




Abstract

Sparse matrices are part of the core of many important scientific

computing algorithms. Thus, a variety of sparse matrix formats and

implementations for different hardware architectures have been pro-

posed over the years. While simple compressed formats still dominate

the computing environment, alternative block-based formats have seen

success on the GPU as they scale well for extremely large matrices.

However, hierarchical formats have not been explored and are widely

considered unviable as they introduce highly dynamic execution paths,

which is detrimental for performance on massively parallel devices

such as the GPU. Introducing HiSparse, a hierarchical sparse matrix

format for the GPU, we show that by applying dynamic scheduling

strategies, the issues of varying execution paths can be counteracted.

We show that a hierarchical format can adjust itself locally to the

present data and thus significantly reduce the memory footprint of

the stored matrices in comparison to standard formats. Implementing

sparse matrix vector multiplication and sparse matrix addition we

show that our hierarchical format is competitive to highly optimized
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standard libraries for these operations and significantly outperforms

them in the case of transpose matrix operations, pointing towards the

viability of hierarchical matrix formats on massively parallel devices

as the GPU.
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Kurzfassung

Dünnbesetzte Matrizen sind ein zentraler Bestandteil vieler wichtiger

wissenschaftlicher Algorithmen. Folglich wurden im Laufe der Jahre

eine Vielfalt von Formaten und Implementierungen dünnbesetzter

Matrizen für verschiedene Hardware-Architekturen vorgeschlagen.

Während einfache komprimierte Formate nach wie vor die Rechenwelt

dominieren, haben alternative blockbasierte Formate für GPU-basierte

Algorithmen immer mehr an Relevanz gewonnen, da diese für sehr

große Matrizen äußerst gut skalieren. Hierarchische Formate wurden

jedoch noch nicht erforscht, da sie, aufgrund der vielen dynamischen

Ausführungspfade, welche die Leistung auf der GPU negativ beeinflus-

sen, großteils als untauglich gelten. Mit der Vorstellung von HiSparse,

einem hierarchischen Format für dünnbesetzte Matrizen auf der GPU,

zeigen wir, dass mithilfe dynamischer Planungsstrategien das Problem

der vielen Ausführungspfade beseitigt werden kann. Wir zeigen, dass

sich ein hierarchisches Format lokal an den vorhandenen Daten anpas-

sen kann, wodurch der Speicherverbrauch der Matrizen im Vergleich

zu den Standard-Formaten signifikant reduziert werden kann. Mit
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der Implementierung von dünnbesetzter Matrix-Vektor Multiplikation

und Addition von dünnbesetzten Matrizen demonstrieren wir, dass

unser hierarchisches Format für diese Operationen im Vergleich zu

hoch optimierten Standard-Bibliotheken wettbewerbsfähig ist und im

Falle der transponierten Matrizen sogar eine bessere Leistung erzielt

wird, wodurch die Realisierbarkeit von hierarchischen Formaten auf

massiv parallelen Ausführungsumgebungen, wie die GPU, aufgezeigt

wird.
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1 Introduction

Sparse matrices are a key primitive in many fields of scientific com-

puting which require modelling of irregular data, such as physical

simulations, graph processing, or economics. Striving to tackle larger

problems and delivering results ever faster, a variety of different sparse

matrix formats and implementations of core matrix operations for vir-

tually all available hardware architectures have been proposed. While

standard formats such as the coordinate list (COO) and compressed

sparse rows (CSR) are still predominant across hardware architectures

and standard libraries, alternative formats may have the edge over

these formats in special cases. For example, the compressed sparse

blocks format (CSB) scales well on parallel CPU architectures and

its performance stays unchanged when operating on transposed ma-

trices [1]. Many alternative formats on parallel architectures like the

graphics processing unit (GPU) are either tuned for single matrix oper-

ations, like CSR5 [2] for sparse matrix vector multiplication (SpMV), or

only applicable for certain types of matrices, like ELLPACK for matri-

ces with similar number of non-zeros in each row. One reason for this
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1 Introduction

situation stems for the difficulty of deriving efficient implementations

for more dynamic data structure on the GPU. For example, dynamic

search in a Z-order curve as used in the CSB SpMV implementation [1]

will lead to non coherent memory access and execution divergence

among threads, greatly reducing the performance of such an imple-

mentation on the single instruction, multiple data (SIMD) compute

cores found on the GPU.

In this work, we tackle this issue providing a hierarchical, block-based,

sparse matrix format suitable for the GPU. A hierarchical format has

the advantage that it scales well for ever larger matrices, allows to

implement algorithms in a divide an conquer manner, and allows shar-

ing/duplication of sub-matrices between different matrices and within

a single matrix. We show that by applying dynamic GPU schedul-

ing strategies to algorithms built on top of this format, competitive

performance can be achieved. We make the following contributions:

• We propose the HiSparse sparse matrix format, which supports

a combination of various node types and thus can adapt to

the local structure of the matrix. Each node is transparent to

transpose operations, thus, algorithms built on top of the format

achieve similar performance for operations on a transpose ma-

trix. Being hierarchical, the bit length of indices can be reduced,

consequently, the overall memory requirements are below COO

and CSR.
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• We describe a dynamic GPU scheduling framework that allows

to implement algorithms on top of HiSparse with little effort.

Algorithms can implement specialized routines for the different

node types and dynamically adjust the number of threads used

for each step of the implementation to ensure high performance.

• We provide an example implementation of SpMV using the

previously defined dynamic scheduler, which in parallel traverses

the hierarchical structure of the sparse matrix, combining the

local SpMV results into a global output vector.

• We show an example implementation of sparse matrix add,

which concurrently traverses the hierarchical structure of two in-

put matrices, determines the number of colliding entries in both

hierarchies, dynamically allocates and generates the hierarchy of

the resulting matrix alongside the non-zero entries.

• We analyze the performance of the SpMV and matrix add imple-

mentation for a variety of matrices and compare the performance

to state-of-the-art GPU implementations.

