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Abstract

Side-channel analysis (SCA) attacks pose a serious threat to embedded
systems. The most common countermeasure against this attack is mask-
ing. So far, the research on masking, as a countermeasure against SCA,
focuses merely on cryptographic algorithms for particular hardware or
software implementations. However, the drawbacks of protecting specific
implementations are the lack of flexibility in terms of used algorithms,
the impossibility to update protected hardware implementations, and long
development cycles for protecting new algorithms. Furthermore, crypto-
graphic algorithms are usually just one part of an embedded system that
operates on informational assets. Protecting only this part of a system is
thus not sufficient for most security critical embedded applications.

This thesis introduces a flexible, SCA-protected processor design based on
the open-source V-scale RISC-V processor. The introduced processor design
can be synthesized to defeat SCA attacks of arbitrary attack order. Once
synthesized, the processor protects the computation on security-sensitive
data against side-channel leakage. The benefits of this approach are (1)
flexibility and updatability, (2) faster development of SCA-protected systems,
(3) transparency for software developers, (4) arbitrary SCA protection levels,
(5) protection not only for cryptographic algorithms, but against leakage in
general caused by processing sensitive data.

Keywords: protected CPU, domain-oriented masking, masking, side-channel
protection, threshold implementations, RISC-V, V-scale.
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Kurzfassung

Seitenkanalanalyse (SCA) Angriffe stellen eine ernsthafte Bedrohung für
eingebettete Systeme dar. Die meistgenutzte Maßnahme gegen diese Art der
Angriffe sind Maskierungsschemen. Bisher konzentriert sich die Forschung
zum Schutz vor SCA mithilfe dieser Maskierungsschemen lediglich auf
Implementierungen von kryptographische Algorithmen in Hardware oder
Software. Allerdings besitzen diese Techniken den großen Nachteil dass
diese speziell für Hardware- und Softwareimplementierungen entwickelt
werden müssen und sich nur schwer auf neue Algorithmen anpassen lassen.
Darüber hinaus sind kryptographische Algorithmen in der Regel nur ein
Teil eines eingebetteten Systems zur Verarbeitung sensibler Information.
Für sicherheitskritische eingebettete Anwendungen ist der ausschließliche
Schutz dieser Teile eines Systems in den meisten Fällen nicht ausreichend.

Diese Arbeit stellt ein flexibles Prozessordesign vor, das auf den frei verfüg-
baren Quellen des V-scale RISC-V Prozessor basiert und gegen SCA Angriffe
abgesichert wurde. Das eingeführte Prozessor-Design kann für beliebige
Ordnungen von SCA Angriffen synthetisiert werden. Einmal synthetisiert
schützt der Prozessor die Berechnungen der sensiblen Daten gegen das
Durchsickern von Seitenkanalinformationen. Die Vorteile dieses Ansatzes
sind (1) Flexibilität und Aktualisierbarkeit, (2) kürzere Entwicklungszeiten
von SCA-geschützten Systemen, (3) Transparenz für Softwareentwickler,
(4) beliebige SCA Schutzlevel, (5) Schutz nicht nur für kryptographische
Algorithmen, sondern einen generellen Schutz vor dem Durchsickern von
sensiblen Daten.

Stichwörter: geschützte CPU, domain-oriented masking, maskieren, Seit-
enkanalsicherheit, threshold implementations, RISC-V, V-scale.
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1. Introduction

The resistance of security-critical systems against the broad field of passive
physical attacks is a fundamental requirement of todays embedded devices
and smart cards. If an attacker has direct or indirect physical access to
an unprotected device, the observation of side-channel information (like
power consumption [1] or electromagnetic emanation [2]) leaks informa-
tion on the processed data. The security of such devices is then no longer
guaranteed even if state-of-the-art cryptography is in place, because sen-
sitive information like the used key material leaks through side-channel
information.

The history of countermeasures against side-channel analysis (SCA) attacks
is as old as the first paper targeting differential side-channel analysis by
Kocher et al. [1]. Hereby, masking has become the first-choice measure to
defeat SCA. The first masking approach was introduced by Goubin and
Patarin [3], but many schemes followed like the Trichina gate [4] approach
and the works of Ishai et al. [5], who introduced the concept of private
circuits. However, many masking schemes have shown to be insecure in the
presence of glitches that occur within the combinatorial logic of hardware
implementations.

To overcome the inherent issue of glitches of these masking schemes, Nikova
et al. [6] introduced the first-order secure threshold implementation (TI)
masking scheme. The scheme was successively extended by Bilgin et al.
[7–9] and Reparaz [10]. Moreover, there exist many scientific works that
focus on the secure implementation of symmetric primitives following
the TI scheme [11–13]. However, in comparison with software masking
schemes, the original TI requires a higher number of random shares to
handle glitches. A higher demand for fresh random shares goes hand in
hand with increased hardware costs and higher randomness requirements,
especially for implementations secure against higher-order attacks.

1



1. Introduction

A primer for closing the gap between hardware and software masking
schemes in terms of the required number of shares was the work of Reparaz
et al. [14]. Their work demonstrates the feasibility of lowering the number of
shares to d + 1 (where d is the protection order) under certain circumstances.
Most recently many works were published on the implementation of masked
hardware implementations with reduced number of shares [15–18]. The
work of Gross et al. [17] introduced the so-called domain-oriented masking
scheme which follows on ideas of Ishai et al. [5] and Reparaz et al. [14] to
build a masking scheme that requires only d + 1 shares and allows for easy
generalization to arbitrary protection orders.

Even though the trend to reduce the amount of shares to d + 1 made pro-
tected hardware implementations more efficient and resulted in generic
higher-order implementations, the efficient protection against SCA is still
cumbersome, requires a lot of expertise for both implementation and evalu-
ation, and is error-prone. Furthermore, the reduction of shares introduces
additional register stages due to the decomposition of complex functions
into a couple of algebraically simpler subfunctions [15]. This circumstance
of additional delay cycles naturally brings implementations based on hard-
ware masking schemes closer to software masking schemes in terms of
throughput.

This thesis introduce a side-channel protected general-purpose CPU based
on the RISC-V open instruction-set architecture [19] using the open-source
V-scale [20] core. Therefore, the findings of domain-oriented masking [17]
are used to modify the open-source V-scale CPU to be resistant against
passive physical attacks.

The benefits of this approach compared to custom-made protected hard-
ware implementations are, (1) more flexibility in terms of the selection of
algorithms and updatability, (2) faster development of secure systems, (3)
hardware-level protection that is transparent for both the running software
and the designer, (4) the CPU can be synthesized for arbitrary protection
orders by just changing one parameter, (5) a CPU is part of most security-
critical systems and therefore requires SCA protection for security-sensitive
data processed by the CPU anyway (which are not necessarily cryptographic
operations).
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1. Introduction

The thesis starts with an overview of the most relevant side-channel attacks
and their countermeasures in Chapter 2. The following Chapter 3 explains
the concept of hardware masking schemes as a countermeasure to passive,
non-invasive side-channel attacks. Chapter 4 introduces the structure of
the open-source V-scale core and its provided operations. The changes to
protect the core is described in Chapter 5 with detailed informations of the
hardware implementations. The measurement setup with the used platform
and the hardware results is shown in Chapter 6. The evaluation of the
protected implementation is done in Chapter 7. Additionally, it introduces
the used leakage detection methodology. The final Chapter 8 keeps the
conclusion of this thesis.
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2. Side-Channel Attacks and
Countermeasures

Over the last years, the need for cryptographic devices has increased. Along
with these devices, new kinds of attacks came up which increase the re-
quirements for such security-critical devices. In a black-box model, the used
cryptographic algorithms are secure because of their underlying mathemat-
ical structure. However, in many real world applications an attacker has
full or partial physical access to these cryptographic device. These physical
observability opens the gate to the broad class of so-called side-channel
analysis attacks. Several kinds of side-channel analysis attacks have been
developed over the last fifteen years. On the other hand, also new methods
to protect and to evaluate the resistance to side-channel analysis attacks
have been researched.

The attack scenarios considered for side-channel analysis attacks can be
subdivided into to two major categories as shown by Mangard et al. [21].
The first category spits the attacks into active and passive:

Passive Attacks: The measurement setup of the attacked device is operated
within its specification. Revealing secret information is based on ob-
serving physical properties like power consumption, electromagnetic
emanation, execution time, . . . .

Active Attacks: The operation of the device is manipulated to cause an
abnormal behavior to leak secure informations. This is done by ma-
nipulating the device inputs or environment.

The second category regards the exploited interface provided by the attacked
device. Such interfaces can be directly accessible or could require special
equipment. These attack types are one of the following and can be either
active or passive:

4



2. Side-Channel Attacks and Countermeasures

Non-Invasive Attacks: The device is taken as it is and the attacks are done
on the directly accessible interfaces, for example, by modifying the
clock signal or supply voltage to force wrong operations of the logic.

Semi-Invasive Attacks: Similar to invasive attacks, it can be necessary to
depackage the device. However, neither an electrical contact is made
to the chip surface nor any irreversible device manipulations are done.
Instead the device is manipulated, for example, by electromagnetic
fields, X-rays or light to cause bit flips. This is a reversible effect and
does not change the behavior of the device permanently.

Invasive Attacks: The device can be manipulated in any manner without
any limits to reveal secret informations. Typically, it is necessary to
depackage the device to obtain direct access of specific components.
A probing station, for example, can be passively used to observe data
signals like the data bus. Alternatively, the probing station can be used
to alter the functionality of the device by actively changing signals.
This requires special equipment like focused ion beams, probing sta-
tions or laser cutters. Such attacks can be irreversible and therefore
manipulations are permanent.

The main goal of this thesis is to protect a micro controller design against
SCA attacks. These attacks are defined as passive, non-invasive attacks and
therefore, the device is taken as it is. This chapter gives an overview to the
most commonly used passive side-channel attacks.

2.1. Timing Attacks

Timing attacks exploit runtime dependences of an underlying algorithm
processing secure data. Timing differences may result from branching and
conditional statements, or on hardware level by input dependent calculation
times of an instruction (e. g., multiplication). Therefore, the information of,
for example, a single secret key bit can be exploited by using well taken
inputs changing the runtime when the specific key bit is set. By doing this
for all key bits, the secret key can be revealed. Timing attacks can be easily
counteracted by adding dummy operations to get constant runtime.

