
Florian Maislinger, BSc.

A Comparison of Recently Developed Time-Evolution
Algorithms for One-Dimensional Systems with Long-Range

Interactions

DIPLOMA THESIS

written to obtain the academic degree of

Diplom-Ingenieur

Master’s programme; Technical Physics

submitted to

Graz University of Technology

Supervisor:
Ao.Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Hans Gerd Evertz

Institute of Theoretical and Computational Physics

Graz, May 2016

EIDESSTATTLICHE ERKLÄRUNG
AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das
in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit
identisch.

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s thesis.

Datum/Date Unterschrift/Signature

To Franz, Anita, Barbara, Stefanie, and Jean-Luc.

There are four lights!

Abstract
In recent decades the research of strongly correlated materials has been of great pop-
ularity within the physics research community. To properly describe these materials
we cannot discard electron-electron interactions and thus the physical models of these
materials are of great mathematical complexity. To study and numerically simulate
strongly correlated electrons, very precise methods are available for one-dimensional
systems, namely the Density-Matrix Renormalization Group (DMRG) for static quan-
tities and the more recent methods of Time-Evolving Block Decimation (TEBD) and
time-dependent DMRG (tDMRG) for time evolutions. Both algorithms work within the
framework of Matrix Product States (MPS) that is best suited for one-dimensional mod-
els. For years, TEBD and the related tDMRG have been the first choice to compute time
evolutions of a quantum system. Their main drawback is that they can only deal with
nearest neighbor models (or finite short range), i.e. electrons only interact with each
other if they are located on the same atom or located on neighboring atoms. This means
that if long-ranged electron interactions are important to describe strongly correlated
materials, we are unable to capture the physics of said materials with TEBD or tDMRG.
To overcome this problem, two new classes of algorithms were developed in recent years.
In 2011, Jutho Haegeman et. al. introduced the Time-Dependent Variational Principle
for quantum lattices (TDVP). This algorithm is able to calculate the time evolution of
quantum systems in the thermodynamic limit and was originally formulated for nearest
neighbor interactions. In the course of this thesis this algorithm was extended to work
with exponentially decaying long-ranged interactions. There is also a version of TDVP
for finite lattices. This version can inherently work with long-ranged interactions. Fur-
thermore, in 2014, Michael Zaletel et. al. introduced an algorithm to calculate time
evolutions of long-ranged interactions that is based on Matrix Product Operators. Both
algorithms have advantages and drawbacks. In the present thesis these two new algo-
rithms are quantitatively compared for the one-dimensional transverse field Ising model
(TFI) with exponentially decaying long-range interactions. The results show that if the
interactions decay fast with respect to distance, the algorithm based on Matrix Product
Operators is a viable alternative to TDVP. If the interactions decay slowly with respect
to distance, TDVP should be used and is orders of magnitudes better than the other
method.

i

Zusammenfassung
Seit Jahrzenten stößt die Erforschung von stark korrelierten Materialien auf großes In-
teresse in der physikalischen Forschungsgemeinde.
Die zugehörigen physikalischen Modelle sind in der Regel mathematisch sehr komplex, da
die Elektron-Elektron-Wechselwirkung nicht vernachlässigt werden kann um diese Mate-
rialien zu beschreiben. Für eindimensionale Modelle sind zur Erforschung und Simulation
von stark korrelierten Elektronen sehr genaue Verfahren verfügbar, nämlich die Density-
Matrix Renormalization Group (DMRG) zur Errechnung von statischen Messgrößen
und Time-Evolving Block Decimation (TEBD) und time-dependent DMRG (tDMRG)
für Zeitentwicklungen. Beide Algorithmen arbeiten dabei mit Matrixproduktzuständen
(MPS), die wiederum am besten geeignet zur Untersuchung von eindimensionalen Mo-
dellen sind. Jahre lang waren TEBD und das verwandte tDMRG die erste Wahl, wenn es
darum ging Zeitentwicklung von Quantensystemen zu berechnen. Dabei haben diese Ver-
fahren den Nachteil, dass es damit nur möglich ist eine Nächste-Nachbar-Wechselwirkung
zu simulieren (oder endliche kurzreichweitige Wechselwirkungen). Das heißt, dass die
Elektronen nur wechselwirken, wenn sie sich auf dem selben Atom oder benachbarten
Atomen befinden. Damit sind wir nicht in der Lage diese Materialen mit TEBD oder
tDMRG zu untersuchen, falls langreichweitige Elektronenwechselwirkungen wichtig sind
um stark korrelierte Materialien zu beschreiben. Um dieses Problem zu lösen wurden
in den letzten Jahren zwei neue Klassen von Algorithmen entworfen. Im Jahre 2011
haben Jutho Haegeman et. al. das sogenannte Time-Dependent Variational Principle
(TDVP) vorgestellt. Mit diesem Algorithmus ist es möglich, Zeitentwicklungen von Quan-
tensystem im thermodynamischen Limes zu berechnen und wurde ursprünglich ebenfalls
nur für eine Nächste-Nachbar-Wechselwirkung entworfen. Im Zuge dieser Diplomarbeit
wurde diese Methode erweitert, um auch mit exponentiell-abfallenden langreichweitigen
Wechselwirkungen zu arbeiten. Außerdem gibt es eine Version von TDVP, mit der es
möglich ist, Zeitentwicklungen auf endlichen Gittern zu berechnen. Diese Version kann
in ihrer ursprünglichen Formulierung bereits mit langreichweitigen Wechselwirkungen
rechnen. Weiters haben Michael Zaletel et. al. in Jahre 2014 einen Algorithmus zur
Zeitentwicklung von langreichweitigen System vorgestellt, der auf dem Matrixprodukt-
operatorformalismus basiert. Beide Methoden haben ihre Vor- und Nachteile. Im Zuge
dieser Diplomarbeit wurden beide Algorithmen quantitativ verglichen mit einer abge-
änderten Variante des transverse field Ising Modells (TFI) mit exponentiell-abfallenden
langreichweitigen Wechselwirkungen. Die Ergebnisse zeigen, wenn diese Wechselwirkun-
gen schnell abfallen bezüglich des Abstands, dann ist die operatorbasierende Methode
eine brauchbare alternative zu TDVP. Fallen die Wechselwirkung jedoch langsam ab, so
sollte TDVP benutzt werden, da es in diesem Fall um Größenordnungen besser als das
andere Verfahren. german

ii

CONTENTS

Contents

1 Introduction and Physical Background 1
1.1 Models . 2

2 Matrix Product States and Operators 7
2.1 Basics . 7
2.2 Graphical representation . 12
2.3 Normalization Conditions . 13
2.4 Uniform Matrix Product States . 18
2.5 Tangent Space . 24

3 Density-Matrix Renormalization Group 28
3.1 Finite DMRG . 28
3.2 Infinite DMRG . 31

4 Time-Evolving Block Decimation 33

5 Time-Dependent Variational Principle 35
5.1 Basic Idea . 35
5.2 Finite Lattice TDVP . 35
5.3 Infinite Lattice TDVP . 42

6 Time Evolution with Matrix Product Operators 58
6.1 Basics . 58
6.2 W I . 59
6.3 W II . 62
6.4 Second Order . 66

7 Matrix Product Operators of Fermionic Systems 68

8 Results: Ground State Search in the Thermodynamic Limit 71

9 Results: Long Range Transverse Field Ising Model 74

10 Conclusions 88

A Appendix 89
A.1 Calculation of the geometric series of the transfer matrix 89
A.2 Linearly independent parameters of B(x) 90
A.3 Calculation of KOS , KNN , Kn

l , Kn
r , and KLR 90

A.4 Computational Cost of Operator Application and TDVP 91
A.5 Plots of the Fits . 93

iii

Introduction and Physical Background

1 Introduction and Physical Background

In trecent decades, strongly correlated materials have been a topic of great interest within
the physics research community. To understand these materials, electron-electron inter-
actions cannot be neglected. The problem here is that the study of strongly correlated
electrons is of great analytic and numerical complexity, so up until this day many ef-
fects are not completely or not at all understood. With the discovery of yttrium barium
copper oxide (YBCO) high temperature superconductors in 1986 [1] and the giant mag-
netoresistance in 1988 [2], [3] understanding these materials has also become of great
technological and economical relevance.
The first approach to calculate the ground state or the time evolution of a system is exact
diagonalization. Here we try to diagonalize the Hamiltonian of the system, i.e. find the
full set of eigenvectors and eigenvalues. This method is severely limited by system size,
since the dimensions of the Hamiltonian grows like dN , where d is the local Hilbert space
dimension and N is the number of lattice sites. Exact diagonalization by hand usually
fails after a couple of lattice sites and numerical diagonalization still fails after ≈ 15
lattice sites. Hence, investigation of larger systems and systems in the thermodynamic
limit is out of the question. In 1950, Cornelius Lanczos introduced an algorithm to find
the k eigenvectors corresponding to the k lowest eigenvalues of Hermitian matrices [4].
The advantage of this method is that we do not need to know the Hamiltonian Ĥ itself,
but only the action of the Hamiltonian on an arbitrary state Ĥ |ψ⟩. This allows the
use of sparse matrices and similar tools. The Lanczos method is still limited by lattice
size as we need to keep at least two vectors with dN entries in our computer memory.
Another class of algorithms consists of the so called quantum Monte Carlo algorithms
[5], [6]. The idea here is to calculate expectation values via importance sampling. One of
the major drawbacks of quantum Monte Carlo simulations is the so called sign problem
[6]. As an interesting side note: In [7] and [6] it has been shown that many physical
problems are in the complexity class NP-complete and a general solution to the sign
problem would imply P = NP. This means, if it will ever be proven that P ̸= NP, there
can not be a general solution to the fermionic sign problem!
Another idea is to represent the coeffecients of a quantum state as a product of matrices
(the used methods in this thesis are based upon this idea). This resulting construct is
called Matrix Product State, and with tools called DMRG and TEBD we can calculate
very precise ground states and time evolutions of quantum systems (see below) [8]. It can
also be shown that the Matrix Product State formalism has problems too, if P ̸= NP [9]
(although we have in general no sign problem within the MPS and MPO formalism). In
contrast to all the methods above the MPS formalism allows investigation of one dimen-
sional system with a high number of lattice sites and even systems in the thermodynamic
limit. Furthermore we can calculate time evolution of systems in non-equilibrium [10].
The standard methods to calculate ground states and time evolutions are DMRG and
TEBD (see section 3 and section 4). The one limiting factor of TEBD is that we can
simulate only models with nearest neighbor interactions and that may not be enough to
capture the physics of the real world (see below).

1

Introduction and Physical Background

In the first chapter of this thesis, we will give a brief introduction to the physical models
used to test the algorithms described below. In section 2 we will go through the basics of
the Matrix Product State formalism and the concept of tangent states that are important
for TDVP. In section 4 and section 3 there is a very short introduction to the two standard
methods for time evolutions (Time-Evolving Block Decimation; TEBD) and ground state
searches (Density-Matrix Renormalization Group; DMRG). The basics of the finite and
infinite TDVP will be discussed in section 5. In section 6 the ideas of time evolutions
with Matrix Product Operators will be introduced. Furthermore, for fermionic systems
we need to change the Matrix Product Operator of our system to include the fermionic
anticommutator relations. This adaptation will be sketched in section 7. In sections 8
and 9 the results of the numerical comparison between TDVP and the Matrix Product
Operator will be shown.

1.1 Models
Note that in this thesis we will use atomic units: h̄ = me = (4πϵ0)

−1 = e = 1. We start
with the many body Hamiltonian for electrons in a crystal:

Ĥkin = −1

2

∑
i

∇2
i

Ĥe =
1

2

∑
i,j
i ̸=j

1

|xi − xj |

Ĥpot = V̂ (x1, x2, . . .)

Ĥ = Ĥkin + Ĥe + Ĥpot

One possible way to solve this problem is to neglect the electron-electron interaction:

∀ϕ, ψ : |⟨ϕ|Ĥe|ψ⟩| ≪ |⟨ϕ|
(
Ĥkin + Ĥpot

)
|ψ⟩|

⇒ Ĥ ≈ Ĥkin + Ĥpot

This is the nearly free electron model and many physical phenomena of solids can be
qualitatively explained with this Hamiltonian e.g. the band structure of metals [11],
[12]. However there is a class of materials, called strongly correlated materials, where we
can not neglect electron-electron interactions to properly describe these materials. The
effects of these materials include high temperature superconductivity, the Kondo effect,
charge ordering, spin-charge-separation, and many more [12].
One important simplification of the original Hamiltonian yields the so called Hubbard
model. Here we transform the Hamiltonian into second quantization, assume a strong
electronic shielding of the potential of the nuclei and that the electronic wave functions
decay exponentially with respect to position. Furthermore we neglect all core electrons
and consider only one valence band (or more). This yields the Hubbard model. It was

2

Introduction and Physical Background

introduced by Rudolph Pariser et. al. in 1953 [13], [14] and is named after John Hubbard
[15].

Definition 1.1: Hubbard model

Let V be the set of all lattice sites and Σ = {↑, ↓}. The Hamiltonian of the Hubbard
model is given by:

Ĥ =
∑
i,j∈V
σ∈Σ

tijc
†
iσcjσ + U

∑
i∈V

ni↑ni↓

where t̄ij = tji. If the lattice is a simple one dimensional chain with open boundary
conditions and tij = −e−α|j−i| the model will be called long range Hubbard model
in this thesis.

The first term of the Hubbard Hamiltonian describes a hopping of electrons between
different lattice sites due to the kinetic energy term of the original Hamiltonian. The
second term is the repulsive force between electrons of different spin, due to the electron
potential. Note that the Pauli principle prohibits two electrons of the same spin occupy-
ing on the same site. This is mathematically ensured with the electronic anticommutator
relations.

Definition 1.2: Anticommutator relations for electronic creation and an-
nihilation operators

{ciσ, cjσ′} = 0 {c†iσ, c
†
jσ′} = 0 {ciσ, c†jσ′} = δi,jδσ,σ′

The Hubbard model with only nearest neighbor hopping tij = t̃(δi,j+1+δi,j−1) and U ̸= 0
has been solved in one dimension [16]. Furthermore many interesting results about the
ground state of the Hubbard model have been obtained [17], [18]. The electronic wave
functions centered on one atomic site usually decay with the distance r like e−αr and the
tight-binding approximation states that interactions further than the nearest neighbor
can be neglected. This approximation may or may not produce qualitatively wrong
results. Thus there is a need to investigate systems with long-ranged interactions.
Another important use case for time evolution of systems with long ranged Hamiltonians
is the dynamic mean field theory. Here the Hubbard model gets mapped to the Anderson
impurity model [19].

Definition 1.3: Anderson impurity model

Let Σ = {↑, ↓}, and K be the set of all k-points in K-space. The Hamiltonian of
the Anderson impurity model is given by:

3

Introduction and Physical Background

Ĥimp = ϵ0
∑
σ∈Σ

n0σ + Un0↑n0↓

Ĥbath =
∑
k∈K
σ∈Σ

(ϵk − µ)nk

Ĥhyb =
∑
k∈K
k ̸=0

∑
σ∈Σ

Vk

(
c†0σckσ + c†kσc0σ

)
Ĥ = Ĥimp + Ĥbath + Ĥhyb

The quantity that needs to be calculated here is the retarded impurity Green function:

Gσ(t) = −iθ(t) ⟨{c0σ(t), c†0σ(0)}⟩

To do that a time evolution of the system needs to be done. Besides total diagonalization,
there are several algorithms to calculate the Green function e.g. several quantum Monte
Carlo algorithms [5]. It has already been shown that this is also possible within the
Matrix Product State formalism [20], [21]. A question of future research will be how the
Matrix Product State formalism holds up against these quantum Monte Carlo methods
with more orbitals.
It is possible to use the Hubbard model at half filling and a strong repulsion U . Then the
electrons will be fully located on one lattice site and we can only consider the spin. One
of these models is the transverse field Ising model. This is very similar to the classical
Ising model, except that the magnetic field does not point in the same direction as the
spin-spin interaction.

Definition 1.4: Transverse field Ising model

Let V be the set of all lattice sites. The Hamiltonian of the transverse field Ising
model is given by:

Ĥ =
∑
i,j∈V

JijŜ
x
i Ŝ

x
j −

∑
i∈V

hiŜ
z
i

In this thesis the model will be called long range transverse field Ising model, if
the lattice is a simple one dimensional chain and

Jij =

{
0 if j ≤ i

−e−α(j−i) otherwise

In the case of one dimension and only nearest neighbor interactions the model has been
solved and has a phase transition in the thermodynamic limit with respect to h [22]. The
model also shows some interesting connections to spinless tight-binding fermions [23].

4

Introduction and Physical Background

Another interesting model for us with respect to this thesis is the Haldane-Shastry model.
This model is similar to the quantum Heisenberg model. The key difference lies within
the interaction range of the spins. This interaction range is not limited for the Haldane-
Shastry model. This model is especially useful for us, because there is an analytic
solution for correlations of the ground state in the thermodynamic limit [24].

Definition 1.5: Haldane-Shastry model

Let V be the set of all lattice sites and let the lattice be a one dimensional chain
with open boundary conditions. The Hamiltonian of the Haldane-Shastry model is
given by:

Ĥ =
∑
i,j∈V
j>i

|j − i|−2

(
1

2

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

)
+ Ŝzi Ŝ

z
j

)

Note that with the methods used in this thesis interactions that decay like r−2 are not
usable directly. We will approximate powers like this with sums of exponential functions
that proof to be a very good approximation [25].

r−2 ≈
∑
n

βne
−αnr

Another important use case of long-ranged interactions is the investigation of quasi one
dimensional systems [26]. In this systems the second dimensions spans only a couple
of lattice sites and the first dimension is longer. In this case we can map the two
dimensional system onto a one dimensional system and some of the nearest neighbor
interactions of the two dimensional system will be long-ranged in the one dimensional
system (see fig. 1.1)
To investigate systems with the the Hamiltonians above there is a range of usable al-
gorithms, most important of which are TEBD (section 4) and DMRG (section 3). In
recent years two new algorithms have emerged: TDVP (section 5) and an approximation
of the time evolution operator with Matrix Product Operators (section 6). The prob-
lem of TEBD is that it relies on a Lie-Trotter decomposition of the system and thus
no long-ranged interactions can be examined [27]. DMRG is suitable for long-ranged
interactions but mathematically TDVP can find a better approximation of the ground
state within the matrix dimension of the matrices we use to describe the state [27]. In
the course of this thesis the TDVP for infinite lattices was expanded to calculate the
time evolution of systems with long ranged interactions. Furthermore the Finite lat-
tice TDVP and the time evolution with approximate Matrix Product Operators were
quantitatively compared.

5

Introduction and Physical Background

3 4 9 10

. . . 2 5 8 11 . . .

1 6 7 12

. . . 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Figure 1.1: Mapping of a two dimensional system onto a one dimensional system. The
red lines mark interactions that are nearest neighbor in the two dimensional case but
are long-ranged in the one dimensional case.

6

Matrix Product States and Operators

2 Matrix Product States and Operators
Matrix Product States (MPS) are a powerful and versatile tool to describe and calculate
quantum states [8]. When doing numerical calculations about quantum systems it is
impossible to store all information about a complicated state in memory, because of the
sheer size of the state space. One has to make compromises and only store the most
relevant parts of the state. The state is stored as a product of different matrices. The
advantage of this approach lies in the fact, that it is possible to reduce the matrix size
without loss of relevant information. As a general rule of thumb this is possible in one
dimensional systems, but fails in two or more dimensions. This fact is linked to the
so called area law of entanglement entropy [8]. The matrix size reduction is done with
tools like singular value decomposition (SVD) or QR decomposition. It is also possible
to write a quantum operator in a similar fashion. This is necessary if e.g. a certain
operator has to be applied to a state. The resulting construct is called Matrix Product
Operator (MPO). Several important algorithms have been developed for time evolution
(e.g. TEBD) and ground state calculations (e.g. DMRG) and many more applications
[8], [28].

2.1 Basics
In the most general case a quantum state of a system with N lattice sites can be written
as

|ψ⟩ =
d∑

s1,s2,...sN=1

cs1,s2,...,sN |s1s2 . . . sN ⟩

Where d is the local Hilbert space dimension, and c is a complex tensor with dN entries,
c ∈ CdN . If the system size N is sufficiently large it is not possible to store all entries
of d in memory, because the number of elements of d grows exponentially with N . To
overcome this problem c can be approximated by a product of matrices.

Definition 2.1: Matrix Product States

A quantum state written or stored in the form

|ψ⟩ =
d∑

s1,s2,...sN=1

As1[1]A
s2
[2] . . . A

sN
[N] |s1s2 . . . sN ⟩

is called a Matrix Product State. All A are complex tensors, A[j] ∈ Cd×χL,j×χR,j ,
where χL,j and χR,j must be chosen in a way that the matrix product Asj[j]A

sj+1

[j+1] is
well defined, i.e. χR,j = χL,j+1.

To represent the same state as in the usual notation the condition As1[1]A
s2
[2] . . . A

sN
[N] =

cs1,s2,...,sN must be true. For every lattice site, there are d different matrices. In practice

7

Matrix Product States and Operators

the subscript index of the Matrix Product State tensors is omitted and implied by the
index of the superscript Asj ≡ A

sj
[j].

