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Abstract

In this thesis we consider good drawings and semi-good drawings of the
complete graph. These are special classes of graph drawings, which have
restricted crossing properties. These properties include that two edges shar-
ing a vertex must not cross. We investigate a tool to analyze these drawings,
called the rotation system. It is a fact that the rotation system determines a
good drawing uniquely with respect to some special properties.

We analyze rotation systems with respect to their realizability as good or
semi-good drawings. We argue that it might be very difficult to generate
a random good-drawing. Then we inspect how we can modify rotation
systems to keep some properties that are necessary for realizability. We
introduce such an operation and analyze its applications for generating
random good drawings.

In addition to good drawings we consider semi-good drawings. We show
that for a rotation system to be drawable as a semi-good drawing it is not
sufficient that every sub-rotation system of four vertices is realizable. We
present an example that fulfills this requirement and prove that it is not
semi-realizable.

Last but not least, we show some related results regarding semi-good
drawings.



Zusammenfassung

In dieser Arbeit befassen wir uns mit “Good Drawings” und “Semi-Good
Drawings” des vollständigen Graphens. Das sind spezielle Klassen von
Zeichnungen von Graphen, die eingeschränkte Kreuzungseigenschaften
besitzen. Diese Eigenschaften beinhalten, dass sich zwei Kanten die einen
gemeinsamen Knoten besitzen nicht kreuzen dürfen. Wir beschreiben eine
Methode um solche Zeichnungen zu analysieren. Dazu verwenden wir das
“Rotation System”. Es ist bekannt, dass ein “Good Drawing” durch sein
“Rotation System”, bezogen auf gewisse Eigenschaften, eindeutig bestimmt
ist.

Wir analysieren “Rotation Systems” und deren Eigenschaften, die dafür
verantwortlich sind ob sie als ein “Good Drawing” beziehungsweise ein
“Semi-Good Drawing” zeichenbar sind. Wir argumentieren, dass das Erzeu-
gen von zufälligen “Rotation Systems” die als “Good Drawings” realisierbar
sind kein einfaches Problem ist. Weiters untersuchen wir, wie wir “Rotation
Systems” verändern können um gewisse Eigenschaften beizubehalten, die
für die Zeichenbarkeit notwendig sind.

Zusätzlich zu “Good Drawings” beschäftigen wir uns mit “Semi-Good
Drawings”. Wir zeigen, dass es für ein “Rotation System” nicht ausreicht,
dass alle “Teil-Rotation Systems” aus vier Knoten zeichenbar sind, um
als ein “Semi-Good Drawing” zeichenbar zu sein. Wir präsentieren ein
Beispiel das diese Voraussetzung erfüllt und beweisen formal, dass es keine
Realisierung als “Semi-Good Drawing” besitzt.

Zum Schluss präsentieren wir einige zusätzliche Resultate zu “Semi-Good
Drawings”.
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1 Introduction

In 1736, Leonard Euler stated the historical problem of the Seven Bridges of
Königsberg and laid therefore the foundations of graph theory [26]. Euler
lived in the town Königsberg, which was located on four islands that were
connected by seven bridges. He asked whether there is a walk through the
town, which crosses each of those bridges exactly once, and which ends at
the starting point. To solve this problem, Euler reduced it to its essentials.
The only important aspects in this problem are the islands, the bridges, and
how the bridges connect the islands. These are the basic components of an
abstract graph.

Definition 1.1 (Graph) [10, p. 1] A graph is an ordered pair G = (V, E) consist-
ing of two sets V and E. The set V contains the vertices of the graph. The elements
in the set E are 2-element subsets {v, w} of V called edges and connect the two
vertices v and w.

We call an edge and a vertex incident, if the edge has the vertex as an
endpoint. We call a pair of vertices adjacent, if they are connected by an edge.
Whenever the graph G is not obvious from the context, we denote the set of
vertices of G by V(G) and its set of edges by E(G).

Definition 1.2 (Cycle) [10, p. 2] A cycle in a graph G = (V, E) is a sequence
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1 Introduction

v1, v2, . . . , vk of vertices of V such that {vi, vi+1} is an edge for 1 ≤ i < k and
v1 = vk.

The field of Graph Drawing deals with the representation of abstract graphs
as drawings in the plane. Usually, the vertices are drawn as points and the
edges are drawn as curves connecting two points. We call such a representa-
tion an embedding or a drawing of the graph in the plane. For an abstract
graph, infinitely many different representations are possible. For instance,
we can select an arbitrary set of points for the vertices of the graph and draw
the edges of a graph with straight lines. An important property of every
drawing of an abstract graph is the number of crossings its edges produce.
If a graph is drawable without crossings, we call the graph planar.

Definition 1.3 (Planar Graph) [10, p. 3] A graph is planar if it can be drawn in
the plane without crossing edges.

The property that a planar graph can be drawn crossing-free in the plane
also holds for a drawing on the sphere.

Definition 1.4 (Complete Graph / Complete Bipartite Graph)
We call a graph G a complete graph if for every two vertices v, w ∈ V, v 6= w,
there exists an edge e = {v, w} ∈ E. The complete graph with n vertices is denoted
with Kn.

We call a graph G a complete bipartite graph if its set of vertices can be partitioned
into two sets V1 and V2 such that E = V1 ×V2. The complete bipartite graph with
m vertices in the first set and n vertices in the second set is denoted by Km,n.

In 1930 Kuratowski studied the properties that lead to the fact that a graph
is not planar. He came up with two minimal graphs, which are not planar
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1 Introduction

[10, p. 5]. The first one is K5, the complete graph with five vertices. The
second one is K3,3, the complete bipartite graph with three vertices in
each partition. Kuratowski showed that these two minimal examples are
essentially the only possibilities that prevent a graph from being drawable
crossing-free. More exactly, he showed that a graph G is planar if and only
if G contains no subgraph that is a subdivision of K5 or K3,3. A subdivision
of a graph G is obtained by placing new vertices of degree two on the edges
of G.

This means that for every n ≥ 5, Kn has no crossing-free embedding in
the Euclidean plane. One goal for a nice drawing often is to have as few
crossings as possible. One area of research in the field of graph drawing
is to analyze how many crossings a drawing of a graph needs at least. For
this purpose we have to define which kind of crossings we count and which
drawings we consider, because there exist many different definitions [21].
For instance we could only consider drawings with straight lines and the
minimal number of crossings among all these drawings. In this thesis we
define the crossing number as in [21] and count all crossings and consider
all drawings.

Definition 1.5 (Crossing Number) [21] The crossing number cr(G) of a graph
G is the minimum number of crossings among all drawings of G. The number of
crossings of a drawing D(G) is the number of all proper intersections of two edges.

The first who came up with a conjecture for the crossing number of the
complete graph with n vertices was Hill. His conjecture consisted of two
upper bounds, according to the parity of n. Hill and Harary stated this con-
jecture in their paper in 1962 [12]. Their two formulas were then combined
to a single formula by Blažek and Koman who proved that this is indeed an
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1 Introduction

upper bound for the crossings number of Kn [9]. Guy proved the conjecture
for complete graphs with up to ten vertices [11].

Conjecture 1.1 (Harary-Hill-Guy Conjecture) The crossing number cr(Kn) of
the complete graph Kn satisfies the following equality:

cr(Kn) =
1
4

⌊n
2

⌋ ⌊n− 1
2

⌋ ⌊
n− 2

2

⌋ ⌊
n− 3

2

⌋

It took almost 50 years until in 2007 Pan and Richter proved that the conjec-
ture is true for the complete graph with up to twelve vertices [23]. For 13 ver-
tices Aichholzer et al. showed that the crossing number is cr(K13) ≥ 223 [1].
The result for 13 vertices used a database that enumerates all good drawings
of the complete graph with up to nine vertices. To enumerate the drawings,
they made use of the definition of the rotation system of a drawing, which
identifies any drawing uniquely with respect to its crossing properties. Up
to now it is not known if Conjecture 1.1 is true for graphs with arbitrary
size however, during the last few years, the conjecture has been proven for
many classes of drawings [2]. We note that already the crossing number
cr(K8) = 18 cannot be achieved with straight line drawings [12]. To achieve
this number we need curved edges.

1.1 Outline of the Thesis

In Chapter 2 we start with some basic definitions from the field of Graph
Drawing, which we will need throughout the thesis. We define, among
others, the important terms of good and semi-good drawings, as well as the
concept of (realizable) rotation systems.
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1 Introduction

In Chapter 3 we motivate that realizable rotation systems are very rare
among all rotation systems of the same size and that it might be very
difficult to generate them at random. We analyze different approaches of
how to generate a random realizable rotation system. Then we introduce an
operation for making local changes in rotation systems without violating
certain properties. We call this operation a good double-flip.

In Chapter 4 we consider good double-flips in detail. We show what is
possible with these flips in terms of relabeling a good drawing. We also
present our results concerning the connectivity of the according flipgraph
of all realizable rotation systems.

Chapter 5 is dedicated to the class of semi-good drawings. We present
how we are able to decide whether a given rotation system is drawable as
a semi-good drawing and present a rotation system for which we show
that it is not drawable as a semi-good drawing, although it has some good
properties.

Finally, in Chapter 6 we summarize some related results we obtained during
the work on this thesis and give a conclusion about our results.
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2 Preliminaries

2.1 Good Drawings

A drawing of a graph is an embedding of it in the Euclidean plane or on the
sphere, in the following intuitively nice way.

Definition 2.1 (Drawing) [20] A drawing of a graph in the plane is a mapping f
with the following properties.

• The vertices are mapped to distinct points in the plane.
• Every edge (u, v) is mapped to a non-self-intersecting curve that connects

the two points f (u) and f (v) and does not pass through the image of any
other vertex.
• Every intersection of two curves is either an image of a common vertex or

a proper crossing, which means that the curve passes from one side of the
second curve to its other side, thereby (locally) intersecting the other curve in
exactly one point.

For simplicity, wherever it is clear from the context, we identify vertices and
edges with the points and curves they are mapped to and also denote them
in the same way. In general, we do not distinguish between a vertex/edge
and the point/curve it is mapped to.

6



2 Preliminaries

Definition 2.2 (Cell) A drawing of a graph decomposes the plane into connected
regions. We denote these regions as cells.

Definition 2.3 (Good Drawing) [7] A good drawing of a graph is a drawing of
the graph with the property that every pair of edges in the drawing intersects in at
most one point (either in the interior of both edges, forming a proper crossing, or at
a common end-point).

Let us have a look at this definition in detail. A good drawing is a natural
definition of a nice drawing, since violations of its rules are locally resolvable
with a reduction of the number of crossings. The definition of a good
drawing gives us a natural restriction to drawings that are possible relevant
for crossing minimizing problems. That is two edges intersect in at most one
point. The left example in Figure 2.1 is no good drawing, because the two
edges intersect in a crossing and in one of their endpoints. We can change
the order of the edges incident to vertex 1 and draw this example without
crossings. This is the first indication that the order in which the edges leave
the vertices plays a role for good drawings.

1

2

3

1

2

3

Figure 2.1: Example how to exchange the order to remove crossings

The second important property of a good drawing is that two edges must
not cross two or more times. Figure 2.2 shows a drawing where this rule is

7



2 Preliminaries

violated. This drawing can be redrawn in a way that the two edges cross
only once. This can be done without changing the order of the edges at the
vertices.

21

4

3

21

4

3

Figure 2.2: Example how to switch the path to remove multiple crossings

This possibility of locally resolving crossings motivates that good draw-
ings are indeed the only drawings that are possible relevant for crossing
minimizing drawings.

When dealing with drawings of the complete graph, we have the problem
that there are infinitely many different drawings of Kn. One approach for
attacking this problem is to group this infinite number of drawings of Kn

into groups that are equivalent with respect to their crossing properties. So
we have to clarify how to compare good drawings. Looking at the drawings
of K4 in Figure 2.3, we could say that these are two different drawings. The
left one is a drawing with straight edges and the right one is a drawing
with curved edges. However, when looking at them in a more abstract
way, these two drawings are the same in some way: Both drawings have
the same amount of crossings and even the same edges cross, namely,
edge (1, 4) and edge (2, 3). Another important indicator for their similarity

8



2 Preliminaries

is that both drawings split the plane or the sphere into the same cells. This
means that every cell in the left drawing corresponds to a cell in the right
drawing that is bounded by the same edges in the same order. The third
important identity of these two drawings is that the order of the edges at
every vertex is the same in both drawings. In a formal mathematical sense,
we distinguish between two types of similarity of good drawings, namely,
weak isomorphism and strong isomorphism.

1 2

3 4

1 2

3 4

Figure 2.3: Two isomorphic drawings of K4

Definition 2.4 (Weak Isomorphism) [16] Two good drawings G and H are
weakly isomorphic if there exists an incidence preserving one-to-one correspon-
dence between V(G) and V(H) such that two edges of G cross if and only if the
corresponding two edges of H cross.

Definition 2.5 (Strong Isomorphism) [16] Two drawings G and H are strongly
isomorphic if there exists a homeomorphism of the sphere, which transforms G
into H.

Remark 2.1 The two definitions of isomorphism above are for unlabeled drawings.

9



2 Preliminaries

Let us consider some examples. In Figure 2.4 we can see another pair
of strongly isomorphic good drawings of K4. Although the definition of
isomorphism is given for unlabeled drawings, we give names to the vertices.
The names are given in a way that we can see the isomorphism between the
vertices easily. Although we did not draw the vertices in the same manner, it
can be seen that both drawings have the same crossings. Therefore they are
weakly isomorphic. Also, both drawings split the plane, and therefore the
sphere, into the same number of cells. A one-to-one correspondence between
the cells of the first and the second combinatorial structure can be found, so
that every cell is bounded by the same edges in the same order. Therefore
both drawings are also strongly isomorphic. We marked this correspondence
between the cells with the grey numbers. In the left drawing the cell with
four edges on its boundary is unbounded (grey number 5). In the right
drawing the cell with the number 5 is bounded. Note that the fact whether
a cell is bounded or not does not play a role, because strong isomorphism is
defined on the sphere where no unbounded cell exists.

