
Gerald Ninaus

Recommendation Technologies in
Requirements Engineering

Doctoral Thesis

Graz University of Technology

Institute for Software Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Alexander Felfernig
Second reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Martin Pinzger

Graz, February 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008; Geneh-
migung des Senates am 1.12.2008

iii

Abstract

Software project failures (total project failure, cost and schedule overruns, failure to de-
liver promised functions) lead to additional costs of many billion dollars. Major sources
of these failures can be located in the Requirements Engineering phase, which is the first
phase of a software development process. The costs of fixing defects in the Requirements
Engineering phase are far below the costs in subsequent phases and, as a consequence,
improving Requirements Engineering processes can reduce the overall costs of software
development dramatically. Although a system that automatically understands user’s needs is
not yet feasible, semi-automated systems with recommendation techniques can help require-
ments engineers finding specification failures during the Requirements Engineering phase.
Potential techniques are: group recommendations (support the decision making process, for
example, during the requirements prioritization process), content-based recommendations
(highlight potential relations between requirements), and preference visibility of stakeholders
(anonymous vs. non-anonymous).

Within the scope of this thesis a Requirements Engineering web platform with recommenda-
tion support is developed and used for several empirical studies conducted at our university.
To improve the requirements prioritization process, the impact of preference visibility on
the decision making process and the applicability of group recommendation technology
in the context of requirements prioritization are evaluated and the results are presented.
Furthermore, this thesis introduces three new group recommendation heuristics developed
for the use in a requirements prioritization context and shows the improvements compared
to well-known group decision heuristics. To increase stakeholder interaction with Require-
ments Engineering artifacts (requirements and release plans) and to increase stakeholder
communication, a traffic light based approach is presented. For the identification of relations
between requirements, a similarity measurement approach based on the lexical resource
OpenThesaurus is introduced and the results of an evaluation of the recommendation quality
of dependency candidates are presented. To increase the reuse of requirements, a keyword
recommendation technique is introduced and an empirical study clearly shows more reuse
in study groups using the keyword recommendation technique. Finally, the application of
Human Computation in the context of Requirements Engineering is presented as future
work.

v

Zusammenfassung

Gescheiterte Software Projekte (vollständiger Projektausfall, Kosten- und Terminüberschre-
itungen, versprochene Funktionen werden nicht geliefert) führen zu zusätzlichen Kosten
in Milliardenhöhe. Die Quelle für diese Probleme kann bereits in der Requirements Engi-
neering (Anforderungsanalyse) Phase gefunden werden, welche zu Beginn eines Softwa-
reentwicklungsprozesses steht. Die Kosten für die Behebung von Fehlern in dieser ersten
Phase sind erheblich geringer als wenn Fehler in den darauffolgenden Phasen identifiziert
und behoben werden müssen. Folglich können Verbesserungen im Requirements Engi-
neering Prozess die Gesamtkosten eines Softwareprojekts erheblich reduzieren. Obwohl
Systeme zur automatischen Auswertung von Anforderungen noch nicht realisierbar sind,
können halb-automatisierte Systeme durch Verwendung von Empfehlungstechnologien den
Anforderungsingenieuren helfen, Spezifikationsfehler bereits während der Requirements
Engineering Phase zu finden. Dafür geeignete Technologien sind: Gruppenempfehlung (Un-
terstützung des Entscheidungsfindungsprozesses, beispielsweise während der Priorisierung
von Anforderungen), Content-basierte Empfehlungen (Aufzeigen potentieller Beziehungen
zwischen Anforderungen) sowie die Sichtbarkeit von Präferenzen der Stakeholder (anonym
vs. nicht-anonym).

Im Zuge dieser Arbeit wurde eine Requirements Engineering Webplattform mit Empfehlung-
sunterstützung entwickelt. Mit Hilfe dieser Plattform wurden verschiedene empirische
Studien an unserer Universität durchgeführt. Um die Priorisierung von Anforderungen
zu verbessern wurde die Auswirkung von sichtbaren Präferenzen auf den Entscheidungs-
findungsprozess sowie die Anwendbarkeit von Gruppenempfehlungen im Umfeld der An-
forderungspriorisierung untersucht und die entsprechenden Ergebnisse präsentiert. Zusätzlich
werden in dieser Arbeit drei neue Heuristiken für Gruppenempfehlungen zur Unterstützung
von Requirements Engineering Prozessen vorgestellt und mit bestehenden Heuristiken ver-
glichen. Um die Interaktion von Stakeholdern mit Requirements Engineering Artefakten
(Anforderungen und Releasepläne) zu erhöhen und um die Kommunikation zwischen Stake-
holdern zu steigern wird ein ampelbasierter Ansatz präsentiert. Für die Identifizierung
von Relationen zwischen Anforderungen wurde eine Methode zur Ähnlichkeitsmessung
basierend auf der lexikalen Ressource OpenThesaurus eingeführt. Darauf aufbauend wird
eine Evaluierung der Empfehlungsqualität von Kandidaten für mögliche Relationen zwis-
chen Anforderungen präsentiert. Um die Wiederverwendung von Anforderungen zu erhöhen

vii

wird eine Stichwort-Empfehlungstechnik vorgestellt und es wird gezeigt, dass Gruppen mit
dieser Empfehlungstechnik häufiger Anforderungen wiederverwenden. Abschließend wird
die Anwendung von Human Computation im Umfeld von Requirements Engineering als
Future Work vorgestellt.

viii

Acknowledgment

First and foremost, I would like to thank my supervisor Univ.-Prof. Dipl.-Ing. Dr.techn.
Alexander Felfernig for his continuous support, discussions, his motivation, and valuable
comments throughout the preparation of this thesis.

I also want to acknowledge and thank my colleagues Dipl.-Ing Florian Reinfrank, Dipl.-
Ing. Harald Grabner, Michael Jeran, Dipl.-Ing. Stefan Reiterer, Dipl.-Ing. Martin Stettinger,
Dipl.-Ing. Klaus Isak, Assoc.Prof. Mag. Dr. Gerhard Leitner, Dipl.-Ing. Dr.techn. Monika
Mandl, Dipl.-Ing. Christoph Zehentner, Petra Pichler, and Arabella Gaß for their support.
In addition, I want to thank our industrial partners, Dipl.-Ing. Walter Schanil and Dipl.-Ing.
Leopold Weninger, for many fruitful discussions and valuable input to my work.

I am also very grateful to the woman beside me, Martina, for her understanding and support
while I was writing my thesis. Last but not least, I want to thank my family for the support
and belief in me during the years of study.

Gerald Ninaus
Graz, 2016

ix

Contents

Abstract v

1 Introduction 1
1.1 Research Objectives . 3

1.1.1 Human Factors in Requirements Engineering 3
1.1.2 Improvement of Decision Tasks 4
1.1.3 Human Computation . 8

1.2 Contributions . 8
1.3 Thesis Outline . 12

2 Overview of Recommender Systems in Requirements Engineering 15
2.1 Introduction . 15
2.2 Research on Recommender Systems in Requirements Engineering 16

2.2.1 Requirements Elicitation & Definition 18
2.2.2 Quality Assurance . 19
2.2.3 Requirements Negotiation & Release Planning 21

2.3 Recommendation Techniques for Requirements Engineering 23
2.4 Issues for Future Research for Recommendation Technologies 30
2.5 Conclusions . 32

3 Human Factors in Requirements Engineering 33
3.1 Introduction . 33
3.2 Requirements Engineering Environment 34

3.2.1 Application Scenario . 34
3.2.2 User Interface & Functionalities 35

3.3 Empirical Study . 37
3.3.1 Study Design . 37
3.3.2 Study Hypotheses . 38
3.3.3 Study Results . 40

3.4 Related Work . 43
3.5 Conclusions . 44

xi

Contents

4 Recommending for Reuse and Dependency Detection 47
4.1 Introduction . 47
4.2 Related Work . 50

4.2.1 Text Document Representation . 50
4.2.2 Word Sense . 50
4.2.3 Domain Knowledge . 51

4.3 INTELLIREQ . 51
4.4 Recommendation . 54

4.4.1 Keyword Recommender . 54
4.4.2 Dependency Recommender . 56
4.4.3 Reduce Dimension . 58
4.4.4 Calculating Requirements Similarity 58

4.5 Empirical Studies . 59
4.5.1 Keyword Recommender . 59
4.5.2 Dependency Recommender . 60

4.6 Conclusion . 62

5 Recommending Prioritizations 65
5.1 Introduction . 65
5.2 INTELLIREQ Decision Support . 68
5.3 Anonymous Preference Elicitation . 69

5.3.1 Motivation . 69
5.3.2 Empirical Study . 71
5.3.3 Study Results . 74

5.4 Group Decision Support . 76
5.4.1 Group Decision Heuristics . 76
5.4.2 Advanced Group Decision Heuristics 79
5.4.3 Empirical Study . 81

5.5 Conclusion . 81

6 INTELLIREQ Prototype 83
6.1 Introduction . 83
6.2 INTELLIREQ Recommendation Technologies 84

6.2.1 Recommendation Approaches . 85
6.2.2 Recommendation Approaches in INTELLIREQ 85

6.3 INTELLIREQ User Interface . 89
6.4 User Studies and Benefits . 91
6.5 Related and Future Work . 94
6.6 Conclusion . 95

xii

Contents

7 Future Work: Human Computation in Requirements Engineering 97
7.1 Ambiguity . 97
7.2 Relations between Objects in an Area of Interest 105

8 Conclusion 109
8.1 Limitations of the INTELLIREQ Environment 109
8.2 Conclusions from Research Questions and Contributions 110

Bibliography 117

xiii

List of Figures

2.1 Example Social Network (SN) derived from communication patterns of
Table 2.6. 27

3.1 Activities supported by the INTELLIREQ user interface. Each group member
can define and adapt his/her own preferences. These preferences can be
seen and discussed by other group members. On the basis of articulated
user preferences and a system-determined group recommendation, the team
(represented by the project manager) can define and store the team (group)
decision. Team decisions can be reviewed and adapted later on (until the
submission deadline for team decisions has passed). 36

3.2 INTELLIREQ preference specification: each group member articulates his/her
own preferences and – during this process – has insights into the preferences
of other group members. 36

3.3 INTELLIREQ group recommendation. 37

4.1 Requirements overview of the latest version of INTELLIREQ. Traffic lights
are used for stakeholder guidance to improve the overall quality of artifacts.
During our research the GUI evolved and has a different look than the version
used for our evaluation of the Keyword Recommender (see Figure 4.2). . . . 52

4.2 Screenshot of the Keyword Recommender. 55
4.3 Shows the tension calculation for the term Memory between the three require-

ments Internal Memory, Height Determination, and Speed Measurement.
All three requirements descriptions also contain the term Memory with an
occurrence of one. 58

4.4 Shows the requirement representation used in our study. 61
4.5 Shows the quality rating of study participants (1-Best, 5-Worst). 62
4.6 Shows the relation between true-positive (users agrees with recommendation)

and true-negative (user disagree with the usefulness of the recommendation).
User feedback was collected for the 20 recommendations with the highest
similarity score. 63

xv

List of Figures

5.1 INTELLIREQ Prioritization (Decision) Process. Construction: stakeholders
define their initial preferences; Consensus: stakeholders adapt their prefer-
ences on the basis of the knowledge about preferences of other stakeholders.
Decision: project managers take the final group decision. Preferences rep-
resent the wish of a stakeholder to implement a requirement (1: lowest, 5:
highest) . 69

5.2 The impact of Anonymous Preferences in INTELLIREQ on the final Output
Quality . 69

5.3 Hypotheses defined to evaluate the INTELLIREQ Decision Support. 74

6.1 INTELLIREQ: details regarding a single requirement. The three stakeholders
provided inconsistent ratings for the property priority which is indicated by
the traffic light feedback mechanism. 88

6.2 INTELLIREQ: recommendation of dependencies; dependency recommenda-
tion is based on OpenThesaurus (www.openthesaurus.de), i.e., INTELLIREQ

currently supports German, the English descriptions used in this chapter
have been included for reasons of understandability. 90

6.3 SUS usability evaluation: average ratings, N=20 (1 = I do not agree, 2 = I
partially agree, 3 = I rather agree, 4 = I agree, 5 = I totally agree). 92

7.1 AMBIGUITY GUESSES GAME: Shows the different steps to define anno-
tations for the term IntelliReq: Step 1 distributes the task of defining the
term IntelliReq. Step 2 shows the responses of the two participants. The
term Requirements Engineering is a match between the two responses and
is shown in italic for better understanding. Step 3: The system takes the
matching term and define it as result of this game round. 99

7.2 AMBIGUITY GUESSES GAME WITH ALTERNATIVE GAME FLOW: Shows
the different steps to define annotations for the term IntelliReq in case a
second player cannot be found in a reasonable time: Step 1 distributes the
task of defining the term IntelliReq. Step 2 is equal for Person 1 as shown
in the previous approach. Also, the system could not find a second player
and associate the player slot with the database. In Step 3 the system takes a
random response from the past. Step 4 is equal to Step 3 described in Figure
7.1. 101

xvi

List of Figures

7.3 AMBIGUITY GUESSES GAME BONUS ROUND: Shows the refinement pro-
cess for the annotation of the term IntelliReq starting with the results of
the previous game (cf. Figure 7.1 and Figure 7.2). There are two possible
refinements for the term Web: Step 1 distributes possible refinements for the
term Web. In Step 2 both participants guess that the term Web Platform is
a good refinement. Step 3: The system takes the matching refinement and
define it as result of this game round. 102

7.4 CONCEPTS OF THE TERM Time: Shows the different possible concepts in
which the term Time can be used. As can be seen the cardinality of Time is
three. 103

7.5 CONCEPTS OF THE TERM Time: Shows the different possible concepts in
which the term Time can be used. As can be seen the cardinality of Time is
three. 104

7.6 CONCEPTS OF THE TERM Time: Shows the different possible concepts in
which the term Time can be used. As can be seen the cardinality of Time is
three. 106

xvii

1 Introduction

Nowadays, software systems have a tremendous impact on business and our society. For
example, if someone retrieves cash from an ATM, is doing a phone call, or is driving a car,
every time software is involved. Similar to the social impact, investments in information
technologies increase and are now among the largest expenses [Cha05].

Although software solutions are crucial for many business cases, there is a huge amount of
projects which fail. The definition of the term project failure itself is controversial. There
are many different and often contradictionary definitions of project failure in the literature
indicating a lack of consensus [PJ90]. One accepted approach is to define a failed project as
any project which has been canceled (total project failure) or did not meet its budget (cost
overruns), delivery (schedule overruns), and/or business objectives (delivered fewer or wrong
functions). Based on this broad approach several studies showed that more than 70% of all
software projects fit into this failure definition [WK04][Lin99]. With the huge impact of
software on business and our society, these failures lead to additional costs of many billion
dollars [Cha05].

Among other reasons, unrealistic or not articulated project goals, misunderstanding of
requirements, inaccurate estimates of needed resources, badly defined system requirements,
and stakeholder politics (e.g. irrational reasoning based on emotions) can be considered as
major source for project failures [Cha05][BP84].

All sources of project failures mentioned above are related to the Requirements Engineering
phase, which is the first phase of a software development process. Requirements Engineering
can be considered as the branch of software engineering concerned with the real-world
goals for functions of and constraints on software systems with requirements defined as a
representation of decision alternatives or commitments [AW03][Zav97]. Decisions made
in the Requirements Engineering phase can be considered as critical as they are the basis
for all subsequent tasks in the development process and high quality requirements are a
major precondition for the success of projects [Fel+12]. To show the potential impact of
the Requirements Engineering process on the software project, a recent Gartner report
[Gar11] states that requirements defects are the third source of product defects (following
coding and design), but are the first source of delivered defects. The cost of fixing defects
ranges from a low of approximately $70 (cost to fix a defect at the requirements phase) to a

1

1 Introduction

high of $14.000 (cost to fix a defect in production). Improving the requirements gathering
process can reduce the overall cost of software and dramatically improve time to market.
Consequently, poorly implemented Requirements Engineering is one major risk for project
failure [Yan+08][HL01]. Despite the critical impact of the Requirements Engineering process
on the success of projects and the fact that project failure is in most cases predictable and
avoidable, rarely more than 2-4% of the overall project efforts are spent for Requirements
Engineering [Fir04][Cha05].

Requirements Engineering, on the other hand, is a difficult task which needs a lot of attention
and resources spent. First, requirements analysts start with ill-defined and in many cases
conflicting ideas of what the proposed system is expected to do and must consider the needs
of users, customers, and other stakeholders [CA07]. Second, the amount of knowledge and
number of stakeholders involved in Requirements Engineering processes tend to increase
making individual as well as group decisions much more difficult. Additionally, with an
increased number of attributes (e.g. various platforms, different types of users) concerning
software projects the amount of requirements that must be satisfied by project teams increases
as well [RSW08]. Thus, requirements analysts are often faced with situations where the
amount and complexity of requirements outstrips their capability to survey them and to reach
decisions [Dav03].

Low resources and increasing complexity lead to the logical conclusion that there exists a
need for more advanced tools to assist Requirements Engineering processes. This assumption
is also supported by the results of an empirical market research done in the year 2004 that
summarizes the request to improve Requirements Engineering tasks by the use of Computer
Aided Requirements Engineering (CARE) [LMP04][MKF14].

Although the prospect of a support system that would automatically understand user’s needs
is very appealing, this is not yet feasible, especially due to the fact that requirements are
normally defined in natural language as it cannot be assumed that all stakeholders have the
necessary knowledge to use formal descriptions [CA07]. However, less sophisticated systems
can sufficiently support the work of requirements engineers, for example, by preprocessing
the provided data, by facilitating the communication, and by supporting decision making in
groups [Rya93]. These and similar functionalities can be provided by the use of recommender
systems, which can be defined as any system that guides a user in a personalized way to
interesting or useful objects in a large space of possible options or that produces such objects
as output [Bur02].

To be more specific, group recommendations can be used to support stakeholders in the
decision making process. For example, they can facilitate the finding of a consensus between
stakeholders [FN12][Nin12][Nin+14b]. Content-based recommender systems can be used
to process requirements descriptions and metadata to highlight potential relations between

2

1.1 Research Objectives

requirements [Nin+14a]. Additionally, collaborative recommenders can be used to help stake-
holders navigating through large sets of different requirements and guide them to artifacts
which are likely to be of interest for them [Cas+08]. Finally, enhancing recommendation
techniques with elements of Human Computation [Ahn05] (micro contributions provided
by stakeholders for tasks computer cannot fulfill) can be used to increase the quality of the
support of CARE systems as well.

1.1 Research Objectives

In this section the research objectives of this thesis are discussed - these objectives are related
to three main categories.

1. Investigation of the effects of recommender systems applied to requirements negotia-
tion tasks and how the visualization of preferences of other group members influence
decision making. These findings are used as a basis for our INTELLIREQ prototype,
which is a CARE environment that includes different recommendation techniques.

2. Development of the INTELLIREQ prototype to evaluate the impact of recommender
systems in the context of Requirements Engineering processes with a focus on four
different types of decisions: quality decisions, preference decisions, classification
decisions, and property decisions [Reg+01]. For the evaluation of the impact, several
empirical studies are conducted.

3. Discussion of concepts to enhance recommendation techniques by using Human
Computation for tasks computers are not able to fulfill. For example, identifying
the correct context of a term in a requirements description is not an easy task for a
computer system but can be easily done by humans.

1.1.1 Human Factors in Requirements Engineering

For the support of requirements negotiation scenarios, group recommendation systems can
be used which provide functionalities such as the visualization of preferences of other group
members, recommendations for individual and group decisions, and recommendations for
conflict resolutions in case of inconsistent stakeholder preferences [Mas11][JBK04]. In this
context it is necessary to pay special attention on how human decision making is done.

In the economic world there exists a standard model which tries to describe the behavior
of consumers as if information is processed to form perceptions and beliefs using strict

3

1 Introduction

Bayesian statistical principles (perception-rationality), preferences are primitive, consistent,
and immutable (preference-rationality), and the cognitive process is simply preference
maximization, given market constraints (process-rationality) [McF99]. However, decision
models based on this rational thinking are not applicable in most Requirements Engineering
scenarios for two reasons: first, stakeholders do not exactly know their preferences beforehand
and need to develop them during the decision making process. Second, preferences of
stakeholders are not stable during requirements development and negotiation which is also
conflicting with the aforementioned idea of rational thinking [AP05][BJP98].

It is therefore necessary to use incremental and adaptive preference acquisition approaches
in Requirements Engineering systems such as recommendation technologies taking into
account the aspect of preference construction [PC08][Bly02]. For example, group recommen-
dation techniques need to be evaluated in the context of incremental preference elicitation
scenarios where stakeholders first define personal preferences and, afterwards, make final
group decisions. For the measurement of the applicability of recommendation technologies
in the context of Requirements Engineering the impact of preference visibility and group
recommendation technologies on the dimensions usability and the quality of decision support
need to be evaluated.

(Q1) How do recommendations and preference visibility influence the perceived usabil-
ity and quality of decision support in Requirements Engineering environments?

1.1.2 Improvement of Decision Tasks

Based on the findings of our study regarding the impact of recommender systems on the
perceived usability and quality of decision support in Requirements Engineering environ-
ments (see Chapter 3) it is necessary to evaluate concrete techniques for the enhancement of
CARE systems. Clearly, decision-making in Requirements Engineering processes differs
in some aspects from other decision-making scenarios such as the purchasing of movies.
However, there are other aspects which are in general valid and can, at least partially, be
explained with classical decision-making [Reg+01]. It is therefore a good advice to start
the development of recommendation techniques for Requirements Engineering scenarios by
using existing knowledge gathered in the field of recommender systems. The remainder of
this section describes four decision types in the context of Requirements Engineering which
we want to support with recommendation technologies.

Quality decisions are made to estimate if a requirement is concrete and understandable
which is a necessary precondition for a subsequent requirements negotiation phase. It is
also necessary to create a document at the end of a Requirements Engineering process

4

1.1 Research Objectives

which contains a common agreement by all involved stakeholders on the final specification
[Poh13]. However, requirements are often defined in natural language which is in many cases
ambiguous because the meaning of a word can depend on the context it is used in. This often
leads to misinterpretations by different stakeholders [Fer+14]. Another source of error is
tacit knowledge in terms of, for example, implicit stakeholder goals, hidden assumptions,
and unshared expectations [GB01]. Additionally, it is often not an easy task to estimate
the completeness of requirements and to find the will-power to do the tasks necessary to
make a requirement complete. Requirements completeness, however, is important because it
affects customer acceptance (users can reject to use software because of missing features),
development costs (can be underestimated), and verification (incomplete requirements are
ambiguous) [Fir05]. Furthermore, a sound release plan is necessary to avoid difficulties in
the subsequent development process. For example, having too many tasks assigned to a
single release will force the developer to do overtime and / or spend insufficient time for the
implementation of single requirements, which will, most probably, lead to higher costs and
lower quality of the implemented source code.

As a consequence, it is necessary to improve the interaction with requirements, for example,
by assuring that a sufficient number of stakeholders participated in the quality assurance
of requirements descriptions. For release plans, an improvement in the interaction can be
achieved by indicating that too many or too less hours have been assigned to a specific release.

(Q2.1) How to increase stakeholder interaction with requirements and release plans to
improve the quality of these artifacts?

