5.1: An Example of a Bayesian Network. Both Factors Driver Drunken and
Malfunctioning Car may cause a Car Accident.

Definition 5.3.3 (Cycles). A Cycle in a graph is a directed path from one node to itself. A graph without
Cycles is called acyclic.

Later, we will use an algorithm invented by Tarjan [1972], which identifies Strongly Connected
Components in a cyclic graph.

Definition 5.3.4 (Strongly Connected Graph). A graph G =< N, E > is called strongly connected, if for
every two nodes n1, n2 ∈ N there exists a directed path, that connects n1 and n2.

Definition 5.3.5 (Strongly Connected Components). Strongly Connected Components are all maximal
subgraphs S CC < N, E >⊆ G of a Graph G < N, E >, which are strongly connected.

Every cycle is therefore part of a strongly connected component.
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5.4 Tarjan’s strongly connected component algorithm

In order to perform probabilistic inference the Dependency Graph needs to be a Bayesian Network.
Therefore it is necessary to transform it into an acyclic graph. This is done by unrolling all cycles in the
graph. For this, we first need to identify all the cycles. An efficient algorithm for solving this problem is
Tarjan’s strongly connected component algorithm. It identifies all strongly connected components in the
graph. Considering a strongly connected component consists of one or multiple cycles, we can use those
to unroll the cycles later on.

1 algorithm tarjan is
2 input: graph G = (V, E)
3 output: set of strongly connected components (sets of vertices)
4
5 index := 0
6 S := empty
7 for each v in V do
8 if (v.index is undefined) then
9 strongconnect(v)

10 end if
11 end for
12
13 function strongconnect(v)
14 // Set the depth index for v to the smallest unused index
15 v.index := index
16 v.lowlink := index
17 index := index + 1
18 S.push(v)
19 v.onStack := true
20
21 // Consider successors of v
22 for each (v, w) in E do
23 if (w.index is undefined) then
24 // Successor w has not yet been visited; recurse on it
25 strongconnect(w)
26 v.lowlink := min(v.lowlink, w.lowlink)
27 else if (w.onStack) then
28 // Successor w is in stack S and hence in the current SCC
29 v.lowlink := min(v.lowlink, w.index)
30 end if
31 end for
32
33 // If v is a root node, pop the stack and generate an SCC
34 if (v.lowlink = v.index) then
35 start a new strongly connected component
36 repeat
37 w := S.pop()
38 w.onStack := false
39 add w to current strongly connected component
40 while (w != v)
41 output the current strongly connected component
42 end if
43 end function

Listing 5.1: Tarjan’s strongly connected component algorithm, source:
https://en.wikipedia.org/wiki/Tarjan’s_strongly_connected_components_algorithm

(Text is available under the Creative Commons Attribution-ShareAlike License)

https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
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Example 5.4.1: Strongly Connected Component Algorithm shown on an example
This example will demonstrate how the algorithm works by a simple example. To simplify the demon-
stration, we operate on a basic graph without any type information of the nodes. Figure 5.2 shows the
graph used as input. It contains the cycles a − b − c − a and c − d − c. Harder to see is the third cycle
a − b − c − d − c − a.

Figure 5.2: We will use this Graph for the demonstration of the SCC algorithm. It contains the
cycles a − b − c − a, c − d − c and a − b − c − d − c − a.

Figure 5.3: The first Strongly Connected Component that is returned is e. It has no child and does
therefore not call the function recursively.

Figure 5.4: The next and last Strongly Connected Component, which the algorithm returns is
a, b, c, d, since those four nodes are all contained in the same cycle. Now no further
node is left to process and the program halts.
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Example 5.4.2: Cycle and Strongly Connected Component
An example for a Dependency Graph of a system containing cycles is depicted in Figure 5.5a. Tarjan’s
Algorithm detects the nodes inside this cycle as part of a Strongly Connected Component (Figure 5.5b).

System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

cyc1.out

cyc2.in

cyc2.out

cyc1.in2

(a) This Dependency Graph contains a cycle marked with
double line edged.

System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

Strongly Connected 
Component

{cyc1.out, cyc2.in, 
cyc2.out, cyc1.in2}

(b) Dependency Graph of Figure 5.5a, where the cycle is
replaced by a Strongly Connected Component.

Figure 5.5: Replacing a Cycle by a Strongly Connected Component
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5.5 Unrolling Cycles

Once we identified all Strongly Connected Components containing more than one node, we know all
nodes contained in cycles. Next we want to unroll all cycles in a way that retains the child - parent
relationships between nodes.

Inside a cycle all component’s outputs depend on the output of all other components inside the
cycle. We cannot calculate the reliability of the nodes using conditional probabilities, because those
probabilities are defined in a infinite recursion.

To handle this problem, we unroll the cycle. The main principle of this approach is: All connectors
inside the cycle are directed into the cycle. However, the last edge - which would complete the cycle -
is redirected to a copy of the whole cycle. After the second cycle iteration, it is again redirected to the
next copy. This continues as often as the data passes through the cycle - in our case infinitely often. This
would guarantee, that the reliability converges towards the correct value.

Of course it is not possible to build a finite Bayesian Network we can work with by unrolling an
infinite number of times. Still it is possible to get the exact values of the reliability of the nodes, under
some limitations:

• Every calculation of the reliability for the whole system is only for one specific point in time.

• The time calculations and transmissions take are neglected.

• Since the reliability of the system is calculated for a specific time snapshot, hardware state and the
environmental factors do not change. This implies that the state of every Failure Node is fixed for
the whole calculation.

When we assume these limitations, we can show, that the reliability of each output of a node inside the
Strongly Connected Component cannot change after the cycle has been processed two times. Therefore
it is enough to unroll the cycle two times.

5.5.1 Proof for limiting the number of unrolling iterations

This proof considers any arbitrary node N inside a Strongly Connected Component. This node is receiv-
ing information from outside of the component, which can be either correct (1) or incorrect (0). The
state of this input is contained in the boolean vector ~IN(N). The output of the node is a single value,
which can similarly be either correct (1) or incorrect (0). Its state is denoted by O(N). The output of the
node can be both forwarded to the other nodes in the strongly connected component and to the outside.
All further nodes of the Strongly Connected Components are hidden inside a node group S . This node
group returns some data to the node N. However, in this case, the data is send over multiple input ports,
which implies that it consists of multiple values, which can again take the state correct and incorrect - a
boolean vector ~O(S ). Since only the state of N is considered, all output towards other nodes than N may
be neglected. Last, there is a binary input vector ~IN(S ) representing information send from outside of
the Strongly Connected Component to the node group S .

A visual representation of this abstraction is shown in Figure 5.6.

