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Abstract 
 

Motivation: LC-HRMS is the most commonly used analytical technique for the simultaneous 

detection of as many metabolites as possible in untargeted metabolomics approaches. Despite 

its many advantages, it also has several drawbacks including unspecific, non-biological related 

signals and matrix effects that distort relative metabolite abundances and complicate subse-

quent statistical analysis. In this respect, stable isotopic labelling, which relies on the artificial 

creation of metabolite molecules enriched with certain stable isotopes (e.g. 13C or 15N), can be 

used to overcome these limitations.   

Aim: The aim of the presented thesis was the development of novel software for the pro-

cessing of LC-HRMS data derived from native and isotopically labelled biological samples.   

Results: The developed software MetExtract facilitates a) the automated detection of all me-

tabolites of a biological system and b) the automated detection of all biotransformation prod-

ucts derived from a studied tracer substance in stable isotopic labelling assisted and LC-HRMS 

based untargeted metabolomics applications. The software utilises the distinct isotope patterns 

introduced by native and labelled isotopologs of the same metabolites for the detection of all 

truly metabolite-derived signals and thus efficiently removes any information of non-biological 

origin. Each detected feature pair that represents a certain ion species of a metabolite is veri-

fied with i) the distinct molecular mass gain introduced by the labelling, ii) the unique isotope 

patterns, and iii) a check for congruent coelution of the native and the labelled metabolite 

forms. Additionally, the software reports the exact number of incorporated labelling-isotope 

atoms for each found feature pair, which greatly enhances metabolite annotation. Moreover, 

MetExtract convolutes feature pairs derived from the same metabolite into feature groups and 

determines a fold quantification value, which, provided a proper labelling and sample pooling 

protocol ahead of LC-HRMS analysis, accounts for different ion suppression and enhance-

ment effects as well as mass detector drifts across different measurement batches and im-

proves relative metabolite quantification and thus comparison of experimental conditions.   

Applications: With the aid of MetExtract the advantages of SIL in untargeted metabolomics 

approaches, which include the detection of only biological metabolites (e.g. 135 Fusarium gra-

minearum- and 362 wheat-derived metabolites), improved relative metabolite quantification, and 

multivariate statistical analysis, were demonstrated.   

In tracer-fate experiments MetExtract was used to automatically detect 9 detoxification prod-

ucts of the F. graminearum mycotoxin deoxynivalenol in wheat. Moreover, it was utilised for 

studying the metabolic fate of the aromatic amino acid phenylalanine in grape-berries (63 me-

tabolites) and wheat cell suspension cultures (139 metabolites). All these metabolites were 
unambiguously assigned descendants of the respective tracer under investigation.   

Keywords: MetExtract, Metabolite detection, Metabolite characterisation, Fast polarity switch-
ing  
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Kurzfassung 
 

Motivation: Flüssigkeitschromatographie in Kombination mit hochauflösender Massenspekt-

rometrie und Electrospray-Ionisierung (LC-ESI-HRMS) ist die derzeit wichtigste und am häu-

figsten eingesetzte analytische Methode um das Metabolome einer biologischen Probe zu er-

fassen. Trotz vieler Vorteile hat diese Technik die Nachteile, dass nicht zwischen biologisch 

relevanten Metaboliten und Kontaminationen unterschieden wird und dass Matrix-Effekte die 

relative Quantifizierung der erfassten Metabolite verzerren. Isotopenmarkierung mit stabilen 

Isotopen gleicht diese Nachteile aus und verbessert dadurch die Interpretation des Versuchs.  

Ziele: Zur effizienten Nutzung der Isotopenmarkierung sollte im Zuge dieser Dissertation 

eine Software zur automatischen Auswertung von LC-HRMS Daten natürlicher und isoto-

penmarkierter biologischer Proben entwickelt werden.  

Ergebnisse: Die Dissertation beschreibt die Software MetExtract, die mittels LC-HRMS Ana-

lyse generierte Metabolomics Daten analysiert. MetExtract detektiert a) alle Metabolite eines 

biologischen Systems und b) nur jene Metabolite, die von einer bestimmten Vorläufersubstanz 

abstammen. Hierfür bedient sich MetExtract komplexer Isotopenmuster, die durch das Mar-

kieren mittels stabiler Isotope in den jeweiligen biologischen Experimenten entstehen. Die 

Software filtert Störsignale und Substanzen nicht biologischen Ursprungs aus und erkennt 

daher nur biologisch relevanten Metabolite. Jeder gefundenen Metabolite wird mit 3 Kriterien 

verifiziert: i) existiert einen isotopenmarkierter Partner mit der entsprechenden Masse, ii) ist 

das Isotopenmuster gültig und iii) sind die natürliche und markierte Metabolitformen identisch 

chromatografiert. Anhand dieser Merkmale wird für jeden gefundenen Metabolit auch die 

Anzahl an ausgetauschten Atomen mit dem verwendeten stabilen Isotop ermittelt. Unter-

schiedliche Ionen, die vom selben Metabolit abstammen, werden in Metabolitgruppen zusam-

mengefasst. Des Weiteren errechnet MetExtract einen Fold-quantification Wert, der, sofern 

das Experiment entsprechend durchgeführt wurde, unterschiedliche Matrix-effekte und Dete-

korabweichungen ausgleicht, wodurch die relativen Konzentrationen der Metabolite korrigiert 

und die statistische Auswertung des Experiments verbessert wird.  

Anwendungen: MetExtract wurde angewendet, um die Vorteile von Isotopenmarkierung 

mittels stabiler Isotope in ungerichteten Metabolomicsexperimenten zu demonstrieren.   

Des Weiteren wurde das entwickelte Tool eingesetzt, um den Metabolismus des Mycotoxins 

Deoxynivalenol in Weizenpflanzen zu untersuchen. Dieser Ansatz fand 9 Detoxifizierungs-

produkte von Deoxynivalenol. Auf ähnliche Weise wurde auch nach sekundären Metaboliten, 

die von der Aminosäure Phenylalanine abstammen, in Weinbeeren (63 Metabolite) und Wei-

zenzellkulturen (139 Metabolite) gesucht. Neben bereits bekannten wurden auch neue, unbe-
kannte Metabolite in den Proben gefunden und annotiert. 

Suchbegriffe: MetExtract, Metabolit Detektion, Metabolit Charakterisierung, Fast polarity 
switching   
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1. Scientific background 
 

“We can only see a short distance ahead, but we can see plenty there that needs to be done” 

 - Alan Turing 
(Computing Machinery and Intelligence, 1950, p. 460) 

 

Wolfram Weckwerth, a pioneer in the young field of metabolomics research, states: “The 

primary aim of ‘omic’ technologies is the nontargeted identification of all gene products (transcripts, proteins, and 

metabolites) present in a specific biological sample” [6].   

Metabolomics research, in this regard, focuses on the comprehensive study of low-molecular 

weight substances present in a biological system (e.g. an entire organism, a certain tissue type, 

or individual cells). Such substances are named metabolites and the entire set of all metabolites 
in a particular, biological system is referred to as its metabolome [7].  

Oliver Fiehn, another topmost recognised pioneer, who has been working in the field of 

metabolomics research since its early days, writes: “Metabolites are the end products of cellular regula-

tory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or envi-

ronmental changes” [8].   

This stresses that the phenotype of a biological system is highly correlated with its metabolome 

as a means of functional genomics [9]. Thus, metabolomics research can be used for numerous 

applications: For example, a metabolite, which is easily quantified, may serve as a biomarker of 

a genetic condition or an environmental impact [10, 11]. Other metabolomics applications are 

concerned with or are used in support for the detection of novel therapeutic agents for various 

diseases [12-16]. Furthermore, metabolomics is applied in cancer research [17-19], comparison 
of different genotypes [20], toxicology [21], and nutrition [22, 23]. 

Metabolites commonly constitute several atoms of the elements carbon, hydrogen, and ox-

ygen. Other elements including sulphur, nitrogen, and phosphorous may also be present in 

metabolites, but are usually limited to only a few atoms [24, 25]. As a consequence, metabolites 

are manifold in terms of chemical structure and properties [26]. For example, it is believed that 

the human metabolome consists of at least 3,000 metabolites [27], while the plant kingdom is 

estimated to have hundreds of thousands or more different metabolites [28].   

Albrecht Kossel suggested stratifying metabolites into two classes: primary and secondary [29]. 

Primary metabolites are part of essential pathways, or are mandatory for a biological system to 

survive and reproduce (e.g. metabolites of the citric acid cycle or amino acids). Secondary me-

tabolites allow a biological system to perform many more and different actions than it could 

with only its primary metabolites (e.g. pathogenicity or anti-bacterial functions) [30]. Thus, 
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secondary metabolites help organisms, in particular microorganism, to adapt to unconvention-
al ecological habitats.  

In metabolomics research two fundamental concepts are distinguished: targeted and untar-

geted approaches. Targeted approaches investigate only a small number of known metabolites 

and require either reference standards or authentic MS/MS data of the investigated metabolites 

[26; termed metabolite target analysis]. Determination of absolute metabolite concentration, 

however, in general requires the respective metabolites to be available as authentic reference 

standards. On the contrary, untargeted metabolomics approaches are aimed at capturing all 

metabolites present in a biological sample and also utilise information of unknown metabolites 

that usually constitute the vast majority of all detected compounds [31]. Consequently, only 

untargeted metabolomics applications can probe the entire metabolic space of the biological 

system under investigation at once. As with untargeted metabolomics approaches, the majority 

of all detected metabolites cannot be identified since only few reference standards are availa-

ble. As a result, only relative metabolite concentrations can be determined and used to com-

pare the different experimental groups in untargeted metabolomics approaches.   

An obstacle in metabolomics approaches is the large chemical diversity of metabolites (e.g. 

fatty acids, sugars, polar and apolar metabolites). This makes it impossible to analyse an entire 

metabolome with just a single analytical protocol or platform. Thus, complementary tech-

niques (e.g. gas chromatography coupled to mass spectrometry (GCMS), liquid chromatog-

raphy coupled to high-resolution mass spectrometry (LC-HRMS), nuclear magnetic resonance 

(NMR)) have to be utilised conjointly and all data needs to be integrated for a more holistic 

annotation of a respective metabolome [32].   

LC-HRMS is the most commonly utilised analytical technique for the study of secondary me-

tabolites in untargeted metabolomics research. It is highly customisable (e.g. different chroma-

tographic separation, eluents, and ionisation methods) making it fit for nearly any purpose [33]. 

Furthermore, most LC-HRMS systems (e.g. Orbitrap, Time-of-Flight) are sophisticated and 

allow a high reproducibility on the same instrument given appropriate analytical protocols and 

carefulness from experienced and trained experts [26]. The analytical protocols, workflows, 

and the LC-HRMS platform are generally adapted and optimised to allow for the simultaneous 
detection of as many metabolites as possible present in a single sample.  

Typically, untargeted metabolomics experiments are performed with the aim of investigat-

ing the metabolic composition of an altered, biological system. The perturbations of the sys-

tems under investigation can be manifold (e.g. genetic mutations, environmental stress, nutri-

tion depletion). Subsequently, the differing samples are compared to the same biological sys-

tem that is not exposed to the studied factors and therefore serves as a control. Comparative 

quantification of the affected and control samples and statistical analysis are then performed to 

select those metabolites that are highly likely to be affected or responsible for these differ-
ences.  
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1.1. Conventional data processing strategies 

Untargeted metabolomics research performed with modern LC-HRMS instrumentation 

produces huge amounts of raw-data. Depending on the type of instrument used for LC-HRMS 

analyses, a simple experiment comprising of two different conditions with five biological repli-

cates each (ntotal=10 samples) can range from a few hundred megabytes to some gigabytes, 

even if roughly comparable instrument settings are used (e.g. same chromatography and mass-

to-charge ratio (m/z) range). In general, more powerful instruments that scan faster, have 

higher mass accuracy, and are more sensitive mainly caused this increase, which is likely to 

continue in the near future. While for targeted approaches semi-manual verification, adjust-

ment, and analysis of the metabolites of interest are feasible, this certainly cannot be done in 

an untargeted fashion aimed at extracting as many metabolites as possible. Therefore, sophisti-

cated, automatic data processing tools that detect and process all metabolite-derived signals 

and chromatographic peaks are necessary. Popular software for this task are XCMS [34-36] in 

combination with CAMERA [37], MzMine [38, 39], OpenMS [40, 41], MetAlign [42, 43], Lipid 

Data Analyzer [LDA; 44], Maven [45], and mzMatch [46]. These tools analyse the raw-data and 
holistically report all detected metabolites in the LC-HRMS data.  

For example, XCMS is the most commonly used tool for automated data evaluation for un-

targeted metabolomics research. In a first step the tool clusters all m/z values detected in the 

entire LC-HRMS data into so called Regions of Interest (ROIs). For each such ROI, which is 

within a certain m/z error range and thus includes different isomers of metabolites with the 

same chemical formula, chromatographic peaks representing different isomers are then 

searched for. Each such detected chromatographic peak is reported to the user as a feature 

representing a metabolite-derived ion consisting of a certain m/z, retention time, and intensity 

value. Subsequently, CAMERA [37] annotates the relationship between different features orig-

inating from the same metabolite. To this end, associated features are convoluted using a) the 

m/z difference between two features originating from different 1) isotopologs, 2) ion species, 

or 3) in-source fragments of the same metabolite, and b) the chromatographic peak shapes of 

two coeluting features that are highly similar if they originate from the same metabolite. The 

result of a CAMERA analysis is a comprehensive list of all detected features most likely be-

longing to the same metabolites. Furthermore, using the detected isotopic patterns the chemi-
cal formulas of the observed ions can be predicted to a certain extend.  

Detecting all metabolite-derived signals in complex LC-HRMS data has become a routine 

task using the before mentioned software solutions. However, these tools cannot account for 

certain limitations of the LC-HRMS data:  

i. Contaminants and substances of non-biological origin  

LC-HRMS analysis cannot distinguish between substances of biological origin (i.e. 

metabolites) and such of non-biological origin (e.g. contaminants or background 

signals). For example, typical contaminants, which may originate from the analyti-
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cal process, are plasticizer from the used laboratory equipment [47].  

 

ii. Matrix effects  

Different ion suppression and enhancement effects (matrix effects) may distort rel-

ative metabolite abundances across all analysed experimental conditions and are a 

potential source of error during subsequent statistical analysis [27, 48-50].  

 

iii. Metabolite annotation  

Annotation of unknown metabolites usually starts from accurately measured m/z 

values and the prediction of molecular formulas of the metabolites under investiga-

tion. To determine the number of atoms of a specific element, the relative abun-

dances of different isotopologs need to be accurately quantified by the used 

LC-HRMS instrument and data processing software [51]. A deviation of as little as 

1% already increases or decreases the number of carbon atoms by 1, however, typ-
ical LC-HRMS instruments have higher uncertainties [52].  

In general, untargeted metabolomics experiments are aimed at finding metabolites that are 

characteristic for certain conditions (e.g. different genotypes, metabolic stress due to an envi-

ronmental impact, a disease or infection). Thus, after feature detection, convolution, and rela-

tive quantification, statistical analysis with the aim of selecting those metabolites affected or 

responsible for these differences is performed [53, 54]. As an initial check principal component 

analysis (PCA) and hierarchical cluster analysis (HCA) are often utilised as a first check to 

investigate, whether the analysed samples separate into the expected experimental conditions 

followed by more in-depth multi- and univariate statistical investigations. Comprehensive liter-

ature on data pre-processing and statistical investigation in untargeted metabolomics research 

is available, including for example Liland [53], Issaq [54], Kruve [55], Broadhurst [56], 
Goodacre [57], Madsen [58], van den Berg [59], and Wehrens [60].  

 

1.2. Stable isotopic labelling  

Stable isotopic labelling (SIL) is the process of artificially creating molecules, which pre-

dominantly are enriched with a stable isotope that is not the most abundant one in nature (e.g. 
13C or 15N) [1]. SIL has already been used in life science related applications before it has been 

utilised for untargeted metabolomics research [61-65]. Moreover, it has been and is intensively 

used in fluxomics applications where the aim is to gain insight into the rates of metabolic 

transformation of different metabolites [66, 67]. However, most commonly fluxomics applica-

tions are targeted approaches and only investigate certain pathways of a biological system and 

are not addressed by the presented work at all. Here, labelled metabolites or labelled parts of 

metabolites need to have a high degree of isotopic enrichment (≥ 97%) with the respective 

isotope used for labelling.   

Native and 13C-, 15N- or 34S-labelled metabolites possess very similar physico-chemical proper-
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ties. The minor differences, however, are not of relevance in the presented context. Thus, 

native and 13C-, 15N- or 34S-labelled metabolites are not separated during LC and show perfect 

coelution [68]. Since ions of native and labelled metabolites have a slightly different mass, their 

different isotopologs are separated in the mass spectrometer (e.g. native phenylalanine with a 

monoisotopic mass of 165.078724 u and globally 13C-labelled phenylalanine with a mass of 

174.108874 u). As a consequence, mixtures of native and 13C-labelled metabolites elute at the 

same retention time but show distinct isotope patterns in LC-HRMS data. The observed m/z 

difference between the native and labelled metabolite-derived ions allows calculating the num-

ber of atoms of the labelling-isotope without the need to approximate it from different 

isotopologs. Additionally, in combination with a sophisticated sample-pooling scheme before 

LC-HRMS analysis, experiment- and metabolome-wide internal standardisation can be 

achieved. This efficiently accounts for different matrix effects observed for the studied sam-

ples or MS detector sensitivity drifts. Therefore, this technique is perfectly suited for the study 

of the entire via LC-HRMS accessible metabolome of various biological systems (full metabo-

lome labelling) or the study of the metabolic fate of certain tracer substances (tracer-fate stud-
ies) (publication #1) 

For example, Giavalisco and colleagues used SIL in untargeted metabolomics experiments 

involving Arabidopsis thaliana plants [69, 70]. The plants were grown in a hermetically sealed 

chamber, where the environment had been enriched with 13C, 15N, and 34S. Consequently, all 

the plant’s metabolites predominantly consisted of the respective isotopes. Together with A. 

thaliana extracts that had been cultivated under native, label-free conditions LC-HRMS meas-

urements showed distinct isotope patterns for all metabolites. These patterns allowed deter-

mining the number of carbon, nitrogen and sulphur atoms in each metabolite and subsequent-

ly improved the annotation of the unknown metabolites with chemical formulas. More recent-

ly, Cano and colleagues used 13C- and 15N-labelling for the unambiguous detection and annota-

tion of twenty-one secondary metabolites of Aspergillus fumigatus [71]. In respect of relative 

metabolite quantification, Giavalisco and colleagues showed that SIL improved the compara-

bility of different samples by accounting for unequal matrix effects [72].  

Furthermore, tracer-fate studies aiming at determining the metabolic fate of studied tracer 

substances already utilised SIL in the late 1980s [73, 74]. Native and 13C-labelled tracer sub-

stances are almost equally metabolised by the same biotransformations and thus all biotrans-

formation products contain either the native or the labelled tracer [75]. For example, Anderson 

[76] used deuterium-labelled steroids in pregnant women and Li [77] used deuterium-labelling 

in combination with a PCA guided approach to detect known and unknown biotransformation 
products of the drug Tempol.  

Currently, only few software tools are available that are designed for processing of SIL-

derived metabolomics data (e.g. NTFD [78, 79], X13CMS [80], and mzMatch-Iso.R [81]).   

NTFD (Non-targeted Tracer Fate Detection) is a software tool designed for the study of the 

metabolic fate and flux of primary metabolites (e.g. sugars) with GCMS and currently does not 

support LC-HRMS data of secondary metabolites. In contrast to many other fluxomics appli-

cations, it does not require a list of afore known metabolites but rather detects tracer-derived 
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metabolites in an untargeted manner.   

The latter two tools, X13CMS and mzMatch-Iso.R, are capable of processing SIL-derived 

LC-HRMS data. They are designed to comprehensively annotate the metabolic space. Subse-

quently, they select those metabolites that show significant differences in the isotope patterns 

of the biological conditions under investigation. Thus, these tools require separate LC-HRMS 
analysis of samples consisting of native and labelled metabolites.  

In their current forms, X13CMS and mzMatch-Iso.R do not support the comprehensive de-

tection of all metabolites that are present as native and highly isotope-enriched metabolites 

only. Furthermore, the experimental setup necessary for these tools does not allow experi-

ment- and metabolome-wide internal standardisation nor does it allow deriving the total num-

ber of labelling-isotopes present in each detected metabolite or biotransformation product. 

Nevertheless, these tools are valuable for the investigation of partly labelled metabolites as well 
as the elucidation of putative novel pathways and their metabolic fluxes. 

 

1.3. Aims of this thesis 

Xiaojing Huang and colleagues, who just recently presented the X13CMS workflow for SIL 

assisted untargeted metabolomics, write: “Studies of isotopically labelled compounds have been funda-

mental to understanding metabolic pathways and fluxes. They have traditionally, however, been used in conjunc-

tion with targeted analyses that identify and quantify a limited number of labelled downstream metabolites” 

[80]. This emphasises the need for SIL assisted untargeted metabolomics workflows. The limit-

ing factor in this respect is the availability of software tools for the automated analysis of the 
acquired LC-HRMS data.  

At the beginning of the author’s doctoral study no software tools for the automatic pro-

cessing of LC-HRMS derived metabolomics data from SIL-assisted experiments were availa-

ble. In view of the afore described challenges and limitations, the rationales of the presented 

work was the development and implementation of novel tools that enable the automated data 

processing of SIL assisted and LC-HRMS based metabolomics data in a) full metabolome 

labelling experiments and b) tracer-fate studies. More specifically, the software should provide 
the following functionalities: 

i. The holistic and untargeted detection of all analytical signals of truly biological 

origin (i.e. native and isotopically labelled metabolite-derived ions) 

ii. The holistic and untargeted detection of all biotransformation products derived 

from labelled endogenous or exogenous tracer compounds, which are transformed 

by secondary metabolic processes into other metabolites 

iii. Determine the total number of atoms of the labelling-isotope in each feature pair 

iv. Track the same metabolites over all experimental samples  

v. Calculate internal standardisation corrected relative metabolite abundances  

vi. Group different ion species derived from the same metabolite 
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vii. Support different stable isotopes used for labelling (e.g. 13C, 15N, 34S) 

viii. Process data from different LC-HRMS platforms (e.g. Orbitrap or Time-of-flight 

instruments) 

ix. Handle positive, negative, and fast polarity switching ionisation mode LC-HRMS 
data  

 

 
 

Figure 1 | Illustration of a typical workflow for untargeted metabolomics experiments (black arrow) that 
served as the basis for the developed workflow(s). The presented doctoral thesis comprises of the imple-
mentation of a software tool for automated processing of SIL-derived LC-HRMS data (Bioinformatics), 
while the analytical aspects of the workflows are detailed in the doctoral thesis of Bernhard Kluger.  

 
 

These rationales were carried out in the context of the subproject SFB-3706 “Metabolom-

ics of plant-Fusarium-interactions” in the research group “Metabolomics and Bioactive Com-

pounds” that is headed by Dr. Rainer Schuhmacher (Center for Analytical Chemistry, Univer-

sity of Natural Resources and Life Sciences, Vienna) in collaboration with Dr. Gerhard Thal-

linger (Institute for Knowledge Discovery, Graz University of Technology). Together with the 

PhD student Bernhard Kluger, who is an analytical chemist, and other group members, two 

complete metabolomics workflow were developed and applied. These workflows include SIL 

assisted biological experiments, adapted sample preparation, LC-HRMS analysis, automated 

data processing, and statistical investigation (Figure 1). Both the analytical and bioinformatics 

workflows greatly benefitted from the parallel development and mutual inspiration. The work-

flows and the software tool were rigorously tested and utilised to study the entire LC-HRMS 

accessible metabolomes of wheat plants and filamentous fungi as well as the metabolic fate of 

different tracer substances in plants and cell suspension cultures.   

This doctoral thesis focuses on the implemented software MetExtract while the detailed ana-

lytical workflows are described in the doctoral thesis of Bernhard Kluger.   
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2. Stable isotopic labelling of biological material 
 

The process of SIL as used throughout this work is explained where the focus is placed on 

the developed workflows for SIL assisted full metabolome labelling experiments and tracer-

fate studies as well as the formal definition of the unique characteristics in such experiments. 

Other SIL assisted approaches in untargeted metabolomics include for example derivatiza-

tion/dansylation with isotopically labelled agents [82], stable isotope dilution assays [83, 84], or 

SIL assisted annotation of LC-HRMS /MS spectra [85]. These concepts are, however, beyond 
the rationales of the presented work.   

For most elements one isotope (e.g. 1H, 12C, 32S) is predominantly present in nature. It is 

called the principal isotope of the element. Some elements may have other stable isotopes with 

a different number of neutrons. Usually, these isotopes are present only in minor quantity (e.g. 
2H, 13C, 34S; see http://www.sisweb.com/referenc/source/exactmaa.htm; last accessed 17th 
September 2014).   

In the presented work, SIL refers to the process of artificially creating molecules enriched 

with an isotope other than the principal one of the respective element [86]. For example, in 

nature 12C is the principal isotope of carbon with a relative abundance of 98.9%, while the 

second most abundant stable isotope of carbon, which is 13C, makes up only 1.1%. Artificial 

labelling with the isotope 13C creates molecules that predominantly consist of 13C atoms. Such 

isotopologs are almost impossible to find in natural environments. In general, all atoms of a 

particular element in a certain substance have the same probability to be replaced during the 

isotopic labelling process resulting in globally labelled molecules. On the contrary, in certain 

metabolites (e.g. biotransformation products of tracer substance under investigation) not all 

atoms of a particular element are replaced with the isotope used for labelling, but only a con-

stant subpart or certain atom positions. Such molecules are partially labelled only since just 

certain atoms of the element, which is facilitated for labelling, can be labelled. Consequently, 

these molecules consist of parts having properties of either non-labelled, native or globally 

labelled substances. The degree of enrichment with the isotope used for labelling in this work 
is presumed to be very high (usually above 97%).  

Metabolites labelled with 13C, 15N, or 34S isotopes are not separated during LC from their 

native analogues since they posses nearly the same physico-chemical properties and thus show 

perfect coelution in the presented context [68, 87]. Yet, ions derived from labelled metabolites 

are separated in the mass analyser as they have different m/z values compared to their non-

labelled, native analogues. Isotopes of hydrogen (2H) and oxygen (18O), which would also be 

perfectly suited for labelling, are not commonly used, since these two elements are known to 

cause problems during LC-HRMS analysis [68]. For example, deuterium-labelled molecules are 

known to chromatographically separate from their non-labelled pendants. Moreover, deuteri-
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um and 18O atoms can be exchanged with H and O atoms from surrounding, non-labelled 

water, which would reduce the labelling degree and result in only partially labelled molecules 

and blurred isotope patterns in the LC-HRMS data. Consequently, in the presented work, 13C 

is the primary isotope used for labelling. Figure 2 illustrates examples of native and globally or 
partly 13C-labelled molecules.  

 

 
 

Figure 2 | Illustration of non-labelled, native (a and c) and globally (b) or partly (d) 13C-labelled metabolite 
molecules. While the non-labelled fuculose molecule (a) contains only 12C isotopes for all its carbon at-
oms, the globally 13C-labelled fuculose molecule (b) contains only 13C isotopes instead of 12C. The second 
example depicts the aromatic amino acid phenylalanine. The native phenylalanine molecule (c) is made 
solely of 12C isotopes, while only the aromatic ring of the phenylalanine molecule is 13C6-labelled (d), thus 
this molecule contains 12C as well as 13C isotopes and is only partly labelled. Different isotopologs of the 
native or labelled molecules are not shown.  
 
 

2.1. Full metabolome labelling – biological workflow 

For the SIL assisted study of the entire metabolome of a respective biological system (e.g. 

fungi or wheat organs) it is necessary to enrich all its metabolites with a respective stable iso-

tope. If such a setup can be achieved (e.g. cultivation of F. graminearum in parallel on native and 

globally 13C-labelled glucose; publication #3), all metabolites of the studied biological system 

are present as native and globally labelled molecules. However, in many metabolomics applica-

tions such a co-cultivation is not possible. For example, globally 13C-labelled wheat or maize 

plants could not be grown in-house since the required facilities were not available (publication 

#3). Thus, labelled material of respective wheat and maize plants had to be acquired commer-
cially. 
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After the biological experiment has been performed, sample preparation is carried out sepa-

rately for the native and labelled samples with the aim to extract the metabolites from the bio-

logical material for LC-HRMS analysis (e.g. protocol of De Vos [88]). Subsequently, all extracts 

from the labelled samples are pooled to gain a unified and globally labelled sample that con-

tains all labelled metabolites from the different, studied samples. Alternatively, if the labelling 

cannot be achieved in parallel, a surrogate in form of labelled reference material may be used. 

An equal amount of the labelled, pooled sample or the labelled reference sample is then added 

to each of the samples containing the individual, native metabolite molecules of the non-

labelled samples. After this mixing step, the samples contain native as well as globally labelled 

metabolite molecules. Since the labelled metabolites are present in equal amount in each sam-

ple, they can be used for metabolome- and experiment-wide internal standardisation by the 

developed software tools to account for different matrix effects during LC-HRMS analysis. 
These sample preparation steps are illustrated in Figure 3.  

 

 

 
Figure 3 | Biological experiment (1.) and analytical sample preparation (2.) steps full metabolome labelling 
experiments. When parallel cultivation of the respective biological system under investigation can be 
achieved, each experimental condition is cultivated under native environmental conditions (green sam-
ples) as well as such enriched with the isotope used for labelling (orange samples; e.g. co-cultivation on 
native and labelled glucose) (a). If such a parallel co-cultivation cannot be achieved (e.g. lack of required 
facilities or the cultivation substrates), a labelled reference material has to be commercially acquired (b). 
After metabolite extraction, an equal amount from either the labelled, pooled sample or the labelled refer-
ence material is added to each individual, native sample. Replicates of each condition are not shown.  
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2.2. Tracer-fate studies – biological workflow 

In the presented work examining the metabolic fate of a tracer substance in a biological sys-

tem under investigation is carried out with native and labelled tracers. Both forms are metabo-

lised by identical biotransformation reactions. Consequently, all metabolites derived from the 

studied tracer are present in their native as well as a partly labelled form, while any other me-

tabolites of the studied, biological system that are not derived from the tracer are only present 

as native metabolites. This allows easily discriminating between metabolites derived form the 

tracer substance under investigation and such that are not. Thus, both the native and labelled 

forms of the tracer need to be available to the biological system. In this respect two types of 
tracer substances are distinguished:  

i. Exogenous tracer  

An exogenous tracer is a substance that is typically not present in the investigated 

biological system but only in certain situations (e.g. toxins or drugs). Thus, to study 

such a tracer, the substance must be supplied as both the native and labelled tracer. 

Figure 4a illustrates the biological workflow for an exogenous tracer.   

 

ii. Endogenous tracer  

On the contrary, an endogenous tracer is a substance typically present in the bio-

logical system under investigation. Thus, native molecules of the tracer are already 

present and only the labelled tracer has to be supplied during the biological exper-
iment. Figure 4b illustrates the biological workflow for an endogenous tracer. 

 

 
 

Figure 4 | Biological workflow for the study of an exogenous (a) or an endogenous tracer (b) substance. 
While an exogenous tracer must be supplied to the biological system as a mixture of both native and 
labelled forms, an endogenous tracer only needs to be supplied as a labelled form. 
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2.3. Nomenclature for isotope patterns of native and labelled 
compounds 

Isotope patterns in LC-HRMS data originate from different isotopologs of the same me-

tabolite ions. Different isotopologs represent the same substance, but are different in their 

isotopic constitution. Consequently, all isotopologs of a substance have the same elemental but 
a different isotopic composition and thus a different mass.  

In this work, metabolites are labelled with an isotope of a single element only. The isotope 

used for artificially creating the labelled molecules is termed the labelling-isotope. Consequent-

ly, the element of the used labelling-isotope is named the labelling-element. For example, in a 

SIL experiment, which uses 13C for labelling, the labelling-element is carbon while the label-
ling-isotope is 13C.  

The isotopolog of a substance, which contains only the principal isotopes of all its ele-

ments, is termed the monoisotopic isotopolog. For example, the monoisotopic isotopolog of 

the substance fuculose (Figure 2a) has the sum formula 12C61H1216O5.   

Labelled metabolites have a pendant similar to the monoisotopic isotopolog, which contains 

only the principal isotopes of all those elements not utilised for labelling. Additionally, depend-

ing on the performed metabolomics experiment the following restrictions also apply to the 
respective isotopolog:  

i. Full metabolome labelling experiments  

All atoms of the respective labelling-element are replaced with the labelling-

isotope. In full metabolome labelling applications this isotopolog is termed the uni-

formly labelled isotopolog of a globally labelled metabolite. Thus, for each element 

the uniformly labelled isotopolog of a globally labelled metabolite consists of only a 

single isotope for each of its elements. For example, the uniformly 13C-labelled 

isotopolog of fuculose (Figure 2b) has the sum formula 13C61H1216O5.   

 

ii. Tracer-fate studies  

In tracer-fate studies biotransformation products derived from a labelled tracer 

represent a mixed isotopolog form. Such molecules have atomic positions, which 

are labelled and others, which are not. In tracer-fate studies this isotopolog is 

termed the consistently labelled isotopolog of a biotransformation product. Such 

an isotopolog contains only the labelling-isotope for all those atoms that can be la-

belled (i.e. originate from the tracer) but the principal isotope of the labelling-

element for all those atoms of the labelling-element that cannot be labelled. For 

example, the phenylalanine molecule in Figure 2d is partly labelled only. Its aro-

matic ring is globally 13C-labelled. Thus, the consistently labelled isotopolog of this 
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labelled phenylalanine molecule has the sum formula 13C612C31H1116O214N and all 6 
carbon atoms of the aromatic ring are labelled.  

Consequently, the monoisotopic and the uniformly or consistently labelled isotopolog of a 
metabolite only differ in the number of isotopes of the facilitated labelling-element. 

