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Abstract

The routing protocol for low-power and lossy networks (RPL) is a routing protocol stan-
dardized by the Internet Engineering Task Force (IETF) to create a mesh network of
wireless sensor nodes communicating via IPv6.
A large number of wireless sensor networks used to build IoT applications in the area of
health care, smart cities, or smart production employs RPL to autonomously form a mesh
topology and to route packets towards a gateway connected to the Internet.
Several of these applications impose strict requirements on network reliability and system
lifetime. Achieving a long lifetime and a high reliability requires the system to be highly
energy-efficient (in order to preserve battery capacity) and to be robust to external radio
interference (in order to minimize packet loss and retransmissions).

Within this context, this thesis focuses on two main parts. First, an extensive exper-
imental campaign investigates how RPL performs in the presence of radio interference.
Experiments are performed on about 30 nodes in a wireless sensor network testbed us-
ing JamLab, a Contiki-based application that allows repeatable experiments with radio
interference. The experiments demonstrate that RPL performs relatively well under inter-
ference as long as its underlying link-layer protocol (such as ContikiMAC) operates correctly.
However, radio interference is shown to directly affect the operation of the clear channel
assessment (CCA) mechanism, which may lead to a complete disruption of the network
and to a high energy expenditure.

Building upon these results, the second part of this thesis proposes an improvement of
ContikiMAC and shows, that by dynamically changing its CCA threshold, it is possible
to improve network performance significantly even in the presence of interference. An
experimental evaluation of the proposed approach shows that the packet reception rate of
RPL with the improved ContikiMAC can be increased even in the presence of a malicious
interference source and that the average energy consumption in the presence of a IEEE
802.11 device operating nearby can be reduced by up to 69%.
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Kurzfassung

Das Routingprotokoll für leistungsarme und verlustbehaftete Netzwerke (RPL) ist ein von
der Internet Engineering Task Force (IETF) standardisiertes Routingprotokoll, um ein
Mesh-Netzwerk aus kabellosen Sensorknoten, welche über IPv6 kommunizieren, zu erstel-
len.
Eine große Anzahl von kabellosen Sensornetzwerken, welche unter anderem zum Aufbau
von IoT-Anwendungen im Bereich der Gesundheitsvorsoge, Smart Cities oder Smart Pro-
duction errichtet werden, verwenden RPL, um autonom eine Mesh-Topologie zu bilden und
Datenpakete in Richtung eines an das Internet angeschlossenen Gateways zu routen.
Einige dieser Anwendungen haben strikte Anforderungen an die Zuverlässigkeit und Le-
bensdauer des Netzwerks. Um eine lange Lebensdauer und hohe Zuverlässigkeit zu errei-
chen, muss das System sehr energieeffizient (um die Batterien zu schonen) und robust
gegenüber externe Funktstörungen (um Paketverluste und wiederholte Übertragungen zu
minimieren) sein.

In diesem Kontext ist diese Masterarbeit in zwei Teile gegliedert. Der erste Teil besteht
aus einer umfangreichen experimentellen Untersuchung der Leistungsfähigkeit von RPL
unter dem Einfluss von verschiedenen Arten von Funkstörungen. Die Experimente werden
auf ungefähr 30 Sensorknoten in einer Sensornetzwerktestumgebung mit JamLab, einer
auf Contiki basierenden Applikation, welche es ermöglicht, wiederholbare Experimente mit
Funkstörungen durchzuführen.
Die Experimente zeigen, dass RPL auch bei Funkstörungen gut funktioniert, solange das
darunter liegende Link-Layer-Protokoll (z.B. ContikiMAC) korrekt funktioniert. Es hat
sich allerdings herausgestellt, dass Funkstörungen direkt den Clear-Channel-Assessment-
Mechanismus (CCA) beeinflussen, was zu einer kompletten Unterbrechung des Netzwerks
sowie zu unnötigem Energieverbrauch führt.

Aufbauend auf diesen Ergebnissen stellt der zweite Teil dieser Masterarbeit eine Verbesse-
rung für ContikiMAC vor: Eine automatische Anpassung der CCA-Schwelle verbessert die
Leistungsfähigkeit des Netzwerks signifikant, sofern Funkstörungen vorhanden sind. Eine
experimentelle Evaluierung zeigt, dass die vorgeschlagene Methode die Paketempfangsrate
von RPL mit ContikiMAC trotz starker bösartiger Funkstörungen erhöht und den durch-
schnittlichen Energieverbrauch, sofern sich ein IEEE 802.11 Gerät in der Nähe befindet,
um bis zu 69% verringern kann.
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Chapter 1

Introduction

The Internet of Things (IoT) is not only the future, but it is already a reality. The
idea behind the IoT is to connect small embedded devices (also called “things") to the
Internet without requiring user interaction. Billions of “things" are already connected to
the Internet and interact with each other and their surrounding environment: their number
should exceed 20 billion by 2020 according to Gartner1.
A big part of the IoT are Wireless Sensor Networks (WSNs): networks of small battery
powered devices, also called nodes, equipped with a low power Central Processing Unit
(CPU), a radio to communicate over a wireless link, and some type of sensor or actuator.
The measured data often needs to be collected at a central location. In the IoT context,
one option is to allow direct connection of these nodes to the Internet using the Internet
Protocol Version 6 (IPv6). To facilitate this connection, the Internet Engineering Task
Force (IETF) standardized 6LoWPAN as a protocol to implement IPv6 in a low power
wireless personal area network such as a WSN by performing header compression and
packet fragmentation.
As WSN are typically using mesh topologies, where data is passed over multiple hops to
a central node (sink), a routing protocol needs to be employed to find a suitable path
(route) from each node to the sink. The IETF recently standardized the routing protocol
for low-power and lossy networks (RPL). This protocol is especially designed for WSNs
and will be used in this thesis to evaluate and improve its performance while the network
is subjected to radio interference.
RPL is used to automatically form a network and can be used in both dense and sparse
WSN deployments.
In the past decade, a large number of WSN applications have been deployed, ranging from
agriculture, health care and industry to smart cities, smart cars and smart grid.

• Agriculture
A team of researches in Australia built a WSN to monitor the movement and spread of
the cane toad [18] (i.e., the so called cane toad monitoring). This toad was introduced
to Australia in the 1930s to control pests in the sugar cane crops, but, as it has no
natural predators, it grew to a pest itself. The WSN in this application employs
acoustic sensors to sample the croaking of the toads. These audio samples are then

1http://www.gartner.com/newsroom/id/3165317

14

http://www.gartner.com/newsroom/id/3165317


CHAPTER 1. INTRODUCTION 15

analysed and classified to distinguish between different frog species. This data is
then used to estimate the cane toad population and movements.

• Health Care
In health care, the development of embedded systems measuring vital signs such
as pulse monitors, blood pressure, blood glucose and electrocardiography (ECG)
allows to monitor the health conditions of people in needs. A WSN worn inside
(implanted) or on the body enables the patient to move freely while the data is
collected using wireless transmissions. Reporting the data to an Internet-connected
server that processes the data allows for an early disease detection and prevention
[27].

• Smart cities
A typical application in a smart city is the control of street lighting intensity through
the use of a WSN in order to reduce the energy consumption. Each lamp acts as
a node, but only some nodes also employ a Doppler sensor to detect road traffic.
Upon a traffic detection, the information is passed to the other lamps and the light
intensity is increased [21].
In an smart parking application, each parking lot is equipped with a sensor node
that detects if the lot is free or occupied. This data is then transmitted using the
wireless link to a central Web-server which allows the vehicle driver to find a vacant
parking lot using a smart phone [35].

• Smart home
WSN play an integral role also in smart home applications. Various devices like
lamps, heating, or blinds can work together with sensors for temperature and utility
meter readings to improve the everyday life of a resident.

It is important to highlight that applications in health care and smart cities are safety-
critical, i.e., a failure may endanger lives and hence the underlying WSN communication
needs to be reliable. Besides safety-critical applications, a reliable system is also important
for its acceptance and success. An unreliable system, for example an unreliable smart home
application, would lower the user satisfaction and thus limits its success.
The reliability of a WSN strongly depends on its ability to successfully communicate.
Changes of the environment surrounding the deployed network have a big influence on its
capability to communicate. High temperature changes have an impact on the stability of
the clocks used in these embedded devices and on the amplifiers in the radio module [4].
This reduces the ability to synchronize nodes and also the transmitted and received signal
strengths, which then reduces the nodes capacity to successfully receive a packet.
Beside temperature, a main obstacle to reliability is radio interference. The latter lowers
the signal-to-noise ratio (SNR) as the noise level is increased. When the SNR approaches
the zero, the radio module looses its ability to distinguish between a valid signal and noise,
leading to packet loss and thus to a decrease in packet reception ratio (PRR). Besides
lowering the PRR, also the latency and energy consumption increase, as packets have to
be retransmitted and the radio has to be kept on for a longer time. A reliable network
is characterized by a high PRR, low latency, and a low energy consumption even when
subject or exposed to radio interference.
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WSNs should be reliable both under common radio interference from surrounding wireless
devices and from intentional “malicious” attacks. Common radio interference is a problem
that derives from the fact that the frequency spectrum is shared between multiple users.
Many devices and protocols such as Wi-Fi (IEEE 802.11), Bluetooth, ZigBee, and home
applications such as microwave ovens use frequencies in the license free 2.4GHz band.
IEEE 802.11 devices usually have a higher transmission power than the low power radios
used by WSNs. The number of devices using the same band is increasing: IEEE 802.11 is
widespread in every household: in the earlier days a family had one device, but nowadays
each member has its own notebook, tablet and/or smart phone. The increased usage of
the 2.4GHz band, increases the probability for a WSN to be subject to radio interference.
Indeed, beside common radio interference, there might also be a intentional malicious
attacks that try to sabotage the network by generating artificial noise or by flooding it
with useless packets [25].

1.1 Problem statement

As radio interference has a huge influence on the ability to communicate with other nodes,
it is important to understand how RPL and the other communication layers are affected by
radio interference and whether something can be done to improve the situation. Depending
on the strength of interference, the node may not be able to communicate at all, or may
exhibit a higher energy consumption and latency due to necessary retransmissions.
An important part of the nodes communication is the clear channel assessment (CCA).
The CCA is used to ensure that no-one else is sending a packet at the same time, i.e.,
to verify that the radio channel is clear (for collision avoidance), and to check if there is
something to be received (when looking for incoming packets). Hence radio interference
may affect the CCA both before sending and while receiving a packet. Before sending, the
node sees the radio channel as always busy and no packets are sent. While receiving, the
radio is kept on for a longer period as there might be a packet transmitted and thus the
node’s battery drains faster.
In typical configuration, the CCA checks if the received signal strength (RSSI) is above
a fixed threshold at which the channel is considered busy. If the signal strength of the
neighbouring nodes is above the interference noise level they would be able to communicate
nevertheless, but, as the channel is considered busy, no packets are sent.
In this thesis we want to show that, by adjusting the CCA threshold dynamically between
the noise level and the RSSI of the packets from the neighbouring nodes, it is possible to
improve the ability to communicate and thus the overall network reliability without any
significant tradeoffs.

1.2 Contributions

This thesis investigates how RPL performs in the presence of radio interference experimen-
tally on real hardware in a testbed with around 30 nodes. The interference is generated
using JamLab, a Contiki OS application that uses the test mode of the radio transceiver to
create artificial, but repeatable interference. JamLab is used to show that RPL performs
well under interference as long as the underlying protocol (such as ContikiMAC) performs
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well.
The large experimental campaign shows indeed many lessons. The most important one
being that the used link-layer ContikiMAC with its fixed CCA threshold is easily blocked
by radio interference. To fix this problem, this thesis proposes to dynamically change the
CCA threshold of the radio duty-cycling (RDC) in order to achieve significant improve-
ments on the reliability of communications.
The energy consumption under interference is reduced up to 65% under heavy interference
(i.e., in the presence of a IEEE 802.11 device performing file transfer), while the PRR is
increased by up to 60% in the presence of a continuous carrier jammer (i.e., in the presence
of a deliberate attacker).
In addition to these fundamental contributions, small improvements to the Contiki OS
have been made available as pull requests (PRs)2.

Methodology. All experiments in this thesis have been carried out on real-world testbeds
as part of a large experimental campaign. In particular, more than 200 individual experi-
ments have been run. The log files and generated plots sum up to more than 21,700 files for
a size of 13.9GB. 90 different run configuration scripts were created and are accompanied
by 47 compiled firmware files. The tooling created consists of more than 55 Python classes
and shell scripts (3400 lines of code) to manage the experiment runs, parse the collected
data and generate the plots, tables and statistics used in this thesis in a semi-automatic
fashion.
According to its logfile, the testbed has been reserved for this work about 140 times for a
total duration of more than 1500 h (although the testbed has not been continuously used
during a reservation).

1.3 Structure

This thesis is structured as follows. Chapter 2 describes the relevant background to under-
stand the technical contribution. In Chapter 3 follows the experimental campaign showing
how to approach the problem of investigating RPL under radio interference using mul-
tiple experiments on a real testbed. This section also contains the results and lessons
learned from the extensive evaluation. Chapter 4 describes the design and implementation
of the adaptive CCA threshold algorithm, implemented to solve the problems highlighted
in Chapter 3. An evaluation of the implemented adaptive CCA algorithm is presented in
Chapter 5. Related work in the area is described and summarized in Chapter 6. This
thesis concludes with Chapter 7, which recaps the contributions and the results and gives
an outlook on future work.

2https://github.com/contiki-os/contiki/pulls?q=is:pr+author:tsparber

https://github.com/contiki-os/contiki/pulls?q=is:pr+author:tsparber


Chapter 2

Background

This chapter provides an overview and background information of the technologies used
to test RPL subjected to radio interference, to identify the problems observed and finally,
propose an improvement.

2.1 Wireless Sensor Network

A Wireless Sensor Network (WSN) is a collection of small embedded devices, called nodes,
deployed with the goal to collect some sensor data from their physical environment. The
measured data is then sent to a base station using a wireless connection. Typically the
base station is not directly reachable and the data must be retransmitted from one node
to the next one. An example network with multiple hops, also called “mesh" network, is
shown in Figure 2.1.
A long lifetime of each node is expected. As these devices are usually battery powered,
special care to the energy consumption has to be taken.

S

Figure 2.1: A typical architecture of nine nodes with one sink which collects the data.

Important and typical properties of these devices are:

• Cheap
The devices should be cheap, so that a large number of them can be deployed to
function as a macroscope. Whereas a microscope allows to observe the tiniest object,
a macroscope enables researchers to study large scale phenomena. Some examples
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are: Monitoring the vibrations of a bridge [34], tracking the spread of the cane toad
in Australia [18], or learning about the movements of glacier snouts [14].

• Small
Each node has typically a volume of less than 1 dm3, batteries included. In the earlier
days devices as small as dust, so called “smart dust" were envisioned [20]. These
specks of dust could then be deployed by air or mixed into colours used to paint
the surface of interest. Devices the size of dust exists only as prototypes, are very
hard to produce, and are severely limited in terms of communication possibilities and
power. In general, WSNs focus on larger physical sizes, built with readily available
microprocessors.

• Battery powered
A long lifetime in the range of a couple of months to multiple years is expected.
Changing batteries in hundreds or thousands of nodes deployed is quite expensive
and time consuming. To achieve a long battery life, a low energy consumption
needs to be considered in every aspect of the design and protocols used. RPL is
especially designed for networks where the nodes are sleeping most of the time and
only wakeup periodically to receive and transmit packets. The sleep and wakeup
cycle needs to be adjusted to fit the application needs, as low energy consumption
and high responsiveness are contradicting requirements.

• Low power wireless radio
Using low power wireless communication is a key feature of a WSN. Typically this
communication happens using radio waves. Using optical links such as Infrared Data
Association (IrDA), would be possible but requires a line of sight, which is often not
given.
To simplify the development and deployment of WSNs, license free ISM frequency
bands are used. Many nodes communicate in the 2.4GHz band which is usable world-
wide, but communication is also possible using other frequencies such as 868MHz in
Europe and 915MHz in the USA.
A common standard among WSNs is to use a IEEE 802.15.4 compatible radio, this
standard is also known as the base for “ZigBee". This thesis also uses a IEEE 802.15.4
radio, but not the upper layers defined by ZigBee.
A radio in a WSN uses a low transmission power and also the algorithms used are
less sophisticated then those used for example in a Wi-Fi network. An algorithm
optimized for high data throughput while being robust to radio interference requires
significant more energy to process the received signal. Even in a low power IEEE
802.15.4 radio the energy required while listening and receiving a packet might be
higher than those needed to transmit a packet (depending on the transmission power).

• Low power CPU
The nodes in a WSN typically use a low power microcontroller (µC). They might
range from an 8-bit AVR to an 16-bit MSP430 as used in this thesis or to the latest
devices including an 32-bit ARM microprocessor. The CPU has a limited amount of
Random Access Memory (RAM), usually only some kilobytes and less than 1MB of
flash for the firmware.
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• Sensors
Nodes in a WSN are typically used to measure and report something of their physical
environment. This includes, but is not limited to the connection of sensors to mea-
sure temperature, humidity, pressure, light, speed, distance, vibration, orientation,
magnetism, audio and video.

• Redundancy
A node might fail due to various reasons, such as production errors, software failures,
running out of battery or physical damages due to environmental impact. For ex-
ample, the case might not be perfectly water proof which leads to short circuits and
corrosion [2]; a faulty battery might leak due to high temperature impact; vibrations
might force soldered components to dislocate.
Therefore, deploying some redundant nodes, at least to have multiple options while
routing data is important. The routing protocol is then able to select from multiple
nodes and paths to reach the sink even if one node fails or is not able to communicate
due to interference.

2.2 Hardware

All the implementation and evaluation presented in this thesis is performed on real hard-
ware in a testbed located in Graz, Austria. The sensor node and testbed used are described
next.

2.2.1 TelosB / Tmote Sky

This thesis uses MTM-CM5000-MSP sensor nodes which are manufactured by Maxfor and
sold by Advanticsys1. This node is based on the famous open source TelosB / Tmote Sky
designed by University of California, Berkeley.
The Tmote Sky features a Texas Instruments (TI) MSP430 µC, a CC2420 radio, integrated
sensors to measure temperature, humidity and light. Further it has a built in FTDI USB-
To-Serial converter that allows a direct connection to a PC for debugging and firmware
upgrades. Figure 2.2 shows the used MTM-CM5000-MSP replica of a Tmote Sky node.
The typical operating conditions are shown in Table 2.1.
A simplified block diagram of the mote is shown in Figure 2.3. The most important
components are:

• CPU: TI MSP430 F1611
The TI MSP430 F1611 is a 16-bit RISC mixed signal microcontroller [30]. It has
48 kB of program flash memory and 10 kB of RAM. The operating frequency is up
to 8MHz. Integrated peripherals include an analog-to-digital converter (ADC), two
Serial Peripheral Interfaces (SPIs), Inter-Integrated Circuit (I2C), two universal asyn-
chronous receiver/transmitters (UARTs) and two 16-bit timers.
To reprogram the µC in system a bootstrap loader (BSL) is included, which allows
writing of a new user application using the UART interface. A free and open source
toolchain based on the GNU Compiler Collection (GCC) is available.

