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Abstract

In common vehicles the temperature control of the engine or e-motor cool-
ing system is mostly done by a simple bang-bang control of the cooling fan
speed and pump speed, or even only with a bypass and a wax thermostat
valve. In this work a more sophisticated control strategy was implemented.
Therefore, a test bench was set up at the Virtual Vehicle Research and Test
Center. It consists of a conditioning unit with coolant pump and heating
element, a windtunnel and a passenger car heat exchanger. For simulation
purposes a Simulink model of the test bench was implemented. Therefore,
the cooling circuit’s and the heat exchanger’s thermal behaviour was
measured. The parameters of the simulated heat exchanger were fitted in
a least squares sense to match its real life pendant.
The control development required dividing the non-linear mathematical
model of the cooling circuit into a linear and a non-linear part. For the
linear part a Constrained Model Predictive Control (CMPC) was imple-
mented which provides a reference cooling capacity for the heat exchanger
as result. Additionally, a linear interpolation of two different CMPC was
done as the coolant mass flow changes the dynamic of the linear system.
The reference cooling capacity is then fed to a heat exchanger inversion
where, depending on the current vehicle speed, a fitting fan speed is
calculated.
As only two temperatures in the cooling circuit were measured, a PI ob-
server was implemented. The observer estimates all state variables of the
system plus the heating power of the conditioning unit, which was treated
as a disturbance variable. The whole control concept was tested at the
test bench as well as in the simulation and compared to each other. Also
the difference between a Bang-Bang control system and the CMPC was
simulated and discussed.
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1 Introduction

Over the last decades an enormous effort has been made to reduce fuel
consumption and CO2 emission of passenger cars and commercial vehi-
cles. The greatest part of research and development focused on enhancing
the combustion engine, gas exchange and engine control systems. While
the potential to reduce emissions decreased, the costs of development rose.
To reduce the emission of greenhouse gases further, new technologies
had to be found. One of these relatively young research areas is vehicle
thermal management. It deals with the heat/energy flow in the vehicle. By
using enhanced control strategies power consumption for several auxiliary
components can be saved, leading to less fuel consumption in the end
[12].
The priniciple of an engine cooling system has not changed dramatically
since nearly the invention of the automobile. As can be seen in Figure
1.1, the main components of cooling systems are a thermostat, a heat
exchanger and a belt-driven pump [2]. The engine can be regarded as a
heat source. If not only the pump but also the fan engine attached to the
heat exchanger is belt-driven, there is just one way to control the engine’s
operating temperature, which is the thermostat. These thermostats that
are used in cars are also known as ”engine-coolant control valves”. Since
the cooling system has to be designed in a way that it can handle the
maximum heat load by even little vehicle speed, for example stop-and-go
traffic or climbing hills, the radiator is oversized under normal conditions.
Without the thermostat, the cooling system would always operate at full
capacity, which then would lead to engine temperatures below the opti-
mum.
The thermostat senses the coolant temperature and controls the ratio be-
tween the coolant flow through the radiator and the bypass. By doing
so, it is possible to keep the engine temperature at a range of tolerance
around the setpoint temperature. If the coolant temperature is too low, the

1



1 Introduction

Figure 1.1: Typical structure of an engine cooling system [2]

Figure 1.2: Opening and closing behaviour of a thermostat [18]

thermostat closes the loop over the radiator to avoid cooling. Otherwise, if
the temperature is too high, the bypass-loop is completely closed and the
cooling system works at its full capacity. Although thermostats are based
on a very simple concept, the dynamic behaviour of the wax melting and
solidification process is much more complicated. In general they tend to
have a hysteresis in their opening/closing operation, as can be seen in
Figure 1.2. The graph describes the opening and closing of a thermostat
as a function of the coolant’s temperature where β = 1 means that the
whole coolant flow passes the radiator [18]. As a result of this hysteresis
the engine temperature tends to overshoot or oscillate around the setpoint
of the controlled system.
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1 Introduction

By introducing electrical driven pumps and fans, more degrees of free-
dom are available to the control unit. Various contributions, dealing with
energy saving and electrification of the motor cooling system, have been
published in the recent years. Nevertheless, in today’s vehicles, if there is
an electrically driven fan at all, the control strategy is just a Bang-Bang-
control, which leads again to an oscillating behaviour. As part of this
thesis a test bench of an engine cooling system has been built and a model
predictive control with the radiator’s fan speed as correcting variable
was developed. By implementing this more sophisticated control concept,
numerous enhancements can be achieved. The main point is to get the
engine’s coolant temperature to its setpoint without overshoot. If this can
be guarenteed, the desired temperature may be increased, which leads
again to several improvements. Firstly, as a result of the higher engine
temperature, the friction in the engine decreases. Secondly, the gap be-
tween ambient air temperature and coolant temperature will be higher so
that the energy consumption of the fan decreases. All this together leads
to lower fuel consumption in the end.
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2 Test bench setup

For the practical and experimental part of the thesis, a test bench was
built at the Virtual Vehicle Resarch and Test Center. The radiator was
dismounted from a BMW X3, 3.0 HSDI. The parameters of the heat ex-
changer were already measured as part of a previous thesis at the Virtual
Vehicle [11]. As heat source and also as coolant pump a conditioning unit
was used. The heat source can be modulated from 0kW up to 72kW in
0.72kW steps. The adjustable coolant pump produces a mass flow between
approximately 3 kg

min as far as 120 kg
min . Additionally, the heat exchanger was

attached to a wind tunnel to test it under different air mass flows. In
Figure 2.1 the complete test bench setup is illustrated.

Due to the reason that both flow and return pipe are almost 10 meters
long and uninsulated, the convective heat loss to the ambient air can not
be neglected. In table 2.3 the heat transfer rate of the conditioning unit and
the cooling capacity of the heat exchanger are shown. It can be observed
that if the average coolant temperature rises, also the difference between
the heating power Q̇HS and the cooling capacity Q̇HX increases. Some
fundamental dimensions of the heat exchanger are summerized in table
2.1.

In figure 2.2 the experimental setup of the test bench can be seen. Also
all measured variables are displayed, whereat TAir,in is the mean value of
4 Pt-100 temperature sensors and TAir,out is the mean value of 6 thermo
wires. The Pt-100 sensors were placed at the side surfaces of the wind
tunnel’s inside and the thermo wires were mounted at the radiator’s air
outlet as a 2 times 3 array to reduce the error of measurement. With the
measured values of the two volumetric instruments and the corresponding
relative density, the mass flow of air and coolant can be determined.
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2 Test bench setup

Conditioning 
Unit 

Pipes 

Air 
Intake 

Blower 

Flow 
Straightener 

Test Section 

Heat Exchanger 
and Fan 

Figure 2.1: Testbed at the Virtual Vehicle Resarch and Test Center [14]

HX height in m 0.51
HX width in m 0.59
HX depth in m 0.03
Number of Passes 1
Number of Tubes per Pass 52
HX mass in kg 3
Fin Thickness in m 0.0004
Fin Pitch in m 0.001
Tube Thickness in m 0.002
Louver Angle in degrees 27
Louver Pitch in m 0.001
Coolant Volume in l 3
Numbers of Cells per Pass 2
Wall Thickness in m 0.0035
Wall conductivity 250

Table 2.1: Main parameters of the heat exchanger
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2 Test bench setup

Figure 2.2: Measuring setup of the cooling circuit

To identify the thermal behaviour of the cooling circuit the following
measurements as in table 2.3, were carried out. The purpose of measure-
ment No. 1 was to determine the thermal inertia of the system (figure
2.3). The other experiments were done to find steady states (2.4). In these
states the heating power of the heat source and the cooling capacity of the
heat exchanger, together with the convective heat loss in the pipes, are in
balance, i.e.