For good drawings with at most five vertices, weak isomorphism and strong
isomorphism are equivalent. That means that there exists no pair of good
drawings with at most five vertices, which are weakly isomorphic but not
strongly isomorphic.

1 2

3 4

1

2

3

45

1 2

4

3

1

2

3
4

5

Figure 2.4: Two isomorphic drawings of K4
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2 Preliminaries

Now we concentrate on the order of the edges at the vertices. Since two edges
that are incident to the same vertex must not cross, this order influences
the way a graph can be drawn. Again, we point this out in an example.
Figure 2.5 shows three incomplete drawings of K4. In every drawing the
order of the edges at all vertices is fixed. In the left drawing the missing
edge (2, 3) starts at 2 inside the triangle 4124. To obtain a good drawing,
the only way this edge can leave4124 is by crossing the edge (1, 4), because
(2, 3) shares a vertex with the other two edges that are bounding this cell.

1 2

3 4
2

3
1 2

3 4

2

3
1 2

3 4

2

3

Figure 2.5: Three rotations of vertex 2 and 3 of K4

In the middle drawing the edge (2, 3) has to start at 2 in the unbounded cell.
This edge is not allowed to cross any of the four edges that are bounding
this cell. So the only way to connect to vertex 3 is without crossing any edge.
Note that it does not play a role whether the edge (2, 3) is drawn on the
upper or lower side of the vertices, because strong isomorphism is defined
on the sphere. So both cases result in good drawings, which are strongly
isomorphic and therefore also weakly isomorphic.

In the right drawing the order of the edges at vertices 2 and 3 is chosen
in a way that the edge from 2 to 3 cannot be drawn without violating the
conditions for a good drawing. The edge has to start at vertex 3 in the

11



2 Preliminaries

unbounded cell. Since it has to end inside the triangle 4124 at vertex 2, it
has to cross an edge bounding the unbounded cell. Due to the rules of good
drawings this is not possible.

So we have seen that the order of the edges at the vertices influences the way
how a graph can be drawn as a good drawing. In fact, in a drawing of K4,
this order defines whether two distinct edges cross or not. (Compare [20]).

Remark 2.2 For a good drawing, it does not matter how the vertices are arranged
in the plane. We can place the vertices in convex position and realize all possible
good drawings on this arrangement. This is also the standard method how we
present examples of good drawings throughout this thesis.

For the topics considered in this thesis any good drawings that are weakly
isomorphic are essentially the same. Hence, from now on, we consider good
drawings as different if and only if they are not weakly isomorphic.

2.2 Rotation Systems

To distinguish good drawings, we use the method of computing its rotation
systems, which is a unique representation of it with respect to its crossing
properties.

Definition 2.6 (Rotation System) [16] Let D be a good drawing of a labeled
graph G. The rotation of a vertex v ∈ V(G) is the clockwise cyclic order of all
edges incident to v. The rotation system of a good drawing consists of the rotation
of every vertex v ∈ V(G). We denote the rotation system of a good drawing D of
G with R(D).

12



2 Preliminaries

We can label the edges that emanate from vertex v by their other end-vertex.
So the rotation of a vertex v can be represented as the order of its adjacent
vertices. If G is a complete graph, every vertex v is connected to every
other vertex and the rotation of v consists of all vertices of G except v itself.
Therefore it is a cyclic permutation of the elements of V(G)\{v}.

In a labeled drawing the rotation of every vertex is uniquely defined. In
the following we always represent the rotation of a vertex by listing its
adjacent vertices as a tuple in the order the edges emanate from the vertex,
starting with the vertex with the alphabetically smallest label. Further, for
a drawing with vertices {1, . . . , n} we represent its rotation system as the
concatenation of the rotations of its vertices, starting with vertex 1 and
ending with vertex n. Therefore in a complete graph this gives us a string
of n(n− 1) numbers.

In 2009, Kynčl stated the following proposition on the connection between
rotation systems and good drawings.

Proposition 2.1 (Kynčl 2009) [14]

1. The rotation system of a good drawing of a complete graph uniquely deter-
mines, which pairs of edges cross. Therefore it follows that two good drawings
of a complete graph with the same rotation system are weakly isomorphic.

2. If two good drawings of a complete graph are weakly isomorphic, then their
rotation systems are either the same or inverse.

We say that a pair R(D), R(E) of rotation systems is inverse if the rotation
of every vertex in R(D) is the inverse of the corresponding vertex in R(E).
Figure 2.6 shows two weakly isomorphic drawings that have inverted rota-
tion systems. The right drawing is the mirroring of the left one. The rotation

13



2 Preliminaries

system of the right one is then the inverse of the left one. This is the reason
why inverse rotation systems are considered in Proposition 2.1.

1

52

3 4

1

5 2

34

Figure 2.6: Two mirrored drawings of K5 with inverted rotation systems

Proposition 2.1 gives us a tool to compare and enumerate all weak iso-
morphism classes of good drawings by concentrating on rotation systems.
Note that we can determine whether two edges cross in a good drawing
by checking the sub-rotation system of the four incident vertices of the two
edges. Proposition 2.1 is stated for labeled drawings. Since we are only
interested in the structure of a drawing with respect to its crossings and
do not bother about different labelings, we need a well defined rotation
system for an unlabeled drawing. This is obtained by the fingerprint of a
good drawing.

Definition 2.7 (Fingerprint of a Good Drawing) [1] Let D(Kn) be an unla-
beled good drawing of the complete graph Kn. We label the vertices of the drawing
with the values 1 to n. Consider the rotation system of this labeled drawing, repre-
sented as a string of n(n− 1) numbers. We also take into account the string that
we get when we invert the rotation system. The fingerprint of the good drawing
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2 Preliminaries

is the lexicographic minimal string (inverted or non-inverted) among all different
labelings of the drawing.

Since Definition 2.4 of weak isomorphism is defined for unlabeled drawings,
relabeling does not change the weak isomorphism class. Definition 2.7
implies that in the fingerprint, the rotation of vertex 1 has the sequence
(2 3 4 . . . n) and the rotation of every other vertex starts with 1.

While relabeling a labeled good drawing does not affect a good drawing, it
does change its rotation system. Similarly, mirroring a labeled good drawing
leads to a weakly isomorphic good drawing with inverted rotation system.
In analogy to the weak isomorphism class for good drawings we can also
define an equivalence relation for rotation systems.

Definition 2.8 (Equivalent Rotation Systems) [1] LetR and P be two rotation
systems of labeled drawings of Kn. We say that R and P are equivalent, if R can
be obtained from P by relabeling P or the inverse of P .

We denote the set of equivalence classes of rotation systems with n points as Rn.

By Proposition 2.1, equivalent rotation systems correspond to weakly iso-
morphic good drawings.

We will use the term fingerprint also for the rotation system that is lexico-
graphically minimal among all equivalent systems. As we defined weakly
isomorphic good drawings and equivalent rotation systems, we can speak of
the weak isomorphism class of good drawings and the equivalence class of
rotation systems. If two drawings are in the same weak isomorphism class,
then their rotation systems lie in the same equivalence class. This follows
directly from Proposition 2.1. Mostly we will talk about rotation systems and
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2 Preliminaries

good drawings and refer to their associated classes of equivalent rotation
systems and weakly isomorphic good drawings, respectively.

Observation 2.1 Two unlabeled good drawings are weakly isomorphic if and only
if they have the same fingerprint.

Since good drawings and rotation systems are connected by Proposition 2.1,
the relevant properties of a good drawing for our topics can be obtained
from the rotation system. Therefore, we will often not distinguish between
good drawings and their associated rotation systems. As we have seen in
Figure 2.5, the rotation system of K4 defines whether two distinct edges
cross or not. If we know that two edges cross and how they cross, then we
can give the rotation system of the four involved vertices. We state this fact
as a lemma and need a definition before.

Definition 2.9 (Rotation of a Crossing) [22, p. 19] Let D(G) be a drawing of a
graph G. The rotation of a crossing in D(G) is the cyclic order of the four segments
of the two edges involved in the crossing.

Lemma 2.1 Consider a labeled good drawing of K4, where two edges e1 and e2

cross. The rotation system of the good drawing is uniquely determined by the two
crossing edges and the rotation of the crossing.

Proof: Figure 2.7 shows all different labeled good drawings of K4 with
one crossing. It can be easily checked that all these drawings have different
rotation systems. We can also see that in each drawing two different edges
cross, or at least the rotation of the crossing is different. This concludes the
proof. �
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2 4

1 3

2 3

1 4

4 2

1 3

3 4

1 2

4 3

1 2

3 2

1 4

Figure 2.7: All different labeled drawings of K4 with one crossing

Another important property of a rotation system with four vertices is that
in a good drawing it is possible to compute the rotation of the fourth vertex,
given the rotations of the other three vertices. Hence, if we want to construct
a good drawing with four vertices, we only need the rotations of three
vertices. The rotation of the fourth vertex is then determined uniquely. This
fact can be easily proven by considering all different rotation systems of
good drawings with four vertices, similar to the proof of Lemma 2.1. The
following example illustrates the usage of this property for one case. Given
is the following incomplete rotation system of the vertices 1 to 3:

1 : 2 3 4

2 : 1 4 3

3 : 1 2 4

This incomplete rotation system can only lead to the good drawing given in
Figure 2.8. Therefore the rotation of vertex 4 is uniquely determined by

4 : 1 3 2.

Up to now, we looked at rotation systems that are derived of good drawings
of the complete graph. We can also construct rotation systems without
knowing whether there exist good drawings with this rotation systems. In
the majority of this work we will look at rotation systems from this point of
view. Note that Rn contains all equivalence classes of rotation systems, no
matter if there is a good drawing having this rotation system. For such a
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1

32

4

Figure 2.8: Only good drawing of the incomplete rotation system

rotation system we have the problem to decide whether or not there exists a
good drawing that has this rotation system. If this is the case, we say that a
rotation system is realizable.

Definition 2.10 (Realizability) [1] Let a rotation system R be given. R is said
to be realizable if it is a rotation system of a good drawing of a complete graph.

It is clear that if a rotation system R is realizable, then all its equivalent
rotation systems are realizable too.

2.3 Semi-Good Drawings

In this work we will also deal with rotation systems that are not drawable
as a good drawing, but as a semi-good drawing.

Definition 2.11 (Semi-Good Drawing) A semi-good drawing of a graph is a
drawing with the property that every two edges that share an incident vertex do
not cross.

18
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Definition 2.12 (Semi-Realizable) We call a rotation system R that is drawable
as a semi-good drawing semi-realizable.

In a semi-good drawing, like in a good drawing, two edges that share a
vertex are not allowed to cross. In contrast, two distinct edges are now
allowed to cross not only once, but multiple times.

We now state a lemma that links the position of a vertex and the rotation
system. This lemma holds for good drawings as well as for semi-good
drawings. Here it is stated for semi-good drawings.

Definition 2.13 ((Empty) Triangle) Any sub-drawing of three vertices a, b, c of
a good or semi-good drawing of the complete graph forms a closed curve connecting
the three vertices. This sub-drawing is called the triangle 4abc. This triangle
decomposes the plane into two connected regions, one is unbounded and one is
bounded. If one of these components does not contain any of the remaining vertices
of the drawing, then the triangle is called empty.

1 2

3

4

4

4

P

Figure 2.9: When two edges of a triangle start inside the triangle and the vertex is outside

Lemma 2.2 Given is a rotation system of a semi-good drawing of the complete
graph Kn and a triangle of this drawing. This triangle decomposes the plane into
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two regions. For any arbitrary vertex v that is not a vertex of the triangle, the
rotation system tells us in which of these two regions v is contained. It is the region
in which at least two of the three edges of the sub-drawing to vertex v start.

Proof: Assume for the sake of contradiction that there exists a trian-
gle 4123 and a vertex 4 for which the statement does not hold. Without
loss of generality we assume that vertex 4 lies in the unbounded cell of the
triangle 4123 and that two edges (1, 4) and (3, 4) start inside 4123. This
configuration is shown in Figure 2.9. We show that this configuration is not
drawable as a semi-good drawing.

Since the edge (3, 4) has to leave the triangle 4123 and must not cross
any edge incident to 3, it has to cross the edge (1, 2). We call the first
crossing point P. Then the curves (1, 3), (3, P), and (1, P) bound a cell
inside which the edge (1, 4) starts at vertex 1. This cell lies completely
inside the triangle 4123. Therefore vertex 4 does not lie in this cell. Since
the edge (1, 4) must not cross any of the edges incident to 1 and 4, it is
not allowed to cross any of the curves (1, 3), (3, P), and (1, P). Thus, this
configuration is not drawable as a semi-good drawing, which completes the
proof. �
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Rotation Systems

If we want to analyze good drawings of Kn with respect to their crossing
properties we can instead analyze realizable rotation systems. We know
that the number of equivalence classes of realizable rotation systems of n
vertices is between 2Ω(n2) and 2n2α(n)O(1) , where α is the inverse of the
Ackermann function [15, 20]. These numbers grow too fast to analyze all
realizable rotation systems with more than 9 vertices. In fact, for n = 8
there are already 5 370 725 different realizable rotation systems and there
is a database of all these systems with up to nine vertices [1]. To support
conjectures about good drawings of Kn or find contradictions to them, we
aim for an algorithm to generate a big number of random realizable rotation
systems.

In this chapter we present different methods to randomly generate realizable
rotation systems of good drawings of Kn. It turns out that realizable rotation
systems are very rare in the set of all possible rotation systems, even for
small values of n. So it is very difficult to find a big amount of different
realizable rotation systems with more than seven vertices by chance.

We need an efficient method to decide whether a given rotation system
is realizable. In 2011 Kynčl provided an algorithm that proves that this
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problem is solvable in polynomial time [16]. Later he found out that a
rotation system is realizable if and only if all sub-rotation systems that
consist of six vertices are realizable [17]. From the database we know that
every sub-rotation system of six vertices is realizable if and only if every
sub-rotation system of four and five vertices is realizable. To simplify the
terminus in this thesis we call such sub-rotation systems 4-tuples and 5-tuples,
respectively. So we only have to analyze all 4-tuples and 5-tuples to decide
whether a rotation system is realizable and can decide this in O(n5) time.