LC-HRMS analysis of native and 13C-, 15N-, or 34S-labelled metabolite molecules does not 

separate the different metabolite isotopologs during liquid chromatography. Thus, the native 

and labelled metabolites elute with the same retention time. During chromatographic separa-

tion, the eluent is constantly directed into the ionisation device (e.g. electrospray-ionisation 

(ESI) used throughout this thesis). There the metabolite molecules are ionised and the same 

ion species are created for both the native and labelled metabolites (e.g. protonated ions 

[M+H]+, deprotonated ions [M-H]-, sodium adducts [M+Na]+). Subsequently, in the mass 

spectrometer the native and labelled metabolite-derived ions are separated, since their mass-to-

charge ratio (m/z) values are different. This m/z difference corresponds to the number of 

labelling-isotopes in the respective metabolite ions.   

Metabolite-derived ions in the presented workflows for SIL experiments show at least two 

distinct isotope patterns in LC-HRMS data originating from different isotopologs of native 

and labelled metabolite ions respectively. In the presented work, the labelling was predomi-

nantly performed with 13C, which results in very distinct isotope patterns compared to labelling 

with other isotopes (e.g. 15N or 34S). These 13C-labelling-isotope patterns are defined as fol-
lows: 

• M corresponds to a monoisotopic, native metabolite-derived ion. Usually, the mo-

noisotopic isotopologs represent the most abundant signals of the respective iso-

tope patterns for native metabolite ions.   

 

• M’ denotes different isotopologs depending on the performed SIL experiment; in 

full metabolome labelling experiments M’ refers to the uniformly, 13C-labelled 

isotopolog of a globally labelled metabolite, while in tracer-fate studies M’ corre-

sponds to the consistently 13C-labelled isotopolog of a partly labelled biotransfor-

mation product. This nomenclature is based on the fact that M’ is also usually the 

most abundant signal among its respective isotope pattern of the 13C-labelled me-

tabolite.   

 

• M+x denotes the xth carbon-isotopolog of native metabolite-derived ions. x 12C 

isotopes of the monoisotopic isotopolog are replaced with x 13C isotopes. Howev-

er, this replacement happens also by chance as approximately 1.1% of all carbon 

atoms in nature are 13C and is not introduced by the SIL process.   

 

• M’-x denotes for the xth carbon-isotopolog of the labelled metabolite-derived ion 

M’.  
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o In full metabolome labelling experiments involving globally labelled me-

tabolites, M’-x corresponds to that labelled isotopolog ion, in which x 13C 

isotopes of all atoms of the labelling-element are replaced with x 12C iso-

topes.  

o In a biotransformation product, M’-x corresponds to that isotopolog ion, 

in which x 13C isotopes of a consistently labelled biotransformation prod-

uct are replaced by x 12C isotopes. These exchanges only happen at carbon 

atom positions, which can be labelled according to the used labelled tracer.  

 

• M’+x denotes the xth carbon isotopolog of the non-labelled part of a partly labelled 

biotransformation product. x 12C isotopes are replaced by x 13C isotopes. As a con-

sequence, M’+x can only be present for such biotransformation products, which 

are a conjugation of a labelled tracer with a native moiety originating from the bio-

logical system under investigation. This replacement happens by chance as approx-

imately 1.1% of all carbon atoms in nature are 13C and is not caused by the SIL 

process and occurs only at carbon atom positions, which cannot be labelled ac-

cording to the used labelled tracer.   

 

• M+x/M denotes the observed ratio of the relative abundances of the isotopologs 

M+x and M. It originates from the fact that approximately 1.1% of all carbon at-

oms in natural environments are 13C isotopes.   

 

• M’-x/M’ denotes the observed ratio of the relative abundances of the isotopologs 

M’-x and M’.  It originates from the fact that the labelling-isotope has a certain 

change to incorporate 12C isotopes instead of 13C since the source of labelling-

isotopes are typically not enriched entirely with the labelling-isotope (e.g. only 

98.5%).  

 

• M’+x/M’ denotes the observed ratio of the relative abundances of the isotopologs 

M’+x and M’. Like the ratio M+x/M it does not originate from the labelling pro-

cess but from the fact, that approximately 1.1% of all carbon atoms in nature are 
13C isotopes.  

 

• M:M’ denotes the observed ratio of the relative abundances of the isotopologs M 

and M’.   

 

• A carbon-isotope pattern is depicted in the form |A, B, ...|. It starts from the 

isotopolog A and continues to B. For example the 13C-isotope pattern of a native 

metabolite ion is denoted with |M, M+1, ...| while the complementary 12C-isotope 
pattern of its uniformly 13C-labelled counterpart is denoted with |M’, M’-1, ...|.  

  



 
 
  16 

 

2.4. Characteristics of native and SIL-derived LC-HRMS data 

For the implementation of a software capable of detecting metabolite present as native and 

labelled forms, the respective isotope pattern in the acquired LC-HRMS data need to be for-
mally defined. In the following these patterns are elucidated.  

SIL can be performed with any element consisting of at least two stable isotopes. The most 

suited element for labelling is carbon since it is present in virtually every metabolite and most 

have a high number of carbon atoms. Other elements like sulphur or nitrogen may also be 

used, but only a minor number of all metabolites contain these elements [24]. Figure 5 shows 

the difference on a MS scan level between 13C- and 15N-labelling for the same ion species of a 
native and globally labelled metabolite.  

 

 
 

Figure 5 | In a) the mass spectrum shows the different isotopologs of an ion of a native (grey) and a glob-
ally 13C-labelled (orange) metabolite. From the m/z difference between the native, monoisotopic (M; m/z 
643.4083) and the uniformly 13C-labelled (M’13C; m/z 673.5093) ions the total number of carbon atoms in 
that ion is determined to be 30. In b) the labelling of the respective metabolite is performed with 15N in-
stead of 13C. Consequently, the m/z difference between the native, monoisotopic (M; m/z 643.4078) and 
the uniformly 15N-labelled (M’15N; m/z 649.3898) ions corresponds to 6 nitrogen atoms. As a result of this 
separately performed labelling, this unknown metabolite-derived ion can be annotated with C30 and N6 
and a charge of 1.  
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2.4.1. Carbon-13 labelling 

In 13C-labelling experiments the observed carbon isotope pattern of a metabolite is a com-

position of two individual carbon isotope patterns originating from either the native and the 
13C-labelled metabolite ions. An example is depicted in Figure 5a. In general, the isotopolog 

patterns of native and highly isotopic enriched metabolites do not overlap in the presented 

work, but would, if, for example, the number of carbon atoms in the metabolite molecule is 

low (e.g. less than 3 carbon atoms) and/or if the degree of enrichment of 13C in the labelled 

form is not sufficient (e.g. an enrichment of less than 10%). The ions of the monoisotopic, 

native isotopolog M (m/z 643.4081) and the uniformly 13C-labelled isotopolog M’ (m/z 

673.5090), which are usually the most abundant signals among their respective isotope pat-

terns, allow deriving the total number of carbon atoms for a respective metabolic feature since 

the m/z difference between M’ and M is proportional to the number of carbon atoms and the 

charge number of the respective ion. The carbon-isotope pattern of the native metabolite-

derived ions |M, M+1, ...| starts at the monoisotopic isotopolog M and descends towards 

higher m/z values, which is a result of the replacement of 12C isotopes with naturally occurring 
13C isotopes. On the contrary, since in a globally 13C-labelled metabolite all carbon atoms are 

of the heavier isotope 13C, the carbon-isotope pattern |M’, M’-1, ...| of an ion derived from a 
labelled metabolite descends towards lower m/z values.  

The relative abundances of a carbon-isotope pattern of a metabolite can be calculated with 

Equation 1. It can be used to determine the pattern of a native or a uniformly/consistently 
13C-labelled metabolite. a denotes the total number of carbon atoms in the respective metabo-

lite, while s stands for the xth carbon isotopolog in M+x or M’-x and even M’+x. p denotes the 

degree of isotopic enrichment with the more abundant isotope (12C in native metabolites and 
13C in 13C-labelled metabolites respectively). In case of a native metabolite, p has the value 

0.9893 as this is the relative abundance of 12C isotopes in nature. The second stable isotope of 

carbon is not explicitly specified since typically those two isotopes make up nearly 100% of all 

carbon atoms and the remaining, non-stable carbon-isotopes can be neglected for the present-

ed purpose. Consequently, P(6, 1, 0.9893), which evaluates to 6.45%, gives the abundance of 

the first carbon isotopolog M+1 of a native fuculose isotopolog with the sum formula 
13C12C51H1216O5 relative to its monoisotopic isotopolog. On the contrary, the degree of isotopic 

enrichment in 13C-labelled metabolites is not constant and varies between different suppliers of 

isotopic enriched material. For example, P(6, 1, 0.995), which evaluates to 3.02%, gives the 

abundance of the first carbon isotopolog M’-1 of a globally 13C-labelled fuculose isotopolog 

with the sum formula 13C512C1H1216O5 and 99.5% degree of 13C enrichment relative to its uni-
formly 13C-labelled isotopolog.  

 
! !, !, ! =

!!!!(1 − !)! !
!

!! ! (1) 
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In biotransformation products, which consist of a labelled tracer and a native moiety, 

Equation 1 needs to be evaluated separately for its two parts. For example, in the partly la-

belled phenylalanine shown in Figure 2d P(6, 1, 0.993), which evaluates to 4.23%, calculates 

the abundance of M’-1 relative to M’, while P(3, 1, 0.9893), which evaluates to 3.24%, calcu-

lates the abundance of M’+1 relative to M’. On the other hand, the abundance of M+1 relative 
to M of the native phenylalanine is calculates with P(9, 1, 0.9893), which is 9.73%.  

With Equation 1 the probability of a non-labelled, native metabolite consisting solely of 13C 

isotopes can be calculated. For example, isotopologs of DON (C15H20O6) consisting only of 

principal 12C isotope of carbon have a probability of 0.85 among all DON isotopologs. On the 

contrary, DON-isotopologs consisting only of 13C isotopes have a probability of 2.8x10-30 to 

occur in natural environments. To express it differently, in 178 tons of pure DON only a sin-

gle DON molecule would consist solely of 15 13C isotopes. Therefore, fully labelled metabo-
lites are virtually not present in natural environments and thus can be neglected completely.  

 

2.4.2. Nitrogen-15 or sulphur-34 labelling 

Labelling with isotopes other than 13C (e.g. 15N or 34S) also results in distinct isotope pat-

terns. However, those are not as unique as the isotope pattern derived for 13C-labelling exper-

iments. For example, the abundance of the principal nitrogen isotope 14N is 99.5% and most 

nitrogen-containing metabolites consist only of few nitrogen atoms (e.g. less than 10). As a 

result, such metabolites do not show a prominent nitrogen-isotope pattern in LC-HRMS data, 

which is additionally convoluted with the more much more prominent carbon-isotope patterns 

of the metabolites. An example of a 15N-labelled metabolite ion is shown in Figure 5b. The 

mass peak at m/z 643.4081 denotes the native monoisotopic metabolite ion consisting solely 

of 14N, while the mass peak at m/z 649.3899 refers to the uniformly 15N-labelled metabolite 

ion. From this m/z difference the number of nitrogen atoms is calculated to be 6. The nitro-

gen-isotope pattern for both the native and the 15N-labelled metabolite ions are therefore quite 

low abundant and not obvious. Yet, the isotope patterns of carbon are clearly present for both 

the native and the 15N-labelled metabolite ions. Both carbon-isotope patterns descend towards 

higher m/z values since they are of natural origin in both the native and 15N-labelled form and 

are not a result of the SIL process. Also, since the 15N-labelling does not alter the carbon 

composition in the 15N-labelled ions, both carbon-isotope pattern abundances are the same in 
terms of relative isotopolog ratios.  
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2.4.3. Full metabolome labelling 

Full metabolome labelling applications are aimed at detecting and annotating all LC-HRMS 

accessible metabolites of a biological system under investigation. During sample preparation 

the native and the globally labelled biological samples are merged and successively measured 

by LC-HRMS. Consequently, each metabolite of the studied biological system shows distinct 

isotope patterns in the LC-HRMS data. Figure 6 shows MS spectra and extracted ion chroma-

tograms (EICs) derived from three different ion species of the same metabolite in a full 
metabolome labelling experiment. 

 

 
 

Figure 6 | Three feature pairs derived from the same unknown metabolite recorded in positive and nega-
tive ionization modes. a) shows a part of a positive ionization mode mass spectrum while b) shows a part 
of a negative ionization mode mass spectrum. In both MS spectra the unique isotope patterns |MI, MI+1, 
...| and |MI’, MI’-1, ...| for the three different ion species of the metabolite ions are clearly present. The mass 
difference from all three feature pairs allows annotation of the metabolite with 26 carbon atoms. Since the 
labelling was performed with 13C, all isotopologs of the metabolite perfectly coelute, which is shown in c). 
Additionally, the ratios of MI:MI’ are also very similar (approximately 1.5 for all three metabolite ions). From 
these three ions the monoisotopic mass of the uncharged metabolite was calculated to be 566.1480 u and 
it was annotated with 26 carbon atoms at a retention time of 10.55 minutes and a charge of 1.  
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Figure 7 | Two different feature pairs of a biotransformation product are shown. a) and b) show two mass 
spectra of the same metabolite successively recorded in positive and negative ionisation modes. Both 
mass spectra show the distinct, carbon isotope patterns of the recorded biotransformation product ions. 
This metabolite contains the intact tracer molecule (DON), which is conjugated to a glucose molecule 
(Glc) originating from the biological system. The number of carbon atoms (15) calculated from the m/z 
difference between MI’ and MI only represents the number of carbon atoms still present in the tracer-
derived part of the respective biotransformation product, but it does not allow calculating the total number 
of carbon atoms in this biotransformation product. However, the presence of the mass peaks MI’+1 indi-
cate that the conjugated, native moiety contains several carbon atoms itself. The applied ratio of the pure 
native and the globally 13C-labelled xenobiotic tracer substance (1:1/v:v) is well preserved in the 
LC-HRMS data. Furthermore, native and labelled biotransformation products also perfectly coelute as 
shown in c). The relative abundances of both forms were so similar in each recorded MS scan that the 
chromatographic peaks of the native and labelled forms perfectly overlay. Thus, for improved illustration, 
the EICs of the labelled biotransformation product ions are dashed.  

 
 

2.4.4. Tracer-fate studies 

Isotope patterns derived from native and labelled biotransformation products in tracer-fate 

studies show an important difference when compared to isotope patterns of native and global-

ly labelled metabolites in full metabolome labelling approaches. While the tracer-derived part 

of such a biotransformation product is present as both a native and a labelled form, the moiety 

is always present in native form only. Therefore, in such biotransformation products, M’ refers 

to a mixed isotopolog ion showing characteristics of native and labelled molecules, which af-
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fects its entire isotope pattern. While the isotope pattern |M, M+1, ...| observed for the native 

metabolite reflects the total number of atoms of the labelling-element in this metabolite, the 

isotope pattern |M’, M’-1, ...| does not. It only corresponds to the number of atoms of the 

used labelling-isotope present from the remaining tracer in this biotransformation product. 

Additionally, a third isotope pattern |M’, M’+1, ...|, is clearly present for such biotransfor-

mation products that have additional atoms of the labelling-element in the conjugated moiety. 

Consequently, this isotope pattern only corresponds to the number of atoms of the used label-

ling-element present in the non-labelled parts of the biotransformation product (Figure 7). 

While the number of labelling-isotopes can be derived from the m/z difference between M’ 

and M, the number of atoms of the used labelling-element present in the native moiety can 

only be estimated from the ratio M’+1/M’, which is likely to be distorted depending on the 
used LC-HRMS platform.  

For tracers that are exogenous to the studied biological system (e.g. toxins, drugs), the ratio 

M:M’ of a putative biotransformation product will be approximately equal to the ratio ob-

served for the applied, pure tracers, since the rates of biotransformation of native and labelled 

substances are nearly equal [2, 72]. On the contrary, if the applied tracer is an endogenous 

substance to the biological system under investigation (e.g. labelled amino acid), the observed 

ratio M:M’ will usually be equal or higher than the ratio of the applied, pure labelled tracer 
since more of the native tracer is present.  
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3. Materials and methods 
 

A novel software tool for the automated processing of SIL assisted and LC-HRMS derived 

metabolomics data was implemented. This software, which was named MetExtract, was im-

plemented in the Python programming language and makes use of several programming librar-

ies for processing of the data and illustration of the results as well for providing a comprehen-
sive user interface.  

 

3.1. Software packages and APIs 

3.1.1. Python 

The programming language used for implementing MetExtract is Python 2.6 

(https://www.python.org, last accessed 20th July 2014). Python is a scripting language, which 

allows for fast implementation, as no compilation of the source code is required. In terms of 

performance, the execution of Python code is slower compared to code from a compiled pro-
gramming language (e.g. C++).  

 

3.1.2. PyQT 

To provide the user with a comprehensive graphical user interface (GUI), PyQT 4.8 as well 

as the QT Designer, were used (http://www.riverbankcomputing.com, last accessed 20th July 
2014).  

 

3.1.3. MatPlotLib 

MatPlotlib, which is a comprehensive plotting framework for the Python programming 

language [89], is used for illustration of the processed results. It can be integrated in PyQT 
created GUIs and supports a variety of different plot types (e.g. line and scatter plots).  

 

3.1.4. Multiprocessing 

Parallelisation of data processing in metabolomics can be achieved with little effort, since, 

in a first step, individual LC-HRMS measurements are processed independently of each other. 

For this functionality the Python package multiprocessing (method: imap_unordered) was 
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used (https://docs.python.org/2.6/library/multiprocessing.html, last accessed 20th July 2014). 

It allows defining a method G that is evaluated for n input parameters (e.g. LC-HRMS meas-

urements). When the calculations are started, the package automatically distributes m calcula-

tions to x threads at a time. If more measurements than CPU cores need to be performed 

(n>x) the package processes a measurement once a previously started one has finished. Thus 
the CPU cores of a computer are being used most efficiently.  

 

3.1.5. LC-HRMS data import 

MetExtract uses the open-data format mzXML [90, 91] for importing centroid LC-HRMS 

data. Several conversion programs are freely available for this task (e.g. ReAdW [92] or 
msConvert from the ProteoWizard package [93]).  

 

3.1.6. RPy2 and R 

The python package RPy2 (http://rpy.sourceforge.net; last accessed 8th December 2014) 

was used for interfacing with R [94] during processing with MetExtract. The multiprocessing 
module was configured to automatically spawn an R-session for every thread that it executes.  

 

3.1.7. MassSpecWavelet 

The R-package MassSpecWavelet was used for chromatographic peak picking on EICs [95]. 

The package utilises wavelets for detecting peaks of variable width and intensity (used meth-

ods: getLocalMaximumCWT, identifyMajorPeaks, and tuneInPeakInfo; parameter ‘scale’ see 

Table 4 column ‘Chromatographic peak width’). MetExtract uses the python package RPy2 to 
access the functionality of this package.  

 

3.1.8. PTW – polynomial time warping 

The R-package PTW (polynomial time warping; used method: ptw) is used for chromato-

graphic alignment of several EICs in MetExtract [60]. It aligns n total ion chromatograms 

(TICs) or EICs by correcting slight shifts in the retention time with n-1 polynoms (p�1..x). 

MetExtract uses the python package RPy2 to access the functionality of this package.  
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3.1.9. Statistical analysis with R 

Statistical analysis including HCA, PCA, and univariate significance testing was performed 
with R [v. 3.1.0; 94].  

 

3.1.10. Sum formula generation 

To generate possible sum formulas for a given molecular mass m using the elements E (e.g. 
C, H, O, N, P, S), two methods were implemented:  

• Complete enumeration (CE)  

This method generates all possible sum formulas consisting of the elements E for a 

mass m. CE does not verify the generated sum formulas for chemical logic or con-

sistency (e.g. correct number of valence electrons) and also generates sum formu-

las, which are highly unlikely or even impossible (e.g. C28H1).   

 

• Seven golden rules (SGR, [24])  

 The SGR method for sum formula generation uses heuristic rules obtained from 

exhaustive metabolite database analysis and defines certain criteria (i.e. rules), 

which limit the search space for possible sum formulas for a given mass m. Thus, 

this method only generates plausible sum formulas and omits such which are un-

likely or impossible. Furthermore, this method also checks for chemical logic or 

consistency. Consequently, sum formulas generated with SGR for a mass m are al-
ways a subset of the sum formulas generated with CE for the same mass m.  

For sum formula generation only the principal isotopes of each element were allowed. The 

mass of the respective isotopes were obtained from the National Institute of Standards and 

Technology (NIST; http://physics.nist.gov/cgi-bin/Compositions/stand-alone.pl; last ac-
cessed 22nd December 2014) 

 

3.2. Biological experiments and MetExtract settings used for 
data processing  

The implemented software was used for automatic data processing in several untargeted 

metabolomics experiments that are summarised in Table 1 (publications #2-5; manuscript in 

preparation). Moreover, Table 2 lists the labelling setup used in the performed experiments, 

Table 3 summarises the most important analytical parameters of the utilised LC-HRMS plat-

forms, and Table 4 specifies the data processing parameter settings used for evaluation with 
MetExtract.  
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3.2.1. Determination of labelling-isotope enrichment 

The enrichment E with the respective labelling-isotope used in the labelled biological mate-

rial (Table 2 column “Labelling enrichment”) was determined as following (separately for each 
performed experiment): 

1. Several (1-5) highly abundant feature pairs were manually searched for in a biologi-

cal sample using TOPPView [96]. 

2. Using the determined number of carbon atoms a as well as the observed ratio 

o=M’+1/M’, which implies one substation of 13C with 12C, the enrichment degree 
E was calculated using Equation 2.  

 

 

! !, !, ! =
!
!

!
!

!
!

!
! + !

!
!

! (2) 
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 Table 1 | O
verview of biological experim

ents that were processed with M
etExtract. 

 
 

Biological  
replicates  

5 (1 used for 
publication) 

6; 1 technical 
replicate of ag-
gregate sample 

5 

3 

8 

3 

3 

Biological conditions 

• Wheat ears treated 
with DON 

• Wildtype (PH1) 
• Mutant (ΔTri5)  
• Aggregate sample 

• Susceptible (Remus)  
• Resistant (CM-82036) 

• Maize (CO354) 

• Heat-stressed (45°C) 
• Control (25°C) 

• Treatment with DON 
• Control  

• Wheat / Barley treated 
with T2 / HT2 

Experiment summary 

This study was performed to investigate the detoxification mecha-
nisms of wheat when stressed with the mycotoxin DON and to find 
previously unknown detoxification products of DON.  

These biological experiments were preliminary aimed at demonstrat-
ing the benefits of SIL assisted untargeted metabolomics approaches 
using the developed workflows and MetExtract.  
Furthermore, they served as pre-trials for further biological experi-
ments that are aimed at investigating the metabolome of the respec-
tive biological systems. 

This study was performed to gain insight into the metabolic changes 
in grape-berries exposed to heat (e.g. the warm climate of California). 
The focus was put on phenylalanine-containing metabolites (e.g. fla-
vonoids), since many of these are associated with wine quality (col-
our and taste).  

The biological experiments were realized as a pre-trial to study if the 
wheat cell cultures metabolised the provided labelled phenylalanine. 
Furthermore, the biological workflow for tracer-fate studies was pre-
sented using the acquired LC-HRMS data.  

This study was performed to investigate the detoxification mecha-
nisms of wheat and barley when stressed with the mycotoxins T2 
and HT2 and to find previously unknown detoxification products.  

Experiment / 
Publication 

DON in wheat / 
#2 

F. graminearum /  
#3 

Wheat /  
#3 

Maize /  
#3 

Phenylalanine in 
grape-berries / 
#4 

Phenylalanine in 
wheat cell suspen-
sion cultures / #5 

T2 / HT2 in  
wheat / barley /  
In preparation 
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 Table 2 | Labelling setups used in the biological experim
ents presented in this work.  

 
Partly  
labelled 
tracer 

No 

- 

- 

- 

Yes 

No 

No 

Parallel 
cultivation 

- 

Yes 

No 

No 

- 

- 

- 

Labelling 
enrichment 

99.5% 

99.5% 
(99.5%) 

97.5% 

97.5% 

98.8% 

99.1% 

99.3% 

Labelling-
isotope 

13C 

13C  
(15N) 

13C 

13C 

13C 

13C 

13C 

Labelling 
element 

Carbon 

Carbon 
(Nitrogen) 

Carbon 

Carbon 

Carbon 

Carbon 

Carbon 

Tracer type 

Exogenous 

- 

- 

- 

Endogenous 

Endogenous 

Exogenous 

Experiment Type 

Tracer-fate study 

Full metabolome 
labelling 

Full metabolome 
labelling 

Full metabolome 
labelling 

Tracer-fate study 

Tracer-fate study 

Tracer-fate study 

Experiment / 
Publication 

DON in wheat / 
#2 

F. graminearum /  
#3 

Wheat /  
#3 

Maize /  
#3 

Phenylalanine in 
grape-berries / 
#4 

Phenylalanine in 
wheat cell suspen-
sion cultures / #5 

T2 / HT2 in  
wheat / barley /  
In preparation 
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 Table 3 | Analytical instrum
ents used for LC-HRM

S analysis in the presented experim
ents. 

 
Use of fast 
polarity 
switching 

- 

- 

- 

- 

No 

Yes 

No 

Ionisation 
polarity 

Positive 

Positive 

Positive 

Positive 

Positive 
(Negative) 

Positive / 
Negative 

Positive 

HRMS  
manufacturer 

Thermo 
Fisher™ 

Thermo 
Fisher™ 

Thermo 
Fisher™ 

Thermo 
Fisher™ 

Agilent 
Technolo-
gies™ 

Thermo 
Fisher™ 

Agilent 
Technolo-
gies™ 

HRMS  
instrument type 

LTQ-Orbitrap XL 

LTQ-Orbitrap XL 

LTQ-Orbitrap XL 

LTQ-Orbitrap XL 

Quadupole Time-
of-Flight 

Orbitrap Exactive 
plus 

Quadrupole Time-
of-Flight 

LC  
manufacturer 

Accela™ 

Accela™ 

Accela™ 

Accela™ 

Agilent 
Technolo-
gies™ 

Dionex™ 

Agilent 
Technolo-
gies™ 

LC  
instrument type 

HPLC 

HPLC 

HPLC 

HPLC 

HPLC-Chip 

HPLC 

UHPLC 

Experiment / 
Publication 

DON in wheat /  
#2 

F. graminearum / 
#3 

Wheat / 
#3 

Maize / 
#3 

Phenylalanine in  
grape-berries / 
#4 

Phenylalanine in 
wheat cell suspen-
sion cultures /#5 

T2 / HT2 in  
wheat / barley / 
In preparation 
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 Table 4 | Param
eter settings used for autom

ated data processing in the presented experim
ents. 

 
 Feature pair 
bracketing  

8 

- 

± 8 ppm 

± 8 ppm 

± 8 ppm 

± 40 ppm 

± 8 ppm 

± 10 ppm 

M
inim

um
 

correlation 
3 

0.5 

0.5 

0.5 

0.5 

0.5 

0.75 

0.75 

C
hrom

ato-
graphic  
peak w

idth 

3, 9 

10-40 sec 

10-40 sec 

10-40 sec 

10-40 sec 

15-40 sec 

10-40 sec 

10-40 sec 

E
IC

 w
idth 

3, 9 

± 5 ppm 

± 5 ppm 

± 5 ppm 

± 5 ppm 

± 40 ppm 

± 5 ppm 

± 10 ppm 

m
/z  

clustering 

2 

8 ppm 

8 ppm 

8 ppm 

8 ppm 

40 ppm 

8 ppm 

10 ppm 

A
ccepted 

M
:M

’ ratio 

1.5 

0.91  
± 0.4 

- 

- 

- 

- 

- 

1.0  
± 0.5 

M
axim

um
 

isotopolog 
ratio error 

1.3, 1.4 

± 20% 

± 20% 

± 20% 

± 20% 

± 20% 

± 20% 

± 20% 
V

erified  
isotopologs 

1.3, 1.4 

M+1, 
M’-1 

M+1, 
M’-1 

M+1, 
M’-1 

M+1, 
M’-1 

M+1, 
M’-1 

M+1, 
M’-1 

M+1, 
M’-1 

M
inim

um
 

abundance 

1.2 

5,000 
counts 

5,000 
counts 

5,000 
counts 

5,000 
counts 

100 
counts 

50,000 
counts 

20,000 
counts 

M
ass  

precision 

1.1, 4, 5 

± 4 ppm 

± 4 ppm 

± 4 ppm 

± 4 ppm 

± 20 ppm 

± 3 ppm 

± 5 ppm 

E
xperim

ent / 
Publication 

Processing step(s) 
in MetExtract 

DON in wheat / 
#2 

F. graminearum / 
#3 

Wheat /  
#3 

Maize /  
#3 

Phenylalanine in  
grape-berries /  
#4 

Phenylalanine in 
wheat cell suspen-
sion cultures / #5 

T2 / HT2 in  
wheat / barley / 
In preparation 
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4. Results 
 

MetExtract, a software tool for the processing of LC-HRMS derived metabolomics data in 

SIL assisted untargeted metabolomics and tracer-fate applications, was developed and imple-

mented. The software detects and verifies feature pairs using the highly unique isotope pat-

terns of native and labelled metabolite-derived ions, which enables the holistic detection of 

only truly biological relevant metabolites in full metabolome labelling approaches or biotrans-

formation products that are descendants of the tracer substance under investigation. Addition-

ally, the determination of the number of atoms of the labelling-isotope allows improved me-

tabolite annotation compared to labelling-free approaches, which rely on the relative abun-

dances of different isotopologs. Using appropriate experimental and sample preparation pro-

tocols, metabolome- and experiment-wide internal standardisation is achieved, which improves 

comparative metabolite quantification. Furthermore, in tracer-fate studies MetExtract specifi-

cally detects all known and unknown biotransformation products derived from studied tracer 
substances.  

In the following the developed and implemented data processing steps are summarised. 
These steps are depicted in Figure 8.  

 

4.1. Mass spectrum based data processing 

MetExtract first inspects each LC-HRMS data-file separately for feature pairs derived from 

native and labelled metabolites. To this end, putative MS pairs are detected with a two-

dimensional data-filtering algorithm, which initially operates on a mass spectrum level and then 

uses the detected MS pairs for the evaluation of the data in the chromatographic domain 
(Figure 9).  
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Figure 8 | Illustration of the data processing steps implemented in MetExtract: Initially signal pairs are 
detected on an MS spectrum level (“Mass spectrum based data processing steps”; steps 1 & 2). Subse-
quently, these signal pairs are used in the next step to separate different homologs (“Chromatogram 
based data processing steps”; step 3). Extracted feature pairs are further annotated and convoluted 
(“Post processing of detected feature pairs data processing steps”; steps 4-7). Finally, all feature pairs 
found in the individual LC-HRMS measurements are bracketed (“Experiment-wide bracketing of feature 
pairs data processing steps”; steps 8 & 9). Figure adapted from publications #3 and #5.  
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Figure 9 | Schematic representation of LC-HRMS data and two-dimensional feature pair detection with 
MetExtract. First, the characteristic isotope patterns of native (|M, M+1, ...|; orange mass peaks) and 13C-
labelled (|M’, M’-1, ...|; green mass peaks) metabolite-derived ions are searched for in each recorded MS 
spectrum. Then, the detected MS signal pairs are used to separate different isomers in the chromato-
graphic domain of the acquired LC-HRMS data. Chromatographic peaks present either for native or la-
belled metabolite ions but not the respective other form are discarded.  

 
 

4.1.1. Data processing step 1: Detection of signal pairs of native 
and labelled metabolite ions 

To detect isotope patterns derived from native and 13C-labelled metabolites, MetExtract us-

es a brute force approach. It iterates over all MS scans present in a LC-HRMS measurement 

and assumes each mass peak in a scan to be a valid, monoisotopic mass peak M of a putative 
metabolite ion. This assumption is then verified with the following criteria:  

1. Labelled metabolite analogous  

Each valid mass peak M must have a corresponding mass peak M’. Their m/z dif-

ference must correspond to a multiple of the mass difference between 12C and 
13C, which is 1.00335. Since the number of carbon atoms in a metabolite-derived 

ion is not known afore, a certain range of integer values corresponding to a varia-

ble number of carbon atoms is tested. For each integer value i, which is assumed 

to be the number of labelling-isotopes in M’, and charge z, M’ is calculated as an 

Intensity
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offset to M (i.e. M’=M+i*1.00335/z). A mass peak is considered to represent a 

valid M’, if a mass peak with the calculated m/z value is present within a certain 

error windows (in ppm) in the same mass spectrum as M. Subsequently, the mass 

peak M is annotated with the respective number of carbon atoms i and the charge 

state z, and the next verification step is performed.   

 

2. Minimum abundance  

M and M’ peak pairs that are below a predefined, minimum relative intensity are 

discarded. If the intensities for both mass peaks are above the threshold, the veri-

fication continues.   

 

3. SIL-derived isotope pattern verification  

The number of determined carbon atoms per metabolite ion is verified using the 

observed isotope pattern of the labelled metabolite-derived ion. To this end, the 

theoretical ratio t=P(i, 1, p), with i denoting for the determined number of label-

ling-isotopes and p for the isotopic enrichment with 13C, is compared to the ob-

served ratio o=M’-1/M’. For this, first the mass peak M’-1 with the m/z value M’-

1=M+(i-1)*1.00335/z needs to be present in the same scan. If additionally the 

theoretical ratio t and observed ratio o are approximately the same (|t-o| ≤ 

threshold), this isotope abundance check is passed.  

 

4. Native isotope pattern verification  

This data processing step verifies the carbon-isotope pattern of the native metab-

olite ion. For this, first the mass peak M+1 with the m/z value 

M+1=M+1.00335/z is searched for. If found, the carbon-isotopolog M+1 is 

tested against the determined number of labelling-isotopes. Depending on the ex-

periment type (either a full metabolome labelling experiment or a tracer-fate 

study), different criteria are asserted:  

 

a. Full metabolome labelling experiment  

In a full metabolome labelling experiment all carbon atoms are replaced 

with 13C during the SIL process resulting in globally labelled metabolites. 

