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Abstract

The straight skeleton is a piecewise linear structure that is defined by a self-parallel
offsetting process. Given a polygon in the plane, the offsetting process shifts each
edge in a self-parallel manner. By following the moving vertices of the polygon, the
straight skeleton is created.

The present work starts with an explanation of the problems that arise during
the offsetting process. Moreover, it provides an overview of the most important
work on straight skeletons in the plane. The straight skeleton in the plane has got
attention in the field of computational geometry due to the work by Aichholzer et
al. in 1995 [AAAG95].

Up to now, little attention has been paid to the straight skeleton in space. The
focus of the present work is the investigation of the straight skeleton of general
polyhedra in 3-space. In 3-space, each facet of a given polyhedron is shifted in a
self-parallel manner. The straight skeleton is defined by following the moving edges
and vertices of the polyhedron. Compared to the offsetting process in the plane,
the solution of the offsetting process in 3-space turns out to be less intuitively. The
present work proves the existence of a solution. In contrast to the straight skeleton
in the plane, the solution is not unique any more. A simple example is provided
to show this ambiguity. Furthermore, an algorithm is presented to find all possible
offset polyhedra. The ambiguity is used to optimize the offset polyhedron (e.g.
maximize volume with a given offset).

During the offsetting process, a polyhedron experiences combinatorial and topo-
logical changes. Such changes are caused by events (e.g. the length of an edge
shrinks to zero). All possible events for non-degenerate polyhedra are analyzed and
categorized.

All presented algorithms have been implemented in C++. The implementation is
used to generate experimental results. This implementation also features an inter-
active animation of the offsetting process as well as the capability to render figures
for the paper.

Keywords: polygon offsetting, polyhedron offsetting, shrinking process, motorcycle
graph, roof construction, wavefront propagation
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1 Introduction

1.1 Skeletal Structures

In biology, the skeleton defines basic properties of an animal. The joints of the bones
give hints on how the animal might move. The skeleton tells how strong the animal
might be. It shows if the animal might be able to fly. It somehow defines the way of
life of an animal. Because it defines basic properties of animals, it is used to classify
them. To give an example, all birds have a skeletal structure that is comparable.

When the life of an animal is over, all that remains is its skeleton. A major part
of the scientific knowledge of dinosaurs is based on the skeletons, which were found.
Thus, it is obvious how fundamentally important skeletal structures for biology and
archeology are.

Similar applications of skeletal structures are found in computer science. Such
applications include shape matching in computer vision, animation techniques in
computer graphics and many more. All of them require a skeletal representation of
geometric objects. This is where computational geometry provides the tools.

There are various skeletal representations of geometric objects. Depending on the
application, a specific skeletal structure may have advantages over another one. An
overview of the most common skeletal structures is given in the next subsections.
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1 Introduction

1.1.1 Medial Axis

The most widely used skeletal structure is the medial axis. The medial axis of an
object is defined as the set of centers of maximal disks contained by the object. A
disk is maximal when it touches the boundary of the object at least at two points.
An example of the medial axis of a polygon is shown in Figure 1.1.

Figure 1.1: Medial axis of a polygon and defining circles

The medial axis was introduced by Blum in the year 1967 [Blu67]. His work was
motivated by a question in biology: How do animals or humans perform a selection
or a classification on geometric shapes? There are countless many different shapes.
A set of basic attributes should be sufficient to perform a selection. The medial
axis transformation was presented to extract such basic attributes from geometric
shapes. At the end of his work, he used an optical device to visualize grassfire
propagation by using photographic defocusing.

In 1987, Aggarwal, Guibas, Saxe and Shor found an algorithm to compute the
medial axis of convex polygons in Θ(n) time and space, where n denotes the size of
the polygon [AGSS87]. This time bound is optimal because the combinatorial size
of the medial axis is O(n).

In 1995, Chin, Snoeyink and Wang found an algorithm that computes the medial
axis of simple polygons in linear time [CSW95]. Their algorithm decomposes a given
polygon into so-called xy monotone histograms. The medial axis of xy monotone
histograms is computed in linear time. The individual medial axes of the histograms
are merged to obtain the entire medial axis of the given polygon. Overall, the
required time of this algorithm is linear in the size of the polygon.

2



1 Introduction

1.1.2 Straight Skeleton

Another skeletal structure is the straight skeleton. Compared to the medial axis, it
consists only of straight line segments. There are applications where this property
is mandatory. To give an example, the edges of the roofs of ordinary houses are
straight line segments.

The straight skeleton is defined by an offsetting process where each edge is shifted
inwards in a self-parallel manner. By following the vertices, the straight skeleton is
created. An example is shown in Figure 1.2.

Figure 1.2: Straight skeleton of the same polygon (Fig. 1.1) and a defining offset
polygon

Further explanations about the straight skeleton of polygons in the plane are given
in Chapter 2.

3



1 Introduction

1.1.3 Reeb Graph

The Reeb graph is a topological skeleton of a given manifold. It is an abstract graph
that does not define an embedding. The Reeb graph was introduced by Georges
Reeb in 1946 as part of the Morse theory [Ree46].

The height function f is a smooth, scalar-valued function on the manifold. A
node of the Reeb graph corresponds to a point where all partial derivatives of f are
zero, ∇f = 0. An example is shown in Figure 1.3.

f

(a) Manifold (b) Reeb graph (c) Reeb graph of boundary

Figure 1.3: Reeb graph

A typical application for the Reeb graph is a dip-coating process. To prevent
corrosion, objects of metal are covered by coatings. The dip-coating process moves
an object through a bath of liquid coating. The requirement for the object is that
the entire surface should be covered by a uniformly distributed coating. Depending
on the geometric shape of the object, there might be bubbles of air when the object
is completely dipped into the bath. When the object is removed from the bath,
too much liquid might be taken away. The Reeb graph helps to find such potential
problems beforehand.

4



1 Introduction

1.2 Outline

The present work is organized as follows. The next chapter explains properties
and algorithms of the straight skeleton of polygons in the plane. Starting with an
explanation of basic construction algorithms, it moves on to advanced algorithms,
and ends with a summary of recent results. Moreover, important properties of the
straight skeleton in the plane are highlighted.

In the third chapter, the straight skeleton of polyhedra in 3-space is examined.
Papers on the straight skeleton in 3-space are found very rarely. In 3-space, the
problem is slightly different. Facets of a given polyhedron are shifted in a way
that keeps them parallel to their initial orientation. The essential problem arises at
the very first moment. Vertices with a degree higher than three need to be split.
Chapter 3 investigates this problem in detail and provides an algorithm to solve it.

Chapter 4 explains data structures and an algorithm to implement the computaion
of straight skeletons of polyhedra. The implementation features an interactive an-
imation of the offsetting process as well as the capability to create figures for the
paper. In addition, it is explained how the data structures in memory are stored
on disk for further analysis. Experimental results are evaluated at the end of this
chapter.

Complete examples of shrinking polyhedra are depicted in Appendix A. Equations
for geometric operations, like the intersection of planes, angle bisector, etc., are found
in Appendix B.

Parts of this work have been published during various conferences and are con-
tained in the proceedings of these conferences [AW13a,AW13b,AW14].
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2 Straight Skeletons in the Plane

The straight skeleton in the plane is defined by an offsetting process. This offset-
ting process shifts every edge of the polygon in a self-parallel manner and at the
same time. When every edge is shifted inwards, the polygon shrinks. Therefore,
this process is also called shrinking process. During the shrinking process, arcs are
created by following the vertices of the shrinking polygon. A node is created when
the shrinking process requires combinatorial or topological changes of the polygon.
A combinatorial change is required when an edge vanishes. When the polygon is
split into two parts, a topological change of the polygon occurs.

The straight skeleton partitions the polygon into cells. These cells have useful
properties, which are explained later in this chapter. Figure 2.1 shows an example
of a shrinking, convex polygon and the resulting straight skeleton.

Figure 2.1: Offsetting a polygon

The first ideas on this topic were written down in the 19th and 20th century.
When constructing a roof of a house, it is mandatory that the water of raindrops
always finds a way to the ground [vP77,Mü16].

The first known algorithm to construct a bisector skeleton was explained by Bras-
sel, Heller and Jones in the year 1984 [BHJ84]. Their bisector skeleton is equal to
the unweighted case of the straight skeleton in the plane.

The straight skeleton in the plane became widely known by the work of Os-
win Aichholzer, Franz Aurenhammer, David Alberts and Bernd Gärtner in 1995
[AAAG95]. This work defined the straight skeleton in a procedural way. Based
on this definition, a construction algorithm handles events that occur during the
shrinking process in chronological order. The events require combinatorial or topo-
logical changes to the shrinking polygon. Furthermore, fundamental properties of
the straight skeleton were proven.

6



2 Straight Skeletons in the Plane

This chapter provides an overview of the most important work on straight skele-
tons in the plane. Various algorithms to construct a straight skeleton are explained
here. The difficulties of constructing the skeleton efficiently are highlighted. At the
end of this chapter, properties and applications of straight skeletons in the plane are
summarized.

7



2 Straight Skeletons in the Plane

2.1 Simple Polygons

This section is devoted to the fundamental properties of the straight skeleton found
in [AAAG95]. At the beginning of this chapter, it was mentioned that the straight
skeleton is defined by a shrinking process. Every edge of the polygon is shifted
inwards in a self-parallel manner. When all edges are shifted with the same speed,
the vertices of the polygon move on angle bisectors of incident edges. The edges
change their length during the shrinking process. This depends on the angle between
adjacent edges. When a reflex vertex meets an edge, the edge is split. An example
of the shrinking process is shown in Figure 2.2.

(a) Offset polygons (b) Straight skeleton

Figure 2.2: Straight skeleton of a simple polygon (input from [AAAG95])

The shrinking process is used to define the straight skeleton. To compute the
straight skeleton, the computation of offset polygons is not required. It is sufficient
to know which events change the polygon during the shrinking process. The order
of the events is substantial for the structure of the straight skeleton.

2.1.1 Events

Events change the polygon during the shrinking process. There are two types of
events. The vanishing of an edge induces combinatorial changes on the polygon.
This event is called an edge event. When a reflex vertex meets an edge, the polygon
is split. The so-called split event changes the polygon topologically.

Edge Event

The position where an edge vanishes is determined by the intersection of the sup-
porting lines of its adjacent skeleton arcs. If all edges are shifted with the same
speed, this is the intersection of its adjacent angle bisectors. The time of the event
is determined by the perpendicular distance from the edge to the corresponding edge

8



2 Straight Skeletons in the Plane

(a) Edge event (b) Split event

Figure 2.3: Events

event. Only information from the local structural neighbourhood is used to compute
this event.

A shrinking triangle has three edges that vanish at the same time and at the same
position. If all edges are shifted with the same speed, this position is the center of
the incircle.

Split Event

When a reflex vertex meets an edge of the polygon, a split event happens. This event
splits the edge and, very likely, the polygon. To compute the next split event, it is
not sufficient to investigate the local structural neighbourhood of the reflex vertex.
A reflex vertex can meet any non-incident edge of the polygon.

The position of a split event is, like the edge event, determined by the intersection
of supporting lines of skeleton arcs.

Another way of computing the position is the following. During the shrinking
process, the vertex moves on a line. By determining start position and the speed of
the vertex and the start position and speed of the edge on this line, the position of
the split event can be computed.

When the split events are computed, it is important to pay attention to changes
of the polygon during the shrinking process. Cases that need special attention are
illustrated in Figure 2.4.

(a) The ray of the reflex vertex points
to the vertical edge. This edge may not
be involved in the split event.

(b) The path of a reflex ver-
tex may be cut off by another
reflex vertex.

Figure 2.4: Challenging split events

9



2 Straight Skeletons in the Plane

2.1.2 Bisector Graphs

Two edges of a polygon define the supporting line of one edge of the bisector graph.
The edges of the bisector graph are also called arcs, like the arcs of the straight
skeleton. The supporting line of an arc halves the angle between the supporting
lines of two edges. The arcs are bounded by the vertices of the polygon and by the
nodes of the bisector graph. Each node is the intersection point of (at least) three
bisectors. In the present work, only bisector graphs are of interest that are:

1. planar (free of crossings)

2. completely inside the polygon

3. do not introduce cycles

Even with these restrictions, the definition of bisector graphs is ambiguous. An
example is given in Figure 2.5.

Every straight skeleton is a bisector graph. In contrast to the ambiguous definition
of bisector graphs, the straight skeleton is uniquely defined by the shrinking process.

(a) Bisector graph I (straight skeleton) (b) Bisector graph II

Figure 2.5: Planar bisector graphs are ambiguous (based on Fig. 2 in [AAAG95])

The straight skeleton of a polygon without holes is an unrooted binary tree. The
leaves of this tree represent the n vertices of the polygon. An unrooted binary tree
has n− 2 nodes and 2n− 3 arcs.

10



2 Straight Skeletons in the Plane

2.1.3 Roof Model

The roof model is an interpretation of the straight skeleton as the roof of a house.
The ground plan of the house is used as polygon for the input. The time of the
shrinking process is interpreted as third spatial dimension (height). Each offset
polygon is understood as a contour line that marks positions with an equal height.

The interpretation of the offset as height is used to prove properties of the straight
skeleton [AAAG95]. Every raindrop that hits a facet of the roof (cell of the straight
skeleton) is able to drain off at the corresponding edge of the cell. For this reason,
the straight skeleton can be used to construct roofs.

2.1.4 Monotonicity

A cell is monotone in a direction if, and only if, an intersection with any line that
is perpendicular to this direction results in a line segment, which is connected. An
example of this property is given in Figure 2.6.

`

e
(a) Not monotone

e
(b) Monotone

Figure 2.6: Monotonicity in direction of edge e

A property of plane bisector graphs is the monotonicity of its cells. The roof model
of the unweighted straight skeleton has the same slope for every roof facet (cell).
A line on a roof facet maximizes its slope when it is perpendicular to the defining
edge. The monotonicity of the cells is proven by contradiction [AAAG95]. To create
a contradiction, it is assumed that a cell is not monotone. A line that maximizes
its slope leaves the roof facet and re-enters the same facet at a higher point. In
between these two points, the line is projected vertically onto the roof. The slope of
the projection is less than the slope of its originating line. When the line re-enters
its corresponding roof facet, the roof would not be continuous at that point. This
leads to a contradiction because every plane bisector graph can be interpreted as a
roof that is continuous [AAAG95]. Therefore, each cell is monotone in direction of
its defining edge.

11



2 Straight Skeletons in the Plane

2.2 Triangulated Polygons

An efficient and easy-to-implement algorithm to construct the straight skeleton in
the plane is explained by Aichholzer und Aurenhammer in [AA96]. A triangulated
polygon is given as input. When the polygon shrinks, the triangles of the triangu-
lation stay connected with the moving vertices until an event occurs.

