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Abstract

In this thesis we create threat models for disaster response, devise and implement
a security solution for a PC based mobile agent system for supporting disaster
response, use one of our threat models to evaluate the effectiveness of our security
solution, and finally take first steps towards porting our security solution to
mobile devices.

In disaster response, the use of information and communication technology
promises to help saving lives. First, information and communication technology
can support the decision making process in disaster response by facilitating in-
formation gathering and analysis. Second, it can speed up the implementation
of these decisions through the use of new information-technology-based services.
Disaster response imposes harsh conditions on information technological aids.
One potential problem is a damaged or overloaded communication infrastruc-
ture. Mobile software agents are one approach that is particularly well suited
to such conditions, because mobile agents can act autonomously on behalf of a
human operator and they can migrate to different hosts. These abilities enable
information gathering and analysis, or implementing a disaster response plan,
while mitigating intermittent communication losses.

Securing a mobile agent system for disaster response poses a number of chal-
lenges. Given the nature of disaster response, only authenticated and authorized
personnel should have access to the services provided by the mobile agents. Fur-
thermore, only authorized mobile agents should be loaded into the system. In
addition, the mobile agent platforms providing the common substrate for execut-
ing and migrating agents must ensure uninfluenced execution of the agents. Thus
securing the mobile agent system translates to fulfilling the following require-
ments. First, security requires data integrity and authenticity on all data input
and output, including requests to services and the agents themselves. Second, it
requires confidentiality, data integrity and authenticity on all data transmitted
within the system. Finally, it requires code integrity of the hosts comprising the
agent system.

Towards refining and fulfilling these requirements we model the threats to a
particular, existing mobile agent system for disaster response support, the Se-
cure Agent Infrastructure. We then introduce two security mechanisms geared
towards mitigating the identified threats and integrate these two security mech-
anisms with the Secure Agent Infrastructure. We then analyze the effectiveness
of our mechanisms by contrasting their security properties with the identified
threats.

The two security mechanisms we add are the Secure Docking Module and the
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Trusted Docking Station. The Secure Docking Module is a hardware security
module that helps authenticating and authorizing human personnel by providing
protected storage for credentials. The Secure Docking Module only grants access
to these credentials if the host computer can attest to its load-time code integrity.
The Trusted Docking Station is a PC platform that provides a load-time integrity
protected execution environment. The Trusted Docking Station is based on
the acTvSM platform [Pir15]. The Trusted Docking Station uses the acTvSM
platform to ensure and attest its load-time code integrity, thus helping to protect
the uninfluenced execution of the mobile agents.

In an effort to make our security mechanisms available on smartphones and
tablets, our final contribution is the Secure Block Device. The Secure Block
Device is a software component for establishing a secure, efficient and easy to
use confidential and authentic data store. As such, it is a core component of
a secure mobile agent platform for smart mobile devices equipped with ARM
TrustZone.

Our combined contributions cover key factors for enabling mobile agent sys-
tems for disaster response. Thus, we believe that our contributions can help to
secure future disaster response activities.



Acknowledgements

This thesis is the culmination of many years of work during which the lives of
numerous people entangled with mine. Science today is not the effort of singular
persons but of groups of people collaborating. I want to thank the people I have
collaborated with; without their contribution this thesis would not be what it
is now. I also want to express my gratitude towards my friends and family.
Without their support, I am not sure if I could have finished this thesis.

First and foremost I would like to thank Roderick Bloem for being an ex-
emplary supervisor and mentor. Roderick always found the time for discussions
and for giving qualified and valuable critique. Roderick, you have contributed
significantly to my academic and personal growth; thank you for your guidance
and support over the years.

I also would like to thank Allan Tomlinson for finding the time and agreeing
to to be the external reviewer of this thesis. Thank you so much.

I also want to extend my deepest gratitude towards Johannes Winter for
always having time, for all the ideas we bounced around, for all the long talks
and discussions, for helping me find the holes in my harebrained schemes without
shooting them down, for all the help with anything ARM related, including our
Secure Block Device experiments, and for being a true friend.

I am also thankful to Martin Pirker for his love of privacy and for his per-
spective on Trusted Computing. Furthermore, I would like to thank Ronald
Tögl for his collaboration, sharing his vast knowledge on Trusted Computing,
and helping me getting into the field. Also, I would like to thank Ronald and
Martin for developing the acTvSM platform and their help in integrating it with
the Secure Docking Module and the Trusted Docking Station.

I would also like to thank Michael Gissing, Nina Mocnik, and Thomas Kast-
ner for helping me tame our zoo of virtual machines for the acTvSM platform.
Furthermore, I would like to thank Andreas Fitzek for ANDIX OS and for help-
ing me integrate the Secure Block Device.

I would also like to express my sincere gratitude to all my friends and col-
leagues from IAIK. I miss the interesting talks over coffee, the intellectually
inspiring discussions, and your friendship. On a similar note, I want to thank
the institute itself for providing the best and most positive working environment
I have ever known.

I would also like to extend my deepest thanks towards the team at Café Zapo.
Specifically, I would like to thank you for a warm and welcoming little island of
calm, your unparalleled service, and for consistently providing the best food in
the history of Cafés. I am at a loss of words to describe how much I miss you

v



vi Acknowledgements

guys!
I’d also like to thank my parents Sophie Raggam and Johann Hein. There

is so much I want to thank you for: for bringing me into this world in the first
place; for putting up with me; for supporting my drive to do stuff with these
newfangled personal computers; for your never ending love and support, and
also for looking after the kids when the work on this thesis tore away at my
spare time. I am eternally grateful to you.

I also want to thank my father-in-law Franz Josef Klamminger for all the
big and little things, from literally and figuratively helping keeping the house
standing, to bringing my eldest to school, while I am writing these lines. Thank
you so much.

I also want to acknowledge my kids, Leopold and Nepomuk, for missing out
on their dad. Writing these lines feels a little bit like handing out these T-Shirts
with texts like: my father wrote a thesis and all we got is a few lines in the
acknowledgements. The sentiment is correct. These few lines are inadequate in
every way. They neither express my deep love for you, nor can they make up
for even one iota of Planck time not spent together. However, this thesis might
never have been without you and I thank you for this.

My highest esteem and deepest gratitude go to my wife Karima Hein. There
is so much I want to praise you for, and now after 300 pages I still cannot find the
words; all the superlatives of the world seem insufficient. You have my gratitude
and my heart for your love, for our two kids, for being there during thick and
thin; for supporting me writing this thesis; for understanding when I had to
work long hours; for everything. My life would be a bleak existence, and this
thesis would never haven taken form without you. For all this and much more
my deepest, sincerest unending thanks.

Daniel Hein
Graz, October 2016



Table of Contents

Abstract iii

Acknowledgements v

List of Tables xiii

List of Figures xvii

Acronyms xxi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Mobile Software Agent Paradigm . . . . . . . . . . . 4
1.1.2 Use of Smart Mobile Devices for Disaster Response . . . . 5

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Threat Mitigation . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Secure Data Storage . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Contribution 1 - Threat Modeling . . . . . . . . . . . . . 8
1.4.2 Contribution 2 - The Trusted Docking Station and the

Secure Docking Module . . . . . . . . . . . . . . . . . . . 12
1.4.3 Contribution 3 - Secure Data Storage for TrustZone Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 17
2.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Properties of Agents . . . . . . . . . . . . . . . . . . . . . 17
2.2 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Mobile Agent Systems . . . . . . . . . . . . . . . . . . . . 19
2.3 Mobile Agents Properties . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Mobile Agent Security . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Jansen and Karygiannis . . . . . . . . . . . . . . . . . . . 21
2.4.2 Borselius . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 Bierman and Cloete . . . . . . . . . . . . . . . . . . . . . 24

vii



viii Table of Contents

2.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Jini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Jini Services . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Communication . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Service Discovery . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Secure Agent Infrastructure . . . . . . . . . . . . . . . . . . . . . 30
2.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 Example Use Case . . . . . . . . . . . . . . . . . . . . . . 32
2.6.3 Distributed Secure Agent Platform . . . . . . . . . . . . . 35
2.6.4 Properties of Secure Agent Infrastructure Agents . . . . . 37
2.6.5 Security Architecture of the Secure Agent Infrastructure . 38
2.6.6 Resilience against Temporary Communication Disruptions 38
2.6.7 Agent authenticity . . . . . . . . . . . . . . . . . . . . . . 38
2.6.8 Agent transport . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.9 Agent communication . . . . . . . . . . . . . . . . . . . . 39
2.6.10 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.2 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.3 The Microsoft Security Development Lifecycle Threat Mod-

eling Methodology . . . . . . . . . . . . . . . . . . . . . . 43
2.8.4 The Microsoft Threat Modeling Tool Family . . . . . . . 44
2.8.5 Threat Enumeration . . . . . . . . . . . . . . . . . . . . . 45

2.9 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . 50
2.9.1 Cryptographic Hash Functions . . . . . . . . . . . . . . . 51
2.9.2 Message Authentication Codes . . . . . . . . . . . . . . . 53
2.9.3 Authenticated Encryption . . . . . . . . . . . . . . . . . . 53

2.10 Single-User Block Datastore Authentication . . . . . . . . . . . . 55
2.11 Attacks on Memory Authentication . . . . . . . . . . . . . . . . . 57
2.12 Merkle Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.12.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.12.2 Merkle Trees and Data Integrity . . . . . . . . . . . . . . 62

2.13 Security Controllers . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.14 Trusted Platform Module . . . . . . . . . . . . . . . . . . . . . . 64

2.14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.14.2 Storing Platform Integrity Measurements . . . . . . . . . 65
2.14.3 Secure Key Storage . . . . . . . . . . . . . . . . . . . . . . 66
2.14.4 Sealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.14.5 Remote Attestation . . . . . . . . . . . . . . . . . . . . . 66

2.15 Intel Trusted eXecution Technology . . . . . . . . . . . . . . . . 67
2.15.1 Software Integrity Measurement . . . . . . . . . . . . . . 68



Table of Contents ix

2.15.2 Late Launch . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.15.3 Load-Time Integrity . . . . . . . . . . . . . . . . . . . . . 69
2.15.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.16 The acTvSM Platform . . . . . . . . . . . . . . . . . . . . . . . . 71
2.17 ARM TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.18 ANDIX OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.18.1 Inter-world Communication . . . . . . . . . . . . . . . . . 76
2.18.2 Root of Trust for Storage . . . . . . . . . . . . . . . . . . 76
2.18.3 Sharing Resources with the Normal World . . . . . . . . . 77

3 Related Work 79
3.1 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.1 STRIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1.2 Other Threat Elicitation Methodologies . . . . . . . . . . 83

3.2 Mobile Agents and Disaster Response . . . . . . . . . . . . . . . 84
3.2.1 Mobile Agent System Security . . . . . . . . . . . . . . . 85

3.3 Trusted Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Secure Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Threat Modeling Aspects of Disaster Response 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Secure Agent Infrastructure Model . . . . . . . . . . . . . . . . . 93
4.3 Situational Awareness . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Threat Modeling Results . . . . . . . . . . . . . . . . . . 97
4.3.3 Mobile Agent System Level Model . . . . . . . . . . . . . 102

4.4 Command and Control . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . 104
4.4.2 Threat Modeling Results . . . . . . . . . . . . . . . . . . 105

4.5 Distributed Secure Agent Platform Outpost . . . . . . . . . . . . 109
4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.2 Description of the Model . . . . . . . . . . . . . . . . . . 110
4.5.3 Secure Agent Infrastructure Security Assumptions . . . . 111
4.5.4 Threat Modeling Results . . . . . . . . . . . . . . . . . . 113

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2 High Level Threat Models . . . . . . . . . . . . . . . . . . 119
4.6.3 Using STRIDE-per-interaction for Threat Modeling a Mo-

bile Agent Platform . . . . . . . . . . . . . . . . . . . . . 119
4.6.4 Using STRIDE-per-interaction for Modeling High Level

Processes in Disaster Response . . . . . . . . . . . . . . . 120
4.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7.1 Risk Modelling . . . . . . . . . . . . . . . . . . . . . . . . 122
4.7.2 Enhanced Threat Modeling for the Distributed Secure Agent

Platform Outpost . . . . . . . . . . . . . . . . . . . . . . 123



x Table of Contents

5 The Trusted Docking Station and the Secure Docking Module 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Mode of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.1 Communication Key Protection . . . . . . . . . . . . . . . 130
5.4.2 Authentication Credential Protection . . . . . . . . . . . . 131
5.4.3 Agent Authorization Key Protection . . . . . . . . . . . . 131

5.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6 The Trusted Docking Station . . . . . . . . . . . . . . . . . . . . 135

5.6.1 The Outpost Appliance . . . . . . . . . . . . . . . . . . . 135
5.6.2 The Distributed Secure Agent Platform Software . . . . . 136

5.7 The Secure Docking Module . . . . . . . . . . . . . . . . . . . . . 137
5.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7.2 The Resource Access Protocol Setup . . . . . . . . . . . . 137
5.7.3 The Session Establishment Protocol . . . . . . . . . . . . 137
5.7.4 The Resource Access Protocol . . . . . . . . . . . . . . . . 139
5.7.5 Secure Docking Module Implementation . . . . . . . . . . 142

5.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 143
5.9 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.9.1 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . 145
5.9.2 Threat Model Mitigation . . . . . . . . . . . . . . . . . . 146

5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Secure Block Device 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.1.3 Properties of the Secure Block Device . . . . . . . . . . . 153
6.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 The Secure Block Device Operation Principle . . . . . . . . . . . 155
6.2.1 Creating a Secure Block Device . . . . . . . . . . . . . . . 156
6.2.2 Opening a Secure Block Device . . . . . . . . . . . . . . . 156
6.2.3 Using a Secure Block Device . . . . . . . . . . . . . . . . 156
6.2.4 Closing a Secure Block Device . . . . . . . . . . . . . . . 160

6.3 The Secure Block Device Architecture . . . . . . . . . . . . . . . 161
6.3.1 The Block Device Abstraction Layer . . . . . . . . . . . . 161
6.3.2 Cryptography Abstraction Layer . . . . . . . . . . . . . . 161
6.3.3 The Block Cache . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.4 The Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.5 Secure Block Device API . . . . . . . . . . . . . . . . . . 165

6.4 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.4.1 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . 165
6.4.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Table of Contents xi

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.1 Code Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.2 Secure Block Device Block Cache Performance for Small

Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 172
6.5.4 Impact of the Authenticated Encryption Scheme . . . . . 173
6.5.5 Normal World Filesystem Encryption using the Secure

Block Device . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Conclusions 179

7.1 Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 The Trusted Docking Station and the Secure Docking Module . . 180
7.3 The Secure Block Device . . . . . . . . . . . . . . . . . . . . . . . 181
7.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.5 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A Threat Modeling Agent Migration and Communication 185

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.2 Threat Analysis Procedure . . . . . . . . . . . . . . . . . . . . . 185
A.3 Distributed Secure Agent Platform Outpost Model . . . . . . . . 186

A.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.3.2 Modelled Workflows . . . . . . . . . . . . . . . . . . . . . 188
A.3.3 Limitations of the Secure Agent Infrastructure Compared

to a Generic Mobile Agent System . . . . . . . . . . . . . 188
A.4 Secure Agent Infrastructure Security Assumptions . . . . . . . . 189

A.4.1 Secure Core Secure Agent Infrastructure . . . . . . . . . . 189
A.4.2 Secure Mobile Agents . . . . . . . . . . . . . . . . . . . . 189
A.4.3 Secure Communication Channel . . . . . . . . . . . . . . 189
A.4.4 Distributed Secure Agent Platforms and External Interac-

tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.5 Agent Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.5.1 Send Mobile Agent . . . . . . . . . . . . . . . . . . . . . . 190
A.5.2 Instantiate Agent . . . . . . . . . . . . . . . . . . . . . . . 195

A.6 Agent – External Interactor Communication . . . . . . . . . . . . 200
A.6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.6.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.7 Agent – Core Secure Agent Infrastructure Communication . . . . 208
A.7.1 MA → DSAP . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.7.2 DSAP → CSAI . . . . . . . . . . . . . . . . . . . . . . . . 212
A.7.3 CSAI → DSAP . . . . . . . . . . . . . . . . . . . . . . . . 213
A.7.4 DSAP → MA . . . . . . . . . . . . . . . . . . . . . . . . . 215



xii Table of Contents

B Security Evaluation 219
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
B.2 Agent Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
B.3 Agent - External Interactor Communication . . . . . . . . . . . . 222
B.4 Agent - Core Secure Agent Infrastructure

Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C Threat Modeling the Secure Block Device 233
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
C.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
C.3 Adversarial Model . . . . . . . . . . . . . . . . . . . . . . . . . . 238
C.4 List of Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

D List of Publications And Cooperations 245
D.1 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . 245
D.2 Published Book Chapters . . . . . . . . . . . . . . . . . . . . . . 246
D.3 Publications in Conference and Workshop Proceedings . . . . . . 246
D.4 Relationship between Publications and Thesis . . . . . . . . . . . 249

Bibliography 253

Index 271

Author Index 273



List of Tables

2.1 Description of the elements in the Microsoft Security Develop-
ment Lifecycle threat modeling methodology’s diagramming sys-
tem. The diagramming system is based on Data Flow Diagrams,
so this description encompasses Data Flow Diagram elements, as
well as the trust boundary element added by the threat modeling
methodology. This table is based on a table in [Sho08]. . . . . . . 44

2.2 The mapping of Data Flow Diagram (DFD) element types to spe-
cific threat categories in the STRIDE-per-element threat enumer-
ation technique. The threat categories are Spoofing, Tampering,
Repudiation, Information disclosure, Denial of Service, and Ele-
vation of privilege. The question mark for the Data store under
Repudiation signifies that data stores need to be treated differ-
ently, if they are used for authentic logging. In such a case re-
pudiation threats need to be considered. This table is adapted
from [Sho14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 The mapping of Data Flow Diagram (DFD) element types, infor-
mation flow destinations, and interaction types to specific threat
categories in the STRIDE-per-interaction threat enumeration tech-
nique. The threat categories are Spoofing, Tampering, Repudia-
tion, Information disclosure, Denial of Service, and Elevation of
privilege. This table is adapted from [Sho14]. . . . . . . . . . . . 47

2.4 An adapted excerpt of the report generated by the Microsoft
Threat Modeling Tool 2016 for the system modeled by the Data
Flow Diagram depicted in Figure 2.8. This table lists the 11 po-
tential threats and their description as enumerated by the tool
for the interaction Input between External and Process 1 in Fig-
ure 2.8. These are only 11 of the 53 threats proposed for analysis
by the tool for the overall system model. . . . . . . . . . . . . . . 48

4.1 A consolidated list of threats created by using the STRIDE-per-
interaction threat enumeration method on the model depicted in
Figure 4.2. The Type column uses the STRIDE threat categories.
These are Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of Service, and Elevation of privilege. . . . . . . . . 99

xiii



xiv List of Tables

4.2 A consolidated list of threats created by using the STRIDE-per-
interaction threat enumeration method on the model depicted in
Figure 4.4. The Type column uses the STRIDE threat categories.
These are Spoofing, Tampering, Repudiation, Information disclo-
sure, Denial of Service, and Elevation of privilege. . . . . . . . . 106

4.3 Threats to agents migrating from the Core Secure Agent Infras-
tructure to a Distributed Secure Agent Platform Outpost . . . . 114

4.4 Threats to a Mobile Agent communicating with an External In-
teractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Threats to a Mobile Agent communicating with the Core Secure
Agent Infrastructure using the Distributed Secure Agent Plat-
form’s communication facilities . . . . . . . . . . . . . . . . . . . 116

5.1 The configuration parameters required by the Secure Docking
Module’s session establishment protocol . . . . . . . . . . . . . . 138

5.2 The configuration parameters required by the Secure Docking
Module’s resource access protocol . . . . . . . . . . . . . . . . . . 138

5.3 Trusted Docking Station/Secure Docking Module performance
evaluation results. The access SDM resource action consists of
the TPM_Quote2, quote verification, copy resource to host, and
miscellaneous overhead table entries. . . . . . . . . . . . . . . . . 144

6.1 Secure Block Device application programming interface (API) . . 166
6.2 Threats to a Trusted Application when reading and writing data

to and from an untrusted Datastore . . . . . . . . . . . . . . . . 168
6.3 Average SBD read/write times and throughput depending on Au-

thenticated Encryption (AE) scheme . . . . . . . . . . . . . . . . 173
6.4 Compile times for compiling OpenSSL on Secure Block Device

protected block devices. The Ramdisk row is the baseline, where
we compiled OpenSSL on an Network Block Device backed by a
Ramdisk, with no Secure Block Device in place. The next four
lines give the results for a Network Block Device using the Secure
Block Device and backed by a Ramdisk with different AE schemes.
Finally the last two lines present the results for a Network Block
Device that uses a Trusted Application (TA) to implement the Se-
cure Block Device in the Secure World. The output of the Secure
Block Device Trusted Application is again stored in a Ramdisk in
the Normal World. These last two lines reflect the results of the
setup depicted in Figure 6.6. . . . . . . . . . . . . . . . . . . . . 176

B.1 This table discusses how our security solution comprising the
Trusted Docking Station and the Secure Docking Module miti-
gates the threats to agents migrating from the Core Secure Agent
Infrastructure to a Distributed Secure Agent Platform Outpost . 220



List of Tables xv

B.2 This table contains a description if and how our Distributed Se-
cure Agent Platform Outpost (DSAP Outpost) security solution
consisting of the Trusted Docking Station and the Secure Docking
Module mitigates threats to a Mobile Agent communicating with
an External Interactor . . . . . . . . . . . . . . . . . . . . . . . . 222

B.3 Mitigation status of threats to a Mobile Agent communicating
with the Core Secure Agent Infrastructure using the Distributed
Secure Agent Platform’s communication facilities. Here we inves-
tigate how our DSAP Outpost security solution comprising the
Trusted Docking Station and the Secure Docking Module miti-
gates threats pertaining to DSAP Outpost - Core Secure Agent
Infrastructure communication. . . . . . . . . . . . . . . . . . . . 228

C.1 Threats generated by the Microsoft Threat Modeling Tool 2016
for the second model (see Figure C.2) that have no direct repre-
sentation in the third model . . . . . . . . . . . . . . . . . . . . . 236

C.2 Threats generated by the Microsoft Threat Modeling Tool 2016
for the third model (see Figure C.3) that have no direct represen-
tation in the second model . . . . . . . . . . . . . . . . . . . . . . 236

C.3 List of potential threats, when a Trusted Application reads data
from an untrusted Datastore. . . . . . . . . . . . . . . . . . . . . 238

C.4 List of potential threats, when a Trusted Application writes data
to an untrusted Datastore. . . . . . . . . . . . . . . . . . . . . . . 241





List of Figures

1.1 The crisis management decision making process as illustrated by
O’Neill et al. [OSZW12] . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Distributed Secure Agent Platform Outpost . . . . . . . . . 10

2.1 The Mobile Agent System model used by Jansen and Karygian-
nis [JK99] to discuss the security issues of Mobile Agent Systems.
This model depicts an agent migrating from its home platform
to another platform over a network that connects the platforms
of the modeled Mobile Agent System. This specific version of
the model is adopted from [JK99]. . . . . . . . . . . . . . . . . . 21

2.2 Jini lookup service discovery according to the Jini specifica-
tion [Apa16b]. Here a service provider is looking for a lookup
service to advertise its service. . . . . . . . . . . . . . . . . . . . 28

2.3 A Jini service registering with a lookup service using the join
protocol according to the Jini specification [Apa16b]. . . . . . . 28

2.4 A Jini client looks up a specific service using the service proxy
type and attributes. A copy of the service proxy is delivered to
the client to enable communication between the client and the
service provider [Apa16b]. . . . . . . . . . . . . . . . . . . . . . 29

2.5 A Jini client interacts with a service using the service proxy.
This figure is adapted from [Apa16b]. . . . . . . . . . . . . . . . 30

2.6 This crisis mitigation workflow example illustrates how the com-
ponents of the Secure Agent Infrastructure interact with crisis
management personnel to help mitigating a swine flu epidemic.
This example follows a single process that governs the distri-
bution of more vaccine to the regional offices of the national
health agency. In this example Mobile Agents communicate
with users and retrieve information from otherwise incompati-
ble legacy systems. The example is adopted from Emil Gatial’s
dissertation [Gat10a]. . . . . . . . . . . . . . . . . . . . . . . . . 33

xvii



xviii List of Figures

2.7 The Distributed Secure Agent Platform component of the Se-
cure Agent Infrastructure is a Jini service handling Mobile Agent
transmission, client-agent communication and Mobile Agent exe-
cution [GBH10]. A newly instantiated Distributed Secure Agent
Platform Service (DSAP Service) first uses Jini’s discovery and
join protocols to register with a Jini lookup service. Then clients,
such as the Process Management Subsystem, can find the DSAP
Service and request a service proxy to send agents to it and allow
agents to communicate with the client through the service proxy
and vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 A Data Flow Diagram of a simple system illustrating all possi-
ble STRIDE-per-interaction interactions listed in Table 2.3. We
have emphasized the Input data flow, as we use it in an example
to detail how STRIDE-per-interaction works. . . . . . . . . . . . 48

2.9 Spoofing attack on a Block Datastore . . . . . . . . . . . . . . . 58

2.10 Splicing attack on a Block Datastore . . . . . . . . . . . . . . . 59

2.11 Replay attack on a Block Datastore . . . . . . . . . . . . . . . . 60

2.12 Forking attack on a Block Datastore . . . . . . . . . . . . . . . 61

2.13 A perfect binary Merkle Tree. The inner nodes are denoted by
Nk, where 0 < k ≤ 7, and the leave nodes are denoted by Li,
where 0 < i ≤ 8. The inner nodes Nk of the tree are computed
by applying a hash function h to the concatenation (||) of its
immediate children. . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.14 Architecture of the ANDIX OS . . . . . . . . . . . . . . . . . . 75

4.1 Our high level model for gathering information and issuing com-
mands in disaster response . . . . . . . . . . . . . . . . . . . . . 95

4.2 A Data Flow Diagram modeling gathering intelligence for in-
forming a command decision during the response phase of dis-
aster response. We use this model as input to the STRIDE-per-
interaction analysis using the Microsoft Threat Modeling Tool
2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 A model of the information gathering process for situational
awareness that incorporates Secure Agent Infrastructure com-
ponents. This model exhibits a highly repetitive pattern, the
Distributed Secure Agent Platform Outpost. The DSAP Out-
post comprises a Distributed Secure Agent Platform hosting a
Mobile Agent that interacts with an External Interactor. . . . . 103

4.4 A Data Flow Diagram modeling command and control during
the response phase of a crisis. We use this model as input for a
STRIDE-per-interaction threat enumeration using the Microsoft
Threat Modeling Tool 2016. . . . . . . . . . . . . . . . . . . . . 104



List of Figures xix

4.5 A Data Flow Diagram modeling the Distributed Secure Agent
Platform Outpost (DSAP Outpost). A DSAP Outpost is at the
core of the Secure Agent Infrastructure typical process of sending
a Mobile Agent to a DSAP to gather information from an exter-
nal information system, or converse with a system user. Here we
model both, the agent migration and the information exchange
between the Core Secure Agent Infrastructure (CSAI) and the
Mobile Agent (MA) running on the Distributed Secure Agent
Platform (DSAP). We use this model as input to the STRIDE-
per-interaction analysis using the Microsoft Threat Modeling
Tool 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Usage scenarios for TDS and SDM in conjunction with a DSAP
Outposts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 The Trusted Docking Station architecture. The red lines delin-
eate Virtual Machine against other Virtual Machines and against
the acTvSM Base System Virtual Machine Monitor. The black
line separates hardware from software components. . . . . . . . 132

5.3 Secure Docking Module session establishment protocol . . . . . 139
5.4 Secure Docking Module resource access protocol . . . . . . . . . 141
5.5 Hardware implementations of the Secure Docking Module: the

security controller (front) and the assembled token prototype
with USB interface in an epoxy sealed casing (back). . . . . . . 143

6.1 The component partitioning diagram for a Trusted Application
that uses the Secure Block Device to store data. The diagram
details which components reside in the Secure World and which
in the Normal World. It also specifies which data is kept in RAM
and which is persisted in a Block Datastore. . . . . . . . . . . . 157

6.2 Block structure for a Secure Block Device with a block size of 2
KiB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Secure Block Device architecture . . . . . . . . . . . . . . . . . 161
6.4 Dynamically growing a Merkle Tree . . . . . . . . . . . . . . . . 164
6.5 Secure Block Device (SBD) Block Cache Access Times for Small

Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.6 Using the SBD for Normal World file system encryption . . . . 175

A.1 A Data Flow Diagram modelling the Secure Agent Infrastruc-
ture typical process of sending a Mobile Agent to a Distributed
Secure Agent Platform to gather information from an external
information system, or converse with a system user. Here we
model both, the agent migration and the information exchange
between the Core Secure Agent Infrastructure and the Mobile
Agent running on the Distributed Secure Agent Platform. We
use this model as input to the STRIDE-per-interaction analysis
using the Microsoft Threat Modeling Tool 2016. . . . . . . . . . 187



xx List of Figures

A.2 The part of our Data Flow Diagram model we use to analyze
the threats to a Mobile Agent when it is being sent to an DSAP
Outpost and instantiated there. . . . . . . . . . . . . . . . . . . 191

A.3 A bug called Feature . . . . . . . . . . . . . . . . . . . . . . . . 194
A.4 The part of our Data Flow Diagram model we use to analyze

the threats to a Mobile Agent when interacting with an External
Interactor. An External Interactor can be a human being, or an
external information system. . . . . . . . . . . . . . . . . . . . . 200

A.5 The part of our Data Flow Diagram model we use to analyze the
threats to a Mobile Agent when communicating with the Core
Secure Agent Infrastructure using the DSAP’s communication
facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.1 The first model we considered for modeling a Trusted Applica-
tion storing its data in an untrusted Datastore. . . . . . . . . . 234

C.2 The second model we considered for modeling a Trusted Appli-
cation storing its data in an untrusted Datastore in the Normal
World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

C.3 The third model we considered for modeling a Trusted Applica-
tion storing its data in an untrusted Datastore. . . . . . . . . . 235



Acronyms

AE Authenticated Encryption. xiv, 50, 53, 54, 55, 87, 88, 154, 155, 156, 158,
160, 161, 165, 167, 169, 173, 174, 175, 177, 178, 181, 182

CMAC Cipher-based Message Authentication Code. 53, 155, 156, 159, 160

DSAP Distributed Secure Agent Platform. xviii, xx, 9, 10, 12, 19, 26, 27, 29,
30, 31, 34, 35, 37, 38, 94, 102, 109, 110, 109, 111, 112, 113, 118, 119, 120,
126, 127, 133, 134, 146, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 219, 222, 227, 228

DSAP Service Distributed Secure Agent Platform Service. xvii, 35, 132, 133,
135, 136, 143, 147, 149, 150

DSAP Outpost Distributed Secure Agent Platform Outpost. xiv, xv, xviii,
xix, 8, 9, 10, 11, 12, 13, 14, 92, 93, 102, 109, 110, 109, 111, 112, 113, 117,
118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 135, 136, 137,
143, 145, 146, 147, 148, 149, 150, 180, 181, 182, 185, 190, 200, 205, 219,
222, 227, 228

IC Integrated Circuit. 63

IV initialization vector. 54, 55, 158, 159, 161, 163, 167, 169

MAC Message Authentication Code. 40, 50, 52, 53, 54, 55, 159, 161, 173, 178

NVRAM Non-Volative Random Access Memory. 64

OCB Offset Codebook Mode. 54, 55, 154, 161, 170, 173, 175, 177

OS operating system. 73, 74, 76, 132, 152, 174, 177

Outpost Appliance DSAP Outpost Application Virtual Machine. 132, 134,
135, 136

PCR Platform Configuration Register. 65, 66, 68, 69, 72, 85, 140, 141

xxi



xxii Acronyms

SDM Secure Docking Module. 12, 13, 14, 37, 38, 63, 64, 85, 86, 87, 92, 118,
119, 126, 127, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 180, 181, 182, 185, 219,
222, 250

SIV Synthetic Initialization Vector. 54, 55, 154, 156, 161, 170, 173, 175

TDS Trusted Docking Station. 12, 13, 14, 37, 38, 64, 67, 71, 85, 86, 87, 92,
118, 119, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140,
141, 143, 144, 146, 147, 148, 149, 150, 151, 180, 181, 182, 185, 219, 222

TPM Trusted Platform Module. 52, 64, 65, 66, 67, 68, 69, 70, 71, 76, 85, 86,
128, 132, 133, 135, 136, 139, 140, 141, 143, 145

TXT Trusted eXecution Technology. 7, 12, 13, 64, 67, 68, 69, 70, 71, 72, 151



1
Introduction

In this thesis we model the threats to a Mobile Agent System for use in dis-
aster response, and we introduce several security mechanisms to mitigate these
threats. Using a Mobile Agent System for disaster response offers many advan-
tages [HBG10], but disaster response also has a strong need for communication
confidentiality, integrity and availability [OSZW12]. However, Mobile Agent Sys-
tem security has been identified as a major obstacle for the adoption of Mobile
Agent Systems [Rot04]. In the sequel we will motivate the need for communica-
tion security in disaster response and also discuss the threats to security when
using a Mobile Agent System. We will then state the problems we tackle in this
thesis and conclude by outlining our contributions to the field.

1.1 Motivation

Crisis management for natural disasters can greatly benefit from modern infor-
mation and communication technology. This is especially true for the response
phase of crisis management, which is the most communication-heavy phase of
crisis management [OSZW12]. Information exchange is essential when emer-
gency plans are put into action and first responders perform rescue operations
in real time to stabilize the crisis situation.

Security is essential for disaster response information and communication.
A recent study conducted by O’Neill et al. [OSZW12] reviewing the security
requirements of emergency services during disaster response documented the
need for communication availability, confidentiality and integrity. The need for
availability of communication is obvious, as first responders need to be able to
exchange information in real time to coordinate their work and gain situational

1
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Figure 1.1: The crisis management decision making process as illustrated by O’Neill
et al. [OSZW12]

awareness. The confidentiality and integrity of the information exchanges also
play a major role. Note that integrity includes origin integrity or authentication
and non-repudiation. Authentication is essential for authorizing access to confi-
dential data or services. Finally, non-repudiation prevents decision makers from
later repudiating command decisions.

To better illustrate the need for confidentiality and integrity, including au-
thentication, authorization, and non-repudiation, in disaster response we intro-
duce two examples for common processes during disaster response. The first
process example demonstrates the need for security when gathering information
about a crisis situation. As Figure 1.1 shows, situational awareness is a key
element of the crisis management decision making process. Situational aware-
ness is the perception, processing and comprehension of critical aspects of the
environment. Situational awareness is critical to decision-makers in complex and
dynamic areas such as disaster response. The second process we want to give
an example for is implementing a command decision. Implementing a command
decision is another key element of the crisis decision making process, and as we
want to illustrate, it requires security.

We place our situational awareness and command decision implementation
examples in the following fictional scenario. Our scenario is a wildfire that has
already engulfed and subsequently destroyed a number of smaller settlements.
The wildfire is now threatening a major city, that hosts a large chemical plant,
which exacerbates matters. Emergency services have already responded, fire-
fighters have begun fire suppression, emergency medical services treat injured
people, and evacuation of settlements including parts of the threatened city has
begun.

Situational Awareness Our first example highlights the importance of com-
munication security for gaining situational awareness. Having first class field
intelligence is essential for effective disaster response on the strategic, tactical
and operational levels. In their study, O’Neill et al. note that 59% of all in-
formation exchanges during disaster response pertain to situational awareness.
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This illustrates how important situational awareness is for disaster response and
emphasizes the need for communication availability. On a strategic level meteo-
rological, geological, and vegetation conditions can factor into a wildfire model
for predicting its propagation, whereas the information that a number of people
need to be evacuated from a structurally unsound building is important on both
a tactical and, in more detail, on an operational level. From a security point
of view all this information that helps building a better understanding of the
disaster and its consequences needs to be authentic and its integrity intact, that
is, we require communication integrity.

Confidentiality however is also a major requirement for gathering informa-
tion. In our scenario the wildfire threatens a major city that hosts a chemical
plant. The current production of the plant requires base chemicals that when
handled incorrectly, for example, when the storage tanks are hit by a raging
wildfire, can form a noxious gas cloud that can severely harm living beings in a
wide area. Media work is an important aspect of disaster response [OSZW12].
One key aspect here is when, and how, information is disclosed to the public.
The threat of a noxious gas cloud, when leaked, has the potential to induce a
panic in the inhabitants of the major area around the threatened city, which in
turn can severely hamper evacuation efforts.

Implementing a Command Decision The command decision implemen-
tation example concerns suppressing the wildfire. The wildfire in our scenario
burns on a broad front and strategic and tactical commands decide where to
best concentrate suppression efforts. Given a limited number of fire fighters and
equipment available, and the sheer scope of the crisis, deciding to focus on one
section of the wildfire means that suppression of other sections will degrade.
This is in the nature of disaster response, the different level of commands have
to decide how to best concentrate their efforts. But this means that someone
with the right authority has to make these decisions. So, this example deals
with the other end of the stick, the authority to issue commands. Based on
the situational awareness strategic, tactical and operational command direct the
disaster response operations and allocate resources to specific tasks. These re-
sources can then not be used otherwise with potential ramifications for human
lives. Therefore a clear command structure is important, and only entities who
have the authority and consequently also shoulder the responsibility, are allowed
to control these operations. From a security point of view we need authenti-
cation of authorized decision makers, the ability to prove their authority when
a decision is implemented, and finally a mechanism for documenting these de-
cisions. All these requirements call for integrity protection mechanisms and of
course communication availability.

These two examples demonstrate the need for confidentiality, integrity, and
availability in disaster response information exchanges and corroborate the find-
ings of O’Neill et al. [OSZW12]. To reiterate, during a disaster the confiden-
tiality, integrity and authenticity of all exchanged information needs to be pro-
tected, and when implementing a decision based on the gathered information,
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the decision must have been made by a person who has the authority to do so.
Furthermore, once a decision has been made, the responsible person must not be
able to repudiate it. All the while, communication availability has to be retained
otherwise there will not be any information exchange.

1.1.1 The Mobile Software Agent Paradigm

As is evident from the situational awareness and implementing a command
decision examples, disaster response is a complex effort spanning three lev-
els of command and numerous concurrent activities implementing plans pre-
pared during the crisis preparation phase. Several independent research groups
have pointed out the usefulness of the software agent paradigm for disaster re-
sponse [CGHH89, SPJ+03, SMT+05, SPA+06, MMRM09]. Software agents are
specialized programs implementing tasks on the behalf of persons. Software
agents usually operate in Multi-Agent Systems, where they interact with other
agents and systems. Multi-Agent Systems consist of a number of agent platforms
that house and execute the software agents. In this work we focus on enhancing
the security of a Mobile Agent System for supporting disaster response opera-
tions. Mobile Agent Systems are Multi-Agent Systems that use mobile software
agents that are able to migrate between different execution platforms.

Mobile Agents are a distributed computing paradigm that emphasizes auton-
omy of software components. Mobile Agents are programs that are able to mi-
grate their code and state between platforms. They can exercise an individual’s
or organization’s authority, work autonomously toward a goal and socialize with
other agents [JK99]. Mobile Agents localize problem solving, and are therefore
well suited to operate in environments where intermittent network failures are to
be expected. This makes Mobile Agents well suited for disaster response, which
often happens under adverse conditions, and where constant, high bandwidth
communication is not always a given. For example, Mobile Agents can repli-
cate themselves to multiple platforms simultaneously to increase their chances
of reaching their destination, or simply wait on any given platform until a link
to their next destination becomes available.

One of the most prominent, if not the most prominent obstacle for adopting
the Mobile Agent paradigm, is security [Rot04]. In a nutshell, the security
concerns for Mobile Agent Systems arise from two of its fundamental properties.
First, a platform owner in a Mobile Agent System executes potentially untrusted
code, the Mobile Agents migrating to his or her platform. Second, an agent
owner sends her or his agent to potentially untrusted remote agent platforms
for execution. In addition to trusting the remote platform, there is also the
fact that an agent will be executing in parallel with other agents, from, again,
potentially untrusted sources. Also, in addition to the Mobile Agent platform,
the remote platform might run other programs, which, again, might follow their
own nefarious agenda. Finally, there is also the operator, or administrator of
the remote platform to content with. The fact that your agent might transport
sensitive data of third parties to that platform only serves to exacerbate the
problem.
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Many researchers have studied the problem of Mobile Agent System security
in depth [JK99, Jan00, BC02, Bor02]. Jansen et al. [JK99, Jan00] have catego-
rized the threats pertinent to Mobile Agent System into four threat categories.
These threat categories are a Mobile Agent threatening a Mobile Agent platform
(agent versus platform), a Mobile Agent threatening other Mobile Agents (agent
versus agent), a mobile agent platform threatening Mobile Agents (platform ver-
sus agent), and other threats (other). The general consensus is that the security
mechanisms that counter the threats in platform versus agent category are the
most immature [BC02, Bor02]. Borselius [Bor02] goes so far to state that

there seems to be no single solution to the security problems intro-
duced by mobile agents unless trusted hardware is introduced,

while claiming that this is likely to prove too expensive. Bierman and Cloete [BC02]
conclude that

it also seems that the creation of a trusted execution environment is
the one measure that covers all the threats,

when referring to the platform versus agent threat category.

1.1.2 Use of Smart Mobile Devices for Disaster Response

We believe that disaster response can greatly benefit from using smartphones
and tablets. There are a number of examples, where researchers propose to use
smartphones to facilitate disaster response. Mitra and Poellabauer [MP12] show
how smartphones can help paramedics to monitor the heart rate of multiple-
patients. For this they use the acceleration sensors present in modern smart-
phones and the ability of smartphones to form mobile ad-hoc networks. Also
Ishigaki et al. [IMIT13] developed a mobile radiation monitoring system and
field tested it in Fukushima following the 2011 nuclear power plant incident.
The mobile radiation monitoring system used cheap radiation sensors attached
to smartphones as measurement equipment. As a final example, Thompson et
al. [TWD+10] proposed the use of smartphones to detect car accidents and to
provide situational awareness for emergency responders.

In addition to a smartphone’s multitude of sensors and its ability to form mo-
bile ad-hoc networks that can mitigate communication outages [DHK10], smart-
phones and tablets have significant computational power, memory and storage.
Smartphones have had the technical capability to participate in a Multi-Agent
System for years now (see for example Chan et al. [CRP08]). In fact, in 2008
Ughetti et al. [UTG08] demonstrated the use of the Java Agent Development
Framework (JADE) Mobile Agent System in the Android smartphone OS.

However, as motivated above, disaster response requires strong security for
data protection. When we started our research the platform security mechanisms
we use as building blocks for the security solution we introduce in this thesis were
still in their infancy on mobile devices. Hence, our security solution is geared
towards PC platforms. However, over the years the security mechanisms for
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mobile devices matured. The predominant platforms in the smartphone market
are Android and Apple’s iPhone using ARM System-On-Chips. Therefore, we
started to investigate how we can use the security mechanisms available on ARM
based systems to port our security solution.

1.2 Goals

Goals

The goals of this thesis are to

1. model the information security threats when using a Mobile Agent
System to support disaster response,

2. evaluate the applicability of the threat modeling methodology we
use (Data Flow Diagram models with STRIDE-per-interaction) for
threat modelling disaster response activities and Mobile Agent Sys-
tems,

3. design and implement a security solution that mitigates all threats,

4. evaluate the effectiveness of our security solution (Goal 3) using
the threat model developed for Goal 1,

5. make our security solution developed for Goal 3 available in a wide
range of deployment scenarios.

1.3 Problem Description

In this thesis we address three distinct problems. First, we create threat models
for using a Mobile Agent System for disaster response. Second, we devise a
security solution that mitigates the threats we identify. Third, we adapt one of
the key building blocks of our security solution for use with smartphones. This
key building block is secure storage.

1.3.1 Threat Modeling

O’Neill et al. [OSZW12] have identified the assets in disaster response. The
assets are the information exchanged between disaster response personnel to
gather information and implement command decisions. Furthermore, O’Neill
et al. have documented the need for communication confidentiality, integrity
and availability. Given these assets and security goals, as a next step, we need
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to identify the threats to these assets. Specifically, we want to investigate the
threats to security, when parts of the aforementioned information exchanges are
implemented using a Mobile Agent System, instead of by human personnel.

In general, we have to be very careful and meticulous when reasoning about
security. We have already seen security goals such as confidentiality, integrity,
availability, authenticity, authorization, and non-reputation arising from our two
examples in Section 1.1. In any but the most trivial systems there is a multitude
of opportunities to break any, if not all, of these goals, unless suitable security
mechanisms are applied. Mobile Agent Systems are anything but simple and
have an extensive set of security threats that need to be addressed to achieve
an application’s security goals. History is littered with examples of threats that
were realized, because nobody thought about the threat, and hence no mitigation
was in place. Therefore, we need a well-structured approach to comprehensively
model the threats that arise from applying the Secure Agent Infrastructure to
disaster response. The Secure Agent Infrastructure is the Mobile Agent System
we use in this thesis.

1.3.2 Threat Mitigation

After identifying the threats during threat modeling, the second challenge we
face in this thesis is mitigating these threats. Our threat modeling results are in
line with the literature on Mobile Agent security that unanimously identifies a
compromised or malicious agent platform as the most pertinent source of threats
to a Mobile Agent System. In addition, our threat modeling efforts also identify
the need to authenticate the external entities the Secure Agent Infrastructure
interacts with and protect any communication with these external entities.

Therefore, we focus our attention on establishing the integrity of the agent
platforms of the Secure Agent Infrastructure, thus mitigating the threats arising
from a compromised agent platform. Similarly, we need to solve the problem
of authenticating the external entities the Secure Agent Infrastructure interacts
with.

The problem of establishing the integrity of the Secure Agent Infrastructure
stratifies into being able to establish the integrity of the Mobile Agents and the
agent platforms they are executed on. We investigate how to establish the in-
tegrity of the agent platforms. Establishing the integrity of an agent platform,
where an agent platform is a networked computer running a specific set of soft-
ware components, goes beyond the problem of merely identifying a machine. A
single, minute piece of program code can change a reliable agent platform into
a malicious host subverting Mobile Agents. Specifically in this thesis we investi-
gate how we can provide a security mechanism that establishes the integrity of
an agent platform, while still being usable and widely applicable.

Another aspect we investigate is how to authenticate the identity, and estab-
lish the physical presence of, disaster response personnel without access to an
online central authority. This information is central to establishing the authority
of a person and any agent acting on behalf of her.
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1.3.3 Secure Data Storage

The third problem we investigate in this thesis is secure data storage. Secure
data storage is a key component of our security solution developed for our second
problem, threat mitigation. One of the goals for our security solution is wide
applicability to support its adoption (see Goal 5). To this end, we base it on
commercial off-the-shelf hardware security mechanisms. Specifically, we use Intel
Trusted eXecution Technology (TXT) and a Trusted Platform Module. However,
these particular hardware security mechanisms are only available for personal
computers and laptops.

Smartphones and tablets are equally interesting agent platforms to connect
to the Secure Agent Infrastructure and nowadays they provide similar, but not
identical, hardware security mechanisms, such as the ARM TrustZone security
extensions. Therefore, as part of Goal 5, we started planning a security solution
for Secure Agent Infrastructure agent platforms based on ARM TrustZone. One
of the key missing elements for our smartphone security solution was an efficient,
flexible, and secure data storage that could be used in conjunction with ARM
TrustZone.

The specific problem we tackle here is adding secure storage to ANDIX OS,
an existing ARM TrustZone OS. ANDIX OS delegates the onus of secure storage
to the Trusted Applications it executes in its Trusted Execution Environment.
The Trusted Execution Environment is an execution environment isolated from
normal applications, such as a mobile phone application. Our security solution
called for a Trusted Application that could securely store and retrieve significant
amounts of data efficiently, while maintaining data integrity and confidentiality.

1.4 Contributions

In this section we describe our contributions beyond the state of the art. Specif-
ically, we present three contributions beyond the state of the art corresponding
to the three problems identified in the previous section.

1.4.1 Contribution 1 - Threat Modeling

Our first contribution comprises a number of threat models for disaster response
processes and disaster response supported by the Secure Agent Infrastructure.
We use a systematic, semi-formal methodology to model our threats. This
methodology uses Data Flow Diagrams to model systems and the STRIDE-
per-interaction threat enumeration technique to generate threats based on the
Data Flow Diagram model. STRIDE is an mnemonic for Spoofing, Tampering,
Repudiation, Information disclosure, Denial of Service, and Elevation of privi-
lege, the six threat categories the STRIDE-per-interaction threat enumeration
technique considers. The overall methodology was developed by Microsoft and
is part of Microsoft’s Security Development Lifecycle.



1.4. Contributions 9

Contribution 1a - High Level Disaster Response Threat Models

The goal for this contribution is to determine the threats to the high level dis-
aster response activities of gathering information and implementing command
and control. O’Neill et al. [OSZW12] have identified the need for confidential-
ity, integrity and availability for disaster response communication pertaining to
those two activities. However, we require concrete threats against disaster re-
sponse communication, so we can determine adequate mitigation mechanisms.
These high level models are the first step towards detailed threat models which
we can use for the purpose of finding adequate mitigation mechanisms. Conse-
quently, analysing and refining the high level models led to the discovery of the
Distributed Secure Agent Platform Outpost (DSAP Outpost).

From O’Neill et al [OSZW12] we know that all disaster response communica-
tion falls into two broad categories. These categories are situational awareness
and command and control. Based on this observation and the mode of oper-
ation of the Secure Agent Infrastructure we have created an overall model for
gathering information (situational awareness) and implementing command and
control in disaster response. From this model we derive two high level models
for gathering information and command and control. For our high level models
we avoid any implementation specific concepts. We use these models to estab-
lish the basic threats to our assets, the information exchanged during disaster
response.

Our two high level models grant us valuable insights into the threats to
situational awareness and command and control we need to consider during
disaster response. Specifically, from threat modeling these two activities we have
derived 41 threats. These 41 threats naturally cover threats to confidentiality,
integrity and availability. One of the advantages of the threat list is that it also
makes threats evident that are not immediately obvious from the three security
goals of confidentiality, integrity and available. Examples for such threats are a
responder repudiating having received a command, or an adversary maliciously
changing information to determine the outcome of a command decision. Finally,
by refining the high level model for situational awareness we identified the DSAP
Outpost component. We develop security mechanisms for the DSAP Outpost
as our second contribution (see Section 1.4.2).

Contribution 1b - Distributed Secure Agent Platform Outpost Threat
Model

Our primary goal is to model the threats that arise from using the Secure Agent
Infrastructure to facilitate disaster response. Therefore, we have refined the
situational awareness high level model and included technical aspects of the
Secure Agent Infrastructure. Our study of this model revealed a highly repetitive
pattern. This pattern consists of a Distributed Secure Agent Platform (DSAP)
communicating with the central components of the Secure Agent Infrastructure
on the one hand (the Core Secure Agent Infrastructure), and an external entity
such as a first responder or an external information system on the other hand.
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Figure 1.2: The Distributed Secure Agent Platform Outpost

The DSAPs are the agent platforms used by the Secure Agent Infrastructure
at the interface points of the Mobile Agent System with external entities. We
therefore termed this repetitive pattern the DSAP Outpost. We have depicted
this situation in Figure 1.2.

When we analyzed our refined situational awareness model we observed that
if we were to mitigate the threats to the DSAP Outposts, then we could miti-
gate a significant portion of the threats to the overall Secure Agent Infrastruc-
ture. Therefore, we decided to concentrate our research efforts on mitigating
the threats to the DSAP Outposts. To this end, we have created an in-depth
threat model of a DSAP Outpost. From this threat model we derived 54 threats
to the DSAP Outpost. We use this threat list to validate the effectiveness of
the Trusted Docking Station and the Secure Docking Module, the two security
mechanisms we created and introduce in this thesis (see Section 1.4.2).

At the core of the DSAP Outpost lies the DSAPs. The DSAPs is a mobile
agent platform. There exists a significant body of literature on the topic of
mobile agent platform security. We compared our DSAP Outpost threat list
with three works from the mobile agent platform security literature. These three
works discuss threats to mobile agent platform security in general. We compared
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our results with these works to verify our results. We observed that we identified
20 threats applicable to mobile agent platforms that were not previously recorded
in literature. Most of these 20 threats are related to repudiation when a mobile
agent platform interacts with external entities.

Contribution 1c - STRIDE Applicability

Case studies on the applicability of STRIDE-per-interaction are still rare. There-
fore, we wanted to gauge the applicability of STRIDE-per-interaction for threat
modeling high-level disaster response processes. Our results indicate that the
Data Flow Diagrams used to model the disaster response activities are well suited
to capture the information flows in disaster response. We base this observation
on the fact that we consider almost all threats generated for our two high level
threat models relevant. Note that our two high level models represent processes
not necessarily implemented by an information processing system. Therefore,
we needed to slightly adapt our models for the Microsoft Threat Modeling Tool
2016 based threat generation to generate pertinent threats.

Finally, because of the rarity of STRIDE-per-interaction case studies, we
also documented our observations on using STRIDE-per-interaction for model-
ing agent mobility. Agent mobility is the capability of mobile agents to migrate
between systems. Migrating an agent involves serializing the agent for trans-
portation, sending it to another platform, deserializing it and then (re)starting
its execution. As part of the DSAP Outpost model we have modeled receiving an
agent, deserializing it and (re)starting its execution using a Data Flow Diagram.
Data Flow Diagrams capture data flows and not complex processes. Neverthe-
less, when compared to literature, the results for threat modeling agent receipt,
deserialization, and execution using a Data Flow Diagram, were consistent.

Threat Modeling Goals

A significant share of Contribution 1 is geared towards Goal 1, the creation of a
threat model for a Mobile Agent System supporting disaster response. To achieve
this goal we first model high level disaster response activities (Contribution 1a).
We use these results as a basis to create a threat model that includes the Secure
Agent Infrastructure components. From this model we choose to refine the
DSAP Outpost component and create a specific model for it (see Contribution
1b).

We do not believe that we fully met Goal 1. We do not have a comprehensive
set of threat models for all disaster response activities including all technical com-
ponents of the Mobile Agent System. However, our threat modeling approach
enabled us to identify the component that we believe to be most difficult to
secure and create a detailed threat model for it. We use this model to evaluate
the effectiveness of our security solution developed as Contribution 2.

We have achieved Goal 2, the evaluation of using STRIDE-per-interaction
for use in disaster response and with Mobile Agent System. To this end, we
have recorded our observations on using STRIDE-per-interaction (Contribution
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1c). As there are no other STRIDE-per-interaction threat models, neither for
disaster response activities, nor for Mobile Agent Systems, we compared our
findings with the literature on Mobile Agent System security (Contribution 1b).
We found 20 threats not previously documented in the body of literature we
used for comparison.

1.4.2 Contribution 2 - The Trusted Docking Station and

the Secure Docking Module

Our threat modeling efforts reveal the need to ensure the integrity and authen-
ticity of the DSAP Outposts and the authenticity of the personnel using them.
To this end, we design and implement a security solution that establishes the
load-time integrity and authenticity of a DSAP Outpost, and the authenticity
and presence of its user. This security solution comprises the Trusted Docking
Station and the Secure Docking Module.

Contribution 2a - The Trusted Docking Station

Our TDS is an execution environment for the DSAP Outpost. The Trusted
Docking Station (TDS) is based on the acTvSM platform [Pir15]. It provides
evidence of the load-time integrity of the software it executes and it uses virtu-
alization to isolate different partitions of the system to grant runtime confiden-
tiality, integrity and availability protection. Our contribution here is that we
have designed, implemented and evaluated a prototype of the TDS. To imple-
ment the TDS we adapted the Secure Agent Infrastructure DSAPs component
to run on the acTvSM platform and to use the security features it provides.
The Secure Agent Infrastructure is the Mobile Agent System we use. It was de-
veloped by researchers at the Slovakian Academy of Sciences [Gat10a, HBG10,
GBH10, GBŠH11, BGH+11]. For the evaluation we have investigated both the
performance and security of the TDS. The security evaluation uses the list of
threats generated by our threat modeling efforts (see Section 1.4.1) to measure
the effectiveness of our solution.

Contribution 2b - The Secure Docking Module

Our Secure Docking Module (SDM) addresses the two problems of establishing
the load-time integrity of the TDS and identifying and establishing the presence
of a user while ensuring the state of crisis. Our contributions here include a
protocol for local platform configuration verification and the design and imple-
mentation of a physical prototype for the SDM. We also integrated the SDM with
the TDS. We have evaluated the performance and the security of SDM in con-
junction with the TDS. For the security evaluation we use the threats identified
by our threat modeling efforts to measure the effectiveness of our solution.
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Security Solution Goals

We have met Goal 3 within certain limits. We have designed and implemented
a security solution comprising the TDS and the SDM for the DSAP Outpost.
Our threat modelling efforts have unearthed 54 threats to a DSAP Outpost.
Of these 54 threats, we mitigate all but three, which we consider out of scope
(Goal 4). However, the majority of all threats (43/54) pertain to a compromised
DSAP Outpost. Here our security solution only gives us load-time integrity
and not runtime integrity. Thus our security solution is vulnerable to targeted,
online attacks. In a targeted online attack an adversary exploits a runtime
vulnerability to gain access to a TDS and the software it is hosting. However, our
TDS offers load-time integrity protection on commodity off-the-shelf hardware
equipped with Intel’s Trusted eXecution Technology (TXT). Furthermore, the
SDM enables user authentication and TDS load-time integrity verification with
a commercially available Security Controller.

1.4.3 Contribution 3 - Secure Data Storage for TrustZone

Systems

The Secure Block Device

Disaster response has strong data confidentiality and authenticity requirements
(see Section 1.4.1). To help achieving these security goals, in Section 1.4.2 we
propose using the SDM together with the TDS for establishing user authenticity
and platform software load-time integrity. The TDS is based on the acTvSM
platform and the acTvSM platform heavily relies on Intel’s TXT. Intel TXT is a
set of platform security extensions. With these security extensions it is possible
to gather evidence of a platform’s software load-time integrity. Furthermore,
the platform can then create attested reports of this evidence. Finally, TXT
supports security by isolation and secure key storage.

However, the majority of all smartphones is based on ARM platforms. We
believe that with the advent of the ARM TrustZone security extensions for ARM
based platforms and the GlobalPlatform standards for Trusted Execution En-
vironments on mobile platforms, our disaster response security goals can also
be achieved on ARM phones. We have investigated integrating DSAP Outposts
based on smartphones into the Secure Agent Infrastructure, but were quickly
limited by a lack of confidential and authentic storage for data at rest.

