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wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in

TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Arbeit identisch.

Graz, am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly indicated all material which

has been quoted either literally or by content from the used sources. The text document

uploaded to TUGRAZonline is identical to the present doctoral thesis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Date) (Signature)





Acknowledgement

I would like to thank Prof. Dr. Wolfgang Hirschberg for his supervision and for giving

me the opportunity to do this research project as a scientific assistant at the Institute

of Automotive Engineering at Graz University of Technology. I would also like to thank

Prof. Dr. Bengt Jacobson from Chalmers University for his kind willingness to support

my thesis as a second assessor.

At the Institute of Automotive Engineering, I would like to thank current and former

colleagues as well as the students for all the discussions and the support. In particular,

I offer my gratitude to Assoc.Prof. Dr. Arno Eichberger.

Although this project was not realised within an industry-funded research project, I

had the chance to collaborate with and receive support from the following people outside

our university: Prof. Dr. Gundolf Haase of the Institute of Mathematics and Scientific

Computing of Graz University, Dipl.-Ing. (FH) Andreas Kerschbaumer of Virtual Ve-

hicle Research Center, Graz, Dipl.-Ing. Friedrich Eppel of ÖAMTC, Vienna, and Dr.
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Abstract

The extent to which a certain driver input causes a desired vehicle reaction depends

strongly on the road and tire conditions. This also holds true for the interventions of

advanced driver assistance systems (ADAS). ADAS are currently developed to meet re-

quirements for accident prevention on dry roads. This is necessary in order to avoid

incorrect ADAS interventions due to unreliable information. The present work describes

a method for estimating the current road and tire conditions based on on-board sensors

that measure and process the vehicle’s dynamic state.

The first part of this thesis addresses the first research topic, namely determining

which of the investigated vehicle state variables are sensitive to road and tire condi-

tions, and are therefore theoretically suitable for estimating road and tire conditions.

To this end, a sensitivity analysis was conducted by means of a two-track vehicle model

described by a non-linear ordinary differential equation system. As expected, the wheel

rotational speeds showed the highest sensitivity to the road and tire conditions for all

investigated driving states. The second part of the thesis presents a method for esti-

mating the road and tire conditions based on the sensor signals present in a vehicle

equipped with electronic stability control. To this end, a particle filter is applied, which

serves as a non-linear observer within the Bayesian probability framework and makes it

possible to solve a state estimation problem while dealing with measurement noise and

uncertainties. The research investigated whether the road and tire conditions can be

estimated accurately enough to be used within the intervention strategy of an adaptive

emergency brake system (AEB).

The results show that the proposed vehicle-dynamics-based method has the potential

to improve existing techniques for estimating current road and tire conditions. Since

the proposed method is based on the measurement of the dynamic reactions of the ve-

hicle, the estimation accuracy increases with increasing dynamic excitation. The results

demonstrate that the required accuracy for an AEB can be reached for certain driving

states.





Kurzfassung

Straßen- und Reifenzustände beeinflussen maßgeblich, in welchem Ausmaß eine Fah-

rerinnen- und Fahrereingabe in eine Fahrzeugreaktion umgesetzt werden kann. Diese

physikalischen Grenzen gelten auch für aktive Eingriffe von Fahrerassistenzsystemen.

Fahrerassistenzsysteme, wie sie aktuell serienmäßig verfügbar sind, sind auf die An-

forderungen auf trockener Fahrbahn ausgelegt, um Fehlauslösungen aufgrund von un-

sicheren Informationen zu vermeiden. In der vorliegenden Arbeit wird ein Verfahren zur

Schätzung des aktuellen Straßen- und Reifenzustands vorgestellt, welches auf Messun-

gen des fahrdynamischen Zustands des Fahrzeuges beruht. Als Basis für die verwendete

Sensorik dient ein mit Elektronischer Stabilitätskontrolle ausgestattetes Fahrzeug.

Im ersten Teil der Arbeit wird die Forschungsfrage beantwortet, welche Fahrzustands-

größen sensitiv auf eine Änderung des Straßen- und Reifenzustands reagieren, und damit

zur Schätzung des aktuellen Straßen- und Reifenzustands theoretisch in Frage kom-

men. Dafür wird eine Sensitivitätsanalyse mit Hilfe eines Zweispurmodells durchgeführt,

welches durch gewöhnliche Differentialgleichungen beschrieben ist. Für alle Fahrzustände

zeigen die Raddrehzahlen die größte Sensitivität auf eine Änderung des Straßen- und

Reifenzustands. Im zweiten Teil der Arbeit wird eine Methode zur fahrdynamikbasierten

Schätzung von Straßen- und Reifenzustand vorgestellt. Dazu wird ein Partikelfilter ver-

wendet, der nichtlineare Zustandsschätzung unter Verwendung von verrauschten Mess-

werten mit Hilfe des Bayes’schen Wahrscheinlichkeitsbegriffs ermöglicht. Es wird un-

tersucht, ob die erreichten Schätzwerte genau genug sind, um die Auslösestrategie eines

Automatisierten Notbremsassistenten (AEB) anpassen zu können.

Es wird gezeigt, dass das vorgeschlagene Verfahren Potential zur Verbesserung von

bestehenden Methoden der Straßen- und Reifenzustandsschätzung bietet. Da es sich

um ein Verfahren der Messung der dynamischen Reaktion des Fahrzeugs handelt, ist die

Schätzergenaugikeit abhängig von der dynamischen Anregung während der Fahrt. Die

notwendige Genauigkeit für einen AEB kann trotzdem über einige Fahrbereiche erreicht

werden.
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List of symbols

Mathematical objects within this work are denoted as follows:

a scalar,

a vector,

A matrix.

When present, symbols in sub- and superscripts of a variable x are used in the form

1x
5
2,3,4. The numbers denote the position of the following optional assignments:

1 ... the coordinate system, eg. b for body

2 ... a description or distinction, eg. re for effective tire radius

3 ... a position, eg. C for wheel centre

4 ... an index, eg. x for longitudinal direction or i for the tire index

5... an exponent or an additional assignment, eg. xmax for the maximum value of x

Coordinate systems

{Ob, xb, yb, zb} origin and Cartesian coordinate axes of vehicle-fixed coordinate system

{Oi, xi, yi, zi} origin and Cartesian coordinate axes of i-th wheel-fixed horizonted

coordinate system

{Og, xg, yg, zg} origin and Cartesian coordinate axes of global coordinate system

(inertial frame)

Variables, parameters and constants2

a1(2) parameters of TMsimple tire model

bax(y) acceleration in longitudinal (lateral) direction in vehicle-fixed coordinates

2SI units are used. Unless specifically noted otherwise, the unit rad was used for all angles.
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max
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min
x minimum value of bax(y) (deceleration)

Δay mean relative deviation of bay
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Ax(y) longitudinal (lateral) parameter of TMsimple tire model
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Δc variation of sensitivity parameter
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cT,x(y) linear longitudinal (lateral) stiffness of the tire

cT,z linear vertical stiffness of the tire
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d(t) disturbance vector as a function of time t

dM measurement range of vehicle-fixed environmental sensor

dW warning distance between vehicle and obstacle

dy lateral tire damping coefficient

dY0 initial stiffness of tire characteristics

f index of vehicle’s front axle

f0 radar sensor frequency

fc vector with partial derivatives of fl to parameter c

fl index of front left wheel

fl right-hand side of equation for ẏl

fr index of front right wheel

fr,i rolling resistance coefficient of i-th tire

fs scaling factor for manoeuvre control

F magnitude of combined tire contact forces
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F vector of combined tire contact force

FA aerodynamic force acting on vehicle

FF friction force acting in contact plane

Fmax
F maximum friction force acting in contact plane

FN normal force acting on contact plane

Fz,nom nominal value of the vertical tire load

FR tire’s rolling resistance force

F b
x(y) basis value for longitudinal (lateral) tire forces

Fx(y),i longitudinal (lateral) tire force on i-th tire in wheel-fixed coordinate system

bFx(y),i longitudinal (lateral) tire force on i-th tire in vehicle-fixed coordinate system

FD
y,i dynamic lateral tire force for i-th tire

ΔFy,i mean relative deviation of Fy,i between reference simulation and parameter variation

FW,x(y) longitudinal (lateral) wind force acting on vehicle

Fz,i tire load (normal force) on i-th tire

Fz,j vertical axle load (normal force) on j-th axle

ΔFz,φ,j tire load variation due to bay

g gravitational acceleration

G weight force of vehicle

Gs weighting factor for combined tire forces

h index of particles for particle filter

hCG height of vehicle’s COG over road surface

hIC,φ height of instantaneous centre of roll movement

hIC,θ height of instantaneous centre of pitch movement

i wheel index, i = {fl, fr, rl, rr}
Ii moment of inertia of i-th wheel around yi axis

Iz moment of inertia of vehicle around zb axis

ICR instantaneous centre of rotation

j axle index, j = {f, r}
J Jacobian matrix of vehicle state

k discrete time step

k vector of gyroscopic and centrifugal forces acting on vehicle

k|sx=0 initial slip slope (at sx = 0)

Kx(y) longitudinal (lateral) parameter of TMsimple tire model
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l index for state variables

lf distance from vehicle’s COG to front axle

lr distance from vehicle’s COG to rear axle

lwb vehicle’s wheel base

L length of contact patch in longitudinal direction

m index for sensitivity parameters

mb vehicle mass

mw wheel mass

M mass and inertia matrix of vehicle

MD,i driving and braking torque of i-th wheel

Meng engine torque

MR,i rolling resistance torque of i-th wheel

n number of elements in state variable vector z

N number of particles with index h

Nk number of discrete time steps

o number of elements in sensitivity parameter vector c

p sensitivity vector

pB braking pressure

pl sensitivity variable with index l

pj percentage of yaw moment supported by j-th axle

pv,x sensitivity of vx with respect to μmax

pv,y sensitivity of vy with respect to μmax
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q vector of vehicle’s applied forces

qh relative measurement likelihood function
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r0 unloaded tire radius

re,i effective tire radius (e.g. dynamic tire radius) of i-th wheel

rl index of rear left wheel

rr,i reference effective tire radius of i-th wheel

rS static tire radius

rr index of rear right wheel

rx(y),i longitudinal (lateral) distance from Ob to the i-th wheel centre C
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rα lateral tire relaxation length

Rmin turning circle of vehicle

s combined slip vector

sx(y),i longitudinal (lateral) slip in contact patch of i-th wheel

sα lateral slip (alternative definition for lateral tire dynamics,

see Appendix B.2)

S covariance matrix

t time

Δt time interval between two discrete time steps k + 1 and k

tj track width of j-th axle

T measurement time (radar sensor)

Tg
b rotation matrix from vehicle-fixed to global coordinate system

Tb
i rotation matrix from i-th wheel-fixed to vehicle-fixed coordinate system

TTC time-to-collision

u exemplary variable

u control vector

Ue effective rolling circumference of tire

v vehicle’s velocity at COG

vC,i translational velocity of i-th wheel centre C

vC,x(y) longitudinal (lateral) component of velocity of wheel centre C

vS sliding velocity in contact patch

vS,x(y) longitudinal (lateral) component of sliding velocity in contact patch

vx vehicle’s longitudinal velocity at COG

vx,0 initial longitudinal velocity of vehicle at COG

v̄x(y) vehicle’s normalised longitudinal (lateral) velocity

vmax
x vehicle’s maximum longitudinal velocity

Δvx relative velocity between vehicle and obstacle

Δv̄x resolution of Δvx measurement with radar sensor

vy vehicle’s lateral velocity at COG

w exemplary variable

wref reference value from reference simulation

wvar value from parameter variation

W wheel contact point according to ISO 8855, [fSI11]
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Δw mean relative deviation of w between reference simulation and parameter variation

x(k) state vector at discrete time step k

x̂(k) estimate of state vector at discrete time step k

xR,y lateral relaxation length of tire

X slip quantity (longitudinal or lateral)

gy position vector of vehicle’s COG in global coordinate system

ye lateral tire deflection

Y tire force quantity (longitudinal or lateral)

Y1(2) parameters of TMsimple tire model

Ymax peak value of tire characteristics

Y∞ saturation value of tire characteristics

bz state vector of vehicle in vehicle-fixed coordinate system

Δz vertical deflection of tire

zb,i body-fixed vertical coordinate in quarter vehicle model

zi vertical displacement of i-th wheel

zl state variable of vehicle with index l

ΔzS,i spring deflection of i-th wheel

zR,i road-fixed vertical coordinate

αi lateral slip angle at i-th wheel contact point W 3

β side slip angle in vehicle’s COG

Δβ additional side slip angle at bay > 0

Δβmax maximum value of Δβ

Δβ mean relative deviation of β

β0 side slip angle at |bay|→ 0

βmax
0 maximum value of β0

βr slope of road profile

βs combined tire force angle

δi wheel steering angle of i-th wheel

δS steering wheel angle

ΔδS mean relative deviation of δS

Δφw phase shift between wref and wvar

ψ yaw angle of vehicle in global coordinate system

3cf. Figure 2.2
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μ coefficient of friction between tire and road

μ̂ friction potential estimate

Δμ tolerable deviation of friction potential estimate

μ0 nominal coefficient of friction in tire test bench measurements

μmax friction potential (Maximum coefficient of friction between tire and road)

μref reference (real) value of the friction potential

μD demanded coefficient of friction between tire and road

μmax
G combined friction potential on vehicle level (global)

μmax
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μL,x(y) local coefficient of friction in longitudinal (lateral) direction

μS safety margin (Difference between μmax and μD)

μx(y) coefficient of friction in longitudinal (lateral) direction between tire and road

σz local normal stress in tire contact patch

τ time function for lateral tire dynamics

τM tolerable time delay of friction potential estimate

τx(y) local shear stress in contact patch in longitudinal (lateral) direction

τmax
x(y) maximum local shear stress in contact patch in longitudinal (lateral) direction

ωi rotational speed of i-th wheel

ω̄i normalised speed of i-th wheel

bωx vehicle body rotational speed around xb axis

bωy vehicle body rotational speed around yb axis

bωz vehicle body rotational speed around zb axis
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ρa air density
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1. Introduction

In the year 2000, more than 40,000 people died and 1.7 million people were injured in

road traffic in the European Union. These numbers and the related societal consequences

have led the European Commission to define its long term zero-vision, setting the goal

of reducing all fatalities to a value close to zero by 2050, [Off01]. In 2009, the European

Commission resolved to halve the number of fatalities by 2020 as an additional measure,

[Off11]. To reach these ambitious goals, countermeasures are necessary that focus on

the complex interactions between driver, vehicle and environment and also consider the

different levels of traffic safety, see Sections 1.1 and 1.2. To develop countermeasures,

traffic research is necessary.

1.1. Significance of friction potential for traffic safety

In the year 2011, approx. 9 % of all accidents involving personal injury in Germany were

related to the road surface and lighting conditions, [Deu12]. Poor road conditions lead to

a reduced maximum coefficient of friction between tire and road, which is referred to as

friction potential. In most cases, road surface conditions themselves were not the main

accident cause. Improper driving, e.g. exceeding speed limits or failing to observe the

priority rules in traffic, and improper pedestrian behaviour were identified as the cause

in 90 % of accidents. In combination with the aformentioned cases of reduced friction

potential, these improper driving behaviours could often not be corrected in time and

resulted in accidents. In comparison, technical or maintenance faults of vehicles were

responsible for only 0.7 % of accidents according to the same statistical source, [Deu12].

When considering only severe accidents, the relative number of motorcycles and bi-

cycles involved in accidents on slippery roads1 is lower than the overall average, see

Figure 1.1. In contrast, the percentage of involvement for pedestrians and drivers of

mopeds is higher than average under these conditions. A possible explanation may be

1Three road condition categories are used in [Deu12] that can be described as dry, slippery and very
slippery (e.g. ice and snow). In this section, slippery refers to a surface with reduced friction due to rain
or other impurities on the road, such as leaked oil, leaves or washed-up loam.
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that many pedestrians and moped drivers cannot postpone the planned journey because

of the weather and are also limited in selecting alternative means of transport. 27 % of

all accidents involving personal injuries and passenger cars occurred on slippery roads.

Ice and/or snow was responsible in 4.8 % of all cases. When considering all slightly

injured traffic participants, these numbers are slightly lower. An analysis of the traf-

fic accidents in terms of the lighting conditions shows similar tendencies. There is no

significant relationship between snowy/icy road condition and injury severity except for

severe accidents involving material damage, see Figure 1.2. The percentage of people

killed is slightly higher on slippery roads.
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Figure 1.1.: Influence of road condition on accidents in relative numbers by selected
categories of road users for a) severely injured people, and b) slightly injured
people, based on Destatis, [Deu12]. Two of three road condition categories
are shown; the remainder of the accidents occurred on dry roads.

The high number of passenger car accidents caused by bad road conditions is partly

due to inadequate driver adaptation of the longitudinal speed under such road condi-

tions. Studies show that drivers adapt the speed, but not enough to avoid collisions or

unstable vehicle conditions when braking or cornering, e.g. [SS90], [Saa93] and [Roi93]

as cited in [WWO97]. The drivers must use optical, acoustic and haptic cues to esti-

mate the friction potential during driving since no direct measure is available. Heinijoki

showed that non-expert drivers have difficulties gauging the current road conditions,

especially for low friction potentials, [Hei94] as cited in [WA01].

These investigations highlight the importance of assisting the driver. A robust and

reliable estimate of the friction potential is assumed to be one effective countermeasure

2
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Figure 1.2.: Influence of road condition on injury severity and material damage in relative
numbers, based on [Deu12]. Two of the three road condition categories are
shown; the remainder of the accidents occurred under dry road conditions.

for reducing the number of accidents.

1.2. Traffic safety measures

One common classification of traffic safety measures distinguishes between primary, sec-

ondary and tertiary safety systems. Primary safety includes all safety systems that seek

to prevent a collision or, if not possible, reduce the severity of the accident. In contrast,

secondary safety includes all measures designed to reduce the injury severity for all road

users involved when collision is imminent. Finally, tertiary safety refers to post-crash

treatment, including measures such as first-aid education for all drivers, [Kra08, p.3].

Road traffic is determined by the complex interaction of three elements - driver, vehicle

and environment. Knowledge of the friction potential can contribute on different levels

of safety and road traffic elements, see Fig. 1.3.

In primary safety, all elements are affected by the friction potential. With training,

non-expert drivers can learn to estimate the road condition and the stabilisation of the

vehicle on slippery roads. Car-to-x communication systems (C2x), see Section 2.2.3, and

road signs that adapt to road conditions are examples of ways in which traffic safety can

be improved on the environmental level. Concerning the vehicle level, the information

can be used to warn the driver when the friction potential is very low (e.g. under icy or

3
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Figure 1.3.: Aspects of traffic safety and examples of safety measures, adapted from
[Eic11, p.41] and [Kra08, p.3]. The knowledge of the friction potential can
contribute to the areas highlighted in light gray.

snowy conditions). Also, a warning device can be activated when the safety margin be-

tween the current driving state and the physically achievable maximum has fallen below

a safety threshold, [Hol92, p.65-66]. The friction potential can also be used to improve

specific advanced driver assistance systems (ADAS) or vehicle dynamics controls (VDC).

In secondary safety, only the vehicle level can be adapted, e.g. with airbag pre-firing. In

case of imminent collision, the airbags can be pre-fired before the collision takes place

in order to reduce the head injury risk for the occupants, [Eic11, p.162-163]. The fric-

tion potential must be known in order to detect an imminent collision accurately and

to predict the possible trajectories between time of detection and the detected collision,

see Section 1.3.

The accuracy requirements for estimating the friction potential are presumably low for
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driver warning. The acceptable accuracy of any estimate to be used for driver warning

depends on the type and urgency of the specific warning, [HG09]. For warnings that

require the driver to perfrom an action, the tolerance for a false intervention is very low.

This means, for example, that when a collision is imminent and the driver has to react in

order to avoid or mitigate the collision, the detection of the collision and the influencing

parameters have to be highly accurate. A decrease in the friction potential requires

the driver to be more attentive. In this case, false interventions are more tolerable

and hence the accuracy requirement is lower. A rough but reliable resolution of three

different friction potentials (high, slippery, very low) is already valuable to improve

traffic safety. Further investigation on the accuracy requirements for an estimate of the

friction potential that is used to adapt interventions on the vehicle level is shown in the

following section.

1.3. Advanced driver assistance systems and vehicle dynamics

controls

The driving process consists of a complex interaction between driver, vehicle and en-

vironment, see Figure 1.4. This interaction has to be considered in the intervention

strategies of ADAS and VDC. However, the intervention characteristics of ADAS and

VDC are very different, and hence the requirements also differ greatly.

According to Donges, the tasks of the driver consist of navigation, course planning

and stabilisation, [Don09]. In the navigation task, the driving route is chosen in or-

der to fulfill the purpose of the planned travel. Course planning is necessary in both

longitudinal and lateral direction and depend on the traffic conditions and the drivers’

preferences. Subtasks include selecting the longitudinal speed, distance to other traffic

participants and the vehicle’s position in the lane. In the stabilisation task, the driver

performs actions in order to adapt the actual vehicle reaction to the desired one. Sta-

bilisation tasks typically lie in the time range of 0.5 to 2 seconds ahead, whereas the

navigation task can begin up to several hours in advance and course planning starts

when the driver is able to perceive the environment which is in the range of one minute.

Typical anticipatory times for steering actions are within 1 second, whereby these times

are normally higher for longitudinal manouevres, [Don09]. Drivers receive between 80

and 90 % of the driving-relevant information through visual cues, [AB09]. The lack of

visual cues also explains the higher risk for accidents at night, [KH09].
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driver

actuated
vehicle

environment

stabilisation
course

planning
navigation

VDC
warning
ADAS

intervening
ADAS

driving tasks

vehicle

Figure 1.4.: Simplified representation of driving process including the elements driver,
vehicle and environment based on Niederkofler, [Nie11, p.106]. Warning
ADAS target the driver directly. Driver and intervening ADAS both un-
dertake driving tasks, requiring human machine interaction. VDC directly
actuate the vehicle on the stabilisation level, but do not necessarily require
interaction with the driver. Thus, the connection to this driving task is not
shown in this depiction.

In this work, the term VDC denotes all safety systems on the vehicle level that act

on the stabilisation level without a direct feedback loop including the driver. Therefore,

Figure 1.4 shows VDC as an internal closed loop of the vehicle. Controller outputs for

the actuators are calculated using vehicle dynamics state variables, in order to minimize

the difference between the nominal and actual values, [Ras09]. Many sources classify

VDC as a subgroup of ADAS, e.g. [WHW09a]. In the present thesis, ADAS denotes all

systems working on the navigation, course planning and stabilisation level, that directly

include the driver in a feedback loop. A strict differentiation in VDC and ADAS on

the stabilisation level is difficult. In general, ADAS can be divided into warning and

intervening systems. Here, it is assumed that ADAS include only warning systems on

the stabilisation level, whereas VDC include all intervening systems. This classification

is chosen to emphasise the different requirements on control variables within VDC and

ADAS which are discussed in Sections 1.3.2 and 1.3.3. For example, the requirements

for the estimates to be used within VDC are very high due to the time characteristics

and the safety-critical nature of VDC.
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Warning ADAS notify the driver, but do not directly influence the motion of the vehicle

like intervening ADAS do. Especially on the course planning level, information about

the environment (e.g. other traffic participants, road geometry) is required to identify

possible critical situations in advance. This leaves more time for a plausibility check of

estimates, if these are subject to control inputs for ADAS. Nevertheless, the requirements

for an estimate of the friction potential μmax depend on the specific application at the

vehicle level. In the following section, the potential ADAS and VDC that could be

improved by adapting their strategies to the current friction potential are identified

first, see Section 1.3.1. The next sections then discuss the specific requirements for an

online estimate of the friction potential to be applied in specific ADAS, see Section 1.3.2,

and in specific VDC, see Section 1.3.3. The requirements cover the tolerable time delay

τM before a robust estimate is available and the tolerable deviation Δμ. The tolerable

time delay is a theoretical value and considers the computational time of the friction

potential in general, but also for changing states of either the road condition or the

vehicle’s state (e.g. from free rolling to accelerating). The relation between an estimate

μ̂ and an ideal value μref is given by

μ̂ = μref ±Δμ. (1.1)

1.3.1. Significance of friction potential for ADAS and VDC

Eichberger, Tomasch et al. evaluated the potential benefit of specific ADAS and VDC

for preventing or mitigating accidents in their RCS-TUG Study, [ETR+10]. They per-

formed a case-by-case analysis within database for 514 incidents of all 848 accidents in

Austria in 2003 in which people died. The basis of this investigation was ZEDATU2, a

central database in Austria for in-depth analysis of road accidents with a focus on fatal

car accidents, [TS06]. Experts reconstructed the collision phase using the commercial

software PC Crash, [SM01]. With the data from the collision phase, numerical recon-

struction of the pre-collision phase was possible. Altogether, the effect of 43 warning and

intervening systems on the simulated real life scenarios were investigated. The benefit

of each system was determined using both the number of accidents prevented and the

cases where fatalities were avoided with a high probability, see Eichberger for a detailed

explanation, [ETR+10, p.83-97].

Figure 1.5 shows the top ten systems identified in Eichberger et al. for avoiding or

2Abbreviation in German for Zentrale Datenbank zur Tiefenanalyse von Verkehrsunfällen
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Figure 1.5.: Potential benefit for avoiding fatalities for different road user groups for top
ten systems identified by Eichberger et al. in TUG-RCS study, [ETR+10]

mitigating accidents, [ETR+10]. Lane keeping assistant (LKS), automated highway sys-

tems (AuHi)3 and speed limiting systems (SLS) that assist the driver in normal driving

states show a high benefit for traffic safety. Also, forward collision avoidance and mit-

igation systems such as collision warning system (CWS), evasive manoeuvre assistant

(EMA), automated emergency braking system (AEB) and intersection collision avoid-

ance systems (ICA) have a high potential. Since VDC includes electronic stability control

(ESC), one VDC is also in the top ten. Finally, driver-condition-related systems such

as driver vigilance monitoring (DVM) and alcohol detection and interlock systems (AI)

are among the top ten systems in this study. For a vehicle equipped with all top ten

systems, the potential benefit for preventing accidents is 59.2 % and of preventing fatal-

ities is 14.3 %, see Figure 1.6. These potential benefits can only be attained under the

assumption that drivers do not compensate for the ADAS support by taking higher risks.

The systems that could be improved by adapting to the friction potential are indicated

in bold print in Figure 1.5. This investigation provided the basis for the selection of sys-

3Here, AuHi comprise systems for autonomous driving on highways, i.e. longitudinal and lateral
vehicle guidance, cf. [ETR+10, p.102]
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Figure 1.6.: Potential benefit of friction-relevant systems of TUG-RCS study for avoiding
fatalities in all investigated cases and vehicle types according to Lex et al.,
[LE11]

tems described in Sections 1.3.2 and 1.3.3. Lex and Eichberger repeated the investigation

of the potential benefit to traffic safety for those systems that could be improved by the

friction potential, [LE11]. The results show that a vehicle equipped with all friction

relevant safety systems could avoid 45.2 % of all accidents and 21.2 % of the fatalities,

see Figure 1.6. A vehicle equipped with only the top ten friction-relevant systems could

still avoid 44.9 % of the accidents and 20.8 % of the fatalities. Comparing the benefit of

44.9 % to the 59.2 % for all top ten systems indicates that the friction potential influ-

ences many of the systems that are relevant for enhancing traffic safety. Although not

directly proven, the additional benefit of adapting warning and intervention strategies

of the friction-relevant systems to the friction potential is assumed to be quite high, see

Sections 1.3.2 and 1.3.3.

1.3.2. Requirements for an estimate of the friction potential for ADAS

Although activation strategies vary considerably, the strategy often includes some of

the four phases presented below, see also Figure 1.7. In the prediction phase, ADAS

detect oncoming collisions that are imminent if the driver does not react. Model-based

approaches are used to predict possible collisions with a high probability. The number

of missed interventions must be kept low in order to maintain the driver’s acceptance of

the system, but false interventions must be prevented. When no collision is imminent,
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but one is detected anyway and the system intervenes, this false intervention can result

in severe accidents. For this reason, all subsequent phases are activated as late as pos-

sible, which leads to the so-called warning dilemma: with the validation time obtained,

the probability of the predicted collision parameters in the pre-collision phase can be

increased. But on the other hand, the driver warning is more effective the sooner it is

initiated, [HG09].

Two factors are crucial for predicting a collision and therefore the activation times for

the different phases, [Eic11, p.120-127]. These two factors describe the possible courses

of the traffic participants involved in the pre-collision phase which are necessary to pre-

dict the collision parameters. The first factor is the drivers’ reaction, e.g. whether there

is operation of steering wheel, brakes or throttle and, in case of an operation, how strong

the driver’s input is. The second factor is the friction potential that limits the maximum

transmittable horizontal tire forces and therefore the possible motion of the vehicles in

the horizontal plane. Depending on the warning strategy, the driver is being alerted

to be either attentive or to set an action in the warning phase by acoustic, haptic or

visual signals. The transition between warning and intervention is herein referred to as

decision phase, as the course of action is chosen. Depending on the probability of the

predicted collision, an intervention has to be omitted (e.g. when the collision probability

is low) or activated. Some systems also allow for different intervention strategies, such

as braking or steering around an obstacle as shown in Figure 1.7. Whether it is optimal

to brake or to steer in order to avoid a collision depends strongly on the friction po-

tential. In addition, a system must take into account both the relative velocity and the

possibility of steering around an object, which depends on the road type and other traf-

fic participants. Finally, the intervention phase starts, provided that the driver has still

not reacted. This phase can consist of several stages, see e.g. for an AEB in Section 1.3.2.