The triangulation helps to find the next event to construct the straight skeleton.
The triangles create a structure where every event is found in a local structural
neighbourhood. The position of every event is determined by the collapsing of a
triangle. A triangle collapses when all three points of the triangle are on a line.

To keep the triangulation valid during the shrinking process, an additional event is
introduced: The flip event handles the necessary flip of an edge inside a quadrangle.
This event does not directly influence the resulting straight skeleton.

Edge events and split events of the straight skeleton are also found when a triangle
collapses. Figure 2.7 gives an example for every event and shows collapsing triangles.

(a) Flip event (b) Edge event (c) Split event

Figure 2.7: Collapsing triangles and corresponding events

A priority queue is used to find the next event. The time of the collapse is used
as priority.

A triangle collapses when its (signed) area equals zero. In the following equations,
the time is denoted by t. All three points of the triangle pi(t) = (xi(t), yi(t)), i ∈
{1, 2, 3} start at position pi(0). During the shrinking process, the points move on
angle bisectors. Their velocities are denoted by vi = (vxi, vyi). Equation 2.1 is
quadratic in time t and has at most two solutions for t.

1
2

∣∣∣∣∣∣
x1(0) + t · vx1 x2(0) + t · vx2 x3(0) + t · vx3

y1(0) + t · vy1 y2(0) + t · vy2 y3(0) + t · vy3

1 1 1

∣∣∣∣∣∣ = 0 (2.1)

The expected time for computing the straight skeleton of ordinary polygons using
this algorithm is O(n log n). The proven upper bound for the time complexity is
O(n3 log n) [AA96]. This time complexity is caused by the number of possible flip
events. The triangulation influences the number of required flip events.

12



2 Straight Skeletons in the Plane

2.3 Weighted Straight Skeletons

If all edges of a given polygon propagate at the same speed, the roof model consists
of facets with equal slopes. Aichholzer and Aurenhammer have generalized the
concept of straight skeletons to generate roofs and terrains with prescribed facet
slopes [AA96]. The propagation speed of individual edges is adjusted to match the
required facet slopes. This may change the topological structure of the straight
skeleton. Furthermore, basic properties of the straight skeleton are lost. Figure 2.8
shows an example where a cell is not monotone in direction of its incident edge.

e1

Figure 2.8: Edge e1 propagates faster than any other edge. The cell belonging to
edge e1 is not monotone in direction of its edge.

Besides the monotonicity of cells, the weighted straight skeleton of a polygon with
holes may have cells with holes. This applies if an edge propagates fast over a hole
of the polygon. The created cell encloses this hole.

Huber has observed that the definition of the straight skeleton is ambiguous when
two parallel edges with different weights became adjacent [Hub11]. This is visualized
in Figure 2.9. Edge e1 is slightly tilted. Edge e3 propagates twice as fast as edge e1.
When edge e1 and edge e3 become parallel, the straight skeleton is ambiguous.

e1 e2

e3

e1 e2

e3

Figure 2.9: The weighted straight skeleton is ambiguous when edge e1 and edge e3

become parallel.

13



2 Straight Skeletons in the Plane

2.4 Efficient Data Structures: Half-Space Range Searching

Eppstein and Erickson were the first who have used efficient half-space data struc-
tures to compute the straight skeleton in the plane [EE99]. Their paper shows how
to find pairwise interactions between objects using efficient data structures. Their
time complexity analysis shows a subquadratic upper bound for the computation of
the straight skeleton. It can be computed in O(n1+ε + n8/11+εr9/11+ε) time, given
a polygon with n vertices and r reflex vertices. ε is an arbitrary small positive con-
stant. This constant hides various other constants used by underlying algorithms.

Prior to understanding their algorithm for the computation of the straight skele-
ton, a simpler problem must be explained. The explanation begins with a given
set of rays in 3-space. As the result, the lowest intersection for a query triangle is
determined.

Their algorithm is based on a multi-level data structure. The first level is a half-
space range searching data structure by Matoušek [Mat93]. This data structure is
initialized with the given set of rays in 3-space. A triangle in 3-space has an oriented
supporting plane. The half-space data structure efficiently finds rays that intersect
the supporting plane of the query triangle.

The next level of this multi-level data structure efficiently finds intersections inside
the triangle. The three edges of the triangle have three supporting lines. Using
the relative orientations between the supporting line of the ray and these three
supporting lines, it is determined whether the ray intersects the triangle. This is
achieved with a data structure by Agarwal and Matoušek [AM94].

The relative orientation of two lines in 3-space is calculated by the (signed) volume
of a tetrahedron. The sign of the result determines the orientation of the lines. Two
points on a line that are not on the same position define a direction. Two lines
and two points on each line span a tetrahedron with four points pi = (xi, yi, zi), i ∈
{1, ..., 4}. Equation 2.2 shows the determinant to calculate the (signed) volume of a
tetrahedron.

V =
1
6

∣∣∣∣∣∣∣∣
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

∣∣∣∣∣∣∣∣ (2.2)

Parametric search is used to find the lowest intersecting ray. The relative orien-
tation of a fourth horizontal line is used to find the lowest intersection. This level
uses a data structure by Chazelle et al. [CEG+96].

All of the involved data structures can efficiently handle a changing set of rays.
Rays need to be removed during the computation of the straight skeleton. By
interpreting the time of the shrinking process as a third spatial dimension, the
straight skeleton becomes a roof model [AAAG95].

At the beginning of the shrinking process, no interactions or events have taken
place. Every edge of the given polygon defines a triangle in 3-space, which is pos-
sibly unbounded. The initial direction of incident vertices define the bounds of this
triangle. Every reflex vertex of the given polygon defines a ray in 3-space. The slope
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2 Straight Skeletons in the Plane

of each ray is determined by the intersection of the supporting planes of incident
triangles. These triangles and rays are considered for pairwise interactions. By find-
ing the next pairwise interaction, the next split event is found efficiently. The whole
sequence of edge and split events define the resulting straight skeleton.

2.4.1 Lower Envelope of Slabs

Eppstein and Erickson have introduced two types of slabs in 3-space. The vertical
projection of the lower envelope of these slabs onto the given polygon reveals its
straight skeleton [EE99].

Each edge of the polygon defines an edge slab. It is bounded by the defining
edge and two rays originating at the incident vertices of this edge. Both rays have
a direction perpendicular to the defining edge. The slope of the slab is equal to the
slope of the corresponding facet of the roof model.

Each reflex vertex defines two reflex slabs. A reflex slab is bounded by the edge of
the roof (arc) created by the reflex vertex. Furthermore, a vertex has two incident
edges that are part of the given polygon. The direction of one of these edges is used
to define two rays perpendicular to the defining edge. The first ray has its origin at
the position of the reflex vertex. The second ray has its origin at the position of the
node on the roof created by the reflex vertex. These two rays bind one of the two
reflex slabs defined by the reflex vertex.

An example of this definition is visualized in Figure 2.10.

(a) An edge defines an edge slab. (b) A reflex vertex defines two reflex
slabs.

Figure 2.10: Top view of edge and reflex slabs

Although the position of the node on the roof created by a reflex vertex is not
locally defined, this model helps to compute the unweighted straight skeleton in time
and space O(n1+ε + n8/11+εr9/11+ε) [EE99].

15



2 Straight Skeletons in the Plane

If the edges propagate with different speeds, the created roof is not a lower enve-
lope of its slabs [EE99]. An example is shown in Figure 2.11.

Figure 2.11: The roof of a polygon with weighted edges is not the lower envelope
of its slabs. The shaded region is cut off by the edge slab of the leftmost edge. This
edge moves faster than all other edges. (based on Fig. 6 in [EE99])
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2 Straight Skeletons in the Plane

2.4.2 Motorcycle Graphs

A further pairwise interaction problem handled by Eppstein and Erickson is the
motorcycle graph [EE99]. A motorcycle has an initial position and a velocity in
the plane. Each motorcycle drives on a straight line with constant speed. While
a motorcycle moves, it creates a wall where other motorcycles can not pass. An
example is shown in Figure 2.12. The length of an arrow corresponds to the speed
of a motorcycle.

Figure 2.12: Motorcycle graph

This problem is also solved by finding pairwise interactions between rays and
triangles. Again, time is interpreted as third spatial dimension. The rays have
a direction that lifts the track of a motorcycle into the third dimension. At any
one moment in time, the projection of the position of each motorcycle onto the
corresponding ray has the same height. Below the projected tracks, triangles are
placed. These triangles grow during the movement of the motorcycles in the plane.
When a growing triangle hits a ray, the corresponding motorcycle crashes into the
wall left by the motorcycle belonging to the ray.

Their complexity analysis shows that the motorcycle graph can be computed in
time and space O(n17/11+ε) [EE99].

17



2 Straight Skeletons in the Plane

2.5 Motorcycle Graphs and Straight Skeletons

The difficulty of constructing a lower envelope of slabs is that the reflex slabs are not
only defined by local properties. Cheng and Vigneron use the motorcycle graph to
define motorcycle slabs [CV02]. When the motorcycle graph of a polygon is given,
the motorcycle slabs are locally defined.

To construct a motorcycle graph of a polygon, each reflex vertex is replaced by
a motorcycle. The velocity of each motorcycle matches the velocity of the reflex
vertex during the offsetting process. These motorcycles are used to compute the
motorcycle graph of the given polygon. In addition, the motorcycles run out of fuel,
when they reach the boundary of a polygon.

The path of each motorcycle defines two motorcycle slabs. Each motorcycle slab is
bounded by rays at the origin and destination of the motorcycle path. The direction
of these rays are perpendicular to the edges that are incident to the corresponding
reflex vertex. The slope of the motorcycle slab is equal to the slope of the corre-
sponding facet of the roof model. Motorcycle slabs are compared to reflex slabs
(defined in Section 2.4.1) in Figure 2.13. The roof of a given polygon is the lower
envelope of edge and motorcycle slabs [CV02].

(a) Two reflex slabs (b) Two motorcycle slabs

Figure 2.13: Top view of reflex slabs compared to motorcycle slabs

Because all motorcycle slabs are only defined by local properties, an efficient
divide-and-conquer algorithm for constructing the straight skeleton of a given poly-
gon and its pre-computed motorcycle graph is possible.

Cheng and Vigneron describe such an algorithm, where the polygon gets divided
by a canonical partition [CV02]. This partition is induced by ridge points. A ridge
point is a point on an edge of the roof model. Each edge of the roof model has two
incident facets. Therefore, there are two paths that a raindrop may take when it
hits a ridge point. The raindrop follows the path of the steepest descent. When a
raindrop hits a vertex of the roof model, there are three paths of the steepest descent.
By following the steepest descents, a ridge point induces a canonical partition of the
underlying polygon.
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2 Straight Skeletons in the Plane

The computation of the roof model starts by computing the boundary of an ar-
bitrary facet f . The current cell of the partition has nc facets. All slabs of the
current cell are intersected with the supporting plane of the facet f . This results
in O(nc) line segments. It takes O(nc log nc) time to find the lower envelope of line
segments [Her89]. The facet is bounded by this lower envelope.

After the facet has been computed, a vertex of this facet is chosen. The straight
skeleton is an unrooted binary tree. Cheng and Vigneron define the root to be the
node that balances the size of both subtrees [CV02]. A vertex (node) of the facet
v(f) is chosen that is structurally closest to the root of the straight skeleton. The
straight skeleton does not need to be known at this step. Because the facets of the
roof model are ordered, the difference between their indices modulo nc show where
the larger subtree is.

A vertical line is placed that passes through the vertex v(f). This line is used
to find the ridge points that induce a further partition of the polygon. The line is
interpreted as the top view of a plane. All slabs of the current cell are intersected
with this plane. Using the lower envelope of the resulting line segments, ridge points
are determined. This is visualized in Figure 2.14.

v(f)

Figure 2.14: Divide and conquer (based on Fig. 8 in [CV02])

Each cell of the partition is recursively partitioned further, until the cells are small
enough so that the roof model of each cell is found easily. The roof models of the
cells are merged to obtain the roof model of the given polygon.

Given a polygon and its motorcycle graph, the algorithm by Cheng and Vigneron
computes the straight skeleton in O(n log2 n) time [CV02]. For a polygon with
h holes, this algorithm takes O(n

√
h + 1 log2 n) time to compute the straight skeleton

given the polygon and its motorcycle graph [CV07].
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2 Straight Skeletons in the Plane

2.6 Accelerated Motorcycles

In 2013, Vigneron and Yan presented A Faster Algorithm for Computing Motorcycle
Graphs [VY13]. Their algorithm keeps a tentative track and a confirmed track for
each motorcycle. Because of the tentative tracks, the events of this algorithm might
not be handled in chronological order. An event might create new events that
happen earlier, but are processed later. The events are stored by a priority queue.
The priority of an event is determined by the time when it happens. The priority
queue finds the next event efficiently.

A ray-shooting data structure is used to extend tentative tracks. During the
computation, this data structure ensures that no tentative tracks cross.

Each motorcycle i has a stack Si with target points. At the beginning, each stack
contains the starting point si and the point di, where the motorcycle runs out of
fuel. An event of motorcycle i is denoted by (i, p), where p is the position of the
event. The algorithm is explained in Figure 2.15 by giving an example.

Their time complexity analysis shows that the motorcycle graph can be computed
in O(r4/3+ε) time, where r denotes the number of motorcycles [VY13].
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s1

s2

d1

d2

(a) At the beginning, the first event (1, s1) ex-
tends the tentative track of motorcycle 1.

s1

s2

d1χ12

d2

(b) Event (2, s2) extends the tentative track
of motorcycle 2. By querying the ray-shooting
data structure, a crossing point χ12 is found.
Two new events (1, χ12) and (2, χ12) are cre-
ated.

s1

s2

p2

p1 d1χ12

d2

(c) When a crossing point is found, the ten-
tative tracks of involved motorcycles are short-
ened. This creates two additional events (1, p1)
and (2, p2)

s1

s2

p2

p1 d1χ12

d2

(d) Event (2, p2) extends the confirmed and
tentative track of motorcycle 2.

s1

s2

p2

p1 d1χ12

d2

(e) Event (1, p1) extends the confirmed and ten-
tative track.

s1

s2

p2

p1 d1χ12

d2

(f) While the tentative tracks are extended, no
new crossing points are found.

s1

s2

p2

p1 d1χ12

d2

(g) Event (1, χ12) finds the destination for mo-
torcycle 1.

s1

s2

p2

p1 d1χ12

d2

(h) At the end, all motorcycles have found their
destinations and no tentative tracks remain.