Property decisions address the estimation of certain properties attached to requirements.
Examples of this additional information are the implementation costs of a specific require-
ment or whether a requirement cannot be satisfied without the implementation of other
requirements [Reg+01]. These properties can be defined as metadata of requirements and are
described as data about data. Thus, for the definition of a complete individual requirement it
is necessary to ensure that missing mandatory metadata has been filled in [Fir05] and that
this information is based on the distributed knowledge of as many involved stakeholders as
possible. For example, if we consider the implementation cost property of a requirement,
missing information about the technical feasibility or the customers needs can lead to critical
misinterpretations which result in wrong cost estimations. To discover a gap in the distribu-
tion of knowledge, the preferences of stakeholders can be compared. If there is a high dissent
with respect to property values this indicates a lack of distributed knowledge. As simple
example, if someone defines a User Login function as a requirement, one could assume that
this requirement only covers a simple interaction interface. Another one could assume, that
this also includes necessary security actions. This will probably result in a dissent about the
necessary effort to implement the requirement.

5

1 Introduction

For a complete and sound release plan it is also necessary to identify dependency relations
between requirements, which are considered as property decisions as well. This informa-
tion is important as it facilitates the identification of inconsistencies between requirement
descriptions and helps to identify redundant information in the set of requirements. As
the identification of dependencies is a labor-intensive task, a recommendation of possible
dependency candidates is of high interest [LMP04][CA07]. We therefore want to investi-
gate techniques to calculate the most interesting relations between requirement descriptions
which can be used as recommendation to support stakeholders in dependency detection and
definition.

(Q2.2) How to increase stakeholder communication about property decisions?
(Q2.3) How to identify candidates for dependency relations between requirement descrip-
tions?

Classification decisions define to which topic or keyword a requirement belongs to. Obvi-
ously, any succeeding process benefits from requirements classification as it facilitates the
navigation through the set of requirements. Additionally, a major exploitation of requirements
classification can be found in reuse. Reuse can be seen as better resource utilization because
it reduces the overall development effort. This applies not only to the creation of requirement
documents but also to the attached software artifacts which have been developed in earlier
projects. Also, it is a source to identify difficulties which can occur with a certain requirement
due to the exploitation of knowledge from the past [CR00]. For example, a complex search
query cannot be executed within a desired response time on the used hardware and / or with
a certain database system.

Unfortunately, requirements reuse is often a complex task due to the fact that requirements
are written in natural language which circumvent effective reuse. To overcome this prob-
lem, requirements need to be processed in a special way to make their organization into
repositories of reusable artifacts effective [CR00]. One possible approach is to derive useful
keywords from the descriptions of requirements. However, the identification of important
terms in a description written in natural language is not an easy task for computer systems
as this process needs knowledge about the domain and the context in which these terms are
used. Fortunately, this kind of needed knowledge is possessed by stakeholders working on
the requirements definition. Therefore, a semi-automatized approach helping stakeholders
defining keywords for requirements in a central repository appears to be promising. With
this support the retrieval of useful requirements can be improved and will, as a consequence,
increase the reuse of requirements.

(Q2.4) How to increase the reuse of requirements in software projects?

6

1.1 Research Objectives

Preference decisions deal with the prioritization of requirements and the succeeding defini-
tion whether a requirement should be considered for the next release or not. This process
is of exceptional importance as it is the only way to ensure the implementation of the most
important requirements in software projects which are confronted with resource limitations
[HL01][Wie99]. Properly prioritizing leads to significant benefits such as improved customer
satisfaction, lower risk of cancellation, force stakeholders to address all requirements and
not just their own, and systematically prioritize investments (e.g. allocate limited resources
for quality assurance only for the most important requirements) [Fir04]. However, finding
consensus between stakeholder preferences regarding the prioritization is a challenging
task as every stakeholder holds her / his own point of view towards the software project.
There are also psychological effects which influence the decision making process such as the
cognitive dissonance [Fes57], group polarization [ZCW92], and the primacy effect [Fel+07].
Consequently, it is necessary to introduce a tool-supported prioritization, for example, by
using recommendations based on stakeholder preferences, to reduce the influence from such
psychological effects [Wie99].

Preference decisions can be supported by the use of group recommendation technologies
which provide functionalities such as the visualization of preferences of other group members
and recommendations for group decisions. For the improvement of support functionalities in
CARE systems it is necessary to evaluate the impact of preference visibility on the quality of
the Requirements Engineering process. With this knowledge it is possible to define effective
visualization techniques for CARE systems to increase the quality of Requirements Engi-
neering processes.

To make effective use of recommendations in group decision making it is necessary to
identify group recommendation heuristics with high predictive quality (i.e. try to estimate
decisions based on the preferences of stakeholders). Consequently, an evaluation of different
group recommendation heuristics is needed in the context of requirements negotiation sce-
narios to provide the background for the development of useful recommendation strategies
for CARE systems.

(Q2.5) Does preference visibility influence the quality of the Requirements Engineering
process?
(Q2.6) What is the prediction quality of group recommendation heuristics in a Requirements
Engineering scenario?

7

1 Introduction

1.1.3 Human Computation

Although the capabilities of computer systems are vastly increasing, there are still tasks which
can only be accomplished by humans. For example, CAPTCHAs (Completely Automated
Public Turing Test to Tell Computers and Humans Apart) include tasks in which humans are
superior to a computer [Ahn05]. For example, the identification of pictures which contain
image distortions is still challenging for computer systems while humans can complete this
task more successfully. CAPTCHAs are used to discriminate between human users and bots
interacting with an interface [Ahn05]. However, Human Computation can be utilized to
gather useful input from human interaction. In the year 2005, von Ahn introduced the ESP
game with the purpose to label images found on the internet. The game was played by a total
of 13,630 people who generated 1,271,451 labels for 293,760 different images [Ahn05]. It is
notable that the only motivation for the players to participate in the game was having fun.
The resulting quality of the labels for the images outperformed algorithms in the field of
computer vision known at that time [Ahn05].

With the huge amount of information written in natural language during Requirements
Engineering processes, a text analysis is a prominent approach to support requirements
engineers during the task of defining complete and error-free requirement documents. How-
ever, text analysis struggles with some difficulties: first, words can have a different meaning
depending on the context they are used in. Second, there are important terms only used
within a company context and cannot be inferred from general purpose ontologies. Also,
having a database containing the vast amount of information necessary to achieve human-like
reasoning is implausible. For example, Marvin Minsky, a founder of AI, once estimated that
knowledge about 30 to 60 million things and the power to make analogies based on them
is necessary for commonsense reasoning [LS04]. Hence, integrating Human Computation
into the natural language process seems to be promising if it is possible to combine the
fast processing power of computer systems with the commonsense reasoning capabilities of
humans.

(Q3) How to use the idea of Human Computation to support Natural Language Processing
in the context of Requirements Engineering?

1.2 Contributions

The major contribution of this thesis is the improvement of Computer Aided Requirements
Engineering (CARE). In this context we investigate different aspects which can be supported

8

1.2 Contributions

by recommender technologies. Table 1.1 provides an overview of the research questions and
the corresponding contributions.

Table 1.1: Overview of the research questions and the corresponding contributions.

Research Questions Contributions
(Q1) How do recommenda-
tions and preference visibility
influence the perceived usabil-
ity and quality of decision sup-
port in Requirements Engineer-
ing environments?

To answer this research question we present the results of a
study [Fel+12]. We used our INTELLIREQ environment (see
Section 3.2) to support 293 software developers with the task
of defining a requirements set for development in a software
project. To identify the effect of group recommendation and
preference visibility we created different study groups with and
without visible preferences and / or group recommendations.
After the interaction with the system the study participants were
asked to fill out a questionnaire about the perceived usability
and the perceived quality of decision support of the used system.
We present the results of our evaluation in Section 3.3.3.

(Q2.1) How to increase stake-
holder interaction with require-
ments and release plans to im-
prove the quality of these arti-
facts?

To increase the interaction with requirements and release plans
with flaws in their specifications we introduced a traffic light
based guidance in our INTELLIREQ environment (see Section
6.3). With this technique we pointed stakeholders to, for exam-
ple, requirements which have not been visited from a certain
amount of stakeholders (defined by a threshold). We also used
this traffic light indicator for flaws in the release plan if the
assigned amount of requirements exceeded the available re-
sources or if there were not enough requirements assigned to
releases with more available resources. We evaluated the im-
pact of the traffic light based guidance in a study [Nin+14b] by
comparing user interaction during Requirements Engineering
tasks and present the results in Section 6.4.

9

1 Introduction

Table 1.1: Overview of the research questions and the corresponding contributions.

Research Questions Contributions
(Q2.2) How to increase stake-
holder communication about
property decisions?

To increase stakeholder communication, we introduced a meta-
data interaction interface in our INTELLIREQ environment (see
Section 6.3). Within this interface stakeholders were able to
assign properties to a requirement. To stimulate discussion be-
tween stakeholders we marked potential problems with a traffic
light annotation. For example, if there is a dissent between the
involved stakeholders about the implementation costs of a spe-
cific requirement, this event is marked with either a yellow or
red traffic light. In our notion, a slight dissent was marked with
yellow, while a larger dissent was marked with a red light. For
evaluation purposes, we conducted a study [Nin+14b] where
participants were asked to define a requirements document by
using our system. In this study we investigated the impact of
the extended user guidance with traffic lights on the efficiency
of the requirements engineering task; we present our results in
this thesis.

(Q2.3) How to identify candi-
dates for dependency relations
between requirement descrip-
tions?

To generate a recommendation of dependency candidates we
developed an approach based on the lexical resource OpenThe-
saurus1 and present it in Section 4.4.2. For evaluation purposes
we generated a test set of 30 different requirements and used
our recommendation technique to calculate a set of candidates
for dependencies. In a study we conducted at our university,
participants were asked to evaluate the quality of these rec-
ommendations; related results of the study are presented in
Section 4.4.2.

1http://www.openthesaurus.de

10

1.2 Contributions

Table 1.1: Overview of the research questions and the corresponding contributions.

Research Questions Contributions
(Q2.4) How to increase the
reuse of requirements in soft-
ware projects?

To evaluate the possibility to increase the reuse of require-
ments we conducted a study [Nin+14a]. The participants were
confronted with the task to generate a requirements set for a
software application. To provide the possibility for reuse we
created a central storage (repository) for requirements which
was accessibly by all teams within a study group. Hence, partic-
ipants first tried to identify candidates for reuse in the repository.
If their search was without success, the participants created a
new requirement which was automatically stored into the cen-
tral storage. For browsing through the requirements repository
the participants could select a specific keyword from a given
list and received all connected requirements for the specific
keyword. For our evaluation we used two study groups: one
was supported by our keyword recommender which proposed
candidate terms for the annotation of requirements based on
the description provided during the creation process of the
requirements. The second group was not supported by the
keyword recommender but there was also the possibility to
browse through an own repository generated for the second
study group to find requirements for reuse. In this thesis we
present our evaluation of the results (see Section 4.5).

(Q2.5) Does preference visibil-
ity influence the quality of the
Requirements Engineering pro-
cess?

For the evaluation of the influence of preference visibility
we evaluated the development process of 39 software teams
[NFR12]. In this study, software development teams had to
create a requirements document for a software application. In
a succeeding step these teams had to implement all defined re-
quirements. For our evaluation we divided the software teams
into two study groups. In the first group, participating teams
could see the real name of team members associated to their
preferences for requirements. In the second group, real names
were replaced by placeholders like user 1 or user 2. To identify
the impact of visible real names associated to preferences of
team members we evaluated the quality of the final software
products programmed by the different teams and present the
results in Section 5.3.

11

1 Introduction

Table 1.1: Overview of the research questions and the corresponding contributions.

Research Questions Contributions
(Q2.6) What is the prediction
quality of group recommenda-
tion heuristics in a Require-
ments Engineering scenario?

For the evaluation of the prediction quality we used a data set
collected during our study [Nin12]. This data set consisted of
preferences of team members and the corresponding decisions
taken by the teams. In a first step, we used already well known
decision heuristics to calculate predictions for these decisions
based on the team member preferences. In a next step we
created three new heuristics: Median Based, Ensemble Based,
and Standard Deviation Based. These new heuristics were
compared to the existing heuristics with regard to prediction
quality (see Section 5.4).

(Q3) How to use the idea of
Human Computation to sup-
port Natural Language Process-
ing in the context of Require-
ments Engineering?

In Chapter 7 we discuss ideas on how to adopt the games origi-
nally presented by von Ahn [Ahn05] to fit into a Requirements
Engineering process. We therefore focus on two main problem
areas – unrecognized ambiguity and the need to define relations
between terms in an area of interest during the interpretation of
requirement descriptions. To cope with unrecognized ambigu-
ity we present a modified version of the ESP game introduced
by [Ahn05]. We describe necessary alterations to the game due
to the different task and context. For the definition of relations
of objects we propose a game to identify relations. The imple-
mentation and evaluation of these ideas is not part of this thesis
but should inspire future work.

1.3 Thesis Outline

In this thesis, related and future work are included in the specific chapters. This thesis consists
of eight chapters, which are organized as follows:

Chapter 1 introduces the motivation and research objectives of this thesis. Finally, an
overview of the structure of this thesis concludes the chapter.

Chapter 2 gives a detailed overview of Recommender Systems in Requirements Engineering.
In Section 2.2 we discuss existing research dedicated to the application of recommendation
technologies in Requirements Engineering. Section 2.3 is dedicated to potential basic appli-
cation scenarios in which recommendation technologies can be exploited. In Section 2.4 we

12

1.3 Thesis Outline

discuss issues for further research based on our analysis.

Chapter 3 analyzes the impact of applying group recommendation technologies to im-
prove the quality of decision processes in the context of requirements negotiation which is
the process of resolving existing conflicts between stakeholder preferences and deciding
which requirements should be implemented. In Section 3.2 we describe the software platform
used for our study. This section also includes hypotheses and results of the conducted study.
In Section 3.4 we summarize related work.

Chapter 4 is about recommending requirements for reuse and detecting dependency can-
didates between requirements. In Section 4.2 we give a brief overview of document rep-
resentation, word senses, and domain knowledge. Section 4.3 gives a short overview of
INTELLIREQ and the used lexical resource. In Section 4.4 we introduce two content-based
recommendation techniques and present the conducted study with related results.

Chapter 5 summarizes our work done in the field of recommending prioritizations of re-
quirements. In Section 5.2 we introduce the study settings used for our evaluation. In Section
5.3 we discuss anonymous preference elicitation. In this context we investigate the influence
of anonymous preferences on different dimensions such as the consensus in project teams,
decision diversity, and the overall output quality of software projects. In Section 5.4 we
compare well known group decision heuristics with decisions of software development teams.
We also introduce three new heuristics and compare them with state of the art heuristics.

Chapter 6 covers our final version of the INTELLIREQ prototype. In Section 6.2 we discuss
recommendation techniques used in the INTELLIREQ prototype. Section 6.3 introduces the
user interface of INTELLIREQ. We describe our traffic light annotation and introduce the
dependency view. Section 6.4 shows the benefits of our implementation and presents the
results of our evaluation of the INTELLIREQ prototype. In Section 6.5 we focus on topics for
future work related to recommender systems in the context of INTELLIREQ.

Chapter 7 introduces ideas for the usage of Human Computation to enhance the Require-
ments Engineering process. In Section 7.1 we discuss the problem of unrecognized ambiguity
and introduce an altered version of the ESP game originally introduced by Ahn [Ahn05].
In Section 7.2 we discuss another game variant to identify relations between objects in a
specific area of interest.

Chapter 8 concludes this thesis. We reflect on our research questions and contributions.

13

2 Overview of Recommender Systems
in Requirements Engineering

This chapter is based on the work published in [Fel+13]. The author of this thesis contributed
an in-depth literature analysis and wrote major parts of the above mentioned paper.

2.1 Introduction

Core activities of a Requirements Engineering process are elicitation & definition, qual-
ity assurance, negotiation, and release planning [Som11]. Due to the increasing size and
complexity of software systems, we can observe a growing demand for intelligent meth-
ods, techniques, and tools that can help to improve the overall quality of Requirements
Engineering processes [MC11][Fel+10b][MT09]. In this chapter we focus on the aspect of
how different types of recommendation technologies [BFG11] can be applied to support
stakeholders in the completion of their Requirements Engineering tasks.

Recommender systems are intensively applied for the purpose of recommending products
and services such as movies, books, digital cameras, and financial services. A recommender
system can be defined as any system that guides a user in a personalized way to interesting
or useful objects in a large space of possible options or that produces such objects as
output [Bur00][BFG11]. Such systems support users in the identification of relevant items in
situations where the amount and/or complexity of an assortment outstrips their capability to
survey it and to reach a decision [Bur02]. Low-involvement items such as movies and books
are often recommended by analyzing the preferences of users with a similar rating behavior.
The corresponding recommendation approach is collaborative filtering [Her+04] which is a
basic implementation of word-of-mouth promotion where purchase decisions are influenced
by the opinion of relatives and friends: if two users rated similar items in a similar fashion
in the past, a collaborative filtering based recommender systems would propose new items
to one customer that the other one has already rated positively. The online selling platform
amazon.com recommends items which have already been purchased by customers with a
rating behavior similar to that of the current customer [LSY03]. An alternative approach to the
recommendation of low-involvement items is content-based filtering [PB97]. It is an approach

15

2 Overview of Recommender Systems in Requirements Engineering

to information filtering where item features a user preferred in the past are exploited for
determining new recommendations. For example, if a customer of amazon.com bought books
related to the Linux operating system, similar books (related to Linux) will be proposed in
future recommendation sessions. High-involvement items such as digital cameras or financial
services are recommended on the basis of knowledge-based recommender applications where
predefined recommendation rules are exploited by the recommendation engine to determine
a set of candidate items [FB08]. Rating-based recommendation approaches are not applicable
to high-involvement items since such items are not purchased frequently and therefore no
up-to-date rating data is available.

Our major contributions in this chapter are the following. First, we provide an overview
of research related to the application of recommendation technologies in Requirements
Engineering. Second, we show in detail how different types of recommendation techniques
can be applied to proactively support users in different types of Requirements Engineering
scenarios. Third, we want to stimulate new ideas and research activities by discussing a
couple of issues for future work.

The remainder of this chapter is organized as follows. In Section 2.2 we provide an overview
of existing research on the application of recommendation technologies in Requirements
Engineering. In the following we discuss different application scenarios for recommendation
technologies with a focus on collaborative filtering [Kon+97], content-based filtering [PB97],
clustering [WF05], knowledge-based recommendation [Bur00][FB08], group-based recom-
mendation [Mas04], and social network analysis [Gol09] (Section 2.3). Relevant issues for
future research are discussed in Section 2.4. With Section 2.5 we conclude this chapter.

2.2 Research on Recommender Systems in Requirements
Engineering

In this section we discuss existing research dedicated to the application of recommendation
technologies in Requirements Engineering. Our discussion of related research is organized
along the typical activities in a Requirements Engineering process. In this context, we take
into account the activities of requirements elicitation & definition, quality assurance, and
negotiation & release planning. For each activity we discuss relevant application scenarios
for recommendation technologies identified in the literature. Table 2.1 provides an overview
of these scenarios. To provide further technical insights into the recommendation approaches
discussed in this chapter, we present examples of their application in Section 2.3.

16

2.2 Research on Recommender Systems in Requirements Engineering

Table 2.1: Overview of recommendation approaches for Requirements Engineering.

Activity Scenario Si Recommendation Approach

elicitation & recommending social network Lim et al. [LQF10]
definition stakeholders (S1) analysis

content-based Castro et al. [Cas+08]
filtering Cleland-Huang

et al. [MC11]
recommending content-based Dumitru et al. [Dum+11]
requirements (S2) filtering

social network Lim and
analysis Finkelstein [LF12]
collaborative Castro et al. [Cas+08]
filtering Cleland-Huang

et al. [MC11]
quality managing clustering Cleland-Huang
assurance feature et al. [Cle+09]

requests (S3) machine Fitzgerald et al. [FLF11]
learning

consistency knowledge-based Felfernig et al. [Fel+10a]
management (S4) recommendation
dependency clustering Cleland-Huang
detection (S5) et al. [Cle+09]

negotiation & triage (S6) clustering Duan et al. [Dua+09]
planning utility theory

release group Felfernig et al. [Fel+12]
planning (S7) recommendation

utility theory

17

2 Overview of Recommender Systems in Requirements Engineering

2.2.1 Requirements Elicitation & Definition

Requirements elicitation & definition focuses on the collection of requirements from different
stakeholders. Typical resulting artifacts are, for example, textual requirement descriptions,
scenario descriptions, use cases, and sketches of prototypical user interfaces. The follow-
ing recommendation approaches support activities related to requirements elicitation &
definition.

Recommending Stakeholders (S1). This is an important task in the early phases of a Require-
ments Engineering process since, for example, a low degree of user involvement in most
cases leads to project failure [LQF10]. The major goal of stakeholder identification is to iden-
tify a set of persons who are capable of providing a complete and accurate description of the
software requirements. Identifying a set of authorized, collaborative, responsible, committed,
and knowledgeable stakeholders is an important and challenging task [MC11][LQF10]. A
common mistake is that wrong representatives of groups are integrated into a project or that
important stakeholders are simply omitted.

StakeNet [LQF10] is an approach to stakeholder identification which is based on the concepts
of social network analysis [Gol09][MKD07]. In StakeNet, an initial set of stakeholders and
recommendation information provided by these stakeholders is applied for the construction
of a social network (SN). The included nodes represent the stakeholders and connections
between nodes represent recommendations articulated by the stakeholders, i.e., if stakeholder
si recommends stakeholders s j with a certain rating then this information is included in the
corresponding social network. This process of stakeholder recommendation is repeated in
order to exploit a kind of snowball effect. On the basis of the constructed social network,
different SN analysis techniques are exploited for stakeholder prioritization. An example of
such an analysis approach is betweenness centrality which measures for a specific stakeholder
si the number of shortest paths between other stakeholders in which s j is contained. A high
value of this measure indicates a person’s capability of acting as a broker between different
groups of stakeholders.

Especially in large-scale and distributed software projects it is infeasible to organize personal
meetings on a regular basis. In such scenarios requirements are often defined in Wiki-based
forums which are receptive to the problems of information overload, redundancy, incom-
pleteness of information, and diverging opinions of different stakeholders. In their approach
to improve the stakeholder support in ultra-large-scale software systems development (ULS
software systems), Cleland-Huang et al. [MC11] and Castro-Herrera et al. [Cas+08] show
how to exploit clustering techniques for grouping user requirements and in the following to
assign (recommend) stakeholders to clusters on the basis of content-based filtering [PB97].
One major motivation for such an assignment of stakeholders to requirement clusters is to

18

2.2 Research on Recommender Systems in Requirements Engineering

achieve a representative coverage, i.e., each requirement should be discussed and evaluated
by a sufficient number of stakeholders.

Recommending Requirements (S2). A systematic reuse of already existing software require-
ments has the potential of significantly reducing the overall costs of a software project.
A recommendation-based approach to requirements reuse is presented by Dumitru et al.
[Dum+11]. The basic idea is to analyze requirements which are accessible in software
project repositories and to apply clustering techniques for the intelligent grouping of such
requirements. The identified requirement groups can be analyzed in future software projects
for the purpose of reuse and also for the purpose of completeness checking (are all relevant
requirements contained in the current requirements model). The proposed recommendation
approach is content-based filtering, where a vector of keywords (derived from the description
of the new software project) is matched with the keywords extracted from requirements
artifacts from the repository of already completed software projects.

Lim and Finkelstein [LF12] introduce the StakeRare approach which supports the identifica-
tion and reuse of requirements. StakeRare [LF12] is based on the aforementioned StakeNet
approach [LQF10]. In StakeRare stakeholders are rating initial sets of requirements. Addi-
tional (new) requirements currently not contained in the list are then recommended using
the concepts of collaborative filtering [Kon+97]. On the basis of the rating information
(weighted with the stakeholders weight (influence) in the current project) requirements are
prioritized.