Current systems are developed to fulfill the requirements of collision mitigation and

avoidance on dry roads. However, many ADAS show their highest potential for avoiding

accidents or reducing the injury severity on low-friction surfaces. Thus, investigations

have proven that the activation times of an EMA can be significantly increased on

low-friction surfaces when the friction potential is known because interventions can be

started earlier, [NLER11] and [LRNE13]. A combined consideration of driver behaviour

and vehicle dynamics results in the following thresholds for activation times, [Win09a].

When an imminent collision is detected, the theoretical time until the obstacle is reached,

10
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Figure 1.7.: Activation strategy for ADAS shown for a combined evasive and emergency
braking assistant consisting of the four phases of collision detection, warning,
decision and intervention, based on [Nie11, p.110] and [Har11]

known as the time-to-collision (TTC), is given for steady state motion by

TTC =
dW
Δvx

, (1.2)

with the warning distance dW to the obstacle and the relative velocity Δvx between ve-

hicle and obstacle, [Eic11, p.127]. In frontal collisions on dry roads, initiating an evasive

manouevre at TTC 0.6 s is not enough to avoid a collision due to the physical limits.

The driver’s limit for an intervention is already at a TTC of about 1 s, but this situation

is perceived as very risky by non-expert drivers and thus only of theoretical importance.

A non-hazardous situation is perceived with a TTC greater than 1.6 s. Depending on

the actual friction potential μ, these activation times for braking manoeuvres have to be

increased by 1
μ , according to Winner, [Win09a]. For μ = 0.2, the activation times have

to be 5 times higher than for dry roads of about μ = 1. For an evasive manoeuvre, the

activation times have to be adapted by 1√
μ , according to Winner, [Win09a]. The follow-

ing section discusses the requirements for estimating the friction potential for theoretical
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application in an AEB. This system has been proven to have high potential benefit for

avoiding and mitigating accidents, see Section 1.3.1. In addition, the requirements for

pre-firing airbags are shown as an example for tertiary safety systems.

Requirements for automated emergency braking systems

Investigations have shown that many rear-end crashes happen because drivers do not

brake hard enough, react too late or fail to react, [Bre09]. Braking assist systems (BA)

assist drivers who do not brake hard enough by increasing the braking pressure when

the braking pedal is actuated with a high velocity. In contrast, AEB systems come into

play when drivers react too late or fail too react. The AEB intervention phase consists

of two stages. In the first stage, a partial braking manoeuvre is initiated. The vehicle

speed is reduced while drivers are still offered the chance to provide their own interven-

tion. If the driver fails to react, a full braking manoeuvre is initiated in the second stage.

The required accuracy depends on the relative velocity between the vehicles, the road

condition and the braking system conditions. When the activation times of an AEB

are adapted by an underestimated friction potential, the calculated braking distance

is longer than the actual value and the intervention is started earlier. The collision is

avoided, but valuable activation time is lost for collision validation, and driver accep-

tance of the system may therefore decrease. When the friction potential is overestimated,

the collision cannot be avoided which results in an impact. Lex et al. determined that

an impact speed of 4.2 m/s is tolerable in terms of pedestrian safety and vehicle re-

pairability, [LKE13a]. Figure 1.8 shows the requirements for an estimate of the friction

potential to be applied in an AEB when approaching a standstill object. The collision

model uses Newton’s equation of motion for a single mass point with one single degree

of freedom in the longitudinal direction. Such simple models are often used in published

AEB warning algorithms, [Eic11, p.120].

Section 6.5 discusses the estimation algorithm for the friction potential developed in

this thesis in the context of requirements for an AEB that are described here. For

this algorithm, another representation of these requirements is used, which shows the

tolerable deviation Δμ versus the real value μref; see Figure 6.16.
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Figure 1.8.: Tolerable deviation Δμ versus tolerable time delay τM of the friction po-
tential estimate when applied in an AEB to keep the impact speed below
4.2 m/s when approaching a standstill object and assuming hard braking
(near physical limits), based on Lex et al., [LKE13a]. These requirements
depend on the initial velocity and the actual value μref of the friction poten-
tial, shown here for μref = 1 (left) and μref = 0.2 (right).

Requirements for pre-firing airbag

With this system, the airbag is deployed before the collision occurs. This allows less ag-

gressive deployment and couples the occupants’ heads to the decelerating vehicle already

in the pre-collision phase. These measures can decrease the probability of head injuries,

according to Eichberger, [Eic11, p.162-163]. Nevertheless, it has to be assured that the

predicted collision is imminent in order to avoid false firing. Also, the two parameters

stopping distance and impact speed must be calculated accurately in order to derive the

necessary pre-fire times. Without information on the friction potential and the driver

input, these two parameters cannot be predicted accurately and the pre-fire time can-

not be calculated. For a friction potential of 0.8, the theoretically required accuracy of
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the velocity prediction for a suggested pre-fire time of 80 ms is ± 0.94 m/s2, according

to Eichberger, [Eic11, p.115-120]. As the pre-collision scenario is the same for airbag

pre-firing and AEB, the requirements for the accuracy Δμ and time delay τM for an

estimate of the friction potential are the same as in Figure 1.8.

1.3.3. Requirements for an estimate of the friction potential for VDC

The requirements for an estimate of the friction potential to be applied in the systems

ABS, ESC and active front steering (AFS) were thoroughly investigated and presented in

the work of Weber, [Web04]. Straight braking, lane change and curve braking manoeu-

vres were evaluated on even road surface. It was assumed that the mounted tires and

the corresponding tire model parameters were known (not including the current road

condition). Table 1.1 shows the requirements determined by Weber, [Web05]. This in-

Table 1.1.: Requirements on friction potential estimate for different manoeuvres con-
cerning tolerable deviation Δμ and maximum time delay τM , according to
Weber, [Web05].

Manoeuvre Tolerable Deviation Δμ Tolerable Time Delay τM

Full braking straight -0.03 - 0.08 26 ms

Lane change -0.08 - 0.03 -

Full braking in a curve -0.02 - 0.02 10 ms

vestigation also showed that the highest benefit of an adaptation to the friction potential

was achieved at high longitudinal speeds and low friction potentials.

1.4. Thesis contribution and outline

The functionality of today’s vehicles is limited because the current friction potential be-

tween road and tires during driving is not known. With increasing automation of driving

tasks, information on the current friction potential gets more important. The aim of this

thesis is to present an algorithm to estimate the friction potential between tire and road.

Within this work, only vehicle-based solutions are considered (e.g. no C2x systems),

and, among these, only those methods that consider measurements of the vehicle’s dy-

namic reaction (e.g. no optical sensors). Although application for other vehicle types

is not excluded, the focus is the applicability for passenger cars. An automated emer-

gency braking system (AEB) is chosen as an application case for the developed algorithm.
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In particular, the aim of this thesis is to answer the following research questions:

• Which state variables are sensitive to the friction potential in different driving

states?

• Based on the identified set of sensitive variables, is it possible to develop an esti-

mation algorithm for the friction potential to meet the accuracy and time delay

requirements for adapting the intervention strategies of an AEB (as an exemplary

ADAS)?

In order to answer these research questions, the present thesis is structured as follows:

Chapter 1 provides an overview on the significance of the friction potential for traf-

fic safety and discusses the adaptation of ADAS and VDC activation strategies to the

current road conditions. Finally, AEB systems are selected as a test case, and the re-

quirements concerning the tolerable deviation of an estimate of the friction potential to

be used within this system are presented.

Chapter 2 begins with a definition of the friction potential and then discusses the

relevant mechanisms, including rubber physics and the tire/road contact. An overview

on the state of the art on friction estimation is also provided.

Chapter 3 shows the derivation of the necessary complexity of the vehicle and tire

model to describe the tire/road contact. These models are then described in detail, as

they are used for the sensitivity analysis in Chapter 4 and parts of the models are also

used within the observer in Chapter 5.

Chapter 4 presents the sensitivity analysis used to answer the first research ques-

tion. After a description of the method used, the results are presented which answer

the question about which variables are affected the most by the friction potential. This

part of the thesis contributes to the systematic understanding of the influence of the

friction potential on a vehicle’s dynamics states. Thus, variables are identified that are

potentially suitable for use in identifying the friction potential in an observer model.

Chapter 5 describes a non-linear observer which is used to estimate the friction po-

tential based on the sensor signals of an ESC-equipped vehicle. After a short description

of particle filtering, the relevant observer model is presented, which was developed based

15



1 Introduction

on the results from the sensitivity analysis in Chapter 4. This part of the thesis con-

tributes a novel method for estimating the friction potential using almost exclusively

ESC sensors.

Chapter 6 then compares the results of friction estimation using the non-linear ob-

server proposed in Chapter 5 with real vehicle measurements. The conditions investi-

gated include high and low-friction surfaces, driving and braking conditions and different

longitudinal accelerations, as well as μ split and μ step conditions. Different strategies

for re-initialising the particles used in the particle filter after convergence are also dis-

cussed.

Finally, Chapter 7 provides an overview of the main findings and a summary of the

sections in this thesis.
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2. Estimation of the friction potential

The first part of this chapter describes the physical effects in the contact patch between

tire and road that mainly influence the friction-based force transmission and the friction

potential. The friction potential is described on different levels of scale (e.g. in the

contact patch or globally for the vehicle) and factors that influence the friction potential

are discussed. The second part of this chapter presents the state of the art for estimating

the road condition. This includes a short overview of cause-based and effect-based

methods, as well as infrastructural systems and sensorfusion. Finally, the requirements

for an estimation algorithm are presented.

2.1. Definition of the friction potential

The force transmission between tire and road depends on the frictional behaviour in the

contact patch. The coefficient of friction between rubber and asphalt results from com-

plex mechanisms, which themselves depend on several parameters and variables. Most of

these influences show non-linear behaviour on the coefficient of friction, [WHW02]. The

relation with the two main influences, namely the normal force and the sliding velocity,

are described within this section. The coefficient of friction μ can be used to charac-

terise the grip when it is treated as a direction-dependent variable with different values

for μ for the longitudinal and lateral direction. Generally, the coefficient of friction μ is

defined as

μ =
FF

FN
(2.1)

with the friction force FF acting in the contact plane and the normal force FN acting

on the contact plane, [Bac96, p.8]. The maximum achievable coefficients of friction

μmax between tire and road limit the maximum transferable horizontal tire forces. In

this work, μmax is referred to as friction potential. Introducing Fmax
F as the maximum

transferable force in the contact plane, the friction potential reads

μmax =
Fmax
F

FN
. (2.2)



2 Estimation of the friction potential

Concerning tire rubber physics, the conditions of both rolling and sliding of the tire

contact patch on the road surface have to be taken into account simultaneously. The

friction effects for pure sliding of rubber provide a basis for understanding the complex

friction characteristics, see Section 2.1.2. For a rolling tire, geometric and kinematic

effects also have to be considered, see Section 2.1.2.

2.1.1. Rubber physics

Rubber friction, which depends on the internal friction in the rubber material, shows

viscous and elastic behaviour, [Pop09]. Pure elastic behaviour is described by Hooke’s

Law, which gives a linear relation between stress and strain. Ideal elastic materials

accumulate deformation energy and deliver it completely when unloaded, while ideal

viscous materials transform all deformation energy into thermal energy. For materials

with ideal viscous behaviour, the complex shear modulus for Newtonian fluids describes

the relation between shear stress and shear velocity. For visco-elastic materials such as

rubber, the deformation energy is partially stored and partially dissipated, [Bac96, p.13].

Effects such as the temperature dependence on rubber friction as well as its dependence

of the velocity in the contact surface correlate with the complex shear modulus, [Pop09].

Friction components of sliding rubber

The friction force for sliding rubber is composed of the force components caused by ad-

hesion, hysteresis, viscosity and cohesion; as summarized in Bachmann, [Bac96, p.16-24].

All components do not necessarily have to be present at the same time.

v
S

F
F

Hysteresis

v
S

F
F

Adhesion

dF
hn

Figure 2.1.: Main friction mechanisms adhesion (left) and hysteresis (right) based on
Schramm with the resulting friction force FF , which is pointed in the oppo-
site direction of the sliding velocity vS , and the element dFhn of the hysteresis
force projected to the plane of motion, [SHB10].
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2 Estimation of the friction potential

On a smooth, even, dry road, the adhesion component has the main influence on the

friction force, see Figure 2.1 (left). It is caused by molecular bonds between the friction

partners and strongly depends on intermediary layers such as water or snow, [Bac98,

p.4]. The pressure distribution of rubber material sliding over irregularities caused by

the roughness of the road is symmetrical for low sliding speeds vS . With higher sliding

speeds, the relaxation of the rubber is not fast enough due to internal damping. Small

areas lift from the road surface, which results in an uneven pressure distribution, see

Figure 2.1, right. The component of the internal friction force FF projected to the plane

of motion, which is called the hysteresis component (see example of element dFhn in

Figure 2.1), superposes the friction force in the contact surface. In addition to the sliding

speed, it also depends on the geometry of the road and the visco-elastic properties of the

rubber. Unlike adhesion, this component is insensitive to the presence of intermediary

layers, [Bac96, p.22]. The last two components only occur under certain circumstances.

Viscosity components, which are only relevant when thick intermediary liquid layers are

present, occur due to shear effects. Cohesion forces appear in cases of abrasion and tire

wear. The surface of the rubber material increases, leading to friction loss, [Bac96, p.4].

2.1.2. Friction potential of the rotating tire

Friction-based force transmission requires a relative motion, or the tendency to motion,

between the friction partners. In the case of tire road friction, the relevant relative

motion is the sliding velocity vS in the contact patch. In the longitudinal direction, it

is given by ω · re − vW,x with the effective tire radius re, the wheel’s rotational speed ω

and the longitudinal velocity component vW,x in the contact patch. One frequently used

value of the longitudinal sliding speed is described by the longitudinal slip sx and reads

sx =

⎧⎪⎪⎨⎪⎪⎩
ω·re−vW,x

|vW,x| vW,x > re · ω
ω·re−vW,x

|ω|·re vW,x < re · ω
0 vW,x = re · ω.

(2.3)

In the lateral direction, the relevant sliding velocity is given by the lateral slip angle

α = arctan

(
vW,y

vW,x

)
(2.4)

which also includes the lateral component vW,y of the velocity in the contact patch.

Figure 2.2 shows a graphical explanation of re, ω, vW,x and vW,y and the velocity vC in

the wheel centre C.
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2 Estimation of the friction potential
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vS,xx
W,i

vW vS
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W

vS,y

y
W,i

Figure 2.2.: Kinematic wheel quantities of the i-th wheel coordinate system
{Oi, xi, yi, zi} with its origin in the wheel centre C according to ISO 8855,
[fSI11]; the graphic depiction is based on Hirschberg, [HW12, p.16]. The
velocity in the contact point W between tire and road is described by its
components vW,x and vW,y. The components vS,x and vS,y of the sliding ve-
locity vS differ from vW by ω · re. The effective tire radius re is the distance
between the wheel centre C and the instantaneous centre of rotation ICR.
In addition, the unloaded tire radius r0, the static tire radius rS , the wheel
speed ω and the lateral slip angle α are shown.

As shown in Equation 2.3, for forward driving the conditions braking (−1 < sx < 0)

and accelerating (0 < sx < 1) have to be distinguished for a slipping tire. As previously

mentioned, slip is necessary to transfer friction forces. Longitudinal slip can be divided

into two effects: slip created by sliding of the rubber on the road surface and slip that oc-

curs due to the deformation of the tire profile elements when entering the contact patch.

For small slip values, deformation slip dominates, whereas with increasing slip, sliding

slip outweighs deformation slip. At pure rolling (sx ≈ 0), deformation slip is present

when tire profile elements enter or exit the contact patch, see next section. For pure

sliding (sx ∼ ± 1), the effects discussed in Section 2.1.1 dominate. In this condition, the

20



2 Estimation of the friction potential

sliding speed is the same for the whole contact patch.

Typical longitudinal and lateral characteristics of the coefficient of friction μ between

tire and road are shown in Figure 2.3. For small slip variables sx and α, μ increases

linearly. With increasing slip, μ increases degressively up to the maximum μmax which is

defined in Equation 2.2, until it slightly decreases and reaches saturation. In non-critical

driving states, vehicles travel in the lower slip regions of Figure 2.3. The difference

between the instantaneous or demanded coefficient of friction μD in the current driving

states and the available μmax can be defined as the safety margin μS .

-20 -15 -10 -5 0 5 10 15 20

Slip angle α in degrees
-40 -30 -20 -10 0 10 20 30 40

Longitudinal slip s
x
 in %

μ
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μ x+
max

μD

μ x-
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μy
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μD

μ
S,x

μ
S,y

μ
x
=
F

x
/F

z

Figure 2.3.: Characteristics of utilised longitudinal and lateral coefficients of friction μx

(left) and μy (right) for a constant normal force, longitudinal velocity vC,x,
temperature and inflation pressure. The difference between a currently de-
manded μD and the friction potential μmax is the safety margin μS .

Superposition of shear stresses and rolling resistance

The values of the friction potentials for braking and accelerating may differ. In standstill,

the tire’s toroid form is flattened under a load, introducing shear stresses in the contact

patch. They superpose the longitudinal shear stresses caused by acceleration and braking

forces in the contact patch, see Figure 2.4. Considering the vertical pressure distribution

in the contact patch when the resulting force is before the centre plane of the tire, the

friction potential for accelerating is generally higher than that for braking, [Mun12, H2

p.34]. On a rolling tire, the asymmetric pressure distribution in the contact patch also

causes a resistance torque, [MW04, p.18], which has to be compensated.
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2 Estimation of the friction potential
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Figure 2.4.: Longitudinal shear stress τx in the contact patch between tire and road with
length L due to: I. toroid flattening, II. acceleration/deceleration and III.
superposition of both conditions, based on Mundl, [Mun12, H2 p.34]

Combined friction potential

Figure 2.5 shows a representation of the friction potential for combined slip based on the

Krempel diagram. In the Krempel diagram, the lateral tire forces are shown with respect

to the longitudinal tire forces for a constant normal force, [HE11, p.62]. The combined

friction potential consists of the maximum combined tire forces (i.e. the outer limits of

the Krempel diagram) divided by the normal force. This representation is connected

to Kamm’s circle for μmax
x = μmax

y , but also considers different friction potentials for

braking, accelerating and cornering. Figure 2.5 shows that in the case of combined

horizontal tire forces acting on the contact patch, the available friction potential only

decreases in either the longitudinal or the lateral direction.

Friction potential on wheel level

The effects mentioned for sliding and slipping rubber are local effects in the contact

patch. According to Roth, [Rot92, p.8-10,13], the behaviour of the overall system can be

described as the sum of these local effects, i.e. the integral of the local effects over the
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2 Estimation of the friction potential
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Figure 2.5.: Schematic representation of the combined friction potential based on the
outer limits of a Krempel diagram, based on Heißing et al., [HE11, p.62].
The absolute value of μmax

x− is higher than that of μmax
x+ when considering the

vehicle’s different braking, acceleration and cornering capabilities.

effective surface. This consideration applies to local views of the contact patch as well as

to global views of one wheel, one axle or a vehicle. The smallest level of scale concerning

friction-based force transmission within this thesis are local effects in the contact patch,

which are related to the local shear stresses τx and τy and the normal stress σz acting

in vertical direction by

μL,x =
τx
σz

and μL,y =
τy
σz

, (2.5)

cf. [Rot92, p.13]. These local coefficients of friction μL,x and μL,y are related to a friction

coefficient μx measurable for a whole wheel by the effective friction area Ae. The friction

coefficient μ and the friction potential μmax for one whole wheel are given by

μx =
Fx

Fz
, (2.6)

μmax
x =

Fmax
x

Fz
(2.7)

with the longitudinal tire force Fx and the vertical tire force Fz. Accordingly, the coeffi-

cient of friction μy in the lateral direction and its friction potential μmax
y are calculated

with the lateral tire force Fy. Nevertheless, even on a free rolling wheel, there are local

friction forces due to the shear stresses resulting from the effect shown in Figure 2.4.

Thus, although the whole wheel is not yet transmitting forces, the local coefficient of

friction is partially utilized (μL > 0 at μ = 0), [Rot92, p.13].
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2 Estimation of the friction potential

Friction potential on vehicle level

According to Weber, [Web04, p.18-19], the relation of the local friction potentials and

the global friction potentials for a vehicle with i = 1, .., 4 wheels in longitudinal and

lateral direction is given by

μmax
G,x =

1
4∑

i=1
Fz,i

·
4∑

i=1

μmax
x,i · Fz,i, (2.8)

μmax
G,y =

1
4∑

i=1
Fz,i

·
4∑

i=1

μmax
y,i · Fz,i. (2.9)

Analogously to Equation 2.8, axle-wise values of the friction potential could be defined.

One alternative way to calculate the global friction potential μmax
G can also be derived

from the vehicle reaction rather than the wheel’s friction potentials μmax
x,i . Excluding air,

rolling and climbing resistance, the global friction potentials can be described by the

maximum achievable accelerations ba
max
x and ba

max
y . Using the example of the longitu-

dinal direction, the friction potential then reads

μmax
G,x =

ba
max
x

g
, (2.10)

[Web04, p.28]. This representation directly shows the characteristics also given by the

Krempel ellipse in Figure 2.5. Without subscripts L or G, μmax is used for the friction

potential on wheel level.

2.1.3. Overview of relevant influencing factors

Several factors influence the friction potential. Bachmann conducted a comprehensive

literature review and found the relevant factors shown in Table 2.1, [Bac98, p.7-8]. Most

of these parameters are thoroughly discussed within the works of Bachmann, see [Bac96]

and [Bac98]. The parameters can be divided into tire, road, intermediary layer and ve-

hicle-dependent parameters.
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2 Estimation of the friction potential

Table 2.1.: Systematic overview of influences (parameters and variables) on the friction

potential for solid ground based on a literature review by Bachmann, [Bac98,

p.7-8].

Group of Influences Influence Sub-influence

Tire Type Tire carcass

Tire section

Width

Tire inflation pressure

Dimension

Tire tread Tread pattern design

Tread arc radius

Tread temperature

Tread pattern depth

Lamellation

Tread Material Filling rate

Filler

Glass temperature

Shore hardness

Adhesion- / hysteresis char.

Road Geometry Micro texture

Macro texture

Drainage capability

Road composition

Lane grooves

Banking

Surface Mineral supplements

Material mix

Temperature

Start condition

Stiffness

Traffic load (mech.)
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2 Estimation of the friction potential

Intermediary layers Type Dry friction

Water

Ice

Snow

Mud

Oil

Dirt

Depth of water film

Temperature

Density

Vehicle Speed

Tire forces & moments Vertical tire load

Wheel inclination Camber

Slip angle

Toe-In

Operating point of wheel Tire deflection

Combined slip (long. + lat.)

Superposition Long. and lateral tire forces

According to Roth, the road condition has by far the largest influence on the friction

potential, which thus can be used as a measure of the road condition, [Rot92, p.50], Sim-

ilarly, Bachmann mentions the road texture and the presence of water as the parameters

with the highest influence on the friction potential, [Bac98, p.13]. Figure 2.6 shows the

range of the friction potential for different road conditions shown in a literature research

by Barace, [Urd12, p.50-51].

In critical driving states, it is not only the road condition that is of interest, but

also the ability of a vehicle to accelerate, decelerate and/or corner. Important vehicle-

dependent parameters that influence the friction potential are the vertical tire load and

the vehicle’s longitudinal speed. For a given slip, the horizontal tire force increases in

a degressive way with the vertical tire load. This means that doubling the vertical tire

load results in a lower horizontal force than twice the horizontal tire force at Fz,i. As the
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Figure 2.6.: Left: Range for the longitudinal friction potentials μmax
x for different road

condition categories used in ZEDATU, [Urd12, p.51]. The representation is
based on a literature review by Barace, [Urd12, p.50-51]; see Appendix A for
additional information. Right: Qualitative representation of the coefficient
of friction μx displayed versus the longitudinal slip sx for different road
conditions based on Bachmann, [Bac98, p.60].

friction potential μmax is the quotient of the maximum horizontal force and the tire load

(see also Equation 2.2), μmax decreases with increasing tire load Fz due to its behaviour,

as described in Section 2.1.3. Figure 2.7 shows the declining dependence of the friction

potential on the tire load Fz. The influence of the longitudinal speed vx is shown in

Figure 2.8. On dry asphalt, the influence on the friction potential μmax
x may be excluded

within a certain velocity range vx ≤ 40 m/s2. However, for increasing longitudinal slip

values sx, the coefficient of friction μx decreases significantly with vx. On wet roads,

the friction potential shows dependence on vx. Other than on wet roads, μx decreases

evenly for all vx for increasing values of sx. Also, it has to be considered that the friction

potential decreases when both longitudinal and lateral tire forces are acting on the tire,

see Section 2.1.2.

Most of the tire-dependent parameters are influenced by the tire design and do not

change during driving. The exceptions are ageing and abrasion effects on a long-term

scale, and inflation pressure and tire tread temperature on a shorter time scale. The
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Figure 2.7.: Dependence of the friction potential μmax
x (left) and the coefficient of friction

μx (right) on the tire load Fz based on Hirschberg, [HW12, p.23].
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Figure 2.8.: Dependence of the friction potential μmax
x (left) and the coefficient of friction

μx (right) on the vehicle’s longitudinal speed vx for dry and wet asphalt,
based on Bachmann, [Bac98, p.95-96].

latter factors are influenced by the driver’s inputs. Decreasing inflation pressure has sim-

ilar effects on the friction potential as increasing tire load. Many estimation approaches

assume the tire characteristics to be known, e.g. [Web04, p.41, 49, 58], and further inves-

tigations have shown that knowledge of the tire characteristics increase the estimation
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2 Estimation of the friction potential

accuracy of the friction potential significantly, [LKE13a]. When the tire characteristics

are not known a priori (e.g. from measurements on a tire test bench), the tire character-

istics have to be identified using defined driving manoeuvres, as for example shown by

Kollreider, [Kol09, p.83-105], and Kerschbaumer et al., [KKP+10] or by e.g. using wheel

torque measurements as shown by Albinsson et al., [AFBJ14]. One disadvantage of tire

characteristics measured on different test benches is that the results vary significantly,

as shown by Zamow, [Zam95], and have to be adapted, e.g. [HPRS09]. Nevertheless, a

priori knowledge of the tire properties is assumed in the present work.

2.2. State of the art

In the last 30 years, extensive research has been conducted on the topic of determin-

ing friction potential. In addition to the efforts of individual institutions, Europe-wide

projects such as PROMETHEUS1 and FRICTI@N have made contributions to the iden-

tification of the friction potential to increase traffic safety. PROMETHEUS’ long-term

aim was to enable autonomous driving, wherein sensor-based adaptation to the current

road conditions was one sub-project. Environmental sensors and vehicle-reaction-based

approaches were developed within this project, see Sections 2.2.1 and 2.2.2. In the

FRICTI@N project, information about different existing sensors was used in a novel

sensorfusion system, see Section 2.2.4. Within the Intelligent Vehicle and Safety Sys-

tems programme, different algorithms to estimate the friction potential were developed

using optical sensors, force measurements and measurements of the vehicle’s dynamic

state, [ABC+07].

The existing approaches can be divided into methods that focus on causes that influ-

ence the value of the friction potential (i.e. cause-based approaches) and methods that

observe variables that are affected by the friction potential (i.e. effect-based approaches).

Both kinds of methods can utilize either signals from sensors that are mounted on the

vehicle or sensors that are part of road-side infrastructure, see Figure 2.9. Car-to-x com-

munication systems (C2x) are infrastructural systems, see Section 2.2.3. The current

road conditions are measured in-situ and sent wirelessly to the vehicle. Since infor-

mation about the road conditions is available before the vehicle travels on the road,

identification of the friction potential ahead of the vehicle is possible. However, since

the current tire conditions and driving states are not taken into account, it is not possible

to calculate the safety margin. The performance of vehicle-fixed environmental sensors

1PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety
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2 Estimation of the friction potential

depends on the vehicle’s longitudinal speed vx and the measurement range dM , see Fig-

ure 2.9. Often, extra sensors are necessary, which cause additional cost and maintenance

efforts. Sensors that measure the vehicle reactions incorporate the current vehicle condi-

tion and thus enable the calculation of the safety margin. They cannot deliver predictive

estimates, as they require a vehicle reaction, and they may or may not cause additional

costs, depending on the kind of sensor and the accuracy needed. A trade-off between

robustness, accuracy and time delay has to be negotiated for all vehicle-fixed methods.

!