Figure 2.15: Example for A Faster Algorithm for Computing Motorcycle Graphs
[VY13]. In this example, both motorcycles have the same speed.
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2 Straight Skeletons in the Plane

2.7 Properties

As its name implies, the straight skeleton consists only of straight line segments.
A remarkable property of the unweighted case (all edges propagate with the same
speed) is the monotonicity of its cells. Monotonicity is of use in various algorithms.

2.7.1 Size

The size of the straight skeleton is linear in the size of the given polygon. If the
polygon has no holes, the structure of the straight skeleton is an unrooted binary
tree. For a polygon with n vertices, its straight skeleton has exactly n connected
facets, n− 2 nodes and 2n− 3 arcs [AAAG95].

If the given polygon has holes, its straight skeleton is not an unrooted binary
tree. Each hole introduces a cycle into the structure of the straight skeleton. For a
polygon with h holes, there are n− 2 + 2h nodes and 2n− 3 + 3h arcs.

2.7.2 Time Complexity

A gap still exists between the lower and the upper bound for the time required for
computing the straight skeleton of a polygon.

Lower Bound

A trivial lower bound for computing the straight skeleton is given by its size, which
is linear in the size of the given polygon. For convex polygons, the unweighted
straight skeleton is equal to its medial axis. The medial axis of convex polygons can
be computed in time linear in the size of the input [AGSS87].

For polygons with holes, there is a lower bound, which results from a reduction
to sorting [Hub11]. As it is well known, sorting of n numbers requires at least
Ω(n log n) time. (There are n! possible permutations. A lower bound for the factorial
is n! ≥

(
n
2

)n/2. The height of a balanced tree is logarithmic in the number of its
leaves.)

The straight skeleton is used for sorting numbers as follows: For each number, a
triangle is placed on a line. The distance of each triangle to a predefined origin is
equal to the value of the corresponding number.

After the triangles are placed, a bounding box is drawn that includes all triangles.
An example of this construction is shown in Figure 2.16. When the straight skeleton
is computed, the sorted numbers are obtained by traversing the arcs of the cell on
top. This reduction proves the lower bound for computing the straight skeleton of
polygons with holes, which is Ω(n log n).
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2 Straight Skeletons in the Plane

Figure 2.16: Lower bound for computing the straight skeleton of a polygon with
holes (based on Fig. 10 in [Hub11])

Upper Bound

The upper time bound for computing the straight skeleton of polygons was lowered
over time. Table 2.1 shows the most important algorithms and their time complexity.

Algorithm Time Notes
[AAAG95] O(nr log n) Priority queue to process

events sequentially
[AA96] O(n3 log n) Structural locality due to

shows O(n log n) in most cases triangulation
[EE99] O(n1+ε + n8/11+εr9/11+ε) Subquadratic time bound with

various algorithms involved
[CV02,CV07] O(n

√
h + 1 log2 n + r

√
r log r) Randomized algorithm reduces

straight skeleton computation to
motorcycle graph computation

[VY13] O(n
√

h + 1 log2 n + r4/3+ε) Faster motorcycle graph
[CMV14] O(n(log n) log r + r4/3+ε) Deterministic algorithm for

reduction

Table 2.1: Evolution of the upper time bound for computing the straight skeleton of
a polygon with n vertices, of which r are reflex. The polygon has h holes. ε denotes
a small positive constant, which hides various constants of involved algorithms.
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2 Straight Skeletons in the Plane

2.8 Applications

2.8.1 Road Centerlines

From an airplane, an areal image of a city is acquired easily. In this image, all
streets have an intentional width. A skeletal representation of the streets is essential
for many applications. For instance, routing for car navigation needs the streets
represented as abstract graph. The nodes of this graph reflect geometric important
positions, such as crossings. These nodes are connected with weighted edges. The
weight of the edge can be the geometric distance between the nodes or the time
required to get from one node to the other. Dijkstra’s algorithm is used to compute
the shortest path between two nodes.

Haunert and Sester use the straight skeleton to compute road centerlines given
a polygonal representation of roads [HS08]. These centerlines can be used to find
various paths (shortest, fastest) between two points of interest or to draw a simple
street map. For street maps, it is preferable when all streets are drawn with an
equal width.

2.8.2 Geometric Modelling

Geometric models for three-dimensional computer graphics are typically represented
as a mesh of the surface. This mesh usually consists of a number of triangles and
their vertices. Such a representation of geometry is inefficient when the geometry
consists of similar, repetitive parts. To give an example, it is inefficient to model
each blade of grass as vertices and triangles. A more complex example is found in
architecture. Most buildings have evenly distributed windows in the same design.
The surface of each single window can explicitly be described with triangles or, for
example, as a procedure that evenly distributes a variable number of windows on a
wall.

The Generative Modeling Language (GML) by Havemann [Hav05] features a de-
scription of geometry with procedural models. Intersection-free extrusion is manda-
tory for many procedural definitions, like an automatic roof construction. This is
where the straight skeleton finds its application.

2.8.3 Origami

Origami is the ancient Japanese art of paper folding. In Japanese, ori means folding
and kami means paper. Usually, the folding starts with a square sheet of paper. The
result of several folding steps is an easily recognisable sculpture, like the famous
Origami crane. Typically, cutting of the paper is not allowed.

A related art of folding paper is to fold a sheet of paper in a way that a single
straight line cut creates a desired polygonal shape when the paper is unfolded. To
give an example, a five-pointed star is created by folding a paper four times and
cutting a straight line with a scissor.
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The work by Demaine et al. answers the question whether any polygonal shape
can be created by a single straight line cut when the sheet of paper gets folded many
times [DDL98]. Of course, this is more a theoretical point of view because the sheet
of paper doubles its thickness at every folding step. To reduce the number of edges
to cut, the sheet of paper has to be folded at angle bisectors of the edges of the
polygonal shape. When the folding lines are shown inside the polygonal shape, it is
obvious that these lines include the straight skeleton. Their work proved that two
straight line cuts are sufficient to create any polygonal shape by folding.
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3 Straight Skeletons in Space

A polyhedron is a closed and interior-connected subset of the 3-space R3 with a
piecewise linear boundary. It consists of vertices, edges and facets. A vertex is a
point that has incident edges and facets. An edge is a straight line segment that
connects two vertices. Coplanar edges bound the area of a facet.

The straight skeleton of a polyhedron is defined by an offsetting process, where
each facet is shifted inwards in a self-parallel manner. The fundamental problem
arises at the very first moment of this process: A point in 3-space is defined by
the intersection of three planes. Some vertices of a given polyhedron may have
more than three incident facets. When shifting all facets in parallel and at the
same time, vertices need to be split into vertices of degree 3. An example is shown
in Figure 3.1. In the shown example, the vertex has only convex incident edges.
Vertices with convex and reflex incident edges are more challenging. (e.g. the vertex
at the center of a star shaped polyhedron.)

(a) Pyramid with a vertex of de-
gree 4 on top

(b) Vertex splits into two vertices of
degree 3

Figure 3.1: Polyhedron offsetting

An offsetting process towards the interior of the polyhedron is called shrinking
process. During the shrinking process, moving vertices trace out the arcs of the
straight skeleton. By following the edges, skeletal facets are created. The skeletal
facets are called sheets. A node of the straight skeleton is created where an event
occurs. Such events cause combinatorial or topological changes of the given polyhe-
dron during the shrinking process. Every facet of the polyhedron gives rise to exactly
one cell, which is bounded by skeletal facets. An example is shown in Figure 3.2.
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Figure 3.2: Straight skeleton of a pyramid

At the beginning of this chapter, existing works regarding this topic are sum-
marized. Ideas from lower dimensions are used to guide the thoughts into 3-space.
A visualization is presented that perfectly fits to the vertex-splitting problem. An
algorithm for constructing the straight skeleton in 3-space is presented. Results of
generic configurations are shown.
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3.1 Prior Work

Letting a polyhedron shrink in a self-parallel manner is an essential task in geometry.
However, papers on this topic are rare.

The first paper on straight skeletons of three-dimensional polyhedra was done
by Barequet, Eppstein, Goodrich and Vaxman [BEGV08]. At that time, it was
the most complete paper on straight skeletons in 3-space. At the beginning of this
paper, a voxel-based algorithm to approximate the shrinking process is explained.
The next section shows how to handle axis aligned polyhedra. At the end, general
polyhedra are discussed. In their paper, a lower bound for the complexity of the
straight skeleton in 3-space is proven.

3.1.1 Voxel-based Approach

A voxel is a cubical cell in a regular, axis aligned grid in three-dimensional space. For
the three-dimensional space, a voxel is the same as a pixel for the two-dimensional
plane. The voxel-based approach considers cases in which the input polyhedron is
formed as a union of connected voxels.

To shrink a given polyhedron, voxels of its boundary are analyzed. Each of these
voxels has exactly six directly adjacent voxels. The adjacent voxels are used for a
case distinction. To give an example, a voxel might have two of its sides as part of
the polyhedron’s boundary (facets). The resulting straight skeleton for this voxel
can easily be obtained by predefined cases. After each voxel on the boundary has
been processed, the result is that each facet of the polyhedron has been shifted
inwards the length of a voxel. The straight skeleton remains from the previously
done case distinctions of directly adjacent voxels.

This algorithm takes Θ(V ) time, where V denotes the volume as number of voxels.
This basic algorithm is improved so that the straight skeleton is computed in time
proportional to the surface area of the input polyhedron [BEGV08].

3.1.2 Orthogonal Polyhedra

The next step from voxel-based polyhedra to general polyhedra are orthogonal poly-
hedra. An orthogonal polyhedron is a polyhedron, where all of its facets are aligned
to two of the coordinate axes.

The shrinking process continuously moves all facets inwards. Although the facets
continuously move inwards, there can be a discontinuous change of the polyhedron’s
surface when two parallel facets meet. The resulting straight skeleton is equal to
the medial axis in the L∞ metric. The benefit gained from orthogonal polyhedra
is that the number of possible events during the shrinking process is limited and
can be enumerated. Barequet et al. use an enumeration of possible events to prove
the structural complexity of the straight skeleton of orthogonal polyhedra to be
O(n2), where n denotes the number of vertices. Furthermore, the straight skeleton
of orthogonal polyhedra can be computed in O(n2 log n) time [BEGV08].
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An implementation for computing the straight skeleton of orthogonal (axis aligned)
polyhedra was done by Jonas Martinez [MVPG11].

3.1.3 Lower Bound for General Polyhedra

The straight skeleton of a convex polyhedron is equal to its medial axis. In the
convex case, both skeletons consist only of piecewise linear parts. In 1994, Held used
this property to compute the medial axis of convex polyhedra by using a wavefront
propagation of the facets [Hel94]. A lower bound for the structural complexity was
shown. An example of his idea is visualized in Figure 3.3. When the polyhedron
shrinks, the facets in front get in contact with the facets at the back. This creates
a squared number of skeletal facets in between.

(a) Convex polyhedron (b) Straight skeleton

Figure 3.3: A convex polyhedron and its skeleton, which is quadratic in the size
of the polyhedron.

Figure 3.4 shows a polyhedron where the offsetting process splits a single facet
into a squared number of facets. It is a rectangular prism that is small in height
and has tetrahedral spikes pointing to the inside. The resulting straight skeleton is
quadratic in the size of the polyhedron.

(a) Initial polyhedron (b) Offset polyhedron (c) Straight skeleton

Figure 3.4: This polyhedron is the iron maiden pizza box by Tim Culver.
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Barequet et al. constructed a lower bound for the straight skeleton of general
polyhedra with a set of triangular prisms [BEGV08]. The prisms are aligned in a
way such that the projection to a plane behind creates a set of line segments on that
plane. This alignment is illustrated in Figure 3.5.

Figure 3.5: A set of triangular prisms. The upper envelope of the projected line
segments is highlighted.

In the worst case, the upper envelope of a set of n line segments has a structural
complexity of Ω(nα(n)), where α(n) denotes the inverse of the Ackermann function
[WS88].

A polyhedron is constructed with a set of prisms at the bottom and a second set
of prisms at the top. During the offsetting process, the prisms at the bottom are
growing upwards and prisms on top are growing downwards. Both sets of prisms
create a squared number of intersections when they crash into each other. Therefore,
the lower bound for general polyhedra is Ω(n2α2(n)), which is slightly greater than
Ω(n2) [BEGV08].
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3.2 From Plane to Space

Let a vertex with more than three incident edges be given, where all incident edges
can be intersected with a single plane. Such a vertex is called a pointed vertex.
The plane intersects the corresponding polyhedron in a way that the intersection is
a bounded, crossing-free polygon. The straight skeleton is defined by shifting each
facet in a self parallel manner. This means that edges of this polygon are shifted in a
self parallel manner too. Their speed is determined by the inner angle ϕi between the
intersecting plane and the corresponding facet. Equation 3.1 shows how to compute
the weight wi of the edge. This weight corresponds to the speed of the edge.

wi =
1

sinϕi
(3.1)

1
ϕ

facet

intersecting plane

Figure 3.6: Speed on intersecting plane

Computing the weighted straight skeleton in the plane computes a cross-section
of a possible straight skeleton in space. The structure of the weighted straight
skeleton in the plane shows how the given vertex needs to be split. Each node
of the weighted straight skeleton in the plane belongs to a vertex of the shrinking
polyhedron in space.

(a) Polyhedron intersected with a plane (b) Weighted straight skeleton
of cross-section

Figure 3.7: From plane to space

Unfortunately, this approach only works for pointed vertices.
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u

e1

e3

Figure 3.8: Edge e1 and edge e3 can not meet at node u.

The weighted straight skeleton in the plane shows an ambiguity issue when edges
with different weights become parallel (see Figure 2.9 in Section 2.3). This issue can
not occur when a pointed vertex is intersected with a plane that determines the speed
of each edge. The proof is done by contradiction. It is assumed that edge e1 and
edge e3 meet and create a node of the weighted straight skeleton. This assumption
is illustrated in Figure 3.8. For this observation, it is required that the node u is
vertically below the pointed vertex. The node is contained by the intersection of
the polyhedron with the plane. Depending on the location, the plane intersects the
polyhedron at a different angle. Because the weighted straight skeleton is a cross-
section of the three-dimensional straight skeleton, tilting the intersecting plane does
not change the combinatorial structure of the skeleton. The distance between the
pointed vertex and the intersecting plane is denoted by h. An edge ei meets the
node u after it has moved a distance of h

tan ϕi
. With a speed of 1

sin ϕi
, edge ei reaches

the node at time h cos ϕi. The geometric configuration from Figure 3.8 does not
allow to fulfill the equation cos ϕ1 = cos ϕ3. Therefore, edge e1 and edge e3 can not
meet during the shrinking process of the polyhedron.

