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Abstract

In this thesis we have analyzed two network protocols by using automata
learning techniques in order to observe their behaviour and discover possi-
ble unexpected system reactions. We have focused on the behaviour of the
protocols in relation to their initial specifications. The first protocol which
we have analyzed is an extension of the SSL protocol, known as Heartbeat
Protocol [1]. The second protocol which we evaluated is the File Transfer Pro-
tocol (FTP) [19] and specifically three client implementations of it. Moreover,
we have conducted a comparison between the different implementations of
the file transfer protocol specification. For our experiments we have used a
regular inference tool, called LearnLib, for applying the automata learning
techniques. In order to address performance and functionality issues, we
have used a mapper during the learning phase. The mapper performs a
mapping from concrete sets of inputs/outputs to abstract ones and vice
versa. In that way, the learning tool sends abstract input/output sets to the
mapper, which concretises them and sends them to the the system under
learn. We show that we could not learn the behavior of the Heartbeat proto-
col and to represent a model of it when using this learning setup presented
in this thesis. On the other hand, we were able to learn successfully and
construct a model for the three client implementations of the FTP protocol.
However, we demonstrate that the different implementations of the FTP
protocol generate different automata-learned models and some of them
do not comply to the RFC model specification. Moreover, the FTP client
from Apache shows unexpected behavior when specific input traces are
triggered. Thus, active automata learning techniques can be used in real life
scenarios and applications for testing and evaluating the behaviour of the
target systems.
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1 Introduction

“The beginning is the most important part of the work [64]. ”

[ Plato ]

The topic of this master thesis is the “Active Learning of Network Protocols”
and specifically of the FTP and the Heartbeat protocol. Before describing
and analysing the active learning techniques, applied to these protocols, it
is important to first understand why we are focusing on network protocols
and on these learning techniques and therefore to understand their value.
In the next section we present our motivation of this thesis, which is derived
from the following factors:

• importance of correctness in software systems
• importance of system’s compliance to its specification
• current situation - the problem of implementing correct systems ac-

cording to their specifications

In addition, after we demonstrate our source of motivation for conducting
this thesis, we present the current problem and our approach to the problem:
The use of active learning techniques for learning the systems’ behavior and
revealing possible deviations from their specifications. Lastly, we present
some background knowledge on the field of learning theory where active
automata learning is based on.

1
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1.1 Motivation

1.1.1 Why correctness of a software system is important
and what is the current situation

When building up a software, it is really important to focus on developing it
correctly and not to rush its implementation in order to achieve for instance
quick results [21]. Correctness is a fundamental aspect that should be taken
into account since a correct system is also a robust system that is less
prone to errors. A correct system is also a reliable system. Unfortunately,
correctness is not always achieved or the developers do not pay a lot of
attention on it while implementing a system.

According to [27] more than 75% of implemented software systems are
showing errors in the maintenance phase, which increases the software’s
costs. In addition based on [14], more than 50% of the developing time
and effort is spent on testing the system under implementation. A system
that lack correctness can lead to errors that may have a catastrophically
impact. In 1996 the European Space Agency has launched the Ariane 5

rocket which has been exploded because of a software error in its system. In
addition, in 1999 the Mars Climate Orbiter has been lost due to its incorrect
implementation; wrong units has been given to the system. As they stated
“The problem here was not the error, it was the failure of NASA’s systems
engineering, and the checks and balances in our processes to detect the
error. That’s why we lost the spacecraft” [32].

Therefore it is really important to achieve correctness on the system, in other
words to check whether it fulfils its requirements and if it is accomplishes
what is intended for. The first step for designing a system is to define its
specifications; what is expected to deliver, how is expected to behave under
any circumstances [59]. A specification can be defined as an agreement
between the developers and the stakeholders [59]. In case of software which
standardises common functionalities within the Internet, such as protocols,
their specification is given by Request for Comments (RFC) [66]. They define
how the software should be developed based on what the system should
do. In general, a specification can be defined in a formal or an informal
way. The former one, it is required a precise syntax and semantics, which
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should exactly describe and expose the functionality of the system under
development. In the latter case, the system is described in a natural language
and is supported by visual notations, tables and diagrams, which help the
understanding of the system [59].

Many systems in use today lack adequate specifications or consist of only
partial specifications [65]. For that reason, the compliance of the systems to
their specifications turns out to be a fundamental issue. A lot of research
has been conducted in the field of software testing in order to find a suitable
approach for testing the conformance of a system implementation to its
formal specifications. Automata learning, a method which has emerged in
the 1980’s, is an interesting technique that could overcome this situation
and anticipate possible errors by learning and modelling the behavior of a
system. During the learning phase of an automaton, its behavior is being
observed, in particular how the system reacts when generated test sequences
are being applied to it [35].

1.1.2 Network Protocols - Incorrect implementations lead
to security vulnerabilities

In the previous section we described -as part of developing correct systems-
the importance of setting correct specifications to the system under devel-
opment and to develop the system exactly as specified. In this section we
go one step further; we do not refer to whichever software system but we
dive into the filed of network protocols. Our motivation of this thesis has
been derived specifically from errors and vulnerabilities that have been
revealed in two protocols: the File Transfer Protocol (FTP) and the Heartbeat
Extension of the OpenSSL Protocol.

Network communication has being used throughout the Internet and forms
a basic principle on which the Internet is based on. Protocols which specify
rules and conventions for this communication have been developed and
used extensively. Hence, protocols that enable reliable communication over
a wide network frame an important part of the present computing infras-
tructure. Network protocols enable the exchange of data between two peers
in a way that is understandable by both of them and ensure an effective
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communication between them. Due to their importance it is essential to
ensure that they are implemented correctly, in other words to ensure that
the protocol implementations follow the protocols’ standards and comply to
their specifications. Possible deviations from the protocols’ standards could
lead to system vulnerabilities, security flaws, and unexpected behaviour of
the system. Therefore, the compliance of the protocol implementation to its
specification is a fundamental topic.

Deployment of secure systems is one of the biggest challenges that develop-
ers have to face and should always be aware of [34]. For that reason, most
security sensitive applications on Internet have adopted a web encryption
technique called OpenSSL, which gives a way to secure data and user pri-
vacy over the Internet [34]. More specifically, OpenSSL is an open source
cryptographic library, which implements the SSL and TLS protocols. SSL
stands for Secure Sockets Layer whereby TLS stands for Transport Layer
Security. Both protocols provide data encryption and authentication and are
used for encrypting the traffic that passes between a web server and a client
[62]. It is widely used for securing web connections, email, VPN and other
services.

However, over the last thirteen years, attackers have compromised private
server data (cryptographic keys, messages in memory etc.) and six code
execution vulnerabilities have been documented [18]. On top of that, eight
information leak vulnerabilities have occurred, that allowed an attacker to
retrieve private keys and/or plaintext. Two of these vulnerabilities have
appeared due to protocol weaknesses, where ”Heartbeat” is one of them.
Heartbeat is an extension of the OpenSSL protocol and is used to check
whether the connection between the two peers (server/client) is still ”alive”.
Precondition to this is that the two peers communicate with each other over
a TLS connection. This protocol has been introduced in February 2012 by
RFC 6520 [79], has been added to the OpenSSL on December, 2011 and
released in OpenSSL Version 1.0.1 on March, 2012 [18].

In April 2014, Neel Mehta of Google’s security team reported a severe
vulnerability in this Heartbeat extension of the OpenSSL, which allows
attackers to read confidential encrypted data and also retrieve the encryption
keys used to secure this data. Half a million widely trusted websites were
vulnerable to this bug and already 17.5% of SSL sites had the heartbeat
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extension enabled on. This security flaw is considered to be one of the
biggest security threats over the Internet [18], due to the fact that it was
easy to be exploited and it was able to reveal private cryptographic keys
and private user data.

Moreover, security issues has been encountered also to other network proto-
cols, such as the File Transfer Protocol (FTP). The so called FTP bounce attack
[22] enables an attacker to open a connection between an FTP server and a
third machine on an arbitrary port. Through this connection an attacker can
bypass access control restrictions and scan ports on private networks.

Unfortunately, the number of security incidents will continue to rise until
we understand the risks and raise our security awareness, until we focus
on developing test methods, verification techniques and formal models,
which would lead to an early identification of such crucial security bugs.
As a result, on one hand the widely use of these two protocols and on
the other hand the security issues that have been encountered on them,
lead us to the main focus of this thesis; actively learning the behavior of
the FTP and Heartbeat protocol. Abstracted models, which represent the
learned behavior of the protocols are afterwards being analyzed in terms of
compliance and conformance to the protocol’s specifications.

1.2 Our Approach to the problem

The need of correct systems that comply to their specifications is an impor-
tant aspect when building up a software. For achieving this, lot of research
has been conducted in the field of software testing for revealing system’s
errors, called bugs. But the problem often is that the software systems can
be too big or too complex and therefore is essential to initially understand
what the system really does, how it behaves, how it reacts when we interact
with it. Thus, is fundamental to go one step back and before testing the
system to first try to learn it.

This is the approach that we follow in this thesis as an answer to the
problems that we described above: learning the system’s behavior, try to
understand if the implementation of the system corresponds to what has
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been initially specified. By applying learning techniques, we can analyse
complex systems such as network protocols and by actively learning them
we can have also the control over the inputs that we provide to them during
the learning.

Much work has been already conducted in learning the behavior of systems,
which shows why active automata learning is an appropriate method for
proving correctness of systems. Fide Aarts, Joeri de Ruiter et al. [4], have ap-
plied learning methods to the software of banking smartcards for evaluating
the security of these systems. Unexpected functionality, missing system’s
behavior, mistakes in the design and the implementation are only a few
incidents that can be uncovered by learning techniques. As they stated, by
applying the Angluin’s L* algorithm to authentic bank cards, they were
able to obtain differences between the generated models of the bank cards.
The approach of learning network protocols has been also explored from
Paul Fiterau-Brostean, Ramon Janssen et al. at their paper [20], where they
have explained how the TCP Network protocol can be learned based on
observations. They have analyzed different implementations of the protocol
in two different operating systems; Windows 8 and Ubuntu. From their
analysis they were able to extract that the behavior of the protocol in both
platforms is non-compliant to its specification. Our approach for learning
protocols is very similar to their work.

Based on the facts presented, we understand the need of learning the
behavior of a system. In this thesis we focus on one category of complex
systems, the network protocols. Active automata learning can help expose
implementations of the protocols standards, which do not follow the rules
of the protocols and can result to security vulnerabilities. The criticality of
the Heartbeat vulnerability as described above motivated the need of a good
solution that could have potentially prevented this bug. For that reason, one
of the protocols we have decided to focus on in this work, is the Heartbeat
protocol. We analyse if this severe vulnerability of the Heartbeat protocol
could be uncovered, by applying automata learning techniques to it. Hence,
one of the systems to be learned in this thesis is the Heartbeat extension
of the OpenSSL protocol, well-known as the “Heartbleed”. Motivated also
from the security vulnerability that has occurred in the FTP protocol as also
from its widely use, we analyse and apply learning techniques also to FTP
protocol.
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More specifically, we have used the active learning method, which assumes
that there is a teacher who knows the behavior of the system under learn
(SUL) and a Learner, who wants to learn the SUL. The Learner asks queries
to the teacher and the teacher (which is represented as an Oracle and knows
the SUL) answers these queries. By actively asking queries, at the end the
Learner learns the behavior of the system and is able to produce a model
that represents it.

In order to use this method in practice we need a learning algorithm which
is able to communicate and interact with the system. For that reason, we
have used the Angluin’s algorithm [9], called L*, which is the most well
known that is used for active learning. Its characteristic is the use of queries
that can be classified into the two categories: (a) Membership queries and
(b) Equivalence queries.

Membership queries (Mq): the Learner sends a sequence of input symbols
to the teacher and the teacher returns an output-symbols sequence as an
answer to these inputs. In other words, for an input symbol a the teacher
will respond with an output sequence Mq(a). These queries are used in
order to construct a hypothesis model for the SUL.

Equivalence queries (Eq): After the hypothesis has been constructed, the
output of the hypothesis will be checked. This output is compared to the
output that is produced by the Mealy machine model of the target SUL. If Mh

is different from M(SUL), then a counterexample will be produced. On the
other hand, if the two models are equivalent, the learned hypothesis Mh is
a correct representation of the SUL and therefore the SUL has been learned
successfully. These queries are used in order to verify the constructed
hypothesis model.

After that, the Learner generates a hypothetical automaton from these
equivalence classes [70]. We use Mealy machines - as a subcategory of
an automaton - to represent the learned model as also the hypothesis
produced during the active learning. Mealy Machines are in detail described
in Section 2.

We use the L* algorithm as our learning algorithm, for learning the behavior
of the Heartbeat extension of the OpenSSL protocol and the behavior of
three client implementations of the FTP protocol. As a learning tool we
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LearnLib SULMapper

abstract input concrete input

abstract output concrete output

Test Adapter

messages translation 

messages translation 

Figure 1.1: Test Adapter

use LearnLib, a tool that provides interfaces to learn models of real-life
applications. LearnLib is a tool used for active automata learning and sees
the system to be learned as a black-box implementation. It is the basic
tool that we use in this thesis and is able to learn models which consist
of up to thousands of states (Chapter 3.1). LearnLib provides already the
implementation of the L* algorithm, so the Learner components is already
implemented. What we have done is to connect the three implementations
of the FTP with the Learner (in our case LearnLib) and represent them as a
Mealy Machine, which can receive inputs, produce outputs and based on
the output move to a next state. Regarding the Heartbeat protocol, since it
would have been a big effort to connect the real Heartbeat implementation
with our Learner, we implemented our own Heartbeat protocol based on
the official protocol specification.

Thus, for this master thesis we have used/implemented the following
components for performing active automata learning, as also illustrated in
Figure 3.4

Learner:

We have used the L* algorithm, which is already implemented in LearnLib.
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SUL:

We have set under learn three implementations of FTP, the Heartbeat proto-
col correct implementation (implemented by us), Heartbeat protocol faulty
implementation (implemented by us)

Our purpose for the three FTP implementations:

Our purpose for FTP is to learn, for simplicity reasons, a part of the FTP
functionality and not the whole functionality that the FTP offers. Thus,
we query the following functions of the SULs: we perform a connect, a
login, a change of directory, an upload and a disconnect. The Learner queries
these functions to the SUL in an arbitrary order, which is the way how
dependencies are created. For example, you can not perform a login if a
connect has not occurred before. The SUL will produce a certain output
if you send a connect input and then a login input to it, which should be
different to the output produced if you sent a login input first and a connect
input afterwards. This is the actually the logic how the behavior of each
FTP implementation will be at the end learned.

All the FTP Clients under learn have the same learning setup. The three
different FTP client implementations that we analyse are:

• SimpleFTP
• FTP from Apache
• FTP4j Client

SimpleFTP [3] is a very simple FTP Client, used for performing simple
actions with the FTP Server. On the contrary, the FTPClient provided by
Apache [26], is the most well-known and used FTPClient that incorporates
the whole functionality of the FTP protocol. It performs all possible actions
that could be accomplished from a client to an FTP Server. Last but not least,
the FTP4jClient [25] is a library that also implements in Java the full-features
of an FTP Client and supports different security authentications. These three
implementations have been chosen due to their different complexity and
their different use percentage, in order to examine how these various clients
behave in respect to the specification of the FTP protocol as described at
RFC [19].
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Our purpose for Heartbeat protocol:

Regarding the Heartbeat protocol, our purpose is to learn the behavior of the
correct implementation as also the behavior of the faulty one. By comparing
these two learned models, we can observe any unexpected behavior of the
protocol and uncover serious issues, as the Heartbleed vulnerability. Since
the real implementation of the Heartbeat protocol was not so trivial to set
it under learn, we have implemented our own implementations; one that
complies to the specification and one with the Heartbleed vulnerability in
it.

Mapper:

Protocols are defined as more complex systems that are using a lot of
parameters and variables for connection establishment and synchronisation.
For that reason, these numerous parameters could be reduced, by using
abstraction techniques. More specifically, in [35] was illustrated the use of a
mapper that is placed between the Learner and the system under learn. This
mapper abstracts the values of the parameters and the variables used in
the protocol, creates a smaller set and therefore learning algorithms can be
more effectively applied. The mapper abstracts the concrete outputs, which
are sent from the SUL and sends the abstracted outputs as inputs to the
Learner. On the other side, the Learner sends abstract input symbols to the
mapper, which maps them to concrete ones and sends them as input to the
SUL. When a reset message is sent from the Learner to the SUL, a reset
message is also sent the same moment to the mapper component. The basic
element of the mapper is the abstraction function. As stated in [5], a mapper
is also considered to be a Mealy machine, which has as inputs and outputs
the concrete and abstract sets, with a set of mapper states, with an initial
mapper state with a transition function and also an abstraction function.

For our work, we have also used abstraction, based on the approach [20] for
learning the implementations of the two network protocols, by implement-
ing our own mapper component and placing it between the Learner and
the SUL. More details about the mapper construction and the abstraction of
the input/outputs that we have performed can be found on section 5.2.2 for
FTP and on section 5.1, for Heartbeat protocol.
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Test Adapter:

As described above, the mapper is responsible for mapping abstract and
concrete values between LearnLib and the SUL. However, the concrete
values that are produced by the mapper have to be passed to the SUL in
a way that it understands them. Therefore, they have to be transformed
in the right format that can be read by the SUL. For that reason, another
component that is called test adapter has to be placed between the mapper
and the SUL. As shown in Figure 3.4 the test adapter receives the concrete
values from the mapper and translates them to an understandable format for
the SUL. The mapper and the test adapter components are not per default
implemented from the LearnLib library; they are depending each time on
the SUL’s methods and therefore we have implement them manually. In
Section 5 the practical aspects of the mapper and test adapter components,
which have been created for the learning process, are in detail described.