Heating power = Heat exchanger cooling + Pipe heat loss. (2.1)

To find these steady states, the coolant temperature was observed. For
both constant coolant and air mass flow, it can be stated that the system is
in a steady state, if the coolant temperature in the circuit does not change
over time. With the knowledge of these steady states the characteristics of
the radiator can be determined. To make sure that the temperature sensors
work properly, the cooling capacity of the heat exchanger was calculated
in two ways.
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2 Test bench setup

Variable Description
Q̇HS Heating power of the conditioning unit
ṁco Coolant mass flow
ṁair Air mass flow
Tair,i Air inlet temperature
Tair,o Air outlet temperature
THX,i Coolant temperature at heat exchanger inlet
THX,o Coolant temperature at heat exchanger outlet
Q̇HX Cooling capacity of the heat exchanger

Table 2.2: Description of the measured variables

No. Q̇HS ṁco ṁair Tair,i Tair,o Tco,i Tco,o Q̇HX

kW kg
s

kg
s

◦C ◦C ◦C ◦C kW
1 50.4 2 0 − − − − −
2 10.8 0.1 0.6 24.4 − 50 36 6
3 25.2 0.6 0.3 12 78.9 96.3 88.3 17.2
4 25.2 0.6 0.5 11.6 68.6 87.4 78.9 18.1
5 25.2 0.6 1 12.7 49.7 66.1 57.4 19.6
6 25.2 0.6 1.2 9.4 30.8 49.7 39.8 20.7
7 25.2 1.2 0.4 8.8 27.7 46.8 36.8 20.8
8 35.3 1.2 0.6 12.1 78.2 94.4 88.2 26.9
9 35.3 1.2 1 11.4 59 76.5 69.8 28.8

10 35.3 1.2 1.2 9.5 40.3 59.5 52.5 29.8
11 35.3 1.8 0.6 9.4 35.3 54.9 47.8 29.9
12 50.4 1.8 1 12.3 74.84 92.3 86.2 38.9
13 50.4 1.8 1.2 11.9 52.8 73.5 66.8 42.3
14 50.4 1.8 1.5 11.8 47 69 62.3 42.5
15 50.4 1.8 1.8 12.2 40 63.5 56.7 42.9
16 50.4 0.1 0.6 12.9 35.9 60.6 53.8 42.6

Table 2.3: List of measurement
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2 Test bench setup

The coolant and the air side of the heat exchanger can be seen as two open
systems which are connected over the heat transfer rate Q̇HX. For vehicle
velocities less then Mach 0.3 the air can be seen as incompressible and
therefore can be treated the same as the coolant fluid. If the cooling system
is in a steady state which means that the coolant temperature does not
change over time, the two open systems can be described with equations
(2.2) and (2.3) as follows:

0 = Q̇HX + ṁair

[(
cpairTair

)
i −
(
cpairTair

)
o

]
, (2.2)

0 = −Q̇HX + ṁco

[(
cpcoTHX

)
i −
(
cpcoTHX

)
o

]
, (2.3)

where cp is the integral specific heat capacity of the air, respectively the
coolant, as defined in equation (3.12).
The heat transfer rate Q̇HX can be interpreted as the cooling capacity of
the heat exchanger. By measuring both mass flows as well as inlet and
outlet temperature of air and coolant, the cooling capacity can be balanced
in two separate ways.

In figure 2.3 the heating process (measurement No. 1) of the cooling circuit
is shown. In comparison to figure 2.4 there is no air mass flow which
results in an integral behaviour of the coolant temperature. In comparison
to the heating power Q̇HS and the coolant mass flow, the pipe’s convective
heat loss is small and shows small impact on the coolant temperature.
Figure 2.5 shows the comparison of the two calculated cooling capacities
for measurement number 5. Compared to the heating power in table 2.3,
the cooling capacity is about 5kW smaller, which can be explained by the
already mentioned convective heat loss in the pipes.

The excitation of the fan drive is done by a 12V pulse width modulated
(PWM) signal, with a frequency of about 120Hz. The PWM signal is
created by an Arduino board, which is linked to a notebook with Matlab.
Also, all sensor data required for the control strategy later on, is provided
to Matlab via a National Instrument USB-6009 Data Acquisition device and
the Matlab Data Acquisition Toolbox. As both Matlab and the Data Acquisition
Toolbox are operating in a non-real time environment, there is a possibility
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2 Test bench setup

Figure 2.3: Coolant temperature measurement number 1

Figure 2.4: Coolant temperature measurement number 5
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2 Test bench setup

Figure 2.5: Cooling capacity measurement number 5

of jitter in the closed loop control. However, due to the reason that the
DAQ Toolbox and the PI observer work with a 20 times higher sampling
rate than the Model Predictive Control, it is assumed that the impact of
jitter is neglectable.
In figure 2.6 the characteristic curve of the cooling fan and in figure 2.7 the
air mass flow as a function of the vehicle’s velocity and the fan rotational
speed are shown. As it can be seen, for a large duty range the air mass
flow, produced by the cooling fan, is linear related to the duty-factor of
the PWM signal. A duty-factor below 9% and above 94% is reserved for
trouble shooting and can not be used to generate an air mass flow. This
especially leads to problems with very low required air mass flows, as
they can not be generated. On that account there is some sort of bang-
bang-principle at the beginning of the cooling process, which can be seen
in figure 5.7.
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2 Test bench setup
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Figure 2.6: Fan rotational speed as function of the duty factor
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3 Thermal modeling

The first law of thermodynamics

∆E = Q + W (3.1)

states, that the change of the total energy E of a closed system is the sum of
transferred heat Q and transferred work W into the system. Furthermore,
a system’s energy can be separated into potential energy Epot, kinetic
energy Ekin and internal energy U.

∆E = ∆
(
Epot + Ekin + U

)
(3.2)

The enthalpy H is defined as the sum of the internal energy U and the
product of pressure p and volume V.

H = U + pV (3.3)

By assuming that no work W is done in the cooling circuit and by ne-
glecting the change of kinetic and potential energy, equations (3.1) can be
written for a control volume as:

∆H = Q + ∆ (pV) . (3.4)

However, open systems do have a mass flow ṁ going into or out of a
control volume. Dealing with such a system, the enthalpy flow

Ḣ = ṁh (3.5)

12



3 Thermal modeling

must be taken into consideration, as it changes the energy in a control
volume.

As the cooling circuit will be described as several open control volumes, it
is assumed that there are constant volumes with no mass accumulation.
Also the change of internal energy due to pressure changes is neglected.