The ratio M+1/M is derived from all carbon atoms present in the me-

tabolite-derived ion and can be tested likewise the M’-1/M’ ratio verifica-

tion in the previous verification step. Thus, the theoretical ratio t=P(i, 1, 

0.9893) of the determined number of carbon atoms i is compared to the 

observed ratio o=M+1/M. If the theoretical ratio t and observed ratio o 

are approximately the same (|t-o| ≤ threshold), this isotope abundance 

check is passed.  
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b. Tracer-fate studies  

Biotransformation products, which are a conjugation of a 13C-labelled 

tracer and a native moiety, are generally not globally labelled. Any moiety 

that originates from the studied biological system or a non-labelled part 

of the studied tracer substance is present as a native form resulting in 

partly labelled metabolites. Thus, the ratio M+1/M is not only derived 

from the determined number of 13C-isotopes but the total number of 

carbon atoms present in this biotransformation product. Consequently, 

the corrected, observed ratio o=(M+1/M)-(M’+1/M’) is calculated. If 

M’+1 with the m/z value M+(i+1)*1.00335/z is not found, it is consid-

ered that the biotransformation product does not contain any native moi-

ety and thus the observed ratio is corrected to o=M+1/M. The observed 

ratio o is then compared to t=P(i, 1, 0.9893). If these two ratios are ap-

proximately the same (|t-o| ≤ threshold), this isotope abundance check is 

passed.  

 

5. Exogenous tracers (optional check for exogenous tracer substances)  

Exogenous tracers need to be supplied as native and labelled metabolites during 

the biological experiment (Figure 4). Consequently, the ratio a=M:M’ of the stud-

ied tracer is known. As native and labelled molecules of the same substance are 

metabolised to an equal extend in biological systems, tracer-derived biotransfor-

mation products also have to have the same ratio as the applied, pure tracer. 

Thus, only if the ratio o=M:M’ for the observed abundances of a putative bio-

transformation product approximately match with the applied ratio a (|a-o| ≤ 

threshold) this optional verification step for an exogenous tracers is passed. For 

full metabolome labelling and endogenous tracer-fate studies this check is 
skipped. 

The result of this signal pair detection and elaborate verification is a list of mass peak pairs 

that putatively originate from native and labelled ions of the same metabolites. Each entry in 

the list contains an observed, monoisotopic m/z value of M, a scan number in which this sig-

nal pair was detected, the number of labelling-isotopes, a charge state z, and the ratio M:M’.   

Consequently, this lists also includes matched isotopologs that are incorrectly assumed to be 

either monoisotopic or uniformly/consistently labelled metabolite ions (e.g. M+1 paired with 
M’; M paired with M’-1). These incorrect pairings are removed later in data processing step 4.  

 

4.1.2. Data processing step 2: Reduction of repetitive signal pairs 

Typically, in LC-HRMS analysis of a biological sample metabolite molecules elute for sev-

eral seconds from the chromatographic column and therefore are recorded in consecutive MS 

scans. Different isomers, which are metabolites with the same chemical formula but a different 
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structure, also have identical m/z values. To reduce the number of these redundant mass peak 

pairs, they are grouped using hierarchical clustering with Euclidean distance. First, the hierar-

chical tree is calculated from all detected signal pairs. In the second step, the generated den-

drogram is processed starting from the single top cluster, which contains all signal pairs. The 

cluster and following sub-clusters are branched if the m/z value difference between the highest 

and lowest signal pair is higher than a pre-set threshold in ppm, which is typically a multiple of 

the used instrument’s mass accuracy. If this mass difference in a sub-cluster is below the 

threshold, the branching is stopped. A cluster, which is not further branched, represents an 

aggregation of similar signal pairs (i.e. mean of several MS scans of a chromatographic peak 

and/or chromatographically separated isomers).   

Hierarchical clustering and branching is performed separately for each labelling-isotope num-

ber and charge states. Consequently, it reduces the number of similar signal pairs detected in 
the previous step and also reports a mean m/z value for each remaining sub-cluster.  

 

4.2. Chromatogram based data processing 

After targets in form of clustered signal pairs have been detected on a mass spectrum level, 

they are further processed with the aim to separate different isomers with the same chemical 

formula but a different structure and thus different chromatographic peaks (Figure 8). To this 
end, the information from the chromatographic separation – the retention time – is used.  

 

4.2.1. Data processing step 3: Chromatographic peak picking 

Native and 13C-labelled metabolite-derived ions are chromatographically not separated. 

Thus, all ions derived from native and labelled metabolites must show the same chromato-

graphic peak profiles in the respective EICs of M and M’. This allows separating different 

isomers, but also verifies if both the native and labelled ions of a metabolite are present in the 

same LC-HRMS data.   

To identify SIL-derived feature pairs, chromatographic peaks are searched for in the EICs of 

M and M’ for each detected signal pair cluster using the MassSpecWavelet package of Du [95]. 

Only coeluting chromatographic peaks (i.e. have very close peak centers; ± number of scans) 

present in both EICs of a putative feature pair are kept. These chromatographic peak pairs are 

further verified with a check for highly similar peak profiles using the Pearson correlation coef-

ficient. Only if the correlation of the two chromatographic peaks between their respective 

peak-borders as determined by the peak picking exceeds a pre-set threshold, they are consid-

ered to perfectly coelute and thus definitely represent a SIL-derived feature pair. Chromato-

graphic peaks with a low correlation or present only in one of the two EICs are discarded 
from the results. 
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After these data processing steps, each such detected feature pair corresponds to a unique 

metabolite ion derived from a native and 13C-labelled metabolite. Such feature pairs have a 

mean m/z value of M, a retention time Rt, the determined number of 13C-labelling-isotopes, a 
charge z, and two peak areas for the chromatographic peaks of M and M’.  

 

4.3. Post processing of detected feature pairs 

Each feature pair detected in the previous, two-dimensional data filtering steps represents a 

single ion derived from native and labelled metabolite ions (Figure 8). In the following steps, 
they are further verified and annotated.  

 

4.3.1. Data processing step 4: Deisotoping of incorrectly matched 
feature pairs 

The previous analysis steps do not consider that different isotopologs of both the native 

and labelled metabolite-derived ions may be matched incorrectly (e.g. M+1 with M’; M+1 with 

M’-1). To remove these invalid feature pairs, MetExtract searches for further feature pairs, 

which 1) elute at approximately the same retention time, 2) have a positive m/z offset corre-

sponding to one or several labelling-isotopes, and/or 3) a reduced number of labelling-

isotopes compared over the currently verified feature pair. Feature pairs matching these criteria 

are considered incorrect pairings and removed from the results. This simple, but essential pro-

cedure efficiently removes incorrect pairings and only keeps those feature pairs, which repre-
sent correct pairings of M and M’ ions.  

 

4.3.2. Data processing step 5: Detection of heteroatoms 

Some hetero-elements (e.g. sulphur, chloride, iron) have naturally occurring stable isotopes 

that can be observed in LC-HRMS data since their relative abundances compared to the prin-

cipal isotope of the respective element are quite high (e.g. 34S with 4.4% abundance relative to 
32S). Thus, metabolite ions that contain atoms of such elements show distinct isotope patterns 

in the LC-HRMS data given a high abundance of the respective monoisotopic or uniform-

ly/consistently labelled metabolite ions and a sufficient MS resolution. To this end, the theo-

retical m/z value of a heteroatom-isotopolog is calculated and searched for. In case of a mass 

increase of the less abundant stable isotope compared to the element’s principal isotope (e.g. 

sulphur-34 with +1.9958 u relative to 32S), the search is performed starting from M’ (e.g. for 

sulphur-34 at M’+1.9958/z), while for isotopes with a mass decrease compared to the ele-

ment’s principal isotope (e.g. 54Fe with -1.9953 u relative to 56Fe) the search is performed start-

ing from M (e.g. for 54Fe at M-1.9953/z). This calculated m/z is searched for in every mass 

spectrum that is within the chromatographic peak of the respective feature pair. If the ob-
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served mean ratio of the heteroatom isotopolog approximately corresponds to the theoretical 

ratio observed for n instances of such a heteroatom, the feature pair is annotated with this 
putative heteroatom.  

 

4.3.3. Data processing step 6: Fast polarity switching derived 
LC-HRMS data 

LC-HRMS data utilising fast polarity switching contains mass spectra derived from the pos-

itive and negative ionisation mode. As a result, the same metabolite may be recorded as differ-

ent ions specific for the positive and negative ionisation mode (e.g. [M+H]+, [M-H]-). In this 

respect all of the previously described steps (1-5) for feature pair detection are separately exe-

cuted for the positive and negative ionisation modes resulting in two distinct feature pair lists 
for the positive and negative ionisation mode. In the following steps, these lists are combined.  

 

4.3.4. Data processing step 7: Convolution of different metabolite 
ions 

During ionisation of the uncharged metabolites a variety of different ion species may be 

formed. Thus, the next step in MetExtract is the convolution of different feature pairs into 

feature groups each representing a unique metabolite in the analysed sample. For this, the 

chromatographic peak shapes of closely coeluting feature pairs are compared. Two such pairs 

that show a high Pearson correlation coefficient are linked. All linked metabolic features repre-

sent a single feature group and thus are very likely to originate from the same metabolite.  

Furthermore, if fast polarity switching is utilised, polarity-specific ion species also show perfect 

coelution and no chromatographic shift between the two polarity modes can be observed. 

Thus, even feature pairs from the positive and negative ionisation mode can be successfully 
convoluted into feature groups (e.g. Figures 6 and 7 in Chapter 2).  

After convolution, feature groups are inspected for relationships between the different fea-

ture pairs (e.g. different ion species or in-source fragments). For this, all pairs in a feature 

group are compared pairwise. Initially it is checked, whether the relationship between two 

feature pairs is explained by two common ion species. If such a combination (e.g. [M+H]+ and 

[M+Na]+) is found, and the detected number of labelling isotopes is identical in both feature 

pairs, these two are annotated with their respective ion species and the mass for the native, 

monoisotopic molecule is calculated. If ion species annotation fails, sum formulas for putative 

neutral losses are calculated using the m/z value difference and the determined number of 13C-

isotopes of the two feature pairs [24]. The feature pair with the higher m/z value is then anno-

tated with the generated sum formula, while the feature pair with the lower mass is annotated 

with the loss of the respective atoms. Only in the special case that two feature pairs derived 

from positive and negative ionisation modes have a m/z difference of 
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2*1.007276/z=2.014552/z, which corresponds to a protonated ion ([M+H]+) in the positive 

ionisation mode and a deprotonated ion ([M+H]-) in the negative ionisation mode, their rela-
tionship is directly annotated with these two ion species.  

 

4.4. Experiment wide bracketing of feature pairs across multiple 
data-files  

Metabolomics experiments usually consist of many LC-HRMS measurements (e.g. biologi-

cal and technical replicates, different experimental conditions) (Figure 8). To compare their 

metabolic states, the same metabolites need to be tracked across all measurements. Slight dif-
ferences across the LC-HRMS measurements include mass accuracy or retention time shift.  

 

4.4.1. Data processing step 8: Bracketing of feature pairs 

To account for minor chromatographic retention time shifts, usually a chromatographic 

alignment is performed. In this work the R-package PTW [60] was utilised for this task. In 

MetExtract, EICs of the ions M’ are used for the alignment step, because, according to the 

established full metabolome labelling workflow, they originate from pooled, labelled sample 

material, which is identical with respect to its metabolic constitution and relative abundance in 

each sample.  

In MetExtract, the term bracketing describes the process of summarising the same feature 

pairs across different measurements. This is accomplished using the m/z value of M, the 

charge state z, the mean retention time Rt, the ionisation mode, and the number of labelling-

isotopes of feature pairs detected in the individual LC-HRMS measurements. To this end, first 

all feature pairs with the same ionisation mode, the same number of labelling-isotopes, and the 

same charge state are clustered using HCA on their m/z value. Again, the generated dendro-

gram is split until sub-clusters remain, where all masses are within a multiple of the used in-

strument’s mass accuracy. Each sub-cluster is then clustered using the retention times of all 

feature pairs in the sub-cluster. This retention time dendrogram is then branched similar to the 

m/z value tree. Sub-clusters, which have less retention time deviation than a typical chromato-

graphic peak, are kept and denote for a bracketed feature pair.  

 

4.4.2. Data processing step 9: Reintegration of undetected feature 
pairs 

After bracketing, those feature pairs, which are not consistently found in all LC-HRMS 

measurements, are searched for in those samples, in which MetExtract did not detect them 

(e.g. too low abundance of necessary isotopologs in biological conditions). To this end, the 
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EICs of bracketed feature pairs are extracted in those samples, in which they were not detect-

ed. Chromatographic peak peaking is then performed with the same settings as in step 3 in 

those EICs and detected chromatographic peaks of M and M’ are recorded. The isotopolog 

information, which would be necessary to detect a feature pair, is, however, not verified. Con-

sequently, this step is a semi-targeted search using feature pairs found in other samples and 

cannot detect new feature pairs. This reintegration is especially helpful during subsequent sta-
tistical analysis (e.g. detecting differentially abundant metabolites).  

 

4.5. Data processing output 

MetExtract stores the results of automated data processing in various forms. Both, the re-

sults of individual LC-HRMS data-files as well as a data matrix containing detected and brack-
eted feature pairs from all samples are stored. In the following these results are summarised: 

For each processed LC-HRMS data-file, which represents a single sample in the metabo-
lomics experiment, MetExtract creates the following results:  

• Feature pair list  

This tab-separated values file (.tsv) contains all feature pairs detected in a certain sam-

ple. Each feature pair is annotated with the m/z value of M, its retention time Rt, the 

determined number of atoms of the isotope used for labelling, the relative abundances 

of M and M’, the ionisation mode in which this feature pair was detected, its charge z, 

and the metabolite group to which it was assigned.   

 

• Feature pair PDF  

Apart from the list with the detected and convoluted feature pairs, MetExtract also 

renders a PDF file that contains graphical illustrations of the results. The first pages 

document the data processing parameter settings for generating these results. Then, 

on each page one feature pair is depicted with the same information as in the tsv-list. 

Additionally, the EICs of M and M’ and a mass spectrum showing the different 

isotopologs of the feature pair are drawn. Furthermore, for each feature group all 

EICs of its feature pairs are overlaid and the feature group annotation is listed.   

 

• mzXML file  

Besides the processed results lists, a new mzXML file, which contains only the differ-

ent isotopologs (i.e. |M, M+1, … M’-1, M’, M’+1…|) of the detected feature pairs, is 

created by MetExtract. However, this representation does not include any meta-

information (e.g. determined number of atoms of the used labelling-isotope, relative 
metabolite abundances) of the detected feature pairs. 

Besides the result files created for individual LC-HRMS data-files, MetExtract also stores 

the results of all samples in an experiment in form of a feature pair data matrix. All bracketed 



 
 
  40 

results detected across the different LC-HRMS measurements are stored as a tab separated 

values file (.tsv). Each line represents a single feature pair and is annotated with a mean m/z 

value of M, a mean retention time Rt, the determined number of atoms of the used labelling-

isotope, the respective ionisation mode in which it was detected, and its charge z. Furthermore, 

for each LC-HRMS measurement the abundance of M and M’ as well as the determined fea-
ture group are stored separately.  

Moreover, MetExtract offers a comprehensive user interface to process and review the re-

sults of individual LC-HRMS data-files. Illustrations of the processed results include a two-

dimensional feature map (retention time vs. m/z of detected feature pairs), normalised EICs of 

individual feature pairs and convoluted feature groups, annotated mass spectra, as well as the 
used data processing parameter settings.  

 

4.6. Applications of MetExtract 

The workflows for full metabolome labelling and tracer-fate studies in untargeted metabo-

lomics experiments and the implemented software tool were applied in several analytical and 

biological studies. Results of these studies were published in peer-reviewed journals and are 

reprinted in Part II (publications #2-#5). In the following the main findings of each study are 
briefly summarised.  

The software tool MetExtract was used for studying the metabolic fate of the exogenous 

mycotoxin deoxynivalenol (DON) in wheat plants (publication #2; SFB project “Fusarium”). 

This mycotoxin is a virulence factor of the fungi F. graminearum and is transformed to less toxic 

metabolites by wheat to counteract fungal infection [97]. A total of 9 different DON detoxifi-

cation metabolites were found, 5 of which have not been known previously.  

In a similar experiment, the metabolic fate of the mycotoxins T2 and HT2 is currently investi-

gated in wheat and barley (collaboration with Marc Lemmens; manuscript in preparation). 

There, several yet unknown and uncharacterised biotransformation products have been detect-
ed.   

Another application of MetExtract details the biological and analytical workflows for full 

metabolome labelling approaches (publication #3; SFB project “Fusarium”). F. graminearum 

was cultivated on native and globally 13C-labelled glucose. Furthermore, native and commer-

cially acquired 13C-labelled wheat and maize plants were analysed with LC-HRMS. These da-

tasets were then facilitated for demonstrating the advantages of SIL in untargeted metabolom-

ics approaches with the aim of detecting as many metabolites as possible. More specifically it 

was shown, that only true biological metabolites are detected with the aid of MetExtract and 

that experiment- and metabolome-wide internal standardisation greatly enhanced the analytical 

precision and aided in statistical analysis of the gained metabolomics data.  

Additionally, these biological applications provided first insights into the respective metabo-
lomes and served as pilot studies for further investigation of fungi and plant interactions.  
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MetExtract was applied to study the metabolic fate of the endogenous amino acid phenylal-

anine in grape-berries (publication #4; cooperation with Alexander Chassy and Andrew Wa-

terhouse from the Waterhouse Lab; http://waterhouse.ucdavis.edu; last accessed 23rd October 

2014). The Waterhouse group investigates why wine, which is produced in California, has 

diminished quality (less taste and colour) compared to wine produced from vineyards in other 

geographical areas. It is believed that the warm climate of California reduces the wine’s flavo-

noid content, which greatly contribute to the reduction of its taste and colour [98]. To study 

this effect, the group chose to investigate flavonoid metabolites using a tracer-fate approach. 

To this end, the metabolic fate of phenylalanine and its derived secondary metabolites were 

studied in grape-berries during their ripening. 16 samples, 8 heat-stressed and 8 controls, were 

analysed and 63 metabolites were detected, many of which could be identified as flavonoids. 

Several metabolites showed increased abundance in the heat stressed samples compared to the 

control grape-berries. Hence these represent targets for further investigation of heat-stress in 
grape-berries.  

In the most recent tracer-fate application study, MetExtract was used to investigate the 

metabolic fate of phenylalanine in wheat cell suspension cultures, because many phenylalanine-

derived metabolites in plants are known to have anti-fungal activity [99] (publication #5; SFB 

project “Fusarium”). In this experiment, the LC-HRMS analysis was performed with an 

Orbitrap Elite plus instrument, which is capable of fast polarity switching. A total of 139 

different metabolites were found. 49 of those metabolites showed feature pairs in both 

ionisation modes. For 19 of the detected metabolites, the uncharged, monoisotopic mass could 

only be calculated based on complementary feature pairs detected in both ionisation modes, 
which demonstrates the great benefit of fast polarity switching derived LC-HRMS data.  
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5. Discussion 
 

In the following, the main challenges addressed by the developed workflows in combina-

tion with the custom-designed MetExtract software are presented and discussed with selected 
biological experiments. 

 

5.1. Requirements and limitations of MetExtract 

MetExtract was designed to support different LC-HRMS platforms (e.g. Orbitrap, Time-of-

Flight) and isotopes used for labelling (e.g. 13C, 15N, 34S). The developed workflow and the 

implemented software, however, suggest 13C as the main labelling-isotope since carbon is pre-

sent in virtually any metabolite, which enables the simultaneous detection of as many metabo-

lites as possible in untargeted metabolomics applications. On the contrary, if the labelling is 

performed with 15N or 34S, only such metabolites containing at least one atom of the respective 
element, may be detected.  

With respect to isotopic enrichment, the software requires distinct isotope patterns derived 

from native and labelled metabolite ions. It supports full metabolome labelling experiments 

and tracer-fate studies with labelled metabolites generally having an isotopic enrichment with 

the used labelling-isotope of at least 97%. It is, however, not possible to state these limitations 

absolutely as the labelling-parameters vary in any experiment and need to be evaluated for each 

experiment separately. Moreover, the isotope patterns of native and labelled metabolites must 

not overlap. In labelled metabolites that meet these criteria the principal isotopologs M and M’ 

of the native and labelled metabolites can be determined, which allows calculating the exact 

number of labelling-isotopes in each detected feature pair and metabolite. In case of 13C-

labelling, only metabolites having at least 5 carbon atoms can be detected. If the labelling is 

performed with an isotope other than 13C, the LC-HRMS instrument must be operated in a 

way that allows separating the isotope patterns of carbon and the isotope used for labelling, as 

the current version of MetExtract does not support deconvolution of overlapping isotope 

patterns from different elements.   

For tracer-fate studies the tracer-derived part of any biotransformation products must also 

fulfil these criteria. Thus, MetExtract is mainly suited to study the metabolic fate of such com-

pounds, which are not intensively fragmented (e.g. drugs, toxins, or secondary endogenous 

metabolites). With respect to chromatographic separation, the software can detect chromato-

graphic peaks of variable width (typically 10-40 seconds with a minimum of one MS scan per 

second). For metabolome and experiment-wide internal standardisation, MetExtract requires 

that the absolute amount of labelled material must be identical in all studied samples. Further-
more, it must be possible to export the acquired raw-LC-HRMS data into the mzXML format.   
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5.2. Contrasts of MetExtract to X13CMS 

Recently Huang and colleagues released the X13CMS workflow [80]. This workflow was de-

signed to detected changes in the isotopic patterns of metabolites, which subsequently allows 

annotating those metabolites affected by the provided isotopically labelled substance (e.g. 13C-

labelled glucose). Complementary, X13CMS also reports metabolites, which were not affected 
by the investigated substance.  

The biological experiments required for the X13CMS and MetExtract tools are fundamen-

tally different. X13CMS requires native and isotopically labelled samples to be analysed inde-

pendently for each experimental condition. On the contrary, MetExtract requires LC-HRMS 
data from mixtures of native and isotopically labelled samples for each experimental condition.  

During feature detection, X13CMS utilises the XCMS algorithm to detect features (i.e. 

chromatographic peaks) present in the LC-HRMS data. Subsequently, the tool convolutes 

different isotopolog features originating from the same ion species of a compound to search 

for altered isotope distributions that are a result of the treatment with the isotopically labelled 

tracer substance. X13CMS then reports all detected features either affected by the studied tracer 

or not. In contrary, MetExtract utilises the isotopic information first to detect putative targets 

that are subsequently used for chromatographic peak picking. Thus, MetExtract only extracts 

such feature pairs, which originate from native and labelled metabolites and discards all me-
tabolites, which do not show a labelled analogue.  

After feature detection X13CMS uses differential abundance analysis to report those fea-

tures that show statistically significant differences between the studied experimental condi-

tions. Consequently, X13CMS does not support experiment- and metabolome-wide internal 

standardisation, since it requires non-pooled labelled sample material. On the other hand, 

MetExtract and the developed workflow for full metabolome labelling support experiment- 

and metabolome-wide internal standardisation and thus allow accounting for different matrix 
effects and LC-HRMS drifts across measurement batches.  

X13CMS does not require globally labelled sample material. As a consequence it does not 

support determining the total number of labelling-isotopes present in a metabolite-derived ion. 

On the contrary, MetExtract requires native and globally labelled sample material in full 

metabolome labelling experiments and thus reports the total number of labelling-isotopes in 
each detected metabolite-derived ion species.  

Consequently, X13CMS and MetExtract are designed for different purposes:  

i. X13CMS is used to elucidate the metabolic fate of certain tracer substances that are 

incorporate into many metabolites. Moreover, with X13CMS differences in the flux 

of all tracer-derived metabolites can be detected between two or more experi-

mental conditions. Moreover, it also allows extracting those metabolites from the 
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LC-HRMS data that are not affected by the isotopically labelled tracer substance 

under investigation.  

 

ii. MetExtract is designed for the detection of all biological relevant metabolites in full 

metabolome labelling approaches and utilises pooled labelled sample material to 

improve relative quantification and subsequently performed statistical analysis. In 

tracer-fate approaches, MetExtract can also detect secondary metabolites that are 

derived from a certain tracer substance under investigation. Additionally, it allows 

determining the total number of labelling-isotopes in each found metabolite or bio-

transformation product, which greatly enhances their annotation and characterisa-

tion. Furthermore, using native and labelled metabolites, MetExtract efficiently dis-
cards any non-biological relevant artefacts and background signals.  

In summary, X13CMS and MetExtract are similar, as both require native and isotopically la-

belled sample material, but are different in respect to the biological questions asked. This high-

lights that both tools represent valuable contributions for untargeted metabolomics research 

and depending on the biological question(s) asked the experimental setup and data processing 

tools have to be chosen.   

As a consequence of the different designs of X13CMS and MetExtract, no comparative analysis 
on a dataset could be performed.  

 

5.3. Feature pair detection, convolution and annotation 

MetExtract detects truly biology-derived metabolic features present as native and labelled 

metabolite ions in acquired LC-HRMS data. Each such feature pair denoting an ion species of 

a certain metabolite is verified in three steps: 1) the distinct m/z difference between the mo-

noisotopic and uniformly/consistently labelled isotopologs, which corresponds to the number 

of atoms of the used labelling-isotope, 2) the isotope pattern for both the native and labelled 

metabolite ions, and 3) a check for perfect coelution. These criteria provide a high degree of 

confidence that the detected metabolic features are truly derived from the biological system. 

Consequently, all contaminants and non-biology related substances and their ions are filtered 

out, as they in general do not satisfy those criteria. While verification step 1, which operates on 

the MS spectrum level, is prone to also detect false positives (e.g. pairings of noise or Fourier 

transform artefacts [100]), verification step 2 reduces the number of false positives significant-

ly. Verification step 3 further removes incorrect pairings and confirms already detected m/z 

clusters. A subsequent deisotoping step then removes those feature pairs that originate from 

incorrectly paired isotopologs. Figures 6 and 7 in Chapter 2 illustrate 5 different feature pairs 

of a globally 13C-labelled metabolite and a partly 13C-labelled biotransformation product, which 
fulfil all those criteria and thus were automatically detected by MetExtract.  

The developed workflows and MetExtract for detection of metabolites using SIL-derived 

isotope patterns are highly specific. Other substances and noise not meeting these criteria are 
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efficiently filtered, which is demonstrated in the publications #3 and #5. In both publications, 

background signals and non-labelled substances were simulated using native biological 

matrixes. Consequently, these samples contained no labelled metabolites at all. Analysis of the 

data with MetExtract resulted in a small number (on average less than 5 per analytical sample) 

of incorrectly detected feature pairs. Manual investigation of these false positives showed that 

most of them were incorrect pairings of Fourier transform artefacts [100, 101] of different 

metabolites, which happened by chance. Fourier transform artefacts are signals originating 

from a compound that is highly abundant. These signals have a characteristic m/z offset and 

usually a very low abundance, which is only a few percent of the actual metabolite-derived 

mass peak. For example, in the metabolomics data derived from the used LTQ-Orbitrap XL 

instrument (publication #3) an m/z shift of approximately 20 ppm with an abundance of less 

than 3% compared to the correctly recorded signal was observed. Such artefacts may also be 

present for native and labelled metabolite ions and their respective isotopolog signals and are 

thus detected as individual feature pairs by MetExtract. However, during metabolite 

convolution they are summarised into the same feature group since they show perfect 

coelution with the correct metabolite-derived signals.   

A low number (1-5) of such Fourier transform artefacts were detected in the F. graminearum full 

metabolome labelling experiment (publication #3). Furthermore, also in publication #5 

Fourier transform artefacts were the majority of incorrectly extracted feature pairs. For most 

of the incorrectly detected feature pairs the number of carbon atoms as determined by the 

isotopolog pairing was quite small (less than 15) while at the same time the m/z value of M was 

higher than expected for a metabolite having this few carbon atoms (higher than m/z 400), 
which is another indication that these feature pairs represent false positives.  

In the experiments presented in this work, the degree of 13C enrichment was always higher 

than 97%. Furthermore, only a few metabolites with more than 50 carbon atoms were detect-

ed. As a consequence, the signals M and M’ were the most abundant ones among their respec-

tive carbon isotope patterns. Consequently, MetExtract correctly filtered all incorrect pairings 
of M+x and/or M’-x isotopologs and listed only the feature pairs with M and M’.  

In summary, the unique isotope pattern of native and labelled metabolite-derived ions in 

LC-HRMS data is perfectly suited for the very efficient filtering of noise and background sig-

nals. In this respect, MetExtract automatically detects all truly biology-derived metabolites and 
biotransformation products with only a few false positives.  

 

5.3.1. Improved feature pair annotation 

In full metabolome labelling experiments all metabolites are globally labelled with a stable 

isotope (e.g. 13C). This allows determining the total number of atoms of the isotope used for 

labelling in each detected feature pair. This information is especially helpful to annotate the 
unknown metabolites or to generate possible sum formulas [102].  
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In the following, the improved annotation of known and unknown metabolites with the 

exact number of carbon atoms (Cn) during sum formula generation is exemplified. Box 1 lists 

the steps used for sum formula generation and Table 5 shows the results for 4 randomly 

selected sum formulas as well as for the full metabolome labelling experiment of F. graminearum 
presented in publication #3.   

 

Box 1 | Sum formula generation in full metabolome labelling experiments.  
 

Sum formula generation: Possible sum formulas for a mass m were generated with i) CE 
and ii) SGR. For both methods a ± 5 ppm error between m and the mass of a generated 
sum formula was tolerated in the randomly selected sum formulas and a ± 3 ppm error was 
allowed for the F. graminearum derived feature pairs. Both methods were restricted to 
Cn±xH0-130O0-40N0-10P0-10S0-10, however, SGR may have chosen to violate some of these ele-
mental constraints given the heuristic nature of the algorithm.   
Isotopolog uncertainty: To show the benefit of using the exact number of carbon atoms 
(Cn) during metabolite annotation, a 0 (exact number of carbon atoms), 3, or 10 carbon 
atom inaccuracy was used (Cn±x).  
Simulation: Four randomly selected sum formulas were used. For each, putative sum for-
mulas were generated with CE and SGR independently. This was done for the exact num-
ber of carbon atoms (Cn) as well as the simulated uncertainties. Furthermore, sum formulas 
were also generated for all feature pairs detected in the F. graminearum experiment presented 
in publication #3. Each feature pair was assumed to be either a [M+H]+, [M+NH4]+, 
[M+Na]+, and [M+K]+ ion.  

 

 

HRMS instruments are capable of separating different carbon-isotopologs of a compound, 

thus Cn can be estimated from the ratio M+1/M. This ratio is likely to be inaccurate to some 

extend, which may be caused by the LC-HRMS instrument itself or introduced during data 

analysis. Consequently, the derived number of carbon atoms from such a ratio is also 

inaccurate [52], which leads to putative sum formulas with an incorrect number of carbon 

atoms. However, if Cn can be determined exactly with the help of SIL, the number of incorrect 

generated sum formulas is decreased. For the examples selected, a reduction by the factor 4-27 

(method “CE”) compared to the same results derived for the estimated number of carbon 

atoms is observed. An uncertainty as little as 3% in the ratio M+1/M, which correspond to ± 

3 carbon atoms, leads to 4-8 times the number of possible sum formulas and thus a high 

number of incorrect ones. With additional chemical knowledge in form of the Seven Golden 

Rules [method SGR; 24], many incorrect sum formulas can be further removed, but still a 

reduction by the factor 4-26 is present when the actual number of carbon atoms is known.   

With the exact number of carbon atoms as determined by SIL and the seven golden rules, a 

total of 7,223 putative sum formulas were generated for the 704 feature pairs found in the full 

metabolome labelling of F. graminearum (publication #3). On the contrary, if the number of 

carbon atoms were estimated from the ratio M+1/M with a C3 inaccuracy, 50,042 sum 
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formulas would have been generated, which are 7 times as many. Consequently, 42,819 (86%), 

of these generated sum formulas can be regarded incorrect.   

Likewise, the exact number of carbon atoms also improves database searches and reduces the 

number of incorrect hits. This stresses that the exact number of carbon atoms, which can be 

determined for every feature pair with the help of 13C-labelling in full metabolome labelling 
experiments, is very beneficial for the annotation of unknown feature pairs and metabolites. 

 

Table 5 | Overview of sum formula generation for four randomly selected sum formulas and the results of 
the F. graminearum 13C-labelling experiment presented in publication #3 with and without the exact num-
ber of carbon atoms. The number of incorrectly generated sum formulas is expressed as a factor com-
pared to the number of putative sum formulas having the exact number of carbon atoms as determined 
with the help of SIL in brackets.   
 

Sum 
formula C15H20O6 C20H27N4O12P C40H66O5 C48H80O20 

F.  
gramine-

arum 

M [u] 296.1260 u 546.1363 u 626.4910 u 976.5243 u  

Method CE SGR CE SGR CE SGR CE SGR SGR 

Cn (SIL) 1 1 14 8 2 1 31 20 7224 

Cn ± C3 
8  

(8x) 
4 

(4x) 
94 

(7x) 
55 

(7x) 
10 

(5x) 
4  

(4x) 
229 
(7x) 

156 
(8x) 

50,042 
(7x) 

Cn ± C10 
27 

(27x) 
8 

(8x) 
301 

(22x) 
124 

(16x) 
42 

(21x) 
22 

(22x) 
715 

(23x) 
508 

(26x) - 

 
 

In tracer-fate applications the assignment of the exact number of labelling-isotopes in a de-

tected biotransformation product is also of great help during metabolite annotation. However, 

in such experiments MetExtract does not report the total number of atoms of the used label-

ling-element in the biotransformation product, but only the number of labelling-isotopes orig-

inating from the intact tracer or its fragment. For example, all biotransformation products of 

DON in wheat (publication #2) have been annotated with C15. These 15 carbon atoms origi-

nated only from the studied tracer in each biotransformation product. During manual annota-

tion several more carbon atoms were assigned to each metabolite, which originate from conju-

gated moieties and therefore do not contribute to the total number of labelling-isotopes. Thus, 

the determined number of labelling-isotopes was very helpful during manual structure inter-
pretation of the unknown biotransformation products.  