The straight skeleton in the plane is unique and represents exactly one possible
bisector graph of the intersected part of the polyhedron. Figure 2.5 in Section 2.1.2
shows that the bisector graph of a polygon in the plane is not unique. It turns out
that any crossing-free bisector graph can be used to split a vertex of a polyhedron.
An intersecting plane is not needed to compute angle bisector planes. Therefore,
angle bisector planes do not require the vertex to be pointed.
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3.3 Fundamental Algorithm

As mentioned at the beginning of this chapter, the shrinking process of a non-
degenerate polyhedron requires each vertex to be split into vertices of degree 3. The
degree of a vertex counts the number of incident edges. It is denoted by deg v. This
number is equal to the number of incident facets. There are various combinations
to split a vertex.

The beginning of this section explains how all possible combinations are gen-
erated. Each combination is checked if it leads to an offset polyhedron without
self-intersections of the surface. At the end of this section, the presented algorithm
is extended to vertices with coplanar facets.

3.3.1 Generating Unrooted Binary Trees

After each vertex has been split into vertices of degree 3 (non-degenerate case) the
offset structure of a single vertex is represented as an unrooted binary tree. A node
of this unrooted binary tree represents one vertex of degree 3 after the splitting.

A vertex of degree 4 has exactly two possible unrooted binary trees. A vertex of
degree 5 has five possible binary trees. Figure 3.9 is a schematic drawing of a vertex
of degree 5. The facets are labeled in counterclockwise order around the vertex seen
from outside of the polyhedron. The total number of possible unrooted binary trees
is given by the Catalan number Cn. Here, n denotes the degree of the vertex.

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
(n + 1)!n!

(3.2)

This number shows exponential complexity based on the degree of the vertex.
To compute all possible unrooted binary trees, a split operation is introduced.

The notation 〈a, b〉 expresses that facet a (∈ N) is adjacent to facet b after the split
operation. Assuming that edges are undirected, the split operation is commutative,
〈a, b〉 = 〈b, a〉. To efficiently compute all unrooted binary trees using split operations,
only split operations are used where the left operand is smaller than the right one,
a < b. Different unrooted binary trees are constructed with a fixed number of split
operations. The order of the split operations is immaterial to the result. While
creating the lists of split operations, permutations of split operations that lead to
equal unrooted binary trees are avoided. This is achieved by an ordering relation
between the split operations. A list is extended only if the last split operation is
smaller than the one that might be appended. Any ordering relation can be used.

A vertex is split in several steps. The following example shows the procedure
on a node with degree 5. Generated split operations of the first step are drawn in
Figure 3.10.
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Figure 3.9: Node of degree 5
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(b) 〈1, 4〉
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(c) 〈2, 4〉
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(d) 〈2, 5〉
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(e) 〈3, 5〉

Figure 3.10: After the first split operation

The next step splits the remaining nodes of degree > 3 separately. Figure 3.11
shows how the lists of split operations are extended.
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(b) 〈1, 3〉, 〈3, 5〉
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(c) 〈1, 4〉, 〈2, 4〉
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(d) 〈2, 4〉, 〈2, 5〉

1

2
3 4

5

(e) 〈2, 5〉, 〈3, 5〉

Figure 3.11: After the second split operation

For 〈3, 5〉 (Fig. 3.10e) there is no split operation that is bigger than 〈3, 5〉. The
number of split operations has to be the same for each combination of unrooted
binary trees. For this reason, the list which includes 〈3, 5〉 is removed. This step is
repeated until all nodes have degree 3.

To split a vertex v into vertices of degree 3, the number of required split operations
is deg v − 3.

The generated unrooted binary tree is a schematic representation of the combi-
natorial structure of the split vertex. This combinatorial structure is equal to the
structure of the bisector graph of incident facets.
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A node of degree 6 has the following 14 different unrooted binary trees:

〈0, 2〉, 〈0, 3〉, 〈0, 4〉
〈0, 2〉, 〈0, 3〉, 〈3, 5〉
〈0, 2〉, 〈0, 4〉, 〈2, 4〉
〈0, 2〉, 〈2, 4〉, 〈2, 5〉
〈0, 2〉, 〈2, 5〉, 〈3, 5〉
〈0, 3〉, 〈0, 4〉, 〈1, 3〉
〈0, 3〉, 〈1, 3〉, 〈3, 5〉
〈0, 4〉, 〈1, 3〉, 〈1, 4〉
〈0, 4〉, 〈1, 4〉, 〈2, 4〉
〈1, 3〉, 〈1, 4〉, 〈1, 5〉
〈1, 3〉, 〈1, 5〉, 〈3, 5〉
〈1, 4〉, 〈1, 5〉, 〈2, 4〉
〈1, 5〉, 〈2, 4〉, 〈2, 5〉
〈1, 5〉, 〈2, 5〉, 〈3, 5〉
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3.3.2 Checking for Valid Offset Polyhedra

After all unrooted binary trees are generated, each combination is checked if it leads
to a valid offset polyhedron when shifting all facets in a self-parallel manner. An
offset polyhedron is valid if its surface is free of self-intersections.

The vertex is split using a previously generated unrooted binary tree. Afterwards,
each facet is shifted inwards with the same distance in a self-parallel manner. To
check if the offset polyhedron has a surface without self-intersections, each polygon
on the surface (facet) needs to be free of intersections.

A simple sweep line algorithm for segment intersection is used to determine if a
polygon has self-intersections. This algorithm takes O(n log n) time, where n denotes
the number of segments. A facet without self-intersections is a necessary condition,
but it is not sufficient. An example for this is shown in Figure 3.12. Each facet is
free of self-intersections, but the polyhedron has self-intersections. Some edges cross
non-adjacent facets. This can happen when the vertex is split. To detect such cases,
a point in polygon algorithm is used.

c

r

r

c
(a) Two tilted, overlapping facets

c

r

r

c

(b) Valid solution

r

c

r

c

(c) Invalid solution

Figure 3.12: Self-intersecting polyhedron with intersection-free facets. In this
figure, c denotes a convex edge and r denotes a reflex one. The arrows show the
moving directions of the edges.
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There are various ways to check if a point is inside a polygon. A possible algorithm
uses ray casting. The point emanates a ray in any direction in the plane. The number
of edges of the polygon that intersect this ray is counted. If this number is even,
the point is outside the polygon. If it is odd, the point is inside the polygon. This
algorithm is computed in linear time O(n), where n denotes the number of edges of
the polygon.

The part of the polyhedron originating from the split vertex v has deg v facets
and 2 · deg v − 3 edges. Therefore, the expected value of edges of the relevant part
of each facet is bounded by 2(2·deg v−3)

deg v ≤ 4. O(deg v) facets are checked against
O(deg v) edges. The resulting time complexity for this step is O(deg2 v).
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3.3.3 Vertices with Coplanar Facets

The following is a naive idea of how vertices with coplanar facets are split. Each
facet is tilted slightly. By tilting the facets, coplanarities are destroyed and angle
bisector planes between all facets can be computed. During the shrinking process,
edges of the polyhedron move on these angle bisector planes.

Unfortunately, the reality looks different. Between two coplanar facets there is no
line that defines an intersection. There is no edge that moves on any angle bisector
plane during the shrinking process, because there is no angle bisector plane. For that
reason, the edge of the bisector graph is removed if its coplanar facets are adjacent.
An example is illustrated in Figure 3.13.
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(a) 〈1, 4〉, 〈2, 4〉

1

2

3
4

5

(b) 〈2, 4〉, 〈2, 5〉

1

2=4

3

5

(c) Resulting bisector graph

Figure 3.13: Both unrooted binary trees lead to the same bisector graph if facet 2
and facet 4 are coplanar

The removal of an edge with coplanar facets decomposes the unrooted binary tree
into a forest consisting of two trees. The example in Figure 3.13 also shows that
different unrooted binary trees can lead to identical bisector graphs.
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3.4 Spherical Skeleton

The spherical skeleton is an embedding of the bisector graph of a vertex onto the
surface of a sphere centered at that vertex. This embedding represents the intersec-
tion of the straight skeleton of the polyhedron with the surface of an infinitesimal
sphere.

On a sheet of paper, a sphere is drawn as a circle. Images on the surface of the
sphere are shown bent on the paper. After defining which parts of the images are on
the front and which parts are on the back of the sphere, the images on the surface
of the sphere are uniquely defined by a single drawing.

This method completely visualizes the splitting of a complex vertex with only one
figure. To achieve this, a sphere is centered at the vertex. The surface of the sphere
is intersected with incident facets of the vertex. This intersection creates a spherical
polygon. Circular edges on the front of the sphere are drawn bolder than circular
edges on the back.

The bisector graph is embedded onto the surface of the sphere, inside the spherical
polygon. This embedding of the bisector graph forms the spherical skeleton. The
edges of the bisector graph show adjacent facets. Between the adjacent facets, there
are angle bisector planes. The edges of the polyhedron move on these bisector planes
during the shrinking process. The circular arcs of the spherical skeleton result from
the intersections of the angle bisector planes with the surface of the sphere. The
nodes of the bisector graph are embedded on the intersections of circular arcs. The
result is an intersection of the straight skeleton of the polyhedron with the surface
of the sphere.

Such a figure shows how the vertex at the center of the sphere is split. An example
is drawn in Figure 3.14.

(a) Pyramid with five-sided base
and intersecting sphere on top

(b) Structure of
bisector graph

(c) Sphere with intersected facets and
embedded bisector graph

Figure 3.14: Example of a spherical skeleton

If the spherical skeleton is free of crossings and completely inside the spherical
polygon, the local offset surface of the polyhedron’s vertex is free of intersections.
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3.5 Existence of a Solution

The idea begins with the assumption that an arbitrary unrooted binary tree with
appropriate size is used to split a vertex. While shifting the facets inwards, there
are, depending on the used unrooted binary tree, parts of the polyhedron that shrink
and parts that increase in size. To make it possible that parts of the polyhedron
increase their size while the facets are shifted inwards, the inside of the polyhedron’s
surface has to be turned to the outside. Exactly where this happens, the surface of
the polyhedron is self-intersecting. The self-intersections separate the growing parts
from the shrinking parts. Because the growing parts can be separated, they can be
removed from the polyhedron. When all growing parts are removed, the solution
consists of shrinking parts only and has a surface without self-intersections.

(a) Pyramid with a vertex of degree 4 on
top

(b) Vertex split with an arbitrary un-
rooted binary tree

Figure 3.15: Example of an invalid offset
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3.6 Ambiguity

The ambiguity of the straight skeleton in 3-space is shown by providing examples of
polyhedra that have more than one combinatorially different offset surface.

A polygon in the plane may have several embedded bisector graphs without cross-
ings (see Section 2 for details). Such a polygon is used as the base of a pyramid. The
vertex on top of the pyramid is going to be split. When checking all combinations
of bisector graphs of the vertex, there are several combinations that do not lead to
a self-intersecting surface of the polyhedron when the facets are shifted inwards.

Several valid combinations may exist only if a vertex has reflex and convex incident
edges. If a vertex has only convex incident edges, there is exactly one combination
to split this vertex. If the polyhedron is convex, the straight skeleton defined by the
shrinking process is equal to the medial axis. The medial axis is uniquely defined.

The most simple example to prove ambiguity is a saddle point with two convex and
two reflex incident edges. There are exactly two combinations to split this vertex.
Both combinations lead to a polyhedron that has an intersection-free surface during
the shrinking process. One combination traces out a convex edge. The other one
traces out a reflex edge. This example is shown in Figure 3.16.
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(a) Polyhedron with a saddle point and
a parallelogram as its base

(b) Spherical polygon of the saddle point
(convex solution is drawn)

(c) Convex solution (d) Reflex solution

Figure 3.16: Two different, valid offsets from the same polyhedron
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3.7 Lower Bound for the Number of Valid Offset Polyhedra

Let there be a pyramid, where the vertex on top has k locally possible offset surfaces.
The base of this pyramid is a polygon (like the one shown Figure 2.5). The polygon
is used to construct another pyramid with a vertex of high degree on top. A series
of n of such polygons is placed on the plane. These polygons are connected with
a narrow corridor between each other. The connected polygons form the base of
another pyramid. The vertex on top of this pyramid is split at the very first moment
of the shrinking process. This construction leads to kn possible offset surfaces. In
the worst case, the number of locally possible offset surfaces originating from one
vertex is exponential in the degree of the vertex.

Overall, the lower bound for the number of possible offset polyhedra originating
from the same polyhedron is exponential in the number of its vertices.
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3.8 Convex Vertices

Although the degree of a vertex is usually not that big in general, checking all
combinations is not efficient. For vertices with convex incident edges only, there is
a unique solution that can easily be computed with a faster algorithm.

To achieve this, three adjacent facets incident to the vertex are shifted inwards in
a self parallel manner using the same distance. After these three facets have been
shifted, they intersect at a point. This point defines a distance between the origin,
the position of the vertex, and itself. The algorithm searches for three adjacent
facets incident to the vertex that maximize this distance. This point of intersection
is the first identified vertex of the solution.

To continue this procedure, the facet in between the three adjacent facets is re-
moved from the list of incident facets of the vertex. The next point of intersection
that maximizes the distance after the facets have been shifted is identified. It is
used to further split the vertex.

This step is repeated until all vertices have degree 3. An example is shown in
Figure 3.17.

(a) Pyramid with a vertex
of degree 5 on top

(b) Vertex intersected with
a sphere

(c) Split vertex after an offset

Figure 3.17: Splitting convex vertices

The presented algorithm has quadratic time complexity, O(deg2 v), based on the
degree of the vertex. A priority queue can be used to speed up the computation to
a linear-logarithmic time complexity, O(deg v · log(deg v)).

This algorithm can be adopted for vertices with only reflex incident edges. Instead
of searching for the point that maximizes the distance after three adjacent facets
have been shifted, the point that minimizes the distance is used for reflex vertices.
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3.9 Events

After all vertices have been split into vertices of degree 3, every facet is shifted
inwards at the same time. This process continues until an event occurs. Such an
event can be the vanishing of an edge or when a reflex vertex creates a tunnel or
other changes. The vanishing of an edge changes the combinatorial structure of the
polyhedron. The creation of a tunnel changes the polyhedron topologically.

An event happens exactly when four supporting planes of facets meet at a point.
This is the reason why the number of events is finite. When the shrinking process
is stopped exactly at the moment where four facet planes meet, a vertex exists with
four incident facets. The splitting of this vertex also explains how the polyhedron
is changed by the event.

In this section, events and all possible solutions are shown. The events are divided
into two categories, vanish events and contact events. Vanish events are comparable
to edge events of the straight skeleton in the plane. Contact events are comparable
to split events.

For every event there are several geometric configurations. The events are distin-
guished by the structure of the bisector graph.

