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Abstract

This thesis demonstrates the potential and benefits of unsupervised learning with

Self-Organizing Maps for stress detection in laboratory and free-living environ-

ment.

The general increase in pace of life, both in the personal and work environment leads

to the intensification and amount of work, constant time pressure and pressure to

excel. It can cause psychosocial problems and negative health outcomes. Providing

personal information about one’s stress level can counteract the adverse health

effects of stress. Currently the most common way to detect stress is by the means

of questionnaires. This is time consuming, subjective and only at discrete moments

in time. Literature has shown that in a laboratory environment physiological signals

can be used to detect stress in a continuous and objective way. Advances in wearable

technology now make it feasible to continuously monitor physiological signals in

daily life, allowing stress detection in a free-living environment.

Ambulant stress detection is associated with several challenges. The data acqui-

sition with wearables is less accurate compared to sensors used in a controlled

environment and physical activity influences the physiological signals. Furthermore,

the validation of stress detection with questionnaires provides an unreliable labelling

of the data as it is subjective and delayed. This thesis explores an unsupervised

learning technique, the Self-Organizing Map (SOM), to avoid the use of subjective

labels.

The provided data set originated from stress-inducing experiments in a con-

trolled environment and ambulant data measured during daily-life activities. Blood

volume pulse (BVP), skin temperature (ST), galvanic skin response (GSR), elec-

tromyogram (EMG), respiration, electrocardiogram (ECG) and acceleration were

measured using both wearable and static devices.

First, a supervised learning with Random Decision Forests (RDF) was applied to

the laboratory data to provide a gold standard for unsupervised learning outcomes.
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A classification accuracy of 83.04% was reached using ECG and GSR features and

76.89% using ECG features only. Then the feasibility of the SOMs was tested on

the laboratory data and compared a posteriori with the objective labels. Using a

subset of ECG features, the classification accuracy was 76.42%. This is similar to

supervised learning with ECG features, indicating the principal functioning of the

SOMs for stress detection. In the last phase of this thesis the SOM was applied

on the ambulant data.

Training the SOM with ECG features from the ambulant data, enabled clustering

from the feature space. The clusters were well separated with large cohesion

(average silhouette coefficient of 0.49). Moreover, the clusters were similar over

different test persons and days. According to literature the center values of

the features in each cluster can indicate stress and relax phases. By mapping

test samples on the trained and clustered SOM, stress predictions were made.

Comparison against the subjective stress levels was however poor with a root

mean squared error (RMSE) of 0.50.

It is suggested to further explore the use of Self-Organizing Maps as it solely

relies on the physiological data, excluding subjective labelling. Improvements can

be made by applying multimodal feature sets, including for example GSR.
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1 Introduction

According to the report from the European Commission in 2010, stress, depression

and anxiety were the most serious work-related health problems among 14% of

workers. There is a general increase in pace of life, both in the personal and work

environment. This leads to the intensification and amount of work, constant time

pressure and pressure to excel. If poorly managed, this can lead to psychosocial

problems and negative health outcomes [1].

The adverse health effects of stress are present both in the short term as in

the long term. Short periods of exposure to stress can cause sleep disturbance,

changes in mood, fatigue, headaches and stomach irritability [1]. Chronic stress

may lead to a weakened immune system and thereby contributing to the course of

inflammatory diseases such as multiple sclerosis, rheumatoid arthritis and coronary

heart disease [2, 3]. Other mental and physical health outcomes are depression,

suicide attempts, sleep problems, back pain, chronic fatigue, digestive problems

and high blood pressure. Also mental strain and reduction of quality of life may

be experienced. Workplace stress can even influence the quality of relationships

within the family [1].

Work-related stress eventually translates itself to a corporate financial burden.

Employees have to take time off work or leave employment. The company under-

goes a loss of productivity and an increased level of absenteeism and health care

costs. In an EU-funded project in 2013, these costs to Europe were estimated to

add up to e617 billion annually [1].

Currently the most common way to detect stress is by the means of questionnaires.

This is time consuming, subjective and only at discrete moments in time. Literature

has shown that in a laboratory environment physiological signals can be used to

detect stress in a continuous and objective way. Advances in wearable technology

made it feasible to continuously monitor our physiological signals in daily life.

Together with increased knowledge of computational modelling, novel systems are
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1 Introduction

being designed to detect stress in real-time. These provide feedback to its user

and informs about his or her stress level [4]. Situations of stress could be unveiled,

allowing proper counteracting.

Ambulant stress detection is however associated with several challenges. The

data acquisition with wearables is less accurate compared to sensors used in a

controlled environment and physical activity influences the physiological signals.

Furthermore, the validation of stress detection with questionnaires provides an

unreliable labelling of the data as it is subjective and delayed. This thesis explores

an unsupervised learning technique, the Self-Organizing Map (SOM), to avoid

the use of subjective labels.

2



2 Literature Study

2.1 Background

2.1.1 Definition of stress

Stress is both a physiological and mental state. Myrtek et al. [5, 6] studied the

correspondence of both aspects and state that the perceived level of stress not

necessarily coincides with the physiological measured level of stress. Most of the

emotional arousal, indicated by physiological changes, do not reach the level of

consciousness. They also found that emotion perception is largely determined by

personality dimensions of individuals, such as being emotional orcool. However

research about emotions is difficult as inference about emotions are often made

from subjective reports, implying that subjects can only report on emotions they

are aware of. In this perspective, Lane et al. [7] developed the Levels of Emotional

Awareness Scale (LEAS). Its purpose is to assess emotional awareness. Higher

scores on the LEAS correspond to a greater ability of recognising personal emotions.

Verkuil et al. [8] suggest that persons with lower emotional awareness might have

to rely on different indicators of stress compared to persons with higher emotional

awareness.

Different models capturing work related stress have been developed over the last

decades. One of these theoretical frameworks is the Demand- Control Model

developed by Karasek and Theorell [9]. Two external variables define the model

and affect the health of well-being of employees. These are the psychological

job demands and the job control (Fig. 2.1a). The psychological job demands

are the actual psychological stressors in the working environment such as time

pressure, working pace and complexity of the task. The job control is the ability

of the employee to control its tasks and his behaviour: how are the tasks executed,

timing, sequence, et cetera. This control acts on the psychological stressors to

3
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keep them within an acceptable range. Jobs requiring a high demand, though

with options for control are experienced to be stressful because they limit the

employee’s autonomy while delivering a constant pressure.

The Effort-Reward Imbalance model developed by Siegrist [3] focusses on the

rewarding system of the job as an actor against stress. The job-related efforts

are seen as part of a social exchange system and are balanced by occupational

rewards(Fig. 2.1b). Efforts such as time pressure and physical labour could be

rewarded by money, appreciation or career prospects. The model claims that stress-

ful experiences at work are evoked by conditions of high cost-low gain, typically

due to low qualification or overcommitment in people striving for approval.

Both models target the harmful factors at work and complement each other. Low

control and low reward are considered to be equally stressful parameters in jobs

requiring high effort. They elicit stress with long-term health consequences [3].

2.1.2 Physiological reaction to stress

The Autonomic Nervous System (ANS) plays a central role in stress reactions

(Fig. 2.2). The ANS is divided in two branches: the Sympathetic Nervous Sys-

tem (SNS) and the Parasympathetic Nervous System (PNS). Most tissues are

innervated by both branches in which they have an opposing effect. The SNS

activates the fight-or-flight mechanism of our body and prepares for action. The

PNS predominates in relaxing conditions, regulates basic body functions and brings

the body back to a rest state. The sympathethic system aims to increase the

delivery of well-oxygenated blood to skeletal muscles for activation. Hormones

epinephrine, norepinephrine and cortisol are released into the blood stream. This

causes heart rate to rise to increase the flow of blood. The respiration rate rises

to increase the uptake of oxygen from the atmosphere and release carbondioxide.

Sweating enables thermoregulation during these conditions. Also the diameter of

the pupil dilates and the lens adapts for distant vision. The PNS in its turn lowers

heart rate and adapts the eye to its resting state. The body gets focussed back

onto digestion [12].

A stressor activates the sympathethic system. After termination of the stressor,

the production of cortisol ceases and the balance between both SNS and PNS is

restored. However a prolonged presence of the stressor, such as chronic stress

4



2.1 Background

(a) Demand-Control Model developed by Karasek and Theorell. Figure adapted from [10]

(b) Effort-Reward Imbalance Model developed by Siegrist. Figure adapted from [11]

Figure 2.1: Stress models
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experienced in working situations, can cause an overload and eventually exhaustion

of SNS and its balance with PNS [13]. It has been found that panic disorder

patients experience higher baseline levels of skin conductance (related to sweating)

and norepinephrine secretion [14]. During stress exposure these levels will increase

further as compared to healthy subjects.

2.2 Methods for stress measurement

Stress occurs at different levels in the body, thus different sensing modalities exist

to measure different aspects of stress.

A method of measuring the perceived level of stress is self-reporting. In [16] test

persons filled in a Perceived Stress Scale questionnaire right before the actual

stress experiment. The lab study of [17] used an anxiety questionnaire to define

three degrees of stress: no stress, low and high. Some self-reports also aim to

study how people feel and what they do in their daily lives. This includes daily

diary studies, interview methods [18] and Experience Sampling Method (ESM)

or Ecological Momentary Assessment (EMA) [19, 4]. A disadvantage of a diary

study is the reliance on memory of the test persons. During an ESM study, test

persons are prompted at random times to immediately give feedback. However,

these prompts may be experienced as highly interruptive and become a source of

stress itself [20]. Other disadvantages are its subjectiveness and the discontinuity

of measurements.

An objective measure for acute stress are biochemical parameters. These are

epinefrine, norepinerfrine and cortisol activitation in blood. Cortisol is a hormone

regulated by the hypothalamic–pituitary– adrenocortical (HPA) axis. Physiological

stressors such as arithmetic tasks and public speaking can increase cortisol levels.

However, the effect of these stressors on cortisol activity is inconsistent over

literature [17]. There are different characteristics of cortisol activation to take

into consideration during assesment. First, cortisol has a circadian rhytm during

which cortisol levels greatly vary. Second, the increase in cortisol level after the

onset of a stressor experiences a delay as the HPA axis needs to be activated first.

Third, the type of cortisol measured depends on the method of assesment. Plasma

samples both include cortisol bounded to protein as unbounded cortisol. Salivary

samples only reflect unbounded cortisol. Also, the reaction to the venipuncture

6



2.2 Methods for stress measurement

Figure 2.2: The Autonomic Nervous System is divided in two branches: the Sympathetic Nervous

System (SNS) and the Parasympathetic Nervous System (PNS). The SNS activates

the fight-or-flight mechanism of our body and prepares for action. The PNS predom-

inates in relaxing conditions, regulates basic body functions and brings the body back

to a rest state. Figure from [15]

7
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for plasma samples could cause a reaction in cortisol levels [21]. Moreover, it as

intrusive method which is not suitable for frequent measuring.

Methods that collect stress-related information continuously and without interfer-

ence are based on measurement of physiological signals. In [22] a set of different

sensors was used to detect stress during real-world driving tasks. In correspon-

dance with the driver’s task performance, the information could serve a system

to reduce the driver’s stress level. The study relied on the following physiological

sensors: electrocardiogram (ECG), electromyogram (EMG), skin conductivity (or

galvanic skin response (GSR)) and respiration. These physiological signals were

also used in [16, 23, 24]. Another frequently measured signal is blood volume

pulse (BVP) [25]. Not so widely used is the measurement of the pupil diameter

and skin temperature, applied by J. Zhai and A. Barreto in [25, 26]. As activity

can alter physiological signals [27], the study in [28] combined the measurement

of ECG and GSR with accelerometer information.

2.3 Physiological signals and sensors

Many studies have shown that a combination of the physiological parameters

that are influenced by the SNS during stress is suitable for stress detection. First,

two important physiological signals are described in more detail, i.e. Heart Rate

Variability and the Galvanic Skin Response. Then it is explained how different

physiological signals can be measured.

Heart Rate Variability (HRV)

An electrocardiogram (ECG) records the electrical activity of the heart. A sample

from a typical ECG is depicted in Fig. 2.3. The P wave is associated with the

contraction of the atria. The QRS complex is associated with the contraction

of the ventricles. The T/U waves are associated with the repolarization of the

ventricles [29]. The R-R distance (or R-R interval) is the time between two R

peaks and are used in the calculation of the heart rate. ECG signals from different

individuals can exhibit personalized traits such as the relative timing of the peaks

8



2.3 Physiological signals and sensors

Figure 2.3: Sample from a typical normal ECG. The P wave is associated with the contraction of

the atria. The QRS complex is associated with the contraction of the ventricles. The

T/U waves are associated with the repolarization of the ventricles. The R-R distance

is the time between two R peaks. [29]

but can also exhibit responses to stress and activity. Heart rate variability is the

beat-to-beat variation in the R-R interval [28].

Galvanic Skin Response (GSR)

GSR is a measure for the electrical resistance of the skin. The physiological

response to a sudden stimulus causes the resistance of the skin to vary. The skin

conductance is proportional to sweat secretion. The density of sweat glands is

highest at the hands and feet [30]. Under stress conditions the sweat glands are

activated, causing an individual to sweat and the skin conductance to rise [28].

The sweat glands and skin blood vessels are exclusively innervated by the SNS.

Thus skin conductance is the ideal measure for sympathethic activation and stress

reaction. The slowly changing part of the SC signal is the skin conductance level

(SCL) and is a measure of psychophysiological activation. The fast changing part

of the SC signal is the skin conductance response (SCR) and is the reaction to a

sudden stimulus, depicted in Fig. 2.4 with typical features [31].