In summary, with the help of SIL novel metabolites and biotransformation products can be 

annotated more accurately than with just isotopolog ratios (e.g. M+1/M). In this regard, 

MetExtract automatically determines the number of labelling-isotopes in each detected feature 
pair and thus in each biotransformation product.  
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5.3.2. Convolution of different feature pairs into feature groups 

Each detected feature pair refers to an ion species of a metabolite or one of its in-source 

fragments and does not necessarily represent a unique metabolite. Many metabolites, especially 

when they are highly abundant, are prone to result in different ion species during electrospray 

ionisation (e.g. [M+H]+, [M+Na]+). As a consequence, MetExtract automatically convolutes 

different ions of the same metabolite after feature pair detection into feature groups each rep-

resenting a single metabolite. Since the different ion species are generated during ionisation 

(i.e. after chromatographic separation), their chromatographic peak shapes must be identical 

and only random noise may slightly distort the observed elution profiles. This fact is used to 

convolute the feature pairs into feature groups. If a pairwise comparison of two feature pairs 

reports a high correlation, these two feature pairs are very likely to originate from the same 

metabolite, thus they are put into the same feature group. Examples of different ion species 
present for the same metabolite are shown in Figures 6 and 7 in Chapter 2.  

In the experiments described in the publications #2, #4, and #5, many different feature 

groups were manually inspected and verified. In general, this convolution was very specific and 

resulted in meaningful feature groups. This holds especially true for highly abundant metabo-

lite-derived ions. For low abundant feature pairs the convolution was still specific, however, in 

some cases noisy chromatographic peaks were not convoluted correctly, but ended up in two 

separate feature groups. Also a few feature pairs, which were not baseline separated and thus 

showed overlapping chromatographic peak profiles with other metabolites, were not assigned 

to their respective feature groups. In such a case these feature pairs were assigned to separate 

feature groups rather than an incorrect one. However, in the evaluated and presented experi-
ments such incorrectly grouped feature pairs were rare.  

 

5.3.3. Feature group annotation 

After feature pair convolution, commonly occurring ion species are searched for in each 

feature group. This search is based on the m/z difference between two feature pairs in the 

same feature group as well as the determined number of the labelling-isotope. The most com-

monly occurring ion species were [M+H]+ and [M+Na]+ in the positive and [M-H]- and 

[M+Na-2H]- in the negative ionisation mode. Any such combination allows calculating the 

mass of the uncharged, monoisotopic isotopolog of the intact metabolite or of its in-source 

fragments. In a feature group the feature with the highest mass usually represents the intact 

metabolite. In the optimal case, the mass of the uncharged metabolite can be determined un-

ambiguously.   

Two feature groups, which were automatically annotated with MetExtract, are depicted in 

Figures 6 and 7 in Chapter 2. These two metabolites show a distinct combination of different 
ion species and therefore allow calculating the mass of the neutral metabolite. 
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5.3.4. Fast polarity switching LC-HRMS data 

The two ionisation polarity modes, positive and negative, result in different adducts and in-

source fragments for the same metabolite. While some metabolites preferably ionise in just one 

of the two modes, many metabolites show different ion species in both modes. Older 

LC-HRMS instruments (e.g. LTQ-Orbitrap XL) are incapable of switching from one to the 

other ionisation polarity within a single LC-HRMS run. Thus, the same samples must be ana-

lysed sequentially in two separate LC-HRMS runs. Newer generations of ESI-devices, which 

are capable of fast polarity switching, support switching the ionisation polarity even within 

single chromatographic peaks and thus a single LC-HRMS analysis. The resulting LC-HRMS 

data then contains two scan-events, one for the positive and one for the negative ionisation 

mode and thus MS spectra derived from positive and negative ionisation polarity.   

For example, the Orbitrap Exactive plus instrument used in publication #5 was configured to 

switch the ionisation polarity after each MS scan. With this instrument each scan was recorded 

in approximately half a second. Thus, each micro cycle consisting of a full MS scan in the posi-

tive and a full MS scan in the negative ionisation mode lasted for about 1 sec. This very fast 

acquisition times and online polarity switching capabilities of the LC-HRMS instrument ena-
bled recording positive and negative ionisation modes quasi-parallel.  

Ions derived from the same metabolite but in different ionisation polarity show perfect 

coelution in fast polarity switching derived LC-HRMS data. MetExtract is capable of pro-

cessing such data. For this, the steps for feature pair detection are carried out separately for 

both ionisation modes. Successively, convolution of different feature pairs of the same metab-

olite is performed conjointly for the positive and negative ionisation mode results. Although 

there is a minimal time difference between MS scans of opposite ionisation polarity (e.g. 0.5 

sec), it is still possible to compare different ions as the chromatographic peaks of metabolites 

are usually several times wider (e.g. 10-40 sec) than the cycle time required for a positive and 

negative MS scan (e.g. 1 sec). As a result, LC-HRMS data recorded with fast polarity switching 

may show feature groups consisting of feature pairs of both ionisation modes. Figures 6 and 7 

in Chapter 2 show examples of a metabolite and a biotransformation product, which were 

recorded as ions of positive and negative ionisation polarity with fast polarity switching. Their 

respective chromatographic peaks show perfect coelution and thus MetExtract put them into 
the same feature groups.  

Fast polarity switching is also very helpful for metabolite annotation. The different ion spe-

cies observed for a compound in positive and negative ionisation polarity are complementary. 

Thus, fast polarity switching is useful for such metabolites, which show only one ion species in 

either ionisation mode. For example, in publication #5 139 metabolites were found as differ-

ent ion species in either the positive (150) or negative (191) ionisation modes by MetExtract. 

For 19 of the 139 detected metabolites determining their uncharged, monoisotopic mass was 
only possible because complementary feature pairs were present in both ionisation modes.   
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Figure 10 | a) shows the EICs of a randomly selected m/z value in different, biological replicates from 
LC-HRMS data from the F. graminearum experiment presented in publication #3. A slight difference in 
retention time is observed between the chromatographic runs, however, the shift is very little and less than 
the width of a typical chromatographic peak. b) shows the same EICs after chromatographic alignment 
with a constant time offset only (see Box 2). They show a reduced chromatographic shift. 

 
 

Box 2 | Chromatographic alignment using the R-package PTW.  
 

Chromatographic alignment: The EICs of a randomly selected metabolic feature were 
extracted from 6 LC-HRMS measurements from the full metabolome labelling experiment 
of F. graminearum presented in publication #3. For demonstration, these EICs were aligned 
with MetExtract.  

 
 

5.3.5. Bracketing of sample results 

For the comparison of different samples it is necessary to track the same metabolites over 

all samples of an experiment. The LC-HRMS data for a given experiment presented in this 

work was usually recorded within a single LC-HRMS sequence and Bernhard Kluger and col-

leagues, who were responsible for LC HRMS data acquisition, performed the analytical analysis 

in a controlled manner showing high repeatability (publications #2-5). Consequently, the ob-

tained data exhibited neither a severe random shift nor a systematic shift caused by unwanted 
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instrument fluctuations. For example, within a LC-HRMS sequence the observed m/z accuracy 

was constant in all LC-HRMS data files and within the tolerated error ranges (e.g. less than 5 

ppm mass deviation for LC HRMS data acquired on Orbitrap instruments). Furthermore, only 

a minimal retention time shift between different samples was observed, which was less than 

the width of a typical chromatographic peak (e.g. Figure 10a). Thus, it was not necessary to 

apply any normalisation steps before data processing with MetExtract. If not all samples can 

be measured within a sequence (i.e. measurement batch) or some kind of instrument shift 

occurred during a sequence, it is possible and frequently observed that the mass, retention 

time, or relative abundance drift severely and have to be accounted for ahead of data pro-
cessing with MetExtract [103]. 

With respect to chromatographic shifts, MetExtract includes an optional alignment method 

to account for putative shifts of retention times throughout the analysed LC-HRMS data. For 

this alignment step, the R-package PTW [polynomial time warping; 60] is utilised. This align-

ment method uses a polynomial function to adjust different chromatograms so they correlate 

with a reference chromatogram. Depending the polynoms’ order, PTW even allows accounting 

for non-constant or non-linear chromatographic shifts. After applying the PTW algorithm the 

aligned chromatograms show reduced retention time diversity. For example, 6 unaligned EICs 

of randomly selected feature pairs from the F. graminearum experiment (publication #3) are 

shown in Figure 10a. A slight retention time shift is obvious. This observed shift, however, is 

less than the width of a typical chromatographic peak and needs no correction. The same EICs 

were then aligned as described in Box 2 and are shown in Figure 10b. These aligned EICs 

show a reduced chromatographic shift and nearly perfect coelution in all samples. This simple 
example illustrates that retention time shifts can be efficiently handled in MetExtract.  

In summary, MetExtract automatically brackets different feature pairs from all acquired 

LC-HRMS data files within an experiment. Furthermore, the software allows accounting for 

different forms of retention time shifts using the PTW package and automatically integrates 
feature pairs not detected initially by strict data processing settings.  

 

5.4. Improved relative quantification for comparison of different 
experimental conditions 

In LC-ESI-HRMS analysis, coeluting substances can either decrease or enhance the ionisa-

tion efficiency of other compounds. Such effects are mainly caused by the fact that ESI can 

only ionise a limited amount of molecules at a time [49, 104]. Consequently, different metabo-

lome compositions of different samples and experimental conditions lead to ionisation en-

hancement or suppression effects. Since these manifest themselves in the ionisation source, 

matrix effects can be very diverse across an entire chromatogram. As a consequence, the ob-

served metabolite abundances in different biological conditions are distorted to a certain ex-

tend. This is especially problematic, when the aim of the experiment is to compare metabolite 
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abundances in different conditions. For example, coeluting substances X1..I in condition A may 

alter the ionisation efficiency of a certain metabolite Xj. In another condition B, the relative 

amount of the metabolites X1..i may be different than in A and thus the ionisation efficiency of 

Xj is decreased in B, although the absolute concentration of Xj is equal in both conditions A 

and B. Additionally, the samples of condition B may contain some metabolites Xi+1..i+k, which 

coelute with metabolite Xj and further decrease its ionisation efficiency. Subsequent statistical 

analysis of Xj could report a statistically significant abundance difference between the condi-

tions A and B. However, in this constructed example, this difference is not of biological origin 

but rather a result of matrix effects caused by coeluting metabolites.   

Moreover, when a metabolomics experiment cannot be analysed within a single LC-HRMS 

sequence, the recorded, relative metabolite abundances may also be distorted across the differ-

ent LC-HRMS sequences. Especially after instrument recalibration, the observed, relative me-

tabolite abundances can be quite different in comparison to previously analysed biological 

conditions.   

As a result, a difference of a metabolite between two or more conditions cannot be directly 

referred to a biological origin. Before a sound statistical investigation can be performed the 

magnitude of different matrix effects and putative instrument shifts must be investigated and 

accounted for.  

In this respect, SIL is considered the gold standard to resolve different ionisation effects. In 

targeted approaches it allows determining the absolute concentration of the few studied me-

tabolites; in untargeted metabolomics experiments a metabolome- and experiment-wide inter-

nal standardisation is well suited for improving relative quantification across different samples 

or experimental states. In the developed full metabolome labelling workflow this internal 

standardisation is achieved by spiking an equal amount of the pooled, labelled sample or the 

labelled reference material to each studied, native sample during sample preparation (Figure 3 

in Chapter 2). During LC-HRMS analysis, different matrix effects affect both the native and 

the labelled metabolites equally, while their ratios are unaffected. As a result, SIL assisted in-

ternal standardisation effectively accounts for different matrix effects of each detected metabo-

lite. Although this greatly improves the comparison of different samples, it does not allow 

calculating the absolute concentration of the respective metabolites.   

To facilitate relative metabolite quantification with the help of metabolome- and experiment-

wide internal standardisation, MetExtract automatically integrates the chromatographic peaks 

of native and labelled ions of feature pairs and determines their fold ratio, which represents 
matrix effect free, relative metabolite abundances. 

An example, in which metabolome- and experiment-wide internal standardisation of differ-

ent F. graminearum genotypes helped to improve multivariate, statistical analysis using PCA is 

presented in publication #3. There, the clustering of aggregate samples was improved when 

PCA was calculated using the relative metabolite abundances after metabolome- and experi-

ment-wide internal standardisation.  
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Box 3 | Continued 13C-full metabolome labelling experiment of wheat as presented in publication #3. De-
tails are given to a degree necessary to understand the performed experiment with respect to the pre-
sented results.  
 

Biological experiment: Ears of the wheat genotypes CM38 and CM51 were treated with 
the pathogenic fungi F. graminearum (substring “Fus” in the sample name), with water (sub-
string “Moc”), and no treatment (substring “Non”) at time point zero with 3 biological 
replicates each. Samples were taken 96 hours after treatment.    
Sample preparation and LC-HRMS analysis: Each sample was standardised internally 
with commercially acquired 13C-labelled wheat material from IsoLife (Wageningen, The 
Netherlands; http://www.isolife.eu; last accessed 1st September 2014). Sample preparation 
and LC-HRMS measurements were performed as described in Bueschl [3]. The 18 samples 
were randomly assigned to three independent LC-HRMS sequences and measured on an 
LTQ-Orbitrap XL instrument. In the first measurement sequence 7 samples were measured 
(red samples). Then, the instrument was used otherwise for 4 weeks, during which it was 
shut down and recalibrated. After that 6 samples were analysed in the second LC-HRMS 
sequence (green samples). The remaining 5 samples were subsequently measured in a third 
LC-HRMS sequence immediately after the second sequence (blue samples).   
Data processing: Acquired LC-HRMS data were processed with MetExtract as described 
in publication #3 for the wheat samples.   
Multivariate statistics: HCA (range-scaling; squared Euclidean distance and ward linkage) 
was calculated with the relative abundances of the native metabolite ions (Figure 11a). Addi-
tionally, HCA was performed with the internal standardisation corrected feature pair ratios 
using the same metabolites as for the first HCA (Figure 11b).  

 
 

In an untargeted wheat experiment (continuation from the wheat experiment presented in 

publication #3; manuscript in preparation), in which samples consisting of native and globally 
13C-labelled wheat extracts were measured in different LC-HRMS sequences (Box 3), metabo-

lome- and experiment-wide internal standardisation also efficiently corrected relative metabo-

lite abundances and consequently improved statistical investigation. The samples analysed in 

measurement sequence 1 showed different metabolite abundances than those samples analysed 

in measurement sequences 2 and 3. This comparison of the different experimental conditions 

is depicted in form of a HCA dendrogram. Based on the raw, monoisotopic feature intensities, 

the samples from the first sequence form a cluster and the samples from the second and third 

sequences form another one (Figure 11a). This is caused by a change in the detector sensitivity 

between sequence 1 and sequences 2 and 3. After internal standardisation of the detected me-

tabolites, the sequence specific separation of the analysed samples is accounted for. In this 

second dendrogram (Figure 11b) all F. graminearum treated samples show a clear separation 

from the water and non-treated samples and no sequence specific separations of the samples 
are observable.  
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To summarise, metabolome- and experiment-wide internal standardisation using either 

pooled and labelled samples or labelled reference material provides a convenient way to ac-

count for different matrix effects and MS detector alterations observed for different measure-

ment sequences. In this respect, MetExtract automatically integrates the necessary chromato-

graphic peaks and determines internal standardisation corrected fold ratios, which greatly im-
prove successive statistical comparison.  
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Figure 11 | HCA dendrograms before (a) and after (b) SIL assisted internal standardisation. While the 
analysed samples in a) cluster according to their measurement sequence, in b) the F. graminearum treat-
ed samples are separated from the mock and non-treated samples and a sequence specific clustering is 
not observed (see Box 3 for experimental details).  
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5.5. Detection of tracer-derived biotransformation products 

SIL is perfectly suited for studying the metabolic fate of tracer substances. A biological sys-

tem, which has access to native and labelled tracer substances, metabolises both forms [68]. As 

a result, all tracer-derived biotransformation products are also present in their native and partly 

labelled forms, while metabolites that are not derived from the studied tracer substance are 

only present in their native forms. This fact enables the efficient search for all tracer-derived 

biotransformation products.   

The isotope pattern of native and labelled biotransformation products observed with 

LC-HRMS data is in certain aspects different from that of a globally labelled metabolite in full 

metabolome labelling experiments: Since only the tracer-derived part of a biotransformation 

product can be labelled, it is not possible to derive the total number of atoms of the used label-

ling-element in a respective metabolic feature. Consequently, the isotope pattern of such la-

belled metabolites contains parts originating from the labelled tracer and native parts from 

conjugated moieties. An example of such a biotransformation product in depicted in Figure 7 

in Chapter 2. It shows a detoxification product of DON in wheat (publication #2).   

For the detection of tracer-derived biotransformation products, only the recognition of iso-

tope patterns and their isotopolog abundance verification (step 1) were required to be adapted 

compared to the detection of globally labelled metabolite-derived ions in full metabolome 

labelling experiments. Chromatographic separation of different biotransformation product 

homologs and convolution of different feature pairs from the same metabolite into feature 

groups remained unchanged, as these steps only use the monoisotopic and the uniform-

ly/consistently labelled isotopologs of the same metabolite.   

Additionally, an optional M:M’ ratio check was implemented, as the M:M’ ratio of biotrans-

formation products derived from an exogenous tracer must approximately match the M:M’ 
ratio of the applied, pure tracer.  

This extended version of MetExtract for tracer-fate studies was used to analyse the meta-

bolic fate of the exogenous mycotoxin HT2 in barley plants (manuscript in preparation; Box 

4). A total of 9 different metabolites each containing either an intact HT2 molecule or its 

fragments were detected (Figure 12). Furthermore, the relative ratios of native and 13C-labelled 

biotransformation products (M:M’ ratio) are approximately equal for each metabolite (i.e. same 

relative abundance of the respective chromatographic peaks) and correspond well to the ap-
plied HT2 ratio (1:1/v:v).  

In summary SIL assisted tracer-fate studies allow detecting known and unknown biotrans-

formation products of the studied tracer in virtually any biological system. In this regard, 

MetExtract automatically detects such biotransformation products, as these are the only me-

tabolites present in both native and labelled forms. All other metabolites, which are not de-
scendent of the respective tracer, are efficiently filtered. 
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Box 4 | Biological experiment for studying the metabolic fate of the mycotoxin HT2 in barley. Details are 
given to a degree necessary to understand the performed experiment with respect to the presented re-
sults.  
 

Biological experiment: Both native and globally 13C-labelled HT2 were applied (1:1/v:v) 
to ears of flowering barley plants, which metabolise and detoxify this mycotoxin (similar to 
publicaiton #2).  
LC-HRMS analysis: After sample preparation the barley extracts containing the biotrans-
formation products of native and globally 13C-labelled HT2 were analysed with a Quadru-
pole-Time-of-Flight instrument (Agilent Technologies™) operated in positive ionisation 
mode.    
Data processing: Acquired LC-HRMS data files were processed with MetExtract. Settings 
are provided in Table 4 row T2 / HT2 in wheat / barley.  

 
 

 
 

Figure 12 | EICs of native, monoisotopic (positive intensity) and consistently, 13C-labelled (negative intensi-
ties) HT2-derived biotransformation products in barley. 8 such biotransformation products (green) were 
detected besides the unprocessed HT2 (red). The illustration’s ordinate is interrupted twice for improved 
illustration of the differently abundant biotransformation products.  
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6. Further development and current applications of 
MetExtract 

 

In the context of this thesis, MetExtract a novel software tool for the analysis of LC-HRMS 

data acquired for SIL assisted untargeted metabolomics experiments was implemented and 

utilised. It automatically processes LC-HRMS data from full metabolome labelling and tracer-
fate experiments involving the concurrent measurement of native and labelled sample material.  

The current version of MetExtract only supports such native and labelled metabolites and 

biotransformation products, which have clearly separated isotope patterns of the native and 

labelled metabolites. Moreover, it requires a high isotopic enrichment of the labelling-isotope. 

For lower isotopic enrichment (less than 97%), isotopic patterns start to overlap for certain 

metabolites. Additionally, the fully labelled isotopolog of a metabolite-derived ion cannot easily 

be recognised, which distorts the annotation with the exact number of labelled isotopes. To 

support this type of data in upcoming releases, MetExtract will be adapted accordingly. Other 

examples of planned features for further releases include support for i) concurrent labelling 

with two different isotopes (e.g. 13C and 15N), ii) the concurrent study of several tracer sub-

stances in the same experiment, and iii) the deconvolution of overlapping isotope patterns 
from different elements.  

With respect to biological applications, the developed workflows and MetExtract are cur-

rently being used intensively in the SFB project “Fusarium” for studying the LC-HRMS acces-

sible metabolomes of wheat, maize, and F. graminearum as well as the metabolic interaction of 

F. graminearum and the plants (manuscript in preparation; [105]). To this end, preliminary ex-

periments for inhouse cultivation of 13C-labelled wheat material were performed, which will 

allow infecting both non-labelled and 13C-labelled wheat plants with the pathogen in the fu-

ture. Furthermore, the presented approaches will be used to study fundamental aspects of 

analytical workflow optimisation.   

Besides these studies, the software will further be used for investigating the metabolic fate of 

the mycotoxins T2/HT2 in wheat and barley, for which experiments have already been per-

formed successfully. Additionally, biological interpretation of the phenylalanine-derived me-

tabolites in wheat cell suspension cultures will be done. Additional experiments similar to 

those presented in publication #5 will be carried out including a larger number of biological 
replicates to allow reliable and sound statistical investigation.   
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7. Conclusion 
 

In recent years, SIL became increasingly used for many applications in untargeted metabo-

lomics research. Among others its advantages include the global and efficient detection of only 

truly biology-derived metabolites, annotation of unknown metabolic features with the number 

of atoms of the used labelling-isotope, and experiment- and metabolome-wide internal stand-

ardisation for improved comparative quantification. Furthermore, SIL is perfectly suited for 

studying the metabolic fate of virtually any tracer-substance in a biological system.   

Software tools for the automatic processing of SIL derived metabolomics data are still rare. 

Therefore, novel SIL assisted workflows and software tools for the processing of the acquired 

LC-HRMS data were developed and used. These works were carried out in an interdisciplinary 

and experiment-oriented cooperation between analytical chemists and bioinformaticians.   

In this regards, the presented doctoral thesis details a novel software tool, named MetExtract, 

which is designed for the automated evaluation of SIL-derived LC-HRMS data from either full 

metabolome labelling experiments or tracer-fate studies of exogenous or endogenous com-

pounds. It requires LC-HRMS data from samples consisting of both native and labelled me-

tabolites and supports different labelling-isotopes (e.g. 13C, 15N, 34S) with a degree of isotopic 

enrichment of 97% or higher. MetExtract uses the open-data format mzXML to read raw-

LC-HRMS data and thus works with virtually any LC-HRMS platform. Moreover, the software 

is capable of processing fast polarity switching derived LC-HRMS data.   

MetExtract detects metabolites using their unique isotope patterns of native and labelled me-

tabolite-derived ions. Detected feature pairs are intensively verified with their respective 

isotopologs and a check for perfect chromatographic coelution. These validations of the SIL 

characteristics ensure that only truly biological metabolites are extracted while efficiently dis-

carding any unspecific signals or signals originating from contaminants. Furthermore, MetEx-

tract is highly specific and only reports a very low number of incorrectly detected feature pairs 

even in samples with a high background. As a result, SIL-assisted, untargeted metabolomics in 

combination with MetExtract for the first time enables the holistic detection of only truly 

metabolite-derived ions, which constitutes a great step towards the unbiased annotation of all 

via LC-HRMS accessible metabolites of the biological system under investigation.   

In tracer-fate studies, MetExtract detects only biotransformation products derived from the 

native and labelled tracer. The detected biotransformation products are annotated with the 

number of atoms of that part, which is derived from the studied tracer. This annotation nota-

bly enhances subsequently performed manual structural elucidation.   

After detection, different metabolic features derived from the same metabolite are automatical-

ly convoluted into feature groups facilitating a holistic annotation of detected metabolites. 

These feature groups are annotated with commonly observed ion species and putative neutral 

losses of in-source fragments are calculated using the determined number of labelling-isotopes 

in each metabolic feature. Consequently, this also reduces the number of incorrectly annotated 
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database hits or possible sum formulas of unknown metabolites and thus improves putative 

metabolite identification and characterisation.   

Besides its use for the efficient detection of metabolites, SIL is also regarded the gold standard 

to account for different matrix effects. With appropriate sample preparation and pooling pro-

tocols ahead of LC-HRMS analysis, the software automatically integrates all detected native 

and corresponding labelled features. The fold ratios of these two feature areas are subsequently 

used to correct for different ionisation enhancement or suppression effects of the mass spec-

trometer. Moreover, global internal standardisation also enables the compensation of analytical 

shifts or drifts within and across different measurement sequences. This internal standardisa-

tion is especially helpful in subsequent statistical analysis and biological interpretation of the 

respective untargeted metabolomics experiments and can be accessed in an automated fashion 

using MetExtract.  

The benefits of SIL-assisted, untargeted metabolomics in combination with MetExtract have 

been demonstrated with F. graminearum, wheat and maize experiments. Of the metabolites 

detected by MetExtract, only a small number (less than five per sample) represent incorrectly 

detected feature pairs. Most of these false positives originated from Fourier transform arte-

facts, which are a common source of bias in LC HRMS data. Additionally, application in the 

F. graminearum study showed that internal standardisation with pooled material from all labelled 

fungi samples improved analytical precision and multivariate statistical investigation.   

Furthermore, MetExtract was used for detecting known and unknown biotransformation 

products derived from different tracer substances. In a first experiment, which studied the 

detoxification mechanism of wheat plants stressed with the mycotoxin DON, in total 9 detoxi-

fication products were found, 5 of which have not been reported previously.   

In a similar experiment, which studied the metabolic fate of phenylalanine in grape-berries, 63 

phenylalanine-containing metabolites were automatically detected, 13 of which showed either 

increased or decreased abundances after the grape-berries were exposed to heat.   

Furthermore, the metabolic fate of phenylalanine was also studied in wheat-cell suspension 

cultures. In these samples 341 phenylalanine-containing metabolic features, which were de-

rived from fast polarity switching ionisation and automatically convoluted to 139 different 

metabolites, were extracted. Several of these metabolites showed either increased or decreased 

abundance after the cell suspension cultures have been stressed with DON. Additionally, in 

this experiment it has been shown that fast polarity switching is highly beneficial for metabo-

lite detection and subsequent annotation.   

In conclusion, SIL-assisted, untargeted metabolomics research has many advantages over con-

ventional, labelling-free methods. With MetExtract these benefits can be accessed in a struc-

tured and automated fashion. Together with the presented workflows for full metabolome 

labelling and tracer-fate studies, MetExtract constitute a major step forward for SIL-assisted, 

untargeted metabolomics research, which is gaining popularity in many metabolomics applica-
tions.   
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From the 8 publications, which were realised during the doctoral study of the author of this 
thesis, 5 were selected to form an integral part of the presented work.  

The first publication (#1) was realised during an early stage of the author’s doctoral study. 

This trend article summarises potential applications of SIL in untargeted metabolomics re-

search, which include full metabolome labelling applications, tracer-fate studies, and derivatiza-

tion with native and labelled agents. In that respect this publication and the preliminary version 
of MetExtract [106] served as a good basis for further work during the author’s doctoral study.  

Publication #3 and #5 detail the developed analytical workflows for full metabolome label-

ling and tracer-fate studies. Furthermore, they briefly summarise the steps for automated data 

processing of the acquired LC-HRMS data and present the accompanying metabolomics ex-

periments and data processing results with a special focus laid on the benefits gained with SIL. 

The results show that SIL has many advantages over conventional, labelling-free approaches 
and also improves successive interpretation of single metabolites.  

Publications #2 and #4 detail actual applications of the implemented workflows and devel-

oped software. The focus is put on the biological results of the performed experiments. In 

both publications previously unknown biotransformation products of the respectively studied 

tracer substance were detected. Furthermore, publication #5 includes biological results from a 

tracer-fate study. 

The biological questions and workflows were developed in close cooperation between biol-

ogists, analytical chemists and bioinformaticians. In general, the author of this thesis was re-

sponsible for developing the software MetExtract and performing automatic data processing 

and statistical analysis of the generated metabolomics data. Moreover, the author wrote those 

parts of the manuscripts that detail the bioinformatics-related aspects and, together with the 
co-authors, wrote the remaining texts of the respective manuscripts.  

Besides these contributions, the author of this thesis was also responsible for statistical in-

vestigation of GCMS metabolomics data presented by Warth and colleagues [105] and per-

formed data processing of LC-HRMS data with MetExtract with the aim of finding suitable 

metabolites for demonstration of FragExtract [85]. Moreover, the author of this thesis also 

performed data processing and statistical investigation in currently not published metabolom-
ics experiments.  

In the following the 5 selected publications are reprinted and the contributions of the au-
thor of this thesis are detailed. 
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Publication #1: Isotopic labelling-assisted metabolomics 
using LC-MS 

 

Christoph Bueschl, Rudolf Krska, Bernhard Kluger, Rainer Schuhmacher  
Analytical and Bioanalytical Chemistry. 2013 Jan;405(1):27-33  

 

Contributions of the presenting author: The author of this thesis formally defined the SIL 

experiments presented in this publication as well as their respective LC-HRMS data structures 

originating from the concurrent measurements of native and labelled metabolites. Additionally, 

SIL assisted data processing was performed to illustrate the characteristics of LC-HRMS data 

derived from SIL-assisted metabolomics experiments with a preliminary version of MetEx-
tract. The author wrote the publication text and implemented the co-authors’ feedback.  

Reprint: The publication was realised with open access option under the terms of the Creative 
Commons Attribution License.  
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Abstract Metabolomics has emerged as the latest of the so-

called “omics” disciplines and has great potential to provide

deeper understanding of fundamental biochemical processes

at the biological system level. Among recent technological

developments, LC–HRMS enables determination of

hundreds to thousands of metabolites over a wide range of

concentrations and has developed into one of the most

powerful techniques in non-targeted metabolomics. The

analysis of mixtures of in-vivo-stable isotopic-labeled sam-

ples or reference substances with un-labeled samples leads

to specific LC–MS data patterns which can be systematical-

ly exploited in practically all data-processing steps. This

includes recognition of true metabolite-derived analytical fea-

tures in highly complex LC–MS data and characterization of

the global biochemical composition of biological samples. In

addition, stable-isotopic labeling can be used for more accu-

rate quantification (via internal standardization) and identifi-

cation of compounds in different organisms.

Keywords Bioanalytical methods . Mass spectrometry .

Metabolomics . Liquid chromatography

Metabolomics: a brief introduction

The objective of metabolomics is comprehensive, qualitative

and quantitative analysis of all the low-molecular-weight

metabolites of a living cell, organ, or whole organism [1].

The term “metabolome” has been defined by analogy with the

genome and refers to the complete set of metabolites of a

biological system [2, 3]. Thus metabolomics can be regarded

as characterization of the metabolome. Although genomes

have been sequenced for many organisms, it is currently not

possible to measure the whole metabolome of a biological

system at once, because of analytical–methodical limitations

and the highly diverse nature of the metabolites.

In this respect, two different metabolomics concepts can be

distinguished: targeted and non-targeted. In targeted

approaches, abundances of metabolites of a set of predefined

known substances are determined. Such an approach enables

absolute quantification but is usually limited to metabolites

which are available as authentic reference standards. In con-

trast, non-targeted approaches try to find mass spectrometric

features of all detectable compounds, including those un-

known at the time of sample measurement. This approach

therefore has the advantage of probing the entire metabolic

space and can obtain relative abundances of several hundreds

to thousands of known and unknown metabolites [4].

Currently, most non-targeted metabolomics studies use

liquid chromatography coupled to high-resolution mass

spectrometry (LC–HRMS). This combination enables the

detection of the highest number of metabolites and requires

only small amounts of the biological sample [5]. The com-

bination of electrospray ionization (ESI) with full-scan LC–

MS at unit resolution results in a large number of solvent-

related cluster ions and other non-metabolite-related signals

which might interfere with masses of true metabolite ions.

For this reason, low resolution ESI LC–MS is usually re-

stricted to targeted approaches in which MS–MS modes are

mostly applied. Most of the applications described in this

article were, however, used for non-targeted analysis of

biological samples using full-scan LC–HRMS.

Sample measurements with modern analytical instrumen-

tation result in huge amounts of data, which can no longer

be evaluated manually. Data-processing steps serve to
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reduce data complexity and include numerous elements, for

example feature extraction, spectrum deconvolution (i.e.,

grouping of ions which originate from the same metabolite),

retention time (Rt) alignment of chromatographic peaks

across different runs, and internal standardization for quan-

tification. The final result of data processing is a data matrix,

a table that contains all samples and analytical features (i.e.,

metabolite-derived signals). The ultimate objective of a

metabolomics study is to detect as many metabolites as

possible and to link the differently expressed metabolites

to a variety of experimental factors. Therefore, reliable

annotation and/or identification of the detected metabolites

is essential.

Despite the availability of several software tools for data

processing [6–11] and improved measurement techniques,

several limitations remain.

From the extraction of metabolite-derived analytical features

to the annotation and identification of metabolites

A first step of data processing in non-targeted metabolomics

approaches is to extract as many features as possible. The

term “feature” denotes a two dimensional bounded signal

consisting of a chromatographic peak (i.e., retention time)

and an MS peak (i.e., m/z value) [12]. The comprehensive

and reliable extraction of metabolite-derived features of true

biological origin however, remains a very difficult task. A

major limitation is the large amount of non-metabolite-

related noise and background signals. It has been estimated

that in LC–electrospray ionization–MS (LC–ESI–MS), as

little as 10 % of the signals are of true biological origin [13].

Consequently, most features are not associated with true

metabolites but can hardly be recognized as such, because

their analytical characteristics are the same as for features of

true biological origin. Furthermore, a single metabolite leads

to more than one ion species—e.g., isotopic peaks, adducts,

in-source fragments. Therefore, data processing requires the

assignment of metabolite ions and the grouping of features

into deconvoluted spectra before meaningful annotation of

metabolites can be achieved. Typically, feature abundances

are estimated by peak integration and the resulting peak

areas are used for relative quantification and comparison

of different experimental states.

After feature extraction and spectral deconvolution, an-

notation and/or identification of metabolites is essential, but

is one of the most challenging tasks of any metabolomics

experiment [14–16]. Metabolite annotation usually uses a

search for one or more molecular properties (e.g., accurate

mass, sum formula) against comprehensive databases (DB),

whereas identification also requires confirmation by mea-

surement of an authentic standard under identical analytical

conditions and/or comparison of MS–MS fragmentation

patterns.