1http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
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Figure 2.2: MTM-CM5000-MS, a TelosB / Tmote Sky replica.

MIN NOM MAX UNIT
Supply voltage 2.1 3.6 V
Supply voltage during flash programming 2.7 3.6 V
Operating free air temperature −40 85 ◦C
Current Consumption: µC on, Radio RX 21.8 23 mA
Current Consumption: µC on, Radio TX 19.5 21 mA
Current Consumption: µC on, Radio off 1800 2400 µA
Current Consumption: µC idle, Radio off 54.4 1200 µA
Current Consumption: µC standby 5.1 21.0 µA

Table 2.1: Typical Operating Conditions (Source: [24]).

Five power-saving modes allow the ultra low power CPU to reduce its energy con-
sumption depending on required functionality. An interesting feature for WSN is the
possibility to wake-up from standby mode in less than 6 µs.

• Radio: TI CC2420
The Tmote Sky’s radio is a TI CC2420 2.4GHz IEEE 802.15.4 ZigBee-ready RF
transceiver [31]. The radio handles the physical and some parts of the Media Access
Control (MAC) layers of the IEEE 802.15.4 standard. The maximum achievable data
rate is 250 kbps.
The radio operates in the 2.4GHz band and supports the 16 physical channels defined
by IEEE 802.15.4. Each channel has a bandwidth of 3MHz. They are numbered
from 11 to 26. Figure 2.4 shows how the IEEE 802.15.4 / ZigBee channels align with
the Wi-Fi channels.

All the experiments in this thesis will use channel 26, so that the overlap with normal
Wi-Fi and the radio interference is minimized.
The CC2420 has the possibility to select its transmission power from 32 different
levels. The current consumption while transmitting depends on the selected trans-
mission power. Table 2.2 lists the different power levels, its expected output power
and current consumption while transmitting. The Tmote Sky includes a PCB An-
tenna and an optional SMA connector for an external antenna.
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Figure 2.3: A simplified block diagram of a Tmote Sky.
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Figure 2.4: IEEE 802.15.4 / ZigBee channels compared to Wi-Fi channels in the 2.4GHz
band. (Source: [26]).

The connection between the µC and the CC2420 is established using SPI and some
general-purpose input/outputs (GPIOs).
To estimate the link quality, the CC2420 includes two hardware indicators. The link
quality indicator (LQI) gives a numeric value between 60 and 110 where 60 means
a poor link and 110 a good one. The LQI is not used in this thesis. The other
indicator is the received signal strength indicator (RSSI). Here the energy of the
packet received is measured and reported as number between 128 and −128 dBm,
but typically a value between 0 and −95 dBm is expected. A higher RSSI indicates
a stronger signal and thus a better link. The RSSI can also be measured any time
to determine the current noise floor or that currently a packet from another node is
transmitted.

• Sensors: Temperature, Light (2x), Humidity, Buttons
The Tmote Sky includes a combined temperature and humidity sensor (SHT11) built
by Sensirion, as well as two light sensors built by Hamamatsu measuring the total
solar radiation (S1087-01) and the other one only the photosynthetic active radiation
(S1087) respectively. Beside the sensors, there is also one user programmable button
and a reset button.
This thesis does not use any of the sensors, as the focus is on the communication
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PA_LEVEL Output Power [dBm] Current Consumption [mA]
31 0 17.4
27 −1 16.5
23 −3 15.2
19 −5 13.9
15 −7 12.5
11 −10 11.2
7 −15 9.9
3 −25 8.5

Table 2.2: Output power settings and typical current consumption of the CC2420 radio
(Source: [31]).

rather than measuring something specific.

• External Flash
The Tmote Sky nodes also include an external 1024 kB Flash, the ST M25P80. It
is connected over SPI to the µC and can be used to store for example measurement
data. The flash is not used in this thesis.

• USB-Serial Converter
To convert the UART signals to Universal Serial Bus (USB), a FTDI FT232BM chip
is mounted. This IC provides a virtual COM device to the connected PC. The USB
connector is also used to power the board when no batteries are present.
The USB connection can be used to either program a new firmware using the BSL
or to read and write debug messages from nodes the application code.

2.2.2 Experimentation on Testbeds

This thesis studies RPL on real hardware, to test on a large scale, using a testbed is a good
idea. There are several locations which can be used to test on a larger scale. The public
testbeds typically have an online reservation and test management system. The terms and
conditions of each testbed are different, but in general they are free to use for research
purposes.
In a testbed, the nodes are connected either directly, or via special hardware to a central
server using a back channel such as the USB connection of the Tmote Sky. The server allows
for new firmware distribution and collection of log files. This allows for faster program-
compile-run-cycles compared to when each node would be programmed separately.
Following next is a list of testbeds that were considered for this thesis, as they are all
based on Tmote Sky or similar nodes. Some testbeds are not available any more, but were
referenced in other publications on WSN. A more comprehensive survey on testbeds can
be found under [17].

• MoteLab
MoteLab was one of the first public available testbeds. It was built at the Harvard
University and first published in 2005 [33]. It consisted of about 190 Tmote Sky
sensor nodes. The testbed is currently not available, the future status is unknown.
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The last time the homepage was reachable, according to the Internet Archive was in
20122.

• NetEye
NetEye was a testbed at the Wayne State University that featured 130 Tmote Sky
nodes [28]. It was published in 2008, but registration3 is not possible any more. It
is also officially considered unavailable.

• Kensei / KanseiGenie
The Kansei testbed provided 384 Tmote Sky nodes, but is also not connected any-
more4. It was first published in 2006 [1] and built at the Ohio State University.

• Wisebed
The Wisebed was a project to connect multiple testbeds using a federated web API [7]
that ended in 2011. The project connected nine testbed which could then be accessed
using the same interface5. When starting with this thesis, the testbed located at the
University of Lübeck (UZL) still provided access to around 54 Tmote Sky nodes.
The reservation and test management could be made either using a Web interface or
automated using a command-line interface (CLI). Also the output of each node could
be read in real time or collected after the test had finished. Only some initial tests
learning the interface could be performed, then the testbed had technical problems
and is now not available anymore.

• Indriya
This testbed located in Singapore provides access to about 100 Tmote Sky nodes
across three floors [8]. The reservation and scheduling of tests is controlled using
a Web interface6. Access to the log files is possible using a direct connection to a
MySQL database. The tests are limited to 30min per day. As this is very limiting,
this testbed was not used as part of this thesis.

• TWIST
The TWIST testbed is developed at the Technische Universität Berlin and provides
access to 102 Tmote Sky nodes [16]. The Web interface7 allows to book the testbed
for a maximum of 48 hours per week. The configuration is then performed either
online or through the use of a CLI. They are focused on running TinyOS applications,
but running a Contiki application is also be possible, but requires changes to the serial
output, as the TinyOS SerialForwarder is used by default.

• FIT/IoT-LAB / SenseLAB
The FIT IoT-Lab8, renamed from SenseLAB [9], is a large-scale Internet of Things
testbed which connects six individual testbeds to one large federated tested featuring
about 2700 nodes. All the testbed sites are located in France. Experiments are either

2https://web.archive.org/web/20120106040115/http://motelab.eecs.harvard.edu/index.php
3http://neteye.cs.wayne.edu
4http://kansei.cse.ohio-state.edu/KanseiGenie
5http://wisebed.eu
6https://indriya.comp.nus.edu.sg
7https://www.twist.tu-berlin.de
8https://www.iot-lab.info

https://web.archive.org/web/20120106040115/http://motelab.eecs.harvard.edu/index.php
http://neteye.cs.wayne.edu
http://kansei.cse.ohio-state.edu/KanseiGenie
http://wisebed.eu
https://indriya.comp.nus.edu.sg
https://www.twist.tu-berlin.de
https://www.iot-lab.info
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managed using a Web interface or CLI tools. The testbed allows measuring the
voltage and current consumption of each node during an experiment. They feature
different processor architectures, but no Tmote Sky nodes. Their WSN430 node uses
the same µC and radio as a Tmote Sky and a port for Contiki exists, but to use a
single platform for consistency, this testbed will not be used.

• FlockLab
The FlockLab is located at the ETH Zürich [22]. It provides specialised nodes, called
observers, which allows tracing of signals and measuring the power consumption in
real time. The observer hardware allows connection of up to 4 different nodes using
custom made target adapter. Currently, each observer has at least one Tmote Sky
attached, so tests on Tmote Sky nodes can be performed. Most nodes are located
indoors, but some of them are also outdoors. The testbed has about 30 observer
which can be reserved using a web interface.9 The test management happens through
the creation of a XML file which is then uploaded. There are also some CLI tools
provided, which allow automated reservation and provisioning of the nodes. The
output of the nodes debug interface is collected across all observers and stored in a
single file.

• TempLab
The TempLab is located at the University of Technology in Graz [5]. It is not available
for general public use, but access to it can be requested. The testbed consist of two
rooms, called LAB North and LAB South. The LAB North has 60 Tmote Sky nodes,
numbered from 100 to 159. Whereas the nodes from 136 to 159 are position close
together in one corner, the other nodes are spread across the room according to the
map shown in Figure 2.5. Each of the nodes in the LAB North uses the PCB antenna
to communicate. The LAB South has 17 Tmote Sky nodes distributed in a similar
fashion to the LAB North, but they use an external antenna connected to the SMA
connector. This increases the received signal strength of received packets and, as the
nodes are quite close to each other, even with a low transmission power all the nodes
are connected directly.
This thesis uses only the LAB North with the PCB antenna because to test RPL
properly, a multi hop network needs to be formed where not all nodes are directly
connected.
To access the testbed, it is required to establish a Secure Shell (SSH) connection to
the personal computer (PC) located in the lab. Every node is connected to this PC
via USB. This connection is established either directly or by means of USB-Hubs
and Ethernet-to-USB extender cables.
The testbed provides three scripts that are used to control an experiment:

– experiment_start.sh
This script starts a new experiment: first it checks if the testbed is already used,
and, if not, the testbed is reserved for the current user.

– experiment_stop.sh
This script is used to stop a reservation. If the testbed is used by the current
user, it is then released and available again for other users.

9https://www.flocklab.ethz.ch

https://www.flocklab.ethz.ch
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Figure 2.5: Map of the TempLab LAB North testbed.

– experiment_list.sh
This script lists the current user of the testbed and also the history of the last
10 reservations.

As each node is connected using USB, the FTDI USB-Serial-Converter allows direct
access of the UART interface of the Tmote Sky node. The same tools as if the nodes
would be connected directly to the developers PC can hence be used (see Section 2.3
for further details). To simplify the access, each Tmote Sky, which is identified by
its serial number by the operating system (OS), is mapped using a udev rule to a
device under /dev/mote⁎ to its corresponding node id. The nodes 100 to 159 from
the LAB North are mapped to /dev/moteN0 . . . /dev/moteN59, the nodes in the LAB
South from node ID 200 to 216 are mapped to /dev/moteS0 . . . /dev/moteS16.
To control collecting data from the nodes, the testbed provides another three scripts:

– traces_start_tty.sh
This script starts a new collection of the nodes debug output. For each node,
a separate serialdump process is created that logs the received UART data to
one text file.

– traces_close_tty.sh
This script is used to close a trace: every serialdump process is killed and the
text files are moved to a new directory under the traces folder.

– traces_remove_tty.sh
To discard the traces this script can be used: in a similar fashion as the previous
script, this script kills all the serialdump processes, but then deletes all the
recorded text files.
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2.3 Contiki OS

As an operating system for Wireless Sensor Network the open source Contiki OS10 was
chosen. It has really good support for the Tmote Sky nodes and is also widely used for
networked embedded system. The OS is written in C and includes everything needed to
create a network of nodes build on RPL and 6LoWPAN.
The project was started in 2002 by Adam Dunkels and is still under active development11.
Contributions to the code base are made by a high number of individual developers and
also some companies such as TI and STMicroelectronics.
It is designed to run on a multitude of platforms and processor architectures. The sup-
ported processor architectures range from ARM, AVR, x86 to more exotic ones such as
6502 and Z80, of course also the MSP430 is supported as used in the Tmote Sky nodes.
The lightweight uIPv6 Stack supports Internet Control Message Protocol (ICMP), User
Datagram Protocol (UDP) and Transmission Control Protocol (TCP) connections with
low memory and flash consumption of approximately 11 kB according to [32].
Contiki has a flexible build and configuration system built on make. Many configuration op-
tions, implemented as C preprocessor definitions, can be changed by defining them directly
while building, in the Makefile or in a custom project-conf.h.

2.3.1 Protothreads

Contiki implements lightweight event driven threads, called protothreads [12]. In compar-
ison with a traditional multi-threaded architecture, these threads do not have a separate
context-stack for each thread to save the current working state. This is important, as de-
vices used in a WSN only provide a limited amount of memory. The protothreads extend
the concept of a state machine, but provide additional C macros to simplify the implemen-
tation. Beside not using stacks, the threads are also non-preemptive, thus the application
needs to cooperatively suspends its execution, so that the scheduler can activate another
thread. The Listing 2.1 show an example protothread which prints Hello World!\n" every
1 s. It starts by creating a new Contiki process called hello_world_process that is added
to the list of autostarted processes. The processes in this list get started from the main
automatically when the system boots, thus no other file needs to be modified. The process
creates a static variable et to store the state of a timer (etimer) that triggers an event
after its scheduled time has passed. Defining the variable as static is important to not
create it on the local call stack which is discarded upon waiting for the event.
The main parts of this protothread are:

• PROCESS_BEGIN(): it marks the beginning of a protothread.

• PROCESS_WAIT_EVENT_UNTIL(): it is used to wait for an event to happen. This exits
the function and returns to the kernel/scheduler, which is then able to processes
another process. If an event is triggered the execution continuous after this function.
There exist also other function which “yield" and return back to the kernel/scheduler.

• PROCESS_END(): it marks the end of a protothread.
10http://www.contiki-os.org
11https://github.com/contiki-os/contiki

http://www.contiki-os.org
https://github.com/contiki-os/contiki
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1 PROCESS(hello_world_process , "Hello world process");
2 AUTOSTART_PROCESSES (& hello_world_process);
3
4 PROCESS_THREAD(hello_world_process , ev, data)
5 {
6 PROCESS_BEGIN ();
7 static struct etimer et;
8
9 while (1) {

10 etimer_set (&et, (CLOCK_SECOND));
11 PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&et));
12 printf("Hello world!\n");
13 }
14
15 PROCESS_END ();
16 }

Listing 2.1: Print "Hello World!\n" every 1 s.

1 static char process_thread_hello_world_process(struct pt ⁎process_pt ,
↪→ process_event_t ev, process_data_t data);

2 struct process hello_world_process = { NULL , "Hello world process",
↪→ process_thread_hello_world_process };

3 struct process ⁎ const autostart_processes [] = {& hello_world_process , NULL};
4
5 static char process_thread_hello_world_process(struct pt ⁎process_pt ,

↪→ process_event_t ev, process_data_t data)
6 {
7 char PT_YIELD_FLAG = 1;
8 if (PT_YIELD_FLAG) {;}
9

10 switch (( process_pt)->lc) {
11 case 0:
12 static struct etimer et;
13
14 while (1) {
15 etimer_set (&et, (CLOCK_SECOND));
16
17 PT_YIELD_FLAG = 0;
18 (process_pt)->lc = __LINE__; case __LINE__:
19 if(( PT_YIELD_FLAG == 0) || !( etimer_expired (&et))) {
20 return PT_YIELDED;
21 }
22
23 printf("Hello world!\n");
24 }
25 };
26
27 PT_YIELD_FLAG = 0;
28 (pt)->lc = 0;
29 return PT_ENDED;
30 }

Listing 2.2: “Hello-World” application with expanded protothread macros.
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These protothread macros simplify the implementation. To better understand the principle
of using a switch() statement to control program flow, another version of this example is
created. Listing 2.2 shows a version where the macros are expanded.
The (process_pt)->lc variable is used for so called “local-continuation". This exploits
the fact that C allows “jumping" in and out of other blocks like while and if using the
switch()/case statement. The PROCESS_WAIT_EVENT_UNTIL macro remembers the current
code line (__LINE__) and returns from the function if the condition is not yet met. The
next time this thread executes, the execution continues at the previously saved line by
switching to the corresponding case statement and checking the condition again.
This behaviour also makes it clear that variables defined at the local call stack are discarded
upon calling a WAIT function, as this effectively returns from the function. Special care
needs to be taken when using switch() statements in a protothread, as it is not allowed
to call any protothread related wait function inside of another switch() as a new case
would be generated for the nested switch() statement instead of the intended one. As the
local continuation variable lc in Contiki uses a 16 bit type, the memory overhead for each
thread is only 2 bytes plus some storage in the management list of all processes.

2.3.2 Energest

To assist in the development of low-power systems, Contiki includes a software based
energy estimator (Energest). This helps to determine in which parts of the application
code most energy was spent. The principle is to count the time spent while a certain
software or hardware module is active and then calculate the energy and power using
known constants for the corresponding current usage. As the current consumption of each
component was only measured once, Energest only gives a rough estimation compared to
really measuring the energy using a professional hardware device. The results, however,
still allow a comparison between different experiments and give a quantitative idea of the
energy-efficiency of a program.
For this thesis, the following Energest counters and current reference values are of interest:

• LISTEN - 20.0mA
The time spent while listening for and receiving a packet.

• TRANSMIT - 17.7mA
The time spent transmitting a packet.

• CPU - 1.8mA
The time spent while the CPU is active.

• LPM - 0.0545mA
The time spent while the CPU is idle and in low power mode.

