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Abstract

Single-channel speech enhancement is an essential part in different speech based applications
such as automatic speech recognition, mobile telephony and hearing aids. Throughout the years,
many different speech enhancement methods have been developed, most of them are formulated
in the Short-Time Fourier Transform (STFT) domain. The majority of the conventional STFT-
based speech enhancement methods aim to enhance the amplitude only, while the noisy spectral
phase is left unprocessed. In this thesis a novel phase enhancement method which exploits the
relation between the spectral phase at harmonics in speech, is presented. After discussing the
fundamentals of phase processing, prominent existing phase enhancement methods from the past
are explained. Among others, a novel phase representation, the Phase Quasi Invariant (PQI),
is introduced. Based on this phase representation, two enhancement methods which exclusively
modify the spectral phase, are introduced. In experiments, the effectiveness of these novel
enhancement methods are demonstrated by comparing them to phase enhancement benchmarks.
The performance evaluation is conducted by means of objective measures for speech quality,
intelligibility and phase estimation error. All experiments and algorithms included in this thesis
were implemented in MATLAB.

Kurzfassung

Einkanalige Sprachsignalverbesserung ist ein wichtiger Bestandteil automatischer Sprach-
erkennung, Mobiltelefonie und Hörgeräten. Über die Jahre wurde eine Vielzahl von Sprach-
verbesserungsalgorithmen entwickelt, deren Mehrheit auf der Kurzzeit-Fourier-Transformation
basiert. Die meisten konventionellen STFT-basierten Sprachverbesserungsmethoden bearbeiten
nur die spektrale Amplitude, während die Signalphase unbearbeitet bleibt. In der vorliegen-
den Arbeit wird eine neue Phasenverbesserungsmethode beschrieben, welche auf den Phasen-
verhältnissen zwischen harmonischen Schwingungen in Sprachsignalen basiert. Zunächst wer-
den die Grundlagen der Phasenverarbeitung besprochen und verschiedene effektive Phasen-
verbesserungsmethoden beschrieben. Neben anderen Phasenrepresentationen, wird der Phase
Quasi Invariant (PQI) vorgestellt. Auf Basis dieser Phasenrepräsentationen werden zwei
Sprachverbesserungsmethoden, welche ausschließlich die spektrale Phase verbessern, eingeführt.
In Experimenten wird die Effektivität dieser neuen Phasenverbesserungsmethoden demonstriert,
indem sie mit Referenzmethoden verglichen werden. Zur Evaluierung werden objektive Maße
für Sprachqualität und Sprachverständnis herangezogen. Alle in dieser Arbeit enthaltenen Ex-
perimente und Algorithmen wurden in MATLAB implementiert.
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1
Introduction

Speech is the most natural way of human communication. As advances in signal processing
technologies proceed, more and more listening devices find their way into our daily lives.
Different speech communication applications such as digital telephony, acoustic human-machine
communication and digital hearing aids are expected to function as accurately as possible to
guarantee a reliable speech communication experience. Therefore, robust performance must be
ensured for noise conditions of everyday life, such as driving in a car, walking along the street,
being in a restaurant or factory, just to name a few. Additionally, the performance of any
speech processing device gets aggravated through distortions of the communication channel,
caused by acoustic echoes or room reverberations. As a result, the desired clean speech signal
is often only accessible as a corrupted, noisy version [1].

Designing a speech algorithm that deals with all these problems is a challenging as well as
rewarding task. A conventional single channel speech communication chain, consisting of several
blocks, each targeting one processing step, is depicted in Figure 1.1.

Acoustic Echo

Cancellation

De-

Reverberation

Noise

Reduction

Speech

Coding

Figure 1.1: Block diagram of a conventional speech communication system, from transmitter (microphone)
to receiver end (loudspeaker), consisting of the blocks: beamforming, acoustic echo cancellation,
de-reverberation, noise reduction, speech coder and artificial band width extension

For years, the most popular tool to analyse and modify the signals at the individual stages has
been the short-time Fourier Transform (STFT), where the signal is often represented by sum of
amplitudes, frequencies and phases.

The majority of the literature has been dedicated towards modification of the spectral ampli-
tude only, while the importance of spectral phase has been a controversial topic in the speech
processing community. While early studies report the insignificance of the phase spectrum in
terms of perception [2, 3], more recent publications highlight the importance of the spectral
phase for different speech processing applications such as: speech coding [4], speech recognition
[5, 6], source separation [7–9] and speaker recognition [10,11].
In particular, the field of noise reduction has received increasing attention by researchers
lately. Some examples are model-based short-time Fourier transform phase improvement [12],
maximum a posteriori harmonic (MAP) phase estimation [13], as well as temporal smoothing of
the unwrapped harmonic phase [14]. Apart from improved signal reconstruction, spectral phase
information can also be used to derive improved spectral amplitude estimators, see [15, 16].
The advances of phase-aware processing are limited by the accuracy of the estimated phase.
Therefore, it is a challenging research topic to find novel approaches that help to achieve more
robust and accurate estimators of the clean spectral phase given the noisy speech observation.
In this thesis a novel single channel phase estimation technique, which exploits the relation
between the harmonic phases of a speech signal, is discussed.
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1 Introduction

The thesis is structured as follows. Chapter 2 gives an overview about the fundamentals of STFT-
based speech enhancement. In Chapter 3, some of the most relevant phase enhancement methods
are presented and explained in detail. Chapter 4 discusses different phase representations other
than the instantaneous phase, which are helpful to reveal harmonic structures in phase. In
Chapter 5, a phase enhancement method based on exploiting the relation between the phase
spectrum of harmonics is presented. Chapter 6 shows the experiment setup and presents the
results for the proposed phase enhancement method. Chapter 7 concludes the work and gives a
future outlook.

– 8 – January 17, 2017



2
Fundamentals of Phase in Speech Enhancement

2.1 Speech Production Process

Before talking about phase enhancement algorithms, it is important to gain some insight about
speech signals in general. Human speech is the result of a complex interaction performed by
various physiological components. A contraction of the aspiratory muscles forces the air en-
closed in the lungs to exit, which results in an air flow through the trachea up to the glottis.
The glottis, which denotes the opening between the vocal cords and the larynx, is considered as
the excitation-source signal, as it converts the airflow into acoustic oscillation. The frequency
of this oscillation can range from 50 Hz to 250 Hz for male speakers and from 120 Hz to 500 Hz
for female speakers and is known as the fundamental frequency f0 [17].
Additionally, the vocal chords produce a larger amount of harmonics by colliding with them-
selves. Harmonics are normally integer multiples of the fundamental frequency. The next major
part in the speech production chain is the vocal tract consisting of the oral and the nasal cavity.
The vocal tract acts as an acoustic resonator that spectrally shapes the source excitation signal.
Throughout this process, different harmonics are emphasized, depending on the shape of the
vocal tract. Finally, speech is emitted through lips and nostrils, where it is also dynamically
shaped [18]. A schematic of the involved human speech organes can be observed in Figure 2.1.

Figure 2.1: Human speech production organs [1]

Not all speech sounds are produced upon a periodic oscillation of the vocal cords. Unvoiced
sounds, like /f/, /s/ or /sh/ are produced with relaxed vocal cords, resulting in an excitation
signal which can be described as white Gaussian noise. Therefore, no harmonic structure or
fundamental frequency is present. Plosive sounds, like /p/ or /t/ are created after building up
pressure in the oral cavity. In a burst, the build-up air is released causing a sound which is
perceived as a transient burst of noise [17].

January 17, 2017 – 9 –



2 Fundamentals of Phase in Speech Enhancement

2.2 Fundamentals of the Fourier Transform

Speech signals can be recorded in many different ways, depending on the associated purpose.
Speech enhancement methods are either based on multi-channel methods, where the signal is
captured by multiple microphones, or single-channel methods, where the signal is captured by
one single microphone. This thesis focuses on single-channel applications. In order to develop
an efficient speech enhancement system a method is used to access certain properties and char-
acteristics of the speech captured, which are not available in time domain [19]. This calls for a
different signal representation. To that extent, an analysis-modification-synthesis (AMS) frame-
work depicted in Figure 2.2 is used. With the help of a signal transform, the input signal is
transformed into another domain, where certain modification can be performed, followed by a
re-synthesis step.

Figure 2.2: Block diagram of a basic AMS model

Probably the most established signal transform for the purpose of speech enhancement is the
Fourier transform. The Fourier transform is a spectral transform, which analyses a signal in
terms of its spectral components [18]. With the help of the Fourier transform, a continuous time
signal xa(t) is related to its frequency domain representation Xa(jω):

Xa(jω) =

∫ ∞

t=−∞
xa(t)e

−jωtdt, (2.1)

where t denote the continuous time index and ω = 2πf the frequency in radiants, respectively.
The Fourier domain representation is continuous in both time and frequency. In signal process-
ing, though, we deal with a digital signal x(n) with discrete time index n. Given the analog
continuous time signal xa(t), the corresponding discrete time signal x(n) is obtained by sampling
with the sampling period Ts [17]:

x(n) = xa(t)
∣∣
t=nTs

−∞ < n <∞
= xa(nTs).

(2.2)

From the sampling period Ts the sampling frequency can be derived as:

fs =
1

Ts
. (2.3)

In order to process discrete time-signals, the discrete-time Fourier transform (DTFT) is intro-
duced:

X(ejΩ) =
∞∑

n=−∞
x(n)e−jΩn, (2.4)

where Ω = 2πfTs denotes the continuous normalized angular frequency. In order to calculate
the DTFT of a signal properly, an input signal with infinite length would be needed. In practice,
however, the input signal x(n) is finite in duration, consisting of N samples. The finite amount
of samples leads to uniformly spaced frequencies in the Fourier domain, yielding a new transform
referred to as the discrete Fourier transform (DFT) [17].

– 10 – January 17, 2017



2.2 Fundamentals of the Fourier Transform

The DFT of the signal x(n) is given by:

X(k) =

N−1∑

n=0

x(n)e−j
2πkn
N 0 ≤ k ≤ N − 1, (2.5)

where N denotes the length of the input signal and k the frequency index. The DFT represents
the signal spectrum at equally spaced points on the normalized frequency axis ∆Ω = 2π

N .
Taking the sampling frequency into account, this means that the frequency components of the
DFT are spaced apart by ∆f = fs

N , ∆f is also referred to as the frequency resolution [1]. The
DFT is discrete in time and frequency.

Generally, speech signals are highly non-stationary signals. On the closer look, however, certain
speech segments are considered to be quasi-stationary. Therefore, it is common to process speech
signals frame-wise. Commonly, frame durations with a length of 20 ms - 40 ms are used [18].
After the signal segmentation, a window function is applied, where the length of the window
determines the length of the signal frame. This helps to deal with the problem of spectral
leakage. To some extent, time consecutive values of X(k) contain redundancy, which is caused
by redundancy some redundancy in consecutive values of x(n). Therefore, it is common to
introduce a frame shift Z, which means that X(k) is computed only every Z-th sample. Taking
this into account, the short-time Fourier transform (STFT) can be defined as:

X(k, l) =

N−1∑

n=0

x(n+ Zl)w(n)e−j
2πkn
N , (2.6)

where l denotes the frame index and w(n) the window function with w(n) 6= 0 for 0 ≤ n ≤ N−1.

As any Fourier transform, the short-term Fourier transform of a time domain signal is a complex
valued function of frequency. This means it can either be expressed in terms of its real and
imaginary parts

X(k, l) = Re {X(k, l)}+ jIm {X(k, l)} , (2.7)

or in terms of its magnitude and phase spectra using polar form

X(k, l) = |X(k, l)|ej∠X(k,l), (2.8)

where |X(k, l)| denotes the magnitude spectrum and ∠X(k, l) denotes the phase spectrum. The
STFT domain allows perfect reconstruction and is considered to be efficient in terms of com-
putational complexity, therefore the STFT is a widely used transform in speech communication
systems. To study other properties and the synthesis of the Fourier transform in detail, the
reader is referred to [1], as it is out of the scope of this thesis.

January 17, 2017 – 11 –



2 Fundamentals of Phase in Speech Enhancement

2.3 Conventional Speech Enhancement Methods

In single channel speech enhancement it is often assumed that a clean signal is deteriorated by
additive noise yielding a noisy observation

y(n) = x(n) + d(n), (2.9)

where y(n), x(n) and d(n) denote the noisy speech, the clean speech and the noise signal,
respectively. It is common to consider the signals as realizations of stochastic processes
which are assumed to be statistically independent. Therefore, the problem definition can be
formulated as follows:
Given a realization of the noisy speech signal y(n), find an estimate of the clean speech x(n).

Throughout the years, a variety of speech enhancement methods have been developed. They
differ from each other in terms of the domain they are formulated in (e.g. frequency, time, mod-
ulation) and in terms of assumptions they assert about the statistics of the signal realizations.
Basically, they can be divided into the following categories:

� Spectral subtraction algorithms [20]

� Statistical-model based methods [21] and Wiener filtering methods [22]

� Subspace Algorithms [23]

Besides other modulation based signal domains, the STFT has been the predominant choice for
speech enhancement methods. While only few methods tend to modify the real and imaginary
STFT components directly [24], the majority of the methods tend to modify the signal in terms
of their magnitude and phase spectra. Usually they follow an AMS model similar to the one
depicted in Figure 2.3.