To create random rotation systems we considered three different approaches.

• Generating Rotation Systems from Scratch
• Generating Rotation Systems by Extension
• Generating Rotation Systems using Good Double-Flips

3.1 Generating Rotation Systems from Scratch

In this section we bound the number of equivalence classes of rotation
systems and show how rare realizable rotation systems are already for
small numbers of vertices. At first we concentrate on the total number of
rotation systems. Then we approximate the number of equivalence classes.
We consider the complete graph Kn = (V, E) with vertices V = {1, 2, . . . , n}.
We have already seen that every rotation of a vertex v can be represented as
a cyclic permutation of n− 1 vertices without fixed points. The number of
such cyclic permutations is (n− 2)! . This can easily be seen when we start
every rotation with the smallest vertex. For the remaining n− 2 vertices we
have (n− 2)! permutations left. Therefore the number of different rotation
systems with n vertices is

(n− 2)!n.

22



3 Generating Random Realizable Rotation Systems

That means that already for n = 6 there are more than 191 million systems.
Of course a lot of them are in the same equivalence class. So it would be
useful to consider less different rotation systems. The important requirement
for the generation is that from every weak isomorphism class of good
drawings at least one representative rotation system can be generated.

We know that for every rotation system there exists a relabeling, such that
the rotation of vertex 1 is in the canonical order, that is, the rotation of vertex
1 is fixed to (2 3 4 . . . n). This reduces the number of possible rotation
systems that we have to consider to

(n− 2)!n−1.

Also this number is already about 8 million for n = 6 and it is rapidly
growing with n. Also this is still not the number of equivalence classes of
rotation systems. The reason is that a rotation system that has the stated
properties that the rotation of vertex 1 is (2 3 4 . . . n) and every other
rotation starts with 1, might not be a fingerprint. As an example we consider
the two rotation systems of four vertices in Example (3.1). The left system is
lexicographically minimal. By relabeling the vertices, such that the vertices
1 and 2 change their labels, we obtain the right system, which is different
but also fulfills the requirements from above. The two rotation systems are
equivalent.

1 : 2 3 4 2→ 1 1 : 2 3 4

2 : 1 3 4 1→ 2 2 : 1 3 4

3 : 1 2 4 3→ 3 3 : 1 4 2

4 : 1 2 3 4→ 4 4 : 1 3 2

(3.1)

Note that for calculating the fingerprint we only have to consider all choices
of the vertices 1 and 2 plus the two directions, clockwise and counterclock-
wise, in which we can read the emanating edges. The labels of the remaining
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vertices result from the fact that the rotation of vertex 1 is (2 3 4 . . . n). If
a rotation system is given, we choose which vertex is labeled 1, at which
vertex we start enumerating the emanating edges (this is then vertex 2), and
in which direction we enumerate. Then all other vertices get their labels ac-
cording to the rotation of vertex 1. This means we can relabel every rotation
system in at most 2n (n− 1) different ways. From this it follows that the
number of equivalence classes |Rn| is bounded by

(n− 2)!n−1

2n (n− 1)
≤ |Rn| ≤ (n− 2)!n−1.

We can write this in an asymptotic notation an get the following Lemma.

Lemma 3.1 (Compare [20]) The number of equivalence classes of rotation systems
is 2Θ(n2 log n).

We cannot say that |Rn| is equal to (n−2)!n−1

2n(n−1) , because it could happen that a
relabeling of a rotation system leads to the same system. We see this case in
the following Example (3.2). The same rotation system as in Example (3.1)
is given. By relabeling it like stated, the same rotation system occurs.

1 : 2 3 4 4→ 1 1 : 2 3 4

2 : 1 3 4 1→ 2 2 : 1 3 4

3 : 1 2 4 2→ 3 3 : 1 2 4

4 : 1 2 3 3→ 4 4 : 1 2 3

(3.2)

When taking realizability into account, the following property strongly
reduces the number of rotation systems that could be realizable. We know
that in a drawing of K4, the rotation of the fourth vertex is determined by
the rotations of the first three vertices. Hence it follows that the rotation
of the n-th vertex is determined by the rotations of the vertices 1 to n− 1.
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n lower bound
for |Rn|
(n−2)!n−2

2n(n−1)

exact number
of equiva-
lence classes
|Rn|

upper bound
for |Rn|
(n− 2)!n−2

exact number of
realizable equiv-
alence classes

3 < 1 1 1 1

4 < 1 3 4 2

5 5.4 50 216 5

6 5529.6 134 180 331 776 102

7 ∼ 2.96× 108 ∼ 2.4× 1010 11 556

8 ∼ 1.24× 1015 ∼ 1.3× 1017 5 370 725

Table 3.1: Comparing the numbers of rotation systems and realizable rotation systems
(missing entries are too large to be computed in reasonable time)

Therefore the number of different rotation systems the algorithm has to
consider is reduced by a factor (n− 2)! and we get the following lemma.

Lemma 3.2 The number of realizable rotation systems of the complete graph with n
vertices is bounded from above by (n− 2)!n−2.

For n ≤ 6 we were able to determine the exact number of equivalence
classes of rotation systems with an algorithm that computes all possible
rotation systems and determines their fingerprints. The results are shown
in Table 3.1 together with the upper and lower bound for |Rn|, as well as
the number of equivalence classes of realizable rotation systems.

When comparing the upper and lower bound of the number of equivalence
classes, we see how large the gap between this numbers is. We can also
compare the number of realizable equivalence classes and all equivalence
classes of rotation systems. Already for n = 6 roughly every thousandth
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Number of considered different rotation systems 4!4 = 331 776

Number of considered realizable rotation systems 4472

Number of weakly non-isomorphic good drawings 102

Probability to generate a realizable rotation system 331 776
4472 = 0.0135

Average number of considered good drawings per class 4472
102 = 44

Table 3.2: Numbers of rotation systems and good drawings for n = 6

class is realizable.

To estimate the probability to generate a realizable rotation system, we
also need to bound the number of rotation systems we consider in each
equivalence class. This will be of importance for generating random re-
alizable rotation systems. Since we know from above that every rotation
system has 2n(n− 1) labelings that match our requirements, the number of
considered realizable rotation systems of one equivalence class is bounded
by 2n(n− 1). The number of considered rotation systems that are realiz-
able is then bounded by the number of equivalence classes of realizable
rotation systems times 2n(n− 1). For n = 7, this upper bound is already
970 704. Therefore the probability that a randomly picked rotation system
is realizable is < 970 704

2.4× 1010 = 0.000 040 4. This is the quotient of the upper
bound of realizable rotation systems and the number of considered different
rotation systems. This means in the expected case we have to check about
24 thousand random rotation systems to find a realizable one.

In fact, the exact probability is smaller, because there are in general less than
2n(n− 1) different rotation systems in an equivalence class. This follows
from the fact that relabeling might lead to the same rotation system. (See
Example 3.2). For n = 6, it was possible to compute some exact numbers,
which are listed in Table 3.2.
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Therefore, in average we need about 1
0.0135 ≈ 74 tries to find a realizable

rotation system for 6 vertices by chance. This result was confirmed by
simulations. Since we know that the number of realizable rotation systems
is 2Ω(n2) and the number considered rotation systems is 2Θ(n2 log n), the
fraction of realizable systems goes to zero as n grows. Thus it is nearly
impossible to find a realizable rotation with more than ten vertices by
chance. Therefore we need another approach.

3.2 Generating Rotation Systems by Extension

This approach uses the fact that every realizable rotation system of n vertices
contains n realizable sub-rotation systems of n− 1 vertices.

The idea now is to choose a random realizable rotation system with n− 1
vertices, extend it randomly to a rotation system of n vertices and check if
it is realizable. For the extension we have to insert a new vertex in every
rotation and add the rotation of the new vertex to the rotation system. In
the rotation of vertex 1 we add the new vertex at the last position. We have
already seen that this is sufficient to generate all non-equivalent realizable
rotation systems. For the rotations of the vertices 2 to n− 1 we can include
the new vertex randomly at every position except at the first position,
because the rotations should start with 1. As seen before, the rotation of the
new vertex results from the rotations of all other vertices. So we do not have
to generate this rotation randomly.

This leads to a total number of (n− 2)n−2 possible extensions from n− 1
to n vertices. Of course, not every extension is a realizable rotation system.
But the probability to gain a realizable rotation system with this approach
is much larger than with the first approach, since we start with a realizable

27



3 Generating Random Realizable Rotation Systems

rotation system with n− 1 vertices. Another advantage is that it simplifies
the realizability test. We know that for the realizability test we have to check
all 4-tuples and 5-tuples. Since we started with a realizable rotation system
with n− 1 vertices, we know that all 4-tuples and 5-tuples without the new
vertex are already realizable. So we only have to check the 4-tuples and
5-tuples that include the new vertex.

To generate a realizable rotation system of a desired size of n vertices,
we start with the only rotation system with three vertices and extend it
randomly. After each extension step we have to check if the new system is
realizable.

Unfortunately, for large n the number of possible extensions becomes very
large and the probability to find a realizable rotation system gets very
small.

In practice, this approach works very well for rotation systems up to nine
vertices. For the extension from nine to ten vertices usually a few thousand
extension tries were needed to get a realizable rotation system. Therefore, we
were not able to create a big amount of random realizable rotation systems
with more than nine vertices in an acceptable time with this approach.

3.2.1 Improvement of the Extension-Step

As noted above, in a realizable rotation system, the rotation of the n-th
vertex is determined by the rotations of the other n − 1 vertices. To get
the missing rotation we have to analyze all 4-tuples that contain the new
vertex n. By analyzing a 4-tuple, we can determine the partial rotation of
the n-th vertex including the three other vertices of this 4-tuple. By doing
this with all 4-tuples, we get the whole rotation of vertex n. During this
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fixing of the rotation of the n-th vertex, contradictions in the partial rotations
of the n-th vertex can arise. If such a contradiction arises, we have a non-
realizable sub-rotation system. Such contradictions could be used to check
the realizability in an early state.

To make use of this, we try to fix the rotation of the new vertex as early
as possible. Therefore, for the extension, we choose the positions of the
new vertex in the rotations of the vertices 2 and 3 randomly. Then we can
determine the order of the vertices 1 to 3 in the rotation of vertex n, using
the incomplete sub-rotation system of the 4 vertices {1, 2, 3, n}. After that
we continue with vertex 4. We choose the position of the new vertex in the
rotation of vertex 4 randomly and try to determine the position of vertex 4
in the incomplete rotation of vertex 4. This can be done by analyzing all
4-tuples {(x, y, 4, n) : x 6= y < 4} and check if all can be completed to a
realizable rotation system. In the same way we continue with all remaining
vertices up to n− 1. If in one step a contradiction arises, we know that the
last chosen position gives us a non-realizable rotation system and so we
choose a different position.

With this method we obtain a rotation system in which every 4-tuple is
realizable. It remains to check all 5-tuples that include the n-th vertex to
make sure this rotation system is realizable.

With this improvement we were able to generate realizable rotation systems
with up to 13 vertices in reasonable time. Comparing the improved and
the not improved algorithm for n = 9 we get a boost-factor of approxi-
mately 10.
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3.3 Generating Rotation Systems using Good

Double-Flips

The third approach is based on the idea that we start with a realizable
rotation system and modify this system randomly in a way that we get
another realizable rotation system. For this approach we need an operation
that modifies a rotation system, but does not change its realizability. Up to
now we did not find such an operation, but we have found one that leaves
at least all 4-tuples realizable. We call this operation a good double-flip.

3.3.1 Good Double-Flips

Looking at a realizable rotation system of four vertices, we see that modify-
ing a single rotation always results in a non-realizable rotation system. When
we modify two rotations in a realizable rotation system of four vertices, we
again get a realizable rotation system. This can be used in rotation systems
of arbitrary size. We choose an appropriate pair of modifications such that
every 4-tuple is affected either by both or by none of these changes. Then
every 4-tuple stays realizable, if it was realizable before.

Definition 3.1 (Good Double-Flip) Let R be a rotation system of size n. Let vi

and vj be two neighbored vertices in the rotation of vertex vk. If in the rotation of vi

the vertices vj and vk are also neighbored, then we call the exchange of vi and vj

in the rotation of vk together with the exchange of vj and vk in the rotation of vi a
good double-flip and denote it by the vector

(
vk, vi, vj, vi, vj, vk

)
.

Lets look at the good double-flips with the Example (3.3). There we see
two different realizable rotation systems with five vertices. We marked the
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vertices that change their positions in the rotations bold. This marks a good
double-flip, which modifies the left rotation system to the right one. If we
have a close look at all five 4-tuples of this rotation systems, we can see
that all stay realizable. Now lets have a look at the good drawings of these
rotation systems. We can see them in Figure 3.1. When we apply the marked
modifications in the rotations of the vertices 1 and 3 in the left drawing, we
obtain the right drawing.

1 : 2 3 4 5 1 : 2 4 5 3

2 : 1 3 4 5 2 : 1 3 4 5

3 : 1 2 4 5 3 : 1 4 5 2

4 : 1 2 3 5 4 : 1 2 3 5

5 : 1 2 3 4 5 : 1 2 3 4

(3.3)

1

2

3

45

1

2

3

45

Figure 3.1: Example of a good double-flip in K5

Next we show that like in Example (3.3) good double-flips never change the
realizability of any 4-tuples.
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Proposition 3.1 Let R be a rotation system wherein all 4-tuples are realizable. A
good double-flip of R leaves all 4-tuples realizable.

Proof: In a good double-flip
(
vk, vi, vj, vi, vj, vk

)
, three different vertices vi, vj,

and vk are involved. In all sub-rotation systems of four vertices that con-
tain vi, vj, and vk both modifications of the double-flip will be applied. Since
we know that two modification in the rotation system of K4 do not change
the realizability, these 4-tuples stay realizable. All sub-rotation systems of
four vertices that contain only one or none of the three vertices will not be
affected by the double-flip at all.

