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Abstract

Bluetooth Low Energy (BLE) has gained popularity in research and industry over the
past years because of its energy efficiency and reliability even under interference. Due
to this popularity, the RFC 7668 standard was released in October 2015 that specifies
the exchange of IPv6 packets over a BLE link layer and therefore enable BLE devices to
connect to the Internet of Things. Although commercial devices implementing the RFC
7668 standard exist, no open source implementation of a compliant communication stack
for constrained devices is currently available.

The major contribution of this thesis is the design of an IPv6 over BLE communication
stack compliant to the RFC 7668 standard that fits the architecture of the Contiki OS,
a popular operating system for constrained devices, and its implementation for the TI
CC2650 SensorTag hardware platform. Furthermore, this thesis shows that the created
IPv6 over BLE communication stack is interoperable with RFC 7668 compliant devices,
and provides BLE nodes with network connectivity. A first comparison of IPv6 over
BLE to IPv6 over IEEE 802.15.4 using the same hardware platform shows that the IPv6
over BLE stack requires less memory, has a lower communication overhead, and provides
better reliability under interference than IPv6 over IEEE 802.15.4 at the cost of less energy
efficiency.
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Kurzfassung

Bluetooth Low Energy (BLE) hat aufgrund seiner Energieeffizienz und Störungssicherheit
immer mehr Popularität in Forschung und Industrie gewonnen. Im Oktober 2015 wurde
deshalb der RFC Standard 7668 veröffentlicht, der den Austausch von IPv6-Paketen über
eine BLE-Funkverbindung spezifiziert und somit BLE-Geräten eine Verbindung zum In-
ternet der Dinge ermöglicht. Obwohl bereits kommerzielle Geräte verfügbar sind, die den
RFC 7668 Standard unterstützen, gibt es noch keine Open Source Implementierung eines
RFC 7668-konformen Kommunikationsstacks für Geräte mit begrenzten Ressourcen.

Diese Masterarbeit präsentiert das Design eines RFC 7668-konformen Kommunika-
tionsstacks für Contiki, ein weitverbreitetes Betriebssystem für Geräte mit begrenzten
Ressourcen, und die Implementierung dieses Kommunikationsstacks für die CC2650 Sen-
sorTag Hardware von Texas Instruments. Der erstellte Kommunikationsstack für IPv6 über
BLE-Funkverbindungen ist kompatibel mit Geräten, die den RFC 7668 Standard erfüllen,
und ermöglicht es BLE-Geräten mit anderen Netzwerkteilnehmern zu kommunizieren. Der
erste Vergleich zwischen IPv6 über BLE-Verbindungen und dem bestehenden IPv6 über
IEEE 802.15.4-Verbindungen zeigt, dass der neue Kommunikationsstack weniger Speicher
benötigt, weniger Kommunikations-Overhead aufweist und zuverlässiger ist als IPv6 über
IEEE 802.15.4-Verbindungen, zum Preis von geringerer Energieeffizienz.
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Chapter 1

Introduction

Connecting everyday objects to the Internet and hence creating an “Internet of Things” has
received much attention in recent years. Internet of Things (IoT) applications range from
personal health and fitness monitoring over home automation to industrial applications
such as smart grids. Although the application requirements are very different, most objects
and devices in these applications are required to operate for several years on constrained
power sources like coin cell batteries.

In addition to the requirement to consume as little energy as possible, some objects
do not have a tethered data communication and need to use wireless communication
methods for data exchange. Since such wireless communication methods are quite energy
demanding, wireless communication is accountable for a significant part of a wireless de-
vices’ consumed energy. To minimize the energy consumed for communication, low power
wireless communication methods such as duty cycling [17] are widely used in untethered
objects and devices of the IoT.

A major research focus in the past years was to standardize and optimize the ex-
change of Internet Protocol version 6 (IPv6) packets over the wireless low power link layer
technology IEEE 802.15.4 using the IPv6 over Low-Power Wireless Personal Area Net-
works (6LoWPAN) adaptation layer defined by the RFC 4944 [32], RFC 6282 [29] and
RFC 6775 [46] standards. With the RFC 7668 standard [34] released in October 2015,
which defines the exchange of IPv6 packets over Bluetooth Low Energy (BLE), an addi-
tional link layer for Internet of Things applications was proposed. BLE promises several
advantages over IEEE 802.15.4, such as lower energy consumption, built-in security and
privacy features. Also, BLE is widely adopted in consumer devices like smartphones,
tablets and laptop. These devices could be used to provide Internet access to embedded
systems that communicate using IPv6 over BLE or could extend the range of IPv6 over
BLE networks [1].

1.1 Problem statement

IPv6 over Bluetooth Low Energy is already used in commercial devices. For example,
Nordic Semiconductors already markets chips with IPv6 over BLE support [37]. However,
although commercial products supporting IPv6 over BLE are existing, no open source im-
plementation of the RFC 7668 standard [34] for constrained devices is currently available.

16
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An open source implementation of the RFC 7668 standard would help in supporting
further research on IPv6 communication over BLE and trigger the design of new strate-
gies and optimizations for example the use of BLE advertisement channels to broadcast
small IPv6 packets. The latter would enable the infrequent exchange of short IPv6 data
while possibly consuming less energy then IPv6 over Institure of Electrical and Electronics
Engineers (IEEE) 802.15.4 and existing IPv6 over BLE.

One example on how an open source implementation of a communication stack leads
to improvements of existing or even novel RFC standards is the Contiki Operating Sys-
tem (OS) [18, 44]. The Contiki OS is an open source operating system for constrained
devices that provides a full IP network stack with UDP, TCP and HTTP support over
an IEEE 802.15.4 link layer. Since its creation, Contiki supported further research on
IPv6 over IEEE 802.15.4 communication that led to novel media access protocols, such as
ContikiMAC, or routing protocols such as the Routing Protocol for Low power and Lossy
Networks (RPL).

I therefore aim to implement an open source IPv6 over BLE stack for the Contiki OS
such that further research on IPv6 over BLE can be done and optimized or novel ways
to exchange IPv6 packets over BLE may be created. The main challenge of adding BLE
support to the Contiki OS is that the Contiki communication stack is highly interwoven
with the currently used link layer IEEE 802.15.4. Thus, adding BLE support means that
the new functionality not only needs to adhere to the Bluetooth specification [3], but
also needs to fit into the existing architecture of the Contiki OS and its communication
stack. Furthermore, the developed stack should be interoperable with other IPv6 over
BLE implementations that are compliant to the RFC 7668 standard [34] and efficient in
both its memory usage and power consumption.

1.2 Thesis contribution

This Thesis presents an implementation of the RFC 7668 standard [34] for the Contiki OS
with the following features:

• fully open source implementation of the Bluetooth Low Energy host;

• fully interoperable communication stack with IPv6 over BLE devices compliant to
the RFC 7668 standard [34];

• fully compatible with the Contiki OS architecture, making sure that the programmer
can use the same application code for BLE and IEEE 802.15.4 applications.

• Contiki applications using IPv6 communication are agnostic to the radio technology
used (i.e., whether IEEE 802.15.4 or BLE).

This Thesis further presents an evaluation of the energy consumption of the IPv6
over BLE communication stack executed on the TI SensorTag platform, and compares the
energy efficiency of the IPv6 over IEEE 802.15.4 communication stack and IPv6 over BLE.
Finally, I present the robustness of IPv6 over BLE under interference and compare it with
the robustness of 6LoWPAN over IEEE 802.15.4 under the same conditions and show
that although the current implementation of the IPv6 over BLE communication stack is
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less energy efficient than the existing IPv6 over IEEE 802.15.4 stack, it very robust and
provides packet reception rates of 100% even under heavy WiFi interference.

1.3 Limitations

The communication stack implemented in this Thesis has the following limitations:

1.3.1 Single hardware platform

The presented implementation of the RFC 7668 standard is designed to be generic and
fairly easy to port to other BLE supporting hardware. However, due to time constraints
the current implementation only supports the SensorTag platform of Texas Instruments.

Section 4.3.3 provides a guide on porting the IPv6 over BLE communication stack
implemented for the SensorTag platform to other hardware platforms supporting the Host
Controller Interface (HCI) of BLE.

1.3.2 Bluetooth version 4.1

The used SensorTag hardware platform only supports Bluetooth Low Energy communi-
cation according to the Bluetooth Specification version 4.1 [3] and not as defined by the
newer Bluetooth Specification version 4.2 [5]. The only difference between these two Blue-
tooth versions that is relevant for this Thesis it that version 4.2 supports BLE data packets
with a length of up to 255 bytes while version 4.1 limits the BLE data packet length to
31 bytes.

1.3.3 Limited BLE stack

The BLE stack implemented in this Thesis is no full BLE implementation as specified by
the BLE standard [3], but only includes the features needed for IPv6 over BLE on node
devices. Functionalities like the Generic Access Profile (GAP) (defines general modes,
generic procedures and used terminology for BLE devices), Security Manager (SM) (pro-
vides procedures for authentication and encryption between BLE devices), Generic At-
tribute Profile (GATT), Attribute Protocol (ATT) (both used to exchange device specific
attributes and parameters between BLE devices) and parts of Logical Link Control and
Adaptation Protocol (L2CAP) that are part of a full standard BLE stack are not supported
by the implementation presented in this Thesis.

Nevertheless, the implemented communication stack provides BLE advertisement and
is able to exchange data on the BLE data channels when a BLE connection has been
established.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces BLE and
discusses how it can be used in IoT applications for wireless data exchange using the RFC
7668 standard [34]. It also summarizes the benefits of using IPv6 over BLE in the IoT and
introduces the reader to the Contiki OS and the hardware used in this thesis. Chapter 3
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lists the already existing BLE communication stacks and evaluates these stacks according
to the requirements of this thesis. Related studies that examine the performance of BLE
and compares it to other existing wireless communication technologies are also shown in
Chapter 3. Chapter 4 presents the IPv6 over BLE communication stack implemented
for this thesis, discusses the design decisions and implementation details made during its
development, and provides a guide for porting the communication stack to other hardware
platforms. The performance of this implemented IPv6 over BLE communication stack is
evaluated in Chapter 5 and concluded in Chapter 6. Chapter 7 provides an overview of
possible improvements to the presented communication stack and possible further research
on IPv6 over BLE.



Chapter 2

Background

This chapter introduces the reader to Bluetooth Low Energy (BLE) technology and all
relevant aspects and communication standards used in or related to this Thesis. Section 2.1
introduces Bluetooth and BLE as wireless communication technologies and discusses the
motivation behind creating BLE and the differences between BLE and classic Bluetooth.
Besides describing the BLE communication stack, this section also enumerates possible
advantages of BLE as a link layer in the IoT.

The benefits of using the IPv6 in IoT applications is highlighted in Section 2.2. After
listing the advantages of using IPv6 on top of low-power and lossy link layer technologies,
the 6LoWPAN adaptation layer over 802.15.4 [29, 46] and the 6LoWPAN adaptation layer
for BLE devices [34] are presented.

Section 2.3 gives an overview on the Contiki Operating System, a popular OS for
constrained devices in the IoT that I use to implement the work presented in this Thesis.
The last section of this chapter, Section 2.4, details on the hardware platforms used in
this Thesis.

2.1 Bluetooth Low Energy (BLE)

Bluetooth is a standard for wireless communication which was introduced in 1999 by an
alliance of companies led by Ericsson [2]. The primary goal of Bluetooth was to create
and establish a global standard for wireless data exchange between constrained devices
in close proximity to each other. The main purpose of this new standard was to replace
cables, especially serial data cables between devices [23].

Bluetooth is currently available in almost every smartphone, tablet computer and
notebook, and has a wide variety of applications such as wireless mouse and keyboard,
wireless headset, and file exchange between mobile devices.

2.1.1 Enhancing classic Bluetooth

In June 2002 a new IEEE standard based on the Bluetooth Specification v1.1 was approved
and named 802.15.1 [35]. The latter specified Bluetooth v1.1 as a new standard for Wireless
Personal Area Networks (WPANs). The standard proposed a variety of use cases for the
wireless communication technology, but this wide spectrum of applications came with
several disadvantages. The resulting communication stack is indeed more complex and

20
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has a poorer performance than communication stacks of comparable technologies such as
IEEE 802.15.4 [3, 9, 31] as shown in Figure 2.1. Adaptive frequency-hopping, which was
added in the Bluetooth Specification v1.2, improved the performance of Bluetooth but
made the specification even more complex.

IEEE 802.15.1 IEEE 802.15.4 IEEE 802.11.x
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Figure 2.1: Number of primitives of IEEE 802.15.1 (classic Bluetooth), IEEE 802.15.4 and
IEEE 802.11.x (WiFi) (adapted from [30])

For this reason, Bluetooth was redesigned and the new design was merged into the
Bluetooth core Specification version 4.0. This new system is called Bluetooth Low Energy
(Bluetooth LE or BLE) and is marketed as Bluetooth Smart.

The main design objective of BLE was to create a wireless technology for short range
communication with ultra-low power consumption. The link setup time between two BLE
devices was shortened which makes it viable to infrequently exchange small chunks of data
over a reliable and secure link layer. Besides the power consumption, the low cost of BLE
hardware and the reduces complexity and small size of the BLE communication stack were
also goals of BLE [23, 24].

Since the Bluetooth Specification v4.0 were published in 2010, Bluetooth has two
different systems: the classical Bluetooth and Bluetooth LE. These two systems are not
interoperable [2]: devices may implement both of these Bluetooth systems, but can only
use one of them at a certain point in time.