The remainder of this paper is structured as follows. At first, we

provide a brief introduction to the most common sparse matrix formats

and review related work (Section 2). Then, we introduce the HiSparse

format and provide an analysis of the format’s memory requirements

(Section 3). After presenting our scheduling framework (Section 4),

we show how SpMV (Section 5) and sparse add (Section 6) can be

implemented and analyze their performance (Section 7). We conclude
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1 Introduction

by summarizing our findings and provide an outline of more complex

algorithms that could efficiently be implemented on top of HiSparse

(Section 8).
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2 Background and Related

Work

The most common sparse matrix formats are Coordinate list (COO)

and Compressed Sparse Row (CSR). COO is the most trivial format,

since it simply consists of three arrays, separately storing the column

index, row index and value of each non zero of the sparse matrix. CSR

maintains identical arrays for column indices col id and values val

sorted in row major format. However, in contrast to COO, row indices

are compressed such that the entry row ptr[i] points to the index of

the first entry of the row i within val and col id. Whereas the last entry

row ptr[m + 1] = nnz, with nnz being the number of non zeros of

the matrix. CSR enables an easy way to process individual rows in

parallel. Figure 2.1 depicts a simple example of the CSR matrix format.

A sequential algorithm for SpMV using the CSR format is shown in

algorithm 1.
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2 Background and Related Work

2.1 GPU SpMV

At first glance, processing CSR matrices on the GPU seems trivial,

by simply processing each row in parallel. Using a naive approach,

each row is processed by an individual thread. Bell and Garland called

this approach the scalar CSR kernel [3]. However, this approach en-

tails severe performance limitations. One major problem is the way

the memory is accessed. In general, coalesced memory access within

threads running on the same SIMD core is necessary in order to effi-

ciently load memory from the global memory of the GPU. However,

since the CSR matrix is stored in row-major order, each thread ac-

cesses the entries of the corresponding row in a non-coalesced manner.

In addition, since the nnz of each row can vary extensively, threads

will execute different number of elements, leading to so-called diver-

gence and slower execution on SIMD devices. Multiple approaches

were introduced to counterbalance these issues. One can use multiple

threads per row [4], apply grouping and reordering techniques [5, 6],

or dynamically choose the number of threads for each row [7, 8].

Another major performance limitation are load balancing issues. Light-

SpMV [9] introduces a simple way to handle this issue by using a global

row counter, dynamically scheduling rows to available threads. Re-

cently, an efficient SpMV algorithm using merge path was introduced

[10], which handles all previously described performance limitation,

although still requiring a slight computational overhead. Liu et al
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also introduced an SpMV algorithm specifically for heterogeneous

processors [11].

2.2 Alternative Formats

Although COO and CSR are the most common formats, multiple

additional formats have been introduced. ELLPACK is a common

format, which stores a sparse matrix of size m× n in two m× k matrices

indices and data, whereas k corresponds to the nnz of the row with

the largest nnz. The matrix indices stores the column index of the

corresponding value entry in data. Row indices of entries are stored

intrinsically, since each row is padded to the fixed size k. Consequently,

ELLPACK performs well with a regular data structure, however has

severe issues with irregular row nnz, since much of the data needs to

be zero padded. There are several ELLPACK format adoptions, like

Hybrid [3], Sliced ELLPACK [12] and ELLPACK-R [13]. However, a

common shortcoming of those formats is dealing with highly irregular

matrix structures.

A common way of dealing with thread divergence and load balancing

issues is splitting the input matrix into two dimensional blocks. For

instance, the CSR5 format [2] arranges the non zeros into tiles (2D

blocks) of a fixed size. Each tile is processed individually. Several block

formats organize the blocks in a two layered hierarchy. The top layer is
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2 Background and Related Work

used to manage the blocks, whereas the bottom layer is the block rep-

resentation. Blocked CSR (BCSR) [14] divides a sparse submatrix into

dense blocks. The blocks are stored in a CSR format. Obviously, this

is rather inefficient for very sparse matrices [15]. Compressed Sparse

Blocks (CSB) [1] is a COO representation of sparse submatrix blocks.

Entries within a block are also stored in COO format (compressed).

Consequently, rows are not favored over columns, which is crucial for

transpose multiplication [16]. Since the blocks are always stored in

COO format, CSB is rather inefficient for dense matrix areas. Some

mixed type formats try to deal with this limitation. Adaptive-blocking

hierarchical storage format (ABHSF) [17] is a COO representation of

mixed type blocks. To this end, blocks can be stored in a dense, CSR,

COO or bitmap format. The Cocktail format [18] operates similarly.

There are numerous similar formats, like BRC (Blocked Row-Column)

[19], BCOO (Block-based Compressed Common Coordinate) [20], ESB

(ELLPACK Sparse Blocks) [21] or JAD (JAgged Diagonal) [22]. While

many block-based formats were designed to fit massively parallel ar-

chitecture like the GPU, there exist no multi-level hierarchical formats

on such architectures.
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2.2 Alternative Formats

A =



0 7 0 3

1 0 4 0

0 0 0 0

2 5 5 0


val = {7, 3, 1, 4, 2, 5, 5}

col id = {1, 3, 0, 2, 0, 1, 2}

row ptr = {0, 2, 4, 4, 7}

Figure 2.1: Example of a simple matrix stored in CSR format. Matrix values and

column indices are stored explicitly, in addition to non-zero offsets of

each row

1 Sequential CSR SpMV

2 Input: CSR Matrix A, dense vector x

3 Output: dense vector y← A · x

4 for i← 0 to A.num rows do

5 yi ← 0

6 for k← A.row ptr[i] to A.row ptr[i + 1] do

7 yi ← yi + A.val[k] · x[A.col id[k]]

8 end

9 y[i]← yi

10 end
Algorithm 1: Naı̈ve sequential CSR SpMV implementation. Sim-

ple GPU parallelization by row causes thread divergence and load

imbalance.
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3 HiSparse Format

Previous work on block-based formats for the CPU considered various

setups, ranging from two level hierarchies to multi-level hierarchies

of sparse, dense and mixed types of blocks. However no multi-level

hierarchical formats have been implemented for the GPU. This is

not surprising, as the hierarchical nature of such formats introduce

highly dynamical execution paths, which supposedly results in inferior

performance on massively parallel environments such as the GPU.