The sub-rotation systems of four vertices that contain two of the three
vertices will also not be affected. We see this by looking at their according
rotations. Assume a 4-tuple contains the vertices vi and vj. We only have
to inspect the rotation of vi, because the other rotations of this 4-tuple do
not change. In the rotation of vi, the vertices vj and vk are neighbored and
switch their positions. Since vk does not show up in our sub-rotation system,
no modification will be recognized in this 4-tuple. A similar argument works
for 4-tuples that contain vj and vk. Now assume the 4-tuple contains the
vertices vk and vi. Since vj is not part of the 4-tuple, in none of the rotations a
change will be recognized. Therefore no 4-tuple will become non-realizable.
�

To make use of good double-flips for the generation of random realizable
rotation systems, we have to start with a rotation system with realizable
4-tuples and make random good double-flips. For this purpose, we start
with the realizable rotation system of the geometric drawing of the complete
graph whose vertices are in convex position. If we label the vertices clockwise
from 1 to n we get the minimal possible realizable rotation system. To
generate a new random realizable rotation system, we compute all possible
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good double-flips of this rotation system. Then we choose one of them
randomly and apply it to the rotation system. We know that all 4-tuples
stay realizable. We still have to check all 5-tuples, to make sure that the
new rotation system is again realizable. If it is not realizable, we undo
the double-flip and randomly choose a different one. It is easy to see that
5-tuples that do not contain all three involved vertices of the double-flip are
not affected by the good double-flip (Compare the proof of Proposition 3.1).
Therefore it suffices to only check the O(n2) 5-tuples that contain all three
vertices. After a long enough sequence of random good double-flips we get
a more or less random realizable rotation system.

In comparison to the other two approaches, this one is very fast, but it is not
known whether it is possible to generate a representation of every equiva-
lence class of realizable rotation systems in this way. In other words, it is not
known whether the graph of all equivalence classes of realizable rotation
systems with n points is connected by good double-flips. We analyzed this
graph for n ≤ 8. The result is that for these drawings the graph is connected.
(Compare Chapter 4.1)

3.4 Checking Realizability

As stated at the beginning of Chapter 3, for the realizability of rotation
systems it suffices that all 4-tuples and 5-tuples are realizable. In the next
section we discuss how we check this property.
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3.4.1 Checking 4-tuples

In Figure 3.2 we can see the two possible good drawings of K4. These
drawings have the following rotation systems.

2

34

1 2

34

1

Figure 3.2: The two possible drawings of K4

1 : 2 3 4 1 : 2 3 4

2 : 1 3 4 2 : 1 4 3

3 : 1 2 4 3 : 1 2 4

4 : 1 2 3 4 : 1 3 2

(3.4)

To check all 4-tuples of a rotation system, we have to determine all sub-
rotation systems with four vertices. Then we have to compute the fingerprint
of each sub-rotation system and check whether it is equal to one of the two
given rotation systems of Example (3.4). Every 4-tuple can be relabeled in at
most twelve different ways. This means we can compute the fingerprint of a
4-tuple in constant time. So the runtime of this is O(n4), because there are
(n

4) 4-tuples in a rotation system with n vertices. Actually we can check all
4-tuples in O(n3) time using the Propositions 3.2 and 3.3 [8].
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Proposition 3.2 Let R be rotation system of five vertices. The number of non-
realizable 4-tuples in R is always even.

Proof: A single flip (x, y, z) in a rotation system is the exchange of the
positions of two neighbored vertices y and z in the rotation of vertex x. Using
the argument of various sorting algorithms, we know that by multiple single
flips we can obtain every possible rotation system. LetR be a rotation system
of the vertices {a, b, c, d, e} and let (a, b, c) be an arbitrary single flip, in which
the vertices b and c in the rotation of vertex a are neighbored. We know
that this flip only affects the two 4-tuples (a, b, c, d) and (a, b, c, e). Since in
each of these two 4-tuples, only one rotation changes, the realizability of the
two 4-tuples switches. So by one single flip, the number of non-realizable
4-tuples either changes by two or stays the same. Since we know that a
5-tuple without a non-realizable 4-tuple exists, the number of non-realizable
4-tuples is always even. �

Proposition 3.3 Let R be a rotation system of n vertices, labeled 1 to n. If R
contains a non-realizable 4-tuple, then it also contains a non-realizable 4-tuple that
includes vertex 1.

Proof: Assume that there are four vertices v, x, y, z 6= 1 such that the
sub-rotation system of these vertices is non-realizable. Then it follows that
the sub-rotation system consisting of the five vertices {1, v, x, y, z} is non-
realizable too. From Proposition 3.2 we know that there exists a second
non-realizable 4-tuple in this 5-tuple. This 4-tuple must include vertex 1,
which completes the proof. �

From Proposition 3.3 it follows that it suffices to check all sub-rotation
systems with four vertices containing the vertex 1 to decide whether all
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4-tuples are realizable. Therefore the check for the realizability of all 4-tuples
is doable in O(n3).

3.4.2 Checking 5-tuples

It remains to show how we can check all sub-rotation systems of five vertices.
To do this we introduce the crossing vector.

2

3

5

41

FT1

1

2

3

54

FT2

3

4

5

12

FT3

1

2

3

45

FT4

4

52

1 3

FT5

4

3

5

21

FT6

5

4

3

21

FT7

Figure 3.3: Drawings FT1 to FT7

Definition 3.2 (Crossing Vector) The crossing vector v = (c0, c1, c2, c3, . . .) of
a rotation system R is a vector of non-negative integers. The number ci gives the
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number of edges in the associated good drawing that are crossed exactly i times. In
the crossing vector, only crossings are counted that result from the rotation system.

If every 4-tuple in the rotation system is realizable, the crossing vector can
be computed from the rotation system. Then all necessary crossings of a
potentially good drawing with this rotation system are determined.

In the Figure 3.3 we can see drawings of the seven different rotation systems
of K5, in which all 4-tuples are realizable. Note that up to weak isomorphism,
those are the only possible drawings of K5. The drawings FT1 to FT5 are
good drawings. The drawings FT6 and FT7 are not good drawings, because
they contain edges that cross twice, but they are semi-good drawings. In
Table 3.3 we present the crossing vectors of these seven realizations of K5.
These crossing vectors only count crossings, which follow from the 4-tuples.
Especially, for every pair of edges at most one crossing is counted.

From Table 3.3 we can see that the crossing vector is sufficient to distinguish
between the different rotation systems with five vertices and realizable
4-tuples. Further, it is sufficient to compute the number c0 of every 5-tuple
to decide whether it is realizable as a good drawing.

In practice we make use of this and compute the number of edges in a
5-tuple without non-realizable 4-tuples that are non-crossed. If this number
is 2 or 0 we know that this sub-rotation system is not realizable.

3.4.3 Implementation Details and Runtime

For the realizability test for the approach by extension we only have to check
all 5-tuples that include the new vertex after each extension step. To the
contrary, when using the approach with good double-flips, it makes sense
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5-tuple crossing vector

FT1 (8, 2, 0, 0)

FT2 (5, 4, 1, 0)

FT3 (6, 2, 2, 0)

FT4 (5, 0, 5, 0)

FT5 (4, 3, 2, 1)

FT6 (0, 10, 0, 0)

FT7 (2, 6, 2, 0)

Table 3.3: Crossing vectors of the different realizations of K5

to store the crossed edges of every 5-tuple and update them after each good
double-flip.

To maintain the number of edges in every 5-tuple that are non-crossed, we
use two data-structures. The first one is a simple set that saves every pair
of crossing edges. From this set of crossing edge-pairs we can compute the
crossings in every 5-tuple. We save this information in a map where the
key-value is a vector of five vertices. In this map we store the number of
crossings per edge of the associated 5-tuple, as well as the number of edges
that are not crossed. This set has size O(n5). The size of the set containing
the crossings is bounded by the maximal number of crossings of a good
drawing, which is O(n4), because every 4-tuple has at most one crossing.
The algorithm therefore has a space complexity of O(n5). The runtime is
determined by the time needed to build up the initial data structure, which
is O(n5). After this, every update of the data structure takes at most O(n2)

time, since we only have to update O(n2) 5-tuples.
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3.5 Results

With the approach of using good double-flips, we were able to generate
more or less random realizable rotation systems with up to 30 vertices in
reasonable time. We also used the approach of extension, because we do
not know if the flipgraph is connected. With this approach we were able to
analyze rotation systems with up to 13 vertices. In the following we describe
some problems for which we used the generated rotation systems.

3.5.1 Plane Hamiltonian Cycles

We used our implementation to check if every randomly created realizable
rotation system contains a plane Hamiltonian cycle. This is true for all good
drawings with up to nine vertices, which was shown by exhaustive search
using the database of good drawings [1, 22].

Definition 3.3 (Plane Hamiltonian Cycle) Let G = (V, E) be a graph. A
Hamiltonian cycle of G is a cycle that contains every vertex v ∈ V exactly once. A
plane Hamiltonian cycle of a drawing D(G) is a Hamiltonian cycle that does not
cross itself.

Of course every complete graph contains a Hamiltonian cycle. Also the
number of Hamiltonian cycles in a complete graph is well known. It is easy
to see that the following proposition is true.

Proposition 3.4 The number of distinct Hamiltonian cycles in a complete graph
with n vertices is (n−1)!/2.
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In contrast, the question whether every good drawing of the complete graph
contains a plane Hamiltonian cycle is still unsolved. It is conjectured to be
true, but up to now it is not proven.

Conjecture 3.1 [25] Every good drawing of a complete graph contains at least one
plane Hamiltonian cycle.

With the use of rotation systems, it is possible to check whether a Hamil-
tonian cycle exists or not, because by Proposition 2.1 rotation systems
determine the crossing edge-pairs. To get a better runtime, we used a simple
heuristic to find a Hamiltonian cycle. This is useful, because by Proposi-
tion 3.4 the number of different Hamiltonian cycles is very large. Only if the
heuristic did not find a cycle, we checked all possible cycles.

We tested about 15 000 random realizable rotation systems with 15 to 30
vertices that were generated using good double-flips. We also tested about
3000 random realizable rotation systems with 10 to 12 vertices that were
generated using the approach of random extension. We did not find any
realizable rotation system that does not contain a plane Hamiltonian cycle.
So we can support the conjecture that every good drawing contains a plane
Hamiltonian cycle.

We remark that the conjecture is not true for semi-good drawings. In Chap-
ter 6 we present a semi-good drawing without a plane Hamiltonian cycle.

3.5.2 Crossing Families

The second property that we checked was the size of the biggest crossing
family in a good drawing.
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Definition 3.4 (Crossing Family) Let D be a drawing of the graph G = (V, E).
A crossing family of D is a subset E′ ⊂ E of edges with pairwise different endpoints,
where each edge e ∈ E′ crosses each other edge f ∈ E′\{e} in the drawing D. The
size of a crossing family E′ is the cardinality |E′| of E′.

The interesting question here is, what is the minimum number of ver-
tices n(k), such that every good drawing of the complete graph with n(k)
vertices contains a crossing family of size greater or equal to k. For example,
there exists a good drawing of K4 without a crossing. This implies that
n(2) > 4. We already know that K5 is not planar. Therefore every drawing
of K5 has at least one crossing and we get n(2) = 5.

It is conjectured that the number of edges of a good drawing with n vertices
without a crossing family of size k is O(n) [4]. This conjecture was proven
for k = 2, 3, and 4 [3, 5]. In [4] Ackerman and Tardos give a concrete value
for the maximum number of edges of a good drawing without a crossing
family of size 3, which is 8n − 20. By the fact that the complete graph
with n vertices has n(n−1)

2 edges, this leads to the following corollary.

Corollary 3.1 [4] Every good drawing of the complete graph with n ≥ 15 vertices
contains a crossing family of size 3.

For k = 4 there exists also a concrete value of at most 36(n− 2) edges [3].
Therefore we can also state a corollary for k = 4.

Corollary 3.2 [3] Every good drawing of a complete graph with n ≥ 71 vertices
contains a crossing family of size 4.

These two corollaries for the complete graph do not give a tight bound for
the number of vertices. With the use of our implementation we were able to
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Figure 3.4: Drawing of the complete graph with ten vertices without a crossing family of
size 3

check a big amount of random good drawings. The result is that already
for ten vertices, we did not find a good drawing by chance that does not
contain a crossing family of size 3. It is known that for geometric drawings
of the complete graph, already ten vertices are sufficient for every drawing
to contain a crossing family of size 3 [6]. Since every geometric drawing is
a good drawing, we know that for good drawings this number has to be
between 10 and 15 due to Corollary 3.1.

With the use of the database of rotation systems, we were able to compute
a tight bound for the number of vertices such that every good drawing of
the complete graph contains a crossing family of size 3. To get the exact
value we extended every rotation system with nine vertices that does not
contain a crossing family of size 3 to ten vertices. Then we checked all these
extensions. From these extensions, only nine rotation systems do not contain
such a family. One of these examples is given in Figure 3.4. We extended
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these systems to eleven vertices and found out that all of them contain a
crossing family of size 3. Therefore we can state the following theorem.

Theorem 3.1 Every good drawing of the complete graph with n ≥ 11 vertices
contains a crossing family of size 3. This bound is tight.

We also analyzed crossing families of size 4. We know that for straight line
drawings, 15 vertices are sufficient for every drawing to contain a crossing
family of size 4. So for good drawings this number has to be at least 15.
By extending rotation systems without a crossing family of size 4 we were
able to find examples of good drawings with 15 vertices that do not contain
a crossing family of size 4. Since there is an extremely large number of
different good drawings with n ≥ 9 vertices without a crossing family of
size 4, we were not able to compute the exact number for k = 4, but we
know that n(4) ≥ 16.

43



4 Good Double-Flips and the

Flipgraph

We have already seen that a good double-flip leaves all 4-tuples realizable if
they were realizable before. In this chapter we will analyze good double-
flips and the flipgraph of all realizable rotation systems with up to nine
vertices.

At first we will define the flipgraph. In this definition the term rotation
system refers to the whole class of equivalent rotation systems.

Definition 4.1 (Flipgraph of Realizable/Semi-Realizable Rotation Systems)
The flipgraph of size n is a graph G = (V, E), where V is the set of realizable or
semi-realizable rotation systems with n points, respectively. For two non-equivalent
rotation systems R and P of V, the edge (R,P) is contained in E if there exists a
good double-flip that transforms R to P .