Results

Our results have shown that the FTP client implementations were able
to be learned for the two out of the three users that we have created for
authentication to the FTP server. Due to a non-deterministic behavior of the
server, no model was able to be constructed for the third user, because the
learning algorithm terminated with an exception. When the user3 tries to
be authenticated, the FTP server sometimes resets the connection and some
other times not. This results to different outputs and state transitions for the
same inputs and leads to non-determinism. Furthermore, we demonstrate
occasions where these FTP implementations do not adhere to the standards
and they appear unexpected behavior. In particular, by using learning
techniques we were able to discover a misbehavior of the implementation
of the FTP client of Apache, where we reported the issue to the Apache
developers. Moreover, we found out that the FTP4j client does not comply
with the FTP protocol’s specification as defined in RFC [66]. The SimpleFTP
was the only protocol that complied to the specifications and did not show
any unexpected behavior.

Regarding the Heartbeat protocol, our results have shown that by using
the learning setup of this work, we were not able to detect the Heartbleed
vulnerability as expected. The learning models for the correct and for
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the faulty implementation have resulted to models with just one state.
The resulted model has shown that different inputs will produce different
outputs, but will result to the same state. That is due to the fact, that every
message sent is an independent event from the next message that will be
sent. Although the learning was not as we expected, we could state that the
comparison of these one-state models (as shown in 6.1, 6.2), could reveal
that for the same input a different output is generated. As a result, since the
models are not identical, this could be a basis for a further investigation of
this observation.

As we concluded in section 6, where our results are presented, one of the
most important actions to be taken into account when applying learning
techniques, is the the correct setup and implementation of the mapper
component. A not so precise implementation of the mapper, can result in
divergent final results, as we figured out throughout this thesis. Even a
small change to the mapper behavior can lead to a dissimilar outcome.

Moreover, we analyse in our work and compare statistical information and
benchmarks of the learned models, such as execution time, number of
membership and equivalence queries, number of states etc. by using two
different algorithms for equivalence verification applied in the three FTP
client implementations. The equivalence algorithms used are the ’Random
Walks’ and the ’W-method’ and will be analytically presented in chapter
3. Based on our results, by using the W-method the time of equivalence
queries has been extremely reduced although the overall execution time has
not been much affected.

Since the application of active automata learning on the two previously
described network protocols will be the main focus of this thesis, a brief
introduction to the Learning Theory will be presented in the next section.

1.3 Background knowledge of the Learning
Theory

As described above, we use active learning techniques for learning the
behavior of a system and then evaluating if the learned behavior is the
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expected one as initially specified. Active learning is one specific method of
the “Learning Theory” field that can be used for proving the correctness of
the system. This method will be analytically described in the next chapter
(Chapter 2), since it is the basic approach used in this thesis. However,
the idea of “Learning a system” includes also other learning methods and
can be also applied in different scientific fields. Therefore, in this section a
background of what is meant by “learning” the behavior of the system will
be given, as also a description of the basic aspects of the so called “Learning
Theory” -the field where Active Learning also comes from.

1.3.1 Machine Learning & the three basic types of Learning

In general, learning is defined as a “relatively permanent change” in the
behavior of a system, which is derived from the past experience and a
learning system is described by its ability to improve its behavior during the
time by converging to a required objective [58]. In the context of designing
machines that are able to learn, learning can also denote the inference of
rules derived from examples [67]. Thus, machine learning deals with the
problem of automatically generating system descriptions [65] and creating
algorithms that can learn from the data they process and analyse [38]. In
other words, the general idea of machine learning can be summarised by
the following actions: first collecting the data and afterwards using this
data in order to learn how to solve a problem or a task. As a result, the
learning problems can be formulated as a relationship (mapping) between
inputs and outputs. What we try to learn is, which is the best produced
output for each possible input [8]. For instance, in case of face recognition,
the input would be an image and the output the identified faces, in speech
recognition the input would be a speech signal and the output a text
sentence. Machine learning can be used in several scientific fields such as
artificial intelligence, theoretical computer science, pattern recognition and
more [69]. Various computation structures can be learned such as logic
programs, rules, grammars as also finite state automata.

In machine learning theory we can choose which learning method to use
based on the kind of data that we are dealing with. In particular, the
examples of data can either have both the inputs and the outputs (supervised
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learning) or only the inputs (unsupervised learning). In other cases, we may
can not access directly the correct output but we can estimate the quality
of an output o following the input i (reinforcement learning). In the former
case when these example of data, called training data, are encoded as pairs
of inputs-outputs (i, o) we refer to this type of learning as supervised learning.
The learning function depends often on a set of parameters and the learning
goal is defined by adjusting these parameters in order to fit the data. As a
good learning model is a model that generalises well to new data [8], which
means that is able to abstract apart for detecting underlying patterns. On
the other hand, on unsupervised learning where only the collection of input
examples is available, we try to learn the patterns of the data by applying
clustering techniques based on similarities or correlations between features
of the data. Lastly, on reinforcement learning although there is no direct
access to the correct output for an input, we have a measure of how good
or bad an output is. In that way, we can learn the behavior that maximises
the expected goal by observations. A so called ’agent’ executes a sequence
of actions to the environment and the environment is providing a signal
(reward) as a feedback to these actions. This numerical signal reward tries
the agent to maximise. A Learner relates this reward signal to previously
executed actions in order to learn a ”policy” which will maximise the
expected future reward [61]. This way of learning is also used in cognitive
science and in behavioural psychology.

1.3.2 From Machine Learning to Automata Learning

Machine Learning is one important area of the Learning Theory that we
described above. Another field of Learning is the “ Automata Learning”,
which focuses on solving computational problems by making use of these
automata. As stated in [61] Learning Automata are adaptive decision making
devices suited for operation in unknown stochastic environments. They have first
been introduced in mathematical psychology and have been used to describe
the human behavior from a psychological and biological view [61]. How-
ever, they have been used nowadays mostly in the field of engineering. A
variable structure of a learning automaton is very close to the concept of the
reinforcement learning -as described above- and more specifically are close
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associated to a Reinforcement Learner of a policy iteration type. In particular,
the learning automaton at each time has a probability p(t) = (p1(t).., pl(t)),
where p1(t) is the probability for selecting the first action at time t and l
stands for the number of actions. After an action has been performed by
the automaton, the environment produces a reinforcement signal. These
probabilities are being adjusted over time based on this produced signal.
Therefore, learning automata can be defined as policy iterators, since playing
the role of reinforcement Learners, they update the policies when an action
i is selected and a reward r(t) is received at time t. Learning automata have
been used to a wide range of modelling and control problems, due to their
fast and accurate converge with low computational complexity [61].

In this thesis we focus on a specific case of Automata Learning called
Active Automata Learning, that will be presented in detail in Chapter 2

“Preliminaries””.

1.4 Overview and organisation of this thesis

This thesis will address the following questions about applying Automata
Learning Techniques to a system under learn (SUL):

• Could possible errors and unexpected system’s behavior be uncovered
through applied automata learning techniques?
• How big is the complexity and how high is the effort of learning a

system?
• Do the network protocols that are being learned comply to their

specifications?
• How is the performance of the “learning” affected when different

equivalence methods are used and which optimisations can we per-
form?

Based on our work and our results we are able to answer the above questions,
which we have set as our main objectives for this thesis. We present our
answers to these question at the “Experimental Results and Discussion”
Section (Chapter 6). The organisation of this thesis is as follows:
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The first part of the thesis (Chapters 2 to 3) provides a basic knowledge
background related to the thesis focus and purpose. Initially, Chapter 2

sets the basic concepts for state machines and formal languages, which
are used in learning algorithms. The main focus of this thesis concerns
automata learning methods. Therefore, in Chapter 2.1.1, we present a brief
description of the automata learning algorithm used in this work. Chapter 3

gives an overview of some of the tools, which are used for active automata
learning. The tools that we have used in this master thesis, such as LearnLib,
are presented in a more detail way. In Chapter 4 we describe the network
protocols under learn as also their formal specifications.

The second part of the thesis (Chapter 5) describes the technical implemen-
tation and shows the experiments that have been conducted. In particular,
we present extendedly the learning setup and the description of the learning
components.

Finally, in the third part of the thesis we expose our results, conclusions
and future work. More precisely, in Chapter 6 we discuss the current results
and we evaluate the final outcome of our learning process. Additionally, in
Chapter 7 we present some interesting relevant papers and related to this
master thesis work. Lastly, in Chapter 8 we give answers to all of the goals
that have been set at the beginning of this thesis and we outline some ideas
for future work and further research.



2 Preliminaries and Basic
Concepts of Automata Learning

“There comes a time when the mind takes a higher plane of knowledge
but can never prove how it got there [39]. ”

[ Albert Einstein ]

Automaton Theory is the field of theoretical computer science which studies
abstracted machines called “automaton” and focuses on solving computa-
tional problems by making use of these automata.

An automaton has been initially used to represent a finite description of
a formal language. Thus, a given formal language can be recognised by
an automaton which describes it and accepts it. A formal language is a
set of strings, which are defined over an alphabet and are accepted by an
automaton representation [31]. Let’s assume that the alphabet of a language
is Σ = a, b and is accepted by the automaton M. This language contains all
input strings accepted by M. By giving input strings to a (finite) automaton,
the automaton will transit to a state. This end state will be either a “rejected”
or an “accepted” state, depending on where the given input string belongs
to the alphabet of the language or not. In the diagram 2.1 we represent a
simple automaton which given an input 0 or 1 it can transit to a next state.
The state e, which has a double line, represents the accepting state of this
automaton. The “language” that this automaton accepts, allows an infinite
number of words.

Therefore, an automaton consists of [31]:

1. a set of states
2. a starting state
3. a set of accepting states

17
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Figure 2.1: Example of an automaton with state e as accepting state

4. a set of transitions from one state to another
5. a set of inputs to the automaton

In this section we shortly described a general automaton definition. In the
next sections, a more specific usage of the automaton will be introduced;
the Finite State Machines as also the Mealy Machines.

Finite State Machines

One of the most widely used representations of automaton is the Finite-state
machine (FSM). As the name itself indicates, a Finite State Machine is an
automaton with a finite number of states. Therefore, it consists of the same
elements as an automaton; input, output, initial state, finite number of states
and a transition function. The transition functions is a function which maps
every given input to a certain output and at the same time transits to a state
[31].

A finite-state machine is formally defined as a five tuple [28]:

M = 〈Q, I, Z, θ, q0〉 (2.1)

where:

• Q = finite set of states
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• I = finite set of input symbols
• Z = finite set of output symbols
• θ = mapping of I × Q into Q called the state transition function, i.e. I
× Q→ Q

• q0 ∈ Q = initial state

Mealy Machines

In this work, we model our systems as finite state machines and more
specifically as Mealy machines. A Mealy machine is special form of a finite
state machine, which forms a well-known category of automaton. The
outputs that a Mealy machine produces are a function of the given input
and of the state. Thus, the output is dependent on the current state and
input. We described above an automaton as a system which by receiving
an input produce an output and will move to an “accepted” or “rejected”
state. However, Mealy machines do not distinguish between accepting and
rejecting states but their aim is to produce a certain output based on their
input.

Mealy machines are a way to model reactive systems formally. A Mealy
machine is a variant of automata which is defined as a tuple [4]

M = 〈S, S0, Σ, Ω, δ, λ〉, (2.2)

where:

• S is a finite nonempty set of states (where n = |S| the size of the Mealy
machine),
• S0 ∈ S is the initial state,
• Σ is a finite input alphabet,
• Ω is a finite output alphabet,
• δ : S× Σ→ S is the transition function, and
• λ : S× Σ→ Ω is the output function.

The machine can be at any state s ∈ S. From this state it is possible to give
an input to the machine α ∈ Σ and it will respond by producing an output
symbol λ(s, α). At the same time it will transform itself to a new state δ(s, α).
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For instance, the transition s→ s’ means that when an input symbol α ∈ Σ
is received, the Mealy machine moves from state s to state s’ and produces
the output symbol o ∈ Ω. Elements Σ and Ω are input and output alphabets
respectively.

In our work, we use Mealy machines in order to model the behavior of the
system under learn. We use input and output strings instead of symbols
and we consider in this thesis that the Mealy machines are complete and
deterministic. Therefore, for each state s and input Σ the automaton can
move only to one next state δ(s, α) and will produce only one output
λ(s, α).

Mealy Machines are moving through states. In order to minimise the pro-
duced states of a Mealy Machine to a smaller set, it is needed to identify
if equivalent states are produced. If so, then they can be represented by
one state. Moreover, equivalence is also needed when comparing if two
produced Mealy Machines are equal. Therefore, below we present defini-
tions as described in [56], for a better understanding on what is meant by
“Equivalence between classes” on Mealy Machines.

For Mealy machines equivalence between states is defined as [56]:

Two states sα, sb ∈ S of a Mealy machine are equivalent if both states show exactly
the same behavior for all futures, i.e., every input word w ∈ Σ+ produces the same
output for both:

sα ≡ sb⇐⇒ λ(sα, w) = λ(sb, w)∀w ∈ Σ+ (2.3)

The inputs of a Mealy Machine can be words by means of a set of strings.
Based on the words which are given as input, a “next state” will be defined.
Hence, the predefined state equivalence can be exposed by using the so
called “Nerode relation” on languages (set of words), which is defined as
follows [56]:

Two words x, y ∈ Σ are considered equivalent by the Nerode relation on the
language L if for any suffix z ∈ Σ∗ the concatenations xz and yz are either members
or non-members of language

L : x ∼ Ly⇐⇒ (∀z ∈ Σ∗ : xz ∈ L⇐⇒ yz ∈ L) (2.4)
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Hence, the equivalence between classes can be also defined as follows [56]:

For x ∈ Σ∗, the equivalence class [x] is defined as

[x] = {y ∈ Σ∗ | x ∼ Ly} (2.5)

In other words, if two states produce the same output behavior for all the
future events, these states are equivalent, based on the above Mealy machine
specification for state equivalence. Thus, these states can be combined to
one state and a minimal Mealy machine automaton will be produced.

2.1 Passive and Active Automata learning

Automata learning can be divided into two learning categories: passive
and active learning. Passive learning algorithms are based on a given set
of observations, which has been already pre-collected, in order to learn a
model and do not actively ask for additional observations and information.
In passive learning the learning process can be divided into three steps [50].
Initially, the system under learn in observed and its behavior is being stored
for later analysis. After that, the so called “prefix tree acceptor” is created,
which is a deterministic tree graph, where given a set of strings (words), it
will create a next state for each of these strings. If the state already exists,
no new state will be created. For example for the set of strings {baa, baba}
the prefix tree acceptor as shown in Figure 2.2 will be created. The creation
of this tree is based on the previous stored observations.

Lastly, the states that are compatible with the input will be represented only
by one generalised state.

The main issue of this approach is the fact that the construction of an
accurate model that represents the system’s behavior is not so trivial. The
prerecorded data may not be enough and may not give all the information
required about the system under learn. The problem lays to the fact that
we are learning the system “offline” and therefore we can not ask for more
information and data at any time we would need them. A good solution
to that would be to request more information about the system any time
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aab

b a

Figure 2.2: The prefix tree acceptor for {baa, baba}

there is an ambiguity and a “decision” has to be made. This approach
is introduced by active automata learning and will be presented in the
following section.

The problem stated with passive automata learning can be solved by using
another learning approach; the active learning. In the active learning ap-
proach, it is assumed that there is a teacher who knows the behavior of the
system under learn (SUL) and a learner, who wants to learn the SUL. The
learner asks queries to the teacher and the teacher (which is represented
as an Oracle and knows the SUL) answers these queries. The difference
to the passive learning approach is the fact that the learning procedure
is “active”, so at any time the learner needs more information about the
SUL, the teacher will be queried and therefore ambiguities can be avoided
and more knowledge about the SUL is gained. The basic representation of
active learning is the well-known algorithm of Angluin, called L*. In this
algorithm the concept of the minimally adequate teacher (MAT) model has
been introduced, that is presented below.

In terms of convenience we will use the same symbols defined in section “Mealy
machine” to describe the initial state, the finite input alphabet, finite output alphabet,
transition function, and output function.

The MAT model assumes there is a Teacher which knows the system’s
behavior, which is represented as a deterministic Mealy machine [56]
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M = 〈S, s0, Σ, Ω, δ, λ〉 (2.6)

Thus, the teacher is able to answer two types of queries [56]:

• Membership queries (Mq): the learner sends a sequence of input
symbols to the teacher and the teacher returns an output-symbols
sequence as an answer to these inputs. In other words, for an input
symbol a the teacher will response with an output sequence Mq(a).
These queries are used in order to construct a hypothesis model for
the SUL.
• Equivalence queries (Eq): After the hypothesis has been constructed

Mh = 〈Sh, s0h, Σh, Ωh, δh, λh〉 (2.7)

, the output of the hypothesis will be checked. This output is compared
to the output that is produced by the Mealy machine model of the
target SUL.

M(SUL) = 〈S(SUL), s0(SUL), Σ(SUL), Ω(SUL), δ(SUL), λ(SUL)〉 (2.8)

If Mh is different from M(SUL), then a counterexample will be pro-
duced. On the other hand, if the two models are equivalent, the learned
hypothesis Mh is a correct representation of the SUL and therefore the
SUL has been learned successfully. These queries are used in order to
verify the constructed hypothesis model.