Figure 2.3: Block diagram of an STFT-based AMS framework for enhancement of the spectral magnitude
[18]

This means most speech enhancement algorithms, e.g. [20, 21, 25–27], only aim to enhance the
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2.3 Conventional Speech Enhancement Methods

spectral amplitude, whereby the estimation methods of |X̃(k, l)| differ from one another. But
the spectral phase, which is clearly distorted as well, is likely to be left unprocessed and used
for signal synthesis.

The main reason for this is the intuitive nature of the spectral magnitude. A lot of signal
information, such as spectral energy distribution or pitch information, is easily accessible by
observing the spectral amplitude. This can be observed in the Figures 2.4 and 2.5, where the
magnitude and phase spectra of two windowed speech segments of a female speaker are depicted.
Figure 2.4 shows a voiced speech segment, Figure 2.5 shows an unvoiced segment.
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Figure 2.4: Time and frequency representation of a Hamming windowed voiced speech segment with 30ms
length. Shown are time signal (top), magnitude spectrum in db (middle) and phase spectrum
(bottom)

For voiced segments, the evenly spaced peaks in the magnitude spectrum correspond to pitch
harmonics, while peaks in higher amplitude regions often correspond to formants. In unvoiced
segments, where no periodic excitation signal is present, the pitch harmonics disappear. Com-
pared to the magnitude spectrum, the phase spectrum in the bottom of Figure 2.4 and Figure
2.5 does not seem to show any structure. Independent of the excitation signal, it seems to change
randomly across frequency. Therefore, it was believed to contain little useful information [2].
On the closer look, however, this noise-like behaviour can be attributed to the cyclic wrapping
of the spectral phase. Chapter 4 addresses this problem, and different methods to uncover useful
structures from the instantaneous phase are presented.
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2 Fundamentals of Phase in Speech Enhancement
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Figure 2.5: Time and frequency representation of a Hamming windowed unvoiced speech segment with 30ms
length. Shown are time signal (top), magnitude spectrum in db (middle) and phase spectrum
(bottom)

Another reason why the phase spectrum has often been discarded in speech enhancement
frameworks was the early work of Wang and Lim [3] and Vary [28]. Both observed how the
perceived quality of a clean speech signal changes when the spectral phase is distorted. Both
works reported that the possible achievable gain through phase enhancement is small compared
to the one gained through amplitude enhancement and therefore can be neglected for high SNRs.

After decades it was Paliwal et al. in [29] who addressed this topic again. They conducted a
couple of experiments that disputed with the earlier observations of Wang and Lim. Paliwal
reported that estimating a better phase spectrum, while a challenging task, could be worthwhile,
as accurately estimated phase spectra have the potential to significantly enhance the speech
quality. For a detailed overview on why the phase has been neglected in speech enhancement
for so long the reader is referred to [30].
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3
Phase Estimation Methods

This Chapter presents some of the phase estimation algorithms that have been introduced over
the years. Most of them are based on a harmonic signal model. In the following, each method
and its central idea will be discussed.

3.1 Short-Time Fourier Transform Phase Improvement

One method to improve the noisy spectral phase was introduced in [31] by Krawczyk and
Gerkmann. It is based on exploiting the correlation between neighbouring phase values
across time and frequency and the spectral amplitudes in voiced speech. The algorithm can
therefore be performed along frequency or along time, a combination of both is also possi-
ble. The method was labeled as STFT phase improvement and is further referred to as STFTPI.

The algorithm is based on a harmonic signal model, where a voiced speech sound is modelled as
a weighted sum of sinusoids at integer multiples of the fundamental frequency. It is given as:

x(n) =

H∑

h=1

2A(h) · cos
(
ω(h) · n+ ψ(h)

)
, (3.1)

with the real-valued amplitude 2A(h), the harmonic phase ψ(h) and the normalized angular
frequency, which is given as:

ω(h) = 2π
fh
fs

= 2π
hf0

fs
= 2π · hf0Ts. (3.2)

The sum of harmonics from (3.1) is transformed into STFT domain using the Equation (2.6),
resulting in X(k, l). Then X(k, l) can again be transformed into its baseband by using

XB(k, l) = X(k, l)e−jωkZl, (3.3)

with center frequency ωk = 2πk
N and baseband STFT representation XB(k, l). By using Equa-

tions (3.1) and (3.3), we obtain the baseband STFT representation for the voiced speech model
x(n), which denotes as:

XB(k, l) =
N−1∑

n=0

w(n)

Hl∑

h=1

A(h, l)

(
e
j

(
(ω(h,l)−ωk)(n+Zl)+ψ(h,l)

)
+ e
−j
(

(ω(h,l)−ωk)(n+Zl)+ψ(h,l)

))
.

(3.4)

Following Equation (3.4) each frequency bin k is depending on every harmonic. When the
length of a signal segment, N , and therefore also the window length, is high enough to get a
good frequency resolution, it is safe to assume that each STFT bin k is dominated only by the
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3 Phase Estimation Methods

closest complex component. The harmonic component is given as:

ωkh = arg min
ω(h,l)

(|ωk − ω(h, l)|). (3.5)

Note that ωkN/(2π) is an integer, while ωkhN/(2π) ∈ R. This means that the harmonic frequency
is not necessarily identical to the center frequency of the DFT. The assumption from above
reduces Equation (3.4) and leads to a formulation of the baseband STFT amplitude and phase:

XB(k, l) ≈ A(h, l)
N−1∑

n=0

w(n)ej((ω
k
h−ωk)(n+Zl)+ψ(h,l))

≈ A(h, l)ej(ω
k
h−ωk)Zlejψ(h,l)

N−1∑

n=0

w(n)ej(ω
k
h−ωk)n

︸ ︷︷ ︸
|W(k−ωkh N2π )|ejψW (k−ωkh

N
2π )

≈ A(h, l)

∣∣∣∣W
(
k − ωkh

N

2π

)∣∣∣∣
︸ ︷︷ ︸

|XB(k,l)|

e
j

(
ψ(h,l)+(ωkh−ωk)Zl+ψW (k−ωkh N2π )

)

︸ ︷︷ ︸
ψXB (k,l)

,

(3.6)

where |W
(
k − ωkh N2π

)
|ejψW (k−ωkh N2π ) denotes the contribution of the analysis window, modulated

by the frequency of the dominant harmonic.

3.1.1 Phase Reconstruction across Time

Based on Equation (3.6), a formula for a recursive segment-to-segment computation of the
baseband STFT-phase ψXB (k, l) is derived. Additionally, we assume that the fundamental
frequency f0 is changing slowly from one frame to another, which means that:

ωkh(l − 1) ≈ ωkh(l). (3.7)

The simplified version of the baseband STFT phase difference is given as:

∆ψXB (k, l) = ψXB (k, l)− ψXB (k, l − 1) =
(
ωkh − ωk

)
Z. (3.8)

Which can be reformulated to obtain the recursive formula for phase reconstruction across time:

ψXB (k, l) = ψXB (k, l − 1) +
(
ωkh − ωk

)
Z. (3.9)

Equation (3.9) suggests that the baseband phase change depends only on the difference between
the closest harmonic ωkh, the STFT center-frequency ωk and the frame shift Z. Given an initial
estimation of the STFT baseband phase ψXB (k, l0), the reconstruction is conducted for all
harmonics across the frequency bands.

3.1.2 Phase Reconstruction across Frequency

The phase reconstruction along frequency follows the same assumptions as the phase reconstruc-
tion across time. Given a phase estimate of the STFT-band k′, which is evaluated following
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3.2 Temporal Smoothing of the Unwrapped Phase

Equation (3.9), Equation (3.6) can be rewritten as:

XB(k′, l) ≈ A(h, l)ej(ω
k′
h Zl+ψ(h,l)) e−jωk′ZlW (k′ − ωk′h

N

2π
)

︸ ︷︷ ︸
f(k′)

, (3.10)

where only f(k′) depends on STFT frequency bin k′. Following this, the phase of the frequency
bin k′ + ∆k′ can be estimated based on the reference of ψXB (k′, l):

ψXB (k′+∆k′, l) = ψXB (k′, l)−∆k′
2π

N
Zl+ψW

(
k′ + ∆k′ − ωk′h

N

2π

)
−ψW

(
k′ − ωk′h

N

2π

)
. (3.11)

With Equation (3.9) and (3.11) the baseband phase can be estimated in every time-frequency
point of a voiced speech signal. At unvoiced frames the noisy phase is assigned. Therefore this
method relies on an accurate estimation of the fundamental frequency as well as on a voice
activity detection. The method showed improvement in instrumental measures of the speech
quality.

3.2 Temporal Smoothing of the Unwrapped Phase

The next phase enhancement method is basically centered around decomposing the instanta-
neous, noisy phase and was introduced in [14]. The method proposes a phase model which
decomposes the instantaneous phase into two major components: the linear phase and the un-
wrapped phase. After the removal of the linear phase part, a temporal smoothing filter is applied
onto the unwrapped phase. Therefore, this method is referred to as temporal smoothing of the
unwrapped phase (TSUP). Figure 3.1 illustrates the processing steps of the TSUP estimator.

Pitch

Estimation

Phase

Decomposition Smoothing

Synthesis

Noisy

Speech

Enhanced

Speech

Phase

Synthesis

Figure 3.1: Block diagram of the TSUP estimator. ψlin(h, l) denotes the linear phase, Ψ(h, l) and Ψ̂(h, l)
the unwrapped phase before and after the enhancement step, respectively. The enhanced instan-
taneous phase, which is used to synthesize the enhanced speech x̂(n), is denoted by ψ̂(h, l).
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For TSUP phase estimation the speech signal x(n) is sliced into windowed frames according to:

xw(n′, l) = x(n′ + t(l))w(n′), (3.12)

where t(l) and w(n) denote the time instance at frame l and the analysis window, respectively
and n′ denotes the STFT time index, which is defined by length of the analysis window Nl,
n′ ∈ [− (Nl−1)

2 , (Nl−1)
2 ]. In [32], it was shown that a pitch-synchronous signal segmentation is

advantageous for the processing of the phase. Therefore, the time instances of the frames t(l)
are evaluated according to the fundamental frequency f0(l):

t(l) = t(l − 1) +
1

4 · f0(l − 1)
. (3.13)

Every frame xw(n′, l) of a voiced signal region can be presented as the sum of harmonics con-
sisting of amplitude a(h, l) and phase ψ(h, l):

xw(n′, l) ≈
Hl∑

h=1

a(h, l) cos(hω0(l)n′ + ψ(h, l))w(n′), (3.14)

with harmonic index h ∈ [1, Hl] and ω0(l) = 2πf0(l)/fs. In this framework, a blackman window
was used, as it was documented to be the best performing window type for phase estimation
[33].

3.2.1 Phase Decomposition

The instantaneous phase ψ(h, l) in Equation (3.14) can be represented by decomposing it into
its basic components using a model introduced in [32]:

ψ(h, l) = h

l∑

l′=0

ω0(l′)(t(l′)− t(l′ − 1))

︸ ︷︷ ︸
linear phase ψlin(h,l)

+

minimum phase︷ ︸︸ ︷
∠V (h, l) +

dispersion phase︷ ︸︸ ︷
ψd(h, l)︸ ︷︷ ︸

unwrapped phase Ψ(h,l)

. (3.15)

The first part, which denotes the linear phase ψlin(h, l), captures the influence of the harmonic
frequency hω0 and the time instant. The linear phase part can be considered as a factor that
maps the phase to its frequency and time instance, which explains the cyclic wrapping of the
instantaneous phase. The second term of Equation (3.15), which is called minimum phase
term, denotes the phase response of the vocal tract V (l) sampled at harmonic h. The mini-
mum phase part can be estimated from the magnitude of the signal using Hilbert transform [34].

The last term in Equation (3.15) is referred to as dispersion phase ψd(h, l). It contains the
stochastic characteristics of the phase, which are not captured by the linear phase and the
minimum phase. In speech coding it is also referred to as source shape [35], as it characterizes
the pulse shape. The combination of minimum phase and dispersion phase is referred to as
unwrapped phase Ψ(h, l). The unwrapped phase term is what is left after removing the linear
and also deterministic term of the phase. Ψ(h, l) can be considered as a non-deterministic
random variable. The TSUP estimator only decomposes the instantaneous phase into unwrapped
and linear phase and tries to eliminate the stochastic changes introduced by additive noise by
temporal smoothing.
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3.2.2 Temporal Smoothing of the Unwrapped Phase

To obtain the unwrapped phase, the linear phase has to be removed as follows:

Ψ(h, l) = ψ(h, l)− ψlin(h, l). (3.16)

Since the linear phase heavily relies on the fundamental frequency, the quality of the estimation
of the unwrapped phase Ψ(h, l) as well depends heavily on the quality of the fundamental
frequency estimate. The TSUP estimator is based on the observation that at voiced speech
segments, the unwrapped phase evolves smoothly across time. Noise in the signal results in
higher fluctuations of the unwrapped phase, therefore Ψ(h, l) is smoothed across time by taking
the short term circular mean value:

Ψ̂(h, l) = ∠
l+W

2∑

l′=l−W
2

ejΨ(h,l′), (3.17)

where W denotes the number of frames that lie within a time span of 20 ms and Ψ̂(h, l) denotes
the enhanced unwrapped phase, respectively. The time span of the temporal smoothing is chosen
according to the quasi-stationarity character of speech [18].