9
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Figure 2.4: Ideal skin conductance response with typical features. [31]

Sensors

Some of the following studies focus on fixed sensor set-ups for stress detection,

newer studies will aim for wearable sensor systems.

EMG is most commonly measured at the upper trapezius muscles of the shoul-

ders [22, 16]. Skin conductance (SC) can be measured at different locations, such

as palm of the hand or sole of the foot as they contain the highest density of

sweat glands. If measuring the SC at the palm of the left hand, an electrode

is placed on the first and the middle finger [22]. In [16] a wireless hand sensor

measured the change in current after applying a voltage of 0.5V DC across the

palm. For wearable applications, the SC is measured at the wrist. Blood volume

puls is typically measured by photoplethysmography [25]. Respiration is related to

chest cavity expansion and measured by an elastic sensor strapped around the test

persons’s diaphragm. In [22] the chest belt was connected to an analog-to-digital

converter, while [16] used a wireless chest belt. This wireless chest belt was

also used for measurement of one lead electrocardiography (ECG). Furthermore,

respiration and blood volume pulse can be extracted from the ECG signal.
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2.4 Previous experiments on stress detection

2.4 Previous experiments on stress detection

A vast number of studies have been carried out investigating stress and stress

detection. They address questions such as: Which physiological signals are altered

by stress? What are important features for stress detection? How to detect stress

in an office-like or more broad real-life situation? How does activity hinder stress

detection? Which sensors are useful? How to set up a wearable sensors system?

Earlier papers focus on the relation between stress and changing physiological

parameters. In [32], test persons were exposed to psychologically challenging tasks

of increasing difficulty. They found that cardiac activity was sensitive to these

variations in difficulty, as easy conditions elicited lower cardiac activity compared

to harder tasks. The study also reported that oxygen consumption and carbon

dioxide production did not vary under different stress conditions. Research done by

Boucsein has extensively investigated the effect of stress on GSR [30]. As more

knowledge was gathered which physiological signals vary with stress, researchers

started to focus on specific features to discriminate stress.

2.4.1 Physiological features for stress detection

The Heart Rate Variability (HRV) under stress and its derived features has been

specifically explored by many studies [33, 34, 13, 35] and is still topic of ongoing

research [8]. HRV measures the variance in time between consecutive heart beats

and reflects the ANS activity [36].

The study [33] focussed on stress induced by working activities as participants

were ambulatory monitored during two working days and one nonworkday. They

received the Effort-Reward Imbalance questionnaire (sec. 2.1.1) which is developed

to measure perceived chronic work stress. The blood pressure (BP) of participants

was measured during daytime and their heart rate (HR) and vagal tone was

recorded over 24h. Vagal tone was calculated based on the root mean square

of successive differences in interbeat intervals (RMSSD). The researchers found

three characteristics of high work stress, being an increased HR reactivity (HR

during work minus HR during sleep), an increased systolic BP and a lower vagal

tone. Moreover, subjects enduring chronic work stress have an increased systolic

BP during 24 hours, not simply caused by an increased BP during work time. Also
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vagal tone stayed at a low level both during the night as during a non working

day. Interestingly, resting level of HRV and levels of emotional awareness are

proportionally related to with the ability to report stress.

The research of [34] was executed in a lab environment where participants had to

perform standardized computer work, including stress sessions. It was reported

that there was a reduction in the high-frequency (HF, 0.15 to 0.4 Hz) component

of HRV, a stable low-frequency (LF, 0.04 to 0.15 Hz) component and an increase

in low-to-high frequency ratio (LF/HF) during a stress situation. It also confirmed

an increase in BP during stress sessions. These results were confirmed by another

lab study [13] where the following frequency domain features were implemented:

peak frequency and power of very low frequency bands (VLF, 0 to 0.04 Hz),

low frequency bands and high frequency bands. The LF/HF ratio was found to

increase during mental tasks however insignificant.The implemented time domain

features were mean and standard deviation of RR intervals and HR, root-mean-

square (RMS), the number of consecutive RR intervals that differ more than

50ms (NN50) and the proportion of NN50 (pNN50). The pNN50 was found to

be significantly higher in the rest condition than during the mental task.

Melilo et al. [35], monitoring real-life stress, investigated nonlinear features of

HRV for automatic stress detection. They proposed the use of Poincaré Plot

measures and Approximate Entropy. A recent publishing [8] focussed on capturing

prolonged additional reductions in HRV in daily life and verifying if these periods

were related to stress. Prolonged periods of low HRV are considered to be harmful

for health as they may contribute to lower resting levels of HRV. On the other

hand, physical activity also reduces HRV, however only temporarily. Therefore, the

study compensates for physical activity, to be able to detect periods of reduced

HRV, not caused by physical activity. This is an important contribution as many

other ambulatory studies simply exclude high activity data, according to this paper.

Periods of additional HRV decrease where determined by comparing the expected

and actual RMSSD for each individual and period.

An early study of Boucsein proved that skin conductance level (SCL) and skin

conductance response (SCR) are valid indicators for stress [30]. Setz et al. used a

wearable GSR device to monitor skin conductance (SC) while eliciting office-like

stress by a mathematical task and psychological stress.They found that the distri-

butions of the peak height of the SCL and the SCR peak rate carry information
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about a person’s stress level [31]. Wijsman et al. [16] successfully applied the SC

responses rate (SCRR) and the signal power of the SC signal (SCDIFF2).

Many other papers studying stress detection preferred a multimodal approach.

Multiple physiological signals are examined simultaneously. The research by Zhai

and Barreto [25] is a lab study with stress inducing tests. Participants are attached

to several sensors to enable feature calculation from BVP, GSR and pupil diame-

ter. From BVP, its amplitude was calculated together with mean and standard

deviation of the BVP period or interbeat interval (IBI) and the LF/HF ratio.

The IBI is a useful measure for HRV and its analysis in frequency domain is

reliable with smaller sets of data. GSR analysis relied on its mean value and the

number, amplitude,rising time and energy of skin conductance responses. The

pupillographic activity was solely based on the mean value of pupil diameter,

which was expected to increase during stress periods. The study by Healey and

Picard [22] aims to detect stress during real-world driving tasks. The participant is

situated outside of a laboratory environment, though attached to several sensors

inside the car. The proposed statistical features are mean and variance for EMG,

respiration, heart rate and skin conductivity. Besides those general features, four

spectral power features were defined for respiration by summing the energy in four

different energy bands. Skin conductivity was further examined by the number of

SC responses in a window, the magnitude and duration of SC responses and the

sum of the area under the SC response. One specific HRV feature was used, the

low-to-high frequency ratio LF/HF.

An overview of widely used features are presented in table 2.1 for ECG and

table 2.2 for GSR.

2.4.2 Physical activity confounds

Previous research focused on detection of mental stress from subjects at rest.

Advances in mobile computing and wearable sensors allow development of a real-

life ambulant stress monitoring system. First studies with wearables were executed

with participants at rest [31, 16, 24, 23]. However daily-life stress detection comes
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Table 2.1: Overview of widely used features for ECG

Feature Explanation

HR mean heart rate

SDNN standard deviation of all normal RR intervals (i.e. NN intervals)

RMSSD root-mean-square successive difference of all normal RR interval

pNN50 proportion of number of consecutive RR intervals that differ more than 50ms

VLF very low frequency HRV (power in the 0-0.04 Hz band)

LF low frequency HRV (power in the 0.04-0.15 Hz band)

HF high frequency HRV (power in the 0.15-0.4 Hz band)

LFHF ratio of low and high frequency of HRV

Table 2.2: Overview of widely used features for skin conductance

Feature Explanation

SCL mean SC level

SCPH signal power in a phasic SC signal

SCRR mean number of SC responses per window

SCDIFF2 signal power in second difference from SC signal

SCR peak rate mean number of SCR peaks per window

SCL peak height average height of SC peaks

along with the major obstacle that physiological responses caused by stress can

be masked by responses originating from physical activity.

This difficulty is addressed in [28] in which an activity-aware stress detection

system is presented. An accelerometer was placed at the waist to record sitting,

standing and walking activities. Apart from established HRV and GSR features,

twelve accelerometer features were calculated. Accelerometer data was proven

to be necessary to improve mental stress detection in a mobile environment.

Physiological signals tend to be user-dependent, therefore the training stage

should rely on personalized data as well. Interestingly, GSR features were relative

independent of the recorded activities. The study was however only limited to

three specific activities.

Some very recent studies deal with physical activity by excluding these data

intervals. One of these, is the study by Hovsepian et al., addressing many issues

regarding ambulant stress detection [37]. They exclude one-minute frames of
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moderate-to-high physical activity by applying a simple threshold on information

from a 3-axis on-body accelerometer. The authors of study [38] remove periods

with moderate to high physical activity plus the estimated time for recovery of

the activity.

In [17], the type of activity is recognised first (sitting, walking, running and cycling).

With the use of a base stress detector and the recognised activity, a context

based detector with contextual features is applied. The context based detector

is designed to distinguish between periods of actual stress and other situations

causing physiological arousal.

2.5 Algorithms applied for stress detection

Most stress detection mechanisms in literature rely on a machine-learning pipeline

where the extracted features are fed to a self-learning algorithm. These feature

values are either labelled and it is known which values corresponds to states of

stress or the data is unlabelled. The former is applied to train supervised algorithms,

the latter to train unsupervised algorithms. The trained algorithm is then able to

predict stress states for unseen features values.

Most studies in the field of stress detection rely on supervised algorithms. Many

studies make use of a Support Vector Machine (SVM) for learning and classifi-

cation [26, 25, 39, 37]. Also Linear Discriminant Analysis (LDA) is a widespread

algorithm [22, 31]. A Random Decision Forest (RDF) has been applied by Sarker et

al. [38] and a combination of an SVM and a RDF in [17]. Sharma and Gedeon [40]

apply a Genetic Algorithm and an SVM for feature selection, followed by a Neural

Network (NN) for classification. Feng-Tso et al. examined the classification per-

formances between Decision Tree, a Bayesian Network and an SVM [28]. Wijsman

et al. made a performance comparison between Bayesian classifiers, LDA and

K-Nearest Neighbor (KNN) [16], of which the latter is an unsupervised technique.

In previous work on stress detection, executed in the lab, activities were often

constrained to e.g. sitting, walking and biking [17, 28]. This restriction enabled

the labelling of activity data and context-specific monitoring. However real-life
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activities cover a much broader range of activities. Ramos et al. [41] included

physical activity in their analysis but moved away from labels for different activities.

Instead they exploited the full distribution of the physiological responses. Different

unsupervised algorithms were tested for optimal performance: Hidden Markov

Models, Naive Bayes, SVM and Logistic Regression.

Another reason for using unsupervised techniques is subjectiveness and unreliablity

or complete absence of the labels. The study by Bornoiu and Grigore [42]

investigates stress detection by using electrodermal features. Their evaluation

method relies on subjective observations from an expert observer, marking a

recorded signal as stress or relax. This labelling lacked consistency. Therefore an

unsupervised method was required and they proposed to use a Kohonen Neural

Network, also known as Self-Organizing Map (SOM). This technique has been

successfully applied in many others fields besides stress detection such as Brain

Computer Interfaces (BCI) [43]. Medina [44] identified stress states from ECG

signals using several other unsupervised learning methods. These are clustering

algorithms (including K-means and Spectral Clustering) and clustering ensemble

methods as well as dimensionality reduction techniques (Principal Component

Analysis and Forward Sequential Search) and evolutionary algorithms.

2.6 Validation of stress detection

Validation is a necessary step when developing algorithmic pipelines. It requires a

different approach when dealing with unsupervised algorithms or ambulant stress

monitoring systems, compared to supervised algorithms and laboratory studies.

Supervised learning

Supervised classification methods can make use of several validation measures

(overview of examples in table 2.1). Frequently used is the classification accuracy,

which is the number of correct predictions divided by the total number of predictions

made [28]. More detailed measures are sensitivity and specificity, based on TP the

number of true positives, FN the number of false negatives, TN the number of

true negatives and FP the number of false positives. Sensitivity can be seen as the
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stress detection rate and specificity as the relax detection rate. The average of

both can be taken as the classification performance instead of the aforementioned

classification accuracy. It delivers a more balanced outcome if one of the labels

appears less frequent [45]. Closely related are the precision and recall. The precision

is intuitively the ability of the classifier not to label negative samples as positive.

The recall is seen as the ability of the classifier to find all the positive samples.

The F1 score is the weighted average of precision and recall [46]. These numbers

of TP, FN, TN and FP can be summarised in a confusion matrix [28].

Examples of validation measures for supervised learning:

Sensitiv ity =
TP

TP + FN

Specif icity =
TN

TN + FP

P recision =
TP

TP + FP

Recal l =
TP

TP + FN

F1 = 2×
precision× recall

precision + recall

Unsupervised learning

The aforementioned study by Medina [44] was performed in laboratory conditions,

however using unsupervised techniques and therefore lacking labelling. Without

labelling, standard validation techniques cannot be applied as there is no ground

truth to compare the results with. Here, clustering results are combined and

represented by a co-association matrix as measure of similarity between patterns.

This co-association matrix is visualised in which quadrangular shapes will emerge

if contiguous patterns belong to the same cluster. Validation is performed by

inspection of these patterns, such as the degree of separation of clusters. Different

algorithms will lead to different patterns. However extracted patterns are expected

to be similar if a real structure is present in the analysed data.
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Ambulant stress monitoring systems might have been validated in the lab first,

but require a validation step in the field too. Validating ambulant stress detections

is not a clearly defined process as there is no precise recording of what the

participants’ activities are. The only apparent way for validation are different types

of questionnaires and diaries, filled in multiple times a day.