This is a loop process, where starting from the Mq phase and proceeding
with the Eq phase, the loop will stop either when no counterexample is
produced or after some predefined number of steps. In the former case, a
correct learned model will be defined. In the next section the well known
Angluin’s L* algorithm, which has first introduced and implemented the
MAT model will be presented.

2.1.1 Angluin’s L* Algorithm

Angluin’s algorithm [9], called L* is the most well known one that is used to
infer deterministic finite automata, like Mealy machines. Its characteristic is
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the use of queries that can be classified into the two categories as described
above: (a) Membership queries and (b) Equivalence queries. The purpose
of Angluin’s L* is to observe the SUL’s behavior by gathering enough
knowledge about it and formulate a hypothetical model of it. It is a learning
system which can improve its behavior during the running time and aims
to provide behavioral equivalence between the learned automaton and the
target automaton. Thus, the learner actively reacts with the automaton
output to identify equivalence classes in the input sequences. After that, the
learner generates a hypothetical automaton from these equivalence classes
[70].

A representation of the L* algorithm is presented in Figure 2.3, where the
L* algorithm takes the role of the “learner”. As described by Angluin [9],
Chen [15] and Berg [12] et al. this algorithm consists of several components,
which interact with each other throughout the whole learning procedure.
These components are:

• Learner: It is the core component that controls the learning process by
querying the teacher. Learner can be any learning algorithm, in this
case, it is the L* algorithm.
• Teacher: It responses to the informational needs of the learner with

data from the SUL.
• SUL: The system under learn that is represented as an deterministic

automaton (in this case as Mealy machine).
• Observation Table: It consists of all the information that the learner

knows about the SUL and is updated at each run. At the end, a
behaviorally equivalent system to the SUL is retrieved based on this
observed data.

Since the SUL is considered to be a black-box system, the only way that the
learner can retrieve information from the system is by creating queries and
sending them to the teacher. The teacher, that knows the internal structure of
the SUL, answers these queries by producing an output to each input query.
The teacher acts as an oracle since it needs to know the representation of
the SUL. The use of queries gives information for the way the system reacts
to the given inputs and finally the system’s behavior is learned. As in every
active learning procedure two roles are determined as already described
above: the learner, who asks questions to the system and the teacher, who
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Equivalence Query
Counterexample/null

Figure 2.3: Components of the L* Algorithm

knows the deterministic Mealy machine M = 〈S, s0, Σ, Ω, δ, λ〉. The learner
initially has only knowledge for the input and output alphabet that can
“use” in order to query the teacher-Mealy machine. Hence, it identifies the
accepted language by the automaton to be learned. The learning procedure
is a simple mapping of words from the input alphabet that the learner
provides to true, false depending on wether the automaton accepts or rejects
the input words [70]. “Accept” means that the input received, leads to an
accepting state and “reject” to a rejecting one, according to the transition
function.

The L* algorithm in detail

In this section, the L* algorithm is presented from a more detailed view. The
L* algorithm aims to learn an unknown regular language L and construct
deterministic finite state machine (in our case a Mealy machine) that accepts
L. Based on the MAT model described before, by making use of membership
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queries tries to find out if a certain string s ∈ Σ∗, where Sigma∗ is the
alphabet, belongs to the language L. When asking membership queries to
the teacher, at the same time it fills in the so called observation table with
the provided information. After that, based on this information from the
observation table, the algorithm calculates and constructs a Mealy machine
hypothesis. We define the observation table (S, P, T) as a set of suffixes S,
prefixes P , both respectively over alphabet Σ∗ and transition function T.
The transition function is mapping (S ∪ S · Σ) · P to {true, f alse} and the
empty string is represented by ε. The pseudocode the L* algorithm can be
represented, as stated in [63], as follows:

1. Let S= P= {λ}
loop{

2. Update transition function T using queries

While (S,P,T) is not closed{

3. Add sa to S, so that S becomes closed, where s ∈ S and a ∈ Σ
4. Update T using queries

}

5. Construct candidate Mealy machine automaton Mh from (S,P,T)

6. Make the conjecture of Mh

7. If Mh is correct

then return the Mh

else

add s (suffix) ∈ Σ∗ that witnesses the counterexample to P

}

The termination of the algorithm occurs when consistency and closeness of
the observation table is achieved.

Consistency is defined if from one state you can transit to exactly to one
successor state. If not, then the observation table is non-consistent and its
behavior in non-deterministic [56].

Closeness is defined when all transitions lead to states that already exist [56].
In particular, for all the new states their successors already exist (so the state
has already been established), then the observation table is “closed”.
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Based on this information, that the table contains, the algorithm constructs
a hypothesis as a deterministic conjecture and asks the teacher for each
conjecture, whether its is correct or not. In the former case, the algorithm
will terminate. In the latter case, the L* will use the response of the teacher
as a counterexample in order to extend the observation table with strings
which indicate differences between the target SUL (unknown language L)
and the hypothesis automaton [63].

L* algorithm terminates with a minimal automaton M which represents the
unknown language L. Thus, it guarantees that any other Mealy automaton
that accepts the language L will have at least as many states as Mh and
maybe more [63]. The L* algorithm requires only a polynomial number
of queries in order to find a hypothesis Mh such that Mh ∼ L, whereby
the learning of the smallest deterministic automaton is well-known to be
NP-hard [6].

2.2 Black Box System

In this master thesis, we look at the network protocols’ implementations
that we analyse as black-box systems. Black box is considered a system,
where no knowledge of the programming language that has been used is
needed, no information on the implementation of the system is required
and no a-priori insight in their code. In order to test such systems black-box
testing techniques can be applied such as[59]:

• State Transition Diagrams or State Graphs
• Equivalence Class Partitioning
• Decision Tables
• All Pairs Technique
• Boundary Value Analysis
• Orthogonal Arrays

We will not describe and analyse the other techniques, but only the state
graphs, since they are relevant to this thesis because we model our learned
systems as state machines. State graphs are an exceptional way for exposing
the system’s requirements and modelling its behavior [59]. The system can
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be modelled as a finite state machine. By starting from the start state, the
system responses to the given inputs with a produced output. When the
system responses to the same input with a different output, then it transits to
another state than the current one. If the produced output is the same, then
the system stays at the same state. In that way, the whole system’s behavior
and reaction to inputs can be summarised as a state diagram, which consists
of states and in-between transitions [69]. After that, various test cases can
be derived from this graph, since each node can be defined as an individual
test case. By comparing the observed values with the expected ones, the test
cases pass or fail. Hence, the main purpose of this kind of testing is revealing
inconsistencies between the system’s behavior and the predefined system’s
requirements. Although in this master thesis we will not perform black-box
testing methods, we look however at the input/output sets that are passed
and produced to/from the system under learn (SUL). The implementation
code of the network protocols are not known to us and therefore we handle
them as black-box systems.
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“No amount of experimentation can ever prove me right; a single
experiment can prove me wrong [85]. ”

[ Albert Einstein ]

In this section we present some tools, which can be used for actively learning
the behavior of systems. Initially, the main tool that has been used in
this thesis for active learning some implementations of network protocols,
LearnLib, will be presented. Moreover, LearnLib Studio, a modelling and
execution environment for learning setups as also Tomte, another tool which
can be used when applying automata learning techniques will be shortly
demonstrated. However, the focus of this thesis will be on LearnLib, a java
library of tools for automata learning [57].

3.1 LearnLib

LearnLib is a tool used for active automata learning and sees the system to
be learned as a black-box implementation, as described in Section 2.2. It is
the basic tool that we use in this thesis and is able to learn models which
consist of up to thousands of states. It is able to learn Mealy machines or
DFA’s using the L* algorithm as also other learning algorithms. Moreover, it
contains lots of optimisation techniques, such as optimising and eliminating
the number of queries asked by the corresponding algorithm. In addition,
it implements various learning strategies and uses different ways to gen-
erate membership queries and finally constructs a behavioural model [48].
Therefore, LearnLib tool is basically a framework that can be effectively
used for automata learning. More specifically, it consists of a Java library

29
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that includes a Java implementation of learning algorithms, as also the L*
algorithm that has been analytically presented in Section 2.1.1.

LearLib has been initially used for building up finite state machine models
generated from real systems [65]. However, this initial intention has been
changed and nowadays LearnLib is used as a platform which provides
different learning algorithms that are not only used by the users but also ex-
tended and optimised. An example of such optimisations is the elimination
of the size of membership queries [48].

The main libraries that LearnLib consists of are [65]. :

• Automata Learning framework, where the learning algorithms are
provided
• Filter library, which reduces the number of queries, through optimisa-

tion methods
• Approximative equivalence queries library, which is used for genera-

tion of conformance test suites for the construction of the hypothesis

LearnLib focuses basically on three main categories: on learning algorithms,
on the so called ”infrastructure components” and on methods for finding
counterexamples[40].

The first category that LearnLib is focusing on is the learning algorithms.
The basic learning algorithm of LearnLib is the Angluin’s algorithm, which
is also the algorithm used in this thesis. As described in Section 2.1.1, An-
gluin’s teacher oracle can answer two kind of queries: Membership queries
in terms of word sets, which are accepted or not accepted from the finite
state machine and Equivalence queries, in terms of whether the constructed
hypothesis corresponds to the finite state machine that is examined. The
first type of queries can be answered directly from the system under learn-
ing whereby the Equivalence queries can be answered by a ”Yes” or by
producing a ”Counterexample” [65]. However, other algorithms such as
the Observation Pack algorithm, Kearns & Vazirani’s algorithm as also the DHC
algorithm are also available in LearnLib. All of them, except the DHC, can
be used for learning Mealy and DFA automata [40].

The second category where LearnLib is targeting on is on providing an
infrastructure library for optimising the learning procedure. For example, it
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uses cash filters which ”remember” that this query has been generated and
used before and therefore it retrieves and uses this information from the
cash. Therefore, LearnLib does not need to create another duplicate-query
and this results to faster results. In addition, filters that are used for reducing
the number of ”reset” actions or other statistics that help to speed up the
learning procedure, are part of the infrastructure components that LearnLib
provides [c].

The last category that LearnLib is focusing on, is the construction of Equiva-
lence queries. In case a model of the target system is available, LearnLib is
using the Hopcroft and Karp’s [71] algorithm for equivalence verification. In
case the system under test is a black-box implementation, approximation
methods are used for generating the equivalence queries. LearnLib uses
then conformance testing for building equivalence queries and finding coun-
terexamples. More specifically, LearnLib finds counterexamples by using
the following methods [49]:

• Randomised Depth-First Search (Random Walk only for Mealy ma-
chines)
• Random Test cases (Random Words)
• Exhaustive generation of test inputs (Breadth-First Search up to a

certain depth k)
• Conformance Testing (W-method and Wp-Method)

For this master thesis, the Randomised DFS and the W-method will be used
and therefore they are explained in the next sections.

Random Walks

When using conformance testing, missing states can be also identified. One
way to do that is by using randomised DFS. DFS stands for the Depth-First
Search algorithm [37] which, given an initial state i of the graph, examines
whether every other state can be reached from this state i. Thus, randomized
DFS is starting from a random state in the graph and recursively searches
any other state that is reachable from this state in one execution step. After
that, from this next state it searches if any other possible state can be reached.
This procedure continues as soon as no other state is reachable from the
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previous state [37]. The algorithm terminates when all the states of the
graph are visited. Since the hypothesis in Learnlib is described as a Mealy
machine graph, this algorithm can be used in order to check weather the
hypothesis-graph is equivalent to the Mealy machine graph of the SUL. If
not, then a counterexample is produced and the hypothesis is refined.

W-method

The second method that we have used in LearnLib for founding counterex-
amples, is the W-method. The W-method has been first proposed by Chow
[44] and is used for constructing test cases derived from a given finite state
machine (FSM). The generated test cases are a finite set of sequences, which
can be afterwards passed to an FSM in order to test its correctness [52]
when its specification is known. Therefore, LearnLib uses the W-method
to generate test sequences (equivalence queries), which are then used for
generation of conformance test suites for the construction of the hypothesis.
As described in [52] for a given Mealy machine

M = 〈S, s0, Σ, Ω, δ, λ〉 (3.1)

(for our purposes we use Mealy machine as an FSM), the W-method will
perform the following steps, for generating tests from M:

• Step1: estimation of the maximum states in the correct design
• Step2: generation of the so called characterisation “W set” for the given

Mealy machine M
• Step3: construction of the testing tree for M and definition of the

transition cover set P
• Step4: construction of the set Z
• Step5: the product P x Z is the final test set

These steps will be analytically described in this section. Starting from Step1,
since we have no access to the correct design model, an estimation of the
maximum states should be performed [52]. Therefore, if no information
of the correct implementation is available, in the worst case scenario the
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maximum states would be the number of states in M. In Step2, the charac-
terisation W-set will be derived from M. A characterisation set W is defined
as follows [52]:

Definition: A characterisation set W for a minimal and complete Mealy machine
M, is a finite set of input sequences which distinguish the behavior of any pair
of states in M. Hence, for example for two states s0, s1 in S, if there is a string a
∈ Σ∗ such that λ(s0, a) 6= λ(s1, a) , then this string belongs to the characterisation
“W-Set”

In other words, if we start from the state s0 and we apply this string a, then
an output a’ will be produced. But if starting from state s1 and we apply
the same string a, then another output a” will be produced, were a′ 6= a”.
Therefore, a belongs to the set W.

In Step3, the construction of a transition cover set is defined. A transition
cover set P as described in [52], can be constructed by using a so called
testing tree of M. Thus, the first action at this step would be to construct the
testing tree of M.

Definition [52]: Let us assume that s1, s2, where s1 6= s2, are two states in M. The
transition cover set P consists of the empty sequence ε and the sequences a,b such
that δ(s0, a) = s1 and delta(s1, b) = s2

Therefore, starting from the initial state s0, we apply all the possible set
of strings at this state. By applying each string, we check if the next state
that M moves on is again the state s0. If this is the case then s0 becomes a
leaf. If the next state that M moves on is another state, for instance state
s3, different to s0, then we continue the same procedure starting from s3,
since now s3 is the “root”. In general, a leaf node means that this state has
already occurred before (has appeared at least once as a state). At the end,
we have constructed a tree, where all the states of M are present. After the
construction of this Tree, we start from the root (in our case s0) and we go
through each path that ends to a leaf node. The empty string together with
the set of all these paths form the transition cover set P. With this method
we are sure that all the states of M are reached.

At Step 4, the construction of the Z set takes place. The set Z is defined as
follows [52]:



34 3. Active Learning Tools

Z = (Σ0 ·W) ∪ (Σ ·W) ∪ (Σ2 ·W) ∪ ...(Σ(m−1−n) ·W) · (Σ(m−n) ·W)

where Σ is the input alphabet and W is the characterisation set as described
in Step2. The number of maximum states which has been estimated in Step1

in the correct design is n whereby m stands for the number of states in the
M, with m > n. As a result, in case of m = n then Z = W. The symbol (·)
stands for string concatenation. In case of m < n then Z = WΣ.

Lastly, in the Step5 we derive a test set T by concatenating Z with P. In
Step 3, we have calculated the transition cover set P, where in Step 4 we
have constructed the set Z. The product of these two sets is our final test
set. This test set will be given as input to the SUL in order to test if the
two models (the SUL and the hypothesis model) are equivalent. LearnLib
is using this method for approximating the equivalence queries. Thus, the
learning algorithm will apply each input t from the set P · Z and compare
the hypothesis M(t) with the implementation SUL(t). In case they are equal
the hypothesis is correct otherwise a counterexample is produced and the
hypothesis has to be refined.

Wp-method

Another method that LearnLib is using for finding counterexamples is
the partial W-method or also known as Wp-Method, which follows the
basic principles of the W-method. However, the main difference between
these two methods is the size of the generated test set. In Wp-method a
smaller set is constructed by applying a two-phase technique for test case
generation: In the first phase we derive a test set from the state cover set
and the characterisation set W. In the second phase we create another test
case which is derived from the transition cover set P and the identification
sets Wi. The characterisation set W as also the transition cover set P, have
been already described in the W-Method. The state cover set as also the
identification sets Wi will be described below.

Definition [52]: Given an FSM M with Q as the set of states, an identification set
for state qiinQ is denoted by Wi and has the following properties:

1. The identification set is a subset of W
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2. For each state other than qi, there is a string in Wi that distinguishes
qi from qj

3. Wi is minimal, no subset of Wi satisfies the previous property.

A state cover set is a set of strings where, when starting from the initial state
s0 you can move to each other state and reach any other state. For example
the string that you apply for moving from state s0 to state s1 belongs to this
set as also the string that you apply for moving from state s0 to state s2, s0
to state s3, s0 to state sn. For simplicity reasons, we assume that m=n, where
m is the number of states in M and n the number of states in the correct
design, as defined before. In addition, we define that the test case T consists
of two subsets T1, T2, where T = T1 ∪ T2.

The following steps are performed using the Wp-method for computing the
subsets T1, T2 [52]:

• Step1: computation of the transition cover set P, the state cover set C,
the characterisation set W and the state identification sets Wi for M.
• Step2: T1 = C ·W
• Step3: assume W is the set of all state identification sets of M, where

W = {W1, W2, ...Wn}
• Step4: assume R = {ri1, ri2, ..., rik} is the set of all sequences that exist

in the transition cover set P but not in the state cover C, so R = P− C.
Moreover, rij ∈ R such that δ(s0, rij) = si j
• Step5: T2 = R ⊗W = Uk

j=1({rij} ·Wi,j), where Wij ∈ W is the state
identification set for the state sij and this ⊗ operator stands for the
partial string concatenation operator

In the first phase, the mealy machine Mh (hypothesis) is tested against
an element of the T1 set (so is tested each state for equivalence with the
corresponding M) [52]. In the second phase, the set T2 checks the remaining
transitions in Mh against M.