Similar to their approach of recommending (assigning) stakeholders to requirement clusters
(topics), the approaches discussed in Cleland-Huang et al. [MC11] and Castro-Herrera et al.
[Cas+08] also support the recommendation of requirements to stakeholders, for example,
based on the concepts of collaborative filtering. A major motivation for the application
of collaborative filtering in this scenario was to achieve serendipity effects which help to
increase requirements quality (stakeholders receiving recommendations regarding require-
ments they are interested in, have a higher probability of analyzing these requirements).
Another motivation for the application of collaborative filtering is to improve requirement
model understanding since it generates personalized navigation paths for stakeholders.

2.2.2 Quality Assurance

A set of requirements has to be evaluated regarding properties such as consistency (require-
ments are not contradictory), completeness (all relevant requirements should be part of
the requirements model), feasibility (technical feasibility as well as economic feasibility),
understandability (does the description fulfill the quality standards), and reusability (are the

19

2 Overview of Recommender Systems in Requirements Engineering

requirements reusable in future projects). Currently, recommenders are applied to support
the following quality assurance scenarios.

Managing Feature Requests (S3). The major goal of feature request management is to support
the effective management of large sets of software features. Unstructured request management
can lead to suboptimal communication between stakeholders and to the selection of irrelevant
features [MC11]. An approach to support effective feature management has been introduced
by Cleland-Huang et al. [Cle+09] where clusters of similar requirements are exploited
for the identification of redundancies and the prioritization of feature requests. Fitzgerald
et al. [FLF11] introduce an approach to feature request management which is based on
the idea of predicting software failures (e.g., abandoned implementation of a feature) by
analyzing the communication threads in feature management systems. Their approach to
failure identification is based on the idea of applying different machine learning techniques
for the construction of a prediction model for failures. The basis for learning this prediction
model are logged feature requests and their related positive or negative outcomes. Prediction
models are derived on the basis of parameters that are assumed to be important for specifying
the quality of a feature request, for example, involvement of the right stakeholders or sufficient
engagement of stakeholders in terms of contributing to a feature-related discussion thread.

Consistency Management (S4). Inconsistencies between requirements are resulting from
factors such as not enough time for consistency checking, different perceptions and goals, or
different granularity of knowledge [IR04]. Especially for informally defined requirements the
complete automation of consistency management is unrealistic [IR04] but semi-automated
tools help to keep the efforts acceptable. Assuming the existence of a formal description of
the requirements model (on the basis of a constraint satisfaction problem [Tsa93]) and the
stakeholder preferences (priorities) regarding the defined set of requirements, Felfernig et
al. [Fel+10a] introduce an approach to the automated diagnosis of inconsistent requirement
models and inconsistent stakeholder preferences. In this context, a diagnosis is interpreted
as a minimal set of stakeholder preferences (or requirements) that have to be adapted or
deleted in order to restore consistency. A detailed introduction to the concepts of model-based
diagnosis can be found, for example, in the work of Reiter [Rei87].

Dependency Detection (S5). Due to the fact that requirements are often represented on an
informal level, the analysis regarding properties such as model consistency and completeness
are challenging. Relationships between requirements are typically expressed in terms of
dependencies (e.g., requirement A requires requirement B or requirement A is incompatible
with requirement B) which are defined by stakeholders. Recommender systems allow the pro-
vision of additional information which proactively supports stakeholders in the identification
of dependencies. Dependency detection between requirements can be based, for example,
on clustering techniques where requirements are grouped into clusters of similar topics
(see, for example, Cleland-Huang et al. [Cle+09]). The basic underlying assumption is that

20

2.2 Research on Recommender Systems in Requirements Engineering

requirements which are assigned to the same cluster are depending on each other. Although
helpful, this approach does not result in a complete specification of the type of dependency
but serves as a basis for a further analysis by stakeholders. Some preliminary work regarding
requirements and inconsistency discovery and classification in Open Source Software Devel-
opment (OSSD) which is based on the methods of Natural Language Processing (NLP) is
presented by Fantechi and Spinicci [FS05].

2.2.3 Requirements Negotiation & Release Planning

Requirements negotiation is the process of identifying conflicts between stakeholder pref-
erences and to facilitate efficient stakeholder decision making regarding priorities and
acceptance (this process is also denoted as requirements triage). The major goal of release
planning is the development of a schedule which specifies in which development (release)
period which requirement should be implemented [REP03].

Requirements Triage (S6). Restrictions regarding the available resources (e.g., budget and
employees) and defined deadlines for the completion of a software system in many cases
require decisions regarding the set of requirements which should be implemented. Require-
ments have to be prioritized in order to take aside unimportant requirements and to support
project managers in conflict resolution and making tradeoffs. Prioritization of requirements
is an often complex and iterative communication and decision process [AW03] which has to
take into account different soft factors such as company policies, personal preferences, and
social relationships between stakeholders. The term requirements triage stems from medical
decision making [Dav03]. In disaster scenarios victims are categorized into three types:
those who will die (independent of the medication), those who will survive (independent of
the medication), and those whose survival depends on the given medication. Requirements
prioritization has to deal with a similar task: identify the requirements which must not be
included in the next release, requirements that are optional for the next release, and the
requirements that must be included in the next release.

The lack of efficient triage processes in large software projects with hundreds of stake-
holders and thousands of (sometimes conflicting) requirements lead to the development
of intelligent technologies supporting the semi-automated requirements prioritization. The
approach presented by Duan et al. [Dua+09] focuses on the generation of clusters which
are derived from different clustering criteria. The weight of different clustering criteria is
specified by stakeholders and an initial prioritization is generated on the basis of a utility
function. This utility function is based on the number of clusters a requirement is included in
and the weights of these clusters.

21

2 Overview of Recommender Systems in Requirements Engineering

Recommendation of Release Plans (S7). Ruhe et al. [RS05] introduce an approach to release
planning that is based on the concept of linear programming [Sch98]. The basic idea is to
define a linear program that should calculate a sequence of assignments of features to a corre-
sponding release taking into account the dependencies between the different features. Ruhe
et al. [REP03] show how to apply AHP (Analytical Hierarchy Process) for determining a set
of preferred requirements. Felfernig et al. [Fel+09][Fel+10a] extend the work of Ruhe et al.
[REP03] by introducing automated diagnosis and repair mechanisms which effectively help
to figure out minimal sets of acceptable changes in situations where release plan preferences
of stakeholders become inconsistent.

These are important contributions to improve the quality of requirements selection but
depend on the assumption that stakeholders know their preferences and that preferences
remain stable. Traditional models of human decision-making are based on the assumption
that humans are taking decisions on the basis of rational thinking [McF99]. Following these
models, a human would take the optimal decision following a formal evaluation process. One
major assumption is that preferences remain consistent and unchangeable. In contradiction
to these models, research has clearly pointed out the fact that preference stability in decision
processes does not exist, and can also be easily manipulated [BJP98]. A customer who wants
to purchase a digital camera could first define a strict upper limit for the price. But due to
additional technical information about the camera the customer could change her/his mind
and significantly increase the upper limit of the price. This typical example of preference
reversal [LS06] indicates the non-existence of stable preferences. Instead, the model of pref-
erence construction [BJP98] should be used, in which decision making processes are more
characterized by a process of iterative refinement and adaptation of the current preferences in
the face of new alternatives and as well in the face of opinions of other users that are visible
to the decision maker.

The idea of applying group decision making techniques in Requirements Engineering is to
exploit basic decision heuristics [Mas11] such as majority voting (the decision is taken con-
form to the majority of the votes of the engaged stakeholders) or the fairness heuristic which
guarantees that none of the stakeholders will be disadvantaged in the group decision process.
Group decision heuristics already play an important role in application scenarios outside
software engineering [Mas11]. Felfernig et al. [Fel+12] applied group decision heuristics in
the context of Requirements Engineering scenarios. They introduce the INTELLIREQ envi-
ronment which can be used for supporting group decision process in distributed settings (e.g.,
open source platforms or large and distributed software projects). The authors present the
results of an empirical study which show that group recommendation technologies can help
to improve the perceived quality of decision support. A further insight was that stakeholders
should not be confronted with the preferences of other group members at the beginning

22

2.3 Recommendation Techniques for Requirements Engineering

of prioritization – the reason is that knowledge about preferences automatically triggers
insufficient information exchange between group members.

2.3 Recommendation Techniques for Requirements
Engineering

In order to show how recommendation technologies can be exploited in the Requirements
Engineering context, we will now introduce basic application scenarios. These scenarios
should help to develop an understanding of potential applications of recommendation tech-
nologies and show how different recommendation approaches have to be tailored in order
to be applicable. Note that we interpret recommendation technologies as key supportive
technologies; we do not claim that information gaps in general can be closed by the applica-
tion of recommendation technologies. Information does not substitute communication, i.e.,
effective Requirements Engineering processes still heavily rely on personal stakeholder inter-
action. Furthermore, the quality of recommendations depends on the quality of information
provided by stakeholders, i.e., the successful application of recommendation technologies
is only possible on the basis of motivated and proactive stakeholders. Finally, successful
Requirements Engineering strongly depends on process quality, which can not be achieved
and guaranteed only by the application of recommendation technologies. In the following
we discuss basic Requirements Engineering application scenarios for the major types of
recommendation technologies which are content-based filtering (CBF) [PB97], clustering
[WF05], collaborative filtering (CF) [Kon+97], group recommendation (GR) [JBK04], social
network analysis [Gol09], and knowledge-based recommendation (KBR) [Bur00][FB08].

Content-based Filtering. Content-based filtering (CBF) [PB97] exploits the similarities
between the preferences of the current user and descriptions of items the user did not
notice up to now. User preferences can be, for example, represented by frequent keywords
extracted from artifacts previously processed by the user. Another alternative are predefined
categories assigned to items as meta-information. Typical recommendations derived by CBF
recommenders are of the form item C is recommended since you were also interested in item
A (which is similar to item C).

When defining requirements, a recommender can support stakeholders, for example, by indi-
cating similar requirements or point out requirements already defined in previous projects. Let
us assume, the active stakeholder (s1) has already investigated the requirement r1 which has
the assigned category database (see Table 2.2). Now, CBF would recommend requirement r3

if r3 has not been investigated up to now by the active stakeholder. If no such categorization of
requirements is available, the detailed textual description of requirements can as well be used:
keywords have to be extracted [MR00] and the determination of similar requirements can

23

2 Overview of Recommender Systems in Requirements Engineering

Table 2.2: Example of a content-based filtering recommendation problem.

requirement category planned efforts description
release (person days)

r1 database 1 150 store component
configuration in DB

r2 user interface 2 60 user interface with
online help available

r3 database 1 300 separate tier for
DB independence

r4 user interface 1 30 user interface with
corporate identity

then be based on the similarity of the extracted keywords – a simple corresponding similarity
metric is shown in Formula 2.1.1 For example, sim(r1, r3) = 0.17, if we assume keywords(r1)
= {store, component, configuration, DB} and keywords(r3) = {tier, DB, independence}.

sim(s,r) =
|keywords(s)∩ keywords(r)|
|keywords(s)∪ keywords(r)|

(2.1)

k-Means Clustering. A basic method for determining clusters is k-means clustering [CO90]
where k specifies the number of clusters being sought. In the initial iteration two requirements
can be chosen as cluster centers and the other requirements are assigned to their closest cluster.
Different distance metrics can be applied [WF05] – for the purposes of our example we apply
the similarity between keywords (see Table 2.3) extracted from the textual description of
our example requirements ({r1,r2,r3,r4} in Table 2.2). Thereafter the centroid (mean) per
cluster is determined for each cluster and an assignment of requirements to clusters takes
place again. For our example we assume that after one step the two clusters c1:{r1,r3} and
c2:{r2,r4} have been identified where sim(r1,r3) = 0.17 and sim(r2,r4) = 0.5.

Collaborative Filtering. Collaborative filtering (CF) [Kon+97] is perhaps the most widespread
recommendation approach where information about the rating behavior of nearest neighbors
(i.e., users with similar ratings compared to the current user) is exploited for predicting the
current user’s ratings for items not known to her/him yet. Typical recommendations derived

1Note that the parameter s in Formula 2.1 represents a user profile; however, this approach can as well be
applied to calculate the similarities between different requirements, i.e., sim(ri,r j).

24

2.3 Recommendation Techniques for Requirements Engineering

Table 2.3: Keywords extracted from the textual requirement descriptions in Table 2.2.

requirement extracted keywords

r1 store component configuration DB
r2 user interface help
r3 tier DB independence
r4 user interface corporate

by CF recommenders are of the form users who were interested in item A were also interested
in item C.

Table 2.4: Example of a collaborative recommendation problem. A table entry ij with value 1 (0) denotes that
fact that stakeholder si has (has not) inspected the requirement r j.

r1 r2 r3 r4

s1 1 0 1 0
s2 1 0 1 1
s3 1 1 0 1

When stakeholders try to understand a given set of requirements (e.g., new stakeholders in
the project), recommender systems can provide support in terms of showing related artifacts
or showing those artifacts stakeholders have investigated when working on the current or a
similar requirement. In the setting of Table 2.4 the requirements {r1, r2, r3, r4} have already
partially been investigated by the stakeholders {s1, s2, s3}. For example, stakeholder s1 has
already investigated the requirements r1 and r3. The main idea of collaborative filtering (CF)
is to exploit user ratings (in our context the rating = 1 if a stakeholder has already investigated
a certain requirement and the rating = 0 if the stakeholder did not investigate the requirement
up to now) in order to identify additional requirements the stakeholder may be interested
in. User-based CF is a basic variant which is often used in industrial contexts [Kon+97].
User-based CF tries to identify the k-nearest neighbors (stakeholders interested in a similar
set of requirements) of the current user (stakeholder) and calculates a prediction for the rating
of an item the stakeholder has not investigated up to now. Such a rating can be defined, for
example, as the weighted majority of the k-nearest neighbors. In our example, stakeholder
s2 can be identified as the nearest neighbor (if we set k=1) since s2 has investigated all the
requirements investigated by stakeholder s1. Vice versa, stakeholder s1 did not investigate
the requirement r4 up to now – in this context, collaborative filtering would recommend

25

2 Overview of Recommender Systems in Requirements Engineering

requirement r4 to stakeholder s1 since the nearest neighbor of s1 has already viewed r4.

Group Recommendation. The major goal of group recommendation (GR) technologies
[JBK04] is to support/achieve consensus among group members. GR can support groups in
their decision process by taking into account the fact that individual decisions depend on
various factors, such as own evaluation of a solution alternative, beliefs about the opinions
of group members, and information about the individual motivation (e.g., egocentric or
cooperative motivation [JBK04]). GR includes heuristics that can be exploited for identifying
solution alternatives that are (with a high probability) accepted by all or at least the majority
of group members. Typical recommendations derived by group recommenders are of the
form this recommendation tries to take into account the preferences of all group members.

Requirements evaluation & negotiation have a clear need of group decision support: a group
of stakeholders has to decide about the quality of individual requirements and in the following
to figure out which requirements should be accepted without a change. Let us assume that
the requirement r has to be evaluated by the stakeholders {s1, s2, s3, s4} – the individual
evaluations of r are depicted in Table 2.5.

Table 2.5: Example of a decision problem: deciding about the group evaluation of requirement r.

requirement: r s1 s2 s3 s4

quality medium medium medium high
effort (person days) 10 7 14 8

decision accept revision accept accept

In this context, group recommendation concepts can be applied which propose alternatives
to be further evaluated by the group. Different strategies for determining such a group
recommendation are possible [Mas04], for example, the least-misery strategy would propose
evaluations that are stable in the sense that none of the evaluation dimensions has been
over-estimated (or under-estimated, for example, in the case of person days). Applying this
strategy in our context would mean to propose the evaluation (quality = medium, effort = 14,
decision = revision) as first alternative for the overall group decision. On the basis of this and
further proposals each individual stakeholder enters the next review round with the goal to
achieve (if possible) a consensus regarding the evaluation. A detailed discussion of further
strategies for determining group recommendations can be found in Masthoff [Mas04].

Social Network Analysis. With the concepts of Social Network Analysis different proper-
ties of a network of stakeholders engaged in a Requirements Engineering process can be
identified. In order to sketch the analysis of betweenness centrality of stakeholders, we

26

2.3 Recommendation Techniques for Requirements Engineering

s1 s2

s3

s1

s4s3

s1

s4

??
??

??
??

?

s3

s5 ?????????

Figure 2.1: Example Social Network (SN) derived from communication patterns of Table 2.6.

introduce the communication patterns between the stakeholders {s1,s2,s3,s4,s5} in Table
2.6. For simplicity, we assume that each discussion thread (related to one requirement)
includes at most four comments and stakeholder si is connected to stakeholder s j in a social
network (see Figure 2.1) if both are in at least one common discussion thread. Betweenness
centrality measures for each stakeholder si the number of shortest paths between pairs of
other stakeholders s j (si 6= s j) in which si is included. Table 2.7 depicts the results of the
betweenness centrality evaluation in our working example; the stakeholders s1 and s3 have a
centrality measure of 3.0 (both are part of 3 shortest paths between stakeholders s j (s j 6= si))
whereas the other ones have a betweenness centrality of 0.0. Betweenness centrality reflects
the role of a person in communication processes (maybe also related to certain topics). As
such, this measure can be exploited as a first basic selection criteria for stakeholders who
should participate in a project.

The measure reflects the number of people to whom a person is connecting indirectly through
their direct links

Table 2.6: Communication patterns (e.g., in a discussion forum) between stakeholders {s1,s2,s3,s4,s5} regarding
requirements {r1,r2,r3,r4}.

requirement: r comment 1 comment 2 comment 3 comment 4

r1 s1 s2 s1 s2

r2 s3 s4 s1 s3

r3 s3 s5 s3 s5

r4 s3 s1 s3 s1

Knowledge-based Recommendation. Knowledge-based recommendation (KBR) [Bur00][FB08]
exploits formal knowledge about the offered item assortment, knowledge about user pref-
erences, and knowledge about which items should be recommended in which context. The
explicit form of knowledge representation in terms of rules (constraints) allows the generation

27

2 Overview of Recommender Systems in Requirements Engineering

Table 2.7: Betweenness Centrality values for stakeholders {s1,s2,s3,s4,s5}. For example, stakeholder s1 has
a betweenness centrality of 3 since he/she is included in 3 shortest paths between stakeholders s j

(s j 6= si); these shortest paths are: {s2− s3, s2− s4, s2− s5}.

stakeholder shortest paths between s j betweenness centrality

s1 s2− s3, s2− s4, s2− s5 3.0
s2 − 0.0
s3 s1− s5, s2− s5, s4− s5 3.0
s4 − 0.0
s5 − 0.0

of deep explanations as to why a certain item has been recommended or why no solution
exists in a certain recommendation context [Fel+09]. Typical recommendations derived by
KBR are of the form you specified the item properties I={x,y,z} therefore we recommend C
which supports all the properties of I.

Knowledge-based recommendation technologies can support consistency management as
well as intelligent explanations in situations where no release plan can be identified due to
contradicting stakeholder preferences [Fel+09][Fel+10a]. Table 2.8 depicts a set of require-
ments R={r1,r2,r3,r4} and a set of stakeholders S={s1,s2,s3}. For each requirement ri ∈ R
each stakeholder specifies her/his preferences which can be 1 (include) or 0 (exclude), for
example, c12=1 denotes the fact that stakeholder s1 wants to include requirement r2 in the
next software release. The set of stakeholder preferences is denoted as C=∪ci j. Inclusion and
exclusion are example constraints (preferences). Further types of constraints are possible
(see, e.g., the Requirements Engineering ontology proposed by Lohmann et al. [LRA08])
but not used in this example. For the preferences shown in Table 2.4 no solution exists, that
is, the stakeholder preferences are inconsistent (Tables 2.9 and 2.10).

Table 2.8: Example of inconsistent stakeholder preferences: each table entry represents a constraint ci j, where
ci j = 1 (0) denotes the fact that stakeholder i wants to include (exclude) requirement j.

s1 s2 s3

r1 1 1 1
r2 1 0 1
r3 0 0 1
r4 1 1 1

28

2.3 Recommendation Techniques for Requirements Engineering

Table 2.9: Example importance values for the stakeholder preferences shown in Table 2.8.

s1 s2 s3

r1 imp(c11)=0.5 imp(c21)=0.3 imp(c31)=0.4
r2 imp(c12)=0.2 imp(c22)=0.3 imp(c32)=0.2
r3 imp(c13)=0.2 imp(c23)=0.2 imp(c33)=0.2
r4 imp(c14)=0.1 imp(c24)=0.2 imp(c34)=0.2

Table 2.10: Utility values of repair actions {repc1, repc2, repc3, repc4}.

repck∈REPc utility(repck)

repc1 2
repc2 1.42
repc3 1.66
repc4 1.25

The first step to resolve this inconsistency is to figure out combinations of constraints
(preferences) that are causes for the inconsistency, for example, the stakeholder preference
c12 is inconsistent with the preference c22. The complete set of such (minimal [Jun04])
inconsistencies is CON = {con1:{c12, c22}, con2:{c22, c32}, con3:{c13, c33}, con4:{c23,
c33}}. Such sets can be determined using the algorithm presented by Junker [Jun04]. We can
now determine all possible repairs for the given set C of stakeholder preferences by simply
deleting at least one element from each subset of CON (see [Rei87]). The possible repair
constraint sets repk for CON are elements of REP = {rep1:{c22, c33}, rep2:{c22, c13, c23},
rep3:{c12, c32, c33}, rep4:{c12, c32, c13, c23}} where a repair constraint set repk is defined as
a minimal set of stakeholder preferences (see [Fel+10a]) that have to be changed in order to
make the stakeholder preferences consistent.

For the given set REP we can identify the following set of concrete repair actions REPc=
{repc1:{c22=1, c33=0}, repc2:{c22=1, c13=1, c23=1}, repc3:{c12=0, c32=0, c33=0}, repc4:{c12=0,
c32=0, c13=1, c23=1}. REPc can now be considered as a set of alternative and minimal repairs
for the original set of stakeholder preferences such that consistency between the preferences
can be restored.

29

2 Overview of Recommender Systems in Requirements Engineering

2.4 Issues for Future Research for Recommendation
Technologies

Based on our analysis of existing research on the application of recommendation technologies
in the context of Requirements Engineering, we now focus on a discussion of relevant issues
for future research.

Decision Support & Preference Construction. Existing Requirements Engineering approaches
often rely on the assumption of stable stakeholder preferences (e.g., in the context of require-
ments negotiation). The assumption of stable preferences is not applicable for Requirements
Engineering scenarios, in fact, related decision making follows an incremental preference
construction process [FCM05][Fel+12]. In order to better integrate recommendation tech-
nologies into Requirements Engineering processes, we are in the need of deep knowledge
about human decision strategies. Such a knowledge will help us to improve the decision
support quality. The integration of human decision strategies into recommendation systems
research is a new and challenging field of research which requires a strongly interdisciplinary
research approach [Fel+12].

Recommendation Approaches. We exemplified how Requirements Engineering recommenda-
tion problems can be solved by conventional recommendation approaches. However, there
are other settings with complex inter-dependencies between requirements and a large number
of inconsistent stakeholder preferences. These settings require to adapt, combine, and extend
existing recommendation approaches. One possible direction is to adapt knowledge-based
recommendation functionality for group-based recommendation scenarios, for example,
critiquing-based recommendation approaches [BFG11] have to be extended to support dif-
ferent types of group-based recommendation and diagnosis functionalities (for determining
repair actions for inconsistent stakeholder preferences).