Under these assumptions the first law of thermodynamics for open sys-
tems for an infinitesimal time step can be written as [16]

dH
dt

=
(
Q̇ + Ḣ

)
in−out , (3.6)

where enthalpy flows Ḣ and heat transfer rates Q̇ into the system are
counted positive and out of the system negative. The left side of equation
(3.6) can be written as [16]

dH
dt

=
d (mh)

dt
= Vρ

dh
dt

+ h
d (Vρ)

dt
. (3.7)

Due to the assumption that it is only dealt with open systems with constant
volume and no mass accumulation, the equation simplifies to:

dH
dt

=
d (mh)

dt
= m

dh
dt

. (3.8)

For systems with constant pressure the specific enthalpy h of a system
with the temperature T1 can be calculated with the integral equation

h =
∫ T1

0
cpdT. (3.9)

By defining the specific heat capacity cp as a second degree polynomial
depending on the substance’s temperature

13



3 Thermal modeling

cp = a + bT + cT2, (3.10)

equation (3.9) can be solved to

h = T1

(
a +

bT1

2
+

cT2
1

3

)
. (3.11)

By introducing a integral specific heat capacity

cp = a +
bT
2

+
cT2

3
, (3.12)

equation (3.9) can be simplified to

h = cpT1. (3.13)

With this simplification equation (3.8) can be written as

dH
dt

= mcp
dT
dt

(3.14)

By combining equations (3.5), (3.6), (3.13) and (3.14) the first law of ther-
modynamics can be written as [15]

mcp (Tout)
dTout

dt
= Q̇in − Q̇out + ṁ

[(
cpT
)

in −
(
cpT
)

out

]
(3.15)

14



3 Thermal modeling

Figure 3.1: Discretized heat exchanger model [15]

3.1 Heat exchanger modelling

The heat exchanger on the coolant side can be described with equation
(3.15) as follows:

mcpco,o
dTHX,o

dt
= Q̇HX + ṁco

(
cpco,iTHX,i − cpco,oTHx,o

)
. (3.16)

To improve the accuracy of the simulation model, the heat exchanger
has been discretized into cells along the axis of the coolant flow [15]. For
each cell, equation (3.16) is used where the temperature of the ingoing
coolant is either the coolant temperature at the heat exchanger entry or
the temperature of the outgoing coolant of the previous cell. The total
cooling capacity of the heat exchanger is the sum of the cooling capacities
of all cells. In figure 3.1 a heat exchanger model with six cells is shown.
While the coolant temperature changes from cell to cell, it is assumed that
the ingoing air temperature is the same for all cells. For simplification of
the following equations it is assumed that the heat exchanger model only
consists of one cell.

To calculate the cooling capacity Q̇HX of the heat exchanger, the thermal
resistance concept is being used. The concept draws comparisons between
a thermal and an electrical network where a temperature difference can
be seen as voltage and a heat transfer rate as current.

15



3 Thermal modeling

Q̇HX =
∆T

RHX
(3.17)

In the case of a liquid\air heat exchanger, the thermal resistance can be
modeled as a serial connection of three thermal resistances

RHX = Rco + Rwall + Rair, (3.18)

where Rco represents the convection resistance from the coolant to the heat
exchanger’s wall, Rwall is the convection resistance of the heat exchanger
material and Rair stands for the resistance from the heat exchanger to the
bypassing air. While Rwall can be seen as a constant factor, the two other
thermal resistances depend on temperature and mass flow of the coolant
and air respectively. Both can be written as the reciprocal value of the
product of heat transfer area Aht and convective heat transfer coefficient
α:

Rco =
1

αco Aht,co
, (3.19)

Rair =
1

αair Aht,air
(3.20)

3.1.1 Convective heat transfer rates

As mentioned before, the convective heat transfer coefficient depends on
temperature and mass flow (velocity) of the fluid or gas, and is therefore
not easy to determine. A common approach is the calculation of the
dimensionless Nusselt number Nu. This coefficient can be seen as the
ratio of convective heat transfer of a flowing fluid to conductive heat
transfer of a motionless fluid which gives

Nu =
q̇conv

q̇cond
=

α∆T
k∆T
dhyd

=
αdhyd

k
, (3.21)

16



3 Thermal modeling

where k is the thermal conductivity and dhyd is the characteristic length.
So if the Nusselt number is known, the convective heat transfer coefficient
can be calculated by rearranging equation (3.21).

Nusselt number of the coolant

One way to determine the Nusselt number of the coolant is equation (3.22)
[3], where the Nusselt number is a function of the Reynolds number and
the Prandtl number. The coefficients a,b and c are later determined by the
least squares method.

Nuco = aReb
coPrc

co (3.22)

The Reynolds number Re represents the ratio of inertia forces to viscous
forces in the fluid and depends mainly on geometry, free stream velocity,
temperature and fluid type and is expressed as

Reco =
inertia forces
viscous forces

=
vcodhyd,co

νco
=

ṁco
ρco A f low,coz dhyd,co

νco
(3.23)

where νco is the kinematic viscosity of the fluid and vco is the fluid velocity.
The fluid velocity can be calculated by dividing the coolant mass flow by
the product of the tube free flow area A f low,co, the number of tubes per
pass in the heat exchanger z and the coolant density ρco.

The Prandtl number Pr is defined as the ratio of kinematic viscosity νco to
thermal diffusivity ath,co

Prco =
νco

ath,co
=

νco
kco

cp,coρco

=
νcocp,coρco

kco
, (3.24)

where ρco is the coolant’s density and kco is the thermal conductivity. The
four parameters

• thermal conductivity kco

17



3 Thermal modeling

• specific heat capacity cp,co
• density ρco
• and kinematic viscosity νco

are all temperature-dependent and can be determined by simple look-up
tables with the coolant temperature as input.

Nusselt number of the streaming air

As it can be assumed that the vehicles move with under 100 m
s , the air can

be treated as an incompressible fluid. To calculate the Nusselt number of
the air, the modified Reynolds analogy [3] is being used.

Nuair = jReairPr
1
3
air (3.25)

The Reynolds number of the streaming air Reair can be determined the
same way as for the coolant. The air free flow area is defined as

A f low,air =
(
hxheight − ztt

)
hxwidth −

hxwidth
fp

(
hxheight − ztt

)
fthxwidth

(3.26)
and as characteristic length the louver pitch lp is used. The Prandtl number
Prair is determined directly from a look-up table with the air temperature
as input. The factor j is called Colburne - Factor and is defined by Chang
and Wang [4] for louver fin geometry as follows:

j=Re−0.49
air ( la

90)
0.27( fp

lp

)−0.14( fh
lp

)−0.29( fd
lp

)−0.23( ll
lp

)0.68( fh+tt
lp

)−0.28( ft
lp

)−0.05
(3.27)

• la . . . louver angle
• fp . . . fin pitch
• lp . . . louver pitch
• fh . . . fin height
• fd . . . fin depth
• ll . . . louver length
• tt . . . tube thickness

18



3 Thermal modeling

• ft . . . fin thickness
• hxwidth heat exchanger width
• hxheight heat exchanger height
• z number of tubes per pass

To determine the convective heat transfer coefficient for the air side, a
factor η for fin efficiency is added to equation (3.21):

αair = η
Nuairkair

dhyd,air
(3.28)

3.1.2 Calculation of the cooling capacity

To calculate the temperature difference ∆T in equation (3.17), the logarith-
mic mean temperature difference is being used [16]

∆T =
∆T1 − ∆T2

ln
(

∆T1
∆T2

) , (3.29)

where ∆T1 represents the temperature difference of coolant and air at
the air intake and ∆T2 the temperature difference at the air exit. It is
assumed that the temperature of the coolant only changes in the direction
of the coolant flow and not in the direction of the air flow. Therefore,
the coolant temperatue at the air entry and at air exit is the same. As
the heat exchanger is being discretized in the direction of the coolant
flow, the mean temperature of the coolant in each cell is defined as the
coolant temperature at the exit of the same cell. On that account the two
temperature differences can be written as

∆T1 = Tair,in − Tco,out, (3.30)

∆T2 = Tair,out − Tco,out. (3.31)
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3 Thermal modeling

To calculate the air outlet temperature Tair,out the analytical quasi static
solution for the logarithmic mean air temperature distribution [15] is being
used:

Tair,o = Tair,i +

(
1− exp

(
−αair Aht,air

ṁaircp,air

))
(Tw − Tair,i) , (3.32)

with the temperature of the heat exchanger wall

Tw = Tco,out + RcoQ̇HX. (3.33)