2.1.2 Bluetooth LE key features

I now list the key features of the BLE standard in detail [23]:

Globally available

BLE operates in the 2,4 GHz Industrial, Scientific and Medical (ISM) frequency band. By
using this ISM band, Bluetooth LE can be used globally without any license fee. However,
this ISM band is shared with several other wireless technologies such as Wireless LAN
(Wi-Fi) and IEEE 802.15.4, and radio interference from other devices is hence possible.



CHAPTER 2. BACKGROUND 22

Furthermore, other devices and home appliances such as microwave ovens can emit noise
and disturb communications in those frequencies. Such disturbances and interference may
cause connection problems or even connection loss. BLE uses adaptive frequency-hopping
as a method to counteract interference from other devices and appliances and thus provides
a reliable link between BLE devices.

Fast connection setup

The BLE standard specifies three radio channels that are only used for advertising data
and communication setup. A BLE device needs to check only those radio channels for
connection requests, instead of scanning each possible channel for any incoming connec-
tions as in classic Bluetooth. By using these dedicated channels, a connection between
two Bluetooth LE devices can be set up in less than three milliseconds.

Mostly-Off Technology

The default state of Bluetooth LE devices is
”
switched-off“. In this state the radio is

disabled and the device consumes very little energy. BLE devices only enable the radio
communication if there is data to communicate. There is no need for polling between two
connected devices.

Reduced functionality

The functionality of the Bluetooth LE communication stack is significantly reduced in
comparison to the communication stack of classic Bluetooth. BLE does not support fea-
tures like Scatternets, voice channels, continuous polling or Master/Slave role switch that
are available in classic Bluetooth. This reduced functionality simplified the complexity of
the BLE communication stack. As a result, the communication stack of BLE has a much
smaller static and dynamic memory footprint then classic Bluetooth.

Optimized operations

While central devices (e.g., Bluetooth scanner, laptop) are normally connected to a pow-
erful battery or even a continuous power supply, peripheral devices (e.g., wearables, sen-
sors) typically operate on constrained battery power. BLE minimizes by design the power
consumption of peripheral devices, while compensating for this optimization with a less
power-optimized central device.

2.1.3 BLE communication stack

The BLE communication stack is divided into seven layers. As Figure 2.2 shows, the
communication stack is split into two main parts: the Controller and the Host.

The Controller is typically implemented in a small System on Chip (SoC) and comprises
the two lower layers of the communication stack: the Physical Layer and the Link Layer.
The host runs on the application processor that implements the five upper layers: the
Logical Link Control and Adaptation Protocol (L2CAP), the Attribute Protocol (ATT),
the Generic Attribute Profile (GATT), the Security Manager Protocol (SMP) and the
Generic Access Profile (GAP) of the BLE communication stack.
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The Host and the Controller may communicate with each other via the standardized
Host Controller Interface (HCI) [3, 22, 23].

Physical Layer

Link Layer
HCI

L2CAP

SMP ATT

GATT

GAP

Controller

Host

Figure 2.2: BLE communication stack (adapted from [23]).

Physical Layer

Figure 2.3: physical channels of BLE overlapping with the three most popular Wireless
LAN channels (http://www.connectblue.com/press/articles/shaping-the-wireless-future-
with-low-energy-applications-and-systems/).

Bluetooth LE operates in the globally unlicensed 2,4 GHz band that is divided into
40 separate BLE radio channels with 2 MHz channel spacing. All channels use GFSK
(Gaussian Frequency Shift Keying) for data modulation and support a physical data rate
of 1 Mbps. Ordinary BLE devices have a transmission distance of a few tens of meters.

Out of those 40 BLE radio channels, three channels (channel number 37, 38 and 39)
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are advertising channels. These advertising channels are only used for Bluetooth LE
device discovery, connection setup and data broadcasting. The radio frequencies of the
advertising channels are selected to have minimal overlap with the most popular Wireless
LAN channels to counteract interference and therefore ensure short device discovery and
connection setup times. Figure 2.3 shows the 40 BLE radio channels overlapping with the
three most popular Wireless LAN channels (Wireless LAN Channel 1, 6 and 11).

The remaining 37 radio channels are data channels. These channels are used only
for transmitting data between devices that already have an established connection. An
adaptive frequency hopping mechanism is used on top of the data channels to minimize
the negative effects of interference and other wireless propagation issues.

BLE devices may only have transmission or receiving capabilities to broadcast their
measured data or receive configuration data, respectively. This can help in further de-
creasing device complexity and cost.

Link Layer

BLE devices are identified via 48-bit device addresses. A device address can either be
a public address (a globally unique 48-bit identifier), or a random address (a randomly
created 48-bit identifier that may change periodically). Random device addresses are a
privacy feature to hide the devices’ public address and to protect against device tracking.

The simplest way to transmit data via Bluetooth LE is to broadcast data via an ad-
vertising event. Advertising events are periodical events in which an advertiser broadcasts
advertisement packets to all BLE devices in its proximity. Devices listening to such adver-
tisement packets are called scanners. Advertisement packets, that carry the transmitted
data as a payload, are sequentially sent on all three advertising channels during an adver-
tising event. Data transmitted using BLE advertisement may only be sent unidirectionally
from advertiser to scanners and is not acknowledged by any of the scanners.

Advertisement channels
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Figure 2.4: Two consecutive advertising events: advertising event n shows one advertise-
ment, one scan request and a corresponding scan response, advertising event n+1 shows
an advertising event without scanning (adapted from [23]).

Figure 2.4 shows consecutive advertising events. At the start of each advertising event
the advertiser sends out an advertisement packet. If any scanner device receives the
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advertising packet it sends out a scan request to which the advertiser may answer with
a scan response and waits for the next advertising event (shown in advertising event
n). When the advertiser does not receive any scan request it simply waits for the next
advertising event without advertising any additional data (shown in advertising event
n+1).

To exchange data bidirectionally, two devices need to establish a connection with
each other. The connection setup is performed on the advertising channels. To start
a connection, one device advertises that it supports connections. An initiator receiving
such an advertisement transmits a connection request to create a connection between
the initiator and the advertiser. During this connection setup, the initiator provides the
advertiser with information for the adaptive frequency hopping (which data channels to
use) and timing parameters for the established connection (e.g., when the slave should wake
up). After successfully establishing the connection, both devices are in the connected link
layer state, where the previous initiator is the master and the previous advertiser the slave
of the connection.

The exchange of data between master and slave is called a connection event. At the
beginning of a connection event (also called anchor point), the master sends a data packet
to the slave, to which the slave has to respond. After these first packets of the connection
event, master and slave may exchange further data until the connection event is closed.
All Link Layer connections provide packet acknowledgment and flow control to the upper
layers of the BLE stack. This ensures that all packets sent using connection events are
transmitted correctly and in order. The adaptive frequency hopping algorithm selects
a new data channel at the beginning of each connection event (anchor point) and both
devices stay on this data channel until the connection event ended.

Data channels
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Figure 2.5: Two consecutive connection events where several BLE data packets are ex-
changed between master and slave (adapted from [23]).

Figure 2.5 shows two consecutive connection events. During connection event n the
master and slave exchange several BLE data packets. Connection event n+1 only the
minimal exchange between master (sending a packet at each anchor point) and slave
(required empty response to the first master packet).
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Logical Link Control and Adaptation Protocol (L2CAP)

The L2CAP layer is the interface between the higher layer protocols and the lower layers
of the BLE communication stack. This layer is responsible for multiplexing the higher
layer protocols, so that each protocol can use the shared logical link safely. The L2CAP
also provides packet segmentation and packet reassembly for the upper layers in the com-
munication stack.

Attribute Protocol (ATT)

The ATT layer provides functionality for discovering, retrieving, and setting attributes
(e.g., device name, device model number, sensor values) of a remote BLE device. The
communication of the Attribute Protocol follows a client server model. A server provides
a set of attributes that can be discovered and may be set or read. The corresponding client
can interact with those attributes. The client and server roles can be chosen independently
from the master or slave role of the link layer.

Generic Attribute Profile (GATT)

An application on a BLE device can use the GATT protocol to retrieve exposed services
and characteristics of a connected remote device (e.g., a remote device can expose a tem-
perature service and the corresponding characteristics of this temperature service, like
temperature and unit). To exchange the data of the services and characteristics, GATT
uses the Attribute Protocol.

Security Manager (SM)

The Security Manager provides functionality for encrypting and authenticating data pack-
ets using a 128-bit AES block cipher. To enhance the privacy of a BLE device, the Security
Manager additionally provides methods for generating a random device address.

Generic Access Profile (GAP)

The Generic Access Profile is the highest layer in the BLE communication stack. It
defines the role of a device and the modes and procedures used for device discovery,
service discovery, connection setup, and security. These definitions ensure interoperability
between BLE devices from different manufacturers.

The GAP defines four possible device roles with the corresponding requirements to the
controller and BLE procedures. A broadcaster periodically transmits data using advertis-
ing events. An observer receives advertising events from broadcasters.

A device acting as central device is able to initiate connections to several peripherals
and acts as the master. The peripherals are the slaves and can only accept one connection
to a single master.

2.1.4 BLE and the Internet of Things

Although classic Bluetooth had several drawbacks when used in WPANs, sensor networks
and Internet of Things applications (especially in comparison to competing technologies
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such as IEEE 802.15.4), Bluetooth LE may instead exhibit a number of advantages over
IEEE 802.15.4.

Several measurements [16, 40] have indeed shown that BLE has a lower energy com-
sumption than IEEE 802.15.4, especially on peripheral devices. Another advantage of BLE
is that it is already widely adopted in wireless devices like smartphones, smartwatches,
fitness and medical devices, which means that smartphones may act as routers and use
their mobile data and Wi-Fi connections to provide internet access to other BLE devices
[1].

2.2 IPv6 over low-power lossy links

As discussed in 2.1.4, Bluetooth LE has several advantages over currently used link layer
protocols like IEEE 802.15.4 in Internet of Things applications where small amounts of
data is periodically exchanged using constrained devices (e.g., smart sensors, medical
devices). But to interoperably communicate with devices in the IoT, BLE devices cannot
simply use their ordinary BLE packets. The most common way to exchange data in the
IoT is the Internet Protocol version 6 [45].

2.2.1 Internet Protocol version 6 (IPv6)

The benefits of using IPv6 for connecting Smart Objects to the Internet have already been
discussed in detail in [39] and [45]. This section provides a short summary of the benefits
of IPv6 in the context of embedded devices.

Interoperability

IPv6 is the standard protocol for the Internet and enables devices to communicate with
any other device on the Internet without the need for additional hardware or software. For
the deployment in the Internet, IPv6 operates on top of very different link layer protocols,
such as Ethernet, Wireless LAN and and fiber-optic communication. Although devices
use different link layer technologies, they are able to exchange data using IPv6.

Evolvable and versatile architecture

The IP architecture is designed to use the end-to-end principle, which states that all
application layer functionality is implemented in the end points of the network. The
network only transports data to the end points, but does not have any application-level
intelligence. This end-to-end principle makes IPv6 evolvable and versatile, because the
network functionality does not change even if applications are added, removed, extended,
or updated.

Scalability and stability

The scalability and stability of IP has been proven by the Internet, where IP has shown to
be scalable and stable in a global deployment. With its 128-bit addresses, IPv6 supports
up to approximately 340 * 1036 connected devices.
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Configuration and Management

There are many existing protocols and network tools, that provide advanced configuration
and network management functionality, such as DHCP and SNMP. By communicating
with IPv6, those tools can be used to configure and manage all deployed devices.

Small footprint

Embedded devices need to be low energy, physically small, and cost effective. These
requirements translate to a severe memory and code complexity constraints. Although
the IP architecture was previously thought of as heavyweight, several implementations
exist that only need few kilobytes of RAM and ROM.

2.2.2 6LoWPAN adaptation layer

The 6LoWPAN adaptation layer provides methods to compress ordinary IPv6 traffic to
fit the needs of constrained objects. This adaptation layer was designed to make IPv6
traffic over IEEE 802.15.4 links possible. It defines standards for IPv6 header compression
[29] and neighbor discovery [46] on low power link layer technologies. By implementing
these standards, a 6LoWPAN layer is introduced between the network and the link layer
as shown in Figure 2.6, which reduces the protocol overhead of IPv6 and makes IPv6
communication over IEEE 802.15.4 links possible.

802.15.4 PHY (Physical Layer)

802.15.4 MAC (Link Layer)

6LoWPAN

IPv6

UDP/TCP/other

Figure 2.6: 6LoWPAN network stack (adapted from [39]).

2.2.3 6LoWPAN adaptation layer for BLE devices

Not all of the functionality specified in the classical 6LoWPAN standards is needed for
implementing IPv6 over BLE, so the Internet Engineering Task Force (IETF) proposed a
standard RFC 7668 [34] that specifies the 6LoWPAN layer that enables IPv6 communica-
tion on BLE link layers. As shown in Figure 2.7, the 6LoWPAN for BLE layer is located
on top of the BLE L2CAP layer and below the IPv6 layer.

While other 6LoWPAN standards specify functions for data fragmentation and re-
assembly, RFC 7668 does not include such functions. The fragmentation and defragmen-
tation of data is already handled in the L2CAP layer of the BLE communication stack.
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BLE Physical Layer

BLE Link Layer

BLE L2CAP

6LoWPAN for BLE

IPv6

UDP/TCP/other

Figure 2.7: IPv6 on the BLE communication stack (adapted from [34]).

Network topology

Figure 2.8 shows the simplest case of a subnet which exchanges data using IPv6 over BLE
links. This simple subnet consists of six node devices, each of these nodes acts as a BLE
peripheral device, and one single border router, acting as a BLE central device. Each of
the node devices is connected to the border router via an individual BLE data connection
[34].