Every node besides Cause Event Nodes can be represented by a voter with a specific vote count. The
proof uses this fact and shows for any voter node n, that its output’s state does not change after two cycle
iterations. The output of node N in cycle Iteration i is described by the series:

The resulting unrolled Strongly Connected Component of the abstracted model is shown in Figure 5.8
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N

S

Out(N) Out(S)

In(N)

Out(N)

Out(S)

In(S)

Figure 5.6: This Figure shows the abstraction of a Strongly Connected Component. The proof
shows, that the reliability of any arbitrary node in the SCC remains constant after two
cycle iterations. The input’s state from outside of the SCC towards the considered Node
is called ~In(N), its boolean single output’s state is named Out(N). All other nodes of
the SCC are abstracted into one node group. For the proof, this node group may have
any structure and an arbitrary number of output towards N. Their state is called ~Out(S ).
Any other output of the group of nodes towards outside of the Strongly Connected
Component camn be neglected. Furthermore ~In(S ) symbolizes the state of the input to
the group node S from outside of the SCC.

Example 5.5.1: Cycle Unrolling applied to a small Dependency Graph
The resulting graph after unrolling the cycle in Figure 5.5b is shown in Figure 5.9.

5.6 Determine the best way to cut as many cycles as possible

If the Strongly Connected Component contains more than one cycle the problem becomes harder. Now
it is necessary to determine the node where the unrolling of the cycle should start. Example 5.6.1 shows
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~Out(S )0 = ~1

Out(N)0 = 1

∀i > 0 :

Out(N)i = | ~In(N)|+| ~Out(S )i−1|>= votec(N)

Outm(S )i = | ~Inm(S )|+Out(N)i−1 >= votecm(S )

Outm(S )i =


0 if | ~Inm(S )|+1 < votecm(S ) (= P1(m))
1 if | ~Inm(S )| >= votecm(S ) (= P2(m))
Out(N)i if | ~Inm(S )|+1 = votecm(S ) (= P3(m))

Out(N)i = | ~In(N)|+
∑

Outm(S )i−1 >= votec(N)

Out(N)i = | ~In(N)|+0|{m : P1(m)}|+1|{m : P2(m)}|+Out(N)i−1|{m : P1(m)}|>= votec(N)

Out(N)i = Out(N)i−1|{m : P1(m)}|>= votec(N) − | ~In(N)|−|{m : P2(m)}|

Out(N)i = Out(N)i−1 >=
votec(N) − | ~In(N)|−|{m : P2(m)}|

|{m : P1(m)}|

Out(N)i = Out(N)0 >=
votec(N) − | ~In(N)|−|{m : P2(m)}|

|{m : P1(m)}|

Out(N)i =
votec(N) − | ~In(N)|−|{m : P2(m)}|

|{m : P1(m)}|
<= 0

Out(N)i = Out(N) j ∀i, j > 0

Figure 5.7: Proof that two unrolling iterations are enough

Example 5.6.1: Strongly Connected Component containing more than one cycle
Figure 5.10 depicts a Dependency Graph, with one Strongly Connected Component (cyc1.out cyc2.in,
cyc2.out, cyc1.in2, cyc3.in, cyc3.out, cyc1.in3). This Strongly Connected Component contains multiple
cycles sharing one node, namely cyc1.out. When cutting one cycle for example in front of the node
cyc1.in2, the graph becomes even more complex, because the second cycle also has to be duplicated
(Figure 5.11). A better way is to cut the cycle in front of the node cyc1.out, where all cycles are unrolled
at the same time (Figure 5.12.

a case where two different nodes lead to results of different complexity.

The best strategy for choosing edges to cut is to look at the node with the most edges inside the
Strongly Connected Component ending in it. This edge is contained in the most cycles. Therefore all
those cycles can be resolved at the same time, when cutting all those edges ending in this node.
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N

S

Out(N) Out(S)

In(N)
Out(N)

Out(S)In(S)

N

S

In(S)

In(N)

Out(N)Out(S)

Figure 5.8: This Figure shows Dependency Graph resulting from an unrolled Strongly Connected
Component. The output state of the nodes do not change after two cycle iterations.
Therefore, we let the output of the nodes in the Strongly Connected Component start
at the second iteration. The redirected edge Out(S ) is displayed in a light gray color,
while the new edge is drawn as a black arrow.
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System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

cyc1.out

cyc2.in

cyc2.out

cyc1.in2

cyc1.out

cyc2.in

cyc2.out

cyc1.in2

Figure 5.9: This Figure shows the Transformed Dependency Graph from Figure 5.5b.
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System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

cyc1.out

cyc2.in

cyc2.out

cyc1.in2 cyc1.in3

cyc3.in

cyc3.out

Figure 5.10: Strongly Connected Component containing more than one cycle
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System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

cyc1.out

cyc2.incyc2.out

cyc1.in2 cyc1.in3

cyc3.in

cyc3.out

cyc1.in2

cyc1.out

cyc1.in3
cyc3.in

cyc3.out

cyc2.in

cyc2.out

Figure 5.11: If we cut the wrong edge of a cycle, we might duplicate further cycles contained in
the same Strongly Connected Component. Here the cycle with dashed edges is copied
because we chose the wrong edge (between cyc2.out and cyc1.in2).
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System.in

Obj1.in

Obj1.out

cyc1.in1

System.out

cyc1.out

cyc2.in

cyc2.out

cyc1.in2 cyc1.in3
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cyc3.out

cyc1.in3

Figure 5.12: The edges in towards the node cyc1.out are the better choice, because all cycles can
be solved in one step. We can determine this node by looking at the number of edges
inside the Strongly Connected Components ending in this node. The node with the
most of these edges is the best choice.
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Chapter 6

Calculating the Reliability of Nodes in the
Dependency Graph

6.1 Introduction

Each output port in the Connected Components System has an assigned failure rate shape (FRS) and its
corresponding parameters. These values define the probability that the function belonging to this port
produces incorrect output after a given time. Once a component has generated incorrect information, this
information is forwarded to the next component and will introduce new failures in their functions. In
order to avoid such malfunctions causing a complete system failure, the system may contain redundant
components. Their output is afterwards evaluated by additional components, where some of their inputs
might be faulty, while the output of the gate stays correct.

The goal of this chapter is to provide an algorithm for determining how well these redundancy com-
ponents can eliminate failures. The measurement used for this is the so called Reliability of the system’s
components.

In this work we limit ourselves to components, which are neither repairable nor exchangeable, so that
their functions will never recover. Additionally, we assume that components other than the redundancy
components will never let failures disappear.

Aside from the Reliability we also want to calculate the mean time to failure (MTTF) for components
introducing failures. In this work we will specialise on two very common failure distributions, namely
the Exponential and the Weibull Distribution.

6.1.1 Preliminaries

We are going to perform some calculations of probabilities later on. Therefore, it is necessary to introduce
the used notations and rules.