Quality of Recommendations. Stakeholders are often skeptical regarding a new form of
automated tool support. As a consequence, recommendation technologies will only succeed
if they deliver high quality recommendations. To this end, we have to design and conduct em-
pirical studies to (a) learn about stakeholder needs and (b) evaluate recommendation systems.
The goal is to figure out how existing recommendation approaches have to be adapted for
an optimal performance in Requirements Engineering scenarios. Empirical studies should
deliver grounded theories about the behavior of stakeholders in particular situations, which
are needed to train and optimize related recommendation algorithms.

Social Networks in Recommender Systems. The position of stakeholders in a social net-
work often has an enormous impact on Requirements Engineering related decision processes.

30

2.4 Issues for Future Research for Recommendation Technologies

Social network analysis is an important supportive technology for different types of recom-
menders. For example, collaborative filtering recommenders can exploit trust information
to improve the quality of item predictions. Group-based recommenders can exploit trust
information for determining group recommendations.

Semi-Automated Dependency Detection. Effective dependency management is crucial for
efficient Requirements Engineering processes. Existing recommendation support is focused
on the analysis of similarities between requirements (using, e.g., clustering and content-based
filtering methods). An important issue for future research is to make dependency detection
more intelligent in terms of making it possible to predict, for example, the type of dependency
(e.g., refinement or incompatibility dependency). Such new approaches can rely on concepts
from the areas of natural language processing [FS05] and text mining [WF05].

Requirements Discovery in Open Source Software Development. Open Source platforms
include different types of communication channels and types of communication. As a con-
sequence the filtering of requirement-relevant information is a challenge but a prerequisite
for improving the quality of recommendation support. An issue for future research is the
development of methods which allow to isolate requirement-relevant artifacts before recom-
mendation algorithms are applied.

Recommendation Beyond Textual Requirements. Existing Requirements Engineering recom-
mendation approaches focus on the analysis of textual requirements specifications which are
represented, for example, in a completely informal fashion or in terms of use case scenarios.
Future recommendation techniques for Requirements Engineering should be able to deal with
graphical data sources such as, for example, class diagrams, sequence diagrams, state charts,
as well as formal requirements specifications and system models. The inclusion and analysis
of such artifacts has the potential to improve the prediction quality of recommendation
algorithms and – as a consequence – also to improve the overall efficiency or Requirements
Engineering related processes.

Context Awareness. There are two basic recommendation modes: pull and push. Pull means
that stakeholders are actively triggering recommendation functionality when needed. Push
means that the recommender application pro-actively detects situations (contexts) in which a
stakeholder needs a particular support [HM08]. In order to deliver push recommendations,
the context of a stakeholder has to be observed and discovered [HM08]. An approach to
tackle this challenge is to continuously collect users’ context and reason about user needs.
Contextual recommendation is an emerging field [AM07] and will also play a major role in
the development of recommendation solutions for Requirements Engineering.

31

2 Overview of Recommender Systems in Requirements Engineering

2.5 Conclusions

Due to the increasing size and complexity of software systems as well as the growing share
of the degree of distributedness in software projects, recommendation technologies are
becoming more and more popular as an intelligent technology for Requirements Engineering.
In this chapter we focused on a discussion of existing research related to the application of
recommendation technologies in different Requirements Engineering scenarios. In order to
demonstrate the application of recommendation technologies we came up with examples
such as the analysis of social networks for stakeholder identification and the clustering of
requirements for the detection of dependencies. With our outlook on relevant topics for
future research we hope to stimulate fruitful further research focused on the development
and application of recommendation technologies in Requirements Engineering.

32

3 Human Factors in Requirements
Engineering

This chapter is based on the work published in [Fel+12]. The contributions of the author of
this thesis are the study design, an in-depth literature analysis, and the writing of parts of the
paper related user study.

3.1 Introduction

Requirements Engineering is considered as one of the most critical phases in software projects
[Poh96] and poorly implemented Requirements Engineering is a major risk for the failure
of a project [HL01]. Requirements themselves are a verbalization of decision alternatives
regarding the functionality and quality of the software [AW03]. Related individual as well as
group decisions are extremely difficult due to the increasing size of requirement models as
well as contradicting preferences of stakeholders [AP05][Cas+08].

In this chapter we analyze the impact of applying group recommendation technologies
[Mas11][JBK04] to improve the quality of decision processes in the context of requirements
negotiation which is the process of resolving existing conflicts between requirements and
deciding which requirements should be implemented. Functionalities often provided by
group recommenders are the visualization of the preferences of other group members, recom-
mendations for individual and group decisions, and recommendations for conflict resolutions
in the case of inconsistent stakeholder preferences [Mas11][JBK04]. Our motivation for
applying group recommendation technologies is to improve the usability and the quality of
decision support in Requirements Engineering environments (especially in the context of
requirements negotiation).

Note that decision models based on rational thinking [McF99] are not applicable in most
requirements negotiation scenarios since stakeholders do not exactly know their preferences
beforehand [AP05][BJP98]. Furthermore, preferences are not stable but rather change over
time which is an important aspect to be taken into account by requirements negotiation
environments [AP05][BJP98]. The group recommendation technologies discussed in this

33

3 Human Factors in Requirements Engineering

chapter are based on incremental preference elicitation [Bly02] and thus are key technologies
for preference construction [PC08].

For the purpose of supporting preference construction in requirements negotiation we have
developed the INTELLIREQ decision support environment. In our scenario, student teams
are allowed to configure the set of requirements that should be implemented in their software
project. Note that our goal was to develop recommendation technologies which can be
flexibly exploited in requirements negotiation; it is not our intention to replace existing
requirements negotiation approaches (see, e.g., [BGB01]) but to provide useful extensions.

The contribution of this chapter is the demonstration of the applicability of group recom-
mendation technologies in requirements negotiation. We show that group recommendation
technologies can be used to improve the perceived usability (in certain cases) and quality of
decision support.

The remainder of this chapter is organized as follows. In Section 3.2 we introduce the INTEL-
LIREQ environment which supports group decision processes for requirements negotiation.
In Section 3.3 we present our hypotheses defined for the empirical evaluation of INTELLIREQ

and discuss the corresponding study results. In Section 3.4 we discuss related work. The
chapter is concluded with Section 3.5.

3.2 Requirements Engineering Environment

3.2.1 Application Scenario

For this study we used an early prototype of INTELLIREQ as group decision environment
that supports computer science students at the Graz University of Technology in deciding
on which requirements should be implemented within the scope of their software projects.
Typically, a project team consists of 6–8 students who implement a software system with
an average effort of about 8 man months. At the beginning of a project, students have
to evaluate a set of requirements which have been defined by the course instructors and
to figure out which requirements they will implement within the scope of their project
(requirements negotiation phase). For example, the task could be the implementation of
a tourist recommender application – the corresponding decision alternatives are depicted
in Table 3.1. We will use this simple set of decision alternatives as a working example
throughout the chapter.

34

3.2 Requirements Engineering Environment

Table 3.1: Example decisions to be taken by the project teams – taken decisions are interpreted as agreement
between the project team and the course instructors. The fulfillment of the selected requirements is an
evaluation criteria.

ID Question Decision Alternatives

1 which application domain? 20 destinations in Austria;
world-wide

2 persistence management? relational databases; XML
Java objects

3 which type of user interface? text-based; Java Swing
Web application

4 recommendation algorithms? knowledge-based
collaborative & content-based

5 evaluation by whom? students of own university
other univ.; instructors

6 type of user manual? HTML-based
.pdf based

7 type of acceptance procedure? live-demo
slide presentation with screenshots

3.2.2 User Interface & Functionalities

Example screenshots of the INTELLIREQ user interface are depicted in Figures 3.1–3.3. With
the goal of supporting the achievement of a common group decision, the INTELLIREQ user
interface supports the following functionalities (the INTELLIREQ entry page is shown in
Figure 3.1):

• Each stakeholder is enabled to define, adapt, and store her/his preferences (add/change
personal preferences).
• Each stakeholder can comment on and discuss already defined preferences of other

users (show and comment on preferences of group members).
• Each group can view and discuss recommendations for group decisions determined on

the basis of already defined user preferences (show group recommendation).
• Define and store a group decision; this can only be done by the project manager (edit

current group decision).
• Each INTELLIREQ user can evaluate the application (evaluate INTELLIREQ); this user

feedback has been analyzed within the scope of an empirical study.

35

3 Human Factors in Requirements Engineering

Figure 3.1: Activities supported by the INTELLIREQ user interface. Each group member can define and adapt
his/her own preferences. These preferences can be seen and discussed by other group members. On
the basis of articulated user preferences and a system-determined group recommendation, the team
(represented by the project manager) can define and store the team (group) decision. Team decisions
can be reviewed and adapted later on (until the submission deadline for team decisions has passed).

Figure 3.2: INTELLIREQ preference specification: each group member articulates his/her own preferences and –
during this process – has insights into the preferences of other group members.

36

3.3 Empirical Study

Figure 3.3: INTELLIREQ group recommendation.

3.3 Empirical Study

In order to evaluate the provided INTELLIREQ functionalities, we conducted an empirical
study within the scope of the course Object-oriented Analysis & Design organized at the
Graz University of Technology. The major focus of this study was to analyze the impact of
group decision technologies on the dimensions usability of the system and quality of decision
support in the context of Requirements Engineering.

3.3.1 Study Design

For the purpose of the empirical study we provided the INTELLIREQ environment in four
versions. In order to analyze our hypotheses, we decided to implement a 2x2 study with
the variation points group recommendations available (yes/no) and preferences of other
users visible (yes/no) – these versions are shown in Table 3.2. Both, group recommenda-
tions and preference visibility, are key functionalities provided by state of the art group
recommendation environments [Mas11][JBK04]. On the basis of this empirical study we
wanted to investigate to which extent these functionalities are applicable within the scope of
requirements negotiation.

Table 3.2: The four used INTELLIREQ versions. Variation points: group recommendation supported (yes/no) and
preferences of other team members are visible (yes/no).

with recommendation without recommendation

preference view version 1 version 3
no preference view version 2 version 4

N=293 participants (computer science students at the Graz University of Technology, 23.1%
female and 76.9% male) selected their preferred requirements using the INTELLIREQ en-
vironment. The participants were randomly assigned to one of 56 different groups (the

37

3 Human Factors in Requirements Engineering

development teams) and defined (stored) 3733 individual preferences and 101 group de-
cisions. For each development team the last stored group decision was interpreted as the
final decision; after the published deadline no further adaptations of the taken decisions
were possible. After a user had successfully articulated her/his requirements, she/he had the
possibility to give feedback on the usability and the decision support quality of INTELLIREQ

(evaluate INTELLIREQ link in Figure 3.1) on a 10-point Likert scale.

3.3.2 Study Hypotheses

The empirical study is based on hypotheses derived from existing research in the ar-
eas of Requirements Engineering [AP05][BGB01; NE00], group recommender systems
[Mas11][JBK04][Fel+10b], and decision & social psychology [BJP98][Cia01][GS03][MS10].
The corresponding list of hypotheses is shown in Table 3.3.

Table 3.3: Hypotheses (H) for evaluating the group decision support environment.

H description

H1 group recommendations improve the
perceived system usability

H2 group recommendations improve the perceived
quality of decision support

H3 group recommendations trigger more
discussions

H4 preference visibility for all
deteriorates the perceived usability

H5 preference visibility for all deteriorates
perceived decision support quality

H6 preference visibility for all triggers
less preference adaptations

H7 preference visibility triggers a
decision bias

H8 winning strategy: use group recommendation but not
support preference visibility

H9 unconsidered preferences deteriorate
perceived usability & decision support quality

Group Recommendation (Hypotheses 1–3) Existing research in the field of recom-
mender systems [Mas11][JBK04][Fel+10b] points out the potential of group recommendation
technologies to significantly improve the quality of group decision processes. First we wanted

38

3.3 Empirical Study

to investigate the potential of group recommendation technologies to improve the quality of
the dimensions usability and decision support in a requirements negotiation scenario. With
Hypothesis 1 we express the assumption that recommendation technologies can improve
the overall system quality in terms of usability. Hypothesis 2 expresses the assumption
that recommendation technologies can help to improve the perceived quality of decision
support. Second we wanted to know whether the availability of group recommendations
has an influence on the frequency of applying discussion functionalities (Hypothesis 3) –
the underlying assumption is that the availability of group recommendations intensifies
discussions between group members. This phenomenon is well known and exploited by
critiquing-based recommenders where the system proposes recommendations and the user
can give feedback in terms of critiques [PC08]. Studies in social psychology show that
frequent information interchange can improve the decision quality [GS03][MS10].

Visible User Preferences (Hypotheses 4–7) Existing research in the field of group-
based recommendation points out the advantages of preference transparency in group decision
making [Mas11][JBK04]. In contrast, literature in social psychology points out the fact
that suboptimal outcomes of group decision processes are correlated with the visibility of
individual preferences of other group members [MS10][GS03]. The reason for groups not
being able to take optimal decisions (hidden-profile identification problem) is explained by
an insufficient exchange of decision-relevant information triggered by the initial disclosure of
individual preferences (focus shift from information interchange to preference comparison).
First we wanted to investigate whether the group-wide visibility of individual preferences
has an influence on the perceived usability and decision support quality (Hypotheses 4
and 5). Second we wanted to figure out whether the group-wide visibility of individual
preferences has an influence on the frequency of preference adaptation (Hypothesis 6). One
underlying assumption here is that persons follow the phenomenon of social proof [Cia01],
i.e., are doing or accepting things that others already did (accepted). The other underlying
assumption is that persons tend to stick with their current decision due to the phenomenon of
consistency[Cia01], i.e., the effect that published personal opinions are changed less often.
Third, a lower frequency of information exchange can lead to a different decision outcome
[GS03]. With Hypothesis 7 we wanted to investigate whether the group-wide visibility of
preferences can lead to a decision bias (the phenomenon of social proof [Cia01]).

Winning Strategy (Hypothesis 8) We wanted to provide an answer to the question
which of the four different INTELLIREQ versions will be evaluated best regarding usability
and quality of decision support. With Hypothesis 8 we want to express the assumption
that group recommendations improve the system usability as well as the decision support
quality. In contrast, making preferences of other group members visible in the group decision

39

3 Human Factors in Requirements Engineering

process deteriorates the system evaluation. Consequently, version 2 (see Table 3.2) should be
evaluated best.

Distance Matters (Hypothesis 9) Finally, we wanted to provide an answer to the
question whether the distance of a users’s preference to the final group decision has an
impact on the overall system evaluation. With Hypothesis 9 we express the assumption that
users with a low number of considered requirements will not be satisfied with the system
usability and the decision support quality.

Group recommendation heuristics

The majority rule (applied in our empirical study) is a simple but very effective heuristic
in group decision making [HK05]: each decision is taken conform to the majority of the
votes of the team members. In addition to the majority rule, there exist a couple of further
heuristics [Mas11] which can be applied when generating recommendations for groups, for
example, the fairness heuristic which guarantees that none of the group members will be
disadvantaged.1

3.3.3 Study Results

In order to identify statistically significant differences in the user quality feedback depending
on the used INTELLIREQ version we conducted a series of two-sample t-tests. We will now
discuss the results of our analysis.

Hypothesis H1 has to be rejected since the usability of INTELLIREQ versions with recom-
mendation support is only better on the descriptive level (mean of 7.0 with vs. a mean of
6.42 without recommendation support) compared to versions without a recommendation
support (see Table 3.4).

Hypothesis H2 can be confirmed since we could detect a significant better evaluation of the
INTELLIREQ decision support for recommendation-enhanced versions (p<0.001) compared
to versions without a recommendation support. Table 3.4 summarizes the results of this
evaluation.

Hypothesis H3 can be confirmed as well since the number of comments on individual prefer-
ences is significantly higher in versions with provided group recommendations (p<0.0015) –

1Note that due to limited number of subjects (N=293) we were not able to compare the different recommen-
dation heuristics with regard to the dimensions usability and quality of decision support. Such comparisons will
be in the focus of future work.

40

3.3 Empirical Study

Table 3.4: User feedback on recommendation support (mean, SD=std.dev.).

recommendation usability SD decision support SD

yes 7.0 1.67 7.07 2.03
no 6.42 2.47 5.21 2.96

see Table 3.5. Thus we can interpret group recommendations as a stimulating element for
information interchange among group members which is a key factor for high-quality group
decisions [MS10][GS03].

Table 3.5: Impact on information exchange frequency (SD=std.dev.).

recommendation #comments (mean) SD

yes 7.96 5.974
no 3.53 2.71

Hypotheses H4 and H5 can not be confirmed since users with no access to the preferences of
other group members did not provide a significantly better rating for usability and quality
of decision support. However, on the descriptive level the evaluation of versions without
preference visibility for all group members is better compared to versions with preference
visibility (see Table 3.6).

Table 3.6: User feedback on INTELLIREQ preference accessibility (mean, SD=std.dev.).

preference access usability SD decision support SD

yes 6.46 2.09 6.16 2.72
no 7.0 2.08 6.25 2.64

Hypothesis H6 can be confirmed since the number of adapted individual preferences is
significantly lower in versions with access to the personal preferences of other group members
(p<0.001). This can be explained by the fact that – due to preferences visible for other users
– the current user inclines to be consistent [Cia01] with his/her original requirements, i.e.,
the willingness to change articulated preferences decreases if preferences are accessible for
other users [Cia01].

Hypothesis H7 can be confirmed since users having access to the preferences of other group
members articulate preferences which are more similar to the final group decision (see Table
3.7). Being confronted with the preferences of other group members, persons base their
decisions on the already known preferences and do not focus on the exchange of decision-
relevant information which is extremely important for finding optimal decisions [GS03].

41

3 Human Factors in Requirements Engineering

There is a significant biasing effect due to the visibility of preferences (p<0.001). This effect
can be explained by the phenomenon of social proof [Cia01] which triggers group members
to do things or accept things that other group members are doing (accepting).

Table 3.7: Impact of preference accessibility on user preferences (mean, SD=std.dev.).

preference access distance of indiv. preferences SD

yes 0.28 0.09
no 0.43 0.13

Hypothesis H8 can not be confirmed. However, users with recommendation support and
without insight into the preferences of other users (INTELLIREQ version 2 – see Table 3.2)
provided the highest ranking for both, usability and quality of decision support (see Table
3.8 and Table 3.9). Versions with recommendation support outperform versions without
recommendation support in terms of decision support quality (see Tables 3.4 and 3.8)
(p<0.001) and versions with recommendation support and without a view on the preferences
of other users clearly outperform all other versions in terms of usability (p<0.001) – see
Table 3.9.

Table 3.8: Impact of preference visibility and group recommendation on decision support quality (mean,
SD=std.dev.).

version recommendation preference view decision support quality SD

1 yes yes 7.03 2.04
2 yes no 7.11 2.06
3 no yes 5.13 3.07
4 no no 5.29 2.91

Hypothesis H9 can be confirmed since users with preferences having a higher distance from
the final group decision rated the INTELLIREQ environment significantly worse in terms of
usability (p<0.05). This result conforms to the win-lose situations discussed in [BGB01]
which typically turn into lose-lose situations. We could not detect a difference in the quality
of decision support (see Table 3.10).

Table 3.9: Impact of preference visibility and group recommendation on usability (mean, SD=std.dev.).

version recommendation preference view usability SD

1 yes yes 6.37 1.84
2 yes no 7.62 1.21
3 no yes 6.56 2.38
4 no no 6.29 2.59

42

3.4 Related Work

Table 3.10: Relationship between the distance of individual preferences to the final decision and perceived
usability and decision support quality (mean, SD=std.dev.).

#answers different from group decision usability SD decision support quality SD

≤ 2 answers 7.05 2.04 6.18 2.72
> 2 answers 6.15 2.08 6.15 2.75

3.4 Related Work

Group recommender systems support human decision making by taking into account factors
such as beliefs (knowledge) about the opinion of other group members, knowledge about
individual motivations, and personal preferences. The major goal of group recommenders
[Mas11][JBK04] is to achieve consensus among the members of the group – such a consensus
is achieved by different heuristics such as majority voting (for each decision preferences with
an underlying majority are selected) or fairness (a fair consideration of the preferences of
each stakeholder).

In contrast to the results reported, for example in [JBK04], showing individual preferences
to other group members is not always a good choice since this can lead to a lower perceived
usability and decision support quality. This result is consistent with results of empirical
studies conducted in the area of social psychology [MS10] where the outcome of group
decisions significantly deteriorated when group members knew about the preferences of
other group members. Psychological studies on the role of individual preferences in group
decision making clearly show biasing effects in terms of significantly different outcomes
of the decision process depending on whether preferences of other group members are
known or not (see, e.g., [MS10]). This phenomenon can be explained by the fact that group
members predominantly base their decisions on preferences known beforehand and not on
the information generated in the decision process. As a consequence, optimal decisions
(solutions) can only be identified if group members are not(!) confronted with individual
preferences before starting a decision process. The failure of groups to identify acceptable or
optimal decisions (so-called hidden-profile identification problem) can be explained by the
insufficient discussion of unshared information (triggered, for example, by the articulation of
initial preferences) and the resulting premature consensus of a group on an alternative which
is not optimal [GS03].

Typical functionalities of group support systems in the Requirements Engineering context
are brainstorming, idea organization, voting mechanisms, discussion forums, and shared
drawing [BGB01]. Group support systems can help to significantly reduce Requirements
Engineering efforts and achieve higher-quality results [BGB01]. Compared to integrated
group support environments (see, e.g., [BGB01]), INTELLIREQ focuses on the specific aspect

43

3 Human Factors in Requirements Engineering

of group recommendation. For existing requirements engineering environments (see, e.g.,
[BGB01]), the concepts presented in this chapter can contribute to achieve more effective
decision processes. Note that INTELLIREQ technologies can be applied in the context of
different negotiation constellations [HGR10] such as sales meetings, application requirements
definition, reactive product line scoping, and release planning. Finally, we want to emphasize
that models of human decision making on the basis of rational thinking [McF99] are not
applicable in Requirements Engineering scenarios since preferences of stakeholders are
not stable, i.e., change over time. Existing Requirements Engineering environments neglect
this important aspect [AP05]. The group decision technologies presented in this chapter are
based on incremental preference elicitation [Bly02] which provides a solid basis for handling
unstable preferences [PC08].

The application of recommendation technologies in the context of Requirements Engineering
is a constantly evolving research field [AP05][Cas+08]. The current research focus is on the
application of machine learning approaches to the generation of coherent sets of requirements
[Cas+08]. An example of the application of these technologies are users of open source CRM
environments who perform badly when having to identify the appropriate discussion forum
for a certain feature request. Another application of clustering techniques is introduced in
[Che+05] where an intelligent requirement grouping mechanism is applied to support the
construction of feature models. As far as we know there do not exist any applications of
group recommendation technologies in the context of requirements negotiation. We see the
results presented in this chapter as a first step to improve the overall decision quality in
different phases of the Requirements Engineering process (e.g., evaluation, negotiation, and
planning). For a comprehensive overview of potential application areas of recommendation
technologies in requirements engineering we refer the reader to [MT09].

3.5 Conclusions

In this chapter we introduced an early prototype of the INTELLIREQ decision support
environment which is used at the Graz University of Technology for supporting group
decision processes in small-sized software projects (6–8 team members). Each group in
the empirical study interacted with exactly one version of INTELLIREQ – the four versions
provided differed in terms of the availability of recommendation support (yes/no) and the
possibility to take a look at the preferences of other users (possible/not possible). The
major results of this experiment were that group recommendation can improve the perceived
usability (in specific cases) and quality of decision support. It is not recommended to disclose
the preferences of individual group members at the beginning of a decision process since the
knowledge of the preferences of other group members can lead to an insufficient exchange of

44

3.5 Conclusions

decision-relevant information. The results of our study clearly indicate that deep knowledge
about human decision making can help to improve the overall quality of decision support
environments. The investigation of further psychological issues is within the scope of our
future research.