3.1.1 The MAT model interfaces in LearnLib

In Section 2.1.1, the MAT approach has been described. The main compo-
nents of the MAT model are implemented as interfaces within LearnLib and
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will be presented below [56].

The main component of the MAT model is the learning algorithm. Within
LearnLib, the LearningAlgorithm interface provides the implementation of ex-
isting learning algorithms and can be used as basis for starting and applying
the learning procedure. Functions and objects that these algorithms need,
are provided within this interface. Functions used for queries generation
as also methods used for connecting to the SUL and defining the accepted
alphabet, are also parts of this interface.

Another MAT component, implemented in LearnLib, is the Automaton itself.
LearnLib provides a library where already the Mealy Machine as also the
DFA automaton are implemented. Therefore it can be used without more
developing effort. The alphabet as also the learning algorithm that will be
used should be defined from the user. The Alphabet is also deployed as
interface within LearnLib and can be used.

Lastly, the two Oracles used at the MAT approach are also implemented and
provided within LearnLib: the MembershipOracle for answering learning
queries and the EquivalenceOracle for evaluating the hypothesis through
approximation methods.

In Figure 3.1, some of the MAT model components, which are implemented
in LearnLib as interfaces are presented. As illustrated, the MAT model
is completely supported within the LearnLib infrastructure. The Learner
side is supported in LearnLib by the “LearningAlgorithm” interface, which
sends Membership Queries and Equivalence Queries to the Teacher side.
The Teacher side in LearnLib implements the two Oracles (Membership and
Equivalence), which answers the queries sent from the Learner.

The counterexample analysis in LearnLib is handled from the CounterExam-
pleHandler interface. The Teacher and Learner components are responsible
for answering and asking Equivalence and Membership queries, which
provide information about the SUL, whereby the counterexample analysis
follows different rules and does not depend on the SUL behavior. Therefore,
the counterexample analysis is a separate component and is not included
within the Learner or the Teacher components. So practically, two compo-
nents, the Learner and the counterexample analysis component are queuing
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Figure 3.1: The MAT Model components as related to the LearnLib interfaces (dashed
borders), source [56]

the Teacher with Membership queries, since the Equivalence queries are
being approximated by new added Membership queries [56].

3.1.2 Mapper

In Figure 3.2 is illustrated how LearnLib is communicating with the SUL
by sending input symbols to it. The SUL responds to these input symbols
by producing output symbols which are sent back to LearnLib. Learning
algorithms however, such as the L* that is used in this master thesis, can be
effective with a limited number of input and output symbols [20]. However
some systems with higher complexity, such as protocols, are using a lot of
parameters and variables for connection establishment and synchronisation.
For that reason, it is possible to reduce the number of parameters, by
applying abstraction techniques. The implementation of a mapper that is
placed between the Learner (in our occasion LearnLib) is responsible for
this role. Through the abstraction, the number of the parameters passed
to/from the Learner to/from the SUL is reduced.

For our work, we have used this abstraction method, which will be presented
in Section 5 by creating a mapper component and placing it between the
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Figure 3.2: Basic Setup
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Figure 3.3: Mapper

Learner and the SUL. In Figure 3.3 is illustrated how the mapper is placed
between the Learner, which in this case is LearnLib and the SUL. The
mapper abstracts the concrete outputs, which are sent from the SUL and
sends the abstracted outputs as inputs to the Learner. On the other side, the
Learner sends abstract input symbols to the mapper, which maps them to
concrete ones and sends them as input to the SUL. When a reset message
is sent from the Learner to the SUL, a reset message is also sent the same
moment to the mapper component. The basic element of the mapper is
the abstraction function. As stated in [5], a mapper is also considered to
be a Mealy machine, which has as inputs and outputs the concrete and
abstract sets, with a set of mapper states, with an initial mapper state with
a transition function and also an abstraction function.
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Figure 3.4: Test Adapter

3.1.3 Test Adapter

As described in the previous section, the mapper is responsible for the
mapping between abstract and concrete values between LearnLib and the
SUL. However, the concrete values that are produced by the mapper have
to be passed to the SUL in a way that the SUL understands them. Therefore,
they have to be transformed in the right format that can be read by the
SUL. For that reason, another component that is called test adapter has to be
placed between the mapper and the SUL. As shown in Figure 3.4 the test
adapter receives the concrete values from the mapper and translates them
to an understandable format for the SUL. The mapper and the test adapter
components are not per default implemented from the LearnLib library;
they are depending each time on the SUL’s methods and therefore have been
manually implemented. In Section 5 the practical aspects of the mapper and
test adapter components, which have been created for the learning process,
are in detail described.

3.2 LearnLib Studio

As aforementioned, LearnLib provides different learning algorithms. Their
main difference is how they collect knowledge about the system under learn.
On top of that, there are also differences on the number of membership
and equivalence queries, on the size of these queries etc. For this reason,
a configuration profiling - tool is needed in order to inspect and evaluate
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Figure 3.5: Model learning setup in LearnLib Studio. Source [56]

these differences. This profiling tool is called LearnLib Studio and shows
how the different learning algorithms perform in practice by providing
statistics about their behavior and efficiency [65].

LearnLib Studio is basically the graphical interface of LearnLib for designing
and executing learning setups [47]. This learning setup can vary from
learning algorithms, system adapters, to query filters, abstraction providers,
etc. LearnLib Studio is based on jABC [74] technology and presents the
LearnLib components available as modules in an executable graph [47].

In Figure 3.5 is shown how the learning setup has been initially modelled
and used in early versions of LearnLib Studio [56]. In particular, all the
components which take part on the learning procedure are configured and
initiated in the “Configuration” phase. After that, the actual learning starts
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and a hypothesis is constructed. In the last phase, the results of the “Learn-
ing” execution phase are exported and statistic results are shown. Nowadays,
this approach has been simplified and improved, without requiring so many
steps and configurations.

To sum up, LearnLib is a powerful and robust tool for fast active automata
learning, which is implementing the MAT model. It has been used by several
researchers and in many projects, as for example for inferring models of
bank cards [4]. In [20], LearnLib contributed in learning communication
protocols. Moreover, in the technical university of Dortmund models of
a web application has been generated by using LearnLib [83]. Another
tool called Tomte, which will be presented in the next Section 3.3, is using
inference algorithms from the library of LearnLib in order to construct
model abstractors [78].

3.3 Tomte

Tomte is another tool which can be used for active learning of automata. It
is a tool that has been implemented from Fide Aarts, Paul Fiterau-Brostean,
Harco Kuppens and Frits Vaandrager and analytically demonstrated in their
paper [7]. Although we do not use Tomte in our experiments, it worths
mentioning this tool since it is a powerful tool in the field of automata
learning. Besides, it implements an algorithm for automatically constructing
abstraction mechanisms.

The learning of automata can be performed from the Tomte tool, which
automatically constructs abstractions of the system under test and send them
to the Learner [78]. Tomte is placed between the Learner and the system
under test and acts as a mapper, which receives an abstract input from
the Learner and constructs a concrete input to be given to the SUL. In the
same way, it constructs abstract outputs to be passed to the Learner, based
on the concrete outputs received from the SUL. Tomte is using LearnLib
for representing the Learner which follows a nondeterministic behavior.
As SUL, can be used either a given real black-box system or a simulated
model, which can be constructed with a so called “SUT tool” [77]. The
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Figure 3.6: Architecture of Tomte

fully architecture and the components of which Tomte consists, are the ones
visualised in Figure 3.6:

The Learner, in case of Tomte, is implemented by the learning tool LearnLib,
which deploys several learning algorithms. Tomte is implemented in the
following way: between the Learner and the SUL are placed three compo-
nents which communicate in both directions with each other [7]. The first
one is called Determinizer and is used for reducing the nondeterministic
behavior that may be produced from the SUL. The second component is
called ”Lookahead Oracle” [7] which ”remembers” the values of the already
passed data, by storing all the traces of the SUL, which have been observed
in the learning phase, in an observation tree. Lastly, the third components
called ”Abstractor” acts as a mapper, which translates the concrete outputs
of the SUL to abstract inputs to be passed to the Learner. Therefore, any
deterministic automaton can be learned from the Tomte tool. As presented
in [78], the Tomte tool has successfully automatically learned real reactive
systems such as the biometric passport and the SIP protocol.
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“Imitation is the sincerest flattery [2]. ”

[ Charles Caleb Colton, English writer, 1780–1832. ]

The two network protocols that we focus on in this thesis are the Heartbeat
Protocol and the File Transfer Protocol. Both of them have been used in the
Internet communication and are following some base standards as described
in RFC [66]. In this section these two protocols, which constitute the systems
under learn (SUL), will be presented and in detail described.

4.1 File Transfer Protocol

The FTP is a server-client protocol that enables the transmission of file
contents from a client to a remote server [23]. Through the FTP Protocol, the
client can upload, delete, download, copy, rename and move files that are
located on the server side. Therefore, the reliable sharing of files and data,
as also the remote storage of them can be achieved through the FTP.

As defined in the official RFC description of the FTP protocol [23], FTP is
an end-to-end protocol, which is used for reliable communication between
two peers. It is making use of the transmission control protocol (TCP)
for enabling the network communication [51]. TCP is a protocol standard
which specifies how to establish and maintain a network connection for
exchanging data between two hosts [72]. Thus, FTP is based on the TCP
protocol when initiates a connection between a client and a server. This
connection is initiated by the so called control connection, which should be
established for exchanging commands and replies between the two peers.
This connection follows the standards of the Telnet protocol and handles

43



44 4. Network Protocols

(controls) the communication between the server and the client. After the
initialisation of the control connection, the data connection can be established,
which is a duplex connection for transferring data. These two connections
form the FTP base functionality.

The FTP service runs per default at the port 21 but this port can also be
manually configured and changed by the user. FTP commands are sent
from the client to the server and FTP replies are sent from the server back to
the client. Initially, the control connection is initiated by the client sending
the connection parameters to the server. More specifically, these connection
parameters consist of the internet address of the server and of the port that
the FTP service is running. After the control connection has been initiated,
the authentication phase occurs, where the client sends its credentials in
order to be authenticated to the server. After the “connect and authenticate”
phase, a data connection can start. FTP commands define the parameters of
the data connection, which can be each time configured [23].

In Figure 4.1 the FTP architecture is presented based on the RFC official
FTP specification. The DTP Server/User stands for Data Transfer Process
and is responsible for creating the data connection. During the transfer of
files, the DTP is also responsible for managing the data connection. The
PI Server/Client stands for Protocol Interpreter and its main role is the
transfer of the commands received from the control connection to the DTP.
Additionally, on the client side a user interface is deployed (GUI), which
communicates with the protocol interpreter.

As briefly mentioned above, the basic connections that the FTP establishes
are the following:

• The Control Connection

The control connection, which follows the Telnet protocol, acts as
a communication path between the client (user-PI) and the server
(server-PI). Within this connection, commands and replies are ex-
changed between the client and the server. Let’s assume the following
simple scenario, where the client wants to communicate to the server.
Initially, the client opens a TCP connection from a random port to the
server’s command port (which is usually the port 21). The client can
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Figure 4.1: FTP architecture



46 4. Network Protocols

Client Server

control 
>1023

data 
>1023

data
>1023

data 
=20

control
=21

Open control connection

Close control connection

 send FTP commands

 send FTP replies

Figure 4.2: FTP Control Connection

then send commands to the server and the server can reply back by
generating command replies. At any point the server can close the con-
trol connection, after the client has requested a “connection close” and
after all the transfers and replies have been completed as described
at the protocol’s specifications [23]. Furthermore, after the control
connection has been initiated, the transfer of data can start. During
this exchange and transferring of information the control connection
should remain open. That results to the fact that without a control
connection, no data connection can be initiated [24]. In Figure 4.2 the
control connection is visualised.

• The Data Connection

The data connection is initiated between the client (user-DTP) and the
server (server-DTP), after a control connection has been established.
It acts as the communication channel for exchanging real data. The
data connection indicates that data can now be exchanged between the
server and the client. There are two different modes, the FTP protocol
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can be configured: the active mode and the passive mode[23]. On the
active mode the server starts and closes the data connection, whereby
on passive mode these actions are performed by the client. The default
mode of the FTP protocol is the active mode. If the client would like
to use the passive mode, a “PASV” command should be sent to the
server.
In the active mode the client (user -PI) sends to the server (server-PI)
the port where the server should connect to for setting up the data
connection. The client sends this information by connecting first to
the default command port (port 21) where the control connection has
been initiated. After that, the server establishes the connection from
its local port (port 20) to this client port that has been sent before from
the client and the client already is listening to and waiting for the
connection [24].
Since it is not so practical that the server has to initiate the connection,
the passive mode is more often use. By sending the client a “PASV”
command to the server, it indicated that the client will establish the
connection. The Server reacts to this command, by opening a random
port and start listening to it. The client connects and initiates the data
connection at this server’s port [24].
As stated in RFC [23],“all FTP implementations must support the use of
the default data connection ports, and only the user-PI may initiate the use of
non-default ports”.

Transfer of Data

After the data connection has been initiated, the transfer of the data can
start. The files can be transferred only when the data connection has been
established. FTP uses the MODE command for defining the way that the
data will be transmitted and the TYPE command for defining the type
(representation) of the data that will be transferred. The default type in
FTP is the ASCII TYPE [23]. However, FTP does not support all the kind of
data type representations, therefore the two peers should first perform the
corresponding changes in the data representations before starting sharing
them. In addition to the different data types provided by FTP, the structure



48 4. Network Protocols

of a file can be also defined from the client-user. The three file structures
that the FTP supports are [23]:

• file-structure: where the file is just a sequence of data bytes
• record-structure: the file consists of sequential records
• page-structure: the file consists of independent indexed pages

The default FTP structure type is the file-structure.

Additionally, the FTP distinguished between different type of commands;
access control commands, transfer parameter commands and FTP service
commands [23]. For this master thesis purposes, we are focusing on the
access commands, which are used in the authentication and the login phase.
In particular, the access control commands that we are focusing on are the
following:

1. User name (USER), for user’s authentication
2. Password (PASS), for user’s authentication
3. Change working directory (CWD), for changing the current directory
4. Logout (QUIT), for requesting the closing of the control connection

Additionally to these, we use from the transfer parameter commands, the
5. Data port (PORT) command, for specifying the internet host address

and the TCP port address of the FTP server to be connected and form
the FTP service commands, the

6. Store (STOR) command, for uploading a file to the server side.

After the client has sent on of these three types of commands to the server,
the server responses with an FTP reply. The FTP replies are represented as
a string which contain three digits and some text. The text is only relevant
for the user, by giving him/her some meaningful information. The digits
are relevant for the user-PI and each number combination has also another
meaning. In particular, the first digit denotes if the FTP reply is good, bad
or incomplete [23]. The second digit gives information of what kind of error
has occurred, for instance file system error. The third digit gives a better
explanation of the error described from the second digit.

We illustrate the following example: The first digit “1xx” indicates a “Positive
Preliminary reply”, the second digit “x2x” refers to replies that are related
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to the control and data connections and the third digit “xx5” gives more
information about the control or data connection which was specified in
the second digit. As a result, the three digit number “125” would mean the
following server reply: “Data connection already open; transfer starting”
Different FTP implementation should strictly follow the digit combinations
(codes) that are defined at the RFC standard [23] and not invent their own.
The text that follows after the three digits is not a compulsory field but it is
recommended from the FTP standard, since it gives meaningful information
to the user.

Based on the protocol’s requirements, every client command should generate
at least one server reply, so that the other peer always knows the state of
the server [23]. This reply is called primary server reply and is a mandatory
action. However, the server can also generate a secondary reply if the client
commands require a second reply. For example, a second reply could be
in case of a file transfer, a reply for reporting the progress of a file or for
closing the data connection.
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4.2 Heartbeat Protocol

In this section, an extension of the Transport Layer Security protocol, called
Heartbeat protocol will be presented. Before providing information of this
protocol, the understanding of how the TLS protocol works will be described,
since it is required as an a-priori knowledge at this thesis.

The TLS Protocol

Most of the services over Internet are making use of the so called “OpenSSL”
protocol in order to transfer data over the Internet securely. In particular,
OpenSSL is a popular open source project for secure transmission of data
over the Internet. It provides a cryptographic library which implements the
SSL and TLS protocols [62]. SSL stands for Secure Sockets Layer, where TLS
stands for Transport Layer Security. Both protocols provide data encryption
and authentication between the two peers communicating. SSL protocol
is the pioneer in secure communications protocols and the basis for the
TLS protocol. However, the SSL protocol has never been published by the
Internet Engineering Task Force (IETF) and no formal specification of it
has been described [76]. Therefore, TLS has been introduced as a standard-
ised protocol, which will allow client/servers applications to communicate
securely.