Storage that is both confidential and authentic is a core component of our
acTvSM based TDS. ARM TrustZone based platforms allow for a number of
potential mechanisms to provide secure storage. We have contributed the Secure
Block Device, a software based solution that uses cryptography to achieve its
security goals and relies on TrustZone to protect the cryptographic key while
it is in use. The Secure Block Device is secure in the sense that, while the key
is not compromised, the Secure Block Device provides data store confidentiality
and authenticity. The Secure Block Device is easy to use, as it has a very
simple API, modeled after the POSIX file abstraction, and it makes the use of
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cryptography as transparent as possible. Furthermore, it is efficient, because it
retains random access to the data it protects, allows for different cryptographic
protection mechanisms, and implements a cache to alleviate the performance
impact of using cryptography. Finally, it is flexible as it allows for different
storage back ends and we believe it to be widely applicable beyond the scope
we have developed it for. The details of the Secure Block Device in conjunction
with a thorough evaluation can be found in Chapter 6.

Security Solution Deployment Goals

We were not able to fully meet Goal 5, the goal to make our security solution
available in wide range of deployment scenarios. The main reason is that we
have not yet ported our security solution to mobile platforms. However, we took
a significant first step in extending ANDIX OS with the Secure Block Device.
Furthermore, the TDS is based on commodity off-the-shelf hardware. Similarly,
the SDM is implemented on a commercially available Security Controller. This
allows for wide deployment on PC hardware.

1.5 Outline

This thesis follows a linear structure. After having motivated and outlined our
research problems in this chapter, we introduce the necessary preliminaries for
our three research areas in Chapter 2 and the pertinent related work in Chap-
ter 3.

In Chapter 4, we create high level threat models for the disaster response typ-
ical processes of information gathering and command implementation. We then
proceed to refine the information gathering model to include Secure Agent In-
frastructure specific components. After identifying the highly repetitive pattern
of a Distributed Secure Agent Platform Outpost (DSAP Outpost) we investigate
the threats to a DSAP Outpost in detail. This threat modeling forms the basis
for the security evaluation of the Trusted Docking Station (TDS) and the Secure
Docking Module (SDM).

In Chapter 5 we introduce our security solution for the DSAP Outpost. Our
security solution comprises the TDS and the SDM. We discuss our objectives
for the security solution, its mode of operation and how it can be applied to
protecting the Secure Agent Infrastructure. We then describe architecture and
implementation of the TDS, the resource access protocol for the SDM, and the
implementation of the SDM on a Security Controller. We conclude this chapter
with a thorough performance and security evaluation. For the security evaluation
we use the threats to the DSAP Outpost, which we have identified in Chapter 4,
to gauge the effectiveness of our solution.

Chapter 6 is dedicated to the Secure Block Device, a secure, efficient, and
flexible data store. We first outline our objectives for the Secure Block Device,
and then proceed to threat model the Secure Block Device’s use in a Trusted
Execution Environment provided by using the ARM TrustZone security exten-
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sions. We then proceed to describe the architecture of the Secure Block Device.
We conclude our discussion of the Secure Block Device with a performance eval-
uation on an ARM based development board.

Finally, Chapter 7 summarizes our work, indicates the most important con-
clusions and identifies potential future work.





2
Preliminaries

2.1 Agents

In Chapter 4 we will investigate threat models for a specific Mobile Agent Sys-
tem, the Secure Agent Infrastructure. Furthermore, in Chapter 5 we introduce
the Trusted Docking Station and the Secure Docking Module that together mit-
igate a number of threats specific to Mobile Agent Systems. Therefore, we
introduce the concept of Mobile Agent Systems and the Secure Agent Infras-
tructure in this chapter. As a basis, here we start with discussing agents and
their properties in general.

The goal of our discussion of agents is not to give a definitive definition of
agents, as there is none, but to introduce properties associated with agents. In
Section 2.6.4, we use these properties to classify the agents of the Secure Agent
Infrastructure. We threat model components of the Secure Agent Infrastructure
and introduce security mechanisms to mitigate these threats. Therefore the
definition of the Secure Agent Infrastructure agents is the definition pertinent
to us. Furthermore, in Section 2.4 we discuss and summarize selected literature
on Mobile Agent security. More specifically, in Section 2.4.2 we summarize
Borselius’ investigation of the security implications of these agent properties.

2.1.1 Properties of Agents

We limit our discussion to agents that are software agents as opposed to, for
example, human beings and robots. These computer system based agents have
their roots in artificial intelligence research, but have since then entered main-
stream computer science [WJ95]. There is no universally agreed definition for
an agent [WJ95, JSW98]. There are however certain characteristics of agents
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widely accepted in literature [Bor02]. These characteristics are documented in
the works of Wooldridge and Jennings [WJ95, JSW98] and we discuss them
presently. Note however that not all agents exhibit all characteristics. For ex-
ample, not all agents are mobile.

Wooldridge and Jennings [WJ95] give two notions of agency a weak notion
and a strong notion. The weak notion is weak in the sense that it is less re-
strictive and contentious. The weak notion of agency attributes agents with
autonomy, social ability, reactivity, and pro-activeness. Wooldridge and Jen-
ning’s stronger notion of agency acknowledges the artificial intelligence roots of
agents, and it emphasizes that in addition to the above four properties these
agents are often conceptualized or implemented using concepts that are more
usually applied to humans, such as the mentalistic notions of belief, intention,
and obligation [WJ95]. In this thesis we are ultimately interested in securing
data carried by Mobile Agent and therefore for us the weak notion of agency is
sufficient.

Next to autonomy, social ability, reactivity and pro-activeness, Wooldridge
and Jennings also attribute agents with mobility, veracity, benevolence, and ratio-
nality. Jennings et al. [JSW98] later present a refined list of these characteristics
where they define agents to have situatedness, autonomy, and flexibility, where
flexibility comprises responsiveness, pro-activeness, and social ability. We will
now discuss these attributes as defined by Wooldridge and Jennings [WJ95] and
Jennings et al. [JSW98].

Autonomy Autonomy is the ability to act without direct intervention of hu-
mans (or other agents). Agents should have control over their own actions
and internal state [JSW98]

Situatedness Situatedness stresses that an agent is part of an environment.
The agent receives sensory input from this environment and the agent can
also change the environment with its actions.

Flexibility Flexibility encompasses responsiveness, pro-activeness, and social
ability.

Responsiveness (Reactivity [WJ95]) Jennings et al. define respon-
siveness as follows: agents should perceive and respond in a timely
fashion to changes that occur in the environment [JSW98].

Pro-activeness Agents do not simply act in response to the environment,
they should also be able to exhibit goal-directed behaviour by taking
the initiative [WJ95].

Social ability Agents should interact, when appropriate, with other ar-
tificial agents and humans in order to complete their own problem
solving and to help others with their activities [JSW98].

Mobility is the ability to move around an electronic network [Whi94].

Veracity is the assumption that an agent will not knowingly communicate false
information [Gal88].
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Benevolence is the assumption that agents do not have conflicting goals, and
that every agent will therefore always try to do what is asked of it [RG85].

Rationality is (crudely) the assumption that an agent will act in order to
achieve its goals, and will not act in such a way as to prevent its goals
being achieved — at least insofar as its beliefs permit [Gal88].

All of these properties impact agent security and they will be discussed in
Section 2.4.

2.2 Multi-Agent Systems

The Secure Agent Infrastructure we investigate in this thesis is a Mobile Agent
System which is a form of Multi-Agent System. As with agents their is no
unanimous, clear definition what constitutes a Multi-Agent System. According
to Jennings et al. [JSW98] the term Multi-Agent System is used to refer to all
types of systems composed of multiple (semi-) autonomous components. They
define a Multi-Agent System as a system designed and implemented as several
interacting agents. Similarly, Durfee and Lesser define a Multi-Agent System
as a loosely coupled network of problem solvers that work together to solve
problems that are beyond the individual capabilities and knowledge of each
problem solver [DL89]. Also, Jennings et al. [JSW98] point out that Multi-Agent
System are ideally suited to representing problems that have multiple problem
solving methods, multiple perspectives, and/or multiple problem solving entities
They define the characteristics of a Multi-Agent System as follows:

• Each agent has incomplete information, or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• There is no global system control;

• Data is decentralized; and

• Computation is asynchronous.

We will revisit these characteristics, when we introduce the Secure Agent
Infrastructure in Section 2.6.

2.2.1 Mobile Agent Systems

Mobile Agent Systems are a variant of Multi-Agent Systems that allow agent
mobility. In a Mobile Agent System, agents can migrate between platforms.
Typically Mobile Agent Systems support agent migration with platform fea-
tures, as is the case with the Secure Agent Infrastructure, where the Distributed
Secure Agent Platform (DSAP) component handles agent migration (see Sec-
tion 2.6). In a Mobile Agent System the term agent platform refers to the exe-
cution environment in which agents operate. In the Secure Agent Infrastructure
the DSAP component provides an agent platform.
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According to Jansen and Karygiannis [JK99] the platform where an agent
originates is called the home platform and normally is the most trusted environ-
ment for a Mobile Agent.

2.3 Mobile Agents Properties

White’s definition that agent mobility is the ability to move around an electronic
network [Whi94] is generic. We want to discuss different forms of agent mobility,
based on what is actually migrated, and how many platforms are visited.

Mobile Agents are a form of mobile code. Carzaniga et al. [CPV07] consider
two forms of code mobility for executing units. Executing unit is the general
term for an entity that can execute code, for example a thread.

Strong code mobility allows executing units to move their code and execution
state to a different platform.

Weak code mobility is the ability to migrate code to a different platform and
automatically execute it, but no execution state is transferred.

So a Mobile Agent exhibits strong code mobility, if it is capable of suspending
its execution state on one platform and move to another platform, where it
resumes executing [JK99]. The Secure Agent Infrastructure Mobile Agents we
consider in this thesis only support weak code mobility. These agents do not
migrate their execution state (Section 2.6.4).

Mobile Agents can also be categorized by how many platforms they visit.
Mobile Agents that can only migrate from their home platform to a single other
agent platform are called single-hop agents. Multi-hop Mobile Agents can mi-
grate to more than one platform. The Secure Agent Infrastructure Mobile Agents
are single-hop agents.

2.4 Mobile Agent Security

One of the contributions of this thesis is a discussion of threat models for a
specific Mobile Agent System, the Secure Agent Infrastructure (see Section 2.6),
in Chapter 4. We wanted to ground our discussions of the threats to the Se-
cure Agent Infrastructure in literature, therefore we selected three independent
discussions of Mobile Agent security as reference base line. These three works
are “Mobile Agent Security” by Jansen and Karygiannis [JK99], “Mobile Agent
Security” by Borselius [Bor02], and “Classification of Malicious Host Threats
in Mobile Agent Computing” by Bierman and Cloete [BC02]. We have selected
these three sources, because they comprehensively discuss Mobile Agent security
in general and not specific security aspects of particular Mobile Agent System.

Roth opines that the lack of security is one of the primary reasons why
mobile agents have yet to be broadly adopted [Rot04]. In fact, according to
Roth, almost thirty years after their inception, the only widespread incarnation
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Figure 2.1: The Mobile Agent System model used by Jansen and Karygiannis [JK99]
to discuss the security issues of Mobile Agent Systems. This model de-
picts an agent migrating from its home platform to another platform
over a network that connects the platforms of the modeled Mobile Agent
System. This specific version of the model is adopted from [JK99].

of mobile software agents is malware. Borselius similarly points out the need for
securing agent systems for them to become adopted [Bor02].

2.4.1 Jansen and Karygiannis

A number of researchers have investigated Mobile Agent security in detail.
Jansen and Karygiannis [JK99] and later Jansen alone [Jan00] have compiled
a thorough discussion of Mobile Agent security. They have based their discus-
sion on Mobile Agent System security on the model depicted in Figure 2.1. Their
model considers a Mobile Agent migrating from its home platform to another
platform through a network. In addition, the model considers that the previ-
ously migrated Mobile Agent is then executed by the receiving platform. We
observe that the model does not show multiple agents interacting on the same
platform. However, this is one of the threat categories considered by Jansen and
Karygiannis.

Jansen and Karygiannis grouped their findings into four threat categories.
Here we summarize their findings. We use both their joint work [JK99] and
Jansen’s solo paper [Jan00] as sources.

Agent-to-Platform This threat category comprises all threats arising from a
Mobile Agent attacking the agent platform, either by exploiting a secu-
rity vulnerability or by launching attacks on the agent platform, such as a
Denial-of-Service attack. According to Jansen [Jan00] an incoming agent
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has two lines of attack. These are unauthorized information access to plat-
form information and the incoming agent using its authorized access in an
unexpected and disruptive fashion. Unauthorized access to information
may occur due to lack of adequate access control or weak authentication
methods. It can enable a Mobile Agent to obtain confidential information,
but also, with sufficient access to platform core services, to shut down or
terminate the platform. Jansen and Karygiannis [JK99] note that Mobile
Agents can always try for a Denial-of-Service attack by exhausting a plat-
form’s computational resources through excessively requesting platform
services.

Agent-to-Agent A malicious agent has a number of options to attack another
agent. Jansen and Karygiannis identify falsifying transactions, eavesdrop-
ping on communications, or interfering with another Mobile Agent’s ac-
tivity as threat categories. They list a Mobile Agent responding with
tampered information, denying an answer to a request, masquerading as
another agent, eavesdropping and modifying another Mobile Agent as po-
tential threats.

Other-to-Agent Platform In this category Jansen and Karygiannis discuss
external entities attacking a Mobile Agent System. They consider an ex-
ternal attacker disrupting, harming, or subverting the agent system. As
potential methods they list attacking inter-agent and inter-platform com-
munication, and they consider eavesdropping and tampering through mas-
querading, unauthorized access to the underlying platform, and Denial-of-
Service as threats.

Platform-to-Agent A mobile agent is almost at the complete mercy of the
mobile agent platform. Jansen states that a receiving agent platform can
easily isolate and capture an agent and may attack it by extracting in-
formation, corrupting or modifying its code or state, denying requested
services, or simply reinitializing or terminating it completely [Jan00]. The
receiving platform can facilitate complete analysis and reverse engineering
the Mobile Agent, and modify the agent to radically change its behaviour,
for example turning it malicious. The receiving platform can also feed the
agent incorrect information, withhold information, or change the agent
internal representation of the information to corrupt it.

2.4.2 Borselius

Like Jansen and Karygiannis, Borselius has also discussed Mobile Agent se-
curity [Bor02]. However, instead of using a Mobile Agent platform migration
model, Borselius bases his discussion of Mobile Agent security on the agent
characteristics defined by Wooldridge and Jennings [WJ95] and Jennings et
al. [JSW98] (see Section 2.1). We will now give a précis of his discussion of
the impact of Mobile Agent characteristics on security.
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Agent execution Under this heading Borselius discusses two aspects. First he
raises the question of where access control decisions occur. Can the Mobile
Agent decide if an incoming request is authentic and authorized, or can
the Mobile Agent rely on the platform for this decision?

Second Borselius points out that the environment might need protection
from the agent it interacts with. He cites the agent launching a Denial-of-
Service attack against the agent platform as a potential problem.

Situatedness An agent is embedded in an environment with which it interacts.
Borselius points out that the nature of the environment has an impact
on security. If the environment is, for example, an open system like the
Internet, a Mobile Agent might be well advised to check the authenticity
of received information. Borselius also notes, that in limited environments
no specific security measures might be necessary.

Autonomy Borselius documents that autonomy introduces serious security con-
cerns. As example, he cites a Mobile Agent with the authority to buy or
sell items. It should not possible for another party to coerce this agent
into buying and selling. He also points out that a Mobile Agent should
not be able to make commitments it cannot fulfill.

Communication Agents can exhibit social behavior and interact with other
agents and humans. Borselius notes that this can have interesting impli-
cations for security. Borselius documents the need for confidentiality, data
integrity, authentication, availability and non-repudiation in all inter-agent
and human communication.

Mobility Borselius states the opinion that the ability of Mobile Agents to mi-
grate to other platforms raises a number of security concerns. As Jansen
and Karygiannis [JK99] before him he notes that Mobile Agents need pro-
tection from other agents and from the agent platform on which they ex-
ecute. He also indicates the need to protect the agent platform against
Mobile Agents and other parties that interact with the agent platform.
He opines that the problems associated with the protection of hosts from
malicious code are quite well understood.

He summarizes the attacks a malicious agent platform can perform on
a Mobile Agent as follows: observation of code, data and flow control,
manipulation of code, data and flow control – including the Mobile Agent’s
itinerary, incorrect execution of code – including re-execution, denial of
execution – in part or whole, masquerading as a different agent platform,
eavesdropping on a Mobile Agent communications, manipulation of agent
communications, and false system call return values.

Rationality, veracity, and benevolence Here, Borselius comments that on
first glance these properties seem to be security relevant, but on closer
inspection they are too abstract to serve as practical security concerns.
He extracts the meaning of these three properties as: “Agents are well
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behaved and will never act in a malicious manner.” He notes that a Mobile
Agent System where this statement holds would be valuable, and points
out numerous measures that can help to achieve this goal, but overall
considers achieving this goal unlikely, unless the Mobile Agent System is
under very strict control by a single authority.

Identification and authentication Borselius documents the importance of
identification for authentication. He also notes that if identities are not
permanent, security-related decisions cannot be based on a Mobile Agent’s
identity. Finally, he points out that Mobile Agents might be used to protect
the anonymity of their owners.

Authorization and delegation Here, Borselius again indicates that Mobile
Agent act on the behalf of other entities and need to be granted access
to information and resources. Borselius opines that existing mechanisms
such as a Public Key Infrastructure can support this delegation.

2.4.3 Bierman and Cloete

Bierman and Cloete [BC02] restrict their discussion of Mobile Agent security
to threats that arise from a malicious agent platform. They define four threat
classes. These threat classes are integrity attacks, availability refusal, confiden-
tiality attacks, and authentication risks. For each class they define up to three
subclasses. We will concisely discuss these here.

Integrity attacks In this class Bierman and Cloete discuss both accidental and
malicious tampering with an agent’s code, state, or data.

Integrity interference Bierman and Cloete define integrity interference
as occurring when the executing host interferes with a Mobile Agent’s
execution mission, but does not alter any information related to the
agent. As an example they cite incorrect transmission of a Mobile
Agent.

Information modification They define information modification to con-
tain altering, corrupting, manipulating, deleting, misinterpreting, or
incorrect execution of a Mobile Agent’s code, data, control flow, or
status. They also include a host interfering with inter-agent commu-
nication.

Availability refusal Bierman and Cloete define availability refusal as prevent-
ing an authorized agent from accessing objects or resources to which it
should have legitimate access. They have divided this threat class into
Denial-of-Service, delay of service, and transmission refusal.

Denial-of-Service occurs when the agent platform executing the Mobile
Agent denies requested resources, or when the agent platform bom-
bards the Mobile Agent with so much information that the agent finds
it impossible to complete its goals.
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Delay of service occurs when the agent platform lets the Mobile Agent
wait for a requested service. They note that the delay can have a
negative effect on the mission of the agent.

Transmission refusal happens when an agent platform refuses to trans-
mit the agent to the next target in its itinerary.

Confidentiality attacks In this class Bierman and Cloete discuss illegal ac-
cess, potentially in conjunction with illegal removal, to a Mobile Agent’s
assets. They consider three subclasses, eavesdropping, theft, and reverse
engineering.

Eavesdropping occurs when the agent platform spies on the Mobile Agent
either by inspecting the Mobile Agent’s data directly, or by listening
in on inter-agent communication.

Theft takes place when the agent platform not just eavesdrops on infor-
mation, but also removes the information. Bierman and Cloete point
out that the stolen information could be the Mobile Agent itself.

Reverse engineering happens when a malicious host analyses a Mobile
Agent in order to manipulate future or existing agents. Bierman
and Cloete note that this allows the perpetrator to construct similar
Mobile Agents.

Authentication risks In their final class Bierman and Cloete document the
need for a Mobile Agent to correctly identify and authenticate an agent
platform. According to them authentication risks fall into two subclasses.
These are masquerading and cloning.

Masquerading is when an agent platform spoofs (see Section 2.8.2) an-
other agent platform.

Cloning occurs when the agent platform clones a Mobile Agent. Bierman
and Cloete point out that when a Mobile Agent carries authentication
data this will lead to (unspecified) authentication problems.

2.4.4 Discussion

Jansen and Karygiannis, Borselius, and Bierman and Cloete all discuss Mobile
Agent security in general, but using different approaches. Here we discuss how
the different approaches relate to each other and to our approach. We do not go
into detail on the results of our approach versus the other approaches, as this is
part of Chapter 4.

Jansen and Karygiannis base their discussion of Mobile Agent security on the
model depicted in Figure 2.1. Using this model they have listed numerous threats
which they have classified into the agent-to-platform, agent-to-agent, other-to-
agent, and platform-to-agent categories depending on which entity attacks and
who the victim is. Based on the nature of the threats they list, we believe they
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considered threats to authentication, authorization, non-repudiation, integrity
in general, confidentiality, and availability.

Jansen and Karygiannis’ approach to analysing Mobile Agent security is
similar to our approach for modeling the threats. We both use a model, but
whereas Jansen and Karygiannis’ model is generic, ours is adapted to the Secure
Agent Infrastructure. Furthermore, we base our threat modeling on STRIDE
(see Section 2.8) using the Microsoft Threat Modeling Tool 2016 to create the
model and a list of threats. We note however, that STRIDE generates threats in
the Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service,
and Elevation of privilege threat categories, which are the counterparts to the
security violations considered by Jansen and Karygiannis.

Bierman and Cloete restrict their discussion of Mobile Agent security to
the threats arising from a malicious agent platform, as they argue that these
threats are the most difficult to counter. They do not declare if they use a
model to elicit their threats. However, Bierman and Cloete state that they have
based their analysis on the five network security concerns of integrity, availability,
confidentiality, authentication, and non-repudiation. We note however that their
threat classification does not contain any threats to repudiation, nor do they
consider authorization. We also note that, again, the security concerns used by
Bierman and Cloete are the counterparts to the STRIDE threat categories.

Borselius’ approach differs significantly from ours and also from Jansen and
Karygiannis’ and Bierman and Cloete’s approach. Borselius bases his discussion
of Mobile Agent security on the properties of agents as listed in Section 2.1. This
provides interesting insights into the nature of threats to Multi-Agent System
and why these threats arise. The threats Borselius lists are the broadest in
scope, but also the most generic. For example, he is the only one to mention
the need for non-repudiation in all agent communication, but he does not detail
why beyond this statement. Finally, Borselius’ discussion has a strong focus
on authentication and authorization. We believe this stems from his property
based approach that makes it obvious that agents act on behalf of other entities
and that their autonomous decisions can have significant impact on the physical
world.

2.5 Jini

Jini is a distributed system toolkit written in the Java™ programming language.
In the Secure Agent Infrastructure (see Section 2.6) Jini is used to implement
the Distributed Secure Agent Platform (DSAP) component (see Section 2.6.3).
The DSAP is central to the Secure Agent Infrastructure; therefore we discuss it
here. Jini has many interesting properties, here we concentrate on those that
are pertinent to the DSAP. Jini was initially developed by Sun Microsystems
and it was later released as open source under the Apache license and is now
maintained by the Apache foundation under the name Apache River1.

1https://river.apache.org/
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2.5.1 Jini Services

According to the documentation of the Apache River project [Apa16a] River
(Jini) is a toolkit to build distributed systems with. The core concept of Jini
is the service. Any entity that can provide a service using Jini technology can
be a Jini service. This definition includes computer systems, both in software
and hardware, and even the environment or humans through the use of such a
computer system. Jini specifies the manner a Jini service can be discovered by
service consumers (clients). It also specifies the technical details how a service
presents its interface to a client, and how a client can then communicate with
the service. Other than that Jini imposes no limits on the nature of the service
itself.

2.5.2 Communication

Jini uses Remote Procedure Calls as communication mechanism over IP based
networks. Initially Jini was designed to rely only on Java Remote Method In-
vocation, but Jini now uses the JERI protocol [Apa16a]. Plain-SSL, HTTP,
HTTPS, and Kerberos-TCP implementations of the JERI protocol exist, but
for compatibility with Remote Method Invocation Jini still supports the JRMP
protocol.

The DSAP uses Remote Method Invocation for communication. According
to the Apache River project [Apa16b], Java Remote Method Invocation is a
Java programming language-enabled extension to traditional remote procedure
call mechanisms that allows objects, including their code, to traverse the network
boundary.

2.5.3 Service Discovery

Jini’s service discovery is based on lookup services. The lookup service is a
central bootstrapping mechanism for the system and provides the major point of
contact between the system and users of the system [Apa16b]. Service providers
register with the lookup service to advertise their services and clients query
lookup services to find specific services. Technically, the lookup service maps
descriptions and the interface of a service to concrete service implementations.

A new service registers with a lookup service using the discovery and join
protocol pair [Apa16b]. The discovery and join protocols are executed when a
device providing at least one Jini service plugs into the system. The discovery
protocol helps the joining service to find a lookup service and, once a suitable
lookup service has been found, the device uses the join protocol to register with
this lookup service.

Figure 2.2 illustrates the lookup service discovery process. When a new Jini
service plugs into a specific Jini system it can use either a local network multicast
to find a lookup service, or directly connect to a known, and potentially remote,
service. Jini relies on UDP for multicast and TCP for direct connections to a
lookup service. Jini also allows to defer lookup service discovery to a third party.
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Figure 2.2: Jini lookup service discovery according to the Jini specification [Apa16b].
Here a service provider is looking for a lookup service to advertise its
service.
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Figure 2.3: A Jini service registering with a lookup service using the join protocol
according to the Jini specification [Apa16b].
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Figure 2.4: A Jini client looks up a specific service using the service proxy type and
attributes. A copy of the service proxy is delivered to the client to enable
communication between the client and the service provider [Apa16b].

The join protocol outlined in Figure 2.3 specifies how a service provider
registers its service with a lookup service. When a service provider joins it
transmits a service proxy and the service’s attributes. The service proxy is
a Java object adhering to the Java interface describing the service and it is
transmitted using Java Remote Method Invocation.

Jini clients look for specific services by querying a lookup service. A query
consists of two parts. First it specifies a Java interface the service must fulfill.
Second the query contains a set of attributes the service must have. The lookup
service searches its list of joined service providers. For a service provider to match
the query, the service proxy object has to implement the requested Java interface
and it has to have the right attributes. If an adequate service is registered with
the lookup service, the lookup service transmits the service proxy object to the
client (see Figure 2.4).

As depicted in Figure 2.5 Jini clients use the service proxies to interact with
the actual service implementation by the service provider. Jini makes no stip-
ulations about how the service proxy communicates with the service provider.
However Jini provides facilities for allowing the service proxy and the service
provider to communicate. One such facility are remote event listeners. Remote
event listeners provide a way to synchronously notify the service implementation
from the service proxy and vice versa. The DSAP uses this facility to implement
agent communication.
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Figure 2.5: A Jini client interacts with a service using the service proxy. This figure
is adapted from [Apa16b].

2.6 Secure Agent Infrastructure

2.6.1 Overview

The Secure Agent Infrastructure is a Mobile Agent System specifically devel-
oped for crises management in general and disaster response in particular by
researchers at the Slovakian Academy of Sciences [Gat10a, HBG10, GBH10,
GBŠH11, BGH+11]. Emil Gatial’s Dissertation [Gat10a] contains a thorough
discussion of the Secure Agent Infrastructure and is our main source for this
section. The Secure Agent Infrastructure is the Mobile Agent System we create
threat models for in Chapter 4, and for which we have designed and implemented
the Trusted Docking Station and Secure Docking Module security solutions in-
troduced in Chapter 5. In this section we will concentrate on describing those
aspects of the Secure Agent Infrastructure that are pertinent to this thesis.

The goal of the Secure Agent Infrastructure is to support crises management
personnel during a crisis. The Secure Agent Infrastructure is written in the
Java programming language and its components are executed in a number of
Java virtual machines. The architecture of the Secure Agent Infrastructure is
divided in 5 principle components, the Process Management Subsystem, the
Distributed Secure Agent Platform (DSAP), the Agent Repository, a Public
Key Infrastructure repository and the Resource Lookup System. Of these 5
principle components the DSAP is the component most relevant to our work.
Therefore we only outline the roles of the other components here, and explain
how they interact through an example detailed in Section 2.6.2. We will then
discuss the DSAP in more detail in Section 2.6.3.

Process Management Subsystem The Process Management Subsystem is
the central control component of the Secure Agent Infrastructure Mobile
Agent System. It governs crises management support by implementing
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predefined workflows. These predefined workflows are stored in process
templates. A process template specifies a list of activities that consti-
tute the workflow. Process Management Subsystem users can instruct the
Process Management Subsystem to start a workflow. The Process Manage-
ment Subsystem then instantiates the process template for this workflow
into a process object and executes the process object. The process object
then performs all its activities and tracks the state of the activities.

For its role in crisis management and disaster response the Process Manage-
ment Subsystem is a-priori set up with process templates and activities.
During a crisis the Process Management Subsystem instantiates process
templates and executes their activities. The Process Management Subsys-
tem uses Mobile Agents to implement the activities. An example on how
the Process Management Subsystem works to mitigate a crisis is detailed
in Section 2.6.2.

Distributed Secure Agent Platform The DSAP is an agent platform im-
plemented in Java as a Jini service. The Secure Agent Infrastructure
comprises an arbitrary number of DSAPs. When a Process Management
Subsystem process implements an activity it deploys one or more Mobile
Agents to one or more DSAPs. The DSAPs execute these agents and
provide communication facilities so that the Mobile Agents can send data
back to the Process Management Subsystem process that spawned them.
We discuss the DSAP in detail in Section 2.6.3.

Agent Repository The Agent Repository stores the Secure Agent Infrastruc-
ture’s agents. Specifically, the Agent Repository stores the code of agents,
either as plain class files, or in Jar files. Furthermore, it stores a certificate
for each agent which is used to authenticate the Mobile Agent code.

Public Key Infrastructure repository The Public Key Infrastructure repos-
itory is a central storage for all agent platform certificates.

Resource Lookup System Situational awareness is a key success factor for
crises management. The quality of the available intelligence directly influ-
ences the quality of decision making and thus crisis mitigation. Therefore,
information retrieval is a central task of the Secure Agent Infrastructure.
In a crisis the intelligence needed for situational awareness is often divided
into many different domains and different stakeholders in these domains.
Therefore, the Secure Agent Infrastructure needs a mechanism to find out
which entities hold relevant information for a specific process. This is the
task of the Resource Lookup System. The Resource Lookup System maps
connected entities to the information they can provide.

In addition to these core components the Secure Agent Infrastructure also
heavily relies on two agents.

Information Delivery Agent This purpose of this agent is to retrieve infor-
mation from legacy systems that are not directly able to integrate into the
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Mobile Agent System and deliver it to the Process Management Subsys-
tem. The Information Delivery Agent uses exchangeable data connector
subcomponents to interact with, and retrieve data from, any number of
legacy systems. For example, one of the data connectors is a configurable
relational database connector where the configuration specifies which data
to retrieve and how.

User Communication Agent The User Communication Agent is designed
for interacting with humans. The User Communication Agent can use
different messaging mechanisms such as for example the Silentel2 push-
to-talk communication solution for first responders [BGH+11]. A User
Communication Agent can directly send messages to a human user using
the messaging mechanism, and, additionally, it can use a configurable form
based interface to request structured information from the user.

2.6.2 Example Use Case

The authors of the Secure Agent Infrastructure like to illustrate how the differ-
ent components of the Secure Agent Infrastructure interact to help mitigate a
crisis through describing the following use case [Gat10a, HBG10, GBH10]. The
scenario for the use case is a swine flu epidemic in a single country. The number
of infected and sick people is steadily rising and the country’s responsible gov-
ernment agency decides to up their warning level and initiate crisis management.
This is where the Secure Agent Infrastructure comes in.

Figure 2.6 details the individual steps of a single process of the swine flu epi-
demic mitigation strategy and how the Secure Agent Infrastructure components
and the crisis mitigation personnel work together in this process. Here follows a
description of the individual steps.

1. The national health agency’s Chief Officer responsible for handling an epi-
demic initiates the crisis mitigation process. For this she uses a User Com-
munication Agent to inform the Process Management Subsystem about
which kind of crisis it is, and how severe the crisis has become.

2. Based on the information received in the prior step the Process Manage-
ment Subsystem compiles a list of mitigation plans and qualified personnel
from its database. It sends this list to the Chief Officer, again using the
User Communication Agent.

3. The Chief Officer peruses the list and selects the most appropriate miti-
gation plan and a responsible Crisis Officer to supervise the process. One
process of the mitigation plan is to ensure that enough vaccine is available
in the regional branches of the national health agency. This is the process
we continue to follow here.

2http://www.silentel.com/en/
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Figure 2.6: This crisis mitigation workflow example illustrates how the components
of the Secure Agent Infrastructure interact with crisis management per-
sonnel to help mitigating a swine flu epidemic. This example follows
a single process that governs the distribution of more vaccine to the
regional offices of the national health agency. In this example Mobile
Agents communicate with users and retrieve information from otherwise
incompatible legacy systems. The example is adopted from Emil Gatial’s
dissertation [Gat10a].
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4. With the overall strategy selected, the Process Management Subsystem
contacts the responsible Crisis Officer, again using a User Communication
Agent, to fill in the details. Specifically, here the Crisis Officer is asked to
specify which vaccine to stock up on and how many people per 1000 must
be vaccinated with this particular vaccine.

5. The Crisis Officer accepts to supervise the mitigation process and specifies
the requested information.

6. Given this new information the Process Management Subsystem needs to
determine how much vaccine is available in the individual regional branches
of the health agency. For this the Process Management Subsystem contacts
the Resource Lookup System and asks for a list of regional health agencies
that can administer this vaccine.

7. The Resource Lookup System sends back a list of the appropriate regional
health agencies to the Process Management Subsystem.

8. The Process Management Subsystem formulates the correct configuration
for the database connector component of the Information Delivery Agents
to query this information from the regional health agency information sys-
tems. It then contacts the Agent Repository to configure and release a
number of Information Delivery Agents to perform this task.

9. The Agent Repository releases the Information Delivery Agents to query
the regional health agencies information systems. As the regional health
agencies use legacy systems not directly integrated with the Secure Agent
Infrastructure, the agents migrate to a connector (a DSAP) in the regional
health agencies computer systems.

10. Once the Information Delivery Agents have migrated to the DSAPs sta-
tioned in the regional health agencies, the agents query the amount of
available vaccine and send this information back to the Process Manage-
ment Subsystem.

11. The Process Management Subsystem waits a specified amount of time for
all Information Delivery Agents to report back. After the deadline the
Process Management Subsystem collates a list of vaccine stocks and sends
it to the responsible Crisis Officer.

12. The Crisis Officer peruses the list and after careful consideration orders
more vaccine to be distributed to the regional health agencies. Through a
User Communication Agent the officer informs the Process Management
Subsystem.

13. The Process Management Subsystem now knows how much vaccination
per 1000 people is necessary, how many people a given regional agency is
responsible for and how much vaccine each agency has in stock. Based
on this information the Process Management Subsystem computes how
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much vaccine to order and where to distribute it. The order request and
the distribution scheme are sent to the Agent Repository together with
a request to instantiate a User Communication Agent and send it to the
national materials reserve that stocks more vaccine.

14. The Agent Repository instantiates a User Communication Agent config-
ures it with the vaccine order request and distribution scheme and sends
it to a DSAP in the national materials reserve to contact the appropriate
Reserves Officer.

15. The Reserves Officer processes the order and through the User Communi-
cation Agent sends back status information on the shipments to the Process
Management Subsystem.

16. The Process Management Subsystem informs the Crisis Officer about the
status of the vaccine deliveries.

17. The Crisis Officer maintains the process status. Through the User Com-
munication Agent the process status is relayed to the Process Management
Subsystem

18. The Process Management Subsystem keeps the Chief Officer up-to-date on
the process status.

2.6.3 Distributed Secure Agent Platform

The DSAP software component is a Jini service (see Section 2.5.1) written in the
Java programming language. A DSAP is capable of receiving a Mobile Agent
and instantiating and executing the Mobile Agent. The DSAP also helps Mobile
Agents to communicate with their Process Management Subsystem process by
providing the necessary communication primitives. The individual DSAP in-
stances are homogeneous; they use the same program code. Thus the DSAP is
the substrate of the Secure Agent Infrastructure Mobile Agent System.

The DSAPs are build on Jini (see Section 2.5). Specifically, the individual
DSAP instances are implemented as Jini services and they use Jini technology
for service registration and communication. Figure 2.7 depicts how the DSAP
Service use the Jini service discovery and join protocols (see Section 2.5.3) to
register with a service registry (a Jini lookup service) and advertise their exis-
tence to potential clients, such as the Process Management Subsystem. When
a Process Management Subsystem process wants to send an agent to a specific
DSAP it can use the lookup service to find it. Then it fetches a service proxy
object from the lookup service and uses that to send the Mobile Agent from the
Agent Repository to the DSAP. Furthermore the client can send messages to
and receive messages from a Mobile Agent using the service proxy object.
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Figure 2.7: The Distributed Secure Agent Platform component of the Secure Agent
Infrastructure is a Jini service handling Mobile Agent transmission,
client-agent communication and Mobile Agent execution [GBH10]. A
newly instantiated Distributed Secure Agent Platform Service (DSAP
Service) first uses Jini’s discovery and join protocols to register with a
Jini lookup service. Then clients, such as the Process Management Sub-
system, can find the DSAP Service and request a service proxy to send
agents to it and allow agents to communicate with the client through the
service proxy and vice versa.
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2.6.4 Properties of Secure Agent Infrastructure Agents

We have introduced properties associated with agency in Section 2.1. Gatial
documents that of these agent properties the agents in use by the Secure Agent
Infrastructure exhibit the following properties [Gat10a]:

Code mobility The agents exhibit weak code mobility and only support single-
hop mobility (see Section 2.3). The agents are sent from the Agent Repos-
itory to a target DSAP where they are executed. However they do not
migrate their execution state and they can travel to no additional hosts.
Data is directly sent back to the Process Management Subsystem. Gatial
points out that single-hop, weak code mobility was sufficient for the crises
management use cases they implemented.

Autonomy The agents autonomously gather data and sent it to Process Man-
agement Subsystem process that caused the agents to be spawned.

Reactivity In some cases the agents perceive the context in which they operate
and react accordingly. For example, agents can monitor the availability of
resources and notify the entity requesting this information.

We observe that Gatial does not attribute the agents with situatedness. We
believe this is due to the fact, that although the agents are part of an environ-
ment and interact with it, only the User Communication Agents change the
environment, when interacting with humans. However, here the more or less
just relay information to and from the Process Management Subsystem process
that spawned them. A significant part of the “intelligence” of the Secure Agent
Infrastructure is centralized in the Process Management Subsystem.

This lack of decentralized “intelligence” violates one of the properties of a
Multi-Agent System we introduced in Section 2.2. Specifically, the property
that states that there is no global system control. The Secure Agent Infras-
tructure exhibits the other three properties, namely that each agent has only
incomplete information, that the data is decentralized and that the computa-
tion is asynchronous. However, if this makes the Secure Agent Infrastructure a
Multi-Agent System in the classical sense is open for debate.

Gatial also makes no statement about responsiveness, pro-activeness, and so-
cial ability. We do believe that the agents are capable of perceiving and reacting
in a timely fashion, therefore we believe the agents to be responsive. However,
they exhibit little pro-activeness and they have no social ability.

Concerning Veracity, Benevolence, and Rationality we lean towards Borselius’
viewpoint that the gist of these properties is that “agents are well behaved and
will never act in a malicious manner [Bor02].” To this end agents are certified by
a trusted third party, before being introduced to the Secure Agent Infrastructure.
See Section 2.6.7 for details.
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2.6.5 Security Architecture of the Secure Agent Infras-

tructure

From the beginning the Secure Agent Infrastructure was designed to use an
external security module, the Secure Docking Module (SDM) [SEC07]. We ex-
panded the concept of the SDM into two parts: the Trusted Docking Station
(TDS) and the SDM [HT09, ŠBH+09, HDFL09, KLL+09], and both concepts
became an integral part of the Secure Agent Infrastructure. The design, im-
plementation and evaluation of the SDM and the TDS are contributions of this
thesis and will be detailed in Section 5. The objectives of the SDM/TDS com-
bination include authenticating a DSAP and establishing its load-time integrity
(see Section 2.15.3) in order to bind the use of cryptographic keys to a specific
platform security policy.

The authors of the Secure Agent Infrastructure created security mechanisms
that use the SDM and TDS combination. We consider these security mecha-
nisms created by the Secure Agent Infrastructure author’s external to this thesis
and as prior art. These mechanisms are detailed in [Gat10a], and a brief de-
scription follows here. We supplemented the information in Gatial’s dissertation
by studying the source code of the DSAP [Gat10b]. Note that not all these
mechanisms actually use the SDM and TDS combination.

2.6.6 Resilience against Temporary Communication Dis-

ruptions

One of the reasons the authors of the Secure Agent Infrastructure decided to use
a Mobile Agent System for disaster response was its inherent resilience against
temporary communication disruptions. Mobile Agents can overcome unstable
network conditions, such as intermittent communication failures. Mobile Agents
can autonomously use different communication paths, or wait for the network
to be restored, and resume operation.

2.6.7 Agent authenticity

Agents are reviewed and certified by a trusted third party. The trusted third
party reviews the agent’s code. According to Gatial [Gat10a], by certifying an
agent, the trusted third party “indicates that the agent code does exactly what
its creator states it should do and that it does not contain any malicious code,
which jeopardizes the host platform integrity”. We assume that the agent code
is signed upon certification and that this signature is checked before an agent is
instantiated.

2.6.8 Agent transport

The Secure Agent Infrastructure encrypts agents during transmission. The Mo-
bile Agents are encoded into an agent package consisting of the serialized agent
object(s) and the agent class file(s). The Secure Agent Infrastructure uses a key
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encapsulation scheme that encrypts a symmetric ephemeral session key created
by the sending platform with the public key of the receiving platform that is
retrieved from the Public Key Infrastructure repository. The agent package is
encrypted using the ephemeral session key. The Secure Agent Infrastructure
uses AES in Electronic Codebook Mode of operation for bulk encryption and
RSA for key transport. The private decryption key of the receiving platform is
protected using the SDM and TDS combination that only grants access to pri-
vate key if the load-time integrity of the executing platform has been successfully
established.

2.6.9 Agent communication

Agent communication is encrypted using plain AES in Electronic Codebook
Mode of operation. Agent communication protection uses the same ephemeral
key that was used during agent transport.

2.6.10 Remarks

The authors of the Secure Agent Infrastructure correctly identified the need for
data protection and also identified cryptography as the right tool, but we do
have some serious concerns with the design choices, such as the complete lack
of integrity protection, and implementation details, such as using the Electronic
Codebook Mode mode of operation. As authentic, integrity protected, and con-
fidential communication is, at least in principle, achievable, and recent versions
of Jini (Apache River see Section 2.5) support secure transport protocols such
as HTTPS, for the purpose of this thesis, we assume that inter-platform com-
munication is handled by a secure communication protocol.

2.7 Security Goals

In this section we discuss the three prominent security goals of confidentiality,
integrity and availability; the CIA triad as they are sometimes called. Note
that there are communities who interpret CIA as confidentiality, integrity and
authenticity. We, however, follow Bishop’s taxonomy of qualifying authenticity
as origin integrity [Bis02].

2.7.1 Confidentiality

According to Bishop [Bis02] “confidentiality is the concealment of information or
resources.” In this thesis we are primarily concerned with data confidentiality.
Data confidentiality is the property that access to certain data is restricted
to authorized individuals, entities or processes. Cryptography and OS access
control are two prominent security mechanisms that ensure data confidentiality.
Next to data confidentiality there are other confidentiality related security goals
such as hiding the existence of information and resources or hiding that certain
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information or resources were accessed. These forms of confidentiality are out
of scope for this thesis.

2.7.2 Integrity

Bishop [Bis02] states that “integrity refers to the trustworthiness of data or re-
sources, and is usually phrased in terms of preventing improper or unauthorized
change.” We are concerned with two different forms of integrity. Data integrity,
which refers to the content of information, and origin integrity, which is con-
cerned with the source of the data. We follow the terminology where origin
integrity is authentication.

There are two main classes of integrity protection mechanisms. These are
prevention mechanisms and detection mechanisms. Prevention mechanisms try
to prevent unauthorized access to data and unauthorized modification. Bishop
points out that it is important to differentiate between an unauthorized entity
gaining access to data, versus an authorized entity changing the data in an unau-
thorized way. Bishop further states that the two cases require two completely
different sets of controls to mitigate.

Detection mechanisms try to make integrity violations evident; they do not
prevent unauthorized modifications. We are primarily concerned with detection
mechanisms. For example, hash functions which we introduce in Section 2.9.1
can help detect data integrity violations, and Message Authentication Codes
(MACs) (see Section 2.9.2) are geared towards detecting both data integrity and
origin integrity violations.

2.7.3 Availability

Data, a resource, or a system is only of service if it is available for use. Therefore,
the security goal of availability is to prevent an adversary from making data, a
resource, or a system unavailable (see Denial-of-Service in Section 2.8.2).

2.8 Threat Modeling

Threat modeling is a central aspect of this thesis. For one, the threat modeling
of the Secure Agent Infrastructure Multi-Agent System described in Section 2.6
is a central contribution of this thesis (see Chapter 4). Furthermore we use
threat modeling to better illustrate the capabilities of the Secure Block Device
in Chapter 6.

2.8.1 Definitions

As threat modeling is a very flexible term [Sho08], here we define threat mod-
eling as it applies to this thesis. As a basis we first define the terms security
policy, security mechanism, adversary/attacker, vulnerability, and threat, and
their specific meaning herein.
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Definition 2.1. A security policy is a statement of what is, and what is not
allowed in a system [Bis02].

Security policies can be informal statements such as: “In this test you are not
allowed to copy the results from any of your colleagues.”, but also mathematically
formalized as a list of allowed and disallowed states [Bis02].

Definition 2.2. A security mechanism is a method, tool, or procedure to enforce
a security policy [Bis02].

Often several security mechanisms have to work together to enforce a security
policy.

Definition 2.3. An adversary, or attacker, is an entity motivated to violate a
system’s security policy.

Definition 2.4. A vulnerability is a set of conditions that allows an attacker to
violate an explicit or implicit security policy [Sea05].

Definition 2.5. A threat is the potential violation of the confidentiality, in-
tegrity, or the availability of an asset by an adversary exploiting a system vul-
nerability.

We could also conveniently define threats via the security policy. Here a
threat is the potential violation of an element of the security policy. However, in
our experience we define a system’s security policy, by first analysing the specific
threats to that system. Hence, we use a definition that is based on the violation
of the security goals of confidentiality, integrity and availability, and not on the
violation of a security policy.

Definition 2.6. Threat modeling is the process of identifying specific threats
to a system. The goal of this process is to identify, describe, rank, and mitigate
these threats.

A threat model can also be applied to verify the effectiveness of security
mechanisms in an implementation against the modeled threats.

2.8.2 Threats

In Chapter 4, we use STRIDE-per-interaction (see Section 2.8.5) for enumerating
threats. STRIDE is an mnemonic for Spoofing, Tampering, Repudiation, Infor-
mation disclosure, Denial of Service, and Elevation of privilege, the six threats
considered by the STRIDE threat enumeration approach. Here we describe these
six threats. We use Matt Bishop’s Introduction to Computer Security [Bis02] as
source.

Spoofing Spoofing or masquerading is the impersonation of one entity by an-
other. It lures the victim into believing that the entity with which it is
communicating is a different entity [Bis02]. For example, consider a Mo-
bile Agent (see Section 2.1) that wants to migrate to a specific target agent
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platform (see Section 2.2). If a malicious agent platform different from the
target platform is able to masquerade as the target platform it spoofs the
identity of the target agent platform. Spoofing is a threat to integrity,
more specifically origin integrity or authenticity, and it is countered by
authentication services.

Tampering Bishop calls this modification or alteration and describes it as an
unauthorized change of information. A classical example for a tampering
threat is the Man-in-the-Middle attack. Here an adversary reads incoming
messages from a sender and sends modified versions to the recipient. Tam-
pering is an integrity threat and can be countered with integrity services.

Repudiation Bishop discusses this threat as denial of receipt, as opposed to
repudiation of origin. In denial of receipt an entity repudiates ever hav-
ing received a specific information, whereas in repudiation of origin an
entity denies creation of a specific piece of information. In all STRIDE-
per-interaction threats we discuss in this thesis repudiation always refers
to denial of receipt. For example, when a Mobile Agent migrates to a dif-
ferent agent platform, the receiving platform might repudiate ever having
received the migrating agent. One potential motivation for realizing this
particular threat could be that the receiving platform compromised the
agent and wants to obfuscate this fact. This threat is affecting both avail-
ability and integrity and can be mitigated by a combination of availability
and integrity mechanisms.

Bishop and STRIDE both cover repudiation of origin indirectly via spoof-
ing. If it is possible to spoof the identity of an entity, this entity can always
repudiate having sent anything. However, if this lack of origin integrity is
mitigated with a suitable authentication mechanism, repudiation of origin
is also mitigated.

Information Disclosure Information disclosure, or as Bishop calls it, snoop-
ing is the unauthorized interception of information. Bishop qualifies it as
passive, that is, some entity is eavesdropping on communications or files.
An example for information disclosure is a router on the Internet reading
the packets it routes in addition to actually routing them. Information
disclosure is a clear violation of confidentiality.

Denial-of-Service Here Bishop differentiates between two threats that are cov-
ered by the single Denial-of-Service category in STRIDE. These threats
are delay and Denial-of-Service. Delay is a temporary inhibition of a ser-
vice. For example, when an agent platform is executing a Mobile Agent
so slow that the Mobile Agent cannot perform its task in a timely fashion,
then this is a delay attack. Denial-of-Service is a long term inhibition of
a service. To extend our example, here the malicious agent platform does
not execute the agent at all, which is equivalent to executing the Mobile
Agent with an infinite delay. Denial-of-Service violates availability and can
be countered by availability mechanisms.
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Elevation of Privilege Elevation of privilege, or privilege escalation is when
an otherwise unauthorized entity gains access to privileged services or re-
sources. Bishop does not consider this threat, however we consider eleva-
tion of privilege as a threat to authorization and thus a threat to confiden-
tiality, integrity, availability.

A very prominent example of this is when a normal user of a system gains
administrative privileges, or more specifically, if a process running as an
unprivileged user is able to acquire administrative rights through an imple-
mentation attack, such as a buffer overflow with shell code injection. This
process then can circumvent OS access control and can potentially read
confidential data, corrupt data and thus violate integrity, or shutdown or
slow down the system to violate availability.

2.8.3 The Microsoft Security Development Lifecycle Threat

Modeling Methodology

Microsoft’s Security Development Lifecycle threat modeling methodology is a
practical approach for analysing software, usable by non-experts, and centered
on Data Flow Diagrams and the STRIDE-per-element threat enumeration tech-
nique [Sho08]. Microsoft’s Security Development Lifecycle has been adapted
to use the STRIDE-per-interaction threat enumeration technique [Sho14, aT14,
MTM15]. Threat modeling at Microsoft has been first documented in 1999 [KG99],
and later became a part of Microsoft’s Security Development Lifecycle [HL02,
Sho08, Sho14]. The threat modeling methodology has evolved over the years [Sho08]
and the following description is based on the latest iteration [Sho08, Sho14].

Microsoft’s threat modeling methodology is a 4 step process with the goals
of improving the security of designs, documenting the security design activity
and teaching the people working on the process about security. The 4 steps of
the threat modeling process are diagramming, threat enumeration, mitigation,
and verification.

Diagramming The threat modeling methodology uses a diagramming system
derived from standard Data Flow Diagrams to model the system under
analysis. In addition to the standard Data Flow Diagram elements of
Process, Data store, Data flow and External entity, the threat modeling
methodology also defines trust boundaries, where the different sides of
the boundary operate on different levels of privilege. We have listed the
five Data Flow Diagram elements in use by Microsoft’s threat modeling
methodology in Table 2.1. According to Shostack [Sho08], Data Flow
Diagrams were chosen for threat modeling, because they are easy to un-
derstand and because modeling the flow of data naturally reveals potential
attack vectors for attacks on data and code confidentiality and integrity.

Threat enumeration The Microsoft Security Development Lifecycle supports
both the STRIDE-per-element and the STRIDE-per-interaction technique
to enumerate threats. Both techniques use the Data Flow Diagram model
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Table 2.1: Description of the elements in the Microsoft Security Development Life-
cycle threat modeling methodology’s diagramming system. The diagram-
ming system is based on Data Flow Diagrams, so this description encom-
passes Data Flow Diagram elements, as well as the trust boundary element
added by the threat modeling methodology. This table is based on a table
in [Sho08].

Name Representation Definition Examples

External
entity

Entities outside
of control

Humans, other
systems, web

sites

Process
A running
program

Executables,
components

Data flow
Flow of

information

Function calls,
Remote

Procedure Call

Data store Data at rest Files, databases

Trust
boundary

Different
privilege levels

Process
boundaries,

machine
boundaries

of the system created in the first step to generate a list of threats. The
threats in this list fall into six categories. These six categories are Spoofing,
Tampering, Repudiation, Information disclosure, Denial of Service, and
Elevation of privilege. Together these six categories make up the STRIDE
mnemonic and we detail these six threat categories in Section 2.8.2. We
discuss how the STRIDE-per-element and STRIDE-per-interaction threat
enumeration techniques work, and how they differ in Section 2.8.5.

Mitigation Microsoft’s Security Development Lifecycle considers four approaches
to mitigation, in order of preference: redesign, use standard mitigations,
such as access control, use unique mitigations (with caution), or accept the
risk in accordance with policies [Sho08].

Validation Microsoft’s Security Development Lifecycle uses heuristics, such as
graph analysis of the Data Flow Diagrams, for validating threat mod-
els [Sho08].

2.8.4 The Microsoft Threat Modeling Tool Family

The Microsoft Threat Modeling Tool family consists of tools for creating Data
Flow Diagrams of systems, analyze the Data Flow Diagrams for automatic gener-
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ation of potential threats, and creating reports. The Microsoft Threat Modeling
tool family supports implementing the Microsoft Security Development Lifecy-
cle. In this thesis we use the Microsoft Threat Modeling Tool 20143 [aT14]
and the Microsoft Threat Modeling Tool 20164 [MTM15]. Both the Microsoft
Threat Modeling Tool 2014 and 2016 use the STRIDE-per-interaction threat
enumeration technique [aT14, MTM15].

2.8.5 Threat Enumeration

Here we discuss the STRIDE-per-element and STRIDE-per-interaction threat
enumeration techniques. Both are variants of STRIDE. STRIDE was first doc-
umented by Loren Kohnfelder and Praerit Garg at Microsoft [KG99]. STRIDE is
a mnemonic made up from the six different threat categories it considers. These
threat categories are Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service, and Elevation of privilege. According to Shostack [Sho14], the
STRIDE framework and mnemonic were developed to help people developing
software to identify the types of attacks that software tends to experience.

STRIDE-per-element

STRIDE-per-element is a semi-formal, prescriptive approach to threat enumer-
ation that uses the model represented by the Data Flow Diagram of the system
under analysis for enumerating potential threats that can occur for data flows
originating or terminating in specific elements. STRIDE-per-element is based on
STRIDE. STRIDE-per-element is build on the observation that certain threats
are more prevalent with certain elements of the Data Flow Diagram [Sho14]. By
limiting the threats to consider per element this approach makes it simpler to
find threats. The threat category to Data Flow Diagram element association
is depicted in Table 2.2. For every element in the Data Flow Diagram model
of the system under analysis the threat modeler only considers those threats
that have a tick in the respective STRIDE category. For example, for an ex-
ternal entity the threat modeler only considers Spoofing threats, when using
STRIDE-per-element.

Shostack [Sho14] estimates that “When you have a threat per X in the
STRIDE-per-element table, you are doing reasonably well. If you circle around
and consider threats against your mitigations (or ways to bypass them) you’ll
be doing pretty well.”. We believe that Shostack wants to state that if a threat
modeler follows the STRIDE-per-element methodology and can come up with at
least one threat per tick in Table 2.2, then this is a good start. If the threat mod-
eler then chooses mitigation mechanisms for these threats and considers threats
against these mitigation mechanisms, the threat modeler will “be doing pretty

3http://blogs.microsoft.com/cybertrust/2014/04/15/
introducing-microsoft-threat-modeling-tool-2014/

4https://blogs.microsoft.com/cybertrust/2015/10/07/
whats-new-with-microsoft-threat-modeling-tool-2016/
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Table 2.2: The mapping of Data Flow Diagram (DFD) element types to specific
threat categories in the STRIDE-per-element threat enumeration tech-
nique. The threat categories are Spoofing, Tampering, Repudiation, In-
formation disclosure, Denial of Service, and Elevation of privilege. The
question mark for the Data store under Repudiation signifies that data
stores need to be treated differently, if they are used for authentic logging.
In such a case repudiation threats need to be considered. This table is
adapted from [Sho14].

DFD element S T R I D E

External entity X X

Process X X X X X X

Data flow X X X

Data store X ? X X

well”. Furthermore, we believe that Shostack’s statement is based on his per-
sonal experience. In Section 3.1.1 we discuss a descriptive study by Scandariato
et al. [SWJ15] that evaluates the effectiveness of STRIDE-per-element.

STRIDE-per-interaction

STRIDE-per-interaction is an approach to threat enumeration that considers tu-
ples of (origin, destination, interaction) and enumerates threats against these
tuples [Sho14]. STRIDE-per-interaction was developed by Microsoft’s Larry
Osterman and Douglas MacIver. According to Shostack [Sho14] STRIDE-per-
interaction leads to the same number of threats as STRIDE-per-element, but
the threats may be easier to understand with this approach. However, Shostack
claims that STRIDE-per-interaction is to complex to use without having a ref-
erence, such as Table 2.3, at hand. We believe this makes the Microsoft Threat
Modeling Tool family (see Section 2.8.4) that implements automatic STRIDE-
per-interaction based threat generation especially helpful.

Table 2.3 illustrates how STRIDE-per-interaction maps (origin, destination,
interaction) tuples to the STRIDE threat categories. Note that with STRIDE-
per-interaction the term external entity has been replaced by external interactor.
The first column of the table (Element) is the origin and the second column (In-
teraction) combines destination and interaction. For example, for a process that
has an outbound data flow to a data store, the threat modeler has to consider the
threats from the Spoofing and Information Disclosure threat categories. If the
data flow also crosses a trust boundary, the threat modeler has to additionally
deliberate tampering and repudiation threats.