5



2. Side-Channel Attacks and Countermeasures

Algorithm 1 gives an example of the square-and-multiply exponentiation
algorithm which is used, for example, in asymmetric cryptography. The
number of multiplications in Line 4 depends on the bits set in the exponent k
and therefore the runtime of the algorithm changes significantly.

Algorithm 1: Square-and-multiply exponentiation.
Input: Integers: x, k
Result: y = xk

1 y← 1
2 foreach bit of k→ ki do
3 y← y2

4 if ki = 1 then y← y · x
5 end
6 return y

Adding a dummy operation as shown in Algorithm 2 at Line 7 always
calculates the multiplication with storing the result on the dummy variable d.
This simple countermeasure leads to a constant runtime independent from
the exponent k. However, the necessary operations and therefore the runtime
is maximized.

Algorithm 2: Secure square-and-multiply exponentiation.
Input: Integers: x, k
Result: y = xk

1 y← 1
2 foreach bit of k→ ki do
3 y← y2

4 if ki = 1 then
5 y← y · x
6 else
7 d← y · x
8 end
9 end

10 return y
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2. Side-Channel Attacks and Countermeasures

2.2. Simple Power Analysis

The goal of simple power analysis (SPA) is to derive a cryptographic key
by direct interpretation of a small number of power traces or in an extreme
case on a single trace. The number of power traces is therefore limited to the
access of the device under attack (DUA) (e. g., debit card). This restriction
often requires detailed information of the attacked algorithm. With the
possibility for a small number of runs, power traces with different inputs
can be generated, or alternatively to reduce the noise an average of the
traces with same input can be used. This method is quiet challenging due
to the reduced number of power traces.

The examination of the power traces often requires visual analysis to find
key-dependent patterns. This patterns in the power trace are based on
runtime dependent algorithms using different operations of a system with
significant power profiles. For example, different instructions of a micro
controller accessing the external bus or peripherals requires more power
or need more clock cycles whereas instructions using internal components
have a lower power profile or operate in a single cycle. If such instruction
sequences depends on the key an attacker can derive informations. Similar
to timing attacks, a countermeasure against such attacks is to get a constant
runtime which is independent from the input values.

2.3. Differential Power Analysis

In contrast to SPA attacks, differential power analysis (DPA) attacks reveal
the key by measuring a large number of power traces with different inputs.
Furthermore, a big advantage is the fact that no detailed knowledge is re-
quired of the implementation attacked cryptographic algorithm. In contrast
to SPA attack which search patterns along the time axis of a single trace,
the DPA analyze the power consumption on fixed moments of time based
on a large number of traces. In a first step, the attacker has to choose an
intermediate result of the attacked algorithm. This intermediate result needs
to process an input d which can be chosen by the attacker combined with the
unknown secret key k. For the attack the hypothetical intermediate values

7



2. Side-Channel Attacks and Countermeasures

of every possible k has to be computed. To reduce the number of different
possible intermediate values the key can be partitioned into small parts.
This hypothetical intermediate values are now mapped to a power model.
One of the simplest and most often used is the Hamming weight (HW)
model which simply counts the number of bits that are high. In the next
step, the attacker has to record the power traces by processing the algorithm
for different inputs d. This power traces are now correlated with the values
of the hypothetical power model for all possible keys. The key hypothesis
with the highest correlation result reveals the used key.

2.4. Countermeasures to Power Analysis

Power analysis attacks exploit that the power consumption depends on the
processed data. Consequently, countermeasure against SCA try to reduce,
or better eliminate this dependency. The two major approaches to achieve
this are called masking and hiding.

2.4.1. Masking

Masking is one of the most popular methods to protect sensible data against
SCA. For first-order masking, for example, an intermediate value x is split
into two uniformly random shares Ax and Bx. The second share can be
generated by either an arithmetic or logic operation Bx = x ∗ Ax such
that x = Ax ∗ Bx is always valid. Therefore, the ∗ operator denotes an
arithmetic operation or a boolean function. Arithmetic masking uses, for
example, the multiplication or addition to mask the intermediate value.
In contrast, boolean masking uses an exclusive-or (XOR) operation for the
shared representation such that x = Ax + Bx, which equals an addition over
GF(2). Furthermore, each non-linear operation requires a fresh random
mask to keep the intermediate values pairwise independent. Because the
shares Ax and Bx are independent from the sensitive data x, also the power
consumption is independent.

8



2. Side-Channel Attacks and Countermeasures

Assuming a HW leakage model to observe the leakage of a single bit in a
noise-free setting and without masking leads to two different HW’s (see
Table 2.1 (left)) with the same probability as shown in Figure 2.1 (left).
Both values of x can be directly distinguished by their power consumption
and hence the intermediate value can be recovered. Adding a mask to the
intermediate value leads to three different HW’s as shown in Table 2.1 (right)
with the highest probability for HW = 1. For this three HW’s different
leakages can be observed as shown in Figure 2.1 (right). In average the HW
is thus 1 for both shared representations of each unshared value.

x HW(x)

0 0
1 1

Ax Bx → x HW

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 2

Table 2.1.: Hamming weight for the unshared (left) and shared (right) value.
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Figure 2.1.: Leakage observation without noise using the Hamming weight model for the
unshared (left) and shared (right) value.

In a real world scenario the power consumption of a device consists not only
of the single observed bit. Any device produces noise which complicates
the differentiation of the exploitable power consumption. This noise is
composed, for example, of static and dynamic power consumption of the
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2. Side-Channel Attacks and Countermeasures

logic gates as well as for the measurement setup itself. Introducing this
noise to the ideal leakage observation of the masked intermediate value in
Figure 2.1 (right) leads to a normal distribution of the observed leakage for
the different HW’s as shown in Figure 2.2 (left).

pr
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ty

pr
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ty

leakage leakage

HW=0 HW=2

HW=1 x=1

x=0

Figure 2.2.: Effect of noise on the observed leakage using a shared value.

The problem an attacker faces, lies in the interpretation of the measured
power. An attacker which uses a first-order DPA attack with a HW model
to exploit a single bit, searches in the power traces for differences in the
mean of the power consumption as shown in Table 2.1 (left) leaking the
information of the intermediate value. But the shared representation of the
intermediate value consists of two independent bits which have in both
cases the same probability to be “0” or “1”. The power consumption is in
average equal for x = 0 and x = 1. Only the variance differs as shown
in Figure 2.2 (right), which is much harder to estimate and requires more
traces.

This leads to the independence of the masked intermediate value from
the unmasked one for a first-order DPA. But as shown in Table 2.1 (right),
the power consumption is not independent if Ax and Bx are considered
together.

The protection can also be increased by using multiple independent shares.
This increases the number of HW’s which represents the different power
leakages an attacker has to consider. Therefore, the number of used shares
for a single intermediate value is given by d + 1, where d is the so-called
protection order.

10



2. Side-Channel Attacks and Countermeasures

2.4.2. Hiding

Hiding, on the other hand, follows a different approach to reduce the
dependencies of the power consumption. This can be achieved either by
building devices with equal or random power consumption on each clock
cycle. A device with equal power consumption can execute the data almost
the same way as an unprotected device. Therefore, the signal-to-noise ratio
of an operation has to be lowered either by increasing the noise, using
random switching activity in an device, or by reducing the signal, for
example, by dual rail logic which additionally carries the complementary
signal.

The second approach for hiding is by randomizing the power consumption.
An algorithm can therefore execute random inserted dummy operations
or randomly shuffle the execution order, for example, table look-ups. The
hiding approach reduces the dependencies of the power consumption which
increases the number of required traces to successfully achieve an attack.
Therefore, the goal is to increase the required number of traces which is
impracticable for a real device.

11



3. Hardware Masking Schemes

Side-channel attacks such as differential power analysis or chip probing
attacks exploit data dependencies within the observed side-channel infor-
mation. Therefore, the intuition behind masking is to make security-critical
computations independent of the underlying data. Many masking schemes
achieve this data independence by representing variables in a so-called
shared representation which ensures independence up to a certain protec-
tion order d. One of the most popular formal models to investigate the
security of masking schemes is the so-called d-probing model introduced
by Ishai et al. [5]. In this probing model, the protection order d equals the
number of needles an attacker can utilize in parallel. A circuit that resists
probing attacks with up to d needles is said to be d-secure. It was shown
by Faust et al. [22] and Rivain and Prouff [23] that the probing model is
also applicable to side-channel attacks (like differential power analysis) to
describe the resistance of an implementation in relation to the maximum
statistical moment a certain attack is targeting. As it was shown by Chari
et al. [24], there is an exponential relation between the protection order d
and number of observations (leakage traces) an attacker has to perform for
successfully exploiting the side-channel information.

The implementation costs for masking schemes, like chip area and ran-
domness requirements, are strongly related to the number of used shares.
Hereby, a variable x is represented as the sum of d + 1 shares in GF(2). Each
of these shares are denoted by capital letters (see Equation 3.1) with the
associated variable in the index. To denote the sharing itself, a bold capital
letter is used as abbreviation for writing each share of x explicitly.

x = Ax + Bx + Cx + . . .︸ ︷︷ ︸
d+1

= X (3.1)

12
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Furthermore, the protection also affects the applied functions. Therefore,
any function that is intended to be performed on the unshared variable x is
instead applied on the shares of x. As a result, any linear function F(x, y, . . . )
is split up in d + 1 independent component functions (see Equation 3.2).
Each component function is applied on each share separately.

F(x, y, . . .) = FA(Ax, Ay, . . . ) + FB(Bx, By, . . . ) + FC(Cx, Cy, . . . ) + . . .︸ ︷︷ ︸
d+1

(3.2)

Sharing any non-linear function on the other hand is quiet challenging.
Computing non-linear functions requires to evaluate cross-domain terms in
a secure manner. The best strategy for resolving these cross-domain depen-
dencies is not trivial. Hence, every masking scheme applies its own strategy.
An important requirement for all masking schemes is the statistical inde-
pendence of all intermediate values compared to their unshared input and
output values up to a certain degree. As it is not always possible to maintain
this independence directly for every shared function, it is necessary to add
fresh randomness to the intermediate results. This random values have to
be picked uniformly random and are therefore statistically independent. In
this work the random values are represented by the uppercase letter Z. The
following sections explain different masking schemes in detail.