Undoubtedly, these issues entailed by hierarchical formats can easily

appear too big of a challenge to overcome.

However, working on many 2D blocks of data in a hierarchical tree

can in theory be efficient on the GPU. To this end, we propose and

evaluate a hierarchical block-based data structure for sparse matrices:

HiSparse. HiSparse matrices are constructed by nodes of size d× d,

whereas each node’s representation depends on the sparsity pattern it

describes. Nodes can either be stored in a sparse or dense format, as

illustrated with a small example in Figure 3.1. As dense format we use
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3 HiSparse Format

a linear array of d2 entries stored in row-major order. As sparse format

we employ, what we call, the COOX format, which is the same as

COO, with the minor difference that it is designed to enable threads to

efficiently load X entries at once using efficient vector load instructions

on the GPU. For example, COO4 enables each thread to load 4 entries

at once. To enable vector loads, it is necessary to add padding if the

number of non-zeros within the node is not a multiple of X or if the

appropriate memory alignment is not given. As the size of each sparse

node depends on the number of non-zeros it holds, we additionally

store each node’s nnz before the COO arrays.

Using different node formats enables efficient processing of nodes in

respect to their sparsity pattern. If a node contains a high percentage

of entries, using a dense type not only reduces the required amount of

storage, but also reduces the overhead during computation. Obviously,

the same applies for using a sparse type if only a low percentage of en-

tries is non zero. In general, the HiSparse format allows to implement

arbitrary node types. Consequently, it would be possible to introduce

a local ELLPACK or CSR/CSC format. Note, that sparse types can also

be mixed, that is, the best fitting sparse types can be used for nodes

with different sparsity patterns.

The interpretation of a node’s values depend on its level within the

hierarchy. Inner nodes of the hierarchy maintain relative pointers to

the child nodes as values, whereas leaf nodes store the corresponding

matrix value. Each child pointer corresponds to an aligned data array
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pointer relative to the start address of the matrix. By guaranteeing

that nodes are 16 byte aligned, which is necessary for vector loads, we

can use the 4 lowest bits to encode additional information or increase

the addressable amount of memory, or both. We primarily use them

to distinguish between the different node types, simply enumerating

them. For example, if there are 4 different node types, say dense,

COO1, COO2 and COO4, then we use a zero, one, two and three

respectively in the lowest 2 bits of the pointer to identify them. When

the subspace of the input matrix covered by a child of an inner node

contains no non-zero, the child pointer is set to a null value. As a

consequence, data is only stored for nodes, which contain leaves with

non zero values in their tree path.

The proposed dense and COOX format can easily be worked on in a

transposed manner. For example, the addressing of rows and columns

can simply be altered for the dense type, for the sparse type a data

transpose operation can be carried out in efficient on chip shared mem-

ory, as the number of entries per node is relatively small. Even data

formats like CSR could efficiently be transposed in that manner. Thus,

the transpose of matrix can usually be efficiently computed on the

fly alongside the algorithm run on the matrix. Therefore, we propose

to decouple the matrix content and its state. To this end, the matrix

content is unchanged when a matrix is transposed. Instead, a boolean

in the matrix state is flipped, indicating whether a transposition is to

be applied when traversing the nodes of the matrix. Furthermore, we
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3 HiSparse Format

also include a scaling factor for the matrix, which is applied to every

leaf value when it is accessed. Consequently, HiSparse operations on

the matrix must incorporate this state in the implementation, possibly

affecting the traversal order of the matrix or changing its values.

Format conversions are often necessary in practice, thus their cost

should not be ignored. Conversion between COO and HiSparse with

local COO nodes is simple, since from a local standpoint the formats

are similar. Creating a matrix in HiSparse format requires the gener-

ation of the tree hierarchy. We perform this conversion in two basic

steps. First, we calculate the required memory and create a helper tree

skeleton structure in a top-down approach. We repeatedly in-place sort

the COO entries into d× d bins, whereas the bins correspond to nodes.

Starting with processing the root node, each child node is stored in

a queue. Furthermore, the required node memory is calculated and

added to a global sum. Subsequently, this process is repeated for each

queue item, until reaching the leaf nodes. Once all nodes are processed,

the required memory is allocated as one large chunk of memory, which

serves as pool for the allocation of the individual nodes. The second

step, filling the nodes, is very efficient, since the tree structure is al-

ready known at this point and the entries are assigned to the leaves.

We process the tree in a bottom up fashion, allocating memory from

the pool and inserting the non-zeros. After creation of the node, we

write its position to the helper skeleton, and start the processing of the

parent as soon as all children of that node are completed. Obviously,

14



3.1 Storage analysis

Dense format:
A11 = [0, 7, 0, 3,

    1, 0, 4, 0,
          0, 0, 0, 0,
          2, 5, 5, 0]

Sparse format:
A11 = {
  numEntries = 7,
  coords = [(0,1),(0,3),
               (1,0),(1,2),
               (1,0),(1,1),(1,2)],
  data = [7, 3, 1, 5, 2, 5, 5]

}

Figure 3.1: Example with d = 4. Nodes within the hierarchical HiSparse format can

either be dense or sparse. Coordinate pairs are packed together.

this approach offers the possibility for substantial parallel execution.

3.1 Storage analysis

Using a hierarchical structure offers the potential to reduce the amount

of memory required for storage of the matrix, while at the same time

leading to the same worst case memory consumption as standard

compressed formats. Without loss of generality, consider a matrix M

of size m×m, stored in HiSparse with a node size of d, a tree depth

of D = logd(m), L leaf nodes, N inner nodes. Let nnzLi be the number

of non zero entries within a sparse leaf Li. Additionally, let b be the

number of bits required to store a single matrix element. Each node
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3 HiSparse Format

stores the number of non zeroes in a 32 bit unsigned integer. Since the

coordinates within a node are limited in size by log2(d), they can be

stored in a packed storage format. Thus, the amount of bytes required

for storing a single leaf

Bi = nnzLi · (2 · log2(d) + b) + 32.

