
Patrick Klampfl, BSc

Soft-Error-Analysis
Evaluating the Quality of Protection Logic

Master’s Thesis

to achieve the university degree of
Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to
Graz University of Technology

Supervisor
Univ.-Prof. Roderick Bloem, PhD

Institute for Applied Information Processing and Communications

Advisors:
Ayrat Khalimov, MSc, Dr. Robert Könighofer

Graz, December 2016

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Graz,

Date Signature

ii

Abstract

With shrinking component sizes and an increasing density, hardware did
not just become more powerful. As a side effect, it suffers from an increasing
susceptibility to faults caused by cosmic radiation and alpha particles.

Today’s critical systems rely on error-detecting or error-correcting codes.
Verifying them by hand is a time-consuming and error-prone task, which is
why we propose new methods that can be applied automatically.

First, methods to detect bugs in a protection logic are presented. They can
be used to either find unprotected components or to test if a protection logic
reports errors too often. This is achievable by thorough formal methods,
by a fast but inaccurate simulation-based technique, or by a semi-formal
approach that provides more flexibility.

Afterwards, an approach to verify definitely protected components is shown.
It formally proves components that are resilient in each situation by over-
approximating the reachable state-space.

Our approaches do not assume any particular structure of the circuits and
can be applied early in the design process. The experimental results show
that our semi-formal approach already outperforms simulation if just a few
input values are set open.

iii

Acknowledgments

I am indebted to a lot of people for supporting me for this thesis. First, I
am grateful to my advisor Robert Könighofer. I could learn a lot from him
while working on my Bachelor’s thesis and in later projects. He laid the
foundations for this thesis, for which I am very thankful.

My sincere thanks also goes to my advisor Ayrat Khalimov, who gave lots
of valuable advice throughout the creation of this thesis. I would like to
thank him for countless hours of discussions, a lot of patience and extensive
helpful feedback.

Furthermore, I am grateful to Roderick Bloem for providing ample food
for thought and for reviewing this thesis. I would also like to thank Georg
Hofferek for his great lecture Logic and Computability that aroused my interest
in formal methods, and Shiri Moran for taking the time to explain how
protection logic is implemented in practice.

I owe special thanks to my colleagues and friends at TU Graz for all the
fruitful discussions and enjoyable hours during the last five years and to
my family for making my education possible.

Moreover, I want to express my appreciation and love for Judith. Thank you
for always being there for me.

Finally, I want to thank all the people who guided and accompanied me
along the way.

iv

Contents

Abstract iii

1. Introduction 1
1.1. Overview . 1

1.2. Our Approaches . 2

1.3. Thesis Outline . 6

2. Preliminaries 7
2.1. Basic Notation . 7

2.2. Soft-Errors, Protection-Logic, Vulnerabilities and False-Positives 8

2.3. Satisfiability . 10

2.4. Bounded Model Checking . 10

2.5. Tseitin Transformation . 11

2.6. And Inverter Graphs (AIGs) . 12

2.7. Binary Decision Diagrams (BDDs) 13

2.8. Test Cases . 14

2.9. Concrete Simulation . 15

2.10. Transition Relation Unrolling 16

3. Detecting vulnerable Latches 18
3.1. Bounded Model-Checking Approach 19

3.2. Simulation Based Analysis . 20

3.3. Semi-Formal Approach . 23

3.3.1. Point in Time Symbolic 23

3.3.2. Point in Time And Location Symbolic 26

4. Detecting False Positives 29
4.1. False Positives - Point in Time Symbolic 30

4.2. False Positives - Point in Time And Location Symbolic 34

v

Contents

5. Detecting Definitely Protected Latches 36
5.1. Testing latches individually for 1-step protection 37

5.2. Testing multiple latches simultaneously for 1-step protection 39

5.3. Testing latches individually for k-step protection 40

5.4. Testing multiple latches simultaneously for k-step protection 42

6. Algorithm Extensions 44
6.1. Free Inputs Modes . 44

6.1.1. Free Inputs Modes for Simulation-based Algorithm . . 44

6.1.2. Free Inputs Modes for semi-formal Algorithms 45

6.2. Environment Models . 46

6.2.1. Environment Models for Simulation-based Algorithm 47

6.2.2. Environment Models for SAT- and BDD-based Algo-
rithms . 48

6.3. Combining the different Algorithm types 49

7. Implementation 50
7.1. Format specifications . 50

7.2. Algorithms and Modes . 51

7.2.1. Modes for Vulnerabilities 52

7.2.2. Modes for False Positives 52

7.2.3. Modes for Definitely Protected Latches 53

7.2.4. Available Engines . 53

7.3. AlarmToMC - detecting vulnerable latches via bounded model-
checking . 54

7.4. AddParityTool - adding a simple parity-net to circuits 54

8. Experimental Results 55
8.1. Benchmarks and Benchmarking Environment 55

8.2. Performance Evaluation for the Detection of Vulnerable Latches 59

8.2.1. Results with concrete Inputs only 59

8.2.2. Amount of Unspecified Input Values 60

8.2.3. Comparison with Model Checking 62

8.2.4. Length of the Test Cases 63

8.3. Performance Evaluation for the Detection of False Positives . 64

8.4. Performance Evaluation for the Detection of Definitely Pro-
tected Latches . 65

vi

Contents

9. Related Work 68

10.Conclusions 70

Appendix 73
A. OpenSEA vulnerable latches example 74

B. OpenSEA false positives example 75

C. OpenSEA definitely protected latches example 76

D. Benchmark Properties and raw Results 77

Bibliography 79

vii

List of Figures

2.1. Simple parity sums for detecting soft errors 9

2.2. Example of a simple BDD . 13

2.3. A transition relation unrolled for n time steps 17

3.1. A vulnerable latch over time 18

3.2. Abstract schema of the model-checking approach. 20

4.1. A false positive over time . 29

5.1. A definitely protected latch must always fulfill one of these
two properties . 36

6.1. An environment model defining relevance of outputs and
optionally also allowed input combinations 47

7.1. The input circuit including the special alarm output 50

7.2. Resulting circuit of AddParityTool 54

8.1. add benchmarks. The number of inputs and the number of
layers is parametrized. 57

8.2. add TMR benchmarks. The number of inputs and the number
of layers is parametrized. 59

8.3. Execution times to detect vulnerable components. 3 concrete
test cases, 15 time steps. 60

8.4. Amount of free input values . 61

8.5. Comparison with Model Checking 63

8.6. STLA 0 and SIM 0 execution times for different test case lengths 64

8.7. Execution times to detect false positives 65

8.8. Execution times to detect definitely protected components. . . 67

viii

1. Introduction

1.1. Overview

It was already in 1965 when Gordon Moore described the exponential
growth of components per chip [1]. His observation that the number of
transistors per integrated circuit doubles within a constant time span became
a self-fulfilling prophecy. The term Moore’s law has been coined, a so-called
law that kept being valid over the last five decades.

The exponential growth of components did not only increase the perfor-
mance of hardware, it also led to an increasing chip density. As a side
effect, hardware became more and more susceptible to cosmic radiation
and alpha-particles [2, 3, 4]. Such external influences can lead to bit flips
(the change of internal value in a component) that in turn can temporarily
cause a miscalculation [5]. These errors are known as soft errors because of a
transient malfunction of the hardware, meaning that the hardware is not
harmed permanently.

However, erroneous calculations can be troublesome in the best case, but
they can also lead to financial loss or even life-threatening situations in
the worst case. There exist counter-measures that aim at reliability to avoid
such situations [6, 7, 8, 9]. One solution is to detect bit flips [10] via parity
computations and fall back to a previously stored (correct) state. Another is
to use error correcting codes (ECCs) to eliminate induced bit flips in the first
place [11]. A very common example is triple modular redundancy (TMR), in
which three copies of a module perform the same computation. The result is
chosen by a majority-voter. Such systems work well but can be prohibitively
expensive (e.g. more than 200% overhead of power consumption and area
for TMR).

1

1. Introduction

Obviously there is a need for both reliable and affordable solutions. Provid-
ing multiple redundancies of all parts fulfills the requirement of reliability,
but it is costly. According to existing research, it is also unnecessary since
big parts of most hardware are already protected against soft errors intrinsi-
cally [12]. Therefore, additional protection of these parts would be wasteful.
Unfortunately it is not always obvious which parts are already protected.

Not every bit flip will lead to an error that is visible to the user [13], for
example when the value of the flipped component is masked out (e.g.,
when the other input of an and-gate is set to false anyway) or when the
internal state of the system is repaired again later by redundant components.
Reporting such bit flips in order to reset the system to a previous state
unnecessarily reduces the performance of the system.

On the other hand, an omission of protection logic in critical parts leaves the
system vulnerable to soft errors that can compromise functionality. Finding
such parts manually can be a cumbersome task as well.

1.2. Our Approaches

In this thesis, we present novel algorithms that address the previously
mentioned challenge of developing optimal protection logic. In essence, we
provide three different types of algorithms for analyzing sequential circuits
consisting of and-gates and latches. Protection logic denotes a special part
of these circuits dedicated to either correct errors or just detect errors and
raise a special alarm output. The provided algorithms can be useful to find
errors in the protection logic or to verify the robustness of a system.

We say that a component (latch or gate) is protected if there exists no execu-
tion of the circuit for which a (single) fault in that component can escape,
meaning that no primary outputs of the circuit are corrupted without raising
an alarm. Otherwise, if a fault in that component can escape and produce
wrong output values, we call it vulnerable. A gratuitously raised alarm is
called false positive.

The first provided set of algorithms is able to report components that are
vulnerable to soft errors, meaning that the functionality of the system is

2

1. Introduction

compromised by flipping those. That is the case when the bit flip eventually
manages to propagate to an output of the system. We said that this is not
allowed unless a special alarm output is set to true. With these algorithms, it
is possible to detect components that are not sufficiently protected. Note that
not all of the provided algorithms are complete since it is not guaranteed
that all vulnerable components are detected.

In addition to that, we provide algorithms that detect if bit flips that do not
have any effect on the functionality of the system are reported unnecessarily.
Such false positives occur when the alarm is raised even though the fault
would never become visible to the user, for instance when it gets masked out.
False positives can decrease the system’s performance due to an unnecessary
recovery to a previous state.

The third set of algorithms can be used to detect definitely protected com-
ponents. With these, it is possible to verify the robustness of an added
protection logic. This is done by proving that outputs of the system are
always correct if no alarm is raised, no matter when a component is flipped.
This is especially useful if it is combined with an incomplete algorithm for
vulnerable components. If these algorithms detect a vulnerable component,
then it is certainly not protected. But even if it is not reported by an in-
complete algorithm, it could still be vulnerable. In this case, checking for
protected components can provide more confidence.

The basic idea of all of our approaches in all of the three mentioned sets
of algorithms is to compare a fault-free system with a modified copy in
which we model faults. We are working under a single-fault assumption
saying that at most one component is flipped at most once in an entire
execution. Existing research shows that this is reasonably accurate [14]. For
our implementations we only considered latches as components that could
be hit by a fault, since a fault in a gate typically propagates to a latch, but
our algorithms can be easily applied to gates as well. Categorization of
components into vulnerable or definitely protected and the detection of false
positives can be achieved with several methods: simulation, formal methods
or semi-formal methods.

The formal methods are based on or similar to bounded model checking, mean-
ing that the system’s behavior is analyzed by considering all possible input

3

1. Introduction

traces up to a specified time-bound. This makes the formal methods com-
plete approaches, since it es ensured that certain properties within specified
bounds hold. These formal methods may start from an initial state, from all
states, or from an over-approximation of the reachable state-space. Unfortu-
nately, completeness often comes at the price of scalability.

Simulation, as opposed to formal methods, always starts with the initial
state and uses input values from test cases. A test case provides concrete
values for each primary input at each point in time up to a time bound,
which is denoted as the length of the test case. This reduced input space
can be processed a lot faster, but it is not complete anymore because it
only covers a fraction of the possible executions. Hence, the number of de-
tected components depends on the provided test cases. To make simulation
complete it would be necessary to simulate all possible test cases, which is
computationally infeasible for larger circuits, as our experiments show.

The Semi-formal methods lie in between of simulation and formal methods.
They start from an initial state and symbolically encode a fault-model. They
also work with test cases, but this time they do not necessarily have to
contain only concrete input values. Instead, input values can also be left
open, meaning that they represent both 0 and 1. A complete analysis is
achieved by leaving all input values open, more open input values yield
into more detected components, whereas an acceleration is achieved by
using more concrete input values. This makes the semi-formal methods very
flexible.

We use simulation to find vulnerable components by comparing a fault-free
simulation (using concrete input values from a test case) with each possible
faulty simulation. All combinations of the component to flip and the point
in time to flip said component have to be simulated.

In contrast to that, test cases are not necessary for our formal model checking
based approach. Here, we build a special circuit which contains the original
circuit and a modified copy. Each component in the modified copy can be
flipped by supplementary inputs. This special circuit has only one output,
which is only true if the outputs in the modified copy can be set differently
by flipping a latch without raising the alarm. A model checker can detect
whether that single output of the circuit can be set to true within a specified
time bound. In such a case, the circuit contains vulnerable components.

4

1. Introduction

In the semi-formal algorithms, we encode the fault-free and the faulty
system symbolically as a formula. It is only satisfiable if certain constraints
hold. This can either be checked using SAT solvers, or with binary decision
diagrams (BDDs). We present algorithms that use test cases to symbolically
encode the operation of a fault-free and a faulty system in order to find
vulnerable components or false positives. The input values in a test case can
be concrete or left open to provide more flexibility.

For formally verifying that components are definitely protected, we also encode
the operation of a system symbolically. No test case is necessary because all
input values have to be open. The symbolically encoded operation does not
start from the initial state alone. Instead, an over-approximation of the set of
reachable states is used as a starting point. This can for example be achieved
by only considering the initial state and successor states of all (potentially
unreachable) states, or by unfolding for even more time steps. No matter in
which of these states a component is flipped, it is required that no output
can be corrupted without raising the alarm. We check if the internal state
always recovers from a flip if no alarm is raised. In some cases, a simple
over-approximation of reachable states might be too conservative because
it still contains too many unreachable states, resulting in fewer detected
definitely protected components. This can be circumvented by making
the over-approximation more precise, at the cost of extra computational
power.

The proposed algorithms can guide hardware developers by allowing them
to verify their systems or by helping them to find bugs at an early stage of
the development process, where the protection logic can still be repaired
without much effort if necessary. Our reference implementation OpenSEA
covers all of them and has been used to perform benchmarks. Both the
source code and raw benchmark results are publicly available online1.

1https://github.com/p4p4/softerror-tools

5

https://github.com/p4p4/soft error-tools

1. Introduction

1.3. Thesis Outline

This thesis is structured as follows:

In Chapter 1, we give an overview explaining the problems related to soft
errors and briefly outline how our approach can cope with them.

In Chapter 2, we describe the notation used throughout the thesis, basic
terms and concepts in the field of soft errors and theoretical foundations
that are necessary to understand the following chapters.

In Chapter 3, we propose techniques that can be used to find vulnerable
components, which are not protected against soft errors and therefore can
lead to an erroneous behavior of a system.

In Chapter 4, we discuss that not every bit flip may result in a faulty
behavior of the system. We present algorithms that detect unnecessarily
reported bit flips. Such false positives are undesirable because they reduce
the system’s performance.

In Chapter 5, we present a method to prove the resilience of components
against soft errors.

In Chapter 6, we introduce extensions to the algorithms from the previous
three chapters. Specifically, we show a way how it is possible to leave
input values open instead of using test cases and how to use environment
models to specify realistic use-cases. Additionally, we suggest how the three
algorithm types can be combined.