3.9.1 Vanish Events

Vanish events describe the vanishing of edges. Thereby, the length of an edge is
continuously decreased by the shrinking process until both vertices of the edge meet
at a point. Exactly at this point, the structure of the polyhedron has to change in
order to retain a valid surface during the shrinking process. A surface is valid if it
is free of self-intersections.

During the shrinking process, all edges of the polyhedron move on angle bisector
planes. The exact position where an edge vanishes is computed by intersecting three
bisector planes. One bisector plane is given by the edge where it moves on. The
other two bisector planes are found at adjacent edges. Figure 3.18 visualizes this.
The bisector plane where e moves on is intersected with the bisector planes of edges
e11 and e12.

e

e11

e22 e21

e12

Figure 3.18: Calculate vanish events

A non-degenerate polyhedron can have one to six edges vanishing simultaneously,
even when the facet planes are tilted slightly. The last event is the vanishing of a
tetrahedron with its six edges.
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Convex polyhedra can have one, three, or six edges vanishing at the same time,
for non-degenerate cases.

1 Edge vanishes

When both vertices of an edge meet at a point, a vertex of degree 4 exists at this
moment.

In the simplest case, this event generates a new edge that is defined by the inter-
section of the facets that were not adjacent before the event. In this case, the the
moving directions of both involved vertices are forced to change. An example with
such a geometric configuration is shown in Figure 3.19.

(a) Before (b) Event (c) After

Figure 3.19: Edge event
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When two vertices of an edge meet, they do not necessarily change their moving
direction. There are geometric configurations where this event does not change the
moving direction of the vertex. The edge continuously decreases the length until the
edge is vanished. Adjacencies between facets are not changed by the event. After
the event the length of the edge increases again. An example for such a geometric
configuration is shown in Figure 3.20. In the shown example, it is impossible for the
vertices to change their moving directions. The structure of the bisector graph is
equal to the one shown in Figure 3.19.

(a) Before (b) Event (c) After

Figure 3.20: Edge event (impossible to flip)

It may happen that none of these combinations lead to self-intersections of the
polyhedron’s surface. This is the case with saddle points. The example with the
saddle point in Figure 3.16 shows that geometric configurations for this event also
exist, where both combinations lead to valid offset polyhedra.
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2 Edges vanish

Figure 3.21 shows a tetrahedron with a wedge attached. During the shrinking pro-
cess, the wedge moves away from the edge of the tetrahedron.

This event has a bisector graph that is not connected. This is because the two
coplanar facets of the vertex to be split are one and the same facet.

(a) Before (b) Event (c) After

Figure 3.21: Edge merge event
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3 Edges vanish

How a triangle vanishes in a point is shown in Figure 3.22.

(a) Before (b) Event (c) After

Figure 3.22: Triangle event

The shown example has three convex edges. There are geometric configurations
where three edges vanish simultaneously and some of these edges (or all) are reflex.

4 Edges vanish

Figure 3.23 shows two intersecting prisms. The intersection has four edges. When
both prisms are separated by the shrinking process, four edges vanish at the same
time. This event has a disconnected spherical polygon. Therefore, the spherical
skeleton is disconnected too.

(a) Before (b) Event (c) After

Figure 3.23: Double edge merge event
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5 Edges vanish

Figure 3.24 shows two tetrahedra that share a facet. The smaller tetrahedron van-
ishes due to the shrinking process. This is the reason why five edges vanish at the
same time and at the same position.

(a) Before (b) Event (c) After

Figure 3.24: Double triangle event

6 Edges vanish

The last event of a shrinking process is the vanishing of a tetrahedron. The angle
bisector planes of a tetrahedron intersect at the center of its insphere. This is the
position where all six edges vanish simultaneously.

(a) Before

(vanished completely)
(b) After

Figure 3.25: Tetrahedron event

This event may also occur when the tetrahedron is attached to some other object.
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3.9.2 Contact Events

A contact event happens when elements of a polyhedron, which are not adjacent
before the event, touch each other. However, most of the contact events happen in
a local structural neighbourhood. For example, this can be a vertex and an edge
incident to the same facet. There are only two contact events that have a non-local
influence. These events are called an edge-edge contact event and a vertex-facet
contact event. The bisector graph of these two events has cycles.

The position of contact events is, comparable with vanish events, determined by
the intersection of three bisector planes. Another way of calculating the position
is the following. During the shrinking process, two edges that are likely to meet
move on bisector planes. The intersection of these two bisector planes is a line. By
determining the start point and the velocity of both edges on that line, the point of
contact is determined. This is visualized in Figure 3.26.

e1 e2

point of contact

Figure 3.26: Calculate contact events

Care has to be taken on the movement of the vertices that are incident to the
involved edges. It is not sufficient when just the supporting lines of the edges get in
contact.
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Vertex-Edge Contact

This event happens when a vertex crashes into an edge. The vertex and the edge
have to share a common facet. Figure 3.27 shows a polyhedron with a convex edge
that is split by a vertex incident to a reflex edge.

(a) Before (b) Event (c) After

Figure 3.27: Surface event

The edge that is split by the vertex does not necessarily have to be convex. Fig-
ure 3.28 shows a geometric configuration where a reflex edge is split. The structure
of the bisector graph is equal to the one from Figure 3.27.

(a) Before (b) Event (c) After

Figure 3.28: Surface event with a reflex edge
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Figure 3.29 shows that this type of event can also change the polyhedron topo-
logically. The structure of the bisector graph stays the same.

(a) Before (b) Event (c) After

Figure 3.29: Surface event which causes topological changes

A vertex-edge contact event may also occur when the incident edge of the vertex
is convex. This convex edge crashes into another edge when it propagates faster.
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Vertex-Vertex Contact I

Polyhedra do exist where two vertices meet, even when the facet planes are tilted
slightly. Type I of the vertex-vertex contact event changes the moving directions of
the vertices. Figure 3.30 shows a geometric configuration where only combinatorial
changes on the surface happen.

(a) Before (b) Event (c) After

Figure 3.30: Vertex event

Figure 3.31 shows how this event can lead to topological changes. The structure
of the bisector graph stays the same.

(a) Before (b) Event (c) After

Figure 3.31: Vertex event which causes topological changes
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Vertex-Vertex Contact II

Not every vertex-vertex contact event changes the moving directions of the vertices.
Figure 3.32 shows a tetrahedron attached to a polyhedron. They share a common
facet. During the shrinking process, the moving directions of both involved vertices
do not change. The structure of the bisector graph differs from type I. Therefore,
this event is called vertex-vertex contact event II.

(a) Before (b) Event (c) After

Figure 3.32: Flip vertex event

Vertex-Vertex-Edge Contact I

This event describes how a reflex edge splits a polyhedron. The reflex edge crashes
into another edge. Exactly where this happens, both vertices incident to the reflex
edge meet. The reflex edge vanishes at this point. An example is shown in Fig-
ure 3.33. The shown polyhedron splits into two parts. There are polyhedra that
stay connected after this event.

(a) Before (b) Event (c) After

Figure 3.33: Polyhedron split event
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Vertex-Vertex-Edge Contact II

An edge is split where two vertices meet. This also happens when the facets are
tilted slightly. An example is shown in Figure 3.34. The bisector graph consists of
three parts that are not connected. Exactly at the time and at the position where
this event happens, a vertex with degree 8 exists. This degree denotes the highest
occurring degree of a vertex of all events.

(a) Before (b) Event (c) After

Figure 3.34: Split merge event

(a) Before (b) Event (c) After

Figure 3.35: Split merge event in a reflex case
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Edge-Edge Contact

The edge-edge contact event in Figure 3.36 shows how two reflex edges meet. Both
edges do not share a common structural neighbourhood of the polyhedron. There-
fore, this event is non-local.

(a) Before (b) Event (c) After

Figure 3.36: Edge split event

Vertex-Facet Contact

In Figure 3.37 a reflex vertex pierces through a facet. This creates a tunnel. The
vertex-facet contact event is also non-local.

(a) Before (b) After

Figure 3.37: Pierce event
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3.9.3 Notes and Comments

Every event creates one node of the straight skeleton. In the non-degenerate case,
every node has four incident arcs and six incident sheets. During the offsetting
process, the vertices move on trisector lines. Therefore, every arc has three incident
sheets.

Inverse Events

An inverse event is found when the offsetting process is reversed. The facets are
shifted in the opposite direction. All inverse events are listed in Table 3.1. E1
denotes a vanish event with one edge. V-E denotes a vertex-edge contact event.

Event Inverse
E1 E1
E2 V-E
E3 V-F
E4 E-E
E5 –
E6 –
V-E E2

V-V I V-V-E I
V-V II V-V II
V-V-E I V-V I
V-V-E II V-V-E II

E-E E4
V-F E3

Table 3.1: Inverse events
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3.10 Monotonicity

The unweighted straight skeleton partitions a given polyhedron into monotone cells.
A cell is monotone if the intersection with any line perpendicular to the defining
facet is a single line segment. The proof of this property is similar to the proof
of the monotonicity of cells of the straight skeleton in the plane (see Section 2.1.4,
and [AAAG95]).

In the plane, time is interpreted as a third spatial dimension. This lifts the offset
polygons onto a roof model. A line on a facet of the roof model maximizes its
slope when it is perpendicular to the defining edge. Because the straight skeleton
is defined by a process that continuously moves all edges, the roof model itself is
continuous. If a facet of the roof model would not be monotone in direction of
its defining edge, there would a point of discontinuity when the line re-enters this
facet. Every other facet has a lower slope in direction of that line. Because the roof
model is continuous, the intersection with any line perpendicular to a defining edge
is connected.

In 3-space, every cell of an unweighted straight skeleton of any polyhedron is
monotone. Like the proof for the two-dimensional case [AAAG95], this property is
proven by contradiction. A line ` perpendicular to a defining facet is considered.
During the shrinking process, every point on that line is hit by the offset polyhedron
at a specific time. This time has a linear relation to the offset of such a point in the
direction of the line.

For this proof, it is assumed that a cell is not monotone. This means that a
line ` leaves the corresponding cell and re-enters the same cell at some other point.
The linear relation between the time of the shrinking process and the offset in the
direction of the line changes at positions outside the corresponding cell. A point of
discontinuity in this relation (jump in time) is introduced when the line re-enters
its corresponding cell (see Figure 3.38). This contradicts to the definition of the
straight skeleton. It is defined by an offsetting process that continuously shifts all
facets. Because of this contradiction, the assumption of cells not being monotone is
incorrect.

time

offset in direction of `

` leaves cell

` re-enters cell

Figure 3.38: Contradiction of continuity and non-monotonicity of cells
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3.11 Arrangement of Planes

All incident facets of a vertex of high degree intersect at a single point. The sup-
porting planes of these facets form an arrangement of planes in 3-space. The planes
divide the space into cells of the arrangement. In the initial position, all cells are
unbounded. The offsetting process shifts the planes while keeping them parallel
to their initial orientation. When the planes are shifted, a vertex of high degree
dissolves into bounded cells of this arrangement.

A selection of bounded cells shows how the vertex of a polyhedron is split by
the offsetting process. This selection includes all unbounded cells that are inside
the polyhedron (in a local environment). Furthermore, the selection includes all
bounded cells that are completely surrounded by previously selected cells. The
planes are not allowed to revert their moving direction during the offsetting process.
This fact leads to another selection criterion: All planes are required to move away
from the initial position of the vertex. For this reason, the surface of the selected
cells has to be radially monotone, seen from the initial position of the vertex.

An example of this idea with various selections of cells is illustrated in Figure 3.39.
The provided example shows how a pointed vertex with degree 7 dissolves into
bounded cells. Figure 3.39b and Figure 3.39c show the cases where the structure of
the solution is an unrooted binary tree. It is not possible for the offsetting process
to create a local offset as shown in Figure 3.39e.
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(a) The vertex on top of this pyramid dissolves
into bounded cells of an arrangement of planes.

(b) Unbounded cells on the inside (c) Unbounded cells on the inside and
two bounded cells

(d) Only one bounded cell is added.
This would be another solution but the
structure is no longer a tree.

(e) Another cell is added. This local
offset is not valid. It introduces a facet
where further offsetting would create an
additional supporting plane.

Figure 3.39: Arrangement of planes
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3 Straight Skeletons in Space

3.12 Optimization

The offset of a polyhedron is ambiguous (see Section 3.6). At the beginning of the
shrinking process, vertices with reflex and convex incident edges may lead to several
valid and combinatorially different offset polyhedra. During the shrinking process,
there is only one event that can cause ambiguity: The edge vanish event with one
edge only may lead to two different and valid offset polyhedra. This section explains
how these ambiguities are used to optimize the solution.

3.12.1 Number of Convex Edges

A possible optimization criterion is to maximize the number of convex edges of the
offset polyhedron. At the same time, the number of reflex edges is minimized. When
the vertex is split at the beginning of the shrinking process, the combination that
leads to the highest number of convex edges is chosen.

If a vanish event with one edge only has two valid solutions, the solution with the
convex edge is chosen.

Of course, this idea can also be used to maximize the number of reflex edges at
each step. Choosing the local optimum at each step of the computation does not
necessarily lead to the global optimum. A chosen reflex edge can split a high number
of convex edges when the offsetting process continues. Overall, this might increase
the number of convex edges at a specific offset.

3.12.2 Volume / Surface Area

Another optimization criterion is the minimization of the volume. Minimizing the
volume of the offset polyhedron also maximizes its surface area. At the beginning of
the shrinking process, vertices of degree > 3 are split. After vertices have been split,
facets move away from their initial position. Seen from the initial position of the
vertex that has just been split, previous incident facets are entirely visible (because
of radial monotonicity). Therefore, non-overlapping pyramids can be constructed.
The base of each pyramid is defined by a shifted facet. The top is defined by the
initial position of the vertex. Equation 3.3 shows how the volume V and the base
area B of a pyramid are connected.

V =
1
3
·B · h (3.3)

If each facet is shifted with the same speed, the height h is equal for all pyramids.
This observation leads to a direct connection between the volume and the base area.
The bigger the volume is, the bigger is the base area of the pyramid. This volume is
removed from the offset polyhedron by the shrinking process. Therefore, maximizing
the surface area of the offset polyhedron minimizes its volume.
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3 Straight Skeletons in Space

The surface area of the polyhedron is calculated by adding the areas of all facets.
Each facet is rotated so that the normal vector points in the same direction as the
z-axis. After the rotation, the facet is interpreted as a polygon in the plane (without
z-coordinate). The (signed) area A of a planar polygon with n vertices in the plane
(xi, yi), ..., (xn, yn) is calculated in equation 3.4.