TLS Handshake

A connection between a client and a server is always initiated with a hand-
shake action between them. The purpose of the handshake is to provide both
sides with the secure elements that will be used within this communication
session [80]. The handshake phase is summarised as follows, as described
at the official TLS documentation [80] :

The TLS client sends a ”client hello” message to the TLS Server and also
some cryptographic information. The server responses with a ”server hello”
message and sends also his certificate and his cryptographic information
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to the client side. The client verifies the server’s certificate and the cryp-
tographic information that were sent. After that, in case the verification
succeed, the client encrypts with the server’s public key the common key
that will be used at this session and sends it to the server. The server
decrypts the session key with its private key. Both send a ”client/server
finished” message to indicate that the handshake phase is over and they
can start exchange messages, encrypted with the shared session key. In that
way confidentiality of data has been achieved.

Heartbeat Protocol, an extension of the TLS protocol

The Datagram Transport Layer Security (DTLS) is a specific category of the
TLS protocol, which provides communication security for datagram proto-
cols. According to RFC [79], it is designed for securing the communication
traffic between two peers which occurs when unreliable transport protocols
are used. The problem with such protocols is the fact that they have no
session management. When the DTLS needs to know if a peer is still alive,
it has to perform a renegotiation between the two peers. For avoiding this
costly procedure, an extension, called Heartbeat, of the TLS and the DTLS
protocol has been introduced, which is used to check whether the connec-
tion between two peers (server/client) is still “alive”. Precondition to this
is that the two peers communicate with each other over a TLS connection,
since the Heartbeat protocol runs on top of the TLS Record Layer. The client
and/or the server can send a heartbeat message for checking whether the
other peer is still “alive”.

At the point of the initial TLS handshake, the peers should demonstrate
if the Heartbeat extension is supported and will be used. The support
of the Heartbeat extension is indicated with “Hello extensions”. For ex-
ample, a peer can have the choice either to receive HeartbeatRequest
messages and respond with HeartbeatRequest messages (peer allowed
to send as the HeartbeatMode) or only to send HeartbeatRequest mes-
sages (peer not allowed to send as the HeartbeatMode) [79]. In case a peer
is indicated with peer not allowed to send, HeartbeatRequest messages
must not be sent to this peer. On the latter case, both peers can send a
HeartbeatRequest message in order to verify if the connection between them
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is still present and a HeartbeatResponse message as a reply to the request to
indicate that the peer is still alive. These messages consist of the following
fields, according to the RFC description [79]:

• Type, 1 byte : the type of the message, either HeartbeatRequest or
HeartbeatResponse
• Payload Length, 2 bytes : the length of the payload
• Payload, 65535 bytes : the payload which consists of arbitrary content
• Random padding, at least 16 bytes : the padding of a received Heart-

beat message must be ignored

If a HeartbeatRequest message has been sent but no HeartbeatResponse
has been received then the HeartbeatRequest message is still in flight as it
is called [79]. At that point, the other peer should not start sending other
messages when a HeartbeatRequest is in flight, since they will be discarded.
It is also important that a HeartbeatRequest message should not be sent
during handshakes. As described in RFC, the following restriction should
be taken under consideration:

• Payload of HeartbeatRequest must equal the payload of Heartbeat
Response
• Payload length of HeartbeatRequest must equal the actual payload

length
• When a HeartbeatRequest is sent, a Heartbeat Response must be

received
• The payload length must not be greater than 214 bytes
• Another HeartbeatRequest message should not be sent while there is

already a HeartbeatRequest message in flight
• Only one HeartbeatRequest is allowed to be in flight at a time

What is actually performed by the protocol is illustrated in Figure 4.3. When
a request has been received from one peer, the other end-point responds to
that with a message that echoes back the HeartbeatRequest payload and its
own random padding. In that way, is indicated that the peer is still alive.
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The Heartbleed Vulnerability

The OpenSSL implementation of the Heartbeat extension as described
above, contained a vulnerability where an attacker could retrieve valuable
information like history session, keys, passwords etc. from the user [18]. The
attack is described as follows: With the Heartbeat extension of the OpenSSL
protocol, it is possible as described above to get informed if the server is
still alive. Therefore, the client sends for instance the HeartbeatRequest
“example” as shown in Figure 4.3 to the server and claims that the length
of this request is 20 bytes. However, the actual length of this message is 7

bytes. The problem lies to the fact that the length of the HeartbeatRequest is
not being checked and verified from the other peer. Thus, the server replies
with an 20-byte HeartbeatResponse by mirroring the HeartbeatRequest
“example”. In order to complete the remaining 13 Bytes, the server pads 13

Bytes of its heap memory which can contain private data. These data can be
username, passwords, encryption keys, etc. In addition, if the attacker could
retrieve a history session from the server, then these leaked keys could be
used to decrypt all the information from the history session.

In a closer more technical view, the maximum HeartbeatRequest size is
16KByte including one byte for identification of the message type and
two bytes for defining the length of the Heartbeat request message. As a
result, the payload and the padding together should not be greater than:
2(14) − 3 = 16381 bytes. The Heartbeat response sends an exact copy of the
received request message back to the sender. First it is checked from the
receiver if the responded message is of type HeartbeatRequest and then
extracts the payload length of it. After that, the message is allocated to the
memory for the HeartbeatResponse. It copies the payload from the request
message to the response and sends it back to the sender. This is illustrated
through the following line:

memcpy(bp,pl,payload)

Hence, this piece of code indicates that if the payload length is bigger than
the actual message then not only the payload from the heartbeat message
will be copied to the HeartbeatResponse but also what lays after that in the
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Figure 4.3: Heartbeat Messages

memory. In Figure 4.3, an example of no data leakage is presented, whereby
in Figure 4.4 a data leakage from the memory is illustrated. The maximum
data leakage could be up to 65535 bytes, which is the maximum payload
length that is allowed by the OpenSSL implementation.

The fix of this bug could be summarised within just two additionally lines
of code, where this check is performed:

if (1 + 2 + payload + 16 > s->s3->rrec.length)

return 0;

Although the fix of the bug is straight forward, the impact of this vulnera-
bility is severe.
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5 Active Learning of Network
Protocols

“A theory can be proved by experiment; but no path leads from experi-
ment to the birth of the theory [85]. ”

[Albert Einstein]

Learning Setup for all the SULs

For our learning setup, we have use the LearnLib tool, a framework for
learning systems, which are represented as an automaton. LearnLib as
described in Chapter 3.1, already includes a variety of learning algorithms,
for performing active automata learning technique to the SULs. For our
purposes, we have chosen the most well known learning algorithm, the L*
Algorithm from Angluin [9], as the main learning algorithm. In addition, we
have used two different oracles (one at each learning phase), which is used
for answering equivalence queries. The idea is to compare the performance
of the two different oracle implementations and find out which one performs
better. The oracles that we have used are: the ’RandomWalk Equivalence
Oracle’ and the ’W-method’, that have been described in Chapter 3.1.

In particular, the SUL is an implementation of the protocol that is analysed.
The Learner (in our case LearnLib) and the SUL are connected to each other
and exchange the following information: The Learner sends queries to the
SUL, by giving some input symbols to it and the SUL responses to these
queries, by producing some output symbols and send them back to the
Learner. After the Learner has finished sending the first set of inputs, a
reset message is sent to the SUL and the SUL is reseted (set to the initial
state). The set of inputs that we give to each SUL is analytically described in

57
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LearnLib SULMapper

abstract input concrete input

abstract output concrete output

Test Adapter

messages translation 

messages translation 

Figure 5.1: Our basic learning setup

Section 5.2.2 for the FTP protocol and in Section 5.1 for the Heartbeat proto-
col. The Learner observes each time the outputs of the SUL. Based on these
observations, a hypothesis H is constructed. The hypothesis is evaluated by
performing the W-method and the Random Equivalence method, for building
equivalence queries and querying the SUL. In case the hypothesis is correct,
the learning has finished, otherwise a counterexample will be produced and
the hypothesis has to be refined. In addition to that, for this communication
between the Learner and the SUL, a mapper and a test adapter has been
placed in between. The functionality of a mapper and a test adapter has
been described respectively in Sections 3.1.2 and 3.1.3.

We reset the corresponding SUL after every trace sequence of inputs has
been sent to the SUL and we set the transition function to its initial state
(state 0), before we start sending the next input sequence. That is to say that
when a new sequence of inputs is received, the SUL as also the mapper
should be in their initial state. We implemented the reset function by simply
creating a new instance of the SUL every time a reset is triggered. Besides,
we use the same learning setup for learning all the systems under learn. A
graphical model representation of our basic learning setup is illustrated in
Figure 5.1.

Figure 5.1 shows how we have connected all these components to commu-
nicate with each other. The LearnLib component is actually the Learning
algorithm which is already implemented as interface in LearnLib. We im-
plemented the Mapper component and the test adapter component as also
the SUL in case of the Heartbeat protocol. Thus, in the next section we
will describe how we have implemented the aforementioned components
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for our learning setup. We present the test adapter in the next section as
it follows the same logic for all the learning setups. The Mapper will be
described separately for each protocol and for each client implementation,
because it is important to explain how we abstracted and then concretised
the inputs/outputs given/produced to/from each SUL. Lastly, for the FTP
protocol specifically we describe the client(Section 5.2.2) and the server
setup (Section 5.2.1) since we have connected a real system to LearnLib,
which is not the case for the Heartbeat protocol because we have set up our
own trivial implementation of it. Lastly, issues that have been introduced
with our initial setup will be discussed at the last section as also tunings
and small adjustments that have been done in order to overcome these
difficulties.

Test Adapter in the Learning Setup

In order to connect the Learning algorithm directly to a real system (in
our case protocols) we need a so called test adapter. The reason for that is
that the learning algorithms in general are using alphabets [45]. A learning
algorithm expects to receive words as input that belongs to an alphabet
that we initially define and will produce also words as an output alphabet.
Thus, in order to connect the L* Algorithm to our real system, we have
implemented a test-driver, which translates the word input into sequences of
real actions (for instance method calls) and vice versa; the real outputs (fore
instance return values from the methods) are translated into output words.
In the implementation of our test-driver we have implemented a method
which translates input words into method calls and the return values of
method calls into output words.

What we have implemented, is the translation of the concrete messages
that are produced by the mapper in a format that the SUL understands
them. For instance, for the Heartbeat protocol, the test adapter receives
the concrete messages from the mapper (for example a HeartbeatRequest
packet) and calls the SendHeartbeatResponce method from the SUL with
parameter the HeartbeatRequest packet. The Heartbeat protocol responds
with a return value, which the test adapter processes and translates to
a concrete output sequence (for example a HeartbeatResponce packet),
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which passes over to the mapper. For the FTP protocol the same logic
is applied. For example, the concrete input message Connect hostname
username password will be translated from the test adapter to the following
function call: f tp.connect(host, username, password, 21), assuming that the
default port has been set to 21.

5.1 Heartbeat Protocol

The first system under learn (SUL) that we analysed in this thesis is the
OpenSSL Heartbeat Protocol and the main focus targets on revealing the
“Heartbleed Vulnerability” [73] of it by using learning techniques. In particu-
lar, by learning the behavior of the correct implementation and the behavior
of the faulty one and by comparing these two learned models, we should
be able to observe the unexpected behavior of the protocol and uncover this
serious vulnerability. As described in Section 4, OpenSSL is an open source
library that provides an implementation of cryptographic protocols such
as the Secure Socket Layer (SSL) and the Transport Layer Security (TLS)
protocol. We attempt to model the behavior of the Heartbeat protocol, which
is considered a black-box implementation and can be inferred as a Mealy
machine.

The basic experimental setup that we have used, is based on the learn-
ing principle: The Learner (LearnLib) sends inputs to the SUL and the
SUL responses to these inputs. Therefore, the learning algorithm sends
HeartbeatRequests to the Heartbeat implementation and it responses with a
HeartbeatResponse. In-between is placed the mapper, which abstracts the
sent and received messages and the test adapter which translates them to a
format, which is understandable from the SUL. However, we did not plugin
and trigger the ’real’ Heartbeat implementation itself but we implemented
the behavior of the two implementations to be learned: the one with the
vulnerability and the correct one. In that way we were able to simulate the
protocol’s behavior and set it under learn. The reason why we set up our
own implementation of the protocol is based on two facts: (a) we wanted to
save time and effort for our learning set up (it is more complicated to set
up a client and a server that communicate via SSL and then perform the
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learning only in the Heartbeat part of this SSL communication, than just
simulating the Heartbeat protocol) (b) we wanted first to investigate if the
Heartbleed vulnerability could be revealed with active automata learning.
In case we were able to prove it, then we would connect the real Heartbeat
implementation to our Learner.

Primarily, the focus has been given on the abstraction of the HeartbeatRe-
quests and HeartbeatResponses, based on validity check operations, as will
be described in the following subsection. By constructing two learned mod-
els; both for the correct and the faulty implementation, derived by applying
learning algorithms and afterwards performing a comparison between the
two models generated, we tried to testify the compliance of the Heartbleed
protocol to the model specification.

5.1.1 Mapper for Heartbeat Protocol

As mentioned above the messages sent and received (HeartbeatResponse,
HeartbeatRequest) from and to the SUL, have been evaluated to valid or
invalid ones. For this operation, a mapper component has been used as
described in Chapter 3.1.2. The main functionality of the mapper component
is the mapping of the parameters which are included in the exchanged
messages from a concrete to an abstract domain and vice versa [20]. We
have abstracted the functionality of the Heartbeat protocol by setting boolean
flags for abstracting some parameters, as will be described in this section
and also by performing validity checks in order to distinguish between a
valid/invalid request and a valid/invalid response.

From abstract Input to concrete Input

In the Table 5.1 the abstraction of the input messages through the mapper
component is visualised. The abstracted inputs that are sent from the Learner
to the SUL, are concretised based on the operations as shown at this Table.
The Learner sends a HeartbeatRequest message and the SUL responds with
a HeartbeatResponse. Actually in our case the Learner is like the client that
sends requests and the SUL is like the server that answers with responses.
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HeartBeat Protocol
Abstract Input Concrete Input
Valid HBRequest Message as sequence of bytes where: FirstByte=1 &

GivenLength = HBRequestLength
Invalid HBRequest Message as sequence of bytes where: FirstByte != 1 ‖

GivenLength != HBRequestLength
peer allowed to send(true) 1

peer allowed to send(false) 0

message in flight(true) 1

message in flight(false) 0

IsHBRequest FirstByte=1

IsHBResponse FirstByte=0

Table 5.1: mapper for Heartbeat Protocol (Inputs)

HeartBeat Protocol
Abstract Output Concrete Output
Valid HBResponse Message as sequence of bytes where: FirstByte=0

& HBResponse = HBRequest & HBResponseLength= HFRequestLength
Invalid HBResponse Message as sequence of bytes where: FirstByte!= 0 ‖

HBResponse != HBRequest ‖ HBResponseLength != HFRequestLength

Table 5.2: mapper for Heartbeat Protocol (Outputs)
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Initially, five parameters are sent from the Learner to the SUL:

• the message (HeartbeatRequest)
• the content type of the message (if it is a HeartbeatRequest or a

HeartbeatResponse)
• the length of it (we call it given length)
• two more flags, which can have the value “1” when true or “0”, when

false. The flags indicate if the peer is allowed to send a message or not
and also if a message is inflight or not.

Based on the RFC specification [1] a Heartbeat request message is in flight
until a corresponding Heartbeat response message is received or until the
time of retransmission expires. The content type of the message indicates if
the type of the message, i.e a HeartbeatRequest or a HeartbeatResponse. In
case the Learner sends to the SUL a HeartbeatResponse message, then the
message should be discarded, since the Learner will send only HeartbeatRe-
quests to the SUL. The opposite of course scenario applies from the SUL to
the Learner, where only Heartbeat responses should be allowed.

In particular, a Valid HeartbeatRequest message is mapped to a concrete
sequence of bytes, where the first byte will be 1, showing that this mes-
sage is a HeartbeatRequest. Moreover, the total byte message length should
equal to the other input “given length”, in order to be a valid message. If
the Learner sends as input to the SUL an Invalid HeartbeatRequest, that
means that at least one of these two validity checks result to false. The
mapper concretises these abstract inputs (Valid HBRequest, Invalid HBRe-
quest, peer allowed to send(true), etc.) to concrete values (Byte sequences,
boolean variables, etc.) as shown in the Table 5.1 and sends them to the test
adaptor which will call the corresponding method of the SUL with these
parameters.

From concrete Output to abstract Output

Table 5.2, describes how the mapper translates the concrete outputs pro-
duced by the SUL to abstract outputs. On the other way around as before,
the SUL now answers the previous query from the Learner, by producing a
concrete output which the mapper abstracts either to a Valid or to a Invalid
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HeartbeatResponse. In order that the mapper can decide if the concrete mes-
sage from the SUL is valid or invalid, it analyses the validity of the message.
We implemented our mapper, based on the Heartbeat specification and we
describe how we performed the abstraction of the output in Table 5.2. Thus,
we have defined the validity of the concrete output as follows:

If the SUL produces a concrete output of bytes, where the first byte is
a zero (so type of message is HeartbeatResponse) and this sequence of
bytes equals the HeartbeatRequest message sent before by the Learner
and the length of the concrete output equals the HeartbeatRequest length
that has been given before as input from the Learner to the SUL, then
the mapper abstracts this concrete output to a valid HeartbeatResponse.
In case the first byte of the concrete output is not zero (so the message
is not HeartbeatResponse), or the HeartbeatRequest does not equal the
HeartbeatResponse, or the length of this concrete output message is different
to the previously HeartbeatRequest’s length, then the mapper abstracts this
output to an invalid message.