DB search approaches seldom provide unique identifica-

tions, since usually more than one substance exists for a

particular mass or sum formula, because of the great number

of combinations of one sum formula into numerous struc-

tural formulas. Furthermore, because non-targeted metabo-

lomics experiments yield both known and unknown

metabolites, it can be expected that a significant number of

metabolites is missing from the DBs and thus remains

uncharacterized [5]. Additional MS–MS measurements are

required to provide structure information. Unfortunately,

MS–MS measurements are very labor-intensive tasks even

for only a small subset of putative metabolites and the

resulting MS–MS spectra are difficult to interpret. Further-

more, for LC–MS very few databases with authentic MS–

MS spectra are available, again reducing the number of

identifiable metabolites.

With regard to quantification of metabolites by LC–ESI–

MS, matrix effects, or signal suppression or enhancement

(SSE) (for recent review see, e.g., Refs. [17] and [18]), limit

the accuracy and reliability of quantitative measurements

within and between different measurement sequences. SSE

is caused by the presence of (endogenous or exogenous) co-

eluting components in the ion source of the mass spectrom-

eter and has been attributed to numerous mechanisms in-

cluding competition for “charges” between analytes and

interfering compounds or a change of viscosity and/or sur-

face tension of the droplets in the ion source [17, 18].

The potential of stable isotopic labeling to meet current

challenges in LC–MS-based metabolomics research

In view of these limitations, there is a strong need both for

innovative approaches to the analytical measurement of

biological samples and for the development of novel, im-

proved data-processing algorithms and their implementation

in the form of user-friendly software tools, especially for

non-targeted metabolomics.

In this respect, stable isotopic labeling (SIL) is a very

promising and increasingly popular technique in metabolo-

mics research, which is perfectly suited to be combined with

GC–MS and LC–MS. Stable isotope techniques were pre-

ceded by the use of radioactive isotopes in biochemical

research. The development of robust and sensitive GC–MS

and LC–MS instrumentation together with easier and safer

handling procedures (i.e., organizational restrictions, human

health concerns), quickly increased the use of radio isotopes

[19]. First applications of SIL in proteomics and protein

labeling demonstrated the huge advantages of this technique

[20] and researchers therefore adopted SIL in a variety of

metabolomics techniques. In this respect 13C is the most

commonly used isotope for SIL-assisted experiments, be-

cause 13C-labeled isotopologues cannot be chromatographi-

cally separated from their natural analogues (Fig. 1a).
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Moreover, carbon is a constituent of every metabolite and its

transfer between biological entities follows well known rules

[19]. Although 15N and 34S are also well suited to investiga-

tion of all nitrogen or sulfur-containing compounds and their

bio-transformation by living systems, 2H and 18O are less

frequently used for labeling of metabolites in metabolomics,

because they frequently tend to be exchanged by hydrogen

and oxygen from surrounding water. Moreover deuterated

metabolites do not always perfectly co-elute with their non-

labeled analogues [19], rendering the extent of labeling and

the results obtained from subsequent data processing difficult

to interpret. Figure 2 shows a three dimensional view of an

LC–HRMS chromatogram of the supernatant from the agri-

cultural important fungus F. graminearum, which was culti-

vated in parallel on 12C and 13C glucose medium. Identical

aliquots of the 12C and 13C supernatant were mixed and

subsequently measured using an LTQ Orbitrap XL. As one

can see in the circled area, the LC elution pattern for the 12C

(natural) and 13C-labeled metabolite ions of the same metab-

olite are identical but have a defined m/z shift (861.3835 for

the 12C ion and 897.5043 for the corresponding 13C ion).

Because 12C and 13C-labeled glucose were used for cultiva-

tion, the number of carbon atoms in this particular ion can be

calculated from the m/z difference between the two monoiso-

topic mass peaks. For this example, the m/z difference of

36.1208 suggests 36 carbon atoms for this putativemetabolite.

To further confirm that the two isotopologue ions belong

to the same putative metabolite, their carbon-isotopic distri-

butions are of interest. Whereas descending isotopic

distributions towards higher m/z values (the abundance of

natural occurring 12C is approximately 98.93 % and thus the

abundance of 13C is 1.07 %) are observed for all natural 12C

substances, 13C-labeled substances do not have descending

isotopic distributions, because their most abundant carbon

isotope is 13C and only the minority of carbon atoms are 12C

isotopes (the abundance of 13C and 12C is highly dependent on

the enrichment method and cannot be generalized in the same

way as natural carbon abundances). Thus 13C-labeled mono-

isotopic ions are not only heavier but also have ascending

isotopic distribution toward higher m/z values, because 13C

isotopes are replaced by the lighter 12C isotopes. These two

mirror symmetric isotopic distributions, which are only pres-

ent for SIL using carbon, confirm that both ions are successors

of the samemetabolite and enable the number of carbon atoms

to be easily determined. Depending on the MS instrument

used, the relative abundance of the isotopic distributions are

more or less accurately recorded. In general, TOF instruments

yield more accurate relative abundances of isotopic peaks than

Orbitrap or other FT mass analyzers, whereas the resolving

power and thus mass accuracy are higher with FT-MS instru-

ments. The theoretical isotopic-abundance pattern for a spe-

cific isotopologue in comparison with the substance’s most

intense isotopic peak is calculated by use of the formula:
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Fig. 1 Different strategies for using SIL to assist metabolomics stud-

ies. a 13C, 15N, and 34S-enriched substances are not chromatographi-

cally separated from the corresponding natural isotopologues, thus the

non-labeled and the labeled isotopologues elute at the same retention

time with identical peak profiles. b For non-targeted annotation of an

organism’s metabolome the organism can be cultivated in parallel

using differently isotopologue-enriched nutrition sources (e.g., 12C

and 13C glucose as sole carbon source). The extracts are subsequently

mixed and measured with LC–HRMS. The resulting data pattern helps

in the extraction of true biological signals. c Absolute compound

quantification using an authentic, labeled standard or relative quantifi-

cation using a stock of globally labeled sample extract of the same

organism for inter-experiment comparison. d Metabolism experiment

using natural and fully labeled tracer substances enables metabolism

studies and greatly helps to separate products of metabolism from other

biological signals. In contrast with metabolism studies, fluxomics

experiments only spike with the labeled tracer. e Derivatisation using

non-labeled and labeled derivatisation agents enables rapid recovery of

many metabolites belonging to the same chemical groups (e.g., alco-

hols, acids …)
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where ai is the number of atoms of the ith element in the

substance, si is the number of substitutions of the most abun-

dant isotopologue with less abundant isotopes of the ith ele-

ment, pi is the isotopic purity of the used stable isotope of the

ith element, and pei is the isotopic purity of the most abundant

isotope of the ith element (e.g., the relative abundance of the

first isotopologue (13C1) compared with its 12C monoisotopic

peak for an ion having 24 carbon atoms is P([24], [1],

[0.0107], [0.9893])025.68 %. The same isotopologue having

additionally replaced one of nine oxygen atoms by 17O (nat-

ural abundances for 16O and 17O are 99.962% and 0.038%) is

P([9, 24], [1, 1], [0.0107, 0.00038], [0.9893, 0.99962])0

0.08 %). However, very low isotopic abundances (e.g., 17O,
36S, 2H …) may be of theoretical interest but, in general, do

not have to be considered practically in LC–HRMS analysis

because they are not observable with most current MS

instrumentation.

Furthermore, the mirror symmetric isotopic distributions

in the case of carbon SIL are very helpful if the substances

of interest contain heteroatoms such as sulfur, nitrogen, or

calcium. Without the SIL process, heteroatom isotopologues

cannot usually be separated from the more intense 13C

isotopologues of the natural, 12C ions even at a high MS

resolving power of 100,000. With carbon SIL additional

isotopic mass peaks originating from heteroatom isotopes

(e.g., 15N, 34S) can be observed next to the 13C ion at higher

m/z values. This benefit is very interesting for non-targeted

metabolomics because it provides further information about

the elemental composition of the detected ion species.

Apart from non-targeted metabolomics, feature extrac-

tion and annotation, SIL is also perfectly suited to absolute

quantification. Because the natural and spiked labeled

reference standard perfectly co-elute, the ratio of their peak

areas is used for absolute quantification. Furthermore, be-

cause the standard is added to the biological sample, its

concentration is known. Using the ratio of the two isotopo-

logue peak areas and the amount of reference standard,

absolute quantification of the natural isotopologue in the

sample can be achieved.

Examples of applications of SIL

All of the following SIL-assisted approaches involve anal-

ysis of mixtures of labeled and non-labeled samples and are

based on enrichment of the respective mass spectra with the

isotopic pattern of the SIL analogue(s). Depending on the

purpose of the labeling experiment (Fig. 1b–e), the degree

of isotopic enrichment, metabolic fate of the tracer(s), and

other factors, the resulting mass spectra might be affected in

different ways but all have the SIL-specific data pattern

exemplified in Fig. 1. The mass spectra might just contain

(slightly) altered relative intensities of individual isotopo-

logues or pairs of clearly separated isotopic patterns of the

natural compounds and their corresponding fully labeled

analogues.

In the following four main areas involving SIL and LC–

MS in metabolomics research will be presented with the

focus on LC–HRMS.

SIL-assisted whole metabolome studies (Fig. 1b)

For reliable extraction and annotation of putative metabo-

lites in a biological sample, non-labeled and labeled cultures

of the organism of interest are mixed and measured by use

Fig. 2 3D Plots obtained from F. graminearum. a Unprocessed LC–

HRMS full-scan chromatograms of a mixture of supernatants from

cultivation of F. graminearum on both 12C and 13C glucose. The circle

marks an ion pair (the 12C and the corresponding 13C-labeled

monoisotopic ions) originating from the same metabolite. After pro-

cessing the spectrum with MetExtract, only ions having a labeled

pendant are not removed (b). Thus, only the non-labeled ions remain

in the circled area. (3D view generated with Ref. [37])
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of LC–HRMS in the full-scan mode. Whole labeled metab-

olomes of specific organisms can be obtained when a fully

labeled substrate, for example 13C6 glucose forms the sole

carbon source of, e.g., bacteria or filamentous fungi. Such in

vivo labeling of microbes has been successfully used to

accomplish internal standardization for quantification, to

circumvent problems of signal suppression in ESI–MS

[21]. For this purpose, in-vivo-labeled samples can either

be cultured in parallel to every experimental sample and

condition and subsequently mixed with non-labeled ana-

logues, or prepared by producing a large quantity of labeled

culture with which non-labeled experimental samples can be

spiked [22, 23].

Recently, in-vivo labeling has also been extended to

plants and used to facilitate the assignment of the elemental

composition of metabolite ions by accurate mass measure-

ments in combination with database search [24, 25]. More-

over, as we have demonstrated in our own recent work, in-

vivo labeling of fungal culture samples provides a powerful

approach for the automated global extraction of all

metabolite-derived MS signals from LC–HRMS raw data

by discrimination of true metabolite-related from non-

specific analytical features [26].

SIL improves absolute quantification (Fig. 1c)

In targeted analysis, SIL reference standards can be used for

internal standardization of peak intensities in trace analysis by

use of LC–HRMS or LC–(HR)MS–MS [27, 28], making this

the most common use of SIL. Use of authentic, labeled refer-

ence standards enables easy, rapid, and absolute quantification

of the respective metabolites even in complex matrixes.

In vivo metabolism studies (Fig. 1d)

In non-targeted metabolomics, uniformly labeled substances

in combination with their natural pendants are added to

biological samples during cultivation and used as tracers to

study their metabolic fate [4]. This technique has been used

in targeted approaches to study metabolic pathways and

fluxes of the central metabolism [29, 30]. Moreover, labeled

tracers have also been used to study the bio-transformation

of secondary metabolites [31] and xenobiotics [32]. Without

use of SIL for this kind of research, searching for and

detecting these products of metabolism in complex full-

scan LC–HRMS data by non-targeted approaches would

be almost impossible. Without the use of SIL one would

have to subtract chromatograms without the spiked com-

pound from those obtained after measurement of samples

with the specific compounds added. Although possible in

principle, the latter approach results in numerous false-

positive findings because of fluctuations in MS signals from

measurement to measurement.

SIL-assisted derivatisation (Fig. 1e)

Another recently introduced SIL-based technique in combi-

nation with LC–HRMS is the use of labeled reagents for

derivatisation which enables non-targeted screening for all

compounds belonging to a specific chemical group (e.g.,

alcohols, acids …). The general workflow for a SIL deriva-

tisation step is to split the biological sample into two iden-

tical aliquots and perform derivatisation separately with

labeled and non-labeled derivatisation reagents, and mix

and measure them jointly. Thus, one not only gains all the

benefits derivatisation has but also the benefits of SIL

which, in this case, are improved metabolite feature extrac-

tion in the highly complex LC–HRMS data [33, 34] and an

estimate of the exchanged functional groups.

Despite the high potential of labeling-assisted metabolo-

mics approaches, only a few data processing tools have been

published which specifically exploit the labeling-associated

data pattern. Moreover, these tools are limited to targeted

metabolomics and fluxomics approaches. For targeted GC–

MS-based metabolomics of cell cultures, Hiller and col-

leagues published a method for study of the fate of labeled

tracer compounds through central metabolism [35]. For

targeted LC–MS studies, commercial software (IROA)

exists which has been designed to use mixtures of in-vivo

labeled and non-labeled biological culture samples to assign

differently expressed metabolites in differently treated bio-

logical samples. The software calculates and graphically

illustrates the intensity ratios of the principal ions from

predefined isotopologue signal pairs [36]. Another software

product also utilizing 13C labeling is MetMax [11], which

has been used to analyze the dynamics of CO2 uptake by

Chlamydomonas reinhardtii using GC × GC–TOF-MS. To

the best of our knowledge, the recently developed MetEx-

tract software is, to date, the only publicly available tool for

non-targeted, automated global detection of metabolite-

derived LC–HRMS signals originating from natural and

stable isotopically labeled analogues and their assignment

to true biological metabolites [26].

Although LC–MS experiments using stable isotopically

labeled compounds in combination with their naturally occur-

ring pendants is already a well established and frequently used

technique, the most limiting disadvantage is the relatively high

cost associated with enrichment of compounds with some

stable isotopes. Furthermore, a stable isotopic labeled source

which can be used for in-vivo labeling experiments or as an

internal standard may not be available commercially. Authen-

tic labeled reference standards or nutrition sources have to be

synthesized or harvested from organisms and subsequently

purified, which again is a cost-intensive exercise. For reference

standards, the second major limitation is availability because

only a very small subset of all needed reference standards are

available, which limits their advantage. Another limitation of
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SIL and whole-metabolome experiments is the requirement to

cultivate the organisms in parallel—once with the natural and

once with the stable isotope enriched nutrition source—to be

able to recover experiment or condition-specific metabolites of

the organism of interest.

Outlook

Although SIL-based analytical approaches have been devel-

oped and frequently used in both proteomics and biochemical

research for many years, the metabolomics community started

to fully exploit the potential of this technique only recently.

Considering the numerous benefits and advantages of SIL, we

expect its increased application, particularly for non-targeted

metabolomics research. Although stable isotopically labeled

compounds or biological samples are quite expensive, they

offer many benefits for analytical chemists working with LC–

MS. The unique and undistinguishable data pattern obtained

from natural and fully labeled isotopologues of a compound

drastically simplifies data processing. Furthermore, in target

analysis the addition of labeled authentic standards enables

absolute quantification of substances in biological samples.

For non-targeted metabolomics SIL-based LC–HRMS

approaches enable global data extraction and feature annota-

tion for true metabolites and can help to improve precision in

relative quantification.With further improved analytical instru-

mentation and customized data-processing software for SIL-

derived data patterns, this technique has the potential to be of

crucial importance in the new discipline of metabolomics.
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Abstract An untargeted screening strategy for the detection
of biotransformation products of xenobiotics using stable
isotopic labelling (SIL) and liquid chromatography–high
resolution mass spectrometry (LC-HRMS) is reported. The
organism of interest is treated with a mixture of labelled and
non-labelled precursor and samples are analysed by LC-
HRMS. Raw data are processed with the recently developed
MetExtract software for the automated extraction of
corresponding peak pairs. The SIL-assisted approach is
exemplified by the metabolisation of the Fusarium myco-
toxin deoxynivalenol (DON) in planta. Flowering ears were

inoculated with 100 μg of a 1+1 (v/v) mixture of non-labelled
and fully labelled DON. Subsequent sample preparation, LC-
HRMS measurements and data processing revealed a total of
57 corresponding peak pairs, which originated from ten
metabolites. Besides the known DON and DON-3-
glucoside, which were confirmed by measurement of authen-
tic standards, eight further DON-biotransformation products
were found by the untargeted screening approach. Based on a
mass deviation of less than ±5 ppm and MS/MS measure-
ments, one of these products was annotated as DON-
glutathione (GSH) conjugate, which is described here for the
first time for wheat. Our data further suggest that two DON-
GSH-related metabolites, the processing products DON-S-
cysteine and DON-S-cysteinyl-glycine and five unknown
DON conjugates were formed in planta. Future MS/MS
measurements shall reveal the molecular structures of the
detected conjugates in more detail.

Keywords Metabolisation . Xenobiotics . Stable isotopic
labelling . Deoxynivalenol . Liquid chromatography–high
resolution mass spectrometry . Mycotoxin conjugate

Introduction

Xenobiotics are frequently metabolised and subsequently
conjugated to more polar derivatives as a part of detoxifica-
tion strategies of organisms, including animals and plants.
For the determination of metabolic pathways, mass spec-
trometry turned out to be one of the most powerful techni-
ques for the detection of all types of low-molecular weight
metabolites even on systems level [1–3]. In metabolomics,
targeted approaches aim at the quantification of known or
predicted specific metabolites, while untargeted approaches
try to probe the global metabolic space of a biological
sample [4]. As a major advantage over targeted methods,
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untargeted metabolomics approaches have the potential to
discover novel and unexpected metabolites such as un-
known biotransformation products originating from specific
xenobiotics.

Stable isotopic labelling (SIL)-assisted metabolomics
techniques [5–9] offer a wide range of new applications in
the field of untargeted approaches. In vivo SIL for example
can be used for the global detection of biologically derived
metabolite signals and offers a high degree of certainty that
detected MS signals represent actual metabolites and are not
resulting from e.g. solvents, matrix background or noise.
Moreover, SIL-assisted approaches provide additional infor-
mation on the number of carbon atoms of the detected
metabolite ions [5]. Both stable isotopic labelled endoge-
nous [10] as well as xenobiotic [3, 11] precursors have been
used to study in vivo metabolisation in biological samples.
In this context, a major challenge is the detection of the
labelled biotransformation products within highly complex
liquid chromatography–high resolution mass spectrometry
(LC-HRMS) chromatograms. The recently developed soft-
ware algorithm MetExtract [12] is capable of the automated
global detection of metabolite-derived LC-HRMS signals
originating from non-labelled and stable isotopically la-
belled compounds.

Here, we present the first results of a SIL-assisted metab-
olomics approach for the untargeted screening of xenobiot-
ics and its derived biotransformation products exemplified
by the metabolisation of the Fusarium graminearum myco-
toxin deoxynivalenol (DON). DON [13] belongs to the
group of trichothecene mycotoxins and is a frequent con-
taminant of food and feed. It is produced by F. graminearum
during infection of cereal grains such as wheat and barley
[14]. The protein synthesis inhibitor DON is a virulence
factor of Fusarium, and in turn, detoxification of DON
seems to be an important component of Fusarium resistance
in wheat [15, 16]. Plants can reduce the toxicity of DON by
conjugation of the toxin to glucose [17]. In this study, we
applied a SIL-assisted approach for the untargeted screening
of biotransformation products of DON in wheat. We found
eight novel wheat-derived DON conjugates and for the first
time obtained clear evidence that glutathione-mediated me-
tabolism of DON occurs in wheat.

Experimental section

Chemicals and reagents

Methanol (MeOH, LiChrosolv, LC gradient grade) was
purchased from Merck (Darmstadt, Germany); acetonitrile
(ACN, HiPerSolv Chromanorm, HPLC gradient grade) was
purchased from VWR (Vienna, Austria); formic acid (FA,
MS grade) was obtained from Sigma-Aldrich (Vienna,

Austria). Water was purified successively by reverse osmo-
sis and an ELGA Purelab Ultra-AN-MK2 system (Veolia
Water, Vienna, Austria). Non-labelled DON and uniformly
labelled 13C15 DON were obtained as a contribution for that
particular study from Romer Labs (Tulln, Austria) in crys-
talline form, not commercially available. DON-3-glucoside
(D3G) standard was produced according to [18].

Standard preparation

Standard solutions of DON and D3G with concentrations of
1 mgL−1 were prepared in methanol/water (1+1, v/v) and
used as analytical standards. Lyophilised non-labelled DON
and 13C15-labelled DON for inoculation of wheat were dis-
solved separately in pure water to a concentration of 1 gL−1.
Both stock solutions were mixed 1+1 (v/v) to obtain an
inoculation solution containing 500 mgL−1 non-labelled
DON + 500 mgL−1 13C15 DON.

Treatment of wheat samples

Wheat plants (cultivar “Remus”, which is sensitive for both
Fusarium head blight and DON) were grown under stand-
ardised conditions [15]. Flowering ears were either treated
with the DON inoculation solution or with water (mock)
according to the following procedure: at time point zero,
10 μL DON were injected in each of two adjacent spikelets
in the lower part of a flowering ear. Twenty-four hours later,
the next two adjacent spikelets, located immediately above
those previously treated, were injected with the same
amount of toxin. This procedure was repeated 48, 72 and
96 h after the first treatment resulting in a total applied
amount of 100 μg DON per ear. All treatments were carried
out in triplicate. One hundred and eight hours after the first
inoculation, the ear bases, containing all inoculated spikelets
of DON-treated and mock ears, were sampled separately
and immediately shock-frozen in liquid nitrogen. That
way, we aimed to target all DON metabolites present in
planta between 12 to 108 h post-treatment. All samples
were stored at −80 °C until further sample preparation.

Sample preparation

Frozen wheat ears were milled separately to a fine powder
for 2 min at 30 Hz using a ball mill (MM301 Retsch, Haan,
Germany) with pre-cooled (liquid nitrogen) 10-mL stainless
steel vessels (Retsch) and a 9-mm stainless steel ball
(Retsch). Of homogenised wheat material, 105±5 mg was
weighed to 1.5-mL Eppendorf tubes and extracted with
1 mL of pre-cooled methanol/water 3+1v/v including
0.1 % formic acid, by vortexing for 10 s, and subsequent
treatment in an ultrasonic bath at room temperature for 15 min
according to de Vos et al. [19]. Samples were centrifuged for
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4 min at 8,500×g (9,500 rpm) at room temperature. An aliquot
of 600 μL supernatant was transferred to another 1.5-ml
Eppendorf tube adding 300 μL water + 0.1 % formic acid to
achieve a final methanol/water ratio of 1:1 (v/v). All samples
were vortexed for 10 s before transfer into HPLC vials for LC-
MS measurements.

LC-HR-MS conditions

LC-HR-MS measurements were performed on an LTQ
Orbitrap XL (Thermo Fisher Scientific) equipped with an
electrospray ionisation (ESI) source coupled to an UHPLC
system (Accela, Thermo Fisher Scientific, San Jose, CA,
USA). The analytical column was a reversed-phase XBridge
C18, 150 × 2.1 mm i.d., 3.5 μm particle size (Waters,
Milford, MA, USA), preceded by a C18 4 × 3 mm i.d.
security cartridge (Phenomenex, Torrance, CA, USA). The
column temperature was maintained at 25 °C. Eluent A was
water and eluent B was MeOH, both containing 0.1 %
formic acid. The chromatographic method held the initial
mobile phase composition (10 % B) constant for 2 min,
followed by a linear gradient to 100 % B within 30 min.
This final condition was held for 5 min, followed by 8 min
of column re-equilibration at 10 % B. The flow rate of the
mobile phase was 250 μLmin−1 and the injection volume
was 10 μL.

The ESI interface was used in positive ion mode with the
following settings: sheath gas, 60 arbitrary units; auxiliary
gas, 15 arbitrary units; sweep gas, 5 arbitrary units; capillary
voltage, 4 kV; capillary temperature, 300 °C. All other
source parameters were automatically tuned for maximum
signal intensity of a 10-mgL−1 reserpine solution (Sigma-
Aldrich). For the FT-Orbitrap, the automatic gain control
was set to a target value of 3×105, and a maximum injection
time of 500 ms was chosen. The mass spectrometer was
operated in a scan range from m/z 100 to m/z 1,000 with a
resolving power setting of 60,000 FWHM (at m/z 400). Data
were recorded using Xcalibur 2.1.0 (Thermo Fisher Scien-
tific). For MS/MS measurements, collision-induced dissoci-
ation (Q00.250, activation time 30 ms, resolving power
setting 15,000 FWHM) was used.

Data processing and annotation of DON conjugates

An improved yet unpublished version of MetExtract [12],
developed by us, was applied to automatically extract
corresponding MS peak pairs in mass spectra of a 1+1
mixture of biological samples containing natural and 13C
fully labelled xenobiotics. Putative DON-metabolisation
products had to fulfil the following criteria: (1) the mono-
isotopic non-labelled and the completely labelled isotopo-
logues of DON-derivative ions form the principal ions of
their corresponding isotopic patterns and have to be present

in at least two mass spectra, (2) peak area ratio of mono-
isotopic peaks and corresponding fully labelled analogues
has to be 0.8–1.2 and (3) monoisotopic non-labelled and the
completely labelled isotopologue ions have to show chro-
matographic co-elution.

Furthermore, within all LC-HRMS chromatograms, pu-
tative DON-derived ion signals were grouped according to
retention time with the aim to deconvolute mass spectra and
evaluate the number of different metabolites as well as type
of ion species.

Different metabolites were characterised and annotated
according to following criteria: (1) the accurate mass differs
less than ±5 ppm from the theoretical postulated mass and (2)
possible heteroatoms within the conjugates (e.g. sulphur) are
determined by evaluating the isotopic pattern of the complete-
ly labelled isotopologue. Moreover, MS/MS spectra were
recorded and evaluated using Thermo Xcalibur 2.1.0.

Results and discussion

Detection and characterisation of DON-biotransformation
products

MetExtract data processing revealed a total of 57 ion pairs in
full-scan chromatograms of DON-treated samples that
showed the monoisotopic non-labelled and the corresponding
completely labelled isotopologue of the DON moiety. No ion
pairs could be detected in mock-treated samples. The obtained
features were sorted according to retention time and grouped
into ten distinct chromatographic peak groups with the aid of
MetExtract. DON (m/z 297.1327, [M+H]+) and nine DON-
biotransformation products were detected in wheat samples
treated with a 1+1 mixture of native and 13C15-labelled DON.
The corresponding peak pairs of all detected DON-
biotransformation products showed a mass difference of ex-
actly 15.0503 Da indicating the presence of all 15 carbon
atoms of DON. Thus, these DON metabolites contained the
intact carbon skeleton of DON as part of their molecular
structure. No DON degradation products with less than 15
carbon atoms were found. Moreover, all determined masses
were different and clearly higher than the molecular weight of
DON, indicating the formation of several structurally different
DON conjugates by wheat. Figure 1 depicts the extracted ion
currents of the non-labelled and 13C-labelled metabolite ions
representing all 57 features of the detected compounds.

Among the detected substances, the identity of DON
(peak #6) and D3G (m/z 459.1848, [M+H]+, peak #7) was
confirmed by standard measurements. This result shows that
also the susceptible cultivar Remus has the capacity to form
D3G [15].

A closer manual inspection of all isotopic patterns of both
the 12C monoisotopic as well as the fully 13C-labelled ions

Stable isotopic labelling-assisted untargeted metabolic profiling 5033



revealed the presence of sulphur in three of the detected
DON conjugates. The isotope 34S was confirmed by the
presence of a mass peak with a relative intensity of about
4 % and a mass difference of +1.9956 Da from the principal
ions in the respective spectra. Most importantly, our study
identified DON-GSH (m/z 604.2158, [M+H]+, peak #4) to
be formed by wheat. [M+Na]+ ions for DON-GSH were
observed; the molecular mass of the intact metabolite was
determined with a mass error of −2.4 ppm. Additionally, two
processing products of the glutathione conjugate of DON
were found, peak #2 is putatively identified as DON-S-
cysteine (−3.2 ppm) and peak #3 was annotated as DON-
S-cysteinyl-glycine (−2.2 ppm).

In addition to D3G and the glutathione-related conju-
gates, five currently unknown DON-biotransformation
products (peaks #1, #5, #8, #9 and #10) were found. For a
more detailed structural characterisation of the detected
DON-GSH, MS/MS measurements using collision-induced
dissociation were carried out.

Characterisation of DON-GSH, DON-S-cysteinyl-glycine
and DON-S-cysteine by LC-MS/MS measurements

Further, MS/MS measurements of DON-treated wheat using
the precursor mass m/z 604.21 (corresponding to [DON-
GSH+H]+) at 18 eV revealed the characteristic fragmenta-
tion behaviour of GSH adducts described by Levsen et al.
[20]. Losses of glycine (75 Da), anhydroglutamic acid
(129 Da), glutamine (146 Da), as well as the cleavage of

the S-CH2 bond (275 Da) and DON (296 Da) for DON-GSH
were observed (Fig. 2a). For structure confirmation of
DON-S-Cys-Gly and DON-S-Cys, further MS/MS measure-
ments of the precursor ions m/z 475.18 (at 25 eV) and m/z
418.15 (at 22 eV) have been carried out respectively
(Fig. 2b, c). For both DON conjugates, the MS/MS spectra
contained an abundant loss of NH3 (17 Da), the cleavage of
the S-CH2 bond and [DON+H]

+ which is in good agreement
with the characteristic MS/MS fragments of GSH conju-
gates as described earlier [20].

Previously, only D3G has been reported in the literature
as detoxification product of DON in planta [21]. Based on
the transcriptome response of barley after DON treatment,
the formation of DON-GSH conjugates has been postulated,
and the non-enzymatic formation of a complex mixture of
glutathione conjugates has been demonstrated by NMR
[22]. To our best knowledge, our work reports the formation
of DON-GSH in planta for the first time. The addition of
GSH to the double bond of DON, for which NMR evidence
was provided [22], seems most likely and therefore this
structure (without consideration of its stereochemistry) is
shown in Fig. 2. The formation of the glutathione adducts
with α,β-unsaturated ketones is a reversible reaction [23],
effectively preventing their isolation. Moreover, the occur-
rence of the glutathione conjugate processing products
DON-S-Cys-Gly and the DON-S-Cys conjugate in wheat
are described here for the first time. Our data are in good
agreement with well-known detoxification reactions of
xenobiotics such as herbicides in planta via GSH

Fig. 1 EICs extracted by
MetExtract: positive intensities
show the EICs of the
monoisotopic 12C labelled
metabolite ions, while negative
intensities represent the EICs of
the corresponding 13C fully
labelled metabolite ions. All of
the m/z values labelled with
retention time and number
showed similar peak area, peak
shape and perfect co-elution
and thus can be regarded as
signals originating from
biotransformation products of
DON (#2 DON-S-Cys,
#3 DON-S-Cys-Gly,
#4 DON-GSH, #6 DON,
#7 D3G)
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conjugation and subsequent hydrolysis of the formed con-
jugates in the vacuole of plant cells [24]. Furthermore, our
results do also fit to the observation in barley, where DON
treatment triggered a strong upregulation of cysteine bio-
synthesis suggesting that cysteine is used for glutathione
formation and conjugation to DON [22]. The relevance of
DON-GSH and its GSH-related biotransformation products
regarding food safety is currently unknown and has to be
investigated in future studies. Furthermore, additional stud-
ies will be needed to elucidate the structure of the remaining,
currently unknown DON conjugates. These preliminary
results show the high potential of the presented approach,
which can be used to study the metabolisation of all types of
xenobiotics independent of the nature of the biological
system.

Conclusion

The presented SIL-assisted metabolomics approach in
combination with LC-HRMS is a powerful tool for the
untargeted screening of biotransformation products of
xenobiotics in virtually all types of biological systems.
Labelling-specific isotopic patterns can be reliably and
automatically detected after measurement of biological
samples treated with a 1+1 mixture of labelled and non-
labelled precursors. Moreover, the data patterns directly
reveal the number of carbon atoms in the detected metab-
olite ions. In this preliminary study, the great potential of
the presented approach is further underlined by the suc-
cessful and automated detection of eight novel plant-
derived biotransformation products of the mycotoxin

Fig. 2 CID MS/MS spectra of
DON-GSH (precursor ion,
m/z 604.21), DON-S-Cys-Gly
(precursor ion, m/z 475.18) and
DON-S-Cys (precursor ion,
m/z 418.15) with suggested
structure formula
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DON. The detection of the DON-GSH conjugate and de-
rived processing products in wheat is reported for the first
time, providing evidence for glutathione-mediated metab-
olism and presumably detoxification of the Fusarium vir-
ulence factor DON in planta.
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Abstract Many untargeted LC–ESI–HRMS based meta-

bolomics studies are still hampered by the large proportion

of non-biological sample derived signals included in the

generated raw data. Here, a novel, powerful stable isotope

labelling (SIL)-based metabolomics workflow is presented,

which facilitates global metabolome extraction, improved

metabolite annotation and metabolome wide internal

standardisation (IS). The general concept is exemplified

with two different cultivation variants, (1) co-cultivation of

the plant pathogenic fungi Fusarium graminearum on non-

labelled and highly 13C enriched culture medium and (2)

experimental cultivation under native conditions and use of

globally U-13C labelled biological reference samples as

exemplified with maize and wheat. Subsequent to LC–

HRMS analysis of mixtures of labelled and non-labelled

samples, two-dimensional data filtering of SIL specific

isotopic patterns is performed to better extract truly

biological derived signals together with the corresponding

number of carbon atoms of each metabolite ion. Finally,

feature pairs are convoluted to feature groups each repre-

senting a single metabolite. Moreover, the correction of

unequal matrix effects in different sample types and the

improvement of relative metabolite quantification with

metabolome wide IS are demonstrated for the F. grami-

nearum experiment. Data processing employing the pre-

sented workflow revealed about 300 SIL derived feature

pairs corresponding to 87–135 metabolites in F. grami-

nearum samples and around 800 feature pairs corre-

sponding to roughly 350 metabolites in wheat samples. SIL

assisted IS, by the use of globally U-13C labelled biological

samples, reduced the median CV value from 7.1 to 3.6 %

for technical replicates and from 15.1 to 10.8 % for bio-

logical replicates in the respective F. graminearum

samples.
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1 Introduction

While full genome sequences have been determined for

many organisms, it is currently still not possible to measure

the complete metabolite inventory of a biological system

due to methodical limitations. Complementary, sensitive

and generic techniques are required to cope with the large

chemical diversity and wide dynamic range of low

molecular weight metabolites. Gas chromatography (GC)

or liquid chromatography (LC) coupled to mass spec-

trometry (MS) as well as nuclear magnetic resonance

(NMR) spectroscopy have emerged as key techniques in

the field of metabolomics, as recently reviewed by e.g.