In Chapter 7, we give insights to our reference implementation OpenSEA,
dive into the different options and modes of the algorithms and discuss the
used libraries and engines.

In Chapter 8, we discuss the performance of our algorithms by comparing
benchmark results of our reference implementation.

In Chapter 9, we outline other approaches and compare them to our solu-
tion.

In Chapter 10, we sum up important results and conclude this thesis.

6

2. Preliminaries

In this chapter, we explain the fundamental backgrounds of our work. It
talks about basic notation and data structures (and-inverter-graphs, BDDs)
that are used throughout the following chapters. It also contains information
about the terminology that we use over and over again in explanations. Here,
we define the terms vulnerable, false positive and definitely protected in the
context of soft error analysis. We also give examples of counter-measures
against soft errors, which we call protection logic. Additionally, the concept of
satisfiability and model checking are briefly explained. We also specify the
structure of test cases, which are used as input for most of our algorithms.
Finally, the concepts of concrete simulation and transition relations are
explained, both of them are crucial to understand the algorithms presented
in this thesis.

2.1. Basic Notation

A literal is either a propositional variable or its negation. It can be either
true (>, 1) or false (⊥, 0). A disjunction of literals is called clause. If a
propositional formula only consists of a conjunction of clauses it is in
Conjunctive Normal Form (CNF). A conjunction of literals is called cube.
If a propositional formula only consists of a disjunction of cubes it is in
Disjunctive Normal Form (DNF). Sets of variables are written with an overline,
e.g. x = {x0, x1, . . . , xn}. Vectors of concrete values (containing only 0 and 1)
are written in bold,e.g. x. Sequential logic denotes boolean circuits in which
the output o depends not only on input values i but also on an internal
state x. In the initial state, they have pre-definded values. The next state x′

is computed using i and the current state x

7

2. Preliminaries

2.2. Soft-Errors, Protection-Logic, Vulnerabilities
and False-Positives

A fault is a flipped component (latch or gate) in a digital circuit, meaning
that the truth value of the output of the affected component is inverted.
Such faults are typically caused by external influences like radioactive decay
and occur infrequently in just one or few components at the same time. If
such a fault is visible to the user, i.e., if primary outputs of the circuit change,
it is called a soft error. Soft, because the transient error does not harm the
hardware permanently [15].

Protection logic denotes a special part of a circuit with components dedicated
to either detect or correct faults in order to prevent a soft error. We specify
that this hardware-extension introduces a special output, the alarm output.
Whenever a fault that leads to an erroneous behavior is detected, the alarm
output is raised. The alarm should not be raised if the fault is masked
out. The alarm signal can be used to only notify the user that the system
might behave unexpectedly. It can also be used to reset the system, initiate
some kind of software-recovery, or to trigger other (potentially expensive)
actions.

There are several ways to add an error detection containing the special
alarm-output to an existing circuit. A common solution is to compute parity
sums of latches and introduce redundancy in the form of additional latches:
Whenever the parity sums of the latch inputs from the previous time step
and the parity sum from the latch outputs of the current time step are
different (XOR), the alarm signal is raised.

Figure 2.1 shows an example of how parity-computation can be used to
detect faults. An additional latch Le1 is added to protect the latches L1 to Ln.
If one latch (or an odd number of latches) is flipped, the alarm output is set
to true. This example detects all possible single-faults, even those that may
not be visible to the user.

An ideal protection-logic fulfills the following points. First, the alarm output
should be raised when a fault happened that causes wrong output values.
Second, the alarm output should never be raised gratuitously, meaning that
the flipped component has no effect on the output values. And third, the

8

2. Preliminaries

Figure 2.1.: The computation of parity sums is a very common method to detect soft errors.

protection logic should be as small as possible, since additional components
cost power and area.

Since faults only happen rarely and in a small number of components, we
are working under a single-fault assumption. At most one component is
flipped at most once in an entire execution. Existing research shows that
this is reasonably accurate [14].

We say that a component is protected if there exists no execution of the circuit
in which any single fault in that component becomes visible to the user
without raising an alarm. An alarm has to be raised at the latest when an
output is corrupted. Otherwise, if a fault in that component can escape and
produce wrong output values without an alarm, we call the component
vulnerable.

A gratuitously raised alarm is called false positive. We do not want to raise
the alarm too often because recovering to a previously stored correct state
typically reduces the circuit’s performance because of re-computations. An
alarm is raised gratuitously if it is guaranteed that the current and all future
output values are not affected by an induced fault.

9

2. Preliminaries

2.3. Satisfiability

SAT solvers are a very powerful tool to check satisfiability for propositional
formulas. A lot of the algorithms presented in this thesis utilize SAT solvers
to analyze the quality of protection logic.

A SAT solver call is denoted by

sat := PropSat(F(x)),

where F(x) is a propositional formula in CNF. The variable sat is assigned
to true if F(x) is satisfiable, and false otherwise.

If we are also interested in a satisfying assignment, then we write

(sat, x, y, . . .) := PropSatModel

(
F(x, y, . . .)

)
As in the previous call, sat is assigned to true if the formula F over the
variables x, y, . . . is satisfiable. In such a case, x, y, . . . are satisfying assign-
ments for the variables x, y, . . ., respectively. If F is unsatisfiable, then sat
is assigned to false and the variables x, y, . . . are meaningless. Let x be a
cube (a conjunction of literals) over the variables x. Given that x ∧ F(x, y) is
unsatisfiable, we will write

x′ := PropUnsatCore(x, F(x, y))

to denote the extraction of an unsatisfiable core x′ ⊆ x such that x′ ∧ F(x, y)
is still unsatisfiable.

Very often several similar SAT solver calls are necessary to solve the prob-
lems discussed in this thesis. In that case, incremental SAT-solving is very
suitable: Instead of having multiple individual SAT solver calls it is possible
to add additional constraints after a satisfiable SAT solver call for the next
SAT solver call.

2.4. Bounded Model Checking

Model checking in general exhaustively checks a system against a provided
specification [16]. An unbounded model checker is complete, i.e., it considers

10

2. Preliminaries

the entire state space of the system: A certificate of correctness is issued
if the system provably satisfies a specification at any time. It suffices to
find just one counter-examle to know that a system does not satisfy its
specification. In such a case, the model checking algorithm can already be
stopped without checking the remaining states.

Bounded model checkers are a special incomplete variant that is typically used
to find counter-examples [17, 18]. The type of bounded model checkers we
are using to find vulnerable components (Section 3.1) use a special circuit as
input. Such a circuit can have multiple inputs, but only one output, namely
the bad-signal.

This model checker can prove whether it is possible to set the bad-signal to
true or not within a specified time bound. This is faster than using unbounded
model checkers, however, it can still be prohibitively expensive in terms of
execution time.

Bounded model checkers do not prove that the system satisfies a model
completely. Instead, they only check all input combinations up to a specified
number of time steps (the upper bound) in order to set the bad-signal to
true. This can be faster than an unbounded proof and might be sufficient
for certain use-cases.

2.5. Tseitin Transformation

Most SAT solvers only work with formulas in conjunctive normal form
(CNF). Converting a boolean formula to CNF using DeMorgan’s law and
distributive law may lead to an exponential growth of the transformed
formula. Since we use CNFs mainly for satisfiability checks, equisatisfiable
formulas are sufficient for these purposes.

Equisatisfiable means that the transformed formula is satisfiable if and only if
the original formula is satisfiable. The Tseitin transformation uses auxiliary
variables to generate an equisatisfiable formula with a linear increase of the
formula size.

11

2. Preliminaries

The idea is to introduce a new variable, in this case called r, for every
sub-formula. [19] Rewrite rules for ∧ and ∨ look as follows.
r ↔ p ∧ q can be rewritten to (¬r ∨ p) ∧ (¬r ∨ q) ∧ (¬p ∨ ¬q ∨ r).
r ↔ p ∨ q can be rewritten to (¬p ∨ r) ∧ (¬q ∨ r) ∧ (¬r ∨ p ∨ q).

2.6. And Inverter Graphs (AIGs)

And Inverter Graphs (AIGs) [20] can be used as a compact representation of
combinatorial circuits. AIGs are directed acyclic graphs with primary inputs,
constants, nodes that have two inputs and inverters that can be applied to
edges. These nodes represent and-gates that can be negated at inputs and
outputs. With that it is possible to encode any boolean formula and thus
any combinatorial circuit.

The AIGER1 file-format specifies a way to encode an and-inverter-graph in
an ASCII- or in a binary file-representation. A C-library that can be used
to access such files is also available. The library also supports D-flip-flops,
which are memory elements that store 1-bit. D-flip-flops (short for Delay-
flip-flops) have a data-input, a clock-input and a data-output. The clock-signal
alternates from high to low and form low to high within one time-cycle.
After each (either positive or negative) edge on the clock-signal, the data-
input value is copied to the data-output, or in other words: the output-signal
equals the input value of the previous time step. AIGER is very well known
in the hardware community (e.g. used for the hardware-model-checking-
competition, synthesis competitions, etc). Tools like ABC can read and write
AIGER files or convert other common formats like Verilog to AIGER.

Our algorithms assume that the circuits to check are represented as AIGs.
Our reference implementation uses the AIGER library.

1http://fmv.jku.at/aiger/FORMAT.aiger

12

http://fmv.jku.at/aiger/FORMAT.aiger

2. Preliminaries

2.7. Binary Decision Diagrams (BDDs)

There are many different ways to represent boolean functions. SAT solvers
typically use CNF-Formulas. Reduced ordered BDDs (ROBDDS or short
BDDs) [21, 22] are a compact canonical representation of boolean formulas.
Canonical means that two equivalent boolean formulas result in the same
BDD if the same variable ordering is used. Figure 2.2 shows a BDD with
the variable ordering x1 < x2 < x3.

BDDs are Directed Acyclic Graphs (DAG) that consist of a root node, nodes
for variables and terminal nodes (0 and 1). The root node defines a starting
point that points to the first variable-node. Each variable-node has a then
and an else edge, pointing either to another variable-node or to one of the
terminal nodes, which represent the truth-constants.

In order to find the truth value of a valuation, one has to start at the root node
and follow the edges of the variable nodes. If a variable is set to true, the then
edge is followed, otherwise the else edge is followed. Eventually, a terminal
node is reached, which determines the truth value of the function.

0 1

1 0

1

0

0 1

x1

x2 x2

x3

1 0

Figure 2.2.: Example of a simple BDD for the formula ¬x1 ∧ x2 ∧ x3 ∨ x2 ∧ ¬x3

13

2. Preliminaries

The size of a BDD highly depends on the ordering of variables. Although the
size can be exponential (regarding the number of variables), a good variable
order can reduce the size significantly for a lot of functions. Most of the
available libraries include several different algorithms for dynamic variable
reordering. However, finding a good variable order can be a computationally
hard task.

Satisfiability- and equivalence checks can be done in constant time, opera-
tions like conjunction or disjunction can be done in polynomial time.

2.8. Test Cases

Some of our presented algorithms use test cases which provide input values
to analyze a circuit. Test cases are vectors of input vectors. An input vector
defines the (usually concrete) input values of the circuit for one time step.
Test cases can be represented as simple ASCII files: Each line represents one
input vector. The number of input vectors, which we also call the length of a
test case, can be arbitrary. The width of an input vectors has to match the
number of inputs. The ordering of the inputs is from left to right.

This is an example test case for a two-inputs-circuit with a length of 3 time
steps:

1 0

1 1

0 0

The previous test case consisted solely of concrete input values. Some
algorithms also allow the verification engineer to leave parts of the test
case undefined by writing a question mark instead of a concrete value. In
such a way, the algorithms test all possible combinations of unspecified
input-values. Here is an example:

1 0

? 1

? ?

14

2. Preliminaries

The input values for the initial time step are fixed in that example. The next
time step (? 1) can be both (0 1) or (1 1). Finally, the last time step can be
set to all four possible 2-bit-combinations. As a result, the above test case
with 3 open input values represents all possible combinations of concrete
vaues, i.e., it represents 23 = 8 different concrete test cases instead of just
one execution of the system.

2.9. Concrete Simulation

The functionality of logical circuits in AIG representation (Section 2.6) can
be simulated in software. Concrete values (0 or 1) for inputs i (e.g. from a
test case, 2.7) and the current state x result in concrete values of the outputs
o (and an alarm output a) and next state x′. The current state x is simply a
vector that stores a concrete value for all flip-flops or latches in the circuit,
the next state x′ represents the input-values of these memory-elements. The
following function call denotes a concrete simulate of a circuit for one time
step:

(x′, o, a) := sim(x, i)

To simulate a circuit using a concrete test case, it is necessary to start with
an initial state (typically all latch values x set to 0).

With the concrete input-values (from a test case) and the concrete state-
values (starting with the initial-state), the output- and next-state values can
be computed by iteratively computing the results for each AND gate. The
output-value of an AND gate is true if and only if both input-values are
true.

Before computing outputs o and next state x′ for another time step, one has
to copy the values from the next-state x′ to the current-state x and replace
the values for the inputs i with the ones from the test case.

15

2. Preliminaries

2.10. Transition Relation Unrolling

A circuit can be represented as a transition relation formula T(x, i, o, x′)
defining allowed state transitions. The outputs o and the next state x′ are
a function of the current state x and the (current) inputs i. The relation-
formula is only true for valid combinations of input-, output-, current-state-
and next-state-values. The execution of a circuit over multiple time steps
is encoded by unrolling the transition relation, i.e., conjuncting additional
instances of the transition relation that use the next state literals of the
previous relation as state.

A transition relation can be generated in CNF using Tseitin transforma-
tion. Recall from 2.5 that Tseitin transformation adds auxiliary variables t
for intermediate results like AND outputs. The transition relation can be
computed iteratively by encoding each AND gate. Suppose the following
AND gate: lhs = rhs0 ∧ rhs1. The output lhs ∈ t is defined by the two
inputs rhs0 and rhs1. The two inputs can either be an input-literal of the
circuit i ∈ i, a current state literal x ∈ x, or the output literal of another
AND-gate t ∈ t. The AND-gate can be represented by the three clauses
(¬lhs ∨ rhs0) ∧ (¬lhs ∨ rhs1) ∧ (¬rhs0 ∨ ¬rhs1 ∨ lhs) Doing this for each
AND-gate gives us an equisatisfiable transition relation T(x, i, o, x′, t) which
also contains auxiliary variables t introduced by intermediate AND-gates.

To unroll the transition relation for another time step, the current state x
has to be replaced by the next state x′. Additionally, fresh input variables
have to be used. An unrolled transition relation for two time steps looks as
follows: T(x, i, o, x′, t) ∧ T(x′, i2, o2, x′′, t2). For n time steps: T(x, i, o, x′, t) ∧
T(x′, i2, o2, x′′, t2) ∧ ...∧ T(x(n)′, in, on, x(n+1)′, tn).

For reasons of readability we may omit Tseitin variables t from formulas
whenever they are not a subject to discussion.

Most of our algorithms use these transition relations in CNF-representation
together with a SAT solver, some of them use a similar idea based on BDDs
instead. Since BDDs do not have to be in a CNF representation they do
not contain any Tseitin variables t. In the algorithms in Section 3.3 we also
use modified transition relations Terr(x, i, f , c, o, a, x′) or Terr(x, i, f , c, o, a, x′).
The first one contains an additional signal f that flips a specific predefined

16

2. Preliminaries

Figure 2.3.: A transition relation unrolled for n time steps

component (at the time step that is represented by the transition relation).
The second one also has additional signals c that are used to choose which
component should be flipped.

17

3. Detecting vulnerable Latches

Recall from Section 2.2 that a component is vulnerable if a fault in that
component can compromise the functionality of the circuit without being
detected.