At this point we need to make a categorisation between the correct and the
faulty implementation of the SUL. If we “query” the correct implementa-
tion, the HeartbeatResponse should be different as in the faulty one. It is
important to mention, that we have connected the same mapper component
to both SULs, so the learning set up is the same. The best way to illustrate
the different reaction (output) of the correct SUL and the faulty SUL, for the
same input, is through an example:

For instance the Learner generates an invalid request Message (Hello, 7)
and sends it to the Mapper, where:

• Message: Hello
• Given length: 7 digits
• Actual length: 5 digits

The Mapper translates it to a sequence of bytes and sends it to the SUL,
which is implemented without any security vulnerability (correct implemen-
tation). The SUL will testify if the given length equals the actual length and
will conclude that they do not match. In that case, the implementation itself
will “correct” the parsed parameter of the given length, by replacing it with
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Correct Implementation
Heartbeat Protocol

Faulty Implementation
Heartbleed Protocol

Valid Request False False
Request Equals Response True False
Valid Response False True

Table 5.3: Boolean Table for Heartbeat Response in Heartbeat Protocol

the correct parameter of the actual length. Thus, we define the following
checks, which in that case will all result to false:

1. Valid Request: a request is valid when the length of the request mes-
sage (five) equals the given length (seven) (illustrated in Table 5.1 with
the check GivenLength = HFRequestLength)

2. Valid Response: a response is valid when the length of the response
equals the length of the request (illustrated in Table 5.2 with the check
HBResponseLength= HFRequestLength)

Additionally, when a HeartbeatResponse is sent, another check can be
performed for checking the validity of the message:

• Request equals Response: a request message equals the response
message, when the values are identical (illustrated in Table 5.1 with
the check HBResponse = HBRequest)

On the contrary, if the same invalid request Message (Hello, 7) is sent to the
faulty implementation, which does not comply to the Heartbeat specification,
then the parameter “Valid Response” will result to True. This is due to the
fact that the protocol will not perform any check of the parameter “given
length” and hence it will generate a response message with the same length
as the request message. Both scenarios are illustrated in Figure 5.3. Based on
these verifications, the mapper can abstract the received HeartbeatResponses
to valid or invalid ones and sends them back to the Learner.
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5.2 FTP Protocol

The second system which is being exposed under learning is the FTP Proto-
col and in particular three different client implementations of it. Generally,
the FTP server, which runs a server software, listens on a port for requests
from clients that want to connect to the server. The client, which has an FTP
client software installed, requests and initiates a connection to the server.
When the client and the server are connected, the client can perform a lot of
actions to the server, such as upload, download, delete files from the server,
etc. The difference to the set up of the Heartbeat protocol is that now in our
learning setup the FTP Server component is also added.

The different FTP Clients, which we have chosen as SULs, have been cho-
sen in that way that they could give a variety of the system’s behavior.
SimpleFTP [3] is a very simple FTP Client, used for performing simple
actions with the FTP Server. On the contrary, the FTPClient provided by
Apache [26], is the most well-known and used FTPClient that incorporates
the whole functionality of the FTP protocol. It performs all possible actions
that could be accomplished from a client to an FTP Server. Last but not
least, the FTP4jClient [25] is a library that also implements in Java the full-
features of an FTP Client and supports different security authentications. It
is interesting to examine how these various clients behave in respect to the
specification of the FTP protocol as described at RFC [19].

In Figure 5.2, we present how the learning of the FTP protocol takes place.
We give a short example in order to understand better how the different
components are connected to each other and what happens in-between.
Based on our diagram, we start in position 1, which is the Learner. The
Learner sends the abstract input “Invalid Connect”, which indicates that
he wants to trigger an invalid connect. The Mapper translates this input
to a concrete input which is: an invalid IP address (152.10.982.0), which
does not exist, and the number 21, which is the default FTP port. The
test adapter will translate it to an input that says to the SUL to call the
connect function with the aforementioned parameters. The SUL will call
the connect function which tries to connect to the server with an IP address
that does not exists. Therefore, the server will never respond, since it is
unreachable and the client implementation will throw a socket exception for
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SUL (Client 
FTPImplement
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Mapper Test
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Abstract Input:
Invalid Connect

Concrete Input:
21,Connect, 152.10.982.0

Translated Input:
connect(152.10.982.0, 21)

Client sends to Server:
ftp.connect (152.10.982.0, 21)

Server is not reachable:
No answer back

Output:
Socket Exception thrown

Abstract Output:
SocketEx

Concrete Output:
Exception Ex
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3.

4.

5.

6.
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Figure 5.2: Example of our learning setup for FTP Protocol for the input Invalid Connect

example. This is how Learner, server and client communicate. The Learner
triggers different functions of the client in a different order at each run, the
client communicates with the server and produces an output based on this
communication. The output is returned to the Learner, which tries to learn
how the client behaves at each given input. Of course the behavior of the
client is affected by the responses of the server as well.

In the next sections, the Server setup, which is common for all the FTP
clients, as also the Client setup will be presented. The Client set up is differ-
ent in each FTP Client implementation, therefore it will be demonstrated
separately, within each FTP Client section.
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5.2.1 Server Setup

The experiments have been performed in an Ubuntu 64-bit 14.04 machine,
which runs as a virtual machine in an X Yosemite operating system version
10.10.5.

Regarding the learning of the FTP protocol, the FTP server that has been
used for connecting to the FTP clients, is called ’very secure FTP daemon’
or ’vsftpd’. More specifically, the version vsftpd-3.0.3 has been used for our
experiments, which is the latest released version and is stated to be stable,
secure and fast [82]. This server is an FTP server for Unix-like systems like
Linux [82], which can handle virtual users and virtual IP configurations.
According to that, we created three different virtual users with three differ-
ent user-rights. These virtual users will be able to connect and login to the
FTP server, move along their directories, upload or download files. The aim
of this action, is to test how the FTP protocol handles situations where for
example a user with no read or no write rights tries to access a folder. The
users that have been created with different rights, in order to cover more
cases, where such unauthorised actions take place. The users that we have
created to be authenticated to the server are the following:

• virtual user1: This user has rights to upload and download files, under
the users home directory: /var/www/user1. The home folder of the
user is not writable only readable.
• virtual user2: This user has rights to upload and download files, under

the users home directory: /var/www/user2. The home folder of the
user is not writable only readable.
• virtual user3: This user has rights to upload and download files, under

the users home directory: /var/www/user3. However, this directory
is not set to “read only”.

In the Table 5.4, the file permissions for each user are listed. The permissions
are broken into 2 sections.

• the first section is denoted with the letter “d” for indicating a directory,
with the letter “l” for indicating a link and with the symbol “-” for
indicating a file.



5.2. FTP Protocol 69

Directory user1 user2 user3
/var/www/userX dr-x dr-x drwx
/var/www/userX/folder drwx drwx drwx

Table 5.4: User’s rights

• the second section consists of the next three spaces which indicate the
read with “r”, write with “w” and execute with “x” permissions for
the owner of the file. For instance, the “r-x” sequence indicates that the
user has only read and execute permissions, but no write permissions.

The Table 5.4 shows that the user1 and user2 have only read permissions
at the root folder userX, where user3 has write and read privileges for his
folder. However, for the subfolders of the root folders, all the users have
the same rights; write and read. That is to say, that when for instance user1

logs in with his credential at the FTP server, he will be located under this
path: /var/www/user1. This path should not be writable for user1, but
only readable. Namely, the upload of a file should not be achievable. If the
user1 changes to a subdirectory, the upload of a file should be realisable.

In addition, the settings for the vsftp server has been modified as follows:

1. Local users are allowed to log into the system.
2. The creation of virtual users is permitted.
3. Local users are restricted to their home directories

We have used the default configuration of the vsftp server but we have
enabled additionally the above settings, in order to be able to create virtual
users and also to restrict the rights of each user to his/her local area/fold-
ers.

5.2.2 Client Setup

After having described the Server setup for our experiments, we present
the Client setup for each Client implementation in this section. The main
component of the Client setup is the mapper and therefore we will describe
it in detail for each FTP Client.
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In the experiments that have been performed, five basic operations of
the FTP protocol were used: connect, login, change directory, upload and
disconnect. To be more precise, in order to achieve comprehensive results,
all the systems under learn should have the same starting setup. In other
words, we used the basic setup as described in Figure 5.2 and also we have
given the same inputs to the SULs, in order to be able at the end of the
experiments to compare the resulting models with each other. This can be
achieved only when triggering the same methods every time in the three
client implementations under learn.

Thus, the operations that we gave as inputs (with their parameters accord-
ingly) to the SULs are the following:

• Connect: Connects the client to the remote FTP host.
• Login: Authenticates the user against the server.
• Change Directory: Changes to a new working directory on the FTP

server.
• Upload: Uploads a file to the remote server.
• Disconnect: Disconnects from the remote server, optionally performing

the QUIT procedure.

The last three operations are common to the three client implementations
that we examine. The first operation differentiates only at the SimpleFTP to
the other two clients, since it was not possible to perform two different calls
for Login and Connect. The implementation of this client does not support
two separate methods. Thus, only at SimpleFTP Clint with one function call,
the user should give information for the server address to be connected and
his credentials. Only one response which corresponds to both connect and
login will be returned from the server.

Our mapper implementation is not the same for the three client implemen-
tations. Regarding the input sets, the mapper is almost the same in all three
implementations, except one line of code difference for the SimpleFTP client,
where connect and login is one operation and not two separate methods.
This is expected, since we give always the same inputs to our SULs. Regard-
ing the output sets produced by the SULs, the mapper defers in all the three
implementations, because the concrete outputs produced from the SULs
are completely different among the three implementations. Therefore, the
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mapper acts differently for each implementation - various concrete outputs
are mapped to various abstract outputs. Our test adapter implementation is
not the same for each client, since it has to be adapted to the signature of the
methods of each client; each client may have different amount of parameters
for its methods and may produce different outputs (return values) for each
method, that have to be translated from the test adapter.

In the next sections, we present the mapper for each client implementation.
The test adapter is not described in a separate section since it does not hide
any important functionality behind it; it puts the given parameters in the
right order and calls the corresponding method from the SUL. For instance,
the mapper passes to the test adapter the concrete input Upload, filename
and the test adapter creates the input ftp.upload(filename) which will trigger
the upload method of the SUL.

Simple FTP

Purpose SimpleFTP is a java FTP client package which implements some
of the functionality that FTP offers [3]. The functions that it supports are the
establishment of a connection to the FTP server, the login phase where the
user’s credentials are being verified, the upload of files as also the change
between different directories. More operations, such as delete of a file or
download of data are not supported. Therefore, SimpleFTP is a simple
package that can be used for the upload of small files to an FTP server.

Client setup - mapper The mapper component which has been imple-
mented for the SimpleFTP Client, is shown in Table 5.5. In this Table, the
mapping of abstract inputs to concrete ones is presented in the first and
the second column. The third and fourth column of this Table show the
mapping of the concrete outputs to abstracted ones. The abstract inputs are
evaluated to valid or invalid, based on weather a user performs a valid or not
operation. The input sets for the SimpleFTP are five, since the connect and
login is considered as one operation. The “Disconnect” interface is mapped
always to an empty set, since it can not be evaluated to any valid/invalid
value. If the Learner triggers the “Disconnect” interface, the mapper will
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Simple FTP
Abstract Input Concrete Input Abstract Output Concrete Output
IConnect(Valid) Valid {host, username, pass} OK bool variable = true
IConnect(Invalid) Invalid {host, username, pass} IOE IO Exception returned
IUpload(Valid) Valid {filename} NOK bool variable = false
IUpload(Invalid) Invalid {filename}
IDisconnect() { }
IChangeDir(Valid) Valid {remote directory}
IChangeDir(InValid) Invalid {remote directoy}

Table 5.5: mapper for SimpleFTP

concretise it to the disconnect functionality with an empty set of parameters
and the test adapter will call the corresponding function of the SUL, which
will not expect any parameters.

In case the Learner for instance selects the abstract input of a valid connect
to be sent to the SUL, the mapper will at first receive this action and translate
it to a concrete input, which contains the method of the SUL to be called
and some valid input parameters. Afterwards, the concrete input is sent to
the SUL. We define validity based on whether the information and the data
which are sent to the SUL are defined correctly. In other words, a login is
valid if the username and the password are specified correctly, a change of
the directory is valid, if the given filename exists and the path of the file is
correct, etc.

In Table 5.5, the output interfaces for SimpleFTP are also presented. These
are generated based on the exceptions thrown by the SimpleFTP imple-
mentation. Each time that the SUL is queried, the SUL can response with
an “OK” in case of success, with a “Not OK” in case of failure, or with an
“Exception” in case of a disruption of the normal flow of instructions. The
mapper translates each success to an abstract output OK (OK) string, each
failure to an output not OK (NOK) string and each sort of thrown excep-
tion to an output abstract String, named each time as the corresponding
exception. The SimpleFTP Client thrown only an IO Exception and does not
distinguish between other kinds of exceptions.
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FTPClient Apache
Abstract Input Concrete Input Abstract Output Concrete Output
IConnect(Valid) Valid {host} OOK bool variable = true
IConnect(Invalid) Invalid {host} ONOK bool variable = false
ILogin(Valid) Valid {username, password} IOE IO Exception returned
ILogin(Invalid) Invalid {username, password} SE Socket Exception returned
IUpload(Valid) Valid {filename} NPE Null Pointer Exception returned
IUpload(Invalid) Invalid {filename}
IDisconnect() { }
IChangeDir(Valid) Valid {localFileFullName,fileName, hostDir}
IChangeDir(InValid) Invalid {localFileFullName,fileName, hostDir}

Table 5.6: mapper for FTPClient Apache

FTPClient from Apache

Purpose The second client that has been analyzed is the FTPClient class,
provided by Apache. It supports all the FTP operations such as directory
listing, file upload and download, resume a broken upload/download
and much more [26]. It distinguishes between the connect phase and the
authentication phase by providing two separate methods; one for connecting
to a remote server and one for the user authentication with login.

Client setup - mapper Table 5.6 shows the mapper which was imple-
mented for the FTPClient from Apache. The abstract input interfaces are
six, since the connect and the login phase are handles separately by this
FTP Client. The abstract inputs are evaluated to valid or invalid, based
wether the host address, username, password, filename etc. are correct on
not. The output interfaces that the SUL produces, are mapped to “OOK”, if
the function called has returned “true”, to “ONOK”, if the corresponding
function has returned “false” as also to strings that represent exceptions,
thrown by the function implementation. In this FTP Client, the type of
the exceptions thrown vary more than in the SimpleFTP and therefore the
output interfaces are also more.

FTp4jClient

Purpose The Ftp4j is a library which implements all the features of an FTP
client in Java. Transferring files through upload and download methods,
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FTP4j Client
Abstract Input Concrete Input Abstract Output Concrete Output
IConnect(Valid) Valid {host} OK bool variable = true
IConnect(Invalid) Invalid {host} NOK bool variable = false
ILogin(Valid) Valid {username, password} SE Socket Exception returned
ILogin(Invalid) Invalid {username, password} ILLE Illegal State Exception returned
IUpload(Valid) Valid {filename} FTPE FTP Exception returned
IUpload(Invalid) Invalid {filename} FTPILLE FTPI llegal ReplyException returned
IDisconnect() { } DTE FTP Data Transfer Exception returned
IChangeDir(Valid) Valid {localFileFullName,fileName, hostDir} AE FTP Aborted Exception returned
IChangeDir(InValid) Invalid {localFileFullName,fileName, hostDir} FNF File Not Found Exception returned

IOE IO Exception returned

Table 5.7: mapper for FTP4jClient

browsing the remote FTP site, creating, deleting, renaming and moving
remote directories and files are only some of them [25]. This library can
connect to the remote FTP server through proxy or through a direct TCP/IP
connection. For this thesis’s purposes a TCP connection with the server has
been established.

Client setup - mapper As shown in Table 5.7 , the input interfaces for
the FTP4j client are exactly the same as for the FTP client from Apache.
The reason for that is that both implementations are offering the option to
call individually all the methods that we examine. Regarding the output
interfaces, the FTP4j client categorises the exceptions thrown by the program
in obviously lots of groups, more than the other two clients do. As shown at
5.7, this client implementation can produce eight different kind of exceptions
when calling the functions defined in the input interfaces. In that way the
user gets easily informed why the operation could not be handled properly
by the SUL. We have mapped each of these exceptions to an abstract output
“String”, which indicates this information. Same as to the other clients, when
the operation succeeded, the result is abstracted to an “OK” String otherwise
to a “NOK” String.

5.3 Issues and Tunings

In this section issues that have arisen with the initial experiment setup are
discussed as also the actions we performed in order to overcome them.
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Initially, the first problem we faced was the fact that LearnLib was not
able to terminate the learning process, based on this learning setup and
mapper construction we described above. More specifically, the different
user’s rights have not been properly tested. In particular, when an abstract
input occurs with the value Login(Valid) then a concrete input is created with
the credentials of the user1, user2 or user3. In fact, although the credentials
are correct, the ftp server will behave differently based on the user who
wants to be authenticated.

Let us assume the following scenario:

The Learner wants to query the SUL for a valid login. The Learner will send
initially to the mapper, the abstract input “Connect (Valid)” and the mapper
should construct a token with valid credentials and send the concrete set
to the SUL. However, the mapper at that time has the possibility to create
one of the three valid sets for user authentication: either a login with the
correct credentials of user1 or of user2 or of user3. If the mapper, selects
randomly a valid concrete set each time an abstract “Connect(Valid)” is
received, then the deterministic behavior of an automaton will be violated.
Each user authentication results to a different flow of events. If the user1 is
authenticated, the listing directory will be different as if the user2 had been
authenticated. In that way, if a “Change Directory” would be the next query
to be applied to the SUL, it would give different output for the same input
“Login(Valid), Change Directory(Valid)”. Hence, LearnLib would be not able
to construct a hypothesis and a counterexample will be always produced.
Indeed, when applying this randomly technique to the mapper no learned
model was able to be constructed and the learning was terminated after the
repetition of thousand of steps.