Example 2.1: A state with four lattice sites with a singlet on site 3 and
4

|ψ⟩ = 1√
2
(|↑↑↑↓⟩ − |↑↑↓↑⟩)

A↑
[1] =

1√
2

A↑
[2] = 1 A↑

[3] =
(
1 0

)
A↑

[4] =

(
0
−1

)
A↓

[1] = 0 A↓
[2] = 0 A↓

[3] =
(
0 1

)
A↓

[4] =

(
1
0

)

Example 2.2: A state with four lattice sites with a singlet on site 1 and
4

|ψ⟩ = 1√
2
(|↑↑↑↓⟩ − |↓↑↑↑⟩)

A↑
[1] =

(
1√
2

0
)

A↑
[2] =

(
1 0
0 1

)
A↑

[3] =

(
1 0
0 1

)
A↑

[4] =

(
0
1

)
A↓

[1] =
(
0 −1√

2

)
A↓

[2] =

(
0 0
0 0

)
A↓

[3] =

(
0 0
0 0

)
A↓

[4] =

(
1
0

)

The accuracy of Matrix Product States is limited by the matrix dimension. If the
matrix size is too small a Matrix Product State may only be an approximation to the
real state As1As2 . . . AsN ≈ cs1,s2,...,sN . However this may not be a problem, if the state
is approximated well enough. For a fixed matrix size the limiting factor is the fraction
of the state space that is used to describe a state. This fraction is usually very small
for one dimensional chains and thus Matrix Product States work so well for these kind
of systems. For two, or more dimensions this usually does not hold true. The only
exceptions are quasi one dimensional chains, where the second and third dimensions
span only over a limited number of sites. One important fact to note is that the MPS
representation of a state is not unique. It is possible to multiply an invertible matrix G
to Asi from the right and G−1 to Asi+1 from the left and the state is not changed.

8

Matrix Product States and Operators

|ψ⟩ =
d∑

s1,s2,...sN=1

. . . ÃsiÃsi+1 . . . |s1s2 . . . sN ⟩

=

d∑
s1,s2,...sN=1

. . . Asi GG−1︸ ︷︷ ︸
=1

Asi+1 . . . |s1s2 . . . sN ⟩

=
d∑

s1,s2,...sN=1

. . . AsiAsi+1 . . . |s1s2 . . . sN ⟩

There are several conventions that take advantage of this gauge invariance, the most im-
portant of which are left-canonical, right-canonical, mixed-canonical, and canonical Ma-
trix Product States. This gauges are very important when doing numerical calculations
to save computation time. More on that is to be read in the chapter of normalization.
The idea of Matrix Product States can also be applied to operators. In the most general
form an operator is written as

Ô =

d∑
s1,s′1,...=1

cs1,s′1,...,sL,s′N |s1s2 . . . sN ⟩ ⟨s′1s′2 . . . s′N |

Definition 2.2: Matrix Product Operators

An operator written or stored in the form

Ô =
d∑

s1,s′1,...=1

W
s1,s′1
[1] W

s2,s′2
[2] . . .W

sN ,s
′
N

[N] |s1s2 . . . sN ⟩ ⟨s′1s′2 . . . s′N |

is called a Matrix Product Operator. All W are complex tensors, W[j] ∈
Cd×d×χL,j×χR,j , where χL,j and χR,j must be chosen in a way that the matrix
product W sj ,s

′
j

[j] W
sj+1,s

′
j+1

[j] is well defined, i.e. χR,j = χL,j+1.

Like with Matrix Product States, the subscript of the tensors W is usually omitted and
implied by the index of the superscript, W sj ,s

′
j ≡W

sj ,s
′
j

[j] . The needed matrix dimensions

of W sj ,s
′
j

j is determined by the interaction range of the operator Ô. Note that this just
a rule of thumb, as there are Matrix Product Operators with infinite range that have a
relatively small size.

9

Matrix Product States and Operators

Example 2.3: Anisotropic quantum Heisenberg model

Let us take a look at the Hamiltonian for the anisotropic quantum Heisenberg
model.

Ĥ =

N−1∑
i=1

Jxy
2

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
+ JzŜ

z
i Ŝ

z
i+1 −

N∑
i=1

hiŜ
z
i

In MPO notation this Hamiltonian can be written as

W s1,s′1 =
(
1 JzŜ

z Jxy
2 Ŝ+ Jxy

2 Ŝ− −hiŜz
)

W si,s
′
i =

1 JzŜ

z Jxy
2 Ŝ+ Jxy

2 Ŝ− −hiŜz
0 0 0 0 Ŝz

0 0 0 0 Ŝ−

0 0 0 0 Ŝ+

0 0 0 0 1

 ∀1 < i < N

W sN ,s
′
N =

−hiŜz
Ŝz

Ŝ−

Ŝ+

1

Example 2.4: TFI model with long range interactions

The transverse field Ising model with infinite exponential decaying interaction
range.

Ĥ = J

N−1∑
i=1

N∑
j=i+1

Ŝxi Ŝ
x
j e

−α(j−i) − h

N∑
i=1

Ŝzi

Where α is a positive real number. In MPO notation this Hamiltonian can be
written as

W s1,s′1 =
(
1 Je−αŜx Ŝz

)
W si,s

′
i =

1 Je−αŜx Ŝz

0 e−α Ŝx
0 0 1

 ∀1 < i < N

W sN ,s
′
N =

ŜzŜx
1

Note that the usual convention to write the matrix W si,s

′
i can be a bit confusing. The

10

Matrix Product States and Operators

operators as matrix elements do not mean that W si,s
′
i is in block form, but that the

indices si, s′i get ”carried” into the matrix elements. Single scalars are treated as scalar
times identity matrix. The representation depends also in the chosen basis. For example
the the bulk element from last Hamiltonian in z-basis:

W ↑,↓ =

1 · 1(↑, ↓) Je−αŜx(↑, ↓) Ŝz(↑, ↓)
0 e−α · 1(↑, ↓) Ŝx(↑, ↓)
0 0 1 · 1(↑, ↓)

 =

0 Je−α 1
2 0

0 0 1
2

0 0 0

From the second to the third equal sign we used 1(↑, ↓) = Ŝz(↑, ↓) = 0 and Ŝx(↑, ↓) = 1

2 .
Note that these exact relations only hold true in z-basis. For the x- and y-basis different
representations emerge.
How can an MPO be applied to an MPS? For the first step we write Ô |ψ⟩ in their
explicit matrix product forms and use the fact that ⟨s′|s′′⟩ = δs′,s′′ .

Ô |ψ⟩ =
d∑

s1,s′1,s
′′
1 ...=1

(∏
i

W si,s
′
i

)(∏
i

As
′′
i

)
|s1s2 . . . sN ⟩ ⟨s′1s′2 . . . s′N |s′′1s′′2 . . . s′′N ⟩

=

d∑
s1,s′1...=1

(∏
i

W si,s
′
i

)(∏
i

As
′
i

)
|s1s2 . . . sN ⟩

=
d∑

s1,s′1...=1

∑
a1,a2,...b1,b2...

W
s1,s′1
1,b1

W
s2,s′2
b1,b2

. . .W
sN ,s

′
N

bN−1,1
A
s′1
1,a1

A
s′2
a1,a2 . . . A

s′N
aN−1,1

|s1s2 . . . sN ⟩

In the third line we rewrote the matrix products in its explicit form. In the next step
we realign the different tensors in way so that they form again a Matrix Product State.

Ô |ψ⟩ =
d∑

s1,s′1...=1

∑
a1,a2,...b1,b2...

(
W

s1,s′1
1,b1

A
s′1
1,a1

)(
W

s2,s′2
b1,b2

A
s′2
a1,a2

)
. . .
(
W

sN ,s
′
N

bN−1,1
A
s′N
aN−1,1

)
|s1 . . .⟩

=

d∑
s1,s2...sN=1

Ãs1Ãs2 . . . ÃsN |s1s2 . . . sN ⟩

where Ãsiãi−1,ãi
=
∑d

s′i=1W
si,s

′
i

bi−1,bi
A
s′i
ai−1,ai , and ãi = (bi, ai) as a combined new tensor index.

The last line of the equation above is by definition a Matrix Product State. Note that
we inflated the bond dimension of the new MPS tensors by the bond dimension of the
MPO tensor. If a numerical calculation applies an MPO to an MPS several times, the
bond dimension of the MPS needs to be reduced after every step or the bond dimension
grows without limit. This can be done with a singular value decomposition. Note that

11

Matrix Product States and Operators

this approach is in general computationally to expensive and other methods to apply an
MPO to an MPS must be used [29].

2.2 Graphical representation
There is a graphical representation for Matrix Product States and operators. This is used,
because in graphical notation it is sometimes easier to see what is calculated. Matrices
and Vectors are represented by circles, where horizontal lines stand for the matrix and
vector indices, while vertical lines represent the spin index.

a A b

sn

Figure 2.1: Graphical representation of Asna,b.

Every matrix and vector which are connected with lines are multiplied with each other.
Connected lines mean that there is a summation over this index. This holds true for
matrix indices and spin indices.

a A A c

sn sn+1

b

Figure 2.2: Graphical representation of
∑

bA
sn
a,bA

sn+1

b,c = AsnAsn+1 .

If the line for the spin shows upwards, the matrix is complex conjugated.

sn

a A b

Figure 2.3: Graphical representation of Āsna,b.

A A A

A A A

Figure 2.4: Graphical representation of ⟨ψ|ψ⟩ with three lattice sites. The usual conven-
tion is that lattice sites with a lower index are to the left.

12

Matrix Product States and Operators

In fig. 2.4 the norm squared of a state with three lattice sites can be seen. In mathemat-
ical terms this tensor network reads as:

⟨ψ|ψ⟩ =
∑
a,b

∑
ā,b̄

∑
s1,s2,s3

As1a A
s2
a,bA

s3
c Ā

s1
ā Ā

s2
ā,b̄
Ās3c̄

=
∑

s1,s2,s3

(As1As2As3)
(
Ās1Ās2Ās3

)
=

∑
s1,s2,s3

(As1As2As3)
(
As3†As2†As1†

)
With the same rules as with Matrix Product States we can represent Matrix Product
Operators. In fig. 2.5 an example of a tensor of a Matrix Product Operator can be seen.

s′n

a W b

sn

Figure 2.5: Graphical representation of W sn,s′n
a,b of a Matrix Product Operator.

2.3 Normalization Conditions

Up to this point we never calculated the norm squared ⟨ψ|ψ⟩ of a Matrix Product State.
Usually in numerical calculations the norm of a Matrix Product State is fixed to 1.
This is ensured with normalization conditions. There is various number of different
normalization conditions for Matrix Product States. Note that it is possible and often
necessary to move from one normalization to another one (e.g. calculate the mixed-
canonical representation from the left-canonical representation). The transformation
from one representation to another one is usually done by a series of repeated singular
value decompositions. All normalization conditions have in common that the norm
squared ⟨ψ|ψ⟩ is 1, if the tensors and matrices satisfy certain conditions. Since a Matrix
Product State consist of tensors it is a good starting point to fix the normalization there.
We start by defining left- and right-normalized tensors.

Definition 2.3: Left- and right-normalized tensors

If the a tensor A of a Matrix Product States satisfies the condition∑
s

As†As = 1

13

Matrix Product States and Operators

it is called left-normalized. Similarly, if the a tensor A of a Matrix Product States
satisfies the condition ∑

s

AsAs† = 1

it is called right-normalized. In this thesis left-normalized tensors are denoted by
L, right-normalized by R.

L

=

L

R

=

R

Figure 2.6: Graphical representation of the conditions for left-normalized tensors and
right-normalized tensors.

The left- and right-normalization are very important and handy properties, because they
save computation time. As can be seen in fig. 2.6 the tensor network collapses on its
own if the tensors are normalized. Now we want to take a look what happens to the
norm of a Matrix Product State if all its tensors are normalized.

Definition 2.4: Left- and right-canonical MPS

A left-canonical Matrix Product State consists only of left-normalized tensors. A
right-canonical Matrix Product State consists only of right-normalized tensors.

Theorem 2.1

The norm squared ⟨ψ|ψ⟩ of every left-canonical and right-canonical Matrix Product
State is 1.

14

Matrix Product States and Operators

Proof. Let |ψ⟩ be a left-canonical Matrix Product State.

⟨ψ|ψ⟩ =
∑
s,s′

(
Ls

′
N † . . . Ls

′
2†Ls

′
1†
)
(Ls1Ls2 . . . LsN) ⟨s′|s⟩

=
∑

s2,...,sN

LsN † . . . Ls2†

(∑
s1

Ls1†Ls1

)
︸ ︷︷ ︸

=1

Ls2 . . . LsN

=
∑

s3,...,sN

LsN † . . .

(∑
s2

Ls2†Ls2

)
︸ ︷︷ ︸

=1

. . . LsN

. . .

=
∑
sN

LsN †LsN = 1

It can be shown in the same way that the norm of a right-canonical state is 1.

This is a very important theorem. If we ensure that all tensors are right- or left-
normalized during our numerical computation, we know that the our Matrix Product
State will be normed to 1, without explicitly calculating the norm. However it is not
possible to keep the state right-canonical or left-canonical all the time, if we e.g. apply
an operator or calculate the ground state. Another downside is that it is computa-
tionally very expensive to compute expectation values ⟨ψ|Ô|ψ⟩ of operators with this
normalization. Thus there is a need for other normalizations.

Definition 2.5: Schmidt decomposition

A quantum lattice is split up into two separate systems A and B. Let |a⟩A and
|a⟩B be orthonormal basis sets in each sublattice. The Schmidt decomposition of
state |ψ⟩ is given by

|ψ⟩ =
∑
a

λa |a⟩A |a⟩B

where every λa ∈ R and λ ≥ 0. The λa are called Schmidt coefficients.

Theorem 2.2

A state |ψ⟩ is normed to 1, if and only if the sum of all squared Schmidt coefficients
λ2a in the Schmidt decomposition is equal to 1.∑

a

λ2a = 1 ⇔ ⟨ψ|ψ⟩ = 1

15

Matrix Product States and Operators

Proof.
⟨ψ|ψ⟩ =

∑
a,a′

λa′λa ⟨a′|a⟩A ⟨a′|a⟩B

By definition |a⟩A and |a⟩B are orthonormal basis sets, thus ⟨a′|a⟩A = ⟨a′|a⟩B =
δa,a′

⟨ψ|ψ⟩ =
∑
a

λ2a = 1

We will use the Schmidt decomposition to calculate the norm of mixed-canonical Matrix
Product States that are defined below. In general the Schmidt decomposition can be
used to calculate the reduced density matrices of the subsystems A and B, and the von
Neumann entropy of the entanglement [8].

Definition 2.6: Mixed-Canonical MPS

A Matrix Product State written or stored in the form

|ψ⟩ =
d∑

s1,s2,...sN=1

Ls1Ls2 . . . Lsi−1SRsi . . . RsN |s1s2 . . . sN ⟩

where every tensor L is left-normalized, every tensor R is right-normalized, and
S is a matrix, is called mixed-canonical Matrix Product State. S will be denoted
as the center matrix.

Theorem 2.3

Let |ψ⟩ be a mixed-canonical Matrix Product State, and S, its center matrix, be
diagonal with only real non-negative elements. The diagonal entries Sa,a are then
the Schmidt coefficients λa of the state |ψ⟩.

Proof. Define |a⟩A =
∑

s1,s2,...,si−1
(Ls1Ls2 . . . Lsi−1)1,a |s1s2 . . . si−1⟩

and |a⟩B =
∑

si,si+1,...,sN
(RsiRsi+1 . . . RsN)a,1 |sisi+1 . . . sN ⟩. The mixed-canonical

state then transforms into the same form as the Schmidt decomposition.

|ψ⟩ =
∑
a

Sa,a |a⟩A |a⟩B

Now it is sufficient to show that |a⟩A and |a⟩B form orthonormal basis sets. Then
the equation above is indeed the Schmidt decomposition and the diagonal elements

16

Matrix Product States and Operators

Sa,a are the Schmidt coefficients.

⟨a′|a⟩ =
∑
s′,s

(
Ls

′
i−1† . . . Ls

′
2†Ls

′
1†
)
a′,1

(Ls1Ls2 . . . Lsi−1)1,a ⟨s
′|s⟩

=
∑

s2,s3,...,si−1

(Lsi−1† . . . Ls2†

(∑
s1

Ls1†Ls1

)
︸ ︷︷ ︸

=1

Ls2 . . . Lsi−1)a′,a

=
∑

s3,...,si−1

(Lsi−1† . . .

(∑
s2

Ls2†Ls2

)
︸ ︷︷ ︸

=1

. . . Lsi−1)a′,a

= (
∑
si−1

Lsi−1†Lsi−1)a′,a

= (1)a′,a = δa′,a

In the same way it can be shown, that the |a⟩B form also a orthonormal basis.

Theorem 2.4

Let |ψ⟩ be a mixed-canonical Matrix Product State, and S, its center matrix, be
diagonal with only real non-negative elements. The state is normed to 1, if and
only if the sum over all squared diagonal entries of S is 1.∑

a

S2
a,a = 1 ⇔ ⟨ψ|ψ⟩ = 1

Proof. We showed in thm. 2.3 that the diagonal elements of S are equal to the
Schmidt coefficients of |ψ⟩. According to thm. 2.2 the state is normed, if the sum
of the squared Schmidt coefficients is 1.

Note that for an arbitrary mixed-canonical Matrix Product State one can shift the site
where the center matrix is located to the right or to the left by performing a singular
value decomposition (for the exact procedure see [8]). If the center matrix is pushed
to the boundary of the system, we will have a left-canonical or right-canonical Matrix
Product State. This is how we can jump between those three normalizations. Another
option to write a Matrix Product State is the λΓ-notation introduced by Guifré Vidal
in 2003 [30].

17

Matrix Product States and Operators

Definition 2.7: Canonical MPS

A Matrix Product State written or stored in the form

|ψ⟩ =
d∑

s1,s2,...sN=1

λ0Γ
s1λ1Γ

s2λ2Γ
s3 ...λN−1Γ

sNλN |s1s2...sN ⟩

is called Matrix Product State in λΓ-notation. Here every λi is a square diagonal
matrix with real entries. The two matrices at the boundaries are scalars and
fixed to the value 1, λ0 = λN = 1. If for every i the tensor Asi = λi−1Γ

si is
left-normalized and Asi = Γsiλi is right-normalized it is called a canonical Matrix
Product State.

Theorem 2.5

The norm squared ⟨ψ|ψ⟩ of every canonical Matrix Product State is 1.

Proof. Let |ψ⟩ be a canonical Matrix Product State with matrices λi and Γsi . By
definition we can construct an equivalent left-canonical Matrix Product State by
computing a left-normalized tensor for every lattice site: Lsi = λi−1Γ

si . We have
shown above that every left-canonical Matrix Product State has a norm of 1.

The λΓ-notation is the most flexible of the representations defined above, because we can
calculate the other three normalization just with matrix multiplications. Furthermore
calculating expectation values of operators ⟨ψ|Ô|ψ⟩ is very fast in this representation, if
the operator acts only locally.

2.4 Uniform Matrix Product States

Uniform Matrix Product States are a subset of conventional Matrix Product State
that describe states in the thermodynamic limit [27]. They are essential for the Time-
Dependent Variational Principle (TDVP) on infinite lattices and as we can see below
are by definition translational invariant.

Definition 2.8: uMPS

A Matrix Product State |ψ⟩ of a system in the thermodynamic limit (N → ∞),
where every tensor is the same A[i] = A[j] ∀i, j, is called uniform Matrix Product
State (uMPS).

|ψ(A)⟩ =
∑
{s}

v†l

(∏
n∈Z

Asn

)
vr |s⟩

The two objects vl and vr are complex column vectors. The set of integers Z
indicate the infinite number of lattice sites.

18

Matrix Product States and Operators

Note that there is the same gauge invariance as with finite Matrix Product States. If As
is multiplied from both sides with an arbitrary invertible matrix G, As → G−1AsG the
same state |ψ⟩ arises.

...G−1As−2G G−1As−1G G−1As0G G−1As1G G−1As2G...

=...As−2As−1As0As1As2 ...

We are going to use different normalization conditions for uniform Matrix Product States,
although it is possible to define the same normalization conditions as for finite Matrix
Product States. To ensure normalization for uniform Matrix Product States we will fix
the dominant eigenvalue of the transfer matrix.

Definition 2.9: Transfer matrix

The transfer matrix of a uniform Matrix Product State is defined as

T =
d∑
s=1

As ⊗ Ās

For this thesis it is assumed that its dominant left and right eigenvectors denoted
as ⟨l| and |r⟩ are unique (i.e. the dominant eigenvalue is not degenerate).

With the dominant eigenvalues of the transfer matrix we define our set where the uniform
matrix product are from.

A

A

Figure 2.7: Graphical representation of the transfer matrix.

The usage of the transfer matrix may seem a little bit odd at first, but we will link the
norm of a uniform Matrix Product State to the dominant eigenvalue of T down below.
This becomes more clear with a look an fig. 2.8.
The transfer matrix can be calculated explicitly as follows

T(a,b),(c,d) =
d∑
s=1

Asa,c · Āsb,d

Where (a, b) means that the two indices a and b get grouped into a new index. The
transfer matrix in its explicit form is a χ2 · χ2 matrix. For that reason it is in general
not a good idea to construct the explicit form of the transfer matrix and do calculations
with it. The computational cost is too high (see below).

19

Matrix Product States and Operators

A A A A A A A A

v†l . . . vr

A A A A A A A A

T T T T T T T T

Figure 2.8: Norm squared of a uniform Matrix Product State. Note the emergence of a
product of transfer matrices.

Because of the special structure of T it is possible to find alternative methods to calculate
e.g. a vector matrix product. In general a vector that can be applied to the transfer
matrix from the left or from the right has χ2 entries. It is possible to transform these
vectors into χ · χ matrices with the transformation

⟨p|1,(a,b) = pb,a |q⟩(a,b),1 = qa,b

where ⟨p| is an arbitrary row vector and p its matrix representation and similar for the
column vector |q⟩. Note that the order of indices changed in the row vector to matrix
transformation. The process of applying the transfer matrix to a row vector transforms
then into

(
⟨p|T

)
1,(c,d)

=
∑
a,b

⟨p|1,(a,b) T(a,b),(c,d)

=
∑
a,b

pb,a T(a,b),(c,d)

=
∑
s,a,b

Āsb,d pb,a A
s
a,c

=
(∑

s

As†pAs
)
d,c

In the same manner the process of applying T to a column vector T |q⟩ can be transformed
into

∑
sA

sqAs†. Maybe the most important use case for this are the eigenvalue equations
for the transfer matrix.