The values are only valid for the Tmote Sky nodes used. To calculate the electrical power
also the operating voltage needs to be known, the typical voltage of a Tmote Sky is 3.3V.
The Energest statistics are enabled by default (ENERGEST_CONF_ON), to access them the
easiest method is to print the values periodically. The print_stats() from print-stats.c
is already provided and just needs to be called periodically. In the example in Listing 2.3
the statistics are printed every 10 s.
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E 0.18 clock 10 cpu 22668 lpm 306722 irq 16578 gled 0 yled 0 rled 0 tx 0
↪→ listen 7538 sensors 0 serial 0

E 0.18 clock 20 cpu 60966 lpm 596104 irq 32466 gled 0 yled 0 rled 0 tx 1934
↪→ listen 16464 sensors 0 serial 0

E 0.18 clock 30 cpu 86600 lpm 898150 irq 48918 gled 0 yled 0 rled 0 tx 2053
↪→ listen 23839 sensors 0 serial 0

Listing 2.3: Sample output of Energest every 10 s.

Each line starts with an E followed by two bytes of the nodes link address. Thereafter
follows the current system runtime in seconds and then a counter value for each measured
energy category. These counter values are determined using Contiki’s fine grained RTIMER,
where one tick typically corresponds to 30.5 µs (RTIMER_SECOND = 32,768Hz).
To determine the average power consumption in the last 10 s, first the counter values need
to be subtracted. The sum of CPU and LPM should then correspond to 10 s whereas the
other counter values indicate the corresponding time the function was active during this
period.

tLISTEN = tLISTEN2 − tLISTEN1 = (23839− 16464)/32,768Hz = 0.225 s (2.1)
tTRANSMIT = 0.004 s (2.2)

tCPU = 0.782 s (2.3)
tLPM = 9.218 s (2.4)

t = tCPU + tCLPM = 10 s (2.5)

After the time of each component is computed, the next step is to estimate the energy and
the average power for this time period.

ELISTEN = tLISTEN · 20.0mA · 3.3V = 14.85mJ (2.6)
ETRANSMIT = tTRANSMIT · 17.7mA · 3.3V = 0.21mJ (2.7)

ECPU = tCPU · 1.8mA · 3.3V = 4.65mJ (2.8)
ELPM = tLPM · 0.0545mA · 3.3V = 1.66mJ (2.9)

PLISTEN = ELISTEN/t = 1.49mW (2.10)
PTRANSMIT = 0.02mW (2.11)

PCPU = 0.46mW (2.12)
PLPM = 0.17mW (2.13)

When looking at the results, they show that a lot of energy is used while listening on
the radio, whereas actually transmitting is not so much. Energest allows to get a good
overview where energy is spent and will be used in this thesis to compare the efficiency
of the protocols and applications under different conditions, such as radio interference
intensities.
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2.3.3 Networking stack

The Contiki networking stack as shown in Figure 2.6 consists of multiple layers. Each of
them can be configured to a different implementation by changing a C preprocessor define.

Figure 2.6: The Contiki networking stack (Source: LAC-Labor Lecture Slides).

The layers are as follows:

• Application Layer
The application layer sits on top of the other layers and is implemented by the user.

• Network stack - NETSTACK_CONF_NETWORK
This thesis uses the IPv6 network protocol, which also includes 6LoWPAN and RPL.

• MAC protocol - NETSTACK_CONF_MAC
This layer defines the used MAC protocol. This thesis uses the default carrier sense
multiple access (CSMA) implementation which handles multiple retransmissions with
an exponential backoff to better avoid collisions.

• radio duty-cycling (RDC) protocol - NETSTACK_CONF_RDC
The radio duty-cycling protocol used in this thesis is ContikiMAC (described in Sec-
tion 2.4.3).

• Radio driver - NETSTACK_CONF_RADIO
The Tmote Sky has a CC2420 radio, so the CC2420 radio driver is used.

• Packet format conversion - NETSTACK_CONF_FRAMER
As this thesis operates on a IEEE 802.15.4 network, also the packet framer for this
protocol is used.

Each layer provides a set (struct) of callback functions. The layers then call the corre-
sponding functions to achieve the desired result.
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2.3.4 Working with Contiki

To start working with Contiki the latest source code can be obtained from GitHub using
git and the command in Listing 2.4.

$ git clone https :// github.com/contiki -os/contiki.git contiki

Listing 2.4: GIT clone of the contiki repository.

After this step, compiling and uploading an example application can be performed as
follows. To successfully compile for the Tmote Sky a MSP430 gcc is needed. On macOS,
the simplest way to install an MSP430 compiler is using a Homebrew12 formula. Homebrew
is a package manager designed for macOS which simplifies installation of various command
line tools. The Listing 2.5 installs the msp430-gcc which is then used by Contiki OS.

$ brew install sampsyo/mspgcc/msp430 -libc && \
$(brew --prefix)/Library/Taps/sampsyo/homebrew -mspgcc/addlinks.sh

Listing 2.5: Install the msp430-gcc using brew.

To build the IPv6 RPL UDP example the commands in Listing 2.6 can be used. First
change to the corresponding example folder and then execute the make command.

$ cd contiki/examples/ipv6/rpl -udp
$ make TARGET=sky PERIOD =10

Listing 2.6: Building the rpl-udp example.

After this step, the build system creates two firmware images: (udp-client.sky) and
(udp-server.sky). The UDP client sends a packet every 10 s to the UDP server. The
server also functions as RPL root starting to create a routing tree. Before the executables
are uploaded to the nodes, the command in Listing 2.7 allows to determine which nodes
are connected to the developer’s computer.

$ make TARGET=sky motelist
../../../ tools/sky/motelist -macos
Reference Device Description
---------- --------------------------- ----------------------------------
FTYLN1ME /dev/tty.usbserial -FTYLN1ME (none)
FTYLN2UP /dev/tty.usbserial -FTYLN2UP (none)
FTYLN2XL /dev/tty.usbserial -FTYLN2XL (none)
FTYLN3EE /dev/tty.usbserial -FTYLN3EE (none)

Listing 2.7: Printing a list of connected nodes.

Using the ⁎.upload target of the Makefile the executable can be uploaded to the connected
nodes. First the client application is uploaded to all nodes. In a second step, the server
is uploaded to the first node. The last command of the Listing 2.8 starts the serialdump
utility to display the received log messages from the first node. This will then display the
received messages at the server send from the other three nodes.

$ make TARGET=sky udp -client.upload
$ make TARGET=sky udp -server.upload MOTE=1
$ make TARGET=sky login MOTE=1

12http://brew.sh

http://brew.sh
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...
DATA recv ’Hello 10 from the client ’ from 222
DATA recv ’Hello 11 from the client ’ from 222
DATA recv ’Hello 12 from the client ’ from 222

Listing 2.8: “Login" to a node using the serialdump utility.

2.4 Protocols used in this thesis

This section describes the protocols used in this thesis. In Section 2.4.1 an introduction
to IPv6 and 6LoWPAN is provided, the Section 2.4.2 introduces the routing protocol for
low-power and lossy networks (RPL). In Section 2.4.3, ConikiMAC, Contiki OS’s default
RDC protocol that is also used by in this thesis is presented.

2.4.1 IPv6 and 6LoWPAN

Using IP communication on a sensor node is a good idea as this is a well known and in
general, on conventional PCs, good supported protocol. It also removes the need of a
protocol translator if the node wants to store data to an IP connected server [32]. As
the number of internet connected devices is rapidly growing and the IPv4 address space
is quite limited, using IPv6 as a base for the nodes communication will solve this problem
by using 128 bit addresses.
To get a basic understanding of IPv6 looking a the protocol header in Figure 2.7 is a good
starting point.

Version Traffic class Flow label

Payload length Next header Hop limit

Source address

Destination address

Figure 2.7: IPv6 packet format (Source: [32]).

The packet header has a length of 40 bytes consisting of multiple fields. The version field
(4 bit) has for IPv6 always the value 6. The traffic class (8 bit) is used to offer a different
quality of service (QoS) to some types of traffic, such as to prioritized Voice over IP (VoIP)
communication. The flow label (20 bit) is still a mostly experimental flag to indicate a
sequence of packets that require a specific handling. The payload length (16 bit) indicate
the number of bytes in the payload, but excluding the length of the header. The next
header field (8 bit) indicates the header type that immediately follows the IPv6 header.
This allows for a flexible daisy chaining of optional extended headers such as routing, hop-
by-hop options or authentication. The last next header field in a chain would then indicate
the protocol of the payload such as TCP, UDP or ICMP. The next field is the hop limit
(8 bit) which is decremented each time a nodes forwards the packet. Upon reaching 0 the



CHAPTER 2. BACKGROUND 34

packet is discarded. The last two field are the source and destination addresses (128 bit
each) which contain the IPv6 addresses of the sender or destination, respectively.
IPv6 mandates the support for a maximum transmission unit (MTU) of 1280 bytes. As the
MTU of an IEEE 802.15.4 link is 127 byte (practically even less due to the MAC header
overhead), implementing IPv6 inevitably leads to the need of packet fragmentation and
reassembly. An IPv6 header with 40 bytes would also use a large portion of the limited
payload size. To still support IPv6, the IETF started to work on an adaptation layer
called 6LoWPAN which is specified in RFC 494413. This layer is especially designed for
IEEE 802.15.4 links as it enables a strong header IPv6 header compression by eliminating
redundant informations. The three main services which are provided by 6LoWPAN are
packet fragmentation and reassembly, header compression and link layer forwarding when
using multiple hops. The 6LoWPAN encapsulation header stack is shown in Figure 2.8.

IEEE 802.15.4 

PreamblePHY Link layer frame payload

4 bytes 1 byte 0–127 bytes

SFD Length

1 byte

Start of frame delimiter (1 bit for address
format, 7 bits of frame length)

MAC

2 bytes

Frame
control

Seq #

1 byte

Addressing field Data payload FCS

2 bytes0 to 20 bytes

Security
header

0 to 21 bytes

6LoWPAN
encapsulation
header stack

IPv6 header
compression

IPv6 payload

Fragment
header

IPv6 header
compression

IPv6 payload

Mesh addr
header

IPv6 header 
compression

IPv6 payload
Fragment

header

Figure 2.8: 6LoWPAN encapsulation header stack (Source: [32]).

To compress the IPv6 header, some field with known or unused values such as the version,
traffic class and flow label can be easily omitted. Other fields such as the payload length
can be removed as they can be reconstructed from the IEEE 802.15.4 packet length field.
Reducing the source and destination address is possible by using the MAC layer addressing
field and combining it with a prefix. The specification for the latest header compression
called LOWPAN_IPHC can be found in RFC 628214.
The Contiki implementation of 6LoWPAN was originally developed as part of the SIC-
Slowpan project at the Swedish Institute of Computer Science from August 2008 to April
2009. The aim of the project was to develop the first open source implementation of IPv6 of
the low-power IEEE 802.15.4 radio layer [10]. The resulting implementation of the uIPv6
stack and SICSlowpan can be found in core/net/ipv6.

13https://tools.ietf.org/html/rfc4944
14https://tools.ietf.org/html/rfc6282

https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282
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2.4.2 RPL - Routing Protocol for Low Power and Lossy Networks

To forward messages from individual nodes to a central sink, over multiple hops, a routing
protocol needs to be employed. The traditional protocols used in the internet backbone
are not suitable for a WSN. Packet drops on lossy links, as prevalent in WSN, are very
likely, failures due to interference are often only transient. The sleeping behaviour and
limited bandwidth of a typical node also requires special attention.
To work on routing in WSNs the IETF formed a working group called Routing Over Low-
power and Lossy networks (ROLL) with the latest aim to develop and specify a new routing
protocol called routing protocol for low-power and lossy networks (RPL). The specification
for this protocol can be found in RFC 655015. It incorporates the special characteristics
found in a WSN.
RPL is a distance-vector algorithm that builds a destination oriented directed acyclic graph
(DODAG). A graph in which all the paths have a direction and do not form any cycles
is called directed acyclic graph (DAG). A DODAG is a special form if there exists a path
from every node to one special node called sink or DODAG root.

S

Figure 2.9: A example RPL DODAG is created by using the black solid paths.

Figure 2.9 shows an example of a DODAG if only the black solid paths are used. The
red dashed path forms a cycle which breaks the DAG requirement. The direction of the
blue dotted path is valid for a DAG but the direction needs to be changed to get a valid
DODAG as otherwise this node would not have a path to the DODAG root.
To build this graph, RPL defines three additional ICMP messages. The DODAG informa-
tion object (DIO) is broadcasted by a node periodically and contains the nodes rank and
other DODAG characteristics. A node may solicit a DIO by sending a DODAG information
solicitation (DIS) message to its neighbours. This is useful for newly activated nodes to
quickly join the DODAG as the periods of the DIS messages increases as long as the graph
is stable. The third message is the destination advertisment object (DAO) and it is sent
from a node to its parent (ancestor) to populate their routing tables with the informations
gathered by other DIO and DAO messages. To describe its logical position in the DODAG
each node has a rank. The rank decreases the closer a node is to the RPL root, which has
a rank of 0. This rank is primarily used for loop-avoidance, as only selecting another node
with a rank smaller than its own is allowed. The rank of a node is derived from a routing
metric. The metric calculation is performed by an objective function. An objective func-

15https://tools.ietf.org/html/rfc6550

https://tools.ietf.org/html/rfc6550
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tion (OF) combines multiple metrics and constraints to find a minimum cost path. The
simplest OF tries to minimize the hop count, it is defined as objective function 0 (OF0) in
rpl-of0.c. The other metric used in this thesis is based on expected transmission count
(ETX). This OF minimizes the number of transmissions to reach the sink, this is similar
to OF0 but also considers the number of transmission between two nodes as an added link
metric. The Contiki OS implementation of an ETX based OF is called minimum rank with
hysteresis objective function and is implemented in rpl-mrhof.c.

2.4.3 ContikiMAC

ContikiMAC is the default radio duty-cycling (RDC) protocol used in Contiki OS [11]. As
this thesis focuses on the routing layer only, the default protocol is used.
Radio duty-cycling is a method to reduce the energy consumption of a node by turning the
node’s radio on only periodically and keeping it off the rest of the time. To still be able to
communicate with other nodes, every node needs to operate using the same RDC protocol
with the same parameters. In a basic implementation as shown in Figure 2.10, the receiver
has a periodic reception window during which the radio is turned on. If the sender wants to
transmit a packet D, it repeatedly transmits D as long as no acknowledgment (ACK) A has
been received. If A has not been received for a period longer than the reception interval,
the transmitter stops transmitting and the packet is marked as lost. The CSMA-MAC
layer will then care of resending.

DD D A

AD

D

A Acknowledgement packet

Data packet

Reception window

Send data packets until ack received

Sender

Receiver

Transmission detected

D

Figure 2.10: Basic communication schema of ContikiMAC protocol (Source: [11]).

The protocol does not use any special strobing packets or agreements as in X-MAC [6]; the
payload is sent directly and link layer ACKs are used to indicate a successful transmission
in order to simplify the implementation.
In ContikiMAC, to minimize the radio-on-time, after turning the radio on, a fast CCA check
is performed. If there is something in the air, the radio is kept on for a longer period, as
there might be some data coming in. In the current implementation the threshold at which
a signal is considered is fixed just above the noise floor.

Phase lock

To further minimize the energy consumption, ContikiMAC implements a phase lock mech-
anism. By keeping track of the time when a packet was sent successfully, a node learns the
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wakeup interval of the other node. This allows the node to start sending just before the
reception window of the other node as shown in Figure 2.11.

D A

AD

D

A Acknowledgement packet

Data packet

Reception windowSender

Receiver

Transmission detected

Send first data packet when receiver is known to listen

D

Figure 2.11: ContikiMAC with enabled phase lock (Source: [11]).

This mechanism works quite well, but also requires careful timing. If there are longer
periods in which a nodes is not sending, their clocks might drift apart and fall out of
synchronization. This might lead to higher energy consumptions as more packets have to
be transmitted.
The current implementation of the phase lock mechanism in phase.c is also quite sensitive
to added debug output using printf. During development some added debug statements
led to a complete internal lock up, as no messages were sent. When sending a message the
implementation calculates in the phase_wait() function, the time needed to wait until the
receiver wakes up. Depending on the time needed to wait, the code will either wait in a
busy-loop until the correct time is reached or “defer" sending the message using a callback
timer (ctimer). After this timer expires a new attempt to send the message is performed,
calculating again the time needed to wait. If this timer fires too late, the calculation may
defer the sending again as the current wakeup cycle is missed. Firing too late may happen
due to a longer execution time either while calculating the needed waiting timer or between
calculating the next timeout value and actually starting the timeout.
Adding additional debug statements may lead the code to “defer" always, as the next cycle
will always be missed. Missing cycles and deferring more than once also happen without
added debug statements but seldom more than twice. This does not cause a lock up but
increases the latency. As a solution to this problem incorporating the execution time in
the calculation was tried however this did not yield the expected results.

Clear channel assessment

The CCA in Contiki OS is used both when sending and also when receiving a message. It
is always used if there is the need to know if the radio channel is occupied by any other
sender. The actual assessment is performed by the CC2420 radio chip. The radio chip
sets the CCA pin if the measured received energy (RSSI) is below a configurable threshold
(RSSI.CCA_THR).
Before sending a message the CCA pin is checked to assure the channel is free. On the
other hand ContikiMAC checks the CCA pin with the defined Channel Check Rate (CCR)
to determine if anything receivable might be in the air. If a signal above the CCA threshold
is detected the radio is kept on for a longer period to either receive the current packet or
the next retransmission. The CC240’s default value for this threshold is −77 dBm.
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2.5 Radio interference

In general, interference is called the situation in which an undesired effect negatively affects
the operation of a device. This thesis deals only with radio interference where the reception
of a radio signal is badly affected by another signal. Other environmental effects interfering
with WSNs such as temperature or humidity are not considered.
The ability to receive a message correctly depends on the strength of the received signal.
The required strength of the desired signal above the unwanted signal is defined as “Co-
channel rejection". For the CC2420 radio this value is defined as 3 dB. This means, in
order to successfully receive a message, its signal strength needs to be 3 dB above the
interference or the noise floor. This thesis uses the term “noise floor" to the define the
received signal strength of the radio if the is no communication ongoing and thus indicates
the sensitivity of the radio.