In order to address such problems and allow the testing of the different
user privileges the mapper component as defined before, had to be changed.
Specifically, the Learner sends not only an input message for authentication
to the mapper but also which user wants to be authenticated. The mapper
is then responsible to translate this request to a concrete message for the
corresponding user to be certified.

Practically, the mapping for the input interfaces changes to the following:

• Login(ValidA) for user1
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• Login(ValidB) for user2

• Login(ValidC) for user3

• Login(Invalid) for an unauthorised user

Another issue that we have faced, was the different access rights that each
virtual user has. When encountering the different user’s rights, it should also
be taking into consideration the initial setup of these rights, as described
in Section 5.2.1. Our setup has not been the same for all the users and
as a consequence, the different users rights have also an impact to the
authorisation process. More specifically, user3 does have writable rights in
the root folder, whereby user1 and user2 have only read rights. When user3

tries to be authenticated, although the user’s credentials are correct and a
valid login is encountered, the FTP protocol responds with a message “500
OOPS: vsftpd: refusing to run with writable root inside chroot()”. Thus, although
a valid login occurs in terms of data correctness, the authentication fails due
to unsuitable permissions. In other words, a Login(ValidC) for user3 will
result to an unsuccessful login (output “NOK”), since the FTP server will
respond with such a message as described above. In order to trace down
this occasion, the mapper maps the previously described response of the
SUL to another abstract output, that we have named “OOPS”, instead of
the abstract output “NOK”, that was mapped before. Thus, when a server
produces such a message “500 OOPS: vsftpd: refusing to run with writable root
inside chroot()” , the mapper will map it to the abstracted output “OOPS”.
In that way, we distinguish this occasion from the case of an invalid login,
where the mapper will return “NOK”.



6 Experimental Results and
Discussion

“Success is a science. If you have the conditions, you get the result
[17].”

[Oscar Wilde ]

In this chapter, the results of our experiments are presented. In the first
section, the results from the learning of the Heartbeat protocol will be
introduced, where in the next section we will focus on the results occurred
from the FTP protocol analysis. In Section ?? a discussion of our results will
be provided and lastly in Section 6.3 our benchmarking will be presented.

In the introduction we have set some goals that we wanted to achieve
through this master thesis. After presenting our experiments and results we
state that we have meet these goals. Therefore, we are able to answer the
initial questions/goals that we have set in Section 1.4.

The first observation we have made, based on our experiments, applies to
both protocols-cases, is related to the mapper component and answers one
of the questions that we have defined when starting this theses:

How much influence can have the Learning Setup to the final results?

For both experiments we built a mapper that reduced the number of concrete
inputs and outputs to a small set of abstract inputs and outputs. Through our
experiments, we found out the importance of the mapper into the learning
procedure and its determined role, since it has a really big influence and
impact into the learned models. A not so precise implementation of the
mapper, can result in divergent final results. Thus, even a small change to the
mapper behavior can lead to a dissimilar outcome. The functionality of the

77
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mapper should be only restricted into translating concrete values to abstract
ones and vice versa. No additional control behavior should be added, as for
example equality checks, checks between previous and next messages etc. It
is important that such operations are observed during the learning phase
and not having been predefined. Thus, based on the experiments performed,
the correctly setup and implementation of the mapper component is a major
issue that should be taken into account in advanced.

The next two sections present and discuss our results for the FTP and the
Heartbeat protocol and answer the following questions that we have defined
when starting with this thesis:

Could possible errors and unexpected system’s behavior be uncovered through
applied automata learning techniques?

Do the network protocols that are being learned comply to their specifications?

Lastly, the last goal that we have set initially is the following:

How is the performance of the “learning” affected when different equivalence
methods are used and which optimisations can we perform?

which is presented and discussed in the Benchmarking Section 6.3

6.1 Heartbeat protocol

6.1.1 Results

We applied learning-based techniques to learn the behavior of two imple-
mentations (that we have developed) of the Heartbeat protocol; the correct
implementation which complies to the specification and a faulty one which
includes the Heartbleed bug. Our purpose have been through learning the
behavior of the two implementations, to compare the two generated models
in order to uncover unexpected behavior, which refers to the Heartbleed
bug.

We were able to learn a model consisting of one state, which represents the
HeartbeatRequest-HeartbeatResponse exchange. But we could not learn the
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complete behavior of the Heartbeat protocol by using the learning setup
presented in Section 5.1. As shown in Figures 6.1 and 6.2 when an input is
given to the SULSUL, it will produce an output and it will stay always at
the same state. Thus, no other states will be created. Different inputs will
produce different outputs, but will result to the same state. That is due to the
fact, that every message sent is an independent event from the next message
that will be sent. In Figure 6.1, the learned state model for the correct
implementation is shown, whereby in Figure 6.2, the model of the faulty
one is presented. As described before, the Learner sends HeartbeatRequests
to the SUL and the SUL answers with a HeartbeatResponse, which“ is
evaluated to valid or invalid. If a valid HeartbeatRequest is sent, then both
implementations -the correct and the faulty one- will respond with a valid
HeartbeatResponse. However, if an invalid HeartbeatRequest is sent from the
Learner to the faulty implementation of the SUL, then an valid response will
be produced, since the SUL will not perform the corresponding checks and
despite the fact of an invalid request, it will answer with a valid response.
Based on the definition of “Valid response” as defined in Section 5.1, a
response is valid when the length of the response equals the length of the
request message (not the actual length). On the other hand, when an invalid
request is sent to the correct implementation, the SUL will perform the
needed checks and will return the message that should be returned and
not the message with another length, as defined in the request message.
Therefore, the HeartbeatResponse will be evaluated to invalid, since the
length of the response does not equals the given length of the request
message, but equals the actual length of the message. This is illustrated in
Figure 6.1, where in the model produced for an invalid HeartbeatRequest
an invalid HeartbeatResponse (the length of the response does not equal
the length requested) will be generated.

6.1.2 Discussion

chap:Discussion

LearnLib will learn that behavior of the system but it will produce a model
with only one state, since the next set of input HeartbeatRequest/output
HeartbeatResponse, will be independent of the previously observed set. For
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s0

Valid Request / Valid 
Response Invalid Request / Invalid 

Response 

Figure 6.1: Learned Model for Correct Implementation of Heartbeat Protocol

s0

Valid Request / Valid 
Response Invalid Request / Valid 

Response 

Figure 6.2: Learned Model for Faulty Implementation of Heartbeat Protocol
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that reason there is no transition to a next state and thus the model will have
only one state. Although the learning was not as we expected, we could
state that the comparison of these one-state models ( 6.1, 6.2), could reveal
that for the same input a different output is generated. As a result, since the
models are not identical, this could be a basis for a further investigation of
this observation.

6.2 FTP Protocol

6.2.1 Results, common in all FTP Implementations

First Result: We performed the L* learning algorithm in order to learn
three different implementations of the FTP protocol. We were able to suc-
cessfully learn all the three FTP client implementations for the FTP protocol,
under the condition that user’s privileges categorisation has been initiated,
as it will be explained below. By “user’s privileges categorisation” we mean
the issue that we have discussed in chapter 5.3. As stated there, when a
Login(Valid) was given as an abstract input to LearnLib, then a concrete
input was initiated randomly; login credentials either for user1 or user2

or user3. As a result, we have observed that the deterministic behavior of
LearnLib did not allow to learn and construct a model with this setup,
since each user’s authentication results to a different flow of events. Hence,
LearnLib has been terminated with an exception, after trying about one
hour to construct the model. This result has been observed in all three FTP
protocol implementations we examine.

Discussion

This behavior of LearnLib is expected and absolutely correct, since with our
initial setup we have tried to learn a non-deterministic automaton; for each
state and input, more than one transition was possible. Each time a valid
login is performed another user is authenticated randomly, so for the same
state and input (Login(Valid)), different transitions were possible.
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User1 User2 User3

SimpleFTP 4-State Model 4-State Model No Model
FTP4j 4-State Model 4-State Model No Model
FTPClient Apache 9-State Model 9-State Model No Model

Table 6.1: Results for the three FTP Client implementations

1. Input –>Output 2. Input –>Output 3. Input –>Output

SimpleFTP ConnectLogin(Valid) –>500
ChangeDir(Invalid) –>
IO Exception Or NOK

FTP4j Connect(Valid) –>OK Login(Valid) –>500
Login(Valid) –>
FTPE Or IO Exception

FTP Apache Connect (Valid) –>OK Login (Valid) –>500
Login(Invalid) –>
IO Exception Or NOK

Table 6.2: Traces for each implementation

Second Result: In Table 6.1, the resulted learned models for each user at
each FTP implementation are presented. As it can be observed, for “user3”,
no model was able to be generated in all of the three FTP implementations.

As described in Chapter 5.2.1, the virtual user3 has rights to upload and
download files, under the users home directory: /var/www/user3. How-
ever, this directory is not set to “read only”. This causes the vsftp server to
refuse to authenticate and grand access for user3 to his directory, by produc-
ing the following message: “500 OOPS: vsftpd: refusing to run with writable
root inside chroot()”. The fact that user3 has write and read privileges for
his root folder is not permitted from vsftp server and therefore the server
does not allow the user to login.

Discussion

The reason why no model could be created for “user3” lies to the fact of a
non-deterministic behavior of the vsftp server. When the “user3” tries to be
authenticated, the vsftp server sometimes resets the connection and some
other times not. That means that sometimes the user is disconnected (in
case of connection reset) and sometimes the user stays connected but can
not be authenticated (in case of not connection reset). This behavior of the
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vsftp server has been also tested from the terminal and indeed the responses
do not always coincide, although the given commands where always the
same. Therefore, also without any FTP Client implementation to be used
but only by using the terminal, the vsftp server behaved randomly when
trying to authenticate “user3”. Therefore, the reason why no model was
able to be created lies to the vsftp server and not to the different FTP client
implementations.

Table 6.2 shows how the three FTP implementations reacted to this arbitrary
server behavior, when user3 performed a login action. In particular, the
columns of the table show a trace (1.Input → 2.Input → 3.Input), where
it was first identified at each FTP implementation this random server be-
havior. Thus, when observing each row of the table, we receive information
regarding which input has triggered which output at each FTP under learn.
The output “500” that is stated in the table stands for the server reply code
“500” and more specifically for the produced message: 500 OOPS: vsftpd:
refusing to run with writable root inside chroot(). With yellow, are marked in
the Table 6.2 the outputs, which have cause a non-deterministic behavior of
the system and therefore LearnLib has terminated the learning procedure
with an exception.

In particular, for SimpleFTP when the input trace ConnectLogin(Valid),
ChangeDir(Invalid) was given for the user3, the SUL produced for the
last input either NOK as output or has thrown an exception (IOE). The
same output is also produced from FTPClient from Apache, for the trace
Connect(Valid), Login(Valid), Login(Invalid) either an exception or a “NOK”
was returned. In FTP4j Client, for the trace Connect(Valid), Login(Valid),
Login(Valid) the SUL responded to the last input with either FTPE or IOE.
The IOE exception is produced when the server (vsftp) has reseted the
socket connection and the ftp socket therefore is initiated to null. When the
server has not reset the connection, then the output NOK is produced in case
of SimpleFTP and Apache FTP. These two FTP implementations produce
NOK, since they are calling their login method, which returns a boolean
parameter corresponding to whether a successful login has been performed
or not. In case of FTP4j client, the login method for user3 produces an “FTP
Exception”, when the reply code from the server is not “230” (User logged
in) or to “332” (Need account for login). Since in this occasion the reply
code is “500”, then an FTP exception is returned from the code.
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As a last remark, we have tested additional this result by creating some test
cases and let them run over a loop of thirty iterations. What was observed
was the same result; the server produced sometimes a connection reset
and sometimes it just did not authenticate the user3. The tests have been
executed several times and no pattern was able to be identified. The reaction
of the system was uncontrolled and arbitrary. Thus, by using active learning
techniques we were able to make such an observation, which maybe would
not have been detected so easily when performing other testing methods.

Notice

In the next sections, the results for each FTP Client implementation are
seperately presented and discussed. We show and discuss the results, based
on our second setup where the issue with the random user selection does not
occur anymore. As explained in Chapter 5.3 the issue has been solved by
adding additional information in the input interfaces, which indicates which
user asks for authentication each time. Moreover, we present in the next
sections the learned models only for “user1” for the following reasons:

• No learned models were generated for “user3” due to rights issues as
described in the above section.
• The learned models for “user2” result to the same model as for “user1”,

so for simplicity reasons we have chosen to present the learned models
of one user.

The original models, as generated from LearnLib are attached to Appendix.
In the next sections, we present the learned models in our own graphs
(Figures 6.3, 6.4, 6.5), which have exactly the same states and transactions as
the original ones as attached in Appendix. The reason why we have used our
own visualisation is only because the original graphs are not understandable
at the first sight, since they contain lots of transaction lines that we have
merged to a minimal number.



6.2. FTP Protocol 85

6.2.2 SimpleFTP

Results

In Figure 6.3 the resulted learned model from SimpleFTP Client is presented.
SimpleFTP is expected to have one state less than the other two FTP clients,
because the connect and login phase of this client are encountered as one
method. For that reason the state “Connect” is interpreted as “Connect
and Login” for the SimpleFTP Client. This SimpleFTP client is successfully
learned from LearnLib and the learned model for this client consists of four
states as shown in 6.3, that we can name as following:

1. Disconnected (s0)
2. Connected and logged in (s1)
3. Directory Changed (s3)
4. Connected but not logged in (s2)

In Figure 6.3 the learned model is shown. The model infers to a Mealy
Machine of the system’s implementation that has one input and one output.
Each transition edge is labeled with the value of the input and the value
of the output. Moreover, from every state all possible inputs result to a
transition. When a transition results to the same state it is illustrated in the
figure 6.3 with a loop arrow. For simplicity reasons, they are not pictured the
input and output sets when a loop error appears. In this case, it is implied
that in the loop arrow all the other inputs/output sets are executed.

Discussion

As we can see at Figure 6.3 the initial state of the learned model is the state
“Disconnected”, which means the user is not connected and not logged in (ftp
socket is null). From this state, all the operations except the “ConnectValid)”,
such as change directory, upload etc. will output an IOException. The second
state shows that the user has been connected and logged in, where the third
state indicates a successfully change of the current directory. The last state,
is the state where the user is connected but not logged in and is a different
state from the state “Disconnected”, because the ftp socket is initiated with
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all other possible 
input interfaces

Figure 6.3: Learned Model for Simple FTP Client
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some values. Therefore, when an operation, such as change of directory, is
performed, no IO Exception will be now produced because the ftp socket is
not anymore null.

The model complies to the FTP protocol specification although is a very
simple FTP client implementation with some limitations when using it.

6.2.3 FTP4j Client

Results

In Figure 6.4 the learned model for the FTP4j Client is presented, with
the input/output interfaces as described in Section 5.2.2. Thus, the FTP4j
Client has been learned successfully, since the learning algorithm has been
terminated and has also produced a learned model.

The learned model of the FTP4j Client consists of four states that we can
name as follows:

1. Disconnected (s0)
2. Connected (s1)
3. LoggedIn (s2)
4. Directory Changed (s3)

As we can observe from the Figure 6.4 when an “InvalidConnect” or a
“Disconnect” is given as input to the system, the SUL will move always to
state s0, which is the Disconnected state. When an “InvalidLogin” or a “Valid
Connect” is given as input and the SUL is already “Connected”, then it will
move to state s1, which is the “Connected” state.

Discussion

We found out that the FTP4j client does not comply with the FTP protocol’s
specification as defined in RFC[66]. According to RFC specification, “The
control connection shall be closed by the server at the user’s request after all transfers
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Figure 6.4: Learned Model for FTP4j Client
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and replies are completed. An unexpected close on the control connection will cause
the server to take the effective action of an abort (ABOR) and a logout (QUIT).”

On the contrary to this specification, the FTP4j Client will behave as follows:
If an invalid connect is received after the user has been logged in, then
the FTP4j Client will respond with an IO Exception but it will react like
a “Disconnect” operation; the user will be disconnected from the server,
although this action has not been triggered. If afterwards, a “Disconnect”
request is performed, the FTP4j client will respond with an exception, since
the user was previously disconnected when an invalid login was sent. This
behavior is illustrated in Figure 6.4, when we are for example in state s1
and we give as input to the SUL an “InvalidConnect”, then it will move to
state s0, which is the “Disconnected” state. Thus, the FTP4j client, in case of
an invalid connect, will produce a socket exception and it will acts like the
SUL is disconnected.

The specification says that the control connection shall be closed by the
server at the user’s request. In the case described above, the user (client)
does not request to close the connection, but the connection is closed with-
out the client’s demand. We have performed the same actions/steps when
connecting to the FTP server from the terminal, where no FTP client imple-
mentation is used. In this case, the FTP server did not close the connection
when we sent an invalid connect from the terminal as an already logged
in user. Thus, we conclude that this faulty behavior results from the FTP4j
client, which does not comply to the protocol’s specifications. Therefore,
by applying automata learning techniques, we were able to uncover an
incorrect and non-compliant behavior of the FTP4j Client. However, our
experiments did not cover all the possible operations that can be performed
from the FTP protocol, but only a small amount of them. Maybe with learn-
ing methods could be uncovered more faults in the FTP implementations, if
more operations of the FTP protocol are tested.
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6.2.4 FTPClient Apache

Results

Lastly, the model learned from FTPApache Client is shown in Figure 6.5.
For simplicity reasons, they are not pictured the input and output sets when
a loop error appears. In this case, it is implied that in the loop arrow all the
other inputs/output sets are executed.