⟨l|T = ηl ⟨l| ⇔
d∑
s=1

As†lAs = ηll

T |r⟩ = ηr |r⟩ ⇔
d∑
s=1

AsrAs† = ηrr

(2.1)

20

Matrix Product States and Operators

If one wants to solve the eigenproblem for the transfer matrix it is best to use the two
equations on the right hand side, because they scale with a computational complexity
like O(χ3) in comparison to O(χ6) for the two equations on the left hand side.
Another important transformation is the one of the vector product of a row and column
vector.

⟨p|q⟩ =
∑
a,b

⟨p|1,(a,b) |q⟩(a,b),1

=
∑
a,b

pb,aqa,b

= tr(pq)

Theorem 2.6

Let T be the transfer matrix of a uniform Matrix Product State and let ⟨l| and |r⟩
be the eigenvectors corresponding to its dominant eigenvalue η. Let η = 1. The
matrix representations r and l of the two vectors can be chosen to be hermitian.

Proof. Let l̃ be a matrix that is not hermitian, but saves the eigenvalue equation
for T . If we take the conjugate transpose of the eigenvalue equation for l̃∑

s

As† l̃As = l̃ ⇔
∑
s

As† l̃†As = l̃†

we see that l̃† also solves the eigenvalue equation. By assumption the dominant
eigenvalue of T is not degenerate. Thus l̃ and l̃† can only be different by a phase
factor.

l̃† = eiφ l̃

If we set l = ei
1
2
φ l̃, we found a matrix that clearly solves the eigenequation and is

hermitian.
l† = e−i

1
2
φ l̃† = e−i

1
2
φeiφ l̃ = ei

1
2
φ l̃ = l

In the same way it can be shown that r can be chosen to be hermitian.

In numerical calculations when we find a matrix l̃ that solves the eigenequation but is
not hermitian, we do not need to calculate φ from the proof above. We can calculate
the hermitian matrix with l = 1

c l̃, where c is the diagonal element of l̃ with the greatest
absolute value. The same holds true for the right hand side eigenvector. Theoretically
we don’t need to take the maximum absolute value of the diagonal and divide l̃ by any of
its diagonal elements. The problem with that approach is that we might use a diagonal
element that is almost zero and thus amplify numerical noise. It is going to be important
for the Time-Dependent Variational Principle algorithm, that we will discuss later, that
the matrix representations of the eigenvectors will be hermitian.

21

Matrix Product States and Operators

Theorem 2.7

Let T be the transfer matrix of a uniform Matrix Product State and let ⟨l| and |r⟩
be the eigenvectors corresponding to its dominant eigenvalue η. Let η = 1. Let
the matrix representations of the vectors l and r be hermitian. The vector product
⟨l|r⟩ then must be real.

Proof. The vector product in matrix representation is

tr(lr) = c

If we look at the complex conjugate of this we see that

c∗ =
∑
a,b

l∗a,br
∗
b,a =

∑
a,b

l†b,ar
†
a,b = tr(r†l†) = tr(lr) = c

After the fourth equation sign we used the cyclic invariance of the trace and that
the matrices are hermitian. c must be real, because c = c∗.

That the product ⟨l|r⟩ is real will be important later, because we will link the norm of
a uniform Matrix Product State to this product, which in fact needs to be real. If we
have a uniform Matrix Product State with a tensor A and the dominant eigenvalue is
not equal to 1, η ̸= 1, there is a simple renormalization procedure.

Anew =
1
√
η
Aold (2.2)

This division only changes the norm of the state, as desired.
Theorem 2.8

Let |ψ⟩ be a uniform Matrix Product State and let T be its transfer matrix. The
norm

√
⟨ψ|ψ⟩ is finite, if and only if the dominant eigenvalue η is equal to 1.

Proof. The norm squared in a more explicit form is

⟨ψ|ψ⟩ = lim
N→∞

∑
s

(
v̄†l Ā

saĀsb . . . Āsz v̄r

)(
v†lA

saAsb . . . Aszvr

)
where a, b,... are just some arbitrary index names. If we rearrange the sum, we
can see that the transfer matrix emerges. This is easier to see in fig. 2.8.

⟨ψ|ψ⟩ = lim
N→∞

(
v†l⊗v̄

†
l

)(∑
sa

Asa⊗Āsa
)(∑

sb

Asb⊗Āsb
)
. . .
(∑
sz

Asz⊗Āsz
)(
vr⊗v̄r

)
Now we can see that in the middle of the equation above there is by definition a
product of transfer matrices.

⟨ψ|ψ⟩ = lim
N→∞

(
v†l ⊗ v̄†l

)
TN
(
vr ⊗ v̄r

)

22

Matrix Product States and Operators

For the next step we perform a total diagonalization of the transfer matrix T .

⟨ψ|ψ⟩ = lim
N→∞

(
v†l ⊗ v̄†l

)
PλNP−1

(
vr ⊗ v̄r

)
Here λ is the diagonal matrix of eigenvalues. Now we can see that the limit
limN→∞ λN and with it the norm will not converge if the dominant eigenvalue is
greater than 1. Similarly the norm will be zero in the limit if all eigenvalues are
smaller than 1.

Now we have shown that only the eigenvectors of the dominant eigenvalue will survive
when we calculate the norm of uniform Matrix Product States. This is why we can set
the norm squared of the state to be ⟨ψ|ψ⟩ = ⟨l|r⟩ = tr(lr) = 1. Any other positive real
value would be equally valid, but would cancel out anyway if calculate the interesting
quantities of the form ⟨ψ|Ô|ψ⟩

⟨ψ|ψ⟩ . In the proof above we can also see why the the two
boundary vectors vl and vr don’t contribute to the physics of the system like it was
claimed at the beginning of this section. When calculating the norm or expectation
values only the overlap with the dominant eigenvectors ”survives” the multiplication
with limN→∞ TN .

Algorithm 2.1: Normalizing a uniform Matrix Product State

In general when one starts with a random or arbitrary uniform Matrix Product
State (i.e. a random complex tensor A), the normalization procedure is as follows.

1. Calculate dominant eigenvalue η of the transfer matrix T . This is to be done
with the matrix form of the eigenvalue equation

∑
sA

s†lAs = ηl to save com-
putation time. For example in Python this can be done with the package scipy
using scipy.sparse.linalg.LinearOperator and scipy.sparse.linalg.eigs [31].

2. Divide A by √
η. This ensures that the dominant eigenvalue is equal to 1.

3. Compute the dominant eigenvectors ⟨l| and |r⟩ and ensure that their ma-
trix representations are hermitian. This again needs to be done with the
eigenvalue equation in matrix form,

∑
sA

s†lAs = l and
∑

sA
srAs† = r.

4. Divide r and l by a certain factor so that ⟨l|r⟩ = tr(lr) = 1.

If one has stored a normed uMPS state an expectation value of an operator acting on k
neighboring sites can be calculated like this:

23

Matrix Product States and Operators

⟨ψ| Ô |ψ⟩
⟨ψ|ψ⟩

=
d∑

{sn},{tn}=1

⟨s1s2 . . . sk| Ô |t1t2 . . . tk⟩ ⟨l|
[
(At1At2 . . . Atk)⊗ (Ās1Ās2 . . . Āsk)

]
|r⟩

=

d∑
{sn},{tn}=1

⟨s1s2 . . . sk| Ô |t1t2 . . . tk⟩ tr
(
Ask† . . . As2†As1†lAt1At2 . . . Atkr

)

2.5 Tangent Space
The tangent space is an important concept for the Time-Dependent Variational Principle.
In this section we use the short notation ∂i = ∂

∂Ai , where i is a grouped index i =
(sn, an−1, an) and Asnan−1,an = Ai.

Definition 2.10: Variational manifold of a (uniform) Matrix Product
State

Let A be the set of tensors A ∈ Cd×χ×χ for which the transfer matrix T has a non-
degenerate dominant eigenvalue, if |ψ⟩ is a uniform Matrix Product State. If |ψ⟩
is a finite Matrix Product State, let A be the set of all tuples Aψ = (A[1], A[2], . . .)
with a maximum bond dimension of χ. The variational manifold MA is the set
of all states |ψ⟩ that can be represented by a (uniform) Matrix Product State with
bond dimension χ [32].

MA = {|ψ(A)⟩ |A ∈ A}

If we assume that the bond dimension of a (uniform) Matrix Product State is fixed, the
matrix entries are functions of time. In the example below we are going to see that the
derivative with respect to time of such a state has a special form that can be formalized
with so called tangent states and spaces.

Example 2.5: Derivative with respect to time of a (uniform) Matrix
Product State

Let the Hilbert space of a system be fully parametrized with three parameters. The
derivative with respect to time of a state in this space will have the following form:

|ψ⟩ = f(a, b, c)

d

dt
|ψ⟩ = ∂f(a, b, c)

∂a

da

dt
+
∂f(a, b, c)

∂b

db

dt
+
∂f(a, b, c)

∂c

dc

dt

Where a, b, c ∈ C. If we consider now a Matrix Product State with a finite fixed
bond dimension we cannot map onto the whole Hilbert space anymore. This is
indicated with the subscript A. The fact that we cannot map onto the whole Hilbert
Space anymore is indicated with the last argument of the function c which is set

24

Matrix Product States and Operators

permanently to zero.

|ψ⟩A = f(a, b, 0)

d

dt
(|ψ⟩A) =

∂f(a, b, 0)

∂a

da

dt
+
∂f(a, b, 0)

∂b

db

dt

⇒ d

dt
(|ψ⟩A) ̸=

d

dt
|ψ⟩

As a consequence the derivatives of a Matrix Product State with fixed bond di-
mension and a general state are not equal anymore. It can be seen now that the
derivative with respect to time of a Matrix Product State will have the form:

ã
∂f(a, b, 0)

∂a
+ b̃

∂f(a, b, 0)

∂b

where ã and b̃ are arbitrary parameters.

In the example above it can be seen that the derivative with respect to time of a Matrix
Product State is always in the same form. This idea can be formalized with tangent
states and spaces.

Definition 2.11: Tangent states and tangent space

Let |ψ⟩ be a Matrix Product State and Aψ the tuple of all the tensors used to
represent the state, Aψ = (A[1], A[2], . . .). Let the set of all lattice sites be denoted
as L. Let B be a tuple of arbitrary complex tensors, where every n-th element Bsn

of B has the same dimensions as the n-th element of Aψ. A tangent state |ϕ⟩ of
|ψ⟩ is defined as:

|ϕ(B,Aψ)⟩ =
∑
n∈L

∑
{s}

(∏
m<n

Asm

)
Bsn

(∏
m>n

Asm

)
|s⟩

For uniform Matrix Product States there is the same definition just that there are
only two tensors A and B.

|ϕ(B,A))⟩ =
∑
n∈Z

∑
{s}

v†l

(∏
m<n

Asm

)
Bsn

(∏
m>n

Asm

)
vr |s⟩

The tangent plane or tangent space TAM of a Matrix Product State is defined as
the set of all possible tangent states.

TAM = {|ϕ(B,Aψ)⟩ |∀i : dim(B[i]) = dim(A[i])}

25

Matrix Product States and Operators

... B A A ...+ ... A B A ...+ ... A A B +...

Figure 2.9: Graphical representation of a tangent state.

And similar for uniform Matrix Product States:

TAM = {|ϕ(B,A)⟩ |B ∈ Cd×χ×χ}

An equivalent definition used in [27] is given by:

TAM = span{|∂iψ⟩ |i ∈ {1, 2, . . .}}

If we assume that the tensors A of a (uniform) Matrix Product State is time dependent
and reshape every tensor so that Ai = Asnan−1,an with i = (sn, an−1, an) the derivative
with respect to time of the state is a tangent state with Bsn = Ȧsn .

d

dt
|ψ(A)⟩ =

∑
i

Ȧi |∂iψ(A)⟩ = |ϕ(Ȧ, A)⟩

⇒ d

dt
|ψ(A)⟩ ∈ TAM

Definition 2.12: Gram matrix and inverse Gram matrix

The Gram matrix Gi,j of a (uniform) Matrix Product State is the overlap of its
tangent basis states.

Gi,j = ⟨∂iψ(A)|∂jψ(A)⟩

Where ∂i = ∂
∂Ai .

The inverse Gram matrix Gi,j (note the superscripts instead of the subscripts) is
defined by the following property:

Gi,jGj,k = δik

Finally, we are going to need a projection operator that projects an arbitrary state to
the tangent space. The naive choice P̂ =

∑
i |∂iψ⟩ ⟨∂iψ| does not work here because the

tangent basis states |∂iψ⟩ do not form a orthonormal basis.

26

Matrix Product States and Operators

Definition 2.13: Projection operator onto the tangent space

Let |ψ(A)⟩ be a uniform Matrix Product State. Its projection operator onto its
tangent space P̂TAM is defined by:

P̂TAM =
∑
i,j

|∂iψ(A)⟩Gi,j ⟨∂jψ(A)|

27

Density-Matrix Renormalization Group

3 Density-Matrix Renormalization Group
This section follows [8] and the doctoral thesis of Martin Ganahl [33]. The Density-
Matrix Renormalization Group (DMRG) is a method to simulate strongly correlated
quantum systems [8]. It was introduced by Steven White in 1992 [34]. The main focus
of DMRG is to find the ground state of a system, where unimportant states are omitted.
For infinite systems the algorithm is mostly referred to as iDMRG. In general the DMRG
formalism is independent from the MPS formalism. It is based on calculating the density
matrix of the state of interest and eliminate states that have a negligible weight in the
eigenbasis of the density matrix. In the present thesis we will omit this approach and
refer to [8]. Instead, we will directly take a look at the DMRG algorithm written in the
MPS formalism.

3.1 Finite DMRG

Let us consider that we want to calculate the ground state of a Hamiltonian Ĥ and that
we know that MPO representation of Ĥ. The general idea behind DMRG is to start
with a random Matrix Product State and do a variational ground state search. To do
that we fix the tensors for every lattice except the first two neighboring tensors from the
left. Then we will find the minimum value of ⟨ψ|Ĥ|ψ⟩

⟨ψ|ψ⟩ with respect to the two tensors that
are not fixed. This process is repeated for every pair of lattice sites until we reach right
the boundary of the system and then repeated back to the start again. This is called
one sweep. After several sweeps the calculated state should be a good approximation of
the ground state. To minimize the expectation value with respect to the two free tensors
A[n] and A[n+1] we combine these two tensors Asn,sn+1 = AsnAsn+1 and use a Lagrange
multiplier.

L(A[n,n+1], Ā[n,n+1], λ) = ⟨ψ| Ĥ |ψ⟩+ λ(⟨ψ|ψ⟩ − 1)

Now we need to solve ∇A[n,n+1],Ā[n,n+1],λ
L = 0. In this chapter we will use the short

notation ∂x = ∂
∂x . The two equations ∂A[n,n+1]

L = 0 and ∂Ā[n,n+1]
L = 0 are form

equivalent and solving them will yield the same result for A[n,n+1]. Thus we will omit
the former equation. Note that we used another short notation here. The derivative
with respect to the tensor is to be read as

∂A[n,n+1]
L = 0 ⇒ ∂

A
sn,sn+1
an−1,an+1

L = 0 ∀an−1, an+1, sn, sn+1

The equation ∂λL = ⟨ψ|ψ⟩ − 1 = 0 imposes normalization and this is assured with the
normalization condition for mixed-canonical Matrix Product States (see thm. 2.4). This
is possible, because we will always hold the Matrix Product State in mixed-canonical
form during the ground state search.
When calculating the value of ⟨ψ| Ĥ |ψ⟩ we must contract the tensor network to the left
and right of the free tensors A[n] and A[n+1]. This can be seen in fig. 3.1 and it is the
best way to do this with an recursive calculation.

28

Density-Matrix Renormalization Group

L L L L A A R R R R

W W W W W W W W W W

L L L L A A R R R R

E
bn−1

an−1,a
′
n−1

F
bn+1

an+1,a
′
n+1

Figure 3.1: Graphical representation of ⟨ψ| Ĥ |ψ⟩. The two free tensors are the two
denoted with A. The left- and right-normalized tensors denoted with L and R are fixed.

L L L L A A R R R R A A

=

L L L L A A R R R R A A

Figure 3.2: Graphical representation of ⟨ψ|ψ⟩. The two free tensors are the two denoted
with A. The left- and right-normalized tensors denoted with L and R are fixed.

Eb1
a1,a′1

=
∑
s1,s′1

Ls11,a1L̄
s′1
1,a′1

W
s′1,s1
1,b1

Ebnan,a′n
=
∑
sn,s′n

∑
an−1

∑
a′n−1

∑
bn−1

E
bn−1

an−1,a′n−1
Lsnan−1,anL̄

s′n
a′n−1,a

′
n
W

s′n,sn
bn−1,bn

F
bN−1
aN−1,aN−1 =

∑
sN ,s

′
N

RsNaN−1,1
R̄
s′N
a′N−1,1

W
s′N ,sN
bN−1,1

F bnan,a′n
=
∑
sn,s′n

∑
an+1

∑
a′n+1

∑
bn+1

F
bn+1

an+1,a′n+1
Rsnan,an+1

R̄
s′n
a′n,a

′
n+1

W
s′n,sn
bn,bn+1

The calculation of ⟨ψ|ψ⟩ is very simple, because we will hold the Matrix Product State in
mixed-canonical form and thus the tensor network collapses to the two free tensors A[n]

and A[n+1] (see fig. 3.2). Finally, we define a combined index α = (sn+1, sn, an+1, an−1) ,
an effective Hamiltonian hα′,α, and a vector Xα that is just the two site tensor A[n,n+1]

reshaped into vector form.

29

Density-Matrix Renormalization Group

hα′,α =
∑

bn−1,bn,bn+1

E
bn−1

an−1,a′n−1
W

s′n,sn
bn−1,bn

W
s′n+1,sn+1

bn,bn+1
F
bn+1

an+1,a′n+1

Xα =
∑
an

Asnan−1,anA
sn+1
an,an+1

L L L L R R R R

W W W W W W W W W W

L L L L R R R R

E
bn−1

an−1,a
′
n−1

F
bn+1

an+1,a
′
n+1

Figure 3.3: Graphical representation of hα,α′ .

With that transformations in mind the Lagrange equations transform into

∂X̄α′L = ∂X̄α′

∑
α,α′′

X̄α′′hα′′,αXα + λ
∑
α′′

X̄α′′Xα′′

=
∑
α

hα′,αXα + λXα′ = 0

The last line is an eigenequation hX = −λX, where −λ is the ground state energy with
respect to the free tensor A[n,n+1]. This eigenproblem can be solved numerically with e.g.
the Lanczos method. For the last step we reshape the calculated X back into Asn,sn+1

an−1,an+1

and split that tensor into the product LsnSRsn+1 . Now we have a valid mixed-canonical
Matrix Product State, can reduce the bond dimension if it is necessary, and fix the
norm of the state according to the normalization condition for mixed-canonical Matrix
Product States. Depending on the sweep direction we multiply the center matrix S to
the left or right tensor for the next minimization step.

LsnSRsn+1 = AsnRsn+1 = LsnAsn+1

30

Density-Matrix Renormalization Group

Algorithm 3.1: Two-site DMRG in Matrix Product State notation

1. Generate a random Matrix Product State.

2. Gauge transform into a right-canonical Matrix Product State.

3. Compute F bnan,a′n for every n ∈ {N − 1, N − 2, . . . , 3, 2}.

4. For every n ∈ {1, 2, . . . , N − 1}:

(a) Solve eigenproblem
∑

α hα′,αXα = −λXα′.
(b) Split X into a left-normalized Lsn, and Asn+1. This is done with a

singular value decomposition. Reduce the bond dimension and fix the
norm of the state if necessary.

(c) Calculate the left contraction Ebnan,a′n
.

5. For every n ∈ {N − 1, N − 2, . . . , 2, 1}:

(a) Solve eigenproblem
∑

α hα′,αXα = −λXα′.
(b) Split X into a Asn, and right-normalized Rsn+1. This is done with a

singular value decomposition. Reduce the bond dimension and fix the
norm of the state if necessary.

(c) Calculate the right contraction F bnan,a′n
.

6. If the energy (−λ) is not converged, go back to step 4.

3.2 Infinite DMRG
The general idea behind the infinite version of DMRG (iDMRG) is very similar to its
finite counter part. We want to find the ground state for a Hamiltonian Ĥ that describes
a system with an arbitrary number of lattice sites. We assume that we already know
the MPO representation of Ĥ. We start to find the matrix product ground state |ψ⟩ for
two lattice sites in its mixed-canonical representation.

|ψ⟩ =
∑
s

Ls
A
1 S[1]R

sB1 |s⟩

For the next step we insert two new lattice sites between the two systems A and B, fix
all tensors in these systems, and minimize the value of ⟨ψ|Ĥ|ψ⟩

⟨ψ|ψ⟩ with respect to the tensor
A.

|ψ⟩ =
∑
s

Ls
A
1 As

A
2 ,s

B
2Rs

B
1 |s⟩

It is assumed that A takes the place of the center matrix S. This minimization is done

31

Density-Matrix Renormalization Group

with the same method as described in the section for finite DMRG. For four lattice sites
we arrive at the new state

|ψ⟩ =
∑
s

Ls
A
1 Ls

A
2 S[2]R

sB2Rs
B
1 |s⟩

This process gets repeated for 6, 8, 10,... lattice sites. So, in general one iteration step
starts with a state of this form

|ψ⟩ =
∑
s

. . . Ls
A
n−2Ls

A
n−1As

A
n ,s

B
nRs

B
n−1Rs

B
n−2 . . . |s⟩

and ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ is minimized with respect to A to derive a new mixed-canonical state of the

form

|ψ⟩ =
∑
s

. . . Ls
A
n−2Ls

A
n−1Ls

A
n S[n]R

sBnRs
B
n−1Rs

B
n−2 . . . |s⟩

Note that we need to reduce the bond dimension of the matrices if it gets to large. This
process is repeated until convergence, or the desired system size is reached. One option
is to stop at a certain lattice size and use the calculated state as initial state for finite
DMRG instead of a random state. The other option is to assume the state can be
described as an infinite length Matrix Product State with a two site unit cell (similar to
a uniform Matrix Product State).