Router

Node

Node

Node

Node

Node

Node

Figure 2.8: simple IPv6 over BLE subnet with 6 node devices and a single border router;
nodes in the subnet may exchange data but cannot communicate with devices outside of
the subnet (adapted from [34]).

A convention of IPv6 states that IPv6 subnets should span over a single link layer [15],
yet a multilink model, where each node has a separate link to the router, has been chosen
to make the network topology of IPv6 over BLE more suitable for constrained devices.
This multilink model limits the use of link-local communication only to individual BLE
connections, link-local communication between two node devices is not possible. Therefore
nodes connected to the same border router have to use the shared prefix to exchange data.
The border router in IPv6 over BLE networks acts as an IPv6 router and not as a link-layer
switch. [34]

The Figure 2.9 shows a more typical scenario for IoT applications, where the node
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Router

Node

Node

Node

Internet

Figure 2.9: typical IPv6 over BLE subnet connected to the Internet; nodes may exchange
data within the subnet or interact with devices on the Internet (adapted from [34]).

devices have access to the Internet. In this scenario all nodes in the subnet share a 64-bit
IPv6 prefix. The border router in the subnet is responsible creating the BLE connection
to each of the nodes, for distributing the shared IPv6 prefix to all connected node devices
and for forwarding IPv6 packets from and to the Internet.

Stateless IPv6 address autoconfiguration

Devices generate their link-local IPv6 address based on the 48-bit Bluetooth device ad-
dress. This generation is performed according to IEFT standards RFC 7136 [11] and RFC
4291 [25], where a 64-bit IID (interface identifier) is formed and an IPv6 address prefix is
appended, respectively.

Non-link-local IPv6 addresses do not embed the Bluetooth device address in their 64-
bit IID by default. Instead, cryptographic, hash-based, or other privacy enabling methods
are used to create the IID. If the Bluetooth device address is known to be a random device
address, this random address can be embedded in the IID as stated in RFC 7136 [11]. The
prefix of the non-link-local addresses is provided by the router of the network.

Neighbor Discovery

The IETF RFC 6775 [46] defines how neighbor discovery in low power WPANs is per-
formed. Since BLE only supports star network topologies, only functions regarding these
topologies are considered for IPv6 over BLE.

A device registers its non-link-local address at the router using Neighbor Solicitation
(NS) messages with the Address Registration Option (ARO) set. The router confirms the
devices‘ address by sending a Neighbor Adversitement (NA). Link-local addresses must
not be registered at the router.

A router exposes itself to a connected device by sending Router Advertisements (RA)
and a device can ask for a router by sending Router Solicitations (RS).
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Header compression

IPv6 over BLE compresses IP headers according to RFC 6282 [29]. Additionally to the
header compression techniques defined in the RFC, the star topology of BLE networks can
be exploited to compress device addresses even further. Figure 2.10 shows a compressed
IPv6 packet which is compressed using the IPHC scheme.

Figure 2.10: Compressed IPv6 packet with IP Header Compression (IPHC) [45].

When a device sends a packet to the router using the link-local address, the source
address is fully elided. If the address context was sent by the router and the destination
address matches such a context, the destination address is fully or partially elided and the
header compression flags (DAC, DAM) are set accordingly.

If a router sends a packet to a connected device with its link-local address based on
the Bluetooth device address, the IID of the source address is elided. The source address
prefix is also elided, if a related address context has been set up. The link-local destination
address (which is based on the Bluetooth device address or related to an already set up
address context) is elided too. If any address is elided, the header compression flags (SAC,
SAM, DAC, DAM) are set according to the RFC 6282 standard [29], which specifies the
standards for IP header compression.

2.3 The Contiki Operating System

The Contiki OS is a lightweight, open source operating system for constrained devices. It
is written in the C programming language and is marketed as the “Open Source OS for
the Internet of Things” [18, 44].

Because Contiki is designed for tiny systems, the OS operates on a few kilobytes of
memory, less than 10kB RAM and 30kB ROM, while providing a full IP network stack
with UDP, TCP and HTTP support. In addition to the IP stack, which is fully certified
under the IPv6 Ready Logo, Contiki also provides low power communication protocols
such as the 6LoWPAN adaptation layer, RPL multi-hop routing and, CoAP [44].

Contiki currently supports three primary hardware platforms: the Texas Instruments
CC2538, the Texas Instruments SensorTag and the Texas Instruments CC2650, as well as
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16 other platforms ranging from 8051-powered SoC over the Tmote Sky platform using a
Texas Instruments CC2420 radio to various ARM devices [43].

2.3.1 Kernel and Protothreads

Usually memory constrained platforms use event-driven mechanisms to provide concur-
rency. Such event-driven mechanisms have a much lower memory consumption than multi-
threaded systems, since event-driven systems do not need an individual stack for each of
the created threads because all processes in an event-driven system share the same stack.
Another advantage of event-driven systems is that locking mechanisms are generally not
needed because multiple event handlers are not able to run concurrently. Although such
event-driven systems provide advantages for platforms with limited memory, not all pro-
gramms can be easily expressed in an event-driven way and developing an event-driven
application is usually more complicated than creating a multi-threaded application [18].

The Contiki OS combines an event-driven system with preemptible threads using an
event-driven kernel and a user library providing multi-threading functionality. The Contiki
kernel dispatches events to running processes by calling the polling handler of the respec-
tive process. Each called polling handler runs to completion and cannot be preemptively
stopped by the kernel [18].

Contiki provides system libraries that may be optionally linked with programs and im-
plement functionality additional to the basic event handling in the kernel. Amongs others
the system libraries implement multi-threading, memory management and communication
support [18, 44].

2.3.2 Contiki network stack

The network stack of Contiki (shown in Figure 2.11) consists of four network layers: the
Radio layer, the Radio Duty Cycling (RDC) layer, the Media Access Control (MAC) layer
and the Network layer.

Radio Radio layer

Duty cycling RDC layer

MAC MAC layer

Adaptation

Network, Routing

Transport

Application

Network layer

Figure 2.11: Network stack of the Contiki OS.
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The radio layer implements the functionality of sending and receiving radio packets.
It provides a method to send a packet and triggers an interrupt if data was received. The
Clear Channel Assessment (CCA) is typically performed in this layer as e.g., implemented
for the Tmote Sky and its Texas Instruments CC2420 radio.

The RDC layer handles the duty cycling of the radio. It provides methods for sending
a single or a list of data packets over the radio and also notifies the upper layer whenever
a list of data packets or an individual packet was received. This layer is also responsible
for converting packet attributes (e.g., sender address, receiver address and sequence num-
bers) to link layer headers, which can be transmitted over the radio. An example for an
implementation of the RDC layer is ContikiMAC.

The MAC layer implements the media access control of the network stack. This layer
provides methods for sending packets to and receiving packets from neighbor devices.
Any additional security operations on the communication data are executed in this layer
as implemented in the CSMA implementation in Contiki.

The layer on top of the network stack of Contiki is the network layer. This layer is
responsible for the data adaptation (IPv6 header compression, data fragmentation and
reassembly). Additionally to the data adaptation, this layer also includes network and
routing functionality as well as transport and application logic.

The existing network stack implementation supports IPv6 or RIME communication
over an IEEE 802.15.4 radio layer and provides several different existing RDC and MAC
layer implementations to fit the needs of various applications. RIME communication is
used in wireless sensor networks to exchange data between devices. This Thesis solely
focuses on the IPv6 support of the network stack.

The existing communication stack seems to be specifically tailored to IEEE 802.15.4
as link-layer technology and causes problems if other link-layers (e.g., BLE) should be
supported. One problem is that the function for sending packets in the radio layer only
accepts packets with a maximum length of 255 bytes, which is sufficient for IEEE 802.15.4
but may not be for other link layer technologies, and the sending function is expected to
block until the packet was sent. This blocking behavior can easily be implemented for
IEEE 802.15.4 radios but causes problems with wireless technologies like BLE where the
actual sending of packets is done by a separate processor and the radio layer simply adds
packets to the transmission queue.

Listing 2.1: Example of a project-conf.h file that sets CSMA as the MAC layer and
ContikiMAC as RDC layer

/* ------------------------------------------*/

#ifndef PROJECT_CONF_H_

#define PROJECT_CONF_H_

/* ------------------------------------------*/

/* network stack settings */

#define NETSTACK_CONF_MAC csma_driver

#define NETSTACK_CONF_RDC contikimac_driver

/* ------------------------------------------*/

#endif /* PROJECT_CONF_H_ */

/* ------------------------------------------*/
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The Contiki OS provides different implementations for each of the communication
stack layers. The different implementations can be used to customize the behavior of the
communication stack individually for each Contiki user application. The configuration of
the layers is done in an application-specific header file (project-conf.h) that is typically
located in the root directory of the Contiki application. The example project-conf.h

header file shown in Listing 2.1 selects CSMA (csma driver) as the MAC layer and
ContikiMAC (contikimac driver) as the RDC layer to be used.

2.4 Hardware

This section lists the hardware used in this Thesis:

2.4.1 Texas Instruments SensorTag

Figure 2.12: TI SensorTag (http://www.ti.com/ww/en/wireless_connectivity/
sensortag2015/images/sensorTag-main-visual.png).

This SoC (Figure 2.12) is based on the Texas Instruments (TI) CC2650, an ultra-low
power MCU which supports Bluetooth LE and IEEE 802.15.4 wireless technologies. The
CC2650 consists of a radio core and an application core.

The radio core is an ARM Cortex-M0 processor, which implements the lower function-
ality of BLE and IEEE 802.15.4. This radio core performs BLE and IEEE 802.15.4 packet
reception and transmission and can run autonomously from the rest of the system. The
application core, an ARM Cortex-M3 processor, runs the user application. This processor
operates at 48 MHz, provides 128 KB of flash memory and 20 KB of RAM. A single
CR2032 coincell battery provides the power supply of the whole SoC. [28]

The SensorTag is one of the three primary hardware platforms supported by Contiki
[43]. Because the hardware supports both Bluetooth Low Energy and IEEE 802.15.4, it
is provides the opportunity to compare both wireless protocols on the same hardware.

http://www.ti.com/ww/en/wireless_connectivity/sensortag2015/images/sensorTag-main-visual.png
http://www.ti.com/ww/en/wireless_connectivity/sensortag2015/images/sensorTag-main-visual.png
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Figure 2.13: Nordic Semiconductor nRF52 DK (http://www.nordicsemi.com/eng/
Products/Bluetooth-Low-Energy2/nRF52-DK).

2.4.2 Nordic Semiconductor nRF52

The nRF52 from Nordic Semiconductor (Figure 2.13) is an ultra-low power SoC that
supports BLE and the ANT protocol for wireless data exchange. The SoC comes with a
so called SoftDevice that provides applications with a full BLE communication stack and
other hardware abstractions. The SoftDevice is freely available online but its source code
is proprietary.

The applications run on an ARM Cortex-M4 processor that operates at 64 MHz, has
64 kB of RAM and 512 kB of flash memory. Power supply of the SoC can either be a
single coin cell battery (CR2032) or an external power supply with a voltage range from
1.7 V to 3.6 V. [36]

Currently the nRF52 is officially supported by the Contiki OS [43] and source code sup-
porting the nRF52 hardware platform is already merged into the official Contiki GitHub
repository [8].

2.4.3 Raspberry Pi

Figure 2.14: Raspberry Pi 1 Model B [13].

The Raspberry Pi 1 Model B computer (Figure 2.14) is used as a border router in

http://www.nordicsemi.com/eng/Products/Bluetooth-Low-Energy2/nRF52-DK
http://www.nordicsemi.com/eng/Products/Bluetooth-Low-Energy2/nRF52-DK
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this Thesis. This Raspberry Pi version contains an ARM11 application processor that
operates at 700 MHz and provides 512 MB of RAM. The Pi is powered using its Micro
USB socket by an external power supply with 5 VDC [13].

For this Thesis the Raspberry Pi uses the Raspbian 81 as its Operating System. This
OS provides all necessary libraries to configure the Raspberry Pi as border router.

Since this version of the Raspberry Pi does not provide BLE support a BLE to USB
dongle, the LogiLink BT00152 was used to enable the Raspberry Pi to communicate with
BLE devices.

1https://www.raspberrypi.org/downloads/raspbian/
2http://www.logilink.eu/showproduct/BT0015.htm



Chapter 3

Related work

This chapter discusses the related work to this Thesis. Section 3.1 lists different BLE stack
implementations for constrained devices. Other studies closely related to this Thesis are
summarized in Section 3.2.

3.1 BLE stacks

This section summarizes the most relevant implementations of BLE communication stack
for constrained devices available to data. Out of these, only one communication stack (de-
scribed in Section 3.1.1) provides support for IPv6 over BLE. Apache Mynewt described
in Section 3.1.2 is currently under development and is expected to be the first fully open
source BLE stack that provides IPv6 support, although no expected release date for the
IPv6 support is available.

Table 3.1: Overview of existing BLE stack implementations for constrained devices.
Open
Source

IPv6 Contiki
compatible

Portability

Nordic Semiconductor -
BLE stack

NO YES NO NO

Texas Instruments -
BLE stack

NO NO NO NO

Apache Mynewt -
NimBLE

YES NO
(planned)

NO YES

Bluekitchen -
BLE stack

YES NO YES NO

Cypress Semiconductor -
WICED Smart

NO NO NO NO

Blessed -
BLE stack

YES NO NO YES

Table 3.1 gives an overview of the existing BLE stack implementations for constrained
devices. Each of the implementations is evaluated according to the requirements of this
Thesis:
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• Is the implementation of the BLE host fully open source?