More precisely, a latch is vulnerable if a bit flip in it can change outputs of
the circuit without raising the special alarm-output. As opposed to this, a
latch is not considered to be vulnerable if potential faults do not have an
effect on primary outputs, for example when the internal state is repaired
by error correcting codes. In addition to that, latches are also protected if
the alarm is set to true before or at the latest when an output is corrupted.

Figure 3.1.: A vulnerable latch over time

This chapter presents multiple algorithms that detect vulnerable latches.

First, we describe how model-checkers can be utilized to test if a circuit
contains any vulnerable latches at all. Then, we present a way to find
vulnerable latches by simulating a circuit with injected faults. After that,
our symbolic algorithms based on SAT-solving or BDDs are explained. The
first one (STA) symbolically encodes when to flip a certain latch in order
to find a fault that becomes visible to the user. The second one (STLA) also
encodes which latch has to be flipped when symbolically in order to produce
soft-error escapes. Vulnerabilities are found if such a formula is satisfiable
by setting the inputs to flip latches accordingly.

18

3. Detecting vulnerable Latches

3.1. Bounded Model-Checking Approach

In this section, we explain how model-checkers (Section 2.4) can be used to
test if a circuit contains vulnerable latches. This is achieved by converting
a circuit with protection logic to a model-checking problem with a single
bad-state. A model checker takes such a circuit with exactly one output (the
bad-signal) and tries to find an input sequence that sets it to true.

For this purpose, we create two copies of the original circuit to build a
sequential equivalence problem, as illustrated in Figure 3.2. Both of these
copies use the same input values.

The first copy is untouched, whereas the second copy is modified in such
a way that bit flips can be introduced. This is done by adding additional
inputs which allow the model-checker to flip a certain latch at a certain
point in time.

We ensure that a flip can be introduced only once to fulfill the single fault
assumption. This is done by ignoring further flip-requests when there has
already been a flip.

The output values of both circuit-copies are compared. To detect a vulnerable
latch, at least one of the outputs must be different and that the alarm output
of the modified copy has not been set to true before. A flipped latch is
considered to be protected if the alarm output has been set to true before or
when the outputs changed. The bad-signal can only be set to true if a latch
can be flipped and outputs can be corrupted without raising the alarm.

Each input value for each time step (up to a specified time step bound)
is a free input value, which can be set arbitrarily by the model-checker.
Additionally, the model checker can choose when to flip which latch with
the added special inputs. As a consequence, model checking is the most
accurate, but also the computationally most expensive way to approach a
soft error-analysis for vulnerable latches.

19

3. Detecting vulnerable Latches

Figure 3.2.: Abstract schema of the model-checking approach.

3.2. Simulation Based Analysis

In the previous section we mentioned that model-checking is a very accurate
method to search for vulnerable latches because all possible input combi-
nations are examined. However, the huge input space may lead to a bad
scalability, which is why simulation or emulation [23, 24] are widely used.
In this section we present our simulation based algorithm, which analyzes
the circuit using test cases (Section 2.8), which define the input values for the
circuit. The underlying idea is that selecting a small set of test cases with a
practical orientation may already suffice to find most vulnerable latches.

Simulating a boolean circuit with input-values from a test case is an easy task
(Section 2.9). Our simulation-based algorithm to detect vulnerable latches
compares output values from a correct simulation with output values from a
fault simulation, in which a bit flip has been injected. The algorithm contains
lots of nested loops because each latch of the circuit can be flipped at each
time step of the test case. This results in numerous fault simulations.

A fault simulation starts at the point in time where the bit flip is injected.
It starts with the same state as the fault-free simulation, except of the one
latch that is flipped, and it uses the same input values as the fault-free
simulation. The fault simulation has three stopping criteria. If the alarm
is raised, the faulty-simulation can be stopped since a latch can only be

20

3. Detecting vulnerable Latches

vulnerable if no alarm is raised. The simulation can also be aborted if the
output values of the faulty and the fault-free simulation are different. In
this case a vulnerable latch is detected (because the first stopping criterion,
a raised alarm signal, did not hold). Finally, a fault simulation can also be
stopped when the state of both simulation instances is the same again. That
happens when the internal error produced by the bit flip vanishes (and did
not corrupt any outputs before, e.g. due to error correcting codes). Both
instances have the exact same internal state and thus the same output-values
from that point on until the end of the test case. Omitting these useless
comparisons is just a performance optimization of the algorithm.

In the beginning (Lines 2-5) of Algorithm 1, the circuit is simulated once
starting from the initial state x1 using the input values from the provided test
case t. Here, no latch is flipped at all. The resulting state- and output-values
are stored for later comparisons with fault simulations.

Then, all possible fault simulations are executed: The algorithm flips latches
and searches for situations in which outputs are set differently to the correct
simulation without an alarm being raised. Each latch is flipped at each point
in time. It is vulnerable if the output is different in any of the future time
steps without raising an alarm before (Lines 13 - 22). That is the case if
the first stopping criterion (alarm raised) did not hold, but the second one
(outputs different) did.

As already stated, the third stopping criterion (Line 23) is an optimization
to speed up the algorithm, since it does not make any sense to compare
outputs in future states if both simulations have the exact same internal
state.

21

3. Detecting vulnerable Latches

Algorithm 1 SIM
1: procedure AnalyzeSim(test case t)
2: x1 := init . run correct simulation once:
3: for i = 1 to len(t) do
4: (xi+1, oi, ai) := sim(xi, t[i])
5: end for
6: for each latch C do . simulate each single flip:
7: is vulnerable := false
8: for i = 1 to len(t) do . time to flip
9: if is vulnerable then

10: break
11: end if
12: xe := {xi1, . . . ,¬xiC, . . . , xin} . flip latch
13: for all j ≥ i do . time steps after flip
14: (xi+1,e, oe, ae) := sim(xi,e, t[j])
15: if ae then . ok, detected
16: break
17: end if
18: if o 6= oe then . error escaped
19: vulnerable latches.add(C)
20: is vulnerable := true
21: break
22: end if
23: if xi+1 = xi+1,e then . ok, corrected
24: break
25: end if
26: end for
27: end for
28: end for
29: end procedure

22

3. Detecting vulnerable Latches

3.3. Semi-Formal Approach

The two following algorithms developed by us show a way to find vulnerable
latches using a SAT solver. (The algorithms can also easily be implemented
using BDDs instead). This can be achieved by a technique called sequential
equivalence checking, in which the transition relation is unrolled (Section
2.10) for the length of the provided test case, similar to bounded model
checking. Searching for vulnerable latches can be formulated as a satisfi-
ability problem by conjuncting additional vulnerability constraints to the
unrolled transition relation. Recall that the vulnerability constraints require
that outputs are different due to a bit flip without raising an alarm before.

We present two variants of the algorithm. The first one has to be executed
for each latch independently, only the point in time when the single bit flip
is introduced is encoded symbolically. In the second variant, the point in
time and the location (choice of component) to flip is encoded symbolically.
In Section 6.1, we will show how both algorithms can be adapted to also
support free input values.

3.3.1. Point in Time Symbolic

As in all the algorithms presented so far, outputs of a faulty circuit (with a
bit flip) somehow have to be compared with a fault-free circuit model. In
contrast to the simulation-based algorithm, the point in time to flip a latch
is encoded symbolically in this algorithm. That means it is not necessary
to introduce a fault at each time step and check afterwards if the flipped
latch is vulnerable. Instead, the SAT solver chooses when to flip a certain
latch in order to produce wrong outputs without an alarm being raised.
A vulnerable latch is found if the constructed formula is satisfiable. This
algorithm has to be executed for each latch individually.

23

3. Detecting vulnerable Latches

Algorithm 2 STA (Symbolic Time Analysis)
1: procedure AnalyzeSTA(test case t, component C)
2: x := init
3: syb state := init
4: f := ∅
5: F := true
6: Terr(x, i, f , o, a, x′) is a modified transition relation where the addi-

tional input variable f defines if the output of component C is flipped.

7: for i = 1 to len(t) do
8: (x′, o, a) := sim(x, t[i])
9: (x′e, oe, ae) := sim err(C, x, t[i])

10: if o 6= oe and ae = false then
11: return (i, i)
12: end if
13: (x′, o′, fi) := createFreshVars(|x|, |o|, 1)
14: if (o = oe and x′ = x′e) or ae = true then
15: F := F ∧ T(syb state, t[i], o′, false, x′)
16: else
17: F := F ∧ Terr(syb state, t[i], fi, o′, false, x′)
18: F := F ∧∧ fa∈ f (f → ¬ fa)

19: end if
20: (sat, f) := PropSatModel

(
F ∧ (o′ 6= o)

)
21: if sat then
22: return

(
(j such that f j is true in f), i

)
23: end if
24: x := x′, syb state := x′, f := f ∪ fi
25: end for
26: return None
27: end procedure

The input for STA are a test case t and a component C to check in a circuit.

The algorithm consists of a concrete part, which is used to generate correct
output- and state-values, and a symbolic part. The symbolic part consists of
an unrolled modified transition relation, in which it is possible to flip the

24

3. Detecting vulnerable Latches

latch to test in one of the time steps in order to produce output values that
are different to the correct simulation.

In the beginning, the concrete state x is set to the initial state (each latch 0).
Correspondingly, syb state, which stores the symbolic state, is set to false for
each latch.

F stores the formula which will be used for SAT solver calls. F is satisfiable if
a soft error can escape if C is flipped at some point in time. In the beginning
it is set to true. Throughout the execution of the algorithm, more and more
constraints get appended to it.

Terr(x, i, f , o, a, x′) is a modified transition relation with an additional input
f , which is used to flip the output of the component C. At each time step,
an instance of this transition relation is appended.

The loop of the algorithm (Lines 7 - 25) is executed for at most the number
of time steps of the test case t.

First, the correct next state- and output-values are computed by a concrete
simulation using the current state and the current input vector from the test
case (Line 8). Similarly, a concrete simulation with the same input vector is
performed, with the only difference that the output of the component C is
flipped. In addition to the faulty next state and outputs, the alarm signal ae
of the fault simulation is stored.

If flipping the latch already immediately produces different outputs without
raising the alarm (Line 10), then the C is vulnerable. In such a case the execu-
tion can be terminated without having to calling the SAT solver. Otherwise
the execution continues with the symbolic part of the algorithm.

In Line 13, fresh variables for the next state x′ and output o′ are generated.
Additionally, a variable fi, which can be used to flip the output of C, is
created. These new variables are used for the next instance of the transition
relation for the current time step.

If both concrete simulations resulted in the same output- and next-state
values, then a flip in that state has no effect to the system at all. Similarly, the
component C is also protected in that time step if the flip immediately led to
a raised alarm signal in the same state. In both of these two cases (Line 14)
the transition relation for the current time step T(syb state, t[i], o′, false, x′)

25

3. Detecting vulnerable Latches

does not contain an f signal. Otherwise, if the system does not recover until
the next state or if no alarm is raised in the same state, a modified transition
relation F ∧ Terr(syb state, t[i], fi, o′, false, x′) containing fi is appended to F.
The variable fi leads to a bit flip in C if set to true. Due to our single fault
assumption, a constraint defining that at most one fi signal can be set to
true (Line 18) (i.e., the latch can be flipped at most once) is added.

Note that the alarm a is required to be false in the transition relations,
since only such situations are of interest when testing if the current latch is
vulnerable.

The SAT solver call (Line 20) contains the unrolled transition relation, which
uses inputs from the test case and requires the alarm signal to be false all
the time, and constraints that the outputs have to be different at the current
point in time. This can only be satisfiable by setting one of the variables
f ∈ f to true.

The latch C is vulnerable if the formula is satisfiable. It is possible to produce
wrong output values at the current point in time without a raised alarm
with the provided test case if C is flipped at time step j, where f j is the only
true variable in the assignment.

If the sat solver could not yet find a satisfying assignment (a point in time
to flip C which makes the latch vulnerable now), then the algorithm tries to
find one in a future time step in another iteration of the loop. But first, a
switch to the next state is performed (Line 24)

3.3.2. Point in Time And Location Symbolic

In the previous algorithm, the point in time when to flip a latch was already
symbolic, meaning that the SAT solver chooses when a latch has to be
flipped in order to find a vulnerability.

The algorithm presented in this section builds up on the previous algorithm,
since it also symbolically encodes the point in time to flip. In contrast to
the previous algorithm, this one does not have to be executed for each
latch individually. Instead, the SAT solver also choose which latch should be
flipped, not just when a fixed latch has to be flipped.

26

3. Detecting vulnerable Latches

Instead of running STA for each latch individually, one execution of STLA
suffices to check all latches.

Algorithm 3 STLA (Symbolic Time Location Analysis)
1: procedure AnalyzeSTLA(test case t)
2: x := init
3: syb state := init
4: f := ∅, vulnerable := ∅
5: F :=

(
(∑ ck) = 1

)
6: Terr(x, i, f , c, o, a, x′) is a modified transition relation where the output
7: of latch Ck is flipped if the variables ck and f j are both true.
8: for i = 1 to len(t) do
9: (x′, o, a) := sim(x, t[i])

10: (x′, o′, fi) := createFreshVars(|x|, |o|, 1)
11: F := F ∧ Terr(syb state, t[i], fi, o′, c, false, x′)
12: F := F ∧∧ fa∈ f (f → ¬ fa)

13: (sat, f, c) := PropSatModel

(
F ∧ (o′ 6= o)

)
14: while sat do
15: vulnerable := vulnerable∪

(
(j such that f j is true in f),

16: (Ck such that ck is true in c), i
)

17: F := F ∧ ¬ck
18: (sat, f, c) := PropSatModel

(
F ∧ (o′ 6= o)

)
19: end while
20: x := x′, syb state := x′, f := f ∪ fi
21: end for
22: return vulnerable
23: end procedure

The previous algorithm from Section 3.3.1 has a lot of similarities to this one.
That is why the following explanation mainly focuses on the differences.

This algorithm uses a slightly different version of a modified transition
Terr(x, i, f , c, o, a, x′). In addition to the f signal, which means that a flip
should be done now, the relation also talks about c signals. A signal ck ∈ c
set to true indicates that the component Ck should be flipped (if the f signal
is set to true as well).

27

3. Detecting vulnerable Latches

Due to our single fault assumption, the first constraint requires that at most
one latch can be flipped (Line 5).

As in the previous algorithm, the results of the concrete simulation using
input values from the test case are stored. Likewise, it is required that there
is at most one point in time when a flip can be introduced.

In contrast to STA, no fault simulation is executed.

Again, a modified transition relation for the current time step is appended,
in which the input values from the test case are used and the alarm signal
is required to be false. Each latch Ci can only be flipped at the current time
step j by setting both ci and f j to true.

With help from the correct output values from the concrete simulation
(Line 9) we create a clause saying at least one of the output values must be
different in the current time step and call the SAT solver (Line 13/18).

A vulnerable latch is found if the query is satisfiable. The information which
latch has to to be flipped when in order to produce wrong outputs can be
found in the satisfying assignment. The one and only ck signal set to true
corresponds to the latch Ck. f j set to true in the assignment f indicates that
the latch hast to be flipped at time step j. The error has an effect on the
output at the current time step i because the current query is satisfiable.

Since multiple latches might produce wrong output values in the current
step when being flipped in this or in a previous step, the SAT call is
performed in a loop until all latches that can corrupt the current output
are found. For each detected vulnerable latch Ci, the negated control signal
¬ci is added as a constraint in order to find other vulnerable latches. The
algorithm proceeds to the next time step as soon as the formula to find
vulnerable latches in the current time step turns unsatisfiable.