32

Time-Evolving Block Decimation

4 Time-Evolving Block Decimation

The Time-Evolving Block Decimation (TEBD) was first introduced by Guifré Vidal in
2003 [28]. In general it is used to compute the time evolution of a one dimensional chain.
When doing a time evolution the principal problem is to calculate the time evolution
operator e−itĤ . In this chapter we assume the Hamiltonian to be of the form:

Ĥ =

N−1∑
j=0

ĥj,j+1

where ĥj,j+1 acts only on site j and j + 1 and N is the number of lattice sites.
If we assume that all ĥj,j+1 commute with each other the computation of the time
evolution operator is easy.

Ĥ =
∑
j

ĥj,j+1 ∧ [ĥj,j+1, ĥj+1,j+2] = 0 ∀j ⇒ e−itĤ =
∏
j

e−itĥj,j+1

However, in most cases the commutator at hand will not vanish. The basic idea behind
TEBD is to split the system up into two parts, even and odd, where every two-site-
Hamiltonian will commute with each other within said part.

Ĥ = Ĥeven + Ĥodd =

⌊N
2
⌋∑

j=0

ĥ2j,2j+1 +

⌊N
2
⌋∑

j=0

ĥ2j+1,2j+2

As mentioned above ∀m,n : [ĥ2j,2j+1, ĥ2m,2m+1] = [ĥ2j+1,2j+2, ĥ2m+1,2m+2] = 0, but
[Ĥeven, Ĥodd] ̸= 0. Because every operator within even and odd commutes it is trivial to
calculate the time evolution within these systems.

e−itĤeven =
∏

ĥ∈Ĥeven

e−itĥ

e−itĤodd =
∏

ĥ∈Ĥodd

e−itĥ

To calculate the time evolution of the whole system we define the time step ∆t = t
n with

n ∈ N and use the Baker-Hausdorff formula to calculate:

33

Time-Evolving Block Decimation

e−itĤ = e−it(Ĥeven+Ĥodd)

=
(
e−i∆t(Ĥeven+Ĥodd)

)n
=
(
e−i∆tĤevene−i∆tĤodd(1 +O(∆t2))

)n
=
(
e−i∆tĤevene−i∆tĤodde−i∆tĤevene−i∆tĤodd ...e−i∆tĤevene−i∆tĤodd

)
(1 +O(∆t))

Algorithm 4.1: First order time evolving block decimation

Let |ψ⟩ be an arbitrary Matrix Product State and let Ûeven/odd = e−i∆tĤeven/odd (see
above). |ψ(∆t)⟩ is approximated with:

1. |ψ̃⟩ = Ûeven |ψ⟩

2. |ψ(∆t)⟩ = Ûodd |ψ̃⟩

34

Time-Dependent Variational Principle

5 Time-Dependent Variational Principle

This section will follow [27] and [35]. The Time-Dependent Variational Principle for
uniform Matrix Product States was introduced by Haegeman et. al. [27] in 2011. It is
a versatile tool to do time evolutions and ground state calculations of Matrix Product
States on infinite one dimensional lattices. Later on, the algorithm was extended to
work with Matrix Product Operators on finite lattices [35]. In the original article [27]
only Hamiltonians of the form Ĥ =

∑
i ĥi,i+1 were considered (i.e. only nearest neighbor

interactions). The present thesis modifies this approach to include exponentially decay-
ing long ranged interactions. This extension to TDVP was done in email collaboration
with Valentin Zauner (now Valentin Stauber; University of Vienna). For an in-depth
discussion about TDVP and the concept of tangent states and spaces see [32].

5.1 Basic Idea

The basic idea behind TDVP is not to solve the Schrödinger equation |ψ̇⟩ = −iĤ |ψ⟩ in
the whole state space but to find the best approximation within the variational manifold
spanned by matrices with a certain maximum size χ. This is in contrast to algorithms
like the two-site DMRG or TEBD where for every two new lattice sites added the new
matrix dimension is at first a multiple of the local Hilbert space dimension and is reduced
only later [8]. For TDVP, to find the best approximation within the desired space, the
right hand side of the Schrödinger equation is projected onto the tangent space of the
current MPS manifold [35]. This means, we need to solve the following equation:

|ψ̇⟩A = −iP̂TAMĤ |ψ⟩A

Here the subscript A explicitly denotes that |ψ⟩A is a (uniform) Matrix Product State,
and P̂TAM is the projection operator onto the tangent space of |ψ⟩ (see def. 2.13). An
illustration of the process can be seen in fig. 5.1. If this differential equation is solved
and |ψ⟩A updated accordingly, we are never going to leave the initial manifold of |ψ⟩.

5.2 Finite Lattice TDVP

For the Finite lattice TDVP we need to find a representation of the projection operator
onto the tangent space P̂TAM in the MPS basis [35]. The projection will be derived for
an arbitrary state |ξ⟩ (not necessarily an MPS) by minimizing the norm squared of the
difference between |ξ⟩ and an arbitrary tangent state (eq. (5.1)).
First we rewrite the definition of tangent states (def. 2.11).

35

Time-Dependent Variational Principle

Hilbert space

M

|ψ⟩A

TAM

Ĥ|ψ⟩A

P̂TAMĤ|ψ⟩A

Figure 5.1: Graphical representation of the projection of P̂TAMĤ |ψ⟩A onto the tangent
space.

|ϕ(B,Aψ)⟩ =
∑
n∈L

∑
{s}

(∏
m<n

Asm

)
Bsn

(∏
m>n

Asm

)
|s⟩

=
∑
n∈L

∑
{s}

(∏
m<n

Lsm

)
Gl,[n]B

snGr,[n+1]

(∏
m>n

Rsm

)
|s⟩

=
∑
n∈L

∑
{s}

(∏
m<n

Lsm

)
B̃sn

(∏
m>n

Rsm

)
|s⟩

= |ϕ̃(B̃,Aψ)⟩

In the second line we transformed every tensor left of Bsn into its left-normalized rep-
resentation and the every tensor of Bsn into its right-normalized representation. The
two matrices Gl,[n] and Gr,[n+1] are the factors that remain after the normalization and
are multiplied into Bsn , resulting in B̃sn = Gl,[n]B

snGr,[n+1]. The problem is now that
there is no one-to-one correspondence between the derivation of a Matrix Product State
and the modified tangent state |ϕ̃(B̃,Aψ)⟩, but the derivative of the projection operator
is easier this way. For the rest of this chapter we are going to omit the two tildes and
the second argument of |ϕ̃(B̃,Aψ)⟩ → |ϕ(B)⟩ for the sake of brevity. Furthermore, we
introduce |an⟩ and |bn⟩ that are orthonormal basis states of the sublattices to the left
and to the right of site n.

36

Time-Dependent Variational Principle

|an⟩ =
∑

s1,s2,...,sn

(∏
m≤n

Lsm
)
1,a |s1s2 . . . sn⟩

|an+1⟩ =
∑

a′,sn+1

L
sn+1

a′,a |a′n⟩ |sn+1⟩

|bn⟩ =
∑

sn,sn+1...,sN

(∏
m≥n

Rsm
)
b,1 |snsn+1 . . . sN ⟩

Keep the recursion relation for |an⟩ in mind. This is going to be important later. With
these definitions the tangent state |ϕ(B)⟩ can be written as:

|ϕ(B)⟩ =
∑
n

∑
a,b,sn

Bsn
a,b |an−1⟩ |sn⟩ |bn+1⟩

Note that a similar gauge invariance exists for the tangent states as for regular Matrix
Product States. To tangent states defined by the matrices Bs′n and Bsn are the same,
when the two tensors are related by:

Bs′n = Bsn +X[n−1]R
sn − LsnX[n] ⇒ |ϕ(B′)⟩ = |ϕ(B)⟩

Here the X[n] are arbitrary complex matrices that match the dimensions of the original
Matrix Product State. Thus we can fix a gauge for the different Bsn . There are several
equivalent choices for the gauge. Here we are going to impose the condition ∀n ̸=
N :

∑
sn
Lsn†Bsn = 0. This comes in very handy when calculating the overlap of two

tangent states.

⟨ϕ(B1)|ϕ(B2)⟩ =
∑
n

∑
sn

tr(Bsn†
1 Bsn

2)

This is the form of an Euclidean inner product and thus corresponds to an orthonormal
basis. The orthonormal basis guarantees that a solution to |ϕ(B)⟩ = P̂TAM |ξ⟩ (with an
arbitrary state |ξ⟩) is also a solution to:

min
B

∥|ϕ(B)⟩ − |ξ⟩ ∥2= min
B

⟨ϕ(B)|ϕ(B)⟩ − ⟨ϕ(B)|ξ⟩ − ⟨ξ|ϕ(B)⟩+ ⟨ξ|ξ⟩ (5.1)

We can omit the term ⟨ξ|ξ⟩ in the equation above, because it is just a constant with
respect to B. Next, we are going to look onto the second term of the minimization.

⟨ϕ(B)|ξ⟩ =
∑
n

∑
a,b,sn

Bsn†
b,a ⟨an−1snbn+1|ξ⟩

=
∑
n

tr(Bsn†F sn)

Where F sna,b = ⟨an−1snbn+1|ξ⟩.

37

Time-Dependent Variational Principle

Then, in matrix notation this boils down to:

min
B

∑
n

∑
sn

tr
(
Bsn†Bsn − F sn†Bsn −Bsn†F sn

)
∑
sn

Lsn†Bsn = 0 ∀n ̸= N

We can solve this with Lagrange multipliers:

L =

N∑
n=1

∑
sn

∑
a,b

B̄sn
b,aB

sn
b,a − F̄ snb,aB

sn
b,a − B̄sn

b,aF
sn
b,a +

N−1∑
n=1

∑
a,b,c

∑
sn

λna,cB̄
sn
b,aL

sn
b,c

Where we used the hermitian conjugate of the constraint.

∂L
∂B̄sn

b,a

= Bsn
b,a − F snb,a +

∑
c

λna,cL
sn
b,c

!
= 0 ⇒ Bsn

b,a = F snb,a −
∑
c

λna,cL
sn
b,c

Now we need to plug this solution into the side condition:

0
!
=
∑
sn,b

B̄sn
b,aL

sn
b,c =

∑
sn,b

F̄ snb,aLsnb,c −∑
c′

λ̄na,c′ L̄
sn
b,c′L

sn
b,c︸ ︷︷ ︸

=δc,c′

=
∑
sn,b

(
F̄ snb,aL

sn
b,c

)
− λ̄na,c

⇒ λna,c =
∑
sn,b

(
F snb,aL̄

sn
b,c

)

So we get our final result for the B in matrix notation:

Bsn =

{
F sn − Lsn

∑
tn
Ltn†F tn if n < N

F sn if n = N

For the next step we define G =
∑

tn
Ltn†F tn and calculate it in braket notation.

Ga,b =
∑
tn

Ltn†a,a′ ⟨a
′
n−1| ⟨tnbn+1|ξ⟩ = ⟨anbn+1|ξ⟩

And finally we plug the minimum solution of B into our tangent state:

38

Time-Dependent Variational Principle

|ϕ(B)⟩ =
∑
n

∑
a,b,sn

Bsn
a,b |an−1snbn+1⟩

=

N∑
n=1

∑
sn,a,b

F sna,b |an−1snbn+1⟩ −
N−1∑
n=1

∑
sn,a,a′,b

Lsna′,aGa,b |a
′
n−1snbn+1⟩

=
N∑
n=1

∑
sn,a,b

|an−1snbn+1⟩ ⟨an−1snbn+1| |ξ⟩ −
N−1∑
n=1

|anbn+1⟩ ⟨anbn+1| |ξ⟩

=

(
N∑
n=1

P̂Ln−1 ⊗ 1n ⊗ P̂Rn+1 −
N−1∑
n=1

P̂Ln ⊗ P̂Rn+1

)
|ξ⟩

!
= P̂TAM |ξ⟩

This is the representation of the projection operator in Matrix Product State basis.

Result 5.1: Tangent space projector P̂TAM in MPS notation

|an⟩ =
∑

s1,s2,...,sn

(∏
m≤n

Lsm
)
1,a |s1s2 . . . sn⟩

|bn⟩ =
∑

sn,sn+1...,sN

(∏
m≥n

Rsm
)
b,1 |snsn+1 . . . sN ⟩

P̂Ln =
∑
a

|an⟩ ⟨an|

P̂Rn =
∑
b

|bn⟩ ⟨bn|

P̂TAM =
N∑
n=1

P̂Ln−1 ⊗ 1n ⊗ P̂Rn+1 −
N−1∑
n=1

P̂Ln ⊗ P̂Rn+1

Finite One Site TDVP Algorithm

Now we want to use the projection operator and solve the modified Schrödinger equation
|ψ⟩A = −iP̂TAMĤ |ψ⟩A. We will see that the emerging algorithm is almost identical to
the one site DMRG algorithm with a few steps modified. The idea is to time evolve
every lattice site separately. We assume that Ĥ is known in Matrix Product Operator
form Ĥ =

∑
s,s′
∏
nW

sn,s′n |s⟩ ⟨s′|, and |ψ⟩ is in mixed-canonical form. Similar as in
section 3 we define the tensors F and E defined by:

39

Time-Dependent Variational Principle

Eb1
a1,a′1

=
∑
s1,s′1

Ls11,a1L̄
s′1
1,a′1

W
s′1,s1
1,b1

Ebnan,a′n
=
∑
sn,s′n

∑
an−1

∑
a′n−1

∑
bn−1

E
bn−1

an−1,a′n−1
Lsnan−1,anL̄

s′n
a′n−1,a

′
n
W

s′n,sn
bn−1,bn

F
bN−1
aN−1,aN−1 =

∑
sN ,s

′
N

RsNaN−1,1
R̄
s′N
a′N−1,1

W
s′N ,sN
bN−1,1

F bnan,a′n
=
∑
sn,s′n

∑
an+1

∑
a′n+1

∑
bn+1

F
bn+1

an+1,a′n+1
Rsnan,an+1

R̄
s′n
a′n,a

′
n+1

W
s′n,sn
bn,bn+1

Furthermore we define the combined index α = (sn, an−1, an) and the effective Hamilto-
nian:

hα′,α =
∑

bn−1,bn

E
bn−1

an−1,a′n−1
W

s′n,sn
bn−1,bn

F bnan,a′n

One term of the first sum of the modified Schrödinger equation now reads as:

∑
s

. . . Lsn−1ȦsnRsn+1 . . . |s⟩ = −i
∑
s,α,α′

(
. . . Ls

′
n−1

)
1,a′n−1

hα′,αAα

(
Rs

′
n+1 . . .

)
a′n,1

|s′⟩

This yields:

Ȧ[n] = −ih[n]A[n] ⇒ A[n](t) = e−ith[n]A[n](0)

where we explicitly wrote the lattice site. Note that in this notation A[n] is a vector:
Aα = Asnan−1,an . Similarly, on term of the second sum of the modified Schrödinger
equation reads as:∑

s

. . . LsnSRsn+1 . . . |s⟩ = i
∑
s,β,β′

(
. . . Ls

′
n−1

)
1,a′n−1

kβ′,βSβ

(
Rs

′
n+1 . . .

)
a′n,1

|s′⟩

where we defined a new combined index β = (an, ãn) the effective zero-site Hamiltonian:

kβ,β′ =
∑

an−1,a′n−1

sn,s′n

h(sn,ãn,an−1),(s′n,ã
′
n,a

′
n−1)

Lsnan−1,anL̄
s′n
a′n−1,an

This yields the differential equation:

Ṡ[n] = ik[n]S[n] ⇒ S[n](t) = eitk[n]S[n](0)

All in all one integration step with a time step of ∆t is:

40

Time-Dependent Variational Principle

Algorithm 5.1: One site finite TDVP

1. Start with arbitrary state |ψ⟩ at t = 0.

2. Gauge transform into a right-canonical Matrix Product State.

3. Compute F bnan,a′n for every n ∈ {N − 1, N − 2, . . . , 3, 2}.

4. For every n ∈ {1, 2, . . . , N}:

(a) Compute A[n](
∆t
2) = e−i

∆t
2
h[n]A[n](0).

(b) Calculate left-normalized tensor Lsn and center matrix S[n]: Asn =
LsnS[n].

(c) Calculate the left contraction Ebnan,a′n
.

(d) Compute S[n](0) = ei
∆t
2
k[n]S[n](

∆t
2).

(e) Multiply S into the next tensor: Asn+1 = S[n]R
sn+1.

5. For every n ∈ {N,N − 1, . . . , 2, 1}:

(a) Compute A[n](∆t) = e−i
∆t
2
h[n]A[n](

∆t
2).

(b) Calculate right-normalized tensor Rsn and center matrix S[n−1]: Asn =
S[n−1]R

sn.

(c) Calculate the right contraction F
bn−1

an−1,a′n−1
.

(d) Compute S[n−1](
∆t
2) = ei

∆t
2
k[n]S[n−1](∆t).

(e) Multiply S into the next tensor: Asn−1 = Lsn−1S[n−1].

Finite Two site TDVP Algorithm
It is also possible to do the same calculation as above with a two site tangent space.
Note that now always two sites are combined into one tensor A[n,n+1].
We have now the same effective Hamiltonian as in the two site DMRG algorithm:

h2α′,α =
∑

bn−1,bn,bn+1

E
bn−1

an−1,a′n−1
W

s′n,sn
bn−1,bn

W
s′n+1,sn+1

bn,bn+1
F
bn+1

an+1,a′n+1

Algorithm 5.2: Two site finite TDVP

1. Start with arbitrary state |ψ⟩ at t = 0.

41

Time-Dependent Variational Principle

2. Gauge transform into a right-canonical Matrix Product State.

3. Compute F bnan,a′n for every n ∈ {N − 1, N − 2, . . . , 3, 2}.

4. For every n ∈ {1, 2, . . . , N − 1}:

(a) Compute A[n,n+1](
∆t
2) = e

−i∆t
2
h2
[n,n+1]A[n,n+1](0).

(b) Split A[n,n+1] into: Asn,sn+1 = LsnAsn+1.

(c) Calculate the left contraction Ebnan,a′n
.

(d) Compute A[n+1](0) = ei
∆t
2
h[n]A[n+1](

∆t
2).

5. For every n ∈ {N,N − 1, . . . , 2}:

(a) Compute A[n−1,n](∆t) = e
−i∆t

2
h2
[n]A[n−1,n](

∆t
2).

(b) Split A[n,n+1] into: Asn−1,sn = Asn−1Rsn.

(c) Calculate the right contraction F
bn−1

an−1,a′n−1
.

(d) Compute A[n−1](
∆t
2) = ei

∆t
2
h[n]A[n−1](∆t).

5.3 Infinite Lattice TDVP

For the first step the state is assumed to be in uMPS form |ψ⟩ → |ψ(A)⟩. Not that A
is dependent on time. We will temporarily rewrite the matrix Asab as Aj with the tuple
j = (s, a, b). The Schrödinger equation now reads as:

Bj |∂jψ⟩ = −iĤ |ψ⟩ (5.2)

where ∂j = ∂
∂Aj and B = Ȧ. The challenge is to find the matrix B which solves the

equation at a given time t. In general there is no solution to this equation within
the matrix dimension χ. Within a fixed matrix dimension χ there can only be an
approximate solution by minimizing the expression

||Bj |∂jψ⟩+ iĤ |ψ⟩ ||

This minimization is done by projecting eq. (5.2) onto the tangent plane of |ψ(A)⟩.

B̄k̄ ⟨∂k̄ψ|∂jψ⟩Bj = −iB̄k̄ ⟨∂k̄ψ| Ĥ |ψ⟩ (5.3)

What the TDVP algorithm does is to find a solution of eq. (5.3) with respect to B. Now
that we have laid out the general idea, we can transform Aj and Bj back to Asab and

42

Time-Dependent Variational Principle

Bs
ab. The derivative of |ψ⟩ can now be written as:

|ψ̇⟩ =
∑
n∈Z

d∑
{s}=1

v†l ...A
sn−1BsnAsn+1 ...vr |s⟩

Definition 5.1

We will consider Hamiltonians of the following form:

Ĥ =
∑
i

ĥ1i +
∑
i

ĥ2i,i+1 +
∑

m,n,j>i

M̂m
i N̂

m
j βne

−αn(j−i)

i and j will denote the different lattice sites, i, j ∈ Z. The operator ĥ1 acts non
trivially only on one site and will be called on-site potential. Similarly ĥ2 is an
operator that acts non trivially only on two neighboring sites and will be called
nearest neighbor interaction. The last term of the Hamiltonian will be called long
range interaction. Every M̂m and N̂m is a single site operator, where we sum
over different pairs of operators with m ∈ N. βn and αn are real scalars. By
definition we assume that αn > 0 ∀n.

We will split eq. (5.3) up into its several terms.

B̄k̄ ⟨∂k̄ψ|∂jψ⟩Bj = −iB̄k̄

[
⟨∂k̄ψ|

∑
i

ĥ1i |ψ⟩+ ⟨∂k̄ψ|
∑
i

ĥ2i,i+1 |ψ⟩

+ ⟨∂k̄ψ|
∑

m,n,j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩

] (5.4)

To calculate all the several terms we will define several tensors, that occur through the
process.

43

Time-Dependent Variational Principle

C

D

C

ĥ1

D

C D

E F

ĥ2

C

M̂m

D

C

N̂m

D

Figure 5.2: Graphical representation of TCD , hCD, hCDEF , MC
D , and NC

D .