We use an example adapted from [Sho14] to illustrate the STRIDE-per-
interaction threat enumeration technique in conjunction with the Microsoft Threat
Modeling Tool 2016. Figure 2.8 depicts a very simple system illustrating all of
the possible interactions listed in Table 2.3. We have modeled this simple sys-
tem using Microsoft Threat Modeling Tool 2016. The tool outlines 53 potential
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Table 2.3: The mapping of Data Flow Diagram (DFD) element types, information
flow destinations, and interaction types to specific threat categories in
the STRIDE-per-interaction threat enumeration technique. The threat
categories are Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service, and Elevation of privilege. This table is adapted
from [Sho14].

Element Interaction S T R I D E

Process has outbound data flow to data store. X X

sends output to another process. X XXXX

sends output to external interactor (code). X XXX

sends output to external interactor (human). X

has inbound data flow from a data store. XX XX

has inbound data flow from a process. X X XX

has inbound data flow from external interactor. X XX

Data flow crosses machine boundary. X XX

Data store Process has outbound data flow to data store. XXXX

Process has inbound data flow from data store. XXX

External
Interactor

passes input to the process. X XX

gets input from process. X

threats in the 37 (origin, destination, interaction) tuples-to-threat-categories-
mappings listed in Table 2.3. In the interest of brevity we only excerpt the first
11 threats enumerated by the tool for the interaction Input from External to
Process 1 in Figure 2.8 and list them in Table 2.4.

As External is an external interactor and Process 1 is a process, three lines
from Table 2.3 apply. The first line is “Process has an inbound data flow from
external interactor.” As the data flow crosses a trust boundary, the second
is “Data flow crosses a machine boundary”. The third is “External Interac-
tor passes input to the process”. Note that the lines “Process sends output
to external interactor (code/human)” do not apply because here the external
interactor sends data and not the process. The first line requires a threat mod-
eler to check for spoofing, Denial-of-Service, and elevation of privilege threats.
The second line mandates checking for tampering, information disclosure, and
Denial-of-Service threats. Finally, the third line indicates that checking for
spoofing, repudiation and Denial-of-Service threats is advisable. So for this
(origin, destination, interaction) tuple, all six threat categories are pertinent,
and some threat categories are indicated by several distinctive rules.

We also provide Table 2.4 as an example of the threat titles and threat
descriptions the tool generates for its reports. We reprint the threat titles and
threat descriptions verbatim in the table.

Shostack [Sho14] rates the effectiveness of STRIDE-per-interaction to find
threats as follows: “When you have threat per X in the STRIDE-per-interaction
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External Process 1

Process 2

Datastore

Write

Read

Input

Output

Send Receive

Figure 2.8: A Data Flow Diagram of a simple system illustrating all possible
STRIDE-per-interaction interactions listed in Table 2.3. We have em-
phasized the Input data flow, as we use it in an example to detail how
STRIDE-per-interaction works.

table, you are doing reasonably well. If you circle around and consider threats
against your mitigations (or ways to bypass them) you’ll be doing pretty well.”
We assume that this estimate is based on Shostack’s personal experience. In
Section 3.1.1 we discuss a descriptive study by Williams and Yuan [WY15] that
evaluates the effectiveness of the Microsoft Threat Modeling Tool 2014 that uses
STRIDE-per-interaction.

Table 2.4: An adapted excerpt of the report generated by the Microsoft Threat Mod-
eling Tool 2016 for the system modeled by the Data Flow Diagram depicted
in Figure 2.8. This table lists the 11 potential threats and their description
as enumerated by the tool for the interaction Input between External and
Process 1 in Figure 2.8. These are only 11 of the 53 threats proposed for
analysis by the tool for the overall system model.

S T R I D E Threat / Description

X Spoofing the Generic External Interactor External En-
tity
External may be spoofed by an attacker and this may lead to
unauthorized access to Process 1. Consider using a standard
authentication mechanism to identify the external entity.

X Elevation Using Impersonation
Process 1 may be able to impersonate the context of External
in order to gain additional privilege.
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Table 2.4 – continued from previous page

S T R I D E Threat / Description

X Spoofing the Process 1 Process
Process 1 may be spoofed by an attacker and this may lead to
information disclosure by External. Consider using a standard
authentication mechanism to identify the destination process.

X Potential Lack of Input Validation for Process 1
Data flowing across Input may be tampered with by an at-
tacker. This may lead to a denial of service attack against
Process 1 or an elevation of privilege attack against Process
1 or an information disclosure by Process 1. Failure to verify
that input is as expected is a root cause of a very large number
of exploitable issues. Consider all paths and the way they han-
dle data. Verify that all input is verified for correctness using
an approved list input validation approach.

X Potential Data Repudiation by Process 1
Process 1 claims that it did not receive data from a source
outside the trust boundary. Consider using logging or auditing
to record the source, time, and summary of the received data.

X Data Flow Sniffing
Data flowing across Input may be sniffed by an attacker. De-
pending on what type of data an attacker can read, it may be
used to attack other parts of the system or simply be a disclo-
sure of information leading to compliance violations. Consider
encrypting the data flow.

X Potential Process Crash or Stop for Process 1
Process 1 crashes, halts, stops or runs slowly; in all cases vio-
lating an availability metric.

X Data Flow Input Is Potentially Interrupted
An external agent interrupts data flowing across a trust bound-
ary in either direction.

X Process 1 May be Subject to Elevation of Privilege
Using Remote Code Execution
External may be able to remotely execute code for Process 1.

X Elevation by Changing the Execution Flow in Process
1
An attacker may pass data into Process 1 in order to change the
flow of program execution within Process 1 to the attacker’s
choosing.
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Table 2.4 – continued from previous page

S T R I D E Threat / Description

X Cross Site Request Forgery
Cross-site request forgery (CSRF or XSRF) is a type of attack
in which an attacker forces a user’s browser to make a forged
request to a vulnerable site by exploiting an existing trust rela-
tionship between the browser and the vulnerable web site. In a
simple scenario, a user is logged in to web site A using a cookie
as a credential. The other browses to web site B. Web site B re-
turns a page with a hidden form that posts to web site A. Since
the browser will carry the user’s cookie to web site A, web site
B now can take any action on web site A, for example, adding
an admin to an account. The attack can be used to exploit any
requests that the browser automatically authenticates, e.g. by
session cookie, integrated authentication, IP whitelisting, âĂę
The attack can be carried out in many ways such as by luring
the victim to a site under control of the attacker, getting the
user to click a link in a phishing email, or hacking a reputable
web site that the victim will visit. The issue can only be re-
solved on the server side by requiring that all authenticated
state-changing requests include an additional piece of secret
payload (canary or CSRF token) which is known only to the
legitimate web site and the browser and which is protected in
transit through SSL/TLS. See the Forgery Protection property
on the flow stencil for a list of mitigations.

2.9 Cryptographic Primitives

Cryptography provides one of the most powerful, if not the most powerful, sets of
security mechanisms available to achieve the security goals, of Confidentiality, In-
tegrity and Availability. Note that integrity includes origin integrity, commonly
also known as authenticity. The primary field of application of cryptography
is integrity, including authenticity, and confidentiality. As such we frequently
use cryptography throughout this thesis. We expect you, esteemed reader, to
understand the basics of symmetric and asymmetric cryptography, including
for example cryptographic primitives such as AES or RSA. However, the Se-
cure Block Device we introduce in Chapter 6 relies heavily on cryptographic
hash functions, Message Authentication Codes (MACs) and Authenticated En-
cryption (AE). We therefore chose to briefly describe these three cryptographic
primitives here.
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2.9.1 Cryptographic Hash Functions

A hash function is any function that maps input data of arbitrary size to a fixed
size output, the hash. A hash function has the following form:

h = H(x). (2.1)

Here H designates a hash function, x is an input of arbitrary size, and h is
the fixed size hash value, or simply hash.

A cryptographic hash function H is a hash functions that additionally fulfills
the following three properties.

Pre-image resistance Given a hash h it should be computationally infeasible
to find any input x such that h = H(x).

Collision resistance It should be computationally infeasible to find two dis-
tinct inputs x1, x2 such that H(x1) = H(x2).

Second pre-image resistance Given H and an input x1 such that h = H(x1)
it should be computationally infeasible to find a second input x2 such that
H(x1) = H(x2).

Hash functions are widely used in computer security to achieve data integrity,
secure password storage, short representatives of data (data identifier), etc.

Cryptographic Hash Functions and Data Integrity

Hash functions can compute short representatives of arbitrary amounts of data.
These representatives can, for example, be used to determine data equality.
Consider that you want to compare the content of two files fx and fx′ . One way
to compare the files would be to compare them bit by bit. However, with hash
functions there is an alternative. You can use hash functions to test for equality
by computing hx = H(fx) and hx′ = H(fx′) and then testing if hx = hx′ . This
can be useful if you want to test if a file was changed over time. Compute a
hash h1 = H(fx) at time t1 and compare it with h2 = H(fx) at time t2 (now).
If h1 6= h2 the files have changed. However for the comparison to be meaningful
you need to be sure that it is still your unmodified hash h1 you use for the
comparison. You need to be sure that h1 is still authentic. You can achieve this
by storing it in an authentic Datastore (see Section 2.10).

The advantage of this approach for data integrity is that instead of having
to store the full data in an authentic memory, such as an authentic Datastore,
it suffices to store the, typically significantly smaller, hash value in an authen-
tic Datastore. Authentic data storage can, for example, be implemented with
Security Controllers, where storage is at a premium. Thus cryptographic hash
functions provide a computation time (recomputing the hash value) versus mem-
ory trade-off (storing hash versus storing an arbitrary amount of data).

Concerning the security of protecting data integrity using cryptographic hash
functions the following holds: Due to the collision resistance property of a cryp-
tographic hash function, it is computationally infeasible to find two arbitrary
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different chunks of data that map to the same hash value. Furthermore, due to
the second pre-image resistance property of cryptographic hash function given a
specific chunk of data and corresponding hash value, it must be computationally
infeasible to find a second chunk of data that maps to the same hash value. Thus
cryptographic hash functions can prevent intentional forgeries of hash values, by
manipulating the input to the hash function.

Note that cryptographic hash functions per se do not provide data authen-
ticity. Authenticity arises from having proof corroborating the origin of data.
Anyone having access to specific data can compute a hash of that data. There-
fore, a hash value alone gives no indication of where data originated. To achieve
this we need a more powerful cryptographic primitive, the MAC. Note however
that MACs can be created by using cryptographic hash functions as underlying
component.

Secure Hash Algorithm

The Secure Hash Algorithm is a family of cryptographic hash functions. It is
published by the National Institute of Standards and Technology. The Secure
Hash Algorithm family includes SHA-0, SHA-1, SHA-2, and SHA-3. Of these
SHA-1 and SHA-2 are of interest to us.

SHA-1 SHA-1 is a 160-bit hash function designed by the National Security
Agency. SHA-1 has the following form

h = SHA-1(x), (2.2)

where h is the 160-bit (20 bytes) output value, and x is the input message
with a maximum length of 264 − 1 bytes.

The SHA-1 function is cryptographically broken. Cryptographically broken
means that theoretical weaknesses have been found, but no practical attack
exists yet. Nevertheless, the cryptographic community and we believe it no
longer advisable to use SHA-1. SHA-1 is the one hash function used by the
Trusted Platform Module (TPM) 1.2 we introduce in Section 2.14.

SHA-2 SHA-2 is not a single hash function, but a family of related hash
functions. We use the SHA-256 hash of the SHA-2 hash family for implementing
the Merkle Tree (see Section 2.12) that protects the memory authenticity (see
Section 2.10) of the Secure Block Device we introduce in Chapter 6.

SHA-256 is a 256-bit hash function designed by the National Security Agency.
The SHA-2 function takes the following form

h = SHA-256(x), (2.3)

where h is the 256-bit (32 bytes) output value, and x is the input message
with a maximum length of 264 − 1 bytes.
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We are not aware of any attacks, be they theoretical or practical, against
SHA-2 in general and SHA-256 specifically that would render SHA-2 (crypto-
graphically) broken.

2.9.2 Message Authentication Codes

A MAC is generated by a function M that accepts a secret key k, an input x

of arbitrary size, and generates an output t of fixed size, the authenticity tag or
MAC. A MAC function has the following form:

t = M(k, x). (2.4)

Secure MAC functions must resist existential forgery under chosen-plaintext
attacks: It must be computationally infeasible for an adversary to create a tuple
(t, x) consisting of a tag t and a message x, that would validate under a certain
key k, without being in possession of k. Furthermore, even given a MAC oracle
that computes MACs for the adversary and that is in possession of the key k,
the adversary must not learn anything from any (t, x) pairs created by the oracle
that makes an existential forgery easier. Simply put, learning the key k from
unlimited use of such an MAC oracle still has to be computationally infeasible.

MAC functions are used in computer security to achieve data authenticity;
that is, data integrity and data origin integrity. Typically a message m is input
into a MAC function with a secret key ks. The message m and the output tag
tsnd are then sent to a recipient who shares the same secret key ks. The recipient
then computes trec = M(ks,m) and compares the received tsnd with the freshly
computed trec. If the two authentication tags match, the message content has
not been tampered with and is originating with an entity that holds ks.

Cipher-based Message Authentication Code

Cipher-based Message Authentication Code (CMAC) is a block cipher-based
MAC function published by the National Institute of Standards and Technol-
ogy [Dwo05]. We use the AES-CMAC algorithm described in [SPLI06] with the
Secure Block Device we introduce in Chapter 6.

2.9.3 Authenticated Encryption

Authenticated Encryption schemes strive to achieve both data confidentiality
and data authenticity simultaneously. AE schemes are a relatively new crypto-
graphic approach that arose to alleviate the problems stemming from insecure
compositions of existing confidentiality and integrity primitives [BN08]. AE
schemes are semantically secure under a chosen plaintext attack. Therefore,
an adversary cannot learn anything about the plaintext from its corresponding
ciphertext. Furthermore, by definition AE schemes are secure against chosen
ciphertext attacks, as they detect invalid ciphertext, and refuse to decrypt it.

An AE scheme consists of two functions (encAE , decAE), encAE for encryp-
tion and decAE for decryption. These functions are:
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(ct, t) = encAE(k,m, ad)

m = decAE(k, ct, ad, t),

where m is a plaintext message, k a secret key, and ad is associated data. The
AE encryption function encAE processes the plaintext m, the associated data
ad and the key k, to compute the ciphertext ct and the authentication tag t.
The associated data is not encrypted, but its integrity is protected by the AE
scheme. The authentication tag t effectively acts as a MAC for the input of
encAE . The decryption function decAE decrypts the cipher text and verifies the
authenticity of the message m and the associated data ad using the key k. If
either ad, t, or ct is modified, the decryption process will fail and the integrity
violation will become evident.

Note that use of an initialization vector (IV) is not uniform across AE
schemes. Many block cipher mode of operations use an IV to achieve ciphertext
randomization, a property that requires that repeated encryptions of an identi-
cal plaintext yield different ciphertexts. An IV is a cryptographic nonce, a bit
string of a certain size, where a specific valuation can only be used once. Some
schemes, such as the Offset Codebook Mode (OCB) scheme used here, require
an additional IV iv as input to both encAE and decAE . The iv is again protected
by the AE scheme; if the iv changes the decryption will fail.

Finally, the effect of the associated data (ad) on the ciphertext is also non-
uniform. In some AE schemes modifying ad, while holding all other inputs
constant, will also change the ciphertext ct, whereas in other schemes, modifying
ad will not change the ct. The tag t however must always change, if ad changes.
For example, for the OCB AE scheme changing ad does not change the ct, only
t, while for the Synthetic Initialization Vector (SIV) AE scheme modifying ad

completely randomizes the ct and changes t.
Due to the non-uniformity of AE schemes it is difficult to generalize their

security properties. We therefore discuss the security properties of the two AE
schemes we use for the Secure Block Device, that is OCB and SIV, in the two
following sections.

Offset Codebook Mode

OCB [RBB03] is an efficient single pass AE scheme. A single pass AE scheme
only requires one block cipher operation per block of encrypted data. A potential
drawback of OCB is that it is patented and its license5 restricts under which
use cases it can be used without paying royalties. At the time of writing, the
use of OCB implementations is free for Open-Source software, and non-military
non-commercial, or non-military research purposes.

According to Rogaway et al. [RBBK01], OCB provides confidentiality under
a chosen-plaintext attack and integrity under authenticity of ciphertexts. To-
gether these two properties imply protection against malleability under a chosen-

5http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm
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ciphertext attack. In a chosen-ciphertext attack an adversary is able to obtain
the decryption of multiple ciphertexts under an unknown key. However, even
under this strong assumption, with OCB, the adversary cannot learn anything
about the key k used, nor can he learn anything that makes a forgery of a (ct, t)
tuple easier.

However, when using OCB, there is one caveat to consider. OCB is vulnerable
under a collision attack [Fer02] that breaks the above security guarantees if an
adversary obtains close to, or even more than, 264 ciphertext blocks created
under the same key k. Therefore Krovetz and Rogaway [KR14] stipulate that a
single key should at most be used to create 248 ciphertext blocks (4 petabytes of
data). Furthermore, Krovetz and Rogaway emphasize the importance of never
reusing the same IV, as obtaining two (ct, t) pairs for different plaintexts, but
identical IVs and encrypted under the same key, allows the adversary to forge
future (ct, t) pairs.

Synthetic Initialization Vector

SIV [RS06] is a two-pass AE scheme, meaning SIV requires two block cipher
operations per block of encrypted data. For encryption the scheme first computes
the MAC of the data and associated data, and then uses this MAC as IV for the
encryption pass.

SIV is a Deterministic Authenticated Encryption construction [RS06] where
the notion of security directly captures the amalgamation of privacy (confiden-
tiality) and authenticity. In layman’s terms an SIV encrypted ciphertext is indis-
tinguishable from a random bit string of the same size, and without knowledge
of the key an adversary will be unable to create an input to an SIV decryption
(ct, t) that will decrypt successfully.

2.10 Single-User Block Datastore Authentication

In Chapter 6 we will introduce the Secure Block Device. The Secure Block
Device is a software library that uses cryptography to establish certain security
guarantees over data stored in an insecure storage location. In this section we
introduce a number of definitions to reason about the security guarantees the
Secure Block Device provides.

Here we define Single-User Block Datastore Authentication and the Single-
User Authentic Block Datastore. Single-User Block Datastore Authentication
is similar to memory authentication [ECG+09] and fork consistency [MS01,
LKMS04], but we further abstract these notions to better fit our needs. Be-
fore defining Single-User Block Datastore Authentication and Single-User Au-
thentic Block Datastore, we will first define the terms Datastore, Data Block,
Block Datastore, Block Datastore Authentication, and Authentic Block Datas-
tore. We base our definition of Block Datastore Authentication and Single-User
Block Datastore Authentication on the definition of Memory Authenticity by
Elbaz et al.
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Definition 2.7. Memory authentication is defined as the ability to verify that
the data read from memory by the processor (or by a specific application) at a
given address is the data it last wrote at this address. [ECG+09]

Definition 2.8. A Datastore is a hardware component that provides a software
interface for reading and writing data to a persistent storage. Datastores are of
finite size sS . Examples for Datastores are NVRAMs, block devices, hard disks,
flat files, and databases.

Definition 2.9. A Data Block is a logical unit delimiting a contiguous area of
memory. Within a Data Block the smallest addressable data unit is a byte. The
size of a Data Block sB is measured in bytes and we require sB ≥ 1 and sB to
be finite. Each byte in a Data Block is randomly accessibly, where the index
i ∈ {0, . . . , sB − 1}.

Definition 2.10. A Block Datastore is a Datastore whose only addressable and
accessible unit is a Data Block of fixed size sB . A Block Datastore of size sS
consists of n Data Blocks, where sS = n · · ·B , and n, and thus also sS , are finite.
We index Data Blocks via their address DBa, where 0 ≤ a < n.

Definition 2.11. A Single-User Block Datastore is a Block Datastore that is
intended to be used by a single user. Specifically, all authorized read and write
requests originate from the same source, the user, and are sequential in order.

Definition 2.12. Block Datastore Authentication is an authorized user’s ability
to verify that a Data Block DBa read from a Block Datastore at address a is
the Data Block last written at address a by any authorized user.

Definition 2.13. Single-User Block Datastore Authentication is the single au-
thorized user’s ability to verify that a Data Block DBa read from a Single-User
Block Datastore at address a is the Data Block last written at address a by

Note that Single-User Block Datastore Authentication has to hold even in
the face of an adversary that can directly read from, or write to, the Single-User
Block Datastore.

Definition 2.14. An Authentic Block Datastore is a Block Datastore where
Block Datastore Authentication always holds. Similarly, a Single-User Authen-
tic Block Datastore is an Single-User Block Datastore where Single-User Block
Datastore Authentication always holds.

The Secure Block Device is a software library that implements a Single-
User Authentic Block Datastore on top of an existing Single-User Block Datas-
tore. The Secure Block Device uses cryptography to provide Single-User Block
Datastore Authentication, even though the Single-User Block Datastore used for
storage is vulnerable to attacks by an adversary. We outline these attacks on
Single-User Block Datastore Authentication in the next section. We specifically
also introduced the notion of an Authentic Block Datastore, in order to show
why we can ignore forking attacks on a Single-User Authentic Block Datastore.
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2.11 Attacks on Memory Authentication

The adversarial model on memory authentication is defined by the attacks an
adversary can mount against memory authentication. We will later use the same
attacks to define the adversarial model against our implementation of a Single-
User Authentic Block Datastore, the Secure Block Device. We introduce the
Secure Block Device in Chapter 6. The Secure Block Device implements a Single-
User Authentic Block Datastore on top of a Single-User Block Datastore. We will
discuss the adversarial model against the Secure Block Device in Section 6.4.1.
Specifically, we will discuss what attacks the Secure Block Device has to mitigate
in order to achieve Single-User Block Datastore Authentication although it relies
on a Single-User Block Datastore that is potentially under the control of an
adversary.

The attacks on memory authentication are are Spoofing, Splicing, or Relo-
cation, and Replay, which we will detail in the following. These attacks are
well known attacks in the fields of memory authentication [ECG+09] and file
system integrity [MS01]. The field of file system integrity also considers a 4th

attack called Forking. Forking attacks will not be part of our adversarial model
for our Single-User Authentic Block Datastore. However, we detail the attack
here to highlight why it can be disregarded for any Single-User Authentic Block
Datastore and consequently by the Secure Block Device.

Spoofing The adversary is able to pass off arbitrary data as an authentic Data
Block in the Block Datastore.

As illustrated in Figure 2.9 the adversary partially or fully overwrites at
least one data block with arbitrary data. In this example the adversary
fully overwrites the Data Block DB4 with arbitrary data. At a later point
in time DB4 is then read by an authorized user who accepts it as authentic.

Splicing or relocation The adversary is able to substitute an authentic Data
Block DBx with a different authentic Data Block DBy from the same
Block Datastore, where x, y ∈ {0 . . . n} ∧ x 6= y. This can be interpreted
as a spatial permutation of the Data Blocks in a Block Datastore.

Figure 2.10 demonstrates a splicing attack. Here, the adversary fully reads
the Data Block at address 7 (DB7) and fully overwrites DB4 with it. Later,
an authorized user reads back DB7 at index 4 and accepts it as authentic.

Replay The adversary is able to successfully substitute a previously recorded
copy of a specific Data Block DBxt1

and play it off as the newest version of
the Data Block DBxt2

. A replay attack therefore is a temporal permutation
of the Data Blocks in a Block Datastore.

In Figure 2.11 we depict a replay attack. First, the adversary obtains a
copy of Data Block 4 (DB4t1) and stores it for later use. At some point
in the future an authorized user of the Block Datastore updates the Data
Block at address 4 with DB4t2 . Now the adversary, who disagrees with
this update, overwrites DB4t2 with his older copy DB4t1 . Finally, next
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N1 = h(N2||N3)

N2 = h(N4||N5)

N4 = h(L1||L2)

L1 L2

N5 = h(L3||L4)

L3 L4

N3 = h(N6||N7)

N6 = h(L5||L6)

L5 L6

N7 = h(L7||L8)

L7 L8

Figure 2.13: A perfect binary Merkle Tree. The inner nodes are denoted by Nk,
where 0 < k ≤ 7, and the leave nodes are denoted by Li, where 0 <

i ≤ 8. The inner nodes Nk of the tree are computed by applying a hash
function h to the concatenation (||) of its immediate children.

can therefore disregard forking attacks.

2.12 Merkle Trees

2.12.1 Description

Merkle Trees [Mer80], or hash trees, were originally invented by Ralph Merkle as
a digital signature scheme. Figure 2.13 depicts a perfect binary Merkle Tree. In
a Merkle Tree each inner node corresponds to the hash of the concatenation of its
child nodes. For example, in Figure 2.13, the inner node identified by the node
index N2 is computed by hashing the concatenation (||) of its two child nodes
N2 = h(N4||N5). Due to this structure, and given that h is a cryptographically
secure hash function, the root hash becomes a representative of the integrity of
the overall tree, and by extension a representative to the data that is input on the
leaf level. Put differently, if any of the input data on the leaf level, or any of the
intermediate nodes change their value, the root hash value will also be different.
This hash tree property is based on the collision resistance of a cryptographic
hash function (see Section 2.9.1). Any alteration to the any number of hash tree
nodes that keeps the root intact has been proven to yield an explicit collision for
the underlying hash function [Cor05].

2.12.2 Merkle Trees and Data Integrity

In 1994, Blum et al. [BEG+94] proposed the use of Merkle Trees as a fast memory
authenticity protection mechanism. The same idea can be adapted to Block
Datastores and Block Datastore Authentication. Here, each Data Block of the
Block Datastore is hashed and these hashes are used as leafs of a Merkle Tree,
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and thus the Merkle Tree root hash becomes a representative of the data in the
Block Datastore.

Similar to using a single hash function for data integrity, a Merkle Tree allows
for a memory versus computation time trade-off. Instead of having to store
the whole Block Datastore in an authentic memory to achieve Block Datastore
Authentication, only the root hash needs to be stored in an authentic memory,
such as an authentic Datastore. To verify Block Datastore Authentication one
recomputes the Merkle Tree on the actual Block Datastore and compares the
recomputed root hash with the stored one. The advantage of a Merkle Tree
versus using a single hash to create a data representative is that at the expense
of a little untrusted memory to store the internal nodes of the Merkle Tree,
verification of the overall Block Datastore Authentication can be significantly
sped up.

For example, to verify the integrity of a Data Block that was read from an
untrusted source, one first recomputes the hash of the Data Block. Then one
recomputes the hash values of all inner nodes lying on the path between the Data
Block leaf node, and the root. Under the assumption that the used hash function
is a cryptographically secure hash function, a modified Data Block block will lead
to a different root hash, and thus the change becomes evident. On updating a
Data Block, for example before sending it to an untrusted storage, the Merkle
Tree must be updated accordingly.

2.13 Security Controllers

Security Controllers are discrete hardware modules that afford some protection
against implementation attacks [MOP07]. Implementation attacks are attacks
on the implementation of a security mechanism and not its underlying concept.
For example, side-channel attacks use minute information leaks in cryptographic
implementations to determine the cryptographic key. We use a Security Con-
troller to implement the Secure Docking Module (SDM) introduced in Chapter 5.
The following three paragraphs describing Security Controllers are taken almost
verbatim from [LHW15].

A security micro-controller or Security Controller is a dedicated Integrated
Circuit (IC) that provides a defined set of cryptographic operations. These cryp-
tographic operations are carried out using credentials, typically cryptographic
keys, persistently and securely stored inside the Security Controller. Thus a Se-
curity Controller protects the authenticity and confidentiality of cryptographic
credentials in use and at rest. Security Controllers are designed to withstand
two basic attack categories.

The first category, local attacks, involves an adversary physically attacking
the Security Controller, either in an invasive or a non-invasive manner. Invasive
attacks include, for example, bus-probing where an adversary probes a bus line
to capture cryptographic key data. Semi-invasive attacks may for example use
laser radiation to inject faults. Non-invasive attacks analyse side-channels such
as computation time or power consumption to infer cryptographic credentials. A
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Security Controller can provide tamper resistance against such attacks by using
dual CPU concepts for integrity checks, encryption of bus communication, and
a number of sensors to detect probing or manipulations [ABCS06, GR05].

The second category of attacks are remote attacks. Remote attacks are
independent of the physical presence of an attacker and include protocol analysis
and cryptanalysis. Protocol analysis aims at detecting flaws in the design of
communication protocols with the Security Controller, while cryptanalysis tries
to discover flaws in cryptographic primitives and schemes [ABCS06].

Finally, we discuss the Security Controller we use to implement the SDM
(see Section 5.7). This text is a précis of the Security Controller description
in this paper [HTP+12]. The Security Controller we use contains a dual CPU
with on-chip ROM, RAM and Non-Volative Random Access Memory (NVRAM).
The dual CPU provides integrity checks and the Security Controller is further
protected by full encryption of all data, including program code, while it is at
rest and in use. Specifically, in this Security Controller decryption of data and
code happens inside the CPU prior to execution and processing. In addition to
these interesting security concepts the Security Controller sports a number of
communication interfaces such as ISO7816, I2C, SPI, and USB, cryptographic
accelerators for RSA, ECC, and AES, fast hashing for SHA-1 and SHA-256, and
a true random number generator.

2.14 Trusted Platform Module

2.14.1 Introduction

The TPM is a core component for Intel Trusted eXecution Technology (TXT)
and TXT in turn is at the heart of the acTvSM platform. The acTvSM platform
underlies the Trusted Docking Station (TDS) introduced in Chapter 5. The
Trusted Platform Module (TPM) is a general purpose computer component
specified by the Trusted Computing Group6. There have been several iterations
of the TPM specifications. The current TPM specification is for the TPM 2.0.
However our work presented in this thesis uses the TPM version 1.2 [Tru07b].
The TPM 1.2 has been the dominant TPM standard for over a decade, and only
recently, in 2014, it was superseded by TPM version 2.0.

A TPM 1.2 consists of a number of core components, such as an RSA engine,
a key generator, a SHA-1 engine, a Random Number Generator, and volatile
and non-volatile storage. The TPM uses these core components to implement
high level security features such as cryptographically protected key storage (see
Section 2.14.3).

The security features a TPM provides are similar in nature to what a smart
card provides. However, where a smart card is usually bound to a user, the TPM
is physically bound to a platform, that is, usually a general purpose computer.
The fact that a TPM is physically bound to a host platform allows for a number

6http://www.trustedcomputinggroup.org
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of interesting high-level security features, such as storing platform integrity mea-
surements, sealing, secure key storage, and remote attestation. In the following
we will detail those high-level security features of a TPM that are relevant to
this thesis.

2.14.2 Storing Platform Integrity Measurements

A TPM can be used to keep track of its host platform software configuration
measurements. In Section 2.15 we discuss how a platform can record a repre-
sentation of the programs that have been loaded on it up to a certain point in
time. We call this the platform software configuration. Without going into too
much detail here, if the platform provides a storage for program measurements
that cannot be tampered with after a measurement has been recorded, and if
this platform can also ensure the integrity of the initial software configuration
recording entity, then a track record of all programs loaded on a specific plat-
form can be maintained (see Section 2.15.2 for details). This track record can
then be used as evidence of the load-time integrity of the platform. The TPM
provides a tamper-proof storage for program measurements with its Platform
Configuration Registers (PCRs).

A platform’s software configuration can be arbitrarily complex, consisting of
arbitrary many individual component measurements. The TPM is a physical
component with limited memory. Therefore, in general it is not able to hold
a classical append-only log of all measurements. Here the authors of the TPM
specification used the following strategy to limited the number of required PCRs.
The TPM specification prohibits directly writing to a PCR. Instead a PCR can
be extended. A PCR with index i in state t is extended with input x by setting

PCRt+1
i = SHA-1(PCRt

i||x).

Now a single PCR can hold an arbitrary amount of program measurements,
while still guaranteeing the tamper-proof requirement for the program measure-
ments. Note that the extend operation is the only way to alter the content of a
PCR and that the initial value of all PCRs (PCR0

i ) are determined by the TPM
specification.

Suppose an adversary wants to forge specific values in a set of PCRs. The
legitimate PCR values are computed by loading a specific platform software
configuration. Now, the adversary should not be able to achieve the same PCR
values as the legitimate configuration, unless the same measurements are ex-
tended into the correct PCRs in the same order. The underlying assumption
here is that the SHA-1 hash function is secure against 2nd pre-image attacks.
Given a specific PCR value PCRt

i, it will be computationally infeasible to find
an input x′ different from x, such that

PCRt+1
i = SHA-1(PCRt

i||x) = SHA-1(PCRt
i||x

′).
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2.14.3 Secure Key Storage

The TPM has an RSA engine for encrypting and decrypting data, as well as
signing data. Also, the TPM can internally generate RSA keys. The TPM
specification however only mandates TPM internal storage for two keys, the
Endorsement Key and the Storage Root Key. Of those two the Storage Root
Key is used to create a key hierarchy that enables cryptographically protected
external storage of TPM created RSA keys. Any platform user that has access
to the Storage Root Key usage secret that authorizes access to the Storage Root
Key can create and use new keys in the TPM. To store these keys for later
use, the TPM wraps, that is encrypts, these keys with the Storage Root Key
and a usage secret supplied by the key creator. User created keys can again
serve to wrap other user generated keys leading to a key hierarchy. A TPM
supports a number of key types, such as the Attestation Identity Key type we
will encounter later. Furthermore, TPM protected keys can have properties such
as migratability, which specifies that a key can, under strictly limited conditions,
be migrated into a different TPM. Not all key types can have all properties, for
example, an Attestation Identity Key or the Storage Root Key can never have
the migratable property.

2.14.4 Sealing

Another high-level feature of a TPM is that it can seal data, for example a
symmetric key, to a platform by encrypting it with a non-migratable key. Data
may be sealed to a specific set of PCR values. A TPM will only decrypt this
data, if the PCRs hold the same values that were specified when the key was
sealed. Thus, use of data can be restricted to a single PCR state of the TPM’s
host computer. In addition to only supporting sealing with non-migratable keys,
the TPM also adds the so-called TPM proof to the sealed data blob. The TPM
proof is TPM specific and it is created at the same time when a Storage Root
Key is created. The TPM proof is added to prevent false key injection. False key
injection is an attack where an adversary uses knowledge of the public Storage
Root Key to try to inject a key into a TPM’s key hierarchy. As a blanket
protection mechanism, the authors of the TPM specification have added the
TPM proof to all operations using a TPM key hierarchy key.

2.14.5 Remote Attestation

The TPM implements reporting of the current system software configuration and
providing evidence of the integrity and authenticity of this measurement. This
is called Remote Attestation. Remote Attestation is the process of reporting a
subset of the PCRs to an interested party, while also providing sufficient evidence
that this platform configuration is really maintained inside a TPM.

The TPM creates a proof for the integrity and authenticity of a set of PCRs
by signing the PCR report together with a nonce supplied by the entity that is
requesting the report. This process is called a Quote operation. One type of
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TPM keys that can be used in a Quote operation are the Attestation Identity
Keys. Attestation Identity Keys are non-migratable so they are always bound to
a specific TPM. The nonce is essential to guarantee the freshness of the Quote
operation. Presented with a Quote, the receiving entity requesting the Quote
can decide whether it wants to interact with the quoting platform at all, and to
what extend it wants to interact with it.

2.15 Intel Trusted eXecution Technology

Intel Trusted eXecution Technology (TXT) is at the heart of the acTvSM plat-
form. The acTvSM platform underlies the Trusted Docking Station (TDS) intro-
duced in Chapter 5. In this section we detail those aspects of Intel TXT relevant
to this thesis. The primary aspects we are interested in are the TXT’s ability to
create isolated execution environments and providing a flexible way of measuring
a platform’s software configuration. TXT requires a Trusted Platform Module
(TPM) version 1.2 (see Section 2.14) as part of the platform.

According to David Grawrock [Gra09] TXT is designed to use platform vir-
tualization as isolation technique to separate different execution environments
with different security policies. Here Intel® Virtual Machine eXtensions provide
the basic support for virtualization in the CPU. These extensions can then be
used by a Virtual Machine Monitor, or hypervisor, to create isolated partitions
of the platform, where each partition is a virtual platform. The idea behind
security by isolation is to execute software without it being hindered by other
software on the same platform. For example, if one partition has been compro-
mised by a computer virus, a different partition on the same physical platform
should not be affected by this virus.

Next to enabling isolated partitions, TXT also aims to provide evidence
that a platform is configured such that these isolated partitions are set up in
accordance with a specific security policy. To create this evidence, TXT provides
the facilities to measure those parts of the Trusted Computing Base that are
implemented in software.

Definition 2.15. The Trusted Computing Base is all of the elements, technolo-
gies, and services that the user of a platform requires trust in [Gra09].

In addition to the ability to measure the software components of the Trusted
Computing Base, TXT, or rather the platform’s mandatory TPM can provide
evidence of the authenticity of the measurements.

So far we have purposefully avoided detailing how to measure a platform’s
software components. We now discuss the approach proposed by TXT. The
approach is called late launch and is based on measuring a platform’s firm- and
software components in a stepwise fashion as they get loaded in conjunction with
using a Dynamic Root of Trust for Measurement.

Definition 2.16. A hardware or software mechanism that one implicitly trusts
is a root of trust [Gra09].
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We will first detail how the software measurement process works and then we
describe the Dynamic Root of Trust for Measurement.

2.15.1 Software Integrity Measurement

The concept behind TXT’s software measurement process is to establish the
identity and thus the integrity of the software when it is loaded, but before
it is executed. To establish a software’s integrity, the software executables,
its resources, configuration, etc., are hashed using a cryptographically secure
hash function (see Section 2.9.1). The hash creates a representative of the
software’s integrity that is significantly smaller than the software itself, while
relying on the collision resistance property of the hash function for uniqueness
of the representative. This hash is then stored in a tamper-proof location. Only
after the software measurement has been taken, and the measurement put into
a protected memory, the software is actually executed. Because the hash of the
software is in a tamper proof location that the software cannot overwrite, the
software will not be able to hide its identity against anyone who can read the
measurement track record. Here TXT mandates the use of a TPM for storing
the measurement values in its Platform Configuration Registers (PCRs) (see
Section 2.14.2). The hash changes when the software changes. Therefore the
hash corroborates the integrity of the measured software component.

The software measurement process is transitive. For example, a platform’s
kernel gets loaded, measured, and then executed by the bootloader. Whereas
the kernel then, e.g., loads, measures, and executes the platform initialization
process. Thus a chain of trust from the first measuring entity to the lastly
executed software is created.

Now the question arises, quis custodiet ipsos custodes7? Or rather when the
measurement is done in software, and integrity of the whole process relies on the
integrity of the software performing the measurement, how can we establish the
integrity of the component that does the first measurement? This is where the
late launch and the Dynamic Root of Trust for Measurement come into play.
Note however, that in the end we have to trust the Dynamic Root of Trust for
Measurement, as nobody watches that component.

The late launch is able to bring a platform in a well-defined state, where it
can operate free of all outside interference and act as a Dynamic Root of Trust
for Measurement to start building a chain of trust. The process of establishing
the Dynamic Root of Trust for Measurement is impressively intricate, therefore
we refer the esteemed reader to David Grawrock’s book [Gra09] for the details.
Nonetheless, we will briefly outline it here.

2.15.2 Late Launch

Conceptually the late launch starts a secure boot that ensures execution of a
known-good Virtual Machine Monitor configuration. The secure boot is gov-

7Who will guard the guards themselves? In our case, who boots the bootloader?
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erned by two policies, the Launch Control Policy, and the Verified Launch Pol-
icy. If at any point during the boot process either the Launch Control Policy
or the Verified Launch Policy is violated or the system detects tampering, the
boot process is immediately aborted. The system then enters TXT shutdown
mode where it scrubs all potentially sensitive data from memory, before shutting
down.

The late launch starts with the GETSEC[SENTER] CPU instruction to pro-
vide a well-defined system state. This CPU instruction leads to full platform
lock down, where all but the initiating Central Processing Unit core are put to
sleep. It then loads an Authenticated Code Module from the main memory into
the CPU internal level 1 cache and locks down the chipset to prevent interference
from any components on the system buses, including main memory, or platform
extension cards. The one remaining active CPU then verifies the authenticity of
the Authenticated Code Module. The Authenticated Code Module is digitally
signed and the hash of the verification key is supplied by the platform’s chipset.
In addition to verifying the Authenticated Code Module’s signature the CPU
also measures the Authenticated Code Module.

After measuring the Authenticated Code Module, the CPU selectively re-
scinds the lock down on specific system components, most importantly it re-
activates the TPM. Next to providing the PCR where the measurement of the
Authenticated Code Module is stored, the TPM serves as access-controlled, au-
tonomous storage for the Launch Control Policy and Verified Launch Policy, the
two policies which are enforced by the late launch. The Launch Control Policy
specifies the valid measurement of the secure boot loader to use, and the Ver-
ified Launch Policy specifies the measurement of the Virtual Machine Monitor
to boot.

Now the CPU delegates control to the Authenticated Code Module that
reactivates access to the main memory where it expects to find the secure boot
loader. It then measures the secure boot loader, verifies it against the Launch
Control Policy and stores its measurement in the TPM. If the secure boot loader
measurement is different from the valid measurement specified by the Launch
Control Policy, as with all errors the late launch will go into TXT shutdown
mode.

After finishing its system setup tasks, loading, measuring and enforcing the
Launch Control Policy on the secure boot loader the Authenticated Code Module
hands over control to the secure boot loader. The secure boot loader further sets
up the system, such that it can resume normal operation and loads, measures,
and enforces the Verified Launch Policy on the Virtual Machine Monitor. The
late launch terminates with delegating control the Virtual Machine Monitor.

2.15.3 Load-Time Integrity

We define load-time integrity as the security property established by performing
the platform software measurement process described in Section 2.15.1. The
platform software measurement process establishes what software is loaded on
the platform. The counterpoint to load-time integrity is run-time integrity. Run-
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time integrity concerns itself with the integrity of the software that is currently
executed. These are two quite different concepts, as can be illustrated with the
following simple example.

Consider a platform that provides load-time integrity. Suppose, this platform
is compromised by an adversary. The adversary uses a security vulnerability to
modify a component on the platform at runtime in a way that allows her to
change the code of the component in memory, for example to enable remote
code execution. A prominent example here is a buffer overflow with shell code
injection. The platform is now compromised and its run-time integrity subverted.
However, the load-time integrity of the platform is still unaltered.

Load-time integrity only creates evidence about a platform’s software con-
figuration by measuring at discrete points in time, that is, every time software
is loaded. However, in general, we cannot make any assumptions on when a
system will be compromised at run-time. Thus a time of check to time of use
problem arises. Furthermore, load-time integrity only concerns itself with state-
ments about software at rest, that its off-line, binary representation. As long as
an adversary does not change the off-line software components a run-time attack
might never be detected by measuring load-time integrity.

2.15.4 Security

To sum up David Grawrock’s book on this issue [Gra09], and at the same time
gravely oversimplify, the security objective of Intel TXT is to provide strong
protection against software based attacks, where the user wants to protect her
data. Furthermore, the goal of Intel TXT is:

. . . to force attackers to use hardware mechanisms to attack the plat-
form. The Intel TXT design protects from attacks accessing memory,
changing drivers, or changing the application. The attacker needs to
use hardware access to gain access to protected memory [Gra09].

TXT even considers some hardware attacks and tries to provide mitigation
mechanisms. For example, TXT provides limited mitigation against cold boot
attacks. In a cold boot attack, an adversary literally freezes the main memory
so that it retains its state, while it is put into a different computer, where
the memory content is then read. As an other example, TXT also tries to
mitigate against rogue CPU cores not joining in or prematurely leaving the
TXT protected execution environment. However these mitigation mechanisms
rely on the integrity of the PC chipset to be intact and not compromised.

However, Rutkowska et al. have investigated TXT and identified issues in the
implementation[WRT09, WR09, WR11] allowing software attacks. Furthermore,
one of the cornerstones of TXT’s security is the TPM and the physical bond
of the TPM with its host platform. Johannes Winter reported several very
successful attacks on this bond, in the form of attacks on the Low Pin Count
bus connecting the TPM to the host platform [WD13, Win14].
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An Anecdote

The following is purely informal and not part of this thesis’ canon, but some
stories simply have to be told.

Quite a few years back two young students, one of the PhD ilk and the
other crusading towards his master had a lively discussion about the security
afforded by TXT. Lets call the PhD student SubjectD and the master student
SubjectJ. SubjectD had just read David’s book [Gra09], because he wanted to
hold a lecture on the topic of TXT. SubjectJ held strong doubts about TXT’s
security against hardware attacks. SubjectD opposed that TXT did not want to
protect against sophisticated hardware attacks, only simple ones, as according
to the book [Gra09, p. 132]:

Intel TXT is designed to provide protection from simple hardware
attacks. What is the definition of a simple hardware attack? An
exploit based on turning off the power and removing the battery
is a simple hardware attack. Going to the local electronic store,
purchasing twenty dollars worth of parts, putting the parts together
and defeating the Intel TXT protections is a simple hardware attack.
The Intel TXT objective is to mitigate simple hardware attacks.

SubjectJ simply accepted the challenge, and while intermediate attacks needed
quite a lot of time and sophisticated hardware, the final result was an attack
subverting Intel TXT, performable by everyone who can read a schematic and
open a computer’s case. The attack only requires a piece of wire [WD13, Win14].
Even without inflation that is still well below twenty dollars. And the morale?
Never underestimate the power of the motivated student, or alternatively, do
not taunt Johannes, for he is subtle and quick to being motivated.

2.16 The acTvSM Platform

The acTvSM Platform [Pir15] uses Intel Trusted eXecution Technology (TXT) to
provide isolated execution environments, or partitions, for software components
with different security policies. It relies on TXT’s late launch to securely boot
(see Section 2.15.2) a fully measured Virtual Machine Monitor. The acTvSM
Virtual Machine Monitor is a Linux system with Kernel-based Virtual Machine.
Kernel-based Virtual Machine is a full virtualization solution that transmogrifies
the Linux kernel into a Virtual Machine Monitor on platforms that support the
Intel or AMD virtualization extensions. In addition to the Kernel-based Virtual
Machine extensions in the Linux kernel, the acTvSM base system also provides
the facilities to manage installed Virtual Machines. Each installed Virtual Ma-
chine, when started, is first measured into the Trusted Platform Module (TPM)
(see Section 2.15.2) and then executed in its own partition, isolated against
other partitions and the acTvSM base system. At rest, the individual Virtual
Machines are cryptographically protected and the cryptographic key is sealed
(see Section 2.14.4) to the platform.
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One important feature for the Trusted Docking Station (TDS) introduced in
Chapter 5 is the acTvSM’s platform ability to patch the TPM through to one
of the Virtual Machine it hosts. After booting up the base system, the acTvSM
platform can be configured to relinquish control of the TPM and hand control
over to exactly one of its Virtual Machines on boot of this Virtual Machine.
After this TPM delegation the base system cannot measure any other Virtual
Machine before starting them, thus effectively preventing starting further Virtual
Machines.

As the acTvSM platform is based on Intel TXT it inherits TXT’s security
properties, as discussed in Section 2.15.4.

One of the key achievements of the acTvSM platform is that the platform
integrity measurements become predictable so the Platform Configuration Reg-
ister (PCR) values can be calculated a priori and data can be sealed to future
trusted states after a planned configuration update.

A different point of note is the acTvSM platform’s well-structured set of file
systems. For instance, measurements of the base system are taken over its whole
file system. To achieve measurement consistency on every boot the acTvSM
platform uses a read-only file system that is comparable to a Linux Live-CD.
Similar again to a Linux live system an in-memory file system is merged on top
of the read only file system to form the runtime file system.

The Virtual Machines that house services and applications are stored in cryp-
tographically protected logical volumes. Each volume has a set of key slots that
allows assigning different access keys that are sealed to different trusted platform
states.

2.17 ARM TrustZone

In Chapter 6 we introduce the Secure Block Device, a cryptographically secured
Single-User Authentic Block Datastore. We evaluate the Secure Block Device
in the context of ANDIX OS (see Section 2.18). ANDIX OS uses the ARM
TrustZone security extensions. Hence we give a concise introduction to ARM
TrustZone here.

The ARM TrustZone security extensions [WFM+07] are a relatively new
addition to the field of hardware extensions for security by isolation. However,
today many mobile phones and ARM application processors provide at least
minimal support for ARM TrustZone. With ARM TrustZone a system can
be split into two partitions. Conceptually this is a red/green system [Lam09],
similar to NGSCB [PCEM04]. In ARM parlance the partitions are called the
secure world and the normal world.

The secure world has higher privileges and controls the TrustZone security
extensions. The secure world can isolate both memory and I/O against access
from the normal world. To this end ARM TrustZone introduces a new secure
state to the processor. Next to logically separating all major components inside
the CPU, this state is also signalled via the system bus to all peripheral devices.
Thus the peripherals can base access control decisions on the current state of
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the system.

The secure world can logically isolate parts of the physical memory against
access by the normal world. The access control is done by a TrustZone-aware
memory controller that limits access to certain memory partitions based on the
current system state. Thus only the secure world is able to access these isolated
memory partitions. Depending on the system, the memory partitioning scheme
can be fixed, or programmable at runtime.

For peripheral isolation, the secure world can force specific signals like hard-
ware interrupts and exceptions to always trap into the secure world. A pro-
grammable TrustZone-aware interrupt controller regulates access to these signals
based on a policy configured by the secure world. In addition ARM TrustZone
specifies mechanisms to block normal world access to certain peripheral devices,
where the access control policy is again configurable by the secure world.

The ARM TrustZone security extensions allow system partitioning schemes
where even the less privileged normal world is able to run a rich operating system
(OS), such as Linux, or Android. Here, the rich OS can be oblivious of a system
running in the secure world, although a rich OS can greatly benefit from services
provided in an isolated environment.

The GlobalPlatform association8 has established a set of standards for creat-
ing a Trusted Execution Environment that can be implemented using the ARM
TrustZone security extensions. These public standards specify the software in-
terface between the untrusted system partition, and the Trusted Execution En-
vironment [Glo10], and the interface between the Trusted Execution Environ-
ment and its Trusted Applications [Glo11]. These standards propose a model
where the Trusted Execution Environment harbors a set of Trusted Applica-
tions that can be used by applications in the normal world to perform security
sensitive operations. A Trusted Execution Environment can use TrustZone to
isolate itself from the normal world and also takes care of isolating the Trusted
Applications from each other.

Furthermore, the Trusted Execution Environment can also take control of
I/O devices such as the screen and the keyboard and isolate them against the
normal world [Glo13]. The goal for such a trusted I/O path is to be both
confidential and authentic. For example, this feature can be used for direct
password input, without the normal world being able to eavesdrop, or change
the password [LC14].

Finally, the Trusted Execution Environment and its Trusted Applications re-
quire platform resources such as memory. All resources permanently assigned to
the Trusted Execution Environment are missing from the normal world. There-
fore, a Trusted Execution Environment can impose resource restrictions such as
limiting the memory, or off-line storage available to a Trusted Application.

8http://www.globalplatform.org/aboutus.asp
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2.18 ANDIX OS

In Chapter 6 we introduce the Secure Block Device. The Secure Block Device is
a software library that implements a Single-User Authentic Block Datastore (see
Section 2.10). It relies on cryptography to achieve its security guarantees. We
evaluate the Secure Block Device in the context of a Trusted Application (see
Section 2.17). ANDIX OS [FAWH15, Fit14] is the OS that provides the Trusted
Execution Environment in which we conduct our experiments.

ANDIX OS is a non-preemptive multitasking operating system (OS) devel-
oped by Fitzek et al. ANDIX OS is specifically designed to run and control the
secure world partition of an ARM TrustZone platform. ANDIX OS can host a
common off-the-shelf Linux as guest OS in the normal world and it provides a
Trusted Execution Environment for multiple Trusted Applications based on the
corresponding GlobalPlatform standards [Glo10, Glo11] (see Section 2.17).

ANDIX OS is designed for two different execution environments. First it
runs on the low cost iMX53 Quick Start Board, a development board based on
the ARM Cortex-A8 IMX53 processor by Freescale that provides full access to
the processors security features. Second, ANDIX OS also runs on a modified
version of the QEMU machine emulator9. The necessary extensions to QEMU
were first introduced by Winter et al. [WWPT11]. ANDIX OS is conceived as
a research OS and is available under a dual licensing scheme, where the GNU
General Public License (GPL), Version 2.0 applies for research purposes. It can
be freely downloaded10.

The objectives for ANDIX OS are a minimal Trusted Computing Base, se-
curity by isolation, and compatibility. ANDIX OS minimizes the Trusted Com-
puting Base to reduce the risk of security flaws in the code. ANDIX OS limits
the Trusted Computing Base to the hardware platform, the bootloader, and the
secure world ANDIX kernel. The secure world ANDIX kernel uses the hardware
platform’s security features to implement memory and I/O isolation. The goal
of this security by isolation mechanism is to protect the secure world against
normal world software intrusions, even if the normal world is completely com-
promised. To achieve this goal ANDIX OS uses the ARM TrustZone security
extensions to isolate the security kernel and its Trusted Execution Environment
from the normal world. On the iMX53 Quick Start Board, ANDIX OS con-
figures the processor’s Central Security Unit, memory controllers, and Direct
Memory Access controllers to protect the secure world memory against the nor-
mal world. ANDIX OS builds on the fact that TrustZone compatible Memory
Management Units provide two separate sets of translation tables, one for the
normal world and one for the secure world, to realize OS-level process isolation
of the ANDIX security kernel against the Trusted Applications and the Trusted
Applications against each other. Simultaneously, the Linux guest OS can use
the independent normal world Memory Management Unit translation table to
implements its own process and kernel isolation. Furthermore, ANDIX OS also

9http://wiki.qemu.org/Main_Page
10http://andix.iaik.tugraz.at/
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Figure 2.14: Architecture of the ANDIX OS

supports trusted I/O paths, where certain I/O devices are only available to the
secure world. ANDIX OS isolates the peripheral devices by configuring a Trust-
Zone enabled interrupt controller to send certain interrupts only to the secure
world. Finally, ANDIX OS implements a subset of the GlobalPlatform TEE
internal [Glo10] and client application programming interfaces [Glo11] with the
aim of being source code compatible with alternate implementations of these
standards. In addition, ANDIX OS exposes an alternative programming inter-
face based on the standard C library (GNU Newlib11).

Figure 2.14 illustrates the architecture of the ANDIX OS. The left side
shows the secure world, whereas the normal world is to the right. The top
part of the figure depicts the privileged kernel-mode, and the bottom the un-
privileged user-mode. The secure world privileged mode (top left) houses the
ANDIX kernel. The ANDIX kernel is the core of ANDIX OS. It is a small,
monolithic kernel that sets up TrustZone, provides process isolation, scheduling,
and communication facilities. The secure world unprivileged section is where the
Trusted Applications reside. The normal world side of the figure reflects ANDIX
OS hosting a Linux guest OS, where the Linux kernel operates in kernel-mode
(privileged, top right) and the applications run as process in the unprivileged

11https://www.sourceware.org/newlib/
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user-mode (bottom right).

2.18.1 Inter-world Communication

ANDIX OS implements inter-world communication to enable normal world ap-
plications to communicate with and benefit from Trusted Applications running
in the secure world. Figure 2.14 depicts both the logical communication channel
and the physical data path between a normal world application and a Trusted
Application in the secure world. ANDIX OS implements a Remote Procedure
Call interface for inter-world communication. This interface uses well-defined
control structures in shared memory for exchanging parameters and results. Re-
mote Procedure Calls are always initiated in the normal world. Typically, a
normal world application uses the ANDIX TEE communication library to
start a call. The ANDIX TEE communication library uses the /dev/tee device
provided by the ANDIX TEE Linux Kernel Driver to dispatch the call to
the Normal World Linux Kernel. In response, the Linux kernel invokes a
secure monitor call processor instruction that switches the processor into the se-
cure monitor mode. The secure monitor call instruction can only be called when
the processor is in a privileged mode, and the secure monitor mode is a special
processor mode to enable controlled world switches and data sharing between
worlds. From the secure monitor mode the ANDIX kernel forwards the call to
the destination Trusted Application. The destination Trusted Application uses
ANDIX OS’s synchronous first-in first-out message queuing interface to wait for
incoming requests. After having been initialized, the Trusted Application in-
vokes the Syscall interface and the Syscall interface then blocks the Trusted
Application until a call to this particular Trusted Application arrives. When a
call arrives, the Trusted Application is woken up. It then processes the call and
after completing it notifies the ANDIX kernel via the ANDIX TEE Runtime.
In addition to the completion notification, the Trusted Application can send a
response. The ANDIX kernel can then complete the secure monitor call handler
and return to the normal world.

2.18.2 Root of Trust for Storage

ANDIX OS provides a symmetric encryption key as a root of trust for storage.
One way of providing a secure root of trust for storage is to incorporate a Se-
curity Controller (see Section 2.13) or Trusted Platform Module (TPM) (see
Section 2.14) into the hardware platform and use these components to securely
store a root key. However, this approach is not portable across platforms that
have no such facility.

Therefore, ANDIX OS implements this feature by not storing the root key
at all. Instead, at boot ANDIX OS asks for a password over a trusted I/O path.
This password is then converted into a key using the PBKDF2 key derivation
function. Note that ANDIX OS can be easily extended to use a platform specific
hardware based mechanisms, such as a TPM, as root of trust.



2.18. ANDIX OS 77

2.18.3 Sharing Resources with the Normal World

ANDIX OS was developed with a minimal Trusted Computing Base in mind
and it delegates managing many resources, such as storage devices and net-
work interfaces, to the normal world OS. Sharing resources between the secure
world and the normal world is delicate with serious security and implementa-
tion ramifications to consider. ANDIX OS’ strategy is to reuse existing normal
world resources, such as complex device drivers, file-system drivers, and network
stacks as much as possible. In this way ANDIX OS elegantly avoids the need for
separate storage hardware or network interfaces for the secure world, and issues
such as sharing SD card driver state between Linux in the normal world and
its own kernel driver in the secure world. The downside is that it becomes im-
possible to guarantee that devices are always available to the secure world. For
example, the normal world OS can simply ignore block read and write requests.
We study the security ramifications of this approach specifically for data storage
in Chapter 6.

ANDIX OS uses a simple, but effective mechanism to let Trusted Applica-
tions share resources with the normal world. Trusted Application operations
usually acquire normal world resources as part of a normal world Remote Proce-
dure Call request. Thus, ANDIX OS translates a Trusted Application’s request
for a specific resource into an Remote Procedure Call. This request is then
dispatched to the ANDIX TEE Normal World Service Daemon (see Fig-
ure 2.14) which handles the request. The ANDIX TEE Normal World Service
Daemon is a Linux background process that uses /dev/tee to wait for incoming
resource requests from a Trusted Application. Once such a request is received
it reads or writes to the specified resource and sends the result of this operation
back to the waiting Trusted Application.