2.5.1 Generating interference

To generate interference the CC2420 on Tmote Sky nodes itself can be used. In 2011 a
tool called JamLab was developed to allow the generation of realistic and repeatable in-
terference using the test modes of the CC2420 radio [3]. Using Tmote Sky nodes itself is a
quite novel approach, as it eliminates the need to bring the real interferers into a testbed
and to configure them remotely.
The source to this Contiki application was provided and used to emulate various interfer-
ence patterns. The provided patterns are:

• JL_NOINT: No interference

• JL_MICRO: Microwave oven

• JL_BLUET: Bluetooth

• JL_WIFI1: Wi-Fi radio streaming

• JL_WIFI2: Wi-Fi video streaming

• JL_WIFI3: Wi-Fi file transfer

• JL_WIFI4: Wi-Fi file transfer and radio streaming

• JL_CONTN: Continuous carrier

The Bluetooth and Wi-Fi (802.11b) patterns use prerecorded probabilities where the Jam-
mer is active, while the microwave oven is modelled using a periodic jammer with a certain
period and duty-cycle. The continuous carrier mode turns on an unmodulated carrier for
the whole time. This mode is used to understand how strong each node is affected by the
generated noise with a probability of 100%.
To enable an unmodulated carrier the radio needs to be configured by writing certain test
registers (DACTST to 0x1800, MANOR to 0x0100, MDMCTRL1 to 0x0508, TOPTST to 0x0004 and
STXON). After this, it is possible to turn the carrier on and off by changing the transmission
power.
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In this thesis a JamLab interferer example is used, which allows the configuration of an
jamming “ON" and a jamming “OFF" periods and the jamming pattern at compile time.
To test with multiple configurations, separate test programs need to be build and uploaded
to the nodes.
There are some things to be considered: as the RF output power of a CC2420 radio is
much smaller than those of a Wi-Fi access point (AP) or a microwave oven, directly re-
placing a Wi-Fi AP by a Tmote Sky will influence a much smaller area. This can either
be mitigated by using multiple nodes or by assuming the Wi-Fi AP is far away. Another
thing is that the CC2420 radio can only communicate on a single channel and thus also
only interfere on a single narrow band spectrum, whereas a microwave oven has a much
broader spectrum. This fact can be neglected as the typical communication and also the
communications used in this thesis operate only on a single channel.

2.5.2 Measuring interference

To measure the noise, one can read the received signal strength indicator (RSSI). It can be
read any time as long as the radio is turned on and it is automatically read after a packet
has been received. To determine the noise floor a high number of measurements using
the noise_analyzer are performed. These measurements are then preprocessed using a
histogram-like data structure directly on the node. This reduces the data rate needed to
transfer all measurements using the debug interface. Each read RSSI value gets counted
at its corresponding “bin". After the desired number of values is measured the list gets
printed as shown in Listing 2.9. In this example 73% (14,603) of the 20,000 readings were
at −95 dBm.

Scanning for noise and interference. Estimated waiting time between
↪→ iterations: 640 seconds ...

Noise on channel 26:
-100: 0 (0)
-99: 0 (0)
-98: 0 (0)
-97: 0 (0)
-96: 28 (28)
-95: 14603 (14631)
-94: 5369 (20000)
-93: 0 (20000)
-92: 0 (20000)

...

Listing 2.9: Noise floor measurement on a noide on channel 26.

Reading the value directly from the radios RSSI.RSSI_VAL register returns an 8 bit signed
2’s complement integer [31]. To get the power at the RF pins another offset needs to be
added to this value. This RSSI_OFFSET can be found empirically, but the datasheet states
an approximate value of −45, which is used in this thesis. In recent version of Contiki this
value (45) is added to the readings automatically, but attentions needs to be paid to some
older example which may not yet incorporate this change and then report false readings.
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P = RSSI_VAL+ RSSI_OFFSET [dBm] (2.14)

According to the datasheet the RSSI has a dynamic range of about 100 dB from −100 dBm
to 0 dBm, an accuracy of ±6 dB and a linearity of ±3 dB.
To quickly visualize the current radio spectrum the rssi-scanner Contiki example can be
used. This Contiki application quickly measures the RSSI of the supported spectrum and
also allows passing the collected data to a Java application which then visualizes the data
either in 2D or in 3D.

$ cd examples/rssi -scanner
$ make TARGET=sky rssi -scanner -cc2420.upload
$ make TARGET=sky viewrssi3d

Listing 2.10: Upload the rssi-scanner example and start the 3D visulization.

Example data visualizations are shown in Figure 2.12. The 3D RSSI viewer shows 86
distinct measurements from 2.400GHz to 2.485GHz including the history on a third axis.
Figure 2.12a shows an ongoing Bluetooth communication, where the channel hopping is
clearly visible. In Figure 2.12b a Wi-Fi file stream on the Wi-Fi channel 1 is monitored.

(a) Bluetooth (b) Wi-Fi 802.11g on channel 1

Figure 2.12: 3D visualization of the RSSI of Bluetooth and Wi-Fi.

This thesis uses JamLab as described in Section 2.5.1 and so measurements while generating
noise using JamLab on a Tmote Sky node are of interest. Figure 2.13 shows emulated
interference on channel 26.
The Figure 2.13a shows an emulation of a Wi-Fi file and radio streaming communication
(JL_WIFI4) using 802.11b, whereas Figure 2.13b depicts a continuous enable carrier.

(a) Emulated heavy Wi-Fi (b) Emulated continuous carrier

Figure 2.13: Emulated signals by using JamLab.
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Using the 2D visualization of the RSSI scanner as shown in Figure 2.14 it is possible to
get a feeling for the actual RSSI values. The emulated Wi-Fi in Figure 2.14a creates a
radio signal with around −50 dBm. While no interference is present, the node measures
the noise floor, which indicates the lowest receivable signal strength. For the CC2420 this
values is around −90 dBm as also visible in Figure 2.14b.

(a) Emulated heavy Wi-Fi on channel 26 (b) Noise floor without interference

Figure 2.14: RSSI measurements visualized using the 2D RSSI viewer.

2.5.3 Tracing packets through the network

Following a single packet through the network is not easily possible without modifications.
Logging each forwarded packet at each node also does not guarantee the traceability, as it
is hard to combine this information. By extending the RPL IPv6 header to include every
node the packet travelled as shown in Listing 2.11, it is possible to trace the path of every
single packet. The full list of nodes the packet has passed is printed on every hop. This
allows to even trace lost packets to their last successful hop.

typedef struct uip_ext_hdr_opt_rpl {
uint8_t opt_type;
uint8_t opt_len;
uint8_t flags;
uint8_t instance;
uint16_t senderrank;
#if RPL_ENABLE_TRACEROUTE
uint16_t seq_no;
uint8_t visited_nodes[RPL_VISITED_NODES_BUFFER ];
int8_t rssi[RPL_VISITED_NODES_BUFFER ];
#endif

} uip_ext_hdr_opt_rpl;

Listing 2.11: Extending the RPL header to include tracing data.

The traces also include the RSSI of the packet as it was received: this should help identi-
fying whether the connection between the nodes (and thus the parent selection) was good.
It also contains a per node unique 16 bit sequence number that aids when parsing the logs
of each individual node and to find the longest sequence of hops.
The RPL header is processed by each hop, making it ideal to add this extension. The length
of the header must be a multiple of 8 as stated by the RFC 246016 the length field of the
Hop-By-Hop options header uses a 8-octet unit. Changing only the RPL_HDR_OPT_LEN was
not sufficient as some bugs in Contiki prevented a value greater than 8 (See this PR17).

16https://tools.ietf.org/html/rfc2460#section-4.3
17https://github.com/contiki-os/contiki/pull/1687

https://tools.ietf.org/html/rfc2460#section-4.3
https://github.com/contiki-os/contiki/pull/1687
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A partly working version of this tracing functionality has been provided and was integrated
into the used Contiki source code version.
The debug output of trace at the sink (108) looks as shown in Listing 2.12. The messages
start with the sequence number, followed by the originating node and listing the next hops
including the RSSI in braces.

RPL: travelled 146: 127 (0), 100 (-61), 108 (-80)
RPL: travelled 145: 110 (0), 108 (-76)
RPL: travelled 145: 106 (0), 108 (-70)
RPL: travelled 145: 131 (0), 127 (-77), 100 (-61), 108 (-80)
RPL: travelled 147: 112 (0), 108 (-73)
RPL: travelled 146: 125 (0), 106 (-78), 108 (-70)
RPL: travelled 145: 101 (0), 102 (-75), 112 (-75), 108 (-73)
RPL: travelled 147: 100 (0), 108 (-80)
RPL: travelled 147: 116 (0), 100 (-71), 108 (-80)
RPL: travelled 146: 126 (0), 112 (-76), 108 (-72)
RPL: travelled 146: 115 (0), 106 (-75), 108 (-70)

Listing 2.12: Debug output of the RPL trace functionality.



Chapter 3

Experimental Campaign

A big part of this Thesis involves experimentally evaluating RPL under realistic environ-
mental conditions. The experiments should also show where problematic points are and
whether they can be mitigated.
Multiple properties of the environment affect the radio communication, such as temper-
ature, humidity, and radio interference. The experiments in this Thesis focus on the
influence of radio interference on RPL in general and more specifically on the CCA used
by ContikiMAC to determine if other nodes are currently sending messages.
RPL is designed to be used in lossy networks. Even with high packet loss on the physical
layer, it should be possible to create a stable network. The following experiments try to
confirm this assumption.
Other researchers have already shown that RPL might perform poorly under heavy inter-
ference and also suggest better coordination between network layers [15]. The experiment
in prior work were either run in an emulator such as Cooja, using other objective function,
or on a different RPL implementation (e.g., TinyOS). This Thesis uses the latest Contiki
OS RPL implementation on a real testbed.

The goals of the experiments described in this chapter are:

• Determine the stability and reliability of RPL in a real testbed under various condi-
tions of radio interference.

• Radio interference conditions: None, Light Wi-Fi, Strong Wi-Fi, Constant Carrier.

• Compare metrics between different RPL parameters and network configurations.

• Identify problems in the communication and investigate them further.

To achieve these goals the following methods are used:

• Setup a network of about 30 nodes using Contiki OS’s RPL implementation.

• Generate radio interference using JamLab as described in Section 2.5.

• Collect various metrics as defined in Section 3.1.

• Use existing tools or extend and implement new tools to automate experiments.

43
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This chapter describes the metrics in Section 3.1 and the setup used in Section 3.2 to
test RPL in a real testbed while artificial, but realistic, radio interference is present. This
chapter then continues in Section 3.2.5 describing all the created and used tools to achieve
the results presented starting with Section 3.3.

3.1 Evaluation Metrics

During an experiment several metrics are collected. These metrics should indicate if a
configuration is performing better than another. The following list gives an overview of
the considered and collected metrics:

• packet reception ratio
The PRR is calculated by dividing the number of messages received at the sink by
the number of messages sent. In this thesis the PRR is always calculated from sender
to sink of UDP payload packets, ignoring ICMP control and forwarded packets. A
higher PRR indicates better performance.

• Energy
A lower energy consumption indicates better performance, the energy consumption
is measured using Energest as described in Section 2.3.2. The interesting counts are
the CPU on time as well as radio listening and transmission times. The measurement
should be accurate enough to compare multiple experiments.

• Latency
Packet latency would also be an interesting metric, but it is ignored as it is hard to
measure in the current testbed setup. There is no time synchronisation between the
nodes only the PC time when writing to the log file is available.

• Parent switches
A stable network has a low number of parent switches as “good” parents should be
selected. Each (unnecessary) parent switch wastes energy and lowers the stability
of the network. Packets might need to be retransmitted if the selected parent is
not reachable. This metric records the number of parent switches performed. This
metric is also of high interest while investigating the effects of a periodic jammer.

• Control overhead
RPL uses special ICMP messages to communicate. Counting these messages and
putting them in relation to the number of UDP packets gives an estimation of the
control overhead. The trickle timer used in RPL should decrease the overhead as
the network stabilizes. A jammer might destabilize the network and thus lead to a
higher control overhead.

• Hop count
Implementing a trace functionality as part of a 6LoWPAN extension header allows
following packets throughout the network and also records the number of hops a
packet travelled (one can use this to track down where a packet got lost). More
details of the tracing functionality are described in Section 2.5.3.
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• RPL local and global repairs
Counting the number of local and global RPL DODAG repairs also provides some
information to compare different configurations. A global repair is quite time con-
suming and should be avoided.

• ContikiMAC statistics
Statistics about ContikiMAC are not used directly as a metric, but still collected
to better understand the networks behaviour. The collected metrics as part of the
ContikiMAC statistics are information about sent packets: timestamp, number of
strobes, transmission result (lost, received ACK, collisions before sending, collisions
while sending) and information about received packets: timestamp, length, RSSI.

3.2 Experimental Setup

The experimental setup runs multiple network configurations (RPL and RDC parameters,
network size and radio interference patterns) to collect the results and metrics as described
in Section 3.1.
These configurations are defined in shell scripts in the Source/run-configurations/ folder.
To start one test run the Source/run-iti.sh script is called. This scripts defines all active
run-configurations and their run duration. The typical experiment length is between 30
minutes and one hour. Some of the scripts just measure the noise floor while the jammer
is active using the methods described in Section 2.5.2. Most of the scripts run RPL in a
network as shown in Figure 3.1 consisting of two to 30 nodes.
The built network consists of four types of nodes:
Most of the nodes are Sender -Nodes sending a UDP message to the single Sink -Node every
10 s with a random interval of 10 s. Each Sender -Node also forwards messages from other
nodes, if required by the created RPL tree. The next type is the NoiseAnalyzer -Node.
This node type continuously measures the noise floor.
The fourth type of nodes is the Jammer -Node. It creates radio interference using JamLab
as described in Section 2.5.1. The tests use the following interference patterns typically
present in a smart home application:

• light Wi-Fi (JL_WIFI1) emulating radio streaming.

• light Wi-Fi (JL_WIFI2) emulating video streaming.

• heavy Wi-Fi (JL_WIFI4) emulating file transfer and radio streaming.

• Continuous enabled carrier (JL_CONTN) emulating a Malicious Jammer completely
saturating the channel.

All tests in which a jammer is used the latter is turned on after 5 minutes and kept enabled
until the test finishes. This allows the RPL tree to be formed.
The transmission power used for the jammer is always 11 (−10 dBm) and for the rest of the
nodes participating in RPL it is 4 (−22 dBm) (except where otherwise noted). These values
were chosen empirically as shown in Section 3.2.1 and depend on the physical distances
between the nodes as well as on the characteristics of the testbed room used. A single
transmission power is used, as it is assumed that this is the highest available level.
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The experiments mostly use ContikiMAC as it is Contiki’s default RDC protocol, some
experiments are also run using nullrdc as a comparison. The CCR used is 32Hz: this
frequency was chosen to better factor out packet losses due to congestion. Using a lower
CCR decreases the energy consumption as shown in Section 3.2.2, but also increases the
packet loss and latency. The CCR may be decreased if less nodes are used or less messages
are sent.
The experiments were designed to run for 60 minutes: some of the simpler experiments,
for example measuring the noise impact, run for a shorter period, as this is also sufficient
to get meaningful results and reduces the overall testbed usage time.
The RPL application used is based on the rpl-collect1 sample code and thus sends UDP
packets with a 46 Byte payload. The payload contains some diagnostic data, which can be
loaded into collect-view2, as shown in Figure 3.1. The downside to use collect-view is
that it only works on data collected by the sink.
The experiments are run using the ETX OF, but also some experiments were run using
the OF0 to confirm that ETX yields better results in terms of PRR.

Figure 3.1: Node map visualized using collect-view.

Determining the used transmission power is a task independently of RPL. How the trans-
mission power was chosen is described in the following Section 3.2.1. Also choosing a
sensible CCR is important, it depends on the expected packet send rate and the allowed
latency and has also an influence on the power consumption. As the CCR is not var-
ied between experiment, the Section 3.2.2 describes how the power consumption changes
between different values.

1https://github.com/contiki-os/contiki/tree/master/examples/ipv6/rpl-collect
2https://github.com/contiki-os/contiki/tree/master/tools/collect-view

https://github.com/contiki-os/contiki/tree/master/examples/ipv6/rpl-collect
https://github.com/contiki-os/contiki/tree/master/tools/collect-view
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3.2.1 Determining the transmission power

Selecting a good transmission power (TXP) for the WSN is not an easy task. The TXP
should be just enough, so that every node is able to communicate with the sink either
directly or through multiple hops. The TempLab testbed has a very high node density.
As the goal is to study RPL using multiple hops, a quite small TXP has to be selected.
Otherwise all the nodes would connect directly to the sink. Minimizing the hop count
is inherent to both ETX and OF0 while the link quality only partly influences the link
selection.
To determine a sensible TXP for the testbed, the connectivity-graph tool can be used. It
has been provided and extended to fit the needs of this thesis. Using this tool, one node at
a time sends 100 broadcast messages. All other nodes are recording all messages received
and their RSSI. This experiment is repeated using multiple TXPs.
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(b) Using TXP 7 (−15 dBm), avg edges 8.9

Figure 3.2: Testbed links with a PRR higher than 10% and a RSSI higher than −73 dBm.

The Figure 3.2 depicts some results of these connectivity tests. The links are filtered
to show only “good" connections with a PRR higher than 10% and a RSSI higher than
−73 dBm. The −73 dBm are selected to have some extra margin above the default CCA
value of −77 dBm.
Selecting the TXP 4 as shown in Figure 3.2a seems a good fit: almost all nodes are still
connected to some other nodes (average 5.2 edges), but there are only 4 direct connection
to the sink (Node 108). In comparison, the TXP 3 as shown in Figure 3.3c has almost no
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links whereas TXP 7 as shown in Figure 3.2b has a lot more links were more are direct
connections to the sink.
Filtering the links by requiring a RSSI above −73 dBm helps a lot as can been seen in
Figure 3.3. This is more evident when looking at Figure 3.3c and Figure 3.3d. Without
filtering there are many links even with TXP 3, but those are only of bad quality. In
comparison between TXP 3 and TXP 4, selecting TXP 4 seems like the lowest TXP with
enough good links.
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(a) Using TXP 4 (−22 dBm), RSSI >−100 dBm

TXP 7, RSSI > -100 dBm, PRR > 10%, avg edges 17.1
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(b) Using TXP 7 (−15 dBm), RSSI >−100 dBm

TXP 3, RSSI > -73 dBm, PRR > 10%, avg edges 1.3
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(c) Using TXP 3 (−25 dBm), RSSI >−73 dBm

TXP 7, RSSI > -100 dBm, PRR > 10%, avg edges 17.1
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Figure 3.3: Testbed links with a PRR higher than 10% and various TXPs.
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3.2.2 Determining the channel check rate

Figure 3.4 compares the power consumption of an application running ContikiMAC with
different CCR values (8Hz, 16Hz, 32Hz). After the network startup the power consump-
tion reaches a maximum but after this decreases rapidly, as (i) less control packets are sent
and (ii) the phase lock only works after some packets have been received. Using 32Hz
has a higher power consumption, while listening for packets as the radio is awake more
often, shown in Figure 3.4a. While sending messages (Figure 3.4b) a higher CCR leads to
a lower power consumption as less strobe packets need to be sent in ContikiMAC as shown
in Figure 3.4d and thus the radio can be turned off faster.
The CPU power consumption is almost identical, as expected. This is the time when the
radio is not active and only the CPU is executing code.
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Figure 3.4: Comparing the power usage and number of strobes using different CCR.