Definition 5.2

TCD =
d∑
s=1

Cs ⊗ D̄s

hCD =

d∑
s,t=1

⟨s| ĥ1 |t⟩ (Ct ⊗ D̄s)

hCDEF =

d∑
s,t,u,v=1

⟨st| ĥ2 |uv⟩ [(CuDv)⊗ (ĒsF̄ t)]

MC
D =

d∑
s,t=1

⟨s| M̂m |t⟩ (Ct ⊗ D̄s)

NC
D =

d∑
s,t=1

⟨s| N̂m |t⟩ (Ct ⊗ D̄s)

Note that TAA is the transfer matrix T .

Left Hand Side

The left hand side of the equation is a sum of tensor networks, where B and B̄ take
every possible position. This can be seen in fig. 5.3. The left and right eigenvectors of
the transfer matrix ”collapse” to the first appearance of either B or B̄. There are three
different cases to examine:

1. B and B̄ are on the same position.

2. B is to the left of B̄.

3. B is to the right of B̄.

For point 2 and 3, one has to sum over all possible distances between B and B̄. Every
lattice site between them is represented by the transfer matrix. With that in mind the
left hand side transforms to:

44

Time-Dependent Variational Principle

B B A B A A

l r + l r + l r + . . .

B A B A A B

A B A A B

+ l r + l r + . . .

B A B A A

Figure 5.3: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|∂jψ⟩Bj . Note that this sum of tensor
networks gets repeated for every lattice site (hence the factor 1

|Z|).

B̄k̄ ⟨∂k̄ψ|∂jψ⟩Bj = |Z|
[
⟨l|TBB |r⟩+ ⟨l|TBA TAB |r⟩+ ⟨l|TBA TTAB |r⟩+ ⟨l|TBA T 2TAB |r⟩+ . . .

+ ⟨l|TBA TAB |r⟩+ ⟨l|TBA TTAB |r⟩+ ⟨l|TBA T 2TAB |r⟩+ . . .
]

= |Z|
[
⟨l|TBB |r⟩+ ⟨l|TBA

(∞∑
n=0

Tn
)
TAB |r⟩+ ⟨l|TAB

(∞∑
n=0

Tn
)
TBA |r⟩

]
(5.5)

The sums over all powers of T are geometric series. The usual formula to calculate this,
fails for T .

∞∑
n=0

xn =
1

1− x
∀|x|< 1

The series will not converge for ∀|x|≥ 1. As can be seen in section 2 the transfer matrix
T of a uniform Matrix Product State with a norm of 1 has a dominant eigenvalue of
1. Thus, for a normed state it is not possible to calculate the geometric series for the
transfer matrix. There is however a projection operator Q that solves the problem.

Q = 1− |r⟩ ⟨l|

With this projector it is possible to calculate the geometric series of the transfer matrix.

∞∑
n=0

Tn = Q (1−QTQ)−1Q+

∞∑
n=0

|r⟩ ⟨l|

45

Time-Dependent Variational Principle

B B A A B

l r + l INV r + l INV r

B A B B A

A B

+ 2(|Z| − 1) · l r · l r

B A

INV = Q(1 −QTQ)−1Q

Figure 5.4: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|∂jψ⟩Bj after the geometric series has
been calculated. Note that this sum of tensor networks gets repeated for every lattice
site (hence the factor 1

|Z|).

The whole calculation can be found in appendix A.1. Note that Q (1−QTQ)−1Q is the
pseudo inverse of (1− T). Now eq. (5.5) can be transformed into this expression.

B̄k̄ ⟨∂k̄ψ|∂jψ⟩Bj = |Z|
[
⟨l|TBB |r⟩+ ⟨l|TBAQ(1−QTQ)−1QTAB |r⟩

+ ⟨l|TABQ(1−QTQ)−1QTBA |r⟩

+ 2(|Z|−1) ⟨l|TAB |r⟩ ⟨l|TBA |r⟩
]

The first three terms are all computable. The only problem arises if one wants to
calculate the last term, because of the extra factor of Z. This can be solved with a
special parametrization of B. The extra factor of |Z| which is multiplied with all terms
is there because of the infinite number of lattice sites. It will not prove to be a problem,
because the same factor arises for all terms of eq. (5.3).

On-site Potential

The right hand side of eq. (5.3) will be split up into the three parts of the Hamiltonian
and can be dealt with the same approach. Again, there a three cases to consider:

1. B̄ sits on the same place as ĥ1.

2. B̄ is to the left of ĥ1.

3. B̄ is to the right of ĥ1.

46

Time-Dependent Variational Principle

A A A A A A

l ĥ1 r + l ĥ1 r + l ĥ1 r + . . .

B B A B A A

A A A A A

+ l ĥ1 r + l ĥ1 r + . . .

A B A A B

Figure 5.5: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|
∑

i ĥ
1
i |ψ⟩. Note that this sum of

tensor networks gets repeated for every lattice site (hence the factor 1
|Z|).

Like before, in point 2 and 3 a summation over all different distances between B̄ and ĥ1
has to be done.

B̄k̄ ⟨∂k̄ψ|
∑
i

ĥ1i |ψ⟩ = |Z|
[
⟨l|hAB |r⟩+ ⟨l|TAB

(∞∑
n=0

Tn
)
hAA |r⟩+ ⟨l|hAA

(∞∑
n=0

Tn
)
TAB |r⟩

]
= |Z|

[
⟨l|hAB |r⟩+ ⟨l|TABQ(1−QTQ)−1QhAA |r⟩

+ ⟨l|hAAQ(1−QTQ)−1QTAB |r⟩

+ 2(|Z|−1) ⟨l|hAA |r⟩ ⟨l|TAB |r⟩
]

Nearest Neighbor Interaction

In the case of the two site interaction, there are four cases:

1. B̄ is on the left side, of the two sides, where ĥ2 operates.

2. B̄ is on the right side, of the two sides, where ĥ2 operates.

3. B̄ is to the left of ĥ2.

4. B̄ is to the right of ĥ2.

This time there is a sum over all different distances between B̄ and ĥ2 in point 3 and 4.

47

Time-Dependent Variational Principle

A A A A A

l ĥ1 r + l INV ĥ1 r + l ĥ1 INV r

B B A A B

A A

+ 2(|Z| − 1) · l ĥ1 r · l r

A B

INV = Q(1 −QTQ)−1Q

Figure 5.6: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|
∑

i ĥ
1
i |ψ⟩ after the geometric series

has been calculated. Note that this sum of tensor networks gets repeated for every lattice
site (hence the factor 1

|Z|).

B̄k̄ ⟨∂k̄ψ|
∑
i

ĥ2i,i+1 |ψ⟩ = |Z|
[
⟨l|hAABA |r⟩+ ⟨l|hAAAB |r⟩+ ⟨l|TAB

(∞∑
n=0

Tn
)
hAAAA |r⟩

+ ⟨l|hAAAA
(∞∑
n=0

Tn
)
TAB |r⟩

]
= |Z|

[
⟨l|hAABA |r⟩+ ⟨l|hAAAB |r⟩

+ ⟨l|TABQ(1−QTQ)−1QhAAAA |r⟩
+ ⟨l|hAAAAQ(1−QTQ)−1QTAB |r⟩

+ 2(|Z|−2) ⟨l|hAAAA |r⟩ ⟨l|TAB |r⟩
]

Long Range Interaction

For the long ranged interaction, there are five cases to examine:

1. B̂ is to the left of both M̂ and N̂ .

2. B̂ is on the same place as M̂ .

3. B̂ is between M̂ and N̂ .

4. B̂ is on the same place as N̂ .

48

Time-Dependent Variational Principle

A A A A A A A

l r + l r + l INV r

B A A B B A A

ĥ2 ĥ2 ĥ2

A A A

+ l INV r

A A B

ĥ2

A A A

+ 2(|Z| − 2) · l r · l r

A A B

ĥ2

INV = Q(1 −QTQ)−1Q

Figure 5.7: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|
∑

i ĥ
2
i,i+1 |ψ⟩ after the geometric se-

ries has been calculated. Note that this sum of tensor networks gets repeated for every
lattice site (hence the factor 1

|Z|).

49

Time-Dependent Variational Principle

5. B̂ is to the right of both M̂ and N̂ .

In case 1 and 5 there is a sum over all distances between B̄ and either M̂ or N̂ . In every
case an extra summation over all distances between M̂ and N̂ has to be done.

∑
m

B̄k̄ ⟨∂k̄ψ|
∑
n,j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩ = ∗

∗ = |Z|
∑
m,n

βne
−αn

[
⟨l|TAB

(∞∑
l=0

T l
)
MA
A

(∞∑
l=0

(e−αnT)l
)
NA
A |r⟩

+ ⟨l|MA
B

(∞∑
l=0

(e−αnT)l
)
NA
A |r⟩

+ e−αn ⟨l|MA
A

(∞∑
l=0

(e−αnT)l
)
TAB

(∞∑
l=0

(e−αnT)l
)
NA
A |r⟩

+ ⟨l|MA
A

(∞∑
l=0

(e−αnT)l
)
NA
B |r⟩

+ ⟨l|MA
A

(∞∑
l=0

(e−αnT)l
)
NA
A

(∞∑
l=0

T l
)
TAB |r⟩

]
The geometric series of e−αT converges without the use of QTQ, because by assumption
α > 0 ⇒ e−α < 1. T has exactly one eigenvalue of 1 and all other eigenvalues have
a smaller absolute value, thus e−αT has only eigenvalues with absolute values smaller
than 1. This allows the geometric series to converge. There is an extra factor of e−αn in
the fourth line of the equation. This is because we omitted this because we pulled this
factor away from TAB in front of the term.

∑
m

B̄k̄ ⟨∂k̄ψ|
∑
n,j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩ = ∗

∗ = |Z|
∑
m,n

βne
−αn

[
⟨l|TABQ(1−QTQ)−1QMA

A (1− e−αnT)−1NA
A |r⟩

+ ⟨l|MA
B (1− e−αnT)−1NA

A |r⟩
+ e−αn ⟨l|MA

A (1− e−αnT)−1TAB (1− e−αnT)−1NA
A |r⟩

+ ⟨l|MA
A (1− e−αnT)−1NA

B |r⟩
+ ⟨l|MA

A (1− e−αnT)−1NA
AQ(1−QTQ)−1QTAB |r⟩

+ 2(|Z|−2) ⟨l|TAB |r⟩ ⟨l|MA
A (1− e−αnT)−1NA

A |r⟩
]

In summary, if we can find a B = Ȧ that solves eq. (5.4) we can numerically integrate
the Schrödinger equation and compute ψ(t). The single terms of this equation were
expanded in this chapter.

50

Time-Dependent Variational Principle

A A A

l PINV M̂m EINV N̂m r

B A A

A A

+ l M̂m EINV N̂m r

B A

A A A

+ e−αn · l M̂m EINV EINV N̂m r

A B A

A A

+ l M̂m EINV N̂m r

A B

A A A

+ l M̂m EINV N̂m PINV r

A A B

A A A

+ 2(|Z| − 2) · l r · l M̂m EINV N̂m r

B A A

∑
n,m

βne
−αn

(

)

PINV = Q(1 −QTQ)−1Q EINV = (1 − e−αnT)−1

Figure 5.8: Graphical representation of 1
|Z|B̄

k̄ ⟨∂k̄ψ|
∑

l,j>i M̂
l
i N̂

l
jβe

−α(j−i) |ψ⟩ after the
geometric series has been calculated. Note that this sum of tensor networks gets repeated
for every lattice site (hence the factor 1

|Z|).

51

Time-Dependent Variational Principle

Computation

As mentioned above, the task at hand now is to find a B so that eq. (5.4) is satisfied. At
first a suitable gauge for B has to be found, so that the diverging factors of this equation
can be eliminated. One possible way to fix the gauge of B is:

⟨l|TBA = 0∑
s

As†lBs = 0

This gauge has several advantages. The norm of the state is preserved and the left
eigenvector does not change in first order. Furthermore all terms with ⟨l|TBA or ⟨l|TAB
in it will vanish. This is especially important for terms, that have an extra factor of Z.
With this gauge eq. (5.4) transforms into:

⟨l|TBB |r⟩ = −i

(
⟨l|hAB |r⟩+ ⟨l|hAAQ(1−QTQ)−1QTAB |r⟩

+ ⟨l|hAABA |r⟩+ ⟨l|hAAAB |r⟩
+ ⟨l|hAAAAQ(1−QTQ)−1QTAB |r⟩

+
∑
m,n

(
⟨l|MA

B (1− e−αnT)−1NA
A |r⟩

+ e−αn ⟨l|MA
A (1− e−αnT)−1TAB (1− e−αnT)−1NA

A |r⟩
+ ⟨l|MA

A (1− e−αnT)−1NA
B |r⟩

+ ⟨l|MA
A (1− e−αnT)−1NA

AQ(1−QTQ)−1QTAB |r⟩
))

Now we want to find a parametrization for B = B(x) so that ⟨l|TB(x)
A = 0. The

parametrization for B used in [27] is defined as:

Definition 5.3: Parametrization of B

Bs(x) = l−
1
2V sxr−

1
2 (5.6)

where

52

Time-Dependent Variational Principle

V s
a,b = V(sa),b = Null (L)∑

s

V s†V s = 1

Lc,(sa) =
(
As†l

1
2

)
c,a

If we plug eq. (5.6) into the the gauge condition, we can see that the condition is in fact
fulfilled.

0 =
∑
s

As†l Bs

=
∑
s

As†l l−
1
2V sxr−

1
2

=
∑
s

As†l
1
2V s︸ ︷︷ ︸

=0,by def.

xr−
1
2

In general x ∈ C(d−1)χ×χ (see appendix A.2).
To simplify the equations for x we will define column and row vectors that include the
inverse and pseudoinverse of (1− T) and (1− e−αnT).

Definition 5.4: K

⟨KOS | = ⟨l|hAAQ(1−QTQ)−1Q

⟨KNN | = ⟨l|hAAAAQ(1−QTQ)−1Q

⟨Kn
l | = e−αn ⟨l|MA

A (1− e−αnT)−1

|Kn
r ⟩ = e−αn (1− e−αnT)−1NA

A |r⟩

⟨KLR| =
∑
n

βn ⟨Kn
l |NA

AQ(1−QTQ)−1Q

These vectors also have a matrix representation exactly like ⟨l| and |r⟩. Ant the same
rules for products like ⟨l|T (see section 2) apply for e.g. ⟨KOS |T . In general it is
not a good idea to calculate these vectors directly, because the computational cost of
calculating the inverse of T goes like O(χ6). An iterative process of calculating these
vectors can be found (see appendix A.3).
Furthermore we will combine every other tensor than x in a single matrix F . We will
define this in advance:

53

Time-Dependent Variational Principle

Definition 5.5: F

FOS =
∑
s,t

V s†l−
1
2

(
⟨s| ĥ1 |t⟩ l At +KOS A

t
)
r

1
2

Cs,t =
∑
u,v

⟨s, t| ĥ2 |u, v⟩AuAv

FNN =
∑
s,t

V s†l
1
2 Cs,t r At†r−

1
2 +

∑
s

V s†l−
1
2

(∑
t

At† l Ct,s +KNN As
)
r

1
2

FLR =
∑
m

(∑
s,t

⟨s| M̂m |t⟩V s†l
1
2At
(∑

n

βnK
n
r

)
r−

1
2

+
∑
s

∑
n

βnV
s†l−

1
2Kn

l A
tKn

r r
− 1

2

+
∑
s,t

⟨s| N̂m |t⟩V s†l−
1
2

(∑
n

βnK
n
l

)
Atr

1
2

+
∑
s

V s†l−
1
2KLRA

sr
1
2

)
F = FOS + FNN + FLR

With these definitions eq. (5.4) will take the form of a simple matrix equation. We will
deal with its left hand side, the on-site potential, the nearest neighbor term, and the long
range interaction separately. In every calculation below we will use the cyclic invariance
of the trace and pull x† to the left.

Left Hand Side

B̄k̄ ⟨∂k̄ψ|∂jψ⟩Bj = |Z| ⟨l|TB(x)
B(x) |r⟩

= |Z| tr
(∑

s

Bs†(x) l Bs(x) r
)

= |Z| tr
(∑

s

r−
1
2x†V s†l−

1
2 l l−

1
2V sxr−

1
2 r
)

= |Z| tr
(
x†
∑
s

V s†V s

︸ ︷︷ ︸
=1

x
)

= |Z| tr
(
x†x
)

54

Time-Dependent Variational Principle

On-site Potential

B̄k̄ ⟨∂k̄ψ|
∑
i

ĥ1i |ψ⟩ = |Z|
[
⟨l|hAB(x) |r⟩+ ⟨l|hAAQ(1−QTQ)−1QTAB(x) |r⟩

]
= |Z|

[
⟨l|hAB |r⟩+ ⟨KOS |TAB(x) |r⟩

]
= |Z|

[∑
s,t

⟨s| ĥ1 |t⟩Bs†(x) l At r +Bs†(x) KOS A
t r
]

= |Z| tr

(∑
s,t

x†V s†l−
1
2

(
⟨s| ĥ1 |t⟩ l At +KOS A

t
)
r

1
2

)
= |Z| tr

(
x†FOS

)

Nearest Neighbor Interaction

B̄k̄ ⟨∂k̄ψ|
∑
i

ĥ2i,i+1 |ψ⟩ = |Z|
[
⟨l|hAAB(x)A |r⟩+ ⟨l|hAAAB(x) |r⟩

+ ⟨l|hAAAAQ(1−QTQ)−1QTAB(x) |r⟩
]

= |Z| tr

(
⟨l|hAAB(x)A |r⟩+ ⟨l|hAAAB(x) |r⟩+ ⟨KNN |TAB(x) |r⟩

)

= |Z| tr

(∑
s,t,u,v

⟨s, t| ĥ2 |u, v⟩At†Bs†(x) l AuAv r

+
∑
s,t,u,v

⟨t, s| ĥ2 |u, v⟩Bs†(x)At† l AuAv r

+
∑
s

Bs†(x) KNN As r

)

B̄k̄ ⟨∂k̄ψ|
∑
i

ĥ2i,i+1 |ψ⟩ = |Z| tr

(∑
s,t

x†V s†l
1
2 Cs,t r At†r−

1
2

+
∑
s,t

x†V s†l−
1
2At† l Ct,s r

1
2

+
∑
s

x†V s†l−
1
2 KNN As r

1
2

)
= |Z| tr

(
x†FNN

)
55

Time-Dependent Variational Principle

Long Range Interaction∑
m,n

B̄k̄ ⟨∂k̄ψ|
∑
j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩ = ∗

∗ = |Z|
∑
m,n

βne
−αn

[
⟨l|MA

B(x)(1− e−αnT)−1NA
A |r⟩

+ e−αn ⟨l|MA
A (1− e−αnT)−1TAB(x)(1− e−αnT)−1NA

A |r⟩

+ ⟨l|MA
A (1− e−αnT)−1NA

B(x) |r⟩

+ ⟨l|MA
A (1− e−αnT)−1NA

AQ(1−QTQ)−1QTAB(x) |r⟩
]

∑
m,n

B̄k̄ ⟨∂k̄ψ|
∑
j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩ = ∗

∗ = |Z|
∑
m

[
⟨l|MA

B(x)

(∑
n

βn |Kn
r ⟩
)

+
∑
n

βn ⟨Kn
l |TAB(x) |K

n
r ⟩

+
(∑

n

βn ⟨Kn
l |
)
NA
B(x) |r⟩

+ ⟨KLR|TAB(x) |r⟩

]
∑
m,n

B̄k̄ ⟨∂k̄ψ|
∑
j>i

M̂m
i N̂

m
j βne

−αn(j−i) |ψ⟩ = ∗

∗ = |Z|
∑
m

tr

(∑
s,t

⟨s| M̂m |t⟩Bs†(x)lAt
(∑

n

βnK
n
r

)
+
∑
s

∑
n

βnB
s†(x)Kn

l A
tKn

r

+
∑
s,t

⟨s| N̂m |t⟩Bs†(x)
(∑

n

βnK
n
l

)
Atr

+
∑
s

Bs†(x)KLRA
sr

)
= |Z| tr

(
x†FLR

)
Projected Schrödinger Equation

Finally, if we plug those expressions into eq. (5.4), the projected Schrödinger equation,
we arrive at:

56

Time-Dependent Variational Principle

tr
(
x†x
)
= −i tr

(
(x†(FOS + FNN + FLR)

)
= −i tr(x†F)

This is an equation that can be solved with ease:

tr
(
x†x+ ix†F

)
= 0

tr
(
x†(x+ iF)

)
= 0

And we arrive at the final solution:
Result 5.2

x = −iF (5.7)

With this x we can calculate Ȧ = B(x). Now there is a map where Ȧ(t) can be calculated
for an arbitrary A(t). The whole process boils down to use a numerical integrator to do
the time evolution. The simplest numerical integrator is the so called Euler integrator:

A(t+∆t) = A(t) + ∆tȦ(t)

According to [27] this is sufficient for imaginary time evolutions (ground state search),
but for real time evolutions a better integrator must be used.

Algorithm 5.3: Ground state search with TDVP and imaginary time
evolution

1. Start with a random uMPS A.

2. Calculate the dominant eigenvalue. (eq. (2.1), right hand side)

3. Renormalize A. (eq. (2.2))

4. Compute left and right eigenvector. (eq. (2.1), right hand side)

5. Compute V . (def. 5.3)

6. Compute KOS, KNN , Kn
l , Kn

r , and KLR. (def. 5.4)

7. Compute FOS, FNN , and FLR. (def. 5.5)

8. Compute x. (eq. (5.7))

9. Compute B. (def. 5.3)

10. Compute A(t+∆t) = A− i∆tB.

11. If not converged go back to 2.

57

Time Evolution with Matrix Product Operators

6 Time Evolution with Matrix Product Operators
In 2014 Zaletel et al. introduced a new way to calculate the time evolution of a Matrix
Product State [36]. The main idea behind this approach is to find an approximate
representation of the time evolution operator e−itĤ in Matrix Product Operator form.
After the introduction of the Time-Dependent Variational Principle, this is the second
algorithm that is capable of time evolving systems with long ranged interactions and
still maintain a constant error per site. This new idea integrates well with the existing
framework of Matrix Product States and operators, because one only needs to apply an
operator to conduct a time evolution.