Persistent storage in ANDIX OS is shared with the normal world. Specifi-
cally, ANDIX OS’ storage interface in the ANDIX TEE Runtime allows Trusted
Applications to open files that are then mapped into a special container in the
normal world by the ANDIX TEE Normal World Service Daemon. The
Trusted Application can then read and write data from these files through the
mechanism outlined above. Thus the ANDIX OS kernel dispenses with in-kernel
support for file systems and storage device drivers.





3
Related Work

3.1 Threat Modeling

3.1.1 STRIDE

As part of the DeSecA project financed by Microsoft several different academic
teams published a series of papers [DJPJ04b, GE04, BBF+04, Cha04, CWS+04]
that discuss threat models for different aspects of the generic web application
architecture presented in [DJPJ04a]. All five papers present case studies where
the authors use STRIDE to enumerate and classify the threats they identified for
a specific aspect of the overall architecture. In general the authors of these papers
enumerate the threats and give guidance on how to mitigate them. They do not
present any observation on how well STRIDE is suited for the threat modeling
they undertake. Grimm and Eichstädt map the STRIDE threat categories to the
confidentiality, integrity, availability, authenticity, and accountability security
requirements. De Cock et al., the team that analyses the use of security tokens
in web applications, has the most tenuous connection to STRIDE, as the do not
even mention it in their paper.

In this thesis, one of our contributions is a case study for disaster response se-
curity where we create threat models of several aspects of disaster response using
Data Flow Diagrams as models in conjunction with the STRIDE-per-interaction
threat enumeration technique as implemented in the Microsoft Threat Modeling
Tool 2016. We compare our results for one of our models, the agent platform
threat model, with the comprehensive Mobile Agent System security literature.

Möckel and Abdallah [MA10] present another case study where they use
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Declaration of Sources
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References to these sources are not always made explicit. The related
work concerning using Mobile Agent Systems for disaster response and
their security is adapted from [HT09, HTK10, HTP+12] and the related
work on secure data storage is adapted from [HWF15]. The related work
for our disaster response threat modeling efforts however is original to
this thesis.
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the Microsoft Security Development Lifecycle threat modeling tool to model the
architectural designs of an e-banking application. The Microsoft Security De-
velopment Lifecycle threat modeling tool is an ancestor of the Microsoft Threat
Modeling Tool family, as discussed in Section 2.8.4. Möckel and Abdallah il-
lustrate and discuss the used threat modeling process and also contrast it to a
second tool, the Threat Analysis & Modeling tool, also by Microsoft. They
conclude that although threat modeling tools “are a valuable help, they re-
quire sensible input and interpretation at a later stage.”. They also conclude
that threat modeling is complex for non-trivial systems. They claim that non-
experts might prefer Threat Analysis & Modeling, as it provides more guidance,
whereas software developers might prefer the Security Development Lifecycle
threat modeling tool. Thus they propose to use a combination of both tools
to satisfy different target groups. They also note that threat modeling needs
to be acted upon to be useful to application security and conclude that threat
modeling requires further study.

Based on our observations of our threat modeling efforts we agree with Möckel
and Abdallah that threat modeling for all but the most trivial systems is complex
and that the tool output requires interpretation. Also, as software developers we
felt a certain affinity to the Microsoft Threat Modeling Tool 2016 as understand-
ing systems by the data that is processed by the system comes naturally to us,
which somewhat supports their conjecture that software developers might prefer
the Security Development Lifecycle threat modeling tool. We did not contrast
our findings to a second tool, however we compared our threats with results from
Mobile Agent System security research.

We have found two independent proposals to use different methods of system
modeling than Data Flow Diagrams. Johnstone [Joh10] remodels a well known
threat modeling case study based on an Internet pet shop with Unified Modeling
Language (UML) activity diagrams instead of Data Flow Diagrams. Johnstone
then contrasts his results with the results of the Data Flow Diagram model.
Johnstone notes that activity diagrams have more expressive power than Data
Flow Diagrams and that there was no loss of precision compared to using Data
Flow Diagrams in his case-study.

Schaad and Borozdin [SB12] have evaluated using the STRIDE threat enu-
meration technique in conjunction with software architecture diagrams. Soft-
ware architecture diagrams are artefacts created early in the software develop-
ment process. They have developed a tool for automated threat analysis of
augmented software architecture diagrams and validated it by a) demonstrating
it to architects at SAP and b) by evaluating the effectiveness of the tool with
a specialized team of security auditors using it for multiple threat assessment
sessions. Schaad and Borozdin state that the demonstration to the architects
provided positive feedback and more automated analysis and countermeasure
guidance was requested. In the three trial runs with the security auditor team,
“roughly 20-25% of all potential threats were identified as applicable threats re-
quiring follow-up.” Schaad and Borozdin noted that initial results need to be
investigated further. The security auditors claimed the tool “to be extremely ef-
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ficient in their work as it saves a lot of time by firstly supporting question based
assessment and secondly by tight coupling with an issue tracker and Outlook.”

As opposed to Johnstone and Schaad and Borozdin we did not change the
Microsoft Security Development Lifecycle’s threat modeling. For our case study,
we accepted it as provided by the Microsoft Threat Modeling Tool 2016. We do
note the usefulness of threat modelling in an early stage of software development
and on an abstract level, when modelling disaster response processes.

Scandariato et al. [SWJ15] have assessed Microsoft’s STRIDE by perform-
ing a descriptive study involving 57 master students over three years. Their
contribution is threefold. First, their study assesses STRIDE’s productivity,
as it measures how many valid threats per hours are produced on average by
the analysis. Second, their study evaluates the correctness of the analysis by
investigating the average number of false positives. Finally, it determines the
completeness of the analysis results by measuring the average number of false
negatives. Scandariato et al. have conducted their study by letting students
analyse a digital publishing system using Data Flow Diagrams for modeling and
STRIDE-per-element in conjunction with the threat tree templates detailed by
Howard and Lipner [HL06]. Scandariato et al. summarize the conclusion of
their study as STRIDE being “not difficult to learn and execute, although it
is relatively time consuming. Further, many threats go undetected during the
analysis.”

In detail their conclusions are:

1. The STRIDE technique is not perceived as difficult but, with an
average productivity of 1.8 threats per hour at best, the time cost is
relatively large.

2. The average number of incorrect threats is low and corresponds
to the 19-24% of the total amount of produced threats.

3. The average number of overlooked threats is very high and corre-
sponds to the 64-69% of the total amount of threats.

Williams and Yuan [WY15] have evaluated the effectiveness of the Microsoft
Threat Modeling Tool 2014 by comparing it with manual threat elicitation in a
descriptive study. Their study was conducted with 20 graduate level students
who were tasked to perform manual threat modeling on a mock online shopping
platform. After the manual threat modeling the students had to threat model the
same online shopping platform using the Microsoft Threat Modeling Tool 2014.
Williams and Yuan’s observations are that students have difficulties correctly
modeling the online shopping platform using Data Flow Diagrams. They also
note that the threat modeling results of their students have improved from the
manual assignment to the Microsoft Threat Modeling Tool 2014 assignment.

The objectives of our threat modeling efforts were to gain insight into the
threats to disaster response processes and to establish threats to agent platforms
in the Secure Agent Infrastructure Mobile Agent System in order to mitigate
them. Also we have compared the threats to agent platforms we elicited with
the literature on Mobile Agent System security to gauge the quality of our threat
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list. As such we have conducted a case study and therefore we can only observe
our results without laying claim to any generality. However, our agent platform
model did elicit a significant number of threats known to literature in addition to
a number of undocumented threats. Therefore, we find the high average number
of overlooked threats in the study by Scandariato et al. interesting, and believe
that this dichotomy requires further study. Furthermore, our personal observa-
tion on using STRIDE-per-interaction through the Microsoft Threat Modeling
Tool 2016 tool is that, although it is simple to use on the face of it, understand-
ing the intricacies of modeling and interpreting the resulting threats does require
experience.

3.1.2 Other Threat Elicitation Methodologies

In this subsection we discuss alternative threat elicitation methodologies and
argue why we preferred using the Microsoft Security Development Lifecycle ap-
proach through the Microsoft Threat Modeling Tool 2016. For a more compre-
hensive discussion of threat elicitation techniques we refer the reader to Tøndel
et al. [TJM08] and Hussain et al. [HKA+14].

Misuse Cases, Abuse Cases and Abuser Stories

Misuse cases were developed by Sindre and Opdahl [SO05]. Alexander gives a
concise introduction of misuse cases [Ale03]. Misuse cases are the negative form
of use cases. System engineers can use misuse cases to document and analyze
scenarios where a hostile actor threatens a system, from the point of view of
such a hostile actor. According to Alexander misuse cases are identified by
brainstorming.

Misuse cases are related to abuse cases [MF99]. McDermott and Fox define
an abuse case “as a specification of a type of complete interaction between a
system and one or more actors, where the results of the interaction are harmful
to the system, one of the actors, or one of the stakeholders in the system.”
McDermott and Fox use Unified Modeling Language (UML) use case diagrams
to model abuse cases. Sindre and Opdahl [SO05] discuss the differences between
misuse cases and abuse cases. Abuse cases were refined into abuser stories for
agile development [Pee05], and Boström et al. demonstrate how to use them in
Extreme Programming.

We have decided to use the Microsoft Security Development Lifecycle ap-
proach to threat elicitation because threats are elicited from a model of the
system and the template based threat enumeration gives more guidance than
free form brainstorming.

A Framework For Security Requirements Representation and Analysis

Haley et al. present a framework for security requirements elicitation and analy-
sis [HLMN08]. In their framework the analyst constructs a context for a system
using a problem-oriented notation and uses this context to represent security
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requirements as constraints. The analyst then proceeds to validate the security
requirements by developing explicit satisfaction arguments. These satisfaction
arguments consist of two parts. The first is a formal outer argument that the
system meets its security requirements. The second is a structured informal ar-
gument supporting the assumptions in the first argument. They evaluate their
framework using a case study involving air traffic control technology. In their
case study they use propositional logic to formalize the outer satisfaction argu-
ment.

The framework presented by Haley et al. provides a strong formal approach
to security requirements elicitation but for now it lacks adequate tool support.
Therefore, we decided to use the less formal approach provided by the Mi-
crosoft Security Development Lifecycle threat elicitation technique through the
Microsoft Threat Modeling Tool 2016.

Attack Trees

“Attack trees represent attacks against a system in a tree structure. The root
node represents the attack’s goal, and leaf nodes represent different ways of
achieving that goal.” [Sch99]

We are interested in complementing our threat modeling efforts in Chapter 4
with threat trees (see Section 4.7.2). Threat trees add mitigated conditions to
attack trees [SS04].

3.2 Mobile Agents and Disaster Response

Schurr et al. [SMT+05] introduce a Mobile Agent System that helps coordi-
nating fire fights by facilitating vehicle management. This includes planning of
routes, resource allocation and even deciding which fire to fight. They combine
the agent system with sophisticated visualization technology to enable informed
decisions by human personnel in a different location. In [SPA+06], Sadik et
al. propose an Earthquake Management System, where Mobile Agents facili-
tate information retrieval and distribution through all stages of an earthquake
scenario. According to Scerri et al. [SPJ+03] the use of Mobile Agents to coor-
dinate heterogeneous teams of robots, agents, and humans provides the safest
and most effective means for quick disaster response. A somewhat related topic
is the use of Multi-Agent System in disaster response simulation [BMMV06].
This application uses agents to model disaster response personnel in a disaster
simulation. Cohen et al. [CGHH89] have introduced the PHOENIX system for
using planning agents in the domain of simulated forest fire management. Honda
and Djordjevich [HCD08] introduce Mobile-FIRST a Mobile Agent based first
responders training system. They present a case study where they have inte-
grated their Mobile Agent based training system into a first responder training
video game. In the ALADDIN project [RRM+08] Ramchurn et al. work on using
Mobile Agents to coordinate first responders in disaster response.
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3.2.1 Mobile Agent System Security

According to Jansen [Jan00], the Mobile Agent distributed computing paradigm
suffers from a number of complex threats that go beyond those of the classic
client-server architecture. We have extensively discussed Mobile Agent System
security and corresponding threats in Section 2.4.

Wilhelm et al. [WSB99] propose a specialized, tamper-proof hardware mod-
ule that provides the so-called trusted processing environment for an agent ex-
ecution environment. The idea is that if a client trusts the trusted processing
environment manufacturer, the trust could automatically be extended to a host
with such an environment. We cover our work on the Trusted Docking Station
(TDS) and the Secure Docking Module (SDM) in Chapter 5 and although it
is similar in concept the TDS and the SDM are based on commercial off-the-
shelf hardware products and dispense with the need for a specially developed
hardware module.

Wu et al. and Shen and Wu [WSZ06, SW08] have considered using the
Trusted Platform Module (TPM) for increasing the security of Mobile Agent
Systems. Specifically, they propose an architecture for a system that uses remote
attestation as evidence of the load-time integrity of a remote platform. However
they present no implementation or evaluation of the system they propose. In
contrast, our TDS and SDM based security solution uses local attestation and
includes an evaluation of a concrete implementation.

In 2007, Balfe and Gallery [BG07] investigated how Trusted Computing in
general, and the TPM especially, can enhance the security of Mobile Agent Sys-
tems. For their analysis they assumed the ubiquitous presence of agent platforms
that gather evidence of their load-time integrity. Furthermore, they assume that
these agent platforms can attest their load-time integrity to other platforms.
Based on these assumptions they investigate four scenarios for Mobile Agent
migration supported by Trusted Computing primitives. Gallery et al. [GNV09]
improve one of the secure agent transfer protocols introduced in [BG07] with
property-based configuration information about a platform’s software. Gallery
et al. operate under similar assumptions as Balfe and Gallery. Our work on the
TDS and the SDM is focused on helping establishing the assumptions made by
Balfe and Gallery and Gallery et al. Specifically, we concentrate on the creation
of ubiquitously available platforms that can establish and attest their load-time
integrity.

Pridgen and Julien [PJ06] introduce SMASH, a trust enhanced mobile agent
system using SELinux and Trusted Computing mechanisms for security. SMASH
is designed as an open and secure platform supporting multi-hop mobility. The
Secure Agent Infrastructure is a closed system supporting single-hop mobility.
Thus SMASH introduced additional complexity unneeded in the Secure Agent
Infrastructure case, such as support for anonymous agents. Furthermore, as
opposed to our work, SMASH lacks an in-depth investigation of its security
properties.
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3.3 Trusted Computing

The Enforcer platform [MSW+04] by Marchesini et al. was one of the first sys-
tems to benefit from the use of Trusted Computing mechanism, specifically the
Trusted Platform Module (TPM). The Enforcer platform relies on the TPM to
protect the load-time integrity of a central security policy enforcement engine.
IBM’s Integrity Measurement Architecture [SZJvD04] measures a Linux system
during boot and operation and stores the measurements inside the Platform Con-
figuration Register (PCR) of a TPM. These first generation trusted platforms
demonstrate establishing load-time integrity, but rely on the OS for isolating
platform applications with different security policies.

Second generation trusted platforms combine virtualization for isolating ap-
plications with the static root of trust for measurement of the TPM for estab-
lishing load-time integrity. Examples of second generation trusted platforms
include [CGL+11, SMS+09]. One hampering factor for the adoption of second
generation trusted platforms is the complexity and number of the integrity mea-
surements. The chains-of-trust formed by the integrity measurements starting
at the static root of trust included components such as the platform firmware
and OS bootloader thus lengthening and complicating the chains.

Third generation trusted platforms use advances in personal computer hard-
ware in conjunction with the TPM to enable a dynamic switch into a platform
configuration where evidence of the platform’s load-time integrity can be given.
This dynamic switch eliminates the need to include components such as the plat-
form firmware in the chain-of-trust for measurement, thus greatly reducing its
complexity. The acTvSM platform by Martin Pirker [Pir15] we use as the base
system for the Trusted Docking Station (TDS) introduced in Chapter 5 is such
a third generation trusted platform. Another example is TrustVisor [MLQ+10]
by McCune et al.

Establishing proof of a platform’s load-time integrity is one side of the coin;
the other is a human verifying said proof before disclosing any sensitive informa-
tion to such a platform. To overcome the issue of a platform presenting forged
load-time integrity proofs Parno [Par08] proposes using a local channel between a
user and a platform’s TPM. Similarly, McCune et al. [MPSvD07] propose to use
an axiomatically trusted portable device to implement the load-time integrity
proof verification for a user. McCune et al. note that such a device should be
as simple as possible, and thus easy to understand and certify. They propose to
use a USB device with LEDs to signal the load-time integrity verification status.
The Secure Docking Module (SDM) we introduce in Chapter 5 is a concrete
implementation of such a device. However, the SDM uses local attestation and
a custom designed resource acquisition protocol to verify the host platform’s
load-time integrity. Furthermore, we use shared secrets to authenticate the user
to the platform and the platform to the user, while also establishing the presence
of the user to the platform.

The Lockdown platform by Vasudevan et al. [VPQ+12] is a third generation
trusted platform that separates untrusted and trusted software in space and
time. It statically splits its platform memory and hampers side channel attacks
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by executing only either trusted or untrusted code within a given time frame. A
micro-controller driven USB-token with green and red LEDs and direct software
channel to the hypervisor indicates the status of the platform to the user.

At first glance Lockdown appears similar to our TDS and SDM security
solution, both in architecture and applied technologies. However, Lockdown
resides in a different point in the design space and has a different field of appli-
cation. Lockdown has the advantage of being optimized for a minuscule Trusted
Computing Base with a significantly smaller security-critical code base then the
acTvSM platform. However, Vasudevan et al. report that Lockdown’s switching-
times between executing trusted and untrusted code are between 13 and 31 sec-
onds. Thus Lockdown’s low performance when switching between system states
makes it unsuitable for disaster response scenarios. Furthermore, the Lockdown
architecture disregards even simple hardware attacks on the state signalling to-
ken. We believe our robust and side-channel resilient SDM implementation can
be used to even improve Lockdown.

3.4 Secure Data Storage

Cryptographically protected data storage is a versatile solution for protecting
data at rest. Using cryptography it is possible to achieve data confidentiality and
integrity even in the face of a storage that is under the complete control of an ad-
versary. Recent years have seen a flurry of activity in the field of protecting data
in multi-tenant systems such as the cloud [SS13, SvDJO12, YCZD13, YSK09].
Whereas the cloud has access to high performance computers and storage de-
vices, and cloud solutions are often optimized for fast parallel access, we inves-
tigate the other end of the spectrum. With the Secure Block Device we investi-
gate the question of providing versatile cryptographically protected storage for
devices with limited capabilities.

The Secure Block Device (SBD) uses a number of well known techniques
to achieve its goals. These techniques have been used in the past to achieve
similar goals in different contexts, such as secure processors and secure re-
mote storage. Examples include the use of Merkle-Trees for authenticated
storage [ECG+09, LTM+00, SOD07, DK06, RPS06, RCPS07, MS01, GSMB03,
SvDJO12, SS13, YCZD13], the use of Authenticated Encryption (AE) for au-
thenticated storage [YSK09, KEAR09], and the use of block caches to improve
performance for authenticated storage systems [SvDJO12, WH08]. We have de-
signed and implemented the SBD to cover the middle ground between hardware
solutions for secure processors [LTM+00, SOD07, DK06, RPS06, RCPS07] and
solutions for secure remote storage [MS01, GSMB03, SvDJO12, SS13, YCZD13].

DroidVault [LHB+14] is a system to provide a secure data vault on Android
devices. It uses the ARM TrustZone security extensions to isolate a custom
small Trusted Computing Base (TCB) system from a non-secure, normal world
OS. DroidVault provides code authentication, secure data processing, secure net-
working, and secure I/O. DroidVault also provides a secure storage based on AE,
but without guaranteeing data freshness. In contrast the SBD is more flexible,
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provides a cache for improving performance, allows fast random access to indi-
vidual blocks, and guarantees data freshness. Although the SBD was developed
for the ANDIX OS it can be used in any scenario where the cryptographic key
and the integrity root hash can be protected.

The Trusted Language Runtime (TLR) [SRSW14] uses ARM TrustZone to
isolate a .NET micro managed runtime, which has a mechanism to seal data
to a managed application. Similarly, Kostiainen et al. introduce a system for
protecting On-board Credentials [KEAR09] in an isolated compartment. They
also use AE to seal data. In contrast, the SBD provides a generic, scalable data
protection mechanism. Again the SBD provides fast random block access to
data backed by the Merkle-Tree and the block cache.

The problem of storing sensitive data in an untrusted data store is relevant to
secure processors such as XOM [LTM+00] and AEGIS [SOD07], which need to
protect the integrity and confidentiality of their RAM. Secure processors require
special hardware and operate under strong resource restrictions compared to
software. Nevertheless, they have significant common ground with the SBD.
Secure processors [SOD07, DK06, RPS06] also use a small cache operating on
the decrypted data to increase efficiency and reduce access times. Furthermore,
they also use Merkle-Trees to ensure data integrity. Here, Rogers [RCPS07] et
al. have introduced a method called Bonsai Merkle-Tree to reduce the actual
memory consumption of this protection mechanism. This work inspired our use
of special data blocks storing integrity tags to reduce the size of the Merkle-Tree.

Secure storage of sensitive data is also relevant to network file systems storing
data on untrusted servers, such as SUNDR [MS01], SiRiUS [GSMB03], and
IRIS [SvDJO12, SS13], the trusted cloud storage by Yang et al. [YCZD13], and
the user-level network file system by Yun et al. [YSK09]. Here, the problem
of having several clients concurrently working on the same data exacerbates the
integrity protection problem, by introducing forking [MS01]. In a forking attack,
the untrusted server presents data and integrity state copies to different clients.
This is a problem we disregard for the SBD, as we do not allow file sharing
between different Trusted Applications (TAs). Many of these systems are build
on, or integrated into, the network file system (NFS). SiRiUS [GSMB03] is a
NFS client extension that introduced fast random access through splitting files
into blocks, and separating the integrity information, similar to the mechanism
used by the SBD. Yun et al. have created a custom cryptographic scheme for
their user-level network file system [YSK09]. In their scheme they integrate a
Merkle-Tree with AE and proof the correctness of their approach. The SBD can
support any number of custom cryptographic schemes through its cryptography
abstraction layer. IRIS [SvDJO12, SS13] is a high performance cloud file system
with a distributed architecture that aims at support non-blocking parallel access
for a large number of concurrent users, and provides proofs of retrievability. The
SBD is neither a file system, nor is it designed for massive parallel use. The
SBD is a minimal TCB component for adding authenticity to any storage back
end with fast random block access. VPFS [WH08] introduces a file system for
use by a security kernel that uses an untrusted storage mechanism. Compared
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to the SBD, VPFS is a file system and is integrated into the security kernel,
whereas the SBD is a user space library and behaves like a block device. Yang
et al. [YCZD13] propose using a custom designed pair of security chips, the S-P
chips to prevent forking, without the need of client communication. The SBD is
pure, minimal TCB software solution.





4
Threat Modeling Aspects of Disaster

Response

Declaration of Sources

This section is new art and not based on prior publications by the author.

4.1 Introduction

Thanks to the work of O’Neill et al. [OSZW12] we are aware that confidentiality,
integrity, and above all availability are essential security requirements in disaster
response. We also learned from O’Neill et al. that the main assets in disaster
response are the, as they call them, information exchanges between disaster re-
sponse personnel. The assessment of the domain experts on which O’Neill et
al. base their work attributes the highest security requirements to voice com-
munication, because this is what disaster response personnel uses to establish
situational awareness and implement commands.

With the introduction of the Secure Agent Infrastructure (see Section 2.6)
parts of the voice communication of disaster response personnel are replaced
with automated computer based information processing. The Secure Agent
Infrastructure automates information collation and command implementation
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using the Information Delivery Agent and the User Communication Agent Mo-
bile Agents. Hence we need to add suitable security mechanisms to the Secure
Agent Infrastructure to fulfill the security requirements of disaster response voice
communication.

As the assets have been identified by O’Neill et al., the next step in a security-
by-design process falls to us: identifying concrete threats to these assets [Tor05].
Identifying the pertinent threats to disaster response communication using the
Secure Agent Infrastructure enables us to better gauge the requirements for
suitable security mechanisms and evaluate the security performance of such a
system’s implementation.

We use the Microsoft Threat Modeling Tool 2016 to model aspects of the Se-
cure Agent Infrastructure and identify pertinent threats. The Microsoft Threat
Modeling Tool 2016 uses Data Flow Diagrams as models and STRIDE-per-
interaction for threat enumeration. As first contribution we model two disaster
response activities. These two activities are gaining situational awareness and
command and control. According to O’Neill et al. all disaster response com-
munication falls into these two categories. To model these activities, we first
created an abstract model of the Secure Agent Infrastructure. We have derived
this model based on the mode of operation of the Secure Agent Infrastructure as
described in Section 2.6.2 and the results described by O’Neill et al. [OSZW12].
Based on the Secure Agent Infrastructure model, we create a specific high level
model for each activity. We use this specific model to analyse the basic security
properties of the activity. To make the activities more tangible we supplement
their description with examples based on the wildfire scenario we described in
the introduction of this thesis. Our analysis of the threats on the high level
models already gives us significant insights into potential security issues, which
is in-line with results, such as by Schaad and Borozdin [SB12], who also report
good results with using STRIDE in the early stages of software development.
Specifically, we can extend the results from O’Neill et al. O’Neill et al. state
that disaster response communication requires a high degree of confidentiality,
integrity, and availability. We give 41 concrete threats to information gathering
for situational awareness and command and control. These 41 threats detail
problems such as repudiation of commands, tampering with information, etc.
Thus they uncover security issues not immediately evident from the need for
confidentiality, integrity, and availability. Finally, we believe our threat list to
be relevant to future research into disaster response security, because it can serve
as a basis for the risk evaluation of specific communication exchanges.

The analysis of the high level models, although it grants valuable insights, is
inadequate to map the intricacies of a complex Mobile Agent System, such as the
Secure Agent Infrastructure. We therefore increase the resolution of our model
for the situational awareness example and create a more detailed model that cap-
tures the threats related to using Mobile Agents as information gathering and
relaying mechanism. In this detailed model of the situational awareness exam-
ple we identify a highly repetitive pattern, which we call the Distributed Secure
Agent Platform Outpost (DSAP Outpost). The DSAP Outposts are agent plat-
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forms situated at the interface points between the Secure Agent Infrastructure
and all external entities interacting with the Secure Agent Infrastructure. Our
second and primary contribution in this chapter is an in-depth threat analysis
of a DSAP Outpost. Our efforts here have yielded a list of 54 threats to the
DSAP Outpost. Note that we only summarize these 54 threats in this chapter
and defer their in-depth discussion to Appendix A. We use this list of 54 threats
to validate the effectiveness of the Trusted Docking Station (TDS) and the Se-
cure Docking Module (SDM) (see Chapter 5). The TDS and the SDM are two
security mechanisms we have developed for securing the DSAP Outpost as part
of this thesis.

As part of our second contribution we have also compared the results of
our STRIDE-per-interaction based threat modeling efforts with the literature
on Mobile Agent security. Specifically, we have compared the threats we identi-
fied with the generic discussions of Mobile Agent System security by Jansen and
Karygiannis [JK99, Jan00], Borselius [Bor02], and Bierman and Cloete [BC02].
Although these three sources comprehensively discuss threats to Mobile Agent
Systems, we were still able to identify new pertinent threats not found in litera-
ture.

As a third contribution, we have also recorded our observations on using Data
Flow Diagrams and STRIDE-per-interaction for threat modeling. We use this
threat modeling methodology by using the Microsoft Threat Modeling Tool 2016.
We have recorded our observations of using this threat modeling methodology
in the context of disaster response in general and in the context of Mobile Agent
System supported disaster response specifically. Our findings are twofold. First,
we observe that due to the use of Data Flow Diagrams as models, STRIDE-per-
interaction lends itself naturally to capture the threats to the information flows
in disaster response. This is evident, because we consider almost all threats for
our models enumerated by the Microsoft Threat Modeling Tool 2016 pertinent.
This holds true for both the high level models and the detailed DSAP Outpost
model. Second, even though we have used a standard data flow to represent the
action of instantiating an agent, we were able to identify a number of relevant
threats. We think this significant, as STRIDE-per-interaction per se does not
support processes such as sending and instantiating a Mobile Agent.

4.2 Secure Agent Infrastructure Model

Here we create an abstract model of the Secure Agent Infrastructure. We
base our model on the Secure Agent Infrastructure’s mode of operation (see
sec:prelim:sai:uc) and the findings described by O’Neill et al. [OSZW12]. We
then use the Secure Agent Infrastructure model to create high level threat models
for establishing situational awareness (Section 4.3) and dispatching a command
during disaster response (Section 4.4).

O’Neill et al. have analyzed a disaster response scenario to establish who
needs to talk with whom and what information is exchanged during crisis man-
agement. They have designed a disaster response scenario and broken the sce-
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nario down into activities. An activity is described by the information exchange
requirements it entails. According to O’Neill et al., an information exchange
requirement describes the need of two or more actors in disaster response to ex-
change a piece of information. An information exchange requirement is a tuple
(src, dst, t, s, crit, c, other), where src is the source of the information, dst its
destination, t the type, such as text, data, or voice, s the size of the information
based on its type, crit the informations criticality, c determines how confidential
the information is, and finally other is a set of miscellaneous analysis attributes.
O’Neill et al. have captured and analyzed over 700 information exchange re-
quirements for their disaster response scenario. Based on their results they state
that these information exchange requirements fall into two categories. These
categories are situational awareness and command and control.

The goal of the Secure Agent Infrastructure is to automate gathering in-
formation for situational awareness and to automate dispatching of commands.
The Secure Agent Infrastructure component that implements this automation is
the Process Management Subsystem (see Section 2.6). A Secure Agent Infras-
tructure user can request information from the Process Management Subsystem.
The Process Management Subsystem uses Mobile Agents to gather the requested
information from various sources, including human users and external informa-
tion systems. It then collates this information and presents it to the user (see
Section 2.6.2). The Process Management Subsystem can implement complex
information gathering workflows, where several sources need to be queried se-
quentially, and/or in parallel. For example, the Process Management Subsystem
can use information queried from a previous source, to refine future queries. Sim-
ilarly, the Process Management Subsystem can dispatch commands for its users
and track execution of these commands.

Based on the observation that communication in disaster response is centered
around either gaining situational awareness or command and control and how
the Secure Agent Infrastructure facilitates these processes we have come up with
the abstract model depicted in Figure 4.1. In our model we have combined the
Process Management Subsystem with the Agent Repository and the Resource
Lookup System (see Section 2.6.1) into the Core Secure Agent Infrastructure.
We have combined these three because they work closely together and we as-
sume they are in the same security domain (cf. Section 4.5.3). The Core Secure
Agent Infrastructure interfaces with users and external information systems us-
ing Mobile Agents running on Distributed Secure Agent Platforms (DSAPs).

In Figure 4.1 we have modeled a Commander requesting information from the
Secure Agent Infrastructure (1. Request information). The Secure Agent Infras-
tructure gathers the information from disaster Responder(s) (2. Request infor-
mation) and External Information System(s) (4. Request information). Note,
that these request information steps can be parallel or sequential. For exam-
ple, first the Secure Agent Infrastructure requests information from a disaster
Responder and based on this information determines that it needs information
from further sources, such as an External Information System. In Figure 4.1
we have depicted this. First the Secure Agent Infrastructure queries a disaster
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Responder (2. Request information) and receives this information (3. Send in-
formation). Then it queries an External Information System for further data (4.
Request information) that it then receives (5. Send information). The Secure
Agent Infrastructure collates the information, prepares a report, and sends it
to the Commander (6. Send intelligence). Based on the received intelligence
the Commander decides on a certain course of action and instructs the Secure
Agent Infrastructure to implement this decision (7. Issue command). The Se-
cure Agent Infrastructure then dispatches the command to the pertinent disaster
Responders and External Information Systems (8. Dispatch command).

4.3 Situational Awareness

Situational awareness is a key factor in the crisis management decision making
process, as the quality of the information available about the situation directly
influences the quality of decision-making [OSZW12]. Here we model threats
to the process of obtaining information during a crisis. To make the modeling
process more tangible and allow us to supplement our analysis with concrete
examples, we revisit the wildfire scenario from the introduction.

4.3.1 Model Description

We introduce this high level model as a simple abstraction to model the process
of gathering information in the disaster response phase of crisis management.
In the high level model we try to avoid concepts from information processing
systems and concentrate on the actors involved. We do this to focus the atten-
tion on the overall security requirements for gathering information pertaining
to situational awareness, and avoid to clutter these requirements with technical
details. In addition this allows us to corroborate the findings of O’Neill et al.
that confidentiality, integrity and availability are essential to crisis management
communication using a different methodology.

We use the Microsoft Threat Modeling Tool 2016 to create our threat model.
Our model is the Data Flow Diagram depicted in Figure 4.2. We derive our in-
formation gathering model from the overall model (see Figure 4.1). Specifically,
we extracted the part where disaster Responders and External Information Sys-
tems send requested information to the Core Secure Agent Infrastructure, the
Core Secure Agent Infrastructure prepares a report on the information for the
Command, and it then sends the report to the Command. We model all disas-
ter responders using a single external entity (Responder). Similarly, we model
all external information systems as the single external entity External Informa-
tion System. Finally, all entities that make decisions based on the gathered
information are represented by the singular Command entity. In addition we re-
placed the Core Secure Agent Infrastructure with the single process Information
Collation. This process models an entity collating the information to present
it to a Command entity so that it can inform a decision. In this high level
model we would have preferred to abstract this process in the sense that infor-
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Figure 4.2: A Data Flow Diagram modeling gathering intelligence for informing a
command decision during the response phase of disaster response. We
use this model as input to the STRIDE-per-interaction analysis using the
Microsoft Threat Modeling Tool 2016.

mation collation is done by the Command entity itself. However, we had to add
the Information Collation process, because the threats generated by STRIDE-
per-interaction from external entities interacting with each other are limited in
nature (see Section 2.8.5).

An example realization of the model in our scenario would be operational
commanders of fire fighter units reporting to their tactical command about the
state of fire suppression in specific sections. Tactical command could supplement
this information with maps fetched from an external information system. The
tactical commander would use this information to decide where to focus fire
suppression, which units need further support, etc. The model works equally
well to describe several police officers reporting to operational command who
they are evacuating in a specific area, while operational command checks the
resident registry information system to verify evacuation completeness.

Our information gathering model does not include the Command entity re-
questing information. Therefore, our model does not generate threats, such as,
the request for information never reaching a disaster responder or an external
information system. So, why did we choose to omit requesting information? Be-
cause requesting information is a form of command and covered by our second
high level model for command and control (see Section 4.4).

4.3.2 Threat Modeling Results

We used Microsoft Threat Modeling Tool 2016 to create the model depicted in
Figure 4.2 and then let the tool generate a list of threats. The Microsoft Threat
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Modeling Tool 2016 generates 25 threats for our model. We consolidated the list
removing four threats pertaining to elevation of privilege attacks and manually
added 4 threats concerning the Intelligence data flow (threat 22-25). Table 4.1
lists the 25 threats to this disaster response process we consider relevant.

The 25 threats of our consolidated list can be divided into two categories. The
first category encompasses the threats pertaining to the External Information
and Field Intelligence data flows. The second category consists of the threats to
the Intelligence data flow. We will now briefly discuss the threats in those two
categories and highlight why we think that these threats are pertinent.

External Information and Field Intelligence

In this first category we will look at pairs of threats. So, if we discuss “Spoof-
ing the Information Collation Process” we actually discuss both Threat 01 and
Threat 10. We take note of the threat numbers in the title of the threat pairs
we discuss in the following description.

Also for this first category, we removed 2 threat pairs, that is, in total 4
threats, from the list of threats generated by STRIDE-per-interaction. These
threat pairs were “Information Collation May be Subject to Elevation of Privilege
Using Remote Code Execution” and “Cross Site Request Forgery”. Those two
pairs refer to highly technical threats, and in this high level threat model we
wanted to limit ourselves to the conceptual threats to situational awareness in
disaster response. The effect of these two threat pairs is adequately modeled by
the “Elevation Using Impersonation” and “Elevation by Changing the Execution
Flow in Information Collation” threats.

Spoofing the Information Collation Process (01, 10) Here an adver-
sary is able to impersonate the Information Collation process and this can lead
to information disclosure to unauthorized recipients and Denial-of-Service. We
consider this threat applicable in our scenario, based on the findings by O’Neill
et al. [OSZW12] that state the importance of both confidentiality and avail-
ability in disaster response. By spoofing the Information Collation process the
perpetrator can intercept information that is destined for a commander. If there
is no further protection on the information, then the adversary can read the
information, and if the adversary does not relay the information, it will be lost.

Spoofing the External Information System/Responder (02,11) An ad-
versary is able to impersonate the External Information System, or a Responder.
We consider this threat pertinent, because it enables an adversary to inject tam-
pered data, or prevent the impersonated entity from sending information to the
Information Collation process. In both cases the adversary might be able to
change the decision made by Command according to his or her wishes, while
implicating the spoofed External Information System or Responder.

Potential Lack of Input Validation for Information Collation (03,12)
By not verifying the correctness of the incoming information the Information
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Table 4.1: A consolidated list of threats created by using the STRIDE-per-interaction
threat enumeration method on the model depicted in Figure 4.2. The
Type column uses the STRIDE threat categories. These are Spoofing,
Tampering, Repudiation, Information disclosure, Denial of Service, and
Elevation of privilege.

ID Type Title

External Information

01 S Spoofing the Information Collation Process
02 S Spoofing the External Information System
03 T Potential Lack of Input Validation for Information Collation
04 R Potential Data Repudiation by Information Collation
05 I Data Flow Sniffing
06 D Potential Process Crash or Stop for Information Collation
07 D Data Flow External Information Is Potentially Interrupted
08 E Elevation Using Impersonation
09 E Elevation by Changing the Execution Flow in Information Col-

lation

Field Intelligence

10 S Spoofing the Information Collation Process
11 S Spoofing the Responder
12 T Potential Lack of Input Validation for Information Collation
13 R Potential Data Repudiation by Information Collation
14 I Data Flow Sniffing
15 D Potential Process Crash or Stop for Information Collation
16 D Data Flow Field Intelligence Is Potentially Interrupted
17 E Elevation Using Impersonation
18 E Elevation by Changing the Execution Flow in Information Col-

lation

Intelligence

19 S Spoofing of Command
20 R Command Potentially Denies Receiving Data
21 D Data Flow Intelligence Is Potentially Interrupted

The following 4 threats were manually added

22 S Spoofing of the Information Collation Process
23 T Potential Lack of Input Validation for Information Collation
24 I Data Flow Sniffing
25 E Elevation by Changing the Execution Flow in Command
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Collation process is susceptible to attacks that are based on injecting tampered
information. In disaster response, it might not always be possible to verify the
veracity and integrity of the incoming information. In this cases ensuring that
the information comes from an authentic source and has not been tampered with
becomes all the more important.

Potential Data Repudiation by Information Collation (04,13) Accord-
ing to O’Neill et al. [OSZW12] the objective of the disaster response phase is
to: “. . . eliminate or limit the scope of arising crisis situations, which should pro-
vide victims with necessary help and neutralize sources of a threat.” The key
observation with regard to repudiation here is that disaster response is about
helping and protecting victims from further harm. If victims are put to further
harm due to decisions based on bad intelligence anyone involved in information
collation might have sufficient motivation to repudiate ever having collated the
bad intelligence. Therefore we consider this threat applicable.

Data Flow Sniffing (05,14) Here an adversary is able to eavesdrop on the
information sent to the Information Collation process. As previously established
there is a strong need for confidentiality in disaster response, and therefore we
regard this threat as applicable.

Potential Process Crash or Stop for Information Collation (06,15)
The information collation fails at collating the information in time or at all. Of
all three core security goals in disaster response, availability is held as the most
important one (see O’Neill et al. [OSZW12]). If information collation fails to
work in a timely fashion, the command decisions will be felled using degraded
intelligence. Therefore we consider this threat pertinent.

Data Flow External Information/Field Intelligence is Potentially In-
terrupted (07,16) An external agent interrupts either the External Informa-
tion or the Field Intelligence data flow to the information collation process. A
realization of this threat allows an adversary to potentially selectively interrupt
information gathering and thus, to a certain extend, control the output of the
Information Collation process and therefore influence the decision by Command.
We believe this threat to be relevant.

Elevation Using Impersonation (08,17) An adversarial information col-
lation process might use information send by either the External Information
System or a Responder to impersonate the sending entity. As Information Col-
lation is actually the process that prepares information for command in our sys-
tem, it is in an excellent position to implement this kind of impersonation. The
Information Collation process might impersonate either sending entity to plant
tampered or incriminating information and we consider this threat pertinent.
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Elevation by Changing the Execution Flow in Information Collation
(09,18) An adversary could pass (tampered) data into the Information Col-
lation process to control its output and thus the Command decision to his or
her choosing. As any threat that allows an adversary to control the Command
decision we regard this threat as applicable.

Intelligence

In the second category we briefly discuss the threats to the Intelligence data
flow from the Information Collation process to the Command. Here we manu-
ally added 4 threats pertaining to spoofing, information disclosure, tampering,
and elevation of privilege (22-25). This was necessary, because STRIDE-per-
interaction only generates limited threats for data flows that end in an External
Interactor (see Section 2.8.5 for details). Note that we did not add an “Elevation
Using Impersonation” threat (see for example Threats (08,17)), because there
is no entity in our model that the Command entity could impersonate someone
to, as there are no outgoing data flows in this model. Alternatively to manually
adding the threats, we could have modeled Command as a process to get the full
gamut of threats. However, conceptually Command is an External Interactor,
and we would have then had to remove those threats that are inappropriate to
an External Interactor.

Spoofing of Command (19) Here an adversary is able to impersonate the
Command External Interactor. A realization of this threat can lead to infor-
mation disclosure and Denial-of-Service (see Threats (01,10) above). We believe
this threat to be even more pertinent than the Threats (01,10), because Com-
mand is send collated information from all External Information Systems and
all Responders, instead of just one or a few. So for information disclosure an
adversary that realizes this threat gains access to all command decision relevant
information and by denying or delaying delivery of this information can seriously
impact the decision making process.

Command Potentially Denies Receiving Data (20) Command decisions
can endanger disaster victims (cf. Threats (04,13)). If Command makes a de-
cision that harms victims, although available intelligence might have indicated
a different decision, then a Commander might be sufficiently motivated to re-
pudiate ever having received incriminating intelligence. Therefore this threat
stands.

Data Flow Intelligence Is Potentially Interrupted (21) An external ad-
versary interrupts the Intelligence data flow to the Command. Here the adver-
sary can prevent relevant intelligence reaching Command and thus influencing
command decisions. This threat is further aggravated if the adversary is capable
of selectively targeting specific intelligence updates from the Information Colla-
tion process, as this would allow for even more control on the decisions made by
Command. For these reasons we believe this threat to be relevant.
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Intelligence - Manually Added Threats

Spoofing the Information Collation Process (22) An adversary is able to
impersonate the Information Collation process. We consider this threat applica-
ble, because here the adversary can inject tampered data directly into Command
and also withhold or delay delivery of important information by the real Infor-
mation Collation process. In both cases the adversary can exact control over the
command decision.

Potential Lack of Input Validation by Command (23) As indicated in
Threat 23 an adversary that is able inject tampered data directly into the Com-
mand is a potent threat. Therefore command should consider taking measures
to verify the incoming information, or if this is not possible, at least ensure
authenticity of its source.

Data Flow Sniffing(24) An adversary is able to eavesdrop on the informa-
tion the Information Collation process sends to Command. As documented in
Threat 19 an adversary that can realize this threat has access to sensitive in-
formation collated from a number of sources, which we believe exacerbates this
threat compared to the Threats (05,14).

Elevation by Changing the Execution Flow in Command (25) An
external adversary is able to inject tampered data into the Intelligence data
flow (cf. Threat 22 and Threat 23). Such an adversary can potentially exact an
alarming level of control over the command decision. Therefore we consider this
a threat that requires mitigation.

4.3.3 Mobile Agent System Level Model

Description of the Model

The high level model is useful for identifying high level threats. However, it
does not do the complexity of a Mobile Agent System based information pro-
cessing system justice. To gain deeper insights into the threats that arise from
using the Secure Agent Infrastructure Mobile Agent System to implement the
information gathering process, we created a model that incorporates the Secure
Agent Infrastructure components involved. This model is shown in Figure 4.3.

Two facts are immediately apparent when studying Figure 4.3. First the
model’s complexity has increased significantly and second there is a highly repet-
itive pattern of Distributed Secure Agent Platforms (DSAPs) hosting a Mobile
Agent, such as the Information Delivery Agent or the User Communication
Agent communicating with an external entity, such as an External Information
System, or Responder. We call this repetitive pattern a DSAP Outpost, which
is due to the fact that these DSAPs are often physically close to the external
entity they communicate with.
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Figure 4.3: A model of the information gathering process for situational awareness
that incorporates Secure Agent Infrastructure components. This model
exhibits a highly repetitive pattern, the Distributed Secure Agent Plat-
form Outpost. The Distributed Secure Agent Platform Outpost (DSAP
Outpost) comprises a Distributed Secure Agent Platform hosting a Mo-
bile Agent that interacts with an External Interactor.
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Figure 4.4: A Data Flow Diagram modeling command and control during the re-
sponse phase of a crisis. We use this model as input for a STRIDE-per-
interaction threat enumeration using the Microsoft Threat Modeling Tool
2016.

Results

We have modeled this Mobile Agent System level model using Microsoft Threat
Modeling Tool 2016 and used the tool to generate a list of 163 threats in total.
As expected, due to the repetitive nature of the model, the list of threats suffered
the same problem. Having three almost identical DSAP Outpost in the model
lead to a triplicate set of threats, where the only differences were the direction
of the data flows and the quality of the information that was processed. Specifi-
cally, different information sources generate information with varying degrees of
sensitivity. We will further discuss this in Section 4.6.2 As we cannot make any
assumptions on the sensitive of information beyond the requirements outlined
by O’Neill et al. [OSZW12], we saw little value in studying the DSAP Outposts
thrice. Therefore, we decided to create a model that encompasses all aspects of
a DSAP Outpost and analyze this model in detail. We have documented this in
Section 4.5.

4.4 Command and Control

Here we model the process of dispatching commands during disaster response.
Our first high level model was concerned with gathering data for informing a
command decision. Here, we turn the table around and investigate the other
direction, that is, how commands are implemented.

4.4.1 Model Description

We use a high-level representation for modeling command dispatching in disaster
response. As with our first model (cf. Section 4.3) we try to avoid concepts from
information processing systems to focus on the overall security requirements for
command and control.

Figure 4.4 depicts the Data Flow Diagram we use as our model for the
STRIDE-per-interaction threat enumeration. We derive this model from the
overall model (see Figure 4.1). For this model we extract the parts that pertain
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to command and control, such as issuing a command and dispatching a com-
mand. In this model we again use a single External Interactor (Command) to
represent all personnel that make decisions. We also unite all External Interac-
tors that implement commands in a single external entity, without distinguish-
ing between human beings and information processing systems. Central to our
model is the Command Dispatcher process. The Command Dispatcher process
models the command propagating through the chain of command, before being
dispatched to all entities implementing the command. This process can involve
a number of personnel and information systems. The Command Dispatcher pro-
cess is also the process that will be handled, at least in part, by the Core Secure
Agent Infrastructure.

As an example, consider strategic command issuing an evacuation order for
a residential area. For command implementation to be successful the command
decision must be implemented through the different levels of the command hier-
archy until it is translated into orders for operational personnel. It is important
that command decisions reach the right people (availability) and that that the
command is faithfully processed and passed on (integrity). Confidentiality is
also important for implementing command decisions. For example, orders like
“expedite evacuation in sector five, because the wildfire is closing in significantly
faster than expected” can lead to panicking in the affected civilian population
when leaked.

4.4.2 Threat Modeling Results

We used Microsoft Threat Modeling Tool 2016 to analyze the model depicted
in Figure 4.4 and let the tool generate a list of threats. The Microsoft Threat
Modeling Tool 2016 generates 14 threats for our model. We consolidated the list
removing two threats pertaining to elevation of privilege attacks and manually
added 4 threats concerning the Dispatch Command data flow (threats 04-07).
We have done this for the same reasons outlined in Section 4.3.2. Table 4.1 sum-
marizes the 16 threats to this disaster response example we consider pertinent.

Dispatch Command

Spoofing of the Subordinate External Interactor (01) By realizing this
threat an adversary can effect information disclosure and Denial-of-Service at-
tacks. The gravity of these attacks depends on the number of subordinate entities
the adversary is able to impersonate, and of course which position they hold. We
consider this attack pertinent, as it endangers confidentiality and availability.

Subordinate External Interactor Potentially Denies Receiving Data
(02) According to O’Neill [OSZW12], Disaster response encompasses helping
victims and neutralizing threats. If victims are harmed because of human error,
the involved humans might have sufficient motivation to repudiate ever having
received an order, or to claim having received a different order. Therefore, we
consider this threat pertinent.
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Table 4.2: A consolidated list of threats created by using the STRIDE-per-interaction
threat enumeration method on the model depicted in Figure 4.4. The
Type column uses the STRIDE threat categories. These are Spoofing,
Tampering, Repudiation, Information disclosure, Denial of Service, and
Elevation of privilege.

ID Type Title

Dispatch Command

01 S Spoofing of the Subordinate External Interactor
02 R Subordinate External Interactor Potentially Denies Receiving

Data
03 D Data Flow Dispatch Command Is Potentially Interrupted
04 S Spoofing the Command Dispatcher Process
05 T Potential Lack of Input Validation for Subordinate External

Interactor
06 I Data Flow Sniffing
07 E Elevation by Changing the Execution Flow in Subordinate Ex-

ternal Interactor

Issue Command

08 S Spoofing the Command Dispatcher Process
09 S Spoofing the Command External Interactor
10 T Potential Lack of Input Validation for Command Dispatcher
11 R Potential Data Repudiation by Command Dispatcher
12 I Data Flow Sniffing
13 D Potential Process Crash or Stop for Command Dispatcher
14 D Data Flow Issue Command Is Potentially Interrupted
15 E Elevation Using Impersonation
16 E Elevation by Changing the Execution Flow in Command Dis-

patcher
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Data Flow Dispatch Command Is Potentially Interrupted (03) This
threat directly attacks the availability of a command. As with Threat 01 the
severity of the impact depends on how many commands the adversary can inter-
rupt and who the recipients are. An adversary being able to selectively interrupt
command distribution can severely hamper the disaster response effort. As such
this threat stands.

Spoofing the Command Dispatcher Process (04) By impersonating the
command dispatcher an adversary can inject commands, or prevent that the
affected subordinate entities receive commands issued to them. In line with
the other threats to this data flow the severity depends again on whom the
adversary is able to impersonate the command dispatcher process to, and how
many subordinate entities the adversary is able to deceive. In all cases this
threat violates availability and integrity and we consider it relevant.

Potential Lack of Input Validation for Subordinate External Interac-
tor (05) Here an adversary directly injects a tampered command or tampers
with a command during transmission. Again, the grievousness of the threat de-
pends on against whom the adversary is able to realize this threat and how many
subordinates the adversary can affect. An adversary that can issue or change
commands to Subordinate External Interactors can seriously hamper disaster
response, hence we consider this a threat.

Data Flow Sniffing (06) Here an adversary is able to eavesdrop on the
information sent to at least one Subordinate External Interactor. According
to O’Neill et al. [OSZW12] confidentiality is important to disaster response,
therefore this threat is pertinent. As with the previous threats, threat severity
depends on which concrete data flows the adversary can eavesdrop on, and how
many.

Elevation by Changing the Execution Flow in Subordinate External
Interactor (07) An adversary is able to tamper with a command in a way
that alters the behavior of the Subordinate External Interactor. As with all
threats to this data flow, this threat’s severity depends on which concrete data
flows, and how many of them, the adversary can tamper with. We consider this
threat relevant.

Issue Command

Spoofing the Command Dispatcher Process (08) This process models
the command propagating through the command hierarchy until it is broken
down to a level where it is sent to the executive personnel, for example, first
responders. Similar to Threat 01 this is a threat to availability and confidential-
ity. Here the severity depends on where in the chain of command the adversary
is able to spoof the dispatcher process. If the adversary is, for example, able to
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impersonate an entity close to a strategic decision maker, the adversary may sig-
nificantly influence disaster response and potentially gain high value intelligence.
Even at lower levels in the chain of command the threat is pertinent.

Spoofing the Command External Interactor (09) An adversary that
can impersonate the Command External Interactor can directly inject tampered
commands (see Threats 11,16) and can prevent the authentic command entity
from sending commands (see Threats 13,14) to the Command Dispatcher Pro-
cess. In addition to enabling a number of relevant threats, it can also implicate
the real Command External Interactor. Hence we think it needs mitigation.

Potential Lack of Input Validation for Command Dispatcher (10)
Here an adversary is able to inject tampered information into the Command
Dispatcher Process and that includes issuing forged commands due to a lack
of authenticity and integrity checking. Note that especially in large scale dis-
aster response operations verifying the authenticity and integrity of incoming
commands can be daunting. We consider this threat to be grievous. For refer-
ence, all integrity threats in our situational awareness discussion in Section 4.3
included changing the command decision outcome. Here the adversary can di-
rectly inject or tamper with a command. The impact of this threat depends
on where in the chain of command this threat is realized. An adversary real-
izing this threat can effect a Denial-of-Service attack by injecting nonsensical
commands that bind critical resources, she can send out commands that reveal
sensitive information to an unauthorized audience, or otherwise compromise the
integrity of the Command Dispatch Process.

Potential Data Repudiation by Command Dispatcher (11) Account-
ability is an important aspect of disaster response, as disaster response is con-
cerned with preventing harm to disaster victims. If disaster victims are further
harmed due to human error, an entity involved in dispatching commands might
have sufficient motivation to repudiate ever having received a command or re-
port having received a different command. We think this is a threat requiring
mitigation.

Data Flow Sniffing (12) Here an adversary is able to eavesdrop on at least
one command sent to the Command Dispatcher Process. As we have previously
established the need for confidentiality in disaster response, we consider this
threat applicable.

Potential Process Crash or Stop for Command Dispatcher (13) When
the command dispatcher process fails to dispatch commands it is a clear violation
of availability. Given the importance of command and control, this is a pertinent
threat to disaster response.
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Data Flow Issue Command Is Potentially Interrupted (14) An ad-
versary that can interrupt commands coming from the Command External In-
teractor can exert control over command implementation. On the one hand
interrupting commands is a clear violation of availability. On the other hand
by selectively interrupting commands an adversary might be able to control the
disaster response effort. Hence, we consider this threat relevant.

Elevation Using Impersonation (15) A compromised command dispatch
process might use information received from the Command External Interactor
to impersonate the Command External Interactor. This allows for injecting
tampered commands, while incriminating the Command External Interactor (see
Threat 09). Therefore we think this threat should be mitigated.

Elevation by Changing the Execution Flow in Command Dispatcher
(16) An adversary passes tampered information into the Command Dispatcher
process to control command implementation. The adversary might “simply”
issue forged commands, or even try to change the structure of the Command
Dispatcher Process, for example by reassigning personnel involved in the process.
We believe this is a relevant threat requiring mitigation.

4.5 Distributed Secure Agent Platform Outpost

4.5.1 Overview

In this section we analyze what we call the Distributed Secure Agent Platform
Outpost (DSAP Outpost). The DSAP Outpost is a highly repetitive pattern
we found when modeling the disaster response activities implemented using the
Secure Agent Infrastructure. A DSAP Outpost comprises a Distributed Secure
Agent Platform (DSAP) that hosts Mobile Agents that interact with external
entities such as first responders or information systems. The Mobile Agents use
the DSAP to communicate with the central components of the Secure Agent
Infrastructure. As the DSAP Outpost is an ubiquitous aspect of the Secure
Agent Infrastructure we find it valuable to model it and perform an in-depth
analysis of the threats it might be subjected to. For the same reason we decided
to secure the DSAP Outpost with the two security mechanisms we introduce in
Chapter 5. We use our results from this chapter to gauge the effectiveness of
these two security mechanisms.

We first describe the Data Flow Diagram we use for threat modelling in
Section 4.5.2. We then define our security assumptions in Section 4.5.3 and
proceed with presenting our threat modeling results in Section 4.5.4. Note that
the actual discussion of the identified threats is deferred to Appendix A. Note
further, that Section 4.5.4 only presents the bare-bone results and that our
findings based on these results are discussed as part of our conclusions (see
Section 4.6.3).
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Figure 4.5: A Data Flow Diagram modeling the Distributed Secure Agent Platform
Outpost (DSAP Outpost). A DSAP Outpost is at the core of the Se-
cure Agent Infrastructure typical process of sending a Mobile Agent to
a DSAP to gather information from an external information system, or
converse with a system user. Here we model both, the agent migration
and the information exchange between the Core Secure Agent Infrastruc-
ture (CSAI) and the Mobile Agent (MA) running on the DSAP. We use
this model as input to the STRIDE-per-interaction analysis using the
Microsoft Threat Modeling Tool 2016.

4.5.2 Description of the Model

We created our DSAP Outpost model using Microsoft Threat Modeling Tool
2016. Figure 4.5 shows our Data Flow Diagram model. Our model consists of
four entities and eight data flows. Starting with the entities, first we have the
Core Secure Agent Infrastructure ( 3 ). The Core Secure Agent Infrastructure
is an External Interactor and it comprises a number of components, such as
the Process Management Subsystem, the Agent Repository, and the Resource
Lookup System (see Section 2.6 and Section 4.2). The next entity is the DSAP

process ( 2 ) that handles agent migration, agent execution and agent communi-

cation with the Core Secure Agent Infrastructure. The Mobile Agent ( 1 ) itself
is also represented as a process that is instantiated by the DSAP and communi-
cates with the Core Secure Agent Infrastructure via the DSAP, and directly with
the last entity, the External Interactor ( 4 ). The External Interactor subsumes
the human users and external information systems the agent might communicate
with.
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We group the data flows into three groups.

i Agent Migration consists of the Send Mobile Agent and Instantiate Mobile
Agent data flows. We discuss this group in detail in Section A.5.

ii Agent – Core Secure Agent Infrastructure Communication consists
of the CSAI →DSAP, the DSAP →CSAI, the MA →DSAP and the DSAP
→MA data flows. In Section A.7 we detail this group of information flows.

iii Agent – External Interactor Communication comprises the Input and
Output data flows (see Section A.6).