3.2 Complete Simulation model

The cooling circuit of the test bench is described by four differential
equations

mpipe1cp,HS,i
dTHS,i

dt
= ṁco

(
cp,HX,oTHX,o − cp,HS,iTHS,i

)
+ Q̇pipe1 (3.34)

mHScp,HS,o
dTHS,o

dt
= ṁco

(
cp,HS,iTHS,i − cp,HS,oTHS,o

)
+ Q̇HS (3.35)

mpipe2cp,HX,i
dTHX,i

dt
= ṁco

(
cp,HS,oTHS,o − cp,HX,iTHX,i

)
+ Q̇pipe2 (3.36)

mHXcp,HX,o
dTHX,o

dt
= ṁco

(
cp,HS,iTHS,i − cp,HX,oTHX,o

)
+ Q̇HX (3.37)

cp,i = f (Ti) (3.38)
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3 Thermal modeling

and the corresponding equations, which describe the heat transfer rates:

Q̇pipe1 = K
(

Tair,i −
THX,o + THS,i

2

)
(3.39)

Q̇pipe2 = K
(

Tair,i −
THS,o + THX,i

2

)
(3.40)

Q̇HX =
∆T

RHX
(3.41)

RHX = Rco + Rwall + Rair (3.42)

Rco =
1

αco Aco
(3.43)

Rair =
1

αair Aair
(3.44)

αco = f (ṁco, THX,i) (3.45)
αair = f (ṁair, Tair,i) (3.46)

ṁair = f (n, vvehicle) (3.47)

∆T =
∆T1 − ∆T2

ln
(

∆T1
∆T2

) (3.48)

∆T1 = Tair,i − THX,o (3.49)
∆T2 = Tair,o − THX,o (3.50)

Tair,o = Tair,i +

(
1− exp

(
−αair Aht,air

ṁaircp,air

))
(Tw − Tair,i) (3.51)

Tw = THX,o + RcoQ̇HX (3.52)

Q̇HS is the heating power of the conditioning unit, Q̇pipe1 and Q̇pipe2
represent the heat loss to the environment at the feeding and discharge
pipe. Q̇HX is the cooling capacity of the heat exchanger. K = 67.57W

K
denotes the product of thermal conductivity factor kpipe and heat transfer
area Apipe of the feeding and discharge pipe to the ambient air with
temperature Tair,i. The air mass flow ṁair is a function of the fan’s rotation
speed n and the vehicle’s driving speed vvehicle.

Figure 3.2 displays the cooling circuit of the test bench setup, as it is
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3 Thermal modeling

Figure 3.2: Simulink model of the cooling circuit

simulated in Simulink. The blocks are taken from the Thermo-Hydraulic
Library [15].

22



4 Heat exchanger model -
optimization

To ensure that the simulation shows the same cooling behaviour as the
real heat exchanger, a two step unconstrained non-linear optimization
of further parameters was done. In the first step the fin efficiency η,
the tube free flow area A f low,co and the tube wetted perimeter P were
optimized. The fin efficiency affects the convective heat transfer on the air
side, as described in equation (3.28). The tube free flow area and the tube
wetted perimeter both influence the coolant side of the heat exchanger as
follows:

dhyd,co =
4A f low,co

P
, (4.1)

Reco =
ṁco,pertubedhyd,co

A f low,oρcoνco
, (4.2)

αco =
Nucokco

dhyd,co
. (4.3)

In the second optimization step the three coefficients of equation (3.22)
were optimized. As reference data the measurements from table 2.3 were
taken.
The Optimization’s cost function was implemented as the least mean
squares of the error of the heat exchanger’s cooling capacity. Due to the
reason that the control strategy should work with coolant mass flows no
higher than 8 kg

min , the relative error was taken for the cost function (4.4). In
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4 Heat exchanger model - optimization
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ṁco = 1.8kg/s Simulation

Figure 4.1: Simulation results of the optimized heat exchanger

Fin efficiency η 0.4587
Tube free flow area A f low 7.7047× 10−5m2

Tube wetted perimeter P 0.2848m
a 0.1809
b 0.5038
c 0.0028

Table 4.1: Optimized parameters of the heat exchanger

that way the smaller coolant flows with less cooling capacity weight more
in the optimization cost function.

J =
(

Q̇HX − Q̇HX,Sim

Q̇HX

)T ( Q̇HX − Q̇HX,Sim

Q̇HX

)
(4.4)

The reference cooling capacity Q̇HX was calculated with equation (2.3).
In Figure 4.1 and 4.2 the results of the optimization can be seen. It was
possible to keep the relative simulation error beneath 7 per cent over the
total range of coolant and air mass flow. The optimized parameter can be
seen in table 4.1.
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Figure 4.2: Simulation error of the optimized heat exchanger

To verify the simulation model, a comparative test was done. The measured
coolant mass flow, air mass flow, air inlet temperature and heating power,
from experiment No. 5 were fed into the optimized simulation model.
Coolant inlet and outlet temperature as well as the cooling capacity of the
heat exchanger were compared. The resulting plots can be seen in figure
4.3 and 4.4.
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4 Heat exchanger model - optimization
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Figure 4.3: Coolant temperature at the heat exchanger, measured and simulated
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Figure 4.4: Cooling capacity of the heat exchanger, measured and simulated
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5 Control strategy

5.1 Linearization

The mathematical model of the cooling circuit was transferred into the
state space, by defining 4 state variables

x1 := THS,i,
x2 := THS,o,
x3 := THX,i,
x4 := THX,o. (5.1)

To keep the underlying model for the implemented control strategy as
simple as possible, the plant model is split into a linear dynamic part and
a nonlinear static part (Hammerstein model[10]).

5.1.1 Linear time-invariant state space model

The LTI-System has its orign in the equations (3.34) to (3.37). To receive
a linear model, a few simplification had to be made. Firstly, the coolant
mass flow is assumed to be constant. Secondly, all masses and specific
heat capacities in the system are defined as temperature-independent
and therefore are constant as well. The input parameter of the system
is the cooling capacity of the heat exchanger Q̇HX. The heating power
Q̇HS as well as the air temperature Tair,i are seen as uncontrollable input
parameters.
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5 Control strategy

So for a specific coolant mass flow, the linear part of the system can be
described as follows:

ẋ = Ax + bu + bd1d1 + bd2d2 (5.2)
y = Cx, (5.3)

with

x =


x1
x2
x3
x4

 , (5.4)

u = Q̇HX, (5.5)
d1 = Q̇HS, (5.6)
d2 = Tair,i, (5.7)

A =


− ṁco

mpipe1
− K

2mpipe1cp
0 0 ṁco

mpipe1
− K

2mpipe1cp
ṁco
mHS

− ṁco
mHS

0 0
0 ṁco

mpipe2
− K

2mpipe2cp
− ṁco

mpipe2
− K

2mpipe2cp
0

0 0 ṁ
mHX

− ṁ
mHX

 , (5.8)

b =


0
0
0
1

mHXcp

 , bd1 =


0
1

mHScp

0
0

 , bd2 =


K

mpipe1cp

0
K

mpipe2cp

0

 , (5.9)

As control variable for the MPC the coolant temperature of the heat source
input x1 is used, while the PI observer uses the state variables x1, x3 and
x4 as input. Therefore, the output vector used for the implementation of
the Model Predictive Control cT

MPC differs from the output matrix used
for the observer implementation Co.
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5 Control strategy

cT
MPC =

[
1 0 0 0

]
(5.10)

Co =

1 0 0 0
0 0 1 0
0 0 0 1

 (5.11)

Due to the reason that the state variable x4 is calculated as a byproduct
of the heat exchanger inversion, it does not need to be measured but can
be used as a virtual measurand. The two available coolant temperature
sensors are used to measure x1 and x3.
In table 5.1 the used parameters for the linearization are illustrated.

cp 3417.6 J
kgK

mpipe1 11.53kg
mHS 69.13kg
mpipe2 10.84kg
mHX 3.05kg
K 67.57W

K

Table 5.1: Parameters of the linearized model

This state space model only describes the cooling circuit for one specific
coolant mass flow, as the dynamic matrix A depends on ṁco. For example,
for a chosen coolant mass flow of 8 kg

min the eigenvalues of the system are
shown in table 5.2.

eigenvalues
λ1 −0.00039
λ2 −0.01346 + i0.0051
λ3 −0.01346− i0.0051
λ4 −0.04397

Table 5.2: Eigenvalue of the dynamic matrix A for ṁco = 8 kg
min
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5 Control strategy

5.2 Control design

The control design is implemented for a discrete, linear, time-invariant
plant:

xk+1 = Φxk + huk + hd1d1,k + hd2d2,k, (5.12)

yMPC,k = cT
MPCxk.