I

v
x

v
x

d
M

Figure 2.9.: Identification of the friction potential using (top) car-to-x (C2x) commu-
nication systems such as car-to-car (C2C) and car-to-infrastructure (C2I)
communication, (centre) on-board environmental sensors that scan the road
surface ahead or (bottom) on-board sensors that estimate the friction po-
tential based on the measured vehicle reaction

Figure 2.10 shows a classification of vehicle-fixed methods, which will be discussed in

the Sections 2.2.1 and 2.2.2. Thereafter, infrastructural systems and sensorfusion-based

systems are discussed in Sections 2.2.3 and 2.2.4.

2.2.1. Cause-based approaches

The friction potential μmax is determined by the influencing parameters shown in Ta-

ble 2.1. For cause-based approaches, the conditions that have the highest influence

on μmax (e.g. the presence and condition of intermediary layers, road roughness) are

observed, see Figure 2.10. Efforts have been made to detect the following conditions:
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Figure 2.10.: Classification of the vehicle-fixed methods for determining friction poten-
tial, based on Uchanski, [Uch01, p.18].

• Presence of water, snow and ice on the road

• Water depth

• Precipitation and precipitation density

• Road roughness and texture

Based on the sensor information, the corresponding friction potential has to be derived

using additional relations or models. Among other methods, artificial neural networks

(ANN) are used to relate sensor information and friction potentials, e.g. [ISAA10].

ANN, which need to be trained with measurement data, are not able to extrapolate

conditions that are not within their training data. Past European research projects that

have worked extensively with these methods include the aforementioned programmes

PROMETHEUS, e.g. [BBES94], and FRICTI@N, [KP09, p.10-11]. To this point, there

has been no single sensor available that can estimate the friction potential continuously

in a moving vehicle, [KP09, p.12]. In addition, robustness over the whole life-cycle as

well as additional costs and maintenance have to be taken into account when considering

the use of additional sensors to identify the friction potential.

2.2.2. Effect-based approaches

Rather than measuring causes, effect-based approaches observe parameters that are af-

fected by the friction potential. These methods can be classified as methods that observe
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2 Estimation of the friction potential

the dynamic reaction of either the tire or the whole vehicle, see Figure 2.10. Due to their

importance for this work, vehicle-dynamics-based approaches will be discussed in greater

detail. Tire-related methods comprise direct measurement methods with sensors imple-

mented directly in the tire tread or the wheel rim, e.g. [GH04] , [BBB+02], as well

as [TSH+08], and also indirect methods that use effects such as the dependence be-

tween the friction potential and the rolling sound of the tire, e.g. [ER92] and [BER92].

Tire-sound-dependent methods are very sensitive to factors other than from the friction

potential.

Vehicle-dynamics-based approaches

Lex et al. have proposed a classification system for categorising the large number of pub-

lished vehicle-dynamics-based approaches for determining the friction potential based on

mathematical and physical characteristics, [LEH11]. In the proposed classification sys-

tem, the mathematical methods for estimating the friction potentials are divided into

algebraic, statistical, observer-based and optimization-based methods, see examples in

Table 2.2. Algebraic approaches, such as Holzinger, [Hol92, p.18-46], have disadvan-

tages when dealing with measurement uncertainties, because they do not integrate any

observer or optimization. In this classification system, statistical approaches are also

considered observer-based approaches, but they are situated within a Bayesian frame-

work and thus comprise methods such as Kalman and particle filtering. Due to their

significance for this work, some of these statistical methods are described below. Most of

the methods can be classified as either algebraic approaches or non-statistical observer-

based approaches. Table 2.2 shows two examples, Ahn et al., [APT09] and Hsu et al.,

[HLGG06]. For other observer-based approaches, see Lex et al., [LEH11]. Optimiza-

tion methods include recursive least square approaches and Fuzzy Logic as proposed

by Ivanov et al., [ISAA10], or artificial neural networks (ANN) as proposed in Lex et

al., [LKE13a]. The physical classification considers whether μmax is estimated by using

a direct relation with the longitudinal slip or the side slip angle, or by using another

physical quantity that is related to μmax, such as the lateral acceleration and the yaw

rate, as shown by Ding et al., [DT10] or the aligning torque, as shown by Hsu et al.,

[HLGG06]. For further examples and literature references, see also Table 2.2 and Lex et

al., [LEH11]. Since many methods have been published, some exemplary methods will

be mentioned that are relevant for the method proposed in this work. These mainly

include methods that are directly related to slip quantities, as well as methods within

the Bayesian framework, see Section 5 for a definition.
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2 Estimation of the friction potential

Table 2.2.: Mathematical and physical classification of vehicle dynamics based methods
to estimate the friction potential with selected examples based on Lex et al.,
[LEH11]

Slip based (long., lat.) Other physical quantities

Algebraic Holzinger, [Hol92, p.18-34] Holzinger, [Hol92, p.35-46]

Rajamani et al., [RPLG06]

Villagra et al., [VdFM11]

Statistical Ray, [Ray97]

(Bayesfilter) Gustafsson, [Gus97]

Boßdorf-Zimmer et al., [BZFHK07]

Observer Ahn et al., [APT09]

Hsu et al., [HLGG06]

Optimization Uchanski, [Uch01] Ivanov et al., [ISAA10]

Lee et al., [LHY04] Ding et al., [DT10]

Svendenius, [Sve07] Lex et al., [LKE13a]

Dieckmann showed that for small values of sx, the slip needed in order to transmit the

same longitudinal tire force Fx is higher for lower μmax, [Die92, p.32-45]. This means

that he empirically proved a correlation between the initial slip slope k|sx=0 and the

friction potential μmax, which can be exploited to estimate μmax for small values of the

longitudinal slip sx. Dieckmann also proposed an approach for calculating so-called

micro-slip values of sx < 0.1 % using only wheel speed sensors by summing-up the cal-

culated slip over several wheel revolutions, [Die92, p.19-22, 110]. For a reference value of

vx, the wheel speed sensors of non-driven wheels are used. This can only be done when

there is no wheel torque (e.g. no wheel slip), on one axle, which is only true for vehicles

with one driven axle and when no braking torque is applied. In addition, the state of the

velocity should not change quickly to make it possible to observe the wheel speed differ-

ences on the front and rear axles for several revolutions, [Uch01, p.132]. Additionally,

the implementation in practice is difficult due to measurement noise and uncertainty,

since this effect is very small. Gustafsson addressed this problem by implementing a

Kalman filter, [Gus97]. He used a linear relation between the initial slip slope k|sx=0

and the demanded coefficient of friction μD in the form of μD = k|sx=0 · (sx + δ). This

relation includes the longitudinal slip sx and a measurement offset δ that is estimated

at the same time as k|sx=0. Applying Dieckmann’s findings that the friction potential

is a function of the estimated k|sx=0, the relevant μmax can be assigned when additional

a priori knowledge (e.g. a look-up table) is available for μmax (k|sx=0). Unfortunately,
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2 Estimation of the friction potential

the variance between different initial slip slopes and corresponding friction potentials

μmax is very high, as shown by Uchanski, [Uch01, p.122-124].

Uchanski proposed an approach to detect low-friction surfaces during braking manoeu-

vres based on the wheel rotational speeds ωi from the ABS sensors and a measurement

of the longitudinal velocity vx, [Uch01, p.111-122]. The results also show a dependence

of lower slip values with μmax. One crucial factor is accurate and reliable slip calculation.

During braking, it is difficult to calculate a reference velocity vx using only wheel speed

sensors as the velocity state changes too quickly. Thus another method for estimating vx

is necessary, [Uch01, p.114]. In addition, the longitudinal tire forces during braking are

estimated using wheel speeds and vx in a filtering technique called optimal FIR deriva-

tive, [Uch01, p.76-98].

Ray proposed a model-based approach where the most probable friction potential

μmax is estimated using an adapted form of a particle filter, [Ray97], which is described

in Section 5.2. The main element to estimate the friction potential is a tire model that

calculates the expected longitudinal and lateral tire forces Fx and Fy for different hy-

potheses of μmax. The inputs for the tire model are the tire load Fz,i, the longitudinal

slip sx, the side slip angle α and the longitudinal velocity vx. These model-based hy-

pothetical Fx,i are then compared to longitudinal tire forces that have been estimated

separately using an extended Kalman filter and a vehicle model with the vehicle’s state

measurements. In a state observer model such as the particle filter, there is a measure-

ment function z (cf. Equation 5.2) that contains the internal state x to be observed,

which is not directly measured. In the approach mentioned, z is an estimate from an-

other state observer, i.e. the extended Kalman filter. Thus, this method requires much

knowledge about vehicle and tire parameters, as well as signal characteristics in order to

obtain the necessary vehicle states with sufficient accuracy (e.g. the longitudinal slip sx

or the slip angle α), in order to have an acceptable estimate of the horizontal tire forces.

Boßdorf-Zimmer also used a Baysian filter, namely an extended Kalman filter, to

estimate μmax for lateral driving states. He estimated both the slip angle α and μmax si-

multaneously using a two-track vehicle and a non-linear tire model. The combined

estimation is possible because the influence of α and μmax affects the lateral tire forces

in different ranges of influence, [BZ07, p.75-95], see also Figure 5.2 for the similiar rela-

tion of the longitudinal tire force Fx,i and the longitudinal slip sx and μmax.
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2 Estimation of the friction potential

Both the high amount of required knowledge of vehicle and tire parameter and the

signal processing effort can be partially circumvented by using ANN that identify tem-

poral patterns within input and output structures, which requires training the networks

before application. Lex et al. showed that friction estimation using recurrent neural net-

works (RNN) was accurate enough to adapt the intervention strategy of an automated

emergency brake assist, [LKE13a], [LKE13b]. Nevertheless, the results were not always

replicable. Thus, even for similar driving states, different estimates were found. In addi-

tion, neural networks are not suitable for extrapolating to conditions they have not been

trained for. This means that it would be necessary to conduct extensive training that

considers all relevant driving and road conditions with a realistic probability distribution.

Rajamani et al. showed three different approaches for estimating μmax based on three

different sensor configurations, [RPPL12]. In addition, different models were used de-

pending on the sensor configuration, which focused either more on the vehicle or the

wheel level. An algorithm based on the wheel motion showed better convergence and

estimation accuracy than an algorithm based on a vehicle model. These results are

consistent with the results of the sensitivity analysis presented in Section 4.

2.2.3. Car-to-x communication systems (C2x)

In contrast to pure on-board solutions, the idea of C2x approaches is to combine traffic

and road-related information about other traffic participants (C2C) and roadside in-

frastructure systems (C2I). A variety of information (e.g. on traffic density, accidents

ahead, road conditions of specific road sections) can be transmitted wirelessly to the

vehicle. Currently, the standardisation of data transfer, including data format and con-

tent, is being addressed. In 2010, the European Commission issued a mandate to the

standardisation organisations CEN2, CENELEC3 and ETSI4 to develop standards for

cooperative systems in intelligent traffic systems, [EotEC09]. The data will be trans-

ferred via the standard IEEE802.11, which has been especially developed for wireless ad

hoc networks, [Ins10]. One example of a pure infrastructure-based system is the Weather

Data Management System (WDWS), where information from local sensors on the street

(e.g. humidity, road surface temperature, precipitation) is used in combination with

large-area weather data (e.g. from weather radar) to determine the actual road condi-

tion and to calculate a prognosis. This system is already being used to support road

2European Committee for Standardization
3European Committee for Electrotechnical Standardization
4European Telecommunications Standards Institute
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2 Estimation of the friction potential

Table 2.3.: Criteria and weighting factors used and described in detail in Lex et al.,
[LEH11]

Criterion
Weighting

Factor

Friction potential (in contrast to demanded coeff. of friction) 8

Online capability of algorithm 7

No additional sensors needed 6

Active intervention not necessary for robust estimate 5

Applicability in ADAS 4

Availability of estimate (longitudinal / lateral / combined tire forces) 3

Ability to predict ahead of vehicle (Yes / Possibly / No) 2

Detection of Gravel (Evaluation of system limits) 1

Availability of estimate (individual tire / per axle / global) 0

and highway maintenance facilities in large areas of Austria and Bavaria, especially in

winter, [Ran13].

2.2.4. Sensorfusion

The idea of this application is to use as many different sensor signals as possible to

calculate the most probable friction potential. One advantage is that the plausibility of

individual signals can be checked by using the combination of other sensors, e.g. [KP09,

p.77-80]. In the FRICTI@N programme, for example, information from different existing

sensors that measure the vehicle reaction, tire reaction and environmental characteristics

were combined using sensorfusion and learning techniques, [KP09, p.10-11]. Ambient

temperatures, infrared laser spectroscopy, laser scanner and different cameras were used

for this purpose. These methods are expected to become even more important in the

future. The involvement of vehicle-dynamics-based approaches in a sensorfusion system

will provide a very valuable contribution to a robust and reliable estimate of the friction

potential. Nevertheless, this work does not investigate sensorfusion approaches.

2.3. Requirements for a friction potential estimation method

Lex et al. investigated the requirements for an estimation method using vehicle dynam-

ics states to be applied in FCW, AEB and airbag pre-firing, [LEH11]. Nine criteria

were presented, which were weighted based on their applicability to the aforementioned

systems, see Table 2.3. Lex et al. used this criteria to preselect suitable methods out
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2 Estimation of the friction potential

of 32 published vehicle-dynamic-based approaches, [LEH11]. In a second step, the pre-

selected methods were compared using simulation data. This second step also took into

account two additional evaluation criteria response time and response threshold of the

estimates. Since the application is similar to the one in the present work, these criteria

apply here as well. However, some criteria conflict with each other, such as not using

additional sensors and enabling detection ahead of the vehicle. In addition, low-rated

criteria such as gravel detection and availability for either tire, axle or a global vehicle

as well as in the longitudinal, lateral or combined direction are not investigated in de-

tail. However, combined estimation per tire, although not mandatory, is favoured. The

investigation in Lex et al. also showed that there was no proposed method that worked

under all driving states, [LEH11]. Most of the investigated methods were optimized for

a particular driving manoeuvre, such as pure braking or pure cornering. Since it is a

prerequisite that the algorithm proposed in this work functions for all driving manoeu-

vres, this criterion has been added. Since the criteria for estimation accuracy and time

delay depend on the application (see Section 1.3), they are considered in the criterion

applicability to ADAS. As one important condition, robustness is a prerequisite for all

automotive applications. These requirements lead to the method presented in Chapter 5.

An alternative method to evaluate the performance of estimators for the friction poten-

tial was presented by Bruzelius et al., [BSY+10]. This approach can be used to evaluate

ready algorithms and sensors using vehicle measurements on different road surfaces.
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3. Vehicle model

This chapter derives a model for vehicle and environment that is suitable for both the

sensitivity analysis (see Section 4) and the tire road friction observer (see Section 5).

The focus of this work is solely limited to variables that are related to the vehicle dy-

namics and are available in a vehicle equipped with ESC, see Section 2.3. This limitation

excludes any kind of optical sensors, such as radar, laser or camera-based systems. In

addition, all variables need to be measured or estimated on board a vehicle, which ex-

cludes C2x applications.

To ensure the transferability of the results of the sensitivity analysis in Section 4 to

the observer presented in Section 5, the same model considerations apply. The sensi-

tivity analysis presented in Section 4, which is used to derive the necessary parameters

for the tire/road friction observer, does not need to be real-time capable, as it is only

used for parameter design. Nevertheless, the model has to be suitable for the proposed

procedure, and the computational effort depends on the model complexity. In compari-

son, the model used for the tire/road friction observer must be designed with real-time

ability and robustness, see Section 5. The two applications share the requirement that

the tire/road contact has to be represented with sufficient accuracy, see Section 3.1.

Section 3.1 investigates the necessary model complexity in terms of a trade-off between

computational effort and accuracy, within the limitations on available variables, and

Section 3.2 then presents the vehicle model derived from these outcomes.

3.1. Assessment of required model accuracy

The same model considerations for both the sensitivity analysis (cf. Section 4) and the

tire/road friction observer (see Section 5) are chosen in order to ensure transferability of

the results of the sensitivity analysis to the observer development. This may seem lim-

iting for the sensitivity analysis. However, this investigation is already limited in terms

of mathematical model complexity that can be processed with the proposed method.
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Thus, as both the sensitivity analysis and the observer design share the same require-

ments on the tire/road contact, the some model considerations apply for reduction of

model complexity.

To investigate the sensitivity of vehicle dynamic variables to the friction potential, the

vehicle model needs to accurately represent the horizontal tire forces, the slip quantities

and the wheel speeds for each wheel. The model is supposed to cover a wide variety

of driving states, including situations near the physical limits. To keep computational

effort manageable, model complexity must be kept low, while keeping model accuracy in

mind. To validate whether a simplification of the vehicle model maintains an acceptable

accuracy, an analysis based on a simulation with a model with higher model complexity

was performed with different parameter settings and sub-model complexities. This as-

sessment of required model accuracy is not to be confused with the main assessment of

model sensitivity in Section 4.

In order to quantify the influence of different model parameters, a reference simulation

with a model containing all modelled physical phenomena is compared to simulations

where these phenomena are successively deactivated. For this investigation, a vehicle

model consisting of sprung and unsprung bodies with a total of 14 degrees of freedom

(DOF) was used, see Figure 3.1. The model was validated with measured data obtained

with an Opel Combo 1.6 CNG, [Roj12, p.13-15].

3.1.1. Evaluation criteria

The main evaluation criterion is the mean relative deviation of the vehicle state vari-

ables between a reference simulation and a parameter or sub-model variation. Based on

Weber, the mean relative deviation Δw for an exemplary variable w can be calculated

by comparing the time signal of the state variable wref from the reference simulation and

wvar from the variation simulation by

Δw =

∫ |wref − wvar| · dt∫ |wref| · dt , (3.1)

see also Figure 3.2 for a graphic depiction, [Web04, p.70-79]. It is important to mention

that the time integrals used in Equation 3.1 do not consider kinematic couplings of the

state variables. For example, the relation
∫

bωz dt = ψ is only valid without considering

roll and pitch motion of the chassis on an even road. The considerations shown in

Equation 3.1 are only used to evaluate the relative change of a variable w between
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Figure 3.1.: Degrees of freedom (DOF) of vehicle model used for model complexity
evaluation. The DOF include the vehicle’s body translational {xb, yb, zb}
and rotational {bωx,b ωy,b ωz} degrees of freedom, as well as the wheels’
vertical displacements {zfl, zfr, zrl, zrr} and the wheel rotational speeds
{ωfl, ωfr, ωrl, ωrr}, with the rear right wheel (i = rr) not displayed here.
The model is based on Rojas Rojas, [Roj12, p.13-15], the graphic depiction
is modified from Hirschberg, [HW12, p.160].

different driving manoeuvres, cf. Figure 3.2. Normalising the mean deviation with the

reference curve for each time step enables the comparison of manoeuvres at different

longitudinal speeds and friction potentials. With an Δw of 0 %, the variation of model

parameters does not have any effect on the variable investigated. With increasing Δw,

the influence of the model parameter increases for the manoeuvre evaluated. With this

definition, Δw is not limited to 100 %.

wref

wvar

t

w

Figure 3.2.: Time signal of an exemplary variable w for both reference setup (wref) and
varied model setup (wvar). The area between the two curves is the basis for
the mean relative deviation Δw based on Weber, [Web04, p.75]
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For all manoeuvres and all model parameters, both the friction potential μmax and

the vehicle’s speed vx are varied. The mean relative deviation for each state variable

and each manoeuvre is then displayed as a function of both μmax and vx, see Figure 3.3

as an example. The state variables investigated for longitudinal and lateral manoeuvres

are not necessarily the same, see Section 3.1.2. It has to be noted that the criterion of

mean relative deviation works very well when a variation of the model setup results in

a change of amplitude of the investigated variable, but it fails in the rare cases when

the variation of the model setup results in a phase shift, such as for quantifying the

influence of dynamic tire forces, e.g. Table 3.2 and Table 3.3. Thus, for high mean

relative deviation values, the time signals of the respective variable is also examined

regarding phase shift. In these cases, the phase shift Δφw of a variable w is a second

evaluation criterion. The limits for the mean relative deviation was set at 5 % for all

variables and 0.05 s for maximum phase shift in a signal.

3.1.2. Investigated manoeuvres

Three manoeuvres are investigated, including either dynamic longitudinal or dynamic

lateral excitation. To assess lateral dynamics, the double lane change manoeuvre (DLC)

according to ISO 3888-1 was chosen, [fSI99]. In this manoeuvre, the vehicle model fol-

lows a trajectory based on the track dimensions in ISO 3888-1 using a lateral control.

However, only the difference in the vehicle reaction for the different model parameters

was evaluated. It has not been studied whether the course defined in ISO 3888-1 could

be followed by the vehicle in every condition, as this was not an assessment of the mod-

elled vehicle.

The investigated variables include the vehicle’s rotational speed bωz, which charac-

terises the course of the vehicle. The mean relative deviation Δωz between the reference

model and the simplified model has to be small, in order to ensure a high accuracy of the

simplified model. As a measure of the accuracy of modelled driving stability, the side

slip angle β is used. Additionally, the mean deviation Δay of the lateral acceleration is

evaluated. The lateral acceleration depends on both the yaw rate and the side slip rate

β̇ as another measure of driving stability, cf. Weber, [Web04, p.73]. Since the vehicle

model has to be suitable for the analysis of different friction potentials, the tire load Fz,i

and the lateral tire force Fy,i are also examined for each tire i. To ensure that the lateral

control to follow the given trajectory is working properly in the model setups compared,

the steering wheel angles are compared using its mean relative deviation ΔδS . It is a

prerequisite for the comparison of the other state variables for every simulation that this
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Table 3.1.: Overview of simulated manoeuvres and varied model parameters

DLC Acceleration Deceleration

Reference (all listed phenomena modelled) x x x

No ARB x x x

No wheel kinematics
x x x

and compliance

Damper & spring linear x x x

Steering ratio constant x

Roll centre constant x

Pitch centre constant x x

No tire dynamics x x x

Effective tire radius constant x x x

Constant tire load x x x

Wheel moment of inertia x x x

deviation remains small in general.

For longitudinal dynamics, both acceleration and deceleration manoeuvres were in-

vestigated. Again, the friction potential μmax and the vehicle’s speed vx are varied.

Reference speed profiles for each acceleration and deceleration are defined so that a cer-

tain acceleration is kept constant. The vehicle’s speed at the beginning of the manoeuvre

was not varied. To vary vx, the reference profiles were multiplied with integer factors.

In case an acceleration or deceleration could not be reached because of μmax being to

low, the simulation was stopped and not evaluated. For propulsion, the reference profile

started just above vx = 0 with a constant bax =0.5 m/s2 up to ≈5 m/s2. For braking,

the acceleration was varied between about 1 and 10 m/s2. A longitudinal control was

used to follow the given speed profiles for these simulations.

The investigated variables for the longitudinal manoeuvres include the longitudinal

acceleration bax and the longitudinal velocity vx. Relative mean deviations for these

two variables need to be small, in order to ensure small impact of the model variations.

When focussing on investigations of the friction potential, accurate modelling of the

horizontal tire forces is important. In total, vx, the wheel speeds ωi, the tire load Fz,i

and the longitudinal tire force Fx,i are examined for each tire i. Thus, the longitudinal

slips sx,i at each tire are implicitly evaluated.
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3.1.3. Model parameters

Table 3.1 shows the model parameters that were varied for certain manoeuvres, which

are described below. Within the reference simulation, the highest model complexity

and standard parameters were used. During variation simulations, only one model or

parameter is varied. The specific values used for the vehicle parameters are described in

Appendix D.

• Anti-roll bars (ARB)

Anti-roll bars (ARB) with linear behaviour were simulated at the front and rear

axles in the reference setup, and the stiffness of the ARB for front and rear axle

was modelled as zero in the variation setup.

• Wheel kinematics and compliance

In the reference setup, the three-dimensional wheel movement during bound, re-

bound and steering is considered (e.g. camber, toe and caster angle), as well as

elastic deformations in the steering system. For the variation setup, the wheels’

motions were limited to vertical translation relative to the body and, for the front

wheels, a steering motion around the vertical axes. Fixed values of 0 degrees have

been used for camber angles, toe and caster angles. In this setup, no compliance

was considered, neither for suspension components nor for the steering system.

• Spring and damper

The reference setup considers spring and damper characteristics that are based on

measured and identified curves, [Roj12, p.205]. The variation setup only considers

linear characteristics for both spring and damper.

• Steering model

As reference, a steering ratio measured between steering wheel angle and wheel

steering angle based on a characteristic measured by Kollreider is used, [Kol09,

p.69]. It is compared to a constant steering ratio.

• Roll and pitch centre

In the reference setup, the roll and pitch axes used were identified using an op-

timization routine that includes a kinematic model and measurements. For the

variation setup, constant points hIC,φ for roll and hIC,θ for pitch centre with re-

spect to the ground are modelled.

• Transient tire dynamics

The reference model includes tire dynamics for both longitudinal and lateral tire
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forces, as described in Section 3.3.2. This setup is compared to pure static tire

forces, as derived in Section 3.3.1.

• Effective tire radius

In the reference setup, the effective tire radii are calculated as a function of the

tire load. The variation setup uses constant tire radii that correspond to the static

tire radius rS in nominal vehicle position.

• Dynamic vertical tire load

In the reference setup, the input for the horizontal tire contact force model is the

dynamic tire load calculated considering the vehicle’s DOF pitch and roll as well

as springs and dampers. In the variation setup, the static tire load is used as input

for the model of the horizontal tire contact forces.

• Wheel moment of inertia

The wheel moment of inertia depends on the mass distribution of the wheel, brake

disk, and driveline, as well as the engaged gear. Two setups of constant wheel

moments of inertias are compared. As a reference, the decoupled wheel moment

of inertia as shown in Table D.2 is used. For the second setup, the value of the

wheel moment of inertia when the first gear is engaged is used, which represents

the highest moment of inertia.

3.1.4. Results for double lane change manoeuvre

Figure 3.3a) shows the mean relative deviation Δay of the lateral acceleration for the

DLC manoeuvre with ARB variation at the front and rear axles. With increasing lon-

gitudinal velocity vx, the lateral acceleration bay increases, as does the mean relative

deviation Δay between the two model settings compared. Nevertheless, Δay is within

the specified limit of 5 %. For example, the mean relative deviation ΔFy,rl of the lateral

tire force Fy,rl shows a similar tendency, see Figure 3.3b), but exceeds the specified limits

and is thus listed in Table 3.2. Both state variables do not show a dependence on the

friction potential μmax.

Table 3.2 shows the maximum mean relative deviations exceeding the limits of 5 %

and a phase shift of 0.05 s. The model setups with the highest maximum mean relative

deviations are presented in decreasing order. The maximum deviations in Table 3.2

show that lateral tire dynamics, a dynamic tire load distribution, a non-linear steering

ratio and anti-roll bars at the front and rear axle have to be considered in the vehicle
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Figure 3.3.: Mean relative deviations as a function of the vehicle’s speed vx and the
friction potential μmax for an ARB model variation in a double lane change
(DLC) manoeuvre for a) Δay of the lateral acceleration ay and b) ΔFy,rl of
the lateral tire force Fy,rl

model. Whereas the effort to include varying tire load, steering ratio and the anti-roll

bars is relatively low, the implementation of the tire dynamics require the inclusion of

four additional differential equations for the lateral tire forces, see Section 3.3.

3.1.5. Results for longitudinal manoeuvres

Tables 3.3 and 3.4 show the maximum mean relative deviations for the acceleration

and braking manoeuvres, respectively. For both manoeuvres, the model setups with the

highest influence are presented in decreasing order from left to right. As the investigated

vehicle is front-wheel driven, the longitudinal tire forces at the rear axle do not exceed

the 5 % limit for the acceleration manoeuvre. For the acceleration manoeuvres, the
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Table 3.2.: Mean relative deviations of the state values of DLC manoeuvre for model
setups with a deviation higher than 5 % and a phase shift equal or higher
than 0.05 s (last row) in decreasing order

Variable Highest influence Second highest Third highest

Lat. acceleration
steering ratio

- -
9.42 %

Side slip angle
steering ratio tire dynamics ARB

>100 % 70.36 % 14.13 %

Lat. tire forces
steering ratio tire load ARB

26.07 % 14.21 % 7.34 %

Maximum phase shift
tire dynamics steering ratio tire load

0.35 s 0.2 s 0.05 s

Table 3.3.: Mean relative deviations of acceleration manoeuvre for model setups with a
deviation higher than 5 % and phase shifts higher than 0.05 s in decreasing
order for the investigated variables

Variable Highest influence Second highest Third highest

Longitudinal acceleration
tire load tire dynamics

-
28.46 % 5.49 %

Longitudinal velocity
tire load

- -
28.17 %

Wheel speeds (front)
tire load

wheel moment effective tire

of inertia radius

97.78 % 11.19 % 10.93 %

Wheel speeds (rear)
tire load

effective tire

-radius

28.2 % 6.02 %

Tire loads
tire load

- -
10.17 %

Long. tire force (front)
tire load

wheel moment

-of intertia

28.5 % 12.57 %

Maximum phase shift
tire dynamics

- -
0.3 s
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Table 3.4.: Mean relative deviations of braking manoeuvre for model setups with a devi-
ation higher than 5 % and phase shifts higher than 0.05 s in decreasing order
for the investigated variables

Variable Highest influence Second highest influence

Wheel speeds (front)
effective tire radius wheel moment of inertia

15.71 % 11.46 %

Wheel speeds (rear)
effective tire radius wheel moment of inertia

15.57 % 11.45 %

Tire loads
tire load

-
15.6 %

Longitudinal tire forces
tire load

-
16.07 %

longitudinal control cannot follow the speed profile properly at high μmax when not con-

sidering tire force dynamics. A similar effect occurred in the braking manoeuvre, where

some combinations of μmax and the longitudinal vehicle speed could not be reached with-

out tire-force dynamics. This is a controller-specific problem and is not related to the

evaluation problem. Therefore, these combinations were not considered in Table 3.4. It

is possible that the maximum mean relative deviations of the few cases of simulation

without tire force dynamics and near the physical limits are slightly higher than those

presented in Table 3.4. Nevertheless, it is unlikely that it exceed the 5 %, as all model

variations not listed have mean relative deviations below 1 %.