• Does the stack support IPv6 over BLE?

• Is the implementation compatible to the architecture of the Contiki OS and its
network stack?

• Could the implementation easily be ported to other hardware platforms, especially
to the TI SensorTag?

3.1.1 Nordic Semiconductor - BLE stack

An implementation of IPv6 over BLE according to the RFC 7668 standard [34] was recently
included into the official Contiki codebase [8]. This project implements IPv6 communi-
cation over a BLE link layer on the nRF52 DK platform of Nordic Semiconductor. The
code uses a proprietary and closed source BLE communication stack that is provided by
Nordic Semiconductor and is only available for certain Nordic Semiconductor hardware
platforms. Thus the code providing the IPv6 over BLE functionality for the nRF52 DK
platform cannot be easily ported to other hardware platforms, which are not supported
by the Nordic Semiconductor BLE stack.

Another drawback of the used BLE stack is that this implementation is not fully com-
patible with the architecture of the Contiki OS network stack. The radio and duty cycling
functionality, which are normally implemented in the respective layers of the Contiki net-
work stack, are handled in the proprietary stack.

3.1.2 Apache Mynewt - NimBLE

Apache NimBLE is part of Apache Mynewt, a modular OS for IoT devices, and claims to
be the world’s first fully open source BLE stack. NimBLE is compliant to the Bluetooth
Specification version 4.2 [5] and also supports features from older Bluetooth specifications
such as multiple simultaneous roles of a BLE device and simultaneous advertising and
scanning [20].

The currently supported platforms of Apache Mynewt are nRF51 DK and nRF52 DK
from Nordic Semiconductor, BMD-300-EVAL-ES from Rigado, STM32F3DISCOVERY
from ST Micro, STM32-E407 from Olimex and the Arduino Zero, Zero Pro and M0 Pro
[19]. Because NimBLE is part of the Apache Mynewt OS and due to the architectural
differences between Apache Mynewt and the Contiki OS, NimBLE is not compliant with
the network stack architecture of Contiki.

The project is currently under development and as of the current version 0.9.0 of
Apache Mynewt neither support for IPv6 over BLE nor any expected release date of IPv6
over BLE support is available [20].

3.1.3 Texas Instruments - BLE stack

Texas Instruments provides a proprietary BLE communication stack for its CC2640 and
CC2650 hardware platforms. This BLE stack complies to the Bluetooth Specification 4.1
[3] and is part of the TI-RTOS, a real time operating system for Texas Instruments devices.
In addition to the full support of Bluetooth Specification 4.1 the BLE stack implements
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simultaneous master and slave operations. However, although the stack provides full BLE
support, IPv6 over BLE communication is not supported [26].

Since the BLE stack is proprietary, it cannot easily be ported to hardware other than
the supported Texas Instruments platforms. Due to the fact that the stack is not open
source and it is part of the TI-RTOS, the stack is also not compatible with the Contiki
network stack architecture.

3.1.4 Bluekitchen - BLE stack

The communication stack from BlueKitchen is an open source stack which not only pro-
vides BLE, but also classic Bluetooth functionality according the Bluetooth Specification
4.2 [5]. While it claims to have a small memory footprint (40kB flash and 4kB of RAM),
it includes code for classic Bluetooth that is not needed in constrained devices [21].

This stack can easily be ported and could also be merged into the architecture of the
network stack of Contiki. Unfortunately, the BLE stack does not provide support for IPv6
over BLE communication.

3.1.5 Cypress Semiconductor - WICED Smart

Cypress Semiconductor provide several SoC solutions with BLE wireless connectivity ac-
cording the Bluetooth Specification 4.2 [5]. The SoCs come with corresponding WICED
Software Development Kits that enable the creation of applications with BLE connectivity.

The code of the communication stack is available online without charge but users
need to register to download the code base. Although WICED supports several BLE
applications (e.g., proximity, thermometer) it seems that IPv6 over BLE is currently not
supported [14].

3.1.6 Blessed - BLE stack

Blessed is a BLE software stack for embedded devices. This stack only supports BLE
advertising and passive scanning, a BLE connection between two devices cannot be estab-
lished. The project page shows that features like active scanning and BLE connections
were planned to be added, but the last commit to the projects source code was done over
2 years ago and I assume it has been discontinued [10].

3.2 Studies

Dementyev et al. [16] compared the energy consumption of BLE, ANT and IEEE 802.15.4
radios used in constrained devices. In their setup, the authors periodically send small data
packets to another radio device (e.g., health monitor applications) and measured the energy
consumption of the three different radio devices. The authors came to the conclusion that
BLE has the lowest power consumption compared to ANT and IEEE 802.15.4, at least in
their experimental setup (8 bytes of data every 5 - 120 seconds).

Another comparison of the energy consumption of BLE and IEEE 802.15.4 was carried
out by Siekkinen et al. [40] and shows that BLE has an extremely small energy consump-
tion and a very attractive energy per bit ratio. Their results suggest that the energy to
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bit ratio of BLE gets better the more bytes are transmitted during a BLE connection
event. Additionally to the energy consumption evaluation, Siekkinen et al. calculated the
overhead of IPv6 over BLE according to their energy measurements and concluded that
the overhead of 6LoWPAN headers for IPv6 over BLE is the same as for IPv6 over IEEE
802.15.4 (e.g., 2 bytes 6LoWPAN header for link-local communication).

Narendra et al. [33] compared BLE to IEEE 802.15.4 regarding their link layer perfor-
mance. They evaluated the link layer latency, the duty cycle of the radios, the maximum
data rate, and the packet reception rate of different configurations of both link layer tech-
nologies. They conclude that both BLE and IEEE 802.15.4 have their own properties
and may be suitable for different applications and advocate IPv6 as the means to realize
interoperability between different link layer technologies.

The experiment performed by Chawathaworncharoen et al. [12] shows the feasibility
of 6LoWPAN on BLE using commodity hardware (Raspberry Pi as nodes and laptop PC
as border router). Their measurements show that the energy expenditure of IPv6 over
WiFi is tenfold the energy expenditure of IPv6 over BLE in their experimental setup.



Chapter 4

IPv6 over BLE

This chapter presents the IPv6 over BLE communication stack for the Contiki OS that
I implemented as part of this thesis work. Section 4.1 describes in detail the features
and limitations of the implemented stack. Section 4.2 discusses the design decisions made
during the development of the presented stack, so that the Contiki OS is able to use BLE
as an alternative link layer technology to IEEE 802.15.4. Lastly, Section 4.3 summarizes
the implementation details of the communication stack on the TI SensorTag and provides
a guide for porting the created stack to other hardware platforms.

4.1 Features

This section describes in detail the features and limitations of the IPv6 over BLE commu-
nication stack implemented during my Thesis.

4.1.1 Open source implementation of the BLE host

All code created during this Thesis’ work is fully open source under the 3-clause BSD
license and available online1. Since no BLE stack for the Contiki OS is available at date,
this implementation may be merged into the official Contiki repository. The availability
of an open source BLE host may lead to additional features added to the existing imple-
mentation. Additionally, the stack can be easily ported to other BLE hardware platforms,
as described in Section 4.3.3.

4.1.2 Interoperable communication stack compliant to RFC 7668

The IPv6 over BLE communication stack contains all necessary BLE features to setup the
IPv6 over BLE connection and exchange IPv6 packets over the BLE connection. The stack
is compliant to the RFC 7668 standard [34] and hence fully interoperable with compliant
border routers.

Unfortunately, the Contiki OS version available at date is missing a feature that is
needed to be fully compliant to the RFC 7668. Although it implements the IPv6 Neigh-
bor Discovery mechanisms for IEEE 802.15.4 networks as specified by the RFC 4944

1https://github.com/spoerk/contiki
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standard [32], the Contiki OS lacks support for IPv6 Neighbor Discovery Optimizations
for 6LoWPANs as defined in the RFC 6775 [46]. Because the newer RFC 6775 is currently
not supported by the Contiki OS, the packets exchanged during Neighbor Discovery do
not contain the Address Registration Option as specified by the RFC 7668. Nevertheless,
the implementation presented in this Thesis is fully interoperable with the existing Linux
implementation of IPv6 over BLE border routers.

4.1.3 Contiki compatible communication stack

The extended communication stack is fully compatible with the architecture of the Contiki
OS and its existing communication stack. Each of the stack layers implement the interfaces
defined by the Contiki communication stack and could therefore be easily exchanged with
other stack layer implementations that implement the same interface. Contiki application
developers can easily change the stack layer implementations by changing the defined
values in the project-conf.h file and hence switch from BLE to IEEE 802.15.4 as used
link layer. A brief description of the configuration of the Contiki communication stack
using the project-conf.h file can be found in Section 2.3.2.

4.2 Design

This section presents the design of the IPv6 over BLE communication stack of the Contiki
OS. Section 4.2.1 summarizes the basic primitives that a node device needs to implement
to exchange IPv6 packets over a BLE link. Section 4.2.2 discussed the overall design of the
extended communication stack and the design of each of the stack layers. Section 4.2.3
describes the communication setup between node and border router in detail. Lastly,
Section 4.2.4 discusses the design challenges faced during the development of the IPv6
over BLE communication stack for the Contiki OS.

4.2.1 Basic primitives

The three basic primitives of a IPv6 over BLE node device are:

• broadcasting IPv6 node behavior and allowing border routers to establish an IPv6
connection to the node;

• receiving BLE data packets (either control PDU or data PDU) during BLE connec-
tion events as a BLE slave device;

• transmitting BLE data packets (either control PDU or data PDU) during BLE
connection events as a BLE slave device.

4.2.2 Communication stack

As stated in Section 4.1, one constraint of the IPv6 over BLE communication stack is that
it should be fully compatible with the architecture of the existing Contiki communication
stack. Figure 4.1 shows the communication stack with support for BLE as a link layer that
I designed. This stack is compatible with the existing Contiki OS architecture and uses
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ble-hal ble-radio Radio layer

ble-rdc RDC layer

ble-mac MAC layer

sicslowpan

Network, Routing

Transport

Application

Network layer

Figure 4.1: Contiki communication stack with IPv6 over BLE support

the same layers of Contiki’s communication stack: radio layer, RDC layer, MAC layer,
and network layer.

To switch from the classic IPv6 over IEEE 802.15.4 to the implemented IPv6 over
BLE a user simply needs to change the used communication stack layers and commu-
nication stack parameters in either the Contiki OS configuration file of the used hard-
ware platform (contiki-conf.h) or directly in the application-specific configuration file
(project-conf.h).

One of the main changes in the communication stack for IPv6 over BLE is the intro-
duction of the BLE-HAL, a Hardware Abstraction Layer (HAL) that is part of the BLE
radio layer and that hides to the developer the implementation details of the various sup-
ported BLE hardware. Every hardware platform that is supported by the IPv6 over BLE
stack needs indeed to provide a hardware-specific implementation of the BLE-HAL. By
hiding the hardware-specific BLE code in the BLE-HAL implementations, the BLE radio
layer is hardware independent and stays the same on all supported hardware platforms.

BLE-HAL

The BLE-HAL is a hardware abstraction layer that provides standardized functions to the
radio layer in order to interact with the specific BLE radio hardware of the used hardware
platform. This HAL is specific to IPv6 over BLE and is not a separate layer in the com-
munication stack but is rather used by the radio layer implementation to communicate
with the BLE hardware of the system. All provided functions mimic HCI functions spec-
ified in the Bluetooth Specification [3]. This should ease implementing a BLE-HAL on
hardware platforms that have a BLE radio supporting HCI commands (e.g., the Nordic
Semiconductor NRF52 transceiver described in Section 2.4.2). Other BLE hardware plat-
forms without HCI support (e.g., the TI SensorTag described in Section 2.4.1) can still
implement the HAL as shown in this Thesis.
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The minimal functions provided by BLE-HAL implementations are (see ble-hal.h):

• reset

Resets the link-layer of the BLE radio. After a reset, the link-layer is in the Standby
state.

• read_bd_addr

Reads the public device address of the BLE radio.

• set_adv_data

Sets the advertising data used during BLE advertising. The advertising data length
is limited to 31 bytes.

• set_scan_resp_data

Sets the scan response data used during BLE advertising. The scan response data
length is limited to 31 bytes.

• set_adv_param

Sets the parameters used during BLE advertising. Such parameters include adver-
tising interval and used advertising channels.

• set_adv_enable

Enables or disables BLE advertising on the BLE radio. The used advertising param-
eters, advertising data and scan response data need to be set using the respective
functions before enabling advertising.

• disconnect

Disconnects a BLE connection that was previously established by the peer device.

• send

Adds the specified data to the BLE transmission queue. The data is only added if
the BLE radio is in the Connected state (either as master or slave device) and the
specified data is then transmitted during the BLE connection events.

The data length is limited to 255 bytes. Fragmentation of the specified data into
BLE data packets with a maximum length of 27 bytes (as seen in Figure 4.2) is
handled in implementations of the BLE-HAL.

Besides providing these functions for interacting with the BLE radio, the BLE-HAL
copies the payload of BLE data packets that are received during connection events into
the packet buffer of the Contiki communication stack and notifies the RDC layer that BLE
data is available by calling NETSTACK_RDC.input().

Radio layer

Typically the radio layer of Contiki is responsible for transmitting and receiving data
packets over wireless technologies (e.g., IEEE 802.15.4). In the case of BLE as link layer,
the transmission and reception of BLE data packets is the main task of the radio layer.
The latter provides functions to start BLE advertisement and exchange BLE data packets
during connection events.
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data

data packet 0 data packet 1 data packet 2

BLE link layer header

Figure 4.2: Fragmentation of data into several BLE data packets

As stated in Section 4.2.2 the radio layer uses a hardware specific implementation of
the BLE-HAL to communicate with the BLE radio. Since all the hardware specifics are
handled in the BLE-HAL, the radio layer for BLE is hardware independent and may be
used for different BLE hardware platforms.