The matrix Φ and the vectors h,hd1 and hd2 are derived from A, b, bd1,
bd2 of equation (5.2) and the sampling time Td as explained in [7]:

Φ = eATd (5.13)

h =
∫ Td

0
eAτbdτ (5.14)

hd1 =
∫ Td

0
eAτbd1dτ (5.15)

hd2 =
∫ Td

0
eAτbd2dτ (5.16)

The complete control concept for the cooling circuit exists of three separate
parts:

• a Model Predictive Control to calculate the optimum cooling capacity,
• an observer to estimate all state variables and the heating power of

the conditioning unit,
• a non-linear heat exchanger inversion to calculate the needed fan

speed for a given cooling capacity and vehicle speed
• and a linear interpolation of the reference cooling capacities of two

MPC’s for different coolant mass flows.

In figures 5.1 and 5.2 the whole control concept is illustrated. The Model
Predictive Control Interpolation’s output is the reference cooling capacity
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MPC-
Interpolation

HX-
Inversion

non linear 
plant

rk = x1,k
 uk = Qref,k  

.
nk

[Qk , x4,k]
.

 yk

x3,k
^

[Tair,k , mcool,k]
.

Figure 5.1: Control concept for a changing coolant mass flow

of the heat exchanger, which serves as input for the heat exchanger inver-
sion. There, based on current coolant mass flow, coolant inlet temperature
of the heat exchanger, vehicle speed and air temperature, a fan speed
is calculated so that the cooling capacity of the heat exchanger model
fits the reference signal. The PI observer estimates the states of the LTI
system plus the heating power of the conditioning unit. As the calculation
of the heat exchanger’s coolant output temperature is a part of the heat
exchanger-inversion, it can be added to the observer input as an additional
virtual measurand.
Both MPC and PI observer are implemented twice for a minimum and a
maximum coolant mass flow. Between these two, the optimal reference
cooling capacity as well as the estimated heat exchanger’s coolant inlet
temperature are calculated by linear interpolation.
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low coolant mass flow
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.
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Figure 5.2: Linear interpolation

5.2.1 Model predictive control

The following objectives have to be fulfilled by the implemented control
concept:

• Satisfaction of states and input constraints
• Minimization of control fault and maximization of performance in

terms of control speed
• Possibility of real-time execution of an embedded system

A common way to receive an optimal control while satisfying all con-
straints is the Model Predictive Control (MPC), as explained in [1]. Taking
into consideration that all state variables are available, the MPC calcu-
lates the control sequence for the control horizon Nc, so that the system
behaviour is optimal in the prediction horizon Np (Np ≥ Nc). The op-
timization is done with respect to all constraints, such as state, input
and output constraints. From the resulting control output sequence, only
the first sample is taken as control command, whilst the optimization is
redone for the next time step. This leads to a so-called moving horizon
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policy.
By defining r as the reference signal, one way to define the MPC problem
is as follows:

min
∆u0,...,Nc−1|k

Np−1

∑
k=0

(rk − yk|k)
2Q +

Nc−1

∑
k=0

∆u2
k|kR (5.17)

w.r.t.
uk|k = uk−1|k + ∆uk|k, (k = 0, 1, ..., Nc−1) (5.18)

xk+1|k = Φxk|k + huk|k + hd1d1,k|k + hd2d2,k|k, (k = 0, 1, ..., Np−1) (5.19)

yMPC,k|k = cT
MPCxk|k, (k = 0, 1, ..., Np−1) (5.20)

ymin
MPC,k+1|k ≤ yMPC,k+1|k ≤ ymax

MPC,k+1|k, (k = 0, 1, ..., Np−1) (5.21)

umin
k ≤ uk|k ≤ umax

k , (k = 0, 1, ..., Nc−1) (5.22)

∆umin
k ≤ ∆uk|k ≤ ∆umax

k , (k = 0, 1, ..., Nc−1) (5.23)

∆uk|k = 0, (Nc ≤ k ≤ Np) (5.24)

In this case, not the actual actuating variable but the change of it between
two time steps is optimized. If Np > Nc, the actuating variable is being
held constant after passing the control horizon.

Unconstrained Model Predictive Control

In the unconstrained case the explicit solution of the optimization prob-
lem can be calculated. Therefore, the following matrices and vectors are
defined:

yMPC,k+1 =


yMPC,k+1
yMPC,k+2

.

.
yMPC,k+Np

 , rk+1 =


rk+1
rk+2

.

.
rk+Np

 , ∆uk =


∆uk

∆uk+1
.
.

∆uk+Nc−1


(5.25)
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FMPC =


cT

MPCΦ

cT
MPCΦ2

.

.
cT

MPCΦNp

 , (5.26)

g =


cT

MPCh
cT

MPC(Φ + I)h
.
.

cT
MPC(Φ

Np−1 + · · ·+ Φ + I)h

 , (5.27)

gd1 =


cT

MPChd1
cMPC(Φ + I)hd1

.

.
cT

MPC(Φ
Np−1 + · · ·+ Φ + I)hd1

 , (5.28)

gd2 =


cT

MPChd2
cMPC(Φ + I)hd2

.

.
cMPC(Φ

Np−1 + · · ·+ Φ + I)hd2

 , (5.29)

L =


cT

MPCh 0 . . . 0
cT

MPC(Φ + I)h cT
MPCh . . . 0

. . . .

. . . .
cT

MPC(Φ
Nc−1 + · · ·+ Φ + I)h cT

MPC(Φ
Nc−2 + · · ·+ Φ + I)h . cT

MPC h
. . . .
. . . .

cT
MPC(Φ

Np−1 + · · ·+ I)h cT
MPC(Φ

Np−2 + · · ·+ I)h . cT
MPC(Φ

Np−Nc + · · ·+ I)h

, (5.30)

where I is the identity matrix with the same rank as Φ. The system output
can be described as

yMPC,k+1 = FMPCxk + guk−1 + gd1d1,k−1 + gd2d2,k−1 + L∆uk = g̃k + L∆uk.
(5.31)

By defining
ek = g̃k − rk+1 (5.32)

the control fault can be written as

yMPC,k+1 − rk+1 = ek + L∆uk, (5.33)
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which results in the optimization problem

J? = min
∆uk

[(yMPC,k+1 − rk+1)
TQ(yMPC,k+1 − rk+1) + ∆uT

k R∆uk] =

= min
∆uk

[∆uT
k (L

TQL + R)∆uk + 2∆uT
k LTQek + eT

k Qek] (5.34)

→ ∆u?
k = −(LTQL + R)−1LTQek (5.35)

If the weighting matrices Q and R are defined to be positive definite, the
matrix inversion in equation (5.35) exists and ∆u?

k is solvable. As only the
first element of ∆u?