According to the results presented in Table 3.3 and Table 3.4, the dynamic tire load

distribution, effective tire radii dependent on the dynamic tire loads, varying wheel

moment of inertia for the driven axles, and the longitudinal tire dynamics have to be

considered. The effort to include varying tire loads and an effective tire radii depending

on the dynamic load is relatively low. It is also necessary to include a varying tire load

for accurate simulation of lateral manoeuvres, see Section 3.1.4. Since the maximum

deviation is slightly above the limit of 5 %, longitudinal tire dynamics are not considered,

despite causing a phase shift on longitudinal velocity and wheel rotational speeds. This

is acceptable because the tire’s longitudinal stiffness cT,x > cT,y, and thus the influence

of the longitudinal tire dynamics is smaller than that of the lateral tire dynamics, as

shown in Section 3.2, [Hir09b]. The variation of the wheel moment of inertia impacts

the wheel rotational speeds, see Table 3.3 and Table 3.4. During braking, the gear box is

simulated as fully decoupled, and only the wheel’s moment of inertia is relevant. During
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acceleration manoeuvres, the mean relative deviation Δωfl exceeds the 5 % limit in

some regions, as can be seen in Figure 3.4. At lower friction potentials, the wheels
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Figure 3.4.: Mean relative deviation Δωfl of the front left wheel’s rotational speed during
an accelerating manoeuvre with varied wheel moment of inertia. It can be
seen that for low μmax ≤ 0.5, there is an abrupt change in the characteristics.
This occurs as the front wheels start to spin in order to be able to follow
the given speed profile. The variation of the moment of inertia results in
different wheel rotational accelerations that influence Δωfl as shown.

are more likely to spin. This high wheel rotational acceleration is responsible for the

high influence of the wheel’s moment of inertia on Δωfl. By monitoring the wheel

rotational speeds Δωi and the wheel rotational speeds ωi of the driven wheels during

the sensitivity analysis, it can be assured that the deviation of the wheel speeds of the

driven wheels remain within acceptable limits. This does not restrict the analysis, as

situations with high wheel rotational speeds rarely occur and are prevented in vehicles

with traction control systems (TCS). The influence on non-driven wheels can be entirely

omitted due to low wheel rotational acceleration during acceleration manoeuvres, which

is also confirmed by the results of this investigation.
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3.2. Selected vehicle model

The investigation in Section 3.1 showed that damper and spring excitation caused by

forces that act in the centre of gravity have little impact. As vertical movement caused

by road induced excitation is eliminated, the degree of freedom in vertical direction

for the chassis and each wheel can be omitted. In addition, since the influence of wheel

kinematics and compliance proved to have little impact for this investigation, suspension

and wheel kinematics do not need to be considered. As the movement of the chassis

relative to the tire is also not of interest, the rotational DOF of the chassis around xb

and yb axis are omitted, cf. Figure 3.1. In summary, the assessment of the required

model accuracy in Section 3.1 showed that the following investigated phenomena have

to be considered in the selected vehicle model:

• a non-linear steering ratio,

• front and rear ARB stiffness (not zero),

• vertical tire load variation,

• transient lateral tire dynamics and

• effective tire radii depending on the vertical tire load.

In addition to a standard single-track model, such as the one proposed in [RS40],

and the aforementioned phenomena, the wheel rotation of all four wheels and non-linear

horizontal tire characteristics are considered. The model equations are now explained in

the following sections.

In the global coordinate system {Og, xg, yg, zg}, three degrees of freedom remain for

the global position vector gy, which reads

gy(t) =

⎡⎢⎢⎣
xg

yg

ψ

⎤⎥⎥⎦ . (3.2)

In the vehicle-fixed coordinate system {Ob, xb, yb, zb}, 7 degrees of freedom remain for

the generalised velocity vector bz,

bz(t) =
[
vx vy bωz ωfl ωfr ωrl ωrr

]T
. (3.3)
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Figure 3.5.: Global coordinate system {Og, xg, yg, zg} (inertial), vehicle-fixed coordi-
nate system {Ob, xb, yb, zb} and wheel-fixed horizonted coordinate systems
{Oi, xi, yi, zi} for wheel index i = {fl, fr, rl, rr} (with wheel i = rr not
displayed) based on ISO 8855, [fSI11]; graphic representation modified from
Hirschberg, [HW12, p.160].

Figure 3.5 shows all coordinate systems used, which are based on ISO 8855, [fSI11].

The position of the vehicle with respect to the global coordinate system Og is described

with the coordinates xg and yg, and the orientation of the vehicle’s longitudinal axis

with respect to the xg axis with the yaw angle ψ. The relationship between gẏ and bz

reads

gẏ = Tg
b(gy) · bz, (3.4)

with the rotation matrix

Tg
b =

⎡⎢⎢⎣
cosψ − sinψ 0 0 0 0 0

sinψ cosψ 0 0 0 0 0

0 0 1 0 0 0 0

⎤⎥⎥⎦ . (3.5)

The resulting equation of motion reads

M · ż+ k = q (3.6)

and includes the mass matrix M, gyroscopic and centrifugal forces k and the vector

of applied forces q. The equation of motion applies in the moving coordinate system Ob

which is located in the vehicle’s centre of gravity, cf. ISO 8855, [fSI11]. The mass matrix

M in Equation 3.6, which includes the vehicle mass mb and the moments of inertia of
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Figure 3.6.: Kinematic quantities of two-track vehicle model including the four wheels’
lateral slip angles αi, wheel steering angle δi, and velocities vC,i, as well
as the vehicle’s velocity v and the side slip angle β, based on Eichberger,
[Eic11, p.147]; graphic depiction modified from Hirschberg, [Hir13, p.69].

the vehicle Iz and the wheels Ii, reads

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mb 0 0 0 0 0 0

0 mb 0 0 0 0 0

0 0 Iz 0 0 0 0

0 0 0 Ifl 0 0 0

0 0 0 0 Ifr 0 0

0 0 0 0 0 Irl 0

0 0 0 0 0 0 Irr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.7)

52



3 Vehicle model

The gyroscopic and centrifugal forces are given by k = mb·
[
−bωz · vy bωz · vx 0 0 0 0 0

]T
,

and the applied forces q, which read

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
∑

Fx

b
∑

Fy

Ob

∑
Mz

Ofl

∑
MC,fl

Ofr

∑
MC,fr

Orl

∑
MC,rl

Orr

∑
MC,rr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

with the sum of all applied forces b
∑

Fx and b
∑

Fy acting on the vehicle in the longi-

tudinal and lateral directions, the sum of the moments Ob

∑
Mz on the vehicle’s chassis

around the zb axis and the sums of the wheel moments Oi

∑
MC,i around the yi axis.

3.2.1. Applied forces

The vector of applied forces q in Equation 3.6 contains different forces, which are shown

in Figure 3.7 and explained in this section. The first two rows of q contain the applied

forces for the linear momentum in longitudinal and lateral direction, which read

b

∑
Fx =

∑
i

bFx,i − FA − FW,x −mb · g · sinβr, (3.9)

b

∑
Fy =

∑
i

bFy,i − FW,y. (3.10)

The applied forces include the horizontal tire forces bFi,x and bFi,y for each tire i in the

body coordinate system Ob, as shown in Figure 3.7, the aerodynamic force FA, additional

wind forces FW,x and FW,y and the climbing resistance mg · g · sinβr, which contains the

slope βr. With the tire model in Section 3.3, the horizontal tire forces Fx,i and Fy,i are

calculated in the i-th wheel’s coordinate system Oi and, for the front wheels, have to be

transformed by ⎡⎢⎢⎣bFi,x

bFi,y

0

⎤⎥⎥⎦ = Tb
i ·

⎡⎢⎢⎣iFi,x

iFi,y

0

⎤⎥⎥⎦ . (3.11)
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Figure 3.7.: Kinetic quantities of the two-track vehicle model including the horizontal tire
forces Fx,i and Fy,i, the aerodynamic force FA, the weight force G = mb · g
and the vertical forces Fz,j , based on Eichberger, [Eic11, p.148]; graphic
depiction modified from Hirschberg, [Hir13, p.43, 69].

The rotation matrix Tb
i reads

Tb
i =

⎡⎢⎢⎣
cos δi − sin δi 0

sin δi cos δi 0

0 0 1

⎤⎥⎥⎦ (3.12)

and contains the wheel’s steering angles δi, see Section 3.2.4. The linear momentum in

the longitudinal direction of the vehicle also involves the aerodynamic resistance force

FA, which reads

FA =
1

2
· cD ·Ap · ρa · vx · |vx|. (3.13)

The aerodynamic force shows a quadratic dependence on the vehicle’s longitudinal speed

vx and considers the air drag coefficient cD, the projected frontal area Ap of the vehicle

and the air density ρa which is a function of air temperature and air pressure. Additional

wind forces FW,x and FW,y acting on the vehicle body can also be considered. The weight

force G, which is given by G = mb · g with the vehicle’s mass mb and the gravitational

acceleration g, contributes to the linear momentum in the longitudinal direction and is

directly proportional to the sine of the road slope βr. The third row of q contains the

angular momentum of the vehicle body, which reads

Oe

∑
Mz =

∑
i

⎡⎢⎢⎣
rx,i

ry,i

0

⎤⎥⎥⎦×

⎡⎢⎢⎣bFx,i

bFy,i

0

⎤⎥⎥⎦ (3.14)
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with rx,i and ry,i being the lateral and longitudinal distances from the vehicle-fixed origin

Ob to the i-th wheel’s centre C. The last four rows of q describe the angular momentums

of the four wheels. The applied forces are shown in Figure 3.8. For the wheel i, the

applied forces read

Oi

∑
Mc,i = MD,i − Fi,x · rS,i −MR,i. (3.15)

The angular momentums of the wheels include the driving or braking torque MD,i, which

is an input for the simulation, and the longitudinal tire force Fx,i with its leverarm, the

static tire radius rS,i. The rolling resistance MR,i reads

MR,i = Fz,i · fr,i · rS,i (3.16)

with the rolling resistance coefficient fr,i and the tire load Fz,i. The tire-dependent

parameter fr,i is given in Appendix D.

r
S,i

β
r

M
R,i

M
D,i

F
x,i

Figure 3.8.: Kinetic quantities for wheel i showing the driving and braking torque MD,i,
the rolling resistance torque MR,i and the longitudinal tire force Fx,i, based
on Eichberger, [Eic11, p.149]; graphic depiction modified from Hirschberg,
[HW12, p.33].

3.2.2. Vertical tire load variation

Horizontal accelerations in the chassis’ centre of gravity produce forces that are sup-

ported by the suspension (e.g. the tires, the springs, the anti-roll bars and the dampers).

When considering static effects only, the influences of the damper and damping effects

of the tires are omitted. Additionally, the following considerations apply only on even

roads. The static tire load due to the weight distribution is superposed by the forces

necessary to support the longitudinal body accelerations bax during braking and accel-

erating. Thus, the tire loads for the front and the rear axles including tire load variation
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1/2 tjlrlf
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Figure 3.9.: Simplified model for the dynamic tire load variation valid for small pitch and
roll angles considering the forces induced by horizontal accelerations in the
vehicle’s COG: a) longitudinal movement (braking, accelerating), b) lateral
movement (cornering); graphic representation based on Hirschberg, [HW12,
p.7].

due to bax read

Fz,f = mb · lr · g − hCG · bax
lr + lf

and

Fz,r = mb · lf · g + hCG · bax
lr + lf

, (3.17)

see also Figure 3.9. Equation 3.17 includes the vehicle’s mass mb, the gravitational

acceleration g and the position of the centre of gravity, i.e. its height hCG, the distances

to the front and the rear axle lf and lr and the track width tj of the j-th axle. In order

to apportion the tire load to the four wheels, additional assumptions are necessary,

since the vehicle is statically undetermined in the vertical direction with four wheels

supporting the load. In the lateral direction, this can be done by considering the rolling

torque induced by the lateral body acceleration bay, which is not equally supported by

the front and rear suspension. The amounts supported by each of the j axles depends on

the stiffnesses of the tires cT,z in the vertical direction, the anti-roll bars cARB,j and the

springs cS,j . The tire and the body spring are connected in series, as shown in Figure

3.10.

During cornering, the wheels on one axle travel in opposite directions, which leads to

an increased rolling movement of the chassis. This movement is reduced with the ARB,

which act as torsion springs between the right and left side of an axle. The ARB and
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Figure 3.10.: Coordinates zR,i, zi and zb,i of quarter vehicle including the body spring
S, the anti-roll bar ARB and the tire R with its corresponding stiffnesses
of axle j and wheel i; based on Hirschberg, [HW12, p.51].

the body springs are connected in parallel. However, unlike the body springs, where

the applied forces depend on the spring deflections ΔzS,i = zb,i − zi, the total force of

the ARB depends on the difference of the spring deflections between the left and right

sides. In order not to have included the wheel’s vertical motion as additional degrees of

freedom, a substitution for the roll motion of the chassis is assumed for the vertical tire

load transfer, and cARB,j can be simplified treated as a scalar.

The total stiffnesses of the axles ctot,j are then given by

1

ctot,j
=

1

cT,z
+

1

cS,j + cARB,j
. (3.18)

The percentage of the roll moment supported by each axle is given by

pj =
ctot,j∑
j ctot,j

· 100. (3.19)

Thus, the tire load variation ΔFz,φ,j due to lateral body accelerations bay is given by

ΔFz,φ,j = mb ·b ay · pj · hCG

tj
(3.20)

including the tracks tj of the front and the rear axles. Finally, the tire loads for the four
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wheels read

Fz,fl =
Fz,f

2
−ΔFz,φ,f , (3.21)

Fz,fr =
Fz,f

2
+ ΔFz,φ,f ,

Fz,rl =
Fz,r

2
−ΔFz,φ,r and

Fz,rr =
Fz,r

2
+ ΔFz,φ,r.

3.2.3. Effective tire radius

The position of the instantaneous centre of rotation ICR of the free rolling wheel is

characterised by the effective tire radius re. It it is derived from the effective rolling

circumference Ue and given by

re =
Ue

2π
. (3.22)

Both re and Ue depend on the tire load Fz and the wheel’s rotational speed ωr, as shown

in Figure 3.11. According to Hirschberg, the effective tire radius re, which is located

r0

rS

re
Δz

Fz

r Sr e
r 0

r

r0 C

ICR

Δz

r

Fz,nom

Figure 3.11.: Relation between effective tire radius re, static tire radius rS radius and
unloaded tire radius r0, according to Hirschberg, [HW12, p.17].

between the unloaded tire radius r0 and the static tire radius rS , can be approximated

based on physical considerations, [Hir09b]. The result of these considerations is given

by Equation 3.23. The influence of Fz is considered in the tire’s vertical deflection

Δz = Fz/cT,z, where cT,z denotes the linear global tire stiffness at the operating point

Fz,nom. Thus, the effective tire radius may be approximated by

re ≈ 1

3
r0 +

2

3
rS = r0 − 2

3
Δz = r0 − 2

3

Fz

cT,z
. (3.23)
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3.2.4. Steering model

The relation between the steering wheel angle δS and the wheel steering angles δi on the

four wheels is implemented using measured characteristics. As only the front wheels are

steered, the steering angle on the rear wheels remains at zero.

3.3. Tire model

The semi-physical tire model TMsimple, developed by Hirschberg, is used to calculate

the longitudinal, lateral and combined tire forces under steady state conditions on even

road and omitting wheel camber, [Hir09a]. The either pure longitudinal or pure lateral

force Y acting on the tire at the wheel bottom point W (see also Figure 2.2) is described

by

Y = K sin
(
B ·
(
1− exp

−|X|
A

)
· sgn(X)

)
. (3.24)

The slip quantity X is either the longitudinal slip sx calculated with Equation 2.3 or

the lateral slip angle α calculated with Equation 2.4. The coefficients K, B and A are

not just mathematical parameters, but are related to physical quantities. They depend

on the peak value Ymax, the saturation value Y∞ and the initial stiffness dY0, as shown

in Appendix B.1.

3.3.1. Combined tire forces

With longitudinal and lateral slip occurring simultaneously on the tire, the transmittable

forces cannot exceed those for pure longitudinal or lateral slip. A model for combined tire

forces based on physical similar slip quantities proposed by Hirschberg is used, [Hir09a].

In a first step, the tire slip angle α is transformed into an equivalent lateral tire slip sy,

which is given by

sy =
α

Gs(Fz)
. (3.25)

In order to achieve the same initial stiffness for longitudinal and lateral tire characteris-

tics, the weighting factor is defined as

Gs(Fz) =
dFx0(Fz)

dFy0(Fz)
=

Ay ·Kx ·Bx

Ax ·Ky ·By
. (3.26)

The combined slip vector reads s =
[
sx sy

]T
with its absolute value |s| =

√
s2x + s2y.

The basis value F b
x for the longitudinal tire force is calculated using Equation 3.24 with

|s| being the respective slip quantity, see Figure 3.12, right, for a graphical interpreta-

59



3 Vehicle model

tion. Accordingly, the basis value F b
y is calculated using the transformed slip quantity

|s| ·Gs.

Fb
x

Fb
y

0 π/2

F 

β
s

s
y

FFb
x

Fb
yF

x F
y

β
s

F F

s
s
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Figure 3.12.: Combined tire force interpolation according to Hirschberg, with character-
istics Fx and Fy for either pure longitudinal or lateral tire forces. The
resulting combined tire contact force F is assumed to act in the opposite
direction as the slip vector s and is thus defined by βs. The magnitude
of the combined force F = |F| depends on the basis values F b

x and F b
y ,

[HRW07].

The angle βs describes the ratio between the longitudinal and the lateral combined

slip and is given by βs = arctan
(
sy
sx

)
. With the basis values of the tire forces, the

combined value of the tire force is interpolated using the cosine function

F = |F|= 1

2

[
F b
x + F b

y + (F b
x − F b

y ) · cos(2 · βs)
]
, (3.27)

which is dependent on βs. It has to be noted that the resulting combined tire contact

force F is assumed to act in the opposite direction as the slip vector s (see Figure 3.12,

left). A graphical interpretation of the interpolation based on βs is shown in Figure 3.12,

right. Finally, the resulting tire force vector is given by

F =

[
Fx

Fy

]
= F ·

[
cosβs

sinβs

]
. (3.28)

3.3.2. Lateral tire dynamics

The tire model presented to this point is valid for steady-state conditions. However, the

horizontal tire forces react to a change in the slip quantities with a time delay. As the

longitudinal stiffness cT,x of the tire is typically about twice as large as the lateral stiffness

60



3 Vehicle model

cT,y, [Hir09b], the longitudinal tire dynamics are omitted within this work. This is also

consistent with the investigations made concerning the model complexity, see Section 3.1.

In vehicle dynamics, transient tire dynamics are commonly described by first order

filters. For example, the transient tire contact forces FD
y according to Rill depend on

the steady-state value of the lateral force Fy by

τ · ḞD
y + FD

y = Fy, (3.29)

[Ril06], including the time function τ , which reads

τ =
1

cT,y
·
(
Fy

sα

1

re · |ωr|
)

(3.30)

with sα = tanα and the transport velocity re · |ωr|, with which the particles in the

tire tread are moving through the contact patch, [Ril06]. See Appendix B.2 for a more

detailed description.

3.4. Environment model

Other than aerodynamic drag, additional wind forces and aerodynamic downforces acting

on the chassis are not considered. Vertical excitation of the wheels induced by the road

geometry is omitted as roll and pitch are also not considered in the simplified vehicle

model, cf. Section 3.1. Thus, only the friction potential and road slope and banking

are necessary to describe the environment. These inputs are forwarded to the vehicle

model.
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4. Sensitivity Analysis

No published record was found on an unprejudiced mathematical analysis that indicated

which vehicle state variables are most affected by the friction potential for different

driving states, see first research question in Section 1.4. Unlike published approaches,

which are heuristic to some degree, the present concept aims at a more mathematical

solution to the problem of identifying relevant variables for friction estimation in the

first place. In order to find the optimum variables affected by the friction potential

for each driving state, a sensitivity analysis was performed based on the vehicle and

tire model derived in Section 3. The vehicle’s state variables describe the time-varying

vehicle reaction and are assumed to contain information on the tire-road contact which

can be exploited by an observer. This chapter includes a short introduction to sensitivity

analysis, a detailed explanation of the chosen approach and a presentation of the results.

4.1. Sensitivity analysis of ordinary differential equation

systems

Sensitivity analyses are often used when the parameters and initial conditions of models

are not accurately known and the influence of variations of these parameters is of in-

terest. A parameter is considered sensitive when small changes in the parameter cause

large changes in the solution. In the present work, sensitivity analysis is used for an-

other purpose, namely to identify the variables that change with respect to the friction

potential depending on the current driving states, see first research question in Section

1.4.

According to Campolongo et al., sensitivity analyses can be categorized as factor

screening, global methods and local methods, [CSST00]. Factor screening is useful for

finding influential factors in a system with many factors and is thus often used as a

preliminary step to reduce factors prior to a local or global method. Global methods ap-

portion the influence of the uncertainty of the input factors on the output factors. This

method is helpful when investigating the parameterisation of a model, but distributions
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for each input factor have to be known. For the proposed problem, local methods are

suitable, as they are typically modelled as initial-value ordinary differential equations

(ODE). Usually, these methods require the calculation of partial derivatives, see Section

4.1.1. Local methods have shortcomings when dealing with the influence of the uncer-

tainty of model parameters, which does not limit the proposed application. The goal is

to calculate the (linear) first-order local sensitivity coefficients of the non-linear model

derived in Section 3 with respect to the parameter μmax. This work focuses on a quasi-

direct approach, which means that a direct method based on Equation 4.2 is used, but

with the Jacobian J to be calculated with automatic differentiation (AD) rather than

using the derivative of analytical functions, [CSST00], see also Section 4.1.1. Although it

would be possible to calculate higher order sensitivities with this approach, it is assumed

that this would not increase the accuracy considerably, [DG76].

4.1.1. Basic theory of direct sensitivity analysis

It is assumed that the investigated model is given by a non-linear, time-dependent ODE

in the form of ż = f(z1, ..., zn, t, c) with l = 1, ..., n elements in state variable vector

z and m = 1, ..., o elements in parameter vector c. The linear sensitivities of the given

model with respect to a parameter cm then read p = ∂z
∂cm

. For each of the o parameters,

n ODE have to be solved for z. The sensitivity pl for the l-th state variable zl can be

found as the time integral of ṗl =
∂
∂t(pl). Applying both the chain rule of differentiation

and the rule for interchanging the order of differentiation for mixed partials,

ṗl =
∂

∂t

(
∂zl
∂cm

)
=

∂

∂cm

(
∂zl
∂t

)
, (4.1)

and the sensitivity system is thus given by

ṗl =
∂fl
∂cm

+

n∑
d=1

∂fl
∂zd

· ∂zd
∂cm

(4.2)

with fl being the right-hand side of żl, [DG76]. Using the Jacobian J, whose (l, d)-th

element is ∂fl
∂zd

, and fc being the sensitivity of right-hand side f with respect to parameter

cm, Equation 4.2 reads

ṗ = fc + J · p. (4.3)
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4.1.2. Initial values of sensitivities

According to Dickinson and Gelinas, the value for the initial sensitivity pl(0) is defined

by its limit

pl(0) = lim
Δcm→0

zl(cm +Δcm, 0)− zl(cm, 0)

Δcm
, (4.4)

[DG76]. Depending on whether a parameter is an explicit initial condition of any of

the state variables zl or not, two cases can be distinguished. If parameter cm is not an

initial condition of any of the state variables zl, the term zl(cm +Δcm, 0)− zl(cm, 0) in

Equation 4.4 is zero, and all l initial sensitivities are therefore given by

pl(0) = 0. (4.5)

For the second case, it is assumed that parameter cm is an explicit initial condition of the

n-th state variable zn. Thus, the term zn(cm +Δcm, 0)− zn(cm, 0) = Δcm in Equation

4.4 results in pl(0) = 1. Thus, the initial sensitivities read

pl=n(0) = 1, (4.6)

pl �=n(0) = 0. (4.7)

4.1.3. Sensitivities of functions related to state variables

In addition to the sensitivity of the state variables, the sensitivity of other variables

that depend on these state variables can be of interest. As mentioned in Section 2.2.2,

there are existing methods that focus on the vehicle’s side slip angle β. In addition,

the self-aligning torques at the tires have proven to be a good measure for μmax in

previous investigations, e.g. Hsu et al., [HLGG06]. As with the propagation of error,

the sensitivity pe of e = f [u(cm), w(cm)] with respect to the parameter cm can be written

by its first order Taylor series

pe =
∂e

∂cm
=

∂e

∂u
· ∂u

∂cm
+

∂e

∂w
· ∂w

∂cm
. (4.8)

Within Equation 4.8, the terms ∂e/∂u and ∂e/∂w can be interpreted as weighting factors.

So, by knowing the sensitivity of state variables, the sensitivity of other variables that

are related to state variables can be expressed. Applied to the side-slip angle

β = arctan
vy
vx

≈ vy
vx

for β << 1 rad, (4.9)
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its sensitivity based on the relation in Equation 4.8 is given by

pβ =
∂β

∂μ
=

∂β

∂vy
· ∂vy
∂μ

+
∂β

∂vx
· ∂vx
∂μ

. (4.10)

With ∂β/∂vy = 1/vx and ∂β/∂vx = vy/v
2
x, the sensitivity of β to μmax reads

pβ =
1

vx
· pvy +

vy
v2x

· pvx , (4.11)

including ∂vy/∂μ = pvy and ∂vx/∂μ = pvx .

4.2. Numerical implementation

Dickinson and Gelinas propose an approach in which the model and the sensitivity

equations are solved simultanoeusly, [DG76]. This procedure is only possible when the

Jacobian J is calculated as the partial derivative of an analytical function. Although

possible, the many dependencies within the model equations (as shown in Section 4.3)

complicate the calculation of an analytical derivative. An alternative method for cal-

culating both the Jacobian J and fc is given by automatic differentiation (AD). AD is

neither symbolic nor numerical approximation. It enables the calculation of derivatives

accurate to working precision at arbitrary points. Theoretically, it can be applied to ev-

ery function described in a computable program that can execute elementary arithmetic

operations (e.g. additions) and elementary functions (e.g. sine functions). An auto-

mated procedure based on the chain rule for derivatives is then applied to this function,

and it calculates the desired derivatives, [BH00]. In this work, the automatic differentia-

tion toolbox Adimat developed for the computer language Matlab was used, [BBL+02].

The calculation of the Jacobian J and fc using AD requires the n model equations to

be at least one time differentiable. This does not account for the calculation of the

longitudinal slip sx, see Equation 2.3, where both absolute value and a distinction of

cases (e.g. finding the maximum out of two values) have to be considered. It is also

necessary to calculate an absolute value for the calculation of combined tire forces, see

Section 3.3.1. Thus, these mathematical functions are numerically approximated by the

functions shown in Appendix C.1.

Finally, the steps to calculate the sensitivities p are summarized. In a first step,

the differential equation ż of the non-linear vehicle model is solved for z. In a second

step, the Jacobian J and the derivative fc are calculated using automatic differentiation.
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Table 4.1.: Maximum longitudinal and lateral accelerations based on measurements

Acceleration Measured value (approx.)

ba
max
x (acceleration) 5 m/s2

ba
min
x (braking) 10 m/s2

ba
max
y 10 m/s2

Finally, in a third step, the linear sensitivity model ṗ is solved for p.

4.3. Sensitivity analysis using vehicle model

The sensitivity analysis is performed on the vehicle model described in Section 3.2.

The differential equation system consists of the three equations of motion that describe

the movement of the chassis, the four equations that describe the rotational movement

of the wheels, and four equations for the lateral tire dynamics. The structure of the

vehicle model adapted for the sensitivity analysis is shown in detail in Appendix C. This

structure describes the inter-dependencies between the state variables, the inputs to

the equations and the investigated parameter μmax. These inter-dependencies influence

not only ż, but also the Jacobian J and fc and thus the differential equation ṗ of the

sensitivities. A simplification is necessary to calculate the tire load variation, as given

by Equation 3.22, and the effective tire radius that depends on the tire load variation,

as given in Equation 3.23. They depend on the horizontal accelerations and thus on ż,

which is not known before the differential equation system is solved for z. Since it is

assumed that the horizontal accelerations change sufficiently slowly with time, both tire

load variation and effective tire radius are calculated with the accelerations of the last

time step k − 1.