The radio.h file defines the interface of each implementation of a radio layer in the
Contiki communication stack. Although this interface specifies 14 different radio layer
functions, the radio layer for BLE devices needs to implement at least the radio layer
functions:

• init

Calls init of the BLE-HAL implementation to reset the BLE radio hardware.

• send

This function is used by the upper communication stack layers to transmit data over
BLE. The data length is limited to 255 bytes because of the architecture of the
Contiki communication stack (payload length is an unsigned short in radio.h).
When called, this function uses the send() primitive of the BLE-HAL to add the
provided payload to the transmission queue of the BLE radio.

Unlike the implementations of this function for other wireless technologies like IEEE
802.15.4 radios, this function does not block until the radio has transmitted the
payload. Since the payload data is only appended to the transmission queue of the
BLE radio and the radio then transmits the data deferred during connection events,
this function immediately returns with RADIO_TX_OK after the payload is successfully
appended. In case the payload could not be appended, this function returns with
RADIO_TX_ERR.

• on

This empty function always returns 1 and is only available for compatibility to the
communication stack.

• off

Calls disconnect of the BLE-HAL to disconnect any BLE connection.
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• get_value

Can be used to read various parameters and constants of the BLE hardware like
buffer size and minimum and maximum data channel.

• set_value

Can be used to set specific parameters for the BLE radio like advertisement interval
and used advertisement channels. This function is also used to enable or disable
BLE advertisement.

• get_object

Can be used to read the BLE device address. The device address is read using
read_bd_addr of the BLE-HAL.

• set_object

Can be used to set the advertisement payload or the scan response payload. There-
fore the BLE-HAL functions set_adv_data and set_scan_resp_data are used re-
spectively.

RDC layer

Existing RDC layer implementations (e.g., ContikiMAC or CXMAC) implement duty cycling
of the used radio layer. Radio duty cycling of BLE communication is already implemented
in the link layer of BLE and performed by the BLE radio core as specified by the Bluetooth
specification [3]. By using existing RDC layer implementations such as nullMAC, which
do not perform any duty cycling of the radio, the application processor does not interfere
with the existing BLE duty cycling of the BLE radio core.

In contrast to the existing RDC layer implementations that duty cycle the radio by
calling NETSTACK_RADIO.on() and NETSTACK_RADIO.off(), duty cycling of the BLE ra-
dio should not frequently switch the radio on and off, because the basic duty cycling is
already implemented in the BLE-HAL. Instead, RDC implementations for BLE radios
may indirectly change the radio duty cycle by changing the connection interval and
slave latency of the active BLE connection. These two connection parameters could be
adaptively changed depending on the data to be sent or received over the BLE connection.
Another approach could be to completely shut down the BLE radio core for longer peri-
ods of time (e.g., several minutes or hours) and only start the BLE connection for short
periods to exchange data.

RDC layer implementations used for IPv6 over BLE have to implement at least the
following functions defined by rdc.h:

• init

Initializes the RDC layer implementation.

• send

This function is used by the MAC layer to transmit data. NETSTACK_RADIO.send()
is called to send data over BLE connections.

• input

Called by the radio layer if any new data was received. This function calls
NETSTACK_MAC.input() to notify the upper stack layers that valid data is available.
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• on

Depending on the implementation this function may enable the radio layer using
NETSTACK_RADIO.on().

• off

Depending on the implementation this function may disable the radio layer using
NETSTACK_RADIO.off().

In future work, this layer could use BLE advertising primitives (advertising and scan-
ning) to exchange IPv6 packets. These primitives are currently only used for communica-
tion setup between node and border router. Using BLE advertising and scanning directly
could result in a very energy efficient way to exchange IPv6 packets between BLE devices.

MAC layer

For IPv6 over BLE the main purpose of the MAC layer is to implement the L2CAP
functionality of BLE.

During initialization this layer configures and starts the BLE advertisement to indicate
the IPv6 over BLE support to nearby border routers as specified by [4]. After a link layer
connection has been created by the BLE radio, the MAC layer handles the L2CAP channel
setup by parsing and responding to the L2CAP connection request of the border router
and hence creating an LE Connection Oriented L2CAP Channel with LE Credit Based
Flow Control Mode [4].

Although the fragmentation of a single IPv6 packet into smaller radio packets is usually
done by the network layer in the 6LoWPAN implementation, the RFC 7668 standard
specifies that L2CAP performs fragmentation and reassembly of data [34].

MAC layer implementations used for IPv6 over BLE have to implement at least the
following functions defined by mac.h:

• init

Configures the BLE advertisement parameter, advertisement and scan response data
according to [4] and starts BLE advertisement by calling NETSTACK_RADIO.set_value()
and NETSTACK_RADIO.set_object() with the according parameters.

• send

Called by the Network layer to transmit an IPv6 packet. The maximum length of the
IPv6 packet is 1280 bytes (the minimum MTU specified by [4, 34]). As stated above,
this layer handles fragmentation of a single IPv6 packet into L2CAP packets as shown
in Figure 4.3. The L2CAP packets are then sent by calling NETSTACK_RDC.send().

• input

Called by the RDC layer if any new data was received.

The reassembly of L2CAP packets into IPv6 packets is implemented in this func-
tion. If a whole IPv6 packet was received the Network layer is notified by calling
NETSTACK_LLSEC.input().
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• on

Depending on the implementation this function may enable the RDC layer using
NETSTACK_RDC.on().

• off

Depending on the implementation this function may disable the RDC layer using
NETSTACK_RDC.off().

IPv6 packet

L2CAP fragment 0 L2CAP fragment 1

BLE L2CAP header

Figure 4.3: Fragmentation of a single IPv6 packet into L2CAP fragments

Network layer

The existing Network layer of Contiki does not need to be changed to support IPv6 over
BLE. The only necessary modifications are changes in the parameters of the Network
layer to disable fragmentation and reassembly in the Network layer since this is done in
L2CAP as specified in RFC 7668 [34].

4.2.3 Communication setup

The communication setup between a node device and the border router is a four step
process that is shown in Figure 4.4. At first the node device sends out BLE advertisement
packets to all BLE devices in its surrounding and waits for the border router to establish
a BLE link-layer connection (see Section 4.2.3). Secondly the two devices create a L2CAP
connection on top of the established BLE link-layer connection (see Section 4.2.3) and
thereby establish the IPv6 connection that uses the L2CAP channel to exchange data.
Thirdly the node sends router solicitation messages to the border router and receives
router advertisement messages that carry necessary subnet information like the shared
IPv6 prefix (see Section 4.2.3). At last all non-link-local IPv6 addresses of the node are
registered at the router using neighbor solicitation messages that are acknowledged by
neighbor advertisements (see Section 4.2.3).

By adhering to this communication setup routine specified by the BLE specification of
the Internet Protocol Support Profile [4] and the RFC 7668 standard [34], my implemented
IPv6 over BLE communication stack does not require any change in border routers that
support the RFC 7668 standard.
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Node Router

(1.a) advertising (link-layer)

(1.b) connection request (link-layer)

link-layer connection established

(2.a) connection request (L2CAP)

(2.b) connection response (L2CAP)

L2CAP connection established

(3.a) router solicitation (ICMPv6)

(3.b) router advertisement (ICMPv6)

shared IPv6 prefix distributed

(4.a) neighbor solicitation (ICMPv6)

(4.b) neighbor advertisement (ICMPv6)

non-link-local addresses registered

Figure 4.4: The 4 steps of a connection setup between a node and a border router; first a
BLE link-layer data connection is established (steps 1.a and 1.b), second a BLE L2CAP
connection is created (steps 2.a and 2.b), then the node uses ICMPv6 messages to find
the router and the shared IPv6 prefix (steps 3.a and 3.b) and register its non-link-local
addresses at the border router (steps 4.a and 4.b).

BLE link-layer connection

Nodes that do not have a connection to any border router send out BLE connectable
advertisement packets to allow routers to discover it [4] (step 1.a in Figure 4.4). Devices
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Table 4.1: Advertisement data fields that need to be defined by a IPv6 over BLE node to
enable connection setup [6].
Flags defines if the BLE device is general or limited discoverable

and if the device supports BR or EDR Bluetooth modes

TX Power Level indicates the transmission power level of sent packet

Local Name shortened or complete name of the BLE device

Service UUIDs a list of the services provided by the BLE device;
the IPSS needs to be in this list

Slave Connection
Interval Range

the preferred connection interval range of the BLE device

requesting to be connected to a IPv6 over BLE border router need to implement a GATT
server role and shall instantiate the Internet Protocol Support Service (IPSS) as a primary
GATT service.

According to the GATT specification in [3] and [6] and the additional requirement for
IPv6 over BLE node to instantiate the IPSS service defined by [4], the advertising node
has to at least define the following values: Flags, TX Power Level, Local Name, Service
UUIDs and Slave Connection Interval Range, as summarized in Table 4.1.

When a border router discovers an advertising node that wants to connect to the
Internet, the router checks for duplicate link-local addresses and sends a connection request
to the advertising node (step 1.b in Figure 4.4). With this connection request the router
initiates the BLE link-layer data connection and sends the necessary connection parameters
to the node. After the node has successfully received the connection request, the link-layer
connection is established and all exchanged data between the node and the router is sent
on one of the BLE data channels using BLE connection events [3].

BLE L2CAP connection

After the link-layer connection was successfully established, the border router initiates a
L2CAP connection between the router and the node (step 2.a in Figure 4.4). An L2CAP
connection is needed because each IPv6 packet is embedded into one or more L2CAP
packets and sent over the L2CAP connection. The successful creation of the channel is
acknowledged by the node by sending an L2CAP connection response to the router (step
2.b in Figure 4.4). When the L2CAP channel is successfully created all subsequent com-
munication between node and router is done using IPv6 packets sent over the established
L2CAP connection.

The definition of the IPSS [4] states that the LE Connection Oriented Channel with
LE Credit Based Flow Control is used for the L2CAP connection between the router and
the node. The main differences between the LE Connection Oriented Channel with LE
Credit Based Flow Control mode and the other modes of L2CAP are that the used mode
allocates the L2CAP channel identifiers dynamically and that each device may limit the
incoming L2CAP packets using credits as a flow control mechanism. During the L2CAP
channel setup the node grants the border router an initial amount of credits and vice versa.
These credits represent the number of L2CAP packets that the granting device accepts on
the L2CAP channel. After an L2CAP packet was received the credits are decremented by
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one and if the credit counter reaches 0 no more L2CAP packets are accepted. However
either border router or node may grant additional credits using an L2CAP Flow Control
Credit packet.

Router solicitation and advertisement

IPv6 over BLE uses neighbor discovery mechanisms as defined in [46]. The latter stan-
dard describes discovery approaches for several 6LoWPAN topologies including link-layer
technologies supporting mesh networking like IEEE 802.15.4. Since BLE does not support
mesh topologies, only the neighbor discovery approaches concerning star topologies are
used in implementations according to RFC 7668 [34].

A node sends Router Solicitations (RSs) to the all-routers multicast address when
its router list is empty, the default router is not reachable, or the lifetime of the router
information is expired [46]. This means that after the L2CAP connection to the router
is established and hence IPv6 communication is possible, the node sends a RS to the
all-routers multicast address and waits for a Router Advertisement (RA) from the router.

When the router receives the RS, it responds with a RA message as defined in [42] and
[46]. Such a RA carries the IPv6 prefix for the subnet and possibly contexts that is used
in the IPv6 header compression of 6LoWPAN.

Neighbor solicitation and advertisement

Using the prefix information received with the RA from the router, the node creates its
global address and registers this created address. A node registers the created global
address at the router using a Neighbor Solicitation (NS) message with the address regis-
tration option set. Any other global address of the node may be added to the NS using
another address registration option field [46].

The router checks the received global address for duplicates in its neighbor cache and
acknowledges the successful address registration by sending a valid Neighbor Advertise-
ment (NA) to the node [46].

4.2.4 Design challenges

The biggest challenge while designing the IPv6 over BLE communication stack was that
the whole Contiki OS was designed around IEEE 802.15.4 as the link layer technology.
This specifically caused a problem while designing the radio layer of BLE. The whole
existing communication stack requires the send() function of the radio layer to block
until the packet to be sent is successfully transmitted or the transmission was unsuccessful
(e.g., due to collisions). In contrast to a IEEE 802.15.4 radio, that could try to transmit
a packet any time, BLE only allows to exchange data during connection events, that are
fixed in their start and length. This means that the send() function of the BLE radio layer
cannot start transmitting data whenever send() is called. One solution for this problem
would have been to store the BLE data to be sent in the transmission queue of BLE-HAL,
perform a busy wait until the data was transmitted during a connection event, and then
return from the send() function. Although this alternative solution would have led to a
blocking send() function, it would have also consumed a significantly higher amount of
energy than the existing design, where the application processor is idle during connection
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events. To use this non-blocking radio layer, the upper layers of the connection stack
need to be adapted. The MAC layer implementation needs to wait between sending two
consecutive L2CAP fragments and needs to check if any buffer space is available in the
BLE-HAL before adding another L2CAP fragment to the transmission buffer.