Although we defined the flipgraph on rotation systems, it is also reasonable
to speak about good double-flips between good drawings and semi-good
drawings, respectively, and the flipgraph of good and semi-good drawings.
We say a good double-flip of a rotation system is realizable, if the flip
transforms a realizable rotation system into another realizable rotation
system.
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As already pointed out, we do not know whether all possible realizable
or semi-realizable rotation systems can be generated by good double-flips
starting with an arbitrary realizable rotation system. In other words, it is
not known if the respective flipgraph is connected.

4.1 Connectivity of the Flipgraph

With our implementation we found out that the flipgraph of all realizable
rotation systems with n ≤ 8 vertices is connected. We found these results
by randomly generating realizable rotation systems using good double-
flips and storing the fingerprints of the encountered systems. For n ≤ 7 it
was possible to find all realizable rotation systems in reasonable time by
chance. For n = 8 we were able to find all but a few thousand. By using the
database of realizable rotation systems we were able to check the remaining
systems and figured out that they are also connected to the rest. This means
that our approach to generate random realizable rotation systems by good
double-flips works for n ≤ 8. Unfortunately, not all rotation systems will be
generated with the same probability by this approach. It might happen that
a rotation system is connected to the other systems just by one good double-
flip. Then it is very unlikely that this rotation system will be generated. To
illustrate this in an example, we present the flipgraph of the semi-good
drawings of size 4 and 5 in Figure 4.1 and Figure 4.2, respectively. The
numbers beneath the arrows give the numbers of good double-flips that
lead to the neighbored drawing.

It is easy to see that every realizable rotation system of K4 has twelve good
double-flips. It is clear that every good double-flip is realizable, because
good double-flips leave 4-tuples realizable and we only have four vertices.
From the good drawing of K4 where two edges cross, four of the twelve flips
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4 Good Double-Flips and the Flipgraph

lead to the drawing without a crossing edge-pair. The remaining eight flips
lead to the same drawing of K4 with one crossing, but relabel the vertices.
From the drawing of K4 without a crossing edge-pair, nine flips lead to the
other good drawing. The remaining three flips perform a relabeling of the
vertices.

4

8

9

3

Figure 4.1: Flipgraph of size 4
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Figure 4.2: Flipgraph of size 5
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Good Drawing FT1 FT2 FT3 FT4 FT5

Probability 0.095 0.262 0.310 0.071 0.262

Table 4.1: Probability to reach a good drawing with 5 vertices after a sufficient large
amount of random good double-flips within the set of good drawings (stationary
distribution of the Markov chain)

In Figure 4.2 we can see the flipgraph of all semi-good drawings of size 5.
The vertices represent all semi-good drawings of K5 and are named like in
Figure 3.3. Note that the drawings FT6 and FT7 are not good drawings, but
only semi-good drawings.

For example we see in this figure that the rotation system of FT1 has 16
good double-flips. Eight double-flips lead to FT3, four lead to FT2 and the
remaining four flips lead to good drawings that are weakly isomorphic to
FT1.

The flipgraph of all good drawings of size 5 forms a Markov chain. We
can therefore compute the stationary distribution. This can be seen as the
probability that after m random good double-flips we result at FTx, for
any x ∈ {1, 2, 3, 4, 5} and m sufficient large. Thereby it does not matter at
which drawing we start. When we assume that we stay in the set of good
drawings we get for a sufficient large m the probability-distribution given
in Table 4.1. We can see that it is very unlikely to get FT4 by doing multiple
random good double-flips. This illustrates that the probability of generating
a specific good drawing of size 5 is distributed very unequally.

From this graph we can also see that with good double-flips we do not
always stay at realizable rotation systems. The non-realizable rotation system
of the drawing FT7 is connected to realizable rotation systems. But only
5 flips lead from some realizable rotation system to this non-realizable
rotation system, four flips from FT5 to FT7 and one flip from FT2 to FT7.
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Therefore the chance to end up in a non-realizable rotation system is small.
This also means that by starting at a realizable rotation system and doing
one double-flip we never end up in FT6. For testing realizability of 5-tuples
we do not have to check if FT6 is part of our rotation system when we create
random rotation systems by good double-flips.

4.1.1 Flipgraph of Good Drawings with 9 Vertices

We know that the number of realizable rotation systems with nine vertices is
7 198 391 729 [1]. This number is too large to analyze the complete flipgraph
of size 9 in reasonable time. To find an argument that the flipgraph for good
drawings with nine vertices is not connected, we searched for realizable
rotation systems with a small number of good double-flips. The idea was
that a small number of good double-flips would also lead to a small number
of realizable good double-flips. If we are able to find a realizable rotation
system without any realizable good double-flip, we know that the flipgraph
is not connected. The computation of good double-flips of rotation systems
is very fast. So we were able to check all realizable rotation systems with
nine vertices and found out that every system has at least 9 good double-
flips and that 149 have exactly 9 flips. We then checked these 149 systems,
but none of them has no realizable good double-flip. Every checked system
has at least 8 realizable flips.

This investigation does not prove that the flipgraph is connected, unfortu-
nately it also does not prove that it is not connected.
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4.1.2 Rotation Systems without any Good Double-Flips

Up to now we did not encounter a rotation system without a good double-
flip. So we implemented a deterministic backtracking algorithm that creates
all rotation systems that do not contain any good double-flips. We found
out that there is no rotation system with less than 8 vertices without any
good double-flips. For n = 8 there are rotation systems without any good
double-flips, but of course all of them are non-realizable.

4.2 Minimum Number of Good Double-Flips

To get a better insight into the number of realizable good double-flips
of good drawings, we analyzed all good drawings with a small number
of vertices and searched for the drawings with the minimum number of
realizable good double-flips. For n = 5 and n = 6 these drawings were from
a special class of drawings. At first we will introduce this new class of good
drawings, namely the class of 2-page book drawings.

Definition 4.2 (2-page Book Drawing) [13] A 2-page book drawing of a graph
is a drawing where the vertices are drawn along a line and each edge lies completely
on one of the two sides of this line.

We can see two examples of a 2-page book drawing in Figure 4.3.

We were able to analyze all good drawings with up to eight vertices with
respect to their number of realizable good double-flips. So we know which
drawings of Kn have the minimum number of realizable good double-flips
for each size of n ≤ 8.
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We know that every drawing of K4 has exactly twelve realizable good
double-flips.

We also have already seen that the good drawing of K5 with the minimal
number of realizable good double-flips is the drawing FT2 with 12 flips.
The number of realizable good double-flips is between 12 and 16 for all
drawings of K5. For n = 6 this number is between 6 and 21. It is interesting
to have a look at the realizable rotation systems with 5 and 6 vertices that
have the minimum number of realizable flips. We can see them in Figure 4.3.
Both rotation systems can be realized as 2-page book drawings.

1 2 3 5 4
1 2 3 6 4 5

Figure 4.3: Good drawings with the minimum number of realizable flips with 5 and 6
vertices

For n = 7, there are two drawings with the minimum number of realizable
flips. One of them is also drawable as a 2-page book drawing. The number
of realizable good double-flips in this rotation systems is 7. For drawings
with 8 and 9 vertices, we found examples that have only 7 and 8 realizable
good double-flips, respectively.

In Table 4.2 we can see the minimum number of realizable good double-flips
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Vertices 4 5 6 7 8 9

Min. number of flips 12 12 6 7 7 ≤ 8

Table 4.2: Minimum number of realizable good double-flips in good drawings with n points

for good drawings with up to 9 vertices. For n = 9 we do not know whether
there exists a drawing with less than 8 realizable good double-flips, but we
found an example with only 8 flips.

4.3 Good Double-Flips in Good Drawings

Up to now we looked at good double-flips from the rotation system point
of view. Now we look at good double-flips from a drawing point of view
and show how some good double-flips change the drawing and under
which conditions they lead to another good drawing. In the following we
will often speak of the good double-flip of a good drawing and mean the
double-flip in the associated rotation system. In a good double-flip there
are three vertices involved. In a complete graph these three vertices are all
connected. Thus the subgraph consisting of these three vertices forms a
triangle. Moreover in the rotation of two of the involved vertices the other
two vertices have to be consecutive in the cyclic order. This follows directly
from the definition of the good double-flip. An easy example of a good
double-flip is presented in Figure 4.4. We can see that here the edges (a, b)
and (a, c) at vertex a are consecutive without an edge between them inside
the given triangle. The same is true for the rotation of vertex b and the
edges (b, a) and (b, c). Due to this we will call such a good double-flip an
inner-inner flip.

This easy configuration is not the only one that leads to a good double-flip.
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a b

c

Figure 4.4: Inner-inner flip

It can also happen that the involved edges of the vertices a and b are in
consecutive order outside the triangle. We call this double-flip an outer-
outer flip. Since the definition of inside and outside only depends on the
definition of the unbounded cell, we will not further distinguish between
inner-inner and outer-outer flips.

The most complicated case shows up if the consecutive edges are inside
the triangle for one vertex and outside for the other. We will call this good
double-flip an inner-outer flip. Figure 4.5 shows the configuration of an
outer-outer and of an inner-outer flip, respectively.

Here we will only analyze inner-inner flips. We start with a simple proposi-
tion.

Proposition 4.1 Given is a good double-flip (a, b, c, b, a, c) in a good drawing of
the complete graph Kn, for n ≥ 3. We define the inside of the triangle as the cell
that is to the left of the closed curve formed by the edges (a, b), (b, c), and (c, a). If
the flip is an inner-inner flip then the triangle 4abc is interior-empty.
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a b

c

a b

c

Figure 4.5: Outer-outer flip and inner-outer flip

Proof: We assume that (a, b, c, b, a, c) is an inner-inner flip in a good draw-
ing of the complete graph Kn. The given configuration is shown in Figure 4.4.
Since the vertices b and c are consecutive in the rotation of vertex a, no
edge could leave vertex a in the interior of the triangle. The same is true
for the rotation of vertex b. Therefore, for any arbitrary vertex x 6= a, b, c
the edges (a, x) and (b, x) start in the exterior of the triangle 4abc. By
Lemma 2.2 it follows that x lies in the exterior of the triangle 4abc. �

Proposition 4.1 helps us to characterize when an inner-inner flip leads to
another realizable rotation system. Figure 4.6 shows how we can locally
redraw the good drawing after applying an inner-inner and an outer-outer
flip to it. For an inner-inner flip we know that the interior of the triangle is
empty. For an outer-outer flip we know that the exterior is empty. The red
dashed lines in the drawings are the old edges. We can reroute these edges
like the green lines, after applying the good double-flips. This re-routing
will not always lead to a good drawing, but we can characterize when
such a flip leads to another good drawing of the complete graph. For an
inner-inner flip (a, b, c, b, a, c) this is the case if and only if no edge crosses
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both edges (a, c) and (b, c), see Figure 4.7. Otherwise the re-routing leads to
a double-crossing and we only get a semi-good drawing. We now state this
fact as a lemma and proof it formally.

a b

c

a b

c

Figure 4.6: Locally applying an inner-inner and an outer-outer flip to the drawing

a b

c

d e

double-crossingdouble-crossing

Figure 4.7: Edge (d, e) prohibits a realizable inner-inner flip

Lemma 4.1 Given is an inner-inner flip (a, b, c, b, a, c) of a good drawing D of the
complete graph Kn. The flip leads to another good drawing if and only if there is no
edge crossing both edges (a, c) and (b, c).
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Proof: We assume that (a, b, c, b, a, c) is an inner-inner flip of the good
drawing D of the complete graph Kn. At first we show that if no edge
exists that crosses both (a, c) and (b, c) we can redraw the good drawing
like in Figure 4.6 and get a new good drawing. Due to Proposition 4.1 the
triangle 4abc is interior-empty. Therefore no edge that is incident to a can
cross (b, c). Otherwise the edge has to leave the triangle 4abc again. To do
this it has to cross one of the two other bounding edges. Both are incident
to a and therefore the edge is not allowed to cross them. The same is true
for vertex b and the edge (a, c). It is also clear that the edge (a, b) is allowed
to cross the edges that leave vertex c on the outside of the triangle 4abc. So
it follows that we can redraw the edge like in Figure 4.6, without generating
a double-crossing with the edge (a, b) and we get a new good drawing.

Now we show that if there exists an edge that crosses (a, c) and (b, c),
the flip can never lead to a good drawing. We look at the configuration
in Figure 4.7 before applying the double-flip. From the crossing of the
edges (a, c) and (d, e) and their crossing rotation we get the rotation system
of the 4-tuple (a, c, d, e) by Lemma 2.1. In the same manner we get the
rotation system of the 4-tuple (b, c, d, e). Since the red line crosses through
the triangle4abc, we know that the edges (c, d) and (c, e) start in the exterior
of the triangle 4abc. Otherwise the edge (c, d) (resp. (c, e)) starts in a cell
at vertex c that is bounded by three edges that all share a vertex with (c, d)
(resp. (c, e)). Since we know three rotations of the 4-tuples (a, b, c, d) and
(a, b, c, e), their rotation system is determined. From the rotation systems of
these 4-tuples we can generate the rotation system of the full good drawing
of the 5-tuple before applying the flip. We can see the 5-tuple before and
after the flip in Figure 4.8. The rotation systems before and after the flip
are shown in Table 4.3. The rotation system before the flip is equivalent to
the one of FT2, by relabeling the vertices with 1 to 5. The given flip in this
rotation system leads to a rotation system that is equivalent to the one of
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a: b e d c a: b c e d
b: a c e d b: a e d c
c: a d e b c: a d e b
d: a b c e d: a b c e
e: a b d c e: a b d c

Table 4.3: Rotation systems of the drawings in Figure 4.8

the drawing FT7. We know that this rotation system is only realizable as a
semi-good drawing. Therefore this flip will never lead to realizable rotation
system. This concludes the proof. �

a b

c

d e

a b

c

d e

Figure 4.8: Configuration before and after the double-flip

4.4 Relabeling of the Convex Geometric Good

Drawing

By looking at good double-flips in good drawings of K4, we see that there
are flips that do not change the equivalence-class of the rotation system, but
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only exchange the labels of two vertices. This leads to the question whether
it is possible to relabel any good drawing of the complete graph with an
arbitrary number of vertices by good double-flips arbitrarily. We show that
this is possible for the convex geometric good drawing. This is the drawing
where all vertices are arranged in convex position and the edges are straight
lines. In the following we show how it is possible to exchange the labels of
two neighbored vertices by a series of inner-inner flips. From this we can
conclude that we can produce any labeling of the convex geometric good
drawing with good double-flips.