Since the sum over all leaves ∑L
i=0 nnzLi = nnz (with nnz being the

number of non zeroes of the input matrix), the amount of storage

required to store all leaves is nnz · (2 · log2(d) + b) + 32 · L.

In case the tree is close to a full hierarchy, the number of inner nodes

can be described as L
d2 +

L
d4 +

L
d8 + ..., which is L ·∑i

1
d2i < L, leading

to the memory requirements of the inner nodes being smaller than the

leaf nodes. In any case, the overall memory requirements (in bits) is

BHiSparse ≈ (1 + N/L) · (nnz · (2 · log2(d) + b) + 32 · L) ,

when the number of bits required for the pointer/offset to a child node

is also b.

The storage requirements of the COO and CSR formats are

BCOO = nnz · (2 · log2(m) + b),

BCSR = nnz · (log2(m) + b) + m · log2(nnz).

COO stores two coordinates that must be able to hold m (log2(m) bits)

and the values themselves. The CSR format stores only one coordinate,

but requires m row offsets that can point to an arbitrary matrix element
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3.1 Storage analysis

of the matrix (log2(m
2) bits). Usually, 32 bit unsigned integers are used

for coordinates and offsets. This also makes it apparent that HiSparse

can reduce the memory requirements if d is significantly smaller than

m, such that the memory saved by the bit reduction is higher than the

overhead of the inner nodes. Also, note that nodes are stored in dense

form, if the memory costs of storing it in sparse format are higher.

Consequently, reducing the memory requirements for denser matrices

and for inner nodes in general, which are more likely to contain a

higher number of entries.

In terms of asymptotic memory consumption, the HiSparse format

is equal to CSR and COO. Even ignoring dense nodes, the memory

consumption of a single node is always bounded by Bnode = O(d2) =

O(1), as it can hold a maximum of d2 elements and their local coordi-

nates. Thus, to evaluate the asymptotic memory consumption, we are

only interested in the overall number of nodes. In the extreme case of

a full matrix, L = nnz/d2 and as mentioned before N < L. Thus,

B f ull = Bnode · O(nnz/d2) = O(nnz).

However, when there are fewer non-zeros the memory analysis be-

comes more complicated. In the extreme case, when nnz = 1, an inner

node for each level of the hierarchy is needed to reach the leaf level,

thus N + L = logd(m). Starting from that situation, we can add another

non-zero that shares as few nodes with the previously present non-

zeros as possible. In case of adding a second non-zero this corresponds
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3 HiSparse Format

to sharing only the root node, adding logd(m)− 1 nodes. There are

still d2 − 2 non-zeros that be added to the matrix so that each require

logd(m)− 1 additional nodes, i. e., until all nodes are present on the

second level of the hierarchy. This idea can be generalized to

N + L ≤1 · logd(m) + (d2 − 1) · (logd(m)− 1)+

+ ((d2)2 − d2) · (logd(m)− 2)+

+ ((d2)3 − (d2)2) · (logd(m)− 3) . . . ,

essentially counting the nodes that are added when as many non-

zeros are added in such a way that the entire level is fully filled with

nodes. The number of such fully filled levels can be computed with

the log over the number of non-zeros. Thus, for simplicity, let λ be

dlogd2(nnz)e. The previous formula can then be written as a sum:

N + L ≤
λ

∑
i=0

(d2i − bd2i−1c) · (logd(m)− i)

18



3.1 Storage analysis

and simplified as follows.

λ

∑
i=0

(d2i − bd2i−1c) · (logd(m)− i)

<
λ

∑
i=0

d2i · (logd(m)− i)

< logd(m) ·
λ

∑
i=0

d2i −
λ

∑
i=0

i · d2i

= logd(m)
d2(d2λ − 1)

d2 − 1
− d2(−λd2λ − d2λ

+ λd2λ+1
+ 1)

d2 − 1

< logd(m)(d2λ+1 − d2) + λd2λ+1
+ d2λ+1 − d2λd2λ+1 − d2

=d2λ+1
(logd(m) + 1) + λd2λ+1

(1− d2)− d2(logd(m) + 1)

<d2λ+1
(logd(m) + 1).

Using the relationship of λ, the equations boils down to

N + L < nnz · d2(logd(m) + 1) and

B = Bnode · O(nnz · logd(m) + nnz)

B = O(nnz · logd(m))

Comparing this result to BCOO, it becomes apparent, that asymptoti-

cally they are identical.

In praxis, the constants do matter and efficient memory access requires

to use one of the supported memory types to store coordinates. Using

node dimensions d <= 256 enables to store the coordinates within

a single byte unsigned integer, thus, reducing the storage amount

significantly compared to the sparse matrix formats COO and CSR.
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3 HiSparse Format
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Figure 3.2: Memory consumption per non-zero of HiSparse compared to the standard

formats COO and CSR for matrices stored in single precision floating

point (less is better). For double precision, all memory requirements

increase by 4 bytes.

Figure 3.2 shows a practical comparison of memory consumption

between HiSparse, COO and CSR using a set of example matrices.

Further details regarding the test matrices can be taken from Figure

7.1 and Section 7. As can be seen, HiSparse requires on average about

50% less memory than COO and 20% less memory than CSR. Also,

note that COO always requires 12 bytes per non zero, since three 4

byte integers are stored for each non zero.
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4 Dynamic Scheduling

After overcoming the first levels of a tree structure, it potentially of-

fers large amounts of parallel workloads, as nodes on the same level

and nodes on different levels can be worked on in parallel. How-

ever, traversing non-complete trees poses a scheduling problem. From

the perspective of a single node, the number of threads that can be

launched to process its children varies strongly between nodes. As

threads on the GPU must be launched in form of kernels, which should

at least contain hundreds of threads, this becomes difficult on the GPU.