Another constraint encountered while creating the design of the new communication
stack was the limited payload length of the send() function of the radio layer interface.
The send() function supports a maximum payload length of 255 bytes as a parameter
(the payload length is a variable of type unsigned short). This limited payload length
is enough for IEEE 802.15.4 radios, since the maximum IEEE 802.15.4 payload length is
127 bytes [41]. Nevertheless, BLE supports payloads longer than 255 bytes, but because
of this limitation the maximum length of the L2CAP fragments is limited to the 255
bytes. A possible solution would have been to change the radio interface of the Contiki
communication stack, but since one of the requirements of the new communication stack
is to be compatible to the existing Contiki OS, this solution was not chosen. Instead, I
chose to use the existing radio interface and use a maximum L2CAP fragment size of 255
bytes in the BLE-MAC layer.

4.3 Implementation

This section describes the implementation of the IPv6 over BLE communication stack
in Contiki that was created during this thesis. Section 4.3.1 discusses the implemented
changes to the Contiki communication stack, especially the created stack layer implemen-
tations. Section 4.3.2 highlights the main challenges that I faced during implementing the
IPv6 over BLE communication stack on the TI CC2650 SensorTag. Section 4.3.3 provides
a guideline on how the existing implementation for the TI SensorTag can be ported to
other hardware platforms with BLE support.

4.3.1 Communication stack

This section describes the changes made to the existing communication stack to support
IPv6 communication over a BLE link.

BLE-HAL

The implementation of BLE-HAL that is used in this thesis can be found in the source file
contiki/cpu/cc26xx-cc13xx/rf-core/ble-hal/ble-hal-cc26xx.c. This BLE-HAL im-
plementation is specific to the Texas Instruments CC2650 and the communication between
application and radio core is done using shared memory as specified by the Technical Ref-
erence Manual of the TI CC2650 [27]. Unfortunately, the radio core of the CC2650 does
not implement the HCI.

The current implementation only provides the link-layer states: Standby, Advertis-
ing and Connection of BLE. The states Scanning and Initiating are not needed on IPv6
over BLE node devices and are therefore not implemented in the current version of the
BLE-HAL. Figure 4.5 shows the three supported link-layer states and the valid transi-
tions between these states. The states Scanning and Initiating are only shown to give an
overview of all available link-layer states of BLE.
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StandbyAdvertising

Connection

Initiating

Scanning

Figure 4.5: The state machine of the link-layer states of BLE. The states Standby, Ad-
vertising and Connection are currently implemented in the BLE-HAL of the TI CC2650
(adapted from [3]).

The main functionality of the BLE-HAL is implemented in the the ble_hal_process,
a Contiki process that communicates with the BLE radio core of the TI CC2650. Un-
fortunately, the radio core of the TI CC2650 does not implement the HCI or even a
full BLE link layer. Instead, the radio core only provides functions to start single BLE
events (advertising and connection events), but the scheduling of consecutive advertising
or connection events needs to be handled by the OS on the application core. Due to this
limitation of the radio core, the ble_hal_process implements part of the link-layer of
BLE and is responsible for scheduling advertising or connection events according to the
Bluetooth Specification [3].

The ble_hal_process processes three different Contiki events to implement its behav-
ior. Each of these three events is created and broadcasted (using process_poll()) when
a specific interrupt from the BLE radio core was raised. The interrupt service routines for
these interrupts are implemented in contiki/cpu/cc26xx-cc13xx/rf-core/rf-core.c.
The events created and broadcasted are:

• rf_core_data_rx_event

The radio core raises an interrupt when new BLE data was received during either
an advertising or a connection event. When such an interrupt is detected by the
application core, an rf_core_data_rx_event is created and posted.
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• rf_core_timer_event

The timer of the radio core can be used to raise an interrupt if a specific timer value
has been reached. This timer interrupt can be used to time procedures that need to
be synchronized with the radio core. When the application core detects such a radio
timer interrupt, an rf_core_timer_event is created and posted.

In the current implementation of the BLE-HAL, these rf_core_timer_events are
used to schedule advertising events.

• rf_core_command_done_event

The radio core of the TI CC2650 raises an interrupt every time the last radio core
command has been finished (a single connection event or a single advertisement
event is closed). The application core listens for these interrupts and creates and
posts rf_core_command_done_events whenever such an interrupt is detected.

The current BLE-HAL implementation uses these rf_core_command_done_events
to schedule connection events.

The BLE-HAL implementation uses two data packet queues to handle the communi-
cation over BLE advertising and data channels. The rx_data_queue is used to store BLE
packets that are received during either advertising or connection events. It is a cyclic buffer
providing space for 20 packets simultaneously. The tx_data_queue is used for sending
data over BLE data channels. This queue is not a cyclic buffer, but buffer segments are
dynamically appended to the tx_data_queue. The buffer space for the tx_data_queue

is implemented using the Memory Block Allocator (memb) feature of the Contiki OS. In
the current implementation of the BLE-HAL, the tx_data_queue holds a maximum of
60 BLE data packets (each has a data length of up to 27 bytes) simultaneously. BLE
advertising and scan response data are not stored in the tx_data_queue, but set using
set_adv_data() and set_scan_resp_data(), respectively.

When the BLE-HAL is in the Standby state both advertising and connection events
are disabled. This state may always be entered by calling disconnect of the BLE-HAL.

In the Advertising state the process waits for either a rf_core_data_rx_event or a
rf_core_timer_event. When a rf_core_timer_event is received the process configures
the radio core to perform a single advertisement on each of the configured advertisement
channels (see Figure 4.6). After the advertising event is closed, the process configures
the radio core timer to raise an interrupt at the start of the next advertising event (after
advertising_interval). A rf_core_data_rx_event is received when either a scan re-
quest or a connection request was received by the radio core during advertisement. When
a valid connection request was received the process parses the connection parameters and
switches into the Connection state.

The advertising parameter and data used are set via the functions set_adv_data,
set_scan_resp_data and set_adv_param. These functions may be called in every state
of the BLE-HAL (Standby, Advertising and Connection). The function set_adv_enable

to enable BLE advertising only succeeds if the BLE-HAL is in the Standby state. Switching
into Advertising from any other state but Standby is not supported, as shown in Figure
4.5.

In the Connection state the process waits for either a rf_core_command_done_event

or a rf_core_data_rx_event. A rf_core_command_done_event indicates that the last
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Figure 4.6: Timing diagram of two consecutive advertising events. In this diagram all
three advertising channels are enabled to be used for advertising data.

connection event has been finished by the radio core. To configure and queue the next
connection event, the BLE-HAL process removes successfully transmitted packets from
the tx_data_queue, adds fresh packets to the tx_data_queue, calculates the start time
and data channel of the next connection event, and queues the next connection event into
the command queue of the radio core. The radio core starts the queued connection event
autonomously at the configured start time, as shown in Figure 4.7, and handles the packet
acknowledgment and flow control of all BLE packets.

When a rf_core_data_rx_event was received, the process parses the packets in the
rx_data_queue. The received packets can either be a control packet (used to manage the
BLE link-layer connection between two BLE controllers) or data packet (carrying data
between two BLE controllers). If the received packet is a control data packet, the BLE-
HAL process responds with the corresponding data. If one or more data packets were
received, the payload of all packets is reassembled and copied into the packet buffer and
the RDC layer is notified using RDC.input(). After the upper layers return, all finished
packets in the rx_data_queue are freed so their space can be reused.

As already stated in Section 4.2.2 the send function of BLE-HAL implementations
does not block until the given payload is transmitted. The function simply takes payload
of up to 255 bytes, fragments the payload into BLE data packets of 27 bytes, adds those
fragments to the tx_data_queue, and immediately returns.
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Figure 4.7: Timing diagram of two consecutive connection events showing the active time
of the radio core and the BLE-HAL process in context with the exchanged BLE data
packets and the radio core interrupt.

Radio layer

The file contiki/cpu/cc26xx-cc13xx/rf-core/ble-mode.c contains the implementa-
tion of the BLE radio layer. This implementation of the radio layer is generic and can be
used for every BLE radio hardware that implements a BLE-HAL.

The init function of the radio layer calls the init function of the BLE-HAL and
thereby initializes the BLE radio core of the CC2650. The function on is only implemented
to be compliant with the Contiki network stack and is a dummy function that immediately
returns with the value 1. Function off uses disconnect of the BLE-HAL implementation
to terminate any ongoing BLE advertising or communication. The functions get_value,
set_value, get_object and set_object are used to get and set paremeters (BLE device
address, advertising data, advertising parameters) of the used BLE radio core. Any BLE
specific additions to the existing RADIO_PARAM enumeration are defined in ble-hal.h.

Unlike the send functions of other radio layer implementations, this send function
does not block until the data was successfully sent over BLE. If the payload was success-
fully queued into the tx_data_queue of the BLE-HAL implementation, send immediately
returns with RADIO_TX_OK. Otherwise the send function returns with RADIO_TX_ERR.

RDC layer

The current IPv6 over BLE stack uses the existing nullrdc-noframer implementation of
the RDC layer that is located in contiki/core/net/mac/nullrdc-noframer.c.

This implementation does not perform any duty cycling of the radio. All duty cycling
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used in the current version of the IPv6 over BLE stack is done by the BLE radio core
as specified in the Bluetooth Specification [3]. Future work may create new RDC layer
implementations that change the duty cycle of the BLE radio and that are used instead
of nullrdc-noframer.

MAC layer

The source file contiki/cpu/cc26xx-cc13xx/net/ble-mac.c contains the implementa-
tion of the MAC layer that was created for the IPv6 over BLE communication stack. As
defined in Section 4.2.2, the MAC layer implementation for the BLE link-layer initiates the
advertisement behavior of the node and is responsible for fragmentation and reassembly
of large IPv6 packets by using the L2CAP functionality of BLE. The ble-mac uses two
buffers for L2CAP fragmentation and reassembly: the rx_buffer for received data and
the tx_buffer for outgoing data. Both of these buffers are able to store up to 1280 bytes.

Configuration of the BLE advertising behavior is done in the init() function. Using
the functions NETSTACK_RADIO.set_value() and NETSTACK_RADIO.set_object(), the
init() function sets the advertisement and scan response data and sets the advertising
parameters (advertising interval, used advertisement channels). After the init() function
has successfully been executed, the node device is indicating its IPv6 over BLE capabilities
using BLE advertisement.

The input() function of the MAC layer handles incoming data packets and is called by
the RDC layer when BLE data packets were received by the radio core. A received packet
is either an L2CAP connection request, an L2CAP flow control credit or an L2CAP data
packets. The L2CAP connection request is only received during the setup of the IPv6 over
BLE connection between the node and the border router. When such a connection request
was received, the ble-mac parses the connection request, creates the L2CAP connection-
oriented flow channel, and responds with the corresponding L2CAP connection response.
In the case of an L2CAP flow control credit, the packet is parsed and the L2CAP flow
control credits are updated. When an L2CAP data packet is received, it is added to the
rx_buffer. The Network layer is notified by calling NETSTACK_LLSEC.input(), when the
rx_buffer contains a complete L2CAP message.

The send() function accepts IPv6 packets with a maximum length of 1280 bytes from
the Network layer. send() copies the IPv6 packet to be sent into the tx_buffer, polls
the ble_mac_process using process_poll, and immediately returns. In the case that
the IPv6 packet has been successfully copied into the tx_buffer, the sent_callback is
called with the result MAC_TX_DEFERRED. Otherwise, the sent_callback is called with
the value MAC_TX_ERR if the length of the IPv6 packet is greater than 1280 bytes, or with
MAC_TX_COLLISION if another IPv6 packet is currently being sent. In both of the latter
cases the IPv6 packet does not get sent over the BLE connection.

The ble_mac_process is a Contiki process that handles the actual fragmentation and
transmission of packets to be sent. When this process gets polled it checks if the tx_buffer
contains data to be transmitted. The process creates and appends the L2CAP header in
front of the data of the first L2CAP fragment and calls NETSTACK_RDC.send() to start
transmission of the created fragment. If further L2CAP fragments need to be created and
transmitted (the tx_buffer still has unsent data), the ble_mac_process waits using an
etimer and sends the next fragment after the pause. The pause between two fragments
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is needed to provide the other processes running (especially the ble_hal_process) with
necessary CPU time. Figure 4.8 shows the procedure of fragmenting and sending a single
IPv6 packet.

The current ble-mac implementation uses L2CAP fragments with a maximum length
of 255 bytes and waits for approximately 15 ms between transmitting two consecutive
L2CAP fragments.

sicslowpan ble_mac RDC radio

output()
send()

mac_callback
send() send()

data added to
tx_queue

pause
send() send()

data added to
tx_queue

transmitting
data in
tx_queue

Figure 4.8: Diagram showing the process of sending a large IPv6 packet over BLE. The
ble_mac implementation splits the IPv6 packet into two fragments.

Network layer

As defined in Section 4.2.2 the existing Network layer of the Contiki OS is used for IPv6
over BLE. Nevertheless, to support BLE as a link layer technology, some configuration
parameters need to be changed to fit the BLE-specific needs. All of this parameters can
be configured in either the contiki-conf.h file using #define, or in the Makefile of the
used hardware platform.

The following parameters need to be changed compared to the classic IPv6 over IEEE
802.15.4 configuration to fully support the current implementation of the IPv6 over BLE
stack (Table 4.2 summarizes parameter configuration):

• SICSLOWPAN_CONF_MAC_MAX_PAYLOAD

This parameter defines the maximum payload length that the sicslowpan imple-
mentation passes to the MAC layer. If this parameter is not defined, the standard
length of 125 bytes is choosen.

Since the fragmentation of IPv6 over BLE is implemented in the MAC layer, this
parameter needs to be set to 1280.
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Table 4.2: Parameters of the Network layer that need to be changed for IPv6 over BLE.
The column IEEE 802.15.4 shows the values of the standard communication stack while
column BLE shows the configuration for IPv6 over BLE.