Kusserow et al. [47] monitored the participants by a diary of daily activities (e.g.

working, transport, conversation) and mood-state questionnaires which had to be

filled in as soon as possible after perceiving stress arousal. They obtained individual

and daily-activity-specific stress-arousal characteristics. The authors calculated

the probability P (A|R) of being in an arousal phase A during a daily activity R and

matched these probabilities to the questionnaires. However most questionnaires

were completed randomly and could not be related to the estimated stress-arousal

phases.

Adams et al. [20] used an ESM study 2.2, enabled by their specifically designed

smartphone app SESAME. Participants received approximately every half hour a

notification to fill in the self-report and were free to fill in additional self-reports.

Researchers increased the prompt frequency to a maximal accepted rate to collect

ground truth data. The sensed data was smoothed over one hour windows, giving

a larger weight to data points close to the self-report time stamp. This data was

compared to normalized self-report values. In practice, many experience-sampling

responses were delayed due to practical reasons of the application or occupation of

the participants, or participants did not respond at all to notifications. Moreover,

periods of time associated with very high levels of stress are under-reported.

Hovsepian et al. [37] present a stress model cstress that wants to provide a gold

standard for continuous stress measurements from wearable sensors. Regarding

self-reports in a field study, they prompted participants at random 15 times a day

to fill in a an Ecological Momentary Assessment 2.2. This EMA self-report serves

as the ground truth for field validation. The cstress model compensates for the

arbitrary lag between the occurrence of a stressor and its self-report logging. The

perception of stress for minute i depends on the perception of stress in minute

i − 1 and, if present, the physiological stress arousal in minute i − 1. On the field

data, an accuracy of 72% was reached to predict the self-report. The cstress

model was applied by Sarker et al. [38] in combination with questions about drugs

and smoking cues. Additionally, they assessed the consistency of the self-reported

responses by Cronbach’s alpha measures.
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2.7 Conclusion

The concept of stress is difficult to capture. It has both a psychological and a

physiological aspect, of which both are complex and caused by multiple factors.

The psychological part has been described by multiple models, of which two

important models have been discussed, i.e. the Demand-Control Model and the

Effort-Reward Imbalance Model. Physiologically, stress can be described by the

activity and balance of the autonomic nervous system. As stress is multifaceted,

different sensing modalities exist.

The focus of this thesis is on the physiological signals, of which heart rate and

galvanic skin response are considered most relevant. Many studies have been

executed on the physiologic reaction of stress and how to apply this knowledge for

stress detection. Several studies especially focus on HRV and its features under

stress. Fewer studies exclusively analyse GSR. However, GSR is frequently applied

in multimodal sensoring systems, which not only includes HRV but also EMG and

respiration.

The interest for stress detection shifted from laboratory conditions to ambulatory,

enabled by the growth of wearable sensor technology. Wearables were first tested

in lab studies, to slowly implement them into daily-life studies. This unveiled two

major problems. First, physiological responses caused by stress can be masked by

responses originating from physical activity. Some studies take the high-activity

data into account, others simply exclude this data. Second, validation of the

ambulant data requires a different approach compared to lab studies. Labelling of

the physiological data is either nonexisting or subjective and possibly unreliable. The

latter problem encourages the use of unsupervised stress detection algorithms.

2.8 Thesis objectives

This thesis explores an unsupervised learning technique, the Self-Organizing Map

(SOM), to avoid the use of subjective labels.

In order to appropriately explore this alternative unsupervised technique, the pre-

sented thesis first focusses on established methods for stress detection. Literature

has shown that in laboratory environment physiological signals can be used to
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detect stress in a continuous and objective way by applying supervised techniques.

Therefore, the first objective of this research is to detect stress with good accuracy

on the given laboratory dataset by application of the supervised learning method

Random Decision Forests and the use of objective labels. The associated questions

are which physiological signals to include and which features to derive for optimal

stress detection. Furthermore, the quality of the wearable sensors during lab phase

has to be reviewed first. If these signals lack quality already during lab phase, they

cannot be expected to improve quality during ambulant phase. These outcomes

are the gold standard for the subsequent unsupervised phases.

The second objective of this thesis is to explore the unsupervised learning technique,

Self-Organizing Map, for stress detection. During the first phase of the exploration

the objective is to test and validate the feasibility of the Self-Organizing Map

on the laboratory dataset One of the most important aspects in this phase is

the selection of the most performant subset of features for training of the SOM.

Subsequent challenges are how to interpret the trained SOM and how to apply it

correctly for stress detection.

In the second phase of the exploration the objective is to test the SOM on the

ambulant dataset for stress detection. Ambulant stress detection is associated with

several challenges. The data acquisition with wearables is less accurate compared

to sensors used in a controlled environment and physical activity influences the

physiological signals. Furthermore, the validation of stress detection by ques-

tionnaires is expected to be poor as it is subjective and delayed. Together with

exploration of the unsupervised learning technique, the exploration of validation

techniques is enforced.
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This chapter presents the context in which this thesis is conducted and the

provided data sets. The thesis is written in cooperation with imec, a research and

innovation hub in nano-electronics, energy and digital technologies. The company

and context of this thesis is presented in section 3.1. Two datasets were provided

for which techniques for stress detection had to be developed. The sensors applied,

participant group and experimental protocol are presented in section 3.2. The last

section (sec. 3.3) gives an overview of how this thesis research is carried out using

laboratory and ambulant datasets.

3.1 imec

Imec is the world-leading research and innovation hub in nano-electronics, energy

and digital technologies. They provide a unique combination of widely acclaimed

leadership in microchip technology and profound software and ICT expertise.

Their world-class infrastructure is leveraged by a local and global ecosystem of

partners across a multitude of industries. Groundbreaking innovations are made in

application domains such as healthcare, smart cities and mobility, logistics and

manufacturing, and energy [48].

Imec partners with different companies, start-ups and universities, bringing together

close to 3,500 researchers from over 70 nationalities. Imec is headquartered in

Leuven, Belgium and also has distributed R&D groups at a number of Flemish

universities, in the Netherlands, Taiwan, USA, China, and offices in India and

Japan. In 2015, imec’s revenue (P&L) totaled 415 million euro and of iMinds

which is integrated in imec as of September 21, 2016 52 million euro [48].

This thesis is a contribution for the Body Area Network (BAN) department of

imec headquarters in Leuven. The data sets are part of Elena Smets’ PhD research.
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Table 3.1: Physiological signals measured by NeXus-10MKII.

NeXus-10MKII

EMG measures muscle tension on Trapezius descendens

on non-dominant side

Respiration rate measured by belt around waist

BVP measured at index finger of non-dominant hand

Skin conductance measured at middle and ring finger of non-dominant hand

Skin temperature measured at pink of non-dominant hand

Her research examines if the stress level of employees can be reduced by giving

qualitative feedback about this stress level, and as such increase their wellbeing

and productivity.

3.2 Sensors and experiments

3.2.1 Sensors

The full experiment consists of two subsequent phases: one lab study and one

ambulant study. During these parts, three different sensors were used. These are

Empatica E4, Health Patch, worn in lab and ambulant phase, and the NeXus-

10MKII, exclusively worn in lab phase (Fig. 3.1).

NeXus-10MKII

The NeXus-10MKII (Mind Media BV, Herten, The Netherlands), later referred to

as Nexus,is not wearable, though highly accurate (Fig. 3.1a, Fig 3.1b). Therefore

this sensor can serve as a gold standard to compare measurements of other sensors.

The following signals were measured: BVP, skin temperature, skin conductance,

EMG and respiration (table 3.1).
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(a) NeXus-10MKII

(b) Skin conductance mea-

surement with Nexus

(c) Empatica (d) Health Patch

Figure 3.1: Sensors of laboratory and ambulant experiments
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Table 3.2: Physiological signals measured by Empatica E4.

Empatica E4

Photopletysmography measured on index finger of non-dominant hand

Skin conductance measured at the wrist

Skin temperature measured at the wrist

Acceleration measured in three dimensions, measured at the wrist

Empatica E4

The Empatica E4 (Empatica, Milan, Italy) is a commercial wearable sensor for

BVP, skin temperature, skin conductance and acceleration (table 3.2). It is worn

as a wrist band (Fig 3.1c). The Empatica E4 is waterproof and has a memory of

+36h.

Health Patch

The health patch is a wearable monitoring system developed by imec (Fig 3.1d).

The sensor is a patch consisting of a sensor node and an electronic module to

record the ECG signal, continuously for seven days. The battery nor the patch

have to be replaced during these seven days.

3.2.2 Test persons

A group of 13 test persons has participated on the experiments (age = 38.5 ±
9.4). There were five male participants and eight female participants. Test subjects

were recruited at a therapeutics center. All test subjects reported stress-related

complaints, but were not diagnosed with any clinical disorder (e.g. depression or

burnout). They were patients at risk, suffering from chronic stress.

3.2.3 Experimental protocol

The test protocol exists of two phases. The first phase is executed under controlled

circumstances in the laboratory, followed by a second ambulant phase.
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Figure 3.2: Experimental protocol.

Laboratory phase

The goal of the laboratory phase is to define a psychophysiological stress profile of

the participants. The participants have to complete three different stress-inducing

tests. During these tasks, the participant were monitored with the NeXus-10KMII,

Empatica E4 and the Health Patch to measure ECG and the different physiological

signals mentioned in table 3.1 and table 3.2. The experiment itself lasts for 14

minutes and is set up as seen in Fig. 3.2. Before the stress test, participants are

asked to fill in a questionnaire about their current stress level on a scale of 1 (not

at all) to 5 (very much). After the tests, a retrospective questionnaire is presented

to determine their stress level between stress tests. A translated excerpt is shown

in table 3.3.

Table 3.3: Retrospective questionnaire of stress tests

1 How stressed did you feel before the start of the tests?

2 How stressed did you feel during the tests?

3 How stressed did you feel during the Stroop test?

4 How difficult did you find the Stroop test?

5 How stressed did you feel during the Calculation test?

6 How difficult did you find the Calculation test?

7 How stressed did you feel during the Speech test ?

8 How difficult did you find the Speech test?

9 How relaxed did you feel during breaks?

10 How stressed do you feel at this moment?
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During the Stroop Color Word Test words of colours are written in a different

colour as the colour the word represent, e.g. the word blue is printed in red ink.

The test person has to say the colour of the ink as correct and as fast as possible.

The test person has to suppress the instinctive response of saying the colour the

word represents. The correct answer is red in this example. Additional stress could

be added when the test supervisor urges the test person to be faster or to say

wrong when a mistake has been made.

The second test is a calculation test in which the participant gets a large number

and continuously has to subtract the number 7. In the same manner as the Stroop

test, additional stress can be added by the test supervisor.

During the stress talk test, the participant has to talk about a very stressful or

emotionally negative event in his life. The participant has to recall his or her

feelings related to this event. The test supervisor could ask questions such as How

did you feel?.

Ambulant phase

The ambulant phase is immediately started after the laboratory phase and lasts four

days. During this period the Empatica E4 and the Health Patch are worn by the

participant and activated. The Empatica can be taken off over night. The Health

Patch stays attached and continues recording during four days. Both sensors are

waterproof, though participants cannot go swimming or bathing. During these four

days a questionnaire for self-observation was filled in. The questionnaire includes

information about activity, food intake, the level of stress and physical complaints.

This information is given by the participant hourly.

3.3 Goal and general approach for conducted

experiments

The laboratory and ambulant data sets will be used over different phases of

research in this thesis. The goal is to explore the performance of an unsupervised

learning technique for ambulant data.
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3.3 Goal and general approach for conducted experiments

The first phase consists of training a supervised model with the laboratory data

and assessing its performance with objective labels (chapter 4). The outcome of

this phase serves as the gold standard for subsequent phases. The second phase

consists of training an unsupervised model with the laboratory data to investigate

the feasibility of the unsupervised technique (chapter 5). Therefore, the ambulant

data is applied for training of the unsupervised model (chapter 5, from sec. 5.4).
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This chapter presents the model based on supervised learning with Random

Decision Forests (RDF) to detect stress in a controlled environment. The goal is

to provide a gold standard for unsupervised learning outcomes of chapter 5.

The framework for classification is the Random Decision Forest model (RDF),

explained in section 4.1. As the RDF model is a supervised classification method,

it requires features and labels. A featureset for Temperature signals is already

available. However, the featureset for GSR signals is further expanded (sec. 4.3).

The combined feature sets are fed to the model. The labelling is split in an objective

labelling (sec. 4.4.1) and a subjective labelling (sec. 4.4.2). The objective labelling

is based on the alternation of relax or stress states in the experiment, while the

subjective labelling is based on self-reported levels of stress. The output of the

model is a classification into relax or stress states. Depending on the type of

labelling, the output is an objective (sec. 4.5.1) or report-based classification

(sec. 4.5.2). During the experiments in a controlled environment, test persons also

wore wearable sensors Empatica and Health patch. In section 4.6 it is examined if

these wearables deliver reliable and useful signals for stress-relax classification.

4.1 The Random Decision Forest model

Several algorithms exist to detect stress. The random decision forest model holds

several advantages. First, the method is suitable for large feature sets as no feature

selection is necessary. Second, RDF has a large robustness and generalisation

power. The reason is that the outcome of the RDF is averaged out over an

ensemble of decision trees, in which a certain degree of randomness is applied

during training. The basis of the algorithmic pipeline is explained in this section

and is based on the studies Random Forests by Breiman [49] and Decision Forests:
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Figure 4.1: (Left) General structure of a decision tree. (Right) Testing of input data. Figures

adapted from [50]

A Unified Framework for Classification, Regression, Density Estimation, Manifold

Learning and Semi-Supervised Learning by Criminisi, Shotton and Konukoglu [50]

.