3.2.3 Signal Reconstruction

The so-obtained enhanced unwrapped phase is then re-combined with the linear phase to result
in the enhanced instantaneous phase at harmonics:

ψ̂(h, l) = Ψ̂(h, l) + ψlin(h, l). (3.18)

Before synthesis, ψ̂(h, l) is transformed to the STFT domain, which is done by modifying all
frequency bins within the main-lobe of the analysis window around harmonic h.

φ̂(bhω0Kc+ i, l) = ψ̂(h, l), ∀i ∈ [−Np/2, Np/2], (3.19)

where Np denotes the length of the analysis window. The enhanced STFT components are
obtained by merging the enhanced phase with the noisy spectral amplitude:

X̂(k, l) = |Y (k, l)|ejφ̂(k,l). (3.20)

The enhanced time domain signal is obtained by overlapping and adding of the inverse Fourier
transform of X̂(k, l).
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3.3 Maximum A Posteriori Phase Estimator

Besides other estimation methods like Maximum Likelihood (ML), the Maximum A Posteriori
(MAP) estimate can be used for point estimates of an unobserved quantity of empirical data.
The MAP estimate takes into account a specific prior distribution over the quantity which
has to be estimated. In [13] the authors proposed a MAP estimator to estimate the phase at
harmonics given the noisy speech.

3.3.1 Derivation of the MAP Phase Estimator

The phase estimator is derived starting with one sinusoid in noise:

ȳ(n) = A cos(hω0n+ ψ) + d(n), (3.21)

The sinusoid is characterized by the sinusoidal triple parameters amplitude A, frequency ω0,
phase ψ and additive noise d(n), which is considered to be a zero-mean Gaussian process with
variance σ2. When defining the observation vector ȳ = {ȳ(n)}N−1

n=0 , the MAP estimate ψ̂MAP of
the harmonic phase ψ is obtained by solving the equation:

ψ̂MAP = arg max
ψ

p(ȳ|ψ)p(ψ)

p(ȳ)
= arg max

ψ
p(ȳ|ψ)p(ψ). (3.22)

If white Gaussian noise is assumed for ν, the likelihood p(ȳ|ψ) can be formulated as:

p(ȳ|ψ) = (2πσ2)−
N
2 e−

1
σ2

∑N−1
n=0 (ȳ(n)−A cos(hω0n+ψ))2

. (3.23)

When it comes to the prior probability of the phase p(ψ), other estimation methods tend to
use a uniform phase distribution, resulting in the noisy phase as the optimal phase-estimate.
The novelty of this MAP estimator lies in incorporating the Von Mises distribution. The Von
Mises distribution is the maximum entropy distribution for a given circular mean value µc and a
concentration parameter κ. With the assumption that ψ follows a Von Mises distribution, p(ψ)
can be written as:

ψ ∼ VM(µc,¸κ) ; p(ψ) =
eκ cos(ψ−µc)

2πI0(κ)
, (3.24)

where I0 denotes as the modified Bessel function of the first kind for order zero.

ψ
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Figure 3.2: Probability density function of a Von Mises distributed variable ψ, with mean value µc = 0 and
different concentration parameters κ =

{
0, 1

2
, 1, 2, 4, 8

}
.
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Figure 3.2 depicts the probability density function (PDF) of the Von Mises distribution for
different concentration parameters κ. In the first extreme case of κ = 0, the PDF results
in a uniform distribution, in the second extreme case of κ = ∞ the PDF of the Von Mises
distribution turns into a delta Dirac. With the assumptions from Equation (3.23) and (3.24)
and after discarding all the constants, Equation (3.22) can be rewritten as:

ψ̂MAP = arg max
ψ

− 1

σ2

N−1∑

n=0

(ȳ(n)−A cos(hω0n+ ψ))2 + κ cos(ψ − µc). (3.25)

The MAP solution for the phase ψ of a single sinusoid in noise is obtained by setting the
derivative of the right-hand term of Equation (3.25) to zero:

ψ̂MAP = tan−1

(
−2A
σ2

∑N−1
n=0 ȳ(n) sin(hω0n) + κ sin(µc)

2A
σ2

∑N−1
n=0 ȳ(n) cos(hω0n) + κ cos(µc)

)
, (3.26)

Equation (3.26) shows, that the MAP estimate is a function of the Von Mises parameter µc and
κ, the length of the input signal N and the local signal-to-noise ratio (SNR), which is denoted
by 2A

σ2 . At high SNRs, which means that A� σ2, the estimate rather relies on the noisy phase
than on the mean value µc. This is motivated by [36], where it was shown that the ML estimate
of the clean phase is the noisy DFT phase sampled at harmonics. Therefore, the noisy phase is
considered as a good estimate for high SNR scenarios. In the case of a low harmonic SNR, the
estimator relies only on the mean value µc.

3.3.2 Extension to Speech Signal

In Section 3.3.1 the MAP estimate was derived for a single sinusoid in noise. To extend this
derivation to a speech signal, the segmented noisy signal y(n, l) is considered as a harmonic
signal given as:

y(n, l) =

Hl∑

h=1

N−1∑

n=0

A(h, l) cos(hω0(l)n+ ψ(h, l)) + ν(n, l). (3.27)

Under the assumption of non-interacting sinusoidal components, the MAP estimate from Equa-
tion (3.26) is then applied at each STFT frame l and each harmonic h separately. Therefore,
we get:

ψ̂MAP(h, l) = tan−1

(−2A(h,l)
σ2(h,l)

∑N−1
n=0 ȳ(n, l) sin(hω0n) + κ(h, l) sin(µc(h, l))

2A(h,l)
σ2(h,l)

∑N−1
n=0 ȳ(n, l) cos(hω0n) + κ(h, l) cos(µc(h, l))

)
. (3.28)

3.3.3 Von Mises Distribution Parameter Estimation

Given the DFT of the windowed noisy input signal, which is defined as:

Y (k, l) = DFT {y(h, l)w(n)} , (3.29)

the spectral phase φ(k, l) is defined as φ(k, l) = ∠Y (k, l). In order to estimate the parameters
used for MAP estimation, the spectral phase ψ(h, l) of each harmonic is estimated by a linear
interpolation along frequency of φ(k, l). Following the phase decomposition from Equation
(3.16), the deterministic linear phase is removed to obtain the unwrapped phase Ψ(h, l). Then,
a Von Mises distribution is fitted on Ψ(h, l) to characterize its statistical behavior. The Von
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Mises parameter are obtained starting with:

z(h, l) =
1

W

l+W
2∑

l′=l−W
2

ejΨ(h,l′), (3.30)

µ(h, l) = ∠z(h, l), (3.31)

Where W denotes all the frames that lie within the time span of wfilt of frame l. The exact
parameter setup used in the experiment section will be given in Section 6.1.3. The circular mean
value of the harmonic phase µc is then calculated by adding back the linear phase part:

µc(h, l) = µ(h, l) + ψlin(h, l). (3.32)

The circular variance of Ψ(h, l) is given by:

σ2
c (h, l) = 1− |z(h, l)|. (3.33)

To obtain the concentration parameter κ, the following relation, which was proposed in [37], has
to be inverted:

σ2
c (h, l) = 1− I1(κ(h, l))

I0(κ(h, l))
. (3.34)

3.3.4 Signal Reconstruction

The enhanced harmonic phase ψ̂MAP(h, l) is transformed into STFT domain by utilizing Equation
(3.19). The resulting enhanced phase spectrum φ̂MAP(k, l) is finally used to obtain the phase-
enhanced time-domain signal by applying the inverse DFT on:

X̂(k, l) = |Y (k, l)|ejφ̂MAP(k,l), (3.35)

followed by an overlap-and-add routine.
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4
Harmonic Phase Representations

In Figures 2.4 and 2.5 it was shown that the instantaneous phase extracted from STFT does
not show any useful patterns or details. This Chapter presents some phase-based features which
help to get further insight and uncovers the hidden structure of the clean spectral phase. The
concept used in these representation is presented as well as closely connected references [30]. All
of the representations rely on a harmonic signal model:

x(n, l) =

Hl∑

h=1

A(h, l) cos
(
hω0(l)n+ ψ(h, l)

)
· w(n), (4.1)

and model the instantaneous harmonic phase ψ(h, l). Other STFT based methods, such as
Group Delay or Instantaneous Frequency are not covered in this thesis.

4.1 Relative Phase Shift (RPS)

The Relative Phase Shift (RPS), introduced in [38], proposes a useful representation of the
harmonic phase. Given the signal model in (4.1), the RPS representation is based on the
difference between the instantaneous phase of an arbitrary harmonic h and the instantaneous
phase of the fundamental frequency, which is defined as:

RPS(h, l) =
(
ψ(h, l)− hψ(1, l)

) ∣∣∣
+π

−π
, (4.2)

where ψ(1, l) corresponds to the phase of the fundamental frequency f0 and (α)
∣∣∣
+π

−π
denotes the

process of wrapping angle α to the interval [−π,+π].
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If Equation (4.2) is rewritten with the phase decomposition principle from Section 3.2.1, it can
be observed that the RPS representation is independent of the linear phase:

RPS(h, l) =

(
h
∑

l

ω0(l)∆t+ Ψ(h, l)

︸ ︷︷ ︸
ψ(h,l)

−h
(∑

l

ω0(l) + Ψ(1, l)

︸ ︷︷ ︸
ψ(1,l)

)) ∣∣∣∣∣

+π

−π

=
(

Ψ(h, l)− hΨ(1, l)
) ∣∣∣

+π

−π
.

(4.3)

Therefore, the RPS can also be considered as the phase shift of the unwrapped phase between
a harmonic h and the first harmonic.

Now it is assumed that the signal waveform is locally stable, which means the unwrapped phase
term is also constant. Only the linear phase part is changing according to its dependencies on
time shift and frequency. As the RPS circumvents this wrapping problem, the RPS patterns
are known to be smooth across time for voiced segments [39].

This property can be observed in Figure 4.1, where the waveform, the instantaneous phase of
the second harmonic ψ(2, l) and the RPS of the second harmonic RPS(2, l) are displayed for a
voiced segment of a female Speaker1, taken from GRID corpus.

time (s)
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(a) time signal
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(b) ψ(2,l)
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(c) RPS(2,l)

Figure 4.1: The Figure shows (a) time signal, (b) instantaneous phase of the second harmonic ψ(2, l) across
frames and (c) RPS of the second harmonic RPS(2, l) across frames for a voiced segment of
speech. The utterance was taken from speaker 4 of GRID corpus uttering the sound /u/.

In Figure 4.1 the fluctuations of the instantaneous phase can be observed, the majority of this

1 Speaker 4
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is attributed to the linear phase term. The RPS patterns, however, evolve slowly across time
for the whole speech segment. This encourages for further modeling and manipulation.

In the following, a whole utterance of a female speaker taken from GRID corpus is analyzed in
terms of its RPS. The speaker performs the sentence ’bin blue at l 4 soon’. The time signal of
the utterance is displayed in Figure 4.2. For more information about the speech corpus used,
the reader is referred to Section 6.1.1.
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Figure 4.2: Waveform of the signal ’bin blue at l 4 soon’ spoken by speaker 4 of GRID corpus.

To analyse RPS over time, the phasegram is presented in the following. The phasegram is the
counterpart to the spectrogram. It illustrates the evolution over time of the phase information.
Figure 4.3 shows the RPS in terms of a phasegram evaluated from the utterance of GRID
corpus, displayed in Figure 4.2, for different noise and SNR scenarios.

Figure 4.3: RPS phasegram of an utterance of Speaker 4 form GRID corpus for different scenarios: (a)
clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and (e) 0 dB babble
noise.

If the RPS for the case of h = 1 is calculated following Equation (4.2), the output would be
zero for all frames. Therefore the instantaneous phase of the fundamental frequency is inserted,
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following

RPS(1, l) = ψ(1, l), (4.4)

as it is of high interest for re-synthesis of the other harmonic phase components, in Equation
(4.5). To re-synthesize the harmonic phase given the RPS patterns,

ψ(h, l) =
(
RPS(h, l) + hψ(1, l)

) ∣∣∣
+π

−π
=
(
RPS(h, l) + hRPS(1, l)

) ∣∣∣
+π

−π
. (4.5)

can be applied. To display the RPS in terms of a phasegram, the RPS values in dependency
of time and frequency RPS(f, t) have to be evaluated. Since the framework for RPS process-
ing calls for a harmonic signal model, the harmonic RPS values are mapped according to the
corresponding frequency bin k using:

RPS(k, l) = RPS(h̄, l) , h̄ = arg min
h

{∣∣∣h · 2πf0(l)

fs
− 2πk

N

∣∣∣
}

(4.6)

and according to the corresponding time instance t(l) using:

RPS(k, t(l)) = RPS(k, l) , t(l) = l∆t (4.7)

The phasegram in Figure 4.3 shows the progression of RPS(k, t). The phasegram for the clean
signal shows clearly stable (or rather slow varying) RPS patterns for certain segments of the
signal. When comparing to the waveform of the clean signal in Figure 4.2, it can be observed
that these signal segments refer to the voiced parts of the speech signal. This corresponds with
the previously mentioned smoothness of the representation. When adding noise to the signal,
it can be seen that these patterns get lost. While some structure can still be detected at low
harmonics for an SNR of 10dB, this residual structure is destroyed almost throughout the whole
signal for the low SNR scenario.