6.1 Basics
It is possible to rewrite the Hamiltonian of a one dimensional chain with long ranged
interactions into this form:

Ĥ = ĤLi ⊗ 1Ri + 1Li ⊗ ĤRi +

Ni∑
ai=1

ĥLi,ai ⊗ ĥRi,ai

Here we have split the chain into two separate chains at sites i and i+1. The term ĤLi

are the parts of the Hamiltonian that act only on sites to the left of site i and ĤRi are the
parts that are to the right of site i+1. The summands of H that act on both subchains
are denoted by the sum

∑Ni
ai=1 ĥLi,ai ⊗ ĥRi,ai , where Ni is the number of interactions.

Li Ri

ĤLi acts only here ĤRi acts only here

Figure 6.1: Graphical representation of the split into two chains. The red lines mark
interactions between sites on both subchains. Thus, in this case Ni = 2.

If we want to move the location of the split to the left we can do so by calculating the
following matrix product:

ĤRi−1

ĥRi−1

1Ri−1

 =

1 Ni 1

1 1̂ Ĉ D̂

Ni−1 0 Â B̂

1 0 0 1̂

[i]

⊗

ĤRi

ĥRi

1̂Ri

 (6.1)

58

Time Evolution with Matrix Product Operators

Where the first matrix on the right side of the equation (in this paragraph called W[i])
is in block form. The small indices outside of the matrix denote the size of the block.
So Â is a Ni−1×Ni matrix of operators, Ĉ is 1×Ni row vector, B̂ is a Ni−1× 1 column
vector, and D̂ is a single operator. Note that all operators contained in Â, B̂, Ĉ, and D̂
only act on site i. Because we can iterate through the whole chain that way, it follows
that the first matrix on the right hand side of the equation above is the Matrix Product
Operator form of the Hamiltonian Ĥ.

Ĥ =
∑
s,s′

∏
i

W
si,s

′
i

[i] |s′⟩ ⟨s|

The idea presented in [36] is to find an approximation of the time evolution operator
Û(t) = e−itĤ that can be written in Matrix Product Operator form and calculated from
the matrices Â, B̂, Ĉ, and D̂.
In general the time evolution operator can be written as Taylor expansion with respect
to t:

Û(τ) = eτĤ = 1 + τ
∑
x

Ĥx +
1

2
τ2
∑
x,y

ĤxĤy + . . .

Here τ = −it and Ĥ =
∑

x Ĥx, where the Ĥx are some arbitrary operators (not neces-
sarily acting just on one site). If we want to express U(τ) in terms of a Matrix Product
Operator the first problems arise in the second order of τ . There are two important sim-
plifications to the Taylor series, where a MPO can be calculated. The Matrix Product
Operators that emerge from those simplifications are called W I and W II .

6.2 W I

The first way to simplify the Taylor series of Û(τ) = eτĤ is to discard all terms in
second order where there is no partition into two subchains where Ĥx acts only on the
left subchain and Ĥy acts only on the right side.

Û(τ) ≈ Û I(τ) = 1 + τ
∑
x

Ĥx + τ2
∑
x<y

ĤxĤy + τ3
∑
x<y<z

ĤxĤyĤz + . . .

Here
∑

x<y ĤxĤy is defined as sum over all summands of Ĥ, where Ĥx acts only sites
that are strictly to the left of all sites that are affected by Ĥy.
For this simplification of the time evolution operator an exact MPO representation can
be found and is named Ŵ I . If we take a look at the original structure of the Hamiltonian,
we see that all of its terms are of one of the following forms:

1. Identity operator on every site except i, where the on site term D̂ is.

1̂[1] . . . 1̂[i−1]D̂[i]1̂[i+1] . . . 1̂[N]

59

Time Evolution with Matrix Product Operators

Figure 6.2: Hypothetical interactions terms of Ĥx (red) and Ĥy (blue). The second and
the third combinations are discarded because the red interactions are not strictly to the
left of the blue interactions.

2. Chain of the form ĈÂ . . . ÂB̂, where the number of matrices Â is greater or equal
to zero.

1̂[1] . . . 1̂[i−1]Ĉ[i]Â[i+1]B̂[i+2]1̂[i+3] . . . 1̂[N]

With this we can see that the summands of Û I as defined above look like this:

1̂[1]

Ĥx︷︸︸︷
D̂[2] 1̂[3] . . . 1̂[i−1]

Ĥy︷ ︸︸ ︷
Ĉ[i]Â[i+1]B̂[i+2] 1̂[i+3] . . . 1̂[j−1]

Ĥz︷ ︸︸ ︷
Ĉ[j]B̂[j+1] 1̂[i+2] . . . 1̂[N]

Here the condition x < y < z holds. Note that there can not be products of the form
D̂[i]Ĉ[i] (same site) or similar terms, because that would violate the assumption that Ĥx

and Ĥy do not overlap. If we describe operator strings of the product above with a finite
state machine, we can see that there are two different states at an arbitrary site i:

1. The number of occurrences left of site i are equal for B̂ and Ĉ.

2. Ĉ appeared once more than B̂ left of i.

For the five different matrices, there are the following transitions between the states:

• 1̂: Can only occur at state 1 and does not change the number of appearances of
B̂ and Ĉ. Thus, the state does not change, 1 → 1.

• D̂: Can only occur at state 1 and does not change the number of appearances of
B̂ and Ĉ. Thus, the state does not change, 1 → 1.

• Ĉ: Can only occur at state 1 and increases the number of appearances of Ĉ. Thus,
there is a state transition, 1 → 2.

• Â: Can only occur at state 2 and does not change the number of appearances of
B̂ and Ĉ. Thus, the state does not change, 2 → 2.

60

Time Evolution with Matrix Product Operators

• B̂: Can only occur at state 2 and increases the number of appearances of B̂. Thus,
there is a state transition, 2 → 1.

With these transitions the Matrix Product Operator can be derived.

Definition 6.1: W I

W I
[1](τ) =

(
1 + τD̂

√
τĈ
)

W I
[n](τ) =

(
1 + τD̂

√
τĈ√

τB̂ Â

)
∀n : 1 < n < N

W I
[N](τ) =

(
1 + τD̂√
τB̂

)

Theorem 6.1

W I is the Matrix Product Operator of Û I .

Proof. We are going to look at the same example as above. For example, one
summand of τ3

∑
x<y<z ĤxĤyĤz will look like this:

τ31̂[1]

Ĥx︷︸︸︷
D̂[2] 1̂[3] . . . 1̂[i−1]

Ĥy︷ ︸︸ ︷
Ĉ[i]Â[i+1]B̂[i+2] 1̂[i+3] . . . 1̂[j−1]

Ĥz︷ ︸︸ ︷
Ĉ[j]B̂[j+1] 1̂[i+2] . . . 1̂[N]

Now we split the power of τ and move it into the matrix product and remove the
site indices for the sake of brevity.

1̂(τD̂)1̂ . . . 1̂(
√
τĈ)Â(

√
τB̂)1̂ . . . 1̂(

√
τĈ)(

√
τB̂)1̂ . . . 1̂

This means that we need to add the factors τ and
√
τ to the transitions above

(that correspond to the MPO). The first two cases mark transitions between the
same state and can be combined into one single transition. Thus W I

1,1 = 1̂+ τD̂.
With the same principle the other elements of W i can be derived. The transitions
with the prefactors can be seen in fig. 6.3.

The authors of the paper [36] claim that the error of Û I(τ) with respect to Û(τ) goes
with order O(τ2N), where N is the number of lattice sites. However, careful inspection
of the sum where the first errors occur

∑
x<y ĤxĤy shows that this holds only true,

where the interaction range is small compared to the system size and if there are only
interactions between two lattice sites. Thus, for the most interesting physical cases their
claim should be a good approximation.

61

Time Evolution with Matrix Product Operators

1 11 1

2 22 2

1̂+τD̂

Â

√
τĈ√ τB̂

Figure 6.3: Representation of W I as graph. See [37] on how to read such a graph.

6.3 W II

There is a better approximation to Û called Û II that eliminates some of the problems
Û I has.

Û(τ) ≈ Û II(τ) = 1 + τ
∑
x

Ĥx + τ2
∑
<x,y>

ĤxĤy + τ3
∑

<x,y,z>

ĤxĤyĤz + . . . (6.2)

Here
∑

<x,y,...> ĤxĤy . . . is defined as the sum over all terms, where no interaction term
crosses a nearest neighbor bond.

Figure 6.4: Hypothetical interactions terms of Û(τ). Only the last term is discarded for
Û II(τ), because there are two interaction terms that cross the fourth bond. Note that
there can be an arbitrary number of on-site interactions on one lattice site. This can be
seen in the third line.

To calculate the Matrix Product Operator of Û II we will use the multi-dimensional
version of the Gaussian integral:

62

Time Evolution with Matrix Product Operators

1

πN

∫
exϕ̄−ϕ̄ϕ+ϕy dϕ̄ dϕ = exy

where x, y, ϕ ∈ CN and xy is the inner product. With the Gaussian integral we can
find an exact representation of Û(τ) if every term of Ĥ commutes with all other terms.
Because generally this is not the case we will have to do an error estimation. The strategy
is to perform a split between sites i and i+ 1 into two subchains like mentioned above.

eτĤ = eτĤLi
+(

√
τĥLi

)(
√
τĥRi

)+τĤRi

= eτĤLie(
√
τĥLi

)(
√
τĥRi

)eτĤRi +O(τ2)

= eτĤLi

(∫
D[ϕi, ϕ̄i]e

√
τĥLi

ϕ̄ie−ϕ̄iϕie
√
τĥRi

)
eτĤRi +O(τ2)

where D[ϕi, ϕ̄i] =
∏
ai
dϕ̄i,ai dϕi,aiπ

−1. We used this relationship to merge and split the
exponential functions:

eτ1x+τ2y = eτ1xeτ2y +O (τ1τ2[x, y])

eτĤ =

∫
D[ϕi, ϕ̄i]e

τĤLi
+
√
τĥLi

ϕ̄i e−ϕ̄iϕi e
√
τĥRi

+τĤRi +O
(
τ2
)

(6.3)

Note that there is also an error term O
(
τ

3
2ϕi

)
in the equation above that vanishes due

to the integral.
With the recursion relation laid out above (eq. (6.1)) we can move the the border of the
subsystems to the right.

ĤR,i = ĤR,i+1 + Ĉ[i+1]ĥR,i+1 + D̂[i+1]

ĥR,i = Â[i+1]ĥR,i+1 + B̂[i+1]

√
τϕiĥR,i + τĤR,i =

√
τϕi

(
Â[i+1]ĥR,i+1 + B̂[i+1]

)
+ τ

(
ĤR,i+1 + Ĉ[i+1]ĥR,i+1 + D̂[i+1]

)
With this recursion we can replace the last factor of the integral in eq. (6.3) by:

e
√
τϕiĥR,i+τĤR,i = e

√
τϕi(Â[i+1]ĥR,i+1+B̂[i+1])+τ(ĤR,i+1+Ĉ[i+1]ĥR,i+1+D̂[i+1])

= eτD̂[i+1]+
√
τϕiB̂[i+1]+(ϕiÂ[i+1]+

√
τĈ[i+1])

√
τĥR,i+1+τĤR,i+1

= eτD̂[i+1]+
√
τϕiB̂[i+1]e(ϕiÂ[i+1]+

√
τĈ[i+1])

√
τĥR,i+1eτĤR,i+1 +O

(
τ2
)

=

∫
D[ϕi+1, ϕ̄i+1]Ûϕi,ϕ̄i+1

e−ϕ̄i+1ϕi+1e
√
τϕi+1ĥR,i+1+τĤR,i+1 +O

(
τ2
)

63

Time Evolution with Matrix Product Operators

where Ûϕi,ϕ̄i+1
= eτD̂[i+1]+

√
τϕiB̂[i+1]+ϕiÂ[i+1]ϕ̄i+1+

√
τĈ[i+1]ϕ̄i+1 . We used the multidimen-

sional Gaussian integral in the last line of the equation above. Note that there should
be an error of O

(
τ

3
2ϕi

)
, but this gets integrated out again. We can repeat this process

on every lattice site and get our next intermediate result:

eτĤ =

∫
D[ϕ, ϕ̄]

[
. . . e−ϕ̄iϕiÛϕi,ϕ̄i+1

e−ϕ̄i+1ϕi+1Ûϕi+1,ϕ̄i+2
e−ϕ̄i+2ϕi+2 . . .

]
+O

(
τ2
)

(6.4)

For the next step we rewrite every Ûϕi,ϕ̄i+1
as a Taylor series.

Ûϕi,ϕ̄i+1
=

∑
{ni},{n̄i+1}

Ûni,n̄i+1

ϕni
i ϕ̄

n̄i+1

i+1√
|ni! ||n̄i+1! |

where |ni! | =
∏
ai
(ni,ai !). Note that the integral in eq. (6.4) now transforms into a sum:∫

D[ϕi, ϕ̄i]
ϕni
i ϕ̄

n̄i
i√

|ni! ||n̄i! |
e−ϕ̄iϕi = δni,n̄i (6.5)

Now we get our final result for the time evolution operator:

eτĤ =
∑
{n}

[
. . . Ûni,ni+1Ûni+1,ni+2Ûni+2,ni+3 . . .

]
+O

(
τ2
)

(6.6)

To get the matrix operator representation of Û II(τ) (eq. (6.2)), we need to eliminate
some of the terms in eq. (6.6).

Definition 6.2: W II

W II
[1] (τ) =

(
W II
D W II

C

)
[1]

W II
[i] (τ) =

(
W II
D W II

C

W II
B W II

A

)
[i]

∀i : 1 < i < N

W II
[N](τ) =

(
W II
D

W II
B

)
[N]

Here W II
A,[i], W

II
B,[i], W

II
C,[i], and W II

D,[i] are defined in terms of a Taylor expansion
of Ûϕi−1,ϕ̄i

:

Ûϕi−1,ϕ̄i
=W II

D,[i] + ϕi−1W
II
B,[i] +W II

C,[i]ϕ̄i + ϕi−1W
II
A,[i]ϕ̄i +O(ϕ2i−1,1 . . . ϕ̄

2
i,1 . . .)

64

Time Evolution with Matrix Product Operators

Theorem 6.2

W II is a possible Matrix Product Operator form of Û II within O(τ3).

Proof. Several interactions crossing the same bond appear in eq. (6.4) as higher
orders of ϕi and ϕ̄i. Thus eliminating higher orders of Ûϕi−1,ϕ̄i

gets rid of those
interactions. Furthermore we need to proof that the Taylor expansion of Ûϕi−1,ϕ̄i

yields the same product of operators as W II . To do that we inspect one part of
the integral eq. (6.4).

. . .

∫
D[ϕi, ϕ̄i]Ûϕi−1,ϕ̄i

e−ϕ̄iϕiÛϕi,ϕ̄i+1
. . .

≈ . . .

∫
D[ϕi, ϕ̄i]

(
W II
D,[i] + ϕi−1W

II
B,[i] +W II

C,[i]ϕ̄i + ϕi−1W
II
A,[i]ϕ̄i

)
e−ϕ̄iϕi(

W II
D,[i+1] + ϕiW

II
B,[i+1] +W II

C,[i+1]ϕ̄i+1 + ϕiW
II
A,[i+1]ϕ̄i+1

)
. . .

= . . .W II
D,[i]W

II
D,[i+1] +W II

D,[i]W
II
C,[i+1]ϕ̄i+1 + ϕi−1W

II
B,[i]W

II
D,[i+1]

+ ϕi−1W
II
B,[i]W

II
C,[i+1]ϕ̄i+1 +W II

C,[i]W
II
B,[i+1] +W II

C,[i]W
II
A,[i+1]ϕ̄i+1

+ ϕi−1W
II
A,[i]W

II
B,[i+1] + ϕi−1W

II
A,[i]W

II
A,[i+1]ϕ̄i+1 . . .

Which has in fact all the terms of the matrix product W II
[i] W

II
[i+1]. From the first

to the second line we used the Taylor expansion of Ûϕi−1,ϕ̄i
and from the second

to the last line we used eq. (6.5). For the fact that this is only exact up to O(τ3),
we refer to [36].

Note that W II is only the correct representation of Û II up to O(τ3). This does not
matter, because the error of Û II with respect to the real time evolution operator is only
correct up to O(τ2). To explicitly calculate W II and eliminate the higher orders of ϕ and
ϕ̄ there is a convenient mathematical trick. We can redefine the ϕi,ai to be operators
instead of scalars with the property ϕ2i,ai = 0. Likewise for ϕ̄i,ai . This automatically
eliminates higher orders. We can use the well known boson creation and annihilation
operator for this with a maximum occupation number of 1.

Definition 6.3: Auxiliary boson creation and annihilation operators

c† =
(
c†1 c†2 . . . c†Ni

)
c̄† =

c̄†1
c̄†2
. . .

c̄†Ni

Where the c†j are represented in matrix notation as:

65

Time Evolution with Matrix Product Operators

c†j =

(|0⟩ |1⟩

⟨0| 0 0
⟨1| 1 0

)
c̄†j =

(|0̄⟩ |1̄⟩

⟨0̄| 0 0
⟨1̄| 1 0

)
and cj = (c†j)

†.
The vacuum state of this auxiliary bosons will be denoted as |0⟩ for c† and |0̄⟩ for
c̄†

Note that the c†j span their own auxiliary space that is independent of the physical
Hilbert space. We can use the properties of the creation and annihilation operator to
numerically calculate the matrix elements of W II .

Algorithm 6.1: Computation of W II

Ûc†,c̄†,[i] = eτD̂[i] +
√
τc†⊗B̂[i] + c†⊗Â[i]⊗c̄† +

√
τĈ[i]⊗c̄†

W II
A,[i],j,k = ⟨00̄| cj c̄kÛc†,c̄†,[i] |00̄⟩

W II
B,[i],j,1 = ⟨00̄| cjÛc†,c̄†,[i] |00̄⟩

W II
C,[i],1,k = ⟨00̄| c̄kÛc†,c̄†,[i] |00̄⟩

W II
D,[i] = ⟨00̄| Ûc†,c̄†,[i] |00̄⟩ = eτD̂[i]

Note that Ûc†,c̄†,[i] ∈ Hc ⊗Hc̄ ⊗Hphys, where Hc and Hc̄ are the auxiliary spaces of the
bosons, and Hphys is the physical operator space. W II

A,[i],j,k is entry j, k of W II
A on site i.

6.4 Second Order

In the previous subsections we showed the error of Û I(τ) and Û II(τ) goes with O(τ2).
There is an easy way to lower the error by one order with two time evolutions with
different time steps τ1 and τ2.

Û I/II(τ) = 1 + τĤ + τ2
∑
x<y

ĤxĤy +O(τ3)

Û I/II(τ1)Û
I/II(τ2) = 1 + (τ1 + τ2) Ĥ + τ1τ2Ĥ

2 +
(
τ21 + τ22

)∑
x<y

ĤxĤy +O(τ3)

!
= 1 + τĤ +

1

2
τ2Ĥ2 +O(τ3)

From this we get equations for τ1 and τ2:

66

Time Evolution with Matrix Product Operators

τ1 + τ2 = τ

τ1τ2 =
1

2
τ2

τ21 + τ22 = 0

These equations have solutions for τ1 = 1
2(1− i)τ and τ2 =

1
2(1 + i)τ .

Proof.

τ1 + τ2 =
1

2
τ (1− i+ 1 + i) = τ

τ1τ2 =
1

4
τ2 ((1− i)(1 + i)) =

1

2
τ2

τ21 + τ22 =
1

4
τ2
(
(1− i)2 + (1 + i)2

)
=

1

4
τ2 ((1− 2i− 1) + (1 + 2i− 1)) = 0

Note that we apply Û I/II(τ1) and Û I/II(τ2) one after another and there is a possible
error due to the finite bond dimension of our Matrix Product State |ψ⟩. According to
[36] this does not proof to be a problem.

Algorithm 6.2: Second order time evolution with Matrix Product Op-
erators

We want to calculate the time evolution of |ψ(τ0)⟩ with Û I or Û II with a time step
of τ .