Notation

We are going to calculate probabilities of events, which we denote as P[E] and probabilities of random
variables. The later are expressed in two ways. The probability P(X) denotes the probability distribution
of a random variable X. In contrast to this, we use the notation PX(x) = P[X = x] as the probability of
random variable X taking the value x. For the set of all possible assignments to a random variable X, we
are going to write X. For Random Vectors, we will use the notation ~X.

41
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Probability Distribution

The Probability Distribution of a random variable X is a function PX(x) : X 7→ [0, 1] with 0 ≤ PX(x) ≤ 1
and

∑
x∈X PX(x) = 1. [Stirzaker, 1999, page 194]

Joint Probability Distribution

For two given random variables X and Y , we calculate the Joint Probability Distribution as PX,Y (x, y) =

P[X = x ∩ Y = y].

All Joint Probability Distribution must fulfill the properties of probability distributions [Stirzaker,
1999, page 239]:

0 ≤ PX,Y (x, y) ≤ 1

∑
x∈X,y∈Y

PX,Y (x, y) = 1

The Probability of a Random Vector P~X(~x) is defined as the Joint Probability of all Random Variables
inside the vector.

P~X(~x) = PX1,...Xn(x1, ..., xn)

Conditional Probability

A so called Conditional Probability PX |Y (x | y) = P[X = x |Y = y] defines the probability, that a random
variable X takes the value x, if the random variable Y is known to be y. We can compute it using the
formula:

PX |Y (x | y) =

PX,Y (x,y)
PY (y) if PY (y) > 0

0 else
(6.1)

Stirzaker [1999, page 282] proofs that P(X |Y) is also a probability distribution with 0 ≤ PX |Y (x | y) ≤
1 and

∑
x∈X PX |Y (x | y) = 1.

Chain Rule

The Chain Rule provides a way to split a joint probability into a product of two or more probability
distributions. The Chain Rule for two random variables is:

P(X,Y) = P(X) · P(Y | X) = P(Y) · P(X |Y) (6.2)

For an arbitrary number of random variables X1, ..., Xn it is defined as:

P(X1, ..., Xn) =

n∏
i=1

P(Xi | Xi−1, ..., X1) (6.3)
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Independence

We say two events A and B are independent, if P[A ∩ B] = P[A] · P[B]. Equally, two random variables
X and Y are independent, if and only if the joint probability distribution of them can be expressed as
P(X,Y) = P(X) · P(Y).

For multiple independent random variables X1, ...Xn the joint probability distribution can be ex-
pressed as the product of probability distributions:

P(X1, ...Xn) =

n∏
i=1

P(Xi)

Conditional Independence

Two events A and B are called conditional independent given a vector of events ~C, if P[A, B | ~C] =

P[A | ~C] · P[B | ~C]. [Stirzaker, 1999, page 87]. Consequently, two random variables X and Y are also
conditional independent given a vector of random variables ~Z, if P(X,Y | ~Z) = P(X | ~Z) · P(Y | ~Z).

A resulting property of two conditional independent random variables X, Y , given a random variable
vector ~Z is that P(X |Y, ~Z) = P(X | ~Z).

Marginal Probability Distribution

Given a joint probability distribution P(X,Y), we can calculate the marginal probability PX(x) as in
Equation 6.4.

PX(x) =
∑

y

PX,Y (x, y) (6.4)

Rule of Total Probability

From the rule for the marginal probability distribution combined with the chain rule, we can derive a new
rule:

PX(x) =
∑

y

PY (y) · PX |Y (x | y) (6.5)

Rohatgi and Saleh [2011] call this rule the Rule of Total Probability.

6.1.2 Definition of Failure Events

In his book, Stirzaker [1999, page 33] defines a so called Sample Space Ω.

Definition 6.1.1. A Sample Space Ω of a probabilistic experiment is the set of all possible outcomes.

For our purpose, Ω contains all possible states of each node sN ∈ Ω0 = {correct(=False), incorrect(=True)}.
An outcome is the state of all nodes in the system. We abbreviate incorrect as i, and correct as c.
An incorrect state of a node signals that there is a fault in the associated information, while the state
correct indicates that the information at the node is valid.

Ω = Ω0 × ... ×Ω0︸          ︷︷          ︸
|N| times

= Ω
|N|

0
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Example 6.1.1: Sample Space Ω of the System in Example 4.7.1
In the case of our Basic System Example 4.7.1, we have a Dependency Graph with |N|= 11 nodes,
as shown in Figure 4.3. Consequently, our Sample Space consists of |Ω0|

11 possible system states, all
combinations for states for the 11 variables.

Ω = {(ccccccccccc), (cccccccccci)..., (iiiiiiiiiii)}

= {(ω1, ω2, ..., ω11) : ωi ∈ Ω0, i = 1..11}

= Ω0 ×Ω0 × ... ×Ω0 = Ω11
0

(6.6)

Example 6.1.2: Failure Event in the System in Example 4.7.1
For example the Failure Event Ek with the constraint component.out_k introduces Failures would contain
all possible combinations of Ω0 with the state of the data at node k = component.outk.FAULIURENODE
fixed to incorrect.

E1 = {(icccccccccc), (iiccccccccc), (icicccccccc)...}

= {(ω1, ω2, ..., ω11) : ωl ∈ Ω0, l = 1..11 ∧ omegak = 1}
(6.7)

Definition 6.1.2. An Event is a subset of Ω, for which a specific constraint holds.

Definition 6.1.3. A Failure Event of a node N is an Event EN ⊂ Ω with the constraint, that the state of
N is incorrect.

The Union of A and B is the set (A ∪ B), where all elements are part of the set A or part of the set B.
Contrarily, the Intersection (A ∩ B) contains all elements, which are part of both sets.

Example 6.1.3: Union and Intersection of Failure Events
Considering the Failure Events E1 and E3 the union and intersection are:

E1 = {(ω1, ω2, ..., ω11) : ωk ∈ Ω0, k = 1..11 ∧ ωi = 1}

E3 = {(ω1, ω2, ..., ω11) : ωk ∈ Ω0, k = 1..11 ∧ ω3 = i}

E1 ∪ E3 = {(icccccccccc), (ccicccccccc), (icicccccccc)...}

= {(x1, x2, ..., x11) : ωk ∈ Ω0, k = 1..11 ∧ (ω1 = i ∨ ω3 = i)}

E1 ∩ E3 = {(icicccccccc), (iiicccccccc), (iciiccccccc)...}

= {(x1, x2, ..., x11) : ωk ∈ Ω0, k = 1..11 ∧ ω1 = i ∧ ω3 = i}

(6.8)

6.1.3 Calculating Probabilities of Independent Failure Events

The probability of a Failure Event EN of node N is P[EN]. We know how failures propagate through our
System, so we can calculate the probability of a Failure Event using the probability of its parent Failure
Events.