Zhang et al. (2012), Patti et al. (2012b) and Zhou et al.

(2012). The combination of LC with electrospray ionisa-

tion (ESI) high resolution mass spectrometry (HRMS) has

proven to be particularly powerful as this technique enables

the detection of a large number of known and unknown

metabolites simultaneously and requires only small

amounts of the biological sample (Hiller et al. 2011; Patti

et al. 2012b).

Two different metabolomics concepts can be distin-

guished: targeted and untargeted approaches. In targeted

approaches, a set of predefined known substances is

determined, thus, absolute quantification of those metabo-

lites, which are available as authentic reference standards,

is feasible. In contrast, untargeted approaches try to find

mass spectrometric features of all detectable metabolites,

including those unknown or at least unidentified at the time

of measurement. Therefore, the untargeted approach has

the advantage of probing the entire, observable metabolic

space and can obtain relative abundances of several hun-

dreds to thousands of metabolites simultaneously (Patti

et al. 2012b). For the automated data processing of such

LC–HRMS derived metabolomics datasets, various work-

flows and software packages have been developed and are

frequently used in untargeted metabolomics studies e.g.

XCMS (Smith et al. 2006), MzMine (Pluskal et al. 2010),

MetAlign (Lommen and Kools 2012) or Maven (Clasquin

et al. 2012). These software tools have in common, that

they extract as many features as possible from raw LC–

HRMS derived metabolomics data sets. In this respect the

term feature has been defined to be a bounded, two

dimensional LC–HRMS signal consisting of a chromato-

graphic peak (i.e. retention time) and a MS signal (m/z

value) (Kuhl et al. 2012).

Despite the recent advances regarding both LC–HRMS

instrumentation and data handling platforms, the compre-

hensive annotation of the metabolome of a biological

sample of interest and subsequent metabolite identification

still remain the major bottlenecks in untargeted meta-

bolomics, especially for LC-ESI-HRMS based studies

(Scalbert et al. 2009; Castillo et al. 2011; Patti et al. 2012b;

Theodoridis et al. 2012; Dunn et al. 2013). This limitation

can largely be attributed to the generic nature of the ESI

process, unavoidably leading to LC-ESI-HRMS full scan

chromatograms and spectra, containing a large proportion

of background and chemical noise compared to the signals

originating from true metabolites (Keller et al. 2008;

Covey et al. 2009; Trotzmüller et al. 2011). Further chal-

lenges arise from the fact that a single metabolite leads to

more than one ion species (e.g. isotopologue peaks, dif-

ferent adducts, in-source fragments and even more com-

plex combinations of the previous species). In addition,

many metabolites cannot completely be separated in the

chromatographic dimension and therefore LC–HRMS

measurements result in mass spectra, which contain signals

from more than one metabolite.

Another obstacle of untargeted LC-ESI-HRMS based

metabolomics is related to relative quantification of the

detected metabolite ions, which is caused by so called

matrix effects. The composition of the evaporated sample

at any time point of the LC–HRMS measurement can

significantly influence the ionization efficiency and leads to

ion suppression or ion enhancement in the ESI source of

the mass spectrometer (Tang and Kebarle 1993; King et al.

2000). Matrix effects can seriously affect signal intensities

as well as precision and even limit the coverage of the

metabolome (Vogeser and Seger 2010; Koal and Deigner

2010). They are difficult to overcome in global untargeted

studies as the matrix is composed of the biological sample

itself. Thus, except protein precipitation, sample purifica-

tion is generally not a suitable option as this would largely

discriminate many sample constituents of interest (Tulipani

et al. 2013). Moreover, the availability of appropriate

internal standards is often limited. The detailed and com-

prehensive study of matrix effects is laborious and chal-

lenging, thus only a few studies reported the systematic

evaluation of matrix effects and their limitations on relative

metabolite quantification in the field of LC–HRMS based

metabolomics (Böttcher et al. 2007; Redestig et al. 2011;

Tulipani et al. 2013).

With respect to the above mentioned limitations

regarding global annotation of the metabolome and method

performance evaluation, there is a great demand for both

innovative approaches for the analytical measurement of

biological samples with LC–HRMS as well as the devel-

opment of novel, improved data processing algorithms.

Stable isotope labelling (SIL) is a technique, which is

becoming increasingly used in different areas of meta-

bolomics research and it shows the potential to conquer

many of the elucidated limitations in untargeted meta-

bolomics research. In this respect, SIL assisted experiments

employ stable isotopes of elements such as carbon (13C),

hydrogen (2H), oxygen (18O), nitrogen (15N) and sulphur

(34S) (Klein and Heinzle 2012; Nakabayashi et al. 2013)
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respectively. However, 13C is used most commonly as the

main labelling isotope, since carbon is part of virtually any

metabolite. Non-labelled, partly labelled and highly

([98 %) 13C enriched (U-13C) metabolites show the same

physico-chemical properties and therefore are not sepa-

rated by chromatography, but can easily be distinguished

by their mass to charge ratio (m/z) using an MS instrument.

The use of globally U-13C labelled biological samples

enables to circumvent problems in untargeted metabolo-

mics, such as metabolome annotation, generation of sum

formulas of the detected metabolites and putative metab-

olite identification. It was demonstrated that the combina-

tion of 13C, 15N and 34S labelling for example can help to

assign the number of atoms of the respective labelling

element to a metabolite ion correctly and thereby facilitates

annotation of metabolites by database search (Hegeman

et al. 2007; Giavalisco et al. 2008; Cano et al. 2013). In

addition to improved feature extraction and metabolite

annotation, SIL experiments have also been successfully

used to accomplish internal standardisation (IS) for quan-

tification of metabolite levels and, thus correct ion sup-

pression or MS signal fluctuations caused by matrix effects

in LC-ESI-HRMS (Bennett et al. 2008; Giavalisco et al.

2009; Hegeman 2010). Moreover, IS by globally stable

isotope labelled biological samples allow both detailed

characterisation of the performance of the used metabolo-

mics workflow as well as an improved relative quantifi-

cation/technical precision of metabolomics data.

Despite the high potential of SIL assisted approaches

and their successful application in various fields, to the best

of our knowledge only a few data processing tools have

been published for the automated evaluation of LC–HRMS

data originating from labelled biological samples. For non-

targeted GC–MS based metabolomics SIL assisted meta-

bolomics, Hiller and colleagues published the Non-targeted

Tracer Fate Detection (NTFD) algorithm (Hiller et al.

2013) to study labelled tracer compounds in the central

metabolism (Hiller et al. 2010). Moreover, de Jong and

Beecher (2012) have successfully implemented a sophis-

ticated method termed IROA (Isotopic Ratio Outlier Ana-

lysisTM) to automatically extract features differing between

experimental conditions after parallel cultivation on native

and U-13C-labelled nutrition sources. IROA is offered as a

commercial metabolomics application and software pro-

gramme. The R package mzMatch-ISO (Chokkathukalam

et al. 2013) is a software tool for the annotation and relative

quantification of SIL derived MS data with the aim to

provide insight into metabolic fluxes of biological systems.

It is designed to use metabolomics data analysed by XCMS

(Tautenhahn et al. 2008) and allows an in depth evaluation

and visualisation of the associated isotopic patterns and

their respective abundances of various native and labelled

metabolites. To the best of our knowledge, MetExtract,

which has been developed in our laboratory, is to date the

only publicly available tool aiming at the untargeted,

automated global detection of truly metabolite derived LC–

HRMS signals originating from natural (compounds

showing a natural carbon isotopic distribution pattern are

termed ‘‘non-labelled’’ in the following) and stable isotope

labelled biological samples (Bueschl et al. 2012).

Here a detailed analytical and data processing workflow

for SIL assisted untargeted LC–HRMS based metabolo-

mics experiments is presented. This workflow is exempli-

fied by two representative experiments: In the first

approach the filamentous fungus Fusarium graminearum is

cultivated in parallel on a non-labelled and a U-13C

labelled carbon source respectively under identical condi-

tions. In the second approach a metabolomics experiment is

performed using a non-labelled carbon source for cultiva-

tion of biological samples (wheat and maize), while glob-

ally U-13C labelled biological reference samples are used

for IS. The concept and performance of both variants are

presented in detail.

2 Materials and methods

2.1 Chemicals and biological samples

Acetonitrile (ACN, HiPerSolv Chromanorm, HPLC gra-

dient grade) was purchased from VWR (Vienna, Austria);

Methanol (MeOH, LiChrosolv, LC gradient grade) was

purchased from Merck (Darmstadt, Germany); formic acid

(FA, MS grade) was obtained from Sigma-Aldrich

(Vienna, Austria). Water was purified successively by

reverse osmosis and an ELGA Purelab Ultra-AN-MK2

system (Veolia Water, Vienna, Austria). Components of

the modified FMM were purchased from the following

suppliers: Fluka (KH2PO4, Fe(NH4)2(SO4)2�6H2O), Roth

(MgSO4�7H2O, KCl, ZnSO4, H3BO3), Sigma Aldrich

(NaNO3, MnSO4, CuSO4�5H2O, Na2MoO4�2H2O), Serva

(citric acid) and VWR (glucose). U-13C6-glucose with a
13C enrichment degree of 99 % was obtained from Eur-

isotop (Saarbrücken, Germany). U-13C labelled wheat ear

([97 % 13C, cultivar Baldus), and U-13C labelled maize

kernels ([97 % 13C, cultivar Yukon chief) were obtained

from Isolife (Wageningen, The Netherlands).

2.2 Cultivation of Fusarium graminearum, wheat

and maize samples

In this study a metabolomics workflow for two different

cultivation variants using stable isotope labelling is pre-

sented (Fig. 1). In the first approach (thereafter referred to

as variant A) the biological organism of interest is co-

cultivated under identical conditions, using either a 12C or

756 C. Bueschl et al.
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13C carbon source respectively. This approach is favoured

for less complex organisms such as bacteria, yeasts or fil-

amentous fungi which allow cultivation on a defined

minimal medium, where the natural carbon source can be

easily replaced by highly ([98 %) 13C- or 15N-enriched

nutrients. Variant A is demonstrated for the filamentous

Fig. 1 Overview of the proposed SIL assisted workflow for native and U-13C co-cultivation (variant A) and native cultivation and use of U-13C

reference metabolome (variant B) [figure-width: 174 mm]
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fungus F. graminearum, a pathogen of several cereal crops.

In the second approach (referred to as variant B) a meta-

bolomics experiment is performed using a native 12C car-

bon source for cultivation, while a globally U-13C labelled

biological sample serves as reference metabolome for IS of

the non-labelled experimental samples. This approach is

preferred when isotope labelling under experimental con-

ditions is difficult to achieve or not feasible, e.g. with

animals or plants. Experimental details are given to a

degree necessary to fit the purpose of this paper, which is to

present and discuss the analytical concept and data pro-

cessing rather than the whole biological study.

2.2.1 Variant A: 12C and 13C co-cultivation

(F. graminearum samples)

Fusarium graminearum wild-type (PH-1, NRRL 31084)

and its isogenic tri5D::loxP mutant lacking the gene

encoding trichodiene synthase, the first enzyme in the

trichothecene biosynthetic pathway were used. The strains

were cultivated in a modified Fusarium minimal medium

(FMM: 1 g/L KH2PO4, 0.5 g/L MgSO4�7H2O, 0.5 g/L

KCl, 2 g/L NaNO3, 10 mg/L citric acid, 10 mg/L

ZnSO4�6H2O, 2 mg/L Fe(NH4)2(SO4)2�6H2O, 0.5 mg/L

CuSO4�5H2O, 0.1 mg/L MnSO4, 0.1 mg/L H3BO3, 0.1 mg/L

Na2MoO4�2H2O) (Leslie and Summerell 2007) containing

either non-labelled glucose or U-13C-glucose as sole car-

bon source at a concentration of 10 g/L. F. graminearum

wild-type and tri5D strains were grown on non-labelled as

well as on U-13C labelled FMM using six biological rep-

licates per strain and nutrition condition resulting in a total

of 24 samples. The cultures were set up as follows: the

strains were sporulated in mung-bean medium as described

before by Kluger et al. (2013). 1-ml aliquots of either non-

labelled or U-13C labelled glucose containing medium were

pipetted to each well of a UNIFILTER 24-well 10 ml

filtration microplate equipped with a Whatman GF/C filter

(VWR, Vienna, Austria) and each well was inoculated with

2,000 spores of the respective F. graminearum strain. Still

cultures were grown at 20 °C in the dark for 7 days.

2.2.2 Variant B: 12C cultivation & 13C reference

metabolome (wheat and maize samples)

Seeds of the wheat cultivars ‘‘Remus’’ and ‘‘CM-82036’’

were grown in pots with soil under environmentally con-

trolled greenhouse conditions. Light and watering regime,

humidity and temperature were kept under controlled

conditions whenever possible and readjusted continuously

to fit the plant’s actual developmental stage. At the onset of

anthesis five ears (ten spikelets per ear) were harvested for

each cultivar at the beginning of a luminescence cycle and

immediately shock-frozen in liquid nitrogen to quench

cellular metabolism. In total ten ears were sampled and

stored at -80 °C until further sample preparation.

Seeds of the maize line CO354 were planted in pots and

later transferred to an environmentally controlled green-

house with controlled light regime and temperature con-

ditions. Ears were harvested 18 days after hand pollination

and kernels were immediately extracted using sterilised

scalpels. Three pools of kernels were obtained, where each

pool derived from the mixing of seeds came from three

different ears, samples were immediately frozen in liquid

nitrogen after collecting and stored at -80 °C for further

analyses.

For IS using a U-13C labelled reference metabolome

according to variant B (Fig. 1), a U-13C labelled wheat ear

([97 % 13C, cultivar Baldus), and U-13C labelled maize

kernels ([97 % 13C, cultivar Yukon chief) were used

respectively. It was taken into consideration that the

labelled plant material had been grown to the same

development stage as the non-labelled wheat cultivars and

the native maize line CO354 respectively.

2.3 Sample preparation

2.3.1 Variant A: preparation of F. graminearum samples

The 24-well microtiter plate was removed from the climate

chamber and immediately centrifuged for 10 min at

2,000 rpm to separate the mycelium from the extracellular

metabolites in the supernatant. Non-labelled and U-13C

labelled supernatants were prepared in parallel according to

the following protocol. 500 ll aliquots of supernatants of

wildtype and tri5D mutant, which had been grown on

native glucose containing FMM were transferred separately

each into a 1.5 ml Eppendorf tube resulting in a total of 12

samples (n = 6 replicates per fungal strain). 400 ll ali-

quots of each of U-13C labelled supernatants were pooled

together in a 50 ml polystyrene tube (VWR International

GmbH, Vienna, Austria) resulting in a total of 4,800 ll of a

pooled U-13C-supernatant for IS. Immediately after cen-

trifugation and aliquoting of supernatants, all aliquots were

quenched with 30 % acetonitrile (v/v) resulting in a 7:3 (v/

v) ratio of supernatant to acetonitrile. For LC–HRMS

analysis, each quenched non-labelled supernatant was

standardised by adding the same volume (200 ll) of the

pooled and quenched 13C-supernatant resulting in LC–

HRMS sample aliquots (1:1, v/v).

In addition, 60 ll of each of the U-13C-standardised

LC–HRMS samples (n = 6 replicates per fungal strain)

were merged to an aggregate sample (AG) which was used

to evaluate the precision of the LC–HRMS measurement

and chromatographic peak integration steps by repeated

injection out of the same HPLC vial (n = 13 replicates).
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LC–HRMS analysis of all samples was carried out imme-

diately after sample preparation.

For comparison of SIL assisted data processing and

conventional data processing by XCMS as well as to

demonstrate the extraction efficiency, aliquots of quenched

native supernatants without any U-13C labelled material

were mixed with quenched FMM (1:1, v/v) to yield LC–

HRMS samples exhibiting same concentration levels of

non-labelled metabolites as the U-13C labelled standardised

analogues.

To further exemplify the selectivity of the proposed

workflow to identify only SIL derived biological infor-

mation, solvent blanks (water:acetonitrile (7:3, v/v)) con-

taining purified water instead of supernatant were prepared

in parallel according to the same procedure mentioned

above.

2.3.2 Variant B: preparation of wheat and maize samples

The sample preparation of plant material was based on De

Vos et al. (2007) carried out after slight modifications as

reported in Kluger et al. (2012). Native wheat ears and

U-13C labelled wheat ear ‘‘Baldus’’ were extracted and

prepared in parallel. Native wheat ears of the cultivar

‘‘Remus’’ and ‘‘CM-82036’’ respectively (n = 5 replicates

per cultivar) were milled separately to a fine powder using

a ball mill (MM301 Retsch, Haan, Germany). 100 ± 5 mg

of homogenised plant material were weighed to 1.5 mL-

Eppendorf tubes with subsequent extraction using 1 mL of

pre-cooled (4 °C) methanol:water (3:1, v/v) including

0.1 % formic acid (v/v) in an ultrasonic bath. After cen-

trifugation an aliquot of the supernatants (300 ll of native

samples and 420 ll of U-13C labelled reference sample)

were transferred separately to another 1.5 ml-Eppendorf

tube and pre-cooled (4 °C) water ? 0.1 % formic acid (v/

v) was added to achieve a final methanol:water ratio of 1:1

(v/v). IS was achieved by adding the same volume of

U-13C labelled sample aliquots resulting in (1:1, v/v)

mixtures of non-labelled and U-13C labelled supernatant.

All samples were rigorously mixed for 10 s before transfer

into HPLC vials for LC–HRMS measurements.

Maize line CO354 (n = 3) and U-13C labelled cultivar

‘‘Yukon chief’’ were prepared according to the same pro-

tocol, with ‘‘Yukon chief’’ diluted sample extracts being

used for IS.

2.4 LC–HRMS analysis

All samples (F. graminearum, wheat, maize) were ana-

lysed on a UHPLC system (Accela, Thermo Fisher Sci-

entific, San Jose, CA, USA) coupled to an LTQ Orbitrap

XL (Thermo Fisher Scientific) equipped with an ESI

source. A HTC PAL system (CTC analytics, Zwingen,

Switzerland) was used for injection (10 ll) per sample and

for thermostatisation of sample solutions to 10 °C

throughout the whole sequence.

A reversed-phase XBridge C18, 150 9 2.1 mm i.d.,

3.5 lm particle size (Waters, Milford, MA, USA) analyt-

ical column, preceded by a C18 4 9 3 mm i.d. security

cartridge (Phenomenex, Torrance, CA, USA) was

thermostated to 25 °C and used for chromatographic sep-

aration at a constant flow rate of 250 ll/min. Water con-

taining 0.1 % FA (v/v) (eluent A) and MeOH containing

0.1 % FA (v/v) (eluent B) were used for linear gradient

elution: The initial mobile phase composition (10 % eluent

B) was held constant for 2 min, followed by a linear gra-

dient to 100 % eluent B within 30 min. After a hold time of

5 min the column was re-equilibrated for 8 min at 10 %

eluent B. A 10 ll sample loop was employed to maintain a

constant injection volume.

The ESI interface was operated in positive ion mode

with the following settings: sheath gas: 60 arbitrary units,

auxillary gas: 15 arbitrary units, sweep gas: 5 arbitrary

units, capillary voltage: 4 kV, capillary temperature:

300 °C. LTQ parameters were automatically tuned for

maximum signal intensity of a 10 mg L-1 reserpine solu-

tion (Sigma Aldrich) as recommended by the instrument

manufacturer. For measurements using the FT-Orbitrap in

the fullscan mode, the automatic gain control was set to a

target value of 3 9 105 and a maximum injection time of

500 ms was chosen. The mass spectrometer was operated

in a scan range from m/z 100–1,000 with a resolving power

setting of 60,000 FWHM (at m/z 400). Data were recorded

using Xcalibur 2.1.0 (Thermo Fisher Scientific).

2.5 Data processing

For an efficient extraction of metabolite derived MS signals

and analytical features, several consecutive data processing

steps (illustrated in Fig. 1-3-a–f) were implemented as an

expansion of the already released software version of

MetExtract (Bueschl et al. 2012). The focus of this paper

was laid on the detailed description of the complete

workflow including the biological experiment, sample

analysis and data processing as well as its application to

samples of plants and fungi. The extended MetExtract 2.0

software, which is capable of performing all of the fol-

lowing data processing steps (2.5.1–2.5.7) will be pub-

lished elsewhere together with the release of the

programme.

2.5.1 Pre-processing (Fig. 1-3-a)

Measurement files were converted from acquired profile to

centroid data and the mzXML format (Pedrioli et al. 2004)

with the MSConvert programme from the freely available
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ProteoWizard package v.3.0.3980 32-bit (Chambers et al.

2012).

2.5.2 MS signal pair filtering and clustering of m/z values

(Fig. 1-3-b)

Each recorded MS scan was inspected for the typical SIL

derived isotopic pattern as described previously in Bueschl

et al. (2012). The intensity threshold of both the monoi-

sotopic 12C derived (M) and U-13C derived (M0) MS signal

was set to 5,000 counts in at least 3 scans. The maximum

m/z deviation from postulated m/z values was set to

2.5 ppm and the isotopologue abundance error was set to

±20 %. Each MS signal pair, fulfilling the criteria was

annotated with m/z of M, the charge number z, deduced

from the SIL derived isotopic pattern, and the determined

number of carbon atoms nC, calculated from the m/z value

difference between M and M0, and z. Extracted MS signal

pairs were clustered together with hierarchical clustering to

group redundantly extracted MS signal pairs of similar m/z

value (i.e. MS signal pairs, which originate from the same

chromatographic peak or structural isomers with identical

sum formula). Hierarchical clustering was performed sep-

arately for all MS signals having the same number of

carbon atoms and the same charge number. All clusters in

the resulting tree, whose m/z values differed more than

±10 ppm were split into separate sub-clusters.

2.5.3 Feature pair picking (Fig. 1-3-c)

For each MS signal cluster, the algorithm of (Du et al.

2006) was utilised to inspect the XICs of both the mono-

isotopic 12C and the corresponding U-13C labelled ions for

co-eluting and similarly shaped chromatographic peaks.

For this purpose, a maximum retention time difference of

±15 scans was tolerated between chromatographic peaks

in both XICs. Furthermore, the chromatographic peak

profiles of the monoisotopic 12C and the U-13C labelled

features were compared with the Pearson correlation

coefficient and only those, with correlation coefficients

greater than 0.5 were considered a valid feature pair

derived from the SIL process. This data processing step

resulted in a list of putative feature pairs (monoisotopic
12C- and corresponding U-13C labelled feature) with each

feature pair being annotated with the m/z value of M,

retention time (Rt), peak area, number of carbon atoms per

ion (nC), and charge state z.

2.5.4 De-isotoping (Fig. 1-3-d)

Compared to correctly paired features, M?1 features, fal-

sely picked as monoisotopic 12C features or M0-1 features,

falsely picked as U-13C labelled features showed a reduced

number of carbon atoms nC and/or an increased monoiso-

topic 12C m/z value. Thus such erroneously extracted fea-

tures were removed from the feature list by comparing the

m/z values of M, charge state z, Rt and nC among putative

feature pairs.

2.5.5 Feature pair grouping (Fig. 1-3-e)

To group different features from the same metabolite,

extracted feature pairs were convoluted by comparing the

chromatographic peak shapes of all monoisotopic 12C

features eluting at approximately the same retention time

(±10 scans) (Kuhl et al. 2012). A minimum correlation

coefficient of 0.85 was specified for features to be grouped

together.

2.5.6 Matching results of several samples and generation

of data matrix (Fig. 1-3-f)

To track metabolite features over all samples of a particular

experiment, the extracted feature pairs of all LC–HRMS

data files were compared using nC, m/z of M and Rt in that

order. After data matrix generation, monoisotopic 12C and

U-13C labelled features, initially missed in some of the data

files due to the restrictive filtering criteria, were searched

for in a targeted way. To this end, the described peak

picking and integration algorithms were employed but

without checking peak shape similarity.

2.5.7 Internal standardisation

Internal standardisation was carried out on a file basis for

each feature pair by dividing the area of monoisotopic 12C

by that of its corresponding U-13C labelled feature.

2.6 Comparison with labelling free strategy

To compare the feature extraction process with a labelling

free approach, a non-labelled F. graminearum aggregate

sample, which had been diluted with FMM (1:1, v/v) and

did not contain any U-13C labelled culture supernatant and

one of the U-13C standardised F. graminearum aggregate

samples, were analysed, processed and evaluated. The data

file derived from a non-labelled sample was processed with

XCMS (1.34.0) and R (R Development Core Team, 2012,

v. 2.15.2) using parameter settings as recommended by

Patti et al. (2012a) for HPLC Orbitrap XL MS. The LC–

HRMS data file obtained for the U-13C standardised

aggregate sample was processed as described above (steps

2.5.1–2.5.4) and parameter settings similar to XCMS (i.e.

minimum intensity of 5,000 in at least 3 scans; maximum

tolerated m/z deviation of 2.5 ppm). Automated compari-

son of the results was performed by comparing both the
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determined m/z value and retention time of all extracted

features and feature pairs respectively. For this, a maxi-

mum relative m/z deviation of ±10 ppm and ±0.15 min

was allowed for two results to match. Features, which had

only been found by the SIL assisted data processing, were

further inspected manually using TOPPView (Sturm and

Kohlbacher 2009, v 1.10).

2.7 Selectivity evaluation of SIL assisted workflow

To demonstrate the selectivity of feature pair extraction in

the presented SIL assisted metabolomics workflow, blank

samples (solvent blank) (n = 3) as well as five non-label-

led F. graminearum aggregate samples (no internal stan-

dardisation with U-13C labelled supernatant) were

processed as described earlier.

2.8 Evaluation of internal standardisation and matrix

effects

Analysis of internal standardisation was performed on a

feature pair level using only those pairs for which both the

monoisotopic 12C and the corresponding U-13C labelled

features were found in all replicates of a certain sample

type after re-integration. Therefore, no imputation of

missing values was required. For analytical precision

demonstration before and after internal standardisation

coefficient of variance (CV) histograms of individual fea-

ture pairs within all replicates of a sample type were cal-

culated. The bin width was set to 5 %. CV values above

120 % were set to 120 % to achieve equidistant axis in the

plots. To demonstrate internal standardisation with multi-

variate statistics, PCA plots were calculated for the

monoisotopic 12C and U-13C labelled feature areas as well

as for the internal standardisation derived feature pairs. For

analytical precision analyses R (R Development Core

Team 2012 v. 2.15.2) was used. The functionality for

calculating the principal component analysis (PCA) was

taken from the package ChemometricsWithR (Wehrens

2011, pp. 53–57). Data were range scaled (van den Berg

et al. 2006) prior to PCA. For the ellipsis in the PCA plots,

the ellipse package (Murdoch and Chow 1996) was used.

Ellipses were calculated using the co-variance matrices of

PC1 and PC2 of the respective sample types.

3 Results and discussion

U-13C or 15N labelled metabolites show nearly identical

physico-chemical properties as their native non-labelled

analogues. As a consequence, LC–HRMS measurements of

mixtures of non-labelled and U-13C labelled biological

samples result in perfect co-elution of all isotopologues of

a particular metabolite with very similar chromatographic

peak shapes (Fig. 2). Thus, the analysis of mixtures of

native and U-13C labelled biological samples leads to

labelling-specific isotopic distributions of both the non-

labelled and U-13C labelled metabolites in all recorded

mass spectra containing biologically derived ion signals.

As can be expected from the ESI process, different ion

species such as protonated molecules as well as sodium

adducts or the loss of water from the intact molecules may

be observed. For each of the detected ion species two

distinct mirror-imaged isotopic patterns are present in the

mass spectra. In addition to the regular signal pattern

originating from the natural isotopic composition of carbon

(98.8 % 12C and 1.1 % 13C), the second isotopic pattern

shows ascending MS signal intensities towards higher m/z

values for all U-13C labelled metabolite derived ion spe-

cies. The relative abundance of the isotopic signals in the

pattern of the labelled metabolite is given by the degree of
13C enrichment achieved in the respective experiment

(variant A) or the labelled biological reference sample

(variant B). For the cultivation of F. graminearum strains

(variant A) the degree of 13C enrichment of metabolites

was estimated from one data file using highly abundant

features of both the monoisotopic 12C and the corre-

sponding U-13C labelled isotopologues. From the intensity

ratio of M0-1 to M0 as well as the deduced number of

carbon atoms for this isotopic pattern, the enrichment was

calculated to be as high as 99.5 %, which is in good

agreement with the suppliers specifications (99 %). For the

wheat and maize samples (variant B), the U-13C labelled

reference samples also corresponded well to the supplier’s

specifications of around 97.5 %.

Variant A can be realized without much extra effort for

less complex organisms such as bacteria, yeasts or fungi,

which can be grown on synthetic media that require only a

limited number of carbon sources, available as stable iso-

tope enriched nutrients. Growing U-13C labelled plants

(e.g. A. thaliana, wheat) has also been carried out suc-

cessfully but is a more challenging task regarding infra-

structure, costs, and time to establish cultivation conditions

in a controlled U-13CO2 enriched atmosphere and can be

demanding, particularly under the experimental conditions

of interest. If U-13C labelled plant material is commercially

available, variant B might be a good compromise as it

provides the possibility to use globally U-13C labelled plant

samples as reference for both qualitative and quantitative

measurements with the drawback however, that the bio-

logical experiment itself is not carried out under labelling

conditions. Mammalian organisms can be regarded to be

even more demanding than plants. So far, successful SIL

experiments (15N or 13C stable isotope enrichment[90 %)

of different mammalian cell lines (e.g. CHO) requiring

complex media have been reported (Egorova-Zachernyuk
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et al. 2011), but to the best of our knowledge, labelling of

whole mammalian organisms was not performed success-

fully to date.

With the presented approach, the systematic search of

MS-signals and feature pairs carrying the SIL specific

isotopic pattern virtually enables the complete annotation

of that part of the metabolome of a biological sample

which can be accessed by the chosen sample preparation

and measurement method. Moreover, since the mass

difference of the 12C monoisotopic ion M and its U-13C

labelled isotopologue ion M0 is proportional to the mass

difference between 12C and 13C isotopes (i.e. 1.00335 u),

the number of carbon atoms contained in that particular

metabolite ions can directly be calculated from the

measured HRMS spectra (Bueschl et al. 2012). A pre-

requisite to unambiguously assign the number of carbon

atoms (nC) in a particular metabolite ion directly, the

workflow requires the m/z value of both the monoiso-

topic, non-labelled M- and fully 13C labelled M0 ions to

be clearly identifiable among their respective isotopic

patterns (Fig. 2c). For example, a 13C enrichment of

98 % for the labelled metabolites allows extracting and

directly calculating the number of carbon atoms in

metabolite ions containing up to 60 carbon atoms. In

case the degree of 13C enrichment dropped to e.g. 85 %,

this number is reduced to a maximum of 7 carbon atoms

before the MS signal of a hypothetical 13C n-1
12 C1 reached

the same intensity as the fully labelled 13Cn isotopologue

and thus would interfere with direct nC assignment. It

should be noted however that even at a further reduced

enrichment degree of as low as e.g. 75 or 50 %, the

presented workflow does still allow for the automated

recognition of corresponding isotopic ion patterns when

parameter settings for processing are adjusted accord-

ingly. In addition to the qualitative aspects of improved

metabolome annotation, the use of globally U-13C

labelled biological samples permits a highly efficient

internal standardisation thereby enabling the assessment

of precision parameters (both biological and technical) as

well as compensation of matrix effects and improved

relative quantification of hundreds of metabolites

simultaneously.

3.1 Feature reduction by two-dimensional data filtering

and feature grouping

With an average number of approximately 2 million signals

(corresponding to 900 MS signals/mass scan), the raw chro-

matograms of Fusarium culture supernatants contained less

data points than the plant derived chromatograms carrying

roughly 3 million MS signals (1,200 MS signals/mass scan).

This greater complexity of the plant samples is also visible in

all successivedata processing steps. Thefirst datafiltering step,

comprises an inspection in everymass spectrum of a particular

Fig. 2 3D representation of a selected F. graminearum aggregate

sample analysed with LC–HRMS. Chromatogram of the unprocessed,

centroided (a) and the processed (b) with only the SIL derived MS

signals are shown. The 3D representation in c shows a zoomed section

of the unprocessed datafile (a) illustrating the labelling specific

isotopic pattern for three different ion species (M denotes the

monoisotopic 12C metabolite and M0 denotes the U-13C labelled

metabolite) of a metabolite with the neutral, monoisotopic mass of

624.3827 u and nC = 30 carbon atoms. 3D representations were

created with TOPPView (Sturm and Kohlbacher 2009, v. 1.10)

[figure-width: 174 mm]
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data file for groups of correspondingM (i.e. monoisotopic 12C

metabolite ion), M?1, M0 (i.e. U-13C labelled metabolite ion)

and M‘-1 isotopologue MS signals forming MS signal pairs.

The formation ofMS signal pairs in eachmass scan resulted in

themost significant reductionofdata points.As illustrated for a

selected F. graminearum aggregate sample (respective num-

bers for other sample types and experiments can be found in

Table 1), the LC–HRMS raw chromatogram (centroided and

converted to mzXML) contained a total of 1,987,654 MS

signals which were reduced by a factor of about 120 to 16,736

putativeM/M0 signal pairs under the tested conditions (Fig. 2a,

b). On average, the number of extracted signal pairs represents

0.6–0.9 % of the original contained MS signals. It should be

noted that low abundant principal ions (i.e. M or M0) may not

show distinctive M?1 or M0-1 isotopic signals (e.g. at the

beginning/end of a chromatographic peak), and thus these

signals are not considered during this filtering step. Therefore,

the number of real SIL derived signal pairs is always under-

estimated.However, data processingwhich does not verify the

isotopic patterns could successfully extract these low abundant

metabolite ions, but at the same time increase the number of

false positive findings (e.g. pairings of artefacts which can

originate from theFourier transformationprocess (Brownet al.