k is used, the complete control law, for known xk−1,
d1,k−1, d2,k−1 and uk−1, can be finally written as:

xk = Φxk−1 + huk−1 + hd1d1,k−1 + hd2d2,k−1 (5.36)
ek = g̃k − rk+1 (5.37)

∆uk = −
[
1 0 . . . 0

]
(LTQL + R)−1LTQek = −kTek (5.38)

uk = uk−1 + ∆uk (5.39)

Constrained Model Predictive Control

For a single input - single output (SISO) system, as it is in the present
application, the constraints formulated in the equations (5.21) to (5.23) can
easily be written as a system of inequalities:

W∆uk ≤ w (5.40)

Therefore the following matrices have to be defined:
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W =


−T
T
−U
U
−L
L

 , w =


−umin + vuk−1
umax − vuk−1
−∆umin

∆umax

−ymin + g̃k
ymax − g̃k

 , T =


1 0 0 . . . 0
1 1 0 . . . 0
.
.
1 1 1 . . . 1


Nc × Nc,

(5.41)

U =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
.
.
0 0 0 . . . 0 1


Nc × Nc, v =


1
1
.
.
1


Nc × 1, (5.42)

and the constraints have to be written as vectors:

umin =


umin

0
.
.

umin
Nc−1

 , ∆umin =


∆umin

0
.
.

∆umin
Nc−1

 , ymin
MPC =


ymin

MPC,1
.
.

ymin
MPC,Np

 . (5.43)

The same definitions apply, of course, to umax,∆umax and ymax
MPC.

With these matrices the optimization problem for the Constrained Model
Predictive Control is defined as:

min
∆uk

[∆uT
k (L

TQL + R)∆uk + 2∆uT
k LTQek + eT

k Qek] (5.44)

w.r.t.
W∆uk ≤ w (5.45)
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Quadratic Programming for Inequality Constraints

The following approach to the Quadratic Programming for Inequaltiy
Constraints is based on the books [17] and [8]. To be consistent with
literature, the optimization problem is expressed as

J =
1
2

xTEx + xTf (5.46)

Mx ≤ γ. (5.47)

All matrices and vectors are assumed to be compatible in the quadratic
programming problem. Additionally, E is assumed to be symmetric and
positive definite. In contrast to quadratic programming for equality con-
straints, the number of constraints can be larger than the number of
decision variables. Therefore, Mx ≤ γ may contain inactive and active
constraints. A constraint is said to be inactive as long as Mix < γi applies.
Thus, a constraint is active, if Mix = γi applies. Mi and γi represent the
i-th row of M, respectively the i-th element of γ.
For further proceedings the Lagrange multipliers and the Karush-Kuhn-
Tucker conditions have to be introduced.

Lagrange multipliers The method of Lagrange multipliers is a mathe-
matical tool to find the local extrema of a function subject to equality
constraints

J =
1
2

xTEx + xTf (5.48)

Mx = γ. (5.49)

The original objective function J is extended to the Lagrange function

L(x, λ) =
1
2

xTEx + xTf + λT (Mx− γ) , (5.50)
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where the vector λ contains the Lagrange multipliers λi. It is easy to see
that the necessary conditions for the extended optimization problem are

∂L
∂x

= Ex + f + MTλ = 0 (5.51)

∂L
∂λ

= Mx− γ = 0. (5.52)

The further calculation of the optimal solution for x and λ is straightfor-
ward.

Karush-Kuhn-Tucker conditions As the method of Lagrange multipliers
only allows equality constraints, the Karush-Kuhn-Tucker (KKT) condi-
tions are introduced:

Ex + f + MTλ = 0 (5.53)
Mx− γ ≤ 0 (5.54)

λ (Mx− γ) = 0 (5.55)
λ ≤ 0. (5.56)

To satisfy equation (5.55) λi
!
= 0 if Mix < γi (which means that the i-th

constraint is inactive). By defining Sact as the index set of active constraints,
the KKT conditions can be written as:

Ex + f + ∑
i∈Sact

λiMT
i = 0 (5.57)

Mix− γi = 0 i ∈ Sact (5.58)
Mix− γi < 0 i /∈ Sact (5.59)

λi ≥ 0 i ∈ Sact (5.60)
λi = 0 i /∈ Sact. (5.61)
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As it can be seen in equations (5.60) and (5.61), the Lagrange multiplier
is zero if the corresponding constraint is inactive, and non-negative if
the constraint is active. Therefore, if the active set is known, the original
problem with inequality constraints can be replaced by an optimization
problem with only equality constraints. For this alternative problem, the
optimal solution is

λact = −
(

MactE−1MT
act

)−1 (
γact + MactE−1f

)
(5.62)

x = −E−1
(

f + MT
actλact

)
. (5.63)

The main difficulty in solving a quadratic program with inequality con-
straints is to find the right set of active constraints. All further steps
are straight forward, as described in equations (5.62) and (5.63). To find
these active constraints and the corresponding Lagrange multipliers, the
Primal-Dual Method is used.

Prime-Dual Method This method is based on two optimization prob-
lems. The primal problem which is the original problem with inequality
constraints (5.46) and the so-called dual problem. In the dual problem,
the Lagrange multipliers are used as decision variables, and therefore are
called dual variables in literature. By using this method, the inactive con-
straints can be systematically identified and eliminated from the solution.
If a feasible solution exists, the original (primal) problem can be written
as

max
λ≥0

min
x

[
1
2

xTEx + xTf + λT (Mx− γ)

]
. (5.64)

As the problem is unconstrained, the solution for x is equivalent to (5.63)

x = −E−1
(

F + MTλ
)

. (5.65)

By substituting x in (5.64), the dual problem is defined as
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min
λ≥0

(
1
2

λTH̃λ + λTk̃ +
1
2

γTE−1γ

)
(5.66)

with the given matrices H̃ and k̃

H̃ = ME−1MT (5.67)

k̃ = γ + ME−1f. (5.68)

The optimal set of dual variables that minimizes (5.66) is identified as
the active set of Lagrange multipliers λact, with the corresponding matrix
Mact and vector γact. By using this active set of constraints, the solution
for the primal variable x (5.65) becomes (5.63).

Hildreth’s Solver for Quadratic Problems In [6] and [5] a simple algo-
rithm to solve the dual problem is proposed. The algorithm starts with
any feasible set of Lagrange multipliers λ0 ≥ 0 and calculates the dual
variables for the next iteration step component-by-component. To reach
this goal the dual objective function

ϕ (λ) =
1
2

λTH̃λ + λTk̃ +
1
2

γTE−1γ (5.69)

is being minimized separately for each component λi, with respect to
λi ≥ 0, while all other Lagrange multipliers are kept constant at their last
value. This leads to the iterative algorithm

λ
p+1
i = max

{
0, wp+1

i

}
(5.70)

with

wp+1
i = − 1

h̃ii

[
k̃i +

i−1

∑
j=1

h̃ijλ
p+1
j +

n

∑
j=i+1

h̃ijλ
p
j

]
, (5.71)

where h̃ij is the ij-th element of (5.67) and k̃i is the i-th element of (5.68).
Equation (5.71) is obtained by setting the derivative
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∂ϕ

∂λi
=

n

∑
j=1

h̃ijλj + k̃i (5.72)

zero and insert the already calculated values λ
p+1
j for j < i and λ

p
j for

j > i. It can be said that ϕ (λp) converges to ϕmin = ϕ (λ?) and x (λp)
converges to x? = x (λ?). The proof of the convergence is shown in [8].
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1 function Delta uk = hildreth(L,Q,R,ek,W,w)
2 %#eml
3