The channel check rate used for all other experiments in this thesis is 32Hz, as less strobe
packets need to be transmitted and also the influence of the RDC layer on the routing is
reduced.



CHAPTER 3. EXPERIMENTAL CAMPAIGN 50

3.2.3 Determine the noise impact

The jammer generates interference at one location in the test bed. Each node is affected
differently. This section determines the noise impact at each node depending on the Jam-
Lab power level of 11 (−10 dBm) and 31 (0 dBm). Every nodes runs the noise_analyzer
as described in Section 2.5.2 and records the RSSI at a high sample rate.
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Figure 3.5: RSSI at various levels of interference.
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(b) During jamming

Figure 3.6: Noise floor before and during jamming at various levels of interference.

Figure 3.5a shows the average noise for each node. Each dot represents a single node
while the nodes 103 and 123 are highlighted using a larger square. The dots are offset
horizontally to better distinguish them and they ordered by the node id. For a successful
communication using ContikiMAC the RSSI value should be below the CCA threshold. A
CCA threshold of −77 dBm is depicted using the red line.
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The average number of RSSI readings below −77 dBm for each interference level is shown in
Figure 3.5b. For JL_WIFI1 and JL_WIFI2 the percentage is about 85%. For JL_WIFI4 this
value is slightly closer at 80% indicating the interference type behave indeed differently.
For JL_CONTN this number drops for most nodes below 5% making a communication almost
impossible. Some nodes like node 123 are not affected by the jammer due to their physical
location. Most of the RSSI readings of this node are below −77 dBm, except with the
strongest interference level (JL_CONTN with TXP 31).
Another way to look at the RSSI readings is the noise floor as shown in Figure 3.6. The
noise floor does not use the average instead the maximum of the read RSSI values is used.
To be more specific the value where 95% of the readings lay below is used to filter some
extreme outliers.
Without any added noise the noise floor provides the sensitivity of the radio. It should be
at around −95 dBm for the CC2420 of the Tmote Sky according to the data sheet [31].
Figure 3.6a shows that the noise floor is indeed at around −95 dBm before turning on the
jammer.
Upon turning on the jammer as shown in Figure 3.6a the noise floor increases. The value
for each type of interference stays almost the same as long as the TXP is not changed
on purpose. This is an expected behaviour and implementation detail of JamLab. The
various interference patterns are emulated by switching the transmitter on and off using a
probability function, but the TXP is not changed.
The following Figure 3.7 shows four plots depicting the noise impact at each node in the
testbed. For these plots the jammer uses JL_CONTN and the transmission powers 3, 7, 11
and 31. A darker tone indicates a higher impact (noise floor). It can be observed that the
impact not only depends on the nodes physical distance from the jammer, but also on the
antenna orientation and on the presence of obstacles in the room.
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Figure 3.7: Testbed noise impact at every node using various power levels.
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3.2.4 Validate energy consumption

The jammer affects the noise level of the nodes differently depending on their, physical
location, as shown in Section 3.2.3. This section takes a look at each nodes energy con-
sumption while subjected to interference. Nodes affected by the jammer should also show
a higher energy consumption. The energy consumption while listening for packets of one
of the experiments presented in Section 3.3.2 is shown in Figure 3.8.
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Figure 3.8: Average listening power for the network with a jammer.

Figure 3.8a shows the power consumption of the network over time. After around 300 s a
jammer with a constant carrier is activated (red vertical line). It is kept on for the rest
of the experiment. This increases the power usage for most nodes immediately. Each line
represent a single node whereas two nodes are highlighted. Node 103 (blue) is affected
whereas the node 123 (green) has no increased energy consumption. According to the
noise impact from Section 3.2.3 the noise floor at node 123 does not increase and thus it
is unaffected by the jammer.
In Figure 3.8b a constant carrier jammer is enabled, but with an alternating on-off period
of 5 minutes. The energy also increases while the jammer is on and returns to a lower
value as soon as the jammer is turned off. One of the nodes also has keeps its radio on
significantly long than the others. This is shown as spikes with a maximum over 60mW.
The maximum power if the radio is on 20.0mA · 3.3V = 66mW (See also Section 2.3.2).
This verifies the expectations: no increased power for unaffected nodes and an increased
power consumption for affected nodes. This also validates that the energy measurements
are plausible.
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3.2.5 Tools

In order to (i) run multiple experiments with different parameters, (ii) collect the log files
and (iii) extract the evaluation metrics described in Section 3.1, some new tools are needed,
as the existing ones did not fit this thesis requirements. Therefore, some new scripts and
tools were written.
Existing tools such as collect-view only operate on data collected at the sink, which is
sufficient if there is no other back channel. Using a testbed allows collection of data on
every node as each of them is connected to a server.
The new tools consist of some bash scripts and a python log file parser. The main idea of
the log file parser is to use the existing Contiki OS debug output, written to a text file per
node. The files are then parsed using a python script that generates python objects and
data structures. After parsing all the data multiple tools can operate on it and extract
information as needed.
The nodes are configured to print as much debug data as possible, leaving aggregation
to the computer running the scripts. This allows for offline data processing and statistic
generations as needed. The offline computation of statistics allows to live watch an ongoing
experiment by parsing the currently written log files as there is no need to wait for the
end of an experiment. In fact the length of an experiment is not compiled into the nodes
firmware, but runs as long as data is collected.

Log file parsing

The most notable scripts in regard to log file processing are:

• LogParser.py
This python class is the main component of the log file parser implementation. The
parser starts by scanning the current directory for text files and fills a list of nodes
using the NodeData class as a data container. As parsing all the text files is a quite
time consuming process the LogParser class also manages a cached version of this
data. To cache the data, all the python objects are serialized using the pickle3

module. This pickled data file can be read about 20 times faster than the original log
files as shown in Listing 3.1. If a cache file (parsed_logs.pickle) exists, it is used
automatically as long as the script does not force new parse process.
After the data of all nodes is read, all the timestamps are converted to a relative
time based on the startup of the sink.

Parsing done in 89.32 seconds for 519.61 MB (5.82 MB/s) of log files.
↪→ Cached in ./ parsed_logs.pickle (83.88 MB).

Loaded cached log objects in 4.44 seconds for 519.61 MB (117.05 MB/s) of
↪→ log files. Cache file size 83.88 MB (18.90 MB/s).

Listing 3.1: Comparison of parsing speed and speed of loading cached data.

• NodeData.py
The NodeData class holds all the parsed data for a single node. The data is parsed

3https://docs.python.org/3.5/library/pickle.html

https://docs.python.org/3.5/library/pickle.html
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line by line. For each line some characters at the beginning (prefix) are compared
to determine the software module responsible to parse the rest of it. This splits the
logic into multiple classes where each of them holds the respective data. Currently,
these classes are implemented: ContikiMac, EnergestStats, JamLab, NoiseAnalyzer,
RIMEStats, RPLStats, SensorData and UIPStats. Some more general data is also
parsed and stored in the NodeData class directly.
The parsing is typically performed using a regular expression for each prefix.

• Statistics.py
The Statistics class calculates some statistics across all the nodes after parsing the
data. Most metrics defined in Section 3.1 are computed here. This data is also part
of the pickled cache file.

• parse-node-addr.py
This script parses the collected data and prints a list of the mapping between the
node id and the last two byte of the nodes address. This address is used when sending
messages to other nodes and is also displayed in collect-view. The mapping to a
node id is an important utility as the node id is written on every node, the log files
use the node id as its filename and also the map of the testbed uses the node id to
identify each node. As sample output is shown in Listing 3.2.

100 -> 49.43 Parents: 229.69 (360x),
101 -> 254.37 Parents: 177.37 (349x), 169.27 (11x),
102 -> 250.238 Parents: 49.43 (362x),
103 -> 143.115 Parents: 49.43 (361x),
104 -> 127.62 Parents: 229.69 (361x),
105 -> 59.0 Parents: 120.250 (275x), 127.104 (54x), 216.66 (6x),
106 -> 216.66 Parents: 229.69 (361x),
107 -> 120.250 Parents: 229.69 (362x),
108 -> 229.69 Parents: SINK !
109 -> 169.27 Parents: 33.16 (339x), 133.75 (20x),

...

Listing 3.2: Sample output of the parse-node-addr.py script.

• generate-plot-ccr.py
This script creates the four plots comparing different CCR values as shown in Fig-
ure 3.4. To run the script multiple experiment log folders need to be passed as
command line arguments. The data of each folder is then combined into the plots.
The plots are created using the matplotlib4 and written to a image file.

• generate-plot-noise-impact.py
This script creates the four plots showing the noise impact as used in Section 3.2.3.
It requires at least one folder as command line argument and combines the given
folders to generate the plots.

• generate-plot-energy.py
This script creates plots showing the power usage over time similar to the previous

4http://matplotlib.org

http://matplotlib.org
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script. Three plots are created (listen, TX, CPU) and saved to the current working
folder. Examples of this script are shown in Section 3.2.4.

• generate-node-map.py
This tool creates a series of plots to visualize the RPL graph and its parent selection
over time with the real nodes position. The script also generates a minimalistic
HTML user interface to browse between the timestamps as shown in Figure 3.9. The
plots are created using GraphViz5.

Figure 3.9: Node map visualized using dot and HTML.

• generate-parent-graph.py
This is another tool to get an overview of the network and the connectivity between
nodes. One example plot is shown in Figure 3.10. The labels on the edges indicate
the PRR and the ETX, less used edges are plotted using lighter colors.

Edge label: Used parent percentage if > 8% (Path ETX)
           Edge to self: No parent has been selected (Parent: 0.0)

           (..%): Packet reception rate from node to sink
           Average over all time
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26.5% (2.0)

132
(?)

Figure 3.10: Example output of generate-parent-graph.py.

5http://www.graphviz.org

http://www.graphviz.org
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• generate-time-graph.py
This tool generates a huge plot including every node and its packet transmission
status of an experiment. It clearly shows which nodes are effected by JamLab and
gives a general visual overview of the network. The plot is also created using the
matplotlib python package. Every event creates a new dot in the graph, the most
important events of the application layer (bigger dots) are: packet sent (red), packet
received at sink (turquoise), parent changed (blue). Printed as smaller dots are events
from the MAC layer. The small red dots indicate a collision while sending a packet,
the yellow dots show that the channel was busy and no attempt to sent packet was
made.
More details of the results obtained using this tool are presented in Section 3.3.

Figure 3.11: Example time graph as generated by generate-time-graph.py.

• generate-traceroute.py
This tool uses the hop-by-hop trace route functionality as described in Section 2.5.3.
It extracts the longest path of each packet sent and writes this information to a text
file.
A sample output for node 131 is shown in Listing 3.3. It includes the timestamp
when the packet was sent, its sequence id and then every node that received the
packet including the RSSI with which it was received. If a packet did not reach the
SINK, it is marked as LOST.

Trace for node 131
32.33 | 0: 131 -> 127 (-77) -> 104 (-74) -> 108 (-86) = SINK
42.05 | 1: 131 -> 127 (-77) = LOST
45.57 | 2: 131 -> 127 (-79) -> 100 (-61) -> 108 (-80) = SINK
58.25 | 3: 131 -> 127 (-77) -> 100 (-62) -> 108 (-80) = SINK
70.26 | 4: 131 -> 127 (-77) -> 100 (-61) -> 108 (-80) = SINK
79.20 | 5: 131 -> 127 (-79) -> 100 (-61) -> 108 (-80) = SINK
86.59 | 6: 131 -> 127 (-78) -> 100 (-61) -> 108 (-80) = SINK
97.12 | 7: 131 = LOST

108.85 | 8: 131 -> 129 (-66) -> 108 (-68) = SINK

...

Listing 3.3: Sample trace output using the generate-traceroute.py script.
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• generate-statistics.py
This tool uses the data from the Statistics class to generates a nice table overview
as shown in Figure 3.12. This script only contains logic to visualize the data: all the
computation happens already at parse-time so that other tools can still easily access
this data.

Figure 3.12: Sample statistics generated using generate-statistics.py.

• aggregate-stats.py
This script expects multiple experiment directories as its launch arguments and ag-
gregates some statistics into a single comma-separated values (CSV) file as shown in
Figure 3.13. This is also creates a TEX file containing a formatted table as used in
Table 3.1.

Figure 3.13: Aggregate statistics collected from multiple experiments.

• aggregate-stats-noise.py
This scripts combines noise floor measurements into a CSV file. It is similar to the
generate-plot-noise-impact.py tool, but instead of plot the output is the raw data
to be used in other software.
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Testbed and experiment management

To better manage experiments on the TempLab testbed the following scripts where used,
extended or newly created:

• check_bot.sh
The testbed is shared among multiple users, the usage is lightly coupled to a shared
calender, but it is not enforced. As the testbed might also be available earlier or later,
a tool to check the testbed status has been developed. It checks every minute (using
cron) if the testbed is currently free and sends a notification to a Telegram6 group
chat7 as shown in Figure 3.14. These messages are also received as push notifications
on a smart phone. Sending messages to a telegram user is quite easy.
One needs to register a Telegram bot using the BotFather8 to obtain a token, which
is then used to make calls to an application programming interface (API). Using the
token, sending a message to the group requires only one HTTP request.
The same functionality is also used to send a private message if a series of experiments
finishes either due to an error or if no more experiments are scheduled.

Figure 3.14: TempLab Status updates sent to a Telegram group chat.

• iti-list-remaining-nodes.py
The testbed also includes nodes that may not be used as part of the experiment. As
it is not possible to disable them without physically disconnecting them, a known
firmware needs to be programmed to ensure that no unwanted firmware interferes
with the experiment. The current experiment definition needs to list any node and
its firmware. As the testbed and especially the not needed nodes change often, this

6https://telegram.org
7https://telegram.me/joinchat/B6D-3wjj0hJb699ETN8now
8https://core.telegram.org/bots#6-botfather

https://telegram.org
https://telegram.me/joinchat/B6D-3wjj0hJb699ETN8now
https://core.telegram.org/bots#6-botfather
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script has been created to list all available nodes while also filtering all nodes passed
as arguments as shown in Listing 3.4.

$ NODES_TO_BE_PROGRAMMED_1 =( N00 N01 N03 N04 N05 N06 N07 N08 N09 N10 )
$ iti -list -remaining -nodes.py ${NODES_TO_BE_PROGRAMMED_1[@]}
N02 N28 N29 N30 N31 N32 N33 N34 N35 N36 N37 N38 N39 N44 N45 N46 N47 N53

Listing 3.4: Sample output of the iti-list-remaining-nodes.py script.

• iti-program_testbed
This script programs the whole testbed using a given configuration. It has been
extended to be better configurable. It programs every given node in parallel including
multiple retries. The programming of some nodes may fail, thus including multiple
retries helps to make the experiment run more stable. If no configuration file is
given, a default simple example is uploaded. The configuration file needs to define
a program_firmware_list function that may include multiple calls to the provided
program_firmware function. An example configuration file is shown in Listing 3.5.

# Testbed nodes to be programmed and with which firmware
NODES_TO_BE_PROGRAMMED =( N00 N01 N02 N03 N04 N05 N06 N07 N08 N09 N10 )
NODES_INACTIVE =( $(iti -list -remaining -nodes.py ${NODES_TO_BE_PROGRAMMED[

↪→ @]}) )

FIRMWARE_FILE_1="simple_example.ihex"
FIRMWARE_LEDS_BLINK="tinyos_blink_firmware/main.ihex"

function program_firmware_list ()
{

program_firmware "${FIRMWARE_LEDS_BLINK}" NODES_INACTIVE[@]
program_firmware "${FIRMWARE_FILE_1}" NODES_TO_BE_PROGRAMMED[@]

}

Listing 3.5: Example configuration file.

• run-iti-prog-listen-close.sh
This script uses the iti-program_testbed and the traces_start_tty.sh script to
program the the testbed, listen for log messages for a specified time and then stops the
logging and returns to the caller. It also creates new folders based on the experiment
configuration name.
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3.3 Experiments using RPL running on Contiki OS

This section contains results of the experimental campaign.
The experiments started on a larger scale using about 30 nodes and were then reduced to
a smaller set of about 12 nodes. For the following experiments the CCR was chosen to
be 32Hz according to Section 3.2.2 and the transmission power was set to 4 (−22 dBm)
according to Section 3.2.1.

3.3.1 Performance of RPL with ETX & OF0 without jamming

The first investigated RPL setup uses Contiki’s default settings: ContikiMAC as RDC and
a CCA level of −77 dBm. This setup is compared to a configuration without any RDC
(nullrdc). In the case of nullrdc the radio stays always on and the CCA influences only
the collision detection while sending a packet. In the case of ContikiMAC the CCA check
is also used to decide if the radio should be kept on to possibly receive a packet. The
objective functions used are ETX and OF0.
The goal of the experiments in this section is to show how Contiki OS’s RPL performs in a
test setup without any interference. The sink used is the same as in the previous sections
(Node 108).
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ContikiMAC 30 ETX 94 2.30 0.16 0.81 0.18 4.000 0.022 1.80 27
ContikiMAC 30 OF0 80 2.35 0.21 0.78 0.18 1.069 0.006 1.86 22

nullrdc 30 ETX 100 65.96 0.03 0.86 0.18 1.621 0.009 1.27 29
nullrdc 30 OF0 100 65.96 0.04 0.88 0.18 1.103 0.006 1.59 29

ContikiMAC 11 ETX 100 1.73 0.08 0.60 0.18 2.000 0.006 1.39 10
ContikiMAC 11 OF0 85 1.90 0.18 0.62 0.18 1.000 0.003 1.70 8

Table 3.1: Comparing ContikiMAC with nullrdc using RPL ETX and OF0 OF.