4.3.1. Driving manoeuvres to cover parameter space

Different driving states have to be defined in order to investigate the sensitivity of the

state variables with respect to μmax. The parameter space of driving states is defined

by different areas of bax and bay in the Krempel diagram, as shown in Figure 2.5 and

described in Section 2.1.2. It is assumed that for different horizontal accelerations at

the vehicle’s COG, different state variables are sensitive to a change of μmax. Thus, the

parameter space of possible and realistic horizontal accelerations at the vehicle’s COG is

to be investigated. The outer boundaries are defined by the maximum accelerations, as

shown in Table 4.1. Time-dependent acceleration profiles are used to control the inputs
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of the vehicle model, i.e. the four wheel torques and the front wheels’ steering angles,

to reach different combinations of longitudinal and lateral accelerations within the pa-

rameter space. For the longitudinal and the lateral desired acceleration profile, separate

proportional-integral-derivative controllers (PID) was used. This enabled reproducible

results of driving states for different friction potentials μmax within the physical lim-

its as well. A wide range of possible accelerations are covered in the analyses. Thus,

manoeuvres are defined that start with either pure longitudinal or lateral acceleration

and then traverse the parameter space of combined accelerations in ellipses. Figure 4.1

shows the manoeuvre to cover positive bax and bay by starting with a pure longitudinal

acceleration until a predefined value is reached. Then, the wheels’ torques and the front

wheels’ steering angles are controlled such that an elliptic acceleration characteristics is

achieved, as shown in Figure 4.1 (left). Both the predefined value after pure longitudinal

or lateral acceleration and the ellipses are varied by a factor fS in order to reach many

conditions in the parameter space, see gray lines in Figure 4.1 as two examples. With

a scaling factor fS = 1, the maximum accelerations are simulated as defined by the

Krempel diagram, as shown in Figure 2.5 with the maximum values presented in Table

4.1. The temporal representation of the desired values of bax and bay for the controller

are shown in Figure 4.1 (right). These manoeuvres are simulated for both positive and

negative bax. To include manoeuvres with values of bay while bax ≈ 0, a manoeuvre

similar to the proposed one was added, whereby bay is first increased while bax remains

at zero, and then elliptic behaviour towards positive or negative bax is reached.

4.3.2. Validity and limitations

Both the validity and the limitations of the results of the sensitivity analysis depend

on the proposed procedure, including the simulated manoeuvres. To find variable sets

sensitive to μmax that only depend on the current driving states, first of all the sensitivity

of the state variable must not depend on the time when the driving states are reached

(no time-dependence). In addition, the influence of the initial longitudinal velocity vx,0

at which the simulation is started has to be known. Finally, it has to be assured that the

tendencies of the sensitivities of the manoeuvres that start with longitudinal excitation

deliver comparable results to those that start with lateral excitation, in order to be able

to compare the results.
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Figure 4.1.: Left: Representation of the longitudinal versus the lateral acceleration in
the vehicle’s COG with elliptic characteristic. The simulated manoeuvre
starts with pure positive longitudinal acceleration, followed by a combined
longitudinal and lateral acceleration state. The scaling factor fs is used to
scale the desired acceleration profiles. Top right: Longitudinal acceleration
version time to achieve the driving states shown on the left. Bottom right:
Lateral acceleration versus time.

Time dependence of sensitivity

Simulations with different acceleration profiles versus time have to be compared in order

to be able to evaluate many states within the parameter space. The higher the desired

acceleration is set, the faster a certain state is reached, as shown in Figure 4.2. As

mentioned before, the time at which a certain state (in this case a certain longitudinal

and lateral acceleration) is reached must not influence the calculated sensitivities p.

Thus, the sensitivity p = ∂z/∂μ calculated for a certain ba scaled with fs = 1 at t1

has to be the same as the one for fs = 0.5 at t2. For example, Figure 4.3 shows the

driving state with pure bax of 0.45 m/s2 and bay = 0. It is evident that the selected

sensitivities ∂vx/∂μ and ∂ωfl/∂μ have congruent characteristics in dependence of μmax at

the investigated longitudinal acceleration of 0.45 m/s2, no matter which scaling factor

fs is used for the desired acceleration profile during the simulation manoeuvre. Both

the tendency and the absolute values at a certain μmax are similar for all simulations.

This behaviour is the same for the all sensitivities pl and for all acceleration points not

displayed. Thus, time-dependence can be excluded.
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Figure 4.2.: Instants of time t1 and t2 at which the driving state of ba = 1 m/s2 (pure lon-
gitudinal acceleration, no lateral acceleration) is reached for two simulations
with different scaling factors fs for the desired acceleration profile
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Figure 4.3.: A comparison of the selected sensitivities ∂vx/∂μ (left) and ∂ωfl/∂μ
(right) versus μmax shows similar behaviour for different scaling factors
fs used to calculate the desired acceleration profile during the simulation
manoeuvre. Since the curves are congruent for its simulated μmax, the sen-
sitivities displayed show no time-dependence, i.e. a dependence on the time
it takes to reach the acceleration of 0.45 m/s2, for example.

Influence of initial longitudinal velocity

There are two methods with which the influence of the longitudinal velocity on the out-

come of the sensitivities can be investigated. Although only one of the methods was

performed, both will be described in this section. The influence of the initial longi-

tudinal speed vx,0 on the outcome of the analysis can be treated as the investigation

of the sensitivity of the model’s state variables with regard to the initial value of the

longitudinal speed. Then, the same procedure of direct sensitivity analysis can be used
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as presented earlier in this chapter. Instead of μmax, the investigated parameter is then

the initial longitudinal speed vx,0.

The initial longitudinal speed vx,0 can be written as z1(0), as it is the initial state of

the first state variable z1. Then, it does not explicitly appear in the right-hand side fl

of the differential equation system żl, [DG76], and fc in Equation 4.3 is a zero vector.

Thus, ṗ is then given by

ṗ = J · p. (4.12)

According to Section 4.4 (cf. Equation 4.7), the initial values of p with regard to the

initial longitudinal velocity read

p1(0) = 1, (4.13)

pl �=1(0) = 0. (4.14)

When calculating the sensitivities with respect to vx,0, n equations for p have to be solved

for all simulations. Since the sensitivities with respect to μmax were already available,

another approach was chosen. Like the investigation of the influence of time-dependency

in Section 4.3.2, the influence of different initial longitudinal velocities on the outcome

of the sensitivities with respect to μmax was investigated with simulations that start at

different vx.

Figure 4.4 shows that the selected sensitivities depend on the initial longitudinal ve-

locity vx,0. With increasing initial speed, the sensitivity ∂vx/∂μ also increases for both

pure longitudinal accelerations of 0.45 and 2.45 m/s2. With a higher dynamic excitation

(e.g. longitudinal acceleration), the sensitivities also increase. The absolute value of the

sensitivity ∂ωfl/∂μ shows similar behaviour. It has to be mentioned that the vehicle

model does not consider maximum longitudinal velocity of the vehicle or limitations

of engine torque. It is obvious that there is a dependency on the initial longitudinal

speed vx,0. Although the absolute value of the sensitivities changes with the longitudinal

speed, it can be assumed that the influence of the velocity affects all state variables to a

comparable extent. It seems that the influence could be compensated with a quadratic

dependence of the longitudinal speed, for example. In any event, for the observer pro-

posed in Section 5, it is not necessary to know the exact values of the sensitivities. It

is more important to know their influence in comparison to the other state variable’s

sensitivities in a certain region in the parameter space. The results of the sensitivity

analysis are only used to select the state variables to be observed in the estimation al-
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Figure 4.4.: Dependence of selected sensitivities ∂vx/∂μ (left) and ∂ωfl/∂μ (right) ver-
sus the initial longitudinal velocity vx,0 for μmax = 1 for pure longitudinal
acceleration of 0.45 m/s2 (above) and 2.45 m/s2 (below) and different
scaling factors fs within the simulation.

gorithm. Thus, it is not necessary to compensate for the influence of the longitudinal

speed. However, it has to be mentioned that within each driving state region as defined

in Figure 4.10, the initial longitudinal velocity vx,0 for the manoeuvres is the same.

Comparison of sensitivities for longitudinal and lateral manoeuvres

To ensure comparable results, simulations that start with longitudinal excitation and

then add lateral excitation (LQ) are compared to simulations that start the other way

around (QL) at the same μmax and acceleration profiles. Both simulations are compared

at specific acceleration points.
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As an example, Figure 4.5 shows the comparison of two simulations at the data point

where each reaches the driving state with a longitudinal acceleration of 1.2 m/s2 and

a lateral acceleration of 1.9 m/s2. The absolute value of the sensitivities is higher for

LQ manoeuvres. This is true for all simulations. This difference between the absolute

values of the sensitivities for LQ and QL manoeuvres increases with higher acceleration

conditions. This indicates that the influence of the longitudinal velocity is mainly re-

sponsible for this effect. Nevertheless, the tendencies are similar, and it leads to the

same conclusion that was drawn for the influence of the longitudinal speed, cf. Section

4.3.2. Thus, this does not limit the comparability of the tendencies, as the absolute

value of the sensitivities is not of interest.
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Figure 4.5.: Comparison of the selected sensitivities ∂vx/∂μ (left) and ∂ωfl/∂μ (right)
versus μmax shows similar behaviour for LQ and QL manoeuvres at a longi-
tudinal acceleration of 1.2 m/s2 and a lateral acceleration of 1.9 m/s2.

4.4. Normalisation of sensitivities

The state variables and their sensitivities with respect to μmax do not all have the same

units and also vary in their orders of magnitude. To be able to choose the variables that
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are the most sensitive for the driving state, the influences of the different state variables

within one investigated region have to be made comparable. Thus, it is necessary to

normalise the resulting sensitivities in order to achieve physical equivalence. One possi-

bility is to normalise the sensitivities pl(t) to the value of the respective state variable

zl(t). As μmax itself is dimensionless, the unit of the sensitivity ∂zl/∂μ corresponds to

the unit of the respective state variable zl. The aforementioned sensitivity normalised to

zl(t) is then dimensionless, but it does not provide the same orders of magnitude within

the sensitivities of the different state variables. Thus, this method of normalisation is

suitable when assessing the change in sensitivity of a state variable over different driving

states, but it is not useful when comparing the sensitivity of different state variables for a

specific driving state. Normalising the sensitivities to the maximum state variables (e.g.

the maximum speed of the investigated vehicle) or the maximum sensitivities during the

simulations would result in sensitivities within the same order of magnitude (especially

the latter normalisation). Nevertheless, small sensitivities of small state variables (e.g.

the vehicle’s yaw rate) would appear larger than can be physically explained. This also

applies for the first normalisation method mentioned above. Thus, the following ap-

proach based on kinematic relations is used in this work to ensure physical equivalence

of the different state variables and their sensitivities.

4.4.1. Kinematic relation for normalisation

The longitudinal velocity vx is used as the reference value for the other state variables

in order to achieve physical equivalence within their sensitivities. As the sole variable,

it is normalised to its maximum value1 vmax
x . With vmax

x not depending on μmax, as

every velocity can be reached within enough time even on low-friction surfaces, the

normalisation of the state variable y1 = vx is directly applicable to p1, as shown in

Equation 4.15.

v̄x =
vx

vmax
x

→ ∂v̄x
∂μ

=
1

vmax
x

· ∂vx
∂μ

(4.15)

To make the lateral velocity vy physical equivalent to the reference value vx, the side slip

angle characteristics for a single-track model and for small values of the side slip angle

given by

β = β0 +Δβ = arctan
vy
vx

≈ vy
vx

(4.16)

1Reference value vmax
x was taken from the technical data sheet, [AG08].
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are used. The side slip angle consists of the side slip angle at small lateral accelerations

close to zero (e.g. occurring when entering a curve), which follows the geometric relation

β0 = β|
bay→0 =

lr
R

(4.17)

with the distance lr of the vehicle’s COG to the rear axle and the curve radius R of the

trajectory, [HE11, p.110]. With higher accelerations, the additional angle Δβ adds to

β0. It is not a function of R, but of bay. Both the characteristic and its maximum value

can be seen in Figure 4.6, which shows a characteristic measured during steady-state

cornering, [fSI04]. For the maximum of β0, the minimum radius, i.e. the turning circle

Rmin of the vehicle, [AG08], is used in Equation 4.17. By rearranging Equation 4.16 for

vx = vy · 1

β0 +Δβ
, (4.18)

and substituting the components of β with its maximum values, the normalised lateral

velocity v̄y reads

v̄y =
vy

βmax
0 +Δβmax

· 1

vmax
x

. (4.19)

Since it is assumed that Δβmax does not depend on μmax when not at the physical limits,

the sensitivity of v̄y reads

∂v̄y
∂μ

=
1

βmax
0 +Δβmax

· 1

vmax
x

· ∂vy
∂μ

. (4.20)

Physical equivalence between vx and bωz is gained by normalising bωz and its sensitiv-
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Figure 4.6.: Characteristic of side slip angle Δβ (not including the geometric part β0 at

bay ≈ 0 compared to β) measured at steady-state circular driving with an
Audi A4 Avant 1.8 Tfsi
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ities with the minimum turning circle Rmin such that

ω̄z =
Rmin

vmax
x

· bωz and (4.21)

∂ω̄z

∂μ
=

Rmin

vmax
x

· ∂bωz

∂μ
. (4.22)

Accordingly, the values of the four wheel angular speeds ωi are normalised by the ref-

erence effective tire radius re,i. For zero longitudinal slip at the wheel, the longitudinal

velocity of the wheel hub is proportional to the effective tire radius and the wheel’s

angular speed. Thus, the normalised ω̄i is physically equivalent to vx, and its sensitivity

reads

ω̄i =
ωi · rr,i
vmax
x

and (4.23)

∂ω̄i

∂μ
=

rr,i
vmax
x

· ∂ωi

∂μ
. (4.24)

The reference effective tire radius rr,i is calculated for static tire loads based on Equation

3.23. Finally, the normalised state variables and their normalised sensitivities read

z̄ = N · z and (4.25)

∂z̄

∂μ
= N · ∂z

∂μ
, (4.26)

where the normalisation matrix N is a diagonal matrix whose principal diagonal consists

of the elements 1
vmax
x

·
[
1 1(

lr
Rmin+Δβmax

) Rmin rr,fl rr,fr rr,rl rr,rr

]
.

4.5. Results and discussion of sensitivity analysis

As discussed in Section 4.1.1, the sensitivity p shows the relation between the change

of the state variable z with respect to the change of the investigated parameter in the

investigated case μmax. This means that the sign of the resulting sensitivity takes into

account the relation of the changes in both z and μmax for the investigated data point.

Figure 4.7 shows how the non-normalised sensitivities of all state variables change

with μmax for two different longitudinal accelerations during a manoeuvre with pure

longitudinal acceleration. With increasing longitudinal acceleration, the absolute value

of the sensitivity increases. This is true for all of the state variables z and for all simulated
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μmax. It has to be mentioned that high values of bax and bay cannot be reached at low

μmax. For this reason, these conditions cannot be displayed.
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Figure 4.7.: Relation between non-normalised sensitivity of state variables and the fric-
tion potential μmax for two selected longitudinal accelerations. The units of
the shown sensitivities are the same as for their respective state variable.

As expected, at all four wheels the absolute value of the sensitivities of the wheel speed

is higher for low μmax and decreases with increasing μmax. This can be explained by the

higher wheel’s rotational accelerations at lower μmax at the same bax. The absolute value

of the sensitivities for the front wheels is higher than for the rear wheels. For a front-

wheel drive (FWD), this can be explained by the high driving torque on the front axle

and the comparably low rolling resistance torque on the rear axle. The different signs on

front and rear wheels follows from the sign of the sum of torques. The sensitivity ∂vx/∂μ

for the longitudinal speed shows the same tendency as those of the rear wheels, but the

absolute value is several orders of magnitude lower. This is due to the fact that the

inertia of the chassis is higher than that of the wheels, which results in a slower response

to dynamic changes. This already indicates that the longitudinal velocity is not the best

indicator for a change of μmax for pure longitudinal accelerations. As expected, during

purely longitudinal excitation, the sensitivities of the lateral velocity ∂vy/∂μ and the

yaw rate ∂bωz/∂μ can be omitted due to the small contribution.

Figure 4.8 shows the non-normalised sensitivities of the state variables with respect

to μmax for two combined longitudinal and lateral accelerations. The sensitivities for

the state variables vx, ωfl, ωfr, ωrl and ωrr show a similar behaviour as the purely

longitudinal acceleration manoeuvre in Figure 4.7, although the orders of magnitude
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Figure 4.8.: Relation between non-normalised sensitivity of state variables and the fric-
tion potential μmax for two combined longitudinal and lateral accelerations.
The units of the shown sensitivities are the same as for their respective state
variable.

vary. The sensitivity of the lateral velocity ∂vy/∂μ shows a comparable tendency to

that of the longitudinal velocity vx, but one order of magnitude higher, despite the

fact that the absolute value of vy during cornering is generally far lower than that for

vx. Even without normalisation, this already indicates that considering vy to estimate

μmax will contribute much more than considering vx during a manoeuvre that includes

cornering. In comparison, the sensitivity ∂bωz/∂μ is several orders of magnitude smaller

and has a different sign. The yaw rate changes little with changing μmax due to the high

vehicle’s yaw moment of inertia, see Figure 4.9. In comparison, vy changes significantly

with μmax , as can also be seen in Figure 4.9.

4.5.1. Resulting normalised sensitivities at different driving states

Figure 4.10 shows all simulated accelerations (black lines) and the different regions (gray

areas) that have been analysed. The investigated area corresponds approximately to

the area that is typically traversed by a non-professional driver within the maximum

physically possible area, [Weg09, p.70-71]. The black dots show all analysed data points,

and the dark gray asterisks show all selected data points that are further shown and

discussed in this section. It has to be mentioned that the resulting absolute values

of the sensitivities depend on the initial longitudinal speed, see Section 4.3.2. Within

one region, the initial longitudinal speed vx,0 is the same. The absolute values of the

sensitivities can be directly compared within one region, but not across regions.
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Region 1 (accelerating)

The first region examined comprises the area with positive longitudinal accelerations.

Figure 4.11 shows the characteristics of the normalised sensitivities versus μmax for 5

different longitudinal accelerations. The wheel speeds ωfl and ωfr of the driven wheels

show the highest sensitivity to μmax by a considerable margin. As expected, the absolute

values of the sensitivities increase with higher dynamic excitation. For a longitudinal

acceleration of about 0.4 m/s2, the change of sensitivity versus μmax is very small for

values of μmax that are higher than 0.4. This indicates that at these low longitudinal

accelerations, it will not be possible to provide a reliable estimate of μmax for μmax > 0.4

using solely the vehicle-dynamics-based method presented in this work. Nevertheless, at

a longitudinal excitation of about 1.4 m/s2, the sensitivities of the wheel speeds already

show a distinguishable characteristic up to a value of μmax of 0.9. The wheel speeds ωrl

and ωrr of the non-driven wheels also show a small dependence on μmax, especially for

smaller values of μmax. Their sensitivities also increase with higher dynamic excitation.

In contrast, the dependence of the longitudinal velocity is small for all μmax and dynamic

excitations. This can be explained by the higher inertia and thus the slower response

of the chassis than the wheels to a change in μmax. Thus, vx is not likely to contribute

to an estimate of μmax. Due to the high dependence of the sensitivities of the driven

wheels on μmax, an all-wheel drive (AWD) configuration was also simulated with a torque

distribution of 50% each on the front and rear axles, see Section 4.5.2.

Region 2 (braking)

The resulting sensitivities of the area of negative bax (Region 2 ) are shown in Figure 4.12,

which shows the five selected data points of bax. Since, in contrast to the front-wheel

drive configuration in Region 1, wheel torque is now applied to all four wheels, the rear

wheel speeds also show a higher sensitivity to μmax. The brake distribution is set to 60 %

on the front axle and 40 % on the rear axle for these simulations. The sensitivities of the

wheel speeds show a very high dependence on μmax and on the longitudinal acceleration.

The tendencies are similar for all acceleration points, but the absolute values vary as

the wheel slips, and thus the longitudinal forces depending on μmax vary. Starting at

about −2 m/s2, the wheel speeds already show significant sensitivities for μmax lower

than ≈ 1 at the simulated initial vx,0. This indicates that starting at this longitudinal

acceleration, a distinction of these road or tire conditions may be feasible. Similar to

Region 1, the sensitivity of vx,0 shows a negligible dependence on μmax. As it is a pure

longitudinal manoeuvre, the sensitivities for both the two front and the rear wheel speeds
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Figure 4.11.: Normalised sensitivities for all state variables except vy and bωz, which are
zero within this region, for selected acceleration data points in Region 1
(positive longitudinal excitation). Note: High values of bax and bay cannot
be reached at low μmax, thus not all μmax are shown for all data points.

are congruent. For most of the longitudinal acceleration data points, the front wheel

speeds show a higher sensitivity to μmax due to the higher braking torque applied on the

front axle. At a longitudinal acceleration of about −6 m/s2 and higher, the sensitivities

of the rear wheels exceed those of the front wheels for the simulated initial vx,0. Due

to the higher wheel load on the front axle during braking, the rear wheels are relieved,

and wi increases more rapidly than on the front axle. The high dependency of the

sensitivities of the wheel speeds on μmax and the applied brake torque on the front and

rear axles is comparable to the results from the comparison of AWD and FWD in Region

1. Thus, a theoretical configuration with brake torque only applied to the front wheels

was also simulated, see Section 4.5.3.

Region 3 (pure cornering)

Similar to the results from Region 1 and Region 2, the wheel speeds show the highest

sensitivity for driving states with purely lateral excitation in Region 3. as shown in

Figure 4.13. A left turn is made during this manoeuvre. With increasing lateral ac-

celerations, the tire load Fz,fl decreases, which at first causes the absolute value of the

sensitivity of the wheel speed ωfl to increase faster compared to that of ωfr. At a certain

point, the sensitivity of ωfr exceeds that of ωfl, due to the influence of μmax within the
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(negative longitudinal excitation). The value for vx is close to zero for all
simulations.

transmitted tire forces, which differ at the inner (index fl) and outer wheel (index fr)

during cornering. With higher dynamic excitation, the sensitivities of the front wheels

increase by several orders of magnitude, from about 10−1 at 1 m/s2 to 102 at 7 m/s2.

Again, the sensitivities of the chassis are small compared to those of the wheel speeds.

Especially the sensitivities of the longitudinal speed vx and the yaw rate bωz can be

omitted. Though smaller than the sensitivities of the wheel speeds, the lateral velocity

vy shows a dependence on μmax. Starting at bay ≈ −1 m/s2, the wheel speeds show

significant sensitivities for μmax lower than ≈ 0.5 for the simulated initial value of vx.

At bay ≈ −2 m/s2, the sensitivity of the front inner wheel speed ωfl indicates that a

distinction of μmax until ≈ 1 might be possible.

Region 4 (combined cornering and acceleration)

The results for Region 4 (positive longitudinal and lateral excitation) in Figure 4.14

show the sensitivities for all state variables for selected data points of bax and bay. The

bottom row of diagrams in Figure 4.14 shows data points of bay = 1 m/s2 with increasing

bax from left to right. Again, the front wheel speeds show the highest sensitivity to μmax.

The higher the bax, the lower the sensitivity of the rear wheel speeds in comparison to the

front wheel speeds. The sensitivities pvx and p
bωz are again negligible. The sensitivity

pvy is small but noticeable. In the middle row of diagrams in Figure 4.14, bay between
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Figure 4.13.: Normalised sensitivities for all state variables for selected acceleration data
points in Region 3 (lateral excitation). Sensitivities for vx, vy and bωz are
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with high μmax, thus not all μmax are shown for all data points.

3 and 4 m/s2 are shown for longitudinal accelerations increasing from left to right.

Although the absolute values of the sensitivities are several orders of magnitude higher,
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the tendency is similar to the results for a lateral acceleration of 1 m/s2. The same

factor accounts for the results presented in the upper row of diagrams in Figure 4.14,

which comprises lateral accelerations between 5 and 6 m/s2. Here again, the longitudinal

acceleration increases from the left to the right side in Figure 4.14. It has to be mentioned

that the driving states of bax = 0.6 and bay = 6 (upper left) and bax = 3 and bay = 5

(upper right) were only reached in a stable way at μmax = 1.1 and μmax = 1.2, so there

is only one data point, rather than a line, as in the other diagrams. With increasing

bay at low bax, the sensitivity of wheel speed ωfr (outer wheel in turn) is bigger than

that of the inner wheel speed ωfl. The higher the longitudinal acceleration, the higher

the influence of the inner wheel speed ωfl. This is due to the decreasing tire load on

this wheel during cornering, which leads to an increasing wheel speed in comparison to

a higher-loaded wheel when a driving torque is applied.

Region 5 (combined cornering and braking)

Figure 4.15 shows the standarized sensitivities for Region 5, which comprises negative

longitudinal and lateral excitation. Similar to Figure 4.14, bax decreases from the left to

the right side, whereas bay increases from the bottom row up. Unlike in Figure 4.14, the

order of magnitude of the sensitivities does not depend so much on bay, but rather on

bax. One possibility is that the bax achieved during braking are two times higher than

during accelerating, see Table 4.1.

4.5.2. Sensitivities for all-wheel-driven vehicle

In addition to the front-wheel drive (FWD), an all-wheel drive (AWD) with a wheel

torque distribution of 50 % on the front and the rear axle was simulated. The simulation

used the same manoeuvre and the same initial vx,0 as the simulation of the front-wheel

drive in Region 1. As expected, the absolute sensitivities for the AWD configuration

shown in Figure 4.16 are smaller than those of the FWD configuration, cf. Figure

4.11. This can be explained by the fact that the wheel slips on the front axle are lower

for the AWD configuration. Thus, it is expected that it is more difficult to estimate

μmax for an AWD. This is consistent with results from previous investigations on AWD

from Holzinger, [Hol92, p.86]. However, other than for the FWD configuration, the

sensitivities of the rear wheels are higher and have a different sign. This is due to the

positive driving torque applied in the AWD configuration, whereas for FWD the only

torque present is the comparably small and negative rolling resistance torque.
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Figure 4.14.: Normalised sensitivities for all state variables for selected acceleration data
points in Region 4 (positive longitudinal and lateral excitation). Sensitiv-
ities for vx, vy and bωz are close to zero.

4.5.3. Sensitivities for front-braked vehicle (theoretical)

To investigate the influence of the brake torque distribution between front and rear axle,

the extreme and theoretical case of only front braking (100 % brake torque on front axle)

has been investigated. The simulation reproduced same manoeuvres and the same initial

vx,0 as the simulation of the conventional brake system in Region 2. For the conventional

braking system (as shown in Figure 4.12), the curves for the wheel speeds on the front
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Figure 4.15.: Normalised sensitivities for all state variables for selected acceleration data
points in Region 5 (negative longitudinal and lateral excitation). Due to a
numerical problem at all simulations of μmax = 1 during combined braking
and cornering, the normalised sensitivities have been interpolated in this
Figure for μmax = 1.

and rear axles have a similar tendency; only the absolute value differs in dependence

on bax due to the set braking torque distribution. Figure 4.17 shows the case of 100 %

braking torque on the front axle. The brake torque is controlled such that the same bax is

reached as for the conventional braking system configuration. The tendency of the front

wheels is comparable for both braking systems. Nevertheless, the absolute values of the
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Figure 4.16.: Normalised sensitivities for all state variables except vy and bωz, which are
zero within this region, for selected acceleration data points in Region 1
(positive longitudinal excitation) for an AWD (torque distribution front
and rear 50 % each)

front wheel speed’s sensitivities are higher. This indicates that estimating μmax based

on the front wheels would work better for this case than for the conventional braking

system. This also highlights the results of the influence of the wheel’s torque from the

comparison of FWD and AWD for positive bax. The sensitivities of the rear wheels are

very small and do not change much versus the simulated areas of μmax, as there is no

braking torque present.