45

4 Recommending for Reuse and
Dependency Detection

This chapter is based on the work published in [Nin+14a]. The contributions of the author
of this thesis are the algorithmic design of the proposed approaches, the design of the user
study, and the writing of major parts of the paper.

4.1 Introduction

Ensuring quality in a software project is a complex task. On the one hand there are limited
resources in software projects. On the other hand there is a huge set of requirements which
should be satisfied. Consequently, it must be guaranteed not to waste valuable resources
on unnecessary tasks and to implement the most important artifacts first. A software devel-
opment process can be divided into Requirements Engineering, architectural and detailed
design, implementation, and testing. The scope of Requirements Engineering tasks is fairly
broad as it starts with an unlimited solution space and is used to set borders for the following
software development. It also needs to transform high-level objectives to operational pre-
scriptions [Lam00][CA07].

According to a Gartner report [Gar11], corrections of defects (e.g., conflicting or miss-
ing requirements, wrong or incomplete artifact descriptions) are inexpensive during the
Requirements Engineering phase but they are very expensive after delivery which makes
decisions taken during the Requirements Engineering phase critical for the success of soft-
ware projects [HL01]. Undetected errors in the Requirements Engineering phase is a major
source of problems in subsequent development phases. These errors trigger not only costs for
correcting the offending error, but also generate expenses in related artifacts to this error (e.g.,
redesign of code, documentation rewrite, and costs of the replacement of software already
deployed) [LW00][GZ05]. Consequently, it is necessary to establish actions which guarantee
requirements with high quality, address the stakeholders needs, and have no inconsistencies
or errors [HRL12][NE00].

47

4 Recommending for Reuse and Dependency Detection

In most cases, to derive a complete definition of all needed objectives in a software de-
velopment project, it is necessary to include a variety of different and inhomogeneous
stakeholders in the Requirements Engineering process [EL02]. Within this group of partici-
pants it cannot be assumed that everybody has the expertise to write specifications in a formal
representation. Thus, it is more attractive to evolve, maintain and discuss requirements in
natural language with possibly non-technical customers as this is the only language which
can be confidently assumed to be shared among all involved stakeholders in a software
development process [Lam00][Cha06][Ger00][GN02].

Requirements analysts start with ill-defined and in many cases conflicting ideas of what the
proposed system is expected to do, and must progress towards a single, detailed, technical
specification of the system [CA07]. Within this process analysts are confronted with non-
functional concerns such as safety, security, usability, performance, and so forth which are
often conflicting with functional requirements [Lam00]. This fact and the circumstance that
requirements are often presented without an explicitly specified structure complicates the
Requirements Engineering process [GKB08]. Unfortunately, creating a structure in Require-
ments Engineering is a labor-intensive task as software projects consist of a huge amount
of requirements. A complicating factor is that the process of defining a structure involves
understanding of the needs of users, customers, and other stakeholders, and also of the
context in which the to-be-developed software will be used [CA07]. Without the existence
of formal descriptions, requirements validation usually describes a subjective evaluation
of informal or undocumented requirements which requires stakeholders involvement [CA07].

As mentioned before, a subjective evaluation without any intelligent support is a labor-
intensive and error prone task. Consequently, facilitating the task by preprocessing the
provided data is promising. Previous empirical research explained that the identification of
user requirements and the improvement of this task by automation is the most important
activity [LMP04]. They also claimed the demand for a Computer Aided Requirements
Engineering (CARE) tool based on Natural Language Processing (NLP). Additionally, it
is concluded that linguistic techniques may play a crucial role in providing support for
requirements analysis [LMP04]. One possible action is the automated processing of natural
language requirements with a series of transformations such as tokenization, parts-of-speech
tagging, parsing, and transformation into a set of logic formulas [GZ05].

Although the prospect of a support system that would automatically understand user’s
needs is very appealing, less sophisticated systems can sufficiently facilitate the work of
requirements engineers [Rya93]. Tools can assist in various tasks such as scanning, searching,
browsing and tagging requirement texts. For example, similarity analysis techniques give
reasonably high accuracy considering its simplicity and can help to avoid assigning the same

48

4.1 Introduction

requirements to different developers. Also for the release planning purpose and prioritization,
interdependencies between requirements are necessary [Dag+02].

Beside the completeness of the Requirements Engineering specification and the conflict-
freeness between requirements, the quality of the single artifacts is of high importance.
Like in other engineering branches, the evolution of specifications over time and the partial
reuse of already implemented specifications can be used to improve the artifacts description
quality [NE00]. This is supported by two different benefits which go along with the evolution
and reuse of artifacts: first, the identification of existing systems that could be transferred
into the current software development project entirely or with a minimum of modifications.
Achieving these goals reduces the effort of defining and developing new software products
[CR00]. Second, knowledge about problems which can arise with a specific task can be
identified and a solution can be provided. In any case, there is a good chance that the reuse of
existing knowledge from previous work increases the quality and reduces the risk of failure
in software projects. It is therefore a good advice to establish and maintain repositories for
Requirements Engineering artifacts which share best practices [CA07].

Unfortunately, requirements reuse is often a complex task due to the fact that require-
ments are written in a natural language which circumvent the effective reuse. To overcome
this problem, requirements statements need to be processed in a unique fashion to accom-
modate reuse tasks, which include analysis of existing requirements, their organization into
a repository of reusable requirement artifacts, and their synthesis into new requirements
documents [CR00]. Within this task several challenges arise like requirements belonging
to each other without sharing the same words. For example, in a project description one
requirement is about an interface for clients and another requirement describes the interface
for customers. In this case these two requirements are related to each other. On the other
hand there are requirements sharing common words without having a relation to each other.
Therefore, ambiguity and synonymy are major problems in the context of requirements
clustering [BT12].

The contributions of this chapter are two-fold: first, we propose two different recommenda-
tion algorithm implementations to support stakeholders in the Requirements Engineering
process. Second, we conducted two studies at the Graz University of Technology to evaluate
the applicability ot these techniques in the Requirements Engineering context. The remainder
of this chapter is organized as follows. In Section 4.2 we summarize work related to the
techniques used in this chapter. In Section 4.3 we present an overview of INTELLIREQ

which is our web platform to develop and evaluate recommendation technologies. Section
4.4 describes the two used content-based recommender implemented for our evaluation. In
Section 4.5 we present the findings of the conducted studies and in Section 4.6 we conclude

49

4 Recommending for Reuse and Dependency Detection

this chapter and outline future research directions.

4.2 Related Work

This section gives an overview about definitions and approaches related to text evaluation
and similarity calculation.

4.2.1 Text Document Representation

A commonly used technique is the so called bag-of-words representation. Within this ap-
proach the information about paragraphs, sentences, and word orders are removed to make
the information more useful for machine learning algorithms [SM99]. In this bag all non-
descriptive words like and or has are defined as stop words and have to be removed. The
remaining words are stemmed (reducing inflected or derived words to their stem) and their
occurrence is stored in a vector [HSS03]. For example, if the word house and the word
houses can be found in a text the stemmed version of both terms is hous and the resulting
occurrence is two.

4.2.2 Word Sense

To find relations between requirements it is necessary to calculate the similarity of all words
contained in the textual description of the involved requirements. It is stated that not the word
form, but rather the Word Sense is the relevant participant to define a possible relation between
words [AB06]. In WordNet, for example, these Word Senses are defined as synsets (short
for synonymy sets) and can be interpreted as the ambiguity of the word [Voo93][MG10].
For example, the term cold has a different meaning in the sentence a person is cold as in
the sentence a room is cold. To handle this ambiguity synsets can be used instead of terms
within the bags-of-word representation. This leads to two benefits: first, the terms are fully
disambiguated as the context has been taken into account and should increase precision.
Second, equivalent terms can easily be identified as they all reside in the same synset which
increases recall [Gon+98].

However, the assignment of the correct Word Sense to a term is a challenging task. It is
necessary to decide whether to use a simple rule like taking the most frequent used Word
Sense found in the used language or to analyze the complete context in which the word under
investigation occurs. The second approach is clearly more complex as it needs to calculate
the probability for all possible word senses of all terms used in a document [HSS03].

50

4.3 INTELLIREQ

Next, the representation of the Word Sense inside the bag-of-words has to be chosen. There
are basically three concepts [HSS03]:

• Add Word Sense: For each term add a Word Sense. This results in an occurrence of at
least two, as the original term is not replaced.
• Replace terms by Word Sense: By replacing the original term the minimal occurrence

can be one.
• Word senses only: The bag-of-words only contains an entry for terms where a Word

Sense can be found. The Word Sense is used to replace the original term. The cardinality
of this representation is smallest of the three presented options.

Alternatively to using already defined Word Senses like synsets one can discover Word Senses
by clustering. With this approach similar Word Senses are derived from the context in which
they are used. The assumption is that the meaning of an unknown word can often be inferred
from its context. This approach is meant to cope with the problem that standard dictionaries
miss domain-specific senses of words [PL02]. On the other hand, learning-based approaches
are very domain-specific which means that the quality of the classifier drops strongly when
the same classifier is used in a different domain [Tab+11].

4.2.3 Domain Knowledge

Domain knowledge is one crucial factor for high quality requirements elicitation [KS06]. A
domain thesaurus can be used to formalize this knowledge and to inherit a classification of
terms for further processing [CR00]. Initializing a domain thesaurus is labor-intensive in the
factors cost and maintenance but also contain high-value knowledge. To reduce the initial
effort of creating a domain thesaurus, Wikipedia can be used as a source of manually defined
terms and relationships [MMW06].

4.3 INTELLIREQ

Having the need for computer aided software engineering (see Section 4.1) we decided to
develop INTELLIREQ1 which is a web platform for early Requirements Engineering. Besides
the content-based recommendations discussed in this chapter, INTELLIREQ also supports
group-based recommendations and stakeholder guidance techniques to improve the quality
of the Requirements Engineering process [Nin+14b]. Figure 4.1 shows the latest GUI version
of INTELLIREQ. We use INTELLIREQ to evaluate the applicability of Artificial Intelligence
(AI) techniques for Requirements Engineering. INTELLIREQ also supports geographically

1http://www.intellireq.org

51

4 Recommending for Reuse and Dependency Detection

Figure 4.1: Requirements overview of the latest version of INTELLIREQ. Traffic lights are used for stakeholder
guidance to improve the overall quality of artifacts. During our research the GUI evolved and has a
different look than the version used for our evaluation of the Keyword Recommender (see Figure 4.2).

independent collaborative work which is often necessary when project stakeholders can not
participate in meetings [Cas+09]. A main non-functional requirement for INTELLIREQ itself
was the computational simplicity of all our recommender algorithms because our system is
designed as an online multi-agent platform with fast response time.

Research has been done in clustering requirements to find dominant themes (topics) to
support the assignment of potential interested stakeholders to this themes [Cas+09]. In our
work we focus on the calculation of tensions between requirements, because we need a
ranking of the k-top related requirements to a requirement under investigation. Although
clustering has not been focused yet, the calculated tensions produced within INTELLIREQ

can be used as input for a subsequent clustering.

In this chapter we discuss the content-based recommendation support evaluated with INTEL-
LIREQ, which can mainly be divided into the following two techniques:

• Keyword Recommender: INTELLIREQ recommends keywords for a new inserted
requirement

52

4.3 INTELLIREQ

• Dependency Recommender: INTELLIREQ recommends requirement pairs as depen-
dency candidates

The reason for these two recommender implementations were two-fold: first, we want to
increase the reuse of artifacts which can, according to literature, increase the software
quality [NE00]. This should be done with the Keyword Recommender. Second, we want to
facilitate the management of requirements in the dimensions completeness, redundancy, and
consistency. The scope of this recommendation is no automatic generation of dependencies
but to recommend dependency candidates to the users for further investigation.

We discuss these two recommender implementations in more detail in Section 4.4 and the
results of studies conducted at Graz University of Technology in Section 4.5.

Lexical Semantic Resources

To enhance the calculation of similarity with semantic information it is necessary to select
a lexical semantic resource. We therefore discuss three different available resources and
motivate our decision for our selection. Large lexical semantic resources can be categorized
into expert-built lexical semantic resources (ELSR) like GermaNet2 and collaboratively con-
structed lexical semantic resources (CLSR) like Wiktionary3. OpenThesaurus4 can be located
between these two definitions as it is collaboratively constructed, but reviewed and main-
tained by an administrator who revises all changes made in the database [MG10][Nab05].

All resources support Hyponymy which declares relationships between words as Hyponyms
and Hypernyms. A Hyponym can be characterized as a type-of relationship while a Hypernym
is a topic of a set of other terms. For example, we can denote the word Measurement Device
as a Hypernym while the term chronometer is a Hyponym to Measurement Device.

OpenThesaurus follows the idea that users should be able to freely contribute to the project.
The access to the stored data is available through their web portal, where users can search
for synonyms. There is also an API for a web service and the data can be downloaded as a
MySQL database dump file. The main focus of OpenThesaurus is to provide synonyms for
words. This is based on two reasons: first, the project should be kept simple and second, the
most prominent application is OpenOffice which has no strong demand for other relations
than synonyms [Nab05].

Comparing these different lexical resources one can say that GermaNet contains the largest
amount of taxonomic relations, OpenThesaurus provides the highest number of synonyms,

2http://www.sfs.uni-tuebingen.de/GermaNet/
3http://de.wiktionary.org
4http://www.openthesaurus.de

53

4 Recommending for Reuse and Dependency Detection

and Wiktionary contains the most antonyms and the second most synonyms and hypernymy
relations [MG10].

While OpenThesaurus hardly supports Hyponomy it massively outperforms the other re-
sources in the dimension Synonym relations (OpenThesaurus: 288,121, GermaNet: 69,097,
Wiktionary: 62,235) [MG10]. For that reason we decided to use OpenThesaurus.

In OpenThesaurus Word Senses are grouped into Synsets (see Section 4.2). If we consider
the example term cold then we get the Synsets with the numbers: 1110, 3834, 3945, 10632,
29416. Table 4.1 shows the corresponding terms for the Synsets 1110 and 3834.

Synset ID Terms

1110 cold, insensible, cruel, icy, cold-hearted, hard-hearted

3834 cold, fresh, cool, frosty

Table 4.1: Synsets for the term cold.

Language Versions

We evaluated the Keyword Recommender within an empirical study conducted during the
course Object-oriented Analysis and Design at Graz University of Technology. As not all
course members had German language skills we used English as description language for
requirements. On the opposite the second empirical study was conducted with German native
speakers as we did not want to risk a bias based on lack of language skills when participants
should evaluate the natural language processing capacity of INTELLIREQ. We therefore
developed an English version for the evaluation of the Keyword Recommender and a German
version for the evaluation of the Dependency Recommender.

4.4 Recommendation

4.4.1 Keyword Recommender

The Keyword Recommender is designed to support the English language and uses a simple
generation for the bag-of-words. First, all stop words are removed from the text and the
remaining words are transferred to a lower case representation which is stemmed using the
Porter Stemming Algorithm5. The stemmed version and the original version are stored into a

5http://snowball.tartarus.org/algorithms/porter/stemmer.html

54

4.4 Recommendation

Figure 4.2: Screenshot of the Keyword Recommender.

lookup table.

To facilitate the reuse of requirements INTELLIREQ provides a filtered by keyword func-
tionality. With this functionality users can select a keyword from a list to set the filter.
Our keyword recommender stores all keywords used to annotate the requirements and the
stemmed version of the keywords. Each time a new requirement is inserted, all words of the
requirements subject and description are stemmed and compared to the internal list. If an
already stored keyword is equal to one word of the new provided data, the recommender
returns the originally used keyword for annotation (see Figure 4.2). With this approach we
want to minimize the cardinality of words used to annotate the requirements in the database.
For example, taken the term database. In the group without the keyword recommendation
users use the keywords database and databases. Supported by the Keyword Recommender
users get the keyword database as replacement for databases proposed. Figure 4.2 shows the
requirements creation window with the keyword recommender.

We also used a knowledge thesaurus to enhance the quality of the recommendation. This
thesaurus was manually created to support the definition of software applications in the
domain of recommender technologies for tourism. We therefore defined word synonyms for a
controlled subset of terms and declared only one word sense for each term. For example, we
defined the words: tourist, client, customer, holidaymaker, vacationer as synonym and these
words did not occur in any other synonym list. Using this domain-specific recommender
it is possible to increase the efficiency of the Keyword Recommender like it is proposed in
literature (see Section 4.2).

55

4 Recommending for Reuse and Dependency Detection

The time should be displayed

{}{9135, 11112, 11532}{17111}
{1331, 3527, 10772, 11615, 20552}{}

Table 4.2: Fragment text of a requirement. The last two lines show the bag-of-words where empty braces
represent removed words

4.4.2 Dependency Recommender

For our Dependency Recommender we start the generation of the bag-of-word similar to the
implementation of the Keyword Recommender. First, the text is stripped of all stop words
and transferred to the lower case representation. Next, the tokens need to be converted in a
comparable form. Instead of using a stemmer, the Dependency Recommender uses a mapping
table to get the base forms of the terms. For this purpose we take the Morphy6 data file which
consists of a list of German terms with all inflected forms and grammatical properties and
generated a SQL table with the data. With this table a query for the German plural Häuser
(houses) will result in the singular ’Haus’ (house). The Morphy data set contains 368,175
associations between inflected and base forms. Furthermore, these base forms facilitate the
lookup in the OpenThesaurus database because the original dataset contains no stemmed
forms. Next, we store the data inside the bag-of-words in the Word Senses only representation
(see Section 4.2), which means that we only consider words which matches an entry in the
OpenThesaurus database.

We also need to state definitions for the involved elements. We define a document (require-
ment) in a project as d ∈ D with D is the set of all documents of a project. Words of a
document are defined in the set Wd , Sw is defined as a set of Word Senses, and w ∈Wd is a
word in the document. The cardinality7 of the associated Word Sense set to this word w is
defined as |Sw|. Taking the term time from Table 4.2 the word time is w ∈Wd , the values
9135, 11112, 11532 are in the set of Word Senses Sw and the cardinality of |SW | is 3.

With this definition we generate the bag-of-words by replacing all words in the document
by a list of Word Senses. If a word can not be found in the OpenThesaurus database it
will not be considered. Table 4.2 shows a text fragment of a requirement. If a word was
identified as stop word or did not find a match in OpenThesaurus it was removed. To keep
our Dependency Recommender computationally fast we define some simplifications. First, as
we do not have enough information of Hypernyms and Hyponyms in the OpenThesaurus data

6http://www.danielnaber.de/morphologie/
7Note that this cardinality is document independent as these sets are defined in OpenThesaurus.

56

4.4 Recommendation

set these relations are ignored. Second, we assume that within a project two identical terms
have the same Word Sense. We assume that this fact does not hold in any case, but as this
approach works for the creation of the knowledge thesaurus for our Keyword Recommender,
we suppose that the amount of terms with different Word Senses within a project domain is
small enough to not heavily deteriorate the quality of the Dependency Recommender.

Based on these simplifications we define the tension between two terms w1 and w2 in
Formula 4.1. In this Formula the value |Sw1| is the cardinality of term w1 and |Sw2| is the
cardinality of term w2. Also, the value Matches defines how many Word Senses these two
terms have in common.

tension(w1,w2) =
Matches
|Sw1|

+
Matches
|Sw2|

(4.1)

To clarify Formula 4.1 we discuss the following three situations:

• (a) Strong match: There are a lot of equal Word Senses between the two terms under
investigation. This will lead to a high impact on the calculation of the similarity.
• (b) Weak match: Only a few Word Senses are equal between the two terms under

investigation. The association between these two terms will only have a small impact
on the calculation of the similarity.
• (c) No match: None of the Word Senses of the two terms are equal. The association

between these two terms will have no impact on the calculation of the similarity.

For example, we take a look at the two terms cruel and cool from Table 4.1. We can calculate
a cardinality of 6 for the term cruel and a cardinality of 4 for the term cool. As there is only
one matching Synset we can calculate the tension as 1

6 +
1
4 =

5
12 which is very low. Of course,

two equal terms will result in the highest possible tension with the value of 2 as the Matches
are equal to the cardinality.

To further enhance the recommendation of candidates for dependencies between two re-
quirements we exploit the knowledge about the topics of requirements. This knowledge is
explicitly provided by stakeholders as they define the requirement names. To clarify this
approach we discuss the example shown in Figure 4.3. Both requirements Height Deter-
mination and Speed Measurement mention the third requirement Internal Memory in their
description. As all three requirements use the two terms Internal and Memory, the similarity
calculation would recommend them as equal similar to each other. Our assumption is that
there is a higher tension between terms used in one requirement as topic than between
terms only used in the description. We therefore doubled the value for Word Senses used in
requirements topics for our similarity calculation.

57

4 Recommending for Reuse and Dependency Detection

Figure 4.3: Shows the tension calculation for the term Memory between the three requirements Internal Memory,
Height Determination, and Speed Measurement. All three requirements descriptions also contain the
term Memory with an occurrence of one.

4.4.3 Reduce Dimension

In a next step we want to reduce the dimension of keywords used for the recommendation.
We therefore use Apache OpenNLP8 which is a toolkit for natural language processing. With
this toolkit we filter out all terms which are not classified as noun. The remaining terms are
then used for the calculation of the similarity and can be presented as explanation for the
recommendation.

4.4.4 Calculating Requirements Similarity

For the calculation of the similarity between two requirements in a project three well known
measurements can be used: the Dice, Jaccard, and Cosine coefficients. The Dice coefficient
can be found in Formula 4.2, which is a variation of the Jaccard coefficient ”intensively”
taking into account keyword commonalities [Dag+02][Jan+10].

sim(ra,rb) =
2∗ |KeywordsA

⋂
KeywordsB|

|KeywordsA|+ |KeywordsB|
(4.2)

Instead of user defined keywords we used the calculated tensions from Formula 4.1 to
enhance the calculation with the knowledge derived from OpenThesaurus.

8https://opennlp.apache.org

58

4.5 Empirical Studies

4.5 Empirical Studies

This section covers the results of the studies conducted at our University with the recom-
mender proposed in Section 4.4.

4.5.1 Keyword Recommender

Within the scope of a study conducted at the Graz University of Technology we evaluated
the quality of the aforementioned recommendation approaches. The empirical study has
been conducted within the course Object-oriented Analysis and Design (N=39 software
teams of size 5-6; 15.45% female, 84.55% male). In this context the teams had to create
20 requirements for a software project. The creation of requirements was defined as an
collaborative task and the students were encouraged to reuse9 requirements already defined
by other groups.

To evaluate the effectiveness of the Keyword Recommender we randomly assigned the
development teams to two groups. The first group had no recommender, while the second
group was supported by the Keyword Recommender described in Section 4.4. Both groups
used an own database to store requirements. For example, if a team of the first group
generated a requirement all teams from the first group could access this requirement and
were able reuse it. Teams from the second group could not see or reuse requirements from
the first group and vice versa.

All different study groups had an interface to browse through the requirements presented as
an unsorted list. Additionally, teams could filter the input by selecting keywords.

Evaluation

When evaluating the reuse behavior between the two study groups we could identify a
significant increase (t-test, p < 0.05) of reuse activity throughout the teams in the study
group with Keyword Recommender. Table 4.3 shows the results of our evaluation. From this
result we derived that teams with a keyword recommendation used more often the same
keywords to annotate requirements. For example, two different requirements were annotated
by the keyword database instead of database and databases10. Also using an example from

9Note that a reuse is not a link to a requirement. Instead the requirement is cloned and the reusing team links
to the new version of the requirement. Therefore, any changes done to an reused requirement did not affected the
original requirement and vice versa.