4 %Matrices for Hildreth-solver
5 E = 2*(L'*Q*L+R);
6 F = 2*L'*Q*ek;
7 M=W;
8 gamma=w;
9

10 % Hildreth-solver
11 [n1,m1] = size(M);
12 Delta uk = -E\F;
13 Delta uk = Delta uk(:);
14 kk = 0;
15 for i = 1:n1
16 if (M(i,:)*Delta uk > gamma(i))
17 kk = kk+1;
18 else
19 kk = kk+0;
20 end
21 end
22 if kk ~= 0
23 H = M*(E\M');
24 K = (M*(E\F)+gamma);
25 [n,m] = size(K);
26 x ini = zeros(n,m);
27 lambda = x ini;
28 for km = 1:80
29 lambda p = lambda;
30 for i = 1:n
31 w=-(K(i,1)+H(i,:)*lambda-H(i,i)*lambda(i,1))/H(i,i);
32 lambda(i,1) = max(0,w);
33 end
34 al = (lambda-lambda p)'*(lambda-lambda p);
35 if (al<10e-8);
36 break;
37 end
38 end
39 Delta uk = -E\F -E\M'*lambda;
40 end
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The code above shows the implemented Hildreth solver in Matlab [17].
The matrices and vectors, which are defined for the Constrained MPC in
(5.44), are passed to the function as input arguments. The return value
of the function is the optimal control sequence ∆u?

k . As the computation
of the Lagrange multipliers is done component-by-component, no matrix
inversion is needed. Therefore, if the set of active constraints is feasible
when treated as equality constraints, the Lagrange multipliers will con-
verge. However, if the active constraints are not linearly independent or
their number is greater than the number of decision variables, the dual
variables will not converge to a fixed value. But due to the lack of a matrix
inversion, the algorithm will continue without interruption. In [17] it is
shown that even if the active set of constraints is not feasible, the Hildreth
solver will compute a compromised, near-optimal solution. The feature to
recover from ill-conditioned constraints is also a main reason to choose
this algorithm for real-time applications.
For the implementation of the Model Predictive Control the following
parameters were used:

Description Variable Value Unit
Sample time TMPC 4 s
Maximum actuating variable umax 0 kW
Minimum actuating variable umin −30 kW
Maximum actuating variable changing rate ∆umax 400 W

Time step

Minimum actuating variable changing rate ∆umin −400 W
Time step

Maximum control variable ymax 40.5 ◦C
Minimum control variable ymin 25 ◦C
Diagonal elements of the weighting matrix Q Qi 109 -
Diagonal elements of the weighting matrix R Ri 1 -
Control horizon Nc 4 Time steps
Prediction horizon Np 35 Time steps

Table 5.3: Parameters of the implemented MPC
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5.2.2 Proportional-integral (PI) observer

The designed Constrained Model Predictive Control does not only need all
states of the LTI model but also the heating power of the conditioning unit
as disturbance variable. Due to the assumption that the waste heat of a
vehicle engine is not known, the heating power is estimated. Therefor, a so-
called proportional integral observer (PI observer), applied and developed
in [13], is used. The PI observer is an extension to the classical Luenberger
observer [9].
The implemented observer does not only get the state variables x1 and x3
but also the state variable x4, as it can be seen in figure 5.1. x4 is calculated
in the heat exchanger inversion part of the complete control strategy and
is therefore seen as a virtual measured variable in the observer model.
For the existing plant described in equation (5.12), the output matrix
cT

MPC is changed to Co, which is defined in equation (5.11). The resulting
system can is described with equation (5.73) and (5.74). This leads to the
description:

xk+1 = Φxk + huk + hd1d1,k + hd2d2,k, (5.73)
yo,k = Coxk. (5.74)

The Luenberger observer would eventually reach its performance limits,
as the heat source’s heating power is a slowly varying disturbance d1,k
and produces a persistent estimation error. The PI observer avoids that by
estimating the unknown disturbance variable and treating it like a known
input to the observer model. By doing so, not only the estimated variable
d̂1,k is available to the control algorithm, but also the performance of the
state estimation is improved, as there is no longer a permanent observer
error. The structue of the time discrete PI observer is illustrated in figure
5.3.

For the design of the observer, the unknown inputs are treated as addi-
tional state variables which increases the order of the observer model by
the number of unknown inputs. The corresponding system of differential
equations is:
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Figure 5.3: Structure of the PI observer
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[
x̂k+1

d̂1,k+1

]
=

[
Φ hd1
0 1

]
︸ ︷︷ ︸

Φe

[
x̂k

d̂1,k

]
+

[
h
0

]
︸︷︷︸

he

uk +

[
hd2
0

]
︸ ︷︷ ︸

hd2,e

d2,k +

[
L1
lT
2

]
︸ ︷︷ ︸

Le

(yo,k − ŷo,k) ,

(5.75)

ŷo,k =
[
Co 0

]︸ ︷︷ ︸
Ce

[
x̂k

d̂1,k

]
. (5.76)

The estimation error of the observer is defined as

ee,k =

[
xk

d1,k

]
−
[

x̂k
d̂1,k

]
, (5.77)

and therefore, the dynamic of the estimation error can be written as

ee,k+1 =

[
xk+1

d1,k+1

]
−
[

x̂k+1
d̂1,k+1

]
(5.78)

= Φe

[
xk
dk

]
+ heuk + hd2,ed2,k −Φe

[
x̂k

d̂1,k

]
− heuk − hd2,ed2,k − LeCeee,k

(5.79)

= (Φe − LeCe) ee,k. (5.80)

The feedback matrix Le can be derived from the LQR (Linear-quadratic
Regulator) state feedback matrix of the corresponding dual plant. The LQR
with infinite time horizon for discrete time systems solves the optimization
problem
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min
uk

(
∞

∑
k=0

xT
k QLQRxk + ukRLQRuk

)
(5.81)

w.r.t
xk+1 = Φexk + heuk (5.82)

uk = −kT
LQRxk. (5.83)

The solution of the optimization problem is

kT
LQR =

(
RLQR + hT

e PLQRhe

)−1
hT

e PLQRΦe, (5.84)

where PLQR is the unique, positive definite solution of the discrete time
algebraic Riccati equation (DARE)

PLQR = ΦT
e PLQRΦe −ΦT

e PLQRhe

(
RLQR + hT

e PLQRhe

)−1
hT

e PLQRΦe + QLQR.

(5.85)

By substituting

Φe → ΦT
e (5.86)

he → CT
e (5.87)

kLQR → LT
e (5.88)

QLQR → QLQE (5.89)
RLQR → RLQE (5.90)

the observer’s feedback matrix Le can be calculated according to equations
(5.84) and (5.85).
The following sample time and weighting matrices were used for the
observer implementation:
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Td,observer = 0.2s (5.91)

QLQE =


10 0 0 0 0
0 10−4 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 106

 (5.92)

RLQE =

103 0 0
0 103 0
0 0 103

 (5.93)

Comparison Luenberger observer to PI observer

For both observers the feedback matrix has been calculated the same
way as described above. While the PI observer additionally estimates the
heating power of the conditioning unit d̂1, the Luenberg observer only
estimates the four state variables. The measured values are generated
by the non-linear simulation model as illustrated in figure 3.2, with the
difference that the cooling power of the heat exchanger uk was fed directly
to the model as an input variable. Also the simulated state space variables
x1, x3 and x4 were overlapped with a white noise w ε[−0.3, 0.3]. The
Luenberger observer was designed with the weighting matrices

QLQE,Luenberger =


10 0 0 0
0 10−4 0 0
0 0 1 0
0 0 0 1

 (5.94)

RLQE,Luenberger =

103 0 0
0 103 0
0 0 103

 . (5.95)

For the whole simulation time, the coolant mass flow was held on a con-
stant value, for which also the two observers were implemented. In figure
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Figure 5.4: Input variables for the observer comparison
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Figure 5.6: Heat exchanger inversion

5.4 the input variables u and d1 to the nonlinear system and additionally
the estimated value for d̂1 are illustrated. Figure 5.5 shows all estimated
state variables for the Luenberg observer and the PI observer. Especially
for the state variable x2 the advantage of the PI observer compared to the
Luenberger observer can be seen.