At the same time, the number of elements per node and thus the work-

load per node may vary greatly throughout the tree structure. Thus, if

we simply assign one thread to each node, they would execute vastly

different number of instructions (usually proportional to the number of

elements per node), leading to execution divergence, slowing down the

execution. The issue becomes worse when considering different node

types, e. g., sparse and dense, not only leading to different number of

executed instructions, but completely different instructions.
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4 Dynamic Scheduling

To overcome these issues, we propose to use a dynamic scheduling

approach on the GPU. For further discussion, we rely on NVIDIA

CUDA terminology. For details of the processing model, see [?]. In

principle, every algorithm running on one or multiple HiSparse ma-

trices, must traverse the node hierarchy of one matrix or multiple

matrices in parallel. It will execute functions which take one node or a

combination of nodes as input. One can expect good performance, if

• a suitable number of threads can be assigned to a node, i. e.,

dense nodes can provide parallel workloads for multiple threads,

while sparse nodes that only hold a single element will only need

one thread for processing.

• only threads working on the same node type and facing equal

workloads end up in the same warp, i. e., thread divergence is

avoided.

To this end, we propose a dynamic scheduler that collects to-be-

processed nodes in queues on the GPU. We provide queues for each

node type and for different number of element contained per node. As

providing specific queues for every possible element count is infeasi-

ble, we assign queues to ranges of elements, as shown in Figure 4.1.

Considering operations that involve multiple matrices, like e. g. matrix

matrix multiplication, queues can also be setup for combination of

node types and element counts. To provide sufficient flexibility, our

scheduler implementation takes a specification of the queue setup and
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information that should be stored in queues as template argument and

generates the appropriate queuing setup during compile time.

To execute the appropriate code for the elements stored in the queues,

we use a strategy similar to hybrid dynamic parallelism, as described

in the Whippletree scheduler [24]: A controller block iterates over

all queues and checks their fill level. If there is a sufficient number

of elements in any queue (or if the number of currently executing

blocks becomes low), using dynamic parallelism the controller starts

a kernel that will process the element of this queue. Each block of

this kernel is assigned to a region of the queue and draws as many

elements from the queue such that all threads can execute coherently,

e. g., a block of 128 threads that is assigned to a queue of nodes that

should be processed by 32 threads each, will dequeue four nodes. The

entirety of this process leads to all threads running in a block working

on the same node type and having similar workloads, consequently,

fulfilling the previously mentioned requirements. At the same time,

the kernels launched using dynamic parallelism are large enough to

achieve good performance. If dynamic parallelism was used to directly

start threads to work on the children of a parent node, the kernel in an

extreme case might contain a single thread only, leading to all kinds

of underutilization and extreme overhead issues.
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4 Dynamic Scheduling

dequeue

Dense inner nodes 

Process node
enqueue

Sparse inner nodes

1 - 8 entries

> 8 entries

Dense leaf nodes

Sparse leaf nodes

1 - 4 entries

4 - 16 entries

> 16 entries

Figure 4.1: Each node type has at least one dedicated queue processed by the corre-

sponding kernel. Sparse node types maintain different queues for varying

node entry counts, whereas the thread count used to process an entry

depends on the specific queue. Consequently, nodes with few entries are

processed with less threads than nodes with a higher amount of entries,

thus, reducing thread divergence. For example, sparse inner nodes are

split into two queues, one containing nodes with one to eight entries, the

other containing all nodes with more than eight entries. Each node is

processed by all assigned threads after dequeuing. For inner nodes, each

child node is enqueued in the node type specific queue.
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5 Sparse Matrix - Dense Vector

Multiplication

As a first example, we implemented SpMV using our scheduler. This

is extremely challenging, as SpMV has received a lot of attention and a

hierarchical format entails significant scheduling overhead (traversing

the hierarchy) compared to simply processing the non-zeros in a bulk-

like fashion. In any case, multiplying a HiSparse matrix with a dense

vector corresponds to a top-down parallel tree traversal. We simply

use queues for each node type and distinguish between nodes that

only contain a single entry, few entries (up to 32), and many entries

(more than 32). Each queue entry not only is associated with a node,

but also holds a row and column offset, as well as the depth of the

node in the hierarchy. In this way, the input and output indices of the

corresponding dense vectors can be computed when processing leaf

nodes.

Initially, the queues are filled by processing the root node of the input
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5 Sparse Matrix - Dense Vector Multiplication

matrix. While traversing the node hierarchy, the lower bits of the node

pointers are used to identify each nodes type and the corresponding

queues are used for enqueue. When reaching leaf nodes, a simple local

SpMV algorithm is executed as shown in algorithm 2. Transposition is

trivially handled by swapping the coordinates. As the different threads

might access the same output element, we use atomic operations to

write the result.
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1 HiSparse process leaf

2 Input: filled Queue Q, matrix state State, dense vector x

3 Output: dense vector y

1: w ← dequeue(Q)

2: node ← getNode(w.node ptr)

3: rowO f f set ← w.rowO f f set · d

4: colO f f set ← w.columnO f f set · d

5: for all i ← 0 to node.numEntries do in parallel

6: coord ← node.coords[i]

7: if State.transposed == true then

8: swapCoord(coord)

9: end if

10: column idx ← colO f f set + coord.column

11: row idx ← rowO f f set + coord.row

12: v ← x[column idx] · node.values()[i] · State.scale

13: atomicAdd(y[row idx], v)

14: end for
Algorithm 2: HiSparse implementation of processing a leaf node.

After dequeuing the work package, the global offsets in respect to the

input matrix A with node dimension d are calculated. Subsequently,

each node entry is multiplied with the input vector x and atomically

written to the output vector y.
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6 Sparse Matrix Addition

As second example, we implemented addition of two HiSparse ma-

trices, which requires a dual top-down parallel tree traversal. To this

end, the addition follows the same basic concept as HiSparse matrix-

vector multiplication. We set up queues for each combination of node

types and maximum number of elements in either node. Starting from

the root nodes, common nodes of both input matrices are traversed

together. If a specific node within the tree hierarchy only exists in one

matrix, it is simply copied into the output matrix, for which we set up

additional queues and copy functions.