4.1.1 Framework

A random decision forest is a collection of decision trees. Each decision tree

organises a series of questions called split functions which are embedded within

the root and split nodes (Fig. 1 (Left)). The split function evaluates incoming

data points v of the analysed signal. The user can define the features space

F to characterise these data points. A data point is then denoted by a vector

v = (x1, x2, ..., xd ) ∈ F , where xi are its feature values. At each node, a feature

value is compared with a node-specific threshold τ . Depending on the result, the

data point is sent to the left or right child node. There, another feature and

threshold is considered. The process continues until a leaf node is reached.
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4.1 The Random Decision Forest model

Training

Forest trees are automatically constructed during forest training. A tree is built

up incrementally from root to leaves using training data and an objective function.

Training data consists of a set of data points S0 which are each associated with

a label. A label is a discrete or continuous value adding information to the data

point. During training, data is split to the left and right branch of a node. The

objective function is measured at each node throughout the training procedure.

Generally, the applied training objective function supports on the concept of

information gain. It indicates how effective the input data and associated labels

get distributed from parent node to child nodes. Tree training attempts to find

those parameters that maximise the information gain at this node. Randomness

is introduced by only presenting a subset Tj of the complete parameter space at

each node optimalisation. Hence, the amount of randomness is determined by the

ratio |Tj |/ |T |.

During split node optimisation, nodes become leaves when one of the stopping

criteria has been fulfilled. After conversion to leave nodes, each leaf node has

received a set of training points. Training points in the same leaf are similar,

meaning the feature values of these points are alike. They all passed the same

split nodes and were evaluated with the same result by the split functions. Next,

a label prediction model is derived from the labels associated with the data points

within the leaf. The probability of a certain label at a leaf is proportional to the

number of data points within this leaf associated with that label.

Testing

During testing, a test data point without a label is presented at the root (Fig. 4.1

(Right)). Based on its feature values, the split nodes guide the unseen data point

to a leaf. This leaf contains training points with similar feature values as this new

data point. It is reasonable that this test point should receive a label similar to

the labels of the training points in this leaf. Thus the label of this test point is

predicted with the label statistics of the indicated leaf.

Since each tree is trained independently and randomly, the trees are decorrelated.

As a consequence, every tree has a different predictive outcome for the same test
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(a) (b)

Figure 4.2: Forest probability distribution. (a) Posterior probability distributions of four regression

trees. (b) Forest distribution created by averaging all tree distributions.

data point. The posterior distributions of the identified leaves are summed and

averaged out. In this way a single forest probability distribution is obtained from

all the tree posteriors. For a continuous regression problem, the forest distribution

is formulated as

p(y |v) =
1

T

T

∑
t=1

pt(y |v) , (4.1)

where p(y |v) is the forest distribution, pt(y |v) the posterior distribution of the

tth tree and T the total number of trees in the forest. Figure 4.2 illustrates

this principle of averaging probability distributions in the case of a continuous

output variable y. For a test data point v the corresponding tree distributions are

pt(y|v). Some leaves have distributions with a lower variance. Their prediction is

more confident. The combined forest distribution is stronger influenced by more

confident tree distributions. Hence the forest will follow the decision of more

informative trees. This approach of decorrelation and combination assures the

generalisation power and robustness of a random decision forest.

4.1.2 Implementation

The model of random decision forests is a framework suitable for a diversity of

problems. To accommodate the framework to a certain type of problem, it requires

specific properties of the data points. These are the features extracted from the
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4.2 Physiological signals

data points and the labels associated with the data points. The set of features that

is chosen and the type of labelling determine the outcome of the decision forest.

The next sections present the features derived from the measured physiological

signals and the labels used for classification.

4.2 Physiological signals

The NeXus 10-MKII (MindsMedia, Herten, The Netherlands) is able to monitor

a number of different physiological signals. These include GSR, temperature,

respiration rate, electromyography (EMG), blood volume pulse and heart rate.

For data analysis in the controlled environment only GSR and temperature are

taken into account. Other signals measured during experiments in the controlled

environment are excluded because of the following considerations. Respiration

rate and EMG are not measured in the ambulant phase, therefore analysis of

these signals in the controlled environment will not contribute to the analysis in

ambulant phase. Next, blood volume pulse does include information about heart

rate and heart rate variability. However, an electrocardiogram (ECG) is more

accurate as it is less prone to movement artifacts [51]. As ECG is only recorded

by the wearable Health patch, BVP measured by the Nexus is not taken into

account. Nexus also measures temperature for which a large feature set is already

developed by Imec. Therefore temperature is included without further expanding

the feature set. The remaining physiological signal is GSR. It is an important

signal as it is less influenced by respiration than ECG [52]. Moreover, GSR seems

least influenced by movement in comparison to other physiological signals [28].

4.3 Feature set of Galvanic Skin Response

As mentioned in section 4.1, the Random Decision Forest relies on features to

build up a model. The feature set is based on both GSR and Temperature signals.

An extensive feature set for Temperature is already developed by Imec. The feature

set for GSR is extended in this section. A few GSR features were already provided

by Imec (table 4.1). Another part of the GSR feature set was designed for this

thesis (table 4.2), based on performant GSR features in [31]
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Table 4.1: GSR feature set, implementation by Imec

SC L mean SC level

SC PH signal power in a phasic SC signal

SC RR SC responses rate

SC DIFF2 signal power in second difference from SC signal

SC R number of SC responses

SC MAG sum of the magnitudes of SC responses

SC DUR sum of the duration of SC responses

SC AREA sum of the area of SC responses

calculated as (SCMAG × SCDUR)/2

Table 4.2: GSR feature set, additional to current feature set

Slope slope of the regression line of the signal

Percentiles PH percentiles of peak height: 25%, 50%, 75%, 85% and 95%

Mean PR number of peaks per window

(only peaks with height ≥ 50% taken into account)

Median PR median of instant peak rates,

instant peak rate calculated as 1/T
with T number of seconds to previous peak

(only peaks with height ≥ 50% taken into account)

4.4 Labelling of feature set

4.4.1 Objective labelling

During the stress experiment, two possible phases are alternated, a Relax phase

and a Stress phase. In order to classify unseen data in these two phases, the

training data is split and labelled according to the Relax and Stress phase. This

results in a binary classification problem. As the labelling relies on the known

alternation of Relax and Stress, it is named objective labelling in this thesis. This

is the counterpart of subjective labelling, described in section 4.4.2.

In the same manner as for feature calculation, the data is divided into time
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4.4 Labelling of feature set

Figure 4.3: Objective labelling. White background denotes Relax phase and pink background

denotes Stress phase. Black curve is the normalised GSR signal.

windows. For every time point, it is known whether the test person is in a relax

or stress phase of the stress experiment and the window is labelled accordingly.

The labelling can be seen in Fig. 4.3. A white background denotes Relax phase

and pink background denotes Stress phase. The black curve is the normalised

GSR signal. The first pink area corresponds to the Stroop test, the second to the

Calculation test and the last pink area is the Speech test.

4.4.2 Subjective labelling

Subjective labelling is based on the perceived level of stress by the test persons

during the stress experiment. Participants filled in a questionnaire after perfoming

the stress tests. They indicated how stressed or relaxed they felt before, during

and after the tests. A discrete scale of 1 to 5 is used where 1 indicates ’not at all’

and 5 indicates ’very much’. An example of the questionnaire is given in table 4.3,

with TP XY as a fictious test person.

Every test person fills out the questionnaire differently, with rather moderate or

rather extreme values. Therefore the stress levels are normalised over every test
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Table 4.3: Questionnaire after stress tests phase 1 with normalised stress level

TP XY rating normalised stress level

1 How stressed before the start 1 0.0

2 How stressed during tests 2 0.33

3 How stressed during the Stroop test 3 0.66

4 How difficult is the Stroop test 4 /

5 How stressed during the Calculation test 2 0.33

6 How difficult is the Calculation test 3 /

7 How stressed during the Speech test 3 0.66

8 How difficult is the Speech test 4 /

9 How well relaxed during breaks 2 1.0

10 How stressed at this moment 1 0.0

person to a value between 0 and 1.

The normalisation takes into account all the ratings regarding stress levels (ques-

tions 1,2,3,5,7 and 10). Questions regarding difficulty of the test are not taken

into account as this complicates the normalisation. Question 9 ’How well relaxed

during breaks’ examines level of relaxation and not stress. Therefore the level of

stress during breaks is calculated as

stress level = 6− relaxation level . (4.2)

If a test person is very relaxed during breaks and rates a break with 5 (’very

much’), the level of stress is 1 (’not at all’).

The normalised stress level is then calculated as

normalised stress level =
stress− stress.min

stress.max − stress.min
. (4.3)

Based on the subjective rating in the questionnaire, the different phases of the

stress experiment are labelled. Unlike objective classification in section 4.4.1 it

is possible to work with multiple levels of stress. The subjective stress levels are

illustrated in Fig. 4.4. The red curve depicts the normalised level of stress for every

time window and the black curve is the normalised GSR signal. The background

colors only indicate the Relax and Stress phases which have no influence on the

subjective labelling.
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4.5 Classification

Figure 4.4: Subjective stress level. Red curve depicts the normalised level of stress for every time

window. Black curve is the normalised GSR signal.

A binary labelling can be obtained by rounding the normalised stress levels to

0.0 or 1.0 and assigning these values to time windows as labels (Fig. 4.5). A

three-level classification is obtained by rounding normalised stress levels to 0.0,

0.5 or 1.0. A four-level classification means rounding to level 0.0, 0.33, 0.66 or

1.0 and a five-level classification to 0.0, 0.25, 0.5, 0.75 or 1.0. With more possible

levels, the difficulty of classification increases as classification needs to be more

precise. This means the training set needs to be large enough and contain enough

samples of every class to train the model well. As the given dataset with 13 test

persons is fairly small, a binary classification is performed.

4.5 Classification

Classification is assigning samples from an unseen data set to one of the possible

classes [53]. The quality of the model is validated by the performance of the

classification outcome. Two models are tested for objective and report-based

classification based on different labelling. They are validated by a leave-one-

participant-out (LOO) cross validation scheme. This means the dataset is split in

n folds, with n being the number of participants. The training set to train the RDF
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Figure 4.5: Subjective labelling. Red curve depicts the normalised level of stress for every time

window, clipped to 0.0 or 1.0. Black curve is the normalised GSR signal.

Table 4.4: Definition of sensitivity and specificity

True positive TP number of stress samples classified as stress

False negative FN number of stress samples classified as relax

True negative TN number of relax samples classified as relax

False positive FP number of relax samples classified as stress

Sensitivity TP/(TP+FN)

Specificity TN/(TN+FP)

model consists of n-1 folds. Testing is performed on just one fold. This procedure

is repeated n times, testing every single fold. For the dataset used in this thesis,

one fold contains the data of one test person. The classification outcome of the

LOO cross validation is the average of n testing procedures.

The implemented measure for classification performance of one test person is the

average of sensitivity and specificity. Sensitivity is a ratio indicating how many

stress samples are classified as stress. Specificity is a ratio indicating how many

relax samples are classified correctly. The calculation of both measures is shown

in table 4.4.

38



4.5 Classification

Figure 4.6: Objective classification. Blue curve represents the classification outcome. Black curve

is the normalised GSR signal.

4.5.1 Objective classification

Objective classification is a classification procedure based on objective labels. First,

the feature set of for GSR signals is used.

To maximise the classification performance, the window length and window shift

are optimised. Therefore, the model is run with different sets of window length and

window shift. The iteration over the parameter sets is repeated three times. Next,

classification outcomes are averaged over these three iterations. The maximal

classification performance is reached for a window length of 50s and a window shift

of 20s. With these parameters, the averaged classification outcome of LOO cross

validation only using GSR is 82.66%. The outcome of classification is depicted in

figure 4.6. Stress and relax phases are indicated by background color, toghether

with the normalised GSR signal. The blue curve represents the classification

outcome.

The classification procedure is repeated in the same manner, though adding the

Nexus temperature signals and its features. The calculated features are mean,

median, standard deviation, maximum, absolute mean, skewness, kurtosis, variance,

amplitude range, interquartile range and area of the signal. Window length of 50s

and window shift of 20s are applied. The averaged classification outcome of LOO
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Figure 4.7: Feature importances during RDF training with features derived from GSR and

temperature

cross validation is 82.36%. The performance is in the same range as when only

using GSR features for classification. This result is explained by the fact that the

RDF model mainly selects GSR features for classification. As an example, the

importance of every feature during a classification test of one user is extracted.

The sensitivity in this test is 94.44% and the specificity is 89.29%. Their average

is the classification performance, 91.86%. The feature importances of all features

of physiological signals GSR and temperature are displayed in Fig. 4.7. As adding

information of the temperature signal does not increase classifcation performance,

classification is based only on GSR signals.

4.5.2 Report-based classification

Report-based classification is based on the same feature set as for objective

classification, though labels are subjective.

As mentioned in section 4.4.2 a two-level classification is chosen. Therefore the

same performance measures as in section 4.5.1, sensitivity and specificity, can
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4.6 Controlled environment with wearables

Figure 4.8: Report-based classification. Red curve is the subjective labelling. Blue curve is the

classification outcome.

be used. Also the same window settings are used, a window length of 50s and a

window shift of 20s. Classification performance reaches only 40.46% with averaging

over LOO cross validation results. An example of report-based classification can

be seen in Fig. 4.8. The red curve is the subjective labelling and the blue curve is

the classification outcome. White and pink background indicate Stress and Relax

phases.