In [40], an alternative version of the RPS has been presented. It is defined as:

ψ̃(h, l) = ψ(h, l)− ∠V (h, l), (4.8)

where ψ̃(h, l) denotes the instantaneous phase after removing the minimum-phase term ∠V (k, l),
which corresponds to removing influence of the amplitude envelope. The alternative version
R̃PS(h, l) is then defined as:

R̃PS(h, l) =
(
ψ̃(h, l)− hψ̃(1, l)

) ∣∣∣
+π

−π
=
(
ψd(h, l)− hψd(1, l)

) ∣∣∣
+π

−π
. (4.9)

To see the impact of the removal of the minimum phase term, the reader is referred to [40].
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4.2 Phase Distortion (PD)

The concept of Phase Distortion (PD), also introduced in [40], is another way to extract meaning-
ful characteristics from the instantaneous phase. The PD is defined as phase difference between
two components. When using a harmonic model, the PD is equal to a finite difference and
therefore similar to the group delay. Following [41] the PD can be written in the following form:

PD(h, l) = ∆
h
R̃PS(h, l) =

(
R̃PS(h+ 1, l)− R̃PS(h, l)

) ∣∣∣
+π

−π

=

((
ψ̃(h+ 1, l)− (h+ 1)ψ̃(1, l)

)
−
(
ψ̃(h, l)− hψ̃(1, l)

)) ∣∣∣∣∣

+π

−π

=
(
ψ̃(h+ 1, l)− ψ̃(h, l)− ψ̃(1, l)

) ∣∣∣
+π

−π
.

(4.10)

To avoid an approximation of the vocal tract filter response and the associated cepstrum esti-
mation, a modified version of PD is defined, where the vocal tract filter response is not removed:

P̃D(h, l) =
(
ψ(h+ 1, l)− ψ(h, l)− ψ(1, l)

) ∣∣∣
+π

−π

=

((
Ψ(h+ 1, l) + (h+ 1)ω0n

)
−
(

Ψ(h, l) + hω0n
)
−
(

Ψ(1, l) + ω0n
)) ∣∣∣∣∣

+π

−π

=
(

Ψ(h+ 1, l)−Ψ(h, l)−Ψ(1, l)
) ∣∣∣

+π

−π

=
(
RPS(h+ 1, l)−RPS(h, l)

) ∣∣∣
+π

−π
= ∆

h
RPS(h, l).

(4.11)

It can be seen that the phase distortion is equivalent to a RPS difference across harmonics. As
a consequence, the synthesis equation for the instantaneous phase is given as:

ψ(h, l) = h · ψ(1, l) +

h−1∑

h̄=1

P̃D(h̄, l)

=
(
h · ψ̃(1, l) +

h−1∑

h̄=1

PD(h̄, l)
)

+ ∠V (h, l)

(4.12)

Figures 4.4 displays the behavior of the modified PD for different SNR scenarios by means of a
phasegram, calculated using the Equations (4.6), (4.7) and (4.9).
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Figure 4.4: PD phasegram of an utterance of Speaker 4 form GRID corpus for different scenarios: (a) clean,
(b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and (e) 0 dB babble noise.

4.3 Phase Quasi-Invariant (PQI)

Another phase representation that can be implemented in a harmonic signal model, is called
Phase Quasi-Invariant (PQI). The method, which was originally formulated for radar and sonar
systems, was first proposed in [42] for the analysis of phase relations in speech. It has been
successfully applied for rotary machines condition monitoring [43]. Similar to the RPS, the PQI
representation is based on the phase difference measures between harmonics.

The definition of PQI for two arbitrary harmonics h̄ and h, with h̄, h ∈ [1,H], is based on the
following relation:

∆Ψ(h̄, h, l) =

(
ψ(h̄, l)− ψ(h, l) · h̄

h

)
. (4.13)

Following the phase decomposition from Section 3.2.1, this can be rewritten as:

∆Ψ(h̄, h, l) =

((
Ψ(h̄, l) + h̄ω0n

)
−
h̄ ·
(

Ψ(h, l) + hω0n
)

h

)

=

(
Ψ(h̄, l)− Ψ(h, l) · h̄

h

)
.

(4.14)

Equation (4.14) shows that the linear phase part and therefore the dependency on fundamental
frequency is discarded. Therefore, a behaviour similar to Figure 4.1 can be assumed.

In the next step, the phase difference is wrapped according to its unambiguous definition range,
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which is given as
[
−π·h̄
h ; +π·h̄

h

]
. Therefore, the final relation of PQI is given as:

∆Ψ(h̄, h, l) = ∆Ψh̄(h, l) =
h

h̄

(
Ψ(h̄, l)− Ψ(h, l) · h̄

h

)∣∣∣∣∣

+π·h̄
h

−π·h̄
h

. (4.15)

Note that the PQI can be evaluated for arbitrary parameters h̄ and h. For simplicity reasons h̄
is further related to as the reference harmonic.

In Figure 4.5 the PQI for h̄ = 1 is displayed for the same scenarios as in Sections 4.1 and 4.2.

Figure 4.5: PQI phasegram for h̄ = 1 of an utterance of Speaker 4 form GRID corpus for different scenarios:
(a) clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and (e) 0 dB
babble noise.

Again, the calculation of PQI following Equation (4.15) for h = h̄ results in zero, therefore
∆Ψh̄(h = h̄, l) is replaced with the reference phase ψ(h̄, l), as it is of high interest for signal
reconstruction.

4.3.1 PQI Representation for Higher Reference Harmonics

In the following, the reference harmonic h̄ is increased. Figures 4.6 and 4.7 show the PQI
phasegram of the same speaker and noise scenarios as earlier, but for h̄ = [2, 3].

By observing Figure 4.6 (a) and Figure 4.7 (a), slow varying PQI patterns can be determined
in voiced segments only for the harmonics which are integer multiples of h̄. Again the additive
noise tends to deteriorate the existing structure of the clean patterns. This deterioration
gets stronger with decreasing SNR. Harmonics at non integer multiples of h̄ do not show any
structure on first sight, independent of the voicing state of the segment or SNR scenario. The
properties mentioned previously also continue for higher choices of h̄ .
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Figure 4.6: PQI phasegram for h̄ = 2 of an utterance of Speaker 4 form GRID corpus for different scenarios:
(a) clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and (e) 0 dB
babble noise.

Figure 4.7: PQI phasegram for h̄ = 3 of an utterance of Speaker 4 form GRID corpus for different scenarios:
(a) clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and (e) 0 dB
babble noise.

To access the PQI structure of these harmonics an additional operation is needed. In the
following, the modified PQI is presented, which makes it possible to access the hidden structure
for harmonics at non integer multiples of the reference harmonic:

∆Ψmod
h̄ (h, l) =

(
∆Ψh̄(h, l)

∣∣∣
+π
h̄

−π
h̄

)
h̄ , ∀h /∈ [h̄, 2h̄, 3h̄, . . . ] (4.16)

In Figures 4.8 and 4.9 the phasegram of the modified PQI ∆Ψmod
h̄

(h, l) for the reference har-
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monics h̄ = [2, 3] can be observed for the same speaker and SNR scenarios as in the Figures 4.3
- 4.7.

Figure 4.8: modified PQI phasegram for h̄ = 3 of an utterance of Speaker 4 form GRID corpus for different
scenarios: (a) clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and
(e) 0 dB babble noise.

Figure 4.9: modified PQI phasegram for h̄ = 3 of an utterance of Speaker 4 form GRID corpus for different
scenarios: (a) clean, (b) 10 dB white noise, (c) 10 dB babble noise, (d) 0 dB white noise and
(e) 0 dB babble noise.

It can be observed that the additional wrapping in Equation (4.16) reveals similar smooth
patterns for non integer harmonics of the reference phase, the final multiplication with h̄ ensures
a range of [−π,+π].
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4.3.2 Re-synthesis of the Instantaneous Phase

In Equation (4.15) the original PQI is wrapped and bound to its unambiguous definition range.
With the step of additional wrapping in Equation (4.16), information of the phase signal is
lost, which makes an accurate re-synthesis of the instantaneous phase from the modified PQI
impossible. Therefore it is necessary to save the residual signal for the reconstruction step:

Θ(h, l) = ∆Ψmod
h̄ (h, l)−∆Ψh̄(h, l) (4.17)

Rewriting Equation (4.14) gives the re-synthesis equations for the instantaneous phase or un-
wrapped phase at harmonics:

ψ(h, l) =
h · ψ(h̄, l)

h̄
−∆Ψh̄(h, l) =

h · ψ(h̄, l)

h̄
−
(

∆Ψmod
h̄

(h, l)

h̄
−Θ(h, l)

)
(4.18)

Ψ(h, l) =
h ·Ψ(h̄, l)

h̄
−∆Ψh̄(h, l) =

h ·Ψ(h̄, l)

h̄
−
(

∆Ψmod
h̄

(h, l)

h̄
−Θ(h, l)

)
, (4.19)

respectively.

4.4 Comparison of Phase Representation Methods

By comparing the phasegrams in Section 4.1 to the ones in Section 4.3, similarities in the
structure of the patterns can be perceived. The relation between RPS and PQI can be formulated
as:

RPS(h, l) =
(
ψ(h, l)− h · ψ(1, l)

) ∣∣∣
+π

−π

=
(

Ψ(h, l)− h ·Ψ(1, l)
) ∣∣∣

+π

−π

=
−h
1
·
(

Ψ(1, l)− Ψ(h, l)

h

) ∣∣∣∣∣

+π·1
h

−π·1
h

.

= −∆Ψ1(h, l)

(4.20)

Equation (4.20) shows that RPS(h, l) can be represented by the negative PQI with reference
harmonic h̄ = 1. The major benefit of the PQI representation is that it is not limited to the
fundamental frequency phase, as the reference harmonic h̄ is free to choose. Therefore the RPS
could be considered as a special case of the PQI. The RPS was successfully used in the field of
speech synthesis [44] and speaker recognition [45], hence it can be assumed that implementation
of the PQI could lead to similar results. In Chapter 5, a phase enhancement method relying on
PQI constraints is presented.

When comparing the RPS and PQI phasegrams, the smoothness of both phase representations
for voiced segments is visible, especially for clean signals. When noise is added, less smooth
patterns arise even at high SNRs. This can be attributed to a variety of reasons. For the first
part, an erroneous estimation of the fundamental frequency leads to errors in the unwrapping
process and the harmonic framework. These miscalculations therefore lead to bigger errors at
high harmonics, as the error in fundamental frequency is multiplied with the harmonic index. It
is also known that higher order harmonics often show lower amplitudes, which means that they
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are masked by noise more easily. When harmonics are masked by noise, they do not appear in
the spectrogram. We can observe the same loss of harmonic structure in the phasegrams.

From Equation (4.11) we can conclude the relation between PD, RPS and PQI:

P̃D(h, l) = ∆
h
RPS(h, l)

= −∆
h

(∆Ψ1(h, l))
(4.21)

The PD can be considered as the difference between the RPS or the PQI with reference harmonic
h̄ = 1 across harmonics. In Figure 4.3 and 4.4 it can be observed that this difference leads to a
further smoothing across time for voiced phonemes, resulting in a lower variance.
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Speech Enhancement using Phase

Representations

This Chapter shows how the phase representations derived in Chapter 4 can be used for the
purpose of spectral phase enhancement of a noisy speech signal.

5.1 PQI Enhancement with Fixed Reference Harmonic

This Section presents the phase estimation method proposed in [46]. The paper, which was
written in the course of this work, is included in the Appendix A. The idea is motivated by
the TSUP phase estimator presented in Section 3.2, where it was shown that the temporal
smoothing of the non-deterministic part of the instantaneous phase leads to an enhancement in
terms of the speech quality and intelligibility. From Equation 4.14 it is known that the PQI
eliminates the deterministic part of the phase. When the speech signal is distorted with noise,
the PQI patterns therefore capture the noise contribution on the spectral phase.

The PQI phase enhancement method addresses this problem by applying smoothing filters in
PQI domain. This smoothing can be performed via time, frequency or a combination of both.
The smoothing process aims to restore the initial phase relations between the harmonic compo-
nents, which defines the shape of the waveform. The enhanced instantaneous harmonic phase is
obtained by re-synthesis with the smoothed PQI patterns. A block diagram of this method is
depicted in Figure 5.1.

TSUP on

ref. harm.

PQI Analysis Smoothing Synthesis

Noisy

Speech
Enhanced

Speech

Figure 5.1: Block diagram of the PQI phase enhancement with fixed reference harmonic. ψ̂(h̄, l) denotes the
enhanced reference phase obtained by TSUP [14], Ψ̂h̄(h, l) the PQI evaluated upon the enhanced
reference phase and Ψ̃h̄(h, l) the smoothed PQI evaluated upon the enhanced reference phase,
respectively.
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Starting with the problem definition from Equation 2.9, the noisy signal y(n) is represented by
an assembly of frames y(n, l). Similar as in Equation (4.1), this signal is modeled based on a
harmonic signal model in noise:

y(n, l) =

(
Hl∑

h=1

a(h, l) cos
(
hω0(l)n+ ψ(h, l)

)
+ d(n, l)

)
· w(n). (5.1)

The time instances of each frame are given by [32]:

t(l) = t(l − 1) +
1

4 · f0(l − 1)
. (5.2)

5.1.1 Enhancement of the Reference Phase

In the next step the reference harmonic h̄ has to be selected. The position and the quality
of the reference phase ψ(h̄, l) is significantly important for this enhancement method. If the
reference phase contains a high amount of noise, the PQI analysis step of the other harmonics
is distorted to a certain extent. Therefore, it is recommended to pre-enhance the reference
phase before the PQI analysis step. Hence, solely the reference phase is enhanced by removing
the linear phase part followed by a temporal smoothing filter from Section 3.2.