3.1. Classical Boolean Masking

The idea of classical boolean masking (CBM) is to hide the data dependency
of any sensitive information by sharing them into multiple random values
as shown in Equation 3.1. A first-order AND function with two inputs, for
example, requires two shares per variable x = Ax + Bx and y = Ay + By.

q = xy = (Ax + Bx)(Ay + By) = Ax Ay + AxBy + Bx Ay + BxBy (3.3)

The partial products of the multiplication as shown in Equation 3.3 are
independent of the inputs x and y, whereas the resulting sum represents
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AxAy BxByByAx BxAy

Aq Bq

Z0

Figure 3.1.: Boolean masked AND (GF(2) multiplier).

the unshared value. This dependence can be broken by adding a fresh ran-
dom share Z0 to the first multiplication result as shown in Figure 3.1. This
guarantees the data security as long as the random share is the first signal
propagated through the XOR gates. On hardware level it is hard to control
the delay for signal transitions of the logic. This delays are influenced by
transistor speed, wire lengths and other side effects. Therefore, the calcula-
tion of the first two multiplications Ax Ay and AxBy can reach the XOR gate
before adding the random value Z0 which causes data dependences to the
value of y.

As shown by Mangard and Schramm [25] the leakages of such an boolean
masked multiplier is not caused by the AND gates. Instead the leakage is
caused by glitches, which toggle the output of the XOR gates. Removing
this glitches requires reordering the logical blocks and signals on gate level.
Because this is a tremendous effort, masking schemes avoid these glitches
by design.

3.2. Threshold Implementations

The main goal of TIs is to get rid of the glitch vulnerability of the CBM
by guaranteeing the data independence for all possible signal timings.
Therefore, a TI has to fulfill three properties, correctness, non-completeness,
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and uniformity. The properties are explained in the following for a first-
order secure AND gate.

Correctness: A natural requirement for all masking schemes is correctness
which requires that the resulting sum over all outputs of the component
functions must be equivalent to the result of the unshared function:

q = Aq + Bq + Cq = FA + FB + FC = F(x, y) (3.4)

Non-completeness: The component functions of the TI have to be indepen-
dent of at least one input share of each input variable. In order to achieve
non-completeness, a first order secure TI requires at least three shares. Equa-
tion 3.5 gives an example of the component functions for a first-order AND
gate. The first component function FA is independent of all A shares and
therefore fulfills the non-completeness property. This applies also to the
other two functions.

Aq = FA(Bx, Cx, By, Cy) = BxBy + BxCy + CxBy

Bq = FB(Ax, Cx, Ay, Cy) = CxCy + AxCy + Cx Ay

Cq = FC(Ax, Bx, Ay, By) = Ax Ay + AxBy + Bx Ay

(3.5)

Uniformity: The uniformity requirement states that every input or output
share of a component function has to be uniformly distributed and as a
consequence cannot be distinguished from random. Therefore, it can be
necessary to reshare the outputs by adding additional randomness. An
example for a first-order AND gate is given in Equation 3.6 which is one
possible solution as shown by Bilgin et al. [26]. This solution requires a
single fresh random value (Z) to guarantee the uniformity of the outputs. It
is also possible to use additional shares to avoid the usage of more fresh
randomness. However, this naturally increases the required amount of logic
gates and registers.

Aq = FA(Bx, Cx, By, Cy, Z0) = BxBy + BxCy + CxBy + Z0

Bq = FB(Ax, Cx, Ay, Cy, Z0) = CxCy + AxCy + Cx Ay + AxZ0 + AyZ0

Cq = FC(Ax, Bx, Ay, By, Z0) = Ax Ay + AxBy + Bx Ay + AxZ0 + AyZ0 + Z0
(3.6)
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(By, Cy)

(Bx, Cx) 00 01 10 11

00 0 0 0 0
01 0 0 1 1
10 0 1 1 0
11 0 1 0 1

Table 3.1.: All input bit combinations for the first component function (Fa = BxBy + BxCy +
CxBy) without fresh randomness.

Table 3.1 shows the resulting bits for the first component function FA without
the additional randomness. Therefore, all possible input combinations are
evaluated to illustrate the non-uniformity. Another possibility to prevent
resharing, is to increase the number of used shares to find component
functions generating uniform outputs.

Before applying the outputs of the component functions to the next one a
decoupling register is required to guarantee the non-completeness property.
Directly connecting TI functions can leak again data through glitches.

One drawback at TI are the additional shares compared to CBM which
leads to more hardware overhead required for the shared function, using
the same protection order d. Moreover, the minimal required input shares
sin depends on the product of the protection order and the degree of the
function (t) given by sin ≥ d× t + 1. The fact that the degree of a non-linear
function is always larger than one (t > 1) increases the required input shares
compared to CBM. Furthermore, non-linear functions additionally increase
the required output shares sout depending on the function degree given by
sout ≥ (sin

t ) and hence the number of shares increases drastically.

The following example shows a first-order secure (d = 1) AND with the
minimum amount of shares—three input and output shares. Figure 3.2
shows the three component functions with the corresponding input shares
from Equation 3.6 fulfilling the non-completeness property. Compared to
CBM, the first-order TI requires an additional share per variable.

16



3. Hardware Masking Schemes

Ax Ay Bx ByAx Ay Cx CyBx By Cx Cy
FA

Z0
FB

Z0
FC

Z0

Aq Bq Cq

FF FF FF

Figure 3.2.: TI with component functions and three shares.

A big advantage of the TI compared to the CBM scheme is the resistance
against glitches which is guaranteed by the non-completeness property. On the
other hand, this glitch resistance comes with an enormous logic overhead
compared to the CBM. The first-order boolean masked AND for example
requires four XOR as well as four AND gates, whereas the TI requires
12 XOR and 13 AND gates which is about three times as much. Furthermore,
the TI requires an additional register for the third share.

3.3. Domain-Oriented Masking

While the focus of the TI is the functional level, the domain-oriented masking
(DOM) scheme targets share domains. The number of domains as well as the
number of shares is given by d + 1. Furthermore, each share is associated
with one specific domain. For example, the first shares of the variables x
(Ax) and y (Ay) are associated with domain A, the second shares Bx and By
with domain B, and so on.

The idea of the DOM scheme is a strict separation of shares from other
domains. Linear functions use only inner-domain terms which are always
independent from their unshared input values and hence they are unprob-
lematic like it is shown by the first-order protected AND in Figure 3.3.
Therefore, all terms of a shared function can be separated into inner-domain
terms using only shares of the same domain (e. g., Ax Ay, BxBy, . . . ) and cross-
domain terms mixing shares of different domains (e. g., AxBy, Bx Ay, . . . )
which requires a special treatment.
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AxAy BxBy

FF FF

ByAx BxAy

Aq Bq

Z0

domain A domain B

calculation

resharing

integration

Figure 3.3.: DOM-indep AND.

The first step is the calculation of all multiplication terms. Adding the cross-
domain terms to the inner-domain terms in the integration step violates the
independence by using shared inputs from different domains. To restore
the independence of this cross-domain terms a fresh random value (e. g.,
Z0, Z1, . . . ) is added in the resharing step. A further requirement is an addi-
tional register after the resharing to prevent glitches propagating data from
one domain to the other. Considering the independence of the inner-domain
terms, this register optional and only used for pipelining reasons. In the
last integration step the cross-domain terms can safely be added to their
inner-domain terms.

An additional requirement for a non-linear DOM-indep implementation is
the independence of the input shares. Consider, for example, a protected
AND as shown in Figure 3.3 uses value x as the first and second operand and
identical sharing (Ay = Ax and By = Bx). The shares of the inner-domain
terms Ax Ax and BxBx are independent and therefore uncritical, whereas
the cross-domain terms AxBx and Bx Ax brings shares of different domains
from the same variable together. This violation does not occur by using
the same input variable x twice. The problem refers to the identical input
shares and hence can easily be solved by sharing both inputs independently,
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for example, by adding fresh randomness before applying it as one of the
inputs. To suppress the propagation of identical shares to the input caused
by glitches requires a decoupling register after adding the fresh randomness
which increase the delay.

DOM-dep variant: In order to prevent additional delays, in case of de-
pendent input sharings of x and y, Gross et al. [17] shows the DOM-dep
variant, which replaces the direct calculation of xy using a blinding value z
as shown in Equation 3.7.

xy = x (y + z)︸ ︷︷ ︸
blinding

+ (xz)︸︷︷︸
correction

(3.7)

The shares of the blinding value z are therefore pairwise added to the shares
of the second input y (see Equation 3.8).

y + z = (Ay + Az) + (By + Bz) + (Cy + Cz) + . . . (3.8)

This blinding guarantees that every share is independent from the unshared
value of y which is required for the next calculation step which demasks
the blinded value. Before applying the demasking, an additional register
stage is required to prevent glitches before the blinding of y is finished. The
single demasked value of (y + z), represented by value b, is then multiplied
to every share of x which does not compromise the shares as they remain
to their specific domains (see Equation 3.9).

x(y + z) = xb = bAx + bBx + bCx + . . . (3.9)

Furthermore, their are no additional DOM multipliers required for this
operation. For pipelining reasons, an optional register stage can be applied
to the shares of x before performing the multiplication.

In a last step, the multiplication result must be corrected by the second
term of Equation 3.7 to get the correct result. Therefore, the input x and
the blinding value z are applied to a DOM-indep multiplier to ensure that

19



3. Hardware Masking Schemes

any two shares of the same input come together. This result represents
the correction term which is then added to the multiplication result of
Equation 3.9 and represents the result of the DOM-dep variant.

Figure 3.4 shows an example of a DOM-dep AND with two shares. Ad-
ditionally to the required random values of the internal used DOM-indep
multiplier, further random values are required for each share of the blinding
value z.

Ax Ay ByBx

Aq Bq

FFFFDOM-AND

y+z

xz

x(y+z)

Az BzZ

Figure 3.4.: DOM-dep AND.

Summary: The first-order protected AND (see Figure 3.3) requires four
AND as well as four XOR gates for the calculation which is equal compared
to the CBM and less than the TI (see Table 3.2). On the other hand, the two
registers are mandatory compared to the CBM whereas the TI requires one
additional register. Another major problem with the CBM are the glitches
which is not practical for a simple protected design. The reduced hardware
cost compared to TI and the unproblematic behavior of DOM makes this
to the more suitable masking scheme for protecting the targeted micro
controller.
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AND XOR Reg. Randomness

CBM 4 4 – 1
TI 13 12 3 1

DOM-indep 4 4 2 1
DOM-dep 6 9 4 3

Table 3.2.: Required logic cells and fresh random values for first-order masking schemes.