4.6. Choice of sensitive parameters for the estimation observer

This investigation clearly shows that the wheels are the most qualified sensors for friction

estimation among the investigated variables, and thus are assumed to be quite qualified

for friction estimation in general. Across all investigated areas shown in Figure 4.10, the

wheel speeds show the highest sensitivity to μmax. Although much smaller, the lateral

velocity vy also shows a dependence on μmax in regions with lateral excitation. The

sensitivity of β can be calculated using the already known sensitivities pvx = ∂vx/∂μ

and pvy = ∂vy/∂μ using Equation 4.11. As vy/v
2
x · pvx << 1/vx · pvx , the first term can

be omitted. When vx is within the range of 0 to vmax
x =62.5 m/s, [AG08], the maximum

value of pβ ≈ 1/vx · pvy is within the order of magnitude of pvy , and the minimum value

is about two orders of magnitudes smaller. Thus, other than its maximum value, the

order of magnitude of pβ is below that of pvy . Nevertheless, as β is more likely to be
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Figure 4.17.: Normalised sensitivities for all state variables except vy and bωz, which are
zero within this region, for selected acceleration data points in Region 2
(negative longitudinal excitation) for 100 % braking torque on the front
axle

available on a future vehicle CAN than vy due to its relevance for VDC, it is included in

Table 4.2. Nevertheless, the influence of vy and β on μmax is low compared to that of the

wheel speeds. In addition, these influences have to be estimated for series application,

which may compromise the robustness of an estimation algorithm of μmax. In contrast,

wheel speed sensors are standard in vehicles equipped with anti-lock braking systems

(ABS) or electronic stability control (ESC). Thus, from the state variables presented in

Table 4.2, only the wheel rotational speeds wi were selected for the observation strategy

in Section 5.
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Table 4.2.: State variables sensitive to μmax to be observed for the different driving states.
Ratings: ++ ... high sensitivity, + ... medium sensitivity, o ... low sensitivity,
- ... lowest sensitivity (assumed negligible).

Region 1 Region 2 Region 3 Region 4 Region 5

vx - - - - -

vy - - o o o

β - - o o o

bωz - - - - -

ωfl ++ ++ ++ ++ ++

ωfr ++ ++ ++ ++ ++

ωrl + ++ ++ ++ ++

ωrr + ++ ++ ++ ++
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5. Tire/road friction estimator

This chapter outlines the proposed method for estimating the friction potential based on

sensor signals of a vehicle equipped with ESC. A brief introduction to recursive Bayesian

state estimation (and especially the particle filter) is provided first. Both methods have

proven to be suitable for state estimation problems and can deal with the presence of

uncertain measurements and measurement noise. The system model to be observed,

which was chosen based on the results of Section 4, is described. The advantages and

disadvantages of both the observer and the model are discussed, with an emphasis on

longitudinal tire force calculation, as its accuracy is crucial for the estimate’s accuracy.

5.1. Recursive Bayesian state estimation

Estimating the friction potential based on measurements of the vehicle’s states can be

treated as a state estimation problem, since the friction potential is a time-varying model

parameter that directly influences the vehicle’s state equations. In state estimation, a

state x(k) that is difficult or impossible to measure directly is observed via measurements

of inputs and outputs, [Bau07, p.1]. This is usually accomplished within an observer that

delivers an estimate x̂(k) for the internal state based on a state model, which consists

of a non-linear difference equation for x(k) and a non-linear measurement equation z(k)

in the form

x(k) = f(x(k − 1),w(k)) (5.1)

z(k) = h(x(k),v(k)), (5.2)

[Wat06, p.65], with k = 1, ..., Nk being the time step. Since the state model can only

represent a simplified description of the real physical process, uncertainties are unavoid-

able. In addition, the necessary measurements are subject to measurement noise and

model inaccuracies. These uncertainties, which are considered within Equations 5.1 and

5.2, are modelled as the process noise w(k) and the measurement noise v(k). Deviations

between a real value and its measurement are subject to chance. This means that for

a constant input, the outcome of the measurements will vary randomly. Rather than
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a deterministic function, the model therefore has to be treated as a stochastic process

characterised by its probability distributions. Both w(k) and v(k) are assumed to be

independent white noises with a priori known probability density functions (PDF), e.g.

from past measurements, [Sim06]. PDF describe the probabilistic characteristics of a

variable u by giving its probability within a range a ≤ u < b. PDF are standardised and

can only comprise values between 0 ≤ p(u) ≤ 1, [Wat06, p.35]. The recursive Bayesian

state estimator combines both the state estimation of a model parameter given in the

form of Equation 5.1 and the prior knowledge of the state variables’ probabilistic char-

acteristics using a Bayesian framework. The basis is Bayes’ theorem, which enables the

calculation of the conditional probability p of a state, written as p(u|w). It describes

the probability that an event u will occur under the condition that an event w arose

prior. Bayes’ theorem requires a priori knowledge of the probabilities p(u) and p(w),

which describe the probability of the occurrence of the individual events u and w. In

addition, the conditional probability p(w|u) has to be known, which, unlike the desired

conditional PDF, describes the conditional probability of an event w given the event u,

[Bau07, p.21]. Thus, p(u|w) is finally given by

p(u|w) = p(w|u) · p(u)
p(w)

. (5.3)

5.1.1. The recursive Bayesian state estimator

The recursive Bayesian state estimator applies Bayes’ theorem, see Equation 5.3, to the

state model given in Equations 5.1 and 5.2. According to Simon, [Sim06], the two main

steps to be solved for each time step k are:

1. Prediction step:

The a priori PDF of the current state x(k) is calculated using the Chapman-

Kolmogorov equation given by

p(x(k)|z(k − 1)) =

∫
p(x(k)|x(k − 1)) · p(x(k − 1)|z(k − 1)) dx(k − 1). (5.4)

The term p(x(k)|x(k − 1)) is known when both the state model equation for f(k)

and the PDF of the process noise w(k) are known. From time step k ≥ 2, the

second term p(x(k − 1)|z(k − 1)) is known from the update step of the last time

step. For k = 1, an initial value p(x(0)|z(0)) = p(x(0)) has to be assumed based

on the PDF of its initial state p(x(0)).
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2. Update step:

The a posteriori PDF is given by

p(x(k)|z(k)) = p(z(k)|x(k)) · p(x(k)|z(k − 1))∫
p(z(k)|x(k)) · p(x(k)|z(k − 1)) dx(k)

. (5.5)

The term p(z(k)|x(k)) in Equation 5.5, which is called the measurement likelihood func-

tion, [Wat06, p.70], can be calculated when both the measurement equation h(k) and

the PDF of the measurement noise v(k) are known. Assuming that the measurement

noise is Gaussian, the likelihood p(z(k)|x(k)) is proportional to a multivariate Gaussian

distribution given by

p(z(k)|x(k)) ∝ 1

(2π)
n
2 · |S|( 12 )

e−(z(k)−h(x(k)))T·S−1·(z(k)−h(x(k))), (5.6)

for an n-dimensional measurement equation z(k) with measurement noise v(k) � N (0,S),

wherein S denotes the covariance matrix of the measurement noise, [Sim06]. Only for

some cases is there an analytical solution for Equations 5.4 and 5.5. In the special case

of linear functions of f(k) and h(k), and when v(k) and w(k) are additive, independent

and Gaussian, the solution of the recursive Bayesian state estimator is the Kalman fil-

ter, [Sim06], which has also been proposed for friction potential estimation in several

publications, see Section 2.2.2. A further development of the recursive Bayesian state

estimator is the particle filter that is presented in Section 5.2. An adapted form of a

particle filter was applied by Ray, [Ray97], see Section 2.2.2 for the observed variables

and Section 5.2 for the particle filter adaptation used.

5.2. Particle filtering

According to Simon, the particle filter originated from a numerical implementation of

the recursive Bayesian state estimator, [Sim06]. It is a non-linear state estimator that,

unlike an extended Kalman Filter, for example, does not need to linearize the non-linear

state equations at the working point for each time step before it can be solved, [Sim06].

The recursive Bayesian state estimator considers only one initial state vector x(k) that

is to be estimated and that is given with its initial PDF p(x(0)), see Section 5.1.1. In

contrast, the particle filter considers h = 1, ..., N particles for each of the l initial state

vectors x+
h (0) that are generated based on the initial PDF p(x(0)) of each state vector

x. These particles are then re-sampled based on the relative likelihood of each of the N

different particles in order to obtain the most likely states. One of the shortcomings of
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particle filtering compared to Kalman filtering, for example, is the computational effort,

which depends on the number N of the particles that have to be dealt with at every

time step k.

The equations that describe the particle filter are given below. A more detailed deriva-

tion of the particle filter’s equation is given by Simon, [Sim06], and a very descriptive

application (although not related to friction potential estimation) is shown in Watzenig,

[Wat06, p.65-75]. Applied to the non-linear state model given in Equations 5.1 and 5.2,

the steps to be solved within a particle filter for each state variable xl(k) at each time

step k according to Simon, [Sim06], read:

1. Time propagation step:

The a priori particles x−
h (k) are calculated based on the l-th state model equation

fl with the particles x+
h (k − 1) from the previous time step k − 1 and the process

noise wh(k − 1) by

x−
h (k) = f(x+

h (k − 1),wh(k − 1)). (5.7)

For k = 1, the first N particles are randomly generated based on the PDF p(xl(0)).

2. Relative likelihood:

The relative likelihood qh is computed based on the measurement equation h(x−
h (k))

and the PDF of vh(k). In the case of Gaussian noise, Equation 5.6 applies. It has

to be noted that Equation 5.6 does not give a direct relation, but only a propor-

tional one (see ∝ in Equation 5.6 where = would be expected). Nevertheless, if it

is applied to all N particles, the relative likelihood of the states is equal to that of

its particles, [Sim06],

3. Normalising relative likelihood:

To ensure that the sum of the likelihoods is equal to one, qh are normalised by

q̄h =
qh∑N
h=1 qh

. (5.8)

The next step, the re-sampling step, is skipped in the approach proposed by Ray,

[Ray97], who calculates the most likely value of x̂(k) based on the normalised

relative likelihood for each particle by
∑N

h=1 x
−
h (k) · q̄h.

4. Re-sampling step:

As some state vectors have a small relative likelihood, they do not contribute

significantly to an estimate, but still require computational effort, [DGA00]. This
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is counteracted by the re-sampling step, where a set of a posteriori particles x+
h (k)

is randomly generated based on the relative likelihood q̄h of the h states vectors.

For a graphic representation of how the particles are moved during one time step,

see Figure 5.1.

In the re-sampling step, different strategies can be applied to randomly generate a new

set of samples x+
h (k). Within this work, the re-sampling strategy proposed by Simon is

used, [Sim06]. At every time step k, the following procedure has to be applied. First,

for every particle N , a random number r is chosen that is uniformly distributed between

0 ≤ r ≤ 1. Next, starting with the first particle h = 1, the relative likelihoods q̄h(k) are

accumulated until the
∑m

h=1 q̄h(k) ≥ r. The new particle x+1 (k) is now set to x−m(k).

This is done N times at each time step k until all particles x+
h (k) have been assigned. In

the theoretical case of N = ∞, the PDF of x+
h (k) is equal to the PDF p(z(k)|x(k)). It

has to be mentionend that other re-sampling strategies exist that might be more efficient

in terms of computational effort for this application. After the re-sampling step, any

statistical measure (e.g. mean or covariance) can be computed for the current time step

k with the a posteriori particles. The N particles are already distributed according to

the PDF p(x(k)|z(k)). For friction potential estimation, the most likely state of x̂(k)

at every time step k, which is of interest, is given by its expected value E(x(k)|z(k)),
which reads

x̂(k) = E(x(k)|z(k)) = 1

N

N∑
h=1

x+
h (k), (5.9)

[Sim06]. Figure 5.1 shows a graphic representation of the steps of the particle filter. It

can be seen that at time step k, the N particles are distributed based on the state’s

PDF p(x(k− 1)) from the last time step k− 1. After calculating the relative likelihoods

q̄h based on measurements and a given distribution p(z(k)|x(k), the re-sampling step is

conducted. The again N new particles x+
h (k) now move toward p(z(k)|x(k), as can be

seen by comparing the gray line in Figure 5.1a and the gray particles in Figure 5.1b).

As these particles are randomly generated, a few particles also occur in regions with a

low probability. This ensures that the algorithm is also able to detect changes in the

vehicle state x(k) from one time step to another. Nevertheless, how fast the particle

filter can converge depends on how close the measurement distribution is to the prior

distribution.
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re-sampling

p(z(k) x(k))—

x
h
(k)

x
h
(k)

p(x(k-1))

+

—b) Particles:

a) PDF:

moving samples

x

Figure 5.1.: a) Probability density functions (PDF) of the initial state p(x(k−1)) in black
and the measurement likelihood p(z(k)|x(k)) in gray, b) Particles x−

h (k)
distributed based on p(x(k−1)) before re-sampling and new particles x+

h (k)
randonmly generated during re-sampling based on q̄h, which depends on
p(z(k)|x(k)). Graphic representation based on Watzenig, [Wat06, p.68, 71].

5.3. Choice of observer model

The following sections describe the application of the theoretical considerations on state

estimation from Sections 5.1 and 5.2 on the estimation of the friction potential. As a

first step, a comparison is given of the state of the art on estimators for the friction

potential that are based on observers within the Bayesian framework. In a second step,

both a suitable state estimation method and a suitable model to be observed are selected

based on the results of the sensitivity analysis (cf. Section 4).

In existing works, observers within the Bayesian framework have already been suc-

cessfully implemented for non-series application and have shown promising results for

certain driving states (e.g. braking, cornering) or certain road conditions (e.g. only road

surfaces with low friction potential). An overview is given in Section 2.2.2. In particular,

the approach used by Ray, [Ray97], which can be described as a particle filter without

the re-sampling step, has attracted attention due to its ability to deal with non-linear

systems while still having the advantages of treating state models under uncertain mea-

surements (e.g. as with a Kalman filter). Within Ray ’s proposed approach, see also

Section 2.2.2, the tire forces are estimated using an extended Kalman filter. These es-

timated tire forces are then treated as the measurement input for the particle filter, in

which μmax is then estimated, [Ray97]. This means that the measurement input for the

particle filter is also an uncertain estimate. The results from the sensitivity analysis
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in Section 4 show that the wheel rotational speeds show the highest sensitivity to a

change in μmax. In addition, since the wheel rotational speeds are directly measured in

every vehicle with ABS, they do not require an uncertain estimate. Thus, one possible

approach could be to use the wheel’s angular momentum as given in Equation 3.15 to

estimate μmax. In discrete time notation, the i-th’s wheel’s rotational equilibrium for

the time interval Δt = t(k + 1)− t(k) reads

ωi(k + 1) = ωi(k) +
1

Ii
· (MD,i(k)−MR,i − rS,i · Fx,i(k)) ·Δt. (5.10)

Equation 5.10 is primarily determined by the difference between the momentum implied

by the longitudinal tire force Fx,i which is a function of μmax and the wheel’s torque

MD,i. Nevertheless, changes of ωi for typical driving states are smaller or within the

same range as the accuracy with which the term MD,i(k) −MR,i − rS,i · Fx,i(k) can be

calculated, and this relation cannot be used directly. Thus, this work uses an approach

related to the one proposed by Ray, [Ray97], in which the observed variables comprise

the horizontal tire forces. A priori calculated values of the longitudinal tire force Fx,i

are used as the measurement input for the particle filter. Within the particle filter al-

gorithm, these real values are then compared to N hypothesis of the longitudinal tire

forces calculated using a tire model and N different particles of μmax. The real value

of the longitudinal tire force Fx,i is calculated using the discrete time notation of the

wheel’s angular momentum shown in Equation 5.10 and is given by

Fx,i(k) =
1

rS,i
·
(
MD,i(k)−MR,i − Ii ·

(
ωi(k + 1)− ωi(k)

Δt

))
. (5.11)

5.3.1. Overview on observer model

With the relation in Equation 5.11, the state model for the observer can now be de-

fined using the notation for the state estimation problem given in Equations 5.2 and

5.2. The state vector x is given by
[
μmax
fl μmax

fr μmax
rl μmax

rr

]T
. The measurement

equation z(k) is given by
[
Fx,fl Fx,fr Fx,rl Fx,rr

]T
and is being calculated for each

wheel using Equation 5.11. Within the particle filter, the measurements z(k) are being

compared to h(x(k)), assuming a multivariate Gaussian distribution (cf. Equation 5.6).

The vector h(x(k)) includes the longitudinal tire forces that are calculated based on the

model for combined horizontal tire forces presented in Section 3.3. It depends on the

longitudinal slip sx,i, the slip angle αi, the vertical tire load Fz,i and the state vector x,

i.e. μmax
i . Using N particles for μmax

i , N hypothesis for the longitudinal tire force are
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calculated for each wheel.

Section 5.4 provides a more detailed description of the observer and the necessary

measurements as well as vehicle and tire parameters. To calculate the tire forces for

the N different hypotheses or particles of μmax, the horizontal tire model for combined

forces presented in Section 3.3 is used.

5.3.2. Friction potential and longitudinal tire force

Before presenting the observer structure in Section 5.4, it is important to mention some

reflections on the influence of μmax on the longitudinal tire force Fx,i. As discussed in Sec-

tion 2.2.2, Boßdorf-Zimmer estimated both the slip angle α and μmax at the same time,

[BZ07, p.84-86]. To implement the non-linear tire behaviour in an extended Kalman

filter, he needed its derivatives to both α and μmax. He showed the lateral tire forces

and their derivatives versus both α and μmax, [BZ07, p.84-86]. In the present work, the

longitudinal tire forces are needed rather than the lateral tire forces within the observer

model, see Section 5.4. Thus, Figure 5.2 shows the non-linear behaviour of Fx,i versus

both the longitudinal slip sx and the friction potential μmax. Longitudinal tire force

Fx,i was calculated using the tire model shown in see Section 3.3 and parametrised with

longitudinal tire data, see Table D.3.

Figure 5.2 (above) shows Fx,i and its change ΔFx,i/Δsx with respect to sx for two

μmax. It can be seen that the initial slope for both Fx,i and for ΔFx,i/Δsx does not

depend on μmax. This is due to the tire model used, which, like most existing models,

does not include any dependence of the initial slip slope on μmax, although a small effect

has been empirically proven by Dieckmann, [Die92, p.32-45], see also Section 2.2.2.

Only for higher values of sx, does μmax show a distinguishable characteristic up until

about 8 %. Figure 5.2 (bottom) shows Fx,i and its change ΔFx,i/Δμmax with respect

to μmax for two sx. In these cases, it can be seen that the behaviour with respect

to sx is distinguishable. For small values of sx (e.g. 0.5 % as shown in Figure 5.2),

ΔFx,i/Δμmax is small. In contrast, the change in Fx,i is higher for higher sx, as shown

for 6 %. According to Boßdorf-Zimmer, this shows that it is possible to simultaneously

estimate μmax and sx in an observer because the range of influence on Fx,i is a different

one. Although very promising, simultaneous estimation of sx was not investigated in

this thesis.
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Figure 5.2.: Non-linear behaviour of longitudinal tire characteristics for Fz,i = 3000 N in
dependence of longitudinal slip sx for two μmax (top left) and depending on
μmax for two sx (bottom left). The right side shows the partial derivatives
ΔFx,i/Δsx versus sx (top right) and ΔFx,i/Δμmax versus μmax (bottom
right). The graphic representation is based on Boßdorf-Zimmer, [BZ07,
p.85].

5.4. Observer structure

Figure 5.3 provides a general overview of the non-linear observer used in this work. The

inputs u(k) to both the real vehicle and the parallel observer are the inputs from the

driver, including the steering wheel angle δS , the choice of gear and the activation of

the accelerator and braking pedal. The wheel torque MD,i(k) accounts for the driver’s

inputs in the longitudinal direction. In the observer, a simplified model is used to

incorporate the expected vehicle reaction to the inputs. The real vehicle is also exposed

to disturbances d(k) (e.g. wind forces or road unevenness), which are not considered by

the observer. The vehicle’s state bz(k) is measured and forwarded to the observer. It is a

function of the internal state x(k), which is not directly measured, and the measurement

noise v(k). It has to be mentioned that Figure 5.3 also shows an output bż(k). Although

there is no direct relation such as an ODE considered for bż(k) within the model, its

components bax and bay are necessary for the observer, e.g. to calculate the tire load

variation (cf. Equation 3.22). Finally, an estimate x̂(k) is calculated in the observer

using a model of the observed variable. The observer itself is shown in more detail in

Figure 5.4. The main component is the particle filter, where the most probable μmax is
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Figure 5.3.: Observed system (vehicle) and non-linear observer with the vector u(k) of
the driver’s input (steering wheel angle δS and wheel torque MD,i) and the
disturbance vector d(k) that are input to the real vehicle, and its outputs
z(k) and ż(k), which are measured and fed into the observer model; based
on Simon, [Sim06]. Within this model, the internal state x̂(k) is estimated.

estimated based on the longitudinal tire forces, as shown in Section 5.3. For N particles

of μmax, the hypotheses of the longitudinal tire forces are calculated at each wheel i with

the respective tire load Fz,i, the longitudinal slip sx,i and the side slip angle αi depending

on the current inputs at time step k. Comparing this to a longitudinal force derived from

the wheel’s angular momentum with the inputs at time step k, see Equation 5.11, the

most likely estimate of μmax
i for every wheel is calculated with the particle filter described

in Section 5.2. In addition, a global μmax can be calculated using Equation 2.8. This can

be done by directly applying Equation 2.8 to the prior estimated μmax
i or by observing all

four wheel states at the same time, i.e. setting h(x(k)) =
[
Fx,fl Fx,fr Fx,rl Fx,rr

]T
as a function of one μmax

g rather than four wheel-individual μmax
i . The results from the

two approaches do not vary significantly.

5.4.1. Measurement inputs

For an estimation method based on the vehicle dynamics, the theoretical achievable

accuracy of an estimate of μmax depends on the dynamic excitation during a manoeu-

vre. The closer to the physical limits of road adhesion, the more accurate an estimate

of μmax can be, see Section 6.1. Apart from this theoretical accuracy, the effectively
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Figure 5.4.: Schematic structure of tire/road friction estimator showing the driver’s in-
puts u(k), the measurement inputs z(k) and ż(k) on the left side and the
estimation outputs x̂(k) comprising μmax

G (k) and μmax
i (k) on the right side.

The observer model consists of the vehicle model (cf. Section 3.2) and the
velocity estimator, which deliver the inputs needed to calculate the expected
Fx,i based on the wheel’s angular momentum and the tire forces from the
horizontal tire model for N particles of μmax, which are then forwarded to
the particle filter.

achievable accuracy depends on the accuracy of the measured and calculated inputs for

the particle filter and also the accuracy of the necessary vehicle and tire parameters. The

required parameters are discussed in Section 5.4.2. Table 5.1 shows all measured signals

necessary for the tire/road friction estimator, as shown in Figure 5.4. All these signals

are available in a vehicle equipped with ESC, except for the accurate longitudinal and

lateral velocities, which have to be estimated, see Section 5.5.1. For all measurements

and evaluations shown in Section 6, the sensor signals have been measured with a sample

rate of 200 Hz. The accuracy of an estimate of μmax with the proposed method mainly

depends on the accuracy of the inputs longitudinal slip sx,i and wheel torque MD,i. The

longitudinal slip sx,i is necessary for the calculation of the hypotheses of the longitudinal

tire forces Fx,i that depend on the the particles of μmax. An accurate calculation of Fx,i

and thus sx,i is particularly important. Therefore, these topics are discussed in more

detail in Section 5.5. These hypotheses of Fx,i are compared to an expected value of Fx,i

within the particle filter, which depends on the wheel torque MD,i, the rolling resistance

torque MR,i and the wheel’s angular momentum Ir · Δωi, as shown in Equation 5.11.
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Table 5.1.: Necessary signals for the tire/road friction estimator, all measured with a
sample rate of 200 Hz

Necessary Signal Symbol Source

Steering wheel angle δS measured

Wheel speeds ωi measured

Longitudinal chassis accelerations bax measured

Lateral chassis acceleration bay measured

Yaw rate bωz measured

Wheel’s torque MD,i calculated,

see Section 5.5.3

Compared to MD,i, the absolute values of MR,i and Ir · Δωi are small and therefore

play a minor role. The calculation of the wheel torque MD,i is shown in Section 5.5.3.

Within the calculation of MD,i, the vehicle’s longitudinal acceleration bax is necessary.

The acceleration bax is also required to calculate the dynamic tire load distribution, as

well as bay during cornering. It has to be mentioned that for the results presented in

Section 6, the acceleration signals have not been taken from the vehicle’s CAN bus, as

they were not available for all measurements due to a procedural error. Instead, the

acceleration signals of an advanced measurement system, [Gmb14], were used. Since the

higher accuracy of bax is not necessary within the observer, it is assumed that estima-

tion with ESC acceleration sensors would not perform worse. As the results presented in

Section 6 are limited to longitudinal manoeuvres, the influence of the accuracy of bay is

not further discussed. It also has to be noted that estimates of vx are typically available

in the vehicle’s COG. By measuring both the yaw rate and the steering wheel angle, the

longitudinal velocity vx in the vehicle’s COG can be transformed to the i-th wheel-fixed

coordinate system when the the horizontal distances between wheel centre C and the

vehicle’s COG are known, cf. Section 3.2.

5.4.2. Model parameters

For the observer model, the knowledge of some vehicle and tire parameters is necessary.

The vehicle parameters include the vehicle’s mass mb, the wheels’ moment of inertia

Ii and the rolling resistance coefficient fr,i. To transform vx and vy or β from the

vehicle’s COG to the wheel’s coordinate systems and into the wheel’s contact points

Wi, the horizontal distances from the four wheels’ centres to the vehicle’s COG have to

be known. To calculate Fz,i, the position of the vehicle’s COG, the vehicle’s mass and

the spring stiffnesses of the front and rear suspension have to be known (cf. Equation
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3.22). The calculation of MD,i is discussed in Section 5.5.3. A model for combined

longitudinal and lateral forces is used to consider the reduced longitudinal force available

when longitudinal and lateral tire forces are present. Thus, lateral tire parameters also

have to be known to calculate Fx,i. In total, six parameters each for the longitudinal

and lateral tire force characteristics, as well as the nominal tire load Fz,nom and nominal

friction potential μ0 have to be known (cf. the tire model described in Section 3.3).

Tables D.4 and D.3 show the parameters needed for the vehicle and the tire, respectively.

5.5. Considerations for the calculation of the longitudinal tire

forces

Within the rotational equilibrium for the wheels, see Equation 5.10, the horizontal tire

force model described in Section 3.3.1 was used to calculate Fx,i. The transmittable Fx,i

is limited when an additional Fy,i is present (cf. the depiction of the Krempel ellipse

shown in Figure 2.5). This implies that Fy,i also impacts the calculation of Fx,i due to

the combined tire model used. The inputs needed to calculate both Fx,i and Fy,i are the

longitudinal slip sx,i, the slip angle αi and the tire load Fz,i. As discussed in Section

2.2.2, the treatment of sx,i is the most critical part in most published friction potential

estimation algorithms. The calculation of αi is also not trivial, but fortunately it is not

needed with a high accuracy for Fx,i(Fy,i). In addition, the results presented in Section

6 focus on longitudinal manoeuvres. Some considerations concerning the estimation of

both sx,i and αi are shown in Section 5.5.1 and E.3.

Unfortunately, more than ESC sensors were necessary to calculate the longitudinal

slips sx,i with the required accuracy, see Section 5.5.1. For a future application, it is cru-

cial to place greater emphasis on the slip determination. Nevertheless, with approaches

combined with a global navigation satellite system (GNSS) or radar sensors, it will be

possible to achieve the necessary accuracy of the longitudinal slip sx for series applica-

tion. A discussion of the most promising methods to estimate sx as proposed in literature

is also provided in Section 5.5.1. It also has to be mentioned that the hypotheses of the

longitudinal tire forces Fx,i based on the tire model and the particles of μmax had to be

corrected with a linear factor1. The exact origin of the deviation is unclear, but it very

likely comes from parameter inaccuracies. A deviation of the parameter μ0 in Equation

1The longitudinal tire forces had to multiplied with 0.8 for the wheels on the front axle and 0.6 on
the rear axle, meaning that only 80 % and 60 % of the calculated hypotheses of Fx,i were considered,
respectively
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B.3 in the horizontal tire data shown in Table D.3 measured on a tire test bench can be

excluded, since this effect does not have a linear dependence with sx,i.

5.5.1. Estimation of the longitudinal slip

To use the definition of sx,i presented in Equation 2.3 in Section 2.1.2, the wheel’s rota-

tional speed ωi, the vehicle’s longitudinal velocity vx and the effective tire radius re,i are

required. For the wheel’s rotational speed ωi, the series-application ABS sensors of the

vehicle were used. The signals were not taken from the CAN bus directly to avoid time

delays, a low sample rate and dealing with an unknown filter used in the control unit.

Instead, an analogue signal of the ABS sensors was used directly and then filtered using

a one-dimensional median filter with order 10, meaning that the median values of the

measurements of the last 10 time steps are used to calculate the output for the current

time step.

An accurate monitoring of the vehicle’s longitudinal velocity vx is more difficult. There

are different approaches to calculate vx using different sensor combinations, see Appendix

E. Within this work, the reference velocity vx was measured using a combination of GNSS

and inertial measurement, as discussed in Section 5.5.1. It has to be mentioned that the

inertial measurement platform was not a low-cost sensor, but an advanced laboratory

measurement system, [Gmb14]. For automotive series-application, these signals have to

be replaced. The velocity estimation methods mentioned in Appendix E also discuss

promising solutions for automotive series-application regarding costs.

A model for the effective tire radius re,i is shown in Equation 3.23 in Section 3.2.3.