28

4. Detecting False Positives

The algorithms presented in the preceding chapter searched for vulnerable
latches, i.e., undetected faults that affect the circuit’s output values. Vulnera-
bilities are false negatives, because the alarm should have been raised, but it
was not. As opposed to this, gratuitously raised alarms, which we call false
positives, are also undesirable.

They decrease a circuit’s performance due to an unnecessary reset to a
previously stored preceding state. That is why we developed two semi-
formal algorithms to find false positives.

Flipping a latch leads to a false positive if the alarm is set to true unnecessar-
ily, i.e., if it is guaranteed that the current and all future output values are
correct. Looking at all potentially infinitely many output values does not
work for verification, which is why we propose an approximate approach
that can find some, but not necessarily all definite false positives. Instead of
checking the infinitely many future output values, we search for situations
where a flip does not affect any output values until the internal state recov-
ers within a finite duration again (e.g., via ECCs), as can be seen in Figure
4.1.

Figure 4.1.: A false positive over time

This definition of false positives can in principle also be checked via simula-
tion, bounded model checking and with our semi-formal approach, similar
to searching for vulnerable latches (Chapter 3). In this chapter, we only

29

4. Detecting False Positives

present a semi-formal approach by describing two algorithms which are
closely related to the algorithms for vulnerable latches. In the first one in
Section 4.1, the point in time to flip a latch is symbolic, while for the second
one in Section 4.2 both the component to flip and the point in time are
symbolic.

Both of the algorithms per default perform a quantitative-analysis, meaning
that multiple situations where flipping a certain-latch results in a false
positive are reported, not just one. The reason is that false positives only
reduce the performance of a system and are therefore tolerable if they
happen only rarely, whereas soft errors caused by vulnerable latches are
system-critical and therefore should never happen.

4.1. False Positives - Point in Time Symbolic

This algorithm is a version of STA (Section 3.3.1) which has been adapted to
find false positives instead of vulnerabilities. As in STA, The point in time
when a latch can be flipped is encoded symbolically.

The adapted algorithm FP 1 can be found on page 33.

FP 1 computes a set Superfluous that stores 5-element quintuples. The quin-
tuple (C, t, j, k, i) ∈ Superfluous means that the latch C can be flipped at time
step j while executing test case t. This will result in an alarm at time step
k. At time step i, the error is gone again, meaning that the internal state is
identical as it would have been without a flip. The outputs were correct at
all times.

The algorithm consists of a simulation-based part, and a symbolic part. a
is a vector that stores the variables ai representing the value of the alarm
output of the transition relation at the time step i.

In the simulation part, a fault-free and a fault simulation is performed. First,
the fault-free simulation stores values for the next state, the outputs and
the special alarm output (x′, o and a respectively). The whole procedure is
aborted if the alarm signal a in the fault-free simulation is set to true (Line 7

30

4. Detecting False Positives

- 10). In such a case, the parity computation is wrong and should be fixed
first before re-running the algorithm.

After that, if the algorithm was not aborted, a fault simulation with C flipped
is computed. A false positive is detected using simulation only if the alarm
ae of the fault simulation is true but the output values do not differ and the
error vanishes in the next state (Line 14 - 19). In that case it is not necessary
to call a SAT solver in that time step. Instead, we only unroll the transition
relation for the current time step (Line 16). It is required that the output
values have to be the same as in the fault-free simulation (the symbolic
outputs are set to o from the correct simulation). With that, future SAT
solver calls can find false positives caused by flips in previous time steps.
However, adding an f-variable in the transition relation to flip the latch in
the current time step would not make any sense since a flip in that state
always recovers before the next state.

If no false positive caused by a flip in the current time step is found, the
algorithm continues with the symbolic part in which a false positive in the
current step caused by a flip in one of the previous steps is searched (Line
20 - 37).

It is impossible to find a false positive in the current or any following step
by flipping C now if it immediately produces wrong output values. In that
case, adding an f-signal in the transition relation for the current step does
not make any sense either (Line 20 - 21). Flipping in this particular state
can impossibly result in a false positive in any future state since outputs are
already wrong at that time.

In all other situations, the unrolled transition relation is extended by an f
signal to flip C in the current time step (Line 24 - 27).

Finally, the SAT solver is called to search false positives at the current point
in time. F contains the unrolled transition relation where input values from
the test case are used. The transition relation for one particular point in time
can be flipped by setting the corresponding f variable to true. Recall that we
required that the output-values are correct in each step. For the current SAT
call, we also require that the error is already gone in the next state (x′ = x′)
and that the alarm was raised before at least once.

31

4. Detecting False Positives

The query is satisfiable if flipping C in one of the previous time steps leads
to a false positive. By parsing the satisfying assignment (f, a) it is possible
to find out when C has to be flipped (via f) in order to raise an alarm at a
specific point in time (via a) such that no output is changed and the internal
state recovers from the flip in the next step (i + 1).

The algorithm can find multiple points in time that produce a false positive
by flipping latch C. For that, the blocking clause ¬ f j is added to prevent
reporting the same point in time again. If one is only interested if the latch
is susceptible to false positives at all (qualitative analysis), the algorithm
could also already be stopped at the first time a query is satisfiable.

32

4. Detecting False Positives

Algorithm 4 FP(S) 1

1: procedure AnalyzeFP1(test case t, component C)
2: Superfluous = ∅, f := ∅, a := ∅
3: x := init, syb state := init, F := true

4: Terr(x, i, f , o, a, x′) is a modified transition relation where the output
of latch C is flipped if the variable f is set to true.

5: for i = 1 to len(t) do
6: (x′, o, a) := sim(x, t[i])
7: if a = true then
8: print(“Alarm raised without error.”)
9: return

10: end if
11: (x′e, oe, ae) := sim err(C, x, t[i])
12: (x′, o′, ai) := createFreshVars(|x|, |o|, 1)
13: a := a ∪ ai
14: if o = oe and x′ = x′e and ae = true then
15: Superfluous = Superfluous∪ (C, t, i, i, i + 1)
16: F := F ∧ T(syb state, t[i], o, ai, x′)
17: x := x′, syb state := x′

18: continue
19: end if
20: if (o 6= oe) then
21: F := F ∧ T(syb state, t[i], o, ai, x′)
22: else
23: (fi) := createFreshVars(1)
24: F := F ∧ Terr(syb state, t[i], fi, o, ai, x′)
25: F := F ∧∧ fa∈ f (f → ¬ fa)

26: f := f ∪ fi
27: end if
28: (sat, f, a) := PropSatModel

(
F ∧ (x′ = x′) ∧∨i

k=0 ak
)

29: while sat do
30: j = an index such that f j = true in f
31: k = the lowest index such that ak = true in a
32: Superfluous = Superfluous∪ (C, t, j, k, i + 1)
33: F := F ∧ ¬ f j

34: (sat, f, a) := PropSatModel

(
F ∧ (x′ = x′) ∧∨i

k=0 ak
)

35: end while
36: x := x′, syb state := x′

37: end for
38: end procedure

33

4. Detecting False Positives

4.2. False Positives - Point in Time And Location
Symbolic

This algorithm is a version of STLA (Section 3.3.2) which has been adapted
to find false positives instead of vulnerabilities. Both the point in time when
a latch is flipped and the latch itself are encoded symbolically.

FP 2 is not just based on STA, it obviously has a lot of similarities with FP 1

from the previous section. It can be found on page 35.

The main difference is that the algorithm shown in this section searches for
vulnerabilities in all latches simultaneously, whereas the previous had to be
executed for each one individually. To achieve that, the transition relation
which is generated at each time step of the test case has additional inputs c.
A latch Cj is only flipped if both cj ∈ c and fi ∈ f are set to true.

This algorithm is more concise compared to the previous one. Since there is
no fault simulation in this version of the algorithm, a lot of the optimizations
from FP 1 are not applicable and therefore omitted. In exchange, it is not
necessary to loop over all latches.

The satisfying assignment is used to find out which latch (via c) has to be
flipped when (via f) in order to raise an alarm at a specific point in time
(via a) so that the outputs have always been correct and the circuit will have
recovered from the flip in the next step (i + 1).

The algorithm can find multiple traces to produce a false positive by flipping
a latch Ci. For that, only the constraint ¬(f j ∧ ci) has to be added to prevent
the SAT solver from reporting the same trace again. For a qualitative analysis,
it is only necessary to add the constraint ¬ci instead to prevent latch Ci
from being reported again.

After adding a Superfluous trace, the SAT solver is called again to find
additional traces in the current time step (inner loop, Line 30 - 37), or in a
future time step (outer loop).

34

4. Detecting False Positives

Algorithm 5 FP(S) 2

1: procedure AnalyzeFP2(test case t)
2: Superfluous = ∅, f := ∅, a := ∅
3: x := init, syb state := init, F := true

4: Terr(x, i, f , c, o, a, x′) is a modified transition relation where the output
of latch Ci is flipped if the variables ci and f are both true.

5: for i = 1 to len(t) do
6: (x′, o, a) := sim(x, t[i])
7: if a = true then
8: print(“Alarm raised without error.”)
9: return

10: end if
11: (x′, o′, ai, fi) := createFreshVars(|x|, |o|, 2)
12: a := a ∪ ai
13: F := F ∧ Terr(syb state, t[i], fi, o, ai, x′)
14: F := F ∧∧ fa∈ f (f → ¬ fa)

15: (sat, f, c, a) := PropSatModel

(
F ∧ (x′ = x) ∧∨i

k=0 ak
)

16: while sat do
17: return

(
(j such that f j is true in f), (Ck such that ck is true in c), i

)
18: F := F ∧ ¬(f j ∧ ci)

19: (sat, f, c, a) := PropSatModel

(
F ∧ (x′ = x) ∧∨i

k=0 ak
)

20: end while
21: x := x′, syb state := x′, f := f ∪ fi

22: F := F ∧
(
(x′ = x′)→ ∧

fa∈ f ¬ fa

)
23: end for
24: return None
25: end procedure

35

5. Detecting Definitely Protected
Latches

Searching for errors like vulnerabilities in a protection logic is one way to
analyze the quality of protection logic. Another approach is to search for
definitely protected latches, meaning that it is ensured that an alarm is raised
when a soft error happens. Recall that a component is protected if a flip in
it does never corrupt primary output values without being detected.

Since it is impossible to compare the potentially infinitely many output
values of a flip, we are instead searching for situations where the internal
state recovers from a bit flip. A component is definitely protected if it can be
proven that each single bit flip is either detected or if the state is repaired,
i.e., it is the same as without a flip, within finite time, as depicted in Figure
5.1.

Contrary, if the state is different, it is not possible to classify the component.
It might be that the value of a primary output is wrong in some future time
step, or they might as well be correct all the time.

(a) Error vanishes (b) Error gets detected

Figure 5.1.: A definitely protected latch must always fulfill one of these two properties

A latch li ∈ l is 1-step protected if

36

5. Detecting Definitely Protected Latches

T(x, i, o, a, x′)∧ T
(
(x1, . . . ,¬xi, . . . , xn), i, oe, ae, x′e

)
∧¬ae ∧ (o 6= oe ∨ x′ 6= x′e)

(5.1)
is unsatisfiable.

Such a check means: no matter in which state the circuit is and no matter
which inputs are used, if latch li flips its value, the error is either already
gone in the next time step and the output values are correct, or the alarm is
raised immediately when the fault happens.

However, some error-detection or error-correction methods might take more
than just one clock cycle to raise an alarm or to repair the internal state.
Hence, searching for 1-step protected components might not be sufficient
to prove that a component is protected. For this purpose we also present
methods to check for k-step protection.

Such checks may be too strict because it is possible to start from any state,
possibly states that are unreachable from the initial state where parity
bits are wrong. This issue can be resolved by doing a more precise over-
approximation of the state spaces or by computing the state space with
unbounded methods like PDR [25].

In the following sections, we propose one algorithm that checks each latch
individually (5.1) and one that checks all at the same time (5.3) for 1-step
protection. Additionally, we present algorithms to chek for k-step protection,
again one variant to verify latches individually (5.2) and one to verify them
simultaneously (5.4).

5.1. Testing latches individually for 1-step
protection

The following algorithm checks one latch after the other if it is 1-step
protected. A latch is one-step protected if a flip in any state will either raise
the alarm or affect neither the next output nor the next state. In other words:
if the alarm is not raised, the flip must be gone after one time step.

37

5. Detecting Definitely Protected Latches

Algorithm 6 DP 1

1: ProtectedLatches = ∅
2: procedure DefinitelyProtected1

3: T := T(x∗, i∗, o∗, a∗, x) ∧ ¬a∗
)
∨x = init

4: T := T ∧ T(x, i, o, a, x′) ∧ ¬a
5: for l ∈ Latches do
6: Tl := T ∧ Terr((x1, ...,¬xl, ..., xn), i, oe, ae, xe

′) ∧ ¬ae
7: Tl := Tl ∧ (o 6= oe ∨ x′ 6= xe

′)
8: sat := PropSat

(
Tl)

9: if sat = false then
10: ProtectedLatches := ProtectedLatches ∪ { l }
11: end if
12: end for
13: end procedure

As stated earlier, checking equation 5.1 might be too conservative. Because
of that, an additional step is added in Line 3. With that we assert that
the state we start from is either the initial state or a successor form some
previous state x∗. It is also required that there has not been raised an alarm
in that predecessor-state. This is still a conservative over-approximation
of the state-space, however, trivially illegal states that could violate the
single-fault assumption (e.g. wrong values in parity latches) can already be
excluded.

For some benchmarks, the over-approximation in Line 3 might still not be
accurate enough. A more precise (but computationally more expensive)
over-approximation would look as follows:

T(x0, i0, o0, false, x1) ∧
j∧

i=1

T(xi, ii, oi, false, xi+1)

 ∨ xj+1 = reach(init, j)

(5.2)

where xj+1 = reach(init, j) denotes all states reachable from the initial state
within j time steps and the term in parentheses denotes all states reach-

38

5. Detecting Definitely Protected Latches

able from any state after exactly j steps. The approximation can be made
arbitrarily precise by setting j big enough.

Line 4 adds a fault-free transition relation T(x, i, o, a, x′) and restricts it to
situations where the alarm is set to false to rule out situations where an
alarm is raised without a flip. If the j-step over-approximation (5.2) is used
it is necessary to work with that state-space instead.

Each latch is tested individually if flipping it might lead to an error of the
system (the for-loop).

Similarly to the fault-free relation in Line 4, a faulty transition relation is
conjuncted in line 6. Here, the latch under verification is negated to simulate
a bit flip. All other latches except the flipped one and all inputs are the same
one as in the relation without a flip. The modified transition relation might
result in different output- or next state values compared to the fault-free
relation. Again, we are only interested in situations where no alarm is raised
because only these situations can be susceptible.

The clauses in Line 7 limit the search space to situations where the output
or next state is different because of the introduced flip.

The tested latch is definitely protected if the query is unsatisfiable. Without
raising an alarm it is not possible to alter an output or the next state.

5.2. Testing multiple latches simultaneously for
1-step protection

The previous algorithm tested one latch after the other for 1-step protection.
This was achieved by computing a transition relation in which that latch
has been flipped and by calling the SAT solver afterwards.

The idea of this algorithm is to only create one modified faulty transition
relation Terr in which the SAT solver can choose which of all latches should
be flipped (Line 5). With that, latch li can be flipped by setting one of the
additional inputs ci ∈ c to true.

39

5. Detecting Definitely Protected Latches

A SAT-query that is immediately unsatisfiable indicates that all latches are
definitely protected. If however the query is satisfiable, a counter example
is found. The signal ci set to true in the satisfying assignment c means that
flipping latch li might modify the next-state or an output without raising
an alarm. Latch li is removed from the set of definitely protected latches
and the control signal ci is set to false. This is done until the formula turns
unsatisfiable. All remaining latches are definitely protected.