4.6 Controlled environment with wearables

Previous section 4.5.1 showed that in a controlled environment with state-of-the-

art material the developed model reaches a good classification performance of

82.66%. In this section it is investigated if the same model can be applied in a

controlled environment on signals from wearable sensors. To be able to apply the

Nexus-based classification model onto wearable sensors, the physiological signals

from Nexus and wearable sensor need to be similar. Therefore their correlation is

reviewed first.

The first subsection examines the correlation of the GSR signal from the Nexus
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sensor with the Empatica wristband. The second subsection examines the correla-

tion between the heart rate signal derived from the Nexus sensor and from the

Health patch.

4.6.1 Empatica

During the stress experiments, GSR signals from Nexus and Empatica are mea-

sured simultaneously. However, timestamps in the data logging from both sensors

may differ as their internal clock is not synchronised perfectly. To compare GSR

signals from Nexus and Empatica, the signals first need to be synchronised. Syn-

chronisation cannot be performed by matching the signal appearances. The GSR

signal from the Nexus sensor is measured at the fingertips while the GSR signal

from the Empatica sensor is measured at the wrist. This means the signal differs

as they are measures at different sweat glands. Therefore synchronisation is based

on matching the heart rate signal from both sensors as heart rate is the same

throughout the body, independent from the measurement location (Fig. 4.9a).

From the synchronised heart rate signals, the timeshift needed for synchronisation

of the GSR signals can be deduced (Fig. 4.9b).

The GSR signal from both sensors show some similarity. However, this is only the

case for two test persons of the data set. The measurements by the Empatica

wristband often lack quality, as for instance only a few datapoints are recorded.

As measured GSR signals from Nexus and Empatica differ too much, the RDF

model (sec. 4.1) trained on Nexus data cannot be applied onto Empatica signals.

Moreover, the RDF model cannot be trained on GSR signals from Empatica as

there is not enough qualitative data available. It is concluded that the RDF model

developed in the controlled environment, cannot be applied on the Empatica

data.
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4.6 Controlled environment with wearables

(a) Heart rate

(b) GSR

Figure 4.9: Synchronisation of Nexus and Empatica based on heart rate with resulting synchro-

nised GSR signal.
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4.6.2 Health patch

The synchronisation procedure is repeated for the wearable Health patch. As the

Health patch measures ECG solely, the synchronisation is only performed for heart

rate. Heart rate is the same throughout the body, thus it should provide good

synchronisation possibilities. Adequate synchronisations were attained for seven

test persons. The result for one of the test persons is depicted in Fig. 4.10. A

close-up of an ECG signal can be seen in Fig. 4.11 .

The Nexus is a reliable and stable sensor and can be seen as the ground truth

sensor for the wearables. As the Nexus and Health patch signal ressemble so well

after synchronisation, the signal from the Health patch is of good quality. Thus,

it is possible to use the Health patch signals for further data analysis.

Figure 4.10: Synchronisation of Nexus and Health patch based on heart rate signal.

In order to classify on ECG signals, heart rate variability features in time and

frequency domain are calculated. These features are listed in table 4.5. They are
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Figure 4.11: Detailed view on ECG signal of Health patch.

based on the inter-beat interval or so-called RR interval of the ECG signal. The

peaks in the signal are called R peaks and thus the time interval between two

peaks is the RR interval. The mean heart rate is calculated as

mean HR =
60× fsampling

average RR interval
[bpm] .

As derived in section 4.5.1 a window size of 50s and window shift of 20s is applied,

giving optimal test results. The ideal window size and shift might differ for ECG

signals, but is not taken into account as an adaptive window size and shift implies

overfitting the data. Classification based on the ECG signal of seven test persons

measured by the Health patch sensor reaches an average performance of 76.89%.

The average is calculated out of three repeated LOO cross validations. The

importance of every feature during training, of one LOO iteration, can be seen in

Fig. 4.13. Based on the graph, the most important features are two time domain

features. These are mean heart rate and RMSSD. The fact that these features are
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Table 4.5: ECG feature set

Time domain features

mean HR mean heart rate [bpm]

SDNN standard deviation of all normal RR intervals

(i.e. NN intervals) [ms]

RMSSD root-mean-square successive difference

of all normal RR intervals [ms]

Frequency domain features

LF HRV low frequency HRV (power in the 0.04-0.15 Hz band)

HF HRV high frequency HRV (power in the 0.15-0.4 Hz band)

LFHF HRV ratio (LF HRV) / ( HF HRV )

equally important is because of their high negative correlation. This can be visually

confirmed in Fig. 4.12 and has a value of -0.9934 for TP01. As a comparison,

the correlation between mean heart rate and LFHF is 0.3305. A classification

example of one test person is depicted in Fig. 4.14 with the normalised mean

heart rate signal. The signal has a clear increase during stress tests and decrease

during relax phases.

Stress classification based on GSR signals of the Nexus sensor reached on average

82.66%, by training and testing on a dataset of 11 test persons. Seen the fact

that only seven test persons are included in the ECG dataset, the ECG based

classification result of 76.89% is promising. Smets et al. [45] had a similar experi-

mental set-up and reported a maximum performance rate (for non-personalized

models) of 79.2% using multiple physiological signals and RDF. The trained

RDF model would get more robust when the input data set increases and thus

higher classification results would be expected. Considering the current result as

satisfying, a stress classification can be done based on ECG signals measured by

Health patch. Therefore the classification procedure in the ambulant phase will

also include ECG based features.
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Figure 4.12: Normalized features of ECG Health patch.

Figure 4.13: ECG feature importance during RDF training in ranked order.

47



4 Supervised learning

Figure 4.14: Classification on ECG signal of Health patch (blue) with normalised mean heart

rate (black) as one of the most important features.

4.6.3 Combined model based on GSR Nexus and ECG Health patch

Classification based on the GSR signal of the Nexus sensor reaches an average

performance of 82.66%. Classification based on the ECG signal of the Health

patch sensor reaches a lower average performance of 76.89%. It is investigated if

a combined model based on both GSR of Nexus and ECG of Health patch reaches

a higher performance. A disadvantage of this study is that the dataset can only

contain seven test persons, as the ECG signal of only seven test persons could

be synchronised with the Nexus sensor. Nonetheless, an averaged classification

performance of 83.04% is reached. This result outperforms the classification

based on ECG features only, with an extra 6.15%. This means GSR features

greatly contribute to the classification model. Moreover, the performance of the

combined model is higher than the model based on solely GSR signals of Nexus.

Thus ECG features contribute positively to the classification result. The difference

in performance is on average less than one percent, though one has to take into

account the relatively large difference in data set. Classification outcome for one

test person and feature importances for the RDF model are displayed in Fig. 4.15.

In this test case, the classification rate is high with 92.87%, a sensitivity of 94.44%

and specificity of 91.30%. The most important feature is mean heart rate of the

ECG signal. Second and third are phasic skin conductance and skin conductance
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level. The GSR features form the basis of the RDF model, with the mean heart

rate as a crucial feature.

(a)

(b)

Figure 4.15: Classification of TP05 with GSR of Nexus and ECG of Health patch.

Performance reached sensitivity of 94.4% and specificity of 91.3%.
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4.7 Conclusion

The Random Decision Forest model has proven to be a suitable model as it does

not require prior feature selection. Therefore all derived features could be fed to

the model, without losing accuracy.

First, the input signals of Nexus were analysed by feature derivation and RDF

training and testing. Outcome of objective classification with GSR features was

82.66%. A comparable result was found with GSR and temperature features,

indicating temperature features did not add information to the model. This was

confirmed by reviewing the feature importances during RDF training. The report-

based classification performed poor with a performance of 40.46%. This confirms

that there is a weak relation between physiological sensor measurement and

subjective stress levels.

As the RDF model performed well with Nexus data and objective labels, the

subsequent step was to apply the procedure onto wearable data. Not enough

qualitative data of Empatica was available. Therefore only data of the Health Patch

was analysed by several ECG features, which reached a classification performance

of 76.89%.

Combining GSR features from Nexus and ECG features from Health Patch was

found to be performant with a classifiation performance of 83.04%. GSR features

contributed most to the classification model, aided by the ECG features mean

heart rate and RMSSD.

The results found with supervised learning with RDF were successful and serve as

the gold standard for unsupervised learning further on.
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Ambulant data is measured with wearable sensors during the daily life activities of

test persons. This has consequences related to the acquired data and related to

the gold standard of labels.

Wearable sensors are less accurate as they generally have a lower sampling rate as

fixed bulky sensors. Also, wearable sensors might detach as a person is moving and

measuring points are lost. Moreover, movement of the test person adds physical

activity in the signal and influences the acquired data.

Another problem of the ambulant dataset is the given questionnaire as it only

provides a course, unreliable labelling of the data. The questionnaire demands a

score for stress and complaints every hour. First of all, the scoring is subjective.

Second, hourly labelling is very unprecise. Third, it is possible a test person only

fills in the questionnaire at the end of the day. Therefore, ambulant data requires

a different approach for detection of stress as opposed to sensor data from a

controlled environment.

Although many studies have already reported these issues regarding subjective

labelling in an ambulant environment [20, 4], these problems are rarely addressed

in the analyses.

In the current research an algorithmic pipeline based on the unsupervised learning

algorithm Self-Organizing Maps is presented in order to rule out the subjective

labels. This technique only relies on the physiological feature data, not on the

corresponding labels.

The first stage is mapping the higher-dimensional feature space onto a two-

dimensional grid, while preserving the topological relationships within the data.

The algorithm is based on the Self-Organizing Map (SOM), explained in section 5.1.

Measurement data is mapped by to algorithm to different areas on this grid. The
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second stage consists of exploring these areas and clustering them into defined

regions, as seen in section 5.2. Next, the statistics of the clusters are analysed

to locate regions in the grid that will correspond to relax and stress phases. To

validate the functional concept of this algorithmic pipeline it is applied onto the

dataset of the controlled environment. The outcome of the SOM and clustering

is compared to the objective labels to calculate its performance for stress dection

(section 5.3).

5.1 The Self-Organizing Map

Self-Organizing Maps represent higher-dimensional data as a globally ordered

two-dimensional map. The SOM can be seen as an elastic grid of nodes fitted to

the input signal space, while preserving the topological relationships of the signal

space [54] .

Here, the input signal space is an n-dimensional feature space. Every node i is

associated with a weight vector wi = [µi1,µi2, ...,µin]
T ∈ Rn. The input feature

vector is xstim = [ξ1, ξ2, ..., ξn]T ∈ Rn [55]. The feature vector xstim is mapped

to the best-matching node c by comparing it with all weight vectors wi . As a

metric of similarity, the smallest Euclidean distance is searched:

c = arg min
i
||xstim −wi || (5.1)

During training, topological relationships of the input feature space are projected

onto the two-dimensional SOM by adapting the weight vectors wc . Nodes that are

topographically close to the best-maching node c are also activated to learn from

the same input xstim. This results in a smoothing effect on the weight vectors of

nodes in the neighbourhood and eventually leads to global ordering of the map.

Input vectors are presented to the map in a random order. Given xstim at time t,

the update of the weight vector wi of node i is as follows:

wi (t + 1) = wi (t) + hci (t)[xstim(t)−wi (t)]. (5.2)

The initial values of the wi (0) can be arbitrary.

52



5.1 The Self-Organizing Map

The neighbourhood function hci (t) can be defined in terms of the Gaussian

function:

hci (t) = α(t) · exp

(
−
||rc − ri ||2

2σ2(t)

)
, (5.3)

with 0 < α(t) < 1 the learning-rate factor and σ the width of the kernel, both

decreasing monotonically in time. rc ∈ R2 and ri ∈ R2 are the location vectors in

the SOM of nodes c and i , and with increasing ||rc − ri ||, hci → 0.

Self-Organizing Map of lab data

To better visualize and understand the functionality of the SOM, the input feature

space is two-dimensional, thus consisting of two features. The chosen features are

those found most important for stress detection in Chapter 4. These are phasic

skin conductance (SCph) derived from the Nexus GSR signal and mean heart rate

from the Health patch ECG signal (Fig. 4.15b).

A leave-one-participant-out procedure is applied for training the SOM. The learning

rate α in Eq. 5.3 is set to 0.05. Feature vectors from all TP, except one, are fed to

the SOM until convergence. Weight vectors of nodes are adapted during training,

meaning they shift position in the feature space. The trained SOM after a different

number of training iterations is illustrated in Fig. 5.1. It is noted that every figure

represents the training of a SOM that started from different random initialisation

weights. Thus these figures are not part of the same training sequence. The node

colour represents the node’s position along one feature axis in feature space. For

illustration the axis of SCph is chosen. The brighter red its colour, the more a

node is shifted towards higher SCph values. The darker blue, the more a node is

shifted towards lower SCph values. The evolution along the axis of mean HR is

similar.
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Figure 5.1: Training of SOM after different number of iterations.

Every figure started from a different set of initial random weights.

Smoothness of clustering increases with number of iterations.
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5.2 Clustering

Initially, node weights are random, thus nodes have random positions in feature

space. At three iterations, several nodes became dark blue, meaning that they

shifted towards lower SCph values. After four iterations, it can be seen that

neighbouring nodes start pull each other to similar locations in feature space.

Already at five iterations a clear pattern of two clusters emerges in the SOM.

As declared before, the SOM becomes smoother with an increasing number of

iterations.

The maximum number of iterations is set to 400, at which the SOM should be

converged. The nodes of the SOM are settled at a location in feature space. The

goal is that some nodes are driven to locations in feature space characterizing

stress and others to areas characterizing relax. The next step is to outline these

areas by clustering.