2009)). However, all SIL assisted data processing steps pre-

sented here always verify the isotopic patterns of both the

native andU-13C labelledmetabolite ions using the number of

carbon atoms for this ion species deduced from M and M0

respectively.

After MS signal clustering, feature pairs are extracted

from the data. As the non-labelled monoisotopic and its

corresponding U-13C labelled analogue of a particular

metabolite can be expected to show perfect chromatographic

co-elution, verification of retention time and chromato-

graphic peak shape similarity is used for feature pair picking

(Fig. 1-3-c). The subsequent de-isotoping step eliminates

incorrectly paired monoisotopic 12C- and U-13C features

which do not represent true monoisotopic or uniformly

labelled features. Together, the data filtering steps 3b–3d

reduced the metabolite-related information—depending on

the investigated organism—to ca. 300–900 distinct de-isot-

oped feature pairs per LC–HRMS chromatogram.

Since ionisation by electrospray may give rise to several

ion species for the same substance such as adducts, in-source

fragments or dimers, the SIL derived feature pairs are further

combined with the aim to convolute all ion species of a

particular metabolite into single groups (Fig. 1-3-e). Feature

grouping is greatly facilitated by the prior removal of all non-

biology related as well as all M?1, M?2 isotopic features

and, depending on the investigated samples, resulted in the

detection of 87–135 metabolites for the F. graminearum—

and 200–360 truly plant derived substances for themaize and

the wheat extracts respectively. As a major benefit of the

presented approach all of these metabolites can be used to

build-up reference databases and can serve as positive lists

for future metabolomics experiments. The list of approxi-

mately 135 metabolites detected for the Fusarium aggregate

samples (variant A, labelling under experimental conditions)

can be assumed to comprise all metabolites which have been

produced and released by at least one of the fungal strains

under the tested conditions. For variant B of the workflow,

which is exemplified with globally U-13C-labelled reference

samples, the detected metabolites are restricted to those

present in both, the reference as well as the experimental

samples. Nevertheless, all of the generated feature groups

facilitate metabolic feature annotation and come with addi-

tional valuable characteristics for molecular formula gen-

eration and metabolite annotation such as the number of

carbon atoms, the charge state for eachmetabolite ion aswell

as all other ion species detected for that particular metabolite

(i.e. feature group).

Table 1 The table provides a quantitative overview of the data processing results with the proposed workflow (Fig. 1)

No. Workflow

step

Wildtype PH-1

(variant A)

Aggregate samples

(variant A)

Remus wheat

(variant B)

CM wheat

(variant B)

CO354 maize

(variant B)

MS signals 3-a 1.8 9 106

(±0.06 9 106)

1.9 9 106

(±0.09 9 106)

3.0 9 106

(±0.01 9 106)

3.0 9 106

(±2 9 102)

2.8 9 106

(±7 9 103)

SIL derived signal

pairs

3-b 1.06 9 104

(±0.24 9 104)

1.65 9 104

(±0.52 9 104)

1.87 9 104

(±0.66 9 104)

2.09 9 104

(±0.19 9 104)

2.04 9 104

(±0.67 9 104)

MS signal clusters 3-b 8.09 9 102

(±0.27 9 102)

1.28 9 103

(±0.04 9 103)

2.07 9 103

(±0.03 9 103)

2.32 9 103

(±0.13 9 103)

1.39 9 103

(±0.37 9 103)

Feature pairs before

de-isotoping

3-c 824 (±19) 1,199 (±34) 1,288 (±30) 1,443 (±92) 858 (±274)

De-isotoped feature

pairs

3-d 291 (±9) 442 (±14) 797 (±9) 902 (±68) 511 (±166)

Feature groups (i.e.

metabolites)

3-e 87 (±6) 135 (±6) 347 (±12) 362 (±32) 209 (±58)

Selected sample types are taken from the F. graminearum, wheat and maize experiment. The mean value and its standard deviation among the

replicates within a certain sample type are given Table 1

A novel stable isotope labelling assisted metabolomics workflow 763

123



3.1.1 Comparison of feature extraction with a labelling-

free workflow

To compare the number of SIL derived features with those

found with a labelling-free metabolomics approach, a

selected native F. graminearum aggregate sample (con-

sisting of a mixture of non-labelled F. graminearum

wildtype and non-labelled tri5D mutant culture superna-

tants) was diluted 1:1 (v/v) with either Fusarium minimal

medium (FMM) or a pooled 13C-aggregate supernatant, to

generate two LC–HRMS samples both containing the

native metabolites at identical concentration levels.

Retention time shifts observed between the respective LC–

HRMS chromatograms were negligible (see TICs in

Fig. 3a). Parameter settings for XCMS-based (Smith et al.

2006) feature extraction for the non-labelled aggregate

sample chromatogram such as intensity threshold (5,000

counts), minimum number of scans (39), maximum ppm

deviation (2.5 ppm) were kept identical to the SIL assisted

feature picking in order to ensure maximum comparability

of results between the two approaches. As expected, with

XCMS every chromatographic peak in the data regardless

of its origin (biological, background, noise…) was

extracted as a feature. In total, n = 4,625 features (illus-

trated as grey symbols in scatter plot of Fig. 3b) were

found by XCMS based data processing including all low

abundant features with no observable isotopic peaks or MS

signals. In contrast, with the SIL assisted approach MS

signal- and feature pair picking and subsequent de-isotop-

ing only yields monoisotopic 12C features with a high

degree of confidence to correspond to truly sample derived

metabolites. In total, application of the SIL assisted

workflow yielded 431 feature pairs (red dots in scatter plot

in Fig. 3b) which are about ten times less compared to

XCMS. Moreover, data processing and automated com-

parison of the SIL and XCMS assisted approach resulted in

28 feature pairs (Fig. 3b blue dots) solely found with the

SIL assisted approach. A closer, manual inspection of these

28 results showed, that 22 features were not automatically

matched because of larger m/z or retention time deviations.

Only three feature pairs found solely with the SIL assisted

approach did not show any signals in the native sample

Fig. 3 a Illustration of an overlay of full scan LC–HRMS total ion

current chromatograms obtained for two F. graminearum aggregate

samples. Red Non-labelled 12C and U-13C culture filtrate mixed 1:1

(v/v); grey Non-labelled filtrate mixed 1:1 with fungal growth

medium. b 2D plot of detected LC–HRMS features (all dots). Grey

symbols indicate all features found with XCMS processing. Red

symbols represent monoisotopic 12C features found by both XCMS

and the presented workflow (variant A, Fig. 1). Monoisotopic 12C

features found by the labelling assisted approach only are marked in

blue. Features with a retention time[30 min are mainly detected by

XCMS. Due to the higher strength of the eluent, predominantly

impurities of non-biological origin such as polymers and apolar

compounds are displaced from the stationary phase [figure-width:

174 mm]
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processed with XCMS. Moreover, 3 of these 28 feature

pairs were identified as false positives (e.g. pairings of

Fourier transform artefacts (Brown et al. 2009)). For

additional manual inspection of those parts of the LC–

HRMS chromatograms showing a high density of features

(e.g. Rt C 30 min or m/z B 150), which had only been

found by XCMS, TOPPView was used to confirm that none

of these features did show corresponding U-13C labelled

isotopologues.

It should be noted that workflows which do not make

use of SIL, generally try to not further consider those non-

biologically related background features by using statistical

analysis to select features significantly differing between

two or more experimental conditions. Such an assumption

implies, however that only biologically derived features

vary significantly between the different experimental con-

ditions and that all others approximately show similar

abundances across the different sample types.

3.1.2 Selectivity of the presented approach

To demonstrate the selectivity of the workflow for the

extraction of truly biologically related metabolite features

by the use of SIL, eight blank samples were included in a

measurement sequence of F. graminearum samples and

evaluated according to the presented workflow (variant A).

Three of these blanks, which consisted of purified water

instead of fungal supernatant, were employed as solvent

blanks. Furthermore, five aggregate samples containing

only the non-labelled F. graminearum metabolome served

as simulated matrix background blanks. Metabolite ions

detected in the native F. graminearum supernatants were

not expected to be found with the SIL assisted data pro-

cessing steps since they did not contain any U-13C labelled

metabolites. In the solvent blanks, hardly any MS signal

pairs (searched in each mass scan, Fig. 1-3-b) were

extracted (2, 26 and 39 MS signal pairs respectively).

Better yet, none of these MS signal pairs were further

confirmed to be valid feature pairs according to the pre-

defined filtering criteria (Fig. 1-3-c). The simulated back-

ground blanks showed 14, 17, 7, 224 and 106 MS signal

pairs on a mass scan level. Subsequent feature pair picking

revealed 0, 1, 1, 1 and 5 feature pairs for the simulated

background blanks respectively. However, none of such

extracted feature pairs were found in more than one of the

measured matrix blanks. Further manual inspection clearly

showed that all of these randomly picked feature pairs

fulfilled the present criteria either by chance or were

pairings of different adducts or Fourier transformation

artefacts (Brown et al. 2009). Such incorrectly picked

adducts or artefacts showed nearly identical chromato-

graphic profiles and they were therefore not discarded as

false positives automatically (Fig. 1-3-e). Two of these

feature pairs were detected at [700 u with a difference

between the monoisotopic 12C and corresponding U-13C

mass corresponding to less than ten carbon atoms. Thus

such feature pairs can easily be excluded from further data

analysis. In conclusion the very low rate of false positives

in both types of blank samples demonstrates the excep-

tionally high selectivity of the presented approach in only

extracting truly biologically related feature pairs.

3.2 Results of internal standardisation

Absolute quantification in untargeted metabolomics

experiments of all detected (known or unknown) metabo-

lites is generally not feasible by most of the current

approaches. Moreover, the accuracy of relative feature/

metabolite quantification in untargeted metabolomics

experiments is limited by matrix effects which can cause

problems during statistical analysis as the biased feature

abundances complicate comparison across different

experimental conditions. Internal standardisation using

globally stable isotope labelled biological samples provides

the ideal tool to overcome these limitations and has already

been used for relative (e.g. Giavalisco et al. 2009) and even

for absolute quantification in untargeted metabolomics

approaches (Bennett et al. 2008). As the presented work-

flow also makes use of globally U-13C labelled biological

samples, the effect of global internal standardisation on

matrix effects and technical precision has been investigated

at the example of the F. graminearum dataset.

3.2.1 Correction of matrix effects

In many metabolomics experiments unsupervised multi-

variate statistical tools such as PCA are used as a first step

to reduce the dimensionality of the analytical data and test

for separation of biological samples into different classes

according to experimental conditions. Such tools operate

on different signal abundances or feature areas in the data

matrix obtained from prior data processing. In order to test

the suitability of the SIL assisted workflow to correct for

matrix effects, feature areas obtained for the F. grami-

nearum dataset were range scaled (van den Berg et al.

2006) and subsequently PCA score plots were calculated

using (1) peak areas of monoisotopic 12C features (12C-

PCA, Fig. 4a), (2) U-13C labelled ion species (U-13C-PCA,

Fig. 4b) and (3) the peak area ratio of the respective non-

labelled and U-13C features of a certain feature pair (12C/

U-13C-PCA, Fig. 4c). To be able to compare the three

different PCA plots, only those feature pairs which had

been found consistently throughout all replicates and

samples categories (PH-1, tri5D and pooled aggregate

samples (AGs)) were considered (n = 109).
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As can be expected from the experiment, the score plot

of the 12C-PCA shows a clear separation of the PH-1, tri5D

and AGs samples into three distinct groups. The same

holds true for the 12C/U-13C-PCA, which was calculated

from the area ratios of non-labelled and corresponding

U-13C features. Additionally the variance captured by PC1

and PC2 increased slightly from 85.4 to 88.8 %. Compared

to the 12C-PCA, the aggregate samples are located in the

centre of the 12C/U-13C-PCA score plot (Fig. 4c), which is

explained by the range scaling process together with the

fact that these aggregate samples constitute of equal

amounts of U-13C internally standardised PH-1 and tri5D

samples. In contrast to the ideal behaviour of the U-13C-

standardised AG samples, matrix effects obviously affected

the monoisotopic 12C feature areas of the aggregate sam-

ples (Fig. 4a), which in turn become visible as a shift of the

aggregate sample group away from the centre of the 12C-

PCA score plot.

Interestingly, the use of U-13C-feature areas for PCA

also resulted in a clear separation into the three sample

categories, although (according to the preparation protocol

for the AGs, see Sect. 2.3.1) the absolute concentration

levels of all U-13C labelled metabolites were identical in

every of the analysed samples and sample type. In this

case, the separation of the sample groups in the U-13C-PCA

plots is explained by the different metabolic composition of

the wildtype PH-1, tri5D and AGs samples with respect to

their non-labelled metabolites, which resulted in distinct

alterations of the areas derived from U-13C labelled fea-

tures (i.e. matrix effects) for each of the tested sample

categories. The separation of the three sample categories

based on the peak areas of the respective U-13C features

would have never been recognised as artefact (caused by

matrix effects) without the availability of globally U-13C

labelled biological samples. In contrast, an observation as

depicted in Fig. 4b most probably would have led to the

false conclusion that metabolites differing between the

experimental samples had caused the separation according

to the tested experimental states.

3.2.2 Precision of workflow and improvement of technical

data variability

Stable isotope labelling assisted internal standardisation

has been successfully used for improved metabolite quan-

tification in GC–MS and LC–MS based metabolomics

studies (e.g. (Birkemeyer et al. 2005; Bennett et al. 2008;

Giavalisco et al. 2009)). Here, the assessment and

improvement of both biological and technical precision of

the presented SIL assisted workflow are exemplified with

the F. graminearum dataset. Again, U-13C labelled fungal

samples were employed for global internal standardisation

of non-labelled samples and subsequently precision mea-

sures of the workflow were estimated. Only those feature

pairs were considered which had been found in all repli-

cates of the respective sample type corresponding to

n = 307 12C/U-13C feature pairs for PH-1 wildtype data

and n = 424 for aggregate samples. Coefficients of varia-

tion (CVs) of each feature (pair) were calculated across all

replicates of a particular sample type, the distribution of

CVs was plotted as a histogram with a class size of 5 %

(Fig. 5) and the median CV as well as 90 % percentile

were taken as precision estimate. For PH-1 samples, CVs

of monoisotopic 12C feature areas showed a median value

of 15.1 % with 90 % of all features showing CVs below

36 %. These CV values can be interpreted as a measure for

the variability of the overall workflow including all steps

from culturing of fungi (biological variance) to sample

Fig. 4 Three PCA scores plots derived from consistently extracted

feature pairs of three sample types: F. graminearum samples PH-1,

tri5D and aggregate samples (AGs). For all three PCAs the exactly

same set of feature pairs was used, however different intensity values

(peak areas) were taken for each feature pair. a areas of monoisotopic
12C features of the respective feature pairs, b areas of U-13C labelled

features, c intensity ratios of monoisotopic 12C and corresponding

U-13C feature area (internal standardisation) [figure-width: 174 mm]
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preparation, LC–HRMS measurement, data processing and

feature integration (technical variance). Using the area

ratio of corresponding monoisotopic 12C and U-13C fea-

tures, the overall precision of PH-1 samples was improved

to a median CV of 10.8 %, with 90 % of all features

showing CVs below 26.6 %, indicating that (1) biological

and technical variability roughly contributed equally to the

overall spread of feature areas and (2) internal standardi-

sation with globally U-13C labelled samples helped to

improve precision considerably. For the tri5D mutant,

comparable CV values and improvements were obtained

(data not shown).

In order to estimate and dissect the precision of the end

determination step (i.e. LC–HRMS measurement, data

processing and feature integration), 12C/U-13C aggregate

samples, consisting of 1:1 mixtures of PH-1/tri5D super-

natants were measured as replicate injections (n = 13) at

regular intervals over a complete LC–HRMS sequence.

The distribution of CVs of the monoisotopic 12C feature

areas showed a median CV of 7.1 % (90 % of all features

had CV values below 18 %). After internal standardisation

(blue histogram), the distribution of CVs shifted left (blue

histogram) towards lower CV values with a median and

90 % quartile of to 3.6 and 9.7 % respectively, demon-

strating a substantial improvement (*50 %) of the LC–

HRMS end determination.

It should be noted that for a few (n\ 10) features the

internal standardisation of F. graminearum culture super-

natants resulted in CV values[120 %. This might have

been caused by non-reproducible degradation/chemical

conversion of a few metabolite features in the samples but

this phenomenon was not further investigated in this study

however.

With ca. 20 % and 40–50 % respectively the distribu-

tion of CVs in wheat and maize samples (variant B) yielded

slightly higher median and 90 % percentile values than for

the F. graminearum samples (data not shown). Similar to

the F. graminearum experiment, wheat and maize aggre-

gate samples were used to study the technical precision.

Similar to Fusarium, median CV (90 % percentile) values

shifted from roughly 8 % (16 %) to 5 % (20 %) for wheat

and 12 % (22 %) to 6 % (17 %) for maize respectively

(data not shown).

In conclusion, the above illustrated results are in good

agreement with the reports of e.g. Birkemeyer et al. (2005),

Bennett et al. (2008), Giavalisco et al. (2009), who

described enhanced precision and (relative) quantification

after metabolome wide internal standardisation by use of

U-13C labelled biological samples. Furthermore, as shown

for F. graminearum samples, internal standardisation

resulted in an improved performance of multivariate data

analysis.

Fig. 5 Histograms showing the distributions of coefficients of

variation (CV) across all SIL derived features which were consistently

found in all replicates of F. graminearum wildtype PH-1 (n = 6) and

F. graminearum aggregate samples (n = 13). The histograms in a and

b (red) were derived from the peak areas of the monoisotopic 12C

feature of the respective feature pairs while c and d (blue) were

calculated after internal standardisation with the areas of the

corresponding U-13C labelled features of the very same feature pair.

Histograms e and f (overlay of transparent red and blue) combine the

respective above two histograms to illustrate the shift towards lower

CVs by internal standardisation, achieved for both sample types

[figure-width: 129 mm]
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4 Concluding remarks

Recent reports of SIL assisted tools and techniques and

their application to various fields of metabolomics have

illustrated significant improvements to circumvent major

challenges of untargeted metabolite profiling. The pre-

sented workflow enables the untargeted global extraction

of truly metabolite related MS signals and features in LC–

HRMS datafiles derived from native and U-13C labelled

metabolomes. Together with the automated generation of

hundreds of feature groups per sample, each of which is

representing a distinct metabolite, this approach constitutes

a major step forward towards global annotation of the

entire metabolic composition of biological samples.

Additionally, metabolome wide internal standardisation

with U-13C labelled samples greatly enhances accuracy and

reliability of relative quantification by correction of tech-

nical variability as well as correction of matrix effects,

which otherwise are difficult to evaluate and compensate.

In conclusion, although stable isotope labelling of whole

metabolomes for untargeted metabolomics is still challeng-

ing and generally requires additional efforts in terms of costs

and/or experimental design, it is anticipated that SIL assisted

metabolomics will arouse increasing interest and become a

well-established technique in metabolomics research.
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a b s t r a c t

Anthocyanin degradation has been proposed as one of the primary causes for reduced colour and quality

in red wine grapes grown in a warm climate. To study anthocyanin degradation we infused berries with

L-phenyl-13C6-alanine and then tracked the fate of the anthocyanins comparing normal (25 °C) and warm

(45 °C) temperature conditions. An untargeted metabolomics approach was aided by filtering the MS data

using software algorithms to extract all M and M+6 isotopic peak pairs, allowing the analysis to focus

solely on the metabolites of phenylalanine. A paired-comparison t-test was performed over the 8 biolog-

ical replicates revealing 13 metabolites that were statistically different between 25 °C and 45 °C treat-

ments. Most of these features had lower abundances in 45 °C samples, confirming that 45 °C treatment

caused anthocyanin degradation. In addition, resveratrol was significantly reduced following heat treat-

ment. However, 5 metabolites increased following the 45 °C treatment. These unidentified metabolites

are therefore suspects for anthocyanin degradation products.

Ó 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Anthocyanins are flavonoids responsible for blue to red pig-

ments in strawberries, blueberries, grapes, and many other fruits

and vegetables. In addition, anthocyanin metabolites are thought

to be beneficial in the human diet (Forester & Waterhouse,

2010). In wine grapes, anthocyanin content and colour is consid-

ered highly reflective of quality (Somers, 1998). For example, the

central valley of California produces more red wine grapes than

any other part of the country but the price for these grapes is sig-

nificantly less than the price for grapes produced in cooler wine

regions. One of the primary reasons for this disparity is reduced

anthocyanin content. Researchers have long known that warm cli-

mate causes lower anthocyanin content in central valley grapes,

however, the mechanism was poorly understood (Winkler, Cook,

Kliewer, & Lider, 1962). On the other hand, cool climates may also

result in lower anthocyanin content (Ferrer-Gallego, Hernández-

Hierro, Rivas-Gonzalo, & Escribano-Bailón, 2012). It appears that

there may be an optimal temperature range for anthocyanin accu-

mulation, but further conditions such as genotype, rootstock, soil,

as well as others are also critical in modulating this optimum.
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Recently, anthocyanin catabolism as a result of warm climate

has been identified as an important influence of total anthocyanin

content, yet to what extent remains unknown (Mori, Goto-

Yamamoto, Kitayama, & Hashizume, 2007). Using freshly har-

vested grapes exposed to 13C labelled phenylalanine in vitro,

researchers observed increased degradation of labelled anthocya-

nins at elevated temperatures. Similarly, anthocyanin degradation

has been observed in red grape cell suspension cultures, where

anthocyanin loss was stemmed by treatment with magnesium

(Sinilal et al., 2011). While the molecular mechanism of this degra-

dation is still unknown, it has been demonstrated in vivo, that

anthocyanin turnover is a crucial parameter in this respect. In prin-

cipal, anthocyanin turnover may occur from an enzymatic pathway

or non-enzymatic chemical modification, and a few studies have

sought to uncover this phenomenon (Mori et al., 2007; Rowan

et al., 2009). With respect to enzymatic metabolism, two potential

pathways may result in the depletion of anthocyanin pools: an oxi-

dative pathway and a deconstructive pathway. An oxidative path-

way would involve enzymes such as polyphenol oxidase or

peroxidases whereas a deconstructive pathway would simply

involve movement of anthocyanins backwards through their bio-

synthetic pathways, perhaps starting with b-glucosidases (Sinilal

et al., 2011). Evidence for both metabolic routes exist (Mori et al.,

2007; Rowan et al., 2009). To our knowledge there is no published

investigation of grape anthocyanin degradation in vivo. In order to

improve anthocyanin content in warm climate grapes, a funda-

mental understanding of the turnover/degradation of anthocyanins

must be established.

Phenylalanine has long been used to elucidate biochemical

pathways (Neish, 1960), and in recent years mass spectrometry

based studies greatly contributed to a better understanding of

the kinetics and direction of phenylpropanoid metabolism

(Boatright et al., 2004; Matsuda, Morino, Miyashita, & Miyagawa,

2003). In the last ten years mass spectrometry based metabolomics

studies have begun to aim at the global detection of the entire cat-

alog of natural products of a biological system. This latest of the -

omics disciplines shows high potential for the global study of

specific changes in metabolites. However with respect to anthocy-

anin degradation, only a few studies have been published so far.

Bar-Akiva and colleagues, for example, applied an untargeted

metabolomics approach and found 17 molecular features that dif-

fered between Brunsfelsia flower petals naturally transforming

from purple to white (Bar-Akiva et al., 2010). They concluded that

future studies might largely benefit from the use of isotopic tracers

to help determine the formation and biochemical fate of labelled

anthocyanins.

The combination of in vivo stable isotopic labelling with liquid

chromatography-high resolution mass spectrometry (LC-HRMS)

based untargeted metabolomics approaches offers great potential

for the study of plant metabolism including phenylpropanoid and

anthocyanin related metabolic pathways. Comprehensive labelling

with 13CO2 has been successfully used in combination with LC-

HRMS for example to annotate the metabolome of Arabidopsis

thaliana (Giavalisco et al., 2011; Hegeman et al., 2007) or to eluci-

date the diversity of anthocyanins in red cabbage (Charron et al.,

2008). Apart from experiments aiming at the global labelling of

whole plants, stable isotope tracer-assisted techniques have been

shown to be powerful tools for the investigation of secondary

metabolic pathways including phenylpropanoids by metabolic flux

analysis (Heinzle, Matsuda, Miyagawa, Wakasa, & Nishioka, 2007;

Matsuda et al., 2003). Recent improvements of analytical instru-

mentation such as HRMS and software algorithms for automated

data processing enable the sensitive detection of metabolism prod-

ucts of xenobiotics and other secondary metabolites by untargeted

metabolomics approaches. In a recent study, Kluger et al. described

the automated and untargeted LC-HRMS based detection of novel

mycotoxin conjugates formed in flowering wheat ears upon treat-

ment with a mixture of the U-13C labelled and native tracer toxin

deoxynivalenol (Kluger et al., 2012). That study made use of the

automated search for labelling specific isotopic patterns in the

mass spectra by a novel data processing algorithm (Bueschl et al.,

2012). A similar approach shall be used in the present work, look-

ing at the constitutive phenylalanine metabolic pathways.

2. Materials and methods

2.1. Sample collection and preparation

A single cluster of self-rooted Cabernet Sauvignon, Clone 8, ber-

ries was removed from the Hopkins experimental vineyard at the

University of California, Davis on August 19, 2011. At this time,

approximately 75% of the berries in the vineyard had begun to

ripen, turning from green to red. The grapes were then individually

removed from the cluster by cutting the rakis. Once removed, the

berries were sorted into 8 similarly sized and coloured groups of

4 berries. The berries of each group were then washed with sodium

hypochlorate and ethanol, as previously described, and cut in half

with a scalpel (Mori et al., 2007). Each half of each berry was sep-

arated into a treatment and control Petri-dish lined with filter

paper, forming 8 replicate pairs of 4 berry halves each on a treat-

ment and control Petri-dish for a total of 32 divided berries.

Grape seeds were left intact in the grape unless they interfered

with the splitting of berry halves, in which case they were

removed. The Petri-dishes and filter paper were immediately

hydrated with 2 mL of a filtered solution of 2 mM L-phenyl-13C6-

alanine (Cambridge Isotope Labs, Cambridge, MA), 0.3 M sucrose

in water. Each plate was held at ambient temperature under fluo-

rescent light with 0.8 mL of 13C6-Phe/sucrose added after 24 h to

keep the plates hydrated. At 48 h, the grapes were transferred to

new Petri-dishes with new filter paper, to which 2 mL of 0.3 M

sucrose was added immediately and 0.8 and 0.125 mL were added

at 72 and 96 h, respectively. Then after 96 h, the treatment and

control groups were split into dark chambers held at 45 °C and

25 °C, respectively. Finally at 120 h, the grapes were frozen in

liquid nitrogen and held at -80 °C until extraction.

Grape berry skins were separated from the pulp as they thawed

and added to 10 mL MeOH (4 berry skin halves/tube). That mixture

was sonicated in an ice bath for 2 h, after which an aliquot was

diluted 50:50 (v/v) with water and successively filtered with

0.22 lm PTFE (Agilent, Santa Clara, CA) and 3000 kDa Amicon Ultra

regenerated cellulose filters (Millipore, Cork, IR). The filtrate was

then diluted 20:80 (v/v) with mobile phase A (see Section 2.2)

and analysed by LC–MS and LC–MS/MS during separate injections.

2.2. ChipLC–MS and ChipLC–MS/MS

An Agilent 6520 Q-TOF MS coupled with an Agilent 1200 series

HPLC-chip system (Agilent Technologies, Inc., Santa Clara, CA) was

used in this study. A nano-HPLC chip (G4240-65010 UHC small

molecule chip, Agilent Technologies, Inc., Santa Clara, CA) with

a 500 nL enrichment column and 150 mm � 0.075 mm i.d. analyt-

ical column was used for chromatographic separation. Both the

enrichment and analytical columns were packed with Zorbax

80SB-C18 (5 lm particle) stationary phase. The binary mobile

phase consisted of (A) 3% acetonitrile/water (v/v) and (B) 90% ace-

tonitrile/water (v/v), with both containing 0.1% formic acid. For

loading of the sample onto the enrichment column, the capillary

pump was operated at 4 lL/min using 99% solvent A. The sample

on the enrichment column was transferred to the analytical col-

umn in a forward flush mode. A gradient-based chromatographic

separation was performed on the analytical column and was driven
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by the nanoliter pump running at 400 nL/min. The 27 min gradient

used for the separation is as follows: 4–10 min, 1–15% B;

10–16 min, 15–25% B; 16–21 min, 25–80% B; 21–24 min, 80% B;

24–27 min, 1% B and a 5 min post equilibration time at 1% B.

The Q-TOF MS was operated in positive electrospray ionisation

(ESI) mode for MS scan and data-dependent MS/MS. The source

and ion optic parameters were optimised for minimal in-source

fragmentation and improved sensitivity. The drying gas tempera-

ture and gas flow were 325 °C and 4 L/min, respectively. Capillary

voltage was 1975 V for the entire LC run, and fragmentor voltage

was set to 135 V. To cover the majority of Vitis vinifera flavonoids

but exclude higher mass proanthocyanins which could contribute

to background noise, recorded mass ranges were from m/z

105–700 for MS only and m/z 50–700 for MS/MS. Acquisition rates

were 1 spectrum/s for MS and 3 spectra/s for MS/MS. The instru-

ment was calibrated with ESI tuning mix (G1969-85000, Agilent

Technologies, Inc., Santa Clara, CA), with reference masses at m/z

622.029 for positive mode. For the data-dependent MS/MS analy-

sis, the precursor ion was automatically selected based on abun-

dances with doubly charged ion being given the first priority

followed by singly charged ion. The isolation width of automati-

cally selected ions was set to ±2 u. The collision energy applied

was based on the m/z of the ions and varied according to the

following equation:

Collision energy ¼
m=z

100
� 3:94ÿ 0:72

The optimum conditions for collision-induced dissociation

(CID) were investigated through preliminary experiments.

2.3. MetExtract data analysis

2.3.1. Screening of labelling-derived MS signals

Each LC-HRMS raw chromatogram was processed with an

extended but yet unpublished version of MetExtract (Bueschl

et al., 2012) with the aim to automatically extract all M and M+6

peak feature pairs (see section results and discussion) containing

the 13C6 phenyl moiety. First each mass spectrum was inspected

for candidate 12C monoisotopic ions (M) and the associated charac-

teristic isotopic pattern expected for metabolite ions, having the
13C6 aromatic ring incorporated (M+6). Parameters for MS signal

extraction consisted of a maximum tolerated mass deviation of

±20 ppm from the mass of the 13C6 labelled ion (m/z value of

M+6 was predicted from measured m/z of a putative M). Addition-

ally, the presence of each of the M+1, M+5 and M+7 ions and their

relative isotopic abundance ratios (deduced from highly abundant
12C and corresponding 13C6 isotopologues) were verified and used

as a qualifier criterion for M and M+6 respectively. Finally, all M

and M+6 MS signal pairs were grouped according to m/z values

of M using hierarchical clustering with a maximum relative mass

difference between the highest and lowest m/z value within the

same MS signal cluster of ± 40 ppm.

2.3.2. Chromatographic peak picking, extraction and grouping of

features

These data processing steps were carried out as recently

described (Bueschl et al., 2013). In brief, for each resultingm/z clus-

ter, the extracted ion chromatograms (EICs) of the monoisotopic
12C (M) and the 13C6 labelled (M+6) ions were evaluated for chro-

matographic peaks using the wavelet algorithm presented by Du,

Kibbe, and Lin (2006). Only feature pairs consisting of correspond-

ing chromatographic peaks for both the M and M+6 ions with sim-

ilar retention times (within ±10 MS scans) and chromatographic

peak shape (Pearson correlation coefficientP0.5) were considered.

Subsequently, all monoisotopic 12C features representing the

same metabolite were grouped together by comparing the

chromatographic peak shape of the feature of interest with those

of all other features (Pearson correlation coefficientP0.85) within

a time interval of ±10 MS scans around the respective retention

time. Feature groups were inspected to assign the frequently

observed predefined adducts [M+H]+, [M+NH4]
+, [M+Na]+, [M+K]+.

2.3.3. Construction of preliminary data matrix and target search for

missing data

To compare relative feature levels between biological replicates

and the two different treatments, the feature intensities (i.e. chro-

matographic peak areas) were organised in a matrix. Each row rep-

resented a distinct M/M+6 feature pair (ID of feature pair, ID of

feature group, m/z value, retention time, type of ion species, if

known). Samples were organised in rows, with the individual cells

of the matrix containing peak areas of corresponding M and M+6

feature placed next to each other. Features potentially missed in

any of the measurement files by the above mentioned strict

parameter settings and/or low peak intensities were searched for

in a targeted approach. This data matrix was further refined and

extended by the weights of the individual samples and can be

found in the supplemental material (Supplemental 2).

2.4. Statistical analysis

Prior to statistical analysis, for which R (R Development Core

Team, 2012, V. 2.15.2) was used, all automatically acquired inten-

sities were corrected by the weight of the respective berry skin

sample and data still missing after targeted screening were filled

by the arithmetic mean intensity value of the respective feature.

For each data file, intensities (i.e. chromatographic peak areas) of

all M and M+6 features within a particular feature group (i.e.

metabolite) were summed, resulting in two intensity values (M

and M+6) per metabolite and sample. Since groups of four grape

berries were split in half with one set subjected to 25 °C and the

other halves to 45 °C, a paired difference t-test was used to identify

metabolites significantly differing (one-sided t-test, p < 0.05)

between 25 °C and 45 °C treatments (Harris, 2010). For this, the

summed areas of features from M and M+6 feature groups were

used independently. Additionally, the relative difference [%]

between 25 °C and 45 °C treatments was calculated for each signif-

icant feature group. This was achieved by calculating the mean dif-

ference of summed feature areas between the split berry halves

relative to the condition with higher metabolite levels i.e. either

the 25 °C or 45 °C treatment respectively.