A =
1
2

(∣∣∣∣x1 x2

y1 y2

∣∣∣∣+ ∣∣∣∣x2 x3

y2 y3

∣∣∣∣+ ... +
∣∣∣∣xn x1

yn y1

∣∣∣∣) (3.4)

Regarding the vanish event for one edge only, there may be two combinations
that lead to two different, valid offset polyhedra. The symmetric difference between
these two offset polyhedra is a tetrahedron. This is the reason why the combination
that contains the faster moving edge leads to the offset polyhedron with a smaller
volume. Because the difference is a tetrahedron, the combination that leads to a
reflex edge minimizes the volume of the offset polyhedron.

3.12.3 Example

An example with different optimization criteria is shown in Figure 3.40. The visible
vertex at the front, in the middle of the sea star has five convex and five reflex
incident edges. For this vertex, there are C10 = 1430 combinations, where five lead
to a valid offset polyhedra.
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3 Straight Skeletons in Space

(a) Polyhedron sea star

(b) Maximizing the number of convex
edges, locally at each step (offset = 1)

(c) Minimizing the volume (offset = 1)

(d) Maximizing the number of convex
edges, locally at each step (offset = 1.5,
enlarged view)

(e) Minimizing the volume
(offset = 1.5, enlarged view)

Figure 3.40: Optimization
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4 Implementation

Many results presented in this work were obtained by experimenting with an imple-
mentation. This implementation grew from result to result. To obtain new results,
simplicity and intelligibility of each step of the computation is important. For this
purpose, computational speed does not play an important role.

At the beginning of this chapter, used data structures are presented. These data
structures differ from those that are shipped in many software libraries. Afterwards,
the implemented algorithm is explained. Although simplicity is a key feature of the
algorithm, the time complexity is analyzed. The visualization for screen and for
paper is explained. At the end, numbers of experimental results are summarized.

4.1 Data Structures

This section is devoted to used data structures. It is explained why default data
structures of many software libraries are not sufficient to create offsets in a self-
parallel manner.

In order to provide uniform concepts, data structures for the plane are based on
the same ideas as data structures for the space.
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4.1.1 In the Plane

Polygon

A polygon in the plane is stored as an ordered list of vertices by many software
libraries. This is not sufficient for polygons with holes.

In the implementation the data structure of a polygon has a list of vertices and a
list of edges. Because a list of all edges exists, a polygon can have holes. Each edge
is directed and has a source and a destination vertex. Every vertex has a point,
which defines its geometric position. The incoming and the outgoing incident edge
is stored by the vertex. Therefore, incident edges are found in constant time.

Straight Skeleton

The data structure of straight skeletons in the plane consists of a list of nodes and a
list of arcs. A list of events is also stored by the straight skeleton. A node is placed
at the geometric position where an event happens. The position itself is stored by
the node. To present the straight skeleton as a roof model, the time when the event
occurs is stored by the node. This time represents the height of the node in the
roof model. Every node has a list of incident arcs. For non-degenerate polygons, a
node has either one (at the position of a vertex) or three arcs. This data structure
is suitable for an arbitrary degree of a node.

During the shrinking process, the vertices trace out the arcs. The moving direction
of a vertex is equal to the direction of its arc. An arc has a source node and a
destination node. Furthermore, the left and the right polygon edge that define the
arc are stored by the arc. The event itself stores the generated node and (optionally)
the offset polygon at the time of the event.

EdgeVertex

Arc

Node

Figure 4.1: Data structure for polygons in the plane
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4.1.2 In Space

Polyhedron

A frequently found use case is the rendering of a polyhedron on screen. Many data
structures are focused on that use case. For such an application, a polygonal mesh
of the surface is sufficient. This polygonal mesh usually consists only of triangles.

When facets of a polyhedron are shifted in a parallel manner, they may become
non-convex. A facet may even have holes. The polyhedron itself may have holes
or tunnels. Many data structures available in software libraries are not optimized
for such requirements. To use such a publicly available software library, the data
structures would have to be extended and adopted. Therefore, a data structure for
polyhedra with holes and tunnels was implemented.

Halfedge Data Structure As indicated by its name, the halfedge is the central
element of this data structure. Every facet of the polyhedron is bounded by counter-
clockwise oriented halfedges. Every halfedge has a second halfedge with the opposite
direction, an incident facet, a destination vertex and a reference to the next halfedge
of the incident facet. The geometric position is stored by the destination vertex. The
reference to the next halfedge is used to iterate counter-clockwise over all halfedges
around the incident facet. The halfedge data structure is visualized in Figure 4.2.

opposite

incident/destination

incident facet

halfedge
next

vertex

Figure 4.2: Halfedge data structure

CGAL uses this data structure for polyhedra [CGA]. Using this data structure
(without extensions), it is not possible for a polyhedron to have holes inside a facet.
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Implemented Data Structure In the implemented data structure, a polyhedron
has a list of facets, a list of edges and a list of vertices. Every facet has a list of
incident edges and a list of incident vertices. A facet can have holes because a list
of edges exists. Every edge is directed and has a source and destination vertex.
Furthermore, the left and the right (seen from outside) incident facet are stored by
the edge. For efficiency reasons, the position of the edge in the lists of incident facets
is also stored by the edge itself. Every vertex has a point, which shows its geometric
position. The vertex also contains a list of incident edges and a list of incident facets.
When these lists are ordered, the next element can be found in constant time. This
is useful to iterate over all edges of a facet in a counter-clockwise order. To ensure
the consistency of the data structure, a consistency check is implemented. Figure 4.3
shows an edge of this data structure.

left facet

right facet

destination vertexsource vertex

next(left facet)

next(right facet)
edge

Figure 4.3: Data structure for polyhedra

Straight Skeleton

A straight skeleton in 3-space consists of a list of sheets, a list of arcs and a list of
nodes. This data structure also includes a list of events. Each sheet has a list of
incident arcs and a list of incident nodes. The facet on the positive side and the
facet on the negative side are also stored within the sheet. Each arc has a source
and a destination node. Incident sheets are stored in a list as part of the arc. In
the non-degenerate case there are 3 incident sheets. Each node has a point, which
marks the geometric position in 3-space. A list of incident arcs and a list of incident
facets are part of the node. Each event has a node that was created by the event.
Optionally, the offset polyhedron, at the time of the event, is stored with the event.
To ensure the consistency of the data structure a consistency check is implemented.
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4.1.3 File Format

To compute a straight skeleton, a polygon or a polyhedron is a necessary input.
This input can be read from a file. The resulting straight skeletons are stored for
analysis.

Various tools are handy for geometric modelling. The most common and easy to
read file format is Wavefront’s .obj file format. The implementation is able to load
and save polyhedra using this format.

The resulting straight skeletons are stored on disk using a relational database.
Polygons and polyhedra (with holes) can also be stored in this database.

Wavefront .obj File

Wavefront .obj files are simple ASCII text files. The file format is supported by
many tools for geometric modelling: Art of Illusion, Blender, etc. Not all features
of this format are explained here. Only essential parts are covered. The .obj file
consists of a description of vertices and facets. The Cartesian coordinates of one
vertex are in one line of the file. This line begins with v followed by the coordinates,
which are separated by whitespace characters. The order of the vertices plays an
important role for the definition of the facets. A line starting with f denotes the
definition of a facet. The vertices of a facet are given in counter-clockwise order and
are referenced by numbers. Reference number 1 corresponds to the first vertex in
the file. An example of a tetrahedron is given in Listing 4.1.

v -1.0 -1.0 -1.0

v 1.0 1.0 -1.0

v 1.0 -1.0 1.0

v -1.0 1.0 1.0

f 1 2 3

f 1 3 4

f 1 4 2

f 4 3 2

Listing 4.1: tetrahedron.obj Figure 4.4: Tetrahedron

Every facet is defined as an ordered list of its vertices. It is not possible to store
holes inside a facet using this file format. To handle this limitation, the implemen-
tation removes edges between coplanar facets when a polyhedron is loaded.

For the data structure it is mandatory to handle facets with holes. This file format
can only save states where facets do not have any holes.
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Relational Database

Relational databases store their data in tables. Therefore, the data structures have
to be mapped to tables. Embedded databases do not require a server software. A
software library (e.g. SQLite) is sufficient. This software library stores the data in
a binary file on disk.

The implemented data structure of polygons is capable of having holes inside
a polygon. This data structure is mapped to the tables defined in Listing 4.3.
The straight skeleton data structure is also mapped to the corresponding tables.
Contrary to text files, coordinates of a point are not converted to the decimal system
and are stored as text. The coordinates are directly stored in binary form. In case
floating point precision is not sufficient for the coordinates, their representation can
be modified here.

The implemented data structure for polyhedra is also available in tabular form.
Polyhedra with holes, tunnels and even holes in facets can be saved and loaded.
Listing 4.4 shows the defined tables to save polyhedra and straight skeletons in
3-space.

The strengths of relational databases are visible with SQL queries. Listing 4.2
queries the database for polyhedra that have a straight skeleton where a specified
event occurs more often than three times. The returned polyhedra are sorted in
descending order by the number of the specified event.

SELECT PolyhedronID , COUNT(Events.etype) AS num_events

FROM Events JOIN StraightSkeletons ON Events.SkelID=StraightSkeletons.SkelID

WHERE Events.etype =7

GROUP BY PolyhedronID

HAVING num_events >3

ORDER BY num_events DESC;

Listing 4.2: get polyhedra.sql

Conventional file formats do not offer such possibilities.
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CREATE TABLE Points (PointID INTEGER PRIMARY KEY ,

x REAL , y REAL);

CREATE TABLE Vertices (PolyID INTEGER NOT NULL , VID INTEGER NOT NULL ,

PointID INTEGER , PRIMARY KEY (PolyID , VID ));

CREATE TABLE Edges (PolyID INTEGER NOT NULL , EID INTEGER NOT NULL ,

VID_SRC INTEGER , VID_DST INTEGER , PRIMARY KEY (PolyID , EID ));

CREATE TABLE SkelEdgeData (PolyID INTEGER NOT NULL , EID INTEGER NOT NULL ,

speed REAL , PRIMARY KEY (PolyID , EID ));

CREATE TABLE Polygons (PolyID INTEGER PRIMARY KEY ,

description TEXT , created INTEGER );

CREATE TABLE Nodes (SkelID INTEGER NOT NULL , NID INTEGER NOT NULL ,

PointID INTEGER , height REAL , PRIMARY KEY (SkelID , NID ));

CREATE TABLE Arcs (SkelID INTEGER NOT NULL , AID INTEGER NOT NULL ,

NID_SRC INTEGER , NID_DST INTEGER , PRIMARY KEY (SkelID , AID ));

CREATE TABLE Events (SkelID INTEGER NOT NULL , EventID INTEGER NOT NULL ,

etype INTEGER , NID INTEGER , PRIMARY KEY (SkelID , EventID ));

CREATE TABLE StraightSkeletons (SkelID INTEGER PRIMARY KEY ,

PolyID INTEGER , description TEXT , created INTEGER );

Listing 4.3: data2d schema.sql

CREATE TABLE Points (PointID INTEGER PRIMARY KEY ,

x REAL , y REAL , z REAL);

CREATE TABLE Planes (PlaneID INTEGER PRIMARY KEY ,

a REAL , b REAL , c REAL , d REAL);

CREATE TABLE Vertices (PolyhedronID INTEGER NOT NULL , VID INTEGER NOT NULL ,

PointID INTEGER , PRIMARY KEY (PolyhedronID , VID ));

CREATE TABLE Edges (PolyhedronID INTEGER NOT NULL , EID INTEGER NOT NULL ,

VID_SRC INTEGER , VID_DST INTEGER , FID_L INTEGER , FID_R INTEGER ,

PRIMARY KEY (PolyhedronID , EID ));

CREATE TABLE Triangles (

PolyhedronID INTEGER NOT NULL , FID INTEGER NOT NULL , TID INTEGER NOT NULL ,

VID_1 INTEGER , VID_2 INTEGER , VID_3 INTEGER ,

PRIMARY KEY (PolyhedronID , FID , TID));

CREATE TABLE Facets (PolyhedronID INTEGER NOT NULL , FID INTEGER NOT NULL ,

PlaneID INTEGER , PRIMARY KEY (PolyhedronID , FID ));

CREATE TABLE Polyhedrons (PolyhedronID INTEGER PRIMARY KEY ,

description TEXT , created INTEGER );

CREATE TABLE Nodes (SkelID INTEGER NOT NULL , NID INTEGER NOT NULL ,

PointID INTEGER , offset REAL , PRIMARY KEY (SkelID , NID ));

CREATE TABLE Arcs (SkelID INTEGER NOT NULL , AID INTEGER NOT NULL ,

NID_SRC INTEGER , NID_DST INTEGER , PRIMARY KEY (SkelID , AID ));

CREATE TABLE Sheets (SkelID INTEGER NOT NULL , SID INTEGER NOT NULL ,

PRIMARY KEY (SkelID , SID ));

CREATE TABLE Sheets_Arcs (

SkelID INTEGER NOT NULL , SID INTEGER NOT NULL , AID INTEGER NOT NULL ,

PRIMARY KEY (SkelID , SID , AID));

CREATE TABLE Events (SkelID INTEGER NOT NULL , EventID INTEGER NOT NULL ,

etype INTEGER , NID INTEGER , PRIMARY KEY (SkelID , EventID ));

CREATE TABLE StraightSkeletons (SkelID INTEGER PRIMARY KEY ,

PolyhedronID INTEGER , config TEXT , description TEXT , created INTEGER );

Listing 4.4: data3d schema.sql
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4.2 Algorithm

As mentioned at the beginning of this chapter, the most important feature of the al-
gorithm is its simplicity and therefore the simplicity of the implementation. Because
of this simplicity, many results on the straight skeleton were found. An algorithm
with a low time complexity was not the aim of the present work. This section is
devoted to the simple straight skeleton algorithm for polyhedra in 3-space. Algo-
rithm 4.1 explains the procedure.

Algorithm 4.1 SimpleStraightSkeleton(polyhedron)

Require: isValid(polyhedron)
Ensure: isEmpty(polyhedron)
1: skel result ← initializeSkeleton(polyhedron)
2: polyhedron ← splitVerticesDegGt3(polyhedron)
3: offset ← 0; offset prev ← 0
4: event ← findNextEvent(polyhedron, offset)
5: while ∃ event do
6: offset ← getOffset(event)
7: polyhedron ← shiftFacets(polyhedron, offset − offset prev)
8: handleEvent(skel result, event, polyhedron)
9: if isEnabled(debug) then

10: isConsistent(skel result)
11: isConsistent(polyhedron)
12: isInsideBoundingBox(polyhedron)
13: end if
14: event ← findNextEvent(polyhedron, offset)
15: offset prev ← offset
16: end while

4.2.1 Time Complexity Analysis

The given polyhedron has nv vertices, ne edges and nf facets. re denotes the number
of reflex edges. The number of reflex vertices is denoted by rv. A vertex is reflex if
all incident edges are reflex.