10The annotation with database and databases could be found in the study group without the Keyword
Recommender.

59

4 Recommending for Reuse and Dependency Detection

Group Keyword Recommender Reuse Requirement Distribution

1 No 141 39.83%

2 Yes 213 60.17%

Total - 354 100%

Table 4.3: Number of reused requirements in the two study groups.

our initial domain-specific thesaurus, users did not need to search requirements for tourist
and client separately. As these words were characterized as synonyms in the domain used
for the evaluation, the Keyword Recommender proposed the keyword tourist each time the
term client or tourist was contained in a requirement description. This resulted in a shorter
filter list of keywords which was used to facilitate the search through the list of reusable
requirements. For example, teams with this advantage did not need to evaluate requirements
found with tourist and databases. They retrieved all related requirements with a single click.
One drawback of this approach was that it always uses the first written keyword. For example,
if there is a typo in the written keyword (e.g. databasO), this incorrect diction will be used as
a recommendation for similar keywords with the same stemmed version. Of course, using a
thesaurus and a correction with the Levenshtein distance could reduce this problem, but we
used a very simple approach without any typo correction.

4.5.2 Dependency Recommender

To evaluate the dependency detection approach we created a set with 30 requirements for a
sport watch during a brainstorming session. The requirements covered functionality such as
internal memory, training evaluation, connectivity to a PC system, and sensor measurements
like heart rate. The evaluation of potential dependencies between the requirements was not
covered in the brainstorming.

In a next step we applied our Dependency Recommender on the set of requirements to
generate a ranked list of potential dependencies. According to Formula 4.3 with n = 30
(number of requirements in our project) there exist 435 possible dependencies between two
requirements. We also discovered a significant decrease of the calculated similarity value
after the top 20 recommendations. To evaluate the quality of the calculated recommendation
we conducted a second study at Graz University of Technology (N=23 participants; 8.69%
female, 91.31% male). As we were only interested in evaluating the quality of the recom-
mendation we printed out the recommendations and presented them to study participants
offline. We want to point out that the Dependency Recommender is integrated in the online

60

4.5 Empirical Studies

Figure 4.4: Shows the requirement representation used in our study.

version of INTELLIREQ. All recommendations are calculated on demand and there is no
necessity for precedent offline calculations11.

During the study the participants had to decide if the recommended requirement pairs
are worth a look for the task of finding dependencies. Our approach was not designed to
automatically find dependencies, but to support stakeholders with a preselection of interesting
dependency candidates for evaluation. Finally, the participants were asked to rate the overall
usefulness of the recommendation on a 5-point scale with 1 (very useful) to 5 (not useful).
The results can be found in Figure 4.5. Based on the decrease of the calculated similarity
value we presented only the best 20 recommendations as we assumed a high increase in
false-positive recommendations based on the low calculated similarity values [Dag+02].
This should prevent a bias of the overall satisfaction which would occur by showing many
recommendations with very low calculated similarity.

Figure 4.6 shows the result of the acceptance evaluation for the first 20 recommendations.
The value agree can be seen as true-positive, while disagree counts for false-positive. The
dimensions true-negative and false-negative were not covered as for this the participants
would have to evaluate all 435 possible dependency candidates to find pairs for good
recommendation not already presented by the Dependency Recommender.

allPossibleRec = n∗ (n−1)/2 (4.3)

To evaluate the study result we define a recommendation as accepted if more than 75%
of the participants agreed on their usefulness (see Formula 4.4). Using this Formula we
see that 70% of the first 10 recommendations were accepted. Although the quality of the

11Note that in the current version only the German language is supported for the similarity calculation.

61

4 Recommending for Reuse and Dependency Detection

Figure 4.5: Shows the quality rating of study participants (1-Best, 5-Worst).

recommendations deteriorates for the next 10 recommendations we can still notice that 60%
of the recommendations were supported.

accepted(agreed) =

{
agreed > 75% true

else f alse
(4.4)

4.6 Conclusion

Existing Requirement Engineering tools primarily support the definition and cataloging of
requirements but fail to provide additional information such as similarity of requirements.
Although there has been a lot of research done to fully understand text written in natural
language it has been pointed out that semi-automated approaches provide a good way to
balance human skills and computer tools [BI96]. We therefore concentrated on the support
of stakeholders defining dependencies and / or reusing requirements instead of trying to find
a fully automated approach.

We evaluated our recommendation techniques in INTELLIREQ which are calculated online
without any necessary offline precomputation. This was an important criteria as our plat-
form is defined as multi-agent system where different stakeholders can contribute to the
Requirements Engineering process at the same time.

62

4.6 Conclusion

Figure 4.6: Shows the relation between true-positive (users agrees with recommendation) and true-negative
(user disagree with the usefulness of the recommendation). User feedback was collected for the 20
recommendations with the highest similarity score.

63

4 Recommending for Reuse and Dependency Detection

We enhanced our Keyword Recommender with domain knowledge in the form of a manually
generated thesaurus and defined one Word Sense for each term. During evaluation of this
approach we discovered a significant increase of reuse activity by software development
teams using our Keyword Recommender. Furthermore, we conducted a study to evaluate
the quality of our similarity measurement technique used in the Dependency Recommender.
We took 20 recommendations from 435 possible combinations between requirements with
the highest calculated similarity score and presented them to study participants. Although
our proposed approach is rather trivial, 13 of 20 recommendations were accepted by study
participants. Also, the perceived usefulness of this kind of recommendation was rated high
with an average of 2.17.

Quality of Dependency Detection. In order to further improve the quality of dependency
detection mechanisms in INTELLIREQ, approaches from natural language processing [FS05]
and text mining [WF05] have to be combined with content-based approaches currently
included in INTELLIREQ. We also want to evaluate the applicability of micro-tasks within
groups of stakeholders (as used, for example, in Amazon Mechanical Turk) to generate
and maintain domain-knowledge thesauri to enhance our content-based recommendation
techniques [IPW10].

64

5 Recommending Prioritizations

This chapter is based on the work published in [FN12], [FNR12], [NFR12], and [Nin12].
The major contributions of the author of this thesis are an in-depth literature analysis, the
algorithmic design and development of the presented new heuristics, the design of the user
study, and the writing of major parts of the papers.

5.1 Introduction

Within software projects there are several fundamental facts [Fir04]:

• Difference in importance: not all proposed requirements are equally important
• Limited project resources: usually it’s impossible to implement all requirements
• Long schedule: systems development requires many months or years, during which

requirements are subject to significant changes
• Small Requirements Engineering budget: available budget for Requirements Engineer-

ing tasks rarely exceeds 2-4% of the project budget

Prioritizations support software project managers in the systematic definition of subsequent
software releases. Especially due to the resource limitations in software projects it is essential
to use a systematic prioritization process to implement the most important requirements
in software projects first [HL01][Wie99]. Typically, requirements prioritization is a col-
laborative task as developers cannot always estimate the most important requirements to
a customer and customers cannot evaluate the cost and technical difficulties of specific
requirements [Wie99]. However, establishing consensus between stakeholders regarding the
prioritization of a given set of requirements is a challenging task. On the other hand, properly
prioritizing leads to significant benefits such as improved customer satisfaction, lower risk
of cancellation, force stakeholder to address all requirements and not just their own, and
prioritize investments (e.g., allocate limited resources for quality assurance only for the most
important requirements) [Fir04].

Requirements prioritization is a specific type of group work which becomes increasingly im-
portant in organizations [PH97]. Requirements Engineering processes such as EasyWinWin

65

5 Recommending Prioritizations

[BGB01] (which is based on the risk-oriented spiral model [Boe88]) include prioritization
operations which are based on the assumption that stakeholders know their preferences.
An example technique to the implementation of requirements prioritization assuming such
stable stakeholder preferences is based on the concepts of quality function deployment
(QFD) [Wie99]. This approach provides a structured way of identifying a prioritization
for requirements. All the requirements are enlisted in a table and for each requirement the
responsible stakeholders have to define the benefit (business value of the requirements in
case it is implemented) and the penalty of not implementing the requirement. Both together
form the relative value of the requirement. Beside the value of a requirement we have to
estimate the corresponding development risks, for example, the non-availability of the needed
expertise and resources and corresponding technological risks. The priority of a specific
requirement r can then be determined on the basis of multi-attribute utility theory [WE86]
with the interest dimensions d1: value and d2: risk (see Formula 5.1) where w(di) denotes the
weight of an interest dimension di. The result of applying Formula 5.1 is a recommendation
for the prioritization of a given set of requirements.

Priority(r) =
n

∑
d=0

w(di) ∗di (5.1)

Such utility-based approaches rely on the basic assumption of preference stability which
means that stakeholders exactly know their preferences, i.e., are able to evaluate requirements
with regard to the interest dimensions di. In contrast to this assumption, most real-world
decisions are based on preference construction [BJP91], i.e., stakeholders are developing
their preferences within the scope of a decision making process. Requirements Engineering
processes not taking into account this fact are running the risk of low-quality requirements
prioritizations due to the fact that the human decision processes are not taken into account
[AW03]. A mechanism to improve the applicability of requirements negotiation tools is to
proactively assist stakeholders in their personal decision making process [AW03][FN12]. In
Chapter 3 we showed that group recommendation technologies [Mas11] can significantly im-
prove the usability and decision support quality of Requirements Engineering environments.
Furthermore, group recommendation can stimulate information exchange in requirements
negotiation scenarios which results in group decisions of higher quality [GS03]. Studies in
social psychology clearly show that frequent information exchange (of decision relevant in-
formation) between group members can significantly improve the quality of a group decision
[GS03]. The effect of increased information exchange can be explained by the fact that the
availability of group recommendations intensifies discussions between group members. The
phenomenon is well known and exploited, for example, by critiquing-based recommender
systems [CP12] where the system proposes recommendations and users can provide feedback
in terms of critiques. In a group recommendation scenario, such critiques are defined in terms

66

5.1 Introduction

of preference adaptations which are in the following the input for the calculation of new
group recommendations. Note that we interpret group recommendation as basic mechanism
to support decision processes. However, decisions are still taken by engaged stakeholders and
group recommendation should help to improve the overall decision quality and the efficiency
of decision making.

Another challenge is the primacy effect in preference elicitation [Fel+07]: the outcome
of this phase will depend on the sequence in which preferences have been inserted. The
psychological literature shows that consensus about topics formed early in discussions is
cognitive resistant to changes. Additional information added later will be assimilated to
already chosen consensus and it is very unlikely that another option is chosen [LKT01]. This
phenomenon can be explained by the assimilating effect based on the dissonance theory
[Fes57] which states that individuals are motivated to reduce psychological incongruity or
discrepancy that may arise by adding new information to a present perception [CNR04].
The result is that stakeholders will perceive already selected options more attractive than
new options [CNR04] and this leads to a bias of group preferences depending on the order
of the incoming preferences. Unfortunately, this effect is increased if there is a high group
identity, because the fear of exclusion from the group is higher [LKT01]. To reduce this
effect, a brainstorming phase in which stakeholders become aware of their own preferences
should be established. To raise the willingness of stakeholders to report their honest concerns,
this brainstorming phase should be implemented in an anonymous fashion [Grü00]. In a
software environment, for example, this can be done if requirements can be added without
authentication. First related study results will be presented in the following sections.

An important issue in the group prioritization process is the factor of fairness. The degree
of perceived fairness influences the willingness of group members to accept compromises
in the resolution of disputes and their trust in other stakeholders [LKT01]. Especially in
environments with a high amount of requirements it is necessary to provide tool support
in the prioritization process to achieve a maximum degree of perceived fairness. One way
to provide such a tool support is to present recommendations of reasonable requirements
prioritizations to decision makers.

In this chapter we investigate different recommendation heuristics with respect to the achieved
prediction quality. We also show how anonymity (preferences are not connected to stake-
holder names) in group decision processes can help to improve the quality of requirements
prioritizations. The major contributions reported in this chapter are to show that anonymity
in decision making influences the quality of the prioritization and to present new heuristics
for group recommendations with better prediction quality.

The remainder of this chapter is organized as follows. In Section 5.2 we provide an overview

67

5 Recommending Prioritizations

of the INTELLIREQ decision support environment developed at the Graz University of Tech-
nology. In Section 5.3 we show the impact of the factors anonymity, consensus, and decision
diversity on the quality of the prioritization, the stakeholder satisfaction with the prioriti-
zation, and the quality of software artifacts. Section 5.4 covers standard recommendation
heuristics including our new proposed heuristics. In Section 5.5 we conclude this chapter
with an outlook on future work.

5.2 INTELLIREQ Decision Support

Based on the findings presented in Chapter 3 we improved the INTELLIREQ system which
is a Requirements Engineering environment. INTELLIREQ was used to support computer
science students at our university in deciding on which requirements should be implemented
within the scope of their software projects.

For this task 219 students enrolled in a course on Object-Oriented Analysis and Design at the
Graz University of Technology had to form groups of 5–6 members. Unfortunately, it is not
possible to evaluate the knowledge and experience of the students and the resulting groups
but the course is typically attended by students in the third semester of an computer science
program or similar. We therefore assigned the resulting groups randomly to different evalua-
tion pools and assumed that the knowledge and experience is equally distributed on each pool.

In our study, 39 software development teams had to define a set of requirements for a
software system with an average effort of about 8 man months which in the following had to
be implemented. These requirements had to be prioritized and the resulting prioritization
served as a major criteria for evaluating the delivered software product at the end of the
project.

The requirements prioritization process consisted of three different phases (see Figure
5.1) denoted as construction (collection of individual stakeholder preferences), consensus
(discussion of prioritization alternatives and adaptation of own preferences), and decision
(group decision defined and explained by the project manager). This decision process struc-
ture results in about 10.000 stakeholder decisions and 798 corresponding group decisions (39
groups with approximately 20 final decisions per group) taken by the team leaders (project
managers).

68

5.3 Anonymous Preference Elicitation

Figure 5.1: INTELLIREQ Prioritization (Decision) Process. Construction: stakeholders define their initial prefer-
ences; Consensus: stakeholders adapt their preferences on the basis of the knowledge about prefer-
ences of other stakeholders. Decision: project managers take the final group decision. Preferences
represent the wish of a stakeholder to implement a requirement (1: lowest, 5: highest)

5.3 Anonymous Preference Elicitation

5.3.1 Motivation

Figure 5.2: The impact of Anonymous Preferences in INTELLIREQ on the final Output Quality

Prioritization decisions are typically taken in groups but this task is still ineffective due
to reasons such as social blocking, censorship, and hidden agendas [PH97]. The major
contribution of this section is to show how anonymity in group decision processes can help to
improve the quality of requirements prioritizations. We therefore assume that an anonymous
preference elicitation has an positive impact on the output quality (see Figure 5.2). Further-

69

5 Recommending Prioritizations

more, anonymous preference elicitation increases the probability of detecting hidden profiles
[GS03], i.e., increases the probability of exchanging decision-relevant information [MS10].

Group recommender systems support human decision making by taking into account factors
such as beliefs (knowledge) about the opinion of other group members, knowledge about
individual motivations, and personal preferences. The major goal of group recommenders
[Mas11][JBK04] is to achieve consensus among the members of the group – such a consensus
is achieved by different heuristics such majority voting (for each decision preferences with
an underlying majority are selected) or fairness (a fair consideration of the preferences of
each stakeholder).

In contrast to the results reported, for example in [JBK04], showing individual prefer-
ences to other group members is not always a good idea since this can lead to a lower
perceived usability and decision support quality. This result is consistent with results of
empirical studies conducted in the area of social psychology [MS10] where the outcome of
group decisions significantly deteriorated when group members knew about the preferences
of other group members. Psychological studies on the role of individual preferences in group
decision making clearly show biasing effects in terms of significantly different outcomes
of the decision process depending on whether preferences of other group members are
known or not (see, e.g., [MS10]). This phenomenon can be explained by the fact that group
members predominantly base their decisions on preferences known beforehand and not on
the information generated in the decision process. As a consequence, optimal decisions
(solutions) can only be identified if group members are not(!) confronted with individual
preferences before starting a decision process. The failure of groups to identify acceptable or
optimal decisions (so-called hidden-profile identification problem) can be explained by the
insufficient discussion of unshared information (triggered, for example, by the articulation of
initial preferences) and the resulting premature consensus of a group on an alternative which
is not optimal [GS03].

Typical functionalities of group support systems in the Requirements Engineering con-
text are brainstorming, idea organization, voting mechanisms, discussion forums, and shared
drawing [BGB01]. Group support systems can help to significantly reduce Requirements
Engineering costs and achieve higher-quality results [BGB01]. Compared to integrated group
support environments (see, e.g., [BGB01]), INTELLIREQ focuses on the specific aspect
of group recommendation. For existing requirements engineering environments (see, e.g.,
[BGB01]), the concepts presented in this chapter can contribute to achieve more effective
decision processes. Note that INTELLIREQ technologies can be applied in the context of dif-
ferent negotiation constellations [HGR10] such as sales meetings, application requirements
definition, reactive product line scoping, and release planning. Finally, we want to emphasize

70

5.3 Anonymous Preference Elicitation

that models of human decision making on the basis of rational thinking [McF99] are not
applicable in Requirements Engineering scenarios since preferences of stakeholders are
not stable, i.e., change over time. Existing Requirements Engineering environments neglect
this important aspect [AP05]. The group decision technologies presented in this chapter are
based on incremental preference elicitation [Bly02] which provides a solid basis for handling
unstable preferences [PC08].

The application of recommendation technologies in the context of Requirements Engi-
neering is a constantly evolving research field [AP05][Cas+08]. The current research focus
is on the application of machine learning approaches to the generation of coherent sets of
requirements [Cas+08]. An example of the application of these technologies are users of
open source CRM environments who perform badly when having to identify the appropriate
discussion forum for a certain feature request. Another application of clustering techniques is
introduced in [Che+05] where an intelligent requirement grouping mechanism is applied to
support the construction of feature models. As far as we know there do not exist any applica-
tions of group recommendation technologies in the context of requirements negotiation. We
see the results presented in this chapter as a first step to improve the overall decision quality in
different phases of the Requirements Engineering process (e.g., evaluation, negotiation, and
planning). For a comprehensive overview of potential application areas of recommendation
technologies in Requirements Engineering we refer the reader to [MT09].

5.3.2 Empirical Study

Within the scope of our empirical study we wanted to investigate the impact of anonymous
preference elicitation on the decision support quality of the INTELLIREQ environment. Con-
sequently, each project team interacted with exactly one of two existing types of preference
elicitation interfaces. One interface (type 1: non-anonymous preference elicitation) provided
an overview of the personal preferences of team members where each team member was
represented by her/his name. In the second type of interface (type 2: anonymous preference
elicitation) the preferences of team members were shown in anonymized form where the
names of the individual team members were substituted with the terms person1, person2,
etc. The hypotheses (H1–H8) used to evaluate the decision process are summarized in Figure
5.3. These hypotheses were evaluated on the basis of the following observation variables.

Anonymous preference elicitation. This variable indicates with which type of prioritization
interface the team members were confronted (either summarization of the preferences of the
team members including the name of the team members or not including the name of the
team members).

71

5 Recommending Prioritizations

Consensus and Dissent. An indication to which extent the team members managed to achieve
consensus (dissent) – see the second phase of the group decision process in Figure 5.1 – is
provided by the corresponding variables. We measured the consensus of a group on the basis
of the standard deviation derived from requirement-specific group decisions. Formula 5.2
can be used to determine the dissent of a group x which is defined in terms of the normalized
sum of the standard deviations (sd) of the requirement-specific votings. The group consensus
can then be interpreted as the counterpart of dissent (see Formula 5.3).

dissent(x) =
∑r∈Requirements sd(r)
|Requirements|

(5.2)

consensus(x) =
1

dissent(x)
(5.3)

Decision Diversity. The decision diversity of a group can be defined in terms of the average
over the decision diversity of individual users in the consensus phase (see Figure 1). The
latter is defined in terms of the standard deviation derived from the decision du of a user – a
decision consists of the individual requirements prioritizations of the user.

diversity(x) =
∑u∈Users sd(du)

|Users|
(5.4)

Output Quality. The output quality of the software projects conducted within the scope
of our empirical study has been derived from criteria such as degree of fulfillment of the
specified requirements. We also weighted the requirements according to their defined priority
in the prioritization task. E.g., not including a very high important requirement enormously
decreases the quality value. Consequently, defining a high priority for a requirement with
minor (or no) importance is a prioritization failure as this requirement has to be implemented
or, otherwise, to risk an enormously reduction of the quality value. On the opposite, low
priority requirements will only have a small impact on the quality value (independent from
the real importance of the requirement for the project). Therefore, requirements prioritization
has a direct impact on the quality value which has been graded by teaching assistants who did
not know to what type of preference elicitation interface (anonymous vs. non-anonymous)
the group has been assigned to. These assignments were randomized over all teaching
assistants, i.e., each teaching assistant had to evaluate (on a scale of 0..100 credits) groups
who interacted with an anonymous and a non-anonymous interface.

Within the scope of our study we wanted to evaluate the following hypotheses.

H1: Anonymous Preference Elicitation increases Consensus. The idea behind this hypothesis
is that anonymous preference elicitation helps to decrease the commitment [Cia01] related

72

5.3 Anonymous Preference Elicitation

to an individual decision taken in the preference construction phase (see Figure 5.1), i.e.,
changing her/his mind is easier with an anonymous preference elicitation interface. Further-
more, anonymous preference elicitation increases the probability of detecting hidden profiles
[GS03], i.e., increases the probability of exchanging decision-relevant information between
stakeholders [MS10].

H2: Anonymous Preference Elicitation decreases Dissent. Following the idea of hypothesis
H1, non-anonymous preference elicitation increases commitment with regard to already
taken (and published) decisions. It also decreases the probability of detecting hidden profiles
[MS10] and thus also decreases the probability of high-quality decisions.

H3: Consensus increases Decision Diversity. As a direct consequence of an increased
exchange of decision-relevant information (see Hypothesis H1), deep insights into major
properties of the decision problem can be expected. Also, having users with decreased
commitment to their preferences about requirements enables decision making in a more
analytical way (users are more willing to change their preferences). For example, having
a majority of users with low preferences for a single requirement and one user with a
high preference, finding a consensus about the priority for this requirement is easier if the
commitment of the opposing user is lower. Of course, this should not exclude any discussion
about the requirement itself to discover tacit knowledge. As a consequence, the important
differentiation between important, less important, and unimportant requirements with respect
to the next release [Dav03] can be achieved.

H4: Dissent decreases Decision Diversity. From less exchange of decision-relevant infor-
mation we can expect a lower amount of globally available decision-relevant information.
Also, the willingness of users to change their preferences to find a consensus is lower and
necessary compromises, if based on users commitment instead for objective reasoning,
reduces the quality of the decision making process. As a consequence, the differentiation
between important, less important, and unimportant requirements is a bigger challenge for
the engaged stakeholders.

H5: Consensus increases Output Quality. From Hypothesis H3 we assume a positive correla-
tion between the degree of consensus and the diversity of the group decision. The diversity
is an indicator for a meaningful triage [Dav03] between important, less important, and
unimportant requirements.

H6: Dissent decreases Output Quality. In contrary, dissent leads to a lower decision diversity
and – as a consequence – to less meaningful results of requirements triage.

H7: Decision Diversity increases Output Quality. Group decision diversity is assumed to
be a direct indicator for the quality of the group decision. With this hypothesis we want to

73

5 Recommending Prioritizations

analyze the direct interrelationship between prioritization diversity and the quality of the
resulting software.