3. Results and discussion

First, the acquired LC-HRMS raw chromatograms were

inspected using TOPPView (Sturm & Kohlbacher, 2009). Highly

abundant features containing M+6 patterns were clearly discern-

ible in 2D chromatograms confirming the incorporation of the
13C6-aromatic ring in newly formed metabolites and the formation

of the expected isotopolog pattern (Fig. 1). In this respect, the

native, 12C isotopologs (M) of the respective metabolic features

originate from non-labelled phenylalanine in the grape berries

present prior to the experiment, while the isotopologs which carry

the 13C aromatic ring could have only been formed during the

120 h incubation with 13C6 Phe and exhibited a typical m/z differ-

ence of 6.0201 u compared to their native isotopologs. This manual

inspection also confirmed that no retention time shifts for the

labelled isotopologs were present and that these isotopologs

showed perfect co-elution with their native, non-labelled ana-

logues. Using these highly abundant features, the enrichment of
13C isotopes in the labelled phenylalanine tracer was calculated

to be 98.8%. A comparison of the abundances observed for M and
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M+6 of manually selected feature pairs showed that M+6 ions were

present at approximately 1/5th of the level of M ions, which can be

explained by the fact that native, non-labelled metabolites were

already accumulated in the grape berries prior to the experiment.

These observations were used to perform the automatic search

for M and M+6 ions containing either an unlabelled or an U-13C

labelled aromatic ring derived from the labelled phenylalanine

(Fig. 2).

3.1. Molecular features containing M+6 label

Using the labelling assisted workflow described above, 110 ana-

lytical feature pairs were found across the 8 biological replicates of

treatment and control samples (Supplemental 1). Each of these fea-

ture pairs consists of the monoisotopic 12C (M) and its correspond-

ing 13C6 (M+6) ion species. All of these feature pairs can be

assumed to represent metabolites, truly formed during the biolog-

ical labelling experiment. Four extraction solvent blank samples

were also measured. No labelling specific feature pairs were

extracted from the data files of these blank samples. Some of the

features found by the applied stable isotope-assisted approach

occasionally showed low abundant chromatographic peaks in the

blank samples with the experimental samples generally exhibiting

100-fold higher feature abundance. Both features of an M and M+6

feature pair can be characterised by a unique feature ID, m/z value,

retention time and intensity value (chromatographic peak area).

Assuming the ion species [M+H]+, [M+NH4]
+, [M+Na]+ and [M+K]+

which belong to the most frequently formed adduct ions produced

by electrospray ionisation, the molecular ion type could be

assigned to 23 of the detected 110 features. Convolution of features

into groups, representing single metabolites was based on reten-

tion time and peak shape similarity and resulted in 63 feature

groups thus, each of which is representing a distinct metabolite.

Barring false positives, this list (Supplemental 1) represents molec-

ular ions that were labelled by 13C6-aromatic ring. Metabolite ions

carrying two labelled aromatic rings were also extracted by MetEx-

tract, the assignment of the two aromatic rings was not performed

automatically however. For example, feature ids 55 and 57 listed in

Supplemental material 1 represent two distinct feature pairs. With

the automated grouping they were however grouped to the same

metabolite. A manual inspection then showed that the m/z values

of these two feature pairs differed by exactly the same m/z value

as the M and M+6 ions of each feature pair, confirming that these

respective metabolites contained two labelled aromatic rings.

Using previously published m/z data of V. vinifera and anthocy-

anin degradation, possible identities were suggested for as many of

the molecular features as possible (Bar-Akiva et al., 2010; Castillo-

Munoz et al., 2009; Cavaliere et al., 2008; Mazzuca, Ferranti,

Fig. 1. Illustration of the isotopic pattern of metabolites incorporating one 13C6 labelled aromatic ring of phenylalanine (feature pair #62; mono-isotopic 12Cm/z: 465.102; RT

[min] 12.35). The M and M+1 ions are due to the natural isotopic composition of carbon (�99% 12C and �1% 13C) in the non-labelled ion, while the corresponding M+5, M+6

and M+7 isotopologues can be attributed to the labelled analogue after incorporation of a 13C6 aromatic ring (�1% 12C and �99% 13C) and result from berry incubation with
13C6 phenylalanine.

Fig. 2. Incorporation of 13C6-labelled phenylalanine into different anthocyanin species.
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Picariello, Chianese, & Addeo, 2005; Moss, Mao, Taylor, & Saucier,

2013; Pati, Liberatore, Gambacorta, Antonacci, & La Notte, 2009).

Molecular features were then assessed for mass accuracy versus

their possible identities. Accurate mass based annotations were

confirmed by the presence of aglycone structures as in-source or

product ion fragments when possible. In some cases, product ion

mass spectra were compared to spectra obtained from the dat-

abases Metlin and Massbank. However, databases are still limited

in their breadth so not all putatively identified metabolites were

confirmed using spectral libraries.

Metabolites putatively identified include hydroxycinnamic

acids, anthocyanins, flavonols, and stilbenes. While many of these

compounds were expected, some of them were surprising. For

example, stilbenes are known Phe derived metabolites in grapes,

however their concentrations are typically quite low. However

multiple resveratrol moieties were detected in berry samples. This

may be due to the increased sensitivity of nanospray-ESI tech-

niques (Yin & Killeen, 2007). Alternatively, resveratrol glucoside

levels are known to increase under stress conditions such as water

deficit (Deluc et al., 2010) as well as fungal infection (Roldan,

Palacios, Caro, & Perez, 2003); we cannot say with certainty that,

while sterile practices were used, there was no fungal pressure

or water deficit stress on cultured berries. Furthermore, the act

of culturing halved berries itself may induce resveratrol

production.

3.2. Molecular features and feature groups significantly different

between treatments

From the list of molecular features derived from 13C6-Phe

metabolism, a paired-comparison t-test was performed over the

8 biological replicates (for a full list of all features see Supplemen-

tal 2). Comparisons were made between the abundances the

summed features of a group for both the 12C and 13C isotopolog.

From the 2 comparisons made, multiple features or feature groups

were significantly different between treatments for both the 12C

and 13C isotopologs (Table 1).

In all, 6 feature groups of 12C isotopologs and 10 feature groups

of 13C isotopologs differed significantly between 25 °C and 45 °C

treatments (Fig. 3). Significant differences of individual, in-source

fragment aglycone features should not be extrapolated to under-

stand in vivo stability, however feature groups or features repre-

senting intact glycosides which showed lower abundances upon

45 °C treatment warrant consideration. For example, temperature

reduced features such as myricetin and quercetin aglycones (data

not shown) do not provide adequate support to interpret the ther-

mal stability of their respective glycosides. Conversely, the reduc-

tion in tentatively identified resveratrol and resveratrol dimer

feature groups provides strong evidence that heat treatment

reduced their concentration in grape berries and may represent

the first report of its thermal degradation in vivo. Moreover, earlier

studies have also demonstrated that resveratrol is thermally labile

as concentration levels in frozen berries dropped when exposed to

cooking conditions (Lyons et al., 2003). Interestingly, Lyons et al.

had found that the concentration of stilbene synthase (STS) as well

as the transcription of its underlying gene had been positively

influenced by the applied heat treatment. In another study, STS

levels were transiently increased after just 8 h at 38 °C, however

by 24 h, levels had returned to pre-treatment concentrations

(Wang et al., 2008). Ultimately, with respect to our findings, any

potential influence of STS at 45 °C was obviously not sufficient to

counteract the reduction in intensity seen in the current

experiment.

Among anthocyanins, the sum of all petunidin and malvidin

glucoside associated features were significantly reduced after heat

treatment. The reason for why only the feature groups of these two

glucosides were affected is unclear. In physiological buffered

extracts, earlier studies have reported that increased B-ring

hydroxylation is associated with reduced anthocyanin stability

(Woodward, Kroon, Cassidy, & Kay, 2009). However in grapes,

Table 1

Tentatively annotated feature groups of 12C and 13C isotopologs that varied significantly due to temperature treatment. Bold assignments represent the single compound

responsible for all features within a given feature group. Annotations were made based on accurate mass, MS/MS confirmation, and known presence in grape berries.

MetGroupID Metabolite Representative features

(monoisotopic 12C m/z)

RT

[min]

m/z

experimental

m/z

calculated

Mass error

(ppm)

MS2 MS2

database

13C mean

difference [%]

12C mean

difference [%]

63 Unknown 1 10.7 611.1615 ÿ32* 8

82 Unknown 2 13.1 669.1642 ÿ27* 2

24 Petunidin-3-

glucoside

Petunidin-3-glucoside 13.5 479.1184 479.1189a 1.21 Y Massbank ÿ16* 5

Petunidin 13.5 317.0651 317.0661a 3.31

Petunidin H2O 13.5 335.0761

Petunidin-3-glucoside H2O 13.5 497.1274

31 Malvidin-3-

glucoside

Malvidin-3-glucoside 14.5 493.1341 493.1346a 0.98 Y Massbank ÿ12* 1

Malvidin-3-glucoside H2O 14.5 511.1442 511.1451a 1.91

Malvidin 14.5 331.0812 331.0817a 1.74

Malvidin H2O 14.5 349.0915 349.0923a 2.55

Syringetin 14.5 347.0761 347.0761b 0.11

36 Unknown 3 15.7 434.2021 2 22*

37 Unknown 4 16.2 434.2008 13* 13*

39 Unknown 5 16.8 448.2168 9 22*

13 Unknown 6 19.6 243.0652 ÿ26* ÿ1

58 Unknown 7 20.2 585.1704 13 29*

11 Resveratrol Resveratrol 21.7 229.0860 229.0859b
ÿ0.54 Y Massbank ÿ50* ÿ44*

57 Unknown 8 21.7 565.1916 61* 5

48 Scirpusin A Scirpusin A 22.1 471.1432 471.1438b 1.18 ÿ30* ÿ30*

Scirpusin A [M+6] 22.1 477.1628 477.1640b 2.60

42 Resveratrol

dimer

Resveratrol dimer 22.6 455.1484 455.1489b 1.04 ÿ28* ÿ19

Resveratrol dimer [M+6] 22.6 461.1681 461.1690b 1.86

a Molecular feature was present as [M]+ ion.
b Molecular feature was present as [M+H]+ ion.
* Statistically significant difference between 25 °C and 45 °C at p = 0.05.
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increased temperatures are associated with increased proportions

of hydroxylated and methylated anthocyanin B-rings (Tarara, Lee,

Spayd, & Scagel, 2008). None of the acetylated or coumarylated

anthocyanin related feature groups were significantly influenced

by the temperature treatment in our study. This observation is

similar to previous research, as acylated and coumarylated antho-

cyanins are known to be more stable than their biosynthetic pre-

cursor glucosides (Mori et al., 2007).

The decrease in anthocyanin levels at elevated temperature is

well known and has been shown in many plant species including

grapes (Mori et al., 2007) and therefore, the chemical non-

enzymatic degradation of these compounds due to thermal pro-

cessing is of concern for food manufacturers (Patras, Brunton,

O’Donnell, & Tiwari, 2010). In apple for example, warm weather

conditions have been shown to reduce the concentration of antho-

cyanins and expression of the transcription factor MYB10, known

for regulation of anthocyanin production (Lin-Wang et al., 2011).

In overexpressing A. thaliana mutants, low light and 30 °C condi-

tions reduced anthocyanin concentrations despite overexpression

of the PAP1 MYB transcription factor, suggesting active catabolism

of anthocyanins (Rowan et al., 2009). At the same time however, no

catabolic genes involved in anthocyanin degradation had been

found to be differentially expressed, suggesting that chemical,

non-enzymatic degradation may contribute to the loss of

anthocyanins. As the presented approach involves simultaneous

automated detection of pairs of labelled and unlabelled

Fig. 3. Metabolites significantly differing between heat treated and control samples. Each boxplot represents the distribution of relative differences in metabolite signal

abundances for corresponding berry halves. Metabolite Group IDs refer to those shown in Table 1 (column MetGroupID) and Supplemental 2 (column MetGroupID). The

upper and lower hinge represent the 25th and 75th percentiles (inter-quartile range; IQR) and the whiskers extend to a maximum of 1.5⁄IQR. Grey dots show extreme values.
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isotopologs, it facilitates the identification of all ‘‘real’’ biology

derived molecular features, including those representing putative

degradation products. The levels of five feature groups increased

significantly when exposed to 45 °C: unknowns 3, 4, 5, 7, and 8

(Table 1) and thus can be considered candidate metabolites origi-

nating from anthocyanin or other flavonoid degradation. Unfortu-

nately, meaningful MS/MS spectra for these features were not

achieved due to their low abundance in the investigated samples.

Further work to investigate the molecular structure of these poten-

tial flavonoid degradation products is necessary.

4. Conclusion

The presented study demonstrates the high potential of stable

isotopic tracer assisted approaches for the global untargeted profil-

ing of tracer derived metabolites in complex biological samples.

While for conventional untargeted metabolomics workflows,

which do not make use of isotopic labelling, data evaluation is

greatly complicated by the large majority of non-tracer related

metabolites, the presented approach directly enables monitoring

substrate-associated, discrete biochemical pathways. Furthermore,

the specificity of this approach allows direct interpretation of

changes in those metabolic processes with the involvement of tra-

cer containing metabolites, without the influence of tangential bio-

chemical processes which would cloud statistical interpretation. In

the current work, which probed the metabolic response to heat

treatment in grape berries and filtered the results for compounds

related to the phenylpropanoid pathway, 13 feature groups

showed significant differences between 45 °C and 25 °C degree

treatments in vivo. Only a few molecular features were found to

be present at significantly higher levels in the 45 °C treatment.

These compounds present good candidates for degradation prod-

ucts of anthocyanins and the detailed investigation of these metab-

olites will present an opportunity to possibly assign anthocyanin

derived degradation products or novel phenylalanine derivatives.

Moreover, future studies using MS/MS will help in identifying the

biochemical metabolites represented by the molecular features

that may result from anthocyanin degradation.
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ABSTRACT: An untargeted metabolomics workflow for the
detection of metabolites derived from endogenous or exogenous
tracer substances is presented. To this end, a recently developed
stable isotope-assisted LC−HRMS-based metabolomics work-
flow for the global annotation of biological samples has been
further developed and extended. For untargeted detection of
metabolites arising from labeled tracer substances, isotope
pattern recognition has been adjusted to account for nonlabeled
moieties conjugated to the native and labeled tracer molecules.
Furthermore, the workflow has been extended by (i) an optional
ion intensity ratio check, (ii) the automated combination of
positive and negative ionization mode mass spectra derived from fast polarity switching, and (iii) metabolic feature annotation.
These extensions enable the automated, unbiased, and global detection of tracer-derived metabolites in complex biological
samples. The workflow is demonstrated with the metabolism of 13C9-phenylalanine in wheat cell suspension cultures in the
presence of the mycotoxin deoxynivalenol (DON). In total, 341 metabolic features (150 in positive and 191 in negative
ionization mode) corresponding to 139 metabolites were detected. The benefit of fast polarity switching was evident, with 32 and
58 of these metabolites having exclusively been detected in the positive and negative modes, respectively. Moreover, for 19 of the
remaining 49 phenylalanine-derived metabolites, the assignment of ion species and, thus, molecular weight was possible only by
the use of complementary features of the two ion polarity modes. Statistical evaluation showed that treatment with DON
increased or decreased the abundances of many detected metabolites.

U ntargeted metabolomics approaches probe the entire
metabolic space of a biological system (e.g., cells or whole

organism). This can be realized by trying to measure as many
metabolites as possible or alternatively by searching for those
metabolites that arise from either exogenous or endogenous
substances such as toxins, drugs, or sugars and amino acids,
respectively. The screening of such metabolites in LC−HRMS
data is rather straightforward when performed in (a) a targeted
way with positive lists of putative biotransformation products
(e.g., Levsen et al.,1 Sandermann2). In contrast, untargeted
approaches are usually more challenging and aim at the
detection of known and unknown metabolic products by (b)
background subtraction and/or statistical investigation (e.g.,
Zhang et al.3) or (c) isotopic labeling, including stable isotopic

labeling (SIL)-assisted approaches. Although the search
according to approach a is limited to the subset of predicted,
putative tracer derived conjugates (e.g., sugars, amino acids,
small peptides) or degradation products known from literature
and previous approaches, approach b also enables detecting
previously unknown metabolites, but also requires more
sophisticated data processing than approach a. Furthermore,
the latter approach is prone to detect non-tracer-related
metabolites, significantly differing between the investigated
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sample types. In contrast, approach c provides an easy way to
detect both known and unknown tracer-derived metabolites
and has the advantage over both a and b that the detected
metabolites can be linked to the studied tracer substance (e.g.,
Baillie,4 Iglesias et al.5).
To avoid the use of radioisotopes, SIL-assisted metabolism

studies use stable isotope (e.g., 13C, 15N, or 34S)-enriched
tracers and assume that biological systems metabolize native
and labeled variants of a supplied tracer nearly equally.6 Cabaret
and colleagues7 studied U-13C sterigmatocystin in porcine
tracheal epithelial cells, and Li and colleagues8 utilized
deuterium labeling together with a principal component
analysis guided approach to detect novel metabolites of the
drug tempol.
For GC/MS-based, untargeted tracer metabolism studies,

Hiller and colleagues9 presented the NTFD (nontargeted tracer
fate detection) algorithm, which detects changes and metabolic
fluxes derived from labeled tracers in the primary metabolome.
For LC−HRMS-based tracer metabolization approaches,
several software tools designed for the untargeted detection
and analysis of isotope patterns of metabolites derived from
native and partly isotopically labeled tracers are available (e.g.,
mzMatch-ISO,10 X13CMS11). However, to the best of our
knowledge, no tools for the automated global and highly
selective detection of only those metabolites derived from
native and labeled tracers with nonoverlapping isotope patterns
are currently available.
Thus, a LC−HRMS-based workflow for the unbiased

detection of known and unknown metabolites derived from
U-13C-SIL guided tracer metabolism was developed. It is based
on our recently published workflow for the detection of
metabolic features derived from native and fully labeled
biological samples,12 which has been further developed to
support fast polarity switching and automated annotation of
metabolic features of the detected metabolites. In contrast, to
the currently existing workflows, such as mzMatch-ISO or
fluxomics applications, which have been designed to detect
shifts of relative abundances in native isotope patterns, the
presented approach requires distinct, nonoverlapping isotope
patterns and is capable of detecting metabolites for which the
native and labeled analogues differ by ≥4 u. Therefore, it is
mainly suited to study the secondary metabolism of a biological
system of interest rather than to support the elucidation of
primary metabolism. Moreover, the use of nonoverlapping
isotope patterns enables determining the exact number of
incorporated carbon atoms of the employed tracer in the
respective biotransformation product and thus improves sum
formula and metabolite annotation. At a less advanced stage,
the presented concept has already been used successfully to
study the metabolic fate of the mycotoxin deoxynivalenol
(DON) in wheat (Triticum aestivum, Kluger et al.13) and the
fate of the aromatic amino acid phenylalanine in grape berries
(Vitis vinifera, Chassy et al.14). Here, our approach is presented
with the metabolism of the endogenous amino acid phenyl-
alanine in wheat cell suspension cultures in the presence or
absence of the Fusarium virulence factor DON. Phenylalanine
was chosen as a tracer because it serves as precursor for the
biosynthesis of hydroxycinnamic acids, phenylpropanoids, and
flavonoids in plants, many of which are known to be involved in
the defense against fungal pathogens such as Fusarium.15

■ MATERIALS AND METHODS

Chemicals. Acetonitrile (ACN, HiPerSolv Chromanorm,
HPLC gradient grade) was purchased from VWR (Vienna,
Austria), methanol (MeOH, LiChrosolv, LC gradient grade)
was purchased from Merck (Darmstadt, Germany), and formic
acid (FA, MS grade) was obtained from Sigma-Aldrich (Vienna,
Austria). Water was purified successively by reverse osmosis
and an ELGA Purelab Ultra-AN-MK2 system (Veolia Water,
Vienna, Austria). U-13C9 phenylalanine (U-13C9 Phe; 99.1%
13C) was purchased from Euriso-top (Saarbrücken, Germany).

Biological Experiment (Figure 1, Step 1). Aliquots (3.6
mL) of T. aestivum (Tae) cell suspension cultures in B5
medium (Supporting Information S1.1) were incubated with
400 μL of aqueous solutions differing in composition according
to the three tested conditions (3 replicates per condition).
Thus, each culture sample resulted in a final volume of 4 mL.
For the condition “control”, 200 μL of U-13C9 Phe stock
solution (final concentration in culture: 25 mg/L) and 200 μL
of H2O dist. were added to the culture. For cocultivation with
DON (condition “treatment”), 200 μL of U-13C9 Phe stock
solution (final concentration in culture: 25 mg/L) and 200 μL
of DON stock solution (final concentration in culture: 90 mg/
L) were added. For the condition “blank” 400 μL of H2O dist.
was added to 3.6 mL of cell suspension culture. All Tae cell
suspension cultures were grown in 25 mL Erlenmeyer flasks for
8 days at 20 °C in the light with shaking (100 rpm). In
addition, two medium blanks without cell suspension cultures
were prepared in parallel.

Sample Preparation. After cultivation, 2 mL of each
sample was transferred into savelock Eppendorf tubes and
centrifuged for 5 min at 5000g. The weight of each cell pellet
was determined, and 350 μL MeOH and 2 × 5 mm steel balls

Figure 1. Illustration of the workflow for SIL-assisted tracer
metabolism studies, including LC−ESI-HRMS fast polarity switching.
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were added prior to wet milling with a ball mill (MM 301
Retsch, Haan, Germany). Samples were homogenized for 2 min
at 30 Hz, and the suspension was transferred to new Eppendorf
tubes and centrifuged for 5 min at 20 000g. From the resulting
extract, 200 μL was mixed with 200 μL of H2O dist. and
centrifuged for 10 min at 20 000g again. An aliquot of 300 μL of
this sample solution was transferred to an HPLC vial and
stored at −80 °C until further analysis.
LC−HRMS Analysis (Figure 1, Step 2). All samples were

analyzed on a UHPLC system (UltiMate 3000, Dionex)
coupled to an Orbitrap Exactive Plus (Thermo Fisher
Scientific) equipped with a heated electrospray ionization
(ESI) source. A Dionex autosampler was used for the injection
of 10 μL per sample for chromatographic separation at 25 °C
on a reversed-phase XBridge C18 150 × 2.1 mm i.d., 3.5 μm
column (Waters, Milford, MA, USA) preceded by a C18 4 × 3
mm i.d. security cartridge (Phenomenex, Torrance, CA, USA).
At a constant flow rate of 250 μL/min, a linear gradient
program with water containing 0.1% FA (v/v) (eluent A) and
MeOH containing 0.1% FA (v/v) was employed;12 the initial
mobile phase composition (10% eluent B) was held constant
for 2 min, followed by a linear gradient to 100% eluent B within
30 min. After a hold time of 5 min, the column was re-
equilibrated for 8 min at 10% eluent B.
The heated ESI interface was operated in fast polarity-

switching mode using the following settings for both polarities:
sheath gas, 50 au; auxiliary gas, 5 au; capillary voltage, 3 kV;
capillary temperature, 350 °C. FT-Orbitrap was operated in
profile mode (scan range, m/z 100−1000) with a resolving
power of 70 000 fwhm (at m/z 200) and automatic gain control
setting of 3 × 106 with a maximum injection time of 200 ms.
SIL-Assisted Data Processing (Figure 1, Steps 3 and

4). The SIL-assisted data processing for metabolite detection in
full metabolome labeling experiments described earlier12 was
extended to support the detection of tracer-derived metabolites.
It is part of a software package that is currently under
development and will comprise three different data processing
workflows for SIL-assisted metabolomics approaches. In the
meantime, the software module facilitating data processing
according to the presented workflow is accessible via the
corresponding author.
Each of the following data processing steps for metabolic

feature detection is carried out independently for the positive
and negative ionization mode: First, every MS scan is inspected
for pairs of two mass peaks, M, which corresponds to a native
metabolization product, and M′, which denotes the same
metabolization product but contains the labeled tracer molecule
or a part of it, with an m/z difference proportional to the
number of tracer-derived heavy isotope atoms (here, 13C)
present in the labeled metabolite ion (step 3a). A peak pair is
accepted if the observed mass difference is within a preset
maximum mass tolerance window of that calculated for the
algorithm-predicted number of heavy isotopes. Optionally, for
exogenous tracers, the intensity ratio IM:IM′ is compared with
that of the concentration ratio of native and labeled tracer used
for sample incubation (step 3b).
Next, the observed isotopolog ratio IM′−1/IM′ is compared

with its theoretical ratio expected from the number of labeling
isotopes contained in the inspected metabolite ion (step 3a).
The corrected intensity ratio of the isotopologs IM+1/IM −

IM′+1/IM′, which accounts for any carbon atom in the
nonlabeled moiety, is compared with its theoretical ratio as
determined for the number of labeling isotopes of the

respective M and M′ ion pair. All intensity ratio checks are
passed if the relative deviation between the expected and the
observed ion intensity ratios are within preset error windows.
Then, all such detected M and M′ pairs from different scans are
combined with hierarchical clustering using the assigned
number of heavy isotopes per metabolite ion and the m/z
value of M. Clusters showing a maximum relative mass
deviation between their highest and lowest m/z value of less
than a preset threshold in parts per million are not further split.
Next, for each M and M′ ion cluster, chromatographic peaks

in the corresponding 12C/13C EICs are extracted with the
wavelet algorithm of Du et al.16(step 3c). Only those EIC peaks
that are found for both 12C and corresponding 13C m/z traces
closely coelute and have a high Pearson correlation coefficient
remain for further data processing. Incorrectly detected M and
M′ pairs that originate from carbon isotopologs (e.g., M + 1
instead of M or M′ − 1 instead of M′) are removed from the
data (step 3d). Correctly assigned chromatographic peak pairs
are finally listed as metabolic features, each consisting of a 12C
monoisotopic m/z for M, a retention time (tR), feature areas
determined for the EIC peaks of M and M′, and the number of
heavy isotopes originating from the tracer.
Following metabolic feature detection, all features found in

positive or negative ionization mode are combined across both
ionization polarities to generate feature groups, each of which
represents a distinct metabolite (step 3e). To this end, the
Pearson correlation coefficient is calculated pairwise for closely
coeluting metabolic features. All metabolic features with a
correlation coefficient above a preset threshold are put into the
same feature group.
Subsequently, each determined feature group is annotated

(step 4). For this, all features of a feature group are inspected
pairwise for m/z differences corresponding to predicted ion
species frequently found for the respective ionization mode. For
metabolic features without a valid adduct pairing, neutral losses
are calculated according to the Seven Golden Rules.17

LC−HRMS data derived from wheat cell suspension culture
samples were processed as described above with the following
parameter settings: (step 3a) Isotopic carbon enrichment,
98.9% 12C; 99.1% 13C9-Phe; Δ m/z 12C/13C, 1.00335 u; atom
counts, 6−9; minimum intensity threshold of putative M and
M′ signals, 50 000 counts; maximum mass deviation between
M and putatively corresponding M′ signals, ±3 ppm; maximum
isotopolog ratio error, 20%. (step 3c) EIC m/z width, ± 5 ppm;
minimum correlation coefficients between EIC peaks of M and
M′, 0.75 for peak picking and 0.9 for feature grouping (step
3e). (step 4) Adducts used for feature annotation, [M + H]+,
[M + Na]+, [M + NH4]

+, [M + K]+, [M − e]+, [M − H]−, [M
+ FA − H]−, [M + Na − 2H]−, [M + Cl]−, [M + K − 2H]−,
[M + Br]−, [M − e − 2H]−. The accurate m/z values of all
detected metabolites were searched against a custom wheat
metabolite database containing 1145 entries (max m/z
difference ≤ 5 ppm). Statistical evaluation of the experiment
is described in Supporting Information S1.3.

■ RESULTS AND DISCUSSION

In a biological system, native and 13C-enriched substances are
metabolized by the same biological transformations and to a
nearly equal extent.6 As a result, all metabolites derived from a
mixture of native and 13C-labeled tracer contain either the
entire native or the enriched tracer or just a part of it. In LC−
HRMS, native metabolites and their corresponding 13C
isotopologs perfectly coelute with highly similar chromato-
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graphic peak shapes but can be easily distinguished by MS
because of their differing m/z values. The observed m/z shift
between the native and the partly tracer-labeled biotransforma-
tion product is proportional to the number of atoms of the
labeling isotope in the remaining part of the tracer of the
inspected metabolite ion. The presented workflow automati-
cally searches for these unique isotope patterns and returns a
comprehensive list of metabolic features, each corresponding to
an ion of a metabolite derived from the studied tracer. As long
as the isotope patterns of the tracer(s) incorporated in the
respective metabolite can be separated, the algorithm can detect
all metabolic feature pairs of a biotransformation product,
including those isotopologs originating from the incorporation
of different tracer moieties. The SIL-derived isotope patterns
provide a high certainty that the detected metabolites are truly
derived from the studied tracer.
To demonstrate the workflow, the metabolic fate of the

amino acid phenylalanine (Phe) was studied in Tae cell
suspensions cultured in the presence of U-13C9 Phe in the

culture medium. Processing of the acquired raw data resulted in
a total of 341 metabolic features, which were convoluted to 139
feature groups, each of which is representing a metabolite.
Figure 2a shows two mass spectra containing a metabolism
product with eight tracer-derived carbon atoms (native M) and
its partly 13C-labeled analog M′. The presence of the M′ + 1
mass peaks indicate that the moiety conjugated to the tracer
also contains several carbon atoms.
Two medium blanks and Tae cell suspension cultures (no

U-13C9 Phe added) were processed as described above. Only
1−2 of incorrectly detected metabolic features were found per
sample, which during manual curation showed to be Fourier
transformation artifacts with low abundances and noisy
chromatographic peak shapes. This very low number of false
positives confirms the high selectivity of the presented SIL
assisted approach.

Fast Polarity Switching. The presented workflow supports
fully automated processing of LC−ESI-HRMS data employing
fast polarity switching. The cycle time for two successive MS

Figure 2. (a, b) Illustration of two metabolic feature pairs detected for the same metabolite. (a) Two mass spectra derived from positive and negative
ionization mode for the respective native and corresponding 13C8-labeled features derived from phenylalanine. (b) EIC profiles of the respective
metabolic features shown in part a. (c) m/z versus retention time plot of all 13C9-Phe-derived features detected in the positive and negative ionization
mode and (d) their convolution into a feature group. The red dots represent selected metabolic features from three of the either annotated or
identified metabolites. For details, see Supporting Information S1.2.
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scans (positive and negative ionization mode) was ∼1 s, which
is sufficient to acquire 10−25 scans per chromatographic peak.
As shown in Figure 2b, the chromatographic peak shapes are
very similar for all four depicted mass traces (of Mp, Mp′, Mn,
Mn′); thus, even features originating from the same metabolite
but recorded in different ionization modes can be convoluted
automatically into a single feature group.
In the presented experiment, 150 and 191 metabolic features

were detected in the positive and negative ionization modes,
respectively (Figure 2c). Furthermore, feature grouping across
the two ion polarity modes was carried out successfully and
resulted in a total of 139 distinct feature groups (i.e.,
metabolites). Of those, 32 were exclusively found in the
positive mode, and 58 metabolites were detected in the
negative ionization mode only. In addition, 49 metabolites
exhibited at least one metabolic feature in each of the both
ionization modes (Figure 2d). These findings underline the
significant benefit that has been gained with respect to
metabolite coverage by integrating positive and negative
mode data.
Metabolite Annotation. The presented workflow results

in a list of metabolic features, each corresponding to a certain
ion species (e.g., adduct, deprotonated molecule, or in-source
fragment) of a metabolite. For 19 of the 49 detected
phenylalanine-derived metabolites with complementary adducts
from both ionization modes, annotation of their intact neutral
molecule and, thus, the corresponding molecular weight was
achieved only by integration of ion species related information
from the respective opposite ionization mode. This further
demonstrates the power of fast polarity switching for
complementary metabolite annotation.
The database search revealed that 50 of the detected

metabolites, several with the same molecular mass, were
putatively annotated. Although metabolite annotation was not
always unambiguous, the metabolites could be assigned to
phenylpropanoids (n = 14), phenylpropanoid amides (n = 9),
and flavonoids (n = 10), which are partly known to have
antagonistic effects against Fusarium infection (Supporting
Information S1.2). Detailed metabolite annotation and bio-
logical interpretation of results will be published elsewhere.
DON Treatment. After data processing with the developed

workflow, hierarchical clustering analysis (HCA) showed two
distinct clusters for the two conditions “control” and “treat-
ment”. Furthermore, the heatmap illustration indicates that the
abundance of many metabolites is either increased or decreased
in the DON-treated samples. This confirms that the DON
treatment had a severe impact on the cells metabolic
composition (Supporting Information S1.3).

■ CONCLUSION

In recent years, SIL has been increasingly used in many fields of
targeted and untargeted metabolomics research. The presented
SIL-assisted LC−HRMS-based workflow is well suited to study
the metabolic fate of both endogenous and exogenous tracer
substances. All metabolites derived from the studied native and
13C-labeled tracers show unique isotope patterns, which enable
their untargeted detection and provide high confidence that the
detected metabolites are truly derived from the studied tracer
substance. The presented approach is particularly suited for the
investigation of secondary metabolism and can be applied to
virtually any biological system without the need for extra
equipment other than the labeled tracer compound(s). As
demonstrated for wheat cell suspension cultures, the use of ESI

in combination with fast polarity switching, the study of
endogenous plant secondary metabolite precursors (for
example, phenylalanine) directly results in a large number of
complementary Phe-related metabolic features, which can be
assigned to various structure classes. In conclusion, our data
demonstrate the great potential of SIL-assisted workflows for
the comprehensive and highly selective untargeted screening
and annotation of metabolites truly derived from the studied
tracer. The workflow supports valuable applications across
many different fields of metabolomics research, such as drug,
pesticide, toxin, or any other secondary metabolite precursor-
related conversion. A software tool and technical assistance
enabling the fully automated processing according to the
presented strategy are available from the corresponding author.
Moreover, this software tool will be published and made freely
available as part of an even more comprehensive software
package for the evaluation of SIL-derived metabolomics data in
the near future.
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