Parameter IEEE 802.15.4 BLE

SICSLOWPAN CONF MAC MAX PAYLOAD (default) 125 1280

SICSLOWPAN CONF COMPRESSION THRESHOLD 63 0

SICSLOWPAN CONF FRAG 1 0

PACKETBUF CONF SIZE (default) 128 1280

QUEUEBUF CONF NUM 8 1

CONTIKI WITH IPV6 1 1

CONTIKI WITH RPL 1 0

• SICSLOWPAN_CONF_COMPRESSION_THRESHOLD

The sicslowpan implementation only compresses IPv6 packet that are larger than
the threshold defined by this parameter.

Unlike the IPv6 over IEEE 802.15.4 stack that only compresses IPv6 packets larger
than 63 bytes, the IPv6 over BLE stack should compress all IPv6 packets and hence
this parameter is set to 0.

• SICSLOWPAN_CONF_FRAG

This parameter indicates if the fragmentation mechanism of the sicslowpan imple-
mentation is either enabled or disabled.

Because the fragmentation of new stack is implemented in the MAC layer, this
parameter needs to be set to 0 to disable the sicslowpan fragmentation.

• PACKETBUF_CONF_SIZE

The maximum size of the packet buffer of the communication stack is defined by
this parameter. The default value is 128 bytes and is used if this parameter is not
defined.

To support the MTU of IPv6, this parameter needs to be changed to 1280.

• QUEUEBUF_CONF_NUM

The packet buffer of the communication stack is able to store several queued packets.
This parameter defines the maximum number of queued packets supported.

Due to memory constraints of the TI CC2650 and the necessary large value for
PACKETBUF_CONF_SIZE, the current communication stack is only able to store a
single packet in the packet buffer. Therefore this parameter is set to 1.

• CONTIKI_WITH_IPV6

As stated in Section 2.3.2, the Contiki OS has two possible modes of the commu-
nication stack: IPv6 and RIME. Per default Contiki uses the RIME mode for the
communication stack. To select the IPv6 mode of the stack, this parameter is set to
1.



CHAPTER 4. IPV6 OVER BLE 60

• CONTIKI_WITH_RPL

Contiki supports the RPL routing protocol when in IPv6 mode. This routing pro-
tocol is intended for multihop networks and is not needed for the IPv6 over BLE
communication. To disable the RPL routing, this parameter is set to 0.

4.3.2 Implementation challenges

The biggest challenge implementing the IPv6 over BLE communication stack on the TI
CC2650 SensorTag was that the SensorTag does not provide the standard HCI to com-
municate with the BLE link-layer. Moreover, the SensorTag does not even implement the
whole link-layer functionality as specified by the Bluetooth Specification [3]. The radio
core of the SensorTag only provides basic primitives to start single advertising or connec-
tion events. This means that instead of simply starting BLE advertising and letting the
radio core schedule all future advertising events, the application core needs to handle the
scheduling of each individual advertising event by itself. Other link-layer functionalities
like parsing connection requests and scheduling connection events are also not supported
by the radio core and need to be handled by the BLE-HAL implementation. This led to a
complex BLE-HAL implementation for the TI SensorTag that implements BLE advertis-
ing and connection behavior. A radio core that implements all the link-layer functionality
of BLE would have led to a much simpler and more energy efficient implementation of the
BLE-HAL and hence to a more energy efficient and robust IPv6 over BLE communication
stack.

Especially the scheduling of BLE connection events was a major difficulty in the BLE-
HAL implementation. Although the start time of the connection event, the connection
interval and the slave latency are known parameters, finding the right time to schedule the
connection event on the BLE radio core is still a problem and may benefit from further
optimizations. Even though the Bluetooth specifications [3] define some parameter to
counteract inaccurate timing between master and slave, this so called “window widening”
does not take the wakup time of the BLE radio core into account.

Another constraint during development was the limited memory of the SensorTag.
Because the BLE-HAL and the BLE-MAC layer implementation need to fragment and
reassemble data, both need large amount of buffer space to handle fragmentation. After
memory optimizations in both of these layers, the current implementation of the IPv6 over
BLE communication stack is able to run on a TI SensorTag and has free memory left to
support complex Contiki applications. An evaluation of the memory consumption of the
IPv6 over BLE stack can be found in Section 5.3.1.

4.3.3 Porting to other hardware platforms

This section provides a short guide on how to port the existing IPv6 over BLE commu-
nication stack implementation of the TI SensorTag to other Contiki hardware platforms
that support BLE. The following components need to be adjusted to the new hardware:

BLE-HAL

The new hardware platform needs to provide a hardware specific implementation of the
BLE-HAL. This implementation needs to adhere to the design presented in Section 4.2.2.
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If the target hardware platform provides HCI support, this implementation may simply
call the individual functions of the HCI needed. Other target hardware platforms that do
not provide HCI support need to implement the necessary communication with the BLE
radio core as stated in the hardware platforms documentation.

MAC layer

The implementation of the MAC layer may need to be adjusted in order to adhere to the
memory constraints of the target hardware platform. Currently, the MAC layer implemen-
tation uses an L2CAP fragment size of 255 bytes. This fragment size may be decreased if
the target platform has not enough memory to support such large fragments.

Additionally, the advertising parameters used during connection setup can be config-
ured in the MAC layer implementation. Any changes to the advertising parameters, such
as device name, additional service UUIDs, or the used transmission power may be changed
in this layer.



Chapter 5

Evaluation

This chapter presents the evaluation of the implemented IPv6 over BLE communication
stack. Section 5.1 shows the interoperability of this IPv6 over BLE communication stack
with other IPv6 over BLE implementations. The network connectivity of the IPv6 over
BLE stack is shown in Section 5.2. Lastly, Section 5.3 compares the IPv6 over BLE
communication stack to the existing IPv6 over IEEE 802.15.4 implementation of Contiki
regarding memory consumption (Section 5.3.1), communication overhead (Section 5.3.2),
energy consumption (Section 5.3.3) and interference susceptibility (Section 5.3.4).

5.1 Interoperability

This section shows the interoperability of my communication stack with other RFC 7668
conform IPv6 over BLE stack implementations. In particular, I check the interoperability
with the Nordic Semiconductor nRF52 communication stack (described in Section 3.1.1).

Setup

Router

A B

Figure 5.1: Network topology for evaluating the interoperability of the IPv6 over BLE
implementation on the TI Sensortag (A: TI SensorTag, B: Nordic Semiconductor nRF52).

Figure 5.1 shows the network topology used to evaluate the stack’s interoperability.
A Texas Instruments SensorTag runs the IPv6 over BLE stack presented in this Thesis.
A nRF52 DK from Nordic Semiconductor uses the IPv6 communication over a BLE link
presented in Section 3.1.1. Both nodes are connected to the same BLE border router, a

62
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Raspberry Pi 1 Model B with a LogiLink BT0015 BLE dongle (see Section 2.4.3) that is
setup according to the installation guide in [38].

The nRF52 DK was programmed with a modified version of the existing Contiki
udp-server implementation (examples\ipv6\rpl-udp\udp-server.c) that was adapted
to support a maximum payload length of 1280 bytes and to use the User Datagram Pro-
tocol (UDP) port 61616. Hence, the nRF52 DK runs a UDP echo server that listens
for UDP packets on UDP port 61616 and echos the received packets back to its sender.
The SensorTag was programmed with a modified version of the udp-client.c application
(examples\ipv6\rpl-udp\udp-client.c), a UDP client that periodically creates UDP
packets of various size and tries to send these UDP packets to the UDP echo server. The
client packets are sent every five seconds and use global IPv6 addresses as source and
destination.

The request/response latency, the time between a UDP packet is sent and the cor-
responding UDP packet response was received, is measured at the UDP client using the
rtimer of the Contiki OS.

Results

Figure 5.2 shows the average latency between the UDP packet sent by the client application
and the corresponding UDP echo packet received by the client. The figure shows the
average latency values over 20 consecutive measurements for every used packet length.
The whole experiment was repeated three times.
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Figure 5.2: Diagram showing the average latency between UDP request and UDP response
for different IPv6 packet lengths.

This experiment shows that the implemented IPv6 over BLE communication stack is
interoperable with the Nordic Semiconductor nRF52 communication stack. Unfortunately,
the communication between two BLE node devices has two major problems that cause
interoperability issues. The first problem occurs when the SensorTag sends a UDP packet
that is fragmented into several L2CAP fragments to the UDP echo server. When this
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happens, both BLE connections of the border router(i.e., the connection to the SensorTag
and to the nRF52 DK) terminate immediately without a proper BLE disconnect message.
This behavior is dependent on the used L2CAP fragmentation size and only happens when
the router needs to route packets from one node to another in the same IPv6 over BLE
subnet. This problem is the main reason why the interoperability evaluation is only done
with a maximum IPv6 packet length of 240 bytes, since the used L2CAP fragmentation
size is currently 255 bytes.

Another problem is that the border router sends ICMPv6 redirect messages [42] when-
ever it needs to route IPv6 packets in the IPv6 over BLE subnet. The router falsely
assumes that the best route between two IPv6 over BLE nodes in the same subnet is
to directly talk to each other. Therefore the router sends ICMPv6 redirect messages to
inform the node device about this direct route. Although this behavior is correct for IPv6
over IEEE 802.15.4 networks, it is not valid for IPv6 over BLE networks. As stated in
Section 2.2.3, each BLE node is connected to the border router via an individual link. Any
traffic between two nodes needs to be routed through the border router. Not only does
the border router send redirect messages to node devices, it also has trouble to correctly
route the packet to its destination, and each packet needs an additional hop to reach its
correct destination node.

Figure 5.3 shows the ICMPv6 redirect messages and the incorrect routing behavior
of the used border router. The network dump was created at the border router using
tcpdump.

Figure 5.3: Network traffic captured on the border router that shows the falsely sent
redirect messages and the routing problem of the used border router.
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5.2 Network connectivity

This section shows the ability of the IPv6 over BLE communication stack to communicate
with network devices outside the IPv6 over BLE subnet. To test network connectivity, a
laptop outside of the subnet was used to ping the node device running the IPv6 over BLE
stack.

Setup

The network topology used to test network connectivity is shown in Figure 5.4. A TI Sen-
sorTag runs the IPv6 over BLE connection stack presented in this Thesis. The SensorTag
is connected to a Raspberry Pi with a BLE dongle (see Section 2.4.3) configured to be a
border router [38]. A laptop is connected to the border router via Ethernet and is used to
test the network connectivity of the SensorTag.

Router

A

Laptop

Figure 5.4: Network topology for evaluating the network connectivity of the IPv6 over
BLE implementation (A: TI SensorTag)

To ensure that the SensorTag does not perform any interfering network activities, the
SensorTag runs the hello-world example of Contiki. The laptop connected to the border
router is used to send ICMPv6 echo requests to the SensorTag using the command line
tool ping. The whole experiment was repeated three times.

Results

Figure 5.5 shows the latency of ICMPv6 echo request/response between the laptop execut-
ing the ping request and the IPv6 over BLE node for different IPv6 packet lengths. The
latency values shown are the average values for 20 consecutive ICMPv6 echo request/re-
sponse pairs performed for every packet length.

The measurements show that the latency between a request and its response is not
linearly dependent from the used IPv6 packet length. Instead, it appears that the average
latency depends on the number of L2CAP fragments used to transmit the IPv6 packet.
As stated in Section 4.3.1, the current L2CAP fragment length is 255 bytes. Since IPv6
packets with a length of 80 bytes and 160 bytes fit into a single L2CAP fragment, the
measured latency for both packet lengths is approximately the same.
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Figure 5.5: Diagram showing the average latency of an ICMPv6 echo request/response
from the laptop to the SensorTag.

5.3 Comparing BLE to IEEE 802.15.4

This section compares the created IPv6 over BLE stack to the existing IPv6 over IEEE
802.15.4 stack of the Contiki OS. Section 5.3.1 compares the memory consumption of both
communication stacks. Section 5.3.2 shows the communication overhead of IPv6 over BLE
and IPv6 over IEEE 802.15.4 sending the same information. Section 5.3.3 compares the
energy consumption of the standard IPv6 over IEEE 802.15.4 and the IPv6 over BLE
communication stack executed on a TI SensorTag. Lastly, Section 5.3.4 compares the
packet reception rate of both communication stacks under Wi-Fi interference.

Experimental setup

The IPv6 over BLE communication stack used in this evaluation section is in detail de-
scribed in Section 4.3. The used BLE connection parameters: connection interval, set
to 70 ms, and slave latency, set to 0, were defined by the border router at connec-
tion setup. The border router also configured the used BLE connection channels. The
transmission power was set to 0 dBm.

The IPv6 over IEEE 802.15.4 stack used for the following measurements is the ex-
isting implementation of the Contiki OS. This stack uses the IEEE 802.15.4 link layer
implementation on channel 22 and transmits with a power of 0 dBm. ContikiMAC with a
channel check rate of 16 is used as the RDC layer implementation, CSMA as the MAC
layer, and sicslowpan as the network layer. The only minor change to the IPv6 over IEEE
802.15.4 stack is the QUEUEBUF_CONF_NUM parameter was changed from 8 to 14. Without
this change the maximum payload of 1280 bytes would not have been supported.

The Contiki application used is a modified version of the udp-client application
(examples\ipv6\rpl-udp\udp-client.c) that was adapted to support a maximum pay-
load of 1280 bytes and to use the UDP ports 61616 and 61617 as a server and client port,
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respectively. The only difference between the applications, using either IEEE 802.15.4 or
BLE as a link layer, is the configuration of the Contiki network stack in the configuration
file project-conf.h.