We assume a secure communication channel between the Core Secure Agent
Infrastructure and the DSAP (see Section 4.5.3). Therefore we have configured
our model so that the CSAI →DSAP, the DSAP →CSAI, and the Send Mobile
Agent data flows provide confidentiality, integrity, and end-point authenticity.

4.5.3 Secure Agent Infrastructure Security Assumptions

Torr [Tor05] explicitly states that it is important to enumerate the assumptions
made about a software component during design and development and that these
assumptions should be verified at a later stage of the development cycle. Simi-
larly, Haley et al. note the importance of making assumptions [HLMN08] explicit
in security requirements engineering process. Haley et al. summarize that these
assumptions arise from the analyst choosing what domains (real-world elements)
to consider in security requirements engineering and thus defining system con-
text. In the following, we present our assumptions on different domains of the
Secure Agent Infrastructure and thus setting the stage for our threat modeling
of the DSAP Outpost.

Secure Core Secure Agent Infrastructure

As described in Section 2.6, the Secure Agent Infrastructure comprises a num-
ber of core components, such as the Process Management Subsystem, the Agent
Repository, and the Resource Lookup System. For our threat modeling activ-
ities we combine those components into the Core Secure Agent Infrastructure
External Interactor, and we assume that these core components operate within a
protected domain and will not violate their security policy, while being inviolable
to outside attacks.

We define the security policy of the Core Secure Agent Infrastructure to be
as follows.

• The Core Secure Agent Infrastructure performs its disaster response tasks
according to specification.

• The Core Secure Agent Infrastructure will be permanently available. How-
ever, single network connections to the Core Secure Agent Infrastructure
might intermittently fail or be interrupted.
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• The Core Secure Agent Infrastructure will protect confidential information
and will only disclose it to authorized entities.

• The Secure Agent Infrastructure will not degrade or corrupt the integrity
of the information it processes.

• The Core Secure Agent Infrastructure will rigorously verify the integrity
of incoming information to prevent corruption of the Core Secure Agent
Infrastructure, or remote command execution on a component of the Core
Secure Agent Infrastructure.

Our security policy is strict and places a strong burden on Core Secure Agent
Infrastructure development, operation, and maintenance. However, we claim
that the underlying assumption that the Core Secure Agent Infrastructure com-
ponents and network will be developed, operated and maintained with a focus
on security is sound. As such we focused our research efforts on those outlying
DSAPs, which are operated in heterogeneous environments, and where we can
make only limited assumptions on their operational environment.

Secure Mobile Agents

The Secure Agent Infrastructure assumes that Mobile Agents are vetted for their
adherence to the Secure Agent Infrastructure security policy and only agents that
check out are certified for use with the Secure Agent Infrastructure. For threat
modeling activities we assume that Mobile Agents in the Core Secure Agent
Infrastructure are inviolable to attacks. Only when a Mobile Agent is sent to a
DSAP Outpost do we consider threats to it.

Secure Communication Channel

We assume that all data flows between the Core Secure Agent Infrastructure
and the DSAP are communicated using an authentic, integrity protected, and
confidential channel. We call a communication channel that provides authen-
ticity, integrity, and confidentiality a secure communication channel. The Jini
technology underlying the Secure Agent Infrastructure allows for a number of
communication mechanisms that can be configured to provide a secure commu-
nication channel (see Section 2.5.2). For example, Jini supports HTTPS and
Transport Layer Security (TLS). TLS with client certificate authentication us-
ing a cryptographically secure cipher suite can provide a secure communication
channel. Furthermore, we assume that the implementation of the secure commu-
nication channel is free of security vulnerabilities, precluding for example buffer
overflows that allow remote code execution, the use of insecure cipher suites, or
misconfigured certificates.

Distributed Secure Agent Platforms and External Interactors

The DSAPs are the outposts of the Secure Agent Infrastructure. Mobile Agents
migrate to DSAP Outposts to be physically close to the entities they interact
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with. On the one hand these entities are human users interacting with the Secure
Agent Infrastructure to fulfill their disaster response duties, on the other hand
these entities are information systems providing useful services and information
for disaster response.

There are few assumptions we can make on the security of these DSAP
Outpost. In our setting concrete DSAP Outposts can range from first responders
using their own private mobile smartphones to well maintained and protected,
dedicated systems in both public and governmental organizations.

4.5.4 Threat Modeling Results

Here we present the threats we have derived from our threat model. For a dis-
cussion of our findings see Section 4.6.3. We use the Microsoft Threat Modeling
Tool 2016 to model the DSAP Outpost and generating a list of threats. Our first
attempt generated 72 threats to analyze. Specifying that the connections be-
tween the Core Secure Agent Infrastructure and the DSAP use an authenticated,
confidential, and integrity protected communication protocol (see Section 4.5.3)
reduced the number of threats to 64. We then performed an in-depth analysis of
all 64 threats in the DSAP Outpost setting. We have documented this analysis
in Appendix A.

In Appendix A we describe every threat, decide if it is pertinent, and we
check if and how the threat is represented in the Mobile Agent System security
literature. For this, we use the works by Jansen and Karygiannis [JK99, Jan00],
Borselius [Bor02], and Bierman and Cloete [BC02] as references. See Section 2.4
for a more detailed discussion of the prior art in Mobile Agent security. Finally,
if applicable, we also discuss how well STRIDE-per-interaction is suited to model
a particular aspect of the DSAP Outpost.

We present our results concerning agent migration in Table 4.3, the results
for Mobile Agent – External Interactor communication in Table 4.4, and the
results for Mobile Agent – Core Secure Agent Infrastructure communication
in Table 4.5. These tables list the 55 threats we believe relevant to a DSAP
Outpost. Each table specifies the threat identifier (ID), the threat type (T),
the threat title (Title), the threat identifier generated by the Microsoft Threat
Modeling Tool 2016 tool that is used to identify the threat in Appendix A, and
finally the novelty (N) of the threat. The ID is just an incremental number.
The threat type can be one of the six STRIDE-per-interaction threat categories,
that is, Spoofing, Tampering, Repudiation, Information Disclosure, Denial-
of-service, and E levation of privilege. The novelty column gives an indication
how well this particular threat was represented in the Mobile Agent System
security literature we analysed. Here ↑ signifies a novel threat, that is at best
mentioned in the literature as a generally desirable property, if at all. A ∼

signifies that literature acknowledges the existence of the threat, but often in a
different context. Finally, ↓ signifies that this particular threat is well described
in literature.
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Table 4.3: Threats to agents migrating from the Core Secure Agent Infrastructure to
a Distributed Secure Agent Platform Outpost

ID T Title AID N

Send Mobile Agent

01 R The Distributed Secure Agent Platform Repudiates Re-
ceipt of a Mobile Agent

58 ↑

02 D Potential Process Crash or Stop for Distributed Secure
Agent Platform

59 ↓

03 D The Data Flow Send Mobile Agent Is Potentially Inter-
rupted

60 ↓

04 E Compromised Distributed Secure Agent Platform Uses
Received Information to Impersonate Core Secure Agent
Infrastructure

61 ↑

05 T A Compromised Distributed Secure Agent Platform Im-
plicates the Core Secure Agent Infrastructure to Have
Sent Data to Compromise the Distributed Secure Agent
Platform

63 ↑

Instantiate Agent

06 S Compromised Distributed Secure Agent Platform Gains
Full Access to a Mobile Agent

12 ∼

07 T Compromised Distributed Secure Agent Platform Tam-
pers with Mobile Agent

14 ↓

08 I Compromised Distributed Secure Agent Platform
Eavesdrops (on) Mobile Agent

16 ↓

09 D Compromised Distributed Secure Agent Platform En-
acts Process Crash or Stop for the Mobile Agent

17 ↓

10 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow Instantiate Agent

18 ↓

11 E Compromised Distributed Secure Agent Platform Im-
personates Mobile Agent

20 ↓
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Table 4.4: Threats to a Mobile Agent communicating with an External Interactor

ID T Title AID N

Input

12 S Compromised Distributed Secure Agent Platform
Spoofs the Mobile Agent Process

1 ∼

13 S External Entity Spoofs Mobile Agent Process 1 ↑
14 S Compromised Distributed Secure Agent Platform

Spoofs the External Interactor
2 ∼

15 S External Entity Spoofs the External Interactor 2 ↑
16 T Potential Lack of Input Validation for the Mobile Agent 3 ↑
17 T Compromised Distributed Secure Agent Platform Tam-

pers With Mobile Agent Input
3 ↑

18 R Compromised Distributed Secure Agent Platform Com-
promises Mobile Agent to Repudiate Data

4 ↑

19 I External Entity Sniffs Data Flow 5 ∼

20 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

5 ↓

21 D Compromised Distributed Secure Agent Platform En-
acts Process Crash or Stop for the Mobile Agent

6 ↓

22 D External Entity Interrupts Data Flow Input 7 ∼

23 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow Input

7 ↓

24 E Cross Site Request Forgery 8 ↑
25 E Compromised Distributed Secure Agent Platform Uses

Information Received By Mobile Agent to Impersonate
External Interactor

9 ↑

Output

26 S Compromised Distributed Secure Agent Platform
Spoofs the External Interactor to Implicate External In-
teractor

23 ↑

27 S External Entity Spoofs the External Interactor To Gain
Unauthorized Access

23 ↑

28 S Compromised Distributed Secure Agent Platform
Spoofs the Mobile Agent

65 ∼

29 R External Interactor Potentially Denies Receiving Data 24 ↑
30 D Data Flow Output Is Potentially Interrupted 25 ∼

31 T Compromised Distributed Secure Agent Platform Tam-
pers With Mobile Agent Output

66 ↓

32 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

67 ↓

33 D Compromised Distributed Secure Agent Platform En-
acts Process Crash or Stop for the Mobile Agent

68 ∼
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Table 4.5: Threats to a Mobile Agent communicating with the Core Secure Agent
Infrastructure using the Distributed Secure Agent Platform’s communica-
tion facilities

ID T Title AID N

MA → DSAP

34 S Compromised Distributed Secure Agent Platform
Spoofs the Mobile Agent Process

26 ∼

35 S Spoofing the Distributed Secure Agent Platform Process 27 ↓
36 T Potential Lack of Input Validation for Distributed Se-

cure Agent Platform
28 ↓

37 R Compromised Distributed Secure Agent Platform Repu-
diates Receiving Data

29 ↑

38 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

30 ↓

39 D Compromised Distributed Secure Agent Platform
Crashes or Stops

31 ∼

40 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow MA → DSAP

32 ↓

41 E Compromised Distributed Secure Agent Platform Ele-
vation Using Impersonation

33 ↓

DSAP → CSAI

42 D Data Flow DSAP → CSAI Is Potentially Interrupted 39 ∼

CSAI → DSAP

43 R Potential Data Repudiation by Distributed Secure
Agent Platform

40 ↑

44 D Potential Process Crash or Stop for the Distributed Se-
cure Agent Platform

41 ↑

45 D External Entity Interrupts Data Flow CSAI → DSAP 42 ∼

46 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow CSAI → DSAP

42 ↓

DSAP → MA

47 S Compromised Distributed Secure Agent Platform Im-
personates the Core Secure Agent Infrastructure

47 ∼

48 S Compromised Distributed Secure Agent Platform
Spoofs the Mobile Agent Process

48 ↑

49 T Potential Lack of Input Validation for the Mobile Agent 49 ↑
50 R Compromised Distributed Secure Agent Platform Mod-

ifies Mobile Agent to Enact Data Repudiation by the
Mobile Agent

50 ↑

51 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

51 ↓
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Table 4.5 – continued from previous page

ID T Title AID N

52 D Compromised Distributed Secure Agent Platform En-
acts Process Crash or Stop for the Mobile Agent

52 ↓

53 D Data Flow DSAP → MA Is Potentially Interrupted 53 ∼

54 E Elevation Using Impersonation 54 ↑

4.6 Conclusions

4.6.1 Summary

In this chapter we have created threat models for two high level processes per-
taining to disaster response: situational awareness and command and control.
We have modeled these processes, because they are instrumental to disaster
response [OSZW12] and the communication exchanges taking place in these
processes form the assets we want to protect. Given that we already know the
importance of confidentiality, integrity and availability for these assets accord-
ing to domain experts [OSZW12], we wanted to identify concrete threats to
these assets. We used abstract, high level models first to gain insights into the
threats, without cluttering our observations with technical details. We present
our conclusions in Section 4.6.2.

Our primary objective for this chapter is to provide a list of threats we can
use to evaluate the two security mechanisms forming our security solution we
introduce in Chapter 5. For this purpose we created a detail level threat model
that encompasses concepts of the Secure Agent Infrastructure for situational
awareness. Using this model we have identified a highly repetitive pattern,
the Distributed Secure Agent Platform Outpost (DSAP Outpost). The DSAP
Outposts form the interface points between the Secure Agent Infrastructure
and the outside world. We expect a significant number of DSAP Outposts in
any deployment of the Secure Agent Infrastructure. Therefore, we decided to
further investigate the threats to the DSAP Outpost. The threats found for the
DSAP Outpost form the basis of the security evaluation of our security solution
introduced in Chapter 5. In addition, we have also compared our findings with
the comprehensive literature on Mobile Agent System security. We present our
findings in Section 4.6.3 and the future work we have identified in Section 4.7.2.

We have threat modeled both the situational awareness process and the com-
mand implementation process using Data Flow Diagrams to create the models
and STRIDE-per-interaction to enumerate the threats. The threat modeling was
supported by the Microsoft Threat Modeling Tool 2016. We have gathered our
observations and conclusions for both processes in Section 4.6.4 and identified
future work in Section 4.7.1.

• By high level threat modeling disaster response activities we have estab-
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lished 41 threats to gathering information (situational awareness) and com-
mand and control. See Section 4.6.2 for details.

• By refining the situational awareness high level model we identified the
highly repetitive DSAP Outpost pattern. We observe that by mitigating
threats to the DSAP Outpost we can mitigate a significant portion of the
threats to situational awareness and command and control. Therefore, we
decided to concentrate on securing the DSAP Outpost (see Section 4.6.2).

• We have created a threat model for the DSAP Outpost. This threat model
yielded a list of 54 threats. We use this list to validate the effectiveness
of the Trusted Docking Station (TDS) and the Secure Docking Module
(SDM). The TDS and the SDM are two security mechanisms we introduce
in Chapter 5. We have designed these mechanisms to secure the DSAP
Outpost. See Section 4.6.3 for further discussion of this topic.

• The core of the DSAP Outpost is the Distributed Secure Agent Platform
(DSAP). The DSAP is a mobile agent platform. We have compared our
DSAP Outpost threat modeling results with the comprehensive existing
literature on Mobile Agent System security. Of our 54 threats we consider
20 to be novel and not recorded in literature. We present further details
in Section 4.6.3.

• We believe Microsoft’s threat modeling methodology based on Data Flow
Diagram models and STRIDE-per-interaction for threat enumeration to
work well for modeling a Mobile Agent System based system. Specifically,
the methodology also worked to capture threats to mobile code specific
activities such as migrating Mobile Agents. We discuss this in Section 4.6.3.

• We also find Microsoft’s threat modeling methodology to work well for
capturing the threats to situational awareness and command and control.
We base this finding on the fact we we considered almost all threats the
Microsoft Threat Modeling Tool 2016 identified for the situational aware-
ness and command and control high level models to be pertinent (see
Section 4.6.4). Similarly, we find the methodology to work equally well for
the communication aspects of the DSAP Outpost (see Section 4.6.3). We
believe this to be rooted in the use of Data Flow Diagrams as a model.

• We observe that Microsoft’s threat modeling methodology, as implemented
in the Microsoft Threat Modeling Tool 2016, also works well for modeling
activities that are not necessarily implemented using an information pro-
cessing system. With minor manual adaptation of the generated threats
we were able to use the Microsoft Threat Modeling Tool 2016 to create
high level threat models that abstract almost all implementation aspects.
We discuss this in Section 4.6.4.
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4.6.2 High Level Threat Models

From O’Neill et al. we know that disaster response communication requires a
high degree of confidentiality, integrity and availability [OSZW12]. Specifically,
O’Neill et al. note that voice communication requires the highest level of con-
fidentiality, integrity and availability relative to other information types, such
as file transfer. With the use of the Secure Agent Infrastructure to support
disaster response a portion of disaster response voice communication is replaced
with automated computer based information processing. Consequently, the se-
curity requirements of voice communication apply to this automated information
processing. Therefore, the Secure Agent Infrastructure has to fulfill these confi-
dentiality, integrity and availability requirements.

For the Secure Agent Infrastructure to fulfill the confidentiality, integrity
and availability requirements we have to equip it with adequate security mech-
anisms that mitigate threats to these security goals. However, the results of
O’Neill et al. only name security goals, not threats. Therefore, to identify ad-
equate mitigation mechanisms we first need to identify the threats to disaster
response communication. Based on the finding of O’Neill et al. that all disaster
response communication either pertains to situational awareness or command
and control and the function of the Secure Agent Infrastructure we have de-
veloped an overall model for threat modeling disaster response communication
(see Section 4.2). We have then derived to independent models for gathering
information (situational awareness) and command and control. Using Microsoft
Threat Modeling Tool 2016, and with manual addition of four threats, we have
come up with 41 threats to information gathering and command and control
that the Secure Agent Infrastructure needs to mitigate. By further refining the
situational awareness high level model to include aspects of the Secure Agent
Infrastructure we have identified a repetitive pattern, the DSAP Outpost. The
DSAP Outpost is a key element of the all disaster response communication han-
dled by the Secure Agent Infrastructure. Therefore, by mitigating threats to the
DSAP Outpost we automatically mitigate a significant portion of the threats to
information gathering and command and control.

4.6.3 Using STRIDE-per-interaction for Threat Modeling

a Mobile Agent Platform

Our threat modeling efforts have yielded a list of 54 pertinent threats to the
DSAP Outpost. We will use this list of 54 threats to analyze the effectiveness of
a security solution we devised and which we present in Chapter 5. Towards this
we note the overabundance of threats related to a compromised DSAP. Of our
54 threats 43 are directly related to a comprised DSAP. Our solution comprises
the TDS and the SDM, and it is geared towards mitigating these threats.

We also compared our findings with the Mobile Agent System security lit-
erature. Overall we have identified 54 pertinent threats. Of these 54 threats,
we consider 20 as being novel, 14 as being somewhat represented in literature,
and 20 as being well known and described in literature. The main reason for the
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novel threats is the lack of discussion on repudiation and impersonation threats
in our literary sources. A second reason being that only Jansen and Karygian-
nis use a model based approach, and even they only model entities internal to
the Mobile Agent System. Borselius does consider external communication, but
only in the broadest sense. Bierman and Cloete only study threats that originate
from a malicious agent platform. We take the 20 threats we consider novel as
an indication that even a well-founded generic discussion of the topic of Mobile
Agent security is no substitute for a detailed threat modeling of the concrete
system. We believe this is due to the topic being to varied for one discussion to
cover all potential security threats in a Multi-Agent System.

Concerning the use of STRIDE-per-interaction to threat modeling the DSAP
Outpost we note two interesting facts. First, we used STRIDE-per-interaction to
model the Mobile Agent System specific concept of mobile code. Specifically, we
used the Instantiate Mobile Agent data flow to represent deserialization and in-
stantiation of the Mobile Agent. With this interpretation of the data flow we left
the confines of what STRIDE-per-interaction was developed for. Nonetheless,
we were able to identify six pertinent threats using STRIDE-per-interaction with
the Instantiate Agent data flow. We even gained more insight into this particu-
larly well studied area of Mobile Agent System security, than by a pure literary
study.

Second, STRIDE-per-interaction was well suited to analyse the Mobile Agent
to Core Secure Agent Infrastructure and External Interactor communications.
The Data Flow Diagram based model lends itself naturally to represent these
communications (see also Section 4.6.2). Also the analysis of the threats per-
taining to Mobile Agent communication gave us in-depth understanding of what
specific harm a compromised DSAP can inflict on the overall Secure Agent In-
frastructure. This knowledge is valuable, because literature is unanimous in
identifying a malicious agent platform as the threat agent that is the most dif-
ficult to mitigate.

4.6.4 Using STRIDE-per-interaction for Modeling High

Level Processes in Disaster Response

Case studies on the applicability and effectiveness of threat modeling using Mi-
crosoft’s Security Development Lifecycle methodology based Data Flow Diagram
models with STRIDE-per-interaction for threat enumeration are still scarce (see
Section 3.1.1). Therefore, in addition to deriving the threats we want to miti-
gate, we also recorded our observations on using the Microsoft Threat Modeling
Tool 2016 for establishing these threats. Here we discuss our findings on how
well this threat modeling methodology worked for high level disaster response
communication in general, and for modeling activities that are not necessarily
implemented by software, but for example by human beings.

We find that STRIDE-per-interaction’s Data Flow Diagram models are well
suited to map the information gathering and command implementation processes
in disaster response. Data Flow Diagrams naturally capture the flow of informa-
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tion between the data sources, such as external information systems and disaster
responders, and the command that has to use this information to decide upon
the best disaster mitigation strategy. Conversely, a Data Flow Diagram catches
the process of command implementation equally well. As the information flows
for gathering information and command implementation are exactly the assets
we want to protect, we found almost all threats the tool generates to the data
flows pertinent.

However, there are two caveats to using STRIDE-per-interaction. First of all
there are artifacts that arise from using a tool created for analysing software to
a process where we make as of yet no assumption on how it is implemented. For
example the process Information Collation in Figure 4.2 could be conducted by
a human being. The effect of this “misuse” is that some threats generated using
STRIDE-per-interaction are really only applicable to informations systems. Here
these threats are “${Process} May be Subject to Elevation of Privilege Using
Remote Code Execution” and “Cross Site Request Forgery”, where ${Process}
is a variable for an actual process, such as Information Collation or Command
Dispatcher. We are not aware of any way to do a privilege escalation through
remote code execution on, for example, a human being, however we consider
feeding a human wrong data to force a specific outcome possible. Therefore we
specifically consider threats of the sort “Elevation by Changing the Execution
Flow in ${Process}” pertinent.

On the other hand, some of the threats that STRIDE-per-interaction gen-
erates can be naturally adapted to a general process. For example the threat
of “Elevation Using Impersonation” is specifically targeted at the impersonation
facilities of Microsoft’s Windows OS family, where a software process can take
on the guise of another entity to change its access rights (cf. Section A.5.1).
However, the underlying principle also holds if you replace the actors with peo-
ple and the impersonation token, with a password, or even simpler and more
applicable to disaster response, a caller name.

Another artifact arising from using STRIDE-per-interaction on an abstract
level is that we had to use processes for tasks that are potentially done by
humans. This is due to the fact that STRIDE-per-interaction generates different
threats depending on the type of the origin or endpoint of a data flow (see
Section 2.8.5). If we would not have used a process for information collation in
Figure 4.2 and instead would have directly connected the External Interactors
we would have only gotten 4 threats.

The second caveat of using STRIDE-per-interaction is related to generalizing
data flows. Specifically, we stated that the External Interactors Responder and
External Information System are representative of all Responders and External
Information Systems connected to the Information Collation process. Further-
more, we have unified all commanding entities under a single Command External
Interactor and all executive entities under the single Subordinate External In-
teractor in Figure 4.4. Now, as we generalized the meaning of the data flows to
these entities, we see generated threats in a general context. Although this gives
us an overview of the threats we will need to consider, we lack those details that
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allow tailoring a security solution.
For example, a fire fighter operational commander giving a situation report

to his or her tactical command might have less need for confidentiality, than
an assessment that the chemical factory threatened by the wildfire currently
holds a stock of chemicals that could potentially create a large scale poisonous
cloud capable of killing people, if the wildfire should damage or destroy the
chemical tanks. So given the threat list in Table 4.1 and Table 4.2 we know what
threats we will have to mitigate, but we have little information that allows us to
gauge the strength of the mitigation mechanisms we need for specific information
exchanges. For this we need a risk analysis that analyses all instances of potential
information exchanges for situational awareness and command implementation
in disaster response. We will discuss this further in Section 4.7.1.

4.7 Future Work

We want to highlight two areas for further research. The first is risk modeling
for the two high level threat models for situational awareness and command
implementation. The second area is enhancing the existing threat model for the
Distributed Secure Agent Platform Outpost (DSAP Outpost) we introduced in
Section 4.5.

4.7.1 Risk Modelling

We have investigated two high level models relevant to disaster response. The
first modeled data flows for gaining situational awareness to inform a command
decision and the second modeled implementing command decisions. We inten-
tionally kept these models at a high level of abstraction, and still their analysis
revealed a number of pertinent threats.

One aspect we abstracted in our models is the sensitivity of the information
dealt with. Although our analysis revealed a number of pertinent threats, what
we did not consider is the impact of a threat. To analyze the impact of a
threat we need to consider who exchanges information and how important this
information is for the overall disaster response. With this information we can
then put threats we have identified into context and evaluate their impact using
a risk modeling methodology, such as Microsoft DREAD [Sho14].

For the purpose of the risk modeling we propose the following approach,
which is based on the approach by O’Neill et al. [OSZW12]. First, develop
a concrete disaster response scenario that encompasses a significant portion of
disaster response activities. One possible example for this would be to expand
the wildfire scenario we use in this thesis, or use the scenario of O’Neill et al.
Second, break the scenario down into activities, where each activity maps to
a communication exchange between at least two disaster response personnel.
Third, and here we deviate from the approach by O’Neill et al., map these activ-
ities to the simple threat models we have created for situational awareness and
command implementation. Fourth, and here we rejoin the approach of O’Neill
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et al., gather a group of domain experts for disaster response. Finally, and here
we deviate again from the approach of O’Neill et al., select a risk assessment
approach, such as for example Microsoft’s DREAD [Sho14], and evaluate the
threats to the activities mapped to the threat models we have introduced in this
chapter with the group of domain experts.

We believe that the outcome of this risk modeling will be an increased un-
derstanding of which areas of disaster response communication require stronger
security mechanisms, and where simpler and cheaper, but also more widely de-
ployable security mechanisms can be used. In Chapter 5 we introduce a security
solution, consisting of multiple security mechanisms, that is geared towards wide
deployability using COTS hardware, while providing more than “just” communi-
cation security. We believe that by risk modeling the disaster response activities
as outlined above we could gather concrete evidence on where our security solu-
tion can be used, and where stronger mechanisms are in order.

4.7.2 Enhanced Threat Modeling for the Distributed Se-

cure Agent Platform Outpost

We have created a detailed threat model for the DSAP Outpost in Section 4.5.
For this model our threat modeling efforts have yielded 54 concrete threats
against the DSAP Outpost. Although our model is detailed, it is by necessity
generic. We believe that given the ubiquity of DSAP Outposts in the Secure
Agent Infrastructure, there will be many different physical manifestations of
the DSAP Outpost, thus establishing a variety of system contexts. Haley et
al. [HLMN08] state that “System context can have a profound effect on security
goals and security requirements.” For example, a first responder might use her
private mobile phone as a DSAP Outpost, whereas a DSAP Outpost installed
at an infrastructure facility such as a hospital might run on dedicated server
hardware. Having different physical manifestations and varying operational en-
vironments introduces new threats or limits already identified threats. Let us
consider two examples.

First, a first responder’s private mobile phone might simply get stolen, which
potentially gives an adversarial entity physical access to the DSAP Outpost.
Physical attacks are a difficult class of attacks to protect against. Protection
against physical attacks often requires special equipment, such as Security Con-
trollers (see Section 2.13). While a private phone getting stolen is not an unlikely
event, someone burglarizing a hospital to steal the DSAP Outpost from the hos-
pital’s server room is somewhat more difficult to envision.

For the second example consider a DSAP Outpost stationed in a hospital and
directly connected to the hospital’s information infrastructure. In Section 4.5
we have identified the threat of an external information system being spoofed by
an external entity (Threat 15, “External Entity Spoofs the External Interactor”).
If in our example the external entity is the hospital’s information infrastructure
and the DSAP Outpost is directly connected to it via a cable, then spoofing it
seems less likely than for example, if the DSAP Outpost and its corresponding
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external entity are in physically separate locations and connected via insecure
networks.

We think that it would be worthwhile to study different physical manifesta-
tions and operational environments of DSAP Outposts and model the threats ac-
cordingly. We believe that the Data Flow Diagram and STRIDE-per-interaction
approach we used for our threat models so far only provides limited support
for identifying threats pertaining to the operational environment or a particular
physical manifestation. Therefore, we propose to conduct this study using attack
trees [SSSW98] to supplement our DSAP Outpost threat model. Attack trees are
another method for enumerating threats and attack trees help reasoning about
threats in a formal and methodical way. Attack trees describe the security of a
system based on attacks to the system. The root node of the tree represents the
attack goal and subtrees decompose the problem of implementing this attack into
different strategies which are represented as leaf nodes. For example an attack
tree root node could be “Unauthorized access to emergency services communica-
tion network” and a leaf node could be “Steal smart phone with DSAP Outpost”.
Similar to the risk modeling approach we outlined in Section 4.7.1 attack tree
modeling is best done with domain experts, such as disaster responders, mobile
phone security experts, and external information system operators.

We expect the attack tree threat enumeration based on our DSAP Outpost
model to grant deeper insights into what threats are applicable in which op-
erational scenario and for what DSAP Outpost physical manifestation. This
information can help tailor security solutions to specific classes of operational
environments or DSAP Outpost physical manifestations.



5
The Trusted Docking Station and the

Secure Docking Module

5.1 Introduction

In Chapter 4 we established the threats to a Distributed Secure Agent Platform
Outpost (DSAP Outpost). The DSAP Outposts are the interface points between
the Secure Agent Infrastructure on the one hand and human users and external
information systems on the other. We established that the overwhelming major-
ity of threats to a DSAP Outpost (43/54) stem from a compromised DSAP Out-
post. Here our results are in line with the literature [JK99, Jan00, BC02, Bor02].
A compromised DSAP Outpost can attack the Mobile Agents it executes. These
Mobile Agents interact with human users and external informations systems to
facilitate disaster response. Therefore, we have developed a security solution
that mitigates exactly these threats.

As noted in Chapter 4 the security requirements for a specific DSAP Outpost
depend on the sensitivity of the information processed by that particular DSAP
Outpost. Therefore we regard a one size fits all solution as impractical, as we
believe high security solutions for all entities in disaster response will simply be to
expensive. Disaster response is a complex process involving both governmental
and non-governmental organizations. For example a fire department in a big city
might be run by the municipal administration. During disaster response this
fire department would work with utility companies, such as a privately owned
power company. This fire department would also work with non-governmental
organizations like the Red Cross or smaller fire fighter organizations relying on
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Declaration of Sources
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munications Engineering, pages 46–57. Springer, 2009.
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ter response. Security and Communication Networks, 3(5):421–438,
2010.

• [HTP+12] Daniel M. Hein, Ronald Toegl, Martin Pirker, Emil Ga-
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References to these sources are not always made explicit. In particular
parts of the Secure Docking Module resource access protocol description,
the evaluation, and the conclusion are adapted from [HTP+12].

volunteer work. In such a setting, we believe it unlikely that a single universal
high-security solution can be deployed. Therefore we geared our DSAP Outpost
security solution towards providing a significant degree of security, while using
commercial off-the-shelf components. Our idea was to provide a solution that can
be widely deployed, even on otherwise privately or commercially used hardware,
while providing sufficient security for a wide range of disaster response use cases.

In this chapter we introduce our security solution for protecting DSAP Out-
posts. This security solution consists of two components, the Trusted Docking
Station (TDS) and the Secure Docking Module (SDM). The TDS is a commercial
off-the-shelf personal computer system that uses Trusted Computing function-
ality to provide a load-time integrity protected execution environment for the
Distributed Secure Agent Platform (DSAP) and the Mobile Agents it hosts (see
Section 2.15.3). The TDS is based on the acTvSM platform [Pir15] (see Sec-
tion 2.16). The SDM is a small hardware security token capable of verifying
the load-time integrity of a TDS, while also establishing the presence and iden-
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tity of a human user. The SDM is an access control security mechanism and
provides the resource access protocol. The resource access protocol mediates ac-
cess to protected credentials, such as cryptographic keys, pinned certificates, or
name/password combinations. The SDM only grants access to these credentials
if the load-time integrity of the platform requesting them and the presence and
identity of an authorized user have been established.

Our contribution is fivefold. First we have designed the SDM, including the
cryptographic resource access protocol that establishes the load-time integrity
of its host platform using Trusted Computing functionality and the presence of
a human user using a shared secret. Second we have implemented the SDM
comprising the resource access protocol and the required support facilities. We
have implemented the SDM using a Security Controller (see Section 2.13). Third
we have integrated the DSAP with the SDM. Fourth, we have integrated the
DSAP with the acTvSM platform to create the TDS. Finally, we have evaluated
the performance and the security of the TDS/SDM security solution.

5.2 Objectives

The threats revealed by our threat modeling efforts (cf. Chapter 4) can be
divided into two categories. The first category contains threats related to a
compromised Distributed Secure Agent Platform (DSAP). The second category
comprises threats clustered around an adversary impersonating an External In-
teractor, such as a human user or an information system. Of the 54 threats
we identified to a Distributed Secure Agent Platform Outpost (DSAP Outpost),
43 are related to a compromised DSAP. The remaining threats pertain to an
adversary impersonating an External Interactor and the follow up threats that
arise, such as information disclosure, injection of tampered data, and Denial-of-
Service.

We have devised a security solution that mitigates both of these threat cat-
egories. The security solution consists of the Trusted Docking Station (TDS)
paired with a Secure Docking Module (SDM). In conjunction, these two com-
ponents mitigate the threats posed by a compromised DSAP and threats that
arise from failure to authenticate the involved parties.

Besides mitigating the threats identified in Chapter 4, our objectives for our
security solution were wide applicability, usability, and availability.

Applicability Given our disaster response setting and the heterogeneous land-
scape of disaster response organizations we wanted to develop a solution
that could be used even by volunteers on their private hardware, as long
as this hardware provides some supporting security technologies.

Usability Given its use in disaster response we wanted to create an unobtrusive
solution. We assume there is little time during disaster mitigation for users
to react to security related alarms or prompts.
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Availability Finally, above all, the system has to be available. From our point
of view wide applicability and usability are just other aspects of avail-
ability. Although, availability is considered in the threats we mitigate,
this deserves further discussion. Availability of communication, and in
our case by extension to the Secure Agent Infrastructure, is key to suc-
cessful disaster response. For example, one of the key selling points of a
Mobile Agent System for disaster response, is that Mobile Agents can mit-
igate temporary communication outages. Therefore, when designing our
security solutions we have provided fallback modes that allow operating a
DSAP Outpost, even in the face of potential security policy violations.

5.3 Mode of Operation

The key idea of our security solution is to limit access to the Secure Agent
Infrastructure to platforms that can provide evidence of their load-time integrity
and authenticity and, if applicable, of the authenticity of their users. To achieve
this goal we bind access to the Secure Agent Infrastructure to cryptographic
keys, and make those keys only available to platforms and users that can provide
evidence of their integrity and authenticity.

We distinguish two modes of operation for our security solution. Which mode
of operation to use depends on the environment where our security solution is
deployed. Specifically, the key difference is if a human being is involved or not.
We use Figure 5.1 to illustrate our discussion of the two modes of operation.

In Chapter 4 we elaborated that we want to protect the DSAP Outposts and
that there are two general usage scenarios for DSAP Outposts.

The first scenario is when a DSAP Outpost is attached to an external in-
formation system. The idea here is that even when the connection to the Core
Secure Agent Infrastructure is temporarily unavailable, an Mobile Agent run-
ning on the DSAP Outpost can finish its tasks and wait for the connection to
be reestablished. The key observation here is that in this mode there is no
human personnel involved. The Mobile Agent migrates to the DSAP Outpost,
performs its tasks involving the external information system the DSAP Outpost
is attached to, and finally sends its results home to the Core Secure Agent In-
frastructure. Therefore, for this scenario, we propose to use the Trusted Docking
Station (TDS) alone in conjunction with sealing (see Section 2.14) to protect
the access credentials.

In this scenario, when the TDS goes online to provide a DSAP Outpost to the
Secure Agent Infrastructure, the cryptographic keys that protect access to the
Secure Agent Infrastructure will be released to the TDS, iff the DSAP Outpost
is in a specific software configuration and the Trusted Platform Module (TPM)
(see Section 2.14) that provides this security mechanism is present. Concerning
availability, we do not make any assumptions on whether the DSAP Outpost is
permanently online. Thus, if a particular DSAP Outpost is offline during disaster
response, it might be that the system is simply not booted, or that the unsealing
operation failed. In both cases, the Core Secure Agent Infrastructure will detect
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Figure 5.1: Usage scenarios for TDS and SDM in conjunction with a Distributed
Secure Agent Platform Outposts (DSAP Outposts)
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that this particular DSAP Outpost is not operational, and it can use other means
to establish communication with the DSAP Outpost operator. For example the
Core Secure Agent Infrastructure can flag disaster response personnel to simply
call the DSAP Outpost operator and obtain the information from that particular
external information system via voice communication.

The second scenario we consider is when the DSAP Outpost is used by a
human user, for example a first responder in the field. Here we propose to use
the TDS in conjunction with the Secure Docking Module (SDM). The SDM acts
as an access control mechanism that establishes the load-time integrity of the
user’s platform, communicates the fact that the load-time integrity has been
established to the user, and requires the user to enter a shared secret to proof
his or her presence. Thus, the user’s DSAP Outpost will only start operating,
if there is sufficient evidence of user presence and authenticity and platform
integrity and authenticity. For availability, we planned for a fallback mode in
which the user can use the DSAP Outpost with a set of secondary cryptographic
keys. These keys are only bound to the user and not to the TDS’s load-time
integrity. Thus the user can decide to use the system, even if its integrity is
compromised. On the other hand the Core Secure Agent Infrastructure can
detect that the user’s system is in fallback mode on connection and apply a
different security policy when communicating with this user’s DSAP Outpost.
Finally, to make the system unobtrusive, there is the option that the user only
has to authenticate herself to the SDM once, when she boots her TDS. Note that
this can happen, for example, while the user is still on her way to the disaster
response operation and thus does not impact disaster response operation itself.

5.4 Application

Our security solution comprising the Trusted Docking Station (TDS) and, op-
tionally, the Secure Docking Module (SDM) controls access to credentials, such
as keys or passwords. Here, we discuss how this capability can be used by de-
scribing three applications for our security solution in the context of protecting
a Distributed Secure Agent Platform Outpost (DSAP Outpost). These three
applications are communication key protection, authentication credential protec-
tion, and agent authorization key protection. We have prototyped one of these
applications, the agent authorization key protection, for the performance evalu-
ation (see Section 5.8).

5.4.1 Communication Key Protection

In Section 4.5.3 we stated that we assume a secure communication channel be-
tween the Core Secure Agent Infrastructure and a DSAP Outpost. In Sec-
tion 2.6.10 we discussed that a secure communication channel should be easy
to add to the Secure Agent Infrastructure by using Apache River’s (formerly
Jini, see Section 2.5) new support for secure communication protocols such as
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HTTPS. If HTTPS is used, then the private authentication key of a DSAP
Outpost could be protected by our security solution.

Our security solution provides two protection mechanisms for the private
DSAP Outpost authentication key. The first protection mechanism is sealing
(see Section 2.14) the key to the TDS. The second protection mechanism is
storing the key in the SDM. Both mechanisms provide authentic and confidential
credential storage where access is bound to a platform’s software configuration.
The SDM mechanism additionally provides a key-to-user binding and can verify
the presence of a user through password verification.

Both mechanisms can also be used for storing credentials that require only
authentic storage. In the HTTPS setting this applies to the credentials that
ensure the Core Secure Agent Infrastructure server authenticity. Specifically,
our mechanisms can protect the root certificates of the Public Key Infrastructure
(see Section 2.6) that authenticates the Secure Agent Infrastructure components.

5.4.2 Authentication Credential Protection

The second application is protecting the authentication credentials used for au-
thenticating External Interactors, such as external information systems or dis-
aster response personnel, to the TDS, and vice-versa. The SDM was specifically
developed for authenticating human users to the TDS, and vice-versa, in addition
to ensuring the presence of the human user. We have discussed this particular
application of our security solution in Section 5.3. This leaves the communica-
tion between a DSAP Outpost and an external information system to consider.
Our security solution lends itself to protect the authentication credentials for
this communication. For example, if the external information system supports
it, TLS with client certificate authentication can be used to establish a secure
communication channel with mutual authentication. Again, the private authen-
ticaten key of the DSAP Outpost and the public verification key of the external
information system could be protected by either sealing them or by storing them
in the SDM.

5.4.3 Agent Authorization Key Protection

The third application we discuss here is agent authorization. Here we want to
ensure that only an authorized DSAP Outpost is able to execute a particular
Mobile Agent. Mobile Agents can contain valuable Intellectual Property (IP)
and additional credentials otherwise not available on a specific DSAP Outpost.
Therefore, in addition to a secure communication channel, Mobile Agents are
encrypted for a specific DSAP Outpost using public key cryptography. The
capability of decrypting this agent is bound to a specific DSAP Outpost software
configuration. This binding is ensured by either sealing the decryption key to
the TDS or storing it on the SDM. This is also the application we implemented
for the performance evaluation of our security solution described in Section 5.8.
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TDS support components consist of the jTSS1 and the Trusted Platform Mod-
ule (TPM) hardware driver (TPM HW Driver). The SDM support components
consist of the SDM Manager that uses the SDM User Interface and the jTSS2

to communicate with the SDM and the TPM. The SDM User Interface relies
on the SDM Communication Library to implement the actual communication to
the SDM. The SDM Communication Library implements a plug-in system for
actual SDM implementations. We have implemented two SDM implementations,
an SDM Emulator written in software and Security Controller based hardware
implementation of the SDM.

We now describe each of these components and how they interact in detail.

The Distributed Secure Agent Platform Service The DSAP Service
implements the Distributed Secure Agent Platform (DSAP) component as de-
scribed in Section 2.6.3. Here we briefly reiterate its key properties. The DSAP
Service is written in Java and implements the execution environment for Mo-
bile Agents. The DSAP Service supports agent migration, in the sense that it
can receive and then execute Mobile Agents. It also provides communication
services that allow the Mobile Agents to exchange messages with their home
platform, that is, the Process Management Subsystem in the Core Secure Agent
Infrastructure (see Section 2.6 and Section 2.6.2 for details). The DSAP software
directly integrates with the SDM Communication Library to use the SDM and
the jTSS TCG software stack to communicate with the TPM.

The SDM Manager The SDM Manager is a software component written in
Java for administering the SDM. It integrates with the SDM Communication
Library to exchange messages with the SDM and it relies on the jTSS TCG
software stack to use the TPM. The SDM protects resources and only releases
these resources to the TDS when the resource access protocol, as described
in Section 5.7.4, is executed correctly. To execute the protocol successfully, it
requires a number cryptographic keys and shared secrets to be set up in advance.
The SDM Manager is the component that implements this setup.

The jTSS Java™ TCG Software Stack The jTSS TCG software stack
is a pure Java implementation of the TCG Software Stack (TSS) Specifica-
tion [Tru07a]. The jTSS software stack provides a standardized interface to
use a TPM. Our security solution uses the TPM to record and report the TDS
software configuration. The jTSS provides the functionality to setup and use
platform configuration reporting. For example, the TPM signs a platform soft-
ware configuration report using an Attestation Identity Key. This Attestation
Identity Key has to be created before it can be used for this purpose. This is
a task implemented using the jTSS. In addition the jTSS is also used to create
the platform software configuration reports.

1http://trustedjava.sourceforge.net/index.php
2http://trustedjava.sourceforge.net/index.php



134 Chapter 5. The Trusted Docking Station and the Secure Docking Module

The SDM User Interface The SDM User Interface is a command line utility
that uses the SDM Communication Library and the jTSS software stack to
execute the resource access protocol. We have implemented this command line
utility for test purposes and as fallback SDM interface for software that does not
support the Java™ interface.

The SDM Communication Library The SDM Communication Library is
the heart of all SDM software support components. To its users, such as the SDM
Manager or the DSAP software, it provides a simple application programming
interface (API) for using the resource access protocol to obtain a protected
resource, or administering the SDM.

Communication with the SDM is session based. In general, a session needs to
be established before commands can be sent to the SDM. The SDM sessions are
cryptographically protected. The session establishment protocol is detailed in
Section 5.7.4. The only commands that can be sent to an SDM without a session
are those commands that initialize a freshly minted SDM to the point where it
can establish a cryptographically protected session. Afterwards, these commands
are disabled. Furthermore, the SDM supports two different kinds of sessions, a
user session and an administration session. A user session grants access to the
resource access protocol, whereas an administration session actually allows to
configure an SDM. In this thesis we will restrict ourselves to the user session
and using the SDM. SDM administration has been investigated by Danner et
al. [DH10, DHK10].

Once the TDS has established a session with the SDM, the SDM can receive
commands. The SDM Communication Library translates high level commands
sent via the API into binary data structures that an actual SDM implementation
can interpret. These commands are then sent to an SDM implementation. The
SDM Communication Library supports different SDM implementations via a
plug-in system. The plug-in system is configured at runtime.

The SDM Emulator We developed the SDM Emulator as an executable
specification of the SDM in software. We used the SDM Emulator to specify
the SDM and to implement and integrate the components that require an SDM
before we had an actual SDM hardware implementation. The SDM Emulator
only appears in Figure 5.2 to illustrate the SDM Communication Library’s ability
to support different SDM implementations. We strongly suggest not to integrate
and use the SDM Emulator into a production Outpost Appliance.

The SDM Security Controller Implementation We use the SDM to au-
thenticate a user, and part of the authentication is the fact that the user actually
possesses an SDM. We have implemented a prototype of the SDM using a com-
mercially available Security Controller. We discuss the implementation in detail
in Section 5.7.5.
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5.6 The Trusted Docking Station

The Trusted Docking Station (TDS) is based on the acTvSM platform [Pir15],
which we described in Section 2.16. The acTvSM platform enforces integrity
guarantees on itself as a software platform, as well as, the applications and the
services it hosts. In addition to these integrity guarantees it leverages strong
hardware-based memory isolation to separate applications into partitions. We
operate the DSAP Outpost Application Virtual Machine (Outpost Appliance)
in one of these partitions. We use the acTvSM platform as available on this
website3.

5.6.1 The Outpost Appliance

The Outpost Appliance is a Virtual Appliance based on the Outpost Appli-
ance image. The Outpost Appliance image comprises all software components
necessary to operate the Distributed Secure Agent Platform Outpost (DSAP
Outpost). We have discussed the architecture of the TDS as a whole, and the
DSAP Outpost in particular, in Section 5.5. The Outpost Appliance image is
a read-only virtual machine image based on a customized Debian GNU/Linux
major version 5 (Lenny). We included Java-support and all the components
described in Section 5.5, with the marked exception of the SDM emulator. All
DSAP Outpost software components are implemented in Java™. In order to cre-
ate the read-only virtual machine image using Debian tools we also packaged the
Secure Docking Module (SDM), jTSS, and the Distributed Secure Agent Plat-
form Service (DSAP Service) components itself as packages compatible with the
Debian package manager.

Furthermore, we configured the acTvSM base system to forward the Trusted
Platform Module (TPM) to the Outpost Appliance during runtime, so that the
DSAP Outpost can use the TPM’s integrity reporting features. In addition,
we also configured the acTvSM base system to forward the Security Controller
implementation of the SDM to the Outpost Appliance. This enables the TDS to
use the SDM. Our Security Controller based prototype of the SDM provides a
USB interface that allows sending and receiving ISO7816 Application Protocol
Data Units to and from the SDM prototype. Finally, we configured the acTvSM
base platform to automatically launch the Outpost Appliance on boot.

With our setup we can install the acTvSM base platform and the Outpost
Appliance in parallel to any operating system that can be booted by the GNU
GRUB boot loader4 used by the acTvSM system. Whenever the user reboots
her device she can choose if she wants to go into disaster response mode, or boot
her normal OS.

Although the main Outpost Appliance image itself is read-only, the DSAP
Outpost needs storage for data created at runtime, for example for the Secure
Docking Module Authentication Key (SAK) (see Section 5.7.4) or for temporary

3http://trustedjava.sourceforge.net/index.php?item=actvsm/
readme

4https://www.gnu.org/software/grub/
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files created by Mobile Agents. These files are persistently stored in a crypto-
graphically protected logical volume managed by the acTvSM base platform.
The decryption key for this volume is sealed (see Section 2.14) to the base plat-
form software configuration. This writeable logical volume is merged with the
Outpost Appliance read-only image at runtime by the acTvSM base platform.
To the DSAP Outpost the process of overlaying a writeable file system on top
of the read-only Outpost Appliance image is completely transparent.

Note that the Secure Block Device we introduce in Chapter 6 provides a
cryptographically protected Datastore. We specifically developed the Secure
Block Device, because we identified the need for a Single-User Authentic Block
Datastore (see Section 2.10) when implementing a Mobile Agent System for
disaster response on a platform running ANDIX OS (see Section 2.18).

When the acTvSM base platform boots, it measures the integrity of all soft-
ware involved in the boot process up to, and including, itself. Once the boot
process of the acTvSM base platform is finished, we have configured the acTvSM
base platform to automatically load the Outpost Appliance image. This image
is also measured before it is started and the measurement stored inside the plat-
form’s mandatory TPM. However, the writeable overlay image is not measured.

5.6.2 The Distributed Secure Agent Platform Software

In collaboration with the developers of the Secure Agent Infrastructure, we have
modified a version of the DSAP Service to take advantage of our TDS and SDM
based security solution. Specifically, we have rewritten the DSAP Service to use
cryptographic keys provided by either the TDS alone or by the TDS and SDM
in combination. The authors of the Secure Agent Infrastructure had already fit-
ted the Secure Agent Infrastructure with a facility to encrypt Mobile Agents for
a specific target DSAP Service before sending the Mobile Agent to this DSAP
Service. The Mobile Agent encryption is done using an asymmetric key encap-
sulation scheme with a symmetric bulk encryption key (see Section 2.6.8). In
conjunction with an underlying secure communication channel (see Section 4.5.3
and Section 2.6.10), encrypting agents for a specific DSAP Service using asym-
metric cryptography to identify a particular DSAP Service can act as an access
control scheme. In this scheme only DSAP Services that can actually decrypt
their agents can partake in the disaster response effort. Access to the decryption
key is protected either by sealing it to the TDS using the TPM, or protecting
it with an SDM, depending on the deployment scenario. We have implemented
protecting a DSAP Service’s Mobile Agent decryption key using the TDS in
combination with the SDM to evaluate our security solution. In addition, we
strongly advocate adding a secure communication channel to the DSAP Out-
post and using the TDS/SDM to protect the authentication key for this secure
communication channel. We discuss this further in Section 5.11.
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5.7 The Secure Docking Module

5.7.1 Overview

The Secure Docking Module (SDM) is a pluggable security module that pro-
tects authentication credentials, such as cryptographic keys. As described in
Section 5.4, a Distributed Secure Agent Platform Outpost (DSAP Outpost) can
use this functionality for several applications. We have implemented and evalu-
ated the agent authorization key protection application detailed in Section 5.4.3.

The SDM only releases protected resources if the DSAP Outpost running on
the Trusted Docking Station (TDS) is in an authorized software configuration.
The SDM verifies the software configuration. In addition, the SDM also provides
authentication of the entity using the device, for example a first responder. The
SDM verifies all these conditions as part of its resource access protocol.

We describe the resource access protocol in Section 5.7.4. For a protocol run
to succeed, the protocol requires a number of preconfigured parameters to be set
up on both the SDM and the DSAP Outpost hosting the SDM. We detail this
setup in Section 5.7.2. Finally, we describe our implementation of the SDM in
Section 5.7.5

5.7.2 The Resource Access Protocol Setup

The SDM implements a number of protocols for communication with its DSAP
Outpost host platform. We investigate two in Section 5.7.4, the titular resource
access protocol and the session establishment protocol. The session establish-
ment protocol establishes a session between the host platform and the SDM.
The session establishment protocol needs to be run, before the resource access
protocol can be executed. Once a session is established, an arbitrary number of
resource access protocol runs can be executed as part of the established session.

We have detailed the configuration parameters that need to be set up before
the first run of the session establishment protocol in Table 5.1. Furthermore,
we describe the configuration parameters that need to be set up before the
resource access protocol can be run in Table 5.2. The use of these configuration
parameters is described in the next section.

The question of gathering, collating, and managing the SDM and host plat-
form configurations has been treated by Danner et al. [DH10, DHK10].

5.7.3 The Session Establishment Protocol

The purpose of the session establishment protocol is to mutually authenticate the
TDS and SDM to each other and derive an ephemeral session key to encrypt their
communication. The goal of the encryption is to prevent leaking the resources
stored on the SDM when sending them to the TDS. The session establishment
protocol is a version of the Needham-Schroeder-Lowe [NS78, Low95] protocol
for mutual authentication and ephemeral key derivation. The exact protocol is
illustrated by Figure 5.3.
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Table 5.1: The configuration parameters required by the Secure Docking Module’s
session establishment protocol

Shorthand Name Description

HI Host identifier A string identifying the host platform
to the SDM

SI SDM identifier A string identifying the SDM to the
host platform

SAK SDM Authentication
Key

A 2048-bit RSA key pair that authen-
ticates the SDM to a host platform

HAK Host Platform Au-
thentication Key

A 2048-bit RSA key pair that authen-
ticates the host platform to the SDM

Table 5.2: The configuration parameters required by the Secure Docking Module’s
resource access protocol

Shorthand Name Description

IDR Resource identifier A string identifying the resource to re-
lease to the host platform

RI Platform Configura-
tion Register indices

The set of Platform Configuration Reg-
ister indices that need to be quoted by
the host platform to release the resource

AIK Attestation Identity
Key

A 2048-bit RSA key pair that authen-
ticates a TPM Quote to the SDM

AI Authentication iden-
tifier

A pre-shared secret demonstrating the
host platform’s authorized state to its
user

PWD User password A pre-shared secret authenticating the
user to the SDM
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TDS SDM

generate host nonce HN

send host id HI

(HN ,HI)SAKPub−−−−−−−−−−−−−−−→

generate SDM nonce
SN

verify authority of HI

(HN ,SN ,SI)HAKPub←−−−−−−−−−−−−−−−

verify HN

verify SI

(SN )SAKPub−−−−−−−−−−−−−−−→

verify SN

Figure 5.3: Secure Docking Module session establishment protocol

The protocol uses two pre-shared 2048-bit RSA keys to authenticate both
parties and to create and exchange the ephemeral AES session key. These keys
are the Secure Docking Module Authentication Key (SAK) and the Host Plat-
form Authentication Key (HAK). Every SDM has a unique SAK that is gen-
erated by the SDM upon first-time initialization. The private part of the SAK
never leaves the SDM. Therefore, the SAK can be used in a challenge response
protocol to corroborate the identity of the SDM. Every TDS has a unique iden-
tification key, the HAK.

The authentication and key exchange protocol works as follows. The TDS
randomly generates a nonce HN . The nonce and the TDS identifier HI are
encrypted with the SDM’s SAK, and communicated to the SDM. The SDM
decrypts the package, using the TDS identifier HI to lookup the Host platform’s
public HAK, generates a nonce SN , and encrypts it, together with the SDM’s
identifier SI using the HAK. The TDS in turn decrypts the message, verifies the
nonce HN , and verifies the SDM identity SI . If both values are correct, the TDS
has now established the identity of the SDM. Both parties now independently
derive the session key by computing the SHA-1 hash of both nonces and using
the lower 16 bytes as Advanced Encryption Standard (AES) session key. The
session key is used with AES in Cipher Block Chaining (CBC) mode of operation
to encrypt the communication between the TDS and the SDM.

5.7.4 The Resource Access Protocol

The SDM provides two critical security services to the Secure Agent Infrastruc-
ture and Secure Agent Infrastructure users. It authenticates platform users and
it authenticates a platform and its platform software configuration, without re-
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quiring online access to any Secure Agent Infrastructure services. The SDM
authenticates a user through possession of the SDM and knowledge of a shared
secret stored in the SDM. We call this shared secret the user shared secret.
The SDM authenticates the platform and its software configuration by verify-
ing Trusted Platform Module (TPM) attested platform configuration reports.
The SDM signals the fact that platform authentication and software configura-
tion verification was successful by releasing a second shared secret, the platform
authentication identifier, to the platform. The platform can then present the
platform authentication identifier to the user as proof of its identity and soft-
ware configuration. The SDM only releases resources it protects to the host
platform, iff the platform software verification and user shared secret verifica-
tion are completed successfully. In the Secure Agent Infrastructure, every SDM
is paired with a TDS. Thus all SDM host platforms are TDSs.

The SDM’s resource access protocol first verifies the TDS’ software config-
uration by verifying the TPM attested platform software configuration report.
For this, the SDM’s resource access protocol integrates the TPM’s remote attes-
tation protocol (see Section 2.14) for verifying a platform’s configuration. The
reason for first establishing the TDS’ platform configuration and thus by exten-
sion the TDS’ load-time integrity is that it provides evidence about the existence
of a trusted I/O path to the user (see Section 2.15). The trusted I/O path is used
to show the platform authentication identifier to the user and request the user
shared secret from the user. After verifying the TPM’s attested platform soft-
ware configuration report, the SDM’s resource access protocol sends the platform
authentication identifier to the host and then awaits the user password. With
the user password the SDM verifies the presence of a human user. The SDM
only discloses the requested resource, if the shared secret is correct. We present
the protocol for this process in Figure 5.4.

The SDM is a passive device. The SDM does not initiate a resource access
protocol run and, even while the protocol is executed, it will only react to pro-
tocol messages send by the TDS in a request/response fashion. Thus, the SDM
resource access protocol is always started by the TDS by sending a host identifier
HI and a resource identifier IDR to the SDM. However, communication with
the SDM is session based and to execute the resource access protocol the host
platform first needs to establish a session with the SDM. The session establish-
ment protocol provides a confidential channel between the SDM and the host
platform.

The TPM remote attestation protocol is implemented in the TPM_Quote2
operation of the TPM. The TPM_Quote2 takes a set of Platform Configura-
tion Register (PCR) indices RI and a nonce n as input. It generates a com-
pound hash CHPCR by hashing the contents of the PCRs indicated by RI . The
TPM_Quote2 command then signs CHPCR together with the nonce n. This
(n,CHPCR)AIKpri

message is also called TPM Quote. The TPM signs this re-
port using a private Attestation Identity Key created and protected by the TPM.
The Attestation Identity Key is an RSA key pair, where the private key never
leaves the TPM unencrypted.
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Figure 5.4: Secure Docking Module resource access protocol

Upon receiving a resource access request consisting of the HI and RID tuple,
the SDM retrieves the PCR indices RI associated with (HI ,RID) from its inter-
nal data store and generates a nonce n. The SDM then responds to the resource
access request by sending the (RI ,n) tuple to the TDS. The TDS then executes
the TPM_Quote2 operation with the SDM sent RI and n as input. The TDS
then forwards the result of the TPM_Quote2 operation to the SDM.