Basics

Euler’s formula establishes a relation between the number of nodes, arcs, and faces
of a connected planar graph. If a polyhedron is topologically equivalent to a sphere,
its surface can be mapped to a connected planar graph in the plane. In this case, one
facet of the polyhedron maps to the unbounded face of the graph. This connection
is expressed in equation 4.1

nv − ne + nf = 2 (4.1)
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Every edge is incident to two facets and every facet has at least three edges. This
gives 2ne ≥ 3nf . Applying this relation to Euler’s formula bounds the number of
edges and facets.

ne ≤ 3nv − 6 nf ≤ 2nv − 4

These bounds are only valid for nv ≥ 3.
Using the ingredients above, the expected degree of a vertex is bound. A naive idea

for this is to sum up all edges, multiply them by two (each edge has two vertices),
and divide the result by the number of vertices. The result of this would be 2(3nv−6)

nv
.

Unfortunately, the relations from above are only valid for nv ≥ 3. Therefore, the
summation has to start at nv ≥ 3. A tetrahedron has four vertices and six edges.
The total degree of all four vertices is twelve.

An upper bound for the expected degree of a vertex vi is calculated as follows.

E[deg vi] =
1

nv − 4

nv∑
i=5

deg vi

≤ 1
nv − 4

((
nv∑
i=1

deg vi

)
− 12

)

≤ 2(3nv − 6)− 12
nv − 4

= 6

Initialization: Split Vertices

At the beginning, vertices of degree > 3 are split. The required time depends on
the method used.

Convex and reflex vertices are split in O(deg vi · log(deg vi)) time. Such vertices
have only one unique solution.

For pointed vertices, the weighted straight skeleton in the plane can be used.
Using this method, only one possible offset polyhedron is generated.

To check all combinations of bisector graphs, an exponential number of unrooted
binary trees is generated. The degree of the vertex determines the number of un-
rooted binary trees. The exact number is equal to the Catalan number of the degree
of the vertex. On an ordinary computer, the implementation takes approximately
one second for a vertex of degree 10.

Finding the Next Event

The required time to find the next event depends on the type of the event. The next
vanish event is determined in linear time, O(ne). This time complexity is achieved
because it is sufficient to investigate a local neighbourhood of the edge.

The investigation of a local neighbourhood is also sufficient for most of the contact
events. For these local contact events, all edges are investigated once. To find an
edge that meets the current investigated edge, all vertices of incident facets are
examined. Only incident edges of these vertices are possible candidates to meet the
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current edge. The number of incident vertices of a facet is equal to the number of
incident edges. The expected value of incident edges of a facet is bounded by 6. This
is observed by drawing a graph on the surface of the polyhedron. A node is put on
every facet. The nodes of adjacent facets are connected. This creates the edges of
the graph. The resulting graph on the surface of the polyhedron is embedded into
the plane. If the polyhedron is a topological sphere, the graph can be embedded
into the plane without crossings. Therefore, the next local contact event is found in
O(ne) time for topological spheres.

Non-local events are the edge-edge contact event and the vertex-facet contact
event. The next edge-edge contact event is found by checking all reflex edges against
each other. This takes O(r2

e) time. The next edge-facet contact event is found by
checking all reflex vertices with all facets of the polyhedron. This takes O(rv · nf )
time.

Under the assumption that the input polyhedron is topologically equivalent to a
sphere, the next event is found in O(ne + rv · nf + r2

e) < O(n2
v) time.

Number of Events

In the non-degenerate case, an event may happen when four facet-supporting planes
meet in a point during the shrinking process. If an event happens, a node of the
straight skeleton is created at this point. This observation leads to the trivial upper
bound of O(n4

f ) = O(n4
v) for the total number of events.
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4.3 Visualization

The implementation features an interactive animation using OpenGL. The shrinking
process of the polyhedron can be observed on screen. The visualization is indepen-
dent from the algorithm that computes offset polyhedra and the straight skeleton.
One thread runs the algorithm. One thread is responsible for the visualization.
Another thread handles key strokes. While the implementation is executed, the al-
gorithm and the visualization access the same data structures in memory. Therefore,
locking mechanisms are required.

OpenGL is perfectly suited to render three-dimensional geometric objects on
screen. This method generates raster images, pixels for the screen. For paper, vector
graphics are preferred over raster images. Another feature of the implementation
is non-interactive vector graphics rendering. All figures of polygons, polyhedra,
straight skeletons and spherical skeletons in the present work were created by this
function.

4.3.1 Rendering to PostScript

To render a polyhedron to an PostScript file, the following information is required.
The coordinates of the vertices are stored by the data structure. The actual view
on screen is determined by geometric transformations and a perspective projection.
Using this information, the polyhedron on screen is rendered as vector graphic into
a PostScript file. In this section, only essential parts that are relevant for this
procedure are covered. OpenGL and PostScript have many more features than
those that are covered here.

Several geometric models in three-dimensional space are rendered by OpenGL onto
the two-dimensional screen. The geometric models are transformed by translation,
rotation and scaling to be placed into the global coordinate system. Afterwards,
the global scene is also transformed using such operations. As a result, the z-axis is
perpendicular to the screen and points out of it. These transformations are achieved
with matrix multiplications. Translation, rotation and scaling are covered by the
modelview matrix MV . The perspective projection is done with the projection
matrix P . MV and P are 4× 4 matrices. The coordinates of the given point of the
geometric in 3-space are put into a vector pin = (x, y, z, 1). Equation 4.2 shows how
this vector is transformed using matrix multiplications.

pout = P ·MV · pin (4.2)

The result pout is a four-dimensional vector. This vector is the position of the
given point on screen after a perspective projection. The fourth coordinate of pout

is used to normalize the device (screen) coordinates. The so-called viewport is used
to create a raster image and contains the resolution of this image.
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OpenGL provides functions to create the transformation matrices. The graphics
card puts triangles in 3-space onto the screen using these matrices. The currently
used transformation matrices are read from the graphics card. Functions to read
these matrices are shown in Listing 4.5.

float modelview [16];

float projection [16];

int viewport [4];

glGetFloatv(GL_MODELVIEW_MATRIX , modelview );

glGetFloatv(GL_PROJECTION_MATRIX , projection );

glGetIntegerv(GL_VIEWPORT , viewport );

Listing 4.5: get gl matrices.c

The same transformation matrices are used to map the coordinates of the vertices
onto the paper. The rasterisation is omitted for the paper.

PostScript is a scripting language focused on the creation of vector graphics. The
commands to create such a vector graphic are contained in an ASCII text file. The
following example shows how a line is drawn using PostScript. The default unit size
of PostScript is 1

72 inch. Listing 4.6 creates a line that is 1 mm thick and 50 mm
long. The image itself measures 70 mm in width and 20 mm in height.

%!PS-Adobe -3.0 EPSF -3.0

%% BoundingBox: 0 0 198 57

2.83465 setlinewidth

newpath

28.5 28.5 moveto

170.23 28.5 lineto

stroke

Listing 4.6: line.eps
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4.4 Experimental Results

The algorithm from Section 4.2 has been implemented in C++. Experimental results
were obtained with an ordinary computer, an Intel i5-2500 at 3.3 GHz with 4 GB
of main memory. Table 4.1 shows used examples of polyhedra. Some of them are
visualized in Figure 4.5.

The sizes of the resulting straight skeletons are shown in Table 4.2 and Table 4.3.
For the measuring of the required time for computation, the application was com-
piled with the debug flag disabled. The binary was executed without visualization.
This accelerates the computation because the data structure would be locked while
it gets drawn on the screen. The results in Table 4.2 were obtained by keeping the
polyhedra convex during the shrinking process. Table 4.3 shows the sizes of the
straight skeletons when the volumes of the offset polyhedra are minimized.

The number of events are counted in Table 4.4 and Table 4.5.

PolyhID Name Figure Vertices Edges Facets
1 Shaken Cube 8 12 6
2 Held 3.3 24 36 14
3 Iron Maiden Pizza Box 3.4 32 48 24
4 Saddle Point 3.16 9 16 9
5 Sea Star 3.40 12 30 20
6 Wedge on Tabletop A.1 16 24 11
7 Iron Maiden A.3 20 30 15
8 Schönhardt 4.5a 6 12 8
9 Verworrtakelt I 4.5b 66 192 128

10 Verworrtakelt II 66 192 128
11 Armadillo (small) 50 144 96
12 Armadillo 4.5c 99 291 194
13 Asteroid 20 54 36
14 Stanford Bunny 4.5d 152 450 300
15 Pawn (chess) 42 119 79
16 Chinese Lion 89 261 174
17 Convex Piece 38 108 72
18 Hand 4.5e 52 150 100
19 Shaken Sphere 66 192 128
20 Venus (small) 63 183 122
21 Venus 4.5f 142 420 280

Table 4.1: Examples of polyhedra
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(a) 8, Schönhardt (b) 9, Verworrtakelt I

(c) 12, Armadillo (d) 14, Stanford Bunny

(e) 18, Hand (f) 21, Venus

Figure 4.5: Examples of polyhedra
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PolyhID Nodes Arcs Sheets Time [s]

1 12 12 13 0.01
2 60 84 61 0.11
3 183 318 184 9.15
4 22 33 28 0.03
5 41 76 66 0.92
6 41 58 42 0.12
7 69 108 70 0.52
8 12 18 19 0.01
9 402 798 596 22.57

10 388 770 583 24.02
11 229 452 368 5.48
12 512 1018 802 25.68
13 86 166 135 0.48
14 949 1892 1400 97.28
15 210 413 325 4.39
16 483 960 744 27.00
17 196 386 299 2.36
18 238 470 386 6.41
19 335 664 522 6.80
20 344 682 526 11.02
21 948 1890 1376 125.60

Table 4.2: Straight skeletons for locally maximizing the number of convex edges

PolyhID Nodes Arcs Sheets Time [s]

1 12 12 13 0.01
2 60 84 61 0.11
3 183 318 184 9.34
4 19 27 26 0.03
5 43 80 71 0.94
6 41 58 42 0.12
7 69 108 70 0.52
8 14 22 23 0.03
9 475 944 671 38.82

10 467 928 667 39.12
11 270 534 417 7.83
12 587 1168 885 39.35
13 86 166 135 0.51
14 980 1954 1440 123.30
15 232 457 351 5.62
16 519 1032 781 37.71
17 196 386 299 2.37
18 287 568 439 9.30
19 341 676 529 7.13
20 411 816 597 18.37
21 1093 2180 1527 180.00

Table 4.3: Straight skeletons for minimizing the volume
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PolyhID Vanish Events Contact Events
E1 E2 E3 E4 E5 E6 V-E V-V I V-V II V-V-E I V-V-E II E-E V-F

1 1 0 2 0 0 1 0 0 0 0 0 0 0
2 25 0 10 0 0 1 0 0 0 0 0 0 0
3 22 0 38 0 0 16 30 0 0 30 0 9 6
4 3 0 5 0 0 2 2 0 0 1 0 0 0
5 6 0 13 0 0 4 3 0 0 3 0 0 0
6 9 0 6 0 0 3 3 0 0 3 0 0 1
7 5 0 10 0 0 8 11 0 0 11 0 1 3
8 1 0 2 0 0 2 0 0 0 1 0 0 0
9 145 0 140 0 7 4 33 0 0 5 0 1 1

10 119 1 137 0 7 8 36 0 0 10 0 2 2
11 52 0 89 0 0 11 17 0 0 10 0 0 0
12 130 0 196 0 4 18 48 0 0 17 0 0 0
13 33 0 32 0 0 1 0 0 0 0 0 0 0
14 333 0 354 0 6 9 85 0 0 9 0 0 1
15 90 0 73 0 2 1 2 0 0 0 0 0 0
16 138 0 185 0 5 11 45 0 0 10 0 0 0
17 89 0 68 0 0 1 0 0 0 0 0 0 0
18 56 0 92 0 3 9 18 0 0 8 0 0 0
19 144 0 124 0 0 1 0 0 0 0 0 0 0
20 120 0 121 0 4 7 21 0 0 7 0 1 0
21 361 1 317 0 12 13 89 0 0 12 0 0 1

Table 4.4: Event count for locally maximizing the number of convex edges

PolyhID Vanish Events Contact Events
E1 E2 E3 E4 E5 E6 V-E V-V I V-V II V-V-E I V-V-E II E-E V-F

1 1 0 2 0 0 1 0 0 0 0 0 0 0
2 25 0 10 0 0 1 0 0 0 0 0 0 0
3 22 0 38 0 0 16 30 0 0 30 0 9 6
4 1 1 4 0 0 2 2 0 0 0 0 0 0
5 11 0 9 0 3 3 3 0 0 2 0 0 0
6 9 0 6 0 0 3 3 0 0 3 0 0 1
7 5 0 10 0 0 8 11 0 0 11 0 1 3
8 1 2 2 0 0 2 0 0 0 0 0 1 0
9 188 1 143 0 8 9 47 0 1 9 0 2 1

10 177 5 134 0 8 13 47 0 0 12 0 3 2
11 77 3 82 0 5 14 29 0 0 10 0 0 0
12 191 4 185 0 8 23 59 0 0 18 0 0 0
13 33 0 32 0 0 1 0 0 0 0 0 0 0
14 366 4 338 0 11 12 84 0 0 10 0 3 0
15 94 0 74 0 6 2 13 0 0 1 0 0 0
16 157 3 187 0 3 15 54 0 0 11 0 0 0
17 89 0 68 0 0 1 0 0 0 0 0 0 0
18 87 5 92 0 2 13 29 0 0 7 0 0 0
19 147 0 124 0 1 1 2 0 0 0 0 0 0
20 157 3 129 0 5 9 36 0 0 7 0 2 0
21 438 4 341 0 15 15 124 0 0 12 0 1 1

Table 4.5: Event count for minimizing the volume
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4 Implementation

4.4.1 Notes and Comments

The experimental results give rise to observations. Minimizing the volume of the
polyhedra during the shrinking process tends to increase the number of reflex edges.
When the number of reflex edges is increased, more time for computation is required.
More contact events with global influence are possible (edge-edge contact event,
vertex-facet contact event) and need to be found. Furthermore, the total number of
events tends to increase. This also increases the size of the straight skeleton.
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5 Conclusion and Further Work

The aim of the present work was to study self-parallel offsets of polyhedra in 3-
space. A self-parallel offset of a polyhedron is created by shifting its facets in a way
that each facet stays parallel to its initial orientation. An investigation of such an
essential topic in the field of computational geometry had not yet been covered.

Literature on self-parallel offsets of polygons in the plane exists. Such an offset is
created by shifting all edges of the polygon. The edges are required to stay parallel
to their initial orientation. During the offsetting process, events occur that change
the polygon combinatorially and topologically: Edges may vanish or a reflex vertex
splits an edge into two parts. By following the vertices of the polygon during the
offsetting process, a skeletal structure, the straight skeleton, is revealed. As its name
implies, this skeleton consists only of straight line segments.