For an AND Component, the Failure Event of the AND Proprocessing Node will be active, if all
parents’ Failure Events are active. The probability for the AND Failure Event with n independent parent
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B
A

C

Figure 6.1: Sample space Ω with its events A, B and C. The events are sets of possible outcomes
and can occur all at the same time, meaning that their corresponding ports all propagate
incorrect information. Therefore the events are overlapping.

Failure Events Ei, i = 1...n is calculated by:

P[AND] = P

 n⋂
i=1

Ei

 =

n∏
i=1

P[Ei] (6.9)

We calculate the probability of a VOTER Failure Event of Node N by summing up all possibilities,
which might make the Voter fail. In the case of a n-Voter, its Event will be inactive, if at least n parents
are also inactive, where n is the natural number vote count with n ∈ {0, ..., |Parents(N)|}. Therefore, at
least |Parents(N)|+1 − votec(N) parent events must be active, such that the Voter’s Failure Event also
becomes active.

P[vote2(A, B,C)] = P[A ∩ B] + P[A ∩C] + P[B ∩C] − 2 · P[A ∩ B ∩C] (6.10)

Recalling that Failure Events are a set of outcomes, two Failure Events can be active at the same time.
The current state of the System is contained in both sets. Consequently the Failure Events do overlap.
But the part A∩B∩C is included in A∩B, as well as in A∩C and B∩C, so we would add it three times,
and therefore have to subtract it two times. Figure 6.1 shows the Venn-Diagram of the three outcomes A,
B and C.

All combinations of events at nodes, which are not preprocessing nodes, are combined via the op-
erator OR. For an OR Failure Event to occur, only one of the parent Failure Events needs to be active.
Therefore we compute the union of the parent Failure Events.

P[A ∪ B] = P[A] + P[B] − P[A ∩ B] (6.11)
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Again, we need to subtract the additional part, because A ∩ B is part of both A and B and we have
added it two times.

6.1.4 Calculating Failure Probabilities with Random Variables

A different way to express a probability is to use Random Variables instead of Events. Random Variables
stand for the state of one node. Therefore they are more suited for our case, than using events.

Durrett [2010, chapter 1, section 3] defines Random Variables as:

Definition 6.1.4. A Random Variable is a function X : Ω 7→ R, that maps a value of Ω to a real number.

Definition 6.1.5. A discrete Random Variable maps every value ω ∈ Ω to a value ω′ ∈ B, where B is
finite. In the case of a binary Random Variable, B = {0, 1}.

Definition 6.1.6. The Indicator Function for an event E is a binary random variable 1E(ω) : Ω 7→ {1, 0},
such that

1E(ω) =

1 if ω ∈ E
0 else

In our case, we have a binary random variable for each node i ∈ N with the Failure Event Ei, meaning
|N| binary random variables Xi(ω) : Ω 7→ {0, 1}, with Xi(ω) = 1Ei(ω) for i ∈ {1, .., |N |}.

Consequently, the random variable Xn of a node n ∈ N therefore takes the value 0, if n sends correct
information to its children, and 1 otherwise. The probability P[En] for an Failure Event of node n
is equivalent to PXn(1). For simplification, we will give the random variables the same name as the
corresponding nodes and write shortly Pn(1).

Calculating the probability PA,B(1, 1) is the same as calculating the probability of P[EA ∩EB], where
EA and EB are the Failure Events corresponding to the nodes A and B.

We can now transform the previous probability rule for AND Events to Equation 6.12.

P[EA ∩ EB] = PA,B(1, 1)

= PA(1) · PB(1)
(6.12)

P[vote2(EA, EB, EC)] = PA,B,C(0, 1, 1) + PA,B,C(1, 0, 1) + PA,B,B(0, 1, 1) + PA,B,C(1, 1, 1)

=
∑

a∈{1,0}

PA,B,C(a, 1, 1) − PA,B,C(1, 1, 1)

+
∑

b∈{1,0}

PA,B,C(1, b, 1) − PA,B,C(1, 1, 1)

+
∑

c∈{1,0}

PA,B,C(1, 1, c) − PA,B,C(1, 1, 1) + PA,B,C(1, 1, 1)

(6.13)

Applying the marginal probability rule we can calculate the following result:

P[vote2(EA, EB, EC)] = PA,B(1, 1) + PA,C(1, 1) + PB,C(1, 1) − 2PA,B,C(1, 1, 1) (6.14)

6.1.5 Introducing Time

The previously described formulae can be used to derive the failure probability of a logical gate as
combination of two or more failure probabilities. Since the failure probability of one component does
not always stay the same, we have to introduce time into our formulae. Kapur and Pecht [2014] define a
value R(t) as the probability that a component is operating at time t, meaning its reliability. This value is
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equal to 1 − F(t) namely the failure probability at time t. Furthermore they introduce a function h(t), the
hazard or failure rate.

The reliability is calculated as shown in Equation 6.15 and the failure probability is shown in Equa-
tion 6.16.

R(t) = exp
(
−

∫ t

0
h(τ) dτ

)
(6.15)

F(t) = 1 − R(t) = 1 − exp
(
−

∫ t

0
h(τ) dτ

)
(6.16)

Combined with the random variable for success or failure, this leads to PC(0|t) = RC(t), telling that
component c works fine at time t. On the contrary we have PC(1|t) = FC(t) telling that our component c
is faulty after time t.

The MTTF is calculated as the expected value of the failure density function f (t) = −
∂R(t)
∂t . We can

therefore calculate it by:

MTT F =

∫ ∞

0
t · f (t) dt (6.17)

In case the MTTF is finite it can be calculated by the formula shown in Equation 6.18. [Høyland and
Rausand, 2004]

MTT F =

∫ ∞

0
R(t) dt (6.18)

6.1.6 Failure Rate Distributions

For our approach, we are going to limit the possible failure rates to the most common shapes and take
provided parameters to calculate the full function.

6.1.6.1 Constant Failure Rate and Exponential Distribution

The simplest failure rate would be a constant value, independent of time.

h(t) = r with r > 0, t > 0 (6.19)

Høyland and Rausand [2004, page 26] describe this as Exponential Distribution because of its expo-
nential density function f (t).

f (t) =
∂R(t)
∂t

=

re−rt if r > 0, t > 0
0 else

(6.20)

We now get

R(t) = exp
(
−

∫ t

0
h(τ) dτ

)
= exp

(
−

∫ t

0
r dτ

)
= exp (−rt) (6.21)

MTT F =

∫ ∞

0
exp (−rt) dt =

[
−1
r

exp (−rt)
]∞
0

=
1
r

(6.22)

Figure 6.2 shows the reliability with a constant rate r in dependence of time for three different failure
rates.
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Figure 6.2: Reliability of exponential distribution in dependence of time given constant rate r
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Figure 6.3: Reliability of Weibull distribution in dependence of time given the parameters α and λ

6.1.6.2 Weibull Distribution

Another failure distribution that we want to consider is the Weibull distribution. Developed by Prof.
Waloddi Weibull, it is a very flexible distribution. Høyland and Rausand, 2004

Equation 6.23 shows the Reliability R(t), Equation 6.24 the failure rate for the Weibull distribution
Weibull(α, λ), where α > 0 and λ > 0 are parameters for the distribution.