Packet reception rate. Table 3.1 shows the results obtained after running six different
experiment configurations. Using ETX and ContikiMAC seems to work quite well. In
comparison with OF0, ETX performs better. Using ETX and ContikiMAC almost all
nodes (27 out of 29 sending nodes) manage to connect to the sink with a PRR higher than
90% where as using OF0 only 22 nodes result in a stable connection. This also limits the
average PRR to 80% in comparison to 94% of ETX.
Both objective functions achieve a PRR of 100% when using nullrdc. This is the first
indication that the RDC layer can have an influence on the performance of RPL. The
channel check rate used in ContikiMAC is 32Hz, which is already 4 times higher than the
default 8Hz. Another advantage of nullrdc is that every packet the receiver would be able
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to decode (i.e., has an RSSI higher than about −90 dBm) is received and processed. In
ContikiMAC the RSSI has to be above the configured CCA level of −77 dBm to be reliable
received.
Power consumption. ETX performs slightly better than OF0 with respect to power
consumption. A lost packet has the highest power consumption, as the experiments using
OF0 have a lower PRR also a slightly higher power consumption is expected. The power
consumption of nullrdc is of course a lot higher as the radio is always kept on. The
power consumption of the radio while listening for packets is 65.96mW, which close to the
maximum of 20.0mA · 3.3V = 66mW (according to Equation 2.6). The missing part is
measured while the radio is transmitting packets.
This series of experiments also includes two smaller test runs on a sparse network consisting
of 11 nodes distributed across the room. The goal is to compare ETX and OF0 on less
nodes which reduces the congestion on the channel as less nodes are competing for medium
access at the same time. In this setup ETX works also better and achieves a PRR of 100%.
Using OF0 two nodes did not find a good connection and had a PRR below 90%. The
experiments on the sparse network were only run using ContikiMAC. The experiments using
nullrdc are only performed to get a baseline for the other experiments. nullrdc is not
a suitable RDC as the energy consumption is a lot higher which reduces the expected
runtime on a battery significantly.

(a) ContikiMAC (b) nullrdc (c) ContikiMAC, sparse

Figure 3.15: Topology of the network while using different RDC protocols and ETX.

Topology. The topology of the networks, as shown in Figure 3.15 for ETX and in Fig-
ure 3.16 for OF0, is quite different between ContikiMAC and nullrdc. With nullrdc more
nodes are directly connected to the sink (top) as evident in Figure 3.15b. The RSSI on
these links is lower as the distance is higher. These links will be easily affected by and fail
due to interference, as will be shown in the next sections.
These figures also give another hint, that the RDC has a significant influence on the RPL
tree construction and also on its stability and expected resistance to radio interference.
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Both objective functions try to minimize the number of hops and the nodes are not allowed
to choose a parent whose rank is higher than its own to avoid loops without a global repair.
This means, the nodes prefer lower ranked nodes instead of selecting more reliable ones if
they received any packets from these nodes. As soon as they received packets and ACKs
directly from the sink they also stay connected to it even though the RSSI is lower than
using other links.

(a) ContikiMAC (b) nullrdc (c) ContikiMAC, sparse

Figure 3.16: Topology of the network while using different RDC protocols and OF0.

The formed networks while using ETX and OF0 look quite similar. The following plots
in Figures 3.17, 3.18 and 3.19 depict the parent selection summarized over an experiment
run. Less frequent links are drawn using a lighter colour as they are not so significant. It
can be observed, that graphs using OF0 such as Figure 3.17b and Figure 3.18b have less
edges as the parent is not often changed.
The number in the nodes circle indicates the PRR whereas the number on the edge between
two nodes indicates the percentage that this links was chosen.
Using these plots it is possible to observe, that the number of hops and the stability of the
network is quite different between ContikiMAC and nullrdc. In the nullrdc experiment
many nodes are directly connected to the sink or at a maximum of two hops. This is
reasonable as using nullrdc a packet with a lower RSSI is still receivable as the limit is
only the sensitivity of the radio and not the CCA level as in ContikiMAC.

Lessons learned:

• RPL is scalable: In a large network of about 30 nodes works quite well.

• ETX performs better than OF0.

• nullrdc as a baseline shows that a PRR of 100% is achievable.

• The used RDC (ContikiMAC) has an influence on network performance. It requires a
certain RSSI to wake up and receive a packet. Due to this some packets are lost.
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Edge label: Used parent percentage if > 8% (Path ETX)
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Figure 3.17: RPL tree while using ContikiMAC on 30 nodes.

Edge label: Used parent percentage if > 8% (Path ETX)
           Edge to self: No parent has been selected (Parent: 0.0)

           (..%): Packet reception rate from node to sink
           Average over all time

100
(100.0%)

108
(100.0%)

100.0% (1.0)

101
(100.0%)

100.0% (1.0)

102
(100.0%)

71.8% (1.0)

103
(100.0%)

28.2% (2.0)

100.0% (1.0)

104
(100.0%)

100.0% (1.0)

105
(100.0%)

100.0% (1.0)

106
(100.0%)

100.0% (1.0)

107
(100.0%)

100.0% (1.0)

109
(100.0%)

100.0% (2.0)

110
(100.0%)

70.7% (1.0)

29.3% (2.0)

111
(100.0%)

100.0% (1.0)

112
(100.0%)

93.4% (1.0)

113
(100.0%)

91.6% (1.0)

8.4% (2.1)

114
(100.0%)

22.8% (2.0)

77.8% (1.0)

115
(98.9%)

31.5% (1.0)

22.7% (2.1)

123
(100.0%)

45.9% (2.0)

92.2% (1.0)

116
(100.0%)

100.0% (2.0)

117
(100.0%)

86.7% (1.0)

13.3% (2.0)

118
(100.0%)

91.1% (1.0)

8.9% (2.0)

119
(100.0%)

63.3% (1.0)
36.7% (2.0)

120
(100.0%)

8.4% (2.0)

91.6% (1.0)

122
(100.0%)

100.0% (2.0)

124
(100.0%)

100.0% (2.0)

125
(100.0%)

92.8% (1.0)

126
(100.0%)

92.2% (1.0)

127
(100.0%)

92.8% (1.0)

129
(100.0%)

92.7% (1.0)

130
(100.0%)

92.2% (1.0)

131
(100.0%)

92.7% (2.0)

132
(?)

(a) using ETX

Edge label: Used parent percentage if > 8% (Path ETX)
           Edge to self: No parent has been selected (Parent: 0.0)

           (..%): Packet reception rate from node to sink
           Average over all time

100
(100.0%)

108
(100.0%)

100.0% (1.0)

101
(100.0%)

100.0% (1.0)

102
(100.0%)

100.0% (1.0)

103
(100.0%)

100.0% (1.0)

104
(100.0%)

100.0% (1.0)

105
(100.0%)

100.6% (1.0)

106
(100.0%)

100.0% (1.0)

107
(100.0%)

100.0% (1.0)

109
(100.0%)

100.0% (2.0)

110
(100.0%)

100.0% (1.0)

111
(100.0%)

100.0% (1.0)

112
(100.0%)

100.0% (2.0)

113
(100.0%)

100.0% (2.0)

114
(100.0%)

100.0% (2.0)

115
(100.0%)

100.0% (2.0)

116
(100.0%)

100.0% (2.0)

117
(100.0%)

100.0% (2.0)

118
(100.0%)

100.0% (2.0)

119
(99.4%)

98.3% (1.0)

120
(100.0%)

98.9% (1.0)

122
(100.0%)

100.0% (3.0)

123
(99.4%)

98.9% (1.0)

124
(100.0%)

100.0% (2.0)

125
(100.0%)

100.0% (2.0)

126
(100.0%)

100.0% (2.0)

127
(100.0%)

100.0% (2.0)

129
(100.0%)

100.0% (2.0)

130
(100.0%)

100.0% (2.0)

131
(100.0%)

100.0% (2.0)

132
(?)

(b) using OF0

Figure 3.18: RPL tree while using nullrdc on 30 nodes.
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Figure 3.19: RPL tree while using ContikiMAC on 11 nodes.
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3.3.2 Performance of RPL with ETX & OF0 and permanent jamming

This section shows the performance of RPL in a network subjected to radio interference.
The different interference types are generated using JamLab as described in Section 2.5.1.
The experiments are run using ContikiMAC and a CCA of −77 dBm. The nodes use trans-
mission power level 4, whereas the jammer uses the power level 11.
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JL_WIFI1 11 30 ETX 97 -74 4.06 0.18 0.89 0.18 3.724 27
JL_WIFI2 11 30 ETX 97 -73 4.22 0.22 0.96 0.18 5.414 28
JL_WIFI4 11 30 ETX 86 -72 6.24 0.33 1.41 0.18 13.241 18
JL_WIFI4 11 30 OF0 67 -73 6.17 0.38 1.39 0.18 0.034 10
JL_CONTN 11 30 ETX 9 -69 10.98 0.04 3.32 0.18 0.517 2
JL_CONTN 11 30 OF0 7 -70 10.65 0.04 2.68 0.18 0.000 2
JL_WIFI4 11 11 ETX 96 -73 5.00 0.20 0.91 0.18 5.100 9
JL_WIFI4 11 11 OF0 75 -74 5.12 0.27 0.99 0.18 0.000 7

Table 3.2: Comparing various interference intensities while using RPL ETX and OF0 OF.

Packet reception rate. Table 3.2 depicts the results of these experiments. The lighter
interference types such as JL_WIFI1 and JL_WIFI2 have a small impact on network per-
formance. The PRR is even a bit higher at about 97% compared to 94% of the previous
experiments without noise. This may be just in the range of variations between multiple
test run. Most nodes at least have a PRR above 90%.
Power consumption. In comparison to the experiments from Table 3.1 the average RX
power consumption has almost doubled from 2.30mW to about 4.10mW. This might
be due to more false wake ups from the RDC layer9 as well as more required transmis-
sion attempts while waiting for a clear channel. The average TX, CPU and LPM power
consumption stays almost the same, but also increases as the interference level increases.
There is also a clear correlation between the interference intensity and the overall power
consumption. A node subjected to a higher interference level uses more energy and thus
its battery life will be shortened significantly reducing the overall network reliability.
A higher interference level (JL_WIFI4) has visibly a higher impact on the PRR and energy
consumption. This impact is even more evident when using OF0 instead of ETX. Using
OF0, the PRR drops from 86% to 67%.
Increasing the burden on the radio channel even more by switching to the continuous car-
rier jamming mode (JL_CONTN), the network completely breaks apart, lowering the PRR

9The current experiment data does not measure the false wakeups.
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down to 9%, with only two nodes being able to communicate reliably with the sink. This
increases the average RX power consumption even more while only wasting energy without
any remarkable communication success. This higher energy consumption is assumed to be
due to long false radio wake ups. The TX energy is reduced as almost no packet is sent
due to the channel being considered almost always busy.
The sparse network using only 11 nodes is only investigated using JL_WIFI4 as the lower
interference types already have only little impact on the bigger network. The smaller net-
work performs slightly better than the bigger network as shown before and has a higher
PRR even under interference. The energy consumption though is still about three times
higher than without interference.
Parent changes. An interesting thing to note is also the significantly increased number
of parent changes per node. This means the network is less stable, but also that it tries to
find new routes to still reach the sink.
Collisions. Generating the time-graph as shown in Figure 3.21 is really helpful to get a
better understanding of what is happening to the network.
In both plots node 108 is the sink, 121 is the jammer and 132 records the noise floor at its
position.
The jammer is programmed to start at about 300 s (5min) after the network start up. The
impact is clearly visible as the small dots start to display collisions while sending (small
red dots), collisions before sending (yellow small dots) as well as not received packets at
the sink (missing cyan dots). The plot in Figure 3.21a displays the huge impact of the
JL_WIFI4 jammer whereas the Figure 3.21 depicts the almost completely broken network
after turning on the continuous jammer (JL_CONTN). Each yellow dot indicates a failed clear
channel assessment. With the continuous jammer the noise floor is increased so that the
RSSI is almost always above the CCA threshold and thus the channel was assumed busy
when an attempt to send a message was made.
This gives a hint, that the clear channel assessment should be investigated further.

Figure 3.20: Zoomed part out of Figure 3.21a.

Figure 3.20 depicts a zoomed part of the bigger time graph to better illustrate its contents.
At the moment when the jammer starts being operational, the noise floor is increased and
the nodes start to have problems communicating with each other. Packets are lost or not
even sent as the channel is considered busy. As it can been seen, node 124 also starts
to rapidly change the preferred parent. Other nodes such as 123 and 122 are not really
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affected by the jammer and are able to communicate regardless of the introduced inter-
ference. The jammer affects nodes differently due to there physical location and distance
from the jammer. A more in depth look at the noise impact at each node has already been
discussed in Section 3.2.3.
Figure 3.22a shows the impact of JL_WIFI1 on the network. The enabled jammer is only
lightly visible, the network is almost unaffected. In Figure 3.22b the network using OF0
is shown while subjected to JL_WIFI4. The network clearly has problems in the communi-
cation, but the situation does not improve as the OF does not find new, better paths.
The time-graph of JL_WIFI2 on ETX and JL_CONTN of OF0 are not included as they look
almost the same as Figure 3.22a and Figure 3.21. The time-graphs of the experiments
without noise almost always contain a straight cyan line of successfully received packets
and only some blue dots indicating some parent changes.

Lessons learned:

• ETX performs better (higher PRR) than OF0 even under interference.

• As long as the interference is not too strong (JL_WIFI4), the network sustains a high
PRR.

• If the interference is strong (JL_CONTN), the network completely breaks and the PRR
falls below 10%.

• Interference increases the energy consumption of every affected node,

• Interference has a strong influence on the CCA operation of ContikiMAC.

• A sufficiently strong interferer blocks every attempt to send a message as the CCA
check always sees a busy channel.

• On the receiving side, interference keeps the radio on longer as ContikiMAC assumes
there might be a packet. This increases the energy consumption significantly (2-4
times on average in these experiments). This drains their battery faster, making the
network less reliable.

• Automatically changing the CCA level may help to send messages and to reduce the
energy consumption in the presence of interference. It should be investigated further.
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(a) The network over time with a JL_WIFI4 jammer.

(b) The network over time with a JL_CONTN jammer.

Figure 3.21: Collected events of the network from each node over the whole experiment time (ETX).
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(a) The network over time with a JL_WIFI1 jammer and ETX.

(b) The network over time with a JL_WIFI4 jammer and OF0.

Figure 3.22: Collected events of the network from each node over the whole experiment time.
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3.3.3 Performance of RPL with ETX and periodic jamming

This section shows the performance of RPL in the presence of a periodic jammer. The
latter interferes for 5 minutes followed by a 5 minute pause. The experiments are only run
using JL_WIFI4 and JL_CONTN, as lower interference levels have only little impact on the
network (See results of the previous experiments in Table 3.2). The experiments are also
only carried out using ETX, as previous experiments have shown its superiority over OF0.
The goal of these experiments is to understand if and how the network “remembers”" a
previous good configuration or rather “derives” an optimal parent selection (configuration)
once interference manifests. Through periodically starting and stopping of the interference,
the plots in Figure 3.23 as well as Figure 3.25 are derived.
The first visual impression indicates that the first network in Figure 3.25a improves over
time. Figure 3.23a shows this in more detail. The average PRR of each node periodically
decreases as the jammer is turned on, but the impact is reduced every time. After 60
minutes most nodes achieve a PRR of almost 100%.
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(a) Improving PRR with JL_WIFI4
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(b) No improvements with JL_CONTN
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(c) using JL_WIFI4
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(d) using JL_CONTN

Figure 3.23: PRR and RX power consumption of the network with a periodic jammer.

In Figure 3.23b, the network is subjected to the constant carrier jammer (JL_CONTN). In
this case, the PRR does not improve over time. While the jammer is active, the network
is not able to communicate as shown in Figure 3.25b and thus it is also not possible to
improve the parent selection. After the jammer is turned off, the network returns to its
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previous state.
The alternating behaviour of the jammer is clearly visible in the power consumption. The
energy only slightly reduces over time whereas the PRR increases.
In Figure 3.24 the number of parent changes as well as the number of ICMP control packets
is shown. In the case of the continuous jammer (JL_CONTN) the numbers stay roughly the
same, whereas with JL_WIFI4 the number decreases even though the interference is present.
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(a) Parent changes using JL_WIFI4
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(b) Parent changes using JL_CONTN
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(c) Control packets using JL_WIFI4
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(d) Control packets using JL_CONTN

Figure 3.24: Number of parent changes and ICMP control packets in the network.

Lessons learned:

• RPL tries to select a better topology over time, if at least some communication is
possible (JL_WIFI4) but does not achieve a PRR of 100%.

• If the communication is completely interrupted (JL_CONTN) the network returns to
a similar state in terms of Energy consumption and parent switches as soon as the
interference is gone.

• Power consumption on a “stable” configuration slightly decreases over time.

• Also in these experiments high interference (JL_CONTN) effectively blocks all commu-
nication as it can be seen in Figure 3.25b due to increasing the noise floor above CCA
threshold.
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(a) The network over time with a periodic JL_WIFI4 jammer.

(b) The network over time with a periodic JL_CONTN jammer.

Figure 3.25: Collected events of the network from each node over the whole experiment time.
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3.3.4 Investigate changing CCA to escape interference

This section aims to verify that changing the CCA may help to escape interference. A
network of two nodes is set up. The sender node A is selected so that the noise impact of
the jammer J at this node is above the default CCA level of −77 dBm. This blocks the
nodes communication completely as soon as the jammer is turned on as shown in Table 3.3.
The receiver node B is chosen so that the RSSI between them is above noise impact at
both nodes.
To help find these nodes the Figure 3.26 has been created. It contains the noise impact at
every node in the testbed as well as links between nodes if their RSSI is above −65 dBm.

TXP 7, RSSI > -65 dBm, Jammer 121
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Figure 3.26: Testbed map with noise impact and links with an RSSI >−65 dBm.
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For these experiments the nodes 103 (A) and 112 (B) were chosen. The RSSI between
them is at around −65 dBm. The noise impact at A is −71 dBm and at B it is −83 dBm.
The results in Table 3.3 show that changing the CCA from −77 dBm to −68 dBm allows
the nodes to communicate beside interference. Also the energy consumption is not affected
by the noise any more and returns to almost the same value, as if no interference is present.
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- -77 100 -66 1.53 0.04 0.49 0.18
JL_CONTN -77 0 -65 12.99 0.00 3.02 0.18

- -68 100 -66 1.53 0.04 0.49 0.18
JL_CONTN -68 100 -65 1.56 0.03 0.48 0.18

Table 3.3: Results of the CCA change validation experiments.

This shows that by changing only the CCA value an improvement to the reliability (less
energy, higher PRR) in a noisy environment can be made.

Lessons learned:

• Changing only the CCA to escape some types of radio interference is possible.

• Nodes with a CCA above the noise floor are able to send messages regardless of the
noise.

• The energy consumption decreases if the CCA is changed to almost the same value
as if no radio interfere is present.



Chapter 4

Design and Implementation

The experimental campaign has shown a number of observations about the performance
of RPL in a network subjected to radio interference. One of the observations is that the
network completely breaks if a strong enough interference level (JL_CONTN) is present, as
no message is sent.
Among others, the logging of ContikiMAC records many collisions before sending : as shown
in Section 3.3.2, these collisions are generated by a failing CCA check occurring when the
RSSI (noise floor) of the radio channel is above the default CCA threshold and the channel
is thus considered permanently busy.