As we can observe, this learned model is much more complex in compar-
ison to the previous ones. This is due to the fact that some paths of this
model show a misbehavior in respect to protocol’s specification, that will be
discussed in the “Discussion” section below.

LearnLib was able to learn the behavior of the FTPApache Client and
construct a model. The model constructed consists of 9 states but to some
of them (states s5,s6, s7,s8) we can not give a name, as we performed for the
other learned models, since they do not represent any logic situation. States
s0-s4 we can name as follows:

1. Disconnected (s0)
2. FTPNotNull (s1)
3. Connected (s2)
4. LoggedIn (s3)
5. Directory Changed (s4)

The state s1 is named “FTPNotNull”, because it is an intermediate state
before we are logged in to the FTP server. That means, if we are disconnected
(state s0 and we perform an invalid connect, the Apache FTP Client will
produce a socket timeout exception (output “SE”). Thus, the client tries to
connect to the server but since the given connect data are invalid, the connect
will fail but we will not be disconnected. Therefore, a new intermediate
state is created since we are not directed back to the “Disconnected” s0
state. We name this intermediate s1 state “FTPNotNull”, because the ftp
object is not null anymore as when we are disconnected but on the other
hand we are also not connected to the server. This behavior complies to
the FTP specification defined in RFC[66], as has been described in the
previous Section 6.2.3 where the FTP4j Client did not complied to it: “The
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Figure 6.5: Learned Model for FTP Client Apache
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control connection (Disconnect) should be closed only at the user’s request”. The
difference between the s0 state and the s1 state is that when we send an
invalid connect to the s1 state the client will respond with the output “NOK”
and not with a Socket Exception (output “SE”) as in the state s0, because
now the socket is initiated and it is not null. This is why we have these two
similar but not equal states.

The states s2, s3, s4 as shown in the learned model 6.5 are common as in the
other FTP implementations.

Discussion

What is remarkable from the learned model, are the states s5, s6, s7, s8
which do not make any sense and reveal a faulty behavior of the Apache
FTP implementation.

For instance, if we start from state s1 and follow this trace as shown at
Figure 6.6:

ValidConnect, ValidLogin, ValidChangeDir, ValidConnect, ValidUpload, Invalid
Login

we will move to states:

s1, s2, s3, s4, s5, s6, s8

As we can observe from this trace, for an invalid login, the FTPClient will
respond with “OK”, where a “NOK” should have been produced. However,
for every invalid login, given as input before the state s5, the SUL will
respond correctly with a “NOK”. After state s5, some other misbehaviors
also occur, as for instance the input/output ChangeDr(Invalid)/OK when
moving from state s7 to state s6. Moreover when we are in state s7 and an
invalid login is given as input, the SUL will respond with ”OK“. However,
from the same state s7 if a valid connect is performed, as indicated with
blue color in Figure 6.5, the SUL transits to state s2 and starts behaving
correctly again till state s5.

We have tried to exploit this misbehavior of the FTP Client by trying to
authenticate an invalid user after an invalid connect has occurred. Although
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Figure 6.6: Example Trace from FTP Client Apache
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SUT Memb.Queries Total Running Time Total time of Eq.Queries Total time of Memb.Queries States Learned
SimpleFTP 232 1m 22s 502ms 87ms 1m 22s 415ms 4

Apache FTP Client 640 14m 23s 219ms 2s 28ms 14m 21s 191ms 9

FTP4jClient 370 12m 40s 481ms 10s 13ms 12m 30s 468ms 4

Table 6.3: Statistic Results from learning the FTP Protocol using Random Walks

SUT Memb.Queries Total Running Time Total time of Eq.Queries Total time of Memb.Queries States Learned
SimpleFTP 232 1m 23s 12ms 42ms 1m 22s 970ms 4

Apache FTP Client 640 14m 20s 805ms 32ms 14m 20s 773ms 9

FTP4jClient 370 13m 25s 83ms 23ms 13m 25s 52ms 4

Table 6.4: Statistic Results from learning the FTP Protocol using W-Method

the client returned ”OK’ for an invalid login, no data could be retrieved or
uploaded for this user. However, we reported this misbehavior of FTP client
to Apache developers and they have stated that the issue will be fixed in
newest versions [41].

6.3 Benchmarking

When learning a system, what is also important except of the final results,
is the overall execution time as also other statistical data as for example
number of membership queries, number of equivalence queries, etc. In that
way, we can understand which actions are time consuming and therefore
optimisations can be performed. Thus, we have collected some benchmarks
for the different FTP client implementations that we have learned and we
will present in this section.

The experiments have been implemented in a virtual machine and they
have been executed several times and the average execution time for each
implementation has been calculated. In that way, the results are stable and
can give a good overview of benchmarking. We have collected some statistics
in the three different implementations of the FTP protocol as presented in
Tables 6.3, 6.3 by using two different equivalence methods: the Random
Walks and the W-method as described in Section 3.1.

As observed, in the SimpleFTP, the total time of equivalence queries was
reduced to 50% when using the W-method. The total running time as also
the time of membership queries was quite the same for both methods.
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Learned states as also the number of membership queries has been the same
in both methods for all FTP implementations. Regarding the FTP client from
Apache, the total execution time has been reduced by three seconds, when
applying the W-method, where the time of membership queries has been
almost the same in both methods. The equivalence queries execution time
however, has been reduced by 70%, when using the W-method. The time of
equivalence queries for the FTP4j client for W-method is 440% times faster
as with Random Walks. Hence, as we observe, by using the W-method the
time of equivalence queries can be extremely reduced although the overall
execution time is not being that affected.

During automata learning, depending on the target system’s size, several
membership queries may be produced for construction of the final hypothe-
sis. Each of these queries consists of the actual execution time of the system
under learn and the execution time of the reset action [56]. A reset action is
always needed between each membership query, since the queries should be
independent from each other. As shown in our benchmark results, the time
the membership queries need is almost 99% of the overall execution time.
Therefore, a focus should be given to improve this part of learning. Ap-
plying for instance application-specific filters, which are answering queries
by using preexisting knowledge, would eliminate the time effort, since the
SUL is not needed to be asked directly. Query cashes which answer queries
from responses of previous queries or also test drivers, which instrumenting
the SUL [56] are also methods that can be used for optimisation within
LearnLib.





7 Related Work

“Unity is strength, when there is teamwork and collaboration wonderful
things can be achieved [75].”

[ Mattie J.T Stepanek ]

Automata learning and learning-based testing are popular techniques that
have been applied in several cases in order to test security vulnerabilities
[4]. A number of attempts have also been made for automatically extracting
system’s specifications by observing its behavior [58]. Moreover, lot of effort
and focus has been given in the field of active learning and modelling of
systems. Therefore, this section will explore in more detail the context of
projects from other researchers, related to the field of learning-based testing
and automata learning.

Learning automata has been analysed and discussed by a lot of researchers
in different ways. In particular Steffen, Hower et al. have demonstrated
in their paper [70] a scenario of active learning of black-box systems by
modifying the L* learning algorithm for Mealy machines. Moreover, in
the paper of Kumpati Narendra [58] a survey has been conducted in the
area of automata learning for analysing the behavior of learning automata,
discussing the interaction between several automata as also issues that may
arise when working with automata. In this master thesis we explore the
field of automata learning. However, whereas the aforementioned papers
focus on analysing the current use and behavior of learning automata as
also on experimenting with new methods that can be fruitful in this field,
we focus on learning the system’s behavior by applying learning automata
techniques. In their paper, Nowe, Verbeeck, et al. have also summarised some
theoretical results from the field of Learning Automata to show that learning
automata can be efficiently used as basis to construct so called ’multi agent’
learning algorithms [60]. This work also explores a more theoretical aspect
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of automata learning and does not focus on the application of them in real
systems, as demonstrated in our work.

Based on our research throughout lots of papers in the field of automata
learning, we concluded that one of the most widely used learning algorithm
used in the field of automata learning is the L* algorithm. First Angluin
has demonstrated in her paper [9], as stated, a way to identify an unknown
regular set from examples of its members. In particular, she exhibits an
algorithm - L* algorithm- for learning any regular set presented by a minimal
adequate Teacher and can indicate if it is equal to the unknown set or not.
In our work we have used this algorithm as our basic learning algorithm
for learning a black box implementation of the system under test each
time. The L* algorithm is in detail presented in Section 2.1.1. A different
approach is proposed by K.Meinke and M.A. Sindhu in their paper [55],
were they introduce an incremental learning algorithm, called Incremental
Kripke Learning (IKL), for learning and modelling reactive systems. The
main characteristic of the systems they analyzed, was the fact that they
could be modelled as Kripke structures. As they state, if this algorithm is
combined together with a temporal logic model checker, such as NuSMV,
the result would be an effective learning-based architecture for reactive
systems [55]. In this thesis, the reactive systems that are being analyzed are
not modelled as Kripke structures but as Mealy machines. We learned the
system under test using the L* algorithm from Angluin and we are focusing
on the system’s specifications.

While the field of automata learning has been explored by many researchers,
a more specific focus has been given on testing implementations of network
protocols by using such techniques. Since the systems that we examine in
this thesis are network protocols, we give a short sight in the work of other
researchers in this area. More specifically, Joeri de Ruiter and Erik Poll have
tested in [68] different implementations of the Transport Layer Security
(TLS) protocol. However, in our work we focus only in one extension of
the TLS protocol, the Heartbeat extension. The implementations that they
examine, have been tested by an automated and systematic analysis called
protocol state fuzzing. Their goal has been to detect security flaws and misbe-
haviours actions of the TLS protocol. As they stated, the Heartbleed bug of
the Heartbeat protocol was not able to be uncovered using this technique.
In our results, we could also not reveal the Heartbleed vulnerability with
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the learning setup that we have used for learning the Heartbeat protocol.
Nonetheless, their learning setup is based on using automated learning
techniques to automate the states resulting from the system’s implementa-
tion and afterwards fuzzing different message sequences. For modelling the
protocol’s behavior, they have used LearnLib, a learning framework which
is also used in this thesis.

Another interesting attempt for automated extraction of protocol specifica-
tions for ”smart” fuzzers has been made by Serge Gorbunov and Arnold
Rosenbloom, as demonstrated in their paper [30]. As they describe, they
have introduced AutoFuzz, a ”man-in-th-middle, semi deterministic network
protocol fuzzing framework”, for testing implementations of network proto-
cols. In particular, their focus has been on fuzzing the server side of the
File Transfer Protocol (FTP) implementation. In our work we also examine
different implementations of the FTP protocol by applying only learning
methods to them but we are focusing on analysing the Client FTP imple-
mentations. On the contrary, they have focused on the fuzzing framework,
used for discovering flaws in the software, by observing its behavior when
a specific parameter is given as input. Another attempt to test protocol
implementations has been performed by Fides Aarts, Harco Kuppens et al
[6], who showed how active learning can ensure the correctness of a protocol
implementation when a reference implementation R of it is given. They have
used learning tools to reveal errors in the implementation of the bounded
retransmission protocol. In particular, they have presented an approach in
order to establish conformance of implementations, by using active learning
techniques for learning a model M(R) of a reference implementation R.
Learnlib and Tomte, are the tools that they have used for the active learning.
In our work, we have used LearnLib as learning tool but we have focused
on ’learning’ rather on ’testing’ of the network protocols.

Some more applications of automata learning that have been deployed in the
fields of security and network protocols and are mostly relevant to our work
are presented below. As presented in their paper [4], Fide Aarts, Joeri de
Ruiter et al. have applied learning methods to the software of banking smart-
cards for evaluating the security of these systems. Unexpected functionality,
missing system behavior, mistakes in the design and the implementation
are only a few incidents that can be uncovered by learning techniques. Their
main focus targets on assuring the secureness and correctness of the system
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and in particular of the smartcards used in banks. In our work we also
focus on the correctness of the systems under test with respect to a given
specification. The software they are testing is considered to be a black-box
implementation and therefore they have constructed models based just
on observations of the smartcards’s behavior; same approach as also used
in this thesis. In addition, they have used Mealy machines for modelling
the reaction of smartcards, as also used in this thesis. As they stated, by
applying the Angluin’s L* algorithm to authentic bank cards, they were
able to obtain differences between the generated models of the bank cards.
The approach of learning network protocols has been also explored from
Paul Fiterau-Brostean, Ramon Janssen et al. at their paper [20], where they
have explained how the TCP Network protocol can be learned based on
observations. They have analyzed different implementations of the protocol
in two different operating systems; Windows 8 and Ubuntu. From their
analysis they were able to extract that the behavior of the protocol in both
platforms is non-compliant to its specification. Our approach for learning
protocols is very similar to their work. They have used Angluin’s L* algo-
rithm which is implemented in LearnLib. Thus, LearnLib and Tomte, a tool
described in Section 3.3, have been their main Java-based learning tools and
Wireshark[84] has been used for monitoring the network traffic between
the client and the server. The L* algorithm has been also our core learning
technique for learning network protocols. Their basic setup included a test
adapter, like we have used and described in Section ??, which is placed on
the client side. Moreover, they have used a mapper, as we have also used in
our learning setup as described in Section 3.1.2, which is placed in-between
the learner (LearnLib) and the adapter, which is connected to the server. In
particular, based on this mapper they have abstracted away messages sent
to the client and they have concretise messages sent to the server. As they
stated in their final results, different transitions between the state machines
generated on each operating system indicated a different behavior of the
protocol. This learned behavior did not follow the protocol’s standard.

As described above, the field of learning automata as also testing implemen-
tations of network protocols with learning techniques has been explored by
a lot of researchers and as shown in their papers great results have been
achieved. Hence, related work efforts as also the experiments of this thesis
indicate that automata learning is a fast growing testing method, which
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can be very effective and important not only for understanding the systems
under test, but also for conformance testing.





8 Conclusions and Future Work

“ There no limits to what science can explore.”

[ Ernest Solvay ]

In this thesis we have discussed and applied active automata learning
techniques for learning network protocols. The network protocols that we
have examined and tried to learn are the FTP protocol and the Heartbeat
protocol. Hence, by applying learning methods, we were able to learn
models for the FTP protocol. For the Heartbeat protocol a model with only
one state has been generated. Although this model does not “learn” the
actual behavior of the Heartbeat protocol, it gives information which could
be used as basis for further investigation. By using abstraction techniques,
we were able to reduce the number of concrete inputs and outputs to a
smaller set and abstract away some irrelevant to our purpose information.
We run our experiments on FTP protocol, by using the same input alphabet
for all the FTP client implementations each time and also we apply the
active automata learning method to the Heartbeat protocol. Regarding the
FTP protocol, we have analysed three different client implementations in
respect to the protocol’s specification: the FTP4j Client, the FTP client from
Apache and the SimpleFTP Client. We demonstrate that the FTP4j Client
does not comply to the FTP specifications, as defined in RFC standard,
whereby the FTP client from Apache misbehaves after an execution of a
certain trace. In addition, the FTP server used for our experiments behaves
in a nondeterministic way, when a user with certain rights tries to be
authenticated and therefore LearnLib was not able to generate any model
in that case.

We run our experiments by using two different algorithms for equivalence
checking during the learning phase; the Random walks method and the
W-method. By collecting some benchmarks information during learning, we
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showed that the W-method can reduce a lot the equivalence-checking time,
in comparison to the Random walks method. However, 99% of the total
running time consume the membership queries. Therefore, we encounter
in the future to use optimisation methods for reducing the time of the
learned models. Such methods, can already be used within LearnLib, such as
application-specific filters, which are answering queries by using preexisting
knowledge. Query cashes which answer queries from responses of previous
queries will be also taken into account in our future work, since then we will
not need to ask queries the SUL directly and the overall running time can be
reduced. Another long term goal is the automation of the learning process
through an automation of the mapper component. Algorithms can be used
for constructing automatically the mapper component and eliminate the
developer’s effort. Lastly, we consider in our future work the construction
of a different learning setup, for learning the behavior of the Heartbeat
protocol. In particular, in our current learning setup, the Learner plays the
role of the client which generates Heartbeat requests and the SUL plays
the role of the server, which answers with Heartbeat responses. However,
the learning setup can be separated into two parts; one which focuses on
learning the behavior of the client and another which would learn the
behavior of the server. In that way, maybe the Heartbeat vulnerability could
be uncovered.

Through this thesis and based on related efforts as reference, we show that
automata learning techniques can be an effective and fast way to testify
the behavior of a system against its specifications.The main advantage of
learning is that, by sending messages in an unexpected order we get a
high coverage of the code, which is different from for example full branch
code coverage, as we trigger many different paths through the code. In
addition, inferring systems to learning models is important not only for
understanding these systems, but also for model checking and model based
testing, which can be performed in later steps.
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[60] Ann Nowé, Katja Verbeeck, and Maarten Peeters. “Learning Automata
as a Basis for Multi Agent Reinforcement Learning.” In: Proceedings of
the 4th European Workshop on Multi-Agent Systems EUMAS’06, Lisbon,
Portugal, December 14-15, 2006. 2006. url: http://ceur-ws.org/Vol-
223/11.pdf.
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