R(t) = e−(λt)α (6.23)

h(t) = αλαt(α−1) (6.24)

MTT F =
1
λ

Γ

(
1
α

+ 1
)

(6.25)

6.1.6.3 Further Distributions

Further distributions, that have not been discussed here would be for example the binomial and geometric
distribute Høyland and Rausand, 2004, page 25, which has not been considered since it is a discrete
distribution in dependence of trials instead of time.
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6.1.7 Dealing with Conditional Dependence between Random Variables

So far we only considered a straight forward tree architecture as Dependency Graph. In such a graph
all parent events are independent. Unfortunately in our models we will not always have this property.
Instead the models support Common Cause Failures. Those Failures are indicated by an acyclic loop in
the graph.

We recall the definition of a loop from Definition 5.3.2:

Definition 6.1.7. A Loop in a graph is a undirected path, which starts and ends in the same node.

Since we already removed all Cycles (see Section 5), only acyclic loops are left. There exists at least
one edge which is directed against the other edges’ directions. An acyclic loop may contain two paths
from one node to another one. The Dependency Graph has no tree-like structure and two parent Failure
Events are not guaranteed to be independent.

6.1.8 Dominators and Shared Predecessors

In his book, Appel [1997, section 18.1], defines so called Dominators.

Definition 6.1.8. A Dominator d ∈ D(n) of node n is a node, which is included in every directed path
from any system input node of a graph towards the node n. The node n is also a Dominator of itself.

Furthermore, he introduced the function idom(n), which returns the immediate Dominator for a node
m in a graph with only one system input s0.

The following properties of idom(n) hold ∀n 6= s0:

• idom(n) is a Dominator of n.

• idom(n) is not n itself.

• idom(n) dominates no other Dominator of n but n itself.

Derived from idom(n), we define a new function shPred(n1, n2), which returns all nodes, which are
predecessors of both n1 and n2.

shPred(n1, n2) = (Pred(n1) ∪ n1) ∩ (Pred(n2) ∪ n2)

idom(n) ∈ shPred( ~Parent(n))

If two event nodes have a shared predecessor, their events are not independent. We cannot use the
product of their probabilities to calculate their intersection.

Last, we define a function clBPred(n), which returns the closest branching predecessors. The fol-
lowing conditions must hold for any clBPred(n):

• clBPred(n) is a shared predecessor of any two nodes.

• There exists at least one path between n and any c1 ∈ clBPred(n), which contains no node c2 ∈

clBPred(n) with c2 6= c1.

Consequently at any node c ∈ clBPred(n), to paths from c towards n must branch off.
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Example 6.1.4: Dependency Graph containing a Loop
An example for a Dependency Graph containing acyclic loops is shown in Figure 6.5. This will be used
later in the example for calculating the Reliability for a given Dependency Graph.
The Dominators (without considering Failure Nodes) are defined as:

idom(a.out) = S ystem.in

idom(b.out) = a.out

idom(c.out) = a.out

idom(d.out) = c.out

idom(e.out) = c.out

idom( f ) = a.out

idom(g) = a.out

(6.26)

Shared predecessors (without considering Failure Nodes) of parents of node f are:

shAnc(d.out, e.out) = {c.out, a.out, S ystem.in}

shAnc(e.out, b.out) = {a.out, S ystem.in}

shAnc(d.out, b.out) = {a.out, S ystem.in}

(6.27)

Likewise, those of node g are:

shAnc( f .out, b.out) = {b.out, a.out, S ystem.in} (6.28)

The union of all shared Predecessors is

{a.out, c.out, S ystem.in, Failure(a.out), Failure(c.out), b.out, Failure(b.out)}

The closest branching predecessors are:

clBPred(a.out) = {}

clBPred(b.out) = {a.out}

clBPred(c.out) = {a.out}

clBPred(d.out) = {c.out}

clBPred(e.out) = {c.out}

clBPred( f .out) = {c.out, b.out}

clBPred(g.out) = {b.out, c.out}

clBPred( f ) = {c.out, b.out}

clBPred(g) = {b.out, c.out}

(6.29)

6.1.8.1 Rules of d-Separation

Since the previous defined formulae to calculate the probabilities at gates only apply to independent
events, we have to identify dependence between our random variables. The dependencies of our random
variables are represented in our Dependency Graph, we can evaluate this graph to find all dependencies
between the variables. In order to do so, we use the so-called rules of d-Separation. [Langseth and
Portinale, 2007]
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Figure 6.5: This Dependency Graph will be used as an example for calculating the Reliability of
nodes in a Dependency Graph. The It contains some acyclic loops, where the parents
are not independent.

Definition 6.1.9. Two random variables A and B are independent, if P(X,Y) = P(X) · P(Y). We write
X ⊥ Y .

Definition 6.1.10. Two random variables X and Y are conditional independent given a set of random
variables ~Z, such that P(X,Y | ~Z) = P(X | ~Z) · P(Y | ~Z). We write X ⊥ Y | ~Z.

Koski and Noble [2009b] define two random variables of a Bayesian Network to be conditional
independent, if there exists no active undirected path between their corresponding nodes.

Definition 6.1.11. We call a path active, if there exists no node in the path, which is blocking the path.

Definition 6.1.12 (d-Separation Rule 1). A path is blocked by a set of nodes Z, if two directed edges on
the path meet tail-to-tail to a node z ∈ Z.
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Figure 6.6: Rule 1: The path between node A and C is blocked, if we know the value of variable B.
A ⊥ C | B

Definition 6.1.13 (d-Separation Rule 2). A path is blocked by a set of nodes Z, if two directed edges on
the path meet head-to-tail to a node z ∈ Z.

Figure 6.7: Rule 2: The path between node A and C is blocked, if we know the value of variable B.
A ⊥ C | B

Definition 6.1.14 (d-Separation Rule 3). A path is blocked by a set of nodes Z, if two directed edges on
the path meet head-to-head to a node x and neither x nor its descendants are included in Z.

Figure 6.8: Rule 3: The path between node A and C is active, if B or its descendant D is known.
A 6⊥ C | B,
A 6⊥ C | D,
A ⊥ C | ∅

We can conclude, that any two parents of a node n are conditional independent given clBPred(n).