The SDM verifies TPM Quotes in a 3 step process. First the SDM verifies
the signature on the report using the Attestation Identity Key for HI . Second
the SDM ensures that the nonce is the same as the one sent to the TPM in
the previous response. Finally, the SDM tests if the CHPCR is contained in
an internal database of authorized compound hash values for HI . The SDM
only proceeds with the resource access process, if all 3 checks succeed. If all 3
checks succeed the SDM has been given sufficient evidence (a) that the platform
configuration originates in an authentic TPM, through the Attestation Identity
Key signature, (b) that the TPM Quote is fresh and not a replay, through the
nonce n, and (c) of the platform configuration itself, via the compound hash of
the PCRs CHPCR.

In the next step, the SDM authenticates the user. For this the SDM first
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sends an authentication identifier AI to the TDS. The authentication identifier
is a predetermined shared secret between the user and the SDM, and unknown
to the TDS. A TDS in an authorized software configuration must immediately
delete the shared secret after displaying it to the user. Because the SDM imme-
diately terminates the resource access process, if the TDS’s platform software
configuration is not authorized, the secrecy of AI is protected. The TDS’s ability
to display the shared secret demonstrates the TDS’s authorized software con-
figuration to the user. If the TDS software configuration is not authorized, the
TDS cannot present the shared secret to the user, because the SDM will not
disclose it. Failure to produce the shared secret signals the user that the TDS
might be compromised.

Upon being prompted for the authentication identifier AI the user then enters
her password PWD to authenticate herself. The password is then transmitted
to the SDM for validation. If the password is correct, the SDM will grant access
to the resource R.

5.7.5 Secure Docking Module Implementation

Previous proposals by Fournaris [Fou10] and Hein [HTK10] called for a special-
ized hardware implementation of the SDM. However, we implement the SDM
functionality in software on a commercially available Security Controller (SC).
This SC implements an architecture that is highly resilient to implementation
attacks.

The SDM functionality is implemented as software on the Security Controller.
The SDM functionality is divided in communication interface, cryptographic
cores (RSA, AES, SHA-1), data management, and protocol implementation.

The SDM communicates with the host platform using the ISO7816 interface.
Although the SDM supports a number of physical communication interfaces,
the smart card interface was chosen for its simplicity and inherent compatibility
with Java. The SDM uses custom Application Protocol Data Units to exchange
data with the host platform.

The SDM chip natively supports the AES, SHA-1 and RSA cryptographic
algorithms required to implement the SDM functionality.

The SDM provides resources, such as cryptographic keys and authorization
credentials. These resources are protected by the resources access protocol. Ex-
ecution of the access protocol requires cryptographic keys, authorized platform
configurations, authentication identifiers and the protected resource itself. The
SDM uses the on-chip NVRAM to store this information in a simple file system
structure. The data management component is capable of supporting up to 4
host platforms with up to 16 KiB of resources per host. Each resource can have
up to 20 authorized platform configurations, one user shared secret, and one
authentication identifier.

The SDM protocols for session establishment, administration and resource
access are implemented as software modules running on the main CPU of the
SDM chip.
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Our hardware prototypes of the SDM combine the security controller with
a USB smart card reader. We have sealed both components in an epoxy filled
casing for physical protection. Figure 5.5 depicts the security controller in the
front and the assembled prototype in its epoxy sealed casing in the back.

Figure 5.5: Hardware implementations of the Secure Docking Module: the security
controller (front) and the assembled token prototype with USB interface
in an epoxy sealed casing (back).

5.8 Performance Evaluation

Our security solution for protecting the Distributed Secure Agent Platform Out-
post (DSAP Outpost) comprising the Trusted Docking Station (TDS) and Se-
cure Docking Module (SDM) incurs overheads. Specifically, certain operations
require more time and additional user interaction. The TDS running a DSAP
Outpost is intended to be booted up once in case of a crisis, and then stay active
during the course of disaster response. For this reason operations can be split
up into two categories, those that are performed once, such as platform boot
up, and those that can be performed repeatedly, such as requesting an SDM
protected resource. The SDM protected resource we use for our performance
evaluation is the agent authorization key (see Section 5.4.3).

Table 5.3 presents the time required by the security architecture related agent
platform operations. Boot TDS platform is the time required to boot up the
integrity protected TDS platform. Start DSAP Service is the time necessary to
boot the integrity protected DSAP Outpost service on the TDS. In comparison,
Start DSAP Service is the time required to start the Distributed Secure Agent
Platform Service (DSAP Service) without integrity protection. The overhead
for starting the integrity protected DSAP Service is the time required to boot
the TDS added to the time required to start the integrity protected DSAP
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Table 5.3: Trusted Docking Station/Secure Docking Module performance evaluation
results. The access SDM resource action consists of the TPM_Quote2,
quote verification, copy resource to host, and miscellaneous overhead table
entries.

Action Recurring Time [unit]
Boot TDS platform × 66.5 s
Start DSAP Outpost service × 57.25 s
Start DSAP Service × 16.75 s
Establish SDM session × 2181 ms
Access SDM resource X 9354 ms

TPM_Quote2 X 2410 ms
Quote verification X 694 ms
Copy resource to host X 6144 ms
Miscellaneous overhead X 106 ms

Service on the TDS platform, minus the time required for directly starting the
DSAP Service. Although the integrity protection incurs a significant overhead
of 107s, this price is only paid once every boot. The DSAP Outpost should
only be booted once per crisis. The majority of the overhead is incurred by
the time required to measure the software components of the platform. This
time is dominated by the throughput of the platform’s mass storage media. The
measurements for the above evaluations were taken on a HP EliteBook 8440p
with a 2.67GHz Intel Core i7 CPU, 4 GiB RAM and an Infineon 1.2 Trusted
Platform Module (TPM).

Establish SDM session is the time required to establish an encrypted session
with the SDM. Ideally, a session is established only once during disaster response.
If the user of the device changes, so does the SDM. In this case the session needs
to be reestablished. Access SDM resource is the time required to retrieve a
resource protected by the SDM using an existing SDM session. Of the close to
10s required to retrieve a 4 KiB resource, the bulk of the time is consumed by
the TPM_Quote2 operation and the physical copying of the requested resource
from the SDM to the TDS5. Verification of the TDS platform configuration, and
sending back the authorization identifier only requires 694ms.

We have evaluate the performance of the TDS and the SDM in the context
of authorizing Mobile Agents. Here the decryption key for the Mobile Agent
is protected by the SDM. We consider two options for using the SDM in this
application. The first is to retrieve the SDM protected key once after boot and
store it in TDS memory while the TDS is turned on. The second option is to
retrieve the SDM protected Mobile Agent authorization key every time the user
is sent a Mobile Agent. The first option is less obtrusive, only requiring the user
to enter her password once. The second option can better mitigate time of check

5We expect that alternative buses also supported by the security controller, such as the
USB interface, would greatly reduce the copying time.
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to time of use problems, as the platform load-time integrity measurements are
taken more often.

In both cases, of the total time required to authorize a Mobile Agent with
an SDM protected resource, only the first 3[s] are immediately apparent to the
user. This time is required to compute the TPM_Quote2, for the SDM to verify
it, and send back the authorization identifier. At this point the user inputs
her shared secret. Actually retrieving the protected resource from the SDM is
handled in a background process. The time delay incurred by authorizing the
agent in the background is acceptable, because agents operate asynchronously.
Mobile agent operations are typically long running, and the user is notified by
the agent, when a specific agent finishes its task. The measurements for this
SDM evaluation were taken on a HP dc7900 desktop PC with a 3GHz Intel Core
2 Duo CPU, 4GiB RAM and an Infineon 1.2 TPM.

5.9 Security Evaluation

In this section we discuss how our security solution mitigates the threats to the
Distributed Secure Agent Platform Outpost (DSAP Outpost) we identified in
Chapter 4. To this end we first complement our threat model with an adversarial
model. Once we have established the adversarial model we will investigate which
threats our security solution mitigates given our adversarial model. We detail
the evaluation of how our security solution mitigates the threats identified in
Chapter 4 in Appendix B. Here, we summarize these results in Section 5.9.2.

5.9.1 Adversarial Model

Our adversarial model comprises non-targeted remote network and local software
attacks. In the following we will describe our definitions of non-targeted attacks,
remote and local attacks, network attacks, and local software attacks.

We define a non-targeted attack as an attack where the adversary is not espe-
cially singling out a specific attack target, but opportunistically attacks systems
that are exposed to his or her attack. For example, we consider the threats of
a trojan horse software on a first responder’s laptop or a compromised external
information system. Equally, we want to protect against attackers that scour the
networks for vulnerable systems to turn into nodes in their botnet. We specifi-
cally exclude Advanced Persistent Threats. An Advanced Persistent Threats is
an entity that brings considerable skill, time, and money to the table to attack a
specific target. Our security solution is geared towards wide applicability. It is
not suitable for high security applications that have to withstand an Advanced
Persistent Threat.

A remote attack is an attack where the attacker is not physically present when
attacking. Its counterpart is the local attack. Here the adversary is physically
present when performing the attack. A network attack is when the adversary
uses a specific network protocol, or set of network protocols, to implement an
attack. A example for a remote network attack is a SYN flood. Here the attacker



146 Chapter 5. The Trusted Docking Station and the Secure Docking Module

floods a specific host with TCP SYN packets to create enough half-open connec-
tions, such that the attacked host does not accept incoming connections from
legitimate users any more. Thus the adversary implements a Denial-of-Service
attack.

In a software attack an adversary uses a software program to exploit an im-
plementation fault in the target platform’s software to realize a threat. An iconic
example here is a buffer overflow in a kernel’s system call interface leading to an
elevation of privilege. For another example consider the adversary exploiting an
implementation fault, such as an integer overflow or a format string attack, to
execute code in a program that is executed with root privileges. This attack is
again an instance of an elevation of privilege attack. Network attacks can also
use implementation faults to achieve similar attack goals. For example a network
attack could exploit an implementation fault in a network server to execute code
as the targeted network server.

We define a local software attack as a software attack where the attacking
software is executed by the local user. This does not necessarily mean that the
user wanted to attack the system. For example, consider a user that downloaded
a shiny piece of new, free software from the Internet that promised to make
money for him. When this user executes the program he realizes that this nice
program has encrypted his private files. Although the software makes money, it
is not he who benefits, but the blackmailers who will give him the decryption
key to his private files. For a small fee of course. One has to live you know . . .

Other reasons for a local attack include the user actually wanting to get
root access to his device. Modern phones often disallow root access for security
reasons. This is a sensible default for many users, but also restricts functionality.
As certain mobile phone manufacturers do not provide a legitimate way to root
their devices, users who want to root their mobile phone actually need to use a
software attack on the OS to achieve root access.

In our adversarial model we consider the legitimate users trusted, that is,
we expect them to follow security policy during disaster response. However, if a
user uses her private phone or laptop as a DSAP Outpost, we believe the user
should be able to freely user her device as she sees fit, except during disaster
response. Furthermore, we exclude social attacks, where an authorized user is
coerced into attacking the Secure Agent Infrastructure.

Finally, we also consider the operators of the external informations systems
that are connected to a DSAP Outpost to follow the Secure Agent Infrastructure
security policy.

5.9.2 Threat Model Mitigation

Here we investigate how our security solution consisting of the Trusted Docking
Station (TDS) and the Secure Docking Module (SDM) mitigates the threats
against an DSAP Outpost we identified in Chapter 4. For this we have considered
each individual threat and determined if we consider the threat mitigated and
how. We detail our results in Appendix B. Here we present a summary our these
results.
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Limitations

Load-Time Integrity The acTvSM platform and thus our TDS only provides
load-time integrity, not run-time integrity. Software is measured before it is
executed, it is not monitored during execution. This is a possible attack vector
for a time of check to time of use attack (cf. Section 2.15.3). An adversary might
successfully use a vulnerability in the base platform, or the Distributed Secure
Agent Platform (DSAP) application Virtual Machine, to take control over the
DSAP Outpost. If the platform is already up and running, the attacker might
gain access to protected resources, because the attack will not show up in the
platform software integrity report. This attack is mitigated by the self-repairing
nature of the underlying platform. At the next boot the attack will either be
detected, or the platform will boot into an authorized state.

In the following discussion if we claim that a threat is mitigated through
load-time integrity, we mean that the threat is alleviated and not eliminated.
An adversary might still be able to perform a run-time attack and realize a
particular threat.

Mitigation of Compromised Distributed Secure Agent Platform Out-
posts

All in all we have identified 54 threats to a DSAP Outpost in Chapter 4. Of
these 54 threats we mitigate 43 using our security solution that ensures the load-
time integrity of the DSAP Outpost. These 43 are all related to a compromised
DSAP Outpost. Therefore we want to summarize this mitigation here.

Mobile Agents are executed by the Distributed Secure Agent Platform Ser-
vices (DSAP Services) in the DSAP Outposts. A compromised DSAP Service
has full control over Mobile Agent execution and Mobile Agent data. Such a
DSAP Service could therefore masquerade as any Mobile Agent executed by it.
Thus, a malicious DSAP Service could leak security sensitive information and
tamper with or disrupt disaster response.

To prevent a malicious DSAP Service from masquerading as an agent, the
DSAP Service must be denied access to the credentials used by Mobile Agents
to perform their disaster response tasks. Credentials are invariably stored in
the SDMs or sealed to the TDSs. To access these credentials, the accessing
platform must be in an authorized platform configuration, otherwise the TDS
cannot unseal the data and the SDM will deny access to the credentials. The
assumption is that only a TDS in an unauthorized software configuration would
misuse the credentials. While this assumption holds, the credentials are secure.

When an agent is transmitted it can transport additional credentials that it
requires to perform its tasks. Therefore, the agent must be protected against re-
ceipt by a compromised DSAP Service. Agents in transit are encrypted with the
public RSA key of the receiving platform. The corresponding private decryption
key is either sealed to the TDS or stored on an SDM. If the receiving DSAP Ser-
vice is in an authorized configuration, it will be able to unseal the decryption key
or retrieve it from the SDM. With this decryption key it can decrypt the Mobile
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Agent code and its credentials. Again the assumption is that only a platform
in an unauthorized configuration would misuse this agent and its credentials,
for example, for obtaining classified information or disrupting disaster response.
Again, while this assumption holds, the credentials are secure.

While all of the above assumptions hold true, the credentials are secure within
the boundaries of the TDSs. Thus, the integrity of the overall Secure Agent
Infrastructure is supported.

Mitigations Based on Secure Communication

Four of the 54 threats pertaining to end point authenticity can be mitigated by
using secure communication channels between a DSAP Outpost and the external
information systems it is connected to. Here the credentials used to authenticate
the communication end points, that is, the DSAP Outpost on the one hand and
the external information system on the other, can be protected by our security
solution. For this our security solution allows the authentication credentials to
be sealed to a security policy conforming authorized software configuration.

Two of the four threats pertaining to the authenticity of the DSAP Outpost
or an External Interactor are mitigated specifically by the SDM. Here the SDM
fulfills two roles. First it establishes the software configuration of the TDS it is
attached to. The authorized software configuration is proven to the user by a
shared secret that the SDM only releases to the TDS if it is in an authorized
software configuration. Thus the user knows she is dealing with an authentic,
policy conforming DSAP Outpost. Second, the SDM establishes the authenticity
and presence of a user to the DSAP Outpost. Here the possession of the SDM
is a proof of authenticity of the user. Also, once the policy conformance of the
software configuration of the TDS has been established, the user has to proof
her presence by entering a second shared secret, different to the one used to
corroborate the software configuration of the TDS. Thus the DSAP Outpost is
given evidence of the authenticity and presence of the user.

Mitigation of Temporary Communication Disruptions

Another four of the 54 threats we have identified are related to an external entity
interrupting the communication between the Core Secure Agent Infrastructure
and the DSAP Outpost or the DSAP Outpost and an External Interactor. These
threats are mitigated by the use of Mobile Agents (see Section 2.6.6).

Out of Scope Threats

Three threats are out of scope of our solution. These threats are Threat 19,
where a human External Interactor is eavesdropped upon by another human,
Threat 22 where a human is interrupted from using the DSAP Outpost because
of an external event, and Threat 29 where an External Interactor repudiates
having received information or a command. The final threat can be mitigated



5.10. Conclusion 149

using auditing, and to facilitate this our security solution provides a crypto-
graphically secured storage and a secure communication channel to the Secure
Agent Infrastructure.

5.10 Conclusion

We have introduced our security solution for the Distributed Secure Agent Plat-
form Outposts (DSAP Outposts) of the Secure Agent Infrastructure comprising
the Trusted Docking Station (TDS) and the Secure Docking Module (SDM).
The TDS provides an execution platform that measures the load-time integrity
of the software it executes and provides virtualization based security by isolation
as a runtime protection mechanism. The SDM is a user authentication and plat-
form verification module that mutually authenticates the DSAP Outpost and its
human user to each other, while also establishing that the software configuration
of the DSAP Outpost is security policy conforming.

We have designed and implemented both the TDS and the SDM. Further-
more, we have based our prototypical implementation of the TDS on the acTvSM
platform [Pir15] and we have implemented the SDM using a Security Con-
troller (SC). We have ported the Distributed Secure Agent Platform Service
(DSAP Service) to run on the TDS and to use the TDS’s sealing and the SDM’s
credential protection capabilities to mitigate the threats to the DSAP Outpost.

Finally, we have evaluated our security solution. We have evaluated both the
performance of the security solution and its security. The performance evaluation
of our additions to the DSAP Outpost shows that the incurred overhead is
negligible for disaster response scenarios.

The security evaluation indicates that although our DSAP Outpost is still
vulnerable to targeted, online attacks, our platform offers load-time integrity
protection and user authentication with commodity-off-the-shelf hardware com-
ponents. We have evaluated the effectiveness of our approach against the 54
threats to a DSAP Outpost identified in Chapter 4. Our security solution miti-
gates the 43 related to a compromised DSAP Outpost. Furthermore, it provides
the basic mechanisms for counteracting the four threats to authentication, of
which two are mitigated by the SDM. Finally, only three threats are not miti-
gated because they are out of scope of our security solution.

Security and availability are key factors for Mobile Agent System (MAS)
to gain acceptance as disaster response support tools. We hope that our work
protecting the DSAP Outposts helps to increase the acceptance of Mobile Agent
for disaster response so that future disaster response operations can leverage the
power of Mobile Agents to prevent further harm to humans beings enduring a
disaster situation.
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5.11 Future Work

Currently, the Secure Docking Module (SDM) protects the communication with
the Trusted Docking Station (TDS) using AES in Cipher Block Chaining (CBC)
mode of operation. The CBC mode of operation provides strong confidential-
ity [Rog11] when operated with a random IV, as is the case for the SDM and
TDS communication. However, it provides no protection against malleability at-
tacks [Rog11]. Consequently, the confidentiality of the communication between
the SDM and the TDS is protected, but the integrity is not. Although we have
no concrete attack in mind, the potential for an adversary to modify the plain-
text of the communication in any meaningful way by modifying the ciphertext
worries us. Therefore, we propose to upgrade the communication protection to
use Authenticated Encryption, as introduced in Section 2.9.3.

Although the SDM supports user authentication through possession of the
security module, its security is still limited by the fact that the protected re-
sources, serving for authentication and authorization, are released to the host
platform. One solution to alleviate this problem in the future is to use the host
platform verification to actually protect cryptographic operations implemented
on the SDM, such as challenge response authentication protocols, or on chip
signature creation and verification.

For our prototypical adaptation of the Distributed Secure Agent Platform
Service (DSAP Service) we have only used the TDS and the SDM to protect
the Distributed Secure Agent Platform Outpost (DSAP Outpost) specific agent
authorization key (see Section 5.4). However, as our security evaluation has
indicated it would be beneficial to also protect the authentication credentials
for secure communication with External Interactors. Also, although we have
presupposed a secure communication link between the Core Secure Agent In-
frastructure and the DSAP Outposts, it has not yet been implemented. As de-
scribed in Section 5.4 we believe this can be implemented by choosing a secure
communication protocol for Apache River (formerly Jini), which is underlying
the DSAP Service.

Finally, as our performance evaluation showed, the bulk of the time required
to use the SDM’s resource access protocol is allocated by transferring the resource
from the SDM to the TDS. The main reason for this is our choice of the ISO7816
interface for communication with the SDM. The Security Controller we used
to implement the SDM also provides a Serial Peripheral Interface and a USB
interface. Both of these interfaces can be significantly faster than the ISO7816
interface. Therefore, we propose to switch to one of these two interfaces as future
work.
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Secure Block Device details are based on [HWF15].
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6.1.1 Motivation

We believe that disaster response can greatly benefit from using smartphones
and tablets. However disaster response requires strong security for data protec-
tion (see Chapter 4 and O’Neill [OSZW12]). Therefore, we have developed the
security solution comprising the Trusted Docking Station (TDS) and the Secure
Docking Module (SDM) we introduce in Chapter 5. Our security solution is
based on the acTvSM platform. The acTvSM platform in turn is based on Intel
Trusted eXecution Technology (TXT) (see Section 2.15). However, the predomi-
nant platforms in the smartphone market are Android and Apple’s iPhone using
ARM System-On-Chips. Neither of these platforms supports TXT. Therefore,
we started to investigate how we can use the security mechanisms available on
ARM based systems to build a platform with similar security properties to the
acTvSM platform. Our first effort in this direction is a storage mechanism that
uses cryptography to protect the confidentiality and integrity of data, the Secure
Block Device (SBD).

There are a number of examples, where researchers propose to use smart-
phones to facilitate disaster response. Mitra and Poellabauer [MP12] show how
smartphones using their acceleration sensors and their ability to form mobile
ad-hoc networks can be used to help paramedics to monitor the heart rate of
multiple-patients. Also Ishigaki et al. [IMIT13] developed a mobile radiation
monitoring system and field tested it in Fukushima following the 2011 nuclear
power plant incident. The mobile radiation monitoring system used cheap ra-
diation sensors attached to smartphones as measurement equipment. As a final
example, Thompson et al. [TWD+10] proposed the use of smartphones to detect
car accidents and to provide situational awareness for emergency responders.

In addition to a smartphone’s multitude of sensors that allow for a number
of interesting use cases in disaster response, and its ability to form mobile ad-
hoc networks that can mitigate communication outages [DHK10], smartphones
and tablets have significant computational power, memory and storage. Smart-
phones have the technical capability to participate in a Multi-Agent System
for years now (see for example Chan et al. [CRP08]). In fact, in 2008 Ughetti
et al. [UTG08] demonstrated the use of the Java Agent Development Frame-
work (JADE) Mobile Agent System in the Android smartphone OS.

Having established the utility and capability of using smartphones and tablets
for disaster response we have to tackle the question of security. As the disaster
response scenario for Mobile Agent Systems mandates strong security require-
ments for data protection (see Chapter 4 and O’Neill [OSZW12]) we are inter-
ested in security mechanisms that go beyond standard operating system (OS)
capabilities. We estimate that with the advent of the ARM TrustZone security
extensions (see Section 2.17) and the de-facto dominance of ARM based plat-
forms for smartphones a strong security by isolation mechanism is now widely
deployed in smartphones. Recently, a number of OSs supporting the ARM
TrustZone security extensions and the GlobalPlatform standards for Trusted
Execution Environments, such as ANDIX OS (see Section 2.18), have arisen.
This enables us to look into building a Mobile Agent System that uses Trusted
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Applications in conjunction with the SDM (see Section 5) for protection of sen-
sitive data. One of the first requirements we established for such a Mobile Agent
System was the need for authentic and confidential data storage.

ANDIX OS takes minimizing its Trusted Computing Base to the limit by
delegating the onus of secure storage to its Trusted Applications. ANDIX OS
choose this design on the assumption that not every Trusted Application might
need fully blown, fast random block access for its confidential and authentic
data. Many Trusted Applications can fulfill useful roles without needing a se-
cure storage with fast random access. A Trusted Application might not have
any storage requirements at all. One such example is VeriUI [LC14], a compo-
nent that protects a user’s credentials while they are input. Another example
is DroidVault [LHB+14] that requires secure storage, but not data freshness.
Finally, there are applications that need secure storage, but not fast random
block access [KEAR09]. Thus by not enforcing secure storage with data fresh-
ness and fast random access inside the ANDIX OS kernel, ANDIX OS can still
be the foundation of many Trusted Applications, while minimizing its Trusted
Computing Base.

6.1.2 Contribution

We have developed the Secure Block Device (SBD) to provide data confidential-
ity and authenticity for Trusted Applications running on ANDIX OS. We have
created the SBD as part of an effort to establish basic security building blocks
for implementing a Mobile Agent System for smartphones. The SBD is an easy
to use, efficient, flexible, and widely applicable C software library for adding
data confidentiality and authenticity, including data freshness, to a variety of
storage systems. We want to emphasize that the SBD is not a file system. The
SBD wraps storage systems with a block device like interface. However, a file
system can use the SBD as a storage back end wrapper and thus achieve data
confidentiality and authenticity.

6.1.3 Properties of the Secure Block Device

Security

The SBD provides data confidentiality and data authenticity, including data
freshness, for data at rest. The SBD uses cryptographic mechanisms to achieve
these data security goals. The security goals hold against an adversary who
has access to the cryptographically protected data, but not the cryptographic
access credentials. In conjunction with a Trusted Execution Environment, the
security goals also hold against an adversary that can read, modify and drop
any SBD read and write messages between the Trusted Execution Environ-
ment and the Normal World, but who is unable to directly access the Se-
cure World memory or Secure World devices. We do however explicitly deny
our adversary the ability to perform local implementation attacks (see Sec-
tion 2.13) and local and remote side-channel attacks such as cache-timing at-
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tacks [AES15, LYG+15, SP13, GSM15]. Resilience against side-channel attacks
depends on implementation details, such as the quality of the implementation
of the cryptographic mechanisms and ANDIX OS’s cache management. There-
fore, we consider it out of scope. See Section 6.4.1 for details on our adversarial
model.

The SBD uses Authenticated Encryption (AE) combined with a Merkle Tree
to achieve its security objectives. The AE scheme is selectable. Currently the
SBD supports Offset Codebook Mode (OCB) and Synthetic Initialization Vector
(SIV). Additional schemes can be easily added, and can even take advantage of
platform specific cryptographic hardware. The SBD’s only security requirement
is that the user of the library is able to provide confidential and authentic storage
for a symmetric cryptographic key and a single integrity value. As dedicated
secure storage in hardware is usually at a premium, the SBD reduces the problem
of confidential, and authentic data storage of arbitrary amounts of data to storing
a single integrity value and cryptographic key. We discuss the security properties
of the SBD in Section 6.4.

Ease of use

The SBD has a simple to use application programming interface (API) (see
Section 6.3.5) and the use of cryptography is as transparent as possible. The
SBD’s API is modelled after the well-known Portable Operating System Interface
(POSIX) file abstraction as specified for the C standard library; a user can
use the SBD as he or she would use a file. Furthermore, the SBD’s API only
requires cryptographic credentials when a new SBD is created, or an existing
SBD is opened. For all other operations, such as reading or writing data, the
cryptography itself is completely transparent.

Efficiency

The SBD has three efficiency mechanisms. The first is fast random block access.
The second is a block cache (cf. Section 6.3.3) and the third a cryptography
abstraction layer (cf. Section 6.3.2). Fast random block access is complicated
when using cryptography to achieve data security goals. Therefore, we need to
combine two mechanisms, an AE scheme and a Merkle Tree, to achieve it. See
Section 6.2.3 for details. The last two efficiency mechanisms aim at mitigating
the impact of cryptography on performance. The block cache caches decrypted
data, thus on a cache hit, no cryptographic operations are performed. The
cryptographic abstraction layer allows the user of the SBD to decide which AE
scheme to use at SBD instantiation time.

Flexibility

The SBD works with a variety of storage back ends, such as block devices or
ANDIX OS’s file abstraction. To this end the SBD only requires its back end
to provide address based block read and block write functions, such as POSIX
compatible implementations of the pread and pwrite functions.
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Applicability

The SBD is an add-on module for Trusted Applications executing in the Secure
World user space. To achieve this goal the SBD is implemented as a software
library. If a Trusted Application requires a confidential and authentic storage, it
can use the SBD library. Additionally, the SBD can be linked to any application
with similar properties. To allow widespread use, the SBD is published under
an open source license1.

6.1.4 Evaluation

Security

In Section 6.4, we evaluate the security of the SBD by threat modeling the use
case where the SBD is used to add a confidential and authentic data storage to
a Trusted Application using the Microsoft Threat Modeling Tool 2016. We then
argue how the SBD mitigates all threats to data confidentiality, authenticity, and
freshness. Finally, we fully disclose and discuss how our SBD uses the Merkle
Tree, AE, and Cipher-based Message Authentication Code (CMAC) primitives
to achieve the data confidentiality, authenticity, and freshness goals even in the
face of an adversary that can perform spoofing, splicing, and replay attacks
(see Section 2.11).

Performance

The SBD was designed to provide a secure persistent storage to Trusted Applica-
tions (TAs) as part of an effort to build a Mobile Agent System for smartphones.
In lieu of said Mobile Agent System and to thoroughly put both ANDIX OS and
the SBD through its paces, we extended the idea of providing secure storage not
only to a Trusted Application, but also as a service for the Normal World. We
have implemented a Trusted Application providing a simple block storage inter-
face to the Normal World. The Trusted Application stores the block using the
SBD mechanism. In the Normal World we used the Linux Network Block De-
vice kernel infrastructure to integrate our secure storage solution. Thus, we have
developed a TrustZone protected block device. We evaluate the performance of
the SBD in this context.

6.2 The Secure Block Device Operation Principle

The Secure Block Device (SBD) is a software library that adds confidentiality
and authenticity, including data freshness, to arbitrary block storage devices.
The application programming interface (API) allows reading, and writing arbi-
trary sized byte buffers, at arbitrary offsets, to and from the SBD. The SBD
applies a protection mechanisms based on a selectable Authenticated Encryption

1https://www.iaik.tugraz.at/content/research/opensource/
secure_block_device/
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(AE) scheme (see Section 2.9.3), the Cipher-based Message Authentication Code
(CMAC) MAC (see Section 2.9.2), and a Merkle Tree (SHA-256) to achieve data
confidentiality, authenticity, and freshness.

6.2.1 Creating a Secure Block Device

When a client, such as a Trusted Application, first initializes a new SBD it
needs to provide a back end Datastore and a symmetric master key MK. This
symmetric master key authorizes later use of the SBD and its confidentiality
and authenticity must be protected by the client. The SBD uses MK with the
Synthetic Initialization Vector (SIV) S2V pseudo random function construction
to derive two internal symmetric keys. These keys are the AE key AEk and the
CMAC key CMACk. They are stored in the SBD header encrypted under the
master key, when the SBD is closed.

6.2.2 Opening a Secure Block Device

A client can open a previously created SBD by providing the master key MK

and the master authenticity tag Mt representing the authenticity of the overall
SBD. We detail the computation of Mt in Section 6.2.3. It is returned to the
SBD’s client upon closing the SBD and the client has to ensure the authenticity
of Mt when supplying it. Upon opening an SBD MK is used to decrypt the
two internal symmetric keys AEk and CMACk. CMACk and Mt are used to
verify the overall authenticity of the SBD. The root hash of the Merkle Tree is
the representative for the data authenticity and freshness of the complete SBD.
When opening an existing SBD all management blocks (see Section 6.2.3) are
read, their CMACs computed, and the Merkle Tree rebuild. The Merkle Tree
root hash is then compared with the client specified reference value Mt. If the
root hash of the rebuild Merkle Tree matches the specified reference value, the
SBD open operation succeeds; otherwise it fails, because the integrity of the
SBD has been compromised. If rebuilding the Merkle Tree and its verification
succeeds the SBD can ensure that all unauthorized changes to the data stored
in the SBD become evident on reading the data from the untrusted back end
store.

6.2.3 Using a Secure Block Device

The SBD splits incoming read and write requests from the client into fixed size2

Data Blocks. This is done to allow scalable random access. Random access in
combination with cryptographic protection is difficult, because the naive solution
of encrypting and authenticity protecting the full SBD is prohibitively slow. If
the SBD were to use the naive solution, it would have to decrypt and verify the
authenticity of its whole data just to read a single bit. Therefore, to allow for
efficient random access, the SBD splits the data into blocks of fixed size.

2block size is a compile time parameter
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Figure 6.1: The component partitioning diagram for a Trusted Application that uses
the Secure Block Device to store data. The diagram details which com-
ponents reside in the Secure World and which in the Normal World. It
also specifies which data is kept in RAM and which is persisted in a Block
Datastore.

Block processing complicates achieving our overall confidentiality and au-
thenticity, including data freshness, objectives for the SBD. We need to ensure
data freshness for all blocks, the confidentiality and authenticity of Data Blocks,
and the authenticity of management blocks (see below) and the header block.
We use a Merkle Tree for the data freshness of all blocks and the AE to protect
the Data Blocks and the CMAC for the management and header blocks. We
will now explain how these three mechanisms, the Merkle Tree, the AE and the
CMAC, mesh together to achieve the overall security objectives by explaining
how Data Blocks are processed when written or read.

However, before we detail how Data Blocks are read and written we first
outline how the SBD components we need for our discussion are partitioned
with respect to the Secure World and the Normal World (see Section 2.17).
Furthermore, we detail where these components store their data. Specifically, we
discuss which data is stored in RAM and which in a persistent Block Datastore.

Figure 6.1 depicts how we partitioned our components and where they store
their data. Here, a Trusted Application uses the SBD to store its data. The
SBD maintains a pair of cryptographic keys and the root hash HR in Secure
World RAM. The root hash is the root of the Merkle Tree. The other Merkle
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Tree nodes and its leaves are conceptually stored in Normal World RAM. Note
that the SBD performs all Merkle Tree computations in the Secure World, it just
stores the Merkle Tree in the Normal World. The SBD uses a cache component
(see Section 6.3.3) to speed up access to blocks of data Dx, where x is the Data
Block index. Next to Data Blocks the cache also stores management blocks (see
below) My, where y is the index of the management block. All these blocks are
cached in Secure World RAM. When the cache evicts a block it writes it to a
persistent Block Datastore in the Normal World. Conversely, when the cache
loads a Data Block it loads it from the persistent Block Datastore in the Normal
World.

Writing a Data Block

The SBD block processing works as follows. A Data Block (Dx, where x is the
block index) is written to the back end store when it is evicted from the SBD
block cache. First, Dx is encrypted and an authentication tag is computed using
an AE scheme (encAE)

(Ex, Tx) = encAE(AEk, Dx, {x, IV }), (6.1)

where Ex is the encrypted and authenticity protected Data Block with index
x, Tx is the corresponding authentication tag, AEk is the AE key, Dx is the
Data Block to encrypt, x is the block index and IV is the initialization vector
(IV). We use a global counter as IV, when the AE scheme supports an IV;
otherwise we input the global counter and the block index x as associated data
(see Section 2.9.3).

Why add a global counter? When applying an AE scheme to individual
blocks, identical plaintext blocks will encrypt to identical ciphertext blocks. We
use an SBD global counter to prevent this. Every time a Data Block is encrypted
using an AE scheme we supply the current value of the global counter as IV to
the AE operation, and then we increment the global counter. This ensures that
the IV is unique for every encryption and therefore each ciphertext is different.
We use a 96-bit (12 bytes) global counter for the SBD. This allows for 296

write operations, before the SBD’s AE key must be changed and the whole SBD
reencrypted (see Section 6.6).

For every Data Block Dx we need to store the IV and its Tx in addition to the
protected data Ex. We have decided to group this information in a special block
type, the management block. Management blocks are stored interleaved with
Data Blocks in the back end store. The lower part of Figure 6.2 illustrates the
block structure of an SBD with a block size of 2 KiB. The first block, with block
index 0 is the header block (HDR). The header block stores, amongst other
data, the SBD version, and the encrypted AEk and CMACk. The second block
with the block index 1 is a management block (M0). Management blocks store
the IVs (IV ) and authenticity tags (Tx) for a specific number of Data Blocks. We
have assigned a fixed size of 16 bytes to the IVs and authenticity tags, although
we currently only use 12 bytes for the IV. Consequently, the number of Data
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Figure 6.2: Block structure for a Secure Block Device with a block size of 2 KiB

Blocks covered per management block solely depends on the SBD block size. In
our example with a block size of 2 KiB, each management block can store 64
(IV, Tx) tuples. Hence the next 64 blocks are Data Blocks, being followed by
the management block for the next 64 Data Blocks etc.

The management block My corresponding to our DBx is authenticated using
CMAC

TMy
= CMAC(CMACk,My) (6.2)

where TMy
is the Message Authentication Code (MAC), CMAC is the CMAC

function, CMACk is the CMAC key and My is the management block to protect.
TMy

is then inserted in the Merkle Tree, the tree updated and the root hash
recomputed. Finally, both the management block and the Data Block get written
to the persistent storage.

We use a binary Merkle Tree to protect against replay attacks. The upper
part of Figure 6.2 depicts the subtree of the Merkle Tree pertaining to the visible
management blocks. The leftmost leaf in the subtree Th is the CMAC of the
header block HDR, whereas TM0

and TM1
are the CMACs of the first and the

second management block respectively. As detailed in Section 2.12, the inner
nodes are the hashes of the concatenated children. For example,

I0 = SHA-256(Th||TM0
), (6.3)

where SHA− 256 is the SHA-256 hash function, Th is the left child (the CMAC
of the header), TM0

is the right child (the CMAC of the first management block),
and || is the concatenation operation. The advantage of using a Merkle Tree in
our scenario is that, with the marked exception of the root hash, the Merkle Tree
can be maintained in the Normal World, that is, in untrusted memory. This is
advantageous, because the Merkle Tree can grow to significant size.

We could have directly stored the Data Block authentication tags (Tx) in
the leaves of the Merkle Tree to protect their freshness. However, this strategy
creates a Merkle Tree of significant size. For example, the Merkle Tree for a 2 GiB
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SBD with a block size of 2 KiB would require a minimum of 221 hashes. Given
that the output size of the SHA-256 function is 32 bytes (25), the memory size
of the Merkle Tree would amount to a minimum 64 MiB. To reduce the Merkle
Tree memory requirements, instead of directly storing the block authentication
tags in the Merkle Tree, they are stored in management blocks, which in turn are
stored in the persistent storage, when not in cache. Given the above example,
where each management block stores 64 IVs and authentication tags, the size of
the Merkle Tree is reduced to 215 hashes, or a minimum of 1 MiB of memory.
Although most of the Merkle Tree can be maintained in the Normal World, we
are operating on mobile device, where memory still is a precious commodity.
Thus, we believe this design decision justified.

Reading a Data Block

When the client application requests data from the SBD, and the corresponding
Data Blocks are not yet in cache, the SBD will request the Data Blocks from the
untrusted back end Datastore. For every encrypted and authenticity protected
block Ex read from the back end Datastore the SBD ensures it has the corre-
sponding management block My loaded into the block cache. If My is not yet
in the cache, the SBD reads it from the back end Datastore and computes TMy

,
the CMAC of My. The SBD then recomputes the root hash of the Merkle Tree
with the leaf value supplied by TMy

. If the newly computed root hash matches
the root hash maintained by the SBD in the Secure World, My is accepted;
otherwise it is rejected and the SBD signals an integrity error to the client.

If the SBD accepts My it starts processing Ex. The SBD decrypts and checks
the authenticity of Ex by applying

Dx = decAE(AEk, Ex, x, IV, Tx), (6.4)

where Dx is the decrypted and authentic Data Block with the block index x,
decAE is the authenticated decryption function, AEk is the key, Ex the protected
block, x the block index, IV the IV and Tx the authenticity tag. Both, IV and
Tx are read from My. The decryption function decAE will only succeed if the
correct key is used and x, IV , and Tx match the encrypted block Ex. Thus if
Ex has been modified by an adversary, decAE will fail. The SBD returns the
requested data to the client if all required management block verification and
decryption operations succeed.

6.2.4 Closing a Secure Block Device

When an SBD is closed, the current Merkle Tree root hash maintained in the
Secure World is returned to the client as new Mt. The client must protect Mt

against modification, as it is the representative for the data authenticity and
freshness of the complete SBD. If the SBD is not closed correctly, for example,
because ANDIX OS crashes, the Mt of the client and the one recomputed by
the SBD from its data upon opening might not match. In this case the client
has to manually check the consistency of the data.
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tor (SIV) [RS06]. Notably, the two schemes treat the 96-bit global counter
differently. The OCB scheme uses it as initialization vector (IV), and the SIV
scheme treats it as associated data. This is secure, because in SIV a change
in the associated data also changes the cipher text. As is to be expected the
OCB schemes performs significantly better than the SIV scheme, as OCB is a
single-pass scheme, whereas SIV needs to process the data twice. Thus, selection
of the appropriate AE scheme allows a trade-off between efficiency and a more
liberal software license, as OCB is patented3.

6.3.3 The Block Cache

The block cache is an efficiency mechanism. When the SBD writes data to
the back end Datastore, this data is encrypted and its authenticity protected.
Conversely, when the SBD reads data it has to reverse the encryption and verify
the data authenticity. Both ways, this is computationally significantly more
costly than simply reading and writing unprocessed data. In addition, ANDIX
OS uses the Normal World for data storage, which is expensive, due to the
inter-world communication overhead. The performance is further degraded by
using management blocks to reduce the size of the Merkle Tree. Every time a
Data Block is updated, its authentication tag is updated in the corresponding
management block, which is then written. To minimize these costs the SBD uses
a block cache. The block cache retains a configurable number of Data Blocks4

in unencrypted and unprotected form for quick access in RAM.
The block cache is a write-back, write-allocate cache. The block cache lives in

the Secure World Trusted Application. Thus, depending on the workload, it can
significantly reduce the number of cryptographic operations, world, and context
switches. The Secure World block cache stores the plaintext of the actual data
and management blocks. As management blocks contain data pertinent to a
range of Data Blocks, the cache component gives them preferential treatment
over pure Data Blocks. Also, to read and write a specific Data Block, the
corresponding management block needs to be in the cache. This is an invariant
that must hold for the SBD to work, and the cache has partial responsibility for
ensuring it. A management block is evicted from the cache, iff no corresponding
Data Blocks are left in the cache, and it is the least recently used cache element.
On the other hand, if a Data Block is evicted, the Data Block itself, and the
corresponding management block are stored. This strict policy minimizes data
integrity loss in case of a system crash. We have systematically tested the
cache component using test cases automatically generated from a formal cache
model [BHRS15].

The block cache component provides a very simple interface towards the
SBD. The interface comprises a call back to the SBD for writing a dirty block
before evicting it from the cache, a call back predicate function to test if given
management block is responsible for a given Data Block, and a request Data

3http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm
4SBD cache size is a compile time parameter
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Block function. The request Data Block function either provides access to the
requested block data, if it is cached, or a free cache slot. The SBD can use the
free cache slot for storing the block data it now reads from the persistent data
storage back end. Before the data is stored in the free cache slot, the SBD also
decrypts it and verifies its integrity.

6.3.4 The Merkle Tree

The Merkle Tree component is a dynamic implementation of a binary Merkle
Tree data structure optimized for use with the SBD. One of the objectives for
the SBD is to keep its memory footprint small, as it is targeted for embedded
devices running ANDIX OS. To this end we have implemented our Merkle Tree
to grow and shrink in size depending on the size of the SBD. This capability
limits memory usage, while still allowing the SBD to grow in size. If the SBD
consists only of a few blocks, the memory footprint of the Merkle Tree is also
small. However, if the SBD grows, the Merkle Tree grows with it as needed.

How Does Your Garden Grow?

To detail how the Merkle Tree grows dynamically, we first explain how the SBD
grows. An SBD instance starts with a size of zero and grows as needed. In
other words, the current size s of the SBD and the current number of Data
Blocks n in the SBD are determined by the highest index written to so far.
For example, if the highest index written to so far is 133121 and the block size
sB = 2048 (2 KiB), then s = 131121 and n = 65. When the client application
writes beyond the last allocated Data Block, the SBD automatically grows the
back end Datastore to accommodate the new data. For the Merkle Tree the
interesting case is when the SBD has to create at least one new management
block in the process.

As explained in Section 6.2, management blocks store (IV, CMAC) tuples
for Data Blocks. Each management block is responsible for a number of Data
Blocks, depending on the chosen block size of the SBD. As an invariant, the
SBD always creates all necessary management blocks to store the (IV, CMAC)
tuples for all n Data Blocks. For example, if the block size is sB = 2048, then
each management block holds 64 (IV, CMAC) tuples. Put differently, in our
example the SBD needs one management block per 64 Data Blocks. Let us
further assume that the SBD has not yet been written to and is empty. Now the
client application writes a byte to index 133121. By dividing through the block
size the SBD determines it needs to write the byte to 65th Data Block. Here the
SBD creates two new management blocks, M0 and M1. M0 stores (IV, CMAC)
tuples for the Data Blocks DBx, 0 ≤ x < 63 and M1 covers DBx, 64 ≤ x < 127.
These two new management blocks now need to be added to the Merkle Tree.

Figure 6.4 illustrates how our binary Merkle Tree implementation grows as
the SBD grows. Our Merkle Tree implementation manages the tree in levels.
Memory is allocated per level and not for the tree as a whole. Each level is
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use untrusted memory. Therefore, our Merkle Tree is currently maintained in
Secure World memory.

6.3.5 Secure Block Device API

Our design goals for the SBD application programming interface (API) were
twofold. First, the SBD should be easy to use. Second the underlying, cryptog-
raphy based security mechanism should be as transparent as possible. We have
modelled the SBD API after the POSIX file API for the C standard library. The
SBD provides the following commands sbd_open, sbd_lseek, sbd_read,
sbd_write, sbd_pread, sbd_pwrite, sbd_fsync, and sbd_close. With
the exception of the sbd_open and sbd_close the function signatures mirror
their POSIX counterparts. The behavior of the SBD functions is also modelled
after their POSIX counterparts based on the description POSIX Programmer’s
Manual.

The SBD security mechanisms are completely transparent during SBD oper-
ation. Only the SBD open and SBD close operations require special attention.
When opening an SBD, the caller must specify the master key MK (cf. Sec-
tion 6.2) and a root hash reference value Mt. The master key is used for key
derivation and key storage. The root hash reference value is used to ensure the
integrity of the SBD. Conversely, if the SBD is closed this value is returned
for safe-keeping by the caller. Therefore, we claim that the SBD API is easy
to use, as it is based on a very well known and widely adopted file abstraction.
Furthermore, the security mechanism is completely transparent, with the sole
exception of opening and closing an SBD, and here, the additional interaction
is kept at the minimum.

6.4 Security Evaluation

The security evaluation we present herein is based on Appendix C. Specifically,
the threat model we describe in Section 6.4.2 is a summary of Section C.2 and
Section C.4.

6.4.1 Adversarial Model

We analyse the security properties of the Secure Block Device (SBD) against an
adversary that has full access to the cryptographically protected data at rest,
but not to the Authenticated Encryption (AE) key and the Merkle Tree root
hash. This adversary can read and modify all data while it is at rest and record
operations on the data over the full lifetime of the SBD store, but cannot break
the cryptography.

Specifically, when the SBD runs in a Trusted Application, the following as-
sumptions about our adversary hold. Our adversary is restricted to software
attacks. Our adversary has full privileges on the Normal World side, but can
only access the Secure World and the Trusted Applications therein using the
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Table 6.1: Secure Block Device API

Function Description

sbd_open Creates a new, or opens an existing
SBD and associates it with an SBD
handle. It requires specification of a
master encryption key, and, when open-
ing an existing device, a root hash ref-
erence value.

sbd_lseek Moves the read/write offset of the SBD
to the specified position

sbd_read Tries to read the requested number of
bytes at the current SBD read/write
offset into the given buffer.

sbd_write Tries to write the specified number of
bytes from the given buffer to the SBD
at the current read/write offset.

sbd_pread Tries to read the requested number of
bytes at the specified SBD offset into
the given buffer.

sbd_pwrite Tries to write the specified number of
bytes from the given buffer to the SBD
at the specified offset.

sbd_fsync Tries to flush the internal SBD block
cache and signals ANDIX OS to flush
its virtual block device interface.

sbd_close Tries to re-encrypt the SBD symmetric
keys. It also returns the root hash ref-
erence value.
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Remote Procedure Call interface provided by ANDIX OS. In the Normal World
the adversary has full control over all processes, can access all memory, and
can fully read and write all files, including the Datastore used by our Trusted
Application. We do however deny our adversary the ability to perform software
side-channel attacks to obtain the cryptographic keys used by the SBD, as we
consider this to be out of scope for this work.

Thus our adversarial model encompasses an adversary that can perform
spoofing, splicing, and replay attacks, as discussed in Section 2.11. Our
adversary cannot perform a forking attack, because there is only a single user
for the SBD, the Trusted Application that is using it.

6.4.2 Threat Model

We have created a threat model for the use case where a Trusted Application
that runs in the ANDIX OS Trusted Execution Environment stores sensitive
data using ANDIX OS’ storage mechanism. The storage mechanism of ANDIX
OS relies on the Normal World to store data (cf. Section 2.18.3), which we
consider insecure. We detail our threat modeling efforts for this use case in
Appendix C.

In Table 6.2 we enumerate the threats from our threat model we consider
pertinent. The ID column shows the unique number of the threat. The T column
contains the type of the threat according to Spoofing, Tampering, Repudiation,
Information disclosure, Denial of Service, and Elevation of privilege. The title
column displays the name of the threat and the AID is the identifier of the threat
used in Appendix C. The final column M contains a check mark if we consider
the threat to be mitigated by the SBD.

In comparison with the list of threats in Appendix C we have removed three
threats that do not apply, because we consider the Trusted Application trusted
and secure by definition. These three threats are

4 Potential data repudiation by the Trusted Application,
5 Potential process crash or stop for the Trusted Application,
8 The Trusted Application may be subject to elevation of privilege
using remote code execution.

6.4.3 Discussion

The SBD is intended to be a Single-User Authentic Block Datastore and uses the
well known combination of a Merkle Tree in conjunction with an AE scheme to
achieve Single-User Block Datastore Authentication, while retaining fast random
access (cf., for example, [YSK09]). We argue that using the SBD with its data
confidentiality, authenticity and freshness guarantees completely mitigates all
spoofing, tampering, information disclosure and elevation of privilege based on
data corruption threats, that is, Threats 01, 02, 03, 04, 07, 08, 10, 11, and 15.
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Table 6.2: Threats to a Trusted Application when reading and writing data to and
from an untrusted Datastore

ID T Title AID M

Reading data

01 S Spoofing of Datastore 1 X

02 I Weak access control for the Datastore 2 X

03 I Data Flow Sniffing 2a X

04 S Spoofing the Trusted Application 3 X

05 D Data flow Read from the Datastore to the Trusted Ap-
plication is potentially interrupted

6

06 D Datastore inaccessible 7
07 E Elevation by changing the execution flow in the Trusted

Application
9 X

Writing Data

08 S Spoofing of the Datastore 10 X

09 D Potential excessive resource consumption for Trusted
Application or Datastore

11

10 S Spoofing the Trusted Application 12 X

11 T The Datastore could be corrupted 13 X

12 R The Datastore denies writing data, although the data
was potentially written

14

13 I Data flow sniffing 15 X

14 D The data flow from the Trusted Application to the Data-
store is potentially interrupted

16

15 D Datastore inaccessible 17
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Here we detail how the SBD combines the AE scheme with the Merkle Tree
to achieve its security goals. To allow for efficient random access, the SBD splits
the data into blocks of fixed size. Each block is then processed using an AE
scheme. The AE scheme encrypts and authenticates each block individually.
Block processing complicates both protecting confidentiality and authenticity.
Concerning confidentiality, when applying an AE scheme to individual blocks,
identical plaintext blocks will encrypt to identical ciphertext blocks. We use an
SBD global counter to prevent this. Every time a Data Block is encrypted using
an AE scheme we supply the current value of the global counter as initialization
vector (IV) to the AE operation, and then we increment the global counter. This
ensures that the IV is unique for every encryption and therefore each ciphertext
is different. We use a 96-bit (12 bytes) global counter for the SBD. This allows
for 296 write operations, before the SBD’s AE key must be changed for this
property to hold.

Protecting the overall data authenticity of the SBD is even more complicated.
The Single-User Authentic Block Datastore threat model therefore allows for
spoofing, splicing, and replay attacks on authenticity (cf. Section 2.11).

Spoofing The adversary is able to pass off arbitrary data as a valid Data
Block. Spoofing is effectively prevented by the AE scheme. The AE operation
generates an authentication tag that is verified upon authenticating decryption.
If the Data Block, or the authentication tag is modified by an adversary, the
authenticating decryption operation will fail.

Splicing, or relocation The adversary is able to substitute a valid block
with a different valid block of the same SBD. We prevent splicing by adding the
block index number as associated data to the AE operation and also through
the use of a Merkle Tree.

Replay The adversary is able to successfully substitute a previously recorded
copy of a specific Data Block as the newest version of the Data Block. We
prevent replay attacks using a Merkle Tree. The Merkle Tree efficiently maps the
authenticity of each individual block and their spatial and temporal dependency
to a single representative, the Merkle Tree root hash. If the adversary replays
an old block on a read operation, the root hash verification will fail, thus this
attack is prevented.

We do not think it necessary to protect the confidentiality on the management
blocks, because they only contain the IVs and authenticity tags for the Data
Blocks. The IVs contain a serial number that allows an adversary to identify in
which order the blocks have been written. However, this is an ability we have
already conceded to the adversary in our adversarial model. So, the adversary
will learn nothing more. The authenticity tags of the Data Blocks are created by
the AE when protecting a Data Block and by definition must not reveal anything
about the protected data. Finally, all non-public information in the header block
is individually encrypted.

The SBD provides no data availability guarantees. In our thread model an
adversary can easily mount a Denial-of-Service (DoS) attack, see threats 05, 06,
09, 14, and 15. As the Merkle Tree root hash is stored in a secure storage, and
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therefore assumed to be secure against this adversary, such a DoS attack will
always be detectable, but not preventable.

The final threat in our list to discuss is Threat 12. Threat 12 is a repudiation
threat, where the Datastore repudiates ever having written data send by the
SBD. If the Datastore at one point acknowledges writing specific data, then
this fact is documented in the Merkle Tree root hash. If the Datastore at a
later point repudiates such a write operation, the root hash will be evidence to
the contrary. On the other hand, if the Datastore is sent data for writing and it
simply retains it while repudiating the receipt, then the SBD will have no way to
detect this attack. However, we cannot think of a use for repudiating the receipt
of encrypted and authenticity protected data other than denial of service.

6.5 Experimental Evaluation

All experiments were conducted on a iMX53 Quick Start Board5, equipped with
a 1 GHz ARM Cortex-A8 processor.

6.5.1 Code Size

The Secure Block Device (SBD) adds very little to the Trusted Computing Base.
Excluding the implementations of the cryptographic algorithms, the SBD C li-
brary has 2949 lines of code (LoCs)6, where 2029 LoCs implement the SBD core
and 920 LoCs implement the Merkle Tree. Adapting the SBD to use ANDIX
OS’s storage abstraction requires an additional 47 lines of code. The adapters
to use the reference implementations of Offset Codebook Mode (OCB) and Syn-
thetic Initialization Vector (SIV) require 160 LoCs and 152 LoCs respectively.
For comparison, the optimized reference implementation of OCB has 1207 LoCs.

6.5.2 Secure Block Device Block Cache Performance for

Small Files

Profiling the stand-alone SBD code showed that a significant amount of compu-
tation time is spent performing the cryptographic operations. ANDIX OS adds
an additional layer of cost to file read/write operations. Therefore we added
the block cache component (cf. Section 6.3.3). The potential SBD block cache
performance benefits depend on a number of factors including the cache size, the
Trusted Application’s access pattern, and the Normal World storage back end.
To measure the impact of the block cache on the overall SBD performance we
developed a performance test Trusted Application that can repeatedly read and
write chunks of data, either with sequential or with random access patterns.

Figure 6.5 illustrates typical block access times that were measured with
the performance test Trusted Application for a small file that almost fits into

5http://www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=IMX53QSB

6Determined with the cloc tool (http://cloc.sourceforge.net)
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the block cache. For this experiment, measurements were done in a loop, with
each test loop iteration consisting of a single block read or write operation to a
random block position within the file. The horizontal axis of the graph gives the
number of the test loop iteration. The block cache was configured for a total
size of 32 KiB, organized as 16 blocks of 2 KiB bytes. The size of the test file
was 32 KiB. With this choice of parameters most of the test file (up to 15 Data
Blocks7) can be held within the block cache. The vertical axis shows the time, in
milliseconds, needed to perform a single SBD block read or write operation from
within the measurement Trusted Application. These times include all overheads
related to SBD management, cryptography, and access to the Normal World
back-end storage.

During the initial phase of each read and write test-series in this experiment,
most of the read and write operations are clustered around the 4.5 ms mark.
Here the cache misses are dominant, and the block cache is successively filled
with data and management blocks. Block read and write access times during this
phase mainly depend on the selected cryptography back-end, and the Normal
World back-end storage. After roughly 20–30 test loop iterations, the cache has
been filled, and the cache misses start to drop. This is evident from the solid line
of data points on the 0 ms mark. Note that although mostly the red triangles
( ) are visible, this is due to them occluding all other symbols. For cache hits
the access time only depends on the SBD cache logic in the Secure World, and
is typically in the order of tens of microseconds. Cache misses on block reads
are in the same order as during the initial phase. Cache misses on block writes
are commonly more expensive, and can be observed as spikes starting around
test loop iteration 60 in Figure 6.5. When evicting a Data Block from the block
cache, the SBD logic has to update the corresponding management block.

The SBD block access times for cache misses shown in Figure 6.5 are largely
dominated by the time required to read from, or write to the Normal World. The
current prototype version of the ANDIX OS interface to the Normal World file
system, which is used by the SBD as storage backend, only supports synchronous,
in-order scheduling of I/O operations. A more flexible implementation of the
ANDIX OS Normal World interface, with support for asynchronous operations
and Normal World I/O coalescing is part of currently ongoing work. We expect
the block access times to significantly decrease, once the revised ANDIX OS
Normal World interface is completed.