Given the instantaneous phase at harmonics ψ(h, l) and the enhanced reference harmonic phase
ψ̂(h̄, l) the corresponding pre-enhanced PQI values can be calculated following:

∆Ψ̂h̄(h, l) =
h

h̄

(
ψ̂(h̄, l)− ψ(h, l) · h̄

h

) ∣∣∣∣∣
2π·h̄
h

. (5.3)

5.1.2 Smoothing Filter

The results from Equation (5.3) can then be smoothed across time, across harmonics or across
both, to obtain an enhanced PQI denoted as ∆Ψ̃h̄(h, l).

Smoothing Across Time

The temporal smoothing is performed by mean averaging:

∆Ψ̃h̄(h, l) = ∠ 1

|W|
∑

l̃∈W
ej∆Ψ̂h̄(h,l̃), (5.4)

where W denotes all frames that lie within a range of tfilt around frame l. The parameter setup
which was used for the experiments is explained in Section 6.1.3 After the smoothing process,
the enhanced phase is used for signal synthesis.
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Smoothing Across Frequency

The smoothing across harmonics is performed by:

∆Ψ̃h̄(h, l) = ∠ 1

|H|
∑

h̃∈H
ej∆Ψ̂h̄(h̃,l), (5.5)

where H denotes the harmonics that lie within a certain range hfilt of h.

H =
[
h−

⌊hfilt
2

⌋
, h+

⌊hfilt
2

⌋]
, ∀H ∈ Hl. (5.6)

5.1.3 Signal Synthesis

The signal synthesis is based on the framework of [13]. The enhanced harmonic phase is trans-
formed to the STFT domain by modifying the frequency bins within the main-lobe width of the
analysis window. Let Y (k, l) denotes the DFT of the noisy signal with k as the corresponding
frequency bin and N as the DFT length with k ∈ [0, N − 1]. Then |Y (k, l)| denotes the noisy
spectral amplitude and ϑ(k, l) = ∠Y (k, l) denotes the noisy STFT phase. The enhanced STFT
phase ϑ̂(k, l) is then calculated by:

ϑ̂(bhω0(l)Nc+ i, l) =

(
h · ψ̂(h̄, l)

h̄
−∆Ψ̃h̄(h, l)

)
,

∀i ∈ [−Np(l)/2, Np(l)/2].

(5.7)

where Np(l) denotes the minimum value of either the main-lobe width of the analysis window Nw

or the frequencies close to the neighbouring harmonic Np(l) = min(Nw, ω0(l)N/(2π)). Further
we obtain the phase enhanced signal in the STFT domain by:

X̂(k, l) = |Y (k, l)|ejϑ̂(k,l). (5.8)

By applying the inverse DFT on X̂(k, l), the enhanced framed time signal x̂(n, l) is obtained.
The time signal frames are then overlapped and added to construct the time signal x̂(n′), with
discrete time index n′.

– 36 – January 17, 2017



5.2 PQI Enhancement with Multiple Reference Harmonic

5.2 PQI Enhancement with Multiple Reference Harmonic

The PQI enhancement method from Section 5.1 is always bound to analyze and synthesize the
PQI patterns based upon one single reference harmonic. In this Section, a method, which relies
on more than one reference Harmonic at a time, is presented. The method is still based on
the same principle of eliminating the deterministic part of the phase. This is performed in PQI
domain with the help of smoothing across time or frequency and was also developed in the
course of this work.

Figure 5.2 shows an overview of the different parts involved in the phase estimation process.

TSUP on

h=1

PQI Analysis Smoothing

Noisy

Speech

TSUP on

h=2

PQI Analysis Smoothing

TSUP on

h=3

PQI Analysis Smoothing

PQI

Modification
Phase

Synthesis

Phase

Synthesis

Phase

Synthesis

PQI

Modification

Phase

Weighting

Figure 5.2: Block diagram of the PQI phase enhancement with multiple reference harmonics. ψ̂([1, 2, 3], l)
denote the enhanced reference phases obtained by TSUP [14], Ψ̂[1,2,3](h, l) the PQI evaluated upon

the enhanced reference phases, Ψ̂mod
[2,3](h, l) the modified PQI values, Ψ̃[1,2,3](h, l) the smoothed

modified PQI evaluated upon reference harmonic 2 and 3, Ψ̃1(h, l) the smoothed PQI evaluated
upon reference harmonic 1 and ψ̂[1,2,3](h, l) the enhanced instantaneous phases, respectively.

The enhancement process in Figure 5.2 takes the first three reference harmonics, h̄ = [1, 2, 3],
into account. The number of harmonics was chosen due to their relative importance in voiced
speech. It has to be noted, that an even higher amount of reference harmonics could be chosen
as well.

The phase estimator is based on the same pitch-synchronous harmonic model as the one in
Section 5.1. Before PQI evaluation, the three reference harmonics are pre-enhanced by TSUP
individually. After the PQI evaluation step, the 3 independent PQI transforms ˆψ1(h, l), ˆψ2(h, l)

and ˆψ3(h, l), which were evaluated upon the enhanced reference phase according to Equation
(5.3), are obtained.

The PQI patterns are then modified by wrapping the non-integer multiple harmonics of h̄
according to Equation (4.16), which makes all harmonics available for modification. This
routine does not have to be performed for Ψ̂1(h, l), as all harmonics are an integer multiple of 1.
The smoothing step is again performed either across frequency, time or a combination of both
by following Section 5.1.2. The enhanced PQI patterns are re-synthesized with the enhanced
reference phase by utilizing Equation (4.18).
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5.2.1 Phase Weighting

At this stage, the method consists of 3 independent stages of enhancement methods proposed
in Section 5.1. The resulting enhanced instantaneous phases are denoted by ψ̂1(h, l), ψ̂2(h, l),
ψ̂3(h, l) and obtained by

ψ̂b(h, l) =

(
h · ψ̂(b, l)

b
−∆Ψ̃mod

b (h, l)

)
. (5.9)

These phase estimates are then merged to receive the final phase estimate ψ̂(h, l). For this step,
two weighting methods are presented in the following.

Binary Weighting

It is known that the quality of the reference phase is of high importance for PQI processing.
As a sort of quality criterion, the first weighting method takes the local signal-to-noise ratio
SNRh̄(l) into account. SNRh̄(l) is evaluated for the three references, h̄ = [1, 2, 3], at frame l.
It is believed that the phase estimate evaluated upon the reference harmonic with the highest
SNR leads to the best overall estimate. Therefore the reference harmonic with the highest local
SNR is selected:

h̃(l) = arg max
h̄

{SNRh̄(l)} , h̄ ∈ {1, 2, 3}. (5.10)

The final phase at frame l is obtained by;

ψ̂(h, l) = ψ̂h̃(h, l). (5.11)

Soft Weighting

The second weighting method also takes the local SNR into account. Instead of choosing the
best reference harmonic at each frame, the phase estimates are merged according to their weight.
The weights are defined as the normalized local SNR:

wh̄ =
SNRh̄(l)∑3

h′=1 SNRh′(l)
, h̄ ∈ {1, 2, 3}. (5.12)

The weights are normalized to keep the in the interval of [0,1]. The final phase ψ̂(h, l) is then
given by:

ψ̂(h, l) = arctan

(
w1 · sin

(
ψ̂1(h, l)

)
+ w2 · sin

(
ψ̂2(h, l)

)
+ w3 · sin

(
ψ̂3(h, l)

)

w1 · cos
(
ψ̂1(h, l)

)
+ w2 · cos

(
ψ̂2(h, l)

)
+ w3 · cos

(
ψ̂3(h, l)

)
)

= arctan

(∑3
b=1wb · sin

(
ψ̂b(h, l)

)

∑3
b=1wb · cos

(
ψ̂b(h, l)

)
) (5.13)

This means the higher the normalized weight of a certain reference harmonic, the higher it
influences the resulting phase estimate. It has to be noted that the binary weighting method
can be interpreted as selecting the highest weight and setting it to 1, while the remaining weights
are set to 0. The soft weighting method weights the estimated phases individually according
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to their local SNR and calculated the weighted circular mean value over them, resulting in the
final phase estimate ψ̂(h, l). The enhanced phase ψ̂(h, l) is then used for signal synthesis, which
is performed following Section 5.1.3.
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6.1 Experimental Setup

In this section the setup for the experiments is discussed. A detailed summary of the speech
and noise databases, evaluation criteria, phase enhancement methods and the corresponding
parameter setup is given in the following.

6.1.1 Speech and Noise Databases

GRID corpus

The speech files used in the experiments were taken from GRID [47], a large audio sentence
corpus with 1000 sentences spoken by 34 talkers (18 male, 16 female). The recorded sentences
all consist of a command, a color, a preposition, a letter of the alphabet, a digit and an adverb.
Resulting in short sentences of less than 3 seconds where the words have no meaningful relation,
such as: ”bin blue at l 4 soon”. Out of the whole corpus, 50 utterances spoken by 20 speakers
(10 female and 10 male) were randomly selected. The database is available at a sampling rate of
fs = 25 kHz. For this experiment all speech files were down-sampled to fs = 8 kHz to simulate
telephony speech.

NOISEX-92 corpus

The noise files used in the experiment section were taken from NOISEX-92 [48]. Two different
noise types were chosen, one stationary and one non-stationary. The spectrogram and the long
term power spectral density of the stationary white noise is visible in the left column of Figure
6.1. It can be observed that the power spectral density is distributed uniformly across the
spectrum. The spectrogram and the long term power spectral density of the non-stationary
babble noise can be observed in the right column of Figure 6.1. The babble noise is a record of
people talking and should simulate everyday-life scenarios. Therefore a weak harmonic structure
can be observed in the spectrum, the power spectral density has its maximum between 100 and
600 Hz.
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Figure 6.1: (top): Spectrogram (bottom): long term power spectral density of the used noise files: (a) white
noise and (b) babble noise

The noise corrupted speech data used in the experiments is generated based on the additive
noise model:

y(n) = x(n) + λ · d(n), (6.1)

where λ denotes the noise weighting factor, which is derived from the SNR. Given the energy of
the clean speech signal and the noise signal with length N is is defined as:

Ex =
N−1∑

n=0

x(n)2 (6.2)

Ed =

N−1∑

n=0

d(n)2. (6.3)

The noise weighting factor λ is calculated following [17], which results in:

λ =

√
Ex

Ed · 10
SNR

10

. (6.4)

Each utterance was corrupted with noise at an SNR of 0 dB, 5 dB and 10 dB.
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6.1.2 Evaluation Criteria

In the experiments three objective evaluation criteria were selected:

� Perceptual Evaluation of Speech Quality (PESQ) from [49], as a measure of speech quality.

� Short-Time Objective Intelligibility (STOI) from [50], as a measure of speech intelligibility.

� Unwrapped Root Mean Square Estimation Error (UnRMSE) from [51], as a measure of
phase estimation error.

The evaluation measures were calculated at each SNR and for each utterance, then they were
averaged over all speaker and presented as a mean score.

6.1.3 Phase Enhancement Methods

In this Section the methods and parameter setups, which were used in the performance evalua-
tion, are discussed. All the presented PQI enhancement methods rely on the signal model and
synthesis model discussed in Section 5.1. The window used in the analysis and synthesis stage
for the PQI enhancement methods was a Blackman window. The fundamental frequency was
obtained by PEFAC [52].

Fixed Reference Phase Methods

Section 6.2.1 displays a comparison of the evaluation performance of PQI based phase enhance-
ment method with fixed reference harmonics, which was discussed in Section 5.1, for different
parameter settings.

FS h̄ = [1, 2, 3]

The PQI enhancement method from Section 5.1, where the smoothing filter was applied across
frequency only. The harmonic smoothing parameter hfilt was set to 5. This method was evaluated
for the first three reference harmonics h̄ = [1, 2, 3].

TS h̄ = [1, 2, 3]

This abbreviation denotes the enhancement method with fixed reference harmonics from Section
5.1, where the smoothing filter was applied across time only. The temporal smoothing parameter
tfilt was set to 40ms. The results for the first three reference harmonics h̄ = [1, 2, 3] are displayed
in the results section.

TFS h̄ = [1, 2, 3]

Again, the PQI enhancement method from Section 5.1. This time the smoothing filter was
applied across time and then across frequency. The harmonic smoothing parameter hfilt was set
to 5 and the temporal smoothing parameter tfilt was set to 40ms This method was evaluated
individually for the first three reference harmonics h̄ = [1, 2, 3].

Multiple Reference Phase Methods

Section 6.2.3 displays the evaluation performance of the PQI based phase enhancement method
with multiple reference harmonics, discussed in Section 5.2, for different parameter settings.
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FS binary mask

Abbreviation for the method introduced in Section 5.2. The smoothing operation was performed
across frequency only. The parameter hfilt was again set to 5. The enhanced phase was calculated
with binary weighting.

FS soft mask

The same method as above, but this time the enhanced phase was calculated with soft weighting.

TS binary mask

The enhancement method from Section 5.2, where the smoothing filter was applied across time
with a length of tfilt = 60ms. The final enhanced phase was obtained by binary weighting.