6.1.8.2 Calculation of Failure Probability with Dependent Random Variables

If two parents of a node share the same predecessor, we cannot compute the Joint Probability using
P(X,Y) = P(X) · P(Y).
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Example 6.1.5: d-Separation rules applied to Example 6.1.4
For Example 6.1.4 we can derive:

d.out 6⊥ e.out | ∅

d.out ⊥ e.out | {c.out}

d.out 6⊥ e.out | {c.out, f }

d.out ⊥ e.out ⊥ b.out | {c.out, a.out}

(6.30)

This formula only holds if X and Y are independent random variables (X ⊥ Y). Instead, we have to
use the Chain Rule:

P(X,Y) = P(X) · P(Y |X) = P(Y) · P(X|Y) (6.31)

Let ~A be all Shared Predecessors of X and Y and A all possible state combinations of the nodes in
A, the Joint Probability of X and Y is:

PX,Y (x, y) =
∑
~a∈A

PX,Y | ~A(x, y |~a)P~A(~a)

=
∑
~a∈A

PX | ~A(x |~a)PY | ~A(y |~a)P~A(~a)
(6.32)

6.1.9 Calculating the Reliabilities in Complex Dependency Graphs

The previous sections defined how to calculate the reliability for simple Dependency Graphs without
common cause failures. This section will introduce formulae for calculating the reliability for more
complex systems. For every node, we express the Reliability as RN(t) = PN | ~IN,T (0 |~0, t), where N is

the Node’s random variable, for which we want to calculate the reliability and ~IN, a random vector
containing all system input random variables. The system’s input is always assumed to be correct,
therefore it is given as a vector of zeros, ~0. The reliability is the probability, that there is no error in the
component associated with the random variable. Therefore we want the random variable to also take the
value 0. T is the Random Variable providing the current time.

6.1.9.1 Reliability at a Failure Node

We can calculate the Reliability at a Failure Node at time t from the FRS and the the provided parameters.
It is independent of any other event.

PC | ~IN,T (0 |~0, t) = RC(t) (6.33)

6.1.9.2 Reliabilities at a Forward Node

Let N be a Forward Node’s random variable. According to the definition of Forward Nodes, they have
exactly one parent Pa(N). All Forward Nodes propagate errors through the model with a probability of 1
and the probability of an fault in Forward Node N is PN | Pa(N),t(1 | 1, t) = 1. Equally, the probability that
an Forward Node introduces new faults PN | Pa(N),t(1 | 0, t) is 0. We can derive PN | Pa(N),t(0 | 1, t) = 0 and
PN | Pa(N),t(0 | 0, t) = 1.
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PN | ~IN,T (0 |~0, t) = PPa(N) | ~IN,T (0 |~0, t)

Proof:
Using the rule of total probability we can derive:

PN | ~IN,T (0 |~0, t) =
∑

p∈{0,1}

PN | Pa(N)(0 | p)PPa(N) | ~IN,T (p |~0, t)

= PN | Pa(N)(0 | 0)PPa(N) | ~IN,T (0 |~0, t) + PN | Pa(N)(0 | 1)PPa(N) | ~IN,T (1 |~0, t)

= 1 · PPa(N) | ~IN,T (0 |~0, t) + 0 · PPa(N) | ~IN,T (1 |~0, t)

= PPa(N) | ~IN,T (0 |~0, t)

(6.34)

6.1.9.3 Reliability at a Node with two or more Parents

As long as the parents of a node are independent, we can use the rules for independent random variables
to calculate the reliability of a node.

If a loop exists, this means, that there are at least two parents of the node, for which a Shared
Predecessor exists. Equally, also the set of closest branching predecessors is not empty.

Let N be such a node’s random variable, ~Pa(N) a vector of its parents’ random variables and P all
combinations of their potential states. Then Equation 6.35 expresses the Reliability of R.

PN | ~IN,T (0 |~0, t) =
∑

~p∈P(N)

PN | ~Pa(N),T (0 | ~p, t)P ~Pa(N) | ~IN,T (~p |~0, t) (6.35)

In the most cases not all random variables in ~Pa will be independent. Therefore P ~Pa(~p) 6=
∏

Pai∈~p PPai(pi).
Instead, we need to apply the chain rule P ~Pa(~p) =

∏
Pai∈ ~Pa PPai | Pa1,...,Pai−1(pi | p1, ..., pi−1).

Let ~C be all Nodes’ Random Variables in clBPred(N) and C all their possible assignments.

P ~Pa | ~IN,T (~p |~0, t) =
∑
~c∈C

∏
pi∈p

PPai | ~C,T
(pi |~c, t)P ~C | ~IN,T (~c |~0, t)

(6.36)

This formula can be applied recursively until the set clBPred(N) is empty.

6.1.9.4 Reliability at an Output Node

An Output Node takes the logical OR of all its inputs.

POUT | ~Pa(OUT ),T (0 | ~p, t) =

1 if ~p = ~0
0 else

Consequently, we can express the reliability of the OR Event Node as:

POUT | ~IN,T (0 |~0, t) = P ~Pa(OUT ) | ~IN,T (~0 |~0, t)
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6.1.9.5 Reliability at AN Preprocessing Nodes

If any ancestors’ random variables is 0, an AND Preprocessing Node’s random variable also takes the
value 0.

PAND | ~Pa(AND)(0 |~p) =

1 if ~p = ~1
0 else

Where AND denotes a random variable of an AND-Node and ~Pa(AND) the node’s ancestors.

Therefore, an AND-Gate is the same as a 1-VOTER.

6.1.9.6 Reliability at VOTER Preprocessing Nodes

Every Voter-Node has a tagged number voteC, which must be smaller than its number of parents | ~Pa(N)|.
C indicates, how many parent random variables must at least be set to 0, for the Voter random variable
to be 0.

PVOT E | ~Pa(VOT E)(0 | ~p) =

1 if
∑n

i=1 pi <= n − voteC
0 else

Example 6.1.6: Reliabilities in Example 6.1.4
In Example 6.1.4 the parent nodes of the VOTER Preprocessing Node f - d.out, e.out and b.out - are
dependent, since their pairwise shared predecessors are c.out, a.out, S ystem.in - a non empty set. It has
two closest branching predecessors, c.out and a.out. The random variables d.out, e.out and b.out are
conditional independent given the state of these closest Branching Predecessors. We can use this to
calculate the reliability of f :

PF(0) =
∑

d,e,b∈{0,1}

PF |D,E,B(0 | d, e, b)PD,E,B(d, e, b)

= PD,E,B(0, 0, 1) + PD,E,B(1, 0, 0) + PD,E,B(0, 1, 0) + PD,E,B(0, 0, 0)

=
∑

d,e,b∈{0,1}

PF |D,E,B(0 | d, e, b)

 ∑
c,a∈{0,1}

PD |C,A(d | c, a)PB |C,A(b | c, a)PE |C,A(e | c, a)

 PC,A(c, a)

(6.37)
For the AND Preprocessing Node g, the parents are again not independent. Differently than before, the
parent b.out is included in the set clBPred(g).