6.5.3 Experimental Setup

For the following two experiments we compile OpenSSL on an SBD mounted
using the Linux Network Block Device (NBD) infrastructure. We argue this is a
suitable benchmark as compiling is a common task and OpenSSL is a reasonably
sized example. The Linux NBD kernel infrastructure is used to access block-
devices, like for example disk partitions, over a (network) socket connection.
Once an NBD device has been configured, it appears to the Normal World user-

7A hot cache always contains at least one management block.
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Table 6.3: Average SBD read/write times and throughput depending on AE scheme

SBD Throughput

AE scheme read [ms] write [ms] read [MiB/s] write [MiB/s]

None 0.443 0.477 11.191 6.690
OCB (AES) 1.214 1.167 4.078 2.705
SIV (AES) 1.656 1.575 2.990 2.045
AES+HMAC 2.393 2.080 2.073 1.497

OS 0.028 0.068 69.256 28.818

space as an ordinary block device. Filesystems stored on Linux NBD devices can
be mounted with the standard Linux mount command. To setup a Linux NBD
device for use, it has to be connected to an NBD server via a network socket.
Once a Linux NBD device has been connected to its server, the Linux kernel
starts to forward block read, and write operations over the network socket to
the server.

The SBD instance we use for all experiments is backed by a Linux Ramdisk
to ensure comparable results and provides 56 MiB of storage space. The 56 MiB
are partitioned into 28672 Data Blocks and 224 management blocks at a block
size of 2 KiB. Prior to each compilation, we create a new SBD and completely
zero it out. We do this to eliminate spurious measurement artefacts, when the
SBD grows in size. We also format the NBD device residing on top of the SBD
with the ext2 file system. The cache size is again 32 KiB, with 16 blocks of 2
KiB each.

6.5.4 Impact of the Authenticated Encryption Scheme

A key performance factor of the SBD is the choice of Authenticated Encryption
(AE) scheme. To evaluate its impact on the SBD performance, we compiled
OpenSSL thrice for each supported AE scheme. To better compare the AE
schemes and eliminate the effects of inter-world communication, we do not use a
Trusted Application running in ANDIX OS. For this experiment all operations
are performed on Linux. We measured the average time and amount of data
processed for each sbdi_read and sbdi_write operation triggered by the
compilation process. On average over all 12 compilation runs each compilation
process required 2046 read and 31176 write operations. Table 6.3 records our
results. Note that we omit standard deviations as they are all ≪ 5% of the
measurement values in magnitude.

Table 6.3 identifies four AE schemes: None, OCB, SIV, and AES+HMAC.
For each of the schemes it records the average time required for an SBD read
and write operation and the throughput. The “None” scheme in the first row
does not use any AE scheme for encrypting the data. It only maintains the
Merkle Tree over the management blocks, which in this case only contains all-
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zero authentication tags. For comparison with the supported OCB and SIV
AE schemes, we also implemented AES+HMAC, an encrypt-then-Message Au-
thentication Code (MAC) construction using HMAC-SHA256 and AES in CBC
mode of operation. As expected, OCB outperforms SIV, and SIV outperforms
the HMAC+AES construction.

The goal of this experiment is the measure the impact of the AE scheme,
therefore we use the “None” scheme as a baseline for the experiment. We evaluate
the impact of the SBD in general in Section 6.5.5. However, we also recorded
the runtime and throughput of the OS read and write operations used by the
SBD to actually read and write data to the underlying Ramdisk. We present
these values for reference in the OS row of Table 6.3.

6.5.5 Normal World Filesystem Encryption using the Se-

cure Block Device

Although it is primarily intended for use in secure-world, the SBD framework
can be employed to provide transparent filesystem encryption services to the
Normal World operating system (OS). We developed a small Trusted Applica-
tion prototype that provides an interface to an SBD instance to the Normal
World that we integrate with the NBD infrastructure. The architecture of the
experimental setup is depicted in Figure 6.6. The secure-world part (left side)
mainly consists of our ANDIX OS operating system kernel, and a dedicated SBD
Trusted Application. On the Normal World side we use a combination of the
standard Linux NBD kernel infrastructure, the ANDIX OS TEE kernel driver,
and a user-space daemon acting as NBD server. Similar to existing Linux kernel
facilities, like encrypted loopback devices (cryptoloop) and the crypto device
mapper dm-crypt, our proposed SBD based architecture provides full disk en-
cryption at the block device level. However, our SBD Trusted Application never
exposes encryption keys to the Normal World, thus providing key confidentiality,
even when the Normal World kernel is compromised.

We again compiled OpenSSL to measure the performance of the SBD Trusted
Application. During compilation of the OpenSSL library, the compiler toolchain
produces a mixture of short-lived temporary files, and long-lived output (object)
files. Writing of these output files is intermixed with read access to source files.
Most of these file accesses can be efficiently cached by the Normal World Linux
file-system caches, thus minimizing the number of block reads and writes to the
underlying SBD instance. To establish a base-line, we first ran the entire build
on the plain Linux Ramdisk, without using the SBD. For the actual performance
measurements with the SBD, we ran the OpenSSL builds on ext2 file-systems
residing on the (virtual) network block devices protected by the SBD instances.

Table 6.4 summarizes the measured performance results. We want to note
that we measured the performance differently to Table 6.3. In Table 6.3 we
measured the average SBD read/write times and throughput, instead of overall
time to finish the compilation as we do in Table 6.4. The reason is that we believe
for an application benchmark overall completion time is the most important
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Figure 6.6: Using the SBD for Normal World file system encryption

factor.
The first row of Table 6.4 shows build times when building on a plain

Ramdisk, without using any SBD device at all. Rows 2-5 give the times for
building on an SBD device running directly on Linux, using the “None”, OCB,
SIV, and HMAC+AES AE schemes respectively. The last two rows show results
for SBD Trusted Application-backed block devices, using the “None” and OCB
AE scheme. We omitted evaluating the SBD Trusted Application with SIV
and HMAC+AES, as we have previously established that OCB is the fastest
supported AE scheme.

The “Unpack” column shows the time required to unpack the OpenSSL source
tarball. During this step a large number of new files is created, and the overall
process is dominated by I/O activity. During the “Configure” phase, which is
shown in the second column, the OpenSSL configure scripts are executed, and
several small files and symbolic links are created. The “Compile” step shows
the times for building the OpenSSL cryptography library istelf. During the
compile step, different parts of the compiler toolchain are called, and a number
of temporary and output files are created, while most of the phase is dominated
by computation. To somehow account for the impact of Linux file-system caches,
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we explicitly dropped the read caches8 before each test step and requested write-
back of cached data via the sync command to the underlying block devices after
each step. The unpack, configure, and compile columns show the sum of the time
required for the actual command, and the following sync command for writing
back the Linux file-system caches.

The results from Table 6.4 support the performance data, and the bottlenecks
that we identified earlier in Section 6.5.2, and in Section 6.5.4. Most time in this
experiment is spent when synchronously writing back blocks from the SBD to
the Normal World back-end storage, as evidenced by the factor of 30.58 between
using the SBD “None” and the an SBD Trusted Application “None” variants
in the I/O heavy “Unpack” step. This significant factor is due to ANDIX OS
copying each block of memory four times for inter-world communication and
ANDIX OS only processing a single block at a time, instead of coalescing multiple
blocks into a single bulk operation (see Section 6.6). Nevertheless, the total
time difference between an unencrypted SBD Trusted Application, and the SBD
Trusted Application using the OCB scheme is only 5.35 percent for the overall
experiment.

At first glance the overall performance for I/O intensive tasks when using
the SBD Trusted Application seems abysmal. This is evidenced by the factor
of 77.177 between using a plain Ramdisk with no protection and the SBD in a
Trusted Application providing full disk encryption and authenticity on the block
device level. However, this factor is put into perspective by two observations.
First, the total factor for compiling OpenSSL on a plain Ramdisk and using the
SBD Trusted Application is just 1.777. We believe this factor to be reasonable.
Second, note that the primary objective of our SBD framework is to provide
a lightweight, simple-to-use mechanism for realizing potentially large amounts
non-volatile storage with authenticity and confidentiality in Trusted Applications
where the backing store for each SBD is handled by the Normal World OS. As
such, we believe the SBD is useful to Trusted Applications and efficient enough
for all Trusted Applications that do not require unceasing Datastore access.
By using the SBD as a disk encryption utility we intentionally put the SBD
through its paces to assess the limits of its applicability. Finally, we hope to
alleviate much of the Trusted Application specific performance impact, with a
more efficient ANDIX OS block access layer, as discussed in Section 6.6

6.6 Future Work

As mentioned in Section 6.5.2 and Section 6.5.5 ANDIX OS’s Normal World
block access layer is currently one of the main performance limiting factors of the
Secure Block Device (SBD) Trusted Application. It only supports synchronous,
in-order scheduling of I/O operations. As future work for ANDIX OS, an im-
plementation with support for asynchronous operations and Normal World I/O
coalescing is planned. We expect the block access times to decrease significantly
with a revised ANDIX OS Normal World block access layer.

8echo 3 > /proc/sys/vm/drop_caches
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Currently, the SBD has no support for changing the Authenticated Encryp-
tion (AE) key AEk. However, as pointed out in Section 2.9.3, Offset Codebook
Mode (OCB) should not be used to create more than 248 ciphertext blocks.
Therefore, we want to add automated support for key changing to the SBD to
mitigate any problems associated with overusing keys.

Another topic for future work is actually storing the bulk of the Merkle
Tree in Normal World memory. As indicated in Section 6.3.4, we currently use
precious Secure World memory to store the entire Merkle Tree. This is less
than optimal, and as soon as ANDIX OS supports efficient access to Normal
World memory we want to remedy this fact. On a related note, we currently
use SHA-256 for our Merkle Tree. In the future, not only do we want to make
the actual hash configurable, we also want to support Merkle Trees based on
MAC functions, such as CMAC. MAC functions for Merkle Trees can have the
advantage of smaller tag lengths and faster computation. Finally, as Rogers
et al. [RCPS07] have shown it is sufficient to only protect the counter values
instead of the complete management blocks with a Message Authentication Code
(MAC). This is also something we want to retrofit into the SBD.

6.7 Conclusion

In an effort to implement a secure Mobile Agent System for disaster response
that supports mobile platforms such as tablets and smartphones, we propose
the Secure Block Device (SBD). The SBD is a flexible, and scalable mecha-
nism to provide data confidentiality, integrity, and freshness for data at rest,
using a Merkle Tree in conjunction with Authenticated Encryption (AE). Se-
cure storage for data at rest is a fundamental building block for a secure Mobile
Agent platform. Here, the SBD is a minimal Trusted Computing Base solution
for applications that require fast and secure random block access to data, but
do not require a fully fledged file system. It was designed for Trusted Appli-
cations running in an ARM TrustZone based Trusted Execution Environment,
where the Trusted Execution Environment itself only provides storage mecha-
nisms for cryptographic keys. It is easy to use, as the cryptographic operations
for achieving the data security goals are as transparent as possible. It is flex-
ible, and efficient in that it supports different AE schemes, and uses a block
cache. Finally, the SBD is a open source C library that can be easily integrated
into existing applications and useful even beyond its intended target as building
block in a Mobile Agent platform. To demonstrate the SBD’s applicability, we
implemented a suitably well performing protected long term storage system.



7
Conclusions

In this section we summarize the conclusions of our contributions. These con-
clusions are a summary of the more detailed conclusions in the individual con-
tribution chapters. We close with an outlook and a final remark.

7.1 Threat Modeling

As a first contribution we have created threat models of several aspects of disaster
response. We have composed all our threat models with the Microsoft Threat
Modeling Tool 2016. The Microsoft Threat Modeling Tool 2016 uses Data Flow
Diagrams as models and STRIDE-per-interaction for threat enumeration.

First, we have threat modeled two high level processes pertaining to disaster
response: situational awareness and command implementation. These two pro-
cesses are critical to disaster response and our efforts have identified concrete
threats to the information exchanges performed as part of these processes.

Our first observation here is that STRIDE-per-interaction’s Data Flow Dia-
gram models are well suited to map processes in disaster response. Data Flow
Diagrams naturally capture the flow of information between entities involved
in disaster response for gaining situational awareness and implementing com-
mands. These information flows are the assets we want to protect, hence we
found all threats generated by this methodology pertinent. We identified some
minor caveats when using this methodology on a high abstraction level, such as
the tool generating threats that are only applicable to information systems or
having to use processes for entities such as people.

Our second observation concerns the abstractness of our models. Our two
models for situational awareness and command implementation generalize the
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many data flows that are part of these processes. For example, a single External
Interactor is used to represent all first responders. Thus, although we believe
the list of generated threats to grant valuable insights, we cannot qualify risks
associated with a particular threat. For this the individual instances of the data
flows need to be studied.

In addition to modeling the situational awareness and command implemen-
tation processes we have also created a detailed threat model that encompasses
central aspects of the Secure Agent Infrastructure. Using this model we have
identified a highly repetitive pattern, the Distributed Secure Agent Platform
Outpost (DSAP Outpost). The DSAP Outposts are the agent platforms at the
interface points of the Secure Agent Infrastructure with the outside world. We
investigated the threats to the DSAP Outpost in detail and compared our results
with the literature on Mobile Agent System security.

Our threat model of the DSAP Outpost yielded 54 pertinent threats. We used
these 54 threats to analyze the effectiveness of our security solution comprising
the Trusted Docking Station (TDS) and the Secure Docking Module (SDM). Of
the 54 threats, 43 were related to a compromised agent platform. Therefore,
we geared our security mechanisms towards ensuring the integrity of the agent
platform (see Section 7.2). We also compared our findings with the Mobile Agent
System security literature. Overall, we have identified 54 pertinent threats.
Of these 54 threats, we consider 20 as being novel, 14 as being represented in
literature to some degree, and 20 as being well known and described in literature.
The main reasons for the novel threats is the lack of discussion on repudiation and
impersonation threats in our literary sources and their limited scope. However,
we concur with literature that a compromised agent platform is the most relevant
source of threats to a Mobile Agent System. Our conclusion is that a literature
study cannot replace threat modeling the actual system.

Finally, we want to document that the Data Flow Diagram and STRIDE-per-
interaction based threat modeling methodology worked well to identify threats
to the communication between the DSAP Outpost and the Core Secure Agent
Infrastructure and the External Interactors, respectively. In addition, we used
this methodology to model agent transfer and instantiation, and it yielded new
insights into this well studied area of Mobile Agent System security.

7.2 The Trusted Docking Station and the Secure

Docking Module

To mitigate the threats identified by our Distributed Secure Agent Platform
Outpost (DSAP Outpost) threat model we have introduced our security solution
comprising the Trusted Docking Station (TDS) and the Secure Docking Module
(SDM). The TDS provides an execution platform that measures the load-time
integrity of the software it executes and provides virtualization based security by
isolation as a runtime protection mechanism. The SDM is a user authentication
and platform verification module. It mutually authenticates the DSAP Outpost
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and its human user to each other, while also establishing that the software
configuration of the DSAP Outpost conforms to a given security policy.

We have designed, implemented, and evaluated both the TDS and the SDM.
Our TDS implementation is based on the acTvSM platform [Pir15] and our SDM
uses a commercially available Security Controller. We have evaluated both, the
performance of the security solution and its security. Our conclusion concerning
the performance of our security solution is that the incurred overhead is neg-
ligible for disaster response scenarios. The result of our security evaluation is
that our DSAP Outpost is still vulnerable to targeted, online attacks. In a tar-
geted online attack an adversary exploits a runtime vulnerability to gain access
to a TDS and the software it is hosting. However, our TDS offers load-time
integrity protection on commodity off-the-shelf hardware equipped with Intel’s
TXT. Furthermore, the SDM enables user authentication and TDS load-time
integrity verification with a commercially available Security Controller. Within
these limits our security solution mitigates all but three of the 54 threats iden-
tified by our threat modeling efforts.

7.3 The Secure Block Device

We have developed the Secure Block Device as a first key component for a
Distributed Secure Agent Platform Outpost (DSAP Outpost) security solution
based on the ARM TrustZone security extensions. The Secure Block Device
is a flexible, and scalable software solution to provide data confidentiality and
authenticity for a Single-User Block Datastore using a Merkle Tree and Au-
thenticated Encryption (AE). The Secure Block Device is a minimal Trusted
Computing Base solution for applications that require fast and secure random
block access to data, but do not require a fully fledged file system. It was de-
signed for Trusted Applications running in an ARM TrustZone based Trusted
Execution Environment, where the Trusted Execution Environment itself only
provides storage mechanisms for cryptographic keys. It is easy to use, as the
cryptographic operations for achieving the data security goals are as transparent
as possible. It is flexible, and efficient in that it supports different AE schemes,
and uses a block cache. Finally, the Secure Block Device is an open source C
library that can be easily integrated into existing applications. We have evalu-
ated the Secure Block Device by implementing a suitably well performing long
term storage system. This long term storage system would be a core component
of our ARM TrustZone based mobile DSAP Outpost security solution.

7.4 Outlook

With our threat modeling efforts we have created models for high level dis-
aster response processes and the Secure Agent Infrastructure, the particular
Mobile Agent System we use. We believe this to be a valuable contribution to
the fields of threat modeling, mobile agent security, and disaster response se-
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curity. However, as part of our research we identified areas for further study.
First, we believe that detailed risk modeling using the high level threat models
we created could help to identify those aspects of disaster response that need
high security solutions and those where lesser security solutions suffice. We
think this worthwhile, as we don’t believe that a blanket high security solu-
tion can be realistically deployed. Second, concerning our threat model for the
Distributed Secure Agent Platform Outpost (DSAP Outpost), we would like to
further investigate the threats to particular physical manifestations in specific
operational environments. The DSAP Outposts are the interface points of the
Secure Agent Infrastructure and potential realizations range from first respon-
der’s mobile phones to servers in data centers. Given this diversity, we believe
that there exists a number of disjoint, concrete threats. Furthermore, we believe
it would be interesting to investigate these threats using the attack tree threat
modeling methodology.

Security and availability are key factors for Mobile Agent Systems to gain
acceptance as disaster response support tools. We hope that our work protect-
ing the DSAP Outposts helps to increase the acceptance of Mobile Agents for
disaster response so that future disaster response operations can leverage the
power of Mobile Agents to prevent further harm to humans beings enduring a
disaster situation. However, our security solution is far from perfect. There is
still a number of implementation and research issues to tackle. First of all we
would like to change the protection of the communication channel between the
Secure Docking Module (SDM) and the Trusted Docking Station (TDS) to use
Authenticated Encryption (AE) instead of mere encryption. Thus we want to
prevent potential malleability attacks on the encrypted data. Second, we would
like to change the SDM’s transmission interface from using a smart card interface
via USB to directly using USB or SPI to increase throughput and remove data
transmission as a limiting factor. Third, the security of the DSAP Outpost could
further benefit from the TDS/SDM providing additional security services, such
as end-point authentication for a secure communication protocol between the
DSAP Outpost and the Core Secure Agent Infrastructure. Fourth, we believe
the security of the SDM is limited by it disclosing authentication material to
the TDS. Although this solution is very versatile concerning the used authenti-
cation mechanisms, we consider investigating how the SDM can provide flexible
authentication services, without the need to disclose credentials, to be a fruitful
research topic.

With the Secure Block Device we have realized one of the key components
of a security solution for DSAP Outposts for mobile devices based on the ARM
TrustZone security mechanisms. However, the Secure Block Device is just a first
step in this direction and there is significant need for further research on how
to create a high quality security solution. Nevertheless, given the ubiquity of
smart mobile devices and their potential utility to disaster response, we believe
this research effort would be beneficial.
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7.5 Final Words

As final remark I would like to freely quote Mikko Hyppönen, Chief Research
Officer of F-Secure from his talk at the TrustCom 2015 conference:

. . . [at the beginning of the talk] I have some good news and some
bad news for you. The good news are you will always have a job in
computer security. . . . [at the end of his talk listing all the threats
we currently face and will face in the future] The bad news are, you
will always have a job in computer security.





A
Threat Modeling Agent Migration and

Communication

A.1 Introduction

In this appendix we model the threats to agent migration and communication
in the Secure Agent Infrastructure and discuss each threat in detail. This ap-
pendix is a companion piece to Section 4.5 where we discuss the overall results,
while here we investigate the individual threats. Specifically in this appendix,
we analyse the Distributed Secure Agent Platform Outpost (DSAP Outpost).
The DSAP Outpost is the template of an outlying Distributed Secure Agent
Platform (DSAP) that receives a Mobile Agent. This agent at the DSAP Out-
post then contacts an External Interactor using the DSAP as execution platform
and potentially sends results back to the Core Secure Agent Infrastructure. The
DSAP Outpost is a highly repetitive pattern in the Secure Agent Infrastructure.
Therefore we developed security mechanisms to protect it. These mechanisms,
the Secure Docking Module (SDM) and the Trusted Docking Station (TDS) were
introduced in Chapter 5. We have used the threats we discuss in this appendix
to evaluate the effectiveness of these security mechanisms.

A.2 Threat Analysis Procedure

Here we create a threat model for agent migration and communication in the
Secure Agent Infrastructure. We use the following procedure. We model a
Distributed Secure Agent Platform Outpost (DSAP Outpost). The DSAP Out-
post is an outlying component of the Secure Agent Infrastructure that is placed
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physically close to an external entity the Secure Agent Infrastructure wants to
communicate with. We create this model using the Microsoft Threat Modeling
Tool 2016 introduced in Section 2.8.4. In the Microsoft Threat Modeling Tool
2016 we create a Data Flow Diagram of the DSAP Outpost and the tool uses
STRIDE-per-interaction (see Section 2.8.5) to generate a list of threats.

We then discuss each threat individually. First, we give the threat title
as generated by the Microsoft Threat Modeling Tool 2016 including its threat
number as assigned by the tool. Note that due to our dividing of the threats into
logical groups, the threat numbers are not necessarily consecutive. Second, we
briefly describe the threat. This description is based on the threat description
generated by the Microsoft Threat Modeling Tool 2016. In a few cases we
directly copy parts or the whole of the description, but primarily we adapt the
description and put it into the context of the Secure Agent Infrastructure Mobile
Agent System. Third we establish if we think this threat to be pertinent in our
disaster response setting. Fourth we discuss if and how the threat is represented
in literature. For this, we use the works by Jansen and Karygiannis [JK99,
Jan00], Borselius [Bor02], and Bierman and Cloete [BC02]. See Section 2.4 for
a more detailed discussion of the prior art in Mobile Agent security. Finally, if
applicable, we discuss how well the Data Flow Diagram model and the STRIDE-
per-interaction generated threat apply to a specific aspect of the Secure Agent
Infrastructure Mobile Agent System.

A.3 Distributed Secure Agent Platform Outpost

Model

A.3.1 Structure

Our model consists of four entities and eight data flows. Starting with the enti-
ties, first we have the Core Secure Agent Infrastructure External Interactor. The
Core Secure Agent Infrastructure interactor comprises a number of components,
such as the Process Management Subsystem, the Agent Repository, and the Re-
source Lookup System (see Section 2.6). The next entity is the Distributed Secure
Agent Platform (DSAP) process that handles agent migration, agent execution
and agent communication with the sending Secure Agent Infrastructure compo-
nent. The Mobile Agent itself is also represented as a process that is instantiated
by the DSAP and communicates with the Core Secure Agent Infrastructure via
the DSAP, and directly with the last entity, the External Interactor. The Ex-
ternal Interactor subsumes human users and external information systems the
agent might communicate with.

We group the data flows into three groups. These groups are agent mi-
gration, agent – Core Secure Agent Infrastructure communication, and agent –
External Interactor communication. The first, the agent migration group con-
sists of the Send Agent and Instantiate Agent data flows. The second group, the
agent – Secure Agent Infrastructure communication group consists of the SAI
→ DSAP, DSAP → SAI, MA → DSAP, and the DSAP → MA data flows. The
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Figure A.1: A Data Flow Diagram modelling the Secure Agent Infrastructure typ-
ical process of sending a Mobile Agent to a Distributed Secure Agent
Platform to gather information from an external information system, or
converse with a system user. Here we model both, the agent migration
and the information exchange between the Core Secure Agent Infras-
tructure and the Mobile Agent running on the Distributed Secure Agent
Platform. We use this model as input to the STRIDE-per-interaction
analysis using the Microsoft Threat Modeling Tool 2016.



188 Appendix A. Threat Modeling Agent Migration and Communication

final agent – External Interactor communication group comprises the Input and
Output data flows. We discuss these groups separately in Section A.5 (Agent
Migration), Section A.7 (Agent Core Secure Agent Infrastructure Communica-
tion) and Section A.6 (Agent External Interactor communication). Our main
reason for this taxonomy is to break up the long list of semi-associated threats
and put them into logically related categories. For our model we assume that
the SAI → DSAP, the DSAP → SAI, and the Send Mobile Agent data flows are
protected using a secure communication protocol (see Section A.4). Therefore,
we configure these data flows as source and destination authenticated, providing
confidentiality, and providing integrity.

A.3.2 Modelled Workflows

On the one hand the model represents the Core Secure Agent Infrastructure
sending a Mobile Agent (an Information Delivery Agent) to a DSAP to gather
information from an external information system and delivering this information
back to the sending component in the Core Secure Agent Infrastructure. First
the Information Delivery Agent is sent to the DSAP using the Send Mobile
Agent data flow. Then the DSAP deserializes the Information Delivery Agent
and instantiates it over the Instantiate Agent data flow. Then the Information
Delivery Agent queries the External Interactor, for example a database, via the
Output data flow. It receives its response via the Input data flow, processes the
data and sends back its results to the Core Secure Agent Infrastructure via the
MA → DSAP and DSAP → CSAI data flows.

On the other hand the model represents the Core Secure Agent Infrastruc-
ture sending a User Communication Agent to a DSAP to interact with a human
user. Here, the Core Secure Agent Infrastructure uses the User Communica-
tion Agent to send status updates or ask the user for command decisions. First
the User Communication Agent is sent out to the DSAP over the Send Mobile
Agent data flow. Then the DSAP deserializes the User Communication Agent
and instantiates it over the Instantiate Agent data flow. Next the User Com-
munication Agent starts communication with the user via the Input and Output
data flows. The User Communication Agent sends updates to the Core Secure
Agent Infrastructure, which we modeled using the MA → DSAP and DSAP →
CSAI data flows. Finally, the User Communication Agent can receive updates
from the Core Secure Agent Infrastructure. We modeled this with the CSAI →
DSAP and DSAP → MA data flows.

A.3.3 Limitations of the Secure Agent Infrastructure Com-

pared to a Generic Mobile Agent System

The Secure Agent Infrastructure has two properties that greatly simplify threat
modeling, when compared to a generic Mobile Agent System. First, the Secure
Agent Infrastructure only supports single-hop mobility. The Core Secure Agent
Infrastructure sends out an agent to DSAP, and the Mobile Agent will not
migrate any further. This precludes any threats that arise from Mobile Agent
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freely migrating between agent platforms. One example of such threat is that of
another agent, or an agent platform compromising an agent and then sending it
to the next agent platform.

Second the Secure Agent Infrastructure does not support inter-agent com-
munication. Although a DSAP can host several agents in parallel, the DSAP
provides no facilities for agents to directly communicate with each other. Se-
cure Agent Infrastructure agents only communicate with the Core Secure Agent
Infrastructure and External Interactor. This precludes all attacks arising from
agent-to-agent communication.

A.4 Secure Agent Infrastructure Security Assump-

tions

A.4.1 Secure Core Secure Agent Infrastructure

For this threat modelling activity we assume that the Core Secure Agent Infras-
tructure adheres to a security policy that, in layman’s terms, precludes the Core
Secure Agent Infrastructure from misbehaving. In a little more detail, the Core
Secure Agent Infrastructure will not act against its specification and its security
is inviolable to attacks. See Section 4.5.3 for a more formal specification of Core
Secure Agent Infrastructure security.

A.4.2 Secure Mobile Agents

The Secure Agent Infrastructure assumes that Mobile Agents are vetted for their
adherence to the Secure Agent Infrastructure security policy and only agents that
check out are certified for use with the Secure Agent Infrastructure. For threat
modelling activities we assume that Mobile Agents in the Core Secure Agent
Infrastructure are inviolable to attacks. Only when a Mobile Agent is sent to a
Distributed Secure Agent Platform (DSAP) do we consider threats to it.

A.4.3 Secure Communication Channel

We assume that all data flows between the Core Secure Agent Infrastructure
and the DSAP are communicated using an authentic, integrity protected, and
confidential channel. We call a communication channel that provides authen-
ticity, integrity, and confidentiality a secure communication channel. The Jini
technology underlying the Secure Agent Infrastructure allows for a number of
communication mechanisms that can be configured to provide a secure commu-
nication channel (see Section 2.5.2). For example, Jini supports HTTPS and
Transport Layer Security (TLS). TLS with client certificate authentication us-
ing a cryptographically secure cipher suite can provide a secure communication
channel. Furthermore, we assume that the implementation of the secure commu-
nication channel is free of security vulnerabilities, precluding for example buffer
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overflows that allow remote code execution, the use of insecure cipher suites, or
misconfigured certificates.

A.4.4 Distributed Secure Agent Platforms and External

Interactor

The DSAPs are the outposts of the Secure Agent Infrastructure. Mobile Agents
migrate to DSAPs to be physically close to the entities they interact with. On
the one hand this entities are human users interacting with the Secure Agent
Infrastructure to fulfill their crisis management duties, on the other hand these
entities are information systems providing useful services and information for
crisis management.

There are few assumptions we can make on the security of these Distributed
Secure Agent Platform Outposts (DSAP Outposts). In our setting concrete
DSAPs can range from first responders using their own private mobile smart-
phones to well maintained and protected dedicated systems in both public and
governmental organizations.

A.5 Agent Migration

Figure A.2 depicts the part of the Distributed Secure Agent Platform Outpost
(DSAP Outpost) model relevant to agent migration. We have decided to model
agent migration using two data flows. First, the agent is sent from the Core Se-
cure Agent Infrastructure to a Distributed Secure Agent Platform (DSAP). This
is modelled by the data flow Send Mobile Agent. Then the DSAP instantiates
the agent and starts executing it. We use a single data flow (Instantiate Agent)
to model this procedure. This is outside of what a normal data flow models
within STRIDE-per-interaction, nevertheless we think it works reasonably well.

A.5.1 Send Mobile Agent

This data flow models the Core Secure Agent Infrastructure sending out an agent
to a DSAP for execution.

58. (Repudiation) Potential Data Repudiation by the Distributed
Secure Agent Platform

The DSAP claims that it did not receive the agent from the Core Secure Agent
Infrastructure. We believe this is a pertinent threat. For example, a compro-
mised DSAP might want to cover its tracks. Let us assume this compromised
DSAP wants to prevent access to the service it is associated with. Instead of
plainly refusing to grant access to the associated service, the compromised DSAP
claims never to have received any agents that would consume the service and
thus obfuscating the Denial-of-Service attack.
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Figure A.2: The part of our Data Flow Diagram model we use to analyze the threats
to a Mobile Agent when it is being sent to an DSAP Outpost and in-
stantiated there.

Interestingly, of our three main sources for agent security, that is, Jansen
and Karygiannis [JK99], Bierman and Cloete [BC02], and Borselius [Bor02] (see
Section 2.4) lack this particular threat. While Jansen and Karygiannis mention
repudiation in the context of agents interacting with other agents, and Borselius
points out the importance of non-repudiation in all agent communications, all
three Mobile Agent security discussions lack this particular threat.

59. (Denial Of Service) Potential Process Crash or Stop for Dis-
tributed Secure Agent Platform

The DSAP crashes, halts, stops or runs slowly; in all cases violating an avail-
ability metric. Given the nature of the disaster response use case we consider
for agent migration, our assessment is that this threat is very pertinent. In fact,
one of the advantages of using a Mobile Agent System in a disaster response
context is this particular paradigm’s resilience to intermittent network failures.
We believe it is important to plan for this threat and provide for alternative
means of communication, such as the plain old voice call.

Jansen and Karygiannis discuss Denial-of-Service multiple times in distinct
threat categories. They discuss Mobile Agents attacking each other (agent-to-
agent threat category), the hosting agent platform (agent-to-platform), and the
agent platform delaying or denying services to the agent (platform-to-agent).
The first two categories do not apply to this threat. The third threat category
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discusses the platform attacking agents, but not the platform being unavailable,
when an agent is transmitted. Finally, Jansen and Karygiannis do discuss an
external (w.r.t. the Multi-Agent System) adversary attacking the availability of
the agent platform in their other-to-agent threat category. This threat is closest
to the threat we discuss here. Borselius points out the importance of availability
in communication, and acknowledges that a malicious agent platform can deny
executing a Mobile Agent. Finally, Bierman and Cloete identify three threat
subclasses for Denial-of-Service, which they call availability refusal. These three
threat subclasses are Denial-of-Service, delay of service, and transmission refusal.
Whereas the Denial-of-Service and delay of service subclasses discuss Denial-of-
Service threats to executing a Mobile Agent, the transmission refusal category
documents that a malicious agent platform can refuse to send a Mobile Agent
to the next agent platform. Threats to executing a Mobile Agent will be treated
in more detail in Threat 17.

The execute relationship between the DSAP and the Mobile Agent is one of
the areas that is difficult to model using a Data Flow Diagram and STRIDE-
per-interaction and this Denial-of-Service threat here is a symptom. However,
this is compensated by considering the Mobile Agent during operation, that is,
while it interacts with an External Interactor or communicates with the Core
Secure Agent Infrastructure.

60. (Denial Of Service) The Data Flow Send Mobile Agent Is Poten-
tially Interrupted

An external agent interrupts data flowing across a trust boundary in either direc-
tion. Targeted interruption of the Mobile Agent transfer can prevent the Mobile
Agent from fulfilling its objectives. As we assume an authenticated, encrypted,
and integrity protected connection between the Core Secure Agent Infrastruc-
ture and the DSAP, the interruption will be detected at least at the sending
Core Secure Agent Infrastructure side and the Core Secure Agent Infrastructure
can then react to this problem by e.g. trying a different route to the target,
using a different communication carrier, etc.

As with Threat 59, our assessment is that this threat corresponds with
Borselius’ need for availability and Jansen and Karygiannis’ Denial-of-Service
threats in their other-to-agent threat category. Furthermore, our threat here is
somewhat related to Bierman and Cloete’s transmission refusal threat category.

61. (Elevation Of Privilege) Elevation Using Impersonation

Microsoft Threat Modeling Tool 2016 states that a DSAP may be able to im-
personate the context of a Core Secure Agent Infrastructure in order to gain
additional privilege. Microsoft’s Windows operating systems have a specific im-
personation mechanisms. Impersonation in Windows allows an entity to gain
all the access rights of another entity, by use of an impersonation token. The
impersonation token is a piece of data and as such transferable. To give an
example in our setting, if a process or user in the Core Secure Agent Infras-
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tructure generates an impersonation token and sends it to a DSAP, this DSAP
will inherit all access rights from the generating entity. We believe that Win-
dow’s impersonation mechanism is the reason why Microsoft Threat Modeling
Tool 2016 generates this threat. We make no assumptions about using specific
Microsoft products, so is the threat pertinent at all?

No, this particular threat is not pertinent, because the Secure Agent In-
frastructure does not support any form of impersonation. However this threat
touches on a security relevant property of the Secure Agent Infrastructure and
we want to use the mantle of this threat to discuss it. And therefore we also let
the threat stand as pertinent.

In the Secure Agent Infrastructure all components operate with the author-
ity of the Core Secure Agent Infrastructure. The security of the Secure Agent
Infrastructure is based on the assumption that no one can inject an agent into
the Secure Agent Infrastructure or impersonate any component in the Secure
Agent Infrastructure. The security assumptions that the Core Secure Agent In-
frastructure is secure (see Section A.4.1) and that the communication is secure
(see Section A.4.3) preclude impersonation of any Core Secure Agent Infras-
tructure component and thus also injection of an unauthorized agent from the
Core Secure Agent Infrastructure domain. However, we make no such assump-
tions about the security of the DSAP, hence the DSAP could violate the Secure
Agent Infrastructure security policy, due to, for example, outside interference by
an adversary.

The Mobile Agent security literature is deeply concerned with a compromised
platform interfering with Mobile Agent execution, and if the Secure Agent In-
frastructure were using a mechanisms equivalent to Microsoft’s impersonation
tokens, then eavesdropping by a compromised platform would be a pertinent
problem. This is documented by Borselius in his discussion of agent mobility,
by Jansen and Karygiannis in their discussion of the platform-to-agent threat
category, and also by Bierman and Cloete who classify this as confidentiality at-
tack. Although all three of our literature sources discuss the threat of an agent
platform eavesdropping on a mobile agent, none of our sources points out the
threat of an agent platform using this information to impersonate the agent.

We want to discuss this threat as generated by STRIDE-per-interaction when
threat modeling the Secure Agent Infrastructure. Before we started to analyse
the Secure Agent Infrastructure, we investigated agent migration in a generic
Mobile Agent System using a similar model. In a first iteration we did not iden-
tify this as a potential threat for a Mobile Agent System. Only when we analysed
the threats to the Secure Agent Infrastructure, we realized that this threat might
be a problem. The reason for this is that it depends on the actual Mobile Agent
System implementation, and how this system handles authorization, if this is a
threat. We take this as a weak indication that STRIDE-per-interaction is more
useful when modelling the threats for concrete systems, because when put in
context, we found it much easier to actually see the threat.
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63. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in the Distributed Secure Agent Platform

An adversary may pass data into the DSAP in order to change the flow of pro-
gram execution within the DSAP to the adversary’s choosing. As we assume a
confidential, integrity protected and authentic connection between the sending
Core Secure Agent Infrastructure and the receiving DSAP an outside adversary
should not be able to inject any data into the DSAP. Furthermore, we consider
the Core Secure Agent Infrastructure as secure and therefore preclude a compro-
mised Core Secure Agent Infrastructure exploiting the target DSAP. For these
reasons we disregard this particular threat.

The discussion of this threat however indicates the following issue. A com-
promised DSAP might try to make it look like it was compromised by the Core
Secure Agent Infrastructure in order to cover the tracks of the real attack vector
used. This we consider a threat.

Jansen and Karygiannis warn against unauthorized access against agent plat-
forms by conventional attack scripts that subvert the OS. Borselius documents
that hosts need to be protected from other parties that can communicate with
the platform and claims that the problems associated with the protection of
hosts from malicious code are quite well understood.

Literature does not consider an agent platform implicating a sending plat-
form.

64. (Elevation Of Privilege) Cross Site Request Forgery

Cross Site Request Forgery is a web browser specific elevation of privilege attack.
As we do not use a web browser to neither send nor receive the Mobile Agent
we disregard this threat here.

A.5.2 Instantiate Agent

This data flow represents the deserialization and instantiation of the Mobile
Agent previously send by the Core Secure Agent Infrastructure. With this inter-
pretation of the data flow we leave the confines of what STRIDE-per-interaction
was developed for, so here we take some liberties in reinterpreting the threats.

12. (Spoofing) Spoofing the Distributed Secure Agent Platform Pro-
cess

The DSAP may be spoofed by an adversary and this may lead to unauthorized
access to Mobile Agent. Our security assumptions specifically preclude sending
a Mobile Agent anywhere, but to an authentic DSAP, by mandating a secure
communication mechanism. However, our adversarial model allows for an ad-
versary to subvert an authentic DSAP. In this case the adversary would gain
full access to the Mobile Agent. As such we consider this threat very pertinent.

This particular threat is an enabling threat, because if it is realized, it em-
powers the adversary to sniff the Mobile Agent code and data, tamper with
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the agent code and data, and decide not to execute the agent at all, or exe-
cute it in a way that violates its availability constraints. The threats resulting
from a compromised platform gaining access to a Mobile Agent are well doc-
umented in literature by all our primary sources. Also the threat of an agent
platform to masquerade as another agent platform, a threat we preclude based
on our security assumptions, is described by Jansen and Karygiannis in their
platform-to-agent threat category, and by Bierman and Cloete in their threat
class authentication risks, subclass Masquerading. However an authentic plat-
form becoming compromised is not explicitly documented.

Although the intent of the STRIDE-per-interaction model that generates this
threat is to model one process communicating with another, and not one process
instantiating the other, this threat is accurate in our context, with only minimal
reinterpretation.

13. (Spoofing) Spoofing the Mobile Agent Process

The Mobile Agent may be spoofed by an adversary and this may lead to infor-
mation disclosure by DSAP. The STRIDE-per-interaction model’s intent is to
model DSAP sending data to a Mobile Agent. In this interpretation the Mobile
Agent is sending data to itself. Our interpretation is that the DSAP instantiates
the Mobile Agent. Our security assumptions state that the Core Secure Agent
Infrastructure only introduces vetted and certified agents into the system and
that a conforming DSAP will only receive Mobile Agents over a secure channel.
Therefore, we disregard this threat.

The threat of an agent masquerading as another agent is well documented
in literature. Jansen and Karygiannis discuss this threat under the heading
Masquerading in their agent-to-platform threat category. They point out that
a masquerading agent might be able to gain unauthorized access to resources,
or misbehave under another agents identity to shift blame. Borselius briefly
discusses identification, authentication and authorization of agents. He points
out that authentication is often fundamental to secure communication.

14. (Tampering) Potential Lack of Input Validation for Mobile Agent

Data flowing across Instantiate Agent may be tampered with by an adversary.
As with Threat 13 our security assumptions preclude injection of a non-policy
conforming Mobile Agent into a conforming DSAP. However, we allow for a
compromised DSAP to tamper with the Mobile Agent while it is instantiated.
A compromised DSAP might compromise a Mobile Agent to shift blame. We
consider this threat pertinent.

The threat of a tampered, or malicious agent wrecking havoc in a Mobile
Agent System is well documented in literature. Jansen and Karygiannis pay
tribute to this with their discussion of threats in the agent-to-agent, agent-to-
platform, and other-to-agent platform threat categories. Also Borselius concedes
that hosts need to be protected from agents and other parties that can commu-
nicate with the platform.
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The threat of a compromised DSAP tampering with the Mobile Agent is one
of the core threats inherent in the Mobile Agent paradigm. Jansen and Kary-
giannis extensively discuss this threat under the heading Alteration in their
platform-to-agent threat category. They note that a Mobile Agent arriving at
an agent platform exposes its code, state and data to the platform. Therefore,
the agent platform can modify the agents code, state and data. They espe-
cially emphasize the threat of an agent platform maliciously modifying a Mobile
Agent and sending it on to further agent platforms. This is a threat we can disre-
gard, because the Secure Agent Infrastructure only supports single-hop mobility.
Bierman and Cloete categorize security issues pertaining to modifying a Mobile
Agent as integrity attacks, where they distinguish between interference and in-
formation modification. They state that integrity interference occurs when the
executing host interferes with the Mobile Agent’s execution mission, but does
not alter any information related to the agent. However, they cite transmitting
the agent incorrectly as an example, which we would categorize as a clear alter-
ation of the agent. In their information modification they document the threats
of an agent platform altering, corrupting, manipulating, deleting, misinterpret-
ing, or incorrectly executing a Mobile Agent’s code, data, control flow, or status.
They also point out that an agent platform can interfere with the interaction
between different agents, and can alter the communication between them for its
own benefit. Finally, Borselius also points out that due to agent mobility, the
agent platform can observe and modify agent code, data, and state.

15. (Repudiation) Potential Data Repudiation by the Mobile Agent

The Mobile Agent claims that it did not receive data from a source outside
the trust boundary. The STRIDE-per-interaction model’s intent is to model
DSAP sending data to a Mobile Agent. In this interpretation the Mobile Agent
is sending data to itself. Our interpretation is that the DSAP instantiates the
Mobile Agent. We cannot make any sense of this threat in neither interpretation,
therefore we treat it as an artifact of using STRIDE-per-interaction outside its
intended purpose and ignore this threat.

16. (Information Disclosure) Data Flow Sniffing

Data flowing across Instantiate Agent may be sniffed by an adversary. As a
Secure Agent Infrastructure Mobile Agent can contain, or relay sensitive infor-
mation we consider this threat pertinent. The threat to sensitive information
relayed by the agent will be discussed in the agent communication section (cf.
Threat 1, Threat 5, Threat 30, and Threat 51). The Secure Agent Infrastruc-
ture can send out agents that contain sensitive information such as credentials,
or where the code itself contains valuable Intellectual Property. Our security
assumptions preclude information leakage during transport, but a compromised
DSAP can eavesdrop this sensitive information. Therefore, we consider this a
pertinent threat.

Literature considers this one of the core threats inherent in Mobile Agent
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Systems. Jansen and Karygiannis point out that Mobile Agents exacerbate the
problem of eavesdropping as agent platforms have full access to a Mobile Agent’s
code, state and data and can directly eavesdrop this information. Furthermore,
they indicate that agent platforms might already learn sensitive information by
just observing the agent and that agent platforms can listen in on all agent
communications. Borselius likewise points out that due to mobility, the execut-
ing platform can observe code, data and flow control, and can eavesdrop agent
communication. Bierman and Cloete discuss confidentiality attacks, where they
consider eavesdropping, theft, and reverse engineering. The classify eavesdrop-
ping as passively listening in on the agents information or intercommunication.
They specify theft to include removing the eavesdropped information from the
attacked agent, and finally, their interpretation of reverse engineering consid-
ers analysing a Mobile Agent’s data and state in order to manipulate future or
existing agents.

17. (Denial Of Service) Potential Process Crash or Stop for the Mobile
Agent

The Mobile Agent crashes, halts, stops or runs slowly; in all cases violating an
availability metric. Our security assumptions only allow for vetted and certified
Mobile Agents to be introduced by the Core Secure Agent Infrastructure. In
a security policy conforming DSAP this precludes the Mobile Agent itself from
violating its own availability constraints. Furthermore, availability violations
because of external interactions or home platform communication are treated in
the respective threats (cf. Threat 6, Threat 25, Threat 31, Threat 39, Threat 41,
Threat 42, and Threat 52). A compromised DSAP however can easily prevent
the Mobile Agent from being instantiated or executed at all, and it could execute
it in a way that violates the Mobile Agent’s availability constraints, for example
by giving the agent too little compute time to perform its task. We consider this
is a pertinent threat.

All three of our primary sources document the threat of an agent platform
denying or delaying services to a Mobile Agent. Borselius specifically mentions
incorrect execution of code and denial of execution in his discussion of mobility.
Jansen and Karygiannis extensively discuss Denial-of-Service in their platform-
to-agent threat category, indicating that an agent platform can ignore agent
requests, introduce unacceptable delays for critical tasks, or simply not execute
the agent. They also describe agent lifelock, where a compromised platform
continuously creates more work for an agent it hosts, such that this agent can
never complete its task. Finally, Bierman and Cloete discuss availability refusal
in general and Denial-of-Service and delay of service specifically, pointing out
the same problems as Jansen and Karygiannis.
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18. (Denial Of Service) Data Flow Instantiate Agent Is Potentially
Interrupted

An external entity interrupts data flowing across a trust boundary in either
direction. In our disaster response setting, disrupting the instantiation of a
Mobile Agent can seriously hamper the crisis mitigation procedure. Therefore,
we consider this a pertinent threat. In our model, the only entity capable of
doing the deed is a compromised DSAP. As such, we consider this a special
subclass of Threat 17.

19. (Elevation Of Privilege) Elevation Using Impersonation

The Mobile Agent may be able to impersonate the context of DSAP in order
to gain additional privilege. As discussed in Threat 61 it is inherent in the
Secure Agent Infrastructure that every DSAP is granted the authority of the
Core Secure Agent Infrastructure. Furthermore, the Secure Agent Infrastruc-
ture does not really differentiate authorization between a DSAP and a Mobile
Agent executing in this DSAP. Therefore it is system inherent that the Mobile
Agent can impersonate the DSAP. However, our security assumptions prevent
the introduction of compromised agents on a security policy conforming DSAP.
A DSAP may be compromised so that it allows modified Mobile Agents to be
loaded and executed, and these agents would then operate with the authority of
the Core Secure Agent Infrastructure. We consider this threat as pertinent.

This threat is also considered in literature. Jansen and Karygiannis detail
that an agent that has access to a platform and its services without having the
proper authorization can harm other agents and the platform itself. Borselius
states that authorisation and delegation are important issues in Multi-Agent
System.

20. (Elevation Of Privilege) The Mobile Agent May be Subject to
Elevation of Privilege Using Remote Code Execution

The DSAP may be able to remotely execute code for the Mobile Agent. This
threat points at one of the core security issues with Multi-Agent System. The
Mobile Agent is executed by the DSAP and the DSAP can change the code, data,
state of the Mobile Agent. A compromised DSAP can disrupt the workings of
the Secure Agent Infrastructure, therefore we consider this threat pertinent. We
have discussed it in detail under Threat 14.

21. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in the Mobile Agent

An adversary may pass data into the Mobile Agent in order to change the flow
of program execution within the Mobile Agent to the adversary’s choosing. We
consider this a special variant of Threat 20.
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Figure A.4: The part of our Data Flow Diagram model we use to analyze the threats
to a Mobile Agent when interacting with an External Interactor. An
External Interactor can be a human being, or an external information
system.

22. (Elevation Of Privilege) Cross Site Request Forgery

Cross Site Request Forgery is a web browser specific elevation of privilege attack.
As we do not use a web browser to instantiate the Mobile Agent we disregard
this threat here.

A.6 Agent – External Interactor Communication

This section discusses the threats to a Mobile Agent, when interacting with an
External Interactor. Figure A.4 depicts our Data Flow Diagram model of the
Secure Agent Infrastructure interacting with an External Interactor through the
use of a Mobile Agent executing in a Distributed Secure Agent Platform Out-
post (DSAP Outpost). Here we only consider the Input and Output data flows
between the Mobile Agent and the External Interactor. The External Interactor
can be a human, or an information system. The Secure Agent Infrastructure uses
User Communication Agents for communicating with external human interac-
tors, and Information Delivery Agents for retrieving information from external
information systems. See Section 2.6 for details on these Mobile Agents.
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A.6.1 Input

1. (Spoofing) Spoofing the Mobile Agent Process

A Mobile Agent may be spoofed by an adversary and this may lead to informa-
tion disclosure by the External Interactor. We consider this a pertinent threat.
Here we want to distinguish two use cases. First, if the Distributed Secure Agent
Platform (DSAP) and consequently the Mobile Agent operate on a mobile device
associated with a human user, then we need to ensure that the user only inputs
its data into an authentic User Communication Agent. Second, if the Mobile
Agent interacts with another information system, then we still need to authen-
ticate the Mobile Agent against the external system, but we can use different
credentials, such as cryptographic keys, for authentication. Also, we want to the
distinguish between two threats. First a truly external entity spoofs the Mobile
Agent, and second a compromised DSAP spoofs the Mobile Agent.

A truly external entity spoofing the Mobile Agent is a pertinent threat. A
realization of this threat enables eavesdropping on sensitive information, tam-
pering with information, injecting false information, Denial-of-Service and, if the
External Interactor is an information system, a number of elevation of privilege
attacks. Given our disaster response scenario this can seriously impact crisis
mitigation performance.

Concerning a compromised DSAP, our security assumptions only allow the
introduction of security policy conforming agents, so we preclude the threat of
one Mobile Agent masquerading as another Mobile Agent. Also all our Mobile
Agent and, by necessity, also the DSAP have the same authority, the authority of
the Core Secure Agent Infrastructure, thus we need to consider a compromised
DSAP masquerading as the agent. Here the compromised DSAP can then re-
pudiate ever having received any information from the External Interactor (cf.
Threat 4), tamper with this information (cf. Threat 3), eavesdrop the infor-
mation (cf. Threat 5), and delay or discard the information (cf. Threat 6 and
Threat 7).

Jansen and Karygiannis discuss Mobile Agents masquerading as other Mobile
Agents and the need for authenticating agents in order to authorise their use of
platform services correctly in the agent-to-platform threat category. Borselius
acknowledges the need for authenticity in agent to environment communication
when discussing the communication property of agents. Furthermore, he also
establishes the need for agent authentication and authorisation. None of our
sources specifically considers a compromised platform spoofing an Mobile Agent,
but all three acknowledge a compromised platform’s ability to eavesdrop and
manipulate agent communication.

Our literature sources do not consider an external entity spoofing a mobile
agent in order to gain unauthorized access to an External Interactor.

As we are now investigating the inner workings of the Secure Agent Infras-
tructure, specifically how Mobile Agents are used to propagate information, we
gain detailed threat intelligence for these Secure Agent Infrastructure specifics.
As will become more and more apparent in the discussion of the following threats
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this helps us to gain an in-depth understanding of threats that is superior to
what can be gleaned from the generic discussions in the Multi-Agent System
security literature. This holds even though the Multi-Agent System literature
is as comprehensive as it is. Furthermore, given the threat discussions so far,
and considering the following discussions, we observe that none of our Multi-
Agent System security sources covers all threats we discuss here. We take this
as proof that a literature study is no substitute for a detailed threat analysis of
the particular system.

2. (Spoofing) Spoofing the External Interactor

The External Interactor may be spoofed by an adversary and this may lead
to unauthorized access to Mobile Agent. Again we consider this is pertinent
threat as it enables Denial-of-Service (cf. Threat 6 and Threat 7), injection
of tampered information (cf. Threat 3), and elevation of privilege attacks (cf.
Threat 9, Threat 10, and Threat 11), while implicating the spoofed entity. As
with Threat 1, if this threat is mitigated using authentication, then again both
the need to authenticate human users and automatic information systems need
to be considered.

In addition to an adversarial external entity spoofing an authentic external
entity we also consider a compromised DSAP masquerading as the External
Interactor. Here the compromised DSAP can then tamper with this information
(cf. Threat 3) and withhold information as Denial-of-Service (cf. Threat 6 and
Threat 7). For reference a compromised DSAP modifying agent data, state, and
code has been discussed in Threat 14.

Jansen and Karygiannis consider unauthorized access to the DSAP in the
sense that an agent platform needs to be protected against attacks on the un-
derlying system, but they do not consider an external entity masquerading as
an authorized external entity. Borselius establishes the need for authenticity in
agent to environment and human communication as a generic property of all
agent communications. All three sources acknowledge a compromised platforms
ability to manipulate agent communication.

3. (Tampering) Potential Lack of Input Validation for the Mobile
Agent

Data flowing across Input may be tampered with by an adversary. We con-
sider this a threat that requires mitigation as it is a threat that potentially
enables information disclosure (cf. Threat 5) Denial-of-Service (cf. Threat 6
and Threat 7), and elevation of privilege attacks (cf. Threat 9, Threat 10, and
Threat 11). We consider two different threat agents here. First a truly External
Interactor can tamper with the information before it reaches the Mobile Agent.
Second, a compromised DSAP might introduce tampered data via this channel.
A compromised DSAP modifying agent data, state, and code has been discussed
in Threat 14, but this threat adds the additional perspective of implicating the
External Interactor (cf. Threat 2).
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Borselius emphasizes the need for integrity in communication to protect
against manipulation while the data is in transit. He also points out the need
for authenticity, confidentiality and availability when an agent communicates
with the environment. However, none of our sources considers the injection of
tampered data by an authenticated entity, nor do they specifically consider a
compromised agent platform using this an environmental input channel to mask
tampering with agent data.

4. (Repudiation) Potential Data Repudiation by the Mobile Agent

The Mobile Agent claims that it did not receive data from a source outside the
trust boundary. We consider this a pertinent threat, especially with the disaster
response background. The crisis mitigation processes needs to be auditable, in
case of claims of damages or injuries caused by wanton negligence.

Again, based on our security assumptions, the Core Secure Agent Infrastruc-
ture only introduces certified security policy conforming agents into the system,
and we consider the Core Secure Agent Infrastructure’s Mobile Agent dispatch
mechanism secure. However, a compromised DSAP can modify a Mobile Agent,
or even tamper with local logs, so that it repudiates ever having received the
information.

Borselius’ mentions non-repudiation as a desired property for all agent com-
munication. Jansen and Karygiannis mention repudiation only in the context of
agent-to-agent communication.

5. (Information Disclosure) Data Flow Sniffing

Data flowing across Input may be sniffed by an adversary. We consider this a
pertinent threat. In our discussion of this threat we want to differentiate three
cases. First the External Interactor is a human and another human is eaves-
dropping the input. Second, the External Interactor is an information system
and another entity is eavesdropping on the connection between the information
system and the Mobile Agent. Third, the External Interactor is either a human
or an information system and a compromised DSAP eavesdrops the information.

We have already discussed the literature on the threat of a compromised
agent platform eavesdropping on the agent data in Threat 16. The problem of
an external entity listening in on Mobile Agent communication is mentioned by
both Jansen and Karygiannis and Borselius.

This threat actually comprises the three threats enumerated above. We could
have made these threats more explicit by modelling both a human and a non-
human External Interactor. Furthermore we could have highlighted the role of
the platform by routing the communication with the External Interactor through
the platform. We chose to model the External Interactor as a single interactor
directly interacting with the Mobile Agent to avoid having all significant num-
ber of duplicate threats cluttering the analysis. Furthermore, we believe that
an attack tree analysis would better resolve individual threats, than actually
complicating the model and generated more threats.
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6. (Denial Of Service) Potential Process Crash or Stop for the Mobile
Agent

The Mobile Agent crashes, halts, stops or runs slowly; in all cases violating an
availability metric. In our disaster response setting this can lead to important
information, not reaching its destination and we consider suitable mitigation
essential. Our security assumptions preclude the Mobile Agent itself violating
its own availability constraints, but as documented in Threat 17 a compromised
DSAP can realize this threat easily. See Threat 17 for a discussion of this threat
in literature.

7. (Denial Of Service) Data Flow Input Is Potentially Interrupted

An external agent interrupts data flowing across a trust boundary in either di-
rection. Given that a realization of this threat can hamper crisis mitigation, we
consider this threat pertinent. Here we consider three distinct threats. First,
if the DSAP is associated with an external information system, then this in-
formation system might be compromised, leading to interruptions of the data
flow. Second if the DSAP is coupled to a human External Interactor, this human
might be interrupted from interacting with the Mobile Agent. Third, the DSAP
itself is compromised and interrupts the data flow.

Jansen and Karygiannis consider both Denial-of-Service due to a compro-
mised agent platform in their platform-to-agent category, and external entities
disrupting the agent platform, but not a Mobile Agent, in their other-to-agent
platform category. Borselius indicates the need for availability in all agent com-
munication and Bierman and Cloete document a compromised agent platform
denying or delaying a service.

8. (Elevation Of Privilege) Cross Site Request Forgery

Cross-site request forgery (CSRF or XSRF) is a type of attack in which an ad-
versary forces a user’s browser to make a forged request to a vulnerable site by
exploiting an existing trust relationship between the browser and the vulnerable
web site. The User Communication Agent (see Section 2.6) supports user com-
munication via web technologies by using its own web server. In this case the
user inputs data into a form and sends it to the web server that then forwards
the data to the User Communication Agent. As the web server is under control
of the User Communication Agent Mobile Agent and the User Communication
Agent is under control of the DSAP this is a pertinent threat. Even though we
assume the User Communication Agent to conform to the security policy, the
DSAP might be compromised.