TS soft mask

The same parameter setup, but the final enhanced phase was obtained by soft weighting.

TFS binary mask

Again the method from Section 5.2. The smoothing operation was performed across first across
time and then across harmonics. The parameters were set to tfilt = 60ms and hfilt = 5, followed
by binary weighting.

TFS soft mask

Finally, the time and frequency smoothing methods combined with soft weighting.

Benchmark Methods

In Section 6.2.5 the best performing PQI based phase enhancement methods are compared to
the following benchmark methods:

Maximum a posteriori (MAP)

The phase enhancement method proposed in [13] and explained in detail in Section 3.3. As an
analysis and synthesis window, a Blackman window was used. The parameter wfilt was set to
20ms, as it was proposed by the authors. PEFAC was used as s noise-robust f0 estimator.

STFT phase improvement (STFTPI)

The phase estimation method from Section 3.1, which was introduced in [31]. The phase recon-
struction was performed along time and frequency. In the analysis and synthesis step a Hanning
window was used with an overlap of 87.5%, as it was suggested by the authors. Again with
PEFAC as f0 estimator.

Temporal smoothing of unwrapped phase (TSUP)

The final benchmark method is the TSUP estimator which was explained in detail in Section
3.2 and proposed in [14]. PEFAC was used to estimate f0.
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6.2 Results

In this Section the results for the previously discussed phase enhancement methods are presented.

6.2.1 Fixed Reference Harmonic - White Noise

This Section deals with the comparison of the PQI enhancement methods with fixed reference
harmonics with additive white noise. The mean score of PESQ, STOI and UnRMSE of these
methods are displayed in Figure 6.2.
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Figure 6.2: PESQ, STOI and UnRMSE for PQI based phase enhancement methods with fixed reference har-
monics, evaluated for 50 Speakers of GRID corpus with additive white noise for SNR =[0,5,10],
in comparison to the noisy signal.

For a better visualization the results are also displayed in terms of their delta improvement
compared to the noisy signal in Figure 6.3, the corresponding values are listed in in Table
6.1. It can be observed that the majority of the proposed methods jointly improve the speech
quality and the speech intelligibility for most SNR scenarios. This is an important finding as
many speech enhancement methods are reported to degrade speech intelligibility, or are not
capable of improving the quality and intelligibility jointly.

From Figure 6.3 it is apparent that in terms of the delta PESQ improvement it is best to
rely on the lowest reference harmonic, as all the methods for h̄ = 1 are superior. In terms of
intelligibility and phase estimation error, however, this is not the case. Especially for temporal
smoothing the higher reference harmonics result in superior STOI and UnRMSE improvement.
Further it also can be observed that the time and frequency smoothed methods, which are
displayed in different shades of green, introduce a small phase estimation error at high SNRs
(i.e 10 dB).

When it comes to smoothing across harmonics the FS h̄ = 1 method is clearly superior to higher
reference harmonics. Overall the FS h̄ = 1 method is arguably the best performing method in
terms of the applied evaluation criterion throughout all SNR scenarios, followed by the TS h̄ =
2 methods.
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Figure 6.3: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods with fixed refer-
ence harmonics, evaluated for 50 Speakers of GRID corpus with additive white noise for SNR
=[0,5,10], in comparison to the noisy signal.

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS h̄ = 1 0.12 0.149 0.154 0.036 0.026 0.014 -0.331 -0.254 -0.063

FS h̄ = 2 0.089 0.111 0.114 0.029 0.02 0.011 -0.156 -0.07 0.14

FS h̄ = 3 0.101 0.121 0.121 0.03 0.02 0.012 -0.241 -0.218 -0.282

TS h̄ = 1 0.12 0.153 0.162 0.033 0.018 -0.001 -0.363 -0.344 -0.151

TS h̄ = 2 0.114 0.144 0.148 0.035 0.023 0.009 -0.277 -0.252 -0.196

TS h̄ = 3 0.105 0.128 0.133 0.035 0.023 0.012 -0.262 -0.253 -0.343

TFS h̄ = 1 0.118 0.156 0.167 0.028 0.01 -0.013 -0.353 -0.226 0.147

TFS h̄ = 2 0.108 0.14 0.144 0.035 0.022 0.008 -0.143 -0.024 0.272

TFS h̄ = 3 0.105 0.13 0.135 0.035 0.023 0.012 -0.253 -0.246 -0.212

Table 6.1: Delta scores for PQI based phase enhancement methods with fixed reference harmonics, evalu-
ated for 50 Speakers of GRID corpus with additive white noise for SNR =[0,5,10]. Delta (Left)
∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE
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6.2.2 Fixed Reference Harmonic - Babble Noise

This Section deals with the comparison of the PQI enhancement methods with fixed reference
harmonics with additive babble noise. The mean score of PESQ, STOI and UnRMSE of these
methods are displayed in Figure 6.4.
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Figure 6.4: PESQ, STOI and UnRMSE for PQI based phase enhancement methods with fixed reference har-
monics, evaluated for 50 Speakers of GRID corpus with additive babble noise for SNR =[0,5,10],
in comparison to the noisy signal.

Figure 6.5 displays the delta results compared to the noisy signal, the corresponding values are
listed in Table 6.2. Figure 6.5 confirms the observations made above. In terms of PESQ it
is beneficial to rely on low reference harmonics, in terms of STOI this is not the case. The
only exception for this is FS h̄ = 1, which has the overall highest STOI improvement of all the
evaluated methods, especially at lower SNRs. For the methods which rely on temporal smoothing
(displayed by the green and red shaded bars), it can be observed that a low reference harmonic
leads to a decreased performance in terms of STOI, despite the higher PESQ improvement. This
also sounds buzzy in a subjective perception.

Based on its relative high intelligibility improvement in babble noise, the FS h̄ = 1 method is the
best performing algorithm throughout this experiment. Based on this results it can be observed
that it is beneficial for frequency smooth in PQI domain to rely on low reference harmonics
and for temporal smoothing, higher references are beneficial in terms of STOI and perceived
perception.
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Figure 6.5: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods with fixed refer-
ence harmonics, evaluated for 50 Speakers of GRID corpus with additive babble noise for SNR
=[0,5,10], in comparison to the noisy signal.

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS h̄ = 1 0.156 0.198 0.181 0.024 0.024 0.012 -0.242 -0.225 0.082

FS h̄ = 2 0.114 0.156 0.152 0.015 0.018 0.009 -0.15 -0.097 0.164

FS h̄ = 3 0.147 0.172 0.161 0.017 0.018 0.01 -0.194 -0.165 -0.121

TS h̄ = 1 0.17 0.209 0.185 0.011 0.01 -0.002 -0.267 -0.214 -0.079

TS h̄ = 2 0.172 0.203 0.184 0.017 0.017 0.005 -0.235 -0.193 -0.108

TS h̄ = 3 0.157 0.183 0.168 0.017 0.018 0.008 -0.204 -0.21 -0.045

TFS h̄ = 1 0.177 0.22 0.197 -0.007 -0.002 -0.014 -0.38 -0.269 0.119

TFS h̄ = 2 0.159 0.195 0.179 0.016 0.017 0.005 -0.155 0.014 0.176

TFS h̄ = 3 0.159 0.184 0.17 0.017 0.018 0.008 -0.2 -0.179 0.02

Table 6.2: Delta scores for PQI based phase enhancement methods with fixed reference harmonics, evaluated
for 50 Speakers of GRID corpus with additive babble noise for SNR =[0,5,10]. Delta (Left)
∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE
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6.2.3 Multiple Reference Harmonics - White Noise

In this section the comparison betweens PQI based phase enhancement methods with multiple
reference harmonics for additive white noise is discussed. The mean score of PESQ, STOI and
UnRMSE for 50 Speakers of GRID corpus are displayed in Figure 6.6. The delta improvement
compared to the noisy signal is displayed in Figure 6.7.

In the white noise scenario all methods improve PESQ and STOI throughout all the evaluated
SNRs. Most of the enhancement methods also reduce the phase estimation error. The only
exceptions here are the time and frequency smoothed methods, which are displayed in cyan, for
high SNRs. When comparing the filtering methods, a similar behavior as in Figure 6.2 can be
observed.
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Figure 6.6: PESQ, STOI and UnRMSE for PQI based phase enhancement methods with multiple refer-
ence harmonics, evaluated for 50 Speakers of GRID corpus with additive white noise for SNR
=[0,5,10], in comparison to the noisy signal.

The filtering methods which include temporal smoothing (which are displayed by the magenta
and cyan colored bars in the Figure 6.6 and 6.7) result in a higher PESQ increase than the
frequency smoothed only methods. In terms of STOI, the frequency smoothed only methods
result in a higher STOI increase at high SNRs.

Overall, it can be observed that for white noise the soft weighted methods perform better than
the binary weighted methods throughout almost every scenario. The TS soft mask method can
be considered as the best performing method due to its relative low spectral phase estimation
error at high SNRs, followd by FS soft mask. When comparing to the methods with fixed
reference harmonics, it can be observed that the level of improvement in term of PESQ, STOI
and UnRMSE is basically the same. But the joint improvement seems more consistent and
shows little outliers for the multiple reference harmonic methods.
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Figure 6.7: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods with multiple ref-
erence harmonics, evaluated for 50 Speakers of GRID corpus with additive white noise for SNR
=[0,5,10], in comparison to the noisy signal.

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS binary mask 0.104 0.132 0.134 0.035 0.024 0.012 -0.22 -0.175 -0.057
FS soft mask 0.107 0.134 0.134 0.035 0.024 0.012 -0.236 -0.158 -0.059

TS binary mask 0.125 0.156 0.157 0.036 0.022 0.004 -0.288 -0.222 -0.097
TS soft mask 0.127 0.157 0.157 0.036 0.022 0.005 -0.29 -0.209 -0.231

TFS binary mask 0.117 0.152 0.156 0.035 0.021 0.003 -0.231 -0.137 0.071
TFS soft mask 0.121 0.155 0.157 0.036 0.022 0.004 -0.239 -0.173 0.062

Table 6.3: Delta scores for PQI based phase enhancement methods with multiple reference harmonics, eval-
uated for 50 Speakers of GRID corpus with additive white noise for SNR =[0,5,10]. Delta (Left)
∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE
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6.2.4 Multiple Reference Harmonics - Babble Noise

In this section the comparison between the PQI based phase enhancement methods with multiple
reference harmonics for additive babble noise is discussed. The mean score of PESQ, STOI and
UnRMSE for 50 Speakers of GRID corpus methods are displayed in Figure 6.8.
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Figure 6.8: PESQ, STOI and UnRMSE for PQI based phase enhancement methods with multiple refer-
ence harmonics, evaluated for 50 Speakers of GRID corpus with additive babble noise for SNR
=[0,5,10], in comparison to the noisy signal.

The delta improvement compared to the noisy signal is displayed in Figure 6.9, Table 6.4 displays
the corresponding values.

Compared to the white noise, the overall STOI improvement decreases and the overall PESQ
improvement increases. Again the improvement of the soft weighted methods is higher than
the improvement of the binary weighted methods, throughout almost all scenarios. Tempo-
ral smoothing methods show an increased PESQ improvement, but the frequency smoothing
methods show a much higher STOI improvement. Therefore the FS soft mask method can be
considered as the best performing algorithm in babble noise.

From all Figures above it can be observed that the methods which apply the smoothing across
time and frequency (displayed by the cyan bars) introduce a higher phase estimation error at
high SNRs and a lower PESQ and STOI improvement as well. Therefore it is arguably better
to perform the PQI smoothing filter either across time or frequency only.
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Figure 6.9: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods with multiple ref-
erence harmonics, evaluated for 50 Speakers of GRID corpus with additive babble noise for SNR
=[0,5,10], in comparison to the noisy signal.

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS binary mask 0.139 0.174 0.169 0.018 0.02 0.009 -0.215 -0.23 -0.028
FS soft mask 0.142 0.176 0.171 0.018 0.02 0.01 -0.21 -0.211 -0.023

TS binary mask 0.17 0.208 0.193 0.013 0.012 0.001 -0.221 -0.198 -0.084
TS soft mask 0.173 0.209 0.194 0.014 0.013 0.001 -0.223 -0.229 -0.086

TFS binary mask 0.165 0.2 0.188 0.012 0.012 0 -0.212 -0.143 0.039
TFS soft mask 0.16 0.203 0.191 0.013 0.013 0.001 -0.209 -0.17 0.024

Table 6.4: Delta scores for PQI based phase enhancement methods with multiple reference harmonics, eval-
uated for 50 Speakers of GRID corpus with additive babble noise for SNR =[0,5,10]. Delta (Left)
∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE

January 17, 2017 – 51 –



6 Experiments and Results

6.2.5 Comparison to Benchmark Methods - White Noise

In this Section 4 of the best performing PQI based phase enhancement methods were selected
and compared to the benchmark methods from Section 6.1.3. The PQI based phase enhance-
ment methods, which are FS h̄ = 1, TS h̄ = 2, FS soft mask and TS soft mask, were selected
according to the discussion in the Sections 6.2.1-6.2.4. All of the proposed methods rely on
a harmonic signal model, which means they depend heavily on the quality of the frequency
estimation. Therefore each method was additionally evaluated for the oracle f0 case, where the
f0 was estimated by PEFAC applied on the clean signal.