A B

1 2 3 n-1 n

Figure 4.9: Basic configuration before the relabeling

In Figure 4.9 we see our basic configuration before the exchange of the
labels of vertex A and vertex B. For simplicity the vertices 1 to n are drawn
on a line and not in general position. When the vertices A and B switch
their positions in the drawing, the rotations of these two vertices stays the
same. The only difference between the old and the relabeled rotation system
is that in the rotations of the vertices 1 to n, the vertices A and B switch
their positions. By doing the marked flip in the green triangle in Figure 4.9
we force this exchange of A and B in the rotation of vertex 1. It is easy
to see that this flip leads to another good drawing. In Figure 4.10 we can
see that we can go on and apply more inner-inner flips, which switch the
vertices A and B in all rotations of the vertices 1 to n. The rotation of vertex
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A does not change at all. By this series of flips A exchanges its position
with every vertex in the rotation of B. In the end it ends up at the same
position as it started. Therefore no change is made in the rotation of vertex
B. By moving vertex B to the left of vertex A, we can see that this drawing
is weakly isomorphic to the old drawing with exchanged labels A and B.

It is known from several sorting algorithms that, if we are able to exchange
two arbitrary vertices, we can relabel the drawing arbitrarily.

A B

1 2 3 n-1 n

A B

1 2 3 n-1 n

A B

1 2 3 n-1 n

Figure 4.10: Doing inner-inner flips to exchange two labels of the convex geometric drawing
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5 Semi-Realizable Rotation

Systems

Additionally to good drawings we considered semi-good drawings. When
we look at non-realizable rotation systems with four vertices, we see that
the reason why they are not drawable as good drawings is the rule that two
incident edges must not cross. We have seen that a rotation system with
five vertices that consists of realizable 4-tuples is at least semi-realizable.
The rule that two edges are not allowed to cross multiple times prohibits
two of this systems to be realizable. For being realizable it suffices that
all 4-tuples and 5-tuples are realizable. For four and five vertices it seems
like the 4-tuples are responsible for the adherence of the first rule and the
5-tuples are responsible for the adherence of the second rule. This leads to
the conjecture that a rotation system wherein all 4-tuples are realizable can
be drawn without violating the first rule, that is, as a semi-good drawing.

Conjecture 5.1 Every rotation system R wherein every 4-tuple is realizable is
semi-realizable.

To verify this conjecture, we analyzed all rotation systems with six and
seven vertices that consist of realizable 4-tuples and checked if they are
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drawable as semi-good drawings. Surprisingly, it turned out that already
for six vertices there exists a counterexample to Conjecture 5.1.

Before we show the results of our analysis we state some facts about semi-
good drawings and describe how our algorithm works.

In a semi-good drawing, two edges are allowed to cross multiple times.
Therefore we can have cells that are bounded only by two edges. We show
that every semi-realizable rotation system can be realized without such cells.
This has been shown in [19]. We state this result in Theorem 5.1 and show
the proof for self-containment.

Definition 5.1 (Lens) [19] Assume that two edges e1 and e2 cross at least twice.
A region enclosed by two segments of these two edges is called a lens. A lens is
called empty if it does not contain a vertex.

Remark 5.1 It does not play a role whether a lens is bounded or unbounded. Also
an unbounded region can be an empty lens. See Figure 5.1. The proofs in this
chapter all consider bounded lenses. They all work analogously for the unbounded
case.

1 2

3 4

Figure 5.1: Example of an unbounded empty lens
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Theorem 5.1 [19] Every semi-realizable rotation system can be realized without
empty lenses.

Proof: We show that in a semi-good drawing we can redraw an empty
lens locally, such that the two involved crossings of the lens are removed
and no new crossings are introduced. Assume that our drawing contains
an empty lens. Choose any empty lens that does not contain any other
empty lens. Such a lens exists, since we can choose the smallest one. In the
left two drawings of Figure 5.2 we can see how we can redraw this lens to
resolve it locally. We have to show that the new drawing is also a semi-good
drawing.

Since our lens was empty and does not contain another empty lens, every
edge that crosses e1 also has to cross e2. This is clear, because any edge that
enters the lens at e1 has to leave it at e2. Otherwise a new empty lens inside
our empty lens exists. Therefore by our redrawing no new crossings occur
and the new drawing is also semi-good.

With this redrawing we get rid of two crossings and we do not create any
new crossings. Every empty lens can be redrawn in this way, which reduces
the number of crossings. This implies that this process is finite and results
in a drawing without empty lenses.

�

e1

e2

e2

e1

Figure 5.2: How to redraw an empty lens
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5 Semi-Realizable Rotation Systems

5.1 The Algorithm

To decide whether a given rotation system is semi-realizable, we used a
backtracking approach based on the algorithm used in [22]. It uses the
half-edge data structure to represent a drawing [27]. In this data structure
the edges consist of several pairs of directed segments in both directions.
The edges are fragmented by crossings into segments. Each segment has
a link to its successor, predecessor, and neighbor. It also stores to which
edge it belongs to. Then every cell in the drawing is bounded by a set
of segments, which are connected with the successor- and predecessor-
pointer. With this data structure we can create a drawing of the graph
incrementally that fulfills a given rotation system if it is semi-realizable.
We start with a star-graph, where every vertex is connected with a straight
line to vertex 1 according to its rotation. The next edges will be added by
recursively checking every combinatorially possible way the edge can go.
These possibilities depend on the rotation system, since it defines in which
cell an edge starts. In this manner every edge connected with vertex 2 will be
added. This will be done recursively in all possible ways. Then it continues
with the remaining edges of vertex 3 and so on, until a complete semi-good
drawing was found or all possibilities were checked. In a list we store how
often two edges are allowed to cross and reduce this number, if we add a
crossing. This ensures that the algorithm terminates. In Figure 5.3 we can
see the representation of a drawing of K4 with one crossing in a half-edge
data structure. Here every edge consists of at least two directed segments.
Crossings split these segments and every cell is bordered by a connected set
of segments. A detailed description of the algorithm for good drawings can
be found in [22].

The original algorithm only works for the search of good drawings. To
adapt it for the search of semi-good drawings, we had to implement that a
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1

2

43

Figure 5.3: Half-edge data structure of a drawing of K4

pair of edges is allowed to cross multiple times. It is not possible to allow
that two edges cross an arbitrary number of times, because this would lead
to an infinite loop in the algorithm. To avoid this we set the number of
crossings for each pair of edges to a maximum number, which is set by
a parameter. This allows us to get a more detailed and faster analysis of
the rotation systems. By studying various drawings, we recognized that
in many semi-good drawings only a few edge-pairs need the maximum
number of crossings. All the other edge-pairs cross a very small number
of times. This led us to implement a more detailed search. We added two
new parameters to our algorithm. This allowed us to define how many
edge-pairs are allowed to cross the maximum number of times and how
often the remaining edge-pairs are allowed to cross.

5.1.1 Avoidance of Empty Lenses

As we have seen, every semi-realizable rotation systems is drawable without
empty lenses. It was necessary to implement methods in the algorithm that
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avoid the generation of empty lenses. Without such methods, a very big
number of superfluous sub-drawings will be checked in the generation of a
semi-good drawing and this leads to a very bad runtime.

Figure 5.4: How the algorithm might create empty lenses

In Figure 5.4 we see two basic ways the algorithm might create an empty
lens. Here the red edge is the new edge, which crosses the horizontal
edge twice. The left one shows up if the algorithm generates an edge and
crosses the same edge twice consecutively in different directions. This can
be avoided easily by storing the last generated crossing. However, we have
to show that this generated lens is indeed empty in the complete drawing
and therefore its avoidance will not change the outcome of the algorithm.

The right figure illustrates the generation of an empty lens, where the
horizontal edge is not crossed consecutively. In this case we have to check
if the now generated lens is empty. By doing this check in advance we can
avoid the generation of an empty lens. The second case indeed includes
the first one. Since the check of the second case is more time consuming, it
makes sense to distinguish these two cases.

Lemma 5.1 If the described algorithm generates an edge that crosses a second edge
twice with two different crossing rotations, and without another crossing in between
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on the newly inserted edge, then this will generate an empty lens in the complete
drawing.

Proof: We proof this lemma by contradiction. We assume that one edge
crosses another edge twice consecutively, i.e. the edge crosses no other edge
in between, with different crossing rotations and this creates a lens that is
not empty in the complete drawing. We see this configuration in Figure 5.5.
The red edge (x, y) is the one that is actually drawn. It crosses the edge (a, b)
twice consecutively. We assume that a vertex c lies inside this lens. Here the
edge (a, b) exists before the edge (x, y) is generated. Due to the fact that
the algorithm creates all edges incident to one vertex before it continues
with another vertex, all edges incident to vertex a or b are already drawn.
Without loss of generality we assume all edges incident to a are already
drawn. Then especially the edge (a, c) is already drawn. Since we assumed
that c lies in the lens bounded by (a, b) and (x, y) and (a, b) is crossed twice
by (x, y) with different crossing rotations, the vertices c and a lie in distinct
cells. So the edge (a, c) has to cross the boundary of the lens. It can only
cross the boundary of the lens at the edge (x, y) (see the green dotted line
in Figure 5.5). Therefore (x, y) does not cross (a, b) consecutively, which is a
contradiction and proves the lemma. �

Now we show that we also can prohibit the generation of two consecutive
crossings with the same crossing rotation, because this would lead to a non-
completable drawing. The following lemma characterizes a non-completable
sub-drawing.

Lemma 5.2 If an edge e1 crosses an edge e2 twice with the same crossing rotation
consecutively, i.e. without crossing e2 with a different crossing rotation in between,
then this will lead to a non-completable drawing.
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a b

c

x y

Figure 5.5: Generation of a non-empty lens by the algorithm

Proof: We assume the edge (x, y) crosses the horizontal edge (a, b) twice
with the same crossing rotation consecutively. To do so the edge (x, y) has
to round either the vertex a or b. Without loss of generality the edge rounds
the vertex a. Then the edge crosses the edge (a, b) a second time. To do so it
can cross this edge on the left or on the right side of the first crossing. We
see these two possibilities in Figure 5.6. In both cases it splits the plane into
two cells, which are bounded by the edges (x, y) and (a, b). Therefore the
vertices a and b lie in distinct cells. This prohibits the edge (x, a) or (x, b)
and therefore the drawing is not completable. �

x

ba

y

x

ba

y

Figure 5.6: Crossing the same edge twice with the same orientation

So we have seen that prohibiting two consecutive crossings between the
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same edge-pair does not affect the possible rotation systems the algorithm
can realize. From now on we restrict to the assumption that two edges do
not cross twice with the same crossing rotation consecutively, because this
would lead to a non-completable drawing, which our algorithm detects
anyhow.

Now we show how we prohibit empty lenses where one edge does not cross
the second one consecutively, like in the right drawing in Figure 5.4. This
drawing is of course only a symbolic drawing. There might be more edges
crossing the lens.

It is clear that a double crossing of an edge-pair always generates a lens.
So every time an edge-pair crosses for the i-th time, with i ≥ 2, we have to
check if the now generated lens is empty. Therefore we inspect the boundary
of the now generated lens. If there exists an edge that crosses the boundary
of the lens an odd number of times, then we know that the lens is not empty.
This is true in particular for a drawing of the complete graph. We will show
that this is also true at any time during the generation of the drawing by
our algorithm.

Lemma 5.3 We assume that we have a lens that was generated by our algorithm
by two edges that cross twice in different orientations. This lens is empty if and
only if every edge crosses the boundary of the lens an even number of times.

Proof: We consider the case of Figure 5.5, where the edge (a, b) exists and
we generate a lens when drawing the edge (x, y). At first we show that if a
vertex exists inside the lens, then there has to be an edge that crosses the
lens an odd number of times. Like in the proof of Lemma 5.1 we assume
without loss of generality that the edge (a, c) is already drawn. It is clear
that this edge has to cross the boundary of the lens an odd number of times
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to connect a vertex on the inside of the lens with a vertex on the outside.
Therefore for every non-empty lens there is an edge, which crosses the
boundary of the lens an odd number of times.

The other direction follows immediately. If there is an edge that crosses the
lens an odd number of times, this means the edge connects a vertex on the
outside of the lens with one on the inside. Therefore, there exists a vertex
inside this lens. �

In our algorithm we can use Lemma 5.3 and count only how often the edges
emanating from a and b cross the boundary of the lens. If this number is odd
for one edge, we know that the lens is not empty. Otherwise it is empty.

With the use of these observations we were able to implement the avoidance
of empty lenses in our algorithm. This results in a better runtime, especially,
when we allow many crossings per edge pair.

5.2 Results for Semi-Good Drawings with Six

Vertices

We have to inspect only rotation systems where all 4-tuples are realizable,
as otherwise, the rotation system cannot be semi-realizable. To get these
rotation systems, we extended every rotation system with four vertices in
all possible ways. We did this in a way that we did not generate systems
with non-realizable 4-tuples. After the extension we removed all equivalent
rotation systems. By repeating these steps we computed all rotation systems
with up to seven vertices that do not contain any non-realizable 4-tuples.

We started with the analysis of all rotation systems with five vertices that
do not contain a non-realizable 4-tuple. We already know that there are
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7 total number of rotation systems with realizable 4-tuples

5 good drawings
2 semi-good drawings with at most two crossings per edge-pair

Table 5.1: Rotation systems for n = 5 and their realizability

173 total number of rotation systems with realizable 4-tuples

102 good drawings
62 semi-good drawings with at most two crossings per edge-pair
5 semi-good drawings with at most three crossings per edge-pair
3 semi-good drawings with at most four crossings per edge-pair

1 not semi-good drawable rotation system

Table 5.2: Rotation systems for n = 6 and their realizability

seven different rotation systems with five vertices wherein all 4-tuples are
realizable. We can see these realizations in Figure 3.3. Five drawings are
good drawings. For the remaining two drawings only two crossings are
needed for every edge-pair. These results are listed in Table 5.1. With the
use of our implemented algorithm we checked, whether these semi-good
drawings are unique for the given rotation systems. The result is that all
drawings are unique up to relabelings. This means that they do not have a
different realization without empty lenses, even if we allow edge-pairs to
cross more than twice.