4.1 The role of CCA

To limit the number of collisions before sending, the aim is to increase the CCA threshold.
This is however a “catch-22 dilemma”. Increasing its value too high may lead to packet
collisions, as this threshold is an integral part of the collision avoidance mechanism of the
MAC layer. Setting the CCA threshold too low would block the transmitter continuously:
this is currently the case if the jammer is active.
Increasing the threshold would also bring an advantage on the receiving side; as less false
wake-ups result in lower energy consumption. If the threshold is set too high, however, no
packets may be received, as the radio is turned off immediately after the periodic CCA.
Setting the CCA threshold too low would introduce a higher number of false wake-ups and
to a higher energy consumption.
These upper and lower limits need to be determined while the network is active by ex-
ploiting additional informations such as the RSSI values of the received packets as well as
by periodically measuring the noise floor. The new CCA threshold will then be bound to
these upper and lower limit constraints. This is a similar approach as shown by Boano et
al. in [4] to mitigate the adverse effects of temperature in WSNs.

4.2 Design

The goal is to implement an automatic adaptive CCA threshold adjustment algorithm
(AutoCCA). The approach proposed in this thesis periodically measures the noise floor
and then sets the CCA threshold above this value. Measuring the noise floor should not

75
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have an impact on the nodes operation. Although this cannot be entirely avoided, it is
imperative to minimize energy consumption.
A high number of RSSI samples in a short period of time are required to get a good
estimate. To reduce the data size, every measured RSSI value counts toward its array
entry in an histogram-like data structure. The array index is the measured RSSI level and
the value is the sum of its occurrences. This histogram implementation is already used in
the noise_analyzer tool as discussed in Section 2.5.2.
The measured RSSI values are expected to have a baseline and some volatile outliers. The
baseline is our value of interest as it is increased by the jammer. An example measurement
is shown in Figure 4.1a. On the left hand side of the vertical red line the jammer is not
yet turned on. The lower bound for the read values is at about −95 dBm as defined by the
sensitivity of the CC2420 radio according to its datasheet [31]. As soon as the jammer is
turned on (right hand side of the red vertical line) the lowest measured values are increased,
providing a new baseline.
In Figure 4.1 nodes 103 and 123 are highlighted. Node 123 is an example for a node that
is not affected by the jammer. Node 103 is affected and thus has an increased noise floor.
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(b) with filtering

Figure 4.1: Example noise floor as measured before and after turning on the jammer. Node
103 is affected by the jammer and has an increased noise floor. Node 123 is only lightly
affected and the noise floor stays below −77 dBm.

xt = find_noise_floor(t) + ε (4.1)
xt = max (xt,−77 dBm) (4.2)

CCAt = min (xt, xt−1, xt−2, xt−3, . . . , xt−n−1) + β (4.3)

After measuring the noise floor, a safety margin ε is added as shown in Equation 4.1. As
a default value, ε is set to 3 dB. This is the co-channel rejection value of the CC2420
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radio [31]. If this is the best value for the present experimental setup will be determined
experimentally in Section 5.2.
The noise floor is then limited to the default threshold of −77 dBm as shown in Equa-
tion 4.2. The default CCA threshold is already high enough to provide a good PRR in
the testbed if no noise is present as shown in the Table 3.1. A CCA threshold lower than
−77 dBm would increase the amount of false wake-ups and also allow a parent selection of
a node with a lower RSSI and thus increasing the chance of failure under interference. On
the other hand lowering would be needed if the network is not yet connected.
From the measured value xt a filtered baseline CCAt is calculated and used as a lower
bound for the CCA threshold.
Filtering the measured noise floor is important to keep the system stable. As only the
lower bound is of interest, the filter uses the minimum value of the last n samples as shown
in Equation 4.3. For n = 4, the result is shown in Figure 4.1b.
An upper bound for the CCA threshold is not required, as packets with an RSSI below the
noise floor have a high chance of corruption due to radio interference. Increasing the value
too high will prevent the node from receiving any messages, but on the other hand also
reduces its energy consumption due to reduced false wake-ups. Thus, defining an upper
limit of the CCA threshold has no real benefit.
Adding another dynamic value β as shown in Equation 4.3 could be used to help selecting a
better parent by forcing a reduced set of parents (β > 0) or by lowering the CCA threshold
to ensure that the network is connected (β < 0). This feature is currently not implemented
in this thesis. It would require to combine knowledge about the current network perfor-
mance and the nodes parents. This would then also allow to keep the CCA threshold at a
higher level even though when the noise reduces again.

4.3 Implementation

The implementation of the AutoCCA algorithm as described in Section 4.2 is shown in
Listing 4.1. This function is called every 10 s in a Contiki OS process and measures
the current noise floor (about 50ms for 1000 measurements), determines a new filtered
value, and updates the CCA threshold of the CC2420 radio. The function could also be
implemented as a process on its own, but due to code size limitations and an already
present process that executes every 10 s, a function has been chosen.

1 static void autocca(void) {
2 rtimer_clock_t now = RTIMER_NOW ();
3 int8_t noise_floor_dbm = find_noise_floor ();
4 now = (RTIMER_NOW () - now);
5
6 PRINTF("NoiseF m %d/%u, value: %d dBm\n",
7 now , RTIMER_SECOND , noise_floor_dbm);
8
9 #if (AUTO_UPDATE_CCA > 0)

10 {
11 static int8_t prev_noise_floor_dbm [3] = {-77, -77, -77};
12 int8_t current_cca;
13 noise_floor_dbm += AUTO_CCA_EPSILON;
14
15 if (noise_floor_dbm < -77)
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16 {
17 noise_floor_dbm = -77;
18 }
19
20 prev_noise_floor_dbm [0] = prev_noise_floor_dbm [1];
21 prev_noise_floor_dbm [1] = prev_noise_floor_dbm [2];
22 prev_noise_floor_dbm [2] = noise_floor_dbm;
23
24 noise_floor_dbm = MIN(prev_noise_floor_dbm [0],
25 MIN(prev_noise_floor_dbm [1],
26 MIN(prev_noise_floor_dbm [2],
27 noise_floor_dbm)));
28
29 NETSTACK_RADIO.get_value(RADIO_PARAM_CCA_THRESHOLD ,
30 (radio_value_t ⁎)&current_cca);
31
32 if (current_cca != noise_floor_dbm) {
33 PRINTF("NoiseF u %d to %d\n", current_cca , noise_floor_dbm);
34 NETSTACK_RADIO.set_value(RADIO_PARAM_CCA_THRESHOLD ,
35 noise_floor_dbm);
36 }
37 }
38 #endif
39 }

Listing 4.1: Measure noise floor and update CCA threshold.

The implementation is straightforward: first find_noise_floor() measures the noise floor,
then the filter is updated, and finally a new CCA threshold is set if it is different from the
previous one. The code also measures the execution time to get a rough estimate of the
duration of the noise floor measurement.
The implementation of find_noise_floor() is based on the sample code provided in the
noise_analyzer (Section 2.5.2). It requires some changes to make it usable in applications
where the RDC is turned on: it is important to correctly enable and disable the radio
based on its previous state, as well as managing the locking mechanism of the CC2420
radio driver as messages might be received or sent asynchronously.
The current driver API does not provide functions to turn the radio on and to keep the
lock until the radio is turned off again. The locking mechanism of the CC2420 radio driver
uses static variables, which are not accessible outside of the cc2420.c driver file.
To extend the CC2420 driver, Contiki OS provides an easy mechanism: if a file with the
same name as in the Contiki OS’ sources exists in the project folder, it is preferred over
the original one. This allows either to completely change the previous implementation
or to extend it by including the existing .c file as shown in Listing 4.2. Including a .c
file is quite unusual, but a good method in this case. Without adding this, the existing
cc2420.c would have to be copied and changed (which would make it harder to keep the
file updated).
Two new functions are added to the CC2420 radio driver API. They split the already ex-
isting cc2420_rssi() function into two separate parts. The _get_lock function acquires
the driver lock and turns the radio on if needed: it is called before starting the mea-
surements. The _release_lock function releases the lock and turns the radio off if it has
been off before calling the _get_lock function. It is called after finishing the measurements.
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33 /⁎ Include the original implementation and extend it.
34 ⁎ This allows access to statik variables.
35 ⁎ Contiki ’s build system will prefer this file instead
36 ⁎ of the original one ⁎/
37 #include "../../ contiki/dev/cc2420/cc2420.c"
38 #include "cc2420 -extension.h"
39
40 static int radio_was_off_fast = 0;
41 int
42 cc2420_get_lock(void)
43 {
44 if(locked) {
45 return 0;
46 }
47
48 if(! receive_on) {
49 radio_was_off_fast = 1;
50 cc2420_on ();
51 }
52
53 GET_LOCK ();
54 wait_for_status(BV(CC2420_RSSI_VALID));
55 return 1;
56 }
57
58 void
59 cc2420_release_lock(void)
60 {
61 RELEASE_LOCK ();
62
63 if(radio_was_off_fast) {
64 cc2420_off ();
65 }
66 }

Listing 4.2: Extended cc2420.c in the project folder.

The find_noise_floor() function supports multiple compile time configuration options,
such as the number of samples or how the histogram is interpreted. One method to in-
terpret the histogram is using the statistical mode. The mode returns the value with the
highest number of occurrences. Using the highest measured RSSI is also possible and will
be used for the evaluation.
Given the RSSI distribution of JL_WIFI4, using the highest measured RSSI yields good
results. Another option would also be to use the 95 percentile: this would reduce some
high outliers with low occurrences, but filtering the measurements is still required.
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Figure 4.2 shows the histogram of a single node summed over the whole experiment time
while interference of the types JL_WIFI4 and JL_CONTN are present. The mode is highlighted
in red. In the case of JL_WIFI4 (Figure 4.2a), the mode returns the sensitivity of the radio
(−94 dBm). This value is not helpful as the maximum noise generated by the interferer
at this node is around −78 dBm. In the case of JL_CONTN (Figure 4.2b), using the mode
would work, as the interference is present almost all the time.
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Figure 4.2: Histogram of the RSSI measurements on a single node.

Looking at the RSSI value selected from the histogram in a diagram over time as shown
in Figure 4.3a the use of the statistical mode is not suitable. Even though the jammer is
turned on, no increase in the RSSI is observable. Using the maximum value as shown in
Figure 4.3b shows a clear “jump” as soon as the jammer is turned on. The high spikes are
recorded if the measurement happens while another node is sending a message.
Applying the filtering method previously described to the maximum RSSI value provides
a stable result as shown in Figure 4.4b. Using the mode, the filtered value always stays at
the lower limit of −77 dBm (Figure 4.4a).
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Figure 4.3: Statistical method used while measuring the noise floor of JL_WIFI4.
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Figure 4.4: Filtered noise floor measured while JL_WIFI4 is present.

4.4 Limitations

The design and implementation presented in this sections has some limitations regarding
the lower limit of the new calculated CCA threshold.
The new CCA threshold solely depends on the measured interference. Setting the CCA
threshold too low will result in a network where the nodes prefer longer distance links
which are of bad quality in terms of signal strength (but reduce the number of hops).
This requires that the algorithm uses a lower limit (see Equation 4.2) that has to be known
a priori. This limit must be selected such that the network is connected if no interference
is present. In the present experimental setup, using Contiki OS’ default CCA threshold
of −77 dBm, everything works as expected. If the network is not yet connected due the
physical node distance and set transmission power, this value must be lowered manually
until the network is connected.
Further improvements to the energy consumption of the node could be achieved if the
CCA threshold would be increased as long as the network is connected. With the current
solution this is not possible, as no knowledge of the network performance is used, and as
the CCA threshold is always lowered again to match the noise floor but kept above a limit
plus ε.

The present solution only provides a method to escape interference and to reduce the energy
consumption if interference is present. Other improvements achievable by automatically
adjusting the CCA threshold (limiting or increasing the set of parents to reduce energy or
to increase the PRR) are not yet explored or implemented.



Chapter 5

Evaluation

This chapter evaluates the improvements to ContikiMAC described in Chapter 4. The goal of
this chapter is to show how the performance of the network improves if the CCA threshold
is dynamically changed using the proposed AutoCCA algorithm. The experimental setup
is the same as the one used in the previous experiments. The results of the experiments
presented in the experimental campaign in Chapter 3 are compared to similar experiments
in which the CCA threshold is changed automatically.
The following experiment configurations are investigated:

• No added radio interference;

• JL_WIFI4 interference continuously on;

• JL_CONTN interference continuously on.

Each experiment uses the same nodes, a duration of one hour, and ETX as objective
function. For these experiments, OF0 and light interference are not run, as ETX always
performed better than OF0 (see Section 3.3.2), and as JL_WIFI1 and JL_WIFI2 only had a
small influence on network performance (see Table 3.2).
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JL_NOINT NO 30 94 -73 2.30 0.16 0.81 0.18 3.45 4.000 27
JL_NOINT YES 30 97 -74 2.25 0.10 0.76 0.18 3.29 3.828 28
JL_WIFI4 NO 30 86 -72 6.24 0.33 1.41 0.18 8.16 13.241 18
JL_WIFI4 YES 30 89 -72 2.33 0.24 0.79 0.18 3.53 4.241 25
JL_CONTN NO 30 9 -69 10.98 0.04 3.32 0.18 14.52 0.517 2
JL_CONTN YES 30 61 -67 2.83 0.58 0.88 0.18 4.47 10.966 15

Table 5.1: Evaluation results with and without enabled AutoCCA.
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Table 5.1 shows the results of the repeated experiments, while also the automatic CCA
threshold change as described in Chapter 4 is enabled. The results of the previous experi-
ments are included as well.
The results of the experiment without interference shows that the added noise floor mea-
surements do not decrease the nodes performance (almost same PRR and total power
consumption).
Packet reception rate. It can be noted that in the case of JL_WIFI4, only a small im-
provement of the PRR is visible (from 86% to 89%). But the number of nodes with a
PRR above 90% now almost covers every node used (from 18/29 to 25/29). In the case of
JL_CONTN the improvements are more evident. Starting from a completely broken network
with only two nodes achieving a PRR above 90%, the network manages to form a network
reaching about 15/29 nodes. This results in an increase in the average PRR from 9% to
about 61%.
Power consumption. The energy consumption for JL_WIFI4 is significantly lowered. The
value decreases from 8.16mW to 3.53mW, an improvement of 56%. For JL_CONTN the av-
erage total power consumption is reduced from 14.52mW to 4.47mW, an improvement of
69%. The power consumption of JL_WIFI4 and JL_CONTN hence almost reaches the value
recorded when no interference is present (3.29mW).
Even though not all nodes manage to connect to the network, the availability is signifi-
cantly increased, as the batteries will last approximately three times longer.
Figure 5.1 shows the power usage of a single node with and without enabled dynamic CCA
threshold update. It can be observed that the listen power consumption stays at a low level
of about 2mW if AutoCCA is enabled. Without the improvements the energy increases
to about 8mW, as soon as the jammer is turned on.
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Figure 5.1: Power usage and number of strobe packets with and without AutoCCA.
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(a) The network over time with a continuous JL_WIFI4 jammer.

(b) The network over time with a continuous JL_CONTN jammer.

Figure 5.2: Collected events of the network from each node over the whole experiment time with AutoCCA enabled.
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Parent changes. In the case of JL_WIFI4 a lot less parent changes per node are counted
(from 13.24 down to 4.24), almost reaching the value observed when no interference is
present (3.8). The network is way more stable. In the case of JL_CONTN, the number of
parent changes per node is increased from 0.51 to 10.96. In the previous experiment the
nodes communication was blocked and thus no parent change could be performed. The
network is still not as stable as when JL_WIFI4 is active, given that not every node is able
to communicate.

Figure 5.2 shows the time graph of the whole network with AutoCCA enabled. There are
only some collisions before sending visible after the jammer is turned on. As soon as the
CCA threshold is changed no more collisions are recorded (compare with Figure 3.21).

Lessons learned:

• Automatically changing the CCA threshold lowers the energy consumption in the
presence of interference notably.

• The added noise floor measurements have only little impact on the node. Measuring
every 10 s for 50ms is sufficient.

• The PRR increase from 9% to 61% for the continuous carrier jammer (JL_CONTN),
shows indeed that changing the CCA threshold in high interference situation is useful.

5.1 Monitoring automatic CCA threshold updates

To observe and monitor the CCA threshold updates, every change is logged and can be
plotted. The results in a network with interference are shown in Figure 5.3.
As soon as the jammer is turned on, each node adjusts (increases) its CCA threshold
according to the design and implementation from Chapter 4. Each node selects a differ-
ent CCA threshold, as the impact of the jammer depends on their physical position (see
Section 3.2.3).
Figure 5.4 shows the CCA threshold updates if a periodic jammer is present. The inter-
ference level is toggled after five minutes. As soon as the jammer is turned on, the CCA
threshold is increased to adapt to the new noise floor. After the jammer is turned off the
CCA threshold returns to its previous value. Keeping the CCA threshold at a higher level
would allow for an even more reduced energy consumption, but requires to combine knowl-
edge like the number of available parents from RPL. This has not yet been implemented,
but would also be beneficial if no interference is present.

Lessons learned:

• Rapid changes of the noise floor update the CCA threshold quite fast (max 40 s when
using the last four measurements and an update interval of 10 s).

• Using the minimum value of the last four measurement as the sole filter is sufficient
for a quite stable CCA threshold.