Since the size of the output matrix is not known in advance, sufficient

memory is allocated before the addition is executed. This is done

by allocating a memory pool to the amount of the sum of required

memory of both input matrices. However, since nodes are processed

independently, a memory allocator is required to allocate memory

from the memory pool. We use a simple memory allocator using an

atomic counter.
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6 Sparse Matrix Addition

When two common nodes are processed jointly, it is necessary to

first compute the size of the output node in order to allocate the

corresponding amount of memory from the memory pool. In case of a

dense output node, this step is trivial, since the output size is statically

known with d2 · b bytes. For sparse output nodes, it is necessary to

compute the number of union entries of both nodes. Since entries of

nodes are stored as arrays in a COO format it is not possible to directly

access two corresponding values at a specific coordinate. The general

approach is to first count the number of common entries. Subtracting

the number of common entries from the sum of total entries provides

the entry count of the output node, which is required to determine

the type of output node as well as its memory requirements. After

allocating the memory, the input nodes are processed and the output

node can be filled.

For inner nodes the value corresponds to a pointer to a child node.

Since the location of the children is not known when processing the

parent, we store a pointer to the value in the queue entry of a child.

Consequently, during processing of the child, we set the pointer in the

parent. In the following, we distinguish between different node types

and different node workloads. For simplicity, we limit the discussion

to local COO1 nodes. COO2 and COO4 nodes are a simple extension

which only require appropriate padding and are generated as soon as

the entry count surpasses a given threshold.

A first queue is used for nodes, whose number of entries is small
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enough for computation in shared memory by a block of threads. We

at first load the entries of both nodes into shared memory before sort-

ing the combined array of coordinates. As (according to our definition)

nodes are stored in row-major order, we can simply merge the coordi-

nate arrays if neither of the matrices is transposed. Contrary, if either

input matrix is transposed and the other matrix is non-transposed,

we swap row and column index accordingly while loading the data

to shared memory and sort them with merge sort. In each case we

sort a permutation vector alongside the coordinates, such that the

original values can be fetched after sorting. After sorting, we check

neighbouring coordinates for equality, counting entries that are present

in both nodes. The resulting count is used to allocate the appropriate

output node. In case the output is a sparse node, we use a prefix sum

to remove duplicated entries from the sorted coordinate array and

write it to the allocated node. Finally, we fill the node (enqueue child

nodes), by using the permutation array to look up the values from the

original nodes and compute the sum (generate the appropriate queue

entry).

A second queue is used for node combination that cannot be processed

in shared memory. In that case, we buffer the coordinates array of the

first node in a batch-wise manner in shared memory. By iteration over

all batches of the first node and comparing them to all the entires of the

second node, we identify identical entries and can compute the output

node’s size. To fill the output node, we again buffer node data in
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6 Sparse Matrix Addition

shared memory. However, we now work on both nodes concurrently,

loading n values with the lowest combined coordinates from both

nodes and sort them. As we loaded the lowest coordinates from both

nodes, we know that the lower of the two highest coordinates gives

us the number of completed entries. After writing them to the output

matrix (enqueuing them), we again load entries from both matrices,

replacing the completed entries and perform the same steps. Loading

more entries from the node that yielded the lower maximum combined

coordinate guarantees that we at least generate n output values in every

step.

A third and forth queue is set up for cases with one or two dense input

nodes. Handling two dense nodes is trivial, as both can simply be

jointly iterated. In case of sparse/dense mixed case, we already know

that a dense output node will be generated. To fill the node, we iterate

over the dense array, buffering it in shared memory. Concurrently, we

fetch the entries from the sparse node and use each values coordinates

to attach the entry to the value stored for the dense node. Again using

one thread for each dense entry, we combine the non-zeros of the

dense node with the attached entries from the sparse node and fill the

output node accordingly (enqueue the child nodes).
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7 Evaluation

In this section we provide a comparison of our HiSparse implemen-

tations with popular libraries on selected matrices. The test matrices

were taken from The University of Florida Sparse Matrix Collection

[23] and were chosen to show different characteristics. They are shown

in Figure 3.2. Each matrix is described with key statistics for CSR and

HiSparse matrix formats. CSR statistics consist of the mean non-zeros

per row and standard deviation, as well as the maximum. For HiS-

parse, statistics are provided for inner nodes and leaf nodes separately.

The statistics include the total number of sparse and dense nodes, in

addition to the mean number of non zero entries within those nodes.

We also include a dense matrix and a special matrix which shows very

localized behavior and should thus favor a hierarchical format.

For evaluating SpMV, HiSparse is compared to cuSparse [25], cusp

[26], MKL [27] and bhSparse with the CSR5 format [2]. Since bhSparse

does not provide an implementation for a transposed SpMV, it is not

used in the second part of the evaluation. Since cusp does not provide
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7 Evaluation