5.2 Clustering

Patterns have emerged in the SOM. The goal of clustering here is to outline

these patterns. Every node of the SOM is assigned to a cluster by a clustering

method based on Variational Bayesian Gaussian Mixture [56]. The advantage

of this algorithm is the possibility to define a maximum number of clusters.

The implementation is based on the scikit-learn package of Gaussian Mixture

Models [46]. By varying the concentration parameter weight concentration

prior, the effective number of active components (i.e. number of clusters) can be

influenced. Setting this parameter to a low value will make the model put most of

the weight on just a few components. The weights of remaining components are

set very close to zero. Despite the automatic search for an optimal number of

clusters, the main interest is to find a stress and a relax cluster. Therefore, the

maximum number of active components is set to 2 and the weight concentration

prior to a high value of 102. The algorithm is forced to find two clusters. In a

later stage, the parameters could be relaxed to find multiple clusters, representing

for example different levels of stress. Furthermore, the weights are initialized

random (init params to random). The mean precision prior is set to 10−2. It will

concentrate the means of each clusters around the mean of the node positions.

Other parameters are left at default, such as the covariance prior is None as no

assumptions are made on the covariance of the clusters.
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Examples of clustering outcomes on a trained self-organizing map can be seen

in Fig. 5.2. Labels A (blue) and B (purple) represent the assigned cluster of the

nodes. The form of the clusters correspond to the colors of the SOM, representing

the distribution of feature values of mean heart rate.

Figure 5.2: Clustering outcomes on trained SOM. Left: colors represent distribution of feature

values on mean heart rate. Right: Labels A (blue) and B (purple) represent the

assigned cluster of the nodes.

Cluster identification

Training of the Self-Organizing Map is unsupervised. Thus it is not known to which

state a cluster belongs, stress or relax. To derive the state of a cluster, statistics

from both clusters are analysed. The location in feature space, thus feature values,

of all nodes within one cluster are gathered. These are represented in a boxplot.

This is repeated for every cluster from each trained SOM (Fig. 5.3).
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5.2 Clustering

Figure 5.3: Boxplots of features values within clusters. Depending on the dataset, cluster A

contains high SCph and mean HR values or it contains lower SCph and mean HR

values. Vice versa for cluster B.
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5 Unsupervised learning

A clear pattern can be seen in between boxplots of different test persons. One

cluster has high SCph and mean HR values, while the other cluster contains lower

SCph and mean HR values. From Fig. 4.15 it can be derived that during stress

tests both SCph values and mean HR are high. This prior knowledge is applied

to define to which state the cluster boxplots of TP01 belong. Boxplot on the

left is recognised by prior knowledge as corresponding to relax and boxplot on

the right as stress. Cluster boxplots of TP01 is taken as a reference (Fig. 5.4).

Cluster boxplots of other TPs are compared to these of TP01. Corresponding

boxplots define corresponding states of the clusters. To determine corresponding

clusters of TP01 and TPxx, the Root Mean Squared Error (RMSE) between the

average of boxplots are compared. Corresponding clusters have a minimum RMSE

between their boxplots.

Figure 5.4: Boxplots of features values within clusters, from data of leave-out TP0. These

boxplots are taken as reference boxplots to compare with. Boxplot on the left is

recognised by prior knowledge as corresponding to relax and boxplot on the right as

stress.

The next step is to calculate the performance of the SOM and clustering procedure.

For simplification of this step, clusters are assigned such that cluster A of every

SOM will be corresponding to the relax state.
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5.3 Performance

5.3 Performance

To determine the feasibility of the algorithmic pipeline for stress detection, a

performance measure has to be calculated, based on the feature set GSR - SCph

and ECG - mean HR. First, it is examined how well the SOM has been clustered

(section 5.3.1). Second, the testing performance is calculated on how well the

algorithm can detect stress based on a clustered SOM (section 5.3.2). No labels

have been used for training the SOM, nor clustering. The objective labels are

introduced exclusively for performance calculations. The performance rate or

classification performance is the average of sensitivity and specificity, as explained

in table 4.4. A similar leave-one-participant-out (LOO) validation as in Chapter 4

is applied.

As the testing performance measure is established, it is possible to determine the

optimal grid configuration of the Self-Organizing Map (section 5.3.1).

5.3.1 Clustering Performance

To calculate clustering performance, the objective labels of the training test

persons are compared to the delineated clusters. Label ’0’ corresponds to a relax

phase and label ’1’ corresponds to a stress phase (sec. 4.4.1). The left figure in

Fig. 5.5 shows the clusters with overlayed labels of the training test persons. It is

noted that cluster names A and B have switched compared to Fig. 5.2 as cluster

A is defined to represent the relax state. It is chosen to perform a LOO validation,

thus leaving one TP out, as the SOM and subsequent clusters for testing purposes

are also formed by leaving one participant out and not calculated based on all TP.

After ten runs of LOO validation, the clustering performance has an average of

74.91% and a standard deviation of 6.36%.

5.3.2 Testing Performance

The calculation of testing performance is analogue to sec. 5.3.1, though using

the labels of the testing TP. The right figure in Fig. 5.5 shows the clusters with

overlayed labels of the test person. After ten runs of LOO validation, the testing

performance has an average of 77.63% and a standard deviation of 7.82%. The
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5 Unsupervised learning

testing performance is the average of sensitivity and specificity. The sensitivity,

indicating the ability to recognize stress phases, has an average of 85.64% and

specificity, the ability to recognize relax phases, has an average of 69.62% after 10

LOO runs. It is clear that the overall testing performance is decreased by the lower

rates of specificity, the ability to detect relax phases. Making a clear distinction

between stress and relax is generally a very difficult task. Although sensitivity can

be seen as the more important factor, as the goal is to detect stress.

A performance of 77.63% by unsupervised learning is considered satisfying com-

pared to 83.04% attained by supervised learning with GSR and ECG features.

Therefore, the current approach of unsupervised learning with Self-Organizing

Maps is explored further.

Figure 5.5: Left: Clustering performance. Right: Testing performance.

Labels A and B represent the assigned cluster of a node. Cluster A is associated

with the relax state and cluster B is associated with the stress state. Labels 0 and 1

represent the objective labelling of section 4.4.1. They respectively correspond to

relax and stress phases.
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5.4 Stress detection in ambulant data

5.3.3 Optimal grid configuration

Using the subset mean HR, RMSSD on the laboratory data, a LOO validation

has been run three times over a set of different grid parameters. All combinations

of number of SOM rows and numbers of SOM columns in [10,20,30,40,50] have

been executed. Averaging the outcome of three LOO runs, gave an optimal testing

performance of 74.0% with standard deviation of 11.2% for a grid configuration

of 40× 20.

5.4 Stress detection in ambulant data

This section focusses on stress detection with the algorithmic pipeline based on

Self-Organizing Maps in ambulant data. First, the ambulant input data is analysed

by preprocessing it (sec. 5.4.1) and investigating the correlation between signals

(sec. 5.4.2). Next, the input data is applied onto a SOM for training. Visually, it

can be seen that samples from night-time are mapped onto the same area of the

SOM and likewise for samples from day-time (sec. 5.4.3). Night-time samples are

neglected and the nodes of the SOM are clustered.

The validation of the algorithmic pipeline consists of four phases. The quality of

clustering is investigated by their cohesion and separation or average silhouette

coefficient (sec.5.4.4). An optimal feature subset is defined both in terms of

silhouette coefficients of ambulant data as in terms of classification performance

on the laboratory data. Next, it is demonstrated that the outlined clusters are

not random. Instead, similar patterns are repeated in clusters from different days

and different participants (sec. 5.4.5). Moreover, these clusters represent stress

and relax phases (sec. 5.4.6). Test samples are mapped onto the clustered SOM

to detect stress or relax. The detected labels of these test samples are averaged

over one hour intervals to derive average stress levels (sec. 5.4.7). The final step

is to compare these detected predicted stress levels to the stress levels defined by

participants (sec. 5.4.8).
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Table 5.1: Percentage Health Patch data retained of high confidence and low activity. The

threshold for low activity was set at a maximum of 0.04 for all three cases.

% data with high confidence % data with high confidence

and low activity

confidence >0.6 71.27 49.99

confidence >0.7 63.88 47.21

confidence >0.8 54.45 42.86

5.4.1 Preprocessing of ambulant data

As wearables are associated with several drawbacks regarding signal quality, it

is highly necessary to perform a preprocessing of the data. Here, only an ECG

wearable monitoring device is used, the Health Patch, which has a built in three-

axial accelerometer. First, ECG data is retained which is regarded as data of high

confidence, meaning data following the expected pattern of an ECG signal. The

script for this procedure was provided by imec.

Next, accelerometer data was investigated. Data for which the standard deviation

of the magnitude of acceleration was larger than a defined threshold was excluded.

To calculate the standard deviation, a specific window size is used. Enlarging the

window size will also enlarge the standard deviation. To obtain reasonable results,

the standard deviation was allowed to variate between 0.02 and 0.04 for the given

window size. The script and thresholds for this procedure were provided by imec.

The percentage of data retained after both steps averaged over all test persons can

be seen in table 5.1. The first column is the threshold for data of high confidence.

The threshold applied for low activity was 0.04. The column % data with high

confidence and low activity represents the percentage of data retained from the

full data set, not the data with high confidence. As can be seen in the table, less

than half of the data is retained in all cases. Therefore, the threshold for low

activity was set at a maximum of 0.04 to not loose more data. As the difference of

total data loss between confidence >0.6 and confidence >0.7 is only about 2.5%,

a confidence threshold of 0.7 was chosen, to retain as much and as confident

data as possible.

In Fig. 5.6a and Fig. 5.6c the mean heart rate of the original ECG signal is

displayed. In Fig. 5.6b and Fig. 5.6d the preprocessed signal is shown. The blue
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5.4 Stress detection in ambulant data

transparant curve represents the mean heart rate of the original ECG signal, the

green curve is the signal after removing data with low confidence and the red

curve is the remaining signal after removing high activity data from the confident

signal. In Fig. 5.6b the ratio of remaining data is 58% for high confidence and

44% for high confidence low activity. In Fig. 5.6d the ratio of remaining data is

81% for high confidence and 55% for high confidence low activity. A large portion

of the data is excluded, which impedes the stress detection.

(a) (b)

(c) (d)

Figure 5.6: Fig. 5.6a and 5.6c represent the mean heart rate of the original ECG signal. Fig. 5.6b

and 5.6d represent the preprocessed signals: The blue transparant curve represents

the mean heart rate of the original ECG signal, the green curve is the signal after

removing data with low confidence and the red curve is the remaining signal after

removing high activity data from the confident signal.
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(a) (b)

(c) (d)

Figure 5.7: Example cases in which the preprocessing of the Health Patch signal only retained a

small portion of the original data. Fig. 5.7a and 5.7b represent cases in which the

Health Patch was not used correctly by the participant, e.g. not changing the Patch

in time or removing the Patch during night time. Fig. 5.7c represents a noisy signal,

explained by sweat and activity. In Fig. 5.7d the signal itself is overall of good quality,

though the script for selection of high confidence data has underperformed here.

Some input signals only retain a very small percentage of data after preprocessing.

Fig. 5.7 illustrates these cases. A possible explanation for Fig. 5.7a is that sweat

between the skin and the patch reduced the signal quality. A case in which the

Patch should have been replaced. In Fig. 5.7b it is clear that the Health Patch

has been removed during the night. Fig. 5.7c represents a noisy signal. Between

15h and 18h, the participant has been gardening which might explain the noise,
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5.4 Stress detection in ambulant data

because of sweat and activity. In Fig. 5.7d the signal itself is overall of good

quality, though the script for selection of high confidence data has underperformed

here.

The confident signals of features of the ambulant Health Patch data are depicted

in Fig. 5.8. These figures show the range and evolution of different features over

time. For the unsupervised learning of the ambulant data, normalised features are

used, as depicted in Fig. 5.9. For the normalised features, it becomes visible that

mean HR and RMSSD are negatively correlated signals. They both exhibit a clear

pattern over time. For LF and HF most feature values are situated around zero.

Features SDNN and LF/HF are mostly oscillating around zero.

5.4.2 Correlation of signals

The stress detection of the ambulant phase is focussed on ECG features. As these

features are derived from the same signal, the correlation between features is

investigated first. Fig. 5.10 displays correlation heat maps of two different test

persons on arbitrarily chosen days. It is clear from both heat maps that a very large

negative correlation exists between the features mean heart rate and RMSSD.

For the depicted example cases, the correlation is -0.9959 for TP06 and -0.9921

for TP11. Both features are calculated similarly:

mean HR =
60× fsampling

average RR interval
[bpm],

RMSSD =

√√√√average

((
1000×RR interval

fsampling

)2)
[ms].

(5.3)

5.4.3 Influence of day and night physiology

The Health Patch recorded the ECG for 24 hours continuously. This means that

when training the Self-Organizing Map and subsequent clustering, it is influenced

by data recorded both during night time as during daytime. In general, physiology

is more at rest during night time and feature values are expected to be lower.
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5 Unsupervised learning

Figure 5.10: Correlation heat maps of ECG features on ambulant data. A large negative correlation

can be seen between mean HR and RMSSD.

To check this assumption, every feature sample is labelled as day or night. Day

is defined between 7am and 10pm and labelled as ‘1’. Night is defined between

23pm and 6pm and labelled as ‘0’. These labels are mapped onto the trained

SOM. Every node of the SOM has a weight. Feature vectors are compared to

these weights. The best matching node receives the label of the input feature

vector.

The SOM is trained using six features, thus formed in a six-dimensional feature

space. The labels and the SOM are visualised on intersections of the feature space.