1.
τ1 =

1

2
(1− i)τ τ2 =

1

2
(1− i)τ

2.
|ψ(τ1 + τ0)⟩ = Û I/II(τ1) |ψ(τ0)⟩

3.
|ψ(τ + τ0)⟩ = Û I/II(τ2) |ψ(τ1 + τ0)⟩

67

Matrix Product Operators of Fermionic Systems

7 Matrix Product Operators of Fermionic Systems
If we want to want to calculate the ground state or time evolution of a fermionic system
we must take the fermionic anticommutator relations (def. 1.2) into account. One must
choose a convention for the order how the creation operators get applied to the vacuum
state to represent the Fock space. Every choice is equally valid as long as we stay
consistent while doing our computation. For the entire thesis the following convention
is assumed:

Definition 7.1: Order convention of the fermionic Fock Space

We consider a fermionic system with N lattice sites. Let |ψ⟩ be an arbitrary state
of the Fock space and let ni,s be the occupation number of site i and spin s. The
order convention in this thesis is:

|ψ⟩ =
(
c†1,↑

)n1,↑
(
c†1,↓

)n1,↓
. . .
(
c†N,↑

)nN,↑
(
c†N,↓

)nN,↓
|0⟩

The problem regarding Matrix Product Operators is in a very strict sense operators like
ci,s are not local to one lattice site, because we may get a different sign stemming from
the anticommutator relations.

ci,↑ |ψ⟩ = ci,↑

(
c†1,↑

)n1,↑
(
c†1,↓

)n1,↓
. . .
(
c†i,↑

)ni,↑
. . .
(
c†N,↑

)nN,↑
(
c†N,↓

)nN,↓
|0⟩

= δni,↑,1(−1)κ
(
c†1,↑

)n1,↑
(
c†1,↓

)n1,↓
. . .
(
c†i,↑

)0
. . .
(
c†N,↑

)nN,↑
(
c†N,↓

)nN,↓
|0⟩

where κ =
∑

m<i(nm,↑ + nm,↓). The idea is to find an operator that calculates the
product (−1)n1,↑+n1,↓(−1)n2,↑+n2,↓ . . . for us. The resulting operator for one lattice site
is called parity operator and reads as:

Definition 7.2: Parity operator

Pi =

|0⟩ c†↑|0⟩ c†↓|0⟩ c†↑c

†
↓|0⟩

⟨0| 1 0 0 0
⟨0|c↑ 0 −1 0 0
⟨0|c↓ 0 0 −1 0
⟨0|c↓c↑ 0 0 0 1

i

Note that P 2
i = 1i. With this definition we can transform the creation and annihilation

operators into:

c
(†)
i,s → P1P2 . . . Pi−1c

(†)
i,s

This transforms products of creation and annihilation operators into:

68

Matrix Product Operators of Fermionic Systems

∀i < j : c†i,scj,s′ → c†i,sPiPi+1 . . . Pj−1cj,s′

∀i > j : c†i,scj,s′ → −cj,s′PjPj+1 . . . Pi−1c
†
j,s

These kind of transformations are known as Wigner-Seitz transformation. With that
knowledge we can find a Matrix Product Operator representation of e.g. the Hubbard
model:

Example 7.1: Long range Hubbard model in MPO notation

Ĥ = −
∑
i<j
s

e−α(j−i)
(
c†iscjs − cisc

†
js

)
+ U

∑
i

ni↑ni↓

W s1,s′1 =
(
1 −e−αc†↑P −e−αc†↓P e−αc↑P e−αc↓P Un↑n↓

)

W si,s
′
i =

1 −e−αc†↑P −e−αc†↓P e−αc↑P e−αc↓P Un↑n↓
0 e−αP 0 0 0 c↑
0 0 e−αP 0 0 c↓
0 0 0 e−αP 0 c†↑
0 0 0 0 e−αP c†↓
0 0 0 0 0 1

∀1 < i < N

W sN ,s
′
N =

Un↑n↓
c↑
c↓
c†↑
c†↓
1

Infinite TDVP is not based on the Matrix Product Operator formalism, but we still need
to do the same adjustments with the parity operator. If we want to use it to calculate
time evolutions all of the derivations used above are still valid. A fermionic Hamiltonian
(def. 5.1) of TDVP reads after a Wigner-Seitz transformation as:

Ĥ =
∑
i

ĥ1i +
∑
i

˜̂
h2i,i+1 +

∑
m,n,j>i

M̂m
i Pi . . . Pj−1N̂

m
j βne

−αn(j−i)

Where ˜̂
h2i,i+1 is the Wigner-Seitz transformation of ĥ2i,i+1. The only other step that is

modified in regard to the original algorithm is the calculation of the geometric series
that stems from the summation over the infinite pairs i and j.

(1− e−αnT)−1 → (1− e−αn T̃)−1

69

Matrix Product Operators of Fermionic Systems

where T̃ =
∑

s P
s,s
(
As ⊗ Ās

)
. Furthermore, we need to multiply every M̂m

i with P

from the right: ˜̂
Mm
i = M̂m

i P .

70

Results: Ground State Search in the Thermodynamic Limit

8 Results: Ground State Search in the Thermodynamic
Limit

As mentioned above, the original formulation of the Time-Dependent Variational Prin-
ciple on uniform infinite lattices [27] was formulated to work only with nearest neighbor
interactions and in the course of this thesis this was extended to compute the time evo-
lution of Hamiltonians with exponentially decaying long range interactions. To test this
new version of the algorithm an imaginary time evolution of the Haldane-Shastry model
(def. 1.5) and the long range Hubbard model (def. 1.1) was performed.

Haldane-Shastry model

Ĥ =
∑
j>i

|j − i|−2

(
1

2

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

)
+ Ŝzi Ŝ

z
j

)
Note that the interaction of the Haldane-Shastry model follows a power law and it is not
possible to use the matrix product formalism in that case. To circumvent this problem
the power law was approximated with a sum of ten exponentials [25].

r−2 ≈
∑
i

βie
−αir

In fig. 8.1 the difference between the power law and the sum of exponentials can be seen.

100 101 102 103

r

10−8

10−7

10−6

10−5

|r
−
2
−
∑ i

β
ie

−
α

i
r
|

Figure 8.1: Absolute difference between r−2 and
∑

i βie
−αir.

The Haldane-Shastry model is really useful here, because in 1993 F. D. M. Haldane
and M. R. Zirnbauer [24] found a closed form solution for correlations of the form
⟨GS|Ŝan(t)Ŝbn+∆n(t

′)|GS⟩, where a, b ∈ {x, y, z} and |GS⟩ is the ground state of the
system in the thermodynamic limit.

⟨GS|Ŝan(t)Ŝbn+∆n(t
′)|GS⟩ = δa,b

1

16
(−1)∆n

∫ 1

−1
dλ1

∫ 1

−1
dλ2e

iπλ1λ2∆n− 1
4
π2(t−t′)(λ1−λ2)2

71

Results: Ground State Search in the Thermodynamic Limit

The integral of the solution was performed with the trapezoid rule with 30000 nodes and
t = t′ = 0. The results are:

⟨GS|ŜznŜzn+1|GS⟩ = −0.14737 . . .

⟨GS|ŜznŜzn+2|GS⟩ = 0.05642 . . .

⟨GS|ŜznŜzn+3|GS⟩ = −0.04442 . . .

The imaginary time evolution was done with a random initial state with a bond dimen-
sion of χ = 32 and was carried out twice with two different time steps ∆τ . The results
of the time evolution can be seen in fig. 8.2, where

ϵ = |⟨ψ(τ)|ŜznŜzn+∆n|ψ(τ)⟩ − ⟨GS|ŜznŜzn+∆n|GS⟩|

It shows that the error goes to zero as the imaginary time τ goes to infinity, except
some constant error term that is expected due to the finite bond dimension χ and the
approximation of the power law with exponential functions. This holds true for both
time step sizes and shows that it is possible to use TDVP in the thermodynamic limit
with long range interactions.

10−1 100 101

τ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ϵ ⟨ψ|Ŝz
nŜ

z
n+1|ψ⟩

⟨ψ|Ŝz
nŜ

z
n+2|ψ⟩

⟨ψ|Ŝz
nŜ

z
n+3|ψ⟩

∆τ = 10−1

∆τ = 10−2

Haldane-Shastry model

Figure 8.2: Error as a function of imaginary time.

72

Results: Ground State Search in the Thermodynamic Limit

Long Range Hubbard model

Ĥ = −
∑
i<j
s

e−α(j−i)
(
c†iscjs − cisc

†
js

)
+ U

∑
i

ni↑ni↓

For the long range Hubbard model no analytic solution is known and iDMRG did not
converge. In fig. 8.3 the calculated expectation values as a function of imaginary time
τ can be seen. Some non-rigorous tests on finite lattice showed that the calculated
expectation values in the thermodynamic limit are close to the expectation values on
small finite lattices. In fig. 8.3 can also be seen that the expectation values of n̂, n̂↑, and
n̂↓ clearly converge.

10−2 10−1 100 101 102

τ

0.1

0.2

0.3

0.4

0.5

⟨n̂
⟩,

⟨n̂
↑⟩
,⟨
n̂
↓⟩

⟨ψ(τ)|n̂|ψ(τ)⟩
⟨ψ(τ)|n̂↑|ψ(τ)⟩
⟨ψ(τ)|n̂↓|ψ(τ)⟩

Long range Hubbard model, α = 1.0, U = 1.0

Figure 8.3: Expectation values as a function of imaginary time.

73

Results: Long Range Transverse Field Ising Model

9 Results: Long Range Transverse Field Ising Model
In this section the Time-Dependent Variational Principle (TDVP) is compared to Matrix
Product Operator based time evolution (W I and W II). In this section the one site
version of TDVP will be called TDVP1, while the two site version will be called TDVP2.
The two operator based methods will be dubbed W1 and W2. Both algorithms have a
computational cost of O(χ3

SχO), where χS is the bond dimension of the Matrix Product
State and χO is the bond dimension of the Matrix Product Operator (appendix A.4).
W1 and W2 were used in second order. All computations in this section were done
with julia 0.4.2. [38] and were performed on a Toshiba Satellite U500 [39] (2 cores with
2Ghz clock rate). At first, a system with nine lattice sites was investigated. This was
done to compare the resulting states of the different algorithms to a state calculated via
total diagonalization. Next, a system with 41 lattice sites was simulated to see how the
algorithms perform for bigger system sizes. As reference model the long range transverse
field Ising model (def. 1.4) was used:

Ĥ = −
∑
i<j

e−α|j−i|Ŝxi Ŝ
x
j − h

∑
i

Ŝzi

In this section the magnetic field will always be equal to h = 0.45, and the parameter
α will be set to either α = 0.1 (long range) or α = 1.0 (short range). The parameter α
indicates how fast the interactions between the different lattice sites decay with respect
to distance and a higher value of α corresponds to a faster decaying interaction. In
fig. 9.1 a comparison between those two interactions can be seen.

1 10 20 30 40 50
r [lattice sites]

10−2

10−1

100

e−
α
r

α = 1.0

α = 0.1

Figure 9.1: Comparison between the interactions of the lattice sites for α = 1.0, and
α = 0.1.

Furthermore, we need a way to measure the error of a state that was numerically cal-
culated with respect to the analytic solution or a good approximation of the analytic
solution (called reference state). To do this, the overlap of the state and the reference
state, and the difference in expectation values were used:

74

Results: Long Range Transverse Field Ising Model

Definition 9.1: Error measures

Let |ψ⟩ be the state that was calculated with a numerical method of our choice and
let |ϕ⟩ be a reference state. As reference state we will either use the analytical
solution or a numerical solution that has a negligible deviance to the analytically
solution in comparison to |ψ⟩. The two error measures used in this section are
defined as:

ϵ1 = 1− |⟨ϕ|ψ⟩|

ϵ2 =
∑
i

|⟨ϕ|Ŝxi |ϕ⟩ − ⟨ψ|Ŝxi |ψ⟩|

For every α and system size the following initial state was used:

|ψ(t = 0)⟩ = |↑↑ . . . ↑↓↑ . . . ↑↑⟩x

Based on this initial state an approximation for |ψ(t = 1)⟩ was calculated with the dif-
ferent algorithms. These simulations were repeated for different time steps ∆t to get
ϵ1/2 as a function of ∆t.

t

ψ(t = 0) ψ(t = 1)

∆t1 ∆t1

∆t2 ∆t2 ∆t2

Calculate ϵ1/2 here

Figure 9.2: Illustration of the performed simulations. The orange and green lines stand
for time evolutions done with one of the two algorithms.

After every computation of |ψ(t = 1)⟩ the elapsed real time was saved. In the following
figures this quantity will be denoted with the name wall clock. This size is very important
in practical terms. One algorithm may perform better than the other at the same time
step ∆t, but may need much more time to compute the result. Because of this, one
wants to take a look at the error as a function of computation time. It can be seen
down below that this is indeed the case with TDVP1/2 and W1/2. As a rule of thumb
TDVP1/2 performs better at the same time step ∆t as W1/2, but the simulation takes
more time to complete. The question is, if ∆t is lowered for W1/W2 so that it produces
the same error as TDVP1/2, will the former be faster than the latter?

75

Results: Long Range Transverse Field Ising Model

N = 9 Lattice Sites

10−5

10−9

10−13

ϵ 1
TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−5

10−9

10−13

ϵ 2

10−1 100 101

wall clock [s]

N = 9, α = 1.0, χ = 16

Figure 9.3: Error of |ψ(t = 1)⟩ for a system with nine lattice sites and α = 1.0 (short
range). The reference state was calculated via total diagonalization.

In figs. 9.3 and 9.4 the results for a system with nine lattice sites can be seen. The bond
dimension χ = 16 was chosen, because for nine lattice sites the Matrix Product State
can map to the whole Hilbert space of 29 basis states. It can be seen that TDVP1 and
TDVP2 are basically down to machine precision at every time step ∆t. An oddity is
that ϵ2 increases with a lower time step ∆t for TDVP1/2. This seems to be somehow
linked to the Matrix Product State formalism. It can be seen that the overlap error ϵ1
is in many cases down to machine precision, while the expectation value error ϵ2 is still
orders of magnitudes higher. If we had an analytic solution of the state and two states
had an overlap of one, every operator must have the same expectation value. Thus, it
must be a numerical problem.

∀ψ, ϕ, Ô : ⟨ψ|ψ⟩ = ⟨ϕ|ϕ⟩ = ⟨ψ|ϕ⟩ = 1 ⇒ ⟨ψ|Ô|ψ⟩ = ⟨ϕ|Ô|ϕ⟩

In fig. 9.4 it can also be seen that the error of W1/2 is almost constant for α = 0.1 and
large time steps. This effect can be seen better on larger systems and seems to increase
with system size.

76

Results: Long Range Transverse Field Ising Model

10−2

10−6

10−10

10−14

ϵ 1

TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−1

10−5

10−9

10−13

ϵ 2

10−1 100 101

wall clock [s]

N = 9, α = 0.1, χ = 16

Figure 9.4: Error of |ψ(t = 1)⟩ for a system with nine lattice sites and α = 0.1 (long
range). The reference state was calculated via total diagonalization.

77

Results: Long Range Transverse Field Ising Model

N = 41 Lattice Sites, time reversal
For a system with 41 lattice sites it is not possible to calculate the time evolution of the
system via total diagonalization due to the sheer size of the state space (241 ≈ 2 · 1012).
Thus, the first simulations on this large system were done under time reversal.

t

ψ(t = 0) ψ(t = 1)

∆t ∆t ∆t

−∆t −∆t −∆t

Calculate ϵ1/2 here

Figure 9.5: Illustration of the performed simulations under time reversal. With all of
the algorithms |ψ(t = 1)⟩ was computed and then back evolved to t = 0.

The initial state was time evolved to t = 1 and then back evolved to t = 0. An illustration
of this process can be seen in fig. 9.5. As reference state the original initial state was
used to calculate ϵ1/2.

10−4

10−7

10−10

10−13

10−16

ϵ 1

TDVP1 TDVP2 W1 W2

10−2 10−1 100

∆t

10−4

10−7

10−10

10−13

10−16

ϵ 2

100 101 102

wall clock [s]

N = 41, α = 1.0, χ = 16, time reversal

Figure 9.6: Error of the algorithms for a system with 41 lattice sites and α = 1.0 (short
range) under time reversal.

The results of this computation can be seen in figs. 9.6 and 9.7. What we can see again in
the case of α = 0.1 that there is a growing range of time steps, where the error of W1/2

78

Results: Long Range Transverse Field Ising Model

100

10−3

10−6

10−9

10−12

10−15

ϵ 1
TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−1

10−4

10−7

10−10

10−13

10−16

ϵ 2

100 101 102

wall clock [s]

N = 41, α = 0.1, χ = 16, time reversal

Figure 9.7: Error of the algorithms for a system with 41 lattice sites and α = 0.1 (long
range) under time reversal.

is almost constant. Furthermore, we see that in the case of time reversal and α = 1.0
W1/2 is much faster than TDVP1/2 with the same error. This is because some of the
errors seem to cancel themselves, when we do a time evolution back in time. Nevertheless
we see that ϵ1/2 as a function of the time step ∆t is the smallest for TDVP2. For that
reason TDVP2 was chosen to calculate the reference state for the next subsection.

79

Results: Long Range Transverse Field Ising Model

N = 41 Lattice Sites, Small Bond Dimension
In figs. 9.8 and 9.9 the results for a system with 41 lattice sites can be seen. The bond
dimension was capped at χ = 4 to see how the algorithms perform, when the error is
dominated by a low bond dimension. It can be seen best in fig. 9.9 (α = 0.1) that
TDVP1/2 reaches the lowest possible ϵ at far smaller time steps ∆t and at the same
computation time TDVP1/2 has an error orders of magnitudes lower than the error of
W1/2. In the case of α = 1.0, where the interactions decay much faster with respect to
distance, it seems that the algorithms are not well separated anymore with respect to
computation time. Especially, it is notable that the lines of TDVP2 and W2 for ϵ1 as a
function of computation time lie almost on top of each other.

10−3

10−7

10−11

ϵ 1

TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−1

10−5

10−9

ϵ 2

10−1 100 101

wall clock [s]

N = 41, α = 1.0, χ = 4

Figure 9.8: Error of |ψ(t = 1)⟩ for a system with 41 lattice sites and α = 1.0 (short range).
The reference state was calculated with TDVP2. Note the small bond dimension.

80

Results: Long Range Transverse Field Ising Model

100

10−2

10−4

10−6

10−8

ϵ 1

TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

100

10−2

10−4

10−6

10−8

ϵ 2

10−1 100 101 102

wall clock [s]

N = 41, α = 0.1, χ = 4

Figure 9.9: Error of |ψ(t = 1)⟩ for a system with 41 lattice sites and α = 0.1 (long range).
The reference state was calculated with TDVP2. Note the small bond dimension.

81

Results: Long Range Transverse Field Ising Model

N = 41 Lattice Sites
In figs. 9.10 and 9.11 the results for a system with 41 lattice sites and a fixed bond
dimension of χ = 16 can be seen. It can clearly be seen that ϵ1/2 as a function of ∆t has
a steeper slope for TDVP1/2 than W1/2. The measured slope can be seen below. We
have almost the same results as in the case of χ = 4. For shorter ranges (α = 1.0) TDVP2
and W2 lie almost on top of each other for ϵ1 as a function of the elapsed real time. For
longer effective ranges (α = 0.1) TDVP1/2 produces an error orders of magnitudes lower
than the error of W1/2 with the same computation time. It can also be seen that W1
and W2 produce a vastly increased error with a longer effective interaction range (α
decreases). This behavior is not really surprising, because those two algorithms discard
multiple interactions crossing the same bond within the higher powers Ĥ in the Taylor
expansion of e−itĤ . As α gets decreased those interactions get more important relative
to the on-site potential. It can not be seen very well, but the same happens to TDVP1
and TDVP2. This probably stems from the finite bond dimension χ. The reference
states were computed with a maximum bond dimension of χ = 64. While for α = 1.0 a
bond dimension of χ = 18 was enough, for α = 0.1 the maximum χ = 64 was not big
enough and in that case the discarded weight was not equal to zero. For the simulations
in figs. 9.10 and 9.11 a fixed bond dimension of χ = 16 was used. This explains the
increasing error of TDVP1 and TDVP2 with decreasing α.

10−4

10−8

10−12

10−16

ϵ 1

TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−1

10−5

10−9

ϵ 2

100 101 102

wall clock [s]

N = 41, α = 1.0, χ = 16

Figure 9.10: Error of |ψ(t = 1)⟩ for a system with 41 lattice sites and α = 1.0 (short
range). The reference state was calculated with TDVP2.

82

Results: Long Range Transverse Field Ising Model

100

10−4

10−8

10−12

10−16

ϵ 1

TDVP1 TDVP2 W1 W2

10−3 10−2 10−1 100

∆t

10−1

10−5

10−9

ϵ 2

100 101 102

wall clock [s]

N = 41, α = 0.1, χ = 16

Figure 9.11: Error of |ψ(t = 1)⟩ for a system with 41 lattice sites and α = 0.1 (long
range). The reference state was calculated with TDVP2.

83

Results: Long Range Transverse Field Ising Model

Fits
For the case of N = 41 and χ = 16 a fit for the graphs was performed for ϵ1 and ϵ2.
The fits were done in the ranges, where ϵ1/2 as a function of the time step or the elapsed
real time (wall clock) is approximately linear in the log-log plot. This implies a power
function:

log y = ã+ b · log x = ã+ log xb ⇒ y = eã+log xb = eã · elog xb = a · xb

The data points that apparently deviated from the linear behavior were simply discarded.
These fits may provide unreliable information - especially for TDVP1/2 - because the
graphs are not linear enough (for a prime example see ϵ2 as a function of ∆t for TDVP2
in fig. 9.10). The data can be seen in tables 9.1 and 9.2 and the responding plots can be
seen in appendix A.5. In all cases TDVP1 and TDVP2 have a better behavior than W1
and W2 for small ∆t. From the tables we can gather the same information, we already
saw in the figures above. All algorithms perform worse with decreasing α. Note that
the procedure that performs the exponential of the large matrix was custom build and
an average time of 90% was spent in this routine douring the simulations. Thus, TDVP
may be sped up significantly and the results may be skewed.

Table 9.1: Fits for the system with 41 lattice sites and χ = 16, where ϵ1/2 was fitted as
a function of the time step ∆t. The graphs on the log-log plot are not always straight
lines and the fits may be unreliable, so no uncertainty is provided here.

Algorithm α
ϵ1 = a · tb ϵ2 = a · tb
a b a b

TDVP1 1.0 1.8e−4 5.9 1.4e−3 3.2
TDVP2 1.0 1.5e−8 4.4 1.1e−5 3.9

W1 1.0 1.5e−3 4.0 1.4e−1 2.0
W2 1.0 1.5e−4 3.9 2.3e−2 2.0

TDVP1 0.1 1.5e−4 5.7 2.9e−3 3.1
TDVP2 0.1 6.5e−7 4.5 1.1e−5 3.2

W1 0.1 1.5e+5 4.0 2.6e−3 2.0
W2 0.1 9.7e+4 4.0 3.8e−4 2.0

84

Results: Long Range Transverse Field Ising Model

Table 9.2: Fits for the system with 41 lattice sites and χ = 16, where ϵ1/2 was fitted as
a function of the elapsed real time tw. The graphs on the log-log plot are not always
straight lines and the fits may be unreliable, so no uncertainty is provided here.