Another big advantage is the genericity of DOM, allowing to design pro-
tected hardware with arbitrary protection order. This simplifies the usage
for designers as they can simply change the protection order by changing a
single value.
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This work builds upon the open-source V-scale processor that implements
the RISC-V instruction-set architecture (ISA). The RISC-V ISA was originally
developed at the University of California, Berkely. RISC-V is a customizable,
modular, free and open RISC ISA which perfectly suits academic purposes.
The architecture is highly flexible, meaning that the register size (32, 64,
or 128 bit), their number (16 or 32), the number of privilege levels (1 to 4),
and the supported instructions can be chosen according to the desired use
case.

Like the ISA, also the V-scale processor core has been developed in Berkely.
V-scale is a Verilog implementation of the RV32IM instruction set, i. e., it
is a RISC-V processor with 32 registers with 32 bit width featuring the
mandatory base integer instruction set and the optional extension for integer
multiplication and division. This chapter outlines the V-scale core and the
related RISC-V ISA features.

4.1. RISC-V Instruction-Set Architecture

The ISA defines the mandatory base integer instruction set (I or E) which
contains the most basic memory, arithmetic, logic, and control-flow instruc-
tions. The architecture is highly flexible, meaning that the register size, their
number, the number of privilege levels and the supported instructions can
be chosen according to the desired use case. The base integer instruction
set RV32I and RV64I uses 32 or 64 bit width for address as well as for the
32 integer registers respectively. Alternatively, the RV32E instruction set
variant can be chosen which was designed for embedded system to reduce
the size and energy effort of the core. Therefore, the integer registers are
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reduced to 16 and the mandatory counters of RV32I are removed. Moreover,
a RV128I variant will be provided in the future.

Optionally, more complex instructions can be implemented and are defined
via various extensions of the base integer instruction sets. These extensions
include, for example, instructions for integer multiplication/division (M),
atomic (A) operations, as well as single- (F) and double-precision (D)
floating-point computations. The instructions in the base instruction set
and the mentioned extensions are all encoded in 32 bits. However, both
shorter and longer instructions are supported too. The extension for com-
pressed instructions (C), for example, defines 16-bit instructions which map
to the base instruction set to increase code density. Furthermore, RISC-V also
supports the addition of fully-custom instructions as so called non-standard
extensions (X).

The RISC-V, unlike the AVR, x86, and the ARM ISA has no status flags
(carry, overflow, zero, . . . ). Carry propagation as well as comparisons are
instead performed with dedicated instructions. The lack of status flags
makes the RISC-V ISA a more suitable basement for side-channel protected
processors than other ISA’s because it reduces the complexity of the masked
functionality.

4.1.1. Instruction Length Encoding

The RISC-V ISA uses a fixed 32-bit instruction length which is manda-
tory for all implementations independent from the used register size (32,
64 or 128 bit). Therefore, all instructions are naturally aligned on 32-bit
boundaries. However, when the compressed (C) instruction set extension
with 16-bit instruction length is used, the data alignment changes to 16-bit
boundaries for both 16-bit and 32-bit instructions. Furthermore, the RISC-V
ISA uses an elaborated instruction length encoding to be prepared for the
future. The instruction length encoding is selected by the opcode part of the
instruction (instr[6:0]) by increasing the numbers of successive one bits
(see Figure 4.1). For instructions larger than 16 bits, the two least significant
bits of the instruction are always set to one (instr[1:0]=11). Any other con-
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figuration of the two least significant bits are reserved for the compressed
16-bit instructions.

xxxxxxxxxxxxxxaa

xxxxxxxxxx011111
xxxxxxxxxxxbbb11

xxxxxxxxx0111111
xnnnxxxxx1111111
x111xxxxx1111111

xxxx
xxxx

xxxx
xxxx

xxxx xxxx
xxxx
xxxx
xxxx
xxxx

16-bit (aa ≠ 11)
32-bit (bbb ≠ 111)
48-bit
64-bit
(80+16×nnn)-bit; nnn ≠ 111
≥192-bit (Reserved)

015

31

47

63

Figure 4.1.: Instruction length encoding of RISC-V.

4.1.2. Base RV32I Integer Instruction Set

The base integer instruction set operates on the 32 user-visible general-
purpose registers x0-x31 with a data width of 32 bits for RV32 and 64
bits for RV64. These registers are accessible by all integer instructions and
none of these instructions are bounded to a special instruction. However,
some standardized special purpose registers are required (e. g., stack pointer,
return address, function arguments, . . . ) which are defined in the application
binary interface (ABI). Register x0 is a special case where written data is
discarded and a reading from this register always returns zero.

The last user-visible register is the program counter (PC) which holds the
address of the executed instruction. This register is not directly accessi-
ble like the general-purpose registers, but it can be modified by special
instructions like jump and branch operations.

Table 4.1 gives an overview of the opcode groupings for the RISC-V standard
extensions (IMAFD). The two least significant bits are not shown as they
are always one for 32-bit instructions (inst[1:0]=11). Furthermore, if the
three following bits in the opcode are set (inst[4:2]=111) indicates an
instruction greater than 32-bit. The mandatory base integer instruction
types are highlighted in blue and hence they are present in all RISC-V
implementations.
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inst[4:2]

00 LOAD

in
st
[6
:5
]

01
10
11 BRANCH

STORE
MADD

000

STORE-FP
LOAD-FP

MSUB
JALR

001
custom-0
custom-1
NMSUB

reserved

010
MISC-MEM

AMO
NMADD
JAL

011
OP-IMM
OP

OP-FP
SYSTEM

100
AUIPC
LUI

reserved
reserved

101
OP-IMM-32

custom-2/rv128
custom-3/rv128

OP-32

110 111(>32b)

≥80b

48b
64b
48b

Table 4.1.: RISC-V opcode map of 32-bit instruction. Two least significant bits of instruction
always one (inst[1:0]=11). Base integer instructions are highlighted in blue.

A detailed overview of all base integer instructions is shown in Table 4.3.
These instructions uses only the four different decoding formats, namely
R, I, S and U (see Table 4.2) to reduce the decoding complexity. The S
and U instruction formats have an additional subtype SB and UJ which
differs only in the decoding of the immediate values. To further decrease
the decoding complexity, the source registers (rs1 and rs2) as well as the
destination register (rd) stays on a fixed position in the instruction. Therefore,
no additional logic is required to get the register addresses which saves area
and increases speed. A further simplification is the fact that all immediate
values are sign extended and the sign bit of all immediate value types use
the most significant bit of the instruction (see blue highlighted position in
Table 4.2). This reduces the hardware complexity for the sign extension.

opcode

opcode
opcode

opcode
opcode
opcode

imm[4:1]

R-type
I-type
S-type
SB-type
U-type
UJ-type

011 6

imm[11]

78

imm[4:0]

rd
rd

rd
rd

12

funct3
funct3
funct3
funct3

141519

rs1
rs1
rs1
rs1

20

imm[11]

212425

rs2

rs2
rs2

imm[19:12]

imm[10:5]imm[12]

imm[20]
imm[31:12]

imm[11:0]

imm[10:1]

funct7

imm[11:5]

31 30

Table 4.2.: Instruction formats of RV32I. Most significant bit of IMM (highlighted in blue)
always on the same position in the instruction.
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0110111
0010111

LUI
011 67

rd

rd

12

000

141519202425

rs2

imm[12|10:5]

imm[20|10:1|11|19:12]

imm[31:12]

31

1101111
1100111

001
100

AUIPC
JAL
JALR

rs1

imm[11:0] 000

1100011101
110
111

imm[4:1|11]

BEQ
BNE
BLT
BGE
BLTU
BGEU

000
001
010

imm[11:5] imm[4:0] 0100011

000
001
010
100
101

0000011

SB
SH
SW
LB
LH
LW
LBU
LHU

imm[11:0] 000
010
011
100
110
111

ADDI
SLTI
SLTIU
XORI
ORI
ANDI

001

101shamt

0010011

0000000

0100000
0000000
0100000

SLLI
SRLI
SRAI
ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND

0100000

0000000

000

001
010
011
100

101

110
111

0110011rs2

0000000

00000

000
001

000
00000000000000001

csr

000000000000

001
010
011
101
110
111

0001111

1110011

rd

rs1

zimm

succ
0000

pred
00000000

0000 FENCE
FENCE.I
ECALL
EBREAK

CSRRW
CSRRS
CSRRC
CSRRWI
CSRRSI
CSRRCI

MRET
WFI

001100000010
000100000101

Table 4.3.: RV32I instructions.
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In the following a short overview of the instructions of RV32I given since
these are the instructions that are targeted in this work. More detailed
information can be found in the RISC-V instruction set manual [27].

LUI - Load Upper Immediate (U-type): Zero append the lower 12 bits of
the U-type immediate value and write it to the destination register.
An LUI followed by an add immediate (ADDI) operation can generate
every possible 32-bit value.

AUIPC - Add Upper Immediate to PC (U-type): Same immediate value
type as LUI with zero appending and adding it to the current PC to
build PC-relative addresses.

JAL - Jump and Link (UJ-type): The unconditional jump instruction stores
the incremented PC into the destination register and adds the sign
extended UJ-type immediate value to the current PC which gives a
range of ±1 MiB.

JALR - Jump and Link Register (I-type): Stores the incremented PC in
the destination register. Afterwards the PC is set to the sum of the
source register value with the sign extended I-type immediate value.

Branch Instructions (SB-type): The RISC-V ISA has no status flags to per-
form the conditional jumps. Instead, dedicated instructions are used
which compare the two source registers rs1 and rs2. If the branching
condition is fulfilled, a relative jump is performed by adding the sign
extended SB-type immediate value to the current PC. This leads to
a maximum jump range of ±4 KiB. The possible compare operations
for branching are BEQ and BNE to branch if the source registers are
equal or not as well as BLT[U] and BGE[U] to branch if the signed
or unsigned values in source register rs1 is less (LT) or greater equal
(GE) than rs2 respectively.