• The algorithm adapts correctly and repeatable to noise floor changes.
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Figure 5.3: Updates of the CCA threshold (continuous jammer).
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Figure 5.4: Updates of the CCA threshold (periodic jammer).
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5.2 Validation of ε

The CCA threshold is set to the measured noise floor plus a fixed ε as shown in Equation 4.1
and discussed in Section 4.2. For the experiments summarised in Table 5.1 an ε = 3dB
has been selected. The seven experiments in this section validate that choosing 3 dB as ε
is a good choice. Table 5.2 compares seven values of ε from 0 to 6 dB and shows that the
experiment using 3 dB yields the best result. The experiment with ε = 3dB has indeed
the highest PRR and the lowest total energy consumption (3.64mW).
Please note that the highest PRR in this table is not exactly the same as in Table 5.1
(82% vs. 86%). Every experiment run yields slightly different results as a new different
RPL tree is created. Furthermore, also the environment surrounding the nodes changes
over time. Other students are using the room in which the testbed is deployed. This
may results in moved monitors, chairs as well as in temperature changes that affect radio
propagation and reception [5].
The experiments in this validation are run back to back at night to ensure that the effects
of a changed environment are minimized.
Figure 5.5 shows the total power consumption and the PRR summarised in Table 5.2.
The figure shows that an ε of 3 dB yields the best result. It has the lowest total power
consumption of 3.64mW as well as the highest PRR of 82%. Using an ε of 0 does not
work at all, giving a PRR of 0% and it has also the highest power consumption with a
value of 7.7mW.
If the ε is too high (6) the network is not connected any more. Packets are dropped as
ContikiMAC’s radio duty cycling does not keep the radio on to receive a packet.
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0 JL_WIFI4 YES 30 0 -66 5.05 1.22 1.31 0.18 7.77 12.310 0
1 JL_WIFI4 YES 30 76 -71 3.02 0.41 0.93 0.18 4.54 11.310 17
2 JL_WIFI4 YES 30 70 -70 2.56 0.43 0.86 0.18 4.03 10.690 15
3 JL_WIFI4 YES 30 82 -70 2.33 0.31 0.83 0.18 3.64 8.724 23
4 JL_WIFI4 YES 30 79 -71 2.35 0.34 0.84 0.18 3.71 6.862 19
5 JL_WIFI4 YES 30 73 -72 2.30 0.38 0.83 0.18 3.70 9.552 17
6 JL_WIFI4 YES 30 48 -71 2.52 0.60 0.91 0.18 4.22 15.448 8

Table 5.2: Results as a function of ε.
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Figure 5.5: Power consumption and PRR of different values of ε.

Lessons learned:

• Choosing the right ε is important and has high influence on the network performance.

• A “bad” ε highlights the dilemma described in Section 4.1. Either no messages are
send as the radio is considered blocked all the time (ε = 0dBm) or only few messages
are received as the radio is not kept awake (ε = 6dBm).

5.3 Manual verification of results

The experimental results arise further questions: is it possible to improve the network per-
formance further by adjusting the CCA? The connectivity graph from Figure 3.7 provides
a theoretical optimal solution. If the connectivity graph shows that a node would be able
to communicate with another node where the link has a RSSI above the noise floor, the
node should selected that node as a parent.
Table 5.3 shows the result of such an investigation. Most nodes are not improvable, as no
other node that can provide a better link RSSI exists. Node 131 would be improvable, but,
due to its physical location, even without noise it does not manage to reliably connect to
the RPL tree.
A status is considered “improvable”, if another node exits which has an RSSI above the
noise floor including the ε = 3dB margin as used by the AutoCCA algorithm. Nodes might
be listed with an “ok” even if their noise floor is above the best neighbour’s RSSI, as long
as their PRR is high.
None of the nodes except 131 is improvable in the current setup. This leads to the as-
sumption that the currently implemented AutoCCA algorithm finds a good solution to
improve the PRR, which can not be improved further without increasing the algorithms
complexity significantly. For example, nodes 119 and 124 could probably be improved by
implementing the β variable from Equation 4.3 to also lower the CCA threshold below
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100 -70 -65 100 ok -66 91.82 ok
101 -68 -77 99.7 ok -77 82.48 ok
102 -61 -77 99.7 ok -77 96.34 ok
103 -60 -64 99.09 ok -64 92.42 ok
104 -66 -46 92.99 ok -47 0 not improvable
105 -62 -77 99.09 ok -77 98.78 ok
106 -59 -72 100 ok -72 99.7 ok
107 -62 -76 100 ok -77 97.88 ok
109 -66 -64 93.33 ok -65 3.64 not improvable
110 -69 -77 99.39 ok -77 99.09 ok
111 -62 -63 91.54 ok -64 5.76 not improvable
112 -62 -62 100 ok -63 92.97 ok
113 -70 -56 96.64 ok -59 0 not improvable
114 -64 -60 97.26 ok -61 1.82 not improvable
115 -72 -66 95.74 ok -66 0 not improvable
116 -70 -67 98.48 ok -68 0.3 not improvable
117 -69 -66 93.96 ok -66 81.76 ok
118 -69 -75 98.79 ok -75 93.31 ok
119 -78 -77 6.06 not improvable -77 0 not improvable
120 -59 -63 98.79 ok -64 98.17 ok
122 -60 -77 97.58 ok -77 96.36 ok
123 -62 -77 96.97 ok -77 99.7 ok
124 -79 -77 4.24 not improvable -77 0 not improvable
125 -62 -77 93.01 ok -77 92.73 ok
126 -67 -69 86.36 ok -69 2.43 not improvable
127 -70 -76 99.7 ok -76 82.62 ok
129 -54 -71 99.7 ok -72 99.4 ok
130 -50 -64 95.45 ok -66 99.09 ok
131 -50 -72 60.91 improvable -72 52.12 improvable

Table 5.3: Nodes with a check if their parent is theoretical improvable.

Lessons learned:

• The manual verification shows, that the current algorithm finds a good solution.

• Only one node would be improvable in the current setup using the presented AutoCCA
algorithm.

• Increasing the complexity by implementing the β variable from Equation 4.3 might
still improve the performance.



Chapter 6

Related work

Reliability of WSN and RPL is a widely covered topic in research. This section provides an
excerpt of some of the most important works covering RPLs performance that can be found
in the literature. First RPL is compared to CTP in [23], where RPL is found superior.
Further the performance of RPL is investigated while subjected to wireless interference
[15] where problems are detected, but they are mostly attributed to the lower link layer
protocols. It follows a study to evaluate three OFs with the result that no single OF exists
yet which fits every application [19].
The next paper [29] presents AEDP an adaptive CCA protocol. Boano et al. show in the
paper [4] that a dynamic CCA threshold is beneficial in the case of on-board temperature
variations. Both papers supports the need and effectiveness for an adaptive CCA algorithm.

Nguyen Thanh Long et al. provide a comparative performance study of RPL in WSNs in
their paper in [23]. They compare Collection Tree Protocol (CTP) [13] and RPL using
ContikiMAC and X-MAC only in a simulated environment in Cooja, Contiki OS’ network
simulator. The authors show that the performance of CTP in terms of PRR and energy
consumption is better in small networks (9 nodes) compared to when using RPL. For larger
networks (25 to 49 nodes) and growing data traffic RPL outperforms CTP.
The experiments use up to 49 nodes laid out in a grid with the sink in the center or on
the edge. Each node sends 1 to 4 packets per minute over a simulation time of 20 minutes.
The tests are repeated 30 times with different random seeds. As metrics for evaluation the
authors used the PRR, energy consumption per packet, number of loop packets, number
of switching parents and the convergence time. In contrast to these metrics, this thesis
focuses mainly on PRR and the total energy consumption.
Nguyen Thanh Long et al. first experiments show that using ContikiMAC the network con-
verges 18 times faster than using X-MAC (605 s vs. 33 s) tested in a network of 25 nodes. Also
the radio duty cycle of ContikiMAC is in their setup 10 times lower than X-MAC. Therefore
this paper shows that the link layer protocol used has a huge influence on the performance
of RPL.
The next interesting result show that using a node in the center as a sink gives the best
performance. The authors achieve a PRR of about 96% using a center sink and 25 nodes,
while the PRR for a sink on the edge is only 87%. In this thesis, the sink is always on
the edge as shown in Figure 3.2 while still achieving a PRR of about 94% as shown in
Table 3.1. The nodes have a fixed distance of 10m, while in this thesis experimental setup
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the nodes are positioned with a distance between 0.5m to 2m. But the TXP is limited to
still enforce multiple hops.
In their experiment Nguyen Thanh Long et al. increased the number of packets sent from
1 packet per minute to 4 packets per minute. Using RPL the PRR stayed high at close to
95%. Using the higher data traffic, the PRR for CTP dropped to about 42% while also
increasing the number of loop packets from about 5 to more than 50 per minute. For RPL
the number of loop packets stayed constantly below 5 packets per minute. To stress the
network a bit more, this thesis uses about 6 packets per minute.
The tests of Nguyen Thanh Long et al. did not include any (external, radio-) interference
introduced and the test were only performed in simulation but these results show again,
that RPL is a good choice to be used as a routing protocol for data collection.

The article [15] of Dang Han et al., instead, investigates the performance of RPL under
wireless interference explicitly. They build a network of 23 sensor nodes in a computer lab
to monitor the energy used by each computer. Four types of interference are created and
the networks performance is monitored. The lowest interference type used is IEEE 802.11
on a non overlapping radio channel. The second interference type is “normal” IEEE 802.11
traffic on an overlapping radio channel. As a third interference type, the authors deploy
two nodes programmed with a high data transmission rate on the same 802.15.4 channel,
as well as a IEEE 802.11 access point (mixed interference). The fourth interference type
is created by generating a continuous 20Mbps traffic between a IEEE 802.11 AP and a
notebook.
The authors setup consists of PowerNet nodes running the TinyOS’ RPL implementation
using OF0 as OF. The PowerNet nodes also employ the IEEE 802.15.4 compatible CC2420
radio. This is the same radio as used in this thesis.
The nodes send a packet every 2 seconds plus some extra meta data information about
the network every minute. Each of the experiments were run for 10 hours. As metrics, the
nodes are recording the PRR, path ETX, control overhead ratio, and parent change rate,
as well as a new metric called the excess parent changes (percentage of parent changes that
did not improve the nodes rank).
The authors also highlight that packet loss in critical applications such as home monitoring
is not tolerable. The results show that the average PRR drops from around 100% with
low interference to 92% under normal interference. By increasing the interference level to
the third type, the PRR drops to an average of 75%. Using the highest interference level
the PRR drops even below 10%, making the network unusable. The measured control
overhead ratio is at about 0.2 for low interference and increases to almost 1.0 for the high
interference.
Further investigation has shown that the bad performance under heavy interference as
found in typical smart home environments is not solely RPL’s fault. The authors state
that a better coordination between the networking layers is required to improve the perfor-
mance. Some suggestions in the article are “more agile physical layer, less aggressive MAC,
transport discrimination between different types of losses, moderation of data rates at the
application” [15]. This provides some justification to the investigations and improvements
to ContikiMAC made in this thesis.

Oana Iova et al. have investigated the stability of RPL under wireless interference [19].
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They implemented and evaluated three different RPL objective functions (MinHop / OF0,
ETX and LQI) in a simulation. The simulation setup is built using Contiki OS’ RPL im-
plementation and run in the WSNet simulator using 100 nodes. The results are averaged
over 20 simulations using different random topologies. The nodes did not use any radio
duty-cycling to reduce the influence of the lower link-layer protocols. This is a good idea
if only the differences between the OFs are of interest, as this thesis shows that the link
layer protocol has a huge influence on the network performance.
Oana Iova et al.’s results show, that each of the presented OFs has its own drawbacks.
Using MinHop / OF0 gives better results in terms of latency and in energy consumption
than LQI and ETX. OF0 minimizes the number of hops, thus less packets need to be
forwarded, reducing both the energy consumption and the latency for the cost of more
dropped packets (lower PRR) for nodes further away from the sink. Using LQI has the
best results in terms of PRR even for nodes far from the sink as it avoids bad links. The
authors also state that ETX balances the load better among the nodes.
The authors also investigate the route prevalence (“average ratio of time during which the
same route has been observed”). It shows that OF0 is quite stable while for ETX and
LQI the routes change more often. The observation that ETX has a higher rate of parent
changes than OF0 has also been discovered in the experiments shown in Table 3.1.
Oana Iova et al. conclude that no single (existing) OF yields the best results. There are
indeed always trade-offs between a higher latency (LQI), higher instability (ETX) or lower
PRR (OF0). This is a good example showing that the design choice in RPL of leaving the
OF implementation up to the application designer is beneficial. The choice of OF indeed
is highly depended on the WSNs goals and requirements.

In their paper Energy-Efficient Low Power Listening for Wireless Sensor Networks in Noisy
Environments [29] Mo Sha et al. investigate the benefits of an adaptive CCA control algo-
rithm “under normal channel conditions and controlled 802.11n traffic”. The main goal of
their Adaptive Energy Detection Protocol (AEDP) is to mitigate false wakeups of the radio
/ MAC while it is in low power listening mode. In this thesis, the focus to automatically
change the CCA lays mostly to allow sending packets even under interference, while also
reducing the energy impact if a high level of interference is present.
The measurements of Mo Sha et al. were performed using Tmote Sky nodes, but running
on TinyOS and its BoX-MAC-2 MAC layer. According to the authors Contiki OS’ default
RDC ContikiMAC already provides some mitigations to false wakeups due to performing
two CCA checks shortly after each other to rule out short (false) wakeups. Longer inter-
ference burst as created in this thesis (JL_WIFI4, JL_CONTN) still affect ContikiMAC.
The authors use different values for the CCA threshold: one used for low power listen-
ing (wakeup threshold) and the other one used for collision avoidance. Only the wakeup
threshold is changed and the threshold used for transmission is kept at the same level but
the authors state that AEDP could also be applied when transmitting.
The experiment are carried out on 20 nodes at varying distances from a 802.11n sender
and receiver show that changing the CCA threshold has the ability to reduce the number
of false wakeups from more than 97.8% to 0%. The higher wakeup threshold will result
in nodes not waking up even for valid messages. Mo Sha et al. observe that using a fixed
more aggressive wakeup threshold is not of good use, as the interference highly changes
over time, application and distance from the interference source.
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The AEDP implementation uses three runtime variables to estimate a new wakeup thresh-
old. ETX is used over a sliding window but it is estimated using a sequence number in
the incoming packets instead of after sending a packet as in RPL. There the number of
required transmissions until an ACK has been received is used. As a further variable the
authors calculate the wakeup rate over the same sliding window and the wakeup rate over
whole application lifetime.
For each of the three variables a threshold is defined and the algorithm tries to find the
minimum wakeup threshold so that each variable stays below the defined threshold. tTe
newly estimated wakeup threshold is limited between a minimum and maximum value.
The minimum value is set to the noise floor at compile time and the maximum value is
determine by the minimum RSSI of the incoming packets. As the RSSI of the packets
changes over time or new nodes with a lower RSSI at the receiver might be added, AEDP
sets the wakeup threshold periodically to the noise floor value. This ensures that new pack-
ets and thus RSSI values are received and the wakeup threshold is limited accordingly. In
contrast to this approach, this thesis periodically measures the noise floor independently of
the received packets and so no periodic probing using a lower wakeup threshold is required.
The approach of Mo Sha et al. reduces the number of false wake ups and thus the duty
cycle by about 40% in their tested setup. They also performed experiments using CTP and
55 nodes. There AEDP reduced the duty cycle by 35% while also reducing the end-to-end
ETX by 11%. This setup has been run on an overlapping IEEE 802.11 channel.
One limitation of AEDP is that it is ineffective for links with an RSSI close to or below
the noise floor. The wakeup threshold will be set to the minimum RSSI and thus AEDP
cannot reduce the false wakeups due to noise. The approach shown in Section 4.2 does not
suffer from this limitation, as the wakeup threshold is always set to a value ε above the
current noise floor.

Positive results of changing the CCA threshold has also been shown by Boano et al. while
mitigating the Adverse Effects of Temperature on Low-Power Wireless Protocols [4]. The
focus in this paper is to change the CCA threshold based on the temperature variations in
the network. Increasing or decreasing temperature has a bad influence on the performance
of radio transceiver and thus the network connectivity.
The authors show experimentally that an increased on-board temperature erroneously
lowers the measured RSSI, tricking the sender to send a message even tough the radio
channel is not free, resulting in a packet collision and wasted energy. On the receiver side,
due to the lowered RSSI of an incoming packet the radio is not kept awake to receive the
packet.
As a result of Boano et al.’s experiments, they conclude that a link may “indeed still
offer good performance if the CCA threshold is dynamically adapted to the on-board
temperature variations”.
By implementing an adaption algorithm to change the nodes CCA threshold based on the
measured nodes on-board temperature, the authors achieve a 87% higher packet reception
ratio. The algorithm needs a model for the relationship between signal strength attenuation
and the temperature. The authors found this to be a linear factor, but depending both on
the sending and receiving nodes temperature. To retrieve the neighbour nodes temperature,
they piggypack the temperature information onto RPL’s beacons.
This paper, again, makes it clear that a dynamic CCA threshold has a high potential to
improve the networks reliability and dependability.
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Conclusions and Future Work

RPL is the emerging standard for routing IPv6 packets in a WSN. It has been standardized
by the IETF and is now widely investigated in research.
Some WSN applications require a high reliability and dependability. To analyse the suit-
ability of RPL for those applications, the first part of this thesis investigates RPL’s per-
formance while the network is subjected to radio interference.
Towards this goal, tools and scripts are created to instrument, analyse, and evaluate Con-
tiki OS’ RPL in a network of about 30 nodes in a real testbed. A mixture of Python and
Bash scripts allow for a semi automatic work-flow from compiling the changes, deploying
the firmware to the nodes and collecting the requested data. The data is then processed
using Python scripts to generate tables, plots and statistics as required.
The results of a longer experimental campaign show that RPL’s performance highly de-
pends on the underlying link-layer protocol. ContikiMAC is indeed easily blocked by a
strong enough jammer, which leads to a low PRR and a high energy waste, reducing the
nodes battery lifetime significantly.
ContikiMAC’s CCA threshold is found to be an adjustable knob to improve the network
performance under heavy interference.
Hence, in the second part of this thesis, an adaptive CCA threshold algorithm is proposed
and implemented. The implemented AutoCCA algorithm is then evaluated. The most
significant experiments from the experimental campaign are repeated with the proposed
algorithm enabled, and show that dynamically changing the CCA threshold increases the
PRR from 9% to about 60% in the case an jammer generating a continuous carrier, while
also reducing the energy consumption 69%.
As far as the experiments go, no big drawbacks of the suggested algorithm have been found.
The added code size is with about 150 lines quite small. The additional energy consump-
tion added by the CPU and radio-on time (50ms every 10 s) is largely compensated by an
overall energy reduction.

Future work on this topic might be implementing the β parameter of Equation 4.3. This
would integrate data collected from RPL such as the number of available neighbours into
the CCA threshold adaption algorithm to enforce a smaller set of (better) parents. This
could also be used to further reduce the energy consumption if no noise is present, as due
to a higher CCA threshold the number of false wake ups would be reduced.
The AEDP algorithm proposed by Mo Sha et al. [29] could also be implemented for Contiki
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OS and tested using RPL.
As the performance of RPL highly depends on the underlying link-layer protocol, trying
other link-layer protocols such as X-MAC or investigating other improvements to the link-
layer such as forward error correction could be done. Evaluating using the RSSI or LQI
as a metric in an objective function would also be an interesting topic. This would extend
the works of Oana Iova et al. [19] made in simulation to testing it in a testbed.
Instead of using JamLab to generate the interference a setup using real IEEE 802.11 devices
and their introduced interference could be installed and evaluated in a similar approach.
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