Algorithm α
ϵ1 = a · tbw ϵ2 = a · tbw
a b a b

TDVP1 1.0 6.4e−4 −7.5 2.9e−3 −4.1
TDVP2 1.0 1.6e−6 −5.8 6.0e−4 −5.1

W1 1.0 5.0e−7 −4.1 2.6e−3 −2.0
W2 1.0 5.2e−8 −4.1 3.8e−4 −2.1

TDVP1 0.1 5.5 −10.1 2.2e−1 −5.4
TDVP2 0.1 1.3e−1 −7.7 7.1e−2 −4.9

W1 0.1 3.8e+2 −4.2 8.4 −2.1
W2 0.1 2.1e+2 −4.2 6.3 −2.1

85

Results: Long Range Transverse Field Ising Model

N = 41 Lattice Sites, longer time
In this subsection are the results for a time evolution to t = 15 computed with TDVP2
and a time step of ∆t = 0.1 and a fixed bond dimension of χ = 32. One can clearly
see in fig. 9.12 that for the shorter effective interaction range (α = 1.0) the spin flip
term due to the magnetic field in z-direction dominates and the lattice gets flipped
almost simultaneously on all lattice sites, while for longer effective interaction range (α =
0.1, fig. 9.13) the spin-spin interaction dominates. Note that the behavior seems to be
qualitatively vastly different in these two cases, because in the case of α = 0.1 the system
never performs a global spin flip in the simulated time frame and the expectation value
⟨Sx⟩ seems to stay near the initial values. This may stem from a too short simulation
time or some kind of ”phase transition”. Either way, further research in this area should
proof to be interesting.

1 11 21 31 41
lattice site

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

t

N = 41, α = 1.0, χ = 32, ⟨Ŝxi ⟩

−0.50
−0.45
−0.40
−0.35
−0.30
−0.25
−0.20
−0.15
−0.10
−0.05

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Figure 9.12: ⟨Ŝxi ⟩ as a function of time for the initial state |↑↑ . . . ↑↓↑ . . . ↑↑⟩x and α = 1.0
(short range).

86

Results: Long Range Transverse Field Ising Model

1 11 21 31 41
lattice site

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

t

N = 41, α = 0.1, χ = 32, ⟨Ŝxi ⟩

−0.5000
−0.4996
−0.4992
−0.4988
−0.4984
−0.4980
−0.4976
−0.4972
−0.4968
−0.4964

0.491
0.492
0.493
0.494
0.495
0.496
0.497
0.498
0.499
0.500

Figure 9.13: ⟨Ŝxi ⟩ as a function of time for the initial state |↑↑ . . . ↑↓↑ . . . ↑↑⟩x and α = 0.1
(long range).

87

Conclusions

10 Conclusions
In the course of this thesis, the two algorithms introduced by Zaletel et al. [36] (MPO
based) and Haegeman et. al. [35] (TDVP) on a modified version of the transverse field
Ising model with exponentially decaying long range interactions were compared. The
main result of the simulation is contained in figs. 9.10 and 9.11. They show that the
MPO based method is a viable alternative to TDVP, if the interactions of the lattice
sites decay fast with respect to distance. On the other hand, if the interactions decay
slowly, TDVP should be used and produces an error orders of magnitudes lower. In
tables 9.1 and 9.2 it can be seen that TDVP has in general a much better asymptotic
behavior with respect to the used time step.

The computational bottleneck of Finite lattice TDVP is to calculate an exponential of
a matrix with a very high number of elements. Further research in this area could addi-
tionally speed up TDVP significantly.

Furthermore, the Infinite lattice TDVP [27] was extended in the present thesis, such
that it can also work with exponentially decaying long range interactions. In section 8
it can be seen that this method can be used to calculate the ground state of long-ranged
models with imaginary time evolution.

88

Appendix

A Appendix

A.1 Calculation of the geometric series of the transfer matrix
In this subsection we will calculate the geometric series of the transfer matrix T . We
assume that the transfer matrix has exactly one dominant eigenvalue with value 1, where
|r⟩ is the corresponding right hand side eigenvector and ⟨l| is the left hand side eigen-
vector. Furthermore it was assumed that ⟨l|r⟩ = 1. The projector Q was defined as:

Q = 1− |r⟩ ⟨l|

This operator has some helpful properties. As a projection operator it is idempotent:

Q2 = ((1− |r⟩ ⟨l|) ((1− |r⟩ ⟨l|)
= 1− |r⟩ ⟨l| − |r⟩ ⟨l|+ |r⟩ ⟨l|r⟩︸︷︷︸

=1

⟨l|

= 1− |r⟩ ⟨l|
= Q

Furthermore, Q commutes with the transfer matrix:

[Q,T] = ((1− |r⟩ ⟨l|)T − T ((1− |r⟩ ⟨l|)
= T − |r⟩ ⟨l|T − T + T |r⟩ ⟨l|
= T − T + |r⟩ ⟨l| − |r⟩ ⟨l|
= 0

The powers T = QTQ+ |r⟩ ⟨l| have a plain and simple form:

T 2 = (QTQ+ |r⟩ ⟨l|) (QTQ+ |r⟩ ⟨l|)
= (QTQ)2 + |r⟩ ⟨l|r⟩ ⟨l|+QT Q |r⟩︸ ︷︷ ︸

=0

⟨l|+ |r⟩ ⟨l|Q︸︷︷︸
=0

TQ

= (QTQ)2 + |r⟩ ⟨l|
. . .

Tn = (QTQ)n + |r⟩ ⟨l|

Because QTQ has only eigenvalues with an absolute value < 1, it is possbile to calculate
the geometric series for it. Now we have everything we need to calculate the geometric
series of the transfer matrix.

89

Appendix

∞∑
n=0

Tn =

∞∑
n=0

(QTQ+ |r⟩ ⟨l|)n

=

∞∑
n=0

((QTQ)n + |r⟩ ⟨l|)

= Q

(∞∑
n=0

(QTQ)n

)
Q+

∞∑
n=0

|r⟩ ⟨l|

= Q (1−QTQ)−1Q+

∞∑
n=0

|r⟩ ⟨l|

This proofs the claim from the main text. In the third line of the equation above we
used Q2 = Q and [T,Q] = 0.

A.2 Linearly independent parameters of B(x)
This section follows [27].
How many linearly independent parameters does B have? In general a tangent state
|ϕ(A,B)⟩ will have a non trivial null space. This stems from the gauge invariance of
|ψ(A)⟩ with respect to A. If we look at an auxiliary state defined as

Ãs = eϵXAse−ϵX

where ϵ ∈ R and X ∈ Cχ×χ. Because eϵXe−ϵX = 1, Ã and A describe the same state (see
section 2). Note that X ∈ Cχ×χ. Thus, the state is independent of ϵ and its derivative
with respect to ϵ must vanish.

d

dϵ
Ãs = XÃs − ÃsX

d

dϵ
|ψ(Ã)⟩ = 0

dÃj

dϵ
|∂jψ(Ã)⟩ = 0

The last line of the equation above is of the same form of the derivative of |ψ(A)⟩ with
respect to time! With that obervation we know that every Bs

X = XAs −AsX produces
a zero norm state. So, every B′ = B + BX will result in the same tangent state as B.
This eliminates χ2 degrees of freedom from the general dχ2 parameters of B. Thus, a
appropriate parametrization of B will have (d− 1)χ2 linearly indepentent parameters.

A.3 Calculation of KOS, KNN , Kn
l , Kn

r , and KLR

This section follows [27].

90

Appendix

In general calculating the these vectors directly is too expensive computational wise.
However, by plugging in the definitions it is possible to find matrix equations that can
be solved.

⟨KOS | = ⟨l|hAAQ(1−QTQ)−1Q

⟨KOS | (1−QTQ) = ⟨l|hAAQ
⟨KOS | (1− T + |r⟩ ⟨l|) = ⟨l|hAA(1− |r⟩ ⟨l|)

⟨KOS | − ⟨KOS |T + ⟨KOS |r⟩ ⟨l| = ⟨l|hAA − ⟨l|hAA |r⟩ ⟨l|

From the first to the second line we used [T,Q] = 0. Now we can rewrite this with our
usual rules into a matrix equation:

KOS −
∑
s

As†KOSA
s + tr(KOSr) l =

∑
s,t

⟨s| ĥ1 |t⟩
[
As†lAt − tr(As†lAtr)l

]
(A.1)

The last line can be solved like a matrix equaitn Ax = b. Most modern computer algebra
systems are able to this with a complexity like O(χ3). Likewise for the next neighbor
term KNN we need to solve the equation:

KNN −
∑
s

As†KNNA
s + tr(KNNr) l =

∑
s,t,u,v

⟨s, t| ĥ2 |u, v⟩[
At†As†lAuAv − tr(At†As†lAuAvr)l

] (A.2)

And similar for the long range case, we need to solve:

Kn
l − e−αn

∑
s

As†Kn
l A

s = e−αn
∑
s,t

⟨s| M̂m |t⟩As†lAt (A.3)

Kn
r − e−αn

∑
s

AsKn
r A

s† = e−αn
∑
s,t

⟨s| N̂m |t⟩AtlAs† (A.4)

KLR −
∑
s

As†KLRA
s + tr(KLRr)l =

∑
n

βn
∑
s,t

⟨s| N̂m |t⟩[
As†Kn

l A
t − tr(As†Kn

l A
tr)l
] (A.5)

A.4 Computational Cost of Operator Application and TDVP
In this section we are going to briefly discuss the computational cost of applying a Matrix
Product Operator to a Matrix Product State and the cost of one TDVP sweep on a finite
lattice. Currently the most effective algorithm to perform an MPO-MPS application is
the zip-up algorithm [29]. Here, the most expensive step is performing a singular value
decomposition of the combined tensor depicted in fig. A.1.

91

Appendix

A

WX (χS × χO)(d× χ̃S)

Figure A.1: Graphical representation of the tensor to perform an SVD on. A is a tensor
of the Matrix Product State, W a tensor of the Matrix Product Operator, and X is a
χ̃S × χS × χO tensor.

So, we must compute the SVD of a (d · χ̃S) × (χS · χO) matrix, where χ̃S ∝ χS . We
assume that the bond dimension of the state is much greater than the local Hilbert
space dimension and the bond dimension of the operator. So the computational cost of
this SVD and thus the MPO-MPS application is O(χ3

Sd
2χO) [40]. For TDVP the most

expensive step is the computatation of the matrix exponential e−i∆tĤeff (fig. 3.3). For
TDVP we only need to compute the product of the exponential with a vector. This can
be effectively calculated with a Lanczos scheme, where we only need to know the action
of Ĥeff on an arbitrary vector v [41]. The trick here is to never explicitly build Ĥeff ,
but to calculate the product w = Ĥeffv recursively.

w̃1
an−1,a′n−1,bn,sn,s

′
n
=
∑
bn−1

E
bn−1

an−1,a′n−1
W

sn,s′n
bn−1,bn

w̃2
a′n−1,bn,sn,s

′
n+1,an+1

=
∑

s′n,an−1

w̃1
an−1,a′n−1,bn,sn,s

′
n
vs′n,s′n+1,an−1,an+1

w̃3
a′n−1,sn,an+1,sn+1,bn+1

=
∑

bn,s′n+1

w̃2
a′n−1,bn,sn,s

′
n+1,an+1

W
sn+1,s′n+1

bn,bn+1

wsn,sn+1,a′n−1,a
′
n+1

=
∑

bn+1,an+1

w̃3
a′n−1,sn,an+1,sn+1,bn+1

F
bn+1

an+1,a′n+1

where E and F are MPS-MPO-MPS contractions (section 3). The most expensive
computations here are line 2 and 4 which cost O(χ3

Sd
3χO) for the two site TDVP and

O(χ3
Sd

2χO) for the one site version of TDVP. This operation needs to be done a number
of times that depends on how exact we want to evaluate e−i∆tĤeff .

92

Appendix

A.5 Plots of the Fits

ϵ 1

TDVP1 TDVP2

ϵ 1

W1 W2

ϵ 2

TDVP1 TDVP2

∆t

ϵ 2

W1

∆t

W2

N = 41, α = 1.0, χ = 16

Figure A.2: Fits of the error as a function of the time step for α = 1.0. The actual data
points are the blue dots. The fits are represented by green lines. Note that the plots are
not in scale with each other. (original plot: fig. 9.10; fitdata: table 9.1)

93

Appendix

ϵ 1

TDVP1 TDVP2

ϵ 1

W1 W2

ϵ 2

TDVP1 TDVP2

∆t

ϵ 2

W1

∆t

W2

N = 41, α = 0.1, χ = 16

Figure A.3: Fits of the error as a function of the time step for α = 0.1. The actual data
points are the blue dots. The fits are represented by green lines. Note that the plots are
not in scale with each other. (original plot: fig. 9.11; fitdata: table 9.1)

94

Appendix

ϵ 1

TDVP1 TDVP2

ϵ 1

W1 W2

ϵ 2

TDVP1 TDVP2

wall clock [s]

ϵ 2

W1

wall clock [s]

W2

N = 41, α = 1.0, χ = 16

Figure A.4: Fits of the error as a function of the computation time for α = 1.0. The
actual data points are the blue dots. The fits are represented by green lines. Note that
the plots are not in scale with each other. (original plot: fig. 9.10; fitdata: table 9.2)

95

Appendix

ϵ 1

TDVP1 TDVP2

ϵ 1

W1 W2

ϵ 2

TDVP1 TDVP2

wall clock [s]

ϵ 2

W1

wall clock [s]

W2

N = 41, α = 0.1, χ = 16

Figure A.5: Fits of the error as a function of the computation time for α = 0.1. The
actual data points are the blue dots. The fits are represented by green lines. Note that
the plots are not in scale with each other. (original plot: fig. 9.11; fitdata: table 9.2)

96

REFERENCES

References
[1] J. G. Bednorz and K. A. Müller, “Possible high t c superconductivity in the ba—

la—cu—o system,” in Ten Years of Superconductivity: 1980–1990, Springer, 1986,
pp. 267–271.

[2] G. Binasch, P. Grünberg, F Saurenbach, and W Zinn, “Enhanced magnetoresis-
tance in layered magnetic structures with antiferromagnetic interlayer exchange,”
Physical review B, vol. 39, no. 7, p. 4828, 1989.

[3] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P Etienne, G
Creuzet, A Friederich, and J Chazelas, “Giant magnetoresistance of (001) fe/(001)
cr magnetic superlattices,” Physical review letters, vol. 61, no. 21, p. 2472, 1988.

[4] C. Lanczos, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. United States Governm. Press Office Los
Angeles, CA, 1950.

[5] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner,
“Continuous-time monte carlo methods for quantum impurity models,” Reviews of
Modern Physics, vol. 83, no. 2, p. 349, 2011.

[6] M. Troyer and U.-J. Wiese, “Computational complexity and fundamental limita-
tions to fermionic quantum monte carlo simulations,” Physical review letters, vol.
94, no. 17, p. 170 201, 2005.

[7] F. Barahona, “On the computational complexity of ising spin glass models,” Jour-
nal of Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

[8] U. Schollwöck, “The density-matrix renormalization group in the age of matrix
product states,” Annals of Physics, vol. 326, no. 1, pp. 96–192, 2011.

[9] N. Schuch, I. Cirac, and F. Verstraete, “Computational difficulty of finding matrix
product ground states,” Physical review letters, vol. 100, no. 25, p. 250 501, 2008.

[10] T. Prosen and M. Žnidarič, “Matrix product simulations of non-equilibrium steady
states of quantum spin chains,” Journal of Statistical Mechanics: Theory and Ex-
periment, vol. 2009, no. 02, P02035, 2009.

[11] C. Kittel, Introduction to solid state physics. Wiley, 2005.
[12] P. Fulde, P. Thalmeier, and G. Zwicknagl, “Strongly correlated electrons,” arXiv

preprint cond-mat/0607165, 2006.
[13] R. Pariser and R. G. Parr, “A semi-empirical theory of the electronic spectra

and electronic structure of complex unsaturated molecules. i.,” The Journal of
Chemical Physics, vol. 21, no. 3, pp. 466–471, 1953.

[14] R. Pariser and R. G. Parr, “A semi-empirical theory of the electronic spectra
and electronic structure of complex unsaturated molecules. ii,” The Journal of
Chemical Physics, vol. 21, no. 5, pp. 767–776, 1953.

97

REFERENCES

[15] J. Hubbard, “Electron correlations in narrow energy bands,” in Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, The
Royal Society, vol. 276, 1963, pp. 238–257.

[16] E. H. Lieb and F. Wu, “Absence of mott transition in an exact solution of the
short-range, one-band model in one dimension,” Physical Review Letters, vol. 20,
no. 25, p. 1445, 1968.

[17] E. H. Lieb, “Two theorems on the hubbard model,” in Condensed Matter Physics
and Exactly Soluble Models, Springer, 2004, pp. 55–58.

[18] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer,
“Functional renormalization group approach to correlated fermion systems,” Re-
views of Modern Physics, vol. 84, no. 1, p. 299, 2012.

[19] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite dimensions,”
Reviews of Modern Physics, vol. 68, no. 1, p. 13, 1996.

[20] M. Ganahl, M. Aichhorn, P. Thunström, K. Held, H. G. Evertz, and F. Ver-
straete, “Efficient dmft impurity solver using real-time dynamics with matrix prod-
uct states,” arXiv preprint arXiv:1405.6728, 2014.

[21] F. A. Wolf, A. Go, I. P. McCulloch, A. J. Millis, and U. Schollwöck, “Imaginary-
time matrix product state impurity solver for dynamical mean-field theory,” Phys-
ical Review X, vol. 5, no. 4, p. 041 032, 2015.

[22] P. Pfeuty, “The one-dimensional ising model with a transverse field,” ANNALS of
Physics, vol. 57, no. 1, pp. 79–90, 1970.

[23] V. Zauner, M. Ganahl, H. G. Evertz, and T. Nishino, “Time evolution within a
comoving window: scaling of signal fronts and magnetization plateaus after a local
quench in quantum spin chains,” arXiv preprint arXiv:1207.0862, 2012.

[24] F. Haldane and M. Zirnbauer, “Exact calculation of the ground-state dynamical
spin correlation function of a s= 1/2 antiferromagnetic heisenberg chain with free
spinons,” Physical review letters, vol. 71, no. 24, p. 4055, 1993.

[25] G. M. Crosswhite, A. C. Doherty, and G. Vidal, “Applying matrix product oper-
ators to model systems with long-range interactions,” Physical Review B, vol. 78,
no. 3, p. 035 116, 2008.

[26] P. Corboz, S. R. White, G. Vidal, and M. Troyer, “Stripes in the two-dimensional
t-j model with infinite projected entangled-pair states,” Physical Review B, vol. 84,
no. 4, p. 041 108, 2011.

[27] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete,
“Time-dependent variational principle for quantum lattices,” Physical review letters,
vol. 107, no. 7, p. 070 601, 2011.

[28] G. Vidal, “Efficient simulation of one-dimensional quantum many-body systems,”
Physical review letters, vol. 93, no. 4, p. 040 502, 2004.

98

REFERENCES

[29] E. Stoudenmire and S. R. White, “Minimally entangled typical thermal state al-
gorithms,” New Journal of Physics, vol. 12, no. 5, p. 055 026, 2010.

[30] G. Vidal, “Efficient classical simulation of slightly entangled quantum computa-
tions,” Physical Review Letters, vol. 91, no. 14, p. 147 902, 2003.

[31] (2015). Scipy.org, [Online]. Available: www.scipy.org/ (visited on 01/10/2015).
[32] J. Haegeman, T. J. Osborne, and F. Verstraete, “Post-matrix product state meth-

ods: to tangent space and beyond,” Physical Review B, vol. 88, no. 7, p. 075 133,
2013.

[33] M. J. Ganahl, “Dynamics of strongly correlated one-dimensional quantum systems
using matrix product states,” PhD thesis, Graz University of Technology, 2014.

[34] S. R. White, “Density matrix formulation for quantum renormalization groups,”
Physical Review Letters, vol. 69, no. 19, p. 2863, 1992.

[35] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, “Uni-
fying time evolution and optimization with matrix product states,” arXiv preprint
arXiv:1408.5056, 2014.

[36] M. P. Zaletel, R. S. Mong, C. Karrasch, J. E. Moore, and F. Pollmann, “Time-
evolving a matrix product state with long-ranged interactions,” Physical Review
B, vol. 91, no. 16, p. 165 112, 2015.

[37] G. M. Crosswhite and D. Bacon, “Finite automata for caching in matrix product
algorithms,” Physical Review A, vol. 78, no. 1, p. 012 356, 2008.

[38] (2016). Http://julialang.org/, [Online]. Available: http://julialang.org/ (vis-
ited on 04/19/2016).

[39] (2016). Http://www.toshiba.at/discontinued-products/satellite-u500-119/, [Online].
Available: http://www.toshiba.at/discontinued-products/satellite-u500-
119/ (visited on 04/19/2016).

[40] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997, vol. 50.
[41] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating the exponential,

the lanczos method and an o(m)-time spectral algorithm for balanced separator,”
arXiv preprint arXiv:1111.1491, 2011.

99

www.scipy.org/
http://julialang.org/
http://www.toshiba.at/discontinued-products/satellite-u500-119/
http://www.toshiba.at/discontinued-products/satellite-u500-119/

	Introduction and Physical Background
	Models

	Matrix Product States and Operators
	Basics
	Graphical representation
	Normalization Conditions
	Uniform Matrix Product States
	Tangent Space

	Density-Matrix Renormalization Group
	Finite DMRG
	Infinite DMRG

	Time-Evolving Block Decimation
	Time-Dependent Variational Principle
	Basic Idea
	Finite Lattice TDVP
	Infinite Lattice TDVP

	Time Evolution with Matrix Product Operators
	Basics
	W^I
	W^II
	Second Order

	Matrix Product Operators of Fermionic Systems
	Results: Ground State Search in the Thermodynamic Limit
	Results: Long Range Transverse Field Ising Model
	Conclusions
	Appendix
	Calculation of the geometric series of the transfer matrix
	Linearly independent parameters of B(x)
	Calculation of K_OS, K_NN, K_l^n, K_r^n, and K_LR
	Computational Cost of Operator Application and TDVP
	Plots of the Fits