Load and Store Instructions (I/S-type): The load (Lx[U]) and store (Sx)
instructions use the first source register (rs1) as base address with the
sign extended immediate value as offset. Therefore, the lower 5-bit of
the 12-bit immediate value is taken by the unused register part of the
instruction. This is the rs2-part for load instructions (I-type IMM) and
the rd-part for the store instructions (S-type IMM). This 12-bit offset
allows to address memory inside a range of ±2 KiB. Furthermore, the
load and store instructions support 8-bit (B), 16-bit (H) and 32-bit (W)
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values which are selected by the funct3 part of the instruction. For the
load instructions the shorter values (B/H) are sign extended before
writing them into the destination register otherwise, the corresponding
unsigned load instruction (LxU) should be used.

Register-Immediate Instructions (I-type): This instructions uses the first
source register rs1 as first input operand and the sign extended 12-bit
I-type immediate value as second input operand. An exception are the
shift operations which uses only the lower 5-bit of the immediate value.
The result is stored in the destination register rd. Supported operations
are AND, OR, XOR, ADD, a signed and unsigned comparison, and
logical and arithmetic shifts which are selected by the funct3 part of
the instruction. In contrast to the branch instructions, only a signed and
unsigned compare operation for “less than” (SLTI[U]) is supported.

Register-Register Instructions (R-type): In contrast to the register-imme-
diate operations the immediate input is replaced by a second register
input using the R-type format. Moreover, the same instructions as
for the register-immediate instructions are supported with an addi-
tional subtraction operation. As the immediate values are always sign
extended the subtraction is performed implicitly when an addition
is performed. Using an register as second input operand, however,
requires an explicit subtraction instruction.

Memory Fence Instructions: The fence instructions ensure that previously
initiated memory accesses are completed before continuing. Therefore,
the most fence instructions in a single-issue in-order pipeline archi-
tecture like the V-scale processor are no operations which flush the
execution pipeline. This can be used, for example, in self modifying
code to guarantee that modified instructions are correctly loaded.

System Instructions (I-type): The system instructions uses an I-type for-
mat and supports operations for system calls, which are named en-
vironmental calls (ECALL, EBREAK) in the RISC-V ISA, to enter a
higher privilege level. Therefore, the current (PC) is stored in a con-
trol register and can be restored by an return instruction (MRET) to
continue the execution.
The RISC-V ISA owns control and status registers (CSRs) to handle
informations of the processing unit (e. g., used RISC-V extensions,
counter, . . . ) as well as configuration registers (e. g., interrupt enable,

28



4. Target Processor Platform

interrupt-handler base address, . . . ). The atomic CSRRx[I] instructions
are used to read the old value of a CSR, store it in the destination
register rd and modify or replace it with a new value. Therefore, a
5-bit immediate value (zimm) which is zero extended or the source
register rs1 can be used as input to write (CSRRW[I]) into the control
register or use it as a bit mask to set (CSRRS[I]) or clear (CSRRC[I])
the corresponding bit positions. The wait for interrupt instruction
(WFI) is used to stall the environment until an interrupt appears.

4.1.3. Integer Multiplication Extension (RV32M)

The integer multiplication extension provides additional instructions to
multiply or divide integer values of two source registers (see Table 4.4). For
this extensions the same opcode is used as for the other register-register
instructions (e. g., ADD, OR, AND, . . . ). Again the R-type instruction format
is used (see Table 4.2). The basic operations for multiplication is MUL using
the two 32-bit register inputs and generate the lower 32-bit result. There
exist dedicated operations to handle the upper 32 bits of the result. These
are separated in variants for signed× signed (MULH), unsigned× unsigned
(MULHU) and signed× unsigned (MULHSU) input operands.

The division operations support signed (DIV) and unsigned (DIVU) inputs
and the (REM) and (REMU) instructions provide the appropriate remain-
der.

011 671214151920242531

MUL
MULH
MULHSU
MULHU
DIV
DIVU
REM
REMU

0000001

001
010
011
100

110
111

0110011rs2

101

000

rs1 rd

Table 4.4.: RV32M instructions.
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4.2. V-scale Core
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Figure 4.2.: Overview of the V-scale core pipeline.

The V-scale processor core is described in the hardware description lan-
guage Verilog and implements a subset of the RISC-V ISA. The core consists
of 32 general-purpose registers and implements the 32-bit base integer
instruction set and the additional hardware multiplication and division
extension (RV32IM). Figure 4.2 shows the basic processor design which
is based on a single-issue in-order 3-stage pipeline architecture compris-
ing a fetch stage, a combined decode and execute stage, and a write back
stage. Additionally, data dependencies between consecutive instructions are
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handled more efficiently by using a dedicated bypass multiplexer in the
write back stage which allows to increase the utilization of the arithmetic
logic unit. Communication with the external memory relies on separated
AHB-Lite memory interfaces for instruction and data handling. This separa-
tion allows the flexibility to build both Harvard as well as von Neumann
architectures.

4.2.1. Pipeline Stages and Control Logic

The most sophisticated part of the core is formed by the control logic. It has
to apply the correct control signals to the data path logic for the different
pipeline stages and has to deal with hazards in the instruction pipeline. The
pipeline uses the following three stages:

FETCH: The first task of the pipeline is to fetch an instruction from the
memory by incrementing the PC or alternatively alter the pipeline in the
case unconditional jump and branch instructions are executed or hardware
exceptions occur (e. g., interrupts, bad memory access, . . . ). This stage can
cause an exception when the PC uses an unaligned or invalid memory
address. This happens when the two lowest bits of the destination address
are not zero. For the invalid memory access the processor owns the bad
memory access input. Both exceptions set the PC to the trap-vector base-
address placed in the CSR which holds the code to handle such exceptions.

DECODE+EXECUTE: The decoding of the instruction is mainly performed
by the control unit. Depending on the opcode, the source register or im-
mediate value is chosen as well as the decoding of the immediate value is
performed and the control signals for the multiplexers in the data path are
generated. The execution of the operation is performed in the same clock
cycle as the decoding. Therefore, the corresponding inputs are propagated
through the data path and processed in the arithmetic logic unit (ALU).
As a result, it is possible to execute each base integer instruction within
one cycle. However, this does not apply for the multiplication and division
instructions which stalls the pipeline execution until a signal indicates that

31



4. Target Processor Platform

the result is valid.

Algorithm 3: Example for data hazard: read after write (RAW)
i1 x3← x1+ x2

i2 x1← x3+ x2

In this stage the control logic must deal with some hazards caused by
data dependencies of consecutive instructions or code that should not be
executed because a branch occurs. Algorithm 3 shows an example of the
read after write (RAW) data hazard where the destination register of the
first instruction (i1) is immediately used as source register for the following
instruction (i2) which still contains the old register value due to the write
back delay. To prevent a stalling of the pipeline, a bypass multiplexer is
added to use the result directly as an input for the next execution stage.

Another control hazard appears on conditional jumps when the branch is
taken. In this case the control logic needs to flush the instruction pipeline
and insert no operations until the next instruction is correctly fetched from
the memory.

WRITE BACK: In the final write back stage the source is chosen at first
which is then stored in the destination register. Possible sources are the
data memory, the control and status register, the ALU, and the hardware
multiplication and division unit.

4.2.2. Register-File

The register file contains the 32 general-purpose registers which are acces-
sible over two independent ports for reading and an additional port for
writing. Switching between the registers works immediately whereas the
write operation is always performed on a positive clock edge. The first
register x0, also called the zero register, is hardwired to the constant zero
and the data written to the x0 register is always discarded.
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4.2.3. ALU

The ALU has two data input ports and provides logic operations for AND,
OR, XOR, comparison, addition, subtraction, arithmetic and logic shifts. It
is formed by purely combinatorial logic and therefore no internal register is
used. This is necessary to prevent the address calculation of the load and
store instructions from an additional delay. As shown in Figure 4.2 a register
is added at the output of the ALU as write back source.

4.2.4. Multiplication and Division Unit

The hardware multiplier and divider is a separate module which is directly
connected to the register sources, since the appropriate instructions use
no immediate values. In difference to the ALU, the hardware multiplier
and divider module takes several cycles to generate a valid output. Hence,
the instruction pipeline needs to be stalled until the response valid signal
indicates that the operation is finished. An internal result register is used as
source for the write back stage.

4.2.5. Data Memory

The data memory supports read and write operations with 8, 16 and 32-bit
data width. The address generation is done by adding a source register and
the immediate value using the ALU and applying it to the memory. Since
the memory uses a register at the output to minimize its critical path, the
reading from a memory address is delayed by one clock cycle. The output of
the register is directly used as a source for the write back. The input of the
data memory is directly taken from the second source register whereas the
memory address is taken from the ALU output. The value from the second
source register is stored in an additional register before it is applied to the
memory in order to shorten the signal propagation path. Unfortunately, the
write operation is therefore always delayed by one clock cycle. This leads to
no additional delays for sequential write operations, however, using a read
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operation after writing to the memory leads to a pipeline stall since reading
is done immediately and writing is delayed.
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5. Protected Implementation of
V-scale

The protection of the implemented V-scale core addresses the problem that
processed data is subject to side-channel attacks. This works focus affects
solely the protection of the base RV32I instruction set as it is the most
versatile. Nevertheless, the multiplication/division (M) extension of the
original V-scale processor has been kept to maintain compatibility but is
still unprotected.

Therefore, the register file, the majority of the ALU and the data mem-
ory interface of the V-scale processor have been protected using the DOM
scheme. Other parts, like the instruction memory interface and the decoder
have been left unprotected. The reason for this split is that in any case the
implemented code must be written such that it does not leak information
about the processed data over the instruction sequence because different
instructions show different power signatures in leakage traces as also men-
tioned in [28]. Otherwise, even on a fully shared processor, timing attacks
would for example be possible.

The resulting processor’s architecture is depicted in Figure 5.1. One major
difference to the original V-scale processor is that the protected core now
has four pipeline stages. The additional pipeline stage (see (1) in Figure 5.1)
splits the previously combined decode+execute stage and is necessary to
prevent leakage due to glitches when data shares are merged. This aspect is
described in more detail in Section 5.1.
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Figure 5.1.: Overview of the protected V-scale core. Grey blocks are registers or use a
register stage internal. Shared data connections are illustrated in red, unshared
in black and the randomness in blue.
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From another perspective, the processor is split into a part that operates
on DOM-shared data and a part operating with merged data shares. Ac-
cordingly, the ALU itself has been split into a protected and an unprotected
part. The unprotected ALU (see (2) in Figure 5.1) implements multiplica-
tion/division, address calculation, and data comparison for conditional
jumps. Performing comparisons for conditional jumps in an unprotected
way is legitimate as code is not allowed to branch on secure data anyway
to avoid timing attacks. More details on the logic to securely merge the
different DOM shares and on the unprotected ALU itself can be found in
Section 5.2. All the remaining functionality being part of the base instruction
set (e. g. AND, OR, XOR, ADD, . . . ) is implemented in the protected ALU in
a DOM-protected way. The protected ALU is visualized in Figure 5.1 at (3)
and is thoroughly described in Section 5.3.