For the drawings of the complete graph with six vertices we have 173
rotation systems wherein all 4-tuples are realizable. We already know that
102 of them are realizable as a good drawing [1]. We checked the remaining
71 with different numbers of allowed crossings per edge-pair. The results
are listed in Table 5.2.

There is one rotation system that does not have a realization as a semi-good
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1: 2 3 4 5 6

2: 1 3 4 6 5

3: 1 4 5 2 6

4: 1 6 3 5 2

5: 1 3 6 4 2

6: 1 4 2 3 5

Table 5.3: Rotation system with six vertices that is not semi-realizable

drawing. The rotation system is given in Table 5.3. This rotation system
contains six sub-rotation systems with five vertices. The sub-rotation system
of the 5-tuple (1, 2, 3, 4, 5) is equivalent to the one of FT4. All other 5-tuples
are equivalent to the rotation system of FT7. In Figure 5.7 we can see a
partial drawing of the given example. The drawing consists of the 5-tuple
(1, 2, 3, 4, 5) and an indication where the edge to the sixth vertex emanate
from the vertices 1 to 5.

1

2

3

45

6

6

6

6

6

Figure 5.7: Partial drawing of the non-semi-realizable rotation system

70



5 Semi-Realizable Rotation Systems

5.2.1 Proof of the Non-Semi-Realizability

The given example in Table 5.3 is a counterexample to Conjecture 5.1 that
the semi-realizability of the rotation system follows from the realizability
of all 4-tuples. We now present a proof that this example is indeed not
drawable as a semi-good drawing. For the proof we make use of the fact
that the rotation systems of the 4-tuples give us the information in which
triangles the sixth vertex has to lie (see Lemma 2.2). Then we conclude that
there is no valid position for the sixth vertex in this drawing.

Theorem 5.2 Given is a rotation system R. The semi-realizability of R does not
follow from the realizability of all 4-tuples of R.

Proof: We show that the rotation system of Table 5.3 is not semi-realizable.
The first important observation is that the drawing of FT4 in Figure 5.7 is the
only possible semi-good drawing without empty lenses. Therefore the given
drawing FT4 has to be a sub-drawing of our example with six vertices.

Now we consider the triangles 4145, 4135, and 4245. For any triangle
4xyz we refer to the region bounded by 4xyz and that is to the right when
traversing the boundary of 4xyz from x to y then to z and back to x as the
interior of the triangle 4xyz. With this definition, the interiors of our stated
triangles in Figure 5.7 are the bounded regions defined by the triangles.

Now we look at the rotation system of our example. We consider the
triangle 4145 together with vertex 6. From Lemma 2.2 it follows that the
sixth vertex has to lie in the interior of the triangle 4145. With the same
argument we can conclude that vertex 6 has to lie in the exterior of the
triangles 4135 and 4245.
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If we can prove that the triangle 4145 is always covered by the trian-
gles 4135 and 4245, then it follows that the sixth vertex cannot be placed
in this drawing. We see this configuration in Figure 5.8.

2 3

g1r1

r2g2

b1

5

1

5

4

Figure 5.8: Basic configuration of the non-semi-realizable rotation system

To prove this we give names to the edges like in Figure 5.8: we denote
by r1 the edge from 5 to 2, r2 the edge from 2 to 4, and analogously g1 the
edge from 5 to 3, g2 the edge from 3 to 1 and b1 the edge from 1 to 4. The
crossings shown in Figure 5.8 follow from the rotation system.

Notice that with the definition of the inside and outside of a triangle it does
not make a difference which region is the unbounded one in the drawing.
See Figure 5.9 for an example. There, by our definition, the interior of the
green triangle 4135 is the unbounded region. For the proof we stick to
our basic configuration, where the interior of the triangles is bounded. We
remark that the proof also works if some of the interiors are unbounded.

We will show that the green triangle always covers at least the part of the
black triangle that is not covered by the red triangle. First we notice that
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2 3

5

1

5

4

Figure 5.9: Green triangle closed in the other direction

if g2 (resp. r2) intersects the boundary of the black triangle 4145, it can
only do this at the edge form 4 to 5 (resp. 1 to 5). Since the edge has to
leave triangle 4145 again, it then creates an empty lens and the area of the
black triangle covered by the green (resp. red) one gets bigger. That is, we
can always redraw g2 and r2 in a way that they do not intersect the black
triangle without increasing the area of the black triangle covered by the
green and the red ones. Therefore we can assume in the proof that g2 and
r2 do not intersect the black triangle.

We now look at edge r1 (see Figure 5.10). When two edges have to cross
once by the rotation system, in a semi-good drawing they may cross an
arbitrary odd number of times. By Lemma 2.2, vertex 2 lies outside of the
black triangle and hence the edge r1 has to cross the edge b1 an odd number
of times. By multiple crossings of r1 with b1 it can form regions bounded
only by those two edges. Vertex 3 cannot lie in any of these regions since
they lie either inside the red or the black triangle, and vertex 3 lies in the
exterior of both (by Lemma 2.2).

Therefore, starting from vertex 5, the edge g1 crosses an odd number of
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2

g1

r1
b1

3

1

5

4

b2

g2

r2

Figure 5.10: Illustration of the proof of Theorem 5.2

times the edge b1 inside the red triangle. Since the edges r1 and g1 are
not allowed to cross, it follows that g1 stays inside the red triangle until it
crosses r2. It remains to show that g1 cannot cross b1 outside the red triangle.
If g1 crosses b1 outside the red triangle, then it has to surround vertex 2 or
surround the whole black triangle. In both cases it creates a lens formed
by g1 and b1 including vertex 2 and not vertex 1 and 4. Vertex 3 has to lie
outside this lens, because otherwise edge g2 is not possible. This follows
from the fact that g2 is not allowed to cross any of b1 and g1, because g2

shares a vertex with each of b1 and g1.

Since g2 is not allowed to cross the lens formed by g1 and b1 and the lens
is to the right of g1, it follows that the lens lies completely within the
green triangle and therefore vertex 2 lies also inside this triangle. This is a
contradiction to the fact that vertex 2 lies outside the green triangle (which
follows from the rotation system, by Lemma 2.2).
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Recalling that we were assuming without loss of generality that g2 and r2 do
not intersect the black triangle, it follows that the green and the red triangles
cover the black triangle completely. This contradicts the assumption that
we are able to place a sixth vertex inside the black triangle but outside the
green and the red ones. �

The next question is how we can decide whether a rotation system is semi-
realizable. As we have seen, for realizability it suffices that all 4-tuples and
5-tuples are realizable. For semi-realizability it does not suffice to analyze
only the 4-tuples, but one could think we only have to analyze all 6-tuples.
For that reason we checked all rotation systems with seven vertices and
realizable 4-tuples that do not include the non-semi-realizable rotation
system with six vertices as a sub-rotation system. As we will see, the results
obtained show that it does not suffice to check all 6-tuples to guarantee
semi-realizability.

5.3 Results for Semi-Good Drawings with Seven

Vertices

We know that there is a 6-tuple that prohibits the semi-realizability of a
rotation system. We wanted to know if there are also new configurations
that show up with seven vertices for the first time or if the semi-realizability
of all 6-tuples suffices for the semi-realizability of rotation systems with
seven vertices. To do this we checked all rotation systems with seven vertices
and realizable 4-tuples.

There are 39 349 rotation systems with seven vertices where all 4-tuples
are realizable. We already know from [1] that 11 556 rotation systems are
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39 349 total number of rotation systems with realizable 4-tuples

11 556 good drawings
20 634 semi-good drawings with at most 2 crossings per edge-pair

3379 semi-good drawings with at most 3 crossings per edge-pair
2152 semi-good drawings with at most 4 crossings per edge-pair
568 semi-good drawings with at most 5 crossings per edge-pair
154 semi-good drawings with at most 6 crossings per edge-pair
27 semi-good drawings with at most 7 crossings per edge-pair
34 semi-good drawings with at most 8 crossings per edge-pair
14 semi-good drawings with at most 9 crossings per edge-pair
11 semi-good drawings with at most 10 crossings per edge-pair

340 rotation systems include the not realizable 6-tuple

480 not semi-good drawable rotation systems

Table 5.4: Rotation systems for n = 7 and their realizability

drawable as a good drawing. This means we have 27 793 rotation systems
left. From this number we can remove the rotation systems that have the non-
semi-realizable rotation system with six vertices as a sub-rotation system.
These are 340. The remaining 27 453 rotation systems have to be tested
whether they are realizable as a semi-good drawing. In Table 5.4 we present
the number of rotation systems and how they are realizable as semi-good
drawings.

We can see in Table 5.4 that we have 480 rotation systems left for which all
4-tuples, 5-tuples, and 6-tuples are semi-realizable, but the whole rotation
system is not semi-realizable. The proof for this non-realizability follows
from the observations in Section 5.4. So checking all 4-tuples and 6-tuples
does not suffice to decide semi-realizability. There are structures that show
up in rotation systems with seven vertices for the first time that can prevent
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the rotation systems from being semi-realizable.

5.4 Maximum Number of Crossings per Edge-Pair

To check the rotation systems for their realizability as a semi-good drawing,
we had to limit the number of crossings per edge-pair we allow. To get
a reliable result we need to know how large the maximum number of
crossings for an edge-pair can get. When we allow empty lenses, this
number is infinite. Since we know that every semi-realizable rotation system
can be realized without empty lenses, we only consider such semi-good
drawings. We have seen that for n = 6 we only need four crossings per
edge-pair to realize all rotation systems that are semi-good drawable. In
contrast to the uniqueness of the drawings for n = 5, there exists a rotation
system with six vertices that can be drawn with five crossings for one edge-
pair without empty lenses. For an example see Figure 5.11. The red marked
edges cross five times. Nevertheless, the underlying rotation system can
also be drawn as a semi-good drawing with only three crossings per edge-
pair. This drawing is shown in Figure 5.12. In this drawing the edge pair
{(1, 6), (4, 5)} crosses only once and the edge-pair {(1, 6), (3, 4)} crosses
three times. This shows that we might not need the maximum number of
crossings that is possible to realize all semi-realizable rotation systems.

To determine the maximum number of crossings per edge-pair for n = 6
and 7 we enumerate all different ways how two edges can cross multiple
times. This is an iterative process starting with one crossing. To do this
we first make some observations, which will make our enumeration much
easier and more efficient.
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Figure 5.11: Example of a drawing with six vertices and five crossings of one edge-pair
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Figure 5.12: Rotation system of Figure 5.11 realized with only three crossings of one edge-
pair
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5.4.1 Basic Generalizations

The first very basic observation is that we can draw one edge as a finite
horizontal line connecting its endpoints. In every semi-good drawing we
can stretch out an arbitrary edge and draw it as a straight line. This can be
realized with a homeomorphism on the sphere and therefore it does not
change the strong isomorphism class of the drawing. We will call this edge
the horizontal edge and the edge crossing it multiple times the second edge.
We also know from Lemma 5.2 that the two edges have to cross in different
directions alternately.

Our enumerated configurations should be sub-drawings of a semi-good
drawing of the complete graph with n vertices. Therefore we have to make
sure that the considered drawings of two edges are completable as semi-
good drawings. So it is necessary that all endpoints of the two edges lie in
the same cell. This is another restriction our considered sub-drawings must
fulfill.

Lemma 5.4 Let D(Kn) be a semi-good drawing of the complete graph Kn, with
n ≥ 4 and e1 = (v1, v2), e2 = (w1, w2) are two edges. In the subdrawing D′ that
only consists of the two edges e1 and e2, the four vertices v1, v2, w1, and w2 lie in
the same cell.

Proof: All cells in D′ can only be bounded by e1 and e2. Assume that v1

lies in one of these cells. In the complete drawing, v1 is connected to both w1

and w2 by an edge. None of these two edges is allowed to cross e1 or e2,
because they share an endpoint. Therefore, w1 and w2 have to lie in the
same cell as v1. The same is true for v2. It follows that all four vertices have
to lie in the same cell. �
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The next configuration that we prohibit is that the second edge rounds both
endpoints of the horizontal edge. This case is shown in the left drawing
in Figure 5.13. Since isomorphism is defined on the sphere, this drawing
is isomorphic to the right drawing in Figure 5.13. Hence it is sufficient to
consider only the right one.

1 2

3 4

1 2

3 4

Figure 5.13: Isomorphic drawings when the edge rounds both endpoints

Any other loop between two crossings of the horizontal line can be redrawn
as a simple half circle as in Figure 5.14 by a homeomorphism. So we draw
our configuration as simple as possible to cover all sub-drawings of two
edges we have to consider. By this restrictions we can assume that our second
edge does not cross the dashed lines in the left drawing of Figure 5.14.

1 2

3 4

1 2

3 4

Figure 5.14: Complicated loops can be redrawn to simply half-circles on one side of the
edge
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5.4.2 Prohibited Sub-Drawings

As already stated, it is necessary that the drawing of the two edges and
their vertices is completable. We do not know how to decide whether a sub-
drawing of a graph is completable to a semi-good drawing efficiently, but
we know a few configurations that cannot appear in a semi-good drawing of
the complete graph. This is sufficient to get an upper bound for the number
of crossings of an edge-pair in a semi-good drawing without empty lenses,
with a small number of vertices in total.

The first configuration is that we have to avoid empty lenses. We are allowed
to create empty lenses as long as we have points left that we could place in
the lens. If all remaining points are placed in a lens, then we are not allowed
to create new empty lenses.

As already pointed out in Lemma 5.4 we have to make sure that we do not
lock any of the four endpoints of our two edges in a lens. Therefore we
are not allowed to loop around any of our fixed points of the two edges.
Otherwise we lock this point in a lens and the drawing is not completable.