Figure 6.10 shows the comparison of these methods to the benchmarks for white noise scenario,
Table 6.5 shows the corresponding values.
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Figure 6.10: PESQ, STOI and UnRMSE for PQI based phase enhancement methods: FS h̄ = 1,TS h̄ = 2,FS
soft mask,TS soft mask and the benchmark methods: MAP, STFTPI, TSUP, with and without
oracle f0. The results were evaluated for 50 Speakers of GRID corpus with additive white noise
for SNR =[0,5,10] and displayed in comparison to the noisy signal.

Figure 6.11 shows the delta improvement of all methods with respect to the noisy signal for
white noise.
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Figure 6.11: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods: FS h̄ = 1,TS
h̄ = 2,FS soft mask,TS soft mask and the benchmark methods: MAP, STFTPI, TSUP, with
and without oracle f0. The results were evaluated for 50 Speakers of GRID corpus with additive
white noise for SNR =[0,5,10] and displayed in comparison to the noisy signal.

In Figure 6.11 it can be observed that the MAP phase estimator is the best performing bench-
mark method, as it outperforms the other benchmark methods in terms of all evaluation criteria
and SNRs. Overall in terms of PESQ the FS h̄ = 1, TS h̄ = 2 and TS soft mask methods are
better than all benchmark methods, while the TS soft mask achieves the highest PESQ.

In terms of STOI FS h̄ = 1 performs best, especially for high SNR scenarios, even tough the
delta improvements compared to the noisy signal are rather small for all of examined methods.
For STFTPI it can be observed that the jointly improvement of PESQ, STOI and UnRMSE is
not possible, as the STOI is degraded and the phase estimation error is increased due to the
buzzing sound quality at high frequencies.

In terms of UnRMSE, the PQI based methods decrease in their performance the higher the SNR
gets. On average, the MAP benchmark performs best, as it introduces a lower phase estimation
error variance at high SNRs.

Overall the f0 oracle scenario does not change the perceptual evaluation of the different methods
by a lot for white noise scenario. For TSUP, FS soft mask and TS soft mask the PESQ score
are sometimes even higher for the case of noisy f0.
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6.2.6 Comparison to Benchmark Methods - Babble Noise

The PQI based phase enhancement methods FS h̄ = 1,TS h̄ = 2,FS soft mask and TS soft mask
are now compared to the benchmark methods in a babble noise scenario. Figure 6.12 shows the
PESQ, STOI and UnRMSE of the previously mentioned phase estimators.

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS h̄ = 1 0.12 0.149 0.154 0.036 0.026 0.014 -0.331 -0.254 -0.063

oracle f0, FS h̄ = 1 0.121 0.148 0.152 0.037 0.026 0.014 -0.34 -0.281 -0.131

TS h̄ = 2 0.114 0.144 0.148 0.035 0.023 0.009 -0.277 -0.252 -0.196

oracle f0, TS h̄ = 2 0.117 0.145 0.15 0.036 0.023 0.009 -0.277 -0.318 -0.314
FS soft mask 0.107 0.134 0.134 0.035 0.024 0.012 -0.236 -0.158 -0.059

oracle f0, FS soft mask 0.103 0.128 0.13 0.036 0.024 0.013 -0.24 -0.218 -0.104
TS soft mask 0.127 0.157 0.157 0.036 0.022 0.005 -0.29 -0.209 -0.231

oracle f0, TS soft mask 0.114 0.147 0.155 0.038 0.021 0.004 -0.29 -0.266 -0.19
MAP 0.114 0.14 0.142 0.032 0.021 0.01 -0.304 -0.316 -0.341

oracle f0, MAP 0.116 0.141 0.143 0.033 0.02 0.009 -0.284 -0.365 -0.397
STFTPI 0.102 0.088 0.077 -0.039 -0.04 -0.038 0.216 0.892 1.918

oracle f0, STFTPI 0.115 0.104 0.089 -0.021 -0.029 -0.033 0.319 0.872 1.929
TSUP 0.084 0.09 0.081 0.013 0.007 0.003 -0.227 -0.245 -0.313

oracle f0, TSUP 0.079 0.08 0.076 0.015 0.008 0.003 -0.236 -0.265 -0.201

Table 6.5: Delta (Left) ∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE for PQI based phase enhancement
methods: FS h̄ = 1,TS h̄ = 2,FS soft mask,TS soft mask and the benchmark methods: MAP,
STFTPI, TSUP, with and without oracle f0. The results were evaluated for 50 Speakers of GRID
corpus with additive white noise for SNR =[0,5,10] and displayed in comparison to the noisy
signal.
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Figure 6.12: PESQ, STOI and UnRMSE for PQI based phase enhancement methods: FS h̄ = 1,TS h̄ = 2,FS
soft mask,TS soft mask and the benchmark methods: MAP, STFTPI, TSUP, with and without
oracle f0. The results were evaluated for 50 Speakers of GRID corpus with additive babble noise
for SNR =[0,5,10] and displayed in comparison to the noisy signal.

For a better visualization, the evaluation scores are displayed in Figure 6.13 in terms of their
delta improvement compared to the noisy signal, Table 6.6 shows the corresponding values. In
the babble noise scenario the importance of the f0 estimation gets visible. The oracle f0 enhances
the perceived quality, intelligibility and phase estimation error of all methods by a large amount.

FS h̄ = 1,TS h̄ = 2 and TS soft mask show a higher PESQ improvement than the benchmark
methods, while FS soft mask is the best performing. In terms of STOI FS h̄ = 1 shows the best
performance, followed by the MAP estimator. The STFTPI does decrease the intelligibility,
when evaluated upon the noisy f0. For low SNRs the method evaluated upon the clean f0 also
shows a joint improvement. Again it can be observed that the performance of the PQI methods
deceases with higher SNRs. This is visible best for the UnRMSE scores.
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Figure 6.13: ∆PESQ, ∆STOI and ∆UnRMSE for PQI based phase enhancement methods: FS h̄ = 1,TS
h̄ = 2,FS soft mask,TS soft mask and the benchmark methods: MAP, STFTPI, TSUP, with
and without oracle f0. The results were evaluated for 50 Speakers of GRID corpus with additive
babble noise for SNR =[0,5,10] and displayed in comparison to the noisy signal.

For low SNR scenarios, the FS h̄ = 1 achieves the lowest phase estimation error, but for
SNR=10dB a higher phase estimation error is introduced. The MAP estimator again performs
best in terms of UnRMSE for SNR of 10dB.

In summary, FS h̄ = 1 can be considered as the best performing phase enhancement method
in terms of PESQ and STOI for both noise types. However, for high SNR scenarios a phase
estimation error is introduced at some parts of the signal. MAP and TS soft mask do not
enhance the signal in terms of PESQ and STOI by that much, but they more constantly reduce
the phase estimation error at high SNRs.

To conclude this Section, spectrograms of the most relevant phase enhancement methods are
presented as a visualization of the enhancement process. Figure 6.14 shows the spectrogram of
a female speaker of GRID corpus performing the sentence ”lay red with p 7 soon”. Figure 6.15
shows the spectrogram of a male speaker of GRID corpus performing the sentence ”lay green
at l 3 again”. The spectrograms and corresponding PESQ and STOI values of the clean signal,
noisy signal, FS h̄ = 1 enhanced signal, TS soft mask enhanced signal, STFTPI enhanced signal
and MAP enhanced signal are presented for both speakers.
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6.2 Results

∆PESQ ∆STOI ∆UnRMSE

SNR level (dB) 0 5 10 0 5 10 0 5 10

FS h̄ = 1 0.156 0.198 0.181 0.024 0.024 0.012 -0.242 -0.225 0.082

oracle f0, FS h̄ = 1 0.277 0.272 0.217 0.038 0.032 0.015 -0.36 -0.267 -0.081

TS h̄ = 2 0.172 0.203 0.184 0.017 0.017 0.005 -0.235 -0.193 -0.108

oracle f0, TS h̄ = 2 0.269 0.261 0.205 0.03 0.024 0.009 -0.304 -0.26 -0.194
FS soft mask 0.142 0.176 0.171 0.018 0.02 0.01 -0.21 -0.211 -0.023

oracle f0, FS soft mask 0.258 0.251 0.205 0.032 0.027 0.013 -0.302 -0.286 -0.089
TS soft mask 0.173 0.209 0.194 0.014 0.013 0.001 -0.223 -0.229 -0.086

oracle f0, TS soft mask 0.278 0.269 0.217 0.027 0.02 0.004 -0.34 -0.299 -0.086
MAP 0.147 0.169 0.158 0.016 0.018 0.01 -0.227 -0.261 -0.135

oracle f0, MAP 0.274 0.254 0.202 0.032 0.027 0.014 -0.312 -0.303 -0.187
STFTPI 0.131 0.165 0.127 -0.008 -0.004 -0.012 0.27 0.664 1.309

oracle f0, STFTPI 0.267 0.239 0.154 0.017 0.005 -0.011 0.302 0.719 1.297
TSUP 0.123 0.14 0.132 0.014 0.016 0.009 -0.196 -0.21 -0.005

oracle f0, TSUP 0.208 0.196 0.156 0.024 0.022 0.013 -0.297 -0.259 -0.255

Table 6.6: Delta (Left) ∆PESQ, (Middle) ∆STOI, (Right) ∆UnRMSE for PQI based phase enhancement
methods: FS h̄ = 1,TS h̄ = 2,FS soft mask,TS soft mask and the benchmark methods: MAP,
STFTPI, TSUP, with and without oracle f0. The results were evaluated for 50 Speakers of GRID
corpus with additive white babble for SNR =[0,5,10] and displayed in comparison to the noisy
signal.
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Figure 6.14: Spectrogram and corresponding PESQ and STOI values of: (a) clean signal, (b) noisy signal,
(c) FS h̄ = 1 enhanced signal, (d) TS soft mask enhanced signal, (e) STFTPI enhanced signal
and (f) MAP enhanced signal of a female speaker of GRID performing ”lay red with p 7 soon”.
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Figure 6.15: Spectrogram and corresponding PESQ and STOI values of: (a) clean signal, (b) noisy signal,
(c) FS h̄ = 1 enhanced signal, (d) TS soft mask enhanced signal, (e) STFTPI enhanced signal
and (f) MAP enhanced signal of a male speaker of GRID performing ”lay green at l 3 again”.
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7
Conclusion and Future Outlook

In this work several phase enhancement methods were presented and compared in terms of
their achievable perceptual quality. Different state-of-the-art phase estimators which were later
documented as benchmark methods were explained in detail.

Due to its wrapping properties, the spectral phase was long believed to be structureless and
insignificant for the use in speech enhancement systems. In the course of this work the Phase
Quasi Invariant (PQI), a novel harmonic phase representation method for single channel speech
enhancement, was introduced. This representation uncovers the hidden structure of the instan-
taneous phase, which makes spectral phase modification possible.

From this phase representation two harmonic phase estimation methods were derived, which aim
to reduce the non-deterministic part of the instantaneous phase. The methods were implemented
with different parameter setting and smoothing filter and were compared to three benchmark
methods. The results obtained in the experiments demonstrated the potential of PQI based
phase enhancement methods. FS h̄ = 1 performed best in reducing the noise and improving
both perceived quality and speech intelligibility jointly. This behavior was observed for both
noise types and for all SNR levels.

Conventional amplitude based enhancement methods, which still show a higher efficiency in
terms of noise reduction than phase enhancement methods, have currently been used to their
full potential, while the field of phase enhancement has yet to be explored more. Consequentially,
future work may include the investigation of joint phase and amplitude enhancement methods.
Also the new phase estimates could be efficiently used together with phase-aware amplitude
estimators, to surpass the limits of the current single channel speech enhancement systems.
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A
Appendix

In the following the paper ”Phase Estimation in Single-channel Speech Enhancement using
Phase Invariance Constraints” which was written in the course of this work is presented. The
paper got accepted for presentation in a poster session at ICASSP 2017.
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ABSTRACT

Phase-aware signal processing has received increasing inter-
est in many speech applications. The success of phase-aware
processing is governed with having access to robust estimates
of the clean spectral phase to be obtained from noisy obser-
vation. In this paper, we propose a novel harmonic phase es-
timator relying on the phase invariance property exploiting
relations between harmonics using the phase structure. We
present speech quality results achieved in speech enhance-
ment to justify the effectiveness of the proposed phase esti-
mator. compared to noisy phase and other phase estimation
benchmarks.

Index Terms— Phase estimation, phase invariance,
speech enhancement, speech quality.

1. INTRODUCTION

Speech signal processing methods often ignore the process-
ing of spectral phase information. Performance gain can be
achieved when an enhanced spectral phase or some additional
information about phase is incorporated. For general reviews
on recent advances in phase-aware signal processing and its
applications in speech communication we refer to [1–3].

In particular, in the field of noise reduction the impor-
tance of phase receives increasing attention by researchers.
Some examples are, model-based short-time Fourier trans-
form (STFT) phase improvement [4], maximum a posteriori
harmonic (MAP) phase estimation [5], temporal smoothing
of the unwrapped harmonic phase [6], and finally the reviews
on phase estimation impact on enhancement have been in-
vestigated in [7]. Apart from improved signal reconstruc-
tion, spectral phase information can be also used to derive
improved spectral amplitude estimators, see e.g. [8, 9].