5.1. Additional Pipeline Stage

The major change to the unprotected processor are the additional source
registers shown in Figure 5.1 at (1). The main purpose of these buffer
registers is to prevent glitches in the merging units connected to RS1-merge
and RS2-merge. These merging units recombine the shares to the original
value as shown in Equation 3.1.

Without the registers RS1-merge and RS2-merge, (de-)activation of the merg-
ing units can result in data dependent glitches. This is illustrated using two
basic scenarios. First, the output of the register file switches to sensitive data.
This requires the merging units to be disabled by detaching their inputs
from the source register. However, if the sensitive data is selected faster than
the merging unit is disabled, sensitive data propagates into the merging
unit and results in the leakage of sensitive data. Second, the output of the
register file switches from sensitive data to data to be merged. This enables
the merging unit by switching the multiplexer to the output of the register
file. Here, if the multiplexer switches faster than the register file output is
selected, the sensitive data from before glitches into the merging units which
leaks information. Both scenarios are prevented by the additional buffer
registers RS1-merge and RS2-merge. These effectively decouple the merging
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units from the register file selector by setting the input to the merging units
to zero if not required. To adapt the delay of the protected to the unprotected
data path, further buffer registers RS1 and RS2 are needed.

Another change to the processor design is the addition of fresh randomness
to the processed values before the ALU result is written back to the register
file and before the registers RS1 and RS2 are used as the operands for the
protected ALU. This allows to restore the independence of the sharings
after unprotected operations and shifts operations which generate zeros or
duplicate the most significant bit, respectively. Furthermore, the addition of
fresh randomness is required right before operating on identical operand
registers for protected ALU operations.

5.2. Unprotected Operations

Figure 5.1 shows at (2) the modules MUL-DIV and ALU (unpr.) providing
the unprotected operations of the core. These modules operate natively
with 32-bit word size and use the merged data as described in Section 5.1.
The MUL-DIV-module is the unprotected hardware multiplication and
division unit from the original V-scale processor design and kept to maintain
compatibility.

The unprotected ALU implements different compare operations, i. a., for
branch instructions. However, the comparison results can also be written
back to a register. While all branch instructions use two source register in-
puts, instructions storing the comparison result allow to alternatively use an
immediate value as the second source. Note that the compare functionality
could have been implemented without merging the data, but branching on
protected data must anyway be avoided due to possible timing attacks [29].
This design decision should be kept in mind as it makes it necessary to
avoid compare operations on protected data.

Furthermore, the unprotected ALU provides an adder to perform address
calculations within load and store operations. Note however that the re-
quired merging of source register before the actual address computation
does not reduce security. As the second operand is constant and determined
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by a known software implementation, the value of the source register can
always be reconstructed, also if a masked adder was used and the shares
of the memory address were merged afterwards. Besides, the unprotected
adder is also used within two further instructions. First, the adder is used
in the jump and link instruction to increment the program counter in the
computation of the address of the following instruction. Second, in the
add upper immediate to program counter instruction both the program
counter and the immediate input are publicly known making a masked
adder obsolete.

5.3. Protected ALU

OR

SRA

SLL

SRL

Shift

FF

Q

Z1

Y
X

(p)

(i)
(i)

(i)

DOM-AND

DOM-AdderSUB

Z2

Figure 5.2.: Protected ALU using a single DOM-AND for AND and OR operation. Shown
XOR operations used in different manner: (p)airwise XOR operation of inputs
shares (e. g. Ax + Ay; Bx + By; . . .); (i)nverting the operand XORing the signal
OR with every element of the corresponding first share;

The protected ALU is shown in Figure 5.1 at (3) which provides the masked
functionality for bit-wise logic operations and arithmetic operations. Both
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input sharings X and Y are composed of d + 1 independent shares (see
Equation 5.2), where d is the protection order of the DOM implementation.
For resharing purposes, the protected ALU has two additional inputs Z1
and Z2 holding the required fresh random shares. The data width of the
input shares and the fresh random Z shares is 32 bits each.

X = (Ax, Bx, Cx, . . . )︸ ︷︷ ︸
d+1

Z1 = (Z10, Z11, Z12, . . . )︸ ︷︷ ︸
d(d+1)/2

(5.1)

Y = (Ay, By, Cy, . . . )︸ ︷︷ ︸
d+1

Z2 = (Z20, Z21, Z22, . . . )︸ ︷︷ ︸
d(d+1)/2

(5.2)

5.3.1. DOM-AND

AxAy BxBy CxCy

FF FF FF FF FF FF FF FF FF

ByAx AxCy Bx BxAy Cy Cx CxAy By

Aq Bq Cq

Z0 Z1 Z2Z0 Z1 Z2

domain A domain B domain C

calculation

resharing

integration

Figure 5.3.: Overview of the DOM-AND.

The basis for all implemented non-linear operations is the so-called DOM-indep
GF(2) multiplier variant (see [17]) which corresponds to a logic AND gate
with two one-bit inputs. The DOM-indep AND gate is illustrated in Fig-
ure 5.3. A basic requirement of the DOM-indep multipliers is that the two
inputs X (Ax, Bx, Cx, . . . ) and Y (Ay, By, Cy, . . . ) are independently shared
which is ensured by design of the protected core.
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The construction of the DOM-AND is generic and can thus be extended to
arbitrary protection orders by adding additional shares. For the protection
order d, d + 1 shares per variable are required giving d + 1 independent
share domains. Every domain consists of d + 1 AND gates and flip-flops
which results in a quadratical growth of the chip area accordign to the
protection order. The three steps (calculation, resharing, and integration) of
the DOM implementation are applied independently for every bit position
of the 32-bit shares. Therefore, a 32-bit AND gate consists of 32 DOM-AND
gates.

In the calculation step the terms resulting from the calculation of X × Y
(Ax Ay, AxBy, AxCy, Bx Ay . . . ) are calculated separately. In the next step
(resharing) all terms that contain shares which are not associated with the
respective domain are reshared by using a fresh random Z share. The
subsequent register ensure that no early propagation effects occur which
could result in glitches that would effect the SCA resistants of the gate.
To keep the timing of the masked AND synchronous the register is also
inserted in inner-domain paths of the domains (e. g., Ax Ay or BxBy). The
last step reduces the number of terms again to d + 1 by integrating the
freshly masked cross-domain terms into the inner-domain terms and hence
generates the output Q (Aq, Bq, Cq . . . ).

5.3.2. Protected Adder

Another important operation of the ALU is the addition. A main require-
ment for this hardware adder is the possibility to protect it with the DOM
scheme and keep the delay as small as possible. Using a design with iterative
adder blocks as shown by Gross [28] for example, increases the required
clock cycles to the operands width. This iterations are necessary to guarantee
the independence requirement of the DOM. Such an implementation is only
practicable for small bit widths. To increase the performance using wider
input operands, a Kogge-Stone similar construction as shown by Schneider
et al. [30] is used.
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Kogge-Stone Adder

x7 y7 x6 y6 x5 y5 x4 y4 x3 y3 x2 y2 x1 y1 x0 y0 cin

cout q0q1q2q3q4q5q6q7

Pre-
processing

Post-
processing

Stage 1

Stage 2

Stage 3

0

000

Figure 5.4.: Kogge-Stone adder dependence tree for 8-bit inputs with carry in/out.

This is a parallel prefix adder using a carry lookahead with a tree like
structure. An example of an 8-bit adder is shown in Figure 5.4. Therefore,
the addition is separated into propagation and carry generation which is
illustrated by the yellow nodes in the tree. The main advantage of this
structure is the logarithmic logical depth which increases only by a single
additional stage when the input operands width is doubled. Furthermore,
this adder type provides a good basic structure for a generic implementation,
with regard to the bit width of the input operands as well as the protection
order of the DOM implementation.

The input operands x and y as well as the output operand q are n-bit wide
vectors as shown in Equation 5.3.

x = (xn−1, . . . , x1, x0) y = (yn−1, . . . , y1, y0) q = (qn−1, . . . , q1, q0)
(5.3)

The calculation of the sum is performed in three different processing steps.
Each generating n-bit width intermediate values for propagation p(i) and
the carry generation g(i).

42



5. Protected Implementation of V-scale

Preprocessing: As shown in Figure 5.4 the addition starts with the pre-
processing step to generate the initial values of carry generation g(0) and
propagation p(0) (see Equation 5.4).

g(0) = xy p(0) = x + y (5.4)

Processing: The processing step is performed several times depending
on the operands data width. Therefore, the number of stages increases
logarithmically and is given by N = dlog2(n)e. In each stage the new carry
generation and propagation values are generated from old values as shown
in Equation 5.5. The equations use the � operand which indicates a left
shift. This shifts are increased with each stage to 2i−1 where i ∈ {1 . . . N}
means the current stage.

g(i) = p(i−1)(g(i−1) � 2i−1) + g(i−1)

p(i) = p(i−1)(p(i−1) � 2i−1)
i = 1 . . . N (5.5)

Postprocessing: The final postprocessing step generates the sum of the
addition by shifting the last carry generation value one to the left (gN � 1)
and add it to the initial propagation sum (p0) as shown in Equation 5.6.

q = p(0) + (g(N) � 1) (5.6)

The adder design also provides carry input and output as shown in Fig-
ure 5.4. To get the carry output of the adder the most significant bit of the
last carry propagation value cout = g(N)

n−1 is used. The carry input is used

in each processing state as carry propagation bit g(i)−1 = cin and is therefore
shifted into the carry propagation path. Additionally to the processing
stages, the carry input must be used in the postprocessing step as least
significant bit of the shifted carry generation value.
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Figure 5.5.: Masked adder using two DOM-ANDs. Shown XOR operations used in different
manner: (p)airwise XOR operation of inputs shares (e. g. Ax + Ay; Bx + By; . . .);
(i)nverting the operand by adding the signal SUB with every element of the
first share of Y (Ay).