The third configuration that we have to avoid is the configuration of a spiral
(see Figure 5.15). In this configuration the edge from the vertex x, which
is placed in the lens, to the vertex y has to cross the horizontal edge (a, b)
at least three times. The second crossings is to the left and the third one
is to the right of x (green line in Figure 5.15). This is the only way how
vertex x can be connected to vertex y. We can see in Figure 5.15 that x is
then locked in a lens bounded by the edges (a, b) and (x, y) (gray region in
Figure 5.15). Since the vertices a and b are on the outside of this lens, they
can not be connected to vertex x. So having a spiral in a drawing means
that the drawing is non-completable.

81



5 Semi-Realizable Rotation Systems

x

y

a b

Figure 5.15: Spiral of two edges

5.4.3 Enumeration of all Allowed Crossing-Configurations

Now we show how we can compute the maximum number of crossings
per edge-pair in a semi-good drawing of the complete graph Kn without
empty lenses. To do this we generate all different configurations how two
edges can cross that do not contain our forbidden sub-drawings. We start
with three fixed vertices, which are the two endpoints of the horizontal
edge and our starting vertex of the second edge. We draw a vertical line
from our starting point crossing the horizontal line. Then in every step we
extend this drawing at the end of this line in all possible ways. That is, we
avoid spirals, empty lenses and locking in a fixed vertex. In every extension
step we have to cross the horizontal line in the inverse direction of the last
crossing. So we have to cross back in all ways and check if this does not
violate our regulations. In the first step we just cross back to the left of the
first crossing. We do not have to consider the case crossing back to the right,
because all drawings arising from that are only the mirrored drawings of
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the others. During this generation we do not care whether the end of the
line lies in a lens. Since this is the spot where we extend the edge, as it could
happen that a few steps further the end of the line is again in the cell where
all other vertices lie. We can see this in Figure 5.16 in the extension from
the bottom most drawing of column c = 3 to the bottom most drawing of
column c = 4. In this extension step we can also see that we surround the
existing point in the lens. It makes no sense to create another empty lens
and place another point there, because then the former lens would also be
blocked by the newly placed point. So we can use only one point to make
sure that both lenses are non-empty.

In Figure 5.16 we can see how we extend the drawings of two edges to the
maximum number of crossings for six vertices. There we always extend the
drawings at the red cross, which marks the end of the line. We do not create
loops around any of our three fixed vertices. We extend the drawings in
all possible ways and check if they contain empty lenses or spirals. If we
have vertices left, we place a vertex in the empty lens. If we create a new
empty lens inside another lens we can reuse the vertex to make the new lens
non-empty. Therefore we surround existing vertices in lenses whenever it is
possible, to reduce to number of used vertices. Otherwise these drawings
are marked and will not be extended. Note that it happens in intermediate
steps that the extension point lies in a lens. We also extend these drawings,
because thereby the extension point can leave the lens again and reach the
cell where the other three end-vertices lie.

From this extension of drawings we get that for six points we can have
at most five crossings per edge-pair. We also know that four crossings are
sufficient to draw all semi-realizable rotation systems. We also did this
analysis by hand for seven vertices. So we know that for seven vertices
we can get at most ten crossings per edge-pair. Actually there are rotation
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Figure 5.16: All possible crossing-configurations of two edges with 6 vertices (c represents
the number of crossings of the two edges)
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5 Semi-Realizable Rotation Systems

systems that are only semi-realizable with ten crossings for at least one
edge-pair.

5.4.4 Algorithm to Compute the Maximum Number of

Crossings per Edge-Pair

We implemented the described extension progress. The data-structure for
this is very easy. We use two arrays. In the first array we store the positions
where we cross the horizontal line ordered by the second line starting
at the fixed vertex. In the second array we store the positions where the
horizontal edge is crossed and where the points in the lenses are placed
ordered by the x-coordinate. There we can also store whether the point lies
above or below the line. With this data-structure it is possible to compute
the positions where we can cross the horizontal line in every step. With a
recursive algorithm we check all potential crossing positions. As before, we
prohibit the generation of empty lenses and spirals. Whenever we enter a
lens where already a point is placed, we surround this point and reuse it to
make sure that we need as few extra points as possible.

The detection of an empty lens is easily possible. We only have to check
whether there lies a point on the appropriate side of the horizontal edge
between the last two crossing positions. If this is not the case we put a point
on the appropriate side between the two last crossing positions if we have
one left. If there is no point left we stop this recursion branch.

The detection of a spiral is a little bit more sophisticated. There we make
use of the following lemma.
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5 Semi-Realizable Rotation Systems

Lemma 5.5 Consider a horizontal edge e1 and an edge e2 that crosses e1 multiple
times. Further, consider a lens in this drawing of the two edges with a vertex v
in it. Then e2 crosses e1 on the left and on the right side of the vertex. These two
crossings cut e2 into three sub-curves. We call them the left curve, the right curve
and the middle curve (see Figure 5.17). We define that the points where the left and
the right curve meets the middle curve is part of the middle curve.

The vertex v lies in a spiral in the sense of Figure 5.15 if one of the following two
symmetric conditions is fulfilled:

1. The left curve crosses e1 on the left side an even number of times, then on the
right side an odd number of times and then again on the left side.

2. The right curve crosses e1 on the right side an even number of times, then on
the left side an odd number of times and then again on the right side.

e1
e2

middle curve

left curve right curve

v

left side middle right side

Figure 5.17: Configuration for Lemma 5.5

Proof: We show that if the first condition is fulfilled, then the vertex lies
in a spiral. Consider the case of Figure 5.17, where the lens is below the
horizontal edge. Since we assume that the left curve crosses e1 on the left
side an even number of times and then on the right side, we know that there
exists a curve above e1 from the left to the right side. From this it follows
that the edge from v to the the end-vertex of the left curve has to cross e1 to
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5 Semi-Realizable Rotation Systems

the right of the right curve, because the left curve locks this edge above e1

in a lens and the endpoint of the left curve has to be outside this lens by
Lemma 5.4. Now the left curve crosses e1 on the right side an odd number
of times and then again on the left side. This means there also exists a curve
below the lens that goes from right to left. Therefore the point lies in a
spiral. We can see this in Figure 5.18. The proof for the second condition
runs analogously. �

e1
e2

left edge

v

Figure 5.18: Characterization of a spiral

With our algorithm we can determine the left and the right curve to every
vertex. Then we can follow these sub-curves and determine whether they
form a spiral.

So we can compute the maximal number of crossings for an edge-pair in
a semi-good drawing of the complete graph Kn with our algorithm. In
Table 5.5 we display the results of our algorithm for up to 13 vertices. The
first row contains the number of vertices in total. The number in the second
row is the upper bound for the number of crossings that two edges can have
without empty lenses and spirals computed by our algorithm. In the third
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Vertices 4 5 6 7 8 9 10 11 12 13

Max. crossings per edge-pair 1 2 5 10 27 35 59 83 143 197

Really needed crossings 1 2 4 10

Table 5.5: Upper bounds and exact values for the number of crossings per edge-pair

row we show the number of crossings per edge-pair that we really needed
to draw all semi-realizable rotation systems up to seven vertices. It is very
interesting that we do not need the upper bound for six vertices, but for
seven we do. Up to now, we do not know whether the number of crossings
for an edge-pair that fulfills our regulations or even in a semi-good drawing
is finite for a finite total number of vertices.

For a given n there exists a construction with two edges, without empty
lenses and spirals that has Θ(n2) crossings. So we know that the lower
bound for this number is Θ(n2) [24].
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6 Related Topics and Summary

6.1 Conway’s Thrackle Conjecture

Conway’s Thrackle conjecture deals with good drawings where all edges
share an endpoint or have a common crossing, called thrackles. Conway
conjectured that there exists no thrackle with more than n edges of a graph
with n vertices.

Definition 6.1 (Thrackle) [18] A thrackle is a good drawing of a graph where
each pair of edges either share an endpoint or cross exactly once.

Conjecture 6.1 (Conway’s Thrackle Conjecture) [28] The number of edges of
a thrackle cannot exceed the number of its vertices.

This conjecture implies that every good drawing of the complete graph with
n vertices cannot contain a thrackle with n + 1 edges. We generalize this
and consider now semi-good drawings. We were able to find a semi-good
drawing with seven vertices that contains a subgraph of eight edges that
pairwise are either incident to a common vertex or cross an odd number
of times (Figure 6.1). This can be seen from the rotation system and its
crossing properties, which are determined by the 4-tuples. By the definition
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above, this is no thrackle and therefore no counterexample to the conjecture,
because it has edge-pairs that cross multiple times. Nevertheless, it shows
that the condition of a thrackle being a good drawing is necessary and must
be considered in a possible proof of the thrackle conjecture. Thinking about
rotation systems, it is possible to determine the crossing edges by analyzing
the 4-tuples. When we try to prove the thrackle conjecture with the use of
rotation systems, it is necessary to take the property of realizability into
account.

3

2

5
7

4

6

1

Figure 6.1: A ”thrackle” in a semi-good drawing

6.2 Plane Hamilton Cycles in Semi-Good

Drawings

Up to now there is no example of a good drawing without a plane Hamilto-
nian cycle. It is conjectured that every good drawing contains such a cycle.
We know that the conjecture is not true for semi-good drawings. There exists
an example with six vertices that does not contain a plane Hamiltonian
cycle. The drawing is depicted in Figure 6.2.
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6 Related Topics and Summary

All the information that we need to decide whether a good drawing contains
a plane Hamiltonian cycle is contained in the rotation system of it. For a
proof of the Hamiltonian cycle conjecture using rotation systems, we have
to consider the property of realizability of the rotation system.

5

4

2

1 3

6

Figure 6.2: A semi-good drawing without a plane Hamiltonian Cycle

6.3 Summary and Open Problems

We motivated that it might be difficult to generate a realizable rotation sys-
tem randomly. For a small number of vertices, it is doable within reasonable
time, but already when the number of vertices exceeds eight, it gets very
hard to generate a single random realizable rotation system from scratch.
We found out that with the help of good double-flips we can generate larger
more or less random realizable rotation systems. There we have to start with
a realizable rotation system and modify it in a good way. An open problem
in this area is whether the flipgraph of good drawings is connected by good
double-flips. We have shown that this is true for n ≤ 8.
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6 Related Topics and Summary

With the use of our algorithm to generate random realizable rotation system
we can support the conjecture that every good drawing contains a plane
Hamiltonian cycle. We have seen that for semi-good drawings this conjecture
is not true.

We stated the theoretical bounds for crossing families with three and four
edges. For complete graphs, these bounds leave a big gap to be closed. We
did a full analysis of good drawings without a crossing family of size three
and showed that every good drawing with at least eleven vertices contains
a crossing family size three.

The assumption that every rotation system that consists of realizable 4-
tuples is semi-good drawable could be rejected. We showed that there exists
a rotation system with six vertices where every 4-tuple is realizable that
is not drawable as a semi-good drawing. We proved by hand that this
rotation system is indeed not semi-realizable. With our analysis of semi-
good drawings with seven vertices, we showed that there are also examples
that are not semi-realizable, although all 4-tuples and 6-tuples are semi-
realizable. This means there are structures that prevent semi-realizability
that show up in rotation systems with more than six vertices for the first
time. The proof that the examples with seven vertices are non-realizable
is computer-assisted. It would be interesting to see a direct proof by hand
of the non-realizability of one of these examples with seven vertices. Such
a proof might give us a better insight in the structures that prevent semi-
realizability.

We were surprised how often two edges need to cross in some semi-good
drawings. We computed an upper bound for the number of crossing of an
edge-pair in semi-good drawings with up to 13 vertices.

A lot of questions regarding the realizability of rotation systems and the
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properties of good and semi-good drawings are still unsolved. In the fol-
lowing we summarize a few of them.

• We have presented the good double-flip, which is an operation that
modifies a semi-realizable rotation system and leaves all 4-tuples
realizable. Does there exist a similar operation for realizable rotation
systems that also leaves the 5-tuples realizable?
• We have seen that we do not have to check all 4-tuples of a rotation

system to make sure that all 4-tuples are realizable. Is there a similar
property that holds for 5-tuples? How fast can we check the realiz-
ability of all 5-tuples? Can the bound of O(n5) time for deciding the
realizability of rotation systems be improved?
• It is still unsolved if every good drawing contains a Hamiltonian cycle.

Is it possible to prove this conjecture with the use of realizable rotation
systems?
• We know that there are good drawings with 15 vertices that do not

contain a crossing family of size 4. What is the tight lower bound
for the number of vertices such that every good drawing contains a
crossing family of size 4? How can we find the answer to this question?
It seems like an entire extension of all rotation systems is not doable
in appropriate time.
• Up to now we do not know how we can decide semi-realizability of ro-

tation systems efficiently. We know that checking the semi-realizability
of all 6-tuples is not sufficient. What is the complexity of deciding
semi-realizability?
• We found structures that bound the number of times two edges can

cross in a semi-good drawing of the complete graph with at most 13
vertices and without empty lenses. Is this number finite for every finite
number of vertices? If yes, what is an upper bound in dependance
of n?
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[2] Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant,
Pedro Ramos, and Gelasio Salazar. “Shellable drawings and the cylin-
drical crossing number of K n.” In: ArXiv e-prints (2013). arXiv: 1309.
3665 [math.CO] (cit. on p. 4).

[3] Eyal Ackerman. “On the Maximum Number of Edges in Topolog-
ical Graphs with no Four Pairwise Crossing Edges.” In: Discrete &
Computational Geometry 41.3 (2009), pp. 365–375. issn: 1432-0444. doi:
10.1007/s00454-009-9143-9. url: http://dx.doi.org/10.1007/
s00454-009-9143-9 (cit. on p. 41).
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[16] Jan Kynčl. “Simple Realizability of Complete Abstract Topological
Graphs in P.” In: Discrete & Computational Geometry 45.3 (2011), pp. 383–
399. issn: 1432-0444. doi: 10.1007/s00454-010-9320-x. url: http:
//dx.doi.org/10.1007/s00454-010-9320-x (cit. on pp. 9, 12, 22).
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