The measurements showed that for real driving states, these influences seem to play a

minor role compared to other factors. For this reason, re,i was regularly reset for each

wheel using free rolling manoeuvres. As proposed by Miller et al., vx calculated based

on global navigation satellite system (GNSS) velocity and inertial measurements was

used to calculate re,i during free rolling, [MYM+01]. Using the constant values of these

calibrated re,i showed better results than additionally considering Equation 3.23. The

calculated value of sx was filtered again with a one-dimensional median filter with an

order of 50.
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5.5.2. Estimation of the slip angles

Several approaches for estimating the side slip angle or the horizontal velocities in the

vehicle’s COG have been published. In this work, a non-linear observer developed by

Kollienz, [Kol13, p.34-42], which is based on Zhao et al., [ZLC11], was used. With

measurements of bax, bay and zωz, the velocities vx and vy in the vehicle’s COG are

estimated based on a two-track vehicle model for a given wheel torque MD,i and the

steering wheel angle δS . As mentionend in the case of vx for the estimation of sx, the

lateral velocity component vy or the side slip angle β in the vehicle’s COG also need to

be transformed from the vehicle’s COG to the i-th wheel-fixed coordinate system.

5.5.3. Wheel’s torque

In the case of propulsion (no braking), the wheel’s torque can be calculated based on

the engine torque, which is available on the vehicle’s CAN bus. Thus, the wheel’s torque

is calculated based on gear ratios within the powertrain, also considering the current

gear and the mechanical efficiency. Unfortunately, for the majority of measurements

the demanded engine torque was measured instead of the delivered engine torque. As

the signal course of the demanded engine torque is clearly linked to accelerator pedal

activation, but not directly linked to the vehicle’s reaction, it could not be used. Using it

to directly calculate MD,i resulted in a non-negligible time delay between wheel’s torque

and wheel’s longitudinal slip sx in the range of tenths of a second. With a first order

element, this behaviour could be reproduced for many conditions, but problems with the

amplitude compared to the course of bax still remained. Overall, the approach described

below was more applicable. However, this does not automatically imply that the original

proposal would perform worse.

Instead, the wheel torque was calculated using the vehicle’s body longitudinal acceler-

ation bax, which is comparable to the approaches of Ray, [Ray97], Rajamani, [RPLG06],

etc. This approach has also been used to calculate the wheel’s torques in the case of

braking. Interventions of systems like ABS, TC or ESC were not considered and those

systems were also deactivated during the driving tests. For future applications, effects

of these systems will have to be investigated.

Excluding additional wind forces FW,x and road slope βr in the applied forces given

by Equation 3.9, the total of longitudinal applied forces acting on the vehicle reads

b
∑

Fx =
∑

i bFx,i − FA. Using this relation in the first row of Equation 3.6, which
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describes the linear momentum of the vehicle in longitudinal direction, and substituting

bax = v̇x −b ωz · vy, the overall tire forces for accelerating and braking are given by∑
i

bFx,i = mb ·b ax − FA. (5.12)

The total of longitudinal forces
∑

i bFx,i has to be apportioned to the four wheels based

on the driving and braking torque distribution. Since the tested vehicle was front-wheel

driven, 50 % was assigned to each front wheel during driving. During deceleration, a

braking distribution of 60 % on the front axle and 40 % on the rear axle is considered.

On each axle, the left and the right wheel are assigned 50 % of the axle’s theoretical

braking force each. These assigned forces could have been used directly in the particle

filter to be compared to the longitudinal tire forces for the different particles of μmax.

However, it is assumed that a good wheel torque estimate will improve the algorithm

and may be available in an industrial implementation.
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6. Results and conclusion

This chapter presents the results for several driving manoeuvres, including accelerating

and braking. The identification of the friction potential on high and low-friction surfaces,

as well as for changing road conditions (μ step) and different road conditions on the left

and right wheels (μ split) were investigated. In addition, examples of the influence

of the longitudinal acceleration on the estimation accuracy is shown. Concerning the

particle filter, this chapter discusses how the evolution of particles versus time affects the

μmax estimate and shows strategies for influencing the course of particles. The achieved

accuracy of the friction potential estimate is discussed with respect to the requirements

established in Section 1.3.2 for the application in an autonomous emergency braking

system (AEB), which was chosen as an exemplary application of a friction potential

estimate to adapt an ADAS activation strategy. This chapter then concludes with a

general discussion of the results and provides an outlook.

6.1. Strong acceleration manoeuvre with constant μμμmax

Figure 6.1 shows different hypotheses of Fx,i (gray) for different particles of μ
max during

an acceleration manoeuvre. As described in Section 5.2, N hypotheses of longitudinal

tire forces Fx,i are calculated for all N particles of μmax for the inputs of the longitudinal

slip sx, the side slip angle α and the tire load Fz,i of the current time step k. These are

then compared to the expected tire force (black) at each time step, which is calculated

based on the engine torque MD,i or with the vehicle’s longitudinal acceleration bax, cf.

Section 5.5.3.

It can be seen in Figure 6.1 that between about second 4.7 and 5, Fx,i(MD,i) (black) is

momentarily higher than is posited by any of the hypothesis of Fx(particles) (gray). This

can happen due to inaccuracies in the calculation of either Fx,i(MD,i) or Fx,i(sx,i, N).

In this case, the highest particle is assigned the highest probability. Although it is not

possible to extrapolate to conditions outside of the minimum and maximum particle

values, interpolation between the discrete particle states is carried out at each time step.
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It can also be seen around second 5 that the hypotheses of Fx(particles), which depend

on sx, show a steeper slope for the simulated manoeuvre than Fx(MD,i).
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Figure 6.1.: Hypotheses for longitudinal tire forces Fx,i (gray) for different particles (e.g.
values) of μmax, but with the same inputs for longitudinal slip sx, side slip
angle α and tire load Fz,i. The thick black line denotes the expected longi-
tudinal tire force based on the vehicle’s acceleration bax.

6.1.1. Results without resampling step

Section 5.2 described the particular steps within the particle filter and also mentioned an

implementation without the resampling step. Without this step, the particles of μmax do

not change with time. Thus, the hypotheses of the longitudinal tire forces are always

calculated for the same particles. At every time step, the particles of μmax are assigned

probabilities, which then makes it possible to calculate an estimate using the probability

of each particle as its weight for each time step.

Since the probabilities of the particles are calculated based on the difference between

the hypothesized values of Fx,i and Fx,i(MD,i) for every time step, every small deviation

between the expected and the current inputs results in an inaccurate estimate. In the

best case, the estimate just appears noisy. These deviations occur due to measurement

uncertainties, especially in the determination of sx and MD,i. Deviations also arise due
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to model simplifications. As bax reacts with a time delay to longitudinal forces built

up on the wheel, the estimate of μmax deviates in these transient areas with changing

acceleration, see the example in Figure 6.1 around second 5. Nevertheless, this specific

behaviour of a particle filter without the resampling step, which uses only fixed particles,

enables fast detection of changes in the observed variable.

Figure 6.2 shows the course of bax for a driving manoeuvre on dry road starting

around second 5 with a maximum acceleration bax ≈ 4.5 m/s2, which corresponds to the

maximum achievable acceleration of the test vehicle at an initial speed of about 20 kph.
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Figure 6.2.: Longitudinal acceleration bax during acceleration manoeuvre as shown in
Figure 6.3 performed on dry road with a maximum acceleration bax ≈
4.5 m/s2. The manoeuvre was started at vx = 20 km/h and ended at
50 km/h.

Figure 6.3 shows the estimate of μmax using a particle filter with fixed particles for

the manoeuvre shown in Figure 6.2. The reference value for the friction potential was

determined using measurements at the longitudinal and lateral physical limits with the

vehicle and the investigated tires and by comparing these results to tire characteristics

measured on a tire test-bench. The reference values for the the tires show a slight

variation, which is due to the degressive influence of the vertical tire load (cf. Section

2.1.3). Due to the steeper slopes of Fx(particles) compared to Fx(MD,i), as shown in

Figure 6.1, μmax shows a higher deviation between the estimate of μmax and the reference

value in Figure 6.3 shortly before second 5 and until about second 5.5. A similar effect

can also be observed at around second 6.2. Although bax is still constant, sx already

decreases.
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Figure 6.3.: Estimate of μmax for a driving manoeuvre with a longitudinal acceleration
of bax ≈ 4.5 m/s2 with fixed particles of μmax for all time steps. The mean
absolute error (MAE) of the estimate is 0.1725 and the maximum absolute
error of 0.7860 occurs around second 5, see also Table 6.1.

6.1.2. Results with resampling step

With the resampling step described in Section 5.2 and the particles moving towards the

most probable condition shown in Figure 5.1, convergence towards the most likely state

can be achieved by smoothing short-term outliers. Figure 6.4 shows how the particles

converge with time (top) for the manoeuver shown in Figure 6.2 and how, in contrast,

the particles of the particle filter without the resampling step (fixed particles, bottom)

stay constant over time. It has to be mentioned that regardless of whether a particle is

fixed or variable, its PDF changes with time.

Figure 6.5 shows three exemplary results of the estimation with μmax for the same

measurement input. As the resampling strategy is subject to chance, the outcome of

every experiment or run on the same measurement input is slightly different. Thus,

three different outcomes are shown as examples. It can be seen that the resampling step

delivers a smooth and accurate estimate.

When including a resampling step, the maximum deviations between the reference and

the estimated μmax are small. For the examples shown in Figure 6.5, the mean absolute

error (MAE) is less than 0.08, and the absolute error is still less than 0.15, see Table

6.1. There is a reason that all three examples converge to different values even though
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Figure 6.4.: Top: Different particles marked by gray scale converge with time to the
most likely value of μmax for particle filter with resampling step (The cor-
responding estimate to this particle behaviour is shown as Example 1 in
Figure 6.5). Bottom: Particles are fixed and thus remain constant versus
time for particle filter without resampling step (Depiction corresponding to
the estimate shown in Figure 6.3).

they are fed the same input. It results from the chance-based resampling algorithm

that deletes unlikely states and multiplies very likely states based on the particles’ PDF.

Thus, the time to convergence and the values to which the particle fitler converges vary.

Once the presented particle filter converged, the estimate no longer changes, regardless

of whether the inputs and the value to be observed have changed. It has to be mentioned

that changes in the estimate can no longer be identified after all particles have moved

towards the current most probable value. Thus, the particles have to be reset or re-

initialised after convergence in order to be able to detect changes. The following section

describes and compares two methods that enable new spreading of particles under certain

circumstances.

6.1.3. Resampling step with particle re-initialisation

For initial tests, 12 fixed and 24 variable particles were used in parallel, and the most

likely estimate for each of the set of particles was calculated. In a first approach, the
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Figure 6.5.: Three estimation examples of μmax for a driving manoeuver with a longitudi-
nal acceleration of bax ≈ 4.5 m/s2 with variable particles of μmax converging
due to resampling. Mean absolute errors (MAE) and maximum absolute
error of the three estimates are shown in Table 6.1.

Table 6.1.: Mean absolute error (MAE) and maximum absolute error for driving ma-
noeuver with bax ≈ 4.5 m/s2

Example Mean absolute error (MAE) Maximum absolute error

Fixed Particles 0.1725 0.7860

Variable Particles, Ex. 1 0.0798 0.1445

Variable Particles, Ex. 2 0.0299 0.1486

Variable Particles, Ex. 3 0.0494 0.1209

weighted sum of both estimates was used, which unfortunately combined the disadvan-

tages of both estimators. Once the estimate of the variable particles converged, it did

not change anymore with time, whereas the estimate of the fixed particles contributed

noise to the final estimate.

In a second step, it was considered that the state of convergence of the estimate is

known because of the current distribution of the variable particles. Thus, by observ-

ing the standard deviation (SD) of the particles at each time step, it is evident when

particles are no longer changing over time and thus should be re-initialised. A limit of

the standard deviation of 0.1 was attempted, see Figure 6.6. It can be seen that for the

investigated manouevre shown in Figure 6.2, the SD was often below this limit, resulting

in many re-initialisations of the particles. This makes the estimate noisy, but enables

fast detection of changes in μmax. During re-initialisation, the initial distribution of
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particles was always used. A particle distribution that is different than the initial one

(e.g. based on the particles’ PDF) might improve an estimate, but this was not inves-

tigated. In addition, the SD limit can be optimized. This re-initialisation method has

the advantage that no fixed particles need to be calculated in parallel.

In a third step, an alternative initialisation strategy for the variable particles was

implemented using the difference between the estimates of the variable and the fixed

particles. If the difference between μ̂max(fixed particles) and μ̂max(variable particles)

was higher than a set limit of 0.2, it was assumed that there had been a change of

μmax, and the current variable particles were replaced with particles with the initial

distribution. This criterion was exceeded less frequently during the manoeuvre shown

in Figure 6.6 than when using the SD limit discussed above, which led to a smoother

estimate. Again, it may be possible to improve the estimate by adjusting the set limit

(e.g. in dependence on the covariance) and by an alternative selection of the distribution

of the new particles. Table 6.2 shows the impact of the choice of re-initialisation on the

estimate’s accuracy, which is discussed further below.

6.2. Strong braking manoeuvre with varying μμμmax

To evaluate the performance of the two proposed particle re-initialisation methods, a

so-called μ step manoeuvre, in which the road surface changes during the manoeuvre,

was selected. Thus, during a braking manoeuvre with a deceleration of ≈ −4.5 m/s2

as shown in Figure 6.7, the test vehicle drove from dry road (μmax ≈ 1) to icy road

(μmax ≈ 0.3). The resulting estimates using both fixed particles and variables particles

re-initialised by SD or Δμ̂max, as shown in Figure 6.8. It can also be seen in Figure 6.8

that the estimate using variable particles re-initialised by SD (light gray) is very noisy,

due to the high number of re-initialisations. It is interesting that it is even noisier

than the method using no resampling step (black dotted). Nevertheless, the changes in

μmax are detected quickly with both methods mentioned. In contrast, the estimate using

variable particles that are re-initialised based on Δμ̂max (dark gray) is very smooth, but

needs more time to detect the decrease in μmax. Furthermore, for this case, the real

value is not as well met as with fixed particles or re-initialisation using SD limits. This

occurs because the particles are not newly distributed, which suggests that the limit of

0.2 may be too high.

Figure 6.9 shows the behaviour of the particles versus time for the two different ini-
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Figure 6.6.: Top: Standard deviation (SD) of variable particles (black) and SD limit
of 0.1 (gray) versus time during a braking manoeuvre with deceleration of
≈ −4.5 m/s2 for a μ step manoeuvre. Bottom: Difference Δμ̂max between
μ̂max(fixed particles) and μ̂max(variable particles) and the limit of 0.2 versus
time for the same manoeuvre.

tialisation methods. Whereas in the case of SD, the number of re-initialisations is high,

see Figure 6.9 (top), the infrequent re-initialisation using Δμ̂max as shown in Figure 6.9

(bottom) favors higher deviations between the reference value and the estimate which is

not corrected versus time.

Table 6.2 shows the MAE and maximum absolute errors for the estimates shown in

Figure 6.8. For the short periods of time where a change in μmax is not yet detected,

the maximum absolute error of about 0.75 is quite high for all three cases. For this

manoeuvre in general, the estimate μ̂max(fixed particles) shows the best accuracy with
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Figure 6.7.: Longitudinal acceleration bax during a braking manoeuvre on varying
μmax with a maximum deceleration bax ≈ -4.5 m/s2. The manoeuvre was
started at vx ≈ 50 km/h and ended at 30 km/h.
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Figure 6.8.: Estimates of μmax using fixed particles (black dotted), variable particles re-
initialised based on SD (light gray) or variable particles re-initialised based
on Δμ̂max (dark gray) versus time during a braking manoeuvre with decel-
eration of ≈ −4.5 m/s2 for a μ step manoeuvre with μmax ≈ 1 before and
μmax ≈ 0.3 after second 2.75. MAE and maximum absolute errors are shown
in Table 6.2.

an MAE below 0.06 and the fast detection of the change in μmax. The overall accuracy

of the estimate using Δμ̂max, described by its MAE of 0.1035, performs slightly worse

than the two other approaches, due to the low value of μmax not being accurately met.
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Table 6.2.: Mean absolute error (MAE) and maximum absolute error for all braking
manoeuvers

Example Mean absolute error (MAE) Maximum absolute error

Braking (≈ 4.5 m/s2), μ step

fixed 0.0582 0.7496

SD 0.0970 0.7549

Δμ̂max 0.1035 0.6964

Braking (≈ 2 m/s2), μ step

fixed 0.3029 0.9969

SD 0.2973 1.0027

Δμ̂max 0.3577 1.0034

Braking (≈ 3 m/s2), μ split, low

fixed 0.1953 0.3529

SD 0.1592 0.4669

Δμ̂max 0.1582 0.3954

Braking (≈ 3 m/s2), μ split, high

fixed 0.6025 1.0088

SD 0.6010 1.0197

Δμ̂max 0.6508 1.0210
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Figure 6.9.: Convergence and re-initialisation of variable particles marked by gray scale
using the standard deviation (SD) of the variable particles (top) and
the difference Δμ̂max between the estimates of fixed and variable particles
(bottom).

6.3. Gentle braking manoeuvre on varying μμμmax

Since the proposed method for estimating μmax requires a change in the driving state,

the value of longitudinal acceleration bax acting on the vehicle’s body has an influence

on the estimation accuracy. The closer bax is to the physical limits partly set by μmax,

the more accurately μmax can theoretically be estimated. Thus, high values of bax, as

previously discussed, are assumed to generally provide better estimation results. Figure

6.10 shows the estimates of μmax for a braking manoeuvre with a maximum deceleration

of ≈ −2 m/s2 as shown in Figure 6.11 that was performed during a μ step manoeuvre,

starting on dry road (μmax ≈ 1) and proceeding to icy road (μmax ≈ 0.3) at second 9.

Due to the significant difference between the low bax and the high μmax, the dry road

condition cannot be detected at all. It appears that the low dynamic excitation is being

confused with a low μmax. Regardless of the method, only the low-friction surface can
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be detected in an acceptable and reliable manner. The inferior performance during this

manoeuvre that includes a low dynamic excitation on a road with high μmax road is also

visible in the error values in Table 6.2 when one compares its error values to those for

the manoeuvre with the higher dynamic excitation. Nevertheless, the MAE is still below

0.35 for all methods, which is remarkable considering the total failure to detect the dry

surface. Looking more closely at the estimate using variable particles re-initialised by

SD (light gray) in Figure 6.10, the SD on the dry road (before second 9) appears higher

than on the correctly detected low-friction surface. Thus, the SD might be a helpful

measure to estimate the current estimation accuracy.
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Figure 6.10.: Estimates of μmax using fixed particles (black dotted), variable particles re-
initialised based on SD (light gray) or variable particles re-initialised based
on Δμ̂max (dark gray) versus time during a braking manoeuvre with a
maximum deceleration of ≈ −2 m/s2 for a μ step manoeuvre with μmax ≈ 1
before and μmax ≈ 0.3 after second 9. MAE and maximum absolute errors
are shown in Table 6.2.

Figure 6.12 clearly shows that the SD for this manoeuvre is generally lower after the

step of μmax occurs at second 9. Knowledge about the actual accuracy is of great interest

when considering the application of an estimated μmax for adaptation of the activation

strategy of ADAS. Kobialka et al. showed that the estimation of the estimation accuracy

is possible using ANN, [KL13]. Nevertheless, further investigations are necessary to

support the hypothesis that the SD of the variable particles can be used for accuracy

estimation.
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Figure 6.11.: Longitudinal acceleration bax during gentle braking manoeuvre on varying
μmax with a maximum deceleration bax ≈ -2 m/s2. The manoeuvre was
started at vx ≈ 40 km/h and ended at 15 km/h.

8 9 10 11 12 13
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Time in s

S
D
(s
am

p
le
d
 p
ar
ti
cl
es
)

Figure 6.12.: Standard deviation of variable particles versus time during a braking ma-
noeuvre with a maximum deceleration of≈ −2 m/s2 for a μ step manoeuvre
with μmax ≈ 1 before and μmax ≈ 0.3 after second 9. The corresponding
estimate μ̂max is shown as a light gray line in Figure 6.10.

6.4. Braking manoeuvre on μμμ split conditions

The last case which is examined are different road conditions for the left and the right

sides of the vehicle, a so-called μ split condition. In the investigated case, the left side

of the vehicle (i.e. wheel indices fl and rl) was located on a low-friction surface (μmax ≈
0.3), whereas the right side (i.e. wheel indices fr and rr) was located on a surface with

μmax ≈ 1. The driver was supposed to keep the vehicle straight (yaw angle ψ ≈ 0) during

the manoeuvre using steering inputs.
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The estimation result for the wheel located on the low-friction surface is shown in Fig-

ure 6.13, which shows a braking manoeuvre with a maximum deceleration of ≈ -3 m/s2

as shown in Figure 6.14. Although the estimates deviate from the real value within the

first second, the overall estimation performance is acceptable. These deviations can be

partly explained by the fact that during abrupt braking manoeuvres, the local water film

under the tire does not stay constant, which leads to an inaccurate reference value of

μmax. In accordance with the results presented in Section 6.3, the algorithm fails to
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Figure 6.13.: Estimates of μmax using fixed particles (black dotted), variable particles
re-initialised based on SD (light gray) or variable particles re-initialised
based on Δμ̂max (dark gray) versus time during a braking manoeuvre with
a maximum deceleration of ≈ −3 m/s2. A μ split manoeuvre is performed.
The result for the rear left wheel is displayed, which was located on a
low-friction surface (μmax ≈ 0.3).

detect high μmax with low dynamic excitation, as can be seen in Figure 6.15. The com-

parison of the error values shown in Table 6.2 supports the statement that low-friction

conditions can be estimated more accurately. For low-friction conditions, the MAE is

below 0.2 for all methods, whereas for dry roads the MAE is about 0.65.
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The result for the rear right wheel is displayed, which was located on a
high-friction surface (μmax ≈ 1).
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6.5. Comparison of results with requirements of an AEB

The aim of the presented algorithm is to provide an estimate of the friction potential for

adapting the intervention strategy of an AEB, cf. Section 1.3.2. By having an estimate

before a possibly critical situation is being detected by the system, different intervention

strategies can be evaluated (e.g. braking or steering) and warning and activation times

as well as the magnitude of deceleration during the braking phases can be adapted on the

current friction potential. The proposed algorithm depends on the dynamic excitation

during the manoeuvre, thus a phase with e.g. partial braking during the AEB interven-

tion will deliver better estimates than a low dynamic driving state before AEB may be

necessary. However, this information is available only very late in terms of adapting the

intervention strategy.

Figure 1.8 in Section 1.3.2 shows the relation between the tolerable deviation Δμ and

the time delay τM for two different friction potentials in order to not exceed a certain

impact speed when approaching a standstill object. When not considering a time delay

τM , the tolerable deviation Δμ can be expressed as a function of the reference value μref

and the initial speed vx,0 for the same requirements in terms of maximum impact speed,

[LKE13a]. Figure 6.16 shows the limits for Δμ in dependence of μref and vx,0.
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Figure 6.16.: Tolerable deviation Δμ in dependence on the real value μref of the friction
potential and for different initial longitudinal speed vx,0, [LKE13a]

The error results in Table 6.1 and Table 6.2 show that for many conditions, an MAE

below 0.2 can be achieved, which fulfils the requirements of an estimate of μmax for

inner-city speeds up to a reference road condition of μref ≈ 0.4. Since current AEB
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are designed for dry roads, cf. Section 1.3.2, the adaptation to low-friction surfaces is

especially interesting. The results in Section 6.3 support the idea that the identification

of low-friction surfaces is more accurate than that of dry conditions for a given dynamic

excitation of bax.

It has to be mentioned that the work of Lex et al., [LKE13b], was based on the same

assumptions concerning the requirements for application in an AEB and, in addition,

was based on the exact same measurement data that has been used within this work.

Using ANNs, see Section 2.2.2, the achieved estimation results are comparable to those

achieved with the particle filter presented within this chapter. For summer tire data, the

MAE was given between 0.17 and 0.22 for the four tires, [LKE13b], which is comparable

to the results in Table 6.1 and Table 6.2. Nevertheless, it has to be mentioned that a

direct comparison of the two results is only legitimate for a rough evaluation. Whereas

the MAE shown by Lex et al., [LKE13b], count for a larger amount of measurement

data, the resulting MAE shown in this work only count for individual measurements.

6.6. Discussion and outlook

The results of the sensitivity analysis in Section 4 suggest that it is worth focusing on

the wheel dynamics or wheel-related variables rather than the vehicle’s body reaction.

This statement is directly supported by other works such as Rajamani, [RPPL12], and

indirectly supported by the existence of much research that focuses on the horizontal

tire forces or the longitudinal slips and the side slip angles, cf. Section 2.2.2. In this

work, the wheel’s angular momentum was used to calculate the expected longitudinal

tire forces Fx,i. The results presented in this chapter suggest that the proposed observer

based on a particle filter can fulfill the requirements of an AEB in certain driving states.

This is especially true for inner-city applications, as the requirements for an estimate of

the friction potential are relatively low at these vx, cf. Figure 6.16.

In particular, the particle filter with resampling and using Δμmax within the re-

initialisation strategy is promising, as the result is not too noisy yet still converges

quickly. The estimate of the friction potential itself only depends on the variable par-

ticles. The fixed particles are only used to detect when re-initialisation is necessary. In

order to ensure that the estimated value gets closer to the real value of the friction poten-

tial, the limit of Δμmax has to be optimized. Due to the nature of the proposed method,

the influence of the road and the tire condition are estimated inseparably. Therefore,
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tire wear and ageing may also be identified as effects that decrease the transmittable

tire forces and thus the friction potential.

However, before series application can be considered, further investigations are neces-

sary. In particular, this includes a robust and accurate determination of the longitudinal

slip sx, which was only possible using measurements of the longitudinal velocity vx based

on a GNSS-supported inertial measurement platform and resetting each wheel’s effective

tire radius. Apart from the dynamic excitation during driving, it is the accuracy of sx

that limits the proposed approach. Another promising approach that is worth testing is

to estimate sx and μmax simultaneously, as discussed in Section 5.3. In addition, there is

room for improvement in the determination of the wheel torque MD,i. To guarantee ro-

bustness and accuracy under many driving states, additional investigations are essential.

Optimizing parameters of the particle filter (e.g. by using other resampling strate-

gies or adapting the proposed re-initialisation strategies) will likely further reduce the

estimation error. In addition, current plans call for the development and testing of a

real-time implementation of the proposed algorithm.

The results presented in this chapter have to be extended by investigations, including

more measurement data for each of the driving and road conditions discussed. Although

there are no theoretical objections, the proposed algorithm also has to be tested with

real measurements of cornering manoeuvres, with other tire types and within a higher

range of dynamic excitations. Furthermore, the estimation of a global friction potential

was not demonstrated with measurement data. In addition, the algorithm is currently

limited to even roads. Although it would be very easy to implement a road slope and

inclination within the observer model, reliable and robust estimates are necessary. The

same applies to the consideration of wind forces. Vertical excitation by the road is not

intended to be considered with the simplified model. However, it is also import to recog-

nise that the proposed approach has the potential to contribute to a sensorfusion system.

Extending the proposed algorithm by including the lateral tire characteristics and

observing μmax based on the side slip angles αi similar to Ray, [Ray97], or based on

the self-aligning torque shows promise for improving the estimation accuracy for lateral

driving states. However, this was beyond the scope of this work, as it was assumed that

estimating μmax based on longitudinal driving states is more difficult due to the slow

vehicle’s response compared to the lateral direction. In addition, it is the more likely
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driving state prior to an AEB intervention, which was the targeted ADAS.
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7. Summary

According to the relevant literature, advanced driver assistance systems (ADAS) pro-

vide a high potential to increase road safety and are therefore the focus in the European

white paper on road safety for 2020. The warning and activation strategies of ADAS

could be significantly improved by the knowledge of two basic parameters. First, knowl-

edge about the driver behaviour in the pre-collision phase can be used to optimally plan

further ADAS interventions. This includes the prediction of whether or not the driver

reacts to an ADAS warning and, in case the driver intervenes, it depends on whether it

is a braking or steering input, for example. Secondly, the conditions of the road surface

and the mounted tires limit the transmittable forces between tire and road and thus also

the inputs to steering system, powertrain or braking system performed either by the

driver and/or an ADAS. Currently, ADAS are designed to meet requirements for dry

road, in order to avoid false interventions and reduce missed interventions. Enhancing

the activation strategy of an ADAS by an estimate of the current road and tire conditions

increases the potential to avoid an accident or reduce the injury severity when an accident

is inevitable on low friction surfaces. Studies have shown that an additional potential

to avoid an accident or reduce the injury severity when an accident is inevitable can

be reached by adapting the ADAS intervention strategy to the current road condition.

This potential increases with decreasing maximum coefficient of friction between tire and

road, which is referred to as friction potential. The present thesis dealt with methods

that identify the current friction potential in a fast, reliable and sufficiently accurate way.

An algorithm was developed to estimate the friction potential between tire and road,

which is the primary indicator for the road and tire conditions. By using an automated

emergency braking system (AEB) as an application case, requirements for the estimate

were defined. One requirement is the accuracy of the friction potential estimate, which

limits the ability to adapt the activation strategy. In addition, vehicle states that are

most sensitive to a change of the road and tire condition were identified, as they promise

to contribute to an observer of a friction potential estimate. The algorithm developed

based on these prior investigations, which is mainly based on signals from standard
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sensors of a vehicle equipped with electronic stability control (ESC), also require some

information about vehicle and tire parameters.