H8: Anonymous Preference Elicitation increases Output Quality. Finally, we want to explic-
itly analyze whether there exists a relationship between the type of preference elicitation and
the corresponding output quality.

Figure 5.3: Hypotheses defined to evaluate the INTELLIREQ Decision Support.

5.3.3 Study Results

We analyzed the hypotheses presented above (H1–H8) on the basis of the variables introduced
in Section 5.3.2.1

H1. The degree of group consensus in teams with anonymous preference elicitation is
significantly higher compared to teams with non-anonymous preference elicitation (Mann-
Whitney U-test, p < 0.05). An explanation model can be the reduction of commitment

1We are aware of the fact that dissent is the inverse function of consensus, however, for reasons of under-
standability we decided to explicitly include dissent as a decision variable.

74

5.3 Anonymous Preference Elicitation

[Cia01] and a higher probability of discovering hidden profile information which improves
the overall knowledge level of the team.

H2. Group dissent is an inverse function of group consensus and – as a consequence –
teams with non-anonymous preference elicitation have a significantly higher dissent (Mann-
Whitney U-test, p < 0.05). In this context, non-anonymous preference elicitation can lead to
higher commitment with regard to the originally articulated preferences.

H3. There is a positive correlation between the group consensus and the corresponding
decision diversity (correlation 0.523, p < 0.01). More group discussions can lead to a higher
level of relevant knowledge about the decision problem distributed among stakeholders. In
the following this can lead to a development of a deeper understanding of the need of re-
quirements triage [Dav03]. Additionally, decreased commitment can increase the willingness
to accept compromises (based on objective reasoning) which makes the important differ-
entiation between important, less important, and unimportant requirement easier. Deeper
understanding of the need of requirements triage and a more objective reasoning lead to a
higher degree of decision diversity.

H4. Dissent is an inverse function of group consensus – the higher the dissent, the lower
the corresponding decision diversity (correlation -0.523, p < 0.01). A lower degree of
group decision diversity (prioritization diversity) can be explained by a lower degree of
decision-relevant knowledge and a lower willingness to make compromises.

H5. Consensus in group decision making increases the output quality (correlation 0.399,
p < 0.01). An overlap in the personal stakeholder preferences can be interpreted as an
indicator of a common understanding of the underlying set of requirements. This leads to a
better prioritization and a higher quality of the resulting software components.

H6. The hypothesis can be confirmed (correlation -0.399, p < 0.01), i.e., there is a negative
correlation between group dissent and the corresponding output quality.

H7. In our analysis we could detect a positive correlation between group decision diversity
(diversity of prioritization) and the corresponding output quality (correlation 0.311, p< 0.01).
Decision diversity can be seen as an indicator of a reasonable triage process and reasonable
prioritizations result in higher-quality software components.

H8. Groups with anonymous preference elicitation performed significantly better compared
to groups with a non-anonymous preference elicitation (independent two-sample t-test,
p < 0.05).

75

5 Recommending Prioritizations

5.4 Group Decision Support

Group recommendation technologies have been successfully applied in different scenarios
where groups of people are in the need of decision support [Mas11]. For example, a group of
people is interested in spending the holidays together or celebrating the birthday of a person
in a restaurant. In the first scenario, the group has to take a decision regarding the holiday
destination, in the second case the group has to develop a consensus regarding the restaurant
for the birthday celebration.

This section covers the applicability of group recommendation approaches to requirements
prioritization. In the following paragraphs we exemplify basic group recommendation heuris-
tics which are applied in a requirements prioritization scenario. In this simplified example we
assume that the requirements r1, r2, and r3 have to be prioritized by the stakeholders Martin,
Susan, Peter, and Pauline. Each of the given requirements can be prioritized on a scale 1
(unimportant) and 5 (very important). In our example we assume that the stakeholders have
already specified their initial preferences and that the group recommender system aggregates
the initial user preferences (prioritizations) into a recommendation for a group decision. In
the following paragraphs we introduce the basic group recommendation heuristics [Mas11]
least distance, majority voting, average value, and random priority selection. In Section 5.4.3
we analyze the predictive quality (precision) of the heuristics on the basis of a real-world
dataset collected in software projects at the Graz University of Technology. Note that these
heuristics currently do not take into account importance weights of specific stakeholder votes.
For example, if a stakeholder has a very important reason as to why a requirement should
be included in a certain release, this information is not taken into account by the discussed
decision heuristics. In such a case we assume that the other stakeholders are convinced by the
one stakeholder to change their mind. However, the inclusion of the importance of individual
votes is within the scope of our future work.

5.4.1 Group Decision Heuristics

We hypothesize that the effects described in the previous section could be enhanced by the use
of group recommendation heuristics. Consequently, we want to evaluate the best heuristics
to predict stakeholder voting behavior in the requirements prioritization process. In a study
conducted at our university we collected a dataset of the preferences of stakeholder and
the resulting prioritizations of the software teams. With this dataset we evaluated different
group recommendation heuristics [Mas11] and proposed three new Group decision heuristics.

76

5.4 Group Decision Support

and compared predicted with real decisions taken by the participants of our study. For the
evaluation we used the precision metric according to Formula 5.5. The following subsections
describe the different applied heuristics that are based on following parameters: median m,
standard deviation sd, heuristic h and requirement r.

precision(h) =
correctly predicted group pre f erences(h)

predicted group pre f erences(h)
(5.5)

Least Distance

This heuristic determines (recommends) for each requirement ri the priority value p with the
lowest distance to the other elements in the set of distinct user preferences (PREF) where
p ∈ PREF . This criteria is formalized in a corresponding evaluation function and can be
found in Formula 5.6.

priority(r) = selectmin(p, ∑
pre f∈PREF

|pre f − p|) (5.6)

A corresponding example is shown in Table 5.1. In this example, the recommended pri-
ority for requirement r1 is 2, since 2 has the lowest distance to all other user preferences
(prioritizations) pre f ∈ PREF = 1,2,3.

Martin Susan Peter Pauline recom. priority
r1 1 3 1 2 2
r2 5 4 4 3 4
r3 2 1 3 1 2

Table 5.1: Application of Least Distance heuristic.

Majority Voting

This heuristic recommends a priority value which represents the majority of stakeholder
votes related to a specific requirement. An example for the recommendation result of the
majority heuristic is given in Table 5.2.

77

5 Recommending Prioritizations

Martin Susan Peter Pauline recom. priority
r1 1 3 1 2 1
r2 5 4 4 3 4
r3 2 1 3 1 1

Table 5.2: Application of Majority Voting heuristic.

Average Value

This heuristic determines the average value (see Formula 5.7) and round the result (see
Formula 5.8) of the declared stakeholder preferences for each requirement. This value is
then taken as a recommendation of the priority value for the corresponding requirement. An
example for the application of the average value heuristic is shown in Table 5.3.

AV G(r) =

#user
∑

i=1
pre f (i,r)

#user
(5.7)

Priority(r) =

{
rounddown(AV G(r)) AV G(r) < 0.5

roundup(AV G(r)) AV G(r) ≥ 0.5
(5.8)

Table 5.3: Application of ”Average Value Heuristic”

Martin Susan Peter Pauline recommended priority

r1 1 3 1 2 2
r2 5 4 4 3 4
r3 2 1 3 1 2

Random Priority Selection

The random heuristic has been integrated only for evaluation purposes. This heuristic has - as
expected - the weakest performance, which can be seen in Section 5.4.3. Table 5.4 shows the
application of the Random Priority Selection. It can be observed that there is no functional
relation between the votings and the recommendation.

78

5.4 Group Decision Support

Table 5.4: Application of ”Random Priority Selection”

Martin Susan Peter Pauline recommended priority

r1 1 3 1 2 4
r2 5 4 4 3 1
r3 2 1 3 1 2

5.4.2 Advanced Group Decision Heuristics

Median Based

Inspired by a survey of the voting behavior of six-person juries conducted by the University
of Chicago [SSK00], we implemented a new heuristic called Median Based Heuristic (see
Formula 5.9). In the original study [SSK00], jury members were asked about their initial
preferences for the penalty. These initial punishment preferences were compared with the
final decision after group deliberating. The finding was that there was a severity shift for the
high-punishment cases, and a leniency shift for the low-punishment cases [SSK00]. Such
choice shifts are explained by the Group Polarization Theory [ZCW92].

In a similar fashion, our algorithm calculates the recommendations depending on the median
of the initial preferences. In our study, the preferences are distributed on a six point scale. In
this context, the algorithm has three possible states (see also Formula 5.9):

• The median is one or two: Calculate the average (see Formula 5.7) of the preferences
and round down the result
• The median is three or four: Use the Least Distance heuristic (see Formula 5.6).
• The median is five or six: Calculate the average (see Formula 5.7) of the preferences

and round up the result

Priority(r,m) =

rounddown(AV G(r)) m = 1,2

LDIS(r) m = 3,4

roundup(AV G(r)) m = 5,6

(5.9)

Ensemble Based

For a further improvement of the prediction quality we introduced a combination of different
heuristics. For each recommendation task the algorithm calculates the Majority (MAJ), the
Least Distance (LDIS), and the Median Based (MDB) heuristic. If two heuristics recom-
mend the same result, this result is the final recommendation. If there are three different

79

5 Recommending Prioritizations

recommendations, the Median Based heuristic is the final recommendation. The heuristic is
shown in Formula 5.10.

Priority(r,m) =

MDB(r,m) MDB(r,m) = MAJ(r)

MDB(r,m) MDB(m,r) = LDIS(r)

LDIS(r) LDIS(r) = MAJ(r)

MDB(r,m) otherwise

(5.10)

Standard Deviation Based

The hypothesis for this heuristic is that the best heuristic depends on the degree of conformity
of the initial preferences. For example, if the group has a high degree of consensus, the Least
Distance heuristic will perform best. If there is a high dissent, the Average heuristic will
perform better. The highest standard deviation in our dataset is 2.50. We divided the dataset
into three subsets. Each subset has the same standard deviation range (2.50

3 ≈ 0.84). Next
we tested the heuristics mentioned in this chapter on the dataset to find the heuristic which
performs best on each subset (see Table 5.5). For this evaluation we used the complete dataset
of the Consensus and Decision phases (see Figure 5.1) which included the anonymous and
the non-anonymous setting. The combination of the different heuristics can be found in
Formula 5.11.

Priority(sd,r,m) =

LDIS(r) sd < 0.84

MDB(r,m) 0.84≥ sd < 1.67

AV G(r) 1.67≥ sd ≤ 2.50

(5.11)

Group SD From SD To Best Heuristic
1 0 0.84 LDIS
2 0.85 1.67 MDB
3 1.68 2.50 AVG

Table 5.5: Groups based on Standard Deviation.

Thereafter we generated a function which uses the heuristic depending on the standard
deviation and the results of Table 5.5.

80

5.5 Conclusion

5.4.3 Empirical Study

An overview of the study results can be found in Table 5.6.2 Although the Median Based
heuristic is outperformed by the Least Distance (see Table 5.6), the Median Based performs
better in an environment with visible preferences. In the study conducted at the University
of Chicago [SSK00], on which this heuristic is based on, the same observation was made
in decision making processes where group member preferences are visible. The Standard
Deviation heuristic is out of competition as this heuristic is defined for this specific dataset.
Future studies with new datasets will show whether this combination of different heuristics
will have an improved prediction quality. When comparing the prediction quality of the
remaining heuristics, the Ensemble heuristic performs best.

Heuristic Consensus Decision
LDIS (least distance) 0.619 0.733

MAJ (majority voting) 0.576 0.719
AVG (average value) 0.617 0.702

RAN (random selection) 0.167 0.188
MDB (median based) 0.618 0.732

ESB (ensemble) 0.629 0.739
SDB (sd based) 0.636 0.722

Table 5.6: Comparison of heuristics of the Consensus and the Decision phase (best results are marked bold).

5.5 Conclusion

Requirements prioritization is an important task in software development processes. In this
chapter we motivated the application of requirements prioritization and discussed issues
related to the aspect of anonymizing group decision processes in requirements prioritization.
The results of our empirical study clearly show the advantages of applying anonymized
preference elicitation, for example, in terms of higher-quality software components, and can
be seen as a step towards a more in-depth integration of decision-oriented research in the
requirements engineering process.

The heuristics discussed in this chapter are basic group recommendation heuristics [Mas11].
Our initial analysis shows the applicability of these heuristics in terms of prediction quality.
As part of our future work we want to investigate the positive effect of recommendations

2Due to the limited space only the results without differentiation between visible and non-visible preferences
are shown.

81

5 Recommending Prioritizations

on the dimensions decision diversity, satisfaction with requirements prioritization, and the
software quality resulting from the requirements prioritization process. In addition, we want
to conduct an in-depth evaluation of the user acceptance of the determined group recom-
mendations - up to now only the majority voting based recommendations has been analyzed
[Fel+12]. Furthermore, we want to analyze if the Standard Deviation heuristic (as described
in Formula 5.11) has the same prediction quality on other data sets .

We also want to use this heuristic for group recommendation in our upcoming INTEL-
LIREQ user studies. An important task for future work is the analysis of preference reversal
[CNR04] in Requirements Engineering and the impact on the prioritization quality and the
stakeholders’ satisfaction with the prioritization. In this context we want to develop new
methods to improve stakeholder satisfaction.

Another topic of interest is the different interpretation of preferences. Are the group members
arguing of the same topic? Does everybody has the same understanding of a given term? It
has been shown that team members often enter a decision process from different viewpoints.
Therefore it is necessary to find a consensus on the interpretation of shared information. This
is especially important as the interpretation of issues has an massive impact on the decision
making and is therefore considered as crucial [MR01].

82

6 INTELLIREQ Prototype

This chapter is based on the work published in [Nin+14b]. The author of this thesis con-
tributed the related work, the development of the INTELLIREQ environment, the design of
the user study, and wrote major parts of the paper.

6.1 Introduction

Requirements Engineering can be defined as the branch of systems engineering concerned
with the desired properties and constraints of software-intensive systems, the goals to be
achieved in the software’s environment, and assumptions about the environment – see
[Dav03]. Major phases of a Requirements Engineering process are elicitation & definition,
quality assurance, negotiation, and release planning [Som11]. Requirements Engineering is a
critical phase of a software development project since low-quality requirements are a major
reason for the failure of a project [HL01]. The corresponding follow-up costs can add up to
40% of the overall project costs [Lef97].

Due to the increasing size and complexity of software systems, there is a growing demand
for intelligent approaches that can help to improve the quality of Requirements Engineering
processes [Fel+10b][MT09][MC11][Ren+13]. Existing Requirements Engineering tools
primarily support the definition and cataloging of requirements but fail to provide additional
information such as hidden relationships between requirements and quality status of require-
ments. Furthermore, these tools do not support decision making scenarios where mediation
support is needed (e.g., in the case of contradicting opinions and preferences of stakeholders).
Finally, no mechanisms are integrated that help to increase user involvement although a low
degree of involvement in many cases leads to project failure [LQF10].

In this chapter we introduce the INTELLIREQ environment1 which exploits recommendation
technologies [BFG11][Jan+10] to support Requirements Engineering tasks. INTELLIREQ

supports Early Requirements Engineering where the major focus is to figure out and prioritize
high-level requirements in software projects. The outcome of INTELLIREQ is a consistent

1http://www.intellireq.org

83

6 INTELLIREQ Prototype

Table 6.1: Example of a content-based filtering recommendation scenario (REQ = set of requirements).

ri ∈ REQ category release effort description

r1 database 1 140 hours store portfolio
configuration in database

r2 UI 1 300 hours configurator UI with
online help available

r3 database 1 100 hours Hibernate based
database access

r4 UI 2 200 hours configurator UI
with corporate identity

set of high-level requirements with corresponding effort estimations and a release plan for
the implementation of the identified requirements. All information units (e.g., requirements,
dependencies, and release plan) are summarized in a high-level specification book. INTEL-
LIREQ is applied by the industry and research partners of the Graz University of Technology.

The remainder of this chapter is organized as follows. In Section 6.2 we show how recom-
mender systems can support the development of requirements models. In Section 6.3 we
present the INTELLIREQ user interface and discuss related functionalities. An overview of
empirical studies related to the INTELLIREQ environment and the business benefits is given
in Section 6.4. Section 6.5 contains a discussion of related and future work. The chapter is
concluded with Section 6.6.

6.2 INTELLIREQ Recommendation Technologies

In this section we provide an overview of recommendation technologies integrated in IN-
TELLIREQ. A recommender system can be defined as any system that guides a user in a
personalized way to interesting or useful objects in a large space of possible options or
that produces such objects as output [Bur00][BFG11]. Recommender systems support the
identification of relevant items in situations where the complexity of an item assortment
outstrips a user’s capability to survey it and to reach a decision [Bur02].

84

6.2 INTELLIREQ Recommendation Technologies

6.2.1 Recommendation Approaches

There are the following four basic types of recommendation approaches.

Collaborative Filtering [Her+04][LSY03] is an implementation of word-of-mouth promotion
where purchase decisions are taken on the basis of the opinion of relatives and friends: if
users A and B rated similar items in a similar fashion in the past, collaborative filtering will
propose new items to user A that B already rated positively.

Content-based Filtering [PB97] exploits features (e.g., keywords) of items a user liked in the
past for the determination of recommendations. For example, if a customer of amazon.com
bought books related to the Java programming language, similar books (related to Java) will
be recommended in the future.

More complex items such as financial services or apartments are recommended by knowledge-
based recommenders [Bur00][FB08]. In this case, constraints define the relationship between
user requirements and the corresponding items and are thus responsible for the determination
of recommendations.

Finally, group recommenders [Fel+12][JBK04][Mas11] recommend items for groups of
users (e.g., recommendation of a hotel to a group of tourists who plan a common holiday
trip).

6.2.2 Recommendation Approaches in INTELLIREQ

The following discussions are based on a simplified scenario which includes the four require-
ments depicted in Table 6.1. On the basis of this scenario we show how recommendation
approaches can be exploited to support different types of Requirements Engineering activities
(e.g., requirements definition, quality assurance, and release planning). In this context we
want to emphasize that recommenders are key-supportive technologies, however, we do not
claim that information gaps in general can be tackled by their application. For example,
efficient Requirements Engineering processes heavily rely on the personal communication
between stakeholders which cannot be substituted by recommenders. Based on our sce-
nario we now exemplify the application of recommendation approaches in Requirements
Engineering.

Content-based Filtering. Content-based Filtering [PB97] exploits similarities between user
preferences and descriptions of items (items not known to the user up to now). User prefer-
ences are often represented in terms of keywords extracted from textual item descriptions
– see also [MR00]. Alternatively, items can be described in terms of categories (semantic

85

6 INTELLIREQ Prototype

Table 6.2: Keywords extracted from the textual requirement descriptions in Table 6.2 (REQ = set of
requirements).

ri ∈ REQ extracted keywords

r1 store, portfolio, configuration, database
r2 configurator, UI, help
r3 database, Hibernate
r4 configurator, UI

descriptions). Typical recommendations determined by content-based filtering are of type
item A is recommended since you purchased item B which is similar to A.

When defining requirements, stakeholders can be supported, for example, by pointing out
requirements defined by other stakeholders in the current project that are similar to the
current one. Furthermore, requirements can be recommended for reuse, i.e., requirements
already defined in previous projects can be more easily retrieved and reused in the current
project. The similarity between two requirements in the set REQ of defined requirements
({ra, rb} ⊆ REQ) can be determined on the basis of Formula 6.1 (Dice coefficient which is a
variation of the Jaccard coefficient ”intensively” taking into account keyword commonalities
– see also [Jan+10]).

sim(ra,rb) =
2∗ |keywords(ra)∩ keywords(rb)|
|keywords(ra)|+ |keywords(rb)|

(6.1)

For example, sim(r1, r3) = 0.33, since keywords(r1) = {store, portfolio, configuration,
database} and keywords(r3) = {database, Hibernate} (see Table 6.2). Let us assume that
the active stakeholder (st) has already investigated the requirement r1. Now, content-based
filtering would recommend requirement r3 if r3 has not been investigated by the active
stakeholder up to now. If available, metadata can as well be exploited for determining the
similarity between requirements – in this situation, keywords (see Formula 6.1) have to be
substituted by category descriptions (see Table 6.2).

In INTELLIREQ, dependency detection is based on content-based filtering. Dependency
detection is the task of identifying semantic relationships between requirements. Examples of
relationships between two requirements (ra and rb) are ra requires rb, ra is incompatible with
rb, ra refines rb, and ra is part of rb. INTELLIREQ does not identify relationships between
requirements on a semantic level but on the level of similarities, i.e., the basic assumption
is that similarity between requirements can be an indication of dependency. The assertion
of a concrete dependency is the task of the stakeholders. In addition to the afore discussed
content-based filtering approach, INTELLIREQ exploits semantic information extracted from

86

6.2 INTELLIREQ Recommendation Technologies

Table 6.3: Example of a decision problem: deciding about the group evaluation of requirement r1 (MAJ =
majority voting as decision heuristic).

r1 sta stb stc std MAJ
quality medium medium medium high medium
priority high high medium high high
decision accept revision accept accept accept

OpenThesaurus2 instead of keywords. This OpenThesaurus enhanced version is integrated in
the current INTELLIREQ version (http://www.intellireq.org).3

Group Recommendation. The major goal of group recommendation technologies [Fel+12]
[JBK04][Mas11] is to foster consensus among group members. Group recommenders can
support group decision making by taking into account the fact that individual decisions
depend on factors such as own evaluation of an alternative, beliefs about group member
opinions, and information about the individual motivations (e.g., egocentric or cooperative
motivation [JBK04]). Group recommenders include heuristics [Mas11] that can be used for
identifying alternatives that will be accepted by all or at least a majority.

Requirements evaluation & negotiation are basic application scenarios for group recom-
menders since stakeholders have to cooperatively decide about the quality of requirements
and also to figure out in which way requirements should be taken into account in the release
plan. For demonstration purposes we assume that the requirement r1 has been evaluated by
the four stakeholders {sta, stb, stc, std} – evaluations are depicted in Table 6.3.

In order to determine a group recommendation we can apply group decision heuristics
[Mas11]. For example, the majority voting strategy (see Table 6.3) recommends a value
that represents the majority in the set of individual votes. Another example of such a group
decision scenario is the assignment of requirements to software releases. In this context as
well stakeholders can have different preferences regarding the assignment of a requirement
to a specific release. When applying majority voting (MAJ), the release with the highest
number of votes would be assigned to the corresponding requirement. As a result of a couple
of empirical studies [FN12], majority voting (MAJ) has been selected and integrated as
the primary decision heuristic of the INTELLIREQ environment. In addition to the analy-
sis of individual decision heuristics, [FN12] also introduce a meta-heuristic that combines
individual heuristics into an ensemble. Ensemble-based heuristics showed to outperform
individual heuristics [Nin12] and therefore will be integrated and evaluated in new versions

2http://www.openthesaurus.de
3The inclusion of English thesauri such as WordNet (wordnet.princeton.edu) is within the scope of future

work.

87

6 INTELLIREQ Prototype

Figure 6.1: INTELLIREQ: details regarding a single requirement. The three stakeholders provided inconsistent
ratings for the property priority which is indicated by the traffic light feedback mechanism.

88

6.3 INTELLIREQ User Interface

of INTELLIREQ.

Knowledge-based Recommendation. Knowledge-based recommendation [Bur00][FB08]
exploits deep knowledge about items, user requirements and preferences, and their rela-
tionships. Recommendation knowledge is represented in terms of constraints (rules) which
indicate the relationship between user requirements/preferences and the given item set. This
type of knowledge representation supports the generation of explanations as to why items
are recommended or no solution could be found [FSR13].