Algorithm 7 DP 2

1: ProtectedLatches = Latches
2: procedure DefinitelyProtected2

3: T := T(x∗, i∗, o∗, a∗, x) ∧ ¬a∗
)
∨x = init

4: T := T ∧ T(x, i, o, a, x′) ∧ ¬a
5: T := T ∧ Terr(x, i, c, oe, ae, xe

′) ∧ ¬ae

6: T := T ∧ (o 6= oe ∨ x′ 6= xe
′)

7: while (sat, c) := PropSatModel

(
T) do

8: T := T ∧ ¬ci, where ci is the only true variable in c
9: ProtectedLatches := ProtectedLatches \ { li }

10: end while
11: end procedure

5.3. Testing latches individually for k-step
protection

Not every system recovers from a bit flip within one time step. The two
algorithms presented so far do not detect a latch as definitely protected if
the system needs more than one time step to recover, even if the output is
correct all the time.

The algorithms in this and the following section can test if the system either
detects a soft error or if it recovers within at most k time steps without
affecting any of the outputs.

40

5. Detecting Definitely Protected Latches

Algorithm 8 DP 3

1: ProtectedLatches = ∅
2: procedure DefinitelyProtected3

3: T := T(x∗, i∗, o∗, a∗, x1) ∧ ¬a∗
)
∨x1 = init

4: T := T ∧ T(x1, i1, o1, a1, x′1) ∧ ...∧ T(x′k−1, ik, ok, ak, x′k)
5: T := T ∧ ¬a1 ∧ ¬a2 ∧ ...∧ ¬ak
6: for l ∈ Latches do
7: Tl := T ∧ Terr((x11 , ...,¬x1l , ..., x1n), i1, oe1, ae1, x′e1)

8: Tl := Tl ∧ T(x′e1, i2, oe2, ae2, x′e2) ∧ ...∧ T(x′k−1e
, ik, oek, aek, x′ek)

9: Tl := Tl ∧
(
(¬ae1 ∧ o1 6= oe1)

∨(¬ae1∧ ¬ae2 ∧ o2 6= oe2)
∨ . . .
∨
(
¬ae ∧ ¬ae2 ∧ . . . ∧ ¬aek ∧ (ok 6= oek ∨ x′k 6= x′ek)

))
10: sat := PropSat

(
Tl)

11: if sat = false then
12: ProtectedLatches := ProtectedLatches ∪ { l }
13: end if
14: end for
15: end procedure

An over-approximation of the reachable state space is performed the same
way as it is done in the two previous algorithms.

In Line 4, the transition relation is unrolled for k time steps, starting with
the states from the over-approximation. Only state transitions where the
alarm signal is not raised are of interest (Line 5).

The same has to be done with the latch under verification flipped (Line 7).
The flipped transition relation in turn also gets unrolled for k time steps
(Line 8).

The condition to find counter-examples for definitely protected latches in
Line 9 is a bit more complicated. It reads as follows: A latch is not definitely
protected if it produces a different output value after a flip without raising
the alarm before. It might also be vulnerable if the next state after k steps is

41

5. Detecting Definitely Protected Latches

not the same again, even if the outputs are always correct. In such a case
one can not be sure if a latch is definitely protected because it might still
result in wrong output values without raising the alarm after more than k
time steps.

If that query however is unsatisfiable, the latch is definitely protected; The
system always repairs its state within at most k time steps. If the flip leads
to a wrong output value, it is ensured that the alarm is raised in that or in
an earlier time step.

If the algorithm finds a lot of counter examples where latches might not be
definitely protected because the state does not recover within k time steps,
then increasing k might help finding more definitely protected latches.

5.4. Testing multiple latches simultaneously for
k-step protection

The algorithm presented in this section adapts the previous algorithm in
such a way that multiple latches can be tested simultaneously for k-step pro-
tection. This is achieved by the same way as the 1-step protected algorithm
DefinitelyProtected2 has been adapted from DefinitelyProtected1 to
check multiple latches simultaneously.

Again, the underlying idea is to use only one modified transition relation
Terr where each of the latches li ∈ L can be flipped by a corresponding
signal ci ∈ c.

The difference for k-step protection is that the fault-free and the faulty
transition relation have to be unrolled for k instead of just 1 time step. No
output is allowed to change without raising an alarm and after k steps
without any alarm. Additionally, the state has to be the same as without
any flip after k steps.

This algorithm starts by assuming that all latches are k-step protected and
refines the set of definitely protected latches by using counter-examples from
satisfying assignment until the formula eventually turns unsatisfiable.

42

5. Detecting Definitely Protected Latches

Algorithm 9 DP 4

1: ProtectedLatches = Latches
2: procedure DefinitelyProtected4

3: T := T(x∗, i∗, o∗, a∗, x1) ∧ ¬a∗
)
∨x1 = init

4: T := T ∧ T(x1, i1, o1, a1, x′1) ∧ ...∧ T(x′k−1, ik, ok, ak, x′k)
5: T := T ∧ ¬a1 ∧ ¬a2 ∧ ...∧ ¬ak

6: T := T ∧ Terr(x1, i1, c, oe1, ae1, x′e1)
7: T := T ∧ T(x′e1, i2, oe2, ae2, x′e2) ∧ ...∧ T(x′k−1e

, ik, oek, aek, x′ek)

8: T := T ∧
(
(¬ae1 ∧ o1 6= oe1)

∨(¬ae1 ∧ ¬ae2 ∧ o2 6= oe2)
∨ . . .
∨
(
¬ae ∧ ¬ae2 ∧ . . . ∧ ¬aek ∧ (ok 6= oek ∨ x′k 6= x′ek)

))
9: while (sat, c) := PropSatModel

(
T) do

10: T := T ∧ ¬ci, where ci is the only true variable in c
11: ProtectedLatches := ProtectedLatches \ { li }
12: end while
13: end procedure

43

6. Algorithm Extensions

This chapter presents extensions to the algorithms presented in previous
chapters. First, we show how some or all input values can be left open in
test case based algorithms. Afterwards, we explain how to use environment
models to define when outputs are relevant and to restrict the number
of allowed input combinations for open inputs. Finally, we show how the
findings of an algorithm for definitely protected latches can be used to
speed up the search for vulnerable latches (and vice versa).

6.1. Free Inputs Modes

The algorithms for vulnerable latches (Chapter 3) and false positives (Chap-
ter 4) used test cases with concrete inputs only. Each of them can be extended
in such a way that they also support free input values. It is possible to leave
some inputs open at defined points in time, whereas the other inputs can still
be concrete. With that, all presented algorithms can be used as a bounded
model-checker by simply defining each input value for each time step (up
to a specified time step bound) as a free input value. Using free input values
in test cases allows to be more flexible, whereas concrete input values can
be processed faster. In some cases however, free inputs might reduce the
length or number of necessary test cases.

6.1.1. Free Inputs Modes for Simulation-based Algorithm

Internally, simulation (Section 3.2) can only deal with concrete input values.
To simulate one open input value, it is necessary to simulate the circuit

44

6. Algorithm Extensions

twice: once with the concrete input value 0, and once with the concrete
input value 1.

If a test case (Section 2.8) contains n open input values, it is necessary to
simulate the whole circuit 2n times, i.e. the number of simulations grows
exponentially to the number of open input values.

Algorithm 10 SIM 1

1: procedure AnalyzeSimFreeInputs(test case t)
2: tconcrete[] := generateConcreteTestCases(t)
3: for i := 1 . . . 2n do
4: AnalyzeSim(tconcrete[i])
5: end for
6: end procedure

6.1.2. Free Inputs Modes for semi-formal Algorithms

The symbolic nature of our SAT solver based algorithms presented in Section
3.3 for vulnerable latches and 4.1 and 4.2 for false positives makes them
perfectly suitable for free input values.

All of them contained a fault-free concrete simulation (x′, o, a) := sim(x, t[i])
The results were used for a comparison with a transition relation Terr, which
contained a bit flip. Some also contained a concrete faulty simulation as a
performance optimization.

However, as stated in the previous section, the number of simulations grows
exponentially with the number of open input values. Besides that, the huge
number of simulations barely harmonize with the symbolic part of the
semi-formal algorithms. Because of that we decided to encode a transition
relation (Section 2.10) instead of a concrete simulation for the fault-free part
when free input values are involved. The faulty concrete simulations had to
be dropped as well.

The new fault-free symbolic-simulation produces an unrolled transition
relation T(x, i, o, x′) ∧ T(x′, i2, o2, x′′) ∧ ... which grows in size if a lot or only
free input values are used and which is smaller if lots of concrete input

45

6. Algorithm Extensions

values are used. That is because concrete values consisting of truth values
only do not result in a new literal whereas open input values have to be
represented by a new boolean literal.

In the end, it is necessary to compare the faulty transition relations Terr with
the fault-free transition relations T(xi, ii, oi, ai, x′i) instead of comparing with
results from a concrete simulation (x′i, oi, ai) := sim(xi, t[i]).

Changing semi-formal algorithms to BDD based algorithms can often be
achieved without much effort. Because of that, the concept of free input
values for the BDD based algorithms is the same as for SAT-based algorithms.
Again, the concrete fault-free simulation has to be exchanged by a symbolic
formula. In the case of BDDs, it has to be exchanged by a BDD representation
of the fault-free transition relation. For free input values fresh BDD variables
are generated, whereas concrete input values keep the BDD small.

6.2. Environment Models

In certain situations some output values might be irrelevant, for example
when an output indicating that data on a bus is ready to be read is set to
false. If that is the case, then it does not matter whether the output values on
the data-bus are flipped or not. Such situations do not have to be reported
as vulnerabilities. On the contrary, a false positive should still be reported if
only irrelevant outputs are corrupted.

The optional environment models can be used to specify under which
circumstances an output is relevant. It is encoded as a circuit as well.

Environment circuits can use the same inputs as the original circuit and
all outputs signals of the original circuit. For the sake of implementational
simplicity, the number of inputs has to match: The input signals of the
environment circuit are a concatenation of the inputs and outputs of the
original circuits. However, the environment model does not necessarily have
to make use of all provided input signals. Each output of the environment
model corresponds to one of the original circuit. An environment output
set to true indicates that the corresponding output in the original circuit is
relevant at this point in time.

46

6. Algorithm Extensions

Some algorithms also support test cases that contain open input-values,
which can be set arbitrarily. However, some input combinations may never
occur in a practical mode of operation. An optional output can be added to
restrict the number of allowed input combinations. This additional output
is intended to be used as a formula talking about the input values, which
is true whenever the input combination is allowed. With that, a SAT solver
is required to set the unspecified input values in such a way that that this
output stays true. If at some point it is not possible to set the open inputs
accordingly, the algorithms won’t find any further vulnerabilities/false
positives from this point forward.

i1

i2

i3

in

...
environment

 model

o1

o2

om
...

o1_rel

o2_rel

om_rel

...

in_rel

(optional)

Figure 6.1.: An environment model defining relevance of outputs and optionally also
allowed input combinations

6.2.1. Environment Models for Simulation-based Algorithm

Internally, the simulation-based Algorithm (Section 3.2) works with con-
crete input values only, even when a mode with free-inputs test cases is
used (Section 6.1.1). Recall that we model the environment as a standard
circuit with inputs and outputs. Therefore we can also perform a concrete
simulation of the environment model.

1: ienv := t[i] ∪ outputs[i]
2: (orel, input ok) := simulate1step(env, ienv)

First, the concrete input values from the test case t[i], which were also
used for the original circuit, are concatenated with the output values of the

47

6. Algorithm Extensions

concrete simulation. This new vector ienv is used as input for the simulation
of the environment model.

The outputs of the environment simulation orel define which of the outputs
of the original circuit is relevant at the moment and which is not.

The optional output input ok defines if the input combination is allowed,
which is only useful for the free-input mode. If input ok is set to false, the
algorithm can be aborted for the current test case t because an illegal input
combination has been used.

When comparing the outputs of the correct and faulty simulation, only the
outputs that are relevant according to orel have to be checked. A modified
irrelevant output does not indicate a vulnerable latch, only a modified
relevant output does.

6.2.2. Environment Models for SAT- and BDD-based
Algorithms

This section describes how symbolic (SAT- or BDD-based) algorithms for
vulnerable latches (Section 3.3) and for false positives (Chapter 4) can be
modified to support an environment model.

Symbolic algorithms that use test cases with concrete input values only
can make use of an environment model similarly as the simulation based
algorithm: Relevant outputs are computed via concrete simulations as well.
The concrete input values are taken from the test case and the concrete
output values are taken from the concrete fault-free simulation. With the
help of these values, relevant outputs can be computed.

When searching for vulnerable latches, the clauses saying that an output is
different is omitted when an output is irrelevant. Similarly, clauses requiring
that an output is equal can be omitted for irrelevant latches in algorithms
for false positives.

When free input values are involved, concrete simulation is not applicable
anymore for symbolic algorithms. For these modes it is necessary to encode

48

6. Algorithm Extensions

the environment model symbolically as well. This is achieved by computing
a transition relation of the environment.

The transition relation Tenv(xenv, ii, oi, orel, input ok, x′env) uses the same input
literals ii as the original circuit. Additionally the output literals of the original
circuit oi can be used as input for the environment model. The outputs orel
are a vector of literals that define which of the original outputs oi are
relevant.

Since the relevance of outputs now depends on open inputs, it is not possible
to use simulation to compute which output is relevant and then leave out the
constraint for that output. Instead, it is necessary to define that the formula
to compare outputs depends on the literals that define the relevance of the
corresponding outputs.

In order to restrict the choice of input combinations to allowed input combi-
nations only, the literal input ok is added as a unit clause.

6.3. Combining the different Algorithm types

We are classifying components into four categories: vulnerable, definitely
protected, false positive or unknown. All of our algorithms can be used to
exclude some components, meaning that only a subset of all components is
checked.

Obviously, a component can not be both vulnerable and definitely protected
at the same time. It makes sense to exclude the findings of one algorithm
before running the other.

Similarly, one might want to first run a mode/a simpler test case that can
be executed faster but does not find all components. Afterwards, a slower
mode/more sophisticated test cases can be used to focus on the remaining
unclassified components.

49

7. Implementation

As a proof of concept, we implemented each of the algorithms presented
in Chapter 3 (Vulnerable Latches), 4 (False Positives) and 5 (Definitely
Protected Latches) in C++. The bounded model-checking algorithm from
Section 3.1 is realized as a small standalone tool AlarmToMC that converts
a circuit into a model-checking problem. All other discussed algorithms are
implemented in our comprehensive soft error tool named OpenSEA.

This chapter explains decisions made, format specifications and conventions
created for our reference implementation of the said algorithms.

7.1. Format specifications

OpenSEA can analyze circuits in AIGER1 file-format (version 20071012) with
included error-detection logic. The last output has to be the special alarm
output, as can be seen in Figure 7.1.

i1

i2

i3

in

o1

o2

om

alarm

...

...

circuit

Figure 7.1.: The input circuit including the special alarm output

Some algorithms require test cases (Section 2.8) which provide input values.
Test-cases can either be generated randomly or be provided as ASCII text

1http://fmv.jku.at/aiger/FORMAT.aiger

50

http://fmv.jku.at/aiger/FORMAT.aiger

7. Implementation

files. One line contains an input vector for one time step, open input values
are declared by a question mark instead of 1 or 0.

Most modes support an optional environment model (Section 6.2) which
can be used to specify under which circumstances an output is relevant.
Like the original input circuit, they are encoded in the AIGER format as
well. The input- and output- specification of environment models can be
seen in Figure 6.1 on page 47.