The second chapter of this work studied properties and algorithms of the straight
skeleton in the plane. Most important properties were highlighted. The gained in-
sights of cited papers were summarized in a consecutive way. First algorithms use
the procedural definition of the straight skeleton for its computation. These algo-
rithms use a priority queue to arrange possible events in chronological order. More
advanced algorithms use previously discovered properties for a more efficient com-
putation. A difficulty for an efficient computation was the fact that reflex vertices
have a global influence on the offset polygon. This difficulty was extracted with the
motorcycle graph. Recent work has discovered that the motorcycle graph can be
computed more efficiently when the events are not processed in chronological order.

The current state of the art for the straight skeleton in the plane shows a gap
between the lower and upper time complexity bound. The lower bound is linear
in the size of the input polygon. For polygons with holes, the lower bound was
increased to linear-logarithmic with a reduction to sorting. The lowest upper bound
results from a reduction of the straight skeleton computation to a motorcycle graph
computation. This reduction leads to a sub-quadratic time bound for computing
the straight skeleton.

Before the present work, the offsetting process for polyhedra in 3-space has not
received much attention. A substantial difference between the offsetting process in
the plane and the offsetting process in 3-space happens in the very first moment.
In 3-space, a point is defined by three planes. In order to shift the facets, vertices
with a degree higher than three need to be split. The present work has proven the
existence of a solution for this problem. Simple examples have shown the ambiguity
of the offsetting process in space. Vertices that can be split in exponentially many
different ways have been described. The presented algorithm and its implementation
were helpful to compute all of them.
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After each vertex has been split, all facets are shifted. The shifting continues as
long as no self-intersections on the surface occur. To keep the surface intersection
free during the whole offsetting process, events need to be detected and handled
correctly. Possible events were shown by giving examples. These examples were
illustrated by a shrinking polyhedron, which was visualized before and after an
event. The presented algorithm was used to compute the solutions to the events.

Properties of the straight skeleton of polyhedra were proven. An important prop-
erty is the monotonicity of its cells, which also applies to the three-dimensional
case.

All presented algorithms were implemented in C++. Rather than having a focus
on the efficiency, this implementation was kept easily understandable to gain insight
into the offsetting process. Additional checks after each step of the computation
were helpful for the evaluation of the ideas. An interactive visualization of polyhedra
during the shrinking process was a necessary tool to study and verify the results.

5.1 Mesh Generation Based on Straight Skeletons

The finite element method (FEM) is a common tool for material stress analysis
in the field of mechanical engineering. For the calculation, the geometry of the
mechanically stressed component is decomposed into finite elements, like tetrahedra
or prisms. For these finite elements, there are equations to calculate mechanical
stress.

To use this method for a the calculation of a mechanical component, a mesh
of finite elements is required. There are many algorithms available for automatic
mesh generation. Some of them create a hexahedral mesh from the outside to the
inside. This may cause overlappings of the elements. Smoothing algorithms are
used to equally distribute the generated mesh afterwards. This removes possible
overlappings.

Another approach to automatically generate a mesh was described by Storti et
al. [STG+97]. Starting with a skeletal representation of the mechanical component,
a mesh is constructed from the inside to the outside. Storti et al. have used the
medial axis as skeletal structure. A drawback of the medial axis is that it consists
of parabolic parts. The straight skeleton consists only of piecewise linear parts.

Figure 5.1 shows, how the straight skeleton could possibly be used for mesh gen-
eration. It is very likely that this idea can be generalized to create meshes for
polyhedra in 3-space, but this requires further investigation.
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5 Conclusion and Further Work

(a) Given polygon and its straight skeleton

(b) Step 1: Nodes emanate rays (c) Step 2: Offset polygons are drawn

(d) Step 3: Adjacent triangles are merged (e) Step 4: Edges with two incident five-sided
cells are removed

Figure 5.1: Mesh generation based on straight skeletons
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A Examples

The following figures visualize the shrinking process of selected polyhedra. The
constructed straight skeleton is drawn afterwards. The complexity of the shown
examples is kept low so that the visualization is still clearly understandable.

The size of the polyhedra, as well as the size of the resulting skeletons, and the
number of events are counted in the tables of Section 4.4.
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A Examples

(a) Offset = 0 (b) Offset = 1

(c) Offset = 2 (d) Offset = 3

(e) Offset = 4 (f) Offset = 5

Figure A.1: Wedge on Tabletop
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Figure A.2: Straight skeleton of Wedge on Tabletop
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(a) Offset = 0.0 (b) Offset = 0.5

(c) Offset = 1.0 (d) Offset = 1.5

(e) Offset = 2.0 (f) Offset = 2.5

Figure A.3: Iron Maiden
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A Examples

Figure A.4: Straight skeleton of Iron Maiden

89



B Euclidean Geometry

This appendix includes the equations that are required to compute the geometry of
the straight skeleton. It starts with an introduction and gives definitions of basic
geometric elements and their notation. Most important for the skeleton is the angle
bisector and the intersection of lines in the plane and planes in space. Finally, the
representation of the numbers during the calculation is examined to have an exact
representation of geometric elements.

The ancient Greek mathematician Euclid of Alexandria brought geometry into a
logical system ∼300 BC. He used intuitively appealing axioms to deduce theorems.
These theorems explained Euclidean’s geometry. It was the only geometry for a long
time.

B.1 Basic Elements

B.1.1 Point

A point p defines one position in space. In a Cartesian coordinate system a point is
uniquely defined by numerical coordinates with straight line axes that are perpen-
dicular to each other.

p = (x, y, z) (B.1)

B.1.2 Vector

A vector ~v describes a direction and a distance in space but without a position. It
can be interpreted as the difference of two points.

~v = (vx, vy, vz) (B.2)

Length

|~v| =
√

v2
x + v2

y + v2
z (B.3)

Scalar product

~u · ~v = uxvx + uyvy + uzvz (B.4)

The result is a scalar. It is used to calculate the inner angle ϕ between two vectors
(~u,~v).

cos ϕ =
~u · ~v
|~u| |~v|

(B.5)
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Another application is the orthogonal projection. A vector ~v is projected orthogo-
nally onto a vector ~u.

proj~u~v =
~u

|~u|
~u · ~v
|~u|

(B.6)

Cross product

~u× ~v =

ux

uy

uz

×
vx

vy

vz

 =

uyvz − uzvy

uzvx − uxvz

uxvy − uyvx

 (B.7)

The result is a vector that is perpendicular to both vectors ~u and ~v.

B.1.3 Line

In the Plane

In two-dimensional space a line separates the space into two half-spaces. Because
the line has an orientation, one side is positive. The other one is negative.

l : ax + by + c = 0 (B.8)

The normal vector ~n is perpendicular to the line and points to the positive side.

~n = (a, b) (B.9)

Initialization Two points (p1, p2) are used to initialize a line.

ax1 + by1 + c = 0 (B.10a)
ax2 + by2 + c = 0 (B.10b)

(
x1 y1

x2 y2

)(
a
c
b
c

)
=
(
−1
−1

)
(B.11)

1
c

(
a
b

)
=

1
x1y2 − x2y1

(
y2 −y1

−x2 x1

)(
−1
−1

)
(B.12)

There are two solutions for this equation. The selected solution defines the left side
of the line with a direction from p1 to p2 to be the positive side.

a = y1 − y2 (B.13a)
b = x2 − x1 (B.13b)
c = x1y2 − x2y1 (B.13c)

In Space

In three-dimensional space a line is defined by a point p0 and a direction ~v.

(x, y, z) = p0 + λ~v (B.14)
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B.1.4 Plane

A plane separates the three-dimensional space into two half-spaces.

h : ax + by + cz + d = 0 (B.15)

The normal vector ~n is perpendicular to the plane and points to the positive side.

~n = (a, b, c) (B.16)

Initialization Three points (p1, p2, p3) are used to initialize a plane.

ax1 + by1 + cz1 + d = 0 (B.17a)
ax2 + by2 + cz2 + d = 0 (B.17b)
ax3 + by3 + cz3 + d = 0 (B.17c)

x1 y1 z1

x2 y2 z2

x3 y3 z3


︸ ︷︷ ︸

A

a
d
b
d
c
d

 =

−1
−1
−1

 (B.18)

1
d

a
b
c

 =
1

det(A)

y2z3 − z2y3 z1y3 − y1z3 y1z2 − z1y2

z2x3 − x2z3 x1z3 − z1x3 z1x2 − x1z2

x2y3 − y2x3 y1x3 − x1y3 x1y2 − y1x2

−1
−1
−1

 (B.19)

This equation has two solutions. The following solution defines the positive side of
the plane as follows. The orientation of the points (p1, p2, p3) define the rotation
of a screw that is tightened clockwise. The screw moves to the positive side of the
plane when it is rotated clockwise.

a = y2z3 + z1y3 + y1z2 − z2y3 − y1z3 − z1y2 (B.20a)
b = z2x3 + x1z3 + z1x2 − x2z3 − z1x3 − x1z2 (B.20b)
c = x2y3 + y1x3 + x1y2 − y2x3 − x1y3 − y1x2 (B.20c)
d = x3y2z1 + y3z2x1 + z3x2y1 − x1y2z3 − y1z2x3 − z1x2y3 (B.20d)
d = −xia− yib− zic i ∈ {1, 2, 3} (B.20e)

B.1.5 Sphere

A sphere is defined by its center (point) and its radius.
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B.2 Distance

The Euclidean distance between two points p1 = (x1, y1, z1) and p2 = (x2, y2, z2) is
defined as:

d(p1, p2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (B.21)

In the 19th century other ways of measuring distances came up. Non-euclidean
geometries began to evolve. In the year 1906 Maurice Fréchet found conditions that
must be fulfilled by distance functions. A distance is valid and defines a metric
space, if (and only if) the following conditions hold:

d(p1, p2) ≥ 0 (B.22a)
d(p1, p2) = 0⇔ p1 = p2 (B.22b)
d(p1, p2) = d(p2, p1) (B.22c)
d(p1, p3) ≤ d(p1, p2) + d(p2, p3) (B.22d)

B.2.1 Point-Plane

The orthogonal distance between a plane h and a point p0 is calculated as follows.
A vector ~v from any point on the plane to the point p0 is given by

~v =

x0 − x
y0 − y
z0 − z

 (B.23)

~v is projected onto the normal vector ~n of the plane. The length of the projection
is the distance between the plane h and the point p0.

d(h, p0) = |proj~n~v| (B.24a)

=
|~n · ~v|
|~n|

(B.24b)

=
|ax0 + by0 + cz0 − ax− by − cz|√

a2 + b2 + c2
(B.24c)

d(h, p0) =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
(B.25)
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B.3 Intersection

In two-dimensional space two lines (l1, l2) intersect at a point p = (x, y).

l1 : a1x + b1y + c1 = 0 (B.26a)
l2 : a2x + b2y + c2 = 0 (B.26b)

(
a1 b1

a2 b2

)(
x
y

)
=
(
−c1

−c2

)
(B.27)

(
x
y

)
=

1
a1b2 − a2b1

(
b2 −b1

−a2 a1

)(
−c1

−c2

)
(B.28)

The lines (l1, l2) are parallel, if a1b2 − a2b1 = 0.

In three-dimensional space three planes (h1, h2, h3) intersect at a point p = (x, y, z).

h1 : a1x + b1y + c1z + d1 = 0 (B.29a)
h2 : a2x + b2y + c2z + d2 = 0 (B.29b)
h3 : a3x + b3y + c3z + d3 = 0 (B.29c)

a1 b1 c1

a2 b2 c2

a3 b3 c3


︸ ︷︷ ︸

A

x
y
z

 =

−d1

−d2

−d3

 (B.30)

x
y
z

 =
1

det(A)

b2c3 − c2b3 c1b3 − b1c3 b1c2 − c1b2

c2a3 − a2c3 a1c3 − c1a3 c1a2 − a1c2

a2b3 − b2a3 b1a3 − a1b3 a1b2 − b1a2

−d1

−d2

−d3

 (B.31)
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Two planes (h1, h2) intersect at a line.

~v = ~n1 × ~n2 (B.32)

Depending on the direction of ~v, one coordinate of the point p0 is set to 0.

p0 = (x, y, 0) (B.33)

h1 : a1x + b1y + c10 + d1 = 0 (B.34a)
h2 : a2x + b2y + c20 + d2 = 0 (B.34b)

(
a1 b1

a2 b2

)(
x
y

)
=
(
−d1

−d2

)
(B.35)

(
x
y

)
=

1
a1b2 − a2b1

(
b2 −b1

−a2 a1

)(
−d1

−d2

)
(B.36)

A plane h and a line l intersect at a point p = (x, y, z).

l : p = p0 + λ0~v (B.37)

h : ax + by + cz + d = 0 (B.38)

a(x0 + λ0v1) + b(y0 + λ0v2) + c(z0 + λ0v3) + d = 0 (B.39)

λ0 =
−ax0 − by0 − cz0 − d

av1 + bv2 + cv3
(B.40a)

λ0 =
−ax0 − by0 − cz0 − d

~n · ~v
(B.40b)
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B.4 Projection

B.4.1 Point-Plane

p′0 denotes the position on the plane h of an orthogonal projected point p0.

p′0 = p0 + λ0~n (B.41)

h : ax + by + cz + d = 0 (B.42)

a(x0 + λ0a) + b(y0 + λ0b) + c(z0 + λ0c) + d = 0 (B.43)

λ0 =
−ax0 − by0 − cz0 − d

a2 + b2 + c2
(B.44)

B.5 Bisector

A point on the intersection of two planes (or lines in 2-dim.) is calculated. This
point is part of the angle bisector. The normal vector ~n of the angle bisector is
calculated as follows.

~n =
~n1

|~n1|
+

~n2

|~n2|
(B.45)

The angle bisector is initialized with the intersection point and its normal vector.

B.6 Side & Orientation

The (signed) area of a triangle (p1, p2, p3) is positive, if the points are ordered
counter-clockwise.

A =
1
2

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣ (B.46)

The (signed) volume of a tetrahedron (p1, p2, p3, p4) is calculated as follows.

V =
1
6

∣∣∣∣∣∣∣∣
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

∣∣∣∣∣∣∣∣ (B.47)

A point p is on the positive side of a plane h, iff ax + by + cz + d > 0. It is on the
negative side, iff ax + by + cz + d < 0.
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B.7 Number Representation

Rational numbers Q (fraction of two integers) are sufficient to have an exact represen-
tation of intersections and projections. Q is not sufficient for an exact representation
of the bisector. The normal vectors can not be normalized without calculating the
square root.
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