5.2.3 Heat exchanger inversion

As the MPC only provides the optimal cooling power for the heat ex-
changer, the corresponding fan speed nk has to be calculated afterwards.
This is done by a simple integrator, a look-up table to match the fan speed
to a corresponding air mass flow and a model of the heat exchanger. The
structure of the heat exchanger inversion can be seen in figure 5.6.
The heat exchanger model calculates for given mass flow and inlet tem-
perature of coolant and air the associated cooling power according to
equations (3.37) and (3.41) to (3.52). As a byproduct the coolant outlet
temperature of the heat exchanger x4,k is calculated. Both the calculated
cooling power and the coolant outlet temperature of the heat exchanger
serve as actuating variable uk respectively as virtually measured state
space variable x4,k for the observer.
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5.2.4 MPC Interpolation

As can be seen in figure 5.2 the reference cooling capacity for the heat
exchanger inversion is generated by the linear interpolation of the outputs
of two MPC’s. This was necessary as the cooling pump does not generate a
constant coolant mass flow. If only one MPC with fixed coolant mass flow
would be implemented, it could lead to a control deviation or oscillation.
In figure 5.7 two MPC strategies are compared. The non-linear plant (fig-
ure 3.2) was being operated with constant coolant mass flow ṁcool = 8 kg

min ,
air temperature Tair = 22◦C, heating power Q̇HS = 15kW and set-point
temperature x1,set = 40◦C. For the Interpolated MPC two Model Predictive
Controls, ṁcool,low = 5 kg

min and ṁcool,high = 15 kg
min , are designed, while for

the second control strategy the MPC was implemented for a coolant mass
flow of ṁcool = 5 kg

min .
As it can be seen in figure 5.7, the Interpolated MPC regulates the coolant
temperature at the heat source intake without control deviation or over-
shooting. In contrast to that, the MPC implemented with the wrong
coolant mass flow oscillates around the temperature set-point and does
not progress into a steady state even after 50min.
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6.1 Comparison of test bench setup to
simulation

The implemented Model Predictive Control and PI observer plus the MPC
Interpolation were tested at the test bench and compared to the simulation
model. Figure 6.1 shows the, at the test bench measured, air temperature
and coolant mass flow during the ongoing experiment. Since the condi-
tioning unit of the test bench was being operated at the lowest possible
coolant mass flow, neither the mass flow, nor the heating power could be
held constant. Additionally, the actual heating power can not be measured.
Therefore, the heating power that is used in the simulation model, had to
be estimated by observing the heat source outlet temperature, respectively
the heat exchanger inlet temperature. Due to the reason that the coolant
mass flow is quite low, the heating elements in the conditioning unit were
switched off during the heating process to prevent over-heating. In figure
6.1 the used heating power in the simulation is shown.
Additionally, the factor K from equation (3.39) and (3.40) had to be ad-
justed in the simulation model, as the heat loss in the pipes is not only a
function of the surrounding air temperature but also of the floor tempera-
ture, since the pipes were lying on the floor uninsulated. Therefore, K was
increased by 20%. As it can be seen in figure 6.2 the simulation fits well to
the measured data. The only difference between the measured data and
simulation is in the coolant inlet temperature of the heat source. This can
be explained by unmodelled masses of pipes and metal junctions.

53



6 Results

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

0

10

20

30

T
e
m

p
e
ra

tu
re

 i
n
 °

C

Air temperature

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

0

5

10

M
a
s
s
 f
lo

w
 i
n
 k

g
/m

in

Coolant mass flow

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time in s

0

20

40

60

H
e
a
ti
n
g
 p

o
w

e
r 

in
 k

W

Simulated heating power

Figure 6.1: Input data for the simulation
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6.2 Comparison bang-bang control to MPC

When comparing the bang-bang control and MPC the heat loss of a real
life cycle of an electric vehicle were used as simulated heating power. In
figure 6.3 the simulated heating power as well as the simulated vehicle
velocity is displayed.
For the bang-bang control strategy a four point control with hysteresis
was used. The control gets the coolant inlet temperature of the heat source
as input signal and provides the duty factor of pulses for the fan drive as
output signal, which is shown in figure 6.4.Both simulations used fixed
coolant mass flow and air temperature.

Air temperature 30◦C
Coolant mass flow 7 kg

min

Table 6.1: Fixed simulation parameters

In figure 6.5 the results of the two control strategies are illustrated. As it
can be observed, the Model Predictive Control is able to keep a steady
coolant temperature at the heat source inlet, although the vehicle velocity
varies between 0 km

h and 100 km
h and the introduced heating power varies

between 0.3kW and 23kW. In contrast to the MPC the bang-bang control
keeps the coolant temperature much less constant. Additionally, the energy
consumed by the cooling fan is about 75% higher when using a bang-bang
control instead of the MPC.
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Figure 6.5: Comparison between bang-bang control and MPC
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6.3 Outlook and Limitations

For further investigations a new, smaller test bench would present a signif-
icant improvement, as the current one contains over 80kg of coolant mass.
In relation to the large coolant mass the coolant mass flow of ṁco = 8 kg

min
is much to small. In addition there are several unknown masses, like
junctions or the conditioning unit’s coating. Additionally, it is not possible
to simulate the air mass flow caused by a moving vehicle at the test bench
or implement a second MPC to control the speed of the cooling pump.
Another task would be to prove the stability of the Constrained Model
Predictive Control and the PI observer. Furthermore, the MPC was im-
plemented with fixed constraints. For example, the maximum cooling
capacity in the control algorithm was set as a constant parameter, al-
though it depends on several parameters like coolant mass flow, coolant
and air temperature. Also, the energy saving may be improved further by
implementing a different cost function for the Model Predictive Control.
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[16] VDI-Wärmeatlas. Ed. by VDI-Gesellschaft Verfahrenstechnik und
Chemieingenieurwesen (GVC). 10th. Springer, Berlin, 2006. isbn:
3540255044. doi: 10.1007/978-3-540-32218-4 (cit. on pp. 13, 19).

60

http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/TAC.1966.1098387
http://dx.doi.org/10.4271/2005-01-2068
http://dx.doi.org/10.1080/00207729508929120
http://dx.doi.org/http://dx.doi.org/10.1016/j.ifacol.2016.08.059
http://www.sciencedirect.com/science/article/pii/S2405896316313994
http://www.sciencedirect.com/science/article/pii/S2405896316313994
http://dx.doi.org/10.4271/2014-01-0668
http://dx.doi.org/10.1007/978-3-540-32218-4


Bibliography

[17] Liuping Wang. Model Predictive Control System Design and Implementa-
tion Using Matlab. Springer-Verlag London, 2009. isbn: 9781848823310.
doi: 10.1007/978-1-84882-331-0 (cit. on pp. 37, 43).

[18] Zou X., Jordan J., and M. Shillor. “A dynamic model for a thermo-
stat.” In: Journal of Engineering Mathematics 36 (4 1999), pp. 291–310.
doi: 10.1023/A:1004587425961 (cit. on p. 2).

61

http://dx.doi.org/10.1007/978-1-84882-331-0
http://dx.doi.org/10.1023/A:1004587425961