After analyzing the quality of the protection logic, the tool results in a list
of errors or a list of protected latches (depending on the selected algorithm).
Example executions of OpenSEA are listed in the Appendix (page 74ff).

When searching for vulnerable latches the algorithm outputs a list of the
detected components. Optionally, a detailed error-trace can be generated for
each vulnerable latch consisting of the concrete input values for each time
step, the point in time, at which the latch has to be flipped, and the point in
time, at which the error has an effect on the output values.

When searching for false positives, the tool generates a list of the superfluous
alarms, each consisting of a flipped component C, the point in time j where
it has been flipped, a point in time k where the alarm was raised gratuitously,
and a point in time i + 1 where the state is the same as it would have been
without flipping in step j. Recall that to be a false positive, the output values
between j and i + 1 must not change. If the test case contained free input
variables, an input trace with the concrete input values to reproduce the
error is generated.

When searching for definitely protected latches, a list of latches that are
definitely protected is generated.

7.2. Algorithms and Modes

The following tables list algorithms that have been implemented in OpenSEA
and references them to the corresponding sections of this thesis.

51

7. Implementation

7.2.1. Modes for Vulnerabilities

Algorithm Mode Description
SIM 0 only for concrete input values
(3.2) 1 capable of free inputs (currently at most 64)
STA 0 copy whole transition relation when unrolling

(3.3.1) 1 compute transition relation on the fly
2 capable of free inputs

STLA 0 standard mode
(3.3.2) 1 capable of free inputs
BDD 0 1-hot encoding for c

(3.3.2) 1 cardinality constraints for c
2 binary encoding for c
3 binary encoding for c and f
4 binary encoding for c and f , free inputs

The BDD based algorithms is a variant of the SAT-based STLA algorithm. It
currently does not support environment models.

7.2.2. Modes for False Positives

FP denotes a quantitative analysis, meaning that multiple false positives
per component are reported, whereas FPS only reports at most one false
positive per component.

Algorithm Mode Description
FP(S) 0 STA based (4.1)

(4) 1 STLA based (4.2)
2 STA based + capable of free inputs
3 STLA based + capable of free inputs

52

7. Implementation

7.2.3. Modes for Definitely Protected Latches

Algorithm Mode Description
DP 1 testing latches individually for 1-step protection (5.1)
(5) 2 testing latches simultaneously for 1-step protection (5.2)

3 testing latches individually for k-step protection (5.3)
4 testing latches simultaneously for k-step protection (5.4)

Algorithms for definitely protected algorithms do not yet support environ-
ment models.

7.2.4. Available Engines

Our SAT-based algorithms (STA, STLA, FP(S) and DP) rely on external SAT
solvers. OpenSEA provides accesses to SAT solvers via an abstract interface,
therefore SAT solver libraries are interchangeable. At the moment, the
following SAT solvers are available and can be selected via a command-line
parameter:

• MiniSat 2.2.0 [26]
• Lingeling ayv-86bf266-140429 [27]
• PicoSAT 960 [28]

Our BDD-based algorithms use cudd 3.0.0 by Fabio Somenzi [29]. Integrat-
ing Sylvian [30] as an alternative engine would be interesting since it can
run parallel on multiple CPU-cores.

The concrete simulation of AIGER circuits was implemented by us.

53

7. Implementation

7.3. AlarmToMC - detecting vulnerable latches
via bounded model-checking

AlarmToMC is a simple standalone tool that converts an AIGER circuit
(Figure 7.1) into a model checking problem to detect whether that circuit
contains any vulnerable latches or not.

The resulting circuit (as described in Section 3.1, Figure 3.2) is again an
AIGER circuit that can be tested with model checkers like BLIMC or IC3.

The original circuit contains vulnerable latches if the model checker is able
to find a bad trace for the converted circuit.

7.4. AddParityTool - adding a simple parity-net to
circuits

AddParityTool adds a basic parity net to an existing AIGER circuit and returns
a protected AIGER circuit, as can be seen in Figure 7.2. The resulting circuit
contains an alarm output, which is raised as soon as a latch is flipped.

Figure 7.2.: Resulting circuit of AddParityTool

The tool allows the user to specify a percentage of latches to protect (0-100%),
which is useful for benchmarks. Additionally, the number of latches that
are protected by one additional parity-latch can be specified.

54

8. Experimental Results

In this chapter, we evaluate the performance of algorithms implemented in
OpenSEA.

Note that all following charts in this chapter are cactus-plots with a loga-
rithmic y-axis showing the execution time. The x-axis shows the number
of benchmarks that can be solved within that time limit. Throughout this
chapter, we are referring to the algorithms and their modes using the abbre-
viations and mode numbers defined in Section 7.2.

8.1. Benchmarks and Benchmarking Environment

Benchmarking Environment

All tests have been carried out on machines with two Intel Xeon E5430 CPUs,
each with four cores running at 2.66GHz, operated from a 64bit Linux. Since
our tool at the moment uses only one core, up to 8 benchmarks can be
executed simultaneously on one machine. An execution timeout was set to
10000 seconds. The memory limit was set to 6 GiB RAM.

The SAT-based algorithms used MiniSat 2.2.0, BDD based algorithms used
cudd 3.0.0.

55

8. Experimental Results

IWLS Benchmarks

We used most of the publicly available IWLS 2002
1 and IWLS 2005

2 bench-
marks for measuring the performance of our implementation. In total, we
chose 558 benchmarks with up to roughly 1000 inputs, 1400 outputs, 10000

latches and 80000 and-gates.

For this, we first converted the circuits into the AIGER format using ABC
[31]. Then, we added a generic protection logic to them which compares the
parity sum of the previous latch inputs and the current latch outputs, as
explained in Section 2.2. Our simple AddParityTool (Section 7.4) can be used
to protect a specified percentage of all latches. This is useful for generating
circuits that are partly vulnerable and partly protected. We chose to protect
90% of the latches for our experiments. Pairs of two latches are protected by
one additional latch. The added error detection logic consequently increased
the circuit size by an average of 5 AND-gates and half a latch per latch to
protect.

The error detection logic immediately raises an alarm when the output of a
protected latch is flipped.

ADD Benchmarks

The IWLS circuits were reasonable for first experiments since it was possible
to start with a huge amount of benchmarks without too much effort. Unfor-
tunately, it is too cumbersome to completely understand the structure of all
of them or to build in a cleverer protection logic. Therefore, we decided to
create a more realistic benchmark which can also be parametrized in size.

The motivation for creating the add benchmarks (Figure 8.1) was to mimic
a pipelined processor. The circuit performs a multiplication of the input by
(n + 1). The multiplication is carried out by n additions over n time steps.

The circuit consists of n layers. Each layer has two input vectors A′ and B′

and two output vectors. The first output vector is the sum of both input

1http://www.eecs.berkeley.edu/~alanmi/benchmarks/iwls2002/
2http://www.eecs.berkeley.edu/~alanmi/benchmarks/

56

http://www.eecs.berkeley.edu/~alanmi/benchmarks/iwls2002/
http://www.eecs.berkeley.edu/~alanmi/benchmarks/

8. Experimental Results

...+

A'

B' B

A + B

va
lid

ho
ld

clk

...
...

...
...

(a) single module

ho
ld

A
2
 + B

2

va
lid

ho
ld

A
1
 + B

1

va
lid

ho
ld

A
n
 + B

n

va
lid

...
checker

alarm

output
(= n * input)input

(b) complete pipelined circuit

Figure 8.1.: add benchmarks. The number of inputs and the number of layers is
parametrized.

vectors from the previous state, the second output vector equals the second
input vector from the previous state. A special hold input can be used to
prevent values in the output buffer from getting overwritten by the current
input-values of that layer. The valid signal is a simple parity computation of
the latches from the output buffer of the layer, similar to the protection for
the iwls benchmarks.

57

8. Experimental Results

The checker circuit raises the alarm output if the valid-signal is set to false in
one layer and the hold-signal of the succeeding layer is set to false as well.
That is the case when a bit flip in one layer would corrupt the internal state
of the succeeding layer.

The benchmarks were written in Verilog and converted to AIGER using
vl2mv3 and ABC. Both the number of layers (up to 10) and the number of
inputs/outputs (up to 128) are parametrized in order to provide a set of
scaling benchmarks. A list of the benchmarks can be found in Appendix
D.

ADD TMR Benchmarks

These circuits have the same functionality as the add benchmarks. They
differ in implementing error correction instead of error detection.

Error correction is implemented via triple modular redundancy (TMR), as
can be seen in Figure 8.2. The basic idea is to build a system that is resistant
if only few faults happen. This is achieved by adding two additional copies
of the circuit. All three copies produce the same output values if no fault
happens. The majority gate after the final layer sets the final outputs by
performing a majority vote: An output signal is set to true if at least two
copies computed the value true for that output.

These benchmarks do not contain an alarm signal. Instead of reporting an
error, it is corrected automatically. After a fault happens, it takes up to
the number of layers time steps until the internal state recovers again. But
the outputs remain correct as long as not more than of the three copies is
corrupted at the same time.

The circuits were also designed in Verilog and then translated to AIGER.
The list of our 25 TMR benchmarks starts with a circuit with 2 layers and 8

inputs and ends with one consisting of 10 layers and 128 inputs. It can be
found in Appendix D. Note that TMR protection leads to a circuit overhead
of over 200%, since it is necessary to add two identical copies of the circuit
and a majority gate.

3http://vlsi.colorado.edu/~vis

58

http://vlsi.colorado.edu/~vis

8. Experimental Results

...+

A'

B' B

A + B...
...

(a) single module

out

A
1
 + B

1

A
1
 + B

1

A
1
 + B

1

A
2
 + B

2

A
2
 + B

2

A
2
 + B

2

A
n
 + B

n

A
n
 + B

n

A
n
 + B

n

...

m
a

jo
ri

ty
 g

a
te

(b) complete pipelined circuit

Figure 8.2.: add TMR benchmarks. The number of inputs and the number of layers is
parametrized.

8.2. Performance Evaluation for the Detection of
Vulnerable Latches

8.2.1. Results with concrete Inputs only

OpenSEA implements multiple algorithms that are capable of finding vul-
nerable components (Chapter 3). Figure 8.3 shows their execution times for
the add and iwls benchmarks with concrete test cases. As an input, three
random concrete test cases with a length of 15 time steps are used for each
benchmark. As can be seen, the simulation based algorithm (SIM) is the
fastest for completely concrete test cases.

Making not just the point in time but also the latch to flip symbolic clearly
leads to a significant speed-up (STA vs STLA).

The BDD-based algorithm, which is an adaption of the SAT-based STLA al-
gorithm, lies between STA and STLA for the iwls benchmarks. Interestingly,
BDD outperforms STLA on more complicated add benchmarks. To our sur-
prise, we found out that the BDD-based algorithm works better with disabled
variable reordering.

59

8. Experimental Results

(a) add benchmarks

(b) iwls benchmarks

Figure 8.3.: Execution times to detect vulnerable components. 3 concrete test cases, 15 time
steps.

8.2.2. Amount of Unspecified Input Values

Using free input values in test cases allows to be more flexible, whereas
concrete input values can be processed faster. In some cases however, free
inputs might reduce the necessary length or number of test cases.

In this section, we compare the run-time of the SAT-based STLA algorithm
using free input values with the naive simulation-based approach (SIM).
Recall that each free input value in the worst case doubles the run-time
when using a naive exhaustive approach.

60

8. Experimental Results

0

0

0.01

0.1

1

10

100

1000

10000

STLA 1 - free inputs:

0 free inputs

5 free inputs

10 free inputs

15 free inputs

20 free inputs

benchmarks (IWLS)

tim
e

 [s
]

0

0

0.01

0.1

1

10

100

1000

10000

SIM 1 - free inputs:

0 free inputs

5 free inputs

10 free inputs

15 free inputs

20 free inputs

benchmarks (IWLS)

tim
e

 [s
]

Figure 8.4.: Using free input values scales significantly better for the STLA 1 algorithm.
Benchmarks are 90% protected, 3 test cases, each of a length of 15 time steps.
The free input values are located within the first time step(s).

The chart in Figure 8.4 shows the effect of free input values on the execution
time for both the STLA and the SIM algorithm. SIM is the fastest algorithm
when using only concrete inputs, as already mentioned in previous chapters.
Just for concrete input values, converting a circuit to a CNF transition
relation, unrolling it and then performing SAT solver calls does not pay
off compared to a fast simulation. The SAT-query is already a complicated

61

8. Experimental Results

formula because of the f and c literals, even with concrete inputs only.
However, that changes when free input values come into play. Using more
free input values with STLA does not add a lot of extra runtime cost (top
graph). The performance of SIM is however drastically reduced when more
input values are set as open.

The STLA algorithm has the crucial ability to utilize the flexibility of SAT
solvers. Because of that, the symbolic algorithm outperforms the simulation
approach when it comes to scalability regarding free-input values. Both
algorithms roughly have the same performance when using about 5 free
input values. For more free input values, STLA is the best choice, for fewer
to none, SIM is faster.

It is arguable that optimizations in SIM could lead to a speed-up. For example
the fact that several input combinations might lead to the same next state
could be used to prevent the algorithm from doing the same simulation
more than once. That certainly is a valid objection, it is however questionable
if such an optimiation can be implemented easily. SAT solvers on the other
hand do such optimizations intrinsically due to the smbolically encoded
queries.

8.2.3. Comparison with Model Checking

In the previous section we discussed the influence of free input values.
Model checking carries the idea of free inputs to an extreme: each input
value for each time step (up to a specified time step bound) is a free input
value. As a consequence, model checking is the most accurate, but also the
computationally most expensive approach to a soft error-analysis.

OpenSEA is capable of analyzing a circuit in a full model-checking mode,
meaning that no concrete input values in a test case are used. Each mode
that supports free inputs can be used for that.

Since most model checkers are highly optimized, this section shows results
of a model checker (namely BLIMC) as well. For this purpose, we wrote
a small tool (AlarmToMC) which converts a circuit with protection logic to
a model-checking problem, which again is a special type of circuit. Model

62

8. Experimental Results

checkers typically take a circuit with exactly one output and try to find an
input sequence which sets this error-output to true.

Figure 8.5 illustrates the enormous differences in execution time between a
model-checking approach (using BLIMC and our STLA 1) and concrete input
values only (STLA 0). Our STLA algorithm in full MC mode is competitive
with BLIMC.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Model Checking Results

100% protected - 15 time steps - BLIMC & STLA 1: full MC - STLA 0: concrete inputs only

STLA 0 (concrete)

BLIMC (full MC)

STLA 1 (full MC mode)

benchmarks (IWLS)

tim
e

 [s
]

Figure 8.5.: Both BLIMC model-checking for 15 time steps and STLA 1 with 15 time steps of
only free inputs try out all possible input combinations, whereas STLA 0 uses
only one concrete test case with a length of 15 time steps.

8.2.4. Length of the Test Cases

The length of test cases (number of time steps) is one parameter that has an
effect on the execution time. Longer test cases obviously result in a longer
execution time. Figure 8.6 illustrates the influence of test case lengths: The
STLA algorithm was executed with test case lengths of 15, 30, 60 and 100

63

8. Experimental Results

time steps. No free input values were used, the randomly generated test
cases consisted solely of concrete input values (0 or 1). The chart indicates
an increase of execution time of roughly a half order of magnitude when
doubling the test case length. An increasing test case length in SIM only
leads to a linearly growing run-time.