DOM Implementation

Figure 5.5 shows the secure DOM adder. It is composed of two DOM-ANDs,
two bit shifts, and multiple XORs. The XOR as well as the shift operations
can be performed independently for each share domain and each input. The
nonlinear parts of the adder are formed by two DOM-AND gates. To make
the illustration of the adder in Figure 5.5 more concise, the three steps for
calculating the DOM-AND are only indicated by the respective function (see
Figure 5.3 for more details). The DOM-AND’s internal registers together
with the G are used as the working registers for the iterative calculation
of the sum. The DOM-AND’s internal registers are indicated by GP which
belongs to the carry generation path and P which belongs to the propagation
path.

For the carry generation path the register G is used to store the previous
value of the generation step as it is required in the next iteration. An impor-
tant requirement of the used DOM-AND gate is an independent sharing the
both inputs. This independence is ensured for both AND gates because the
bit positions of one operand is always shifted by at least one position. With
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the same argument the random Z shares in each cycle are applied for both
AND gates without violating the independence requirement.

The subtraction operation can easily performed by calculating the twos-
complement of the subtrahend. The subtraction is controlled by the SUB
input. Therefore, the input signal SUB is XORed with every bit of the first
share of Y (Ay). Incrementing the result by one is done by connecting the
carry in of the adder with SUB which is active on a subtraction. This is done
in the shifter of the generation path by appending the carry bit below the
least significant bit of the first share and shifting it into the carry generation
path. The following equations uses the� operation to indicate a left shift
performed independently on every input share supporting only shifts with
2n where n ≥ 0. The calculation of the sum is performed in three steps
called preprocessing, processing, and postprocessing.

An addition is started with the initial preprocessing step initializing the
registers G, P0 and GP according to Equation 5.7.

G0 = 0 P0 = X + Y GP0 = XY (5.7)

The processing step is performed five times in a row (n = 1 . . . 5).The first
and last steps are diverging form the normal processing operation. In the
first step the input register P is replaced by P0. In the last processing step
the register update of P is omitted (see Equations 5.8 to 5.11).

Gn = Gn−1 + GPn−1 n = 1 . . . N (5.8)
P1 = (P0� 1)P0 GP1 = P0(G1 � 1) (5.9)

Pn = Pn−1 (Pn−1 � 2n−1) n = 2 . . . N − 1 (5.10)

GPn = Pn−1(Gn � 2n−1) n = 2 . . . N (5.11)

In the final postprocessing step the resulting sum is simply computed by a
single XOR operation as shown in Equation 5.12.

S = P0 + (GN � 1) (5.12)
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5.3.3. Resharing of ALU Inputs and Outputs

To reduce the required fresh randomness the two resharing values R1 and
R2 in Figure 5.1 are generated from the random Z shares. Furthermore, the
merged value of both R shares is always zero so that an addition of the
shares with a sharing of the register file input or output always result in a
resharing without changing the underlying value. For first-order protection
the resharing value is generated by duplicating a single random share as
shown in Equation 5.13.

R1 = (Z10, Z10) R2 = (Z20, Z20) (5.13)

For other protection orders the randomness is composed as shown in
Equations 5.14 and 5.15.

R1 = (Z10, Z10 + Z21, Z12 + Z21, Z12 + Z23, Z14 + Z23, . . .) (5.14)
R2 = (Z20, Z11 + Z20, Z11 + Z22, Z13 + Z22, Z13 + Z24, . . .) (5.15)

To guarantee the independence of both resharing values the first sharing
R1 uses the shares of Z1 with even and shares of Z2 with odd indexes,
whereas the second sharing R2 uses the remaining shares of Z1 and Z2. This
combination of both Z shares is necessary to prevent adding of two shares
which are also used in the DOM-AND for the integration step. For example,
if the second term of R1 uses the same random Z share (Z10 + Z11) it can
be used to eliminate two random values in domain A as shown in Figure 5.3.
This reduces the number of signals an attacker has to know to eliminate the
randomness.

5.3.4. Other ALU Operations

The remaining operations of the protected ALU (see Figure 5.2) are the shift
operations, the logic operations XOR and OR, and the pass-through path.
The shift operations are represented by the blocks SLL, SRL and SRA, which
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perform logical left or right shift or an arithmetic right shift. The Shi f t
operand uses a separate unshared input for selecting the shift width which
is generated outside the module as shown in Figure 5.1. This is necessary to
prevent an unwanted merging of the default used shift operand Y. The shifts
are performed independently on every share of X. For the arithmetic right
shift the most significant bit of every share is duplicated. The logical shift
operations add zeros to the shares. Therefore, the shares must be refreshed
which is done before writing back the result into the register file or the
buffer registers adding fresh randomness (see Figure 5.1).

The XOR operation is done in a straight-forward way by adding the input
shares of X and Y share wise. This leads to a zero result using the same
input values. Again the results are reshared using fresh randomness before
storing them in the buffer registers RS1 and RS2 to guarantee independence
of the shares.

The pass-through applies the second input Y unmodified to the output. To
prevent a duplication of the sharing of Y in different registers, the sharing
is again refreshed before writing it to a register.

The OR operation is combined with the AND operation formed by the
DOM-AND to reduce the logic overhead. This is done by transforming the
logical OR into an AND by inverting both inputs and the output. If the OR
operation is used, the input OR is set which inverts the first share of both
input operands as well as the resulting output of the DOM-AND by adding
to all bits the OR signal.
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6. FPGA Design and Hardware
Results

The evaluation of the protected V-scale implementation is done on a stan-
dardized measurement board. This board is one out of a group of so-called
side-channel attack standard evaluation boards (SASEBOs) which are espe-
cially designed for SCA evaluation processes. The used board in this work
is a commercial version of the SASEBO-GIII [31], the SAKURA-X board.
Figure 6.1 shows the block diagram with its main components and the pic-
ture in Figure 6.2 illustrates the top view of the board with the highlighted
components from the block diagram.

Kintex-7
XC7K160T

Spartan-6
XC6SLX45

JTAGJTAG

FT2232H
(USB 2.0)

FMC-LPC

SHUNT

Host-PC

GPIOGPIOFMC-LPC

Cfg-FlashCfg-Flash Measurement
Point

DDR3 RAM

VCC

2

76

CLK (diff)

interconnects

Figure 6.1.: Block diagram of the SAKURA-X board.

This board is equipped with two Xilinx field-programmable gate arrays
(FPGAs). One Xilinx Spartan-6 FPGA device working as controller connected
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FMC LPC

Kintex-7 FPGA

Spartan-6 FPGA

DDR3 RAM

JTAG

JTAG

Cfg-Flash

Cfg-Flash

Power Meas.

USB

GPIO

GPIO

Figure 6.2.: Top view with main components of the SAKURA-X board.

to the measurement PC, and the second Xilinx Kintex-7 FPGA implements
the DUA. For this purpose the FPGAs are connected over a local bus
interface with a maximum of 78 interconnects, where two connections are
especially declared as differential clock signal. The data connection of the
control FPGA with the host PC uses a configurable protocol chip providing
different industrial serial and parallel interfaces (e. g., UART, SPI, JTAG,
. . . ). For expandability reasons an FPGA mezzanine card (FMC) low pin
count (LPC) connector is available for each device. The configuration of both
FPGAs can be done over separate joint test action group (JTAG) interfaces
or by the provided flash memories, each connected via byte peripherial
interface (BPI).

The connection for the power measurement is realized over two SMC con-
nectors. Alternatively, the measurement points can also be accessed over
a pin header. Both are directly connected to the shunt resistor allowing
voltage measurements with a differential amplifier. This makes a better use
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of the maximum measurement range of an oscilloscope.

6.1. Device Under Attack – Kintex-7

The implementation of the attacked V-scale core is simulated and synthe-
sized with the Xilinx Vivado Design Suite 2014.3. Figure 6.3 illustrates the
block diagram of the main modules running on the Kintex-7 FPGA.
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Figure 6.3.: Block diagram of the device under attack (Kintex-7).

Details on the implementation of the protected V-scale core design can
be found in Chapter 5. Communication of the V-scale core provides two
separated memory interfaces for instructions and data. For this purpose
the internal block RAMs (BRAMs) provided by the Kintex-7 FPGA are
utilized. This BRAM support native sizes of 18Kbits or 36Kbits and can be
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direct cascaded for larger memory requirements. Furthermore, different bit
widths and interface types can be configured. To reduce the delay when
data is loaded while fetching an instruction, a true dual-port interface is
used for the BRAM. To access the data memory over the local bus interface
without stopping the V-scale core requires two separated memory blocks
with different accessibility:

Instruction+Data: The first BRAM memory block is used to hold the pro-
gram as well as data, and is therefore accessible over both interfaces
of the V-scale core. This memory always starts at address 0. To load a
new program the memory bridge can link the local bus interface to
the first port P1 which is normally used by the instruction interface of
the V-scale core.

Data only: The second BRAM memory block uses the first port P1 to
connect the data interface of the V-scale core. To load any data via the
local bus interface without interrupting the execution of the V-scale
core the second port P2 is used which restricts this memory to be used
only for data. The start address of this memory block depends on the
size of the instruction memory and can be changed in the memory
bridge.

6.1.1. Local Bus Interface

The data requests from the local bus are handle over the interface module.
All data exchanges are synchronous and uses a separate input and output
port with 32 bit width. To perform a read or write operation, the two in-
dependent signals RdEn and WrEn are used, respectively it is possible to
perform reading and writing simultaneously. With the AddrEn signal the
destination can be changed from the data to the address register. Further-
more, the signal can be used to read the current address instead of the data
coming from the memory bridge. Valid data applied to the data output
Dout is signaled by DoutValid.

Most read or write operations are performed on consecutive data blocks.
Therefore, it is necessary to increment the address. To reduce the data
overhead by manually writing the new address it can be incremented
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automatically after read of write operations. Since all addresses are 4 byte
aligned the two least significant bits of the address register are used for this
purpose. Setting bit 0 of the address increments on read operations whereas
setting bit 1 does the same on write operations.