Matrix name

rows × columns

Structure

non-zeros

CSR: mean (std-dev), max

HiSparse: sparse, dense, mean nodes

HiSparse: sparse, dense, mean leaves

asia osm ASIC 320k

12.0M×12.0M 321.8k×321.8k

25.4M 2.6M

2.1 (0.5), 9 8.2 (503.0), 203.8k

236.5k, 3, 6.6 387, 0, 363.1

1.6M, 0, 15.2 140.5k, 0, 17.8

bone010 cage12

986.7k×986.7k 130.2k×130.2k

71.7M 2.0M

72.6 (15.8), 81 15.6 (4.7), 33

182, 0, 496.0 49, 0, 461.1

90.3k, 0, 792.8 22.6k, 0, 89.0

circuit5M cont11 l

5.6M×5.6M 1.5M×2.0M

59.5M 5.4M

10.7 (1356.6), 1.3M 3.7 (0.9), 5

2.5k, 0, 210.9 390, 0, 158.8

327.3k, 36, 179.7 61.9k, 0, 85.9

dense FullChip

5.0k×5.0k 3.0M×3.0M

25.0M 26.6M

5000 (0.0), 5.0k 8.9 (1806.8), 2.3M

1, 0, 16373.3 2.8k, 0, 182.0

79, 1521, 1010.9 510.8k, 0, 51.1

in 2004 kkt power

1.4M×1.4M 2.1M×2.1M

16.9M 14.6M

12.2 (37.2), 7.8k 7.1 (7.4), 96

4.3k, 0, 787.9 920, 0, 829.9

143.3k, 209, 96.7 763.5k, 0, 18.1

Matrix name

rows × columns

Structure

non-zeros

CSR: mean (std-dev), max

HiSparse: sparse, dense, mean nodes

HiSparse: sparse, dense, mean leaves

ldoor mip1

952.2k×952.2k 66.5k×66.5k

46.5M 10.4M

48.9 (11.9), 77 155.8 (350.7), 66.4k

2.1k, 0, 130.8 20, 0, 15843.4

278.6k, 0, 166.0 6.0k, 575, 425.5

parabolic fem poisson3Da

525.8k×525.8k 13.5k×13.5k

3.7M 352.8k

7 (0.2), 7 26.1 (13.8), 110

448, 0, 170.6 1, 0, 10793.0

76.4k, 0, 47.1 10.8k, 0, 31.7

rail4284 rajat31

4.3k×1.1M 4.7M×4.7M

11.3M 20.3M

2634 (4209.3), 56.2k 4.3 (1.1), 1.3k

68, 0, 3474.8 2.3k, 0, 120.3

236.3k, 0, 46.8 271.0k, 0, 74.0

Rucci1 sme3Dc

2.0M×109.9k 42.9k×42.9k

7.8M 3.1M

3.9 (0.3), 4 73.3 (37.0), 405

848, 0, 1049.1 6, 4, 10344.7

889.6k, 0, 7.8 103.4k, 0, 29.4

special webbase

7.0M×7.0M 1.0M×1.0M

52.3M 3.1M

7.5 (125.3), 6.3k 3.1 (25.3), 4.7k

183, 9, 4199.9 2.3k, 0, 65.5

806.4k, 0, 63.8 151.5k, 0, 19.5

Figure 7.1: Overview of matrices used in performance evaluation. For each matrix

key statistics for CSR and HiSparse format are provided. CSR statistics

include the mean, standard deviation and maximal number of non zeros

for the matrix rows. HiSparse statistics are separated between inner nodes

and leaves. For each node type, the total number of nodes and the average

number of entries within those nodes are provided. Next to the statistics

are pictures illustrating the sparsity layout of the matrices in form of a

heat map.
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means to directly multiply a matrix as transposed, the costs of com-

puting the transpose are included in the performance measurement

unless explicitly stated otherwise. The used hardware for performance

measurements consists of a i7-4790k 4x4.4 GHz CPU and a NVIDIA

GeForce GTX 1080 graphics card [28] (compute capability 6.1).

Our pretests have shown that HiSparse achieves the best results with

d = 128, Furthermore, the most stable performance over the matrix

set was achieved using mixed sparse nodes of types COO1, COO2

and COO4. Whereas COO1 is used for nodes with only a single non

zero entry, COO2 is used for nodes with two entries and COO4 is

used for nodes with three or more entries. Note, that nodes with a

high number of entries are still stored in a dense format. For more

information about those node types see Section 3.

Prior to performance measurements each operation was executed with

20 warm-up iterations. The performance measurement itself is the av-

erage time of execution measured over 100 iterations. The performance

in the evaluation is measured as the throughput in GFLOPS = nnz∗3
tms∗10−3 ,

where tms is the execution time in milliseconds. The factor 3 comes

from multiplication of the input vector with the non-zero, the multipli-

cation with the scaling factor and the addition to the output vector.

Figure 7.2a provides the performance comparison of Sparse Matrix

Dense Vector multiplication (y = A · x) with single precision for

non-transposed matrices. Figure 7.2b contains the performance of
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7 Evaluation

transposed matrices (y = AT · x). Each marker represents a library

as depicted in the legend. As can be seen, HiSparse is slower than

other libraries in the non-transpose case, with the exception of the

matrix special, which was specifically constructed to illustrate that

for certain sparsity types HiSparse delivers best results. In general,

bhSparse delivers best performance for non-transposed SpMV in our

tests. In contrast, HiSparse always achieves best performance with

transposed matrices. Table 7.1 provides the standard deviation and

average measured execution times in milliseconds over the matrix

test set. Since cuSparse and cusp show exceedingly bad performance

with matrices Fullchip and circuit5M (up to about 50× slower than

Hisparse), their averages are below HiSparse. This also shows that

HiSparse, compared to cuSparse and cusp, is more stable in execution,

since it is less depended on the sparsity layout of a matrix. In contrast,

the matrices Rucci and poisson3D show about 7× better performance

with cuSparse and cusp compared to HiSparse. Using transposed ma-

trices it can be seen that HiSparse is significantly faster (on average

about 7× faster than cuSparse). At worst, HiSparse still achieves 2×

faster performance than cuSparse, while at best, HiSparse is about

18.5× faster. Figure 7.2c, 7.2d show similar results for double precision

performance. Obviously, the overall performance for double precision

is lower, however, the relative performance between the libraries is

very similar.

Figure 7.3a provides the performance comparison of non-transposed
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Non-Transpose Transpose

Library mean std-dev mean std-dev

HiSparse 3.731 3.504 3.589 3.971

cuSparse 23.648 67.23 25.058 38.305

cusp 4.242 8.619 78.708 73.204

MKL 14.204 15.398 21.738 26.704

bhSparse 1.4012 2.012 - -

Table 7.1: Average and standard deviation of SpMV single precision performance of

each library over the selected matrices in milliseconds.

sparse matrix addition (B = A + A) using single precision. In contrast,

Figure 7.3b shows results for transposed sparse matrix addition (B =

A + AT). Transposed addition for cuSparse, cusp and MKL is done by

first converting the input matrix from CSR to CSC, since this is the

only or at least most efficient solution. This conversion consumes a

significant proportion of the execution time. In praxis, this step is only

necessary once for each matrix. Each following transposed addition

with the same transposed matrix no longer requires the conversion. As

a consequence, Figure 7.3c provides an unbiased comparison, where

conversion costs are neglected.