PG(0) =
∑

b, f∈{0,1}

PG | B,F(0 | b, f )PB,F(b, f )

= PB,F(0, 1) + PB,F(1, 0) + PB,F(0, 0)

=
∑

b,a∈{0,1}

[
PB | B,A(0 | b, a)PF | B,A(1 | b, a) + PB | B,A(1 | b, a)PF | B,A(0 | b, a)

+PB | B,A(0 | b, a)PF | B,A(0 | b, a)
]

PB,A(b, a)

=
∑

a∈{0,1}

[
PF | B,A(1 | 0, a)PB|A(0|a) + PF | B,A(0 | 1, a)PB|A(1|a)

+PF | B,A(0 | 0, a)PB|A(0|a)
]

PA(a)

(6.38)
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6.1.10 Algorithm for Reliability Calculation

The trivial algorithm for Reliability Calcualtion would be to calculate the reliability for every node
separately. Of course this is not very efficient. A different approach would be to iterate over all possible
assignments for Failure Nodes. The number of Failure Nodes is equal the number of output ports in the
Connected Components System, so it will always be greater or equal the number of components. The
number of failure states is 2count(FailureNodes). This lets the algorithm’s run time increase exponentially
with the number of output ports in the model.

A more efficient solution is the combination of the trivial algorithm with the knowledge of closest
Branching Predecessors. The main idea is to first calculate the Relative Relibaility, the reliability of each
node, given either all possible states of their closest Branching Prdecessors or their parents’, if there is
no clBPred for a node. Afterwards, we can calculate the (Absolute) Reliability by taking the product of
the Relative Reliabilities.

PN | ~IN,T (0 |~0, t) =
∑

~c∈clBP∇ed(N)

PN | ~clBPred(N),T (0 |~c, t)P ~clPred(N) | ~IN,T (~c |~0, t) (6.39)

The number of closest Branching Predecessors will always be smaller or at least equal the number
of Failure Nodes, such that this algorithm will always have a shorter run time.

Example 6.1.7: Repetition of Closest Branching Predecessors in the Dependency Graph of Fig-
ure 6.5

clBPred(a.out) = {}

clBPred(b.out) = {a.out}

clBPred(c.out) = {a.out}

clBPred(d.out) = {c.out}

clBPred(e.out) = {c.out}

clBPred( f .out) = {c.out, b.out}

clBPred(g.out) = {b.out, c.out}

clBPred( f ) = {c.out, b.out}

clBPred(g) = {b.out, c.out}

(6.40)
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Example 6.1.8: Relative Reliability in the Dependency Graph of Figure 6.5 - I
We calculate the Relative Reliability of the nodes in Dependency Graph in Figure 6.5 using the closest
Branching Predecessors as defined in Example 6.1.7.

RR(a.out | t) = Pa.out | S ystem.in,Failure(a.out),T (0 | 0, 0, t)

= 0.9

RR(b.out | a.out = 0, t) = Pb.out | a.out,Failure(b.out),T (0 | 0, 0, t)

= 0.85

RR(b.out | a.out = 1, t) = Pb.out | a.out,Failure(b.out),T (0 | 1, 0, t)

= 0

RR(c.out | a.out = 0, t) = Pc.out | a.out,Failure(c.out),T (0 | 0, 0, t)

= 0.875

RR(c.out | a.out = 1, t) = Pc.out | a.out,Failure(c.out),T (0 | 1, 0, t)

= 0

RR(d.out | c.out = 0, t) = Pd.out | c.out,Failure(d.out),T (0 | 0, 0, t)

= 0.95

RR(d.out | c.out = 1, t) = Pd.out | c.out,Failure(d.out),T (0 | 1, 0, t)

= 0

RR(e.out | c.out = 0, t) = Pe.out | c.out,Failure(e.out),T (0 | 0, 0, t)

= 0.975

RR(e.out | c.out = 1, t) = Pe.out | c.out,Failure(e.out),T (0 | 1, 0, t)

= 0

RR(e.out | c.out = 0, t) = Pe.out | c.out,Failure(e.out),T (0 | 0, 0, t)

= 0.975

RR(e.out | c.out = 1, t) = Pe.out | c.out,Failure(e.out),T (0 | 1, 0, t)

= 0

RR( f .out | c.out = c, b.out = b, t) = P f .out | f ,Failure( f .out),T (0 | 0, 0, t)

= 0.99P f | c.out,b.out,T (0 | c, b, t)

RR(g.out | c.out = c, b.out = b, t) = Pg.out | g,Failure(g.out),T (0 | 0, 0, t)

= Pg | c.out,b.out,T (0 | c, b, t)

(6.41)
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Example 6.1.9: Relative Reliability in the Dependency Graph of Figure 6.5 - II

RR( f | b.out = 0, c.out = 0, t) = P f | b.out,c.out,T (0 | 0, 0, t)

=
∑

b,d,e∈{0,1}

P f | b.out,e.out,d.out,T (0 | b, d, e, t)

Pb.out | b.out,c.out,T (b | 0, 0, t)Pd.out | b.out,c.out,T (d | 0, 0, t)Pe.out | b.out,c.out,T (e | 0, 0, t)

=
∑

d,e∈{0,1}

P f | b.out,e.out,d.out,T (0 | 0, d, e, t)

Pd.out | b.out,c.out,T (d | 0, 0, t)Pe.out | b.out,c.out,T (e | 0, 0, t)

= Pd.out | b.out,c.out,T (0 | 0, 0, t)Pe.out | b.out,c.out,T (0 | 0, 0, t)

+ Pd.out | b.out,c.out,T (1 | 0, 0, t)Pe.out | b.out,c.out,T (0 | 0, 0, t)

+ Pd.out | b.out,c.out,T (0 | 0, 0, t)Pe.out | b.out,c.out,T (1 | 0, 0, t)

= Pd.out | c.out,T (0 | 0, t)Pe.out | c.out,T (0 | 0, t)

+ Pd.out | c.out,T (1 | 0, t)Pe.out | c.out,T (0 | 0, t)

+ Pd.out | c.out,T (0 | 0, t)Pe.out | c.out,T (1 | 0, t)

= 0.95 · 0.975 + 0.05 · 0.975 + 0.95 · 0.025

= 0.99875

RR( f | b.out = 1, c.out = 0, t) = P f | b.out,c.out,T (0 | 1, 0, t)

= Pd.out | b.out,c.out,T (0 | 0, 0, t)Pe.out | b.out,c.out,T (0 | 0, 0, t)

= 0.95 · 0.975

= 0.92625

RR( f | b.out = 0, c.out = 1, t) = P f | b.out,c.out,T (0 | 0, 1, t)

=
∑

d,e∈{0,1}

P f | b.out,e.out,d.out,T (0 | 0, d, e, t)

Pd.out | c.out,T (d | 1, t)Pe.out | ,c.out,T (e | 1, t)