0.0001

0.001

0.01

0.1

1

10

100

1000

SIM 0 - 90% protected

15 steps

30 steps

60 steps

100 steps

benchmarks (IWLS)

tim
e

[s
]

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

STLA 0 - 90% protected

15 steps

30 steps

60 steps

100 steps

benchmarks (IWLS)

tim
e

[s
]

Figure 8.6.: STLA 0 and SIM 0 execution times for different test case lengths

8.3. Performance Evaluation for the Detection of
False Positives

Figure 8.7 shows the execution time for detecting false positives. Recall that
FP performs a quantitative and FPS a qualitative analysis. Mode 0 checks each
latch individually, as in STA, and mode 1 checks all of them individually, as
in STLA.

It can be seen that the qualitative analysis outperforms the quantitative
analysis and that testing all latches at once is faster than checking them
individually for most of the bigger benchmarks.

Recall from Chapter 4 that a false positive is detected when a bit flip does
not change any outputs and the internal state of the circuit eventually

64

8. Experimental Results

Figure 8.7.: Execution times to detect false positives. add benchmarks, 3 concrete test cases,
15 time steps

recovers again. The add circuits are perfectly suitable for benchmarking
these algorithms since it takes up to the number of layer time steps until
the fault is repaired again or until the fault becomes visible to the user by
propagating to the outputs.

8.4. Performance Evaluation for the Detection of
Definitely Protected Latches

Recall (Chapter 5) that a definitely protected component can be flipped
in any valid state without any undetected errors. Thus, either an alarm is
raised or the internal state recovers again from the flip without affecting
any output values.

We chose the add tmr benchmarks for testing the performance of our
algorithms because they are known to be hard to verify. These circuits do
not have an alarm output. It takes up to the number of layers time steps
until the internal state is the same again as it would have been without a bit
flip.

Figure 8.8 shows the performance of our algorithms for definitely protected
latches. We ran our add tmr benchmarks by starting from any state that is

65

8. Experimental Results

reachable from any state after 10 time steps. This way, we made sure that
the check does not contain checks that already start from illegal states that
violate our single-fault assumption. Modes DP 1 and DP 3 check each latch
individually, DP 2 and DP 4 check all latches at once.

The algorithms that check for 1-step protection could only classify the
latches from the last layer of our add tmr circuits as definitely protected.
Latches in others than the last layer are not identified as protected because
it takes more than one time step until the currupted value is masked out
in the majority-voting layer. With our algorithms for k-step protection, we
were able to detect all latches that are definitely protected. The parameter k
has also been set to 10, since the benchmarks can have up to 10 layers.

It turned out that checking for k-step protection took approximately two
magnitudes of order longer than checking for 1-step protection. Testing all
latches at once is about one order of magnitude faster than checking each
one individually, in both algorithm types.

Furthermore, we found out that modes that check multiple latches at once
(modes 2 and 4) perform better if more latches were definitely protected.
This makes sense since these algorithms work with satisfying assignments
that provide counter-examples with latches that are not definitely protected.
They run until the queries eventually become unsatisfiable. In contrast,
modes 1 and 3 (that test latches individually) were faster if fewer latches
were definitely protected. It is obviously easier to find just one satisfying
assignment (if the latch is not definitely protected) than to prove that
a formula is unsatisfiable (i.e. the latch is definitely protected). Proving
something unsatisfiable means to rule out all possible combinations of truth
values. In contrast, the SAT solver’s work is already done if it manages to
find just one satisfying assignment.

66

8. Experimental Results

(a) testing 1-step protection

(b) testing k-step protection, k set to 10

Figure 8.8.: Execution times to detect definitely protected components.

67

9. Related Work

In 2006, Krautz et al. proposed a way to evaluate the coverage of error
detection logic using BDDs [32]. They used a fault injection model similar
to our BMC based approach (Section 3.1) in which they compare a fault-free
device with a faulty one. The output of their fault injection model is defined
by a property checker that defines multiple properties by comparing primary
outputs of both circuit copies. A sequential equivalence check of this circuit
is performed up to a defined number of time steps by creating a BDD
representation. The number of input combinations that make properties
true are counted. Among other properties, they count a property similar to
our definition of vulnerabilities and the number of injected faults. A coverage
is computed using these numbers.

Holcomb et al. showed another way to compute the failure in time rate by
performing a system-level analysis [33]. In contrast to our algorithms, their
methods rely on formal specifications. Our approaches only need to know
which output is the alarm output.

Fey, Frehse and Drechsler presented a bounded model-checking based tech-
nique that computes a lower and an upper bound of the fault tolerance [34].
This is done by an approximate reachability analysis, since a full reachability
analysis is considered to be computationally infeasible. They compute both
an over- and an under-approximation of the reachable states and use them
as initial states in a time-bounded check. With that, it is possible to provide a
lower and an upper bound for classifying vulnerable components. The over-
approximation contains more than the actually reachable states. Because of
that, some components might be mistakenly classified as vulnerable because
they could modify primary outputs in an unreachable state. Similarly, an
under-approximation detects fewer vulnerable components due to a smaller
state-space. Both numbers together define a lower and an upper bound. Our

68

9. Related Work

approach to detect definitely protected latches (Chapter 5) only makes use
of an over-approximation because we wanted define a very strong check.

A year later, the same three authors together with Arbel and Yorav proposed
additional approaches to classify components. This time, they use interpola-
tion for an over-approximation of the reachable state space and compute
fixed-points [35]. This way, only states that are relevant to the property to
prove are considered.

In 2014, Arbel, Koyfman, Kudva and Moran published a structural approach
to detect parity-protected memory elements [36]. For this purpose, they
first search for potential error detection circuits and for latches that are
potentially protected by those using functional analysis. Afterwards, they
use SAT-calls to prove that these latches are indeed protected by the parity
net. The unique characteristic of their method is that they analyze a circuit
locally rather than looking at the behavior of the entire system. Their method
can be applied whenever error checker latches are present, which is not the
case for our add tmr benchmarks presented in Section 8.1.

Methods that systematically construct robust systems[37] might make our
work and all methods to verify error detection and error correction obsolete
one day. However, as long as these intelligent compilers are not yet perfect
(if they will ever be) verification of circuits will stay important.

69

10. Conclusions

In this thesis we presented multiple approaches that can be used to analyze
how hardware reacts to faults that are caused by cosmic radiation. For this
purpose, we defined the terms vulnerable, definitely protected and false positive.
Our solutions try to automatically detect whether a component is part of
such a category.

In Chapter 3, we described methods to detect vulnerable components. A
component is vulnerable if a fault in it can eventually become visible to the
user on the outputs of a circuit. We started by showing a model-checking
based approach that can only detect whether the circuit under test contains
any vulnerable latches or not. This is achieved by creating a new circuit that
contains two copies of the original circuit. One copy is unchanged, whereas
the other is modified in such a way that latches can be flipped via additional
inputs. We defined that the one and only output of the new circuit is set to
1 whenever the outputs of both copies are set differently without raising the
special alarm output before. The (bounded) model-checker tries to find an
input sequence for which this output can be set to true.

Afterwards, we described a simulation-based algorithm. Vulnerable compo-
nents are detected by comparing a fault-free simulation with a faulty ones.
A test case provides concrete input-values for the simulations. The output
values of the correct simulation are compared with the ones from the faulty
simulations, in which we encoded a bit flip.

In addition to that, we proposed two semi-formal SAT-based algorithms,
in which we symbolically encoded the circuit. In one of them only the
point in time when a component should be flipped was symbolic but the
component to flip was fixed. In the other, both the component and the point
in time to flip it were selected by the SAT solver. Again, the input values
were provided by a test case. A satisfying assignment determines when a

70

10. Conclusions

vulnerable component has to be flipped (and also which one, in the second
algorithm). Finally, we developed a BDD-based version of the mentioned
approach.

In Chapter 4, we presented versions of the SAT-based algorithms that detect
false positives with input values from test cases. We said that components
lead to a false positive if a bit flip raises the alarm, even though the outputs
would not have changed. Similar to the symbolic algorithm for vulnerable
components, we described a variant in which only the point in time is
symbolic and another where the component to flip is also encoded symboli-
cally.

In Chapter 5, we did not search for errors in the protection logic. Instead,
we presented a method to prove that a component is definitely protected. No
matter when a component is flipped, we require that either the alarm is
raised or the internal state of the circuit recovers again without affecting
any outputs. For this purpose, we are using an over-approximation of
the reachable states. In addition to that, all input values are open. There
are variants of the algorithm to check for 1-step protection and for k-step
protection. Both have one version that checks each component individually
and one that checks all components simultaneously.

Afterwards, we showed how each of the test case based algorithms can be
adapted in order to support free input values. With that, it is possible to leave
some or all input values open for an extensive analysis. Free input values
provide more flexibility and might help to find more vulnerable components
or false positives, whereas concrete input values can be processed faster.
In addition to that, we explained how environment models can be used
together with our existing algorithms. They can be used to define when
outputs are relevant or to restrict the way open input values can be set.

The experimental results of our reference implementation OpenSEA showed
that semi-formal algorithms like STLA scale better when it comes to free
input values, whereas an analysis using concrete test cases only is carried out
best with a simple simulation based approach (SIM). In any case, concrete
input values can be processed faster than free input values.

The results indicate that our STLA algorithm with free input values seems
to be a good compromise between a simulation based- and a full model-

71

10. Conclusions

checking approach. Testing all components at once for definite protection is
superior compared to testing them individually.

In essence, model-checking should be used if there is no or little knowledge
of the circuit under test and/or if completeness is important. Simulation
should be used for fast results if accuracy is not the most important factor.
Knowledge of the operation of the circuit might be beneficial compared
to random simulations. Semi-formal methods are the best solution for
everything in between, i.e., if there is at least some knowledge how the
circuit works. Concrete input values can be used to increase the algorithm’s
performance and open input values can help to classify more components.

72

Appendix

73

A. OpenSEA vulnerable latches example

The following Listing shows how to use OpenSEA to find vulnerable
latches
./immortal -bin -i shiftreg.aig -b stla -tcr 1 5 -d

[LOG] Input -File: shiftreg

[LOG] Inputs: 1, Latches: 3, Outputs: 1, ANDs: 6

[LOG] Back -End: stla , mode = 0

[LOG] #Errors found: 3

===

Latch: 4 flipped at i=0

Error happened at timestep i=0

[SIM] i=?: state | inputs | outputs | next state

[OK] i=0: 000 0 00 000

[ERR] i=0: 100 0 10 000 <<< flipped in this state! <<<

↪→ wrong output in this state!

===

Latch: 6 flipped at i=0

Error happened at timestep i=1

[SIM] i=?: state | inputs | outputs | next state

[OK] i=0: 000 0 00 000

[ERR] i=0: 010 0 00 100 <<< flipped in this state!

[OK] i=1: 000 0 00 000

[ERR] i=1: 100 0 10 000 <<< wrong output in this state!

[...]

[LOG] Overall execution time: 0.000582 sec CPU time , 0

↪→ sec real time.

Flipping literal 4 (= first latch) immediately results in a wrong output value
(first output), whereas flipping literal 6 (= second latch) in time step 0 does
not affect the output before time step 1. In both cases, the alarm output
(second output) should have been raised.

74

B. OpenSEA false positives example

The following Listing shows how to use OpenSEA to find false positives

./immortal -bin -i fp.delay1.aag -b fp -tcr 1 3 -d

[LOG] Input -File: fp.delay1

[LOG] Inputs: 1, Latches: 4, Error Latches: 1, Outputs:

↪→ 1, ANDs: 15

[LOG] Back -End: fp, mode = 0

[LOG] #False positive traces found found: 7

component =4, flip_ts=0, alarm_ts=1, error_gone_ts =3

[SIM] i=?: state | inputs | outputs | next state

[OK] i=0: 00000 0 00 00000

[ERR] i=0: 10000 0 00 01011 <<< flipped in this state!

[OK] i=1: 00000 1 10 10010

[ERR] i=1: 01011 1 11 10100

[OK] i=2: 10010 1 10 11000

[ERR] i=2: 10100 1 10 11000 <<< error gone in next state!

component =6, flip_ts=0, alarm_ts=1, error_gone_ts =2

[SIM] i=?: state | inputs | outputs | next state

[OK] i=0: 00000 0 00 00000

[ERR] i=0: 01000 0 00 00111 <<< flipped in this state!

[OK] i=1: 00000 1 10 10010

[ERR] i=1: 00111 1 11 10010 <<< error gone in next state!

[...]

[LOG] Overall execution time: 0.00148 sec CPU time , 0 sec

↪→ real time.

Flipping literal 4 (= first latch) in the initial time step does not affect any
output value under the provided (random) test case. Two time steps later,
the next-state is the same again as without any flip. Therefore the alarm has
been raised gratuitously in time step 1

75

C. OpenSEA definitely protected latches example

The following Listing shows how to use OpenSEA to find definitely protected
latches

./immortal -bin -i toggle.perfect.aag -b dp -m 2 -d

[LOG] Tool has been started

[LOG] Input -File: toggle.perfect

[LOG] Inputs: 3, Latches: 3, Error Latches: 1, Outputs:

↪→ 3, ANDs: 18

[LOG] Back -End: dp, mode = 2

[LOG] #Definitely protected latches found: 3 (100 %)

Definitely protected latches:

8 10 12

[LOG] Overall execution time: 0.000507 sec CPU time , 0

↪→ sec real time.

The DP back-end searches for definitely protected latches. Here, mode 2 is
used, where multiple latches are tested simultaneously if they are definitely
1-step protected (Algorithm in Section 5.2). As an output, the tool prints the
detected definitely protected latches.

The reported latches do not have to be checked if they are vulnerable
because it is proven that the system always either recover from a flip in that
latch without affecting an alarm or that an alarm is raised before or when
an output is wrong.

It might however still be the case that flipping a definitely protected latch
can lead to false positives, which is why one might also want to run one of
the algorithms dedicated to that problem.