In the Requirements Engineering context, knowledge-based recommenders can be used,
for example, for the recommendation of open issues. In Figure 6.1 the three stakeholders
have diverging estimates regarding the priority of the requirement – this situation can be
automatically detected by constraints that indicate open issues to be solved (using the traffic
light semantics).

Furthermore, knowledge-based recommenders can be applied in the context of release
planning. In INTELLIREQ release plans are manually defined by stakeholders. Inconsis-
tencies between stakeholder preferences can be repaired on the basis of heuristic search
based diagnosis. In addition, we have developed concepts that allow a model-based diagnosis
(MBD) of inconsistencies [FSR13][Rei87]. MBD identifies a minimal set of changes in
the requirements model such that consistency can be restored. In the case of incomplete
release plans (some of the requirements do not have an assigned release), INTELLIREQ

can propose completions that are based on recommendations of group recommendation
algorithms [Mas11].

6.3 INTELLIREQ User Interface

Figure 6.1 and Figure 6.2 provide an impression of the way in which users can define and
manage their requirements in INTELLIREQ. Each requirement has a textual description
and is associated with a set of properties (metadata) that describe specific characteristics
of a requirement, for example, associated risk, feasibility, and costs. Each stakeholder is
encouraged to evaluate requirements with regard to the given set of properties (metadata).
For each requirement, INTELLIREQ provides group recommendations that support a group
of stakeholders in deciding about the evaluation of the requirement.

INTELLIREQ automatically identifies potential dependencies between requirements and
determines recommendations that are ranked conform to the degree of similarity between
the requirements (see ”support value” in Figure 6.2). In the current version, dependency

89

6 INTELLIREQ Prototype

Figure 6.2: INTELLIREQ: recommendation of dependencies; dependency recommendation is based on OpenThe-
saurus (www.openthesaurus.de), i.e., INTELLIREQ currently supports German, the English descrip-
tions used in this chapter have been included for reasons of understandability.

recommendations can be selected and (manually) transformed into corresponding formal
dependencies (e.g., requires and incompatible) that are taken into account as constraints
[Tsa93] in release planning.

An important functionality are traffic lights which summarize open issues in an requirements
model. For example, if stakeholders evaluate requirement properties differently (e.g., require-
ment r is considered as infeasible by stakeholder A but completely feasible by stakeholder
B), then the corresponding traffic light is red which points out that additional evaluations are
needed. In the current version of INTELLIREQ, a red light is displayed if the corresponding
user evaluation exceeds the standard deviation, an orange light is used to point out a low
number of stakeholders (less than two) who took a look at the requirement, otherwise a green
light is shown.

In INTELLIREQ, traffic lights are included on different levels: (1) contradicting evalua-
tions on the level of requirement properties, (2) neglected requirements in the context of
quality assurance (e.g., a requirement has never been evaluated by a stakeholder), (3) unex-
plained decisions for release plans, and (4) effort-related inconsistencies in the current release
plan (e.g., due to too many requirements in a specific release). If the overall implementation
effort of requirements assigned to a release is too low or too high, this situation is reflected
in terms of red or yellow lights (see Table 6.4).

90

6.4 User Studies and Benefits

Table 6.4: Constraints related to the allowed implementation effort of requirements assigned to a release
(RS = actual e f f ort

allowed e f f ort).

RS green yellow red

<90% x
90-100% x
>100% x

6.4 User Studies and Benefits

In order to analyze improvements that can be achieved by INTELLIREQ, we conducted
different system evaluations that will be discussed in the following. First, we analyzed the
usability of the INTELLIREQ user interface. Second, we evaluated different INTELLIREQ

recommendation approaches.

Usability. This study has been conducted at the Graz University of Technology. N=20
subjects (85% male and 15% female) interacted with the INTELLIREQ environment and
developed a requirements model (set of requirements) for an application domain they could
choose on their own. In a second step the subjects had to switch to a predefined exam-
ple set of requirements (digital watch) and to complete a predefined set of tasks such as
defining dependencies between the given requirements (with the support of the INTEL-
LIREQ dependency detection) and evaluating meta-properties (e.g., risk level, feasibility,
and costs) of requirements. After having completed these tasks, the participants had to
fill out a questionnaire based on the system usability scale (SUS) and to answer further
questions regarding the applicability of the INTELLIREQ environment. The subjects of the
study agreed on the applicability of the system. INTELLIREQ is easy to use and the majority
of the subjects stated that they are willing to use the system on a regular basis (see Figure 6.3).

Recommendation Support. Further feedback provided by the subjects of the usability study
was the following. Content-based dependency recommendations were appropriate and helped
to increase the quality of requirement models (average evaluation 4.35).4 Content-based
recommendation algorithms also alleviated the search for and the reuse of requirements
(4.26). Recommendations regarding quality assurance tasks (in terms of a traffic light signal)
are helpful and should be constantly shown to the user (4.22).

The outcome of previous evaluations (see [Fel+12]) was that group recommendation in-
creases the perceived system usability and quality of decision support. In this context it is

41 = I do not agree, 2 = I partially agree, 3 = I rather agree, 4 = I agree, 5 = I totally agree.

91

6 INTELLIREQ Prototype

important to not disclose individual preferences of group members in early phases of a deci-
sion process. The reason for this is that the knowledge about the preferences of other group
members leads to an insufficient exchange of decision-relevant information. In future INTEL-
LIREQ versions we will make this property configurable, i.e., if the administrator prefers to
disclose the preferences (evaluations) of different users from the very beginning, she/he will
be able to do so. Finally, recommendations to groups intensify discussions between group
members which itself has a positive impact on the quality of the decision outcome [Fel+12].
The reason for this is that discussions between group members increase information sharing
which itself increases requirements-related knowledge of group members and thus improves
the quality of the information needed for taking a decision. In addition to these evaluation

Figure 6.3: SUS usability evaluation: average ratings, N=20 (1 = I do not agree, 2 = I partially agree, 3 = I rather
agree, 4 = I agree, 5 = I totally agree).

results we were interested in the impact of recommendations (traffic light support) on quality
assurance practices. For example, if less than two other stakeholders (not the originator of
the requirement) took a look at a specific requirement, a yellow traffic light is shown (a red
traffic light is shown if no other stakeholder took a look at the requirement). This is a kind of
knowledge-based recommendation where a constraint specifies the status of the traffic-light.
From the psychological point of view people prefer situations where things are complete and
they do not need to think about these things any further (completion directly leads to a sense

92

6.4 User Studies and Benefits

of having achieved closure). Contrary to this, incomplete things leave us unsatisfied and we
seek to resolve the existing incompletion.

In order to analyze the impact of traffic lights based user guidance we conducted an em-
pirical study with N=32 computer science students (22% female and 78% male).5 In the
role of a release manager their task was to analyze an existing requirements model, resolve
inconsistencies in the model, and to generate a corresponding release plan. The outcome
of this study was the following. When supported by traffic light based recommendations
regarding quality assurance tasks (50% of the subjects received such recommendations),
users needed significantly less interaction steps (e.g., in terms of the number of changes of
the requirements view) (p < 0.01) and less time (p < 0.02) to successfully complete the
given task. Traffic light based indication of tasks also persuaded subjects to document their
decisions regarding a release plan (p < 0.01).

The semi-automated detection of dependencies between requirements in INTELLIREQ is
based on content-based filtering where the requirements most similar to the requirement
currently under investigation are presented to the user. The underlying assumption is that sim-
ilarity between requirements is an indicator for dependencies. In order to evaluate the quality
of the current dependency detection approach (see Section 6.2), we measured precision as
an indicator of prediction quality (see Formula 6.2). The average precision (stakeholders
accepted this recommendation as a dependency) measured in the current projects is 0.692
for the 10 top-ranked requirements (those with the highest support value). Note that even
for very small projects with about 100 requirements, the theoretical number of pairs to be
analyzed with regard to dependencies is 4.950.

precision =
|accepted(reqi)|
|recommended(reqi)|

(reqi ∈ REQ) (6.2)

Summarization of Benefits. The major benefits of the INTELLIREQ Requirements Engineering
environment are the following. Time efforts related to the development and quality assurance
of requirements can be reduced due to a more systematic approach of quality assurance
(traffic light based indication of open issues) and due to a group recommendation support that
helps to mediate between different stakeholders (e.g., in the case of contradicting evaluations
of requirements). A further reason for time savings is the recommendation of potential
dependencies between requirements which otherwise would have to be figured out manually.
A more systematic analysis of dependencies can also cause a reduction of inconsistent
definitions in the requirements model. In the same line, the support of requirements reuse can
help to avoid the definition of redundant requirements. From the psychological standpoint,

5The subjects of this study did not participate in the usability study.

93

6 INTELLIREQ Prototype

the traffic light based indication of open issues exploits the phenomenon need for completion
and thus increases individual user engagement.

6.5 Related and Future Work

Recommender Systems in Software Engineering. The application of recommendation tech-
nologies in Software Engineering is manifold and ranges from method call recommendations
in software development [Tsu+05] to the recommendation of effort estimation methods in
project management [Pei+10]. An overview of the application of recommendation tech-
nologies in Software Engineering can be found in [RWZ10]. A detailed overview of the
application of recommendation technologies in Requirements Engineering can be found
in Chapter 2. In the remainder of this section we focus on topics related to recommender
systems in the context of INTELLIREQ.

Stakeholder Recommendation. Crucial for the success of a project is the inclusion of the
right representatives of a group. The StakeNet approach [LQF10] supports stakeholder iden-
tification on the basis of the concepts of social network analysis. StakeNet social networks
are build from individual stakeholder recommendations (e.g., A recommends B to be part
of the project). An example of a network analysis operation in this context is betweenness
centrality which counts for a specific stakeholder st the number of shortest paths between
other stakeholders in which st is included. A corresponding high value indicates a person’s
capability of acting as a broker between groups. The inclusion of stakeholder recommenda-
tion mechanisms into the INTELLIREQ environment is an issue for future work.

Recommendation of Requirements. An approach to requirements reuse is presented in Du-
mitru et al. [Dum+11]. Reuse support is implemented on the basis of content-based filtering
where keywords extracted from the description of the new project are matched with keywords
extracted from requirements descriptions of already completed projects. In contrast to INTEL-
LIREQ no Thesaurus information is used when determining content-based recommendations.
Furthermore, in contrast to existing approaches to include recommendation techniques in
Requirements Engineering processes, no group recommendations (e.g., in the context of
requirements definition and release planning) are supported.

Consistency Management. Especially for informal requirements an automated consistency
management is unrealistic [IR04]. However, semi-automated approaches as implemented in
INTELLIREQ can help to reduce related efforts. INTELLIREQ provides a couple of techniques
that help to improve consistency management processes. Inconsistencies can, for example,
be resolved on the basis of the concepts of model-based diagnosis [Rei87] combined with

94

6.6 Conclusion

corresponding repair algorithms [FB08]. A discussion of the automated diagnosis of incon-
sistent requirement models can be found in [Fel+10a].

Requirements Prioritization. Restrictions regarding available resources often require prioriti-
zation decisions regarding the set of requirements that should be implemented [Dav03]. In
disaster scenarios victims are categorized into three types: those who will die, those who
will survive, and those whose survival depends on the medication (also known as triage).
Requirements prioritization is similar: requirements that must not be included in the next
release, those that are optional for the next release, and those that must be included. In IN-
TELLIREQ, requirements prioritization is implemented as a group decision process where for
each requirement the group as a whole has to develop a consensus regarding the prioritization
(not included, optional, must be included).

Future Work. (1) Requirements Engineering environments are often based on the assumption
of stable stakeholder preferences (e.g., regarding the prioritization of requirements). In fact,
decision processes in most cases follow a process of incremental preference construction
and are subject to different types of biasing effects. Being able to take into account related
decision psychological theories requires a strongly interdisciplinary research approach. (2)
In order to further improve the quality of dependency detection mechanisms in INTELLIREQ,
approaches from natural language processing [FS05] and text mining [WF05] have to be
combined with content-based approaches currently included in INTELLIREQ. (3) The INTEL-
LIREQ user interface will be improved in terms of integrating functionalities to automatically
annotate and group requirements. (4) In future versions of INTELLIREQ we intend to provide
interfaces to existing Requirements Engineering tools such as IBM Doors.

6.6 Conclusion

Existing Requirements Engineering tools primarily support the definition and cataloging of
requirements but fail to provide additional information such as similarity of requirements,
dependencies between requirements, and quality status of requirements. In this chapter we
presented the INTELLIREQ environment which focuses on the integration of recommendation
technologies with the goal to make Requirements Engineering environments more proactive.
Among the major advantages that can be expected from the application of recommendation
technologies in Requirements Engineering are an increased reuse of requirements, active
guidance of stakeholders, increased consistency in requirements models, and reduced time
efforts needed for the construction of requirement models.

95

7 Future Work: Human Computation in
Requirements Engineering

We already motivated the need of a semi-automatical evaluation of requirements represented
in natural language (see Chapter 4) and proposed an approach based on the exploitation
of lexical resources. However, for a satisfying interpretation of requirements written in
natural language, one needs commonsense knowledge which is often omitted in written
requirements descriptions as it is assumed that this kind of information is already known to
a potential reader. As a simple example, you cannot infer from the lexical resource that if
your cat is sick you should visit a veterinarian. Of course, there are approaches to collect
these relations in a database to infer these kind of conclusions [Ahn05]. However, having a
database containing that vast amount of information to achieve a human like reasoning is
implausible. A founder of AI, Marvin Minsky, once estimated that knowledge about 30 to 60
million things and the power to make analogies based on them is necessary for commonsense
reasoning [LS04]. Thus, humans are good at finding out the context of words as they own
the necessary knowledge on these things and can retrieve this information quickly [LS04].
As a logical consequence enhancing natural language processing with human interaction can
be of high value for the quality of the result.

In this chapter we want to discuss the possible exploitation of the idea of Human Computation
in the scope of Requirements Engineering. Human Computation in the modern usage appears
to be inspired by von Ahn’s 2005 dissertation titled ”Human Computation” and defines
the usage of human processing power for problems which cannot be solved by computers
yet [QB11][Ahn05]. Our interest is focused on two main problem areas: ambiguity in
requirements descriptions and the need for domain-specific ontologies to automatically
discover inconsistencies and incompleteness in requirements specifications.

7.1 Ambiguity

Unrecognized ambiguity occurs if a reader interprets a statement in a requirement with the
first meaning coming to her/his mind without being aware of other possible meanings. This
can lead to a completely wrong understanding of the given requirement and is a major source

97

7 Future Work: Human Computation in Requirements Engineering

of failure in software projects [BK04]. To reduce this problem we propose a gaming approach
to increase the discussion of meaning of terms used in projects and / or in the domain context.
To do so we want to adapt the ESP game [Ahn05] originally used to annotate images on the
web. During the game two players provide words to describe a picture. If they come up with
the same word, they proceed with the next picture and receive some points for successfully
completing the given task. The results found with this approach revealed a high precision
which outperformed image recognition algorithm available around 2005 [Ahn05].

Although the original approach was designed to find universally valid annotations for im-
ages, we are convinced that this approach fits even better into the context of Requirements
Engineering. For example, a company wants to create a glossary of terms commonly used in
their software projects. In this context, instead of universally valid descriptions for the used
terms, the company needs a glossary which reflects the interpretation of terms as it is used in
their daily business. This interpretation may even be conflicting with a universally valid view
on specific terms. Thus, we assume that knowledge bases generated through games with a
purpose [Ahn05] played in a company scope outperform public available general purpose
resources like ontologies for tasks related to the company.

Consequently, to create the aforementioned company specific glossary, stakeholder participat-
ing in the Requirements Engineering process need to find consensus about the interpretation
of terms. In the EasyWinWin process this is done during the brainstorming session where
stakeholders pair up and try to come up with definitions for key terms. Beside the definition
of the correct interpretation of terms this approach also supports the identification of tacit
knowledge which would not be communicated otherwise [GB01]. We adopt the idea of
pairing up two stakeholders and combine it with the concept of the ESP game [Ahn05].

Define input for a game scenario

Opposite to the original ESP game, assigning tasks to users pure randomly is not a good
approach as we have to deal with different conditions:

• Less Participants: The original ESP game was played by 13,630 players during a
four-month period [Ahn05]. In our context the amount of potential participants in a
game is far lower as only persons related to a specific domain are valid players (for
example, stakeholders in a project context or employees of the company).
• Unequal important terms: Not all terms in a requirement are equally important for a

succeeding NLP task. For example, terms like DNS or database may be more important
than cold or cosy for a software company. Also, to achieve good results each task (find
a description for a term) should be repeated several times. Therefore, it is necessary to
find intelligent methods to assign the most relevant tasks to players first. Additionally,

98

7.1 Ambiguity

Figure 7.1: AMBIGUITY GUESSES GAME: Shows the different steps to define annotations for the term IntelliReq:
Step 1 distributes the task of defining the term IntelliReq. Step 2 shows the responses of the two
participants. The term Requirements Engineering is a match between the two responses and is shown
in italic for better understanding. Step 3: The system takes the matching term and define it as result
of this game round.

assigning meaningless tasks (unimportant terms) may be annoying for the players and
would reduce the amount of liberally played games.
• Probability of ambiguity: As motivated in Chapter 4 the cardinality of concepts is

different between terms and a high cardinality increases the risk of using a term in the
wrong context. Consequently, terms with high cardinality should be played more often
than other terms.

As a consequence from these issues we cannot randomly assign terms as tasks to the players.
Instead, we need to focus on the most important terms first. We therefore propose a filtering
to identify the best candidate terms for our game. In a first step, we want to identify company
specific terms which could be used for products, processes, or similar. For a straight forward
method to identify candidate terms one can take common used words (e.g., words with an
occurrence above a certain threshold) from documents created in a company. Next, these

99

7 Future Work: Human Computation in Requirements Engineering

words are compared to a lexical resource like OpenThesaurus1. If there is no matching entry
for a word in the lexical resource we define this word as candidate for a company term. These
candidates can be used as input for a succeeding game with the purpose of defining company
terms.

Of course, one can assign a knowledge engineer to create an ontology with these terms but
there are several advantages coming with our gaming approach. First, if different stakeholders
are participating in the process of finding relations between company terms, one can infer the
distribution of necessary knowledge about these terms between the stakeholders. For example,
having only few stakeholders agreeing on a term will indicate the need for discussion about
this term. Second, having a search over all requirements terms and comparing them with
lexical resources, the risk of overseeing a company term for a potential ontology is reduced.
To illustrate our gaming approach we use the company term IntelliReq which is a collaborative
platform to facilitate the Requirements Engineering process. Figure 7.1 shows a simple game
flow to define the term IntelliReq. We start with two players named Person 1 and Person 2
with the task to agree on a description for IntelliReq. Without seeing the input of the other
person, each player provides terms which describes IntelliReq best in their opinion (we
denote them as Guesses). Comparing the provided information the system can identify the
term Requirements Engineering as a match both player can agree upon. Having at least one
matching term, the system considers the game as successfully completed and rewards the
player with a certain amount of game points.

As mentioned above, in the scope of Requirements Engineering in a company, there are far
less participants available compared to the scenario of the ESP game and the response time
between Step 2 and Step 3 (see Figure 7.1) should be reasonably short. We therefore propose
a dynamic approach (see Figure 7.2) which replaces a human player by data collected from
previous game sessions after a certain period of time has passed without finding another
player.

Based on the experience collected during our study for the Keyword Recommender (cf. Chap-
ter 4) there is another topic which must be considered. We argued that a recommendation of
keywords can be used to reduce different versions of the same term to annotate a requirement.
Similar to that we can identify the terms Web Service and Web Platform as guesses provided
by the player in Figure 7.1. Of course, the system can only use the term Web but this is
obviously an insufficient tag to describe the IntelliReq environment. Also, one can argue that
these terms are not equal according to the definition in a dictionary, however in the context
of Requirements Engineering it is more important how terms are used in the project context.
Consequently, we need to identify how stakeholders in a project context use these terms and
if they are a valid option to describe IntelliReq.

1We used this lexical resource in our implementation of INTELLIREQ.

100

7.1 Ambiguity

Figure 7.2: AMBIGUITY GUESSES GAME WITH ALTERNATIVE GAME FLOW: Shows the different steps to define
annotations for the term IntelliReq in case a second player cannot be found in a reasonable time: Step
1 distributes the task of defining the term IntelliReq. Step 2 is equal for Person 1 as shown in the
previous approach. Also, the system could not find a second player and associate the player slot with
the database. In Step 3 the system takes a random response from the past. Step 4 is equal to Step 3
described in Figure 7.1.

101

7 Future Work: Human Computation in Requirements Engineering

Figure 7.3: AMBIGUITY GUESSES GAME BONUS ROUND: Shows the refinement process for the annotation
of the term IntelliReq starting with the results of the previous game (cf. Figure 7.1 and Figure 7.2).
There are two possible refinements for the term Web: Step 1 distributes possible refinements for the
term Web. In Step 2 both participants guess that the term Web Platform is a good refinement. Step 3:
The system takes the matching refinement and define it as result of this game round.

To resolve this problem, we propose the use of a bonus round. In this bonus round participants
have to agree on a refinement of the given term based on guesses from the past (see Figure
7.3). Note that this bonus round is not necessarily done by players who came up with the
initial results from the previous step. Furthermore, it should be the topic of a future study to
evaluate if reassigning participants, who came up with the initial results, to bonus rounds
increase the quality of tags compared to randomly inviting players to bonus rounds. Beside
the identification of company terms we also want to gather additional information during the
game, for example, if there are a lot of concepts (cf. Chapter 4) associated to a term. This
information can be of high importance for a succeeding natural language processing. For

102

7.1 Ambiguity

Figure 7.4: CONCEPTS OF THE TERM Time: Shows the different possible concepts in which the term Time can
be used. As can be seen the cardinality of Time is three.

example, terms with a high cardinality of concepts can be easily misused during the process
of seeking related documents as they are highly dependent on the context they are used in. In
our approach in Chapter 4 we are using the cardinality of concepts to reduce the weight of
terms for our similarity measurement.

Independent of the process of generating the list of terms which should be evaluated, we
propose a game to dissolve the ambiguity of used terms. Opposite to the approach of refining
company specific terms, we can exploit information stored in lexical resources. For example,
synonyms can be used to propose alternatives for each concept of a term to participants.
Confronted with the list of possible options, the participants can try to agree on one synonym
of a concept which fits best in the domain of interest. As an example, we use the design of a
simple watch. In this context, the term Time is under investigation. As can be seen in Figure
7.4 there are three possible concepts available for this term2.

Using our example set and assuming that both participants can agree on Clock Time as best
fitting concept for their working environment, the game flow is shown in Figure 7.5. In the
context of designing a watch the most useful interpretation of the term Time is in thinking of
Clock Time. Obviously, one can argue that there is also the possibility of thinking about a
Time Span but there should be no association to the concept of Tense or Tempus. Table 7.1
shows a possible scenario with four game rounds. Each round ended with one concept found
(three times Clock Time and one time Phase).

We use Formula 7.1 to calculate weights for the concepts with |concept(i)| is the cardinality
of game rounds ending with the concept i found. Based on this formula we come up
with a weight of 0.75 for the term Clock Time and with 0.25 for the term Phase. Finally,

2These three concepts are taken from the lexical resource OpenThesaurus which is also used in our
INTELLIREQ environment.

103

7 Future Work: Human Computation in Requirements Engineering

Figure 7.5: CONCEPTS OF THE TERM Time: Shows the different possible concepts in which the term Time can
be used. As can be seen the cardinality of Time is three.

as no one voted for the term Tense this concept will have a weight of zero and will be
ignored in the context of the term Time. Thus, if we apply these weights