= P f | b.out,e.out,d.out,T (0 | 0, 1, 1, t)

Pd.out | c.out,T (1 | 1, t)Pe.out | c.out,T (1 | 1, t)

= 0

RR( f | b.out = 1, c.out = 1, t) = P f | b.out,c.out,T (0 | 1, 1, t)

=
∑

d,e∈{0,1}

P f | b.out,e.out,d.out,T (0 | 1, d, e, t)

Pd.out | c.out,T (d | 1, t)Pe.out | c.out,T (e | 1, t)

= P f | b.out,e.out,d.out,T (0 | 0, 1, 1, t)

Pd.out | c.out,T (1 | 1, t)Pe.out | ,c.out,T (1 | 1, t)

= 0

(6.42)
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Example 6.1.10: Relative Reliability in the Dependency Graph of Figure 6.5 - III

RR(g | c.out = 0, b.out = 0, t) = P f | c.out,b.out,T (0 | 0, 0, t)

=
∑

f ,b∈{0,1}

Pg | f .out,b.out,T (0 | f , b, t)

Pb.out | c.out,b.out,T (b | 0, 0, t)P f .out | c.out,b.out,T ( f | 0, 0, t)

=
∑

f∈{0,1}

Pg | f .out,b.out,T (0 | f , 0, t)

P f .out | c.out,b.out,T ( f | 0, 0, t)

= P f .out | c.out,b.out,T (1 | 0, 0, t) + P f .out | c.out,b.out,T (0 | 0, 0, t)

= 1

RR(g | c.out = 1, b.out = 0, t) = P f | c.out,b.out,T (0 | 1, 0, t)

=
∑

f∈{0,1}

Pg | f .out,b.out,T (0 | f , 0, t)

P f .out | c.out,b.out,T ( f | 1, 0, t)

= P f .out | c.out,b.out,T (1 | 1, 0, t) + P f .out | c.out,b.out,T (0 | 1, 0, t)

= 1

RR(g | c.out = 0, b.out = 1, t) = P f | c.out,b.out,T (0 | 0, 1, t)

=
∑

f∈{0,1}

Pg | f .out,b.out,T (0 | f , 1, t)

P f .out | c.out,b.out,T ( f | 0, 1, t)

= P f .out | b.out,c.out,T (0 | 1, 0, t)

= 0.99P f | b.out,c.out,T (0 | 1, 0, t)

= 0.99 · 0.92625

RR(g | c.out = 1, b.out = 1, t) = P f | c.out,b.out,T (0 | 1, 1, t)

=
∑

f∈{0,1}

Pg | f .out,b.out,T (0 | f , 1, t)

P f .out | c.out,b.out,T ( f | 1, 1, t)

= P f .out | c.out,b.out,T (0 | 1, 1, t)

= 0

(6.43)
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Example 6.1.11: Absolute Reliability in the Dependency Graph of Figure 6.5 - I

R(a.out | t) = RR(a.out | t)

= 0.9

R(b.out | t) = RR(b.out | a.out = 0, t)R(a.out | t) + RR(b.out | a.out = 1, t)(1 − R(a.out | t))

= RR(b.out | a.out = 0, t)R(a.out | t)

= 0.85 · 0.9

= 0.765

R(c.out | t) = RR(c.out | a.out = 0, t)R(a.out | t) + RR(c.out | a.out = 1, t)(1 − R(a.out | t))

= RR(c.out | a.out = 0, t)R(a.out | t)

= 0.875 · 0.9

= 0.7875

R(d.out | t) = RR(d.out | c.out = 0, t)R(c.out | t) + RR(d.out | c.out = 1, t)(1 − R(c.out | t))

= RR(d.out | c.out = 0, t)R(c.out | t)

= 0.95 · 0.7875

R(e.out | t) = RR(e.out | c.out = 0, t)R(c.out | t) + RR(e.out | c.out = 1, t)(1 − R(c.out | t))

= RR(e.out | c.out = 0, t)R(c.out | t)

= 0.975 · 0.7875

R( f .out | t) = RR( f .out | c.out = 0, b.out = 0, t)R(c.out | t)R(b.out, | t)

+ RR( f .out | c.out = 1, b.out = 0, t)(1 − R(c.out | t))R(b.out, | t)

+ RR( f .out | c.out = 0, b.out = 1, t)R(c.out | t)(1 − R(b.out, | t))

+ RR( f .out | c.out = 1, b.out = 1, t)(1 − R(c.out | t))(1 − R(b.out, | t))

= 0.99RR( f | c.out = 0, b.out = 0, t)R(c.out | t)R(b.out, | t)

+ 0.99RR( f | c.out = 0, b.out = 1, t)R(c.out | t)(1 − R(b.out, | t))

R(g.out | t) = RR(g.out | c.out = 0, b.out = 0, t)R(c.out | t)R(b.out, | t)

+ RR(g.out | c.out = 1, b.out = 0, t)(1 − R(c.out | t))R(b.out, | t)

+ RR(g.out | c.out = 0, b.out = 1, t)R(c.out | t)(1 − R(b.out, | t))

+ RR(g.out | c.out = 1, b.out = 1, t)(1 − R(c.out | t))(1 − R(b.out, | t))

= R(c.out | t)R(b.out, | t)

+ (1 − R(c.out | t))R(b.out, | t)

+ RR(g.out | c.out = 0, b.out = 1, t)R(c.out | t)(1 − R(b.out, | t))

(6.44)



Chapter 7

Conclusions

In these days, we use technical systems not only as additional support. In some cases, we even completely
rely on them and trust them with our lives, like in the case of medical systems or vehicles. These systems
are called "safety critical" because a failure in their functions can have an impact on our safety. Therefore
we want these systems to be as reliable as possible. To archive a higher reliability, safety critical systems
often contain redundant components, which may provide the desired functions if the original component
fails.

The process of evaluating the likelihood of a function outage is called reliability engineering. In this
thesis we proposed a method for reliability evaluation on a technical system consisting of communicating
components. We made use of the already well known Bayesian Network approach for solving this and
extended it to be applicable for more complex networks, namely those containing cycles - or also called
feed back loops.

This is done by applying cycle unrolling, a technique inspired by the loop unrolling or code unwind-
ing methods from compiler construction and model checking. We showed that it is sufficient to unroll a
cycle two times in order to calculate the correct reliability, if we are neglect the time it takes for a wrong
information to spread. This assumption let us perform the calculation on a snapshot of the model, where
the system is in a fixed state.

For cycle-less systems, we propose an efficient method for calculating the reliability of every com-
ponent within two steps: We determined special nodes in the Bayesian Network, the so called closest
Branching Predecessors, a concept derived from dominator nodes. These nodes allow us, to calculate a
conditional reliability, the relative reliability. Using this relative reliabilities, we can now calculate the
absolute reliability of every component, without performing the same calculation twice.
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