As the results show, HiSparse and cuSparse show alternating best
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7 Evaluation

performances for non-transposed matrices. The same applies to trans-

posed addition without conversion costs. In contrast, considering

CSR to CSC conversion costs for transposed addition leads to sig-

nificantly better results for HiSparse, since it does not require any

conversion for transposed addition. Furthermore, the results show

that cusp provides notably poor performance for sparse addition in

general. Table 7.2 provides average and median execution times of

each library over all matrices. Again, we consider transposed addi-

tion with and without conversion costs. As can be seen, HiSparse is

on average significantly faster than the compared libraries for non-

transposed as well as transposed addition. However, the median of

the measured HiSparse performances is similar to that of cuSparse.

This applies for non-transposed as well as transposed matrices, when

cuSparse conversions costs from CSR to CSC are not considered. That

cuSparse is on average significantly slower is a result of cuSparse

showing distinctly bad performance with the matrices Fullchip and

circiut5M, which was also the case for cuSparse SpMV. Consequently,

HiSparse is at worst 2× slower than cuSparse, at best it is 28.5× faster

for non-transposed matrices. For transposed matrices HiSparse is at

worst 6.4× slower, at best 8× faster than cuSparse without considering

cuSparse conversion costs. When the conversion costs are included,

HiSparse is at minimum 1.8× and up to 63.2× faster than cuSparse.

As already mentioned, cusp shows remarkably bad performance for

sparse addition, at best being 9.5× slower than HiSparse, at worst

up to 305× slower for non-transposed matrices. Figures 7.3d - 7.3f
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Non-Transpose
Transpose

full without conversion

Library mean std-dev mean std-dev mean std-dev

HiSparse 8.656 8.449 23.382 24.874 23.382 24.874

cuSparse 42.563 92.844 179.349 189.016 46.973 101.923

cusp 326.391 369.315 384.381 411.438 277.967 276.023

MKL 109.237 104.462 280.634 255.756 126.597 120.909

Table 7.2: Average and standard deviation of the single precision sparse matrix

addition performance of each library over the selected matrices in mil-

liseconds. Times are provided for non-transpose and transpose addition.

Furthermore, times for transposed addition without conversion costs are

provided. Since HiSparse does not require any conversion, times are equal

for transposed addition with or without conversion.

provide results for double precision. Despite the overall performance

being naturally slower, the relative performance between the libraries

is similar to single precision.
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(a) Non-Transposed SpMV (y = A · x) comparison using single precision.
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(b) Transposed SpMV (y = AT · x) comparison using single precision.
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(c) Non-Transposed SpMV (y = A · x) comparison using double precision.
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(d) Transposed SpMV (y = AT · x) comparison using double precision.

Figure 7.2: SpMV performance comparisons. Each marker corresponds to the library

indicated in the legend on top of the plot. The plot shows the achieved

performance in GFLOPS (higher is better). The performance does not

include conversion costs. Note, that since cusp does not provide direct

means to perform transposed multiplication, the performance includes

costs for explicitly transposing the matrix. Also, note that bhSparse does

not support transposed matrices.
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(a) Non-Transposed matrix addition (B = A + A) comparison using single

precision.
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(b) Transposed matrix addition (B = A + AT) comparison using single preci-

sion including conversion costs.
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(c) Transposed matrix addition (B = A + AT) comparison using single preci-

sion without conversion costs.
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(d) Non-Transposed matrix addition (B = A + A) comparison using double

precision.
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(e) Transposed matrix addition (B = A + AT) comparison using double

precision including conversion costs.
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(f) Transposed matrix addition (B = A + AT) comparison using double preci-

sion without conversion costs.

Figure 7.3: Matrix addition performance comparisons. For non-transposed matrices

the performance does not include conversion costs. Also, note that since

the matrix A is added to itself, the matrix structure is not changing.

We distinguish two cases for the performance comparison plots using

transposed matrices. For one, the performance includes conversions

between CSR and Compressed Sparse Column (CSC) for cuSparse, cusp

and MKL. For those libraries, the matrix is first converted to CSC and

subsequently added to the original matrix. For the second case, those

conversion costs are not included in the performance.44



8 Conclusion and future work

In this work, we introduced HiSparse, a hierarchical storage format

for sparse matrices on the GPU. We showed that using a hierarchical

matrix structure as a sparse matrix format is in praxis more storage

efficient than the common CSR and COO formats. Furthermore, we

were also able to show that using such a hierarchical sparse matrix

format is viable for efficient computation on the GPU when paired

with dynamic scheduling capabilities. We evaluated HiSparse by com-

paring our SpMV and sparse addition implementation to cuSparse,

cusp and MKL. Since our format does not prefer rows over columns,

similar performance results for non-transposed and transposed matrix

computations are achieved. Consequently, HiSparse SpMV provides

the fastest performance for transposed matrices, while not being sig-

nificantly slower for non-transposed matrices. We showed that our

format provides overall best performance for sparse addition of non-

transposed and transposed sparse matrices.

We believe that the strength of a hierarchical format becomes especially

45



8 Conclusion and future work

apparent when scaling to multi GPU and multi node cluster setups.

Also, when sequences of more complex operations are involved, the

hierarchical format can be more efficient, as sequences of operations on

nodes can potentially be grouped and different matrices can potentially

share sub trees. We do not think that a consistent back and forth

between a hierarchical format and a standard format, like CSR, during

an algorithm makes sense. Thus, we only see success of the hierarchical

format, if all necessary operations are provided. With our dynamic

scheduler, adding new operations is as simple as writing operations for

each node type and letting the scheduler take care of scheduling them

efficiently. We hope that this encourages the community to pick up our

format and extend it. In any case, in the near future, we will look into

more complex operations like Sparse Matrix Multiplication (C = A · B),

which can be realized very efficiently in a hierarchical format as the

collisions of non-zeros from both matrices can be determined easily.
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