The node positions of the SOM along the feature space of mean heart rate are

depicted in Fig. 5.11. Blue colours indicate nodes situated at low values of the

feature, red values indicate nodes situated at high values of the feature. In the

subsequent figures, the SOMs are overlayed once by day labels and once by night

labels to visually check the correspondence with the colours of the SOM, i.e. node

positions of the SOM.

As can be seen from Fig. 5.11 representing the mean HR space, day labels

correspond very well with high mean HR and night labels with low mean HR.

Searching for clusters representing day and night would be fairly straight forward

when only using mean HR as a feature. This is however not the point of interest.

The aim is to find two delineated clusters, representing stress and relax phases.

Therefore, to exclude this effect of achieving a day/night clustering, samples
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5.4 Stress detection in ambulant data

labelled as night (i.e. between 11pm and 6am) will be removed.

Figure 5.11: Correspondence of day and night physiology with trained SOM. Visually, it can be

steen that a clear correspondence exists between high feature values of mean HR

and mapping of day time samples, and low feature values with night time samples.

5.4.4 Cohesion and separation of clusters

After the Self-Organizing Map is trained and every node received a position in

feature space, these nodes are clustered. This section investigates the quality of

the clusters. As the clusters have no related labels, the quality is expressed in

terms of cohesion and separation of the clusters. These factors are merged in the

silhouette coefficient [46, 57].

The silhouette coefficient s of sample i is defined as:

s(i) =
b(i)− a(i)
max(a, b)

, (5.4)

with a the mean intra-cluster distance and b the mean distance to all samples

of the nearest cluster. As only two clusters are considered, b is simply the other

cluster than to which i is assigned to.

69



5 Unsupervised learning

The range of the silhouette coefficient is between -1 and 1. If s(i) approaches 1,

it implies that a(i) � b(i) and the mean intra-cluster distance is much smaller

than the mean distance to samples of the other cluster. Therefore, sample i is

well-clustered and assigned to the right cluster. When s(i) is about zero, the

sample i lies equally far from both clusters and it is not clearly defined which is

the right cluster. If s(i) is close to −1, a(i)� b(i), meaning that the sample is

misclassified.

Fig. 5.12 displays on the left side the silhouette coefficients of samples in cluster

0 and cluster 1. The coefficients are plotted in ranked order. The red dashed line

represent average silhouette score over all samples (here 0.28). The right side

depicts the feature values of the test data, plotted in two-dimensional feature

space of mean HR and SDNN, as a section of the original five-dimensional feature

space. Colours represent their assigned cluster, i.e. blue for cluster 0 and red for

cluster 1.

Figure 5.12: Left: Silhouette coefficients of samples in cluster 0 and cluster 1, in ranked order.

Red dashed line represent average silhouette score over all samples (here 0.28).

Right: Feature values of the test data plotted in two-dimensional feature space of

mean HR and SDNN. Colours represent their assigned cluster, i.e. blue for cluster 0

and red for cluster 1.
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5.4 Stress detection in ambulant data

Optimal feature subset

The silhouette coefficient is applied to derive an optimal subset of features from

the total set of ECG features. The optimal subset achieves clustering with a

maximal silhouette coefficient.

The total ECG set of features is mean HR, RMSSD, SDNN, LF, HF and LFHF.

Every combination out of this set, including single features is tested. Single features

are represented as a two-dimensional feature space of the single feature on both

axes. The feature subset is applied to calculate features of the training data.

As every participant has ambulant data over several days, a leave-one-day-out

cross validation is performed. The feature vectors of the training data are applied

to construct self-organizing maps. The nodes of the SOM received a location

in feature space and are subsequently clustered. The quality of these clusters

is evaluated in terms of cohesion and separation with the average silhouette

coefficient. The average silhouette coefficients over all days is averaged out. This

is the final average silhouette coefficient for a specific feature subset for a specific

participant. The procedure is repeated for all participants. The average silhouette

coefficients of all participants for a certain subset is averaged. Next, the most

optimal feature set is selected to continue further calculations.

For all participants the same trends were visible, being single feature subset reaches

the largest silhouette coefficients. The maximal silhouette coefficient was attained

for a single feature subset LFHF with 0.62, with single feature subsets LF and HF

being in the same range. Single feature subset mean HR has an average silhouette

coefficient of 0.52. The combination of mean HR and RMSSD reached a value of

0.49. The silhouette coefficient of the complete feature set was low with a score

of 0.16.

The silhouette coefficients plot for a single feature subset LFHF is shown in

Fig. 5.13. A very high average value of 0.62 is reached (red dashed line). The plot

on the right hand side with the two-dimensional feature space of LFHF reveals

that feature LFHF mainly clusters values close to zero. Fig. 5.9 shows that LFHF

is indeed oscillating around zero.

The silhouette coefficients for a feature subset mean HR, RMSSD is shown

in 5.14. The two-dimensional feature space of mean HR and RMSSD depicts a

clear negative correlation between both features. The negative correlation might
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help clustering in feature space as the nodes of the SOM are attracted to two

distant parts of the feature space.

Figure 5.13: The symmetric two-dimensional feature space of LFHF reveals that feature LFHF

mainly clusters values around zero.

Comparison to laboratory data

To evaluate the performance of clustering, it is compared to the average silhouette

coefficient derived from the laboratory data. As the laboratory data consists of

seven test persons for which approximately 15 minutes of data exists, a leave-

one-participant-out cross validation is applied. The optimal subset of features

of previous section is derived from the training data. The silhouette coefficient

is calculated on the clustering of the training data. Silhouette coefficients are

averaged after cross validation, which reaches a final averaged value of 0.63

for LFHF, 0.51 for mean HR and 0.56 for mean HR, RMSSD. The silhouette

coefficients of the lab data are almost equal to these from the ambulant data for

LFHF and mean HR, though slightly higher for mean HR, RMSSD.

Additionally, the optimal feature subset is calculated on the wearable data measured

in laboratory conditions. The lab data contains labels, as such a testing performance
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5.4 Stress detection in ambulant data

Figure 5.14: The two-dimensional feature space of mean HR and RMSSD depicts a clear negative

correlation between both features. This might help clustering in feature space.

can be calculated. A complete LOO validation is run over every combination of the

feature set. The most performant feature sets is mean HR in combination with

RMSSD. Repeating the LOO validation ten times, results in an average testing

performance of 76.42% (stand. dev. of 10.10%). This is 6% more compared to

the average testing performance of mean HR (70.20%). The testing performance

of LFHF is only 56.86% (stand. dev. of 10.90%). Using the whole feature set

the testing performance is even less with 52.50% (stand. dev. of 13.50%)

Silhouette coefficients are similar over ambulant and laboratory data of the Health

Patch, when using a particular feature set. However, testing performances are

dependent on the applied features subset. An optimal feature set based on the

silhouette coefficient does not result in the same optimal feature based on testing

performance of laboratory data. As laboratory data is considered as the gold

standard, further calculation are made with the optimal feature set based on

testing performance, i.e. mean HR, RMSSD.

A typical trained SOM with corresponding clustering is shown in Fig. 5.15. The

left figures represent the trained SOM in mean HR and RMSSD feature space.

The right figure represents the clustering on this SOM.

73



5 Unsupervised learning

Figure 5.15: A trained SOM is depicted with an intersection of mean HR and RMSSD feature

space. The right figure represent the clustering on this SOM.

Optimal grid configuration for ambulant data

Using the optimal subset mean HR, RMSSD the optimal grid configuration was

found to be 40× 20 (sec. 5.3.3). As the ambulant data contains more samples,

the relative dimensions of the grid are kept, though double in size 80× 40. With

enlarging the dimensions, the resolution of the Self-Organizing Map is enlarged.

This enables more precise predictions.

5.4.5 Similarity of clusters

Previous section demonstrates that the algorithmic pipeline using feature set

mean HR, RMSSD outlines two clusters with large intra-cluster cohesion and

inter-cluster separation. This section demonstrates that these clusters are not

two randomly outlined clusters from the data. Instead, it is shown that among

clusters from different days and different participants, similar patterns are repeated.

Therefore, the feature values in clusters are compared. It is observed that clusters
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contain similar feature values. The feature values within a cluster are represented

as boxplots (Fig 5.16). The boxplots depict cluster A (blue) and cluster B (purple)

of features mean HR (left) and RMSSD (right) of different participants. The

median is printed in bold font above the boxplot. Visually, it can be seen that the

same pattern of boxplots repeats over different clustered self-organizing maps.

If clusters are not presenting the same pattern, the clustering had an undesirable

outcome. This will be clearly seen in corresponding boxplots and silhouette plot

(Fig. 5.17). The resulting silhouette coefficient is lower as the average calculated

from ambulant and lab data (0.52 and 0.51 respectively, see previous section).

Therefore a minimum threshold is set at an average silhouette coefficient of 0.45.

Clusterings with a lower coefficient will be excluded for further analysis, which was

one out of 40 days. An example of an incorrect clustering can be observed visually

from the corresponding boxplots (Fig. 5.17a). The pattern does not match to

other boxplots. Comparison by median of the boxplots would indicate a correct

clustering, though the interquartile distance shows irregularity. The silhouette plot

(Fig. 5.17b) clearly indicates a false clustering. The average silhouette coefficient

is about 0.36 and below the threshold of 0.5. The clustering outcome is one

cluster with all the extreme values of mean HR (and RMSSD) and one cluster

with all the intermediate values, as illustrated in Fig. 5.18. As a conclusion, the

similarity of clusters has to be determined by comparison of boxplot median and

value of average silhouette coefficient.
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Figure 5.16: Boxplots representing the features values contained in cluster A (blue) and cluster

B (purple) of feature mean HR (left) and RMSSD (right) of different participants.

The median is printed in bold font above the boxplot.
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5.4 Stress detection in ambulant data

(a)

(b)

Figure 5.17: Undesirable clustering can be derived visually from the corresponding boxplots

(Fig. 5.17a). Their pattern will not match to other boxplots. The interquartile

distance shows irregularity. The silhouette plot (Fig. 5.17b) as well clearly indicates

an undesirable clustering. The average silhouette coefficient is about 0.36 and below

the threshold of 0.5. Extreme values are clustered together.
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Figure 5.18: Cluster (blue) with extreme low and high values of mean HR and RMSSD and a

cluster (purple) with the intermediate values.

5.4.6 Defining stress and relax clusters

This section evaluates if the found clusters are not only similar over different

datasets, but also represent a stress and a relax cluster. To determine which

clusters represents stress or relax, the boxplots of feature values are examined.

During the supervised learning phase, it was observed that a high mean HR

indicates a period of stress (Fig. 4.14). This was confirmed during the cluster

identification of unsupervised learning in lab phase (sec. 5.2) and by Taelman

et al. [13] and by Vrijkotte et al. [33]. Visually, there is a clear indication that

this alternation of high and low feature values is present in the found clusters of

Fig 5.16.
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5.4 Stress detection in ambulant data

5.4.7 Detection of stress and relax intervals

The SOMs are trained and every node is assigned to a relax or stress cluster, the

algorithmic pipeline can now predict stress level of new, unseen samples. Samples

are mapped onto the SOM by comparison of its feature vector and the weights of

the SOM nodes. The sample receives the label of the best-matching node, stress

(label 1) or relax (label 0).

Every minute a sample or feature vector is calculated, with a window size of five

minutes. Stress predictions are averaged over one hour intervals to obtain a stress

level instead of a series of a series of 0 and 1. As many data points have been

excluded because of low confidence and high activity, some time intervals might

contain a low number of samples and bias the averaging procedure. Therefore a

threshold is set to maintain a level of confidence about the prediction. A minimum

of 15 samples, thus 15 minutes, per hourly interval is required in order to make a

prediction on this interval. The threshold is calculated based on TP who retained

around 50% of their data. A lower threshold would not provide enough confidence.

A higher threshold would exclude to many predictions. The retained data after

preprocessing (sec. 5.4.1) of three days of different TPs was below 20%, thus no

confident prediction could be made as not enough samples were available. The

data of this day was however included for training of the SOM.

5.4.8 Validation

Previous sections demonstrated the robustness and quality of the unsupervised al-

gorithmic pipeline based on SOMs and clustering. According to literature (sec. 2.6),

the last phase of validation is comparison against the participants’ questionnaire.

The scores of stress level by the TPs in the questionnaire are normalised for every

TP as TPs rate minimum and maximal levels of stress differently. The RMSE

between predictions and TP stress scores is calculated. The outcomes per TP

are summarised in table 5.2. The averaged RMSE over all TP is 0.4953 with a

standard deviation of 0.0915. As Self-Organizing Maps have a certain amount of

randomness in the initialization of their weights, results might differ slightly over

different runs. Two examples of a prediction with the questionnaire stress level is

depicted in Fig. 5.19. In the left figure the same trend is followed, though in the

right figure this cannot be seen.
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Table 5.2: Root Mean Squared Error of prediction and questionnaire for all test persons.

TP01 TP02 TP03 TP04 TP05

RMSE 0.5748 0.4624 0.4046 0.5384 0.6291

TP06 TP07 TP11 TP12 TP13

RMSE 0.4151 0.3643 0.4294 0.5390 0.5960

Figure 5.19: Stress level predictions (red) with questionnaire stress level (green).

5.5 Conclusion

First, the feasibility of the Self-Organizing Maps was tested on the laboratory

data and compared a posteriori with the objective labels. Using a subset of ECG

features, the classification performance was 76.42%. This is a comparable result

to supervised learning with ECG features, indicating the principal functioning of

the SOMs for stress detection.