76

D. Benchmark Properties and raw Results

Table D1 contains information about the circuit size of the add benchmarks
described in Section 8.1 and the raw benchmark results of our algorithms
presented in Chapter 3 and 4. The circuits follow the naming convention
add i[in] l[l], whereas [l] denotes the number of layers and [in] denotes
the bit-width of the number to multiply and the number of outputs. The
number of inputs of a circuit equals the bit-width plus the number of layers,
since each layer adds an additional hold input-signal.

circuit IN FF OUT AND STA 0 BDD 3 STLA 0 SIM 0 FP 0 FPS 0 FP 1 FPS 1

add i8 l2 10 40 8 577 1.2 0.5 0.1 0.0 0.4 0.3 1.1 0.3
add i8 l4 12 80 8 1219 5.4 2.0 0.7 0.0 2.5 1.7 8.5 1.4
add i8 l6 14 120 8 1861 12.9 4.6 1.6 0.1 7.0 3.5 22.3 2.0
add i8 l8 16 160 8 2503 24.3 8.6 2.3 0.2 15.8 6.6 55.5 3.8
add i8 l10 18 200 8 3145 41.2 13.4 4.2 0.4 34.8 12.7 94.6 3.4
add i16 l2 18 72 16 1153 4.6 1.9 0.5 0.0 2.0 1.4 4.7 0.9
add i16 l4 20 144 16 2435 21.6 8.1 2.9 0.2 13.7 7.7 37.5 3.4
add i16 l6 22 216 16 3717 56.4 18.4 7.0 0.4 88.0 35.4 125.3 4.5
add i16 l8 24 288 16 4999 105.2 33.3 16.1 0.7 343.3 149.0 269.2 16.8
add i16 l10 26 360 16 6281 171.7 53.8 21.8 1.1 680.9 290.1 467.4 20.1
add i32 l2 34 136 32 2305 21.2 7.6 2.4 0.1 11.5 8.8 25.1 4.6
add i32 l4 36 272 32 4867 95.9 32.8 16.9 0.5 312.2 155.6 208.1 11.8
add i32 l6 38 408 32 7429 237.4 77.2 46.9 1.8 1070.2 493.1 592.0 60.1
add i32 l8 40 544 32 9991 444.2 138.3 153.9 3.3 2601.6 933.1 1225.7 55.2
add i32 l10 42 680 32 12553 720.9 215.2 170.1 4.4 4884.5 1822.3 2345.5 67.4
add i64 l2 66 264 64 4609 97.1 30.4 14.9 0.4 229.3 242.8 125.4 25.4
add i64 l4 68 528 64 9731 444.8 134.7 133.0 2.5 1957.6 1814.0 932.1 190.4
add i64 l6 70 792 64 14853 1040.9 307.7 503.0 4.6 6937.1 4129.7 2811.8 226.9
add i64 l8 72 1056 64 19975 2018.5 562.8 844.1 14.1 timeout 8902.3 4287.1 519.8
add i64 l10 74 1320 64 25097 3407.2 884.4 1380.2 17.5 timeout timeout 8364.6 599.1
add i128 l2 130 520 128 9217 456.6 122.7 155.7 1.7 1541.8 1196.8 416.1 151.4
add i128 l4 132 1040 128 19459 1985.1 541.1 1107.2 7.5 timeout 6002.3 3450.4 324.6
add i128 l6 134 1560 128 29701 4466.6 1256.1 2574.7 24.6 timeout timeout timeout 1111.7
add i128 l8 136 2080 128 39943 7806.1 2343.4 5198.8 47.7 timeout timeout timeout 3543.1
add i128 l10 138 2600 128 50185 timeout 3819.7 8642.0 76.6 timeout timeout timeout 7363.0

Table D1.: add circuit properties and execution times for finding vulnerable latches and false
positives

Table D2 shows circuit properties of the add tmr benchmarks described in
Section 8.1 and results for the algorithms presented in Chapter 5. They follow
the same naming convention as the add benchmarks: The first number
indicates the bit-width of the number to multiply and in this case also the
number of inputs and outputs. The second number denotes the number of
layers, i.e. the number of additions in the pipelined architecture.

77

circuit IN FF OUT AND DP 1 DP 2 DP 3 DP 4

add tmr i8 l2 8 108 8 550 1.9 0.1 15.3 0.3
add tmr i8 l4 8 216 8 1468 13.6 0.5 176.6 2.1
add tmr i8 l6 8 324 8 2386 46.4 1.6 693.1 8.2
add tmr i8 l8 8 432 8 3304 106.6 4.1 1747.0 12.0
add tmr i8 l10 8 540 8 4222 182.5 7.4 4138.5 23.9
add tmr i16 l2 16 204 16 1150 15.4 0.3 263.4 1.9
add tmr i16 l4 16 408 16 3076 117.6 3.1 3742.5 32.0
add tmr i16 l6 16 612 16 5002 459.7 10.8 timeout 203.7
add tmr i16 l8 16 816 16 6928 1163.6 27.7 timeout 502.4
add tmr i16 l10 16 1020 16 8854 1651.7 47.7 timeout 1305.9
add tmr i32 l2 32 396 32 2350 123.1 2.5 2376.4 11.4
add tmr i32 l4 32 792 32 6292 1153.1 21.2 timeout 378.3
add tmr i32 l6 32 1188 32 10234 3953.5 68.5 timeout 3589.2
add tmr i32 l8 32 1584 32 14176 5752.3 166.6 timeout 9143.4
add tmr i32 l10 32 1980 32 18118 7048.6 255.2 timeout timeout
add tmr i64 l2 64 780 64 4750 569.9 11.6 timeout 42.6
add tmr i64 l4 64 1560 64 12724 4881.3 102.0 timeout 2081.6
add tmr i64 l6 64 2340 64 20698 timeout 314.0 timeout timeout
add tmr i64 l8 64 3120 64 28672 timeout 734.4 timeout timeout
add tmr i64 l10 64 3900 64 36646 timeout 1197.4 timeout timeout
add tmr i128 l2 128 1548 128 9550 timeout 50.9 timeout 644.3
add tmr i128 l4 128 3096 128 25588 timeout 452.8 timeout timeout
add tmr i128 l6 128 4644 128 41626 timeout 1477.1 timeout timeout
add tmr i128 l8 128 6192 128 57664 timeout 3041.9 timeout timeout
add tmr i128 l10 128 7740 128 73702 timeout 5511.2 timeout timeout

Table D2.: add tmr circuit properties and execution times for finding definitely protected
latches

All of the listed results and many more (including the ones of the 558 IWLS
benchmarks) from all of our implemented modes together with the source
code are available online in our repository1.

1https://github.com/p4p4/softerror-tools

78

https://github.com/p4p4/soft error-tools

Bibliography

[1] G. E. Moore. “Cramming More Components onto Integrated Circuits.”
In: Electronics 38.8 (Apr. 1965), pp. 114–117 (cit. on p. 1).

[2] T. J. O’Gorman. “The effect of cosmic rays on the soft error rate of a
DRAM at ground level.” In: IEEE Transactions on Electron Devices 41.4
(Apr. 1994), pp. 553–557. issn: 0018-9383. doi: 10.1109/16.278509
(cit. on p. 1).

[3] J. C. Pickel. “Effect of CMOS Miniaturization on Cosmic-Ray-Induced
Error Rate.” In: IEEE Transactions on Nuclear Science 29.6 (Dec. 1982),
pp. 2049–2054 (cit. on p. 1).

[4] J. F. Ziegler. “Terrestrial cosmic ray intensities.” In: IBM Journal of
Research and Development 42.1 (Jan. 1998), pp. 117–140 (cit. on p. 1).

[5] R. Baumann. “Soft Errors in Advanced Computer Systems.” In: IEEE
Des. Test 22.3 (May 2005), pp. 258–266 (cit. on p. 1).

[6] N. D. P. Avirneni and A. Somani. “Low Overhead Soft Error Mitigation
Techniques for High-Performance and Aggressive Designs.” In: IEEE
Transactions on Computers 61.4 (Apr. 2012), pp. 488–501 (cit. on p. 1).

[7] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems (3rd Ed.):
Design and Evaluation. Natick, MA, USA: A. K. Peters, Ltd., 1998 (cit.
on p. 1).

[8] T. M. Austin. “DIVA: A reliable substrate for deep submicron microar-
chitecture design.” In: Microarchitecture, 1999. MICRO-32. Proceedings.
32nd Annual International Symposium on. IEEE. 1999, pp. 196–207 (cit.
on p. 1).

79

http://dx.doi.org/10.1109/16.278509

Bibliography

[9] F. A. Bower, D. J. Sorin, and S. Ozev. “A mechanism for online di-
agnosis of hard faults in microprocessors.” In: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society. 2005, pp. 197–208 (cit. on p. 1).

[10] T. M. Austin and V. Bertacco. “Deployment of better than worst-
case design: solutions and needs.” In: 2005 International Conference on
Computer Design. Oct. 2005, pp. 550–555 (cit. on p. 1).

[11] R. Hamming. “Error Detecting and Error Correcting Codes.” In: Bell
System Technical Journal 26.2 (1950), pp. 147–160 (cit. on p. 1).

[12] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. M. Austin.
“A Systematic Methodology to Compute the Architectural Vulnerabil-
ity Factors for a High-Performance Microprocessor.” In: Proceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO 36. 2003, pp. 29– (cit. on p. 2).

[13] S. A. Seshia, W. Li, and S. Mitra. “Verification-guided Soft Error
Resilience.” In: Proceedings of the Conference on Design, Automation and
Test in Europe. DATE ’07. 2007, pp. 1442–1447 (cit. on p. 2).

[14] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. “On latching
probability of particle induced transients in combinational networks.”
In: Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-
Fourth International Symposium on. June 1994, pp. 340–349 (cit. on pp. 3,
9).

[15] S. Mukherjee. Architecture Design for Soft Errors. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2008. isbn: 9780080558325,
9780123695291 (cit. on p. 8).

[16] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008 (cit. on p. 10).

[17] J. R. Burch and D. E. Long. “Efficient Boolean Function Matching.” In:
Proceedings of the 1992 IEEE/ACM International Conference on Computer-
aided Design. ICCAD ’92. Santa Clara, California, USA, 1992, pp. 408–
411 (cit. on p. 11).

[18] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic Model Checking
without BDDs.” In: Tools and Algorithms for the Construction and Analysis
of Systems: 5th International Conference. 1999, pp. 193–207 (cit. on p. 11).

80

Bibliography

[19] G. S. Tseitin. “On the Complexity of Derivation in Propositional Cal-
culus.” In: Automation of Reasoning 2: Classical Papers on Computational
Logic 1967-1970. 1983, pp. 466–483 (cit. on p. 12).

[20] A. Kuehlmann, S. Member, V. Paruthi, F. Krohm, and M. K. Ganai.
“Robust Boolean Reasoning for Equivalence Checking and Functional
Property Verification.” In: IEEE Trans. CAD 21 (2002), pp. 1377–1394

(cit. on p. 12).

[21] R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipu-
lation.” In: (1986), pp. 677–691. issn: 0018-9340 (cit. on p. 13).

[22] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
2013 (cit. on p. 13).

[23] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. M. Austin. “CrashTest: A fast high-fidelity FPGA-based re-
siliency analysis framework.” In: ICCD. 2008, pp. 363–370 (cit. on
p. 20).

[24] K. K. Goswami, R. K. Iyer, and L. Young. “DEPEND: A Simulation-
Based Environment for System Level Dependability Analysis.” In:
IEEE Transactions on Computers 46 (1997), pp. 60–74 (cit. on p. 20).

[25] N. Een, A. Mishchenko, and R. Brayton. “Efficient Implementation
of Property Directed Reachability.” In: Proceedings of the International
Conference on Formal Methods in Computer-Aided Design. FMCAD ’11.
Austin, Texas: FMCAD Inc, 2011 (cit. on p. 37).

[26] N. Eén and N. Sörensson. “An Extensible SAT-solver.” In: Theory and
Applications of Satisfiability Testing, 6th International Conference. 2003,
pp. 502–518 (cit. on p. 53).

[27] A. Biere. “Lingeling and Friends Entering the SAT Challenge 2012.” In:
Proc. of SAT Challenge 2012: Solver and Benchmark Descriptions. Vol. B-
2012-2. Department of Computer Science Series of Publications B,
University of Helsinki. 2012, pp. 33–34 (cit. on p. 53).

[28] A. Biere. “Picosat essentials.” In: Journal on Satisfiability, Boolean Model-
ing and Computation (JSAT (), p. 2008 (cit. on p. 53).

[29] F. Somenzi. CUDD: BDD package, University of Colorado, Boulder. http:
//vlsi.colorado.edu/~fabio/CUDD/ (cit. on p. 53).

81

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

Bibliography

[30] T. van Dijk and J. van de Pol. “Sylvan: multi-core decision diagrams.”
In: Tools and algorithms for the construction and analysis of systems.
Vol. 9035. Lecture notes in computer science. Apr. 2015, pp. 677–
691 (cit. on p. 53).

[31] R. Brayton and A. Mishchenko. “ABC: An Academic Industrial-
strength Verification Tool.” In: Proceedings of the 22Nd International
Conference on Computer Aided Verification. Conference on Computer
Aided Verification ’10. 2010, pp. 24–40 (cit. on p. 56).

[32] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T.
Vierhaus. “Evaluating Coverage of Error Detection Logic for Soft
Errors using Formal Methods.” In: Proceedings of the Design Automation
Test in Europe Conference. Vol. 1. Mar. 2006, pp. 1–6 (cit. on p. 68).

[33] D. Holcomb, W. Li, and S. A. Seshia. “Design as you see FIT: System-
level soft error analysis of sequential circuits.” In: 2009 Design, Au-
tomation Test in Europe Conference Exhibition. Apr. 2009, pp. 785–790

(cit. on p. 68).

[34] G. Fey, A. Sulflow, S. Frehse, and R. Drechsler. “Effective Robustness
Analysis Using Bounded Model Checking Techniques.” In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 30.8
(Aug. 2011), pp. 1239–1252 (cit. on p. 68).

[35] S. Frehse, G. Fey, E. Arbel, K. Yorav, and R. Drechsler. “Complete
and effective robustness checking by means of interpolation.” In:
Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge,
UK, October 22-25, 2012. 2012, pp. 82–90 (cit. on p. 69).

[36] E. Arbel, S. Koyfman, P. Kudva, and S. Moran. “Automated Detection
and Verification of Parity-protected Memory Elements.” In: Proceedings
of the 2014 IEEE/ACM International Conference on Computer-Aided Design.
ICCAD ’14. San Jose, California, 2014, pp. 1–8 (cit. on p. 69).

[37] C. Zhao and S. Dey. “Improving Transient Error Tolerance of Digital
VLSI Circuits Using RObustness COmpiler (ROCO).” In: Proceedings
of the 7th International Symposium on Quality Electronic Design. ISQED
’06. 2006, pp. 133–140 (cit. on p. 69).

82

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Our Approaches
	1.3 Thesis Outline

	2 Preliminaries
	2.1 Basic Notation
	2.2 Soft-Errors, Protection-Logic, Vulnerabilities and False-Positives
	2.3 Satisfiability
	2.4 Bounded Model Checking
	2.5 Tseitin Transformation
	2.6 And Inverter Graphs (AIGs)
	2.7 Binary Decision Diagrams (BDDs)
	2.8 Test Cases
	2.9 Concrete Simulation
	2.10 Transition Relation Unrolling

	3 Detecting vulnerable Latches
	3.1 Bounded Model-Checking Approach
	3.2 Simulation Based Analysis
	3.3 Semi-Formal Approach
	3.3.1 Point in Time Symbolic
	3.3.2 Point in Time And Location Symbolic

	4 Detecting False Positives
	4.1 False Positives - Point in Time Symbolic
	4.2 False Positives - Point in Time And Location Symbolic

	5 Detecting Definitely Protected Latches
	5.1 Testing latches individually for 1-step protection
	5.2 Testing multiple latches simultaneously for 1-step protection
	5.3 Testing latches individually for k-step protection
	5.4 Testing multiple latches simultaneously for k-step protection

	6 Algorithm Extensions
	6.1 Free Inputs Modes
	6.1.1 Free Inputs Modes for Simulation-based Algorithm
	6.1.2 Free Inputs Modes for semi-formal Algorithms

	6.2 Environment Models
	6.2.1 Environment Models for Simulation-based Algorithm
	6.2.2 Environment Models for SAT- and BDD-based Algorithms

	6.3 Combining the different Algorithm types

	7 Implementation
	7.1 Format specifications
	7.2 Algorithms and Modes
	7.2.1 Modes for Vulnerabilities
	7.2.2 Modes for False Positives
	7.2.3 Modes for Definitely Protected Latches
	7.2.4 Available Engines

	7.3 AlarmToMC - detecting vulnerable latches via bounded model-checking
	7.4 AddParityTool - adding a simple parity-net to circuits

	8 Experimental Results
	8.1 Benchmarks and Benchmarking Environment
	8.2 Performance Evaluation for the Detection of Vulnerable Latches
	8.2.1 Results with concrete Inputs only
	8.2.2 Amount of Unspecified Input Values
	8.2.3 Comparison with Model Checking
	8.2.4 Length of the Test Cases

	8.3 Performance Evaluation for the Detection of False Positives
	8.4 Performance Evaluation for the Detection of Definitely Protected Latches

	9 Related Work
	10 Conclusions
	Appendix
	A OpenSEA vulnerable latches example
	B OpenSEA false positives example
	C OpenSEA definitely protected latches example
	D Benchmark Properties and raw Results

	Bibliography