Our literature sources do not specifically consider cross-site request forgery as
a threat in the context of Multi-Agent System. Borselius however notes that the
environment might also need certain protection form the agents it hosts. Jansen
and Karygiannis document that Mobile Agent need to be authorized before they
are given access to agent platform service.
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Cross-site request forgery is a very specific threat and it is not surprising that
it is not represented in literature. We have to admit it is somewhat surprising to
us that the Secure Agent Infrastructure actually has a context where this threat
can materialize.

9. (Elevation Of Privilege) Elevation Using Impersonation

The Mobile Agent may be able to impersonate the context of External Interactor
in order to gain additional privilege. As has been pointed out earlier we assume
that our Mobile Agents will conform to the security policy. If however the
DSAP is compromised, and the external entity discloses information that allows
impersonation, then this is a concrete threat. Therefore, we qualify this threat
as pertinent.

Especially for this threat, threat mitigation and threat risk evaluation have
to be done in the context of concrete use of a particular DSAP Outpost. Specif-
ically, the potential for damage depends on what information users, or external
informations systems, disclose. Relevant realizations of this threat could pertain
to users disclosing access credentials to external systems, or external information
systems disclosing privacy sensitive information, such as social security numbers,
allowing the impersonation of human beings.

For this threat and also Threat 10 and Threat 11 we consider a compromised
DSAP as a potential threat agent. A compromised DSAP can use these elevation
of privilege attacks to, not only to access sensitive information, but also imply
the Mobile Agent in having a hand in these attacks.

We have discussed the literature about the agent platform eavesdropping
on the Mobile Agent in the context of impersonation in Threat 61. None of
our literary sources discuss a Mobile Agent impersonating an external entity.
However, Jansen and Karygiannis and Borselius point out that agents act on
behalf of a person, organization, or other agents. Borselius specifically identifies
the need for a mechanism to transfer rights, but does not discuss the security
issues inherent in such an approach.

10. (Elevation Of Privilege) The Mobile Agent May be Subject to
Elevation of Privilege Using Remote Code Execution

The External Interactor may be able to remotely execute code for the Mobile
Agent. Our security assumptions preclude this threat. The threat of a com-
promised DSAP executing code in the context of the Mobile Agent has been
discussed in Threat 14 and Threat 20.

11. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in the Mobile Agent

An adversary may pass data into the Mobile Agent in order to change the flow
of program execution within the Mobile Agent to the adversary’s choosing. We
treat this as a subclass of Threat 10.
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A.6.2 Output

Here the Mobile Agent sends information to a source external to the Secure
Agent Infrastructure. This External Interactor can be a human, or an informa-
tion system. The Secure Agent Infrastructure uses User Communication Agents
for communicating with external human interactors, and Information Delivery
Agents for retrieving information from information systems. See Section 2.6 for
details on these Mobile Agents.

Threat 65, Threat 66, and Threat 67 are special in the sense that we manually
added them in. STRIDE-per-interaction does not consider eavesdropping and
tampering on data flows going out to an External Interactor. Also STRIDE-per-
interaction does not consider impersonating of the sending entity, the Mobile
Agent in our case. However due to the nature of a Mobile Agent System, we
need to consider a compromised DSAP realizing these threats on an Mobile
Agent sending data to an External Interactor.

23. (Spoofing) Spoofing of the External Interactor External Destina-
tion Entity

The External Interactor may be spoofed by an adversary and this may lead to
data being sent to the adversary’s target instead of the External Interactor. We
consider this a pertinent threat that mandates mitigation. Again we want to dis-
tinguish between a human generic interactor and an external information system,
as we expect these to require different mitigation mechanisms. Furthermore, we
want to distinguish two sub-threats. First, a truly external entity spoofs the
External Interactor and second a compromised DSAP spoofs the External Inter-
actor. In the first case, we are dealing with information disclosure. The second
case is more complicated. By the spoofing the External Interactor, the DSAP
leads the agent to believe it has delivered its output to the External Interactor,
whereas in reality, the DSAP received it. We consider the DSAP eavesdropping
Mobile Agent information in Threat 67, the DSAP tampering with Mobile Agent
data in Threat 66, and the DSAP performing a Denial-of-Service attack versus
the agent in Threat 68. In the disaster response setting, the DSAP not deliv-
ering information, or delivering tampered information has serious implications
for accountability in case of injury or damages due to misinformation or lack of
information.

Borselius points out that authentication is an important property in all agent
communication. Jansen and Karygiannis list masquerading agents and agent
platforms as threat to Mobile Agent in their agent-to-agent and platform-to-
agent threat categories, but they do not consider an external entity deceiving a
Mobile Agent. All three sources acknowledge a compromised platforms ability
to manipulate agent communication.
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24. (Repudiation) The External Interactor Potentially Denies Receiv-
ing Data

The External Interactor claims that it did not receive data from a process on the
other side of the trust boundary. As with Threat 4 auditability is an important
property for crisis management to, not to put to fine a point on it, hold people
accountable for their actions, if things go south. We therefore consider this a
pertinent threat that mandates mitigation.

Only Borselius mentions non-repudiation as a desirable property in all agent
communication. Jansen and Karygiannis mention repudiation only in the con-
text of agent-to-agent communication.

25. (Denial Of Service) Data Flow Output Is Potentially Interrupted

An external agent interrupts data flowing across a trust boundary in either
direction. Again we consider this threat pertinent, as this threat can impact
situational awareness, or delivery of commands, which can seriously disrupt crisis
mitigation. Here we again distinguish between an external information system
and a human interactor. We have discussed the case of a compromised DSAP
interrupting a Mobile Agent in Threat 18.

Again, only Borselius documents the need for communication availability as
an important property in all agent communication. Jansen and Karygiannis do
consider the importance of availability in the context of agents communicating
with other agents and agent platforms, but not when agents communicate with
truly external entities.

65. (Spoofing) Compromised Distributed Secure Agent Platform Spoofs
the Mobile Agent

A compromised DSAP can spoof the Mobile Agent and this may lead to the
injection of tampered information (cf. Threat 67), or a violation of availability
constraints (cf. Threat 68).

We have discussed the literature on the threat of a compromised agent plat-
form impersonating a Mobile Agent in Threat 13 and Threat 1.

66. (Tampering) Compromised DSAP Tampers With Mobile Agent
Output

Data flowing across Output may be tampered with by an adversary. We consider
this this threat pertinent in our disaster response setting. In this setting, the
DSAP delivering tampered information has serious implications for accountabil-
ity in case of injury or damages due to misinformation or lack of information.

We have discussed the literature on the threat of a compromised agent plat-
form tampering with agent data in Threat 14.
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67. (Information Disclosure) Compromised Distributed Secure Agent
Platform Sniffs Data Flow

Data flowing across Output may be sniffed by a compromised DSAP. We consider
this threat pertinent, as the Secure Agent Infrastructure deals with sensitive
information during disaster response.

We have discussed the literature on the threat of a compromised agent plat-
form eavesdropping on the agent data in Threat 16.

68. (Denial Of Service) Compromised Distributed Secure Agent Plat-
form Enacts Process Crash or Stop for the Mobile Agent

A compromised DSAP executes the Mobile Agent in a way so that it crashes,
halts, stops, or runs slowly; in all cases violating an availability constraint. In
our disaster response setting this can lead to important information not reaching
its destination in a timely fashion or at all. Therefore we consider this threat
pertinent.

We have discussed the literature on the threat of a compromised agent plat-
form interfering with the correct execution of a Mobile Agent to inflict a Denial-
of-Service attack in Threat 17. Concerning disrupting the communication with
external entities, only Borselius documents the need for communication avail-
ability as an important property in all agent communication. Jansen and Kary-
giannis do consider the importance of availability in the context of agents com-
municating with other agents and agent platforms, but not when agents commu-
nicate with truly external entities. All three sources acknowledge a compromised
platforms ability to manipulate agent communication.

A.7 Agent – Core Secure Agent Infrastructure

Communication

This section discusses the threats to a Mobile Agent when communicating with
the Core Secure Agent Infrastructure. Figure A.4 illustrates our Data Flow Di-
agram model of a Mobile Agent communicating with the Core Secure Agent In-
frastructure through the use of the Distributed Secure Agent Platform (DSAP)’s
communication facilities. Here we only consider the MA → DSAP, the DSAP →
CSAI, the CSAI → DSAP, and the DSAP → MA data flows between the Mobile
Agent and the Core Secure Agent Infrastructure. See Section 2.6 for details on
the Secure Agent Infrastructure Mobile Agent communication concept.

A.7.1 MA → DSAP

26. (Spoofing) Spoofing the Mobile Agent Process

The Mobile Agent may be spoofed by an adversary and this may lead to unau-
thorized access to the DSAP. As our security assumptions only allow certified
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Figure A.5: The part of our Data Flow Diagram model we use to analyze the threats
to a Mobile Agent when communicating with the Core Secure Agent
Infrastructure using the DSAP’s communication facilities.

agents that adhere to the security policy that leaves a compromised DSAP spoof-
ing the Mobile Agent. A compromised DSAP can use this capability to fake the
origin of information for example to hide her tracks, or implicate an External
Interactor. As such we consider this threat pertinent.

Jansen and Karygiannis document the threat of agents masquerading as other
agents when communicating both with other agents and the agent platform in
their agent-to-platform and agent-to-agent threat categories. They also con-
sider an agent platform helping an agent in masquerading its identity under the
other-to-agent category. However, they do not discuss an agent platform imper-
sonating an agent. However, they do consider an agent platform compromising
a Mobile Agent and sending the compromised agent to other remote platforms.
Borselius discusses the need for identification and authentication of agents in
agent platforms, but not a compromised platform masquerading as an agent.
However, Borselius also points out that an agent platform can modify a Mo-
bile Agent’s code, data, and state. Finally, Bierman and Cloete consider a host
masquerading as another host to lure in Mobile Agents as authentication risk,
in their subcategory of masquerading. They also document an agent platform’s
ability to compromise Mobile Agents, but again they do not specifically mention
an agent platform impersonating an agent.
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27. (Spoofing) Spoofing the Distributed Secure Agent Platform Pro-
cess

The DSAP may be spoofed by an adversary and this may lead to information
disclosure by the Mobile Agent. In our model, the only entity that could spoof
the DSAP versus the Mobile Agent is a compromised DSAP. There is the po-
tential problem of an adversary stealing a Mobile Agent and running it in his
own execution environment that is different from any authentic DSAP. How-
ever, given our security assumptions the only way to obtain a Mobile Agent is
through compromising an authentic DSAP. As the Mobile Agent itself might
contain valuable Intellectual Property, or transport sensitive information, be-
ing able to execute the agent in an isolated environment that is observable and
controllable by an adversary might help said adversary to extract information
from the agent or to reverse engineer it. Therefore we believe this threat worth
considering.

Jansen and Karygiannis point out that the code, data and state of a visit-
ing agent is transparent to the agent platform and that an agent platform can
compromise the agent before sending it on. Borselius similarly indicates that
the agent platform can observe and manipulate code, data and flow control of
Mobile Agent. Bierman and Cloete have their own reverse engineering threat
subclass where they consider an adversary that observes an agent in order to
facilitate reverse engineering.

28. (Tampering) Potential Lack of Input Validation for Distributed
Secure Agent Platform

Data flowing across MA → DSAP may be tampered with by an adversary. In
our model the only entity that could perform this tampering is a compromised
DSAP (cf. Threat 14). This however is a very pertinent threat given our disas-
ter response scenario. We have already discussed the threat of a compromised
DSAP tampering with the data of a Mobile Agent in Threat 14. However this
threat offers a new Secure Agent Infrastructure specific viewpoint on what a
compromised DSAP can do, therefore we let it stand.

All our three primary literary sources indicate this threat. See Threat 14 for
details.

29. (Repudiation) Potential Data Repudiation by the Distributed
Secure Agent Platform

The DSAP claims that it did not receive data from a source outside the trust
boundary. As we discussed in Threat 4, Threat 23, and Threat 24, repudiation
is a serious threat in a disaster response scenario. We therefore consider this
threat pertinent. A compromised DSAP can easily implement this threat, while
at the same time complicating mitigation.

Jansen and Karygiannis point out that an agent platform can tamper with
all agent communication, but they do not specifically discuss repudiation in
this context. Borselius describes non-repudiation as a desirable property in all
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agent communication. Similarly, Bierman and Cloete do not discuss a platform
repudiating having received agent messages. All three sources acknowledge a
compromised platforms ability to manipulate agent communication.

30. (Information Disclosure) Data Flow Sniffing

Data flowing across the MA → DSAP data flow may be sniffed by an adver-
sary. The only realization of this threat permissible in our model is through
a compromised DSAP. We consider this threat pertinent. The Secure Agent
Infrastructure deals with sensitive information, and disclosing sensitive informa-
tion to unauthorized entities is not an option.

All our three primary sources document the threat of an agent platform
eavesdropping information from their agents. See Threat 16 for a discussion.

31. (Denial Of Service) Potential Process Crash or Stop for the Dis-
tributed Secure Agent Platform

The DSAP crashes, halts, stops or runs slowly; in all cases violating an avail-
ability metric. The network of DSAPs forms the execution fabric for all Mobile
Agent and thus they are an essential component of the Secure Agent Infrastruc-
ture, without which the Secure Agent Infrastructure will not be able to perform
its disaster response support role. This is a pertinent threat. In this case what-
ever information the Mobile Agent has gathered will not be forwarded to the
Core Secure Agent Infrastructure which can have a negative impact on situa-
tional awareness and hamper dispatching commands. In our model, a possible
realization of this threat is again a compromised DSAP.

Jansen and Karygiannis document the threat of agents performing Denial-
of-Service attacks on an agent platform (agent-to-platform threat category), as
well as external entities attacking the agent platform (other-to-agent platform).
Borselius points out the need for availability when discussing agent communica-
tion.

32. (Denial Of Service) Data Flow MA → DSAP Is Potentially In-
terrupted

An external agent interrupts data flowing across a trust boundary in either direc-
tion. In our model the only entity able to interrupt this flow is a compromised
DSAP. This is a pertinent threat as a compromised platform could suppress
specific information or commands to change the crisis mitigation process.

See Threat 7 for a discussion of the literature.

33. (Elevation Of Privilege) Elevation Using Impersonation

The DSAP may be able to impersonate the context of the Mobile Agent in
order to gain additional privilege. This is a pertinent threat. We have already
discussed this threat at length in Threat 61 and in Threat 20.
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34. (Elevation Of Privilege) The Distributed Secure Agent Platform
May be Subject to Elevation of Privilege Using Remote Code Execu-
tion

The Mobile Agent may be able to remotely execute code for the DSAP. We
assume that all Mobile Agents adhere to the security policy and disregard this
threat.

Interestingly, Jansen and Karygiannis do not explicitly consider this a threat
in their agent-to-platform threat category. They do consider agents masquerad-
ing as other agents and agents performing Denial-of-Service attack against an
agent platform. The closest security violation they consider is unauthorized ac-
cess by Mobile Agents to platform services and resources through lack of proper
access control. Borselius points out that hosts need to be protected from agents
and from other parties that communicate with the platform, and he claims that
the problems associated with the protection of hosts from malicious code are
quite well understood.

35. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in Distributed Secure Agent Platform

An adversary may pass data into the DSAP in order to change the flow of
program execution within the DSAP to the adversary’s choosing. Again we
assume that all Mobile Agents adhere to the security policy and disregard this
threat. For a discussion of the literature see Threat 34.

36. (Elevation Of Privilege) Cross Site Request Forgery

Cross Site Request Forgery is a web browser specific elevation of privilege attack.
As we do not use a web browser to send data from a Mobile Agent to the DSAP
we disregard this threat.

A.7.2 DSAP → CSAI

37. (Spoofing) Spoofing of the Core Secure Agent Infrastructure Ex-
ternal Destination Entity

The Core Secure Agent Infrastructure may be spoofed by an adversary and this
may lead to data being sent to the adversary’s target instead of the Core Secure
Agent Infrastructure. We assume the use of a secure communication protocol
between the DSAP and the Secure Agent Infrastructure that provides mutual
authentication. Therefore, we disregard this threat.

Borselius points out that authentication is an important property in all agent
communication. Jansen and Karygiannis list masquerading agents and agent
platforms as threat to Mobile Agent in their agent-to-agent and platform-to-
agent threat categories, but they do not consider an external entity deceiving a
Mobile Agent. All three sources acknowledge a compromised platforms ability
to manipulate agent communication.
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38. (Repudiation) The Core Secure Agent Infrastructure Potentially
Denies Receiving Data

The Core Secure Agent Infrastructure claims that it did not receive data from a
process on the other side of the trust boundary. We assume that the Core Secure
Agent Infrastructure adheres to the security policy. Therefore we disregard this
threat.

Only Borselius points out the need for non-repudiation in all agent commu-
nication. Jansen and Karygiannis mention repudiation only in the context of
agent-to-agent communication.

39. (Denial Of Service) Data Flow DSAP → CSAI Is Potentially
Interrupted

An external agent interrupts data flowing across a trust boundary in either
direction. This is a pertinent threat, as a adversary can seriously hamper crisis
mitigation by selectively suppressing the data flow (cf. Threat 32). As we assume
a secure communication protocol the interrupted will be detected by the sending
DSAP.

Again, only Borselius documents the need for communication availability as
an important property in all agent communication. Jansen and Karygiannis do
consider the importance of availability in the context of agents communicating
with other agents and agent platforms, but not when agents communicate with
truly external entities.

A.7.3 CSAI → DSAP

40. (Repudiation) Potential Data Repudiation by Distributed Secure
Agent Platform

DSAP claims that it did not receive data from a source outside the trust bound-
ary. We consider this a pertinent threat, as a compromised DSAP can easily
realize this threat. As discussed before (cf. Threat 29, Threat 24, Threat 23,
Threat 38 and Threat 4) auditability is a very important in a disaster response
setting. For example, repudiating having received certain messages can implicate
other entities, or help hide the tracks of an adversary.

Again Borselius’ mention of non-repudiation as a desired property for all
agent communication is the only pertinent occurrence of this threat in literature.
Jansen and Karygiannis mention repudiation only in the context of agent-to-
agent communication.

41. (Denial Of Service) Potential Process Crash or Stop for the Dis-
tributed Secure Agent Platform

The DSAP crashes, halts, stops or runs slowly; in all cases violating an avail-
ability metric. We consider this a pertinent threat. Aside from under specifying
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the equipment hosting the DSAP or severe misconfiguration we consider a com-
promised DSAP as a primary realization of this threat. If the DSAP violates
availability constraints this can prevent or delay delivery of important informa-
tion, such as information pertaining to situation awareness and commands. For
reference, we have previously discussed a DSAP violating availability constraints
in Threat 59 and Threat 17.

Jansen and Karygiannis primarily discuss how a malicious agent platform can
interfere with Mobile Agent, including delaying and denying agent execution or
agent service requests. They also mention that the agent platform can tamper
with all agent communication. Borselius establishes the need for availability for
all agent communications, but does not single out communication with agent
platforms that violate availability constraints. Finally, Bierman and Cloete dis-
cuss denial of service, delay of service and transmission refusal in the context
of an agent platform interfering with a Mobile Agent. They do not consider
external parties communicating with an agent platform.

42. (Denial Of Service) Data Flow CSAI → DSAP Is Potentially
Interrupted

An external agent interrupts data flowing across a trust boundary in either
direction. This is a pertinent threat, as a adversary can seriously hamper crisis
mitigation by selectively suppressing the data flow (cf. Threat 60, Threat 32 and
Threat 39). As we assume a secure communication protocol the interrupted will
be detected by the sending Core Secure Agent Infrastructure. Again we consider
a compromised DSAP as one potential realization of this threat.

See, for example, Threat 25, Threat 32, or Threat 39 for a discussion of
pertinent literature.

43. (Elevation Of Privilege) Elevation Using Impersonation

The DSAP may be able to impersonate the context of Secure Agent Infrastruc-
ture in order to gain additional privilege. We consider this a pertinent threat
that we have discussed in great detail in Threat 61.

44. (Elevation Of Privilege) The Distributed Secure Agent Platform
May be Subject to Elevation of Privilege Using Remote Code Execu-
tion

The Core Secure Agent Infrastructure may be able to remotely execute code for
DSAP. We assume the Core Secure Agent Infrastructure to adhere to the security
policy, and due to our use of a secure communication protocol we also preclude
other entities injecting code. If the Core Secure Agent Infrastructure wants to
remotely execute code on the DSAP it just needs to send the appropriate agent.
Therefore we disregard this threat.
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45. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in the Distributed Secure Agent Platform

An adversary may pass data into the DSAP in order to change the flow of
program execution within the DSAP to the adversary’s choosing. In this case,
we consider this threat to be a special variant of Threat 44 and disregard it.

46. (Elevation Of Privilege) Cross Site Request Forgery

Cross Site Request Forgery is a web browser specific elevation of privilege at-
tack. As we do not use a web browser send data from the Core Secure Agent
Infrastructure to the DSAP we disregard this threat.

A.7.4 DSAP → MA

47. (Spoofing) Spoofing the Distributed Secure Agent Platform Pro-
cess

The DSAP may be spoofed by an adversary and this may lead to unauthorized
access to Mobile Agent. In our model, the only entity able to spoof an authentic
DSAP is a compromised DSAP. However there is a seconds aspect to consider.
Here the DSAP relays information from the Core Secure Agent Infrastructure.
Therefore, the DSAP can impersonate the Core Secure Agent Infrastructure
versus the Mobile Agent. We consider this threat pertinent. This threat has been
discussed in the context of a compromised DSAP impersonating an External
Interactor in Threat 2. As in Threat 2 a compromised DSAP that realizes this
threat can inject tampered information into the Mobile Agent (cf. Threat 49)
and withhold information as Denial-of-Service. See Threat 2 for a discussion on
the literature.

48. (Spoofing) Spoofing the Mobile Agent Process

The Mobile Agent may be spoofed by an adversary and this may lead to infor-
mation disclosure by the DSAP. In our model, the only entity able to spoof an
authentic Mobile Agent is a compromised DSAP. This is due to our assumption
that only certified and security policy adhering Mobile Agents can enter the Se-
cure Agent Infrastructure. A compromised DSAP might use this capability to
claim having delivered information to the intended receiver, when in fact it has
not. See also Threat 1.

Jansen and Karygiannis discuss Mobile Agents masquerading as other Mobile
Agents and the need for authenticating agents in order to authorise their use of
platform services correctly in the agent-to-platform threat category. Borselius
acknowledges the need for authenticity in agent to environment communication
when discussing the communication property of agents. Furthermore, he also
establishes the need for agent authentication and authorisation. None of our
sources specifically considers a compromised platform spoofing an Mobile Agent,
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but all three acknowledge a compromised platform’s ability to eavesdrop and
manipulate agent communication.

49. (Tampering) Potential Lack of Input Validation for the Mobile
Agent

Data flowing across the DSAP → MA data flow may be tampered with by an
adversary. In our model, the only entity able to tamper with this data at this
juncture is a compromised DSAP. This threat has been detailed in Threat 14
and Threat 3.

50. (Repudiation) Potential Data Repudiation by the Mobile Agent

The Mobile Agent claims that it did not receive data from a source outside the
trust boundary. As argued in Threat 4, based on our assumption a Mobile Agent
cannot repudiate any messages, unless it is tampered with by a compromised
DSAP. We consider this a threat as any kind of non-repudiation is an impor-
tant security property in a disaster response setting (cf. Threat 40, Threat 29,
Threat 24, Threat 23, and Threat 4).

51. (Information Disclosure) Data Flow Sniffing

Data flowing across DSAP → MA may be sniffed by an adversary. We consider
this a pertinent threat, because, as we have pointed out in Threat 30, the Secure
Agent Infrastructure is operating with sensitive information. The only entity
capable of realizing this threat in our model is again a compromised DSAP.
We have already discussed the details and literature research for this threat in
Threat 16 and Threat 5.

52. (Denial Of Service) Potential Process Crash or Stop for the Mobile
Agent

The Mobile Agent crashes, halts, stops or runs slowly; in all cases violating an
availability metric. A User Communication Agent or a Information Delivery
Agent violating their availability constraints can lead to important information
not reaching an External Interactor or the Core Secure Agent Infrastructure in
time. Therefore we consider this threat pertinent. As detailed in Threat 6 our
security assumptions preclude the Mobile Agent from violating its own availabil-
ity constraints. However as described in Threat 6, Threat 59, and Threat 17 a
compromised DSAP can realize this threat. A compromised DSAP performing
a Denial-of-Service attack has been discussed in Threat 59 and Threat 17.

53. (Denial Of Service) Data Flow DSAP → MA Is Potentially Inter-
rupted

An external agent interrupts data flowing across a trust boundary in either
direction. In our model, the only external agent that can realize the threat is
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a compromised DSAP. This is a pertinent threat, as a compromised DSAP can
selectively suppress data flows to influence the crisis mitigation process. See
Threat 7, Threat 32, Threat 33, and Threat 39 for a discussion.

54. (Elevation Of Privilege) Elevation Using Impersonation

The Mobile Agent may be able to impersonate the context of the DSAP in order
to gain additional privilege. As we established in Threat 19 and Threat 61 every
Mobile Agent and the DSAP operate with the authority of the Core Secure
Agent Infrastructure. Furthermore, the only entity in our model capable of
realizing this threat is a compromised DSAP. The threat of a compromised
DSAP impersonating a Mobile Agent has been discussed in Threat 20. This
specific instance of this impersonation threat adds the additional dimension of
implicating the Mobile Agent, as the compromised DSAP can claim delivery of
the information send by the Core Secure Agent Infrastructure, when in fact, it
never delivered the information to the agent.

55. (Elevation Of Privilege) The Mobile Agent May be Subject to
Elevation of Privilege Using Remote Code Execution

The DSAP may be able to remotely execute code for the Mobile Agent. This is
pertinent threat. We have discussed the details in Threat 14 and Threat 20.

56. (Elevation Of Privilege) Elevation by Changing the Execution
Flow in the Mobile Agent

An adversary may pass data into the Mobile Agent in order to change the flow
of program execution within Mobile Agent to the adversary’s choosing. As the
along this flow is forwarded from the Core Secure Agent Infrastructure and we
assume that the Core Secure Agent Infrastructure adheres to the security policy,
the only adversary in our model that can realize this threat is a compromised
DSAP. This is a pertinent threat that we see as a special variant of Threat 55.

57. (Elevation Of Privilege) Cross Site Request Forgery

Cross Site Request Forgery is a web browser specific elevation of privilege attack.
As we do not use a web browser to send data from the DSAP to the Mobile Agent
we disregard this threat.





B
Security Evaluation

B.1 Introduction

One of the contributions of this thesis is the evaluation of the security of our
security solution for Distributed Secure Agent Platform Outposts (DSAP Out-
posts). We have introduced our security solution in Chapter 5 and it comprises
the Trusted Docking Station (TDS) and the Secure Docking Module (SDM). For
this evaluation we have considered each of the threats against a DSAP Outpost
that we have identified in Chapter 4. For each threat we evaluated if the threat
is mitigated and, if it is mitigated, by what mechanism. We detail our evaluation
here and we discuss the results of our evaluation in Section 5.9.

To break up the long threat evaluation tables we have split them into the
same three categories we have used in Appendix A. These categories are agent
migration, agent - External Interactor communication, and agent - Core Secure
Agent Infrastructure communication. These categories, and also the threats we
discuss here, are based on the model depicted in Figure A.1.

B.2 Agent Migration

Here we discuss threats to agent migration and instantiation. Of the eleven
threats in this category, ten are mitigated by our security solution by ensuring
the load-time integrity of the Distributed Secure Agent Platform Outpost (DSAP
Outpost). The remaining one threat, Threat 03, is mitigated by using the Mobile
Agent paradigm.

219
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Table B.1: This table discusses how our security solution comprising the Trusted
Docking Station and the Secure Docking Module mitigates the threats
to agents migrating from the Core Secure Agent Infrastructure to a Dis-
tributed Secure Agent Platform Outpost

ID T Title

Send Mobile Agent

01 R The Distributed Secure Agent Platform Repudiates
Receipt of a Mobile Agent

By ensuring the load-time integrity of the Trusted Docking Station
(TDS), only a policy conforming Distributed Secure Agent Plat-
form (DSAP) will be loaded. We assume that the security policy
forbids repudiation of receiving a Mobile Agent. Thus load-time
integrity mitigates this threat.

02 D Potential Process Crash or Stop for Distributed Secure
Agent Platform

Our security solution does not increase availability in the face of
a hardware fault. In fact, by adding the Secure Docking Module
(SDM) component we introduce a new hardware component that
can fail. However, by enforcing load-time integrity, we can enforce
that only DSAP implementations that do not threaten their own
availability and are devoid of known security vulnerabilities are
loaded. Also, in the face of compromised load-time integrity, we
have planned for a fallback mechanism that allows the user to boot
and use the platform despite compromised integrity. Overall, we
consider this threat mitigated.

03 D The Data Flow Send Mobile Agent Is Potentially Inter-
rupted

Using Mobile Agents provides mitigation of this threat against an
adversary that can only opportunistically interrupt the send Mobile
Agent data flow. If the connection is interrupted, the Mobile Agent
can be resend at a later point in time. Our security solution does
not provide any protection against an adversary that permanently
disconnects the DSAP Outpost. However, as our adversarial model
includes only opportunistic adversaries, we consider this threat mit-
igated.
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Table B.1 – continued from previous page

ID T Title

04 E Compromised Distributed Secure Agent Platform Uses
Received Information to Impersonate Core Secure Agent
Infrastructure

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost. Load-time integrity ensures that only security pol-
icy conforming DSAP Outposts are loaded. We assume that the
security policy forbids this impersonation threat. A run-time at-
tack might still temporarily realize this threat (cf. Section 5.9.2).

05 T A Compromised Distributed Secure Agent Platform
Implicates the Core Secure Agent Infrastructure to Have
Sent Data to Compromise the Distributed Secure Agent
Platform

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

Instantiate Agent

06 S Compromised Distributed Secure Agent Platform Gains
Full Access to a Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

07 T Compromised Distributed Secure Agent Platform Tam-
pers with Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

08 I Compromised Distributed Secure Agent Platform Eaves-
drops (on) Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

09 D Compromised Distributed Secure Agent Platform Enacts
Process Crash or Stop for the Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

10 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow Instantiate Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.
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Table B.1 – continued from previous page

ID T Title

11 E Compromised Distributed Secure Agent Platform Imper-
sonates Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

B.3 Agent - External Interactor Communication

In this section we discuss threats to the communication between a Mobile Agent
and an External Interactor. Of the 22 threats in this category 14 are mitigated
by our security solution enforcing load-time integrity of the Distributed Secure
Agent Platform Outpost (DSAP Outpost). These 14 threats are: 12, 14, 17,
18, 20, 21, 23, 24, 25, 26, 28, 31, 32, and 33. Four of the threats (13, 15,
19, 27) can be mitigated using the credential protection offered by our security
solution in conjunction with a secure communication channel to the External
Interactor (see Section 5.4). Two of the aforementioned threats (15, and 27)
are specifically mitigated by the Secure Docking Module (SDM) establishing
the presence and authenticity of a DSAP Outpost user. Two threats pertaining
specifically to an external adversary interrupting communication flows (22, and
30) are mitigated by using the Mobile Agent paradigm. This mitigation holds
under the assumption that the interruptions are not permanent. Threat 16 is
mitigated by auditing the Mobile Agents and the Secure Agent Infrastructure
only introducing audited agents into the system (see Section 2.6.7).

Three threats are out of scope of our solution. These threats are Threat 19,
where a human External Interactor is eavesdropped upon by another human,
Threat 22 where a human is interrupted from using the DSAP Outpost because
of an external event, and Threat 29 where an External Interactor repudiates
having received information or a command. The final threat can be mitigated
using auditing, and to facilitate this our security solution provides a crypto-
graphically secured storage and a secure communication channel to the Secure
Agent Infrastructure.

Table B.2: This table contains a description if and how our DSAP Outpost security
solution consisting of the Trusted Docking Station and the Secure Dock-
ing Module mitigates threats to a Mobile Agent communicating with an
External Interactor

ID T Title

Input
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Table B.2 – continued from previous page

ID T Title

12 S Compromised Distributed Secure Agent Platform Spoofs
the Mobile Agent Process

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost. We want to use this threat to point out the role
of the SDM when the External Interactor is a human user. When
the user boots the Trusted Docking Station (TDS) on her device,
the TDS needs to obtain the credentials it uses to communicate
with the Secure Agent Infrastructure. As in this case these creden-
tials are bound to the user, the credentials are stored on the SDM.
When the TDS requests these credentials using the SDM’s resource
access protocol, the SDM first establishes if the TDS has a software
configuration that enforces the Secure Agent Infrastructure secu-
rity policy. It then demonstrates this to the user by releasing a
shared secret to the TDS that the TDS displays. Thus the user
now knows that the TDS is in a policy conforming software con-
figuration. If the Distributed Secure Agent Platform (DSAP) is
compromised, the user will not be presented with this secret and
can react accordingly.

13 S External Entity Spoofs Mobile Agent Process

This threat is mitigated by using strong credentials for authentica-
tion of the Mobile Agents, such as cryptographic keys. By binding
these keys to the load-time integrity of the TDS either through seal-
ing or through using the SDM a security policy that prevents key
disclosure can be enforced. Thus, this threat is mitigated, as an ad-
versarial external entity cannot gain access to these keys. However,
an adversary might still be able to successfully perform a run-time
attack against the DSAP Outpost that has access credentials to
gain access to the key material.

14 S Compromised Distributed Secure Agent Platform Spoofs
the External Interactor

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.
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ID T Title

15 S External Entity Spoofs the External Interactor

Here we want to distinguish two cases. If the External Interactor
is an information system, then this threat can be mitigated using
strong credentials, such as cryptographic keys, for authentication
of the External Interactor in conjunction with a secure communi-
cation channel (see Section 5.4). For example, by using TLS with
client certificate authentication to connect the DSAP Outpost with
the External Interactor the authenticity of both end-points can be
corroborated. To mitigate this threat the operator of the External
Interactor has to ensure the security of the External Interactor’s
private authentication key. On the TDS side, load-time integrity
can enforce using the correct and authentic public verification key
for establishing the External Interactor’s identity.

If the spoofed External Interactor is a human than the SDM ensures
the authenticity and the presence of the human user. First, the user
has to have the SDM, which is a prove of authenticity by something
a user possesses. Furthermore, the user has to proof his presence by
presenting a shared secret to the SDM. See Section 5.7 for details.

16 T Potential Lack of Input Validation for the Mobile Agent

The Secure Agent Infrastructure only introduces audited and au-
thorized agents into the system (cf. Section 2.6.7). Before an agent
is cleared for participation in the Secure Agent Infrastructure, a
group of independent auditors validates the functionality of the
agent and its adherence to the Secure Agent Infrastructure secu-
rity policy. If the auditors authorize the agent, it is then digitally
signed by the auditors. Signed agents are stored with their sig-
nature in the Agent Repository. Before an agent is instantiated
the Secure Agent Infrastructure verifies the signature on the agent
code. The auditing and signing process is out of scope of this work,
but if it is secure this threat is mitigated under the assumption that
the Secure Agent Infrastructure security policy requires thorough
input validation in all Mobile Agents.

17 T Compromised Distributed Secure Agent Platform Tam-
pers With Mobile Agent Input

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.
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18 R Compromised Distributed Secure Agent Platform Com-
promises Mobile Agent to Repudiate Data

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

19 I External Entity Sniffs Data Flow

Here we distinguish two cases. First, the external entity is human
and another human eavesdrops on the information input by the
first human. This particular threat is out of scope. Second, the ex-
ternal entity is an information system and an adversary eavesdrops
the data on the connection between the DSAP Outpost and the
information system. To mitigate this threat our TDS/SDM secu-
rity solution provides credential storage that is bound to the DSAP
Outpost software configuration. So if the external information sys-
tem supports a cryptographically secured communication channel,
such as TLS, our security solution can mitigate this threat.

20 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

21 D Compromised Distributed Secure Agent Platform Enacts
Process Crash or Stop for the Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

22 D External Entity Interrupts Data Flow Input

Here we distinguish two particular realizations of this threat. First,
if the External Interactor providing input is a human and the hu-
man is interrupted by an external event, then we consider this out
of scope. Second, if the External Interactor is an information sys-
tem and an external entity interrupts the data flow, then similar to
Threat 03, the use of Mobile Agents mitigates temporary connec-
tion interruptions.

23 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow Input

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.
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24 E Cross Site Request Forgery

As the only entity in our model that can perform this cross site
request forgery is a compromised DSAP, this threat is mitigated
by enforcing the load-time integrity of the DSAP Outpost; see Sec-
tion 5.9.2 and Threat 04 for details.

25 E Compromised Distributed Secure Agent Platform Uses
Information Received By Mobile Agent to Impersonate
External Interactor

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

Output

26 S Compromised Distributed Secure Agent Platform Spoofs
the External Interactor to Implicate External Interactor

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

27 S External Entity Spoofs the External Interactor To Gain
Unauthorized Access

For this threat we distinguish two cases. First, if the External
Interactor is an information system, then a secure communication
channel in conjunction with sealing the authentication credentials
to a TDS software configuration that is security policy conforming
mitigates this threat.
For the second case, when the External Interactor is a human user,
the SDM mitigates this threat by ensuring the human user’s pres-
ence and authenticity (see Threat 15 and also Section 5.7).

28 S Compromised Distributed Secure Agent Platform Spoofs
the Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

29 R External Interactor Potentially Denies Receiving Data

This threat is out of scope of our security solution. However, the
TDS provides facilities to create a tamper proof log, such as a
cryptographically protected storage and a secure communication
connection to the Core Secure Agent Infrastructure. These facil-
ities can be used to implement a log that can record delivery of
information.
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30 D Data Flow Output Is Potentially Interrupted

Similar to Threat 03 and Threat 23 this threat is mitigated by
using Mobile Agents. If the output to the External Interactor is
interrupted, unless the interruption is permanent, the Mobile Agent
can simply output the information again.

31 T Compromised Distributed Secure Agent Platform Tam-
pers With Mobile Agent Output

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

32 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

33 D Compromised Distributed Secure Agent Platform Enacts
Process Crash or Stop for the Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

B.4 Agent - Core Secure Agent Infrastructure

Communication

Here we discuss the mitigation of the threats to the Distributed Secure Agent
Platform Outpost (DSAP Outpost) communicating with the Core Secure Agent
Infrastructure. In total we discuss 21 threats. Of these 21 threats, 19 threats
are mitigated by our security solution by enforcing load-time integrity on the
DSAP Outpost. The only two threats not mitigated by our security solution
enforcing load-time integrity are Threat 42 and Threat 45. These two threats
pertain to an external entity interrupting the Mobile Agent - External Interactor
communication and are mitigated by using the Mobile Agent paradigm.
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Table B.3: Mitigation status of threats to a Mobile Agent communicating with the
Core Secure Agent Infrastructure using the Distributed Secure Agent
Platform’s communication facilities. Here we investigate how our DSAP
Outpost security solution comprising the Trusted Docking Station and the
Secure Docking Module mitigates threats pertaining to DSAP Outpost -
Core Secure Agent Infrastructure communication.

ID T Title

MA → DSAP

34 S Compromised Distributed Secure Agent Platform Spoofs
the Mobile Agent Process

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

35 S Spoofing the Distributed Secure Agent Platform Process

Here we consider the threat of an adversary running a potentially
compromised Distributed Secure Agent Platform (DSAP) to inves-
tigate and reverse engineer a Mobile Agent. In our threat model,
the only way for an adversary to obtain a Mobile Agent is to com-
promise a legitimate DSAP in the first place. Then the adver-
sary can use the compromised DSAP to harvest agents and analyse
them. This is a targeted attack and therefore outside of our ad-
versarial model. Nonetheless, by enforcing load-time integrity on
the DSAP Outpost, the threat of a compromised DSAP service is
mitigated.

36 T Potential Lack of Input Validation for Distributed Secure
Agent Platform

The Secure Agent Infrastructure only introduces certified agents
into the system. We assume the Secure Agent Infrastructure secu-
rity policy prohibits tampering with data sent through the DSAP
to the Core Secure Agent Infrastructure. Thus in our threat model,
the only entity that can realize this threat is a compromised DSAP
Outpost. This however is again mitigated by enforcing its load-time
integrity.

37 R Compromised Distributed Secure Agent Platform Repu-
diates Receiving Data

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.
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38 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

39 D Compromised Distributed Secure Agent Platform Crashes
or Stops

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

40 D Compromised Distributed Secure Agent Platform In-
terrupts Data Flow MA → Distributed Secure Agent

Platform

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

41 E Compromised Distributed Secure Agent Platform Eleva-
tion Using Impersonation

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

DSAP → CSAI

42 D Data Flow DSAP → CSAI Is Potentially Interrupted

As with Threat 30, Threat 23, and Threat 03 the use of Mobile
Agents mitigates problems arising from temporary communication
interruptions.

CSAI → DSAP

43 R Potential Data Repudiation by Distributed Secure Agent
Platform

Only a compromised DSAP can realize this threat in our threat
model. Thus, this threat is mitigated by enforcing the load-time
integrity of the DSAP Outpost; see Section 5.9.2 and Threat 04 for
details.
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44 D Potential Process Crash or Stop for the Distributed
Secure Agent Platform

There are several potential realizations of this threat. We exclude
the case of an under-specified hardware platform as out of scope.
In this case the device used to execute the DSAP Outpost has too
little computational resources to operate the DSAP Outpost in a
timely fashion. We mitigate a compromised DSAP Outpost from
violating availability by enforcing its load-time integrity.

45 D External Entity Interrupts Data Flow CSAI → DSAP

As with Threat 42, Threat 30, Threat 23, and Threat 03 the use of
Mobile Agents mitigates problems arising from temporary commu-
nication interruptions. The Core Secure Agent Infrastructure can
resend messages to the DSAP when the connection is reestablished.

46 D Compromised Distributed Secure Agent Platform Inter-
rupts Data Flow CSAI → DSAP

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

DSAP → MA

47 S Compromised Distributed Secure Agent Platform Imper-
sonates the Core Secure Agent Infrastructure

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

48 S Compromised Distributed Secure Agent Platform Spoofs
the Mobile Agent Process

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

49 T Potential Lack of Input Validation for the Mobile Agent

In our threat model, the only entity that can realize this threat is
a compromised DSAP Outpost. Thus, this threat is mitigated by
enforcing load-time its integrity; see Section 5.9.2 and Threat 04
for details.
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50 R Compromised Distributed Secure Agent Platform Mod-
ifies Mobile Agent to Enact Data Repudiation by the
Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

51 I Compromised Distributed Secure Agent Platform Sniffs
Data Flow

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

52 D Compromised Distributed Secure Agent Platform Enacts
Process Crash or Stop for the Mobile Agent

This threat is mitigated by enforcing the load-time integrity of the
DSAP Outpost; see Section 5.9.2 and Threat 04 for details.

53 D Data Flow DSAP → MA Is Potentially Interrupted

Only a compromised DSAP can realize this threat in our threat
model. Thus, this threat is mitigated by enforcing its load-time
integrity; see Section 5.9.2 and Threat 04 for details.

54 E Elevation Using Impersonation

In our threat model, the only entity that can realize this threat is
a compromised DSAP. Thus, this threat is mitigated by enforcing
its load-time integrity; see Section 5.9.2 and Threat 04 for details.





C
Threat Modeling the Secure Block

Device

C.1 Introduction

This appendix is a companion piece to Chapter 6. Here we create a threat model
for the Secure Block Device in its primary use case, as a secure storage component
for a Trusted Application running on ANDIX OS. As detailed in Section 2.18
ANDIX OS uses the Normal World OS to store the data of Trusted Applications.
In line with the ARM TrustZone concept, we do not trust the Normal World
OS to protect the confidentiality and integrity of the data it stores for Trusted
Applications. Therefore, we want to model the threats to the Secure Block
Device Trusted Application use case using the Microsoft Security Development
Lifecycle threat modeling methodology as implemented in the Microsoft Threat
Modeling Tool 2016.

The goal of our threat modeling efforts is to establish a list of threats for
a Trusted Application that uses the Secure Block Device for data protection.
We then use this list of threats to evaluate the effectiveness of the Secure Block
Device. We detail the security evaluation of the Secure Block Device using this
list of threats in Section 6.4. In addition to generating the threat list for the
Secure Block Device’s security evaluation we also record our observations on
using the Microsoft Threat Modeling Tool 2016.

In this appendix we first discuss the creation of our threat model. Then we
give an adversarial model. Finally, we conclude this chapter with a list of threats
and their description.
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Figure C.1: The first model we considered for modeling a Trusted Application storing
its data in an untrusted Datastore.

C.2 Threat Model

The key for successful modeling is striking the right balance between abstraction
and accuracy. In this regard threat modeling is not different. We have consid-
ered three different models for modeling the threats for our use-case. We have
modelled all three models using the Microsoft Threat Modeling Tool 2016 (cf.
Section 2.8.4). We based our first model (Figure C.1) on ANDIX OS’ storage
architecture modeling all five major components in the storage system. The
Microsoft Threat Modeling Tool 2016 generated a list of 70 potential threats for
this model. Naturally, a significant portion of the threats related to communi-
cation between the different components. For example the analysis pointed out
threats such as a message ostensibly coming from the Linux Kernel triggering a
potential code execution vulnerability in the ANDIX Kernel. These threats offer
important insights for securing the ANDIX architecture and implementation, but
can be collapsed into threats more pertinent to our secure storage use-case. For
instance, any threat pertaining to an adversary being able to execute code with
the privilege level of the Linux Kernel, potentially allows such an adversary to
read, modify and delete all message exchanged between the Trusted Application
and the Datastore.

Here, we want to focus on analysing the secure storage use-case. Therefore
we consider analysing the security of the Linux Kernel and the ANDIX Kernel
out of scope. As a consequence we decided to remove these components from
our model.

Figure C.2 illustrates our second model. The Trusted Application resides
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Figure C.2: The second model we considered for modeling a Trusted Application
storing its data in an untrusted Datastore in the Normal World.
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Trusted
Application Datastore
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Figure C.3: The third model we considered for modeling a Trusted Application stor-
ing its data in an untrusted Datastore.

in the Secure World on the left side, whereas the ANDIX TEE Daemon and
the Datastore run in the Normal World to the right. By removing the ANDIX
Kernel and the Linux Kernel from the model, we also removed the distinction
between a privileged (kernel) and unprivileged (application) mode. However, we
included the ANDIX TEE Daemon in this model to study its contribution to
the list of threats. In this model the Trusted Application communicates directly
with the ANDIX TEE Daemon which in turn uses the Datastore to load and
store data. The Microsoft Threat Modeling Tool 2016 generated 26 threats for
this model.

Finally, we also analysed the effect of removing the ANDIX TEE Daemon
from the model. Figure C.3 depicts the third model. The Microsoft Threat
Modeling Tool 2016 generates 17 potential threats for this model. Here we
performed a threat by threat comparison between the 26 threats generated for
the second model and the 17 threats of the third. A key observation of this
comparison is that both threat lists contained threats that were unique to that
list and pertinent to the overall threat model. We list these threats in Table C.1
for the second model and in Table C.2 for the third model. For instance, the
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Table C.1: Threats generated by the Microsoft Threat Modeling Tool 2016 for the
second model (see Figure C.2) that have no direct representation in the
third model

S T R I D E Threat Description

TA Read

X Elevation Using Impersonation
X Potential Lack of Input Validation for the Trusted Application

X Cross Site Request Forgery

TA Write

X Elevation Using Impersonation
X Potential Lack of Input Validation for the Trusted Application

X Potential Process Crash or Stop for the ANDIX TEE Daemon
X ANDIX TEE Daemon May be Subject to Elevation of Privilege

Using Remote Code Execution
X Elevation by Changing the Execution Flow in ANDIX TEE

Daemon
X Cross Site Request Forgery

threat list for the second model points out that

Potential Lack of Input Validation for Trusted Application

is a threat. The description of this threat continues to detail that

Data flowing across TA Read may be tampered with by an attacker.
This may lead to a denial of service attack against Trusted Applica-
tion or an elevation of privilege attack against Trusted Application or
an information disclosure by Trusted Application. Failure to verify
that input is as expected is a root cause of a very large number of
exploitable issues. Consider all paths and the way they handle data.

Table C.2: Threats generated by the Microsoft Threat Modeling Tool 2016 for the
third model (see Figure C.3) that have no direct representation in the
second model

S T R I D E Threat Description

Read

X Datastore inaccessible

Write

X Datastore inaccessible
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Verify that all input is verified for correctness using an approved list
input validation approach.

Although the threat list for the third model contains two elevation of priv-
ilege and two Denial-of-Service attacks the fact that corrupting the Trusted
Application can lead to an information disclosure is missing.

Conversely the threat list for the third model contains a threat

Data Store Inaccessible

for both the Read and Write data flow in Figure C.3 that is missing in the second
model’s threat list. However, the second threat list points out that the ANDIX
TEE Daemon could crash or stop, which has a similar effect on availability
from the Trusted Application point of view. We believe this to be the reason
why the STRIDE-per-interaction heuristic does not generate the “Data Store
Inaccessible” threat when a process reads from a Datastore in the same trust
domain.

Finally, both threat lists contain entries where we cannot distinctly say that
they identify the same threat. For example, the third threat list states that

The Datastore Data Store Could Be Corrupted.

The description of this threat reveals that

Data flowing across TA Write may be tampered with by an attacker.
This may lead to corruption of Datastore. Ensure the integrity of
the data flow to the Datastore.

Although the second threat list contains a threat pointing out a

Potential Lack of Input Validation for ANDIX TEE Daemon,

where the description states that

Data flowing across TA Write may be tampered with by an attacker.
This may lead to a Denial-of-Service attack against ANDIX TEE
Daemon or [. . . ]

We are not sure if this points at the same threat. Even if it does we think that
pointing out the need for input validation on an outgoing data flow to indicate
potential data corruption is counterintuitive.

The net result of the threat by threat comparison of both models is that we
chose to use an amalgam of both threat models. We base our threat model on the
third model, but compound it with threats from the second model. Furthermore,
we believe that the Microsoft Threat Modeling Tool family is beneficial for threat
modeling. However, these tools use a heuristic for threat generation (STRIDE-
per-interaction), and we think it is important to keep this in mind, when working
with these tools. Finally, we suggest to try out different levels of abstractions
when modeling with this tool family to help detect more potential threats.
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C.3 Adversarial Model

The following two paragraphs are duplicated from Section 6.4.1. We include
them here for convenience.

We analyse the security properties of the Secure Block Device (SBD) against
an adversary that has full access to the cryptographically protected data at
rest, but not to the Authenticated Encryption key and the Merkle Tree root
hash. This adversary can read and modify all data while it is at rest and record
operations on the data over the full lifetime of the SBD store, but cannot break
the cryptography.

Specifically, when the SBD runs in a Trusted Application, the following as-
sumptions about our adversary hold. Our adversary is restricted to software
attacks. Our adversary has full privileges on the Normal World side, but can
only access the Secure World and the Trusted Applications therein using the
Remote Procedure Call interface provided by ANDIX OS. In the Normal World
the adversary has full control over all processes, can access all memory, and
can fully read and write all files, including the Datastore used by our Trusted
Application. We do however deny our adversary the ability to perform software
side-channel attacks to obtain the cryptographic keys used by the SBD, as we
consider this to be out of scope for this work.

C.4 List of Threats

Following the approach of the Microsoft Threat Modeling Tool 2016, we list
potential threats per data flow. Thus we have split the threat list into two
tables. The first, Table C.3, details threats arising from reading from an un-
trusted Datastore, and the second, Table C.4, describes the threats pertaining
to writing to an untrusted Datastore. Both tables were created by generating a
threat analysis for the third model (cf. Figure C.3) using the Microsoft Threat
Modeling Tool 2016. The list of threats and their descriptions was manually
adapted to better reflect the use case they model and our adversarial model (see
Section C.3). Finally, we compounded the lists of threats with threats inspired
by a threat analysis of the second model.

Table C.3: List of potential threats, when a Trusted Application reads data from an
untrusted Datastore.

S T R I D E Threat Description

X 1 Spoofing of Datastore

Our adversary can spoof the Datastore. Thus the adversary
might serve arbitrary data to the Trusted Application. Given
that the adversary has read access to the Datastore (DS) the
adversary can serve a mash-up of valid data from the Datastore
and forged data created by the adversary.
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Table C.3 – continued from previous page

S T R I D E Threat Description

X 2 Weak access control for the Datastore

Our adversary can read information not intended for disclo-
sure, due to improper data protection of the Datastore. More
specifically, our adversary can read any part of the Datastore.

X 2a Data Flow Sniffing

Our adversary can sniff any data sent from the Datastore to
the Trusted Application.

X 3 Spoofing the Trusted Application

Our adversary may impersonate the Trusted Application ver-
sus the Datastore. As our adversary has full access to the Data-
store and can furthermore eavesdrop, intercept, and modify all
data read from, and written to, the Datastore our adversarial
model subsumes this threat.

X 4 Potential data repudiation by the Trusted Applica-
tion

The Trusted Application claims that it did not receive any data
from the Datastore. As the Trusted Application is trusted by
definition we disregard this threat.

X 5 Potential process crash or stop for the Trusted
Application

The Trusted Application crashes, halts, stops or runs slowly;
in all cases violating an availability metric. The Trusted Ap-
plication reads data from the Datastore, presumably as part
of providing some functionality or service at a higher level of
interaction, for example directly to a user of the system. Thus,
the effect of a potential crash or stop of the Trusted Applica-
tion needs to be considered in the context of the purpose of the
Trusted Application. Furthermore, the Trusted Application is
considered trusted by definition, thus we disregard this threat.
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S T R I D E Threat Description

X 6 Data flow Read from the Datastore to the Trusted
Application is potentially interrupted

Our adversary interrupts the data flow, when the Trusted Ap-
plication is reading from the DS. Thus our adversary can po-
tentially change the behavior of the Trusted Application by
selectively interrupting specific data read operations up to and
including a complete Denial-of-Service attack. This is similar,
but not identical in effect to selectively destroying portions of
data in the Datastore.

X 7 Datastore inaccessible

Our adversary prevents access to the Datastore. The Trusted
Application will not receive requested data. The effect of this
Denial-of-Service attack needs to be gauged in the context of
the purpose of the Trusted Application. Here, we assume it to
be a pertinent threat.

X 8 The Trusted Application may be subject to elevation
of privilege using remote code execution

Our adversary might try injecting tampered data into the
Trusted Application in a way that causes a remote code ex-
ecution in Trusted Application. For example, the adversary
can tamper with the data stored in the Datastore, and next
time the Trusted Application reads the data it causes a re-
mote code execution. We consider the Trusted Application
trusted by definition, and as such free of implementation vul-
nerabilities that would allow remote code execution. Thus we
disregard this threat.
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S T R I D E Threat Description

X 9 Elevation by changing the execution flow in the
Trusted Application

Our adversary can inject tampered data into the Trusted Ap-
plication in a way that changes the flow of the program execu-
tion within the Trusted Application. For example, the adver-
sary could impersonate the Datastore and send tampered data
that changes the behavior of the Datastore in favor of the ad-
versary. We do consider the Trusted Application trusted and
free of implementation vulnerabilities. However, an adversary
tampering with the data cannot always be detected with logi-
cal checks, without measures that ensure overall data integrity.
Therefore, we consider this threat pertinent.

Table C.4: List of potential threats, when a Trusted Application writes data to an
untrusted Datastore.

S T R I D E Threat Description

X 10 Spoofing of the Datastore

The Datastore may be spoofed by our adversary and this may
lead to the Trusted Application writing sensitive data to the
adversary’s target instead of the Datastore.

X 11 Potential excessive resource consumption for
Trusted Application or Datastore

The Trusted Application presumably provides services to an
application, or directly to the user. For the Trusted Applica-
tion excessive resource consumption needs to be considered
in this context. Furthermore, the Trusted Application is con-
sidered trusted by definition, thus we disregard this sub-threat.

The Datastore on the other hand might provide its storage ser-
vice to a wide range of other applications, besides the Trusted
Application. Here it might happen that the resource becomes
unavailable due to high load, or run out of space to store data.
The Trusted Application and also the Secure Block Device li-
brary need to take this into account when interacting with
the Datastore to prevent deadlocks, and handle out of space
exceptions in a controlled manner.



242 Appendix C. Threat Modeling the Secure Block Device

Table C.4 – continued from previous page

S T R I D E Threat Description

X 12 Spoofing the Trusted Application

Our adversary can impersonate the Trusted Application. The
Datastore might provide its storage service to a wide range of
other applications, besides the Trusted Application. Therefore,
by spoofing the Trusted Application, our adversary can gain
unauthorized access to the Datastore. However, our adversary
already has access to the whole Datastore by definition. Thus
she can gain access to the Trusted Application’s portion of the
Datastore without even needing to impersonate the Trusted
Application. Still, we consider a realization of this threat to
be a problem, independent of how the threat is realized. Thus
we let it stand.

X 13 The Datastore could be corrupted

When the Trusted Application writes to the Datastore, the
adversary can tamper with this data flow. As a consequence,
the Datastore might become corrupted. Again, our adversary
can directly tamper with the data stored in Datastore directly.
And again, we consider this threat pertinent, independent of
its realization.

X 14 The Datastore denies writing data, although the
data was potentially written

The Datastore claims not to have written data sent by the
Trusted Application. For example, the Datastore could claim
that to obfuscate a subsequent information disclosure.

X 15 Data flow sniffing

When the Trusted Application writes to the Datastore, our
adversary can sniff the data flowing from the Trusted Appli-
cation to the Datastore. Our adversary can by definition also
read the data directly from the Datastore. Again, no matter
the implementation, we consider a realization of this threat
pertinent.
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Table C.4 – continued from previous page

S T R I D E Threat Description

X 16 The data flow from the Trusted Application to the
Datastore is potentially interrupted

An adversary interrupts the data flow from the Trusted Ap-
plication to the Datastore. This threat needs to be considered
in the context of the Trusted Application. For example, if the
Trusted Application uses the Datastore to save security rele-
vant control flow information, such as a Digital Rights Manage-
ment access counter. In this example interrupting the update
of the counter might violate a security goal. This threat is also
of special note to the Secure Block Device, as the Secure Block
Device stores security relevant control information in the Data-
store (cf. Section 6.2 for the details). Thus the Secure Block
Device library needs to prevent inconsistent internal states,
when an adversary interrupts a write operation.

X 17 Datastore inaccessible

An adversary prevents the Trusted Application from accessing
the Datastore, thus the Trusted Application will not be able
to store information. Again, the impact of this threat needs to
be evaluated in the context of the Trusted Application.
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