5.3.1 Memory consumption

Figure 5.1 shows the memory consumption of the standard IPv6 over IEEE 802.15.4
communication stack and compares it to the memory consumption of the IPv6 over BLE
communication stack that was created for this thesis. The only difference between the two
applications is the used network stack configuration.

Table 5.1: Memory consumption of the IPv6 over IEEE 802.15.4 and the IPv6 over BLE
communication stack of the Contiki OS. The memory consumption is divided into memory
needed for code, constant data and global or static variables.

IPv6 over IEEE 802.15.4 IPv6 over BLE

Code 58.52 kB 54.52 kB

Constant data 1.53 kB 1.5 kB

Global/static variables 13.76 kB 17.44 kB

Sum 73.8 kB 73.2 kB

The overall memory consumption of the IPv6 over BLE communication stack is lower
than the memory needed for IPv6 over IEEE 802.15.4. Nevertheless, the IPv6 over BLE
stack needs more global and static memory than the existing stack. Most of this static
global and static memory is allocated by the L2CAP two fragmentation buffers (each
having a length of 1280 bytes) and by the rx_data_queue (storing up to 1360 bytes) and
tx_data_queue (storing up to 2160 bytes) used in the BLE-HAL implementation.

5.3.2 Communication overhead

Figure 5.6 compares the communication overhead of the IPv6 over IEEE 802.15.4 com-
munication stack to the IPv6 over BLE implementation. For this test, the node sent
UDP packets with different payload lengths to the border router and the actual number
of transmitted byte was measured (e.g., to transmit an IPv6 packet with a length of 80
byte to the border router over the BLE link layer, only 44 byte of BLE data were sent).
The exchanged packets were UDP packets using the link local IPv6 addresses as source
and destination address and the UDP ports 61616 and 61617.

Figure 5.6 shows that the IPv6 over BLE stack needs fewer bytes to transmit the
same IPv6 packet than the IPv6 over IEEE 802.15.4 implementation. The results indicate
that BLE only needs 70% to 80% of the bytes that IEEE 802.15.4 needs to transmit the
same information. The main reason for the smaller communication overhead is the smaller
header size of BLE compared to IEEE 802.15.4. While IEEE 802.15.4 uses a header of 21
bytes to transmit a link layer payload of 80 bytes, BLE only needs 6 header bytes (3 link
layer packets with a header of 2 bytes) to transmit the same link layer payload.

The number of bytes transmitted via BLE could even be more reduced, if the used
L2CAP fragmentation size of the BLE-MAC layer would be increased.
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Figure 5.6: Comparison of the actual number of bytes transmitted by both communication
stack implementations to send IPv6 packets with different lengths.

5.3.3 Energy consumption

This section gives a first estimate of the energy consumption of the IPv6 over BLE connec-
tion stack compared to the energy consumption of the existing IPv6 over IEEE 802.15.4
connection stack of the Contiki OS.

Detailed setup

Figure 5.7 shows the network topology used for measuring the energy consumption of both
communication stack implementations.

In both cases (IPv6 over BLE and IPv6 over IEEE 802.15.4) the same SensorTag is
used as a node device. The server used for BLE as a link layer is the Raspberry Pi border
router described in Section 2.4.3. In order to measure the energy consumption of the
IEEE 802.15.4 layer, another SensorTag was used as server, since the Raspberry Pi border
router does not support ContikiMAC. During these experiments the node and the server
had an approximate distance of 1 m.

Both server devices implement a UDP echo server that waits for UDP packets on port
61616. Every time a UDP packet is received, the server prints the UDP payload onto the
console, and immediately returns a UDP packet containing the received UDP payload.

The node device runs a Contiki application that sends UDP packets to and receives
packets from the server. This node is configured to use either the IPv6 over BLE or
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Figure 5.7: Network topology for evaluating the energy consumption of IPv6 communica-
tion over a BLE link (a) compared to a IEEE 802.15.4 link (b)

the IPv6 over IEEE 802.15.4 communication stack to communicate with one of the UDP
servers. First, the application initializes the communication stack of the SensorTag and
waits until the connection between node and server is established. This connection is
checked by sending ICMPv6 echo requests to the server and waiting for the corresponding
ICMPv6 echo response. After the connection is successfully established, the node waits
for 5 seconds before sending the first UDP packet to the server. The UDP packets are
sent every second to the server and use the link local addresses as source and destination.

Figure 5.8: Energy measurement setup consisting of a Raspberry Pi 2 model B connected
to a TI LMP 92064.

The SensorTag is powered by an external power supply using its connectors for ex-
ternal battery packs. The energy consumption of the SensorTag is measured using a TI
LMP92064 connected to a Raspberry Pi 2 model B (see Figure 5.8). This measurement



CHAPTER 5. EVALUATION 70

setup simultaneously samples the supply voltage and current with 12-bit resolution each
at a sampling rate of 20kHz. The energy consumption of the SensorTag is calculated by
integrating the measured voltage and current over time.

Result

Figure 5.9 shows the energy consumption of both communication stacks for different packet
lengths. The energy measurement was started before the first UDP packet was sent and
stopped after the 100th UDP packet was transmitted. Hence, Figure 5.9 shows the energy
consumption of the TI SensorTag for exchanging 100 UDP request/response pairs over a
time of approximately 100 seconds. Both evaluated link layers had a packet reception rate
of 100% in this experiment.
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Figure 5.9: Comparison of the energy consumption of both communication stack imple-
mentations. The diagram shows the energy consumed by the TI SensorTag while sending
100 UDP request/response pairs over a time of 100 seconds.

Despite the expectation that the IPv6 over BLE communication stack should con-
sume less energy than the existing IPv6 over IEEE 802.15.4 stack, Figure 5.9 shows that
the energy consumption of the BLE link layer is higher for every evaluated IPv6 packet
length. The measurements indicate that the energy consumption of IPv6 over BLE is less
dependent on the amount of data sent than the energy consumption of IPv6 over IEEE
802.15.4.

One reason for the high energy consumption of the IPv6 over BLE communication
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stack could be that the default BLE connection parameters (connection interval and slave
latency) of the border router were used. Because node and router need to exchange BLE
packets every connection event (every 70 ms for this experiment), both devices need to
send and receive BLE connection packets, although no data needs to be exchanged for
most of the time.

By increasing either the connection interval or the slave latency, the energy efficiency
of the IPv6 over BLE communication stack could be optimized. Unfortunately, it was not
possible to change the connection parameters on the Raspberry Pi border router used for
this evaluation.

5.3.4 Interference susceptibility

This section compares the packet reception rate of the IPv6 over BLE communication
stack to the existing IPv6 over IEEE 802.15.4 communication stack in the presence of
Wi-Fi interference.

Setup

The setup of the interference susceptibility measurement is shown in Figure 5.1. Setup (a)
shows the SensorTag (represented by A) connected via IPv6 over BLE to the Server. Setup
(b) shows the same SensorTag connected to Server via IPv6 over IEEE 802.15.4, using
IEEE 802.15.4 physical channel 22. This experiment uses the same border router/server
setup as the energy measurement experiment in Section 5.3.3. The server and the client
have an approximate distance of 1m.

Server

A

IPv6 over BLEX

(a)

Server

A

IPv6 over IEEE 802.15.4X

(b)

Figure 5.10: Network topology for evaluating interference susceptibility of IPv6 over a
BLE link (a) compared to a IEEE 802.15.4 link (b)

A TmoteSky hardware platform running the JamLab [7] is used as the source of in-
terference. JamLab is configured to emulate Wi-Fi traffic on IEEE 802.15.4 channel 22
with a transmission power of 0 dBm. The jammer is either used in the mode WiFi 1 (sim-
ulates light Wi-Fi traffic comparable to audio streaming) or in mode WiFi 4 (simulates
heavy Wi-Fi traffic comparable to a file download and simultaneous video streaming). The
interference source is places in a distance of approximately 1m of the client and the server.
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At first, the client sends ICMPv6 echo requests to the server to check if a connection
was successfully established. After an ICMPv6 echo response is received, the client sends
100 UDP packets to the server, using a delay of 1 second between two consecutive packets.

Results

Figure 5.11 shows the packet reception rate of IPv6 over BLE and IPv6 over IEEE 802.15.4
under light Wi-Fi interference. According to the experiment, the IPv6 over BLE commu-
nication stack has a packet reception rate of 100% while lightly interfered. The IPv6 over
IEEE 802.15.4 communication stack is able to transmit all packets with an IPv6 packet
length of up to 320 bytes, although it does not perform channel hopping.
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Figure 5.11: Packet reception rate of both communication stacks under light Wi-Fi inter-
ference (audio streaming).

Figure 5.12 shows the packet reception rate of both communication stacks under heavy
Wi-Fi interference and a more significant difference in reliability. This experiment shows
that, as expected, the IPv6 over BLE stack provides a better reliability than IEEE 802.15.4
even under heavy interference.
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Figure 5.12: Packet reception rate of both communication stacks under heavy Wi-Fi
interference (file download and simultaneous video streaming).
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Conclusions

Although BLE as a link layer for constrained wireless devices gets more attention in
research and industry, no open source implementation of an IPv6 over BLE communication
stack is currently available. Studies that evaluate BLE for wireless networks and the IoT
usually compare the link layer capabilities of the different link layers available, but no study
was published that compares IPv6 over BLE to IPv6 over IEEE 802.15.4 communication,
even less on the same hardware platform.

This Master Thesis discusses the advantages of BLE as a link layer for constrained
devices and summarizes the benefits of an open source implementation of such a commu-
nication stack and its impact on further research. The major contribution of this work
is the design of an IPv6 over BLE communication stack that fits the architecture of the
Contiki OS and its implementation for the TI CC2650 SensorTag hardware platform.

The experiments performed during this thesis provide a first comparison of the im-
plemented IPv6 over BLE stack to the existing IPv6 over IEEE 802.15.4 communication
stack of Contiki using ContikiMAC as its MAC layer implementation. This first evalu-
ation shows that the implemented stack is interoperable with RFC 7668 [34] compliant
border routers. The IPv6 over BLE stack needs less memory and has a smaller com-
munication overhead than Contiki’s stack using IEEE 802.15.4 and ContikiMAC. First
measurements of the energy consumption show that the current BLE link layer implemen-
tation consumes more energy than the IEEE 802.15.4 implementation used by Contiki of
the TI SensorTag. Nevertheless, the measurements indicate that the consumed energy of
BLE is less dependent on the amount of data transmitted than the consumption of the
existing stack. The evaluation of the interference susceptibility shows that the adaptive
channel hopping performed by the BLE link layer results in a maximum packet reception
rate of 100% even under heavy Wi-Fi interference and suggests a high reliability of the
implemented communication stack.
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Future work

BLE stack. The current implementation of the IPv6 over BLE stack on the TI Sen-
sorTag may benefit from further improvements, especially in the BLE-HAL implementa-
tions. The scheduling of BLE connection events in the BLE-HAL could be optimized so
that the application processor of the SensorTag would only wake up immediately before
the next connection event needs to be scheduled. Hence, the application core would be
more idle and the communication stack would be more energy efficient. It is also possible
to extend the functionality of the already implemented BLE layer to fully support all BLE
features specified in the Bluetooth Specification [3], such as GAP, GATT, ATT and SM.

Border router. The SensorTag could be connected to a Raspberry Pi via the slip radio
interface and could be used as a border router device for IPv6 over BLE subnets. Such
a BLE specific border router may resolve interoperability issues with the currently used
Raspberry Pi border router.

Energy consumption. The energy efficiency and reliability of the IPv6 over BLE could
be checked using different BLE connection parameters and interference scenarios. It would
be interesting to compare the reliability of the IPv6 over BLE communication stack to
the reliability of an IPv6 over IEEE 802.15.4 communication stack that uses MAC layer
implementations performing frequency hopping (e.g., TSCH, MiCMAC).

Portability. Since the IPv6 over BLE communication stack was designed to be mostly
hardware independent, the communication stack could easily be ported to other BLE
hardware platforms with Contiki support. One possible target platform is the nRF52
from Nordic Semiconduction [36] that is already supported by the Contiki OS. This
hardware platform provides a BLE radio that supports the HCI of BLE.

RDC functionality. As discussed during the presentation of the IPv6 over BLE com-
munication stack, different implementations of stack layers may be used. The current
stack implementation does not include any duty cycling functionality in the RDC layer.
Additional RDC layer implementations could adaptively change the connection parameter
of the underlying BLE data connection depending on the amount of data to be exchanged.
During busy communication phases, the connection interval could be shortened to quickly
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exchange the data. By increasing the connection interval and the slave latency of the BLE
data connection, the RDC implementation would set the whole communication stack into
a more energy efficient mode during communication phases with low or no data through-
put. Another possible RDC layer implementation could disconnect the BLE connection
in times where no data needs to be exchanged and only enable the BLE data connection
for short amount of times to exchange IPv6 data before disconnecting again.

Advertising primitives. Lastly, the advertising privitives (advertising and scanning)
of BLE could be used to exchange IPv6 packets between network devices. Currently
these primitives are only used to setup the BLE data connection between node device
and border router. Future work may create an RDC layer implementation that uses BLE
advertising to directly send IPv6 packets to the border router and receives packets using
BLE scanning. Such an IPv6 packet exchange on the advertising channels does not require
any communication setup between node and border router or any periodic BLE packet
exchange (i.e., BLE connection events). Therefore, it is very likely that a communication
stack using advertising and scanning primitives to exchange IPv6 packets is even more
energy efficient than existing stack implementations.
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