The advances due to phase-aware processing are limited

The work of Pejman Mowlaee, Michael Pirolt and Johannes Stahl was
supported by the Austrian Science Fund (project number P28070-N33).

by the accuracy of the estimated phase. Therefore, a chal-
lenging research topic is to find novel approaches that help
to achieve more robust and accurate estimators of the clean
spectral phase from the noisy speech observation.

In this paper, we propose exploiting the relation between
the phase of harmonics of a speech signal. The so-derived har-
monic phase estimator results in improved perceived quality
and speech intelligibility, and a low phase estimation error.

The rest of the paper is organized as follows. Section 2
presents the background on phase invariance and phase quasi-
invariance properties. Section 3 presents the proposed phase
enhancement scheme. Section 4 presents a proof-of-concept
experiment and speech enhancement results and Section 5
concludes the work.

2. BACKGROUND ON PHASE INVARIANCE
PROPERTY

2.1. Phase Invariant

Phase invariant constraint (PI) was first introduced by Zverev
in ultrasonic dispersion measurements [10], where it was re-
ported that the harmonic oscillation contains a phase structure
which is invariant to the time reference. In harmonic signal,
PI can be determined for any triplet of harmonic components
if their frequencies satisfy the set of equations:





f1 = K1F0, where K1 = 1, 2, ...

f2 = K2F0, where K2 = K1 + 1,K1 + 2, ...

f3 = K3F0, where K3 = 2K2 −K1.

(1)

In these equations, F0 denotes fundamental frequency. For
the given polyharmonic signal s(t) with time index t, that
contains h ∈ [1, Ht] harmonics with slowly varying ampli-
tude A(h, t) and phase Φ(h, t):
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s(t) =

Ht∑

h=1

s(h, t) =

Ht∑

h=1

A(h, t) cos (2πfh(t)t+ Φ(h, t))︸ ︷︷ ︸
Ψ(h,t)

(2)

the PI denoted by ∆Ψ(t), for Ht = 3 is given by:

∆Ψ(t) =
Ψ(1, t) + Ψ(3, t)

2
−Ψ(2, t)

=
Φ(1, t) + Φ(3, t)

2
− Φ(2, t),

(3)

where Ψ(h, t) denotes instant phase. It is important to men-
tion that cancellation of linear items 2πfh(t)t can be achieved
only when functions of instant phase Ψ(h, t) are continuous
and have no wraps. This can be ensured using the phase un-
wrapping procedure.

2.2. Phase Quasi-Invariant

Phase quasi-invariant constraint (PQI) was introduced by
Vorobiov within the analysis of phase relations in speech [11].
The application of this constraint together with the PI was
outlined for speech analysis [12, 13].

For the given polyharmonic signal s(t) with fundamental
frequency F0(t) that contains h ∈ [1, Ht] harmonics with
slowly varying amplitude A(h, t) and phase Φ(h, t)

s(t) =

Ht∑

h=1

s(h, t) =

Ht∑

h=1

A(h, t) cos (2πhF0(t)t+ Φ(h, t)),

(4)

the following relation ∆Ψh̄(h, t) between components with
h̄F0(t) and hF0(t) frequencies, where h̄ < h, does not have
linear components similar to PI in Eq. (3):

∆Ψh̄(h, t) = Ψ(h̄, t)− Ψ(h, t) · h̄
h

=

(
Φ(h̄, t)− Φ(h, t) · h̄

h

)∣∣∣∣∣
2πh̄
h

.
(5)

The equation above is called phase quasi-invariant (PQI). It
is also required to unwrap instant phase functions Ψ(h̄, t) and
Ψ(h, t) before calculating PQI. The unambiguous definition
range of PQI is [0, 2πh̄

h ) if value of harmonic phase Φ(h̄, t)
at instant t = 0 is in [0, 2π), which can be easily achieved in
speech processing.

Another signal representation based on the phase differ-
ence measure is the Relative Phase Shift (RPS) [14]. The
relation between RPS and PQI can be depicted as:

RPS(h, t) = Φ(h, t)− hΦ(1, t) = −h∆Ψ1(h, t). (6)

Eq. (6) shows that the RPS can be represented by the negative
PQI with h̄ = 1, multiplied with the harmonic index. While
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Fig. 1. The results of proof-of-concept experiments of PI and
PQI for sustained A-E-I-O-U sequence. (Top) Male speaker.
F0 = 118 ± 2 Hz along the whole record, (Bottom) Female
speaker. F0 = 220± 5 Hz along the whole record.

the RPS depicts the phase difference only between the fun-
damental frequency and its higher harmonics, the PQI is not
limited to the fundamental frequency phase, as the reference
harmonic h̄ is free to choose.

2.3. Suitability for Phase-aware Speech Processing

To demonstrate the smoothness along time in voiced speech
using PI and PQI constraints, records of sustained vowels A-
E-I-O-U were analyzed in PI and PQI domain. The results of
this analysis for male and female speakers are shown in Fig-
ure 1 up to an additive constant1.

First, the instantaneous pitch estimation F0(t) was ob-
tained. Next, the instant phase functions Ψ(h, t) were cal-
culated using Hilbert transform for filtered hF0(t) where h ∈
[1, 4]. After that, the phase unwrapping procedure was ap-
plied for each Ψ(h, t). Finally, the phase characteristics were
calculated. In order to unify the scale of all these functions
for representation purpose, each of PQI was normalized to
the half of its unambiguous definition range, whereas PI was
normalized to π.

The PI and PQI properties show similar trends, or they be-
come similar after inversion of one in the pair. Some curves
have phase jumps at instants where one vowel changes to an-

1The implementation can be found at [15].
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Fig. 2. Illustration of the proposed phase estimator.

other. These results support that PI and PQI constraints carry
information about the structure of voiced speech, so they are
favorable candidates for phase-aware speech processing.

3. PROPOSED PHASE ESTIMATOR

The idea is to apply temporal smoothing on the PQI extracted
from the noisy speech signal in order to reduce its variance.
This is motivated by the successful results reported in TSUP
[6, 7] and will be justified within the proof-of-concept exper-
iment presented in this Section. An overview of the proposed
method is depicted in Figure 2.

3.1. PQI Framework

In this Section, the proposed phase enhancement framework
is presented. As explained in Section 2, the PQI is based
on the phase difference measures between two harmonics.
Therefore we model the noisy signal as the sum of harmon-
ics corresponding to the clean signal x(n) with some noise
added. The noisy signal is represented by an assembly of sig-
nal frames y(n, l) where n denotes the discrete time index, N
the frame length with discrete time index n ∈ [0, N − 1] and
l denotes the frame index and we have:

y(n, l) =

Hl∑

h=1

A(h, l) cos

(
h · 2πF0(l)

fs
n+ Φ(h, l)

)

︸ ︷︷ ︸
x(n)...clean signal

+ν(n, l),

(7)
where ω0(l) denotes the normalized angular fundamental fre-
quency at frame l, ν(n, l) denotes the noise and h denotes the
harmonic index with h ∈ [1, Hl] and Hl denotes the number
of harmonics at frame l. The time instances at each frame tl
are calculated according to [16]:

tl = tl−1 +
1

4 · F0(l − 1)
(8)

3.2. Calculation of PQI

The PQI values are calculated based on Eq. (5). Since the out-
put of Eq. (5) gives us a cyclic random variable with the un-
ambiguous definition range of

[
−πh̄
h , πh̄h

)
, it is recommended

to add a scaling factor after wrapping to ensure an unambigu-
ous definition range of [−π, π), please note that the PQI is

independent of the fundamental frequency, therefore it yields:

∆Ψh̄(h, l) =
h

h̄

(
Φ(h̄, l)− Φ(h, l) · h̄

h

) ∣∣∣∣∣
2π·h̄
h

=
h

h̄

(
Ψ(h̄, l)− Ψ(h, l) · h̄

h

) ∣∣∣∣∣
2π·h̄
h

.

(9)

The PQI can be evaluated for every arbitrary pair {h, h̄} ∈
[1, Hl]. For all further observations, the harmonic index h̄ is
referred to as PQI reference harmonic, while h denotes the
harmonic index. Furthermore, the reference harmonic h̄ is
chosen with 2 and therefore not changed during the process.

3.3. Temporal Smoothing of PQI

From Eq. (9), the harmonic phase of an arbitrary harmonic
h ∈ [1, Hl] can be reformulated using PQI and the corre-
sponding reference harmonic phase h̄:

Ψ(h, l) =
h ·Ψ(h̄, l)

h̄
−∆Ψh̄(h, l). (10)

The PQI reference phase Ψ(h̄, l) is of high importance, as
corruption with noise leads to erroneous results for the corre-
sponding harmonic phases throughout the harmonics. There-
fore it is recommended to pre-enhance the reference phase.
For the following observations, we used TSUP [6] solely on
the reference phase.

The PQI values are then calculated based on the pre-
enhanced reference phases Ψ̂(h̄, l):

∆Ψ̂h̄(h, l) =
h

h̄

(
Ψ̂(h̄, l)− Ψ(h, l) · h̄

h

) ∣∣∣∣∣
2π·h̄
h

. (11)

The differential phases obtained from Eq. (11) are then
smoothed across time, by mean averaging:

∆Ψ̃h̄(h, l) = ∠ 1

W
∑

l̃∈W

ej∆Ψ̂h̄(h,l̃), (12)

where W denotes all frames that lie within a range of 100
milliseconds around frame l. This filter length was chosen
empirically, after observing the PQI behavior over time.

3.4. Synthesizing Phase-Enhanced Speech

The signal synthesis is based on [5], as the enhanced har-
monic phase is transformed to the STFT domain by modi-
fying the frequency bins within the main-lobe width of the
analysis window. We define Y (k, l) as the DFT of the noisy
signal with k as the corresponding frequency bin and K as
the DFT length with k ∈ [0,K−1]. Further |Y (k, l)| denotes
the noisy spectral amplitude and the noisy STFT phase, i.e.,
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Fig. 3. Spectrogram of a female utterance with white noise at
SNR = 5 dB. a: Noisy phase. b: Clean phase. c: Proposed
method and clean F0. d: Proposed method blind.

ϑ(k, l) = ∠Y (k, l). The enhanced STFT phase is then given
by:

ϑ̂(bhω0(l)Kc+ i, l) =

(
h · Ψ̂(h̄, l)

h̄
−∆Ψ̃h̄(h, l)

)
,

∀i ∈ [−Np(l)/2, Np(l)/2].

(13)

where Np(l) denotes the minimum value of either the main-
lobe width of the analysis window Nw or the frequencies
close to neighboring harmonicNp(l) = min(Nw, ω0(l)K/(2π)).
Further we obtain the phase enhanced signal in STFT domain
by:

X̂(k, l) = |Y (k, l)|ejϑ̂(k,l). (14)

The corresponding time domain signal x̂(n) is obtained by
the inverse DFT of X̂(k, l) followed by the overlap-and-add
procedure.

4. RESULTS

4.1. Experiment Setup

We randomly chose 50 utterances spoken by 20 speakers (10
female and 10 male) from GRID [17] and mixed them with
white and babble noise from NOISEX-92 [18] at SNRs be-
tween 0 to 10 dB. As evaluation criteria we chose perceptual
evaluation of speech quality (PESQ) [19], short-term objec-
tive intelligibility measure (STOI) [20] and unwrapped root
mean square estimation error (UnRMSE) [21] in dB.

4.2. Speech Enhancement Results

Figure 3 shows the proof of concept experiment carried out on
a female speech sample mixed with white noise at SNR = 5
dB. The phase-enhanced results using the proposed method
shows an improved harmonic structure closer to that observed
in the clean phase. This harmonic structure was lost in the
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Fig. 4. PESQ improvement, STOI improvement and Un-
RMSE improvement in dB for (top) white and (bottom) bab-
ble noise.

noisy scenario where noisy spectral phase only available.
The columns in Figure 4 show, respectively, the delta im-

provement compared to the noisy signal by means of (left)
perceived quality, (middle) speech intelligibility, and (right)
UnRMSE [21]. The results are averaged over utterances for
white and babble noise. The reported results for noisy phase
demonstrate the lower-bound. As benchmarks, we document
the performance of STFTPI [4] and MAP [5], both in combi-
nation with PEFAC [22] as noise-robust F0-estimator.

In white noise, the method is not that sensitive to F0 es-
timation accuracy. However, in the babble noise scenario the
achievable performance by the phase enhancement methods
is dependent on F0 estimation accuracy. Overall, the pro-
posed method improves the perceived quality, speech intel-
ligibility and phase estimation error for all SNRs and noise
types. This is an important finding in that most speech en-
hancement methods are reported to degrade speech intelligi-
bility or not capable for joint improvement of perceived qual-
ity and intelligibility. In terms of speech quality, the proposed
method outperforms all benchmark methods at all SNRs. In
terms of the speech intelligibility, the proposed method shows
less impact at high SNRs. In terms of UnRMSE, the MAP es-
timate [5] is superior which is attributed to the fact it relies on
prior information about SNR, which is not taken into account
in the proposed estimator. For listening examples we refer to
webpage [23].

5. CONCLUSION

The paper proposed a new harmonic phase estimator from
noisy speech relying on relations between harmonics using
the phase structure across harmonics. Temporal smoothing
of the phase invariance representation allows for selective
smoothing at harmonic level and contributes to improved
speech quality when used at signal reconstruction. Here we
concentrated on signal reconstruction, the enhanced spectral
phase is also useful in speech recognition [24] and separa-
tion [25] tobe considered as future works.
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