In a second phase, the SOM was applied on the ambulant data. Training the

SOM with ECG features mean HR and RMSSD from the ambulant data, enabled

clustering from the feature space. The clusters were well separated with large

cohesion, with an average silhouette coefficient of 0.49. Moreover, the clusters

were similar over different test persons and days. According to literature the center

values of the features in each cluster can indicate stress and relax phases. By

mapping test samples on the trained and clustered SOM, stress predictions were
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made. Comparison against the subjective stress levels from the questionnaire was

however poor with an RMSE of 0.50.

It is suggested to further explore the use of Self-Organizing Maps as it solely relies

on the physiological data, excluding subjective labelling. Important improvements

can be made by applying multimodal feature sets, including for example galvanic

skin response.
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6.1 Features and classification performance in

supervised versus unsupervised learning

6.1.1 Laboratory data

During supervised learning with Random Decision Forests on the lab data (sec. 4.6.3),

the model using GSR features on the Nexus data reaches an average classification

performance of 82.66%. The combined model based on both GSR features (Nexus)

and ECG features (Health patch) reaches an even higher classification performance

of 83.04%. Smets et al. [45] had a similar experimental set-up and reported a

maximum performance rate (for non-personalized models) of 82.7% using SVM.

Similar features for ECG and GSR were applied, with additional Temperature and

Respiration features. Therefore, it can be concluded that supervised classification

of lab data was successful and applicable as a gold standard for the subsequent

unsupervised phases.

It was found that GSR SCph and ECG mean heart rate were the most important

features in this model. Therefore these features were also applied for unsuper-

vised learning with Self-Organizing Maps of the lab data. Here, a classification

performance of 77.63% was reached (sec. 5.3.2). This can be considered as a

very good result, comparing with supervised learning, as unsupervised learning is a

more challenging task. Bornoiu and Grigore [42] applied a Self-Organizing Map

as well for stress detection, using similar GSR features and reported an average

recognition rate of 86.25%. They implemented a non-wearable GSR in laboratory

setting with stress-inducing experiments as well. Different was the their labelling

system for validation of their outcomes. An expert observer evaluated the GSR

signal in combination with participant questionnaires to manually label the input

signal. Obviously, recognition rates will be higher as labelling of the data is based
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on a priori evaluation of the physiological signals. Furthermore, it is not clear how

their average recognition rate is computed. A classification rate based on the

average of sensitivity and specificity will generally be lower as purely reporting

the sensitivity 5.3.2. Moreover, their number of participants is not reported for

comparison.

6.1.2 Ambulant data

Optimal ECG feature subset

Ambulant data was measured by the Empatica and by the Health Patch. As the

data of Empatica was found to be of low quality during lab measurements, it

was decided to solely investigate Health Patch signals during the ambulant phase.

Therefore examination of ECG features is important as these are the basis for

unsupervised learning of ambulant data (overview of ECG features table 4.5).

Both the analysis with supervised as unsupervised learning reveal that mean HR

and RMSSD are the most important feature of the ECG feature set. A similar

study by Hovsepian et al. [4] confirms mean HR being an informative feature.

Supervised learning based on all the ECG features of the Health patch lab data

reaches an average classification performance of 76.89%. When applying all ECG

features during unsupervised learning, a very poor classification result is obtained

of 52.04%.

The most optimal feature subset among all ECG features for unsupervised learning

is the feature subset mean HR, RMSSD, which reaches a classification result

of 76.42%, a result similar to supervised learning with all ECG features. It is

clear that including other features actually hinder the classification with SOM.

Therefore, it is important to carefully select the features in case of rraining a

SOM in a two-dimensional feature space, as every feature has a great influence

on the training procedure.

The feature subset mean HR, RMSSD was also the most important ECG feature

subset during RDF training (Fig. 4.13). A Random Decision Forest is able to

select informative features, though mean HR and RMSSD are highly negatively

correlated (sec. 4.6.2 and 5.4.2). This explains why both mean HR and RMSSD
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were almost equally important during RDF training, as both features basically

contain the same, though a high information gain.

Silhouette score

The reason for this discrepancy between classification performances of the complete

feature set and the subset with mean HR can be found when observing the

silhouette scores. The silhouette scores for single features LF, HF and LFHF are

highest with approx. 60% while the silhouette score for mean HR is lower, about

50%. These scores were similar over lab and ambulant data. Observing both lab

signals in Fig. 4.12 as ambulant signals Fig. 5.9, it can be seen that the normalised

features SDNN, LF, HF, LF/HF have many values at zero or oscillate around

zero. Therefore the Self-Organizing Map is attracted in feature space to these

values around zero. The subsequent clustering will cluster the dense values around

zero and cluster all remaining values. These clusters do not necessarily indicate

stress and relax clusters, compared to the observation that mean HR follows a

more varying pattern over time and achieves acceptable classification rates.

For the data being observed in this thesis, a larger silhouette score does not imply

higher classification outcomes. The reason is that certain features (SDNN, LF,

HF, LF/HF ) lead to clusters with a good cohesion, although not separating stress

and relax data . Obviously, there is a large grey zone between stress and relax

which makes this task challenging.

6.2 Challenges of wearables for ambulant data collection

6.2.1 Challenge of multi-modal signals

Analysis of the laboratory was based on features from two different sensors

measuring different signals. i.e. skin conductance with Nexus and ECG with the

Health Patch. Both supervised as unsupervised learning methods achieved good

classification outcomes. During supervised learning it was demonstrated that

the features set combining GSR and ECG achieved the highest classification

rates, while the feature set based exclusively on GSR performed almost equally
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well. As GSR enables the use of very performant features (Fig. 4.7, 4.15b), it is

recommended to include this signal for stress detection. Unfortunately, the GSR

signal of the wearable wristband Empatica was generally of inferior quality during

lab experiments.

The ECG feature set was evaluated in more detail as only the ECG signal of the

ambulant data could be analysed. Both with the supervised as the unsupervised

method mean HR and RMSSD were the two most performing features. Other

features had little (RDF, supervised) or negative (SOM, unsupervised) impact

on the classification outcome. Furthermore, mean HR and RMSSD are highly

negatively correlated. To avoid the correlation of features, the use of multi-

modal signals, i.e. signals from different sources, is encouraged. Furthermore,

the expansion of the ECG feature set could be beneficial. The use of time-series

features was not incorporated as only chunks of high-confident and low-activity

data could be retained (table 5.1). Time-series features require continuous data

streams. Sarker et al. [38] added the missing data after exclusion of high-activity

data in order to compute time-series based features. These features include

information from prior time periods, such as duration of previous stress episode or

slope of best-fit line to past stress likelihood values.

6.2.2 Challenge of qualitative data

The basis for a good evaluation outcome is a qualitative input. The Random

Decision Forest and Self-Organizing Map achieved good results on data from the

laboratory phase, being the GSR signal measured by Nexus and the ECG signal

measured by the Health Patch. The wearable Empatica measuring GSR could

however not be used for analysis as the signal was noisy or data was missing. The

quality of the Health Patch and Empatica signals was verified against the fixed

sensor Nexus, which served as the ground truth. The incorporation of wearable

GSR data could have boosted classification outcomes as more data and data from

a different source would be available.

During ambulant phase, large portions of data were excluded(table 5.1) because

the signals did not match typical ECG patterns (low confidence) and the standard

deviation of the acceleration magnitude exceeded the threshold (high-activity).

Especially the requirement for low-activity reduced the amount of usable data.
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For many time intervals, no prediction could be made as not enough samples

were available. Ideally, this high-activity data is included and compensated for in

the data set. How to account for high-activity data during stress detection is an

ongoing topic of research [28, 17] (see sec. 2.4.2). Additionally, the script for

detection of high-confidence data needs further improvement.

6.3 Outcome clustering

The proof of concept of clustering nodes of a SOM was carried out first on lab

data with the use of the two most performant features during supervised training,

i.e. GSR-SCph and ECG-meanHR. Only two features were chosen for better

visualisation and lower complexity. The outcome of clustering has proven to be

sufficient on lab data with an average clustering performance of 74.91% and a

standard deviation of 6.36% (sec. 5.3.1) and a testing performance of 77.63% and

a standard deviation of 7.82% (sec. 5.3.2). Calculation of the testing performance

is completely based on the clustering, as such it is a good measure for clustering

as well.

A large constraint for clustering on ambulant data was the fact that only ECG

features could be applied, as GSR features had proven to be more performant in

general. The clustering performance of the ambulant data is based on the average

silhouette coefficient and the similarity of boxplots. It was observed that single

features had the largest silhouette coefficients, though not all of these features

were ideal for stress - relax detection. Features SDNN, LF, HF and LF/HF did

not exhibit large varying patterns and mainly clustered values around zero. Only

two correlated features remained, i.e. mean HR and RMSSD, constructing a

two-dimensional feature space. Therefore the full potential of the algorithmic

pipeline of training a Self-Organizing Map and clustering was not exploited. The

SOM has the ability of compressing the information of a high-dimensional space

and thus simplifying the subsequent clustering step. Clustering could be performed

in a higher-dimensional feature space. With the use of features highly related

to stress, better separated clusters would emerge, increasing the confidence of

predictions.

Applying mean HR and RMSSD, 39 out of 40 days were clustered with a silhouette

coefficient above the established thresholds and boxplots exhibiting repeating
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patterns. Although some of the clustering procedures failed with a typical clustering

pattern as displayed in Fig. 5.17b. Here the clustering outcome was one cluster

with all the extreme values of mean HR (and RMSSD) and one cluster with all

the intermediate values, as illustrated in Fig. 5.18. Ruling out this cluster with

intermediate values could increase the confidence of stress predictions with the

cost of excluding data. Clustering with variational Bayesian Gaussian Mixture has

the possibility for automatic selection of the best number of cluster, though this

property hasn’t been exploited. It is suggested to further explore this method

with the potential of finding multiple clusters of which one cluster with these

intermediate values.

6.4 Validation on ambulant data

The validation procedure of ambulant data consisted of multiple steps. First, it

was examined if well separated clusters with large cohesion were obtained. Subset

of feature were found which provided good average silhouette scores (0.50 and

more). Next, the similarity of clusters over different test persons and days was

observed to verify that the algorithm did not randomly outlined 2 clusters. Third,

it was proven that these clusters represented stress and relax states. The final

step was to compare the predictions made to the participants subjective feelings

of stress. The stress levels documented in the diary were normalised for every

participant. The RMSE between prediction and subjective stress level had an

average value of 0.50 with a standard deviation of 0.09. Sometimes the stress

detections follow certain trends of the questionnaire or have an elevated stress

level when the participant is under a lot of stress. However no confident predictions

can be made.

The first three phases proved a working concept. The final validation step con-

sisted of comparison against subjective stress levels, although the purpose of

unsupervised learning is to exclude these subjective labels. Stress levels derived

from questionnaires are highly subjective, not accurate and often filled in with a

delay [20, 4]. Sarker et al. [38] reviewed the consistency of self-reported responses.

Often responses were inconsistent and participants were biased towards neutral

self-assessment. Therefore, they supported the value of an objective sensor-based

model of stress. It is a conflict in deciding what defines a correct stress criterion:
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the unsupervised clustering based on physiological data or subjective stress levels

declared by participants. The result of this thesis is a correct clustering of stress

and relax phases based on consistent feature patterns indicating stress [13, 33].

6.5 Future work

Improvements can be made by applying multimodal feature sets. Signals from

different sensors sources are intrinsically uncorrelated and therefore automatically

add new information. Galvanic Skin Response features are recommended to

further explore as they had a large and important contribution in RDF training.

In SOM training as well, the phasic skin conductance (GSR - SCph) lead to

good performance. Furthermore, non-linear features should be taken into account,

including time-series features as in [35, 38]. These incorporate information from

previous time intervals, which is interesting as stress is not an isolated event.

The SOM has the ability of compressing the information of a high-dimensional

space and thus simplifying the subsequent clustering step. Clustering could be

performed in a higher-dimensional feature space. Increasing the number of features

would also diminish the influence of features that do not greatly contribute to

stress detection, such as SDNN mainly clustering around zero. Generally, other

unsupervised learning techniques are suggested to be explored as well, which are for

example more robust for bad feature selection. Exploratory work of unsupervised

learning methods for identification of stress states has been done by Medina [44],

though only on laboratory data and using ECG signals. Donner et al. [58] describe

different types of networks for analysis of recurrence-based time series, though

outside the field of stress detection.

Advances can be made in more detailed evaluation of the clustering step. Other

parameters or other cluster algorithms can be explored to better separate stress

from relax clusters. An interesting aspect would be to add more clusters to capture

stress levels directly from the SOM or determine the confidence of a predicted

stress level. A first step would be to add a third cluster outlining intermediate

values and focus on the extreme values of stress and relax.

A general improvement for stress detection is the incorporation of highly-active

data. As activity influences physiology, many data points got excluded because
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high activity was detected in these intervals. Perhaps mapping of high activity

data onto a trained SOM could reveal useful patterns about changing physiology.

Furthermore, retaining as much data as possible leads to more continuous data

streams and enables the use of time-series features [38].

It is suggested to validate the developed model of unsupervised learning with

Self-Organizing Maps against the field-data and field self-reports of the cStress

model [4]. This model aims to provide a gold standard for continuous stress

assessment of ambulant data. The field self-report is an Ecological Momentary

Assessment (EMA) in which participants are prompted 15 times a day for instan-

taneous self-report of stress. This is an advantage over the questionnaire used

in this thesis as immediate reporting is required. Furthermore, they expand these

self-reports to a self-reported stress at every minute, based on the reported stress

of the previous minute, as well as the physiological response of the previous minute.

As such, the model allows for arbitrary lags between physiological response and

the lingering memory of a past stress event captured in self-report.

Future work on a long-term basis is to provide feedback to the users of wearables

on their stress levels. Proper information about his or her stress level could unveil

stressful habits or situations, allowing proper counteracting [4].
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