6.1.2. Memory Bridge

The memory bridge has to perform several tasks. It connects the V-scale
core and the local bus interface with the two memory blocks and provides
special access to the instruction memory for program loading. Therefore,
a control register is used in the bridge which is mapped into the address
space of the local bus interface. It provides three bits, where bit 0 is used
to reset the V-scale core. Bit 1 change the access from the first port P1 of
the instruction memory block to the local bus interface and additionally
sets the memory wait signal to prevent the V-scale core from fetching data.
An additional bit at position 2 in the control register is applied to the data
memory wait signal and can be used to prevent the V-scale core loading
any data from the memory.

The V-scale core uses a direct address mapping to the memory blocks. This
is not possible for the local bus interface as it works with 32 bits data width
whereas the protected implementation requires 32× (d + 1) bits. Therefore,
the upper 8-bit of the address coming from the local bus interface are used
to select the desired share and to switch between the instruction and data
memory blocks.

6.2. Control FPGA – Spartan-6

For the simulation and synthesis of the control logic running on the Spartan-
6 FPGA, the Xilinx ISE Design Suite 14.7 is used. This controller supports
read and write operations to exchange data with the Kintex-7 FPGA. There-
fore, the host PC is connected over USB to the SAKURA-X board using
the onboard converter chip (FTDI FT2232H) providing an asynchronous
parallel transfer interface with a bidirectional 8-bit data bus and a simple
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4 wire handshake interface. The block diagram in Figure 6.4 illustrates the
modules running on the Spartan-6 FPGA handling the data transfers from
the converter chip to the local bus interface. All data transfers are buffered
in the two “first in, first out” (FIFO) memories with a data width of 8 bits.
The upper FIFO in Figure 6.4 is used to buffer data coming from the host
PC whereas the lower FIFO buffers data coming from the local bus.
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Figure 6.4.: Block diagram of the control FPGA (Spartan-6).

6.3. Hardware Results of V-scale

The hardware results are gathered for a Xilinx Kintex-7 FPGA with the
Xilinx Vivado Design Suite 2014.3. Therefore, the synthesis was done for the
unprotected core as well as for the protected V-scale core with protection
orders from 1 up to 4. Figure 6.5 shows the evolution of required look up
tables (LUTs) (left) as well as the required registers (right) for increasing
protection order. The overall area seems to grow only linearly with the
protection order. The design of the DOM-AND gates which are part of
the nonlinear modules of the protected ALU increase quadratically which,
however, contribute only marginally to the overall size for lower protection
orders.

Table 6.1 shows the area result in numbers. Additional the required random-
ness is shown which increases quadratically with the protection order. In
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Figure 6.5.: Required LUT (left) and registers (right) on an FPGA.

Prot. Order FPGA Logic Randomness Max. Clock
d [LUTs] [regs] [Bits] [MHz]

Unpr. 2,607 996 0 45.6
1 4,143 1,842 64 61.0
2 5,626 2,551 192 59.5
3 7,259 3,484 384 58.3
4 9,244 4,561 640 41.0

Table 6.1.: V-scale core implementation results.

particular the randomness required for the protected ALU is 32× d(d + 1)
bits in each cycle. The last column shows the maximum clock frequency
which is higher for the protection orders 1 up to 3 as for the unprotected
implementation. This results from the additional pipeline stage of the pro-
tected implementation which reduces the critical path but increases the
delay on the other hand.

54



7. Evaluation

The security of the DOM implemented V-scale core in the d-probing model
is discussed in Chapter 5. To show practical evidence for the first-order
resistance of the protected V-scale design, the Welch’s t-test is used according
to the recommendations of Ding et al. [32].

To make the leakage assessment as reproducible as possible, the SASEBO-
GIII [31] based SAKURA-X FPGA board is used. The board is especially
designed for side-channel evaluation and provides special measurement
connectors for measuring the power consumption. The leakage traces are
collected by a Picoscope 6404C oscilloscope at 312.5 Ms sampling rate for
an 8 MHz DUA clock. An implementation of the round transformations
of an authenticate encryption scheme (Ascon) together with additional
code that triggers particular instructions and instruction sequences that are
considered critical is used as the targeted software implementation.

7.1. T-test Based Leakage Detection

For this work it is more interesting to detect if a DUA leaks information
which can be used for a practical attack. The attacks based on the analysis
of the measured power traces use statistical dependencies of the processed
data with the consumed power. With the t-test based leakage detection,
it can be shown whether or not an arbitrary design leaks security critical
information. The t-test requires two different power measurement sets for
the investigated cryptographic algorithm. For the first set LA, a fixed input
is used whereas the second test set LB takes randomly chosen inputs. This
two sets of measured power traces are compared together using the Welch’s
t-test as shown by Ding et al. [32]. Therefore, the test methodology uses
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the difference of the sample means LA − LB which is then scaled to the
estimated standard deviations sA and sB with respect to the size of the trace
sets denoted by nA and nB, respectively. With this values the t-test statistic
is given by:

t =
LA − LB√

s2
A

nA
+

s2
B

nB

(7.1)

If the t-value exceeds the confidence interval of ±4.5 the null-hypothesis is
rejected with confidence greater than 99.99% for large size of traces nA and
nB [32].

The t-test methodology can also detect leakage in higher-order protected
designs. Therefore, the size of both trace sets must be the same (n =
nA = nB). For a d-th order leakage detection at a single point of time, the
sample traces of both sets are compared by freeing their samples from the
corresponding sample mean and exponentiated by the order of leakage
detection:

D = (LA − LA)
d − (LB − LB)

d (7.2)

To get the t-test statistic for higher-order leakage detection with Equation 7.3,
the standard deviation sD and the mean D is calculated from the paired
differences D.

t =
D√

s2
D
n

(7.3)

7.2. Unprotected Device

The first-order t-test is performed according to Equation 7.1 for the two
trace sets A and B with random and constant inputs. A t-test is performed
on the unprotected device which serves as reference for further evaluations.
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Figure 7.1.: First order t-test values of unprotected device with 20K traces.

Figure 7.2 shows the absolute t-values where multiple peaks exceed the 4.5
border with only 20,000 measurement traces for both sets. The small peaks
indicate positive clock edges changing the values stored in the registers and
the subsequent switching activity of the logic applying the new values. One
difference to the protected device is the shorter length of the traces for the
same executed operations. This comes from the shorter delay when a value
in the write-back stage of the processor is used in the next operation. The
protected implementation has to wait one cycle until the value is available.

7.3. First Order Protected Device

The t-test on the first order protected device is performed under different
conditions.

Random Number Generator Turned Off: To show the functionality of the
measurement setup, the internal random number generator is turned off for
the first measured trace sets. Figure 7.2 shows the t-values with the expected
significant peaks over the 4.5 border which indicates first-order side-channel
leakage for 2 million traces per trace set. Compared to the unprotected
device the number of required traces increases drastically to get roughly
the same maximum t-value. Additionally, the number of peaks exceeding
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Figure 7.2.: First order t-test value of protected ALU operations with inactive random
generator with 2M traces.

the 4.5 border is reduced. This is due to the uniformly distributed input
data which does not leak any informations until performing an operation
requiring fresh randomness.
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Figure 7.3.: First order t-test value of protected ALU operations with active random gener-
ator with 100M traces.

Random Number Generator Turned On: The t-test is repeated with the
random number generators turned on and for 100 million traces. Even with
50 times more traces compared to the first t-test the leakage evaluation does
not show any significant peaks any more (see Figure 7.3). Therefore, the
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side-channel countermeasures are considered to work as expected.
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Figure 7.4.: Second order t-test value of protected ALU operations with active random
generator with 11M traces.

Second-Order Leakage Detection: Additionally to the first-order leakage
detection a second-order t-test is performed according to Equation 7.2 with
d = 2. Compared to the first-order t-test with activated random number
generator, only 11 million traces are generated. This is due to the enormous
amount of required memory to store the recorded traces. For the first-order
t-test the data can be reduced by calculating intermediate values without
storing every trace. The second-order t-test requires the centering terms,
represented by the subtraction of the mean L (see Equation 7.2), which is
only possible after finishing the measurement. Therefore, all traces have
to be stored which reduces the number of possible traces for the t-test. If
enough traces are processed there should emerge some peaks in the t-values
indicating the second-order leakage for the first-order protected device. As
shown in Figure 7.4 the values are extremely small which indicates that the
number of traces are too small.
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8. Conclusion

In this thesis, a side-channel protected V-scale core following the DOM
scheme was implemented. The implemented core is fully scalable in terms
of protection order and allows to protect informational assets that are
processed by the protected V-scale core. The overhead for the side-channel
protected implementation of the core increases only to a factor of roughly 1.5
for the first-order implementation. Synthesis of the processor with different
protection orders up to four increase the size of the core linearly. This results
from the fact that the protected ALU, containing the non-linear modules
which grow quadratically, is relatively small compared to other parts of
the processor like the register file which grows linearly with the protection
order.

To show the resistance of the protected implementation against side-channel
analysis attacks, a first-order t-test is performed. Therefore, a SAKURA-X
FPGA evaluation board is used to run the core and measure the power
consumption. The practical evaluation even with 100 million leakage traces
does not show any statistical significance. However, a practical evaluation is
of course never complete nor a complete argument for the security of an
implementation. The expected leakage from the second-order t-test can not
be shown due to the huge amount of required power traces. The formal
analysis of the implementation is thus considered as part of future work.
Furthermore, the security of the design is in general only given for software
that does not introduce any control flow changes based on the asset one
tries to protect (timing attacks). However, we do not consider this much of a
drawback since constant runtime implementations are a basic requirement
of protected software and hardware.
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Appendix A.

Abbreviations

ABI application binary interface 24
ALU arithmetic logic unit 31–33,

35,
37–41,
46

BPI byte peripherial interface 49

CBM classical boolean masking 13, 14,
16, 17,
20

CSR control and status register 28, 29,
31

DOM domain-oriented masking 17–21,
35, 37,
40–42,
44, 46,
47, 53,
55, 60
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Abbreviations

DPA differential power analysis 7, 10
DUA device under attack 7, 49,

55

FMC FPGA mezzanine card 49
FPGA field-programmable gate array 48–50,

52, 53

HW Hamming weight 8–10

ISA instruction-set architecture 22, 23,
27, 28,
30

JTAG joint test action group 49

LPC low pin count 49

SASEBO side-channel attack standard evaluation board 48, 55
SCA side-channel analysis iii, 1, 2,

5, 8, 48
SPA simple power analysis 7

TI threshold implementation 1, 14–
17,
20
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