The first chapter (Introduction) of this thesis discussed the significance of the friction

potential to enhance traffic safety. The influence of the road conditions on the number

of accidents was shown, and possible traffic safety measures were discussed. Thereafter,

the importance of the friction potential for ADAS and vehicle dynamic controls (VDC)

were shown, with an emphasis on the requirements for an estimate of the friction poten-

tial for selected applications. Finally, the AEB was selected as an exemplary application

case to adapt the intervention strategy based on an estimate of the friction potential.

The second chapter (Estimation of the friction potential) presented the main factors

that influence the friction potential, as well as the state of the art for existing estimation

methods. After a brief definition of the friction potential, the basics of rubber physics

and the relevant effects on the rotating wheel were discussed. An overview was given of

the factors that influence the friction potential. Main effects (e.g. road surface, inter-

mediary layers, tire’s vertical load and vehicle’s longitudinal velocity) were discussed in

more detail. Next, there was a brief discussion of the wide variety of methods published

in the research area of tire/road friction estimation, with a focus on vehicle-dynamics-

based methods. Within these approaches, methods using a Bayesian observer framework

such as the Kalman filter or the particle filter were emphasized.

The third chapter (Vehicle model) comprised a description of the vehicle model that

was used throughout this thesis for both the sensitivity analysis in Chapter 4 and (par-

tially) for the observer model presented in Chapter 5. In a first step, the required model

complexity was investigated in order to be able to model the tire/road contact as accu-

rately as possible but keeping in mind the computational effort. Thus, the influence of

the model complexity of certain sub-systems on the model accuracy was evaluated using

a validated vehicle model with 14 degrees of freedom and certain driving manoeuvres.

Based on the results of this investigation, a vehicle model with 7 degrees of freedom was

then chosen, which was presented along with the tire model used. Pitch and roll motion

are neglected within the chosen vehicle model, but tire load distribution during braking,

accelerating and cornering is included by considering the horizontal accelerations in the

vehicle’s COG.

In the fourth chapter (Sensitivity analysis), a mathematical solution to the problem
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of identifying state variables that contribute to the estimation of the friction potential is

presented. Unlike most of the published friction estimation approaches that use heuristic

strategies, a sensitivity analysis was performed on a vehicle model described by ordinary

differential equations (ODE) in order to identify the state variables that show a high

sensitivity with respect to a change of the friction potential. To this end, different ma-

noeuvres were simulated to cover longitudinal and lateral accelerations that are within

physically possible limits and in a range in which vehicles are frequently driven. The

results of these analyses showed that, independent of the longitudinal and lateral acceler-

ation, the wheel’s rotational speed have the highest sensitivity to a change in the friction

potential. As the dynamic response of the body to a driver input is slow compared to

the wheel’s reaction, the state variables describing the vehicle body’s state are omitted

for estimation of the friction potential within the present thesis.

The fifth chapter (Tire/road friction estimator) includes the main part of this thesis,

which is the presentation of the observer used to estimate the friction potential during

driving. First, a general introduction to the particle filter, which is an observer within the

Bayesian framework, was given. It enables the observation of non-linear internal states

that are difficult or impossible to measure and is also able to deal with measurements

that are subject to noise and inaccuracies. Second, the system model to be observed

was presented, which was chosen based on the results of the sensitivity analysis. Using

the wheel’s angular momentum, the longitudinal tire forces of all four wheels are calcu-

lated. Within the particle filter, these are then compared to hypothetical longitudinal

tire forces that are calculated for different values of the friction potential. In a third

part of this chapter, information on signal processing of the measurement inputs was

offered, as well as a discussion of the challenges to achieving the necessary signal quality.

It was demonstrated that the accuracy with which the wheel’s longitudinal slip can be

calculated is the main limiting factor for the proposed estimation procedure. Among

other values, the vehicle’s longitudinal velocity is required to calculate the longitudinal

slip. To achieve the required accuracy of the velocity measurement, velocity signals from

global navigation satellite system (GNSS) combined with inertial measurements had to

be used, in addition to ESC standard sensors. The velocity estimator was not part of

this thesis.

The sixth chapter (Results and conclusion) applied the estimation results obtained

using the proposed observer to real vehicle measurements. Different driving states were

investigated, including accelerating and braking, as well as changing road conditions (μ
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step) and different road conditions on the left and right wheels (μ split). In addition,

different strategies for re-initialising particles after convergence were discussed in terms

of noisiness and estimation accuracy. The results show that for a range of driving states,

especially urban applications, the estimate of the particle filter is accurate enough to

be used in an AEB. In general, the accuracy of an estimate of the friction potential in-

creases with a longitudinal acceleration that is closer to the physical limits. For example,

this is the case during acceleration and deceleration manoeuvres with high longitudinal

accelerations, as well as when driving on surfaces with lower friction potential. In the

case of a certain value of a longitudinal acceleration, lower friction potentials are easier

to be identified than dry conditions.

The present thesis has introduced a novel method for the identification of the current

friction potential that will have valuable benefit when used to enhance the activation

strategies of advanced driver assistance systems, such as AEB systems. In order to

achieve the necessary reliability for automotive applications, it is recommended that

this approach be combined with other methods that are not based on vehicle dynamics

in a sensorfusion system. Nevertheless, it is important to recognise that the proposed

approach has the potential to contribute to a sensorfusion system. Compared to identi-

fication methods that are not based on vehicle dynamics (e.g. measuring precipitation

type or thickness, infrasctructure-aided systems), the proposed approach makes it pos-

sible to observe the tire condition in combination with the road condition, which also

enables the detection of an influence on the friction potential (e.g. tire wear and ageing).

The proposed identification method is also suitable for identifying the friction potential

during combined longitudinal and lateral excitation, since combined tire forces are con-

sidered. In principal, lateral tire forces could also be used for friction estimation with

the proposed approach, although the observed model would clearly need to be adapted.

Nevertheless, the proposed algorithm seems to be accurate enough to be applied in an

ADAS such as the AEB for urban applications, as well as for the detection of lower

friction potentials than dry road during typical driving states.
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B. Tire model TMsimple and tire dynamics

This section provides additional information about the tire model presented in Section

3.3. This includes the relationship between the TMsimple parameters K, B and A and

physically describable tire characteristics, as well as an approach to calculate the time

function τy for lateral tire dynamics.

B.1. Parameter relationships between static tire model

Within the tire model TMsimple, the parameters K, B and A show a dependence on

parameters that can be described by physical relations. The three influencing parameters

are the peak value Ymax, the saturation value Y∞ and the initial stiffness dY0, which are

shown in Figure B.1 for a constant tire load. The required TMsimple parameters read

K = Ymax,

B = π − arcsin

(
Y∞
Ymax

)
, (B.1)

A =
1

dY0
·K ·B with Y∞ ≤ Ymax.

To include the dependence of the tire forces on the friction potential, the extension

Slip quantity X

T
ir
e 
fo
rc
e 
Y Y

max

dY
0

Y 8

Figure B.1.: Physical relation of lateral tire parameters and the lateral tire characteristics
in TMsimple for a constant tire load Fz, [Hir09a].
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proposed by Hirschberg et al. as shown in Equation B.3 is used, [HRW07]. This is done by

adjusting the maximum force Ymax and the saturation force Y∞ by the proportional factor
μmax

μ0
, where μ0 is the nominal value of the friction potential for which the respective tire

parameters have been measured. The initial stiffness dY0 remains unaltered.

Ymax(Fz) =

(
a1

Fz

Fz,nom
+ a2

(
Fz

Fz,nom

)2
)

· μ
max

μ0

dY0(Fz) = b1
Fz

Fz,nom
+ b2

(
Fz

Fz,nom

)2

(B.2)

Y∞(Fz) =

(
c1

Fz

Fz,nom
+ c2

(
Fz

Fz,nom

)2
)

· μ
max

μ0

The coefficients a1 to c2 in Equation B.3 are needed to consider the decreasing influence

of the tire load Fz on the horizontal tire forces. These coefficients depend on measured

values for the nominal tire load Fz,nom and the doubled nominal tire load 2 ·Fz,nom. The

values for a1 and a2 are given, for example, by

a1 = 2 · Y1 − 1

2
Y2 and

a2 = −Y1 +
1

2
Y2, (B.3)

with Y1 = Ymax(Fz,nom) and Y2 = Ymax(2 · Fz,nom) at 2 · Fz,nom. Accordingly, the

coefficients b1 and b2 are calculated using the respective initial stiffness values, and c1

and c2 are calculated using the respective saturation values.

B.2. Modelling time function τy

When a rolling tire is being steered, the time until a lateral tire contact force is built up

can be described by a first order system, as shown in Section 3.3.2. According to Rill,

the time function τ in Equation 3.29, which describes the dynamic processes that occur

in the contact patch, depends on two factors, [Ril06]. The first factor is the transport

velocity re · |ωr| with which the particles in the tire tread are moving through the contact

patch. The second factor is the relaxation length rα that describes the distance that a

particle in the tire tread travels from when a change of α occurs until the full force is

built up. The time function τ is given by

τ =
rα

re · |ωr| . (B.4)
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Figure B.3.: Lateral tire deflection ye caused by the lateral force Fy, [Ril06]

The relaxation length rα is a function of the wheel load Fz and the slip angle α, as

shown in Figure B.2. It increases with higher Fz and decreases with higher α, [dJ00,

p.33]. However, since measurements of rα are not available for the investigated tires, the

following approach is used to model τ . A lateral tire force acting in the contact patch

causes a lateral deflection ye, see Figure B.3. A first order approximation considering ye

is given by Rill, [Ril06], and reads

FD
y ≈ Fy +

∂Fy

∂vy
ẏe. (B.5)

With the lateral stiffness cT,y and the lateral damping coefficient dy of the tire, the
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dynamic force FD
y is given with

FD
y = cT,y · ye + dy · ẏe. (B.6)

The partial derivative of the lateral force Fy with respect to the lateral velocity vy in

the contact point can be calculated with

∂Fy

∂vy
=

∂Fy

∂sα

∂sα
∂vy

=
∂Fy

∂sα

−1

re · |ωr| , (B.7)

including an alternative definition of the lateral slip sα which is related to the side slip

angle by sα = tanα, [Ril06]. According to Rojas Rojas, the partial derivative of the

lateral tire force with respect to the slip angle α can be approximated by their global

derivatives for small values of α, [Roj12, p.29], and hence reads

∂Fy

∂sα
≈ Fy

sα
. (B.8)

Inserting Equations B.6, B.7 and B.8 in Equation B.5 gives

1

cT,y
·
(
Fy

sα

1

re · |ωr|
)
· ẏe + ye =

Fy

cT,y
, (B.9)

including the term before ẏe, which gives a formulation of τ that can be used in the

simulation model. Thus, the time function ultimately reads

τ =
1

cT,y
·
(
Fy

sα

1

re · |ωr|
)
. (B.10)

136



C. Vehicle model structure for sensitivity

analysis

The structure of the dependencies between the state variables, the inputs and the inves-

tigated parameters of the vehicle model derived in Section 4.1 is helpful to solve the ODE

of the sensitivity system. The differential equations of the vehicle model in Equation

3.6 are extended by the differential state equations of the lateral tire forces in Equation

3.29.

Table C.1.: Relation between state variables at the current time step k and the previous

time step k − 1 in the vehicle model adapted for the sensitivity analysis

State variables zk żk−1

v x v y b
ω
z

ω
f
l

ω
f
r

ω
r
l

ω
r
r

F
D y
,f
l

F
D y
,f
l

F
D y
,f
l

F
D y
,f
l

v̇ x
(k

−
1)

v̇ y
(k

−
1)

v̇x x x x x x x x x x x x x x

v̇y x x x x x x x x x x x x x

bω̇z x x x x x x x x x x x x x

ω̇fl x x x x x x

ω̇fr x x x x x x

ω̇rl x x x x x x

ω̇rr x x x x x x

ḞD
y,fl x x x x x x x

ḞD
y,fr x x x x x x x

ḞD
y,rl x x x x x x x

ḞD
y,rr x x x x x x x
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The structure of the differential equation for time step k can then be represented as

ż(k) = M−1 · (q(z(k), z(k − 1), δi(k),MD,i(k), μ
max
i (k))− k(z(k))) . (C.1)

with k = f(z(k)) = f (vx, vy) (k) and the inputs for q which are the wheels’ steering

angles δi(k), the wheels’ driving and braking torques MD,i(k) and the friction potential

μmax
i (k). The dependency on q and ż(k − 1) originates from the simplifications in the

calculation of the tire load variation and the effective tire radius, see Section 4.3. A

systematic overview of the dependencies is given in Table C.1 and C.2.

Table C.2.: Relation between state variables and the inputs as well as the friction po-

tentials in the vehicle model adapted for the sensitivity analysis

Inputs Parameter μmax

δ f
l(
k
)

δ f
r
(k
)

M
D
,f
l(
k
)

M
D
,f
r
(k
)

M
D
,r
l(
k
)

M
D
,r
r
(k
)

μ
m
a
x

f
l

(k
)

μ
m
a
x

f
r

(k
)

μ
m
a
x

r
l

(k
)

μ
m
a
x

r
r

(k
)

v̇x x x x x x x

v̇y x x x x x x

bω̇z x x x x x x

ω̇fl x x x

ω̇fr x x x

ω̇rl x x

ω̇rr x x

ḞD
y,fl x x

ḞD
y,fr x x

ḞD
y,rl x

ḞD
y,rr x

C.1. Numerical implementation of vehicle model for automatic

differentiation

To calculate the Jacobian J and the derivative fc using AD, the vehicle model has to

be at least one time differentiable. To achieve at least weak derivatives, numerical

approximations were necessary for the following two unsteady functions.
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C Vehicle model structure for sensitivity analysis

C.1.1. Find maximum out of two values

Within the calculation of the longitudinal slip, see Equation 2.3, it is necessary to select

the bigger variable out of two variables u and w. This function is discontinuous at the

transition between u and w. The derivable numerical approximation given by

max (u,w) =
w

2
·
(
1 +

2

π
· arctan((w − u) · ε)

)
+
u

2
·
(
1 +

2

π
· arctan ((u− w) · ε)

)
(C.2)

is used instead. The accuracy can be increased by the factor ε which was set at 105

within the simulation.

C.1.2. Absolute value

Calculating an absolute value of a variable w is necessary for several calculations (e.g. the

longitudinal slip with Equation 2.3). As conditional programming (e.g. if statements)

are also not supported within Adimat, the formulation

|w| =
√
w2 (C.3)

is used. Although this formulation is still discontinuous at zero, it can be used within

Adimat, as it is a weak derivative.
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D. Vehicle and tire model parameters

The tire and vehicle parameters presented in Tables D.1 and D.2 are valid for both the

investigation of the model complexity in Section 3.1 and the initial validation of the

vehicle model in Section 3. They have been validated in previous projects using a multi-

body vehicle model (the same one used in Section 3.1 to select the model complexity)

and by using measurement data from an Opel Combo 1.6 CNG, [Roj12, p.13-15]. The

sensitivity analysis was conducted with validated parameters of an Audi A4 Avant 1.8

Tfsi that was also used for all measurements for the observer, as presented in Section 6.

The tire and vehicle parameters of the Audi are presented in Tables D.3 and D.4.

Table D.1.: TMsimple tire model parameters for a summer tire of type Radial 185/60
R15, as given by Rojas Rojas, [Roj12, p.203]

Parameter Symbol
Value

Unit
Fz,nom 2 · Fz,nom

L
o
n
g
. Peak Ymax,x 2740 5480
N

Saturation Y∞,x 2130 4350

Initial stiffness dY0,x 430 1100 N/%

L
a
t.

Peak Ymax,y 2720 4990
N

Saturation Y∞,y 2600 4700

Initial stiffness dY0,y 51600 80200 N/rad

Longitudinal spring stiffness cT,x 200000

N/mLateral spring stiffness cT,y 100000

Vertical spring stiffness cT,z 200000

Nominal tire load Fz,nom 2500 N

Nominal friction potential μ0 1 -

Rolling resistance coefficient fr 0.01 -

Unloaded tire radius r0 0.3159 m



D Vehicle and tire model parameters

Table D.2.: Vehicle model parameters of Opel Combo 1.6 CNG, as identified by Rojas
Rojas, [Roj12, p.202], except for the value of the wheel mass mw, which is
from a separate measurement.

Parameter Symbol Value Unit

Vehicle Mass mb 1320 kg

Vehicle’s principal moment of inertia Iz 2000 kg m2

(around z axis)

Wheel base lwb 2.716 m

Front track tf 1.417 m

Rear track tr 1.44 m

Distance centre of gravity to front axle lf 1.3 m

Height of centre of gravity (from ground) hCG 0.65 m

Height of instantaneous centre of hIC,θ 0.3 m

the pitch movement

Height of instantaneous centre of hIC,φ 0.3 m

the roll movement

Projected frontal area Ap 2.3 m2

Drag coefficient cD 0.35 -

Wheel mass mw 15 kg

Linear spring stiffness (front axle) cS,f 30000 N/m

Linear spring stiffness (rear axle) cS,r 42000 N/m

Anti-roll bar stiffness (front axle) cARB,f 40000 N/m

Anti-roll bar stiffness (rear axle) cARB,r 10000 N/m

Wheel’s principal moment of inertia Ii 2 kg m2

(around yC axis)
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D Vehicle and tire model parameters

Table D.3.: TMsimple tire model parameters for the summer tire of type Radial 245/40
R18 that was mounted on the test vehicle (Audi A4 Avant 1.8 Tfsi) during
the measurements. All values were measured on a tire test bench, except
cT,x and cT,y which were taken from Table D.1 in the absence of other data.

Parameter Symbol
Value

Unit
Fz,nom 2 · Fz,nom

L
o
n
g
. Peak Ymax,x 3789 6688

N
Saturation Y∞,x 2809 4890

Initial stiffness dY0,x 1963 3021 N/%

L
a
t.

Peak Ymax,y 3766 6581
N

Saturation Y∞,y 3565 5898

Initial stiffness dY0,y 54028 94461 N/rad

Longitudinal spring stiffness cT,x 200000

N/mLateral spring stiffness cT,y 100000

Vertical spring stiffness cT,z 282000

Nominal tire load Fz,nom 3000 N

Nominal friction potential μ0 1 -

Rolling resistance coefficient fr 0.01 -

Unloaded tire radius r0 0.3266 m
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Table D.4.: Vehicle model parameters of Audi A4 Avant 1.8 Tfsi based on measurements
and the data sheet, [AG08]

Parameter Symbol Value Unit

Vehicle Mass mb 1796 kg

Vehicle’s principal moment of inertia Iz 3006 kg m2

(around z axis)

Wheel base lwb 2.808 m

Front track tf 1.564 m

Rear track tr 1.551 m

Distance centre of gravity to front axle lf 1.337 m

Height of centre of gravity (from ground) hCG 0.549 m

Height of instantaneous centre of hIC,θ 0.3 m

the pitch movement

Height of instantaneous centre of hIC,φ 0.1 m

the roll movement

Projected frontal area Ap 2.2 m2

Drag coefficient cD 0.273 -

Rolling torque stiffness (front axle) cS,f 68500 N/m

Rolling torque stiffness (rear axle) cS,r 35780 N/m

Wheel’s principal moment of inertia Ii 1 kg m2

(around yC axis)
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E. Longitudinal velocity estimation

An accurate monitoring of the vehicle’s longitudinal velocity vx is necessary for the

calculation of the longitudinal slips sx,i as described in Section 5.5.1. The following

sections present different approaches to estimate vx with the required accuracy. These

approaches are divided into methods that only use the ESC sensors, in observer-based

methods, in radar-based methods and in methods based on global navigation satellite

system (GNSS). This classification is based on Uchanski, who mentions measuring or

estimating vx either by a vehicle speed observer, by using radar sensors or by using

data from a , [Uch01, p.114]. The following sections also discuss promising solutions for

automotive series-application regarding costs.

E.1. Estimation of the longitudinal velocity using only ESC

sensors

The reference velocity vx can be calculated using only the wheel speeds ωi for certain

driving states. With a free rolling wheel (e.g. when accelerating on a non-driven axle), a

reference velocity vx can be calculated for a known effective tire radius re,i. Nevertheless,

at least one wheel has to be slip-free. This generally excludes all four-wheel driven

vehicles and all vehicles during braking. An additional problem is the accuracy that can

be reached. As mentioned by Dieckmann, [Die92, p.19-22, 110], it is possible to estimate

sx with a high resolution when the wheel rotational speeds are observed for several

revolutions. Due to this principle, this only works when ωi does not change quickly.

In addition, the observed wheel needs to be slip-free, as mentioned above. Again, free

rolling conditions have to be used for calibration to compensate for differences in the

effective tire radius re,i between front and rear axle, [Die92, p.110-111]. One promising

idea is to estimate sx simultaneously to μmax, as mentioned in Section 5.3. This is

possible because the influences of μmax and sx,i are in different ranges of Fx,i, cf. [BZ07,

p.84-86]. Nevertheless, this was not investigated, as this special focus was beyound the

scope of this thesis.
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E.2. Observer-based estimation of the longitudinal velocity

Several methods using observers to estimate the longitudinal velocity vx or the wheels’

slips sx,i directly are described in the literature. Daiß and Kiencke compared two dif-

ferent observers for estimating the wheel slip sx with an accuracy of 1 % using sensors

for the four wheel speeds, the longitudinal body acceleration and the vehicle’s yaw rate,

[DK95]. The use of a Kalman filter applied to a two-track vehicle model and Fuzzy logic

showed similar results in terms of the accuracy of calculating sx. Concerning computa-

tional and implementational effort, the Fuzzy logic approach seemed to be advantageous.

Nevertheless, this accuracy is not sufficient for the present application.

Klomp et al. estimated both vx and the road slope from measurements of the wheels’

torques, the wheels’ speeds and bax using a Kalman filter, [KGB14]. Only one wheel’s

velocity (usually the one with the lowest wheel slip) is used as an input. Therefore, it

is necessary to detect high values of sx robustly and early, which is a crucial part of the

proposed algorithm. Experimental results on ice showed that the achieved estimate was

between 5 % of the real vx, except when the test started on a road slope of 10 %.

Imsland et al. propose a non-linear observer to estimate vx and vy based on signals of

bax, ωz and ωi, [IJF
+05]. In a first step, vx is estimated using mainly the wheel speeds,

but also bax and ωz. Then, vy is estimated also using bay and δS . The basis is a two-

track vehicle model used to describe the motion in the horizontal plane. Experimental

results show some shortcomings on surfaces with low μmax. Nevertheless, results were

only shown for highly dynamic manoeuvres and on a circle, which makes the estimation

of accuracy in normal driving states difficult.

Tanelli only uses measurements of bax and ωi to estimate vx within a non-linear es-

timator, [TSC06]. It is assumed that the effective tire radii re,i is known and bax is

compensated by pitch effects. Road slope is not considered. At low vehicle speeds, con-

stant vehicle speeds or soft accelerating or braking (e.g. bax < −0.8 m/s), the mean of

the four wheel speeds multiplied by their re,i is used for vx. When accelerating, only the

wheel speeds of the non-driven wheels are used. Braking is the most critical driving state

for estimation. In this state, the filtered bax is integrated using a discrete time integra-

tor. Nevertheless, for a braking manoeuvre starting at about 30 kph and bax ≈ 3 m/s2,

the maximum error in estimating vx was shown to be below 0.4 m/s.
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Villagra et al. propose estimating vx and vy using bax, bay, ωz and ωi based on alge-

braic estimation approaches, [VdFM08]. To estimate only vx, an estimate of vy is also

necessary. The sensitivity of the results to μmax seems to be low. It has to be mentioned

that no vehicle parameters are necessary. Nevertheless, no experimental results were

shown, but just experiments with simulated data.

Rajamani et al. discussed the estimation of vx based on two different sensor com-

binations, [RPPL12]. For the first approach, the wheel speeds and an accelerometer

are used to estimate vx within an observer. Although this approach takes into account

aerodynamic drag and estimating the climbing resistance, it showed some shortcomings

in the form of under-damped estimation dynamics and was not suitable, according to

the authors. The second approach is described within the GNSS-based approaches.

E.3. Radar-based estimation of the longitudinal velocity

Radar sensors are already available in vehicles equipped with adaptive cruise control

(ACC). The necessary accuracy with which the relative velocity Δvx to other objects

(including stationary objects) has to be detected for ACC are ≤ 2 m/s or ≤ 3 % of Δvx.

This high accuracy of the relative velocity makes it possible to improve the on-board

calculation of the vehicle’s own velocity vx, [WDS09, p.492]. The resolution with which

the relative velocity Δvx between the vehicle and another object can theoretically be

measured depends on the measurement time T and the frequency range f0, [Win09b]. For

automotive applications world-wide the transmitted frequency f0 is most often 76.5 GHz.

Given the light speed cL = 299792458 m/s2 and a typical measurement time T = 0.04 s,

the theoretical resolution Δv̄x of the relative velocity is

Δv̄x =
cL

2 · f0 · T =
299792458

2 · 76.5 · 109 · 0.04 ≈ 0.05 m/s, (E.1)

[Win09b]. As an example for the real achieved accuracy, the Bosch LRR3 radar sensor

currently used in series application for ACC has an accuracy of Δvx of 0.1 m/s, [Win09b].

Nevertheless, this is the accuracy of the relative speed to other objects. It cannot be

assumed that this high accuracy can also be achieved for the relative velocity between the

vehicle and the road. This accuracy also depends on the mounting height of the sensor,

the direction of the centre of the transmitted signal and especially on the reflection

capability of the road. The reflection capability depends in general on the type of

object, its geometry and its orientation. Metal objects (e.g. stationary objects such

147



E Longitudinal velocity estimation

as parked cars, sewer covers or traffic signs) have a better reflection capability than

the road surface, for example. In addition, the road conditions influence the received

signal power. In particular, the presence of water is limiting, since it diffuses the signal,

[Win09b]. Nevertheless, for many driving states, a sensorfusion of radar-based velocity

estimation with on-board sensors seems to be sensible for this application.

E.4. GNSS-based estimation of the longitudinal velocity

Global navigation satellite system (GNSS) is the umbrella term for existing satellite-

based navigation infrastructures, such as the global positioning system (GPS) or Galileo,

[WHW09b, p.677]. Starting in October 2015, it will be mandatory for new vehicles in

the European Union to be able to automatically communicate with the European emer-

gency call infrastructure system (eCall) after a severe accident (e.g. in case the driver is

unconscious and unable to call an emergency service), [Dat14]. The data received by the

emergency services include the time of the accident, the position of the vehicle, and its

direction, which can be relevant on highways or in tunnels. The technical considerations

for the vehicle’s on-board system to be approved include the use of GNSS, [EotEC14].

Thus, it can be assumed that GNSS will be available in series production vehicles in the

near future.

Belvy and Gerdes used GNSS velocity information to calculate the longitudinal slips

sx,i, slip angles αi and the vehicle’s side slip angle β, [BG00]. To calculate the wheel

slip, the GNSS velocity was directly used in combination with the wheel speed sensors.

During free rolling of the tires, they propose using the GNSS velocity to calibrate the

wheel speed sensors’ signals. The results showed high slip noise and an offset that could

have been subject to miscalibration. Nevertheless, it was also shown that the noise was

brought in by the wheel speed sensors rather than the GNSS velocity measurement. A

similar approach was used by Rajamani et al., [RPPL12], where sx is calculated directly

using the GNSS velocity and the wheel speeds.

Miller et al. used the GNSS velocity to estimate the effective tire radius and the longi-

tudinal stiffness of the tires, [MYM+01]. Beyond calculating sx directly using the GNSS

velocity, it has been used to calculate the effective tire radius re,i of non-driven wheels

during free rolling within a sub-millimeter accuracy. Then, sx was calculated using only

the wheel speed measurements, which excludes estimation of braking conditions (other

than engine braking) and for 4WD vehicles.
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The standard GNSS receiver update is 1 Hz, which is sufficient for automotive nav-

igation, [SZZ13], but not to determine the vehicle speed for the proposed application.

Although technically feasible receiver rates go up to 200 Hz (e.g. for aeronautic appli-

cations), [SZZ13], these systems are not affordable for automotive series application. In

addition, these rates only apply in ideal conditions (e.g. good satellite visibility). Espe-

cially in urban areas, GNSS outage is inevitable. In combination with measurements of

the vehicle’s state, both the calculation of position and velocity can be significantly im-

proved and, in case of GNSS outage, also temporarily deliver vx estimates without GNSS

velocity. Many approaches can be found in literature to combine GNSS and inertial mea-

surements, often by using a Kalman filter. For example, Hide et al. achieved good results

for high-accuracy real-time navigation using a low-cost micro-electromechanical system

(MEMS) as a sensor to measure accelerations and angular rates with an update rate of

100 Hz and a GNSS with a receiver update of 1 Hz with a Kalman filter, [HMS03]. Thus,

combined with additional on-board sensor information, GNSS-velocity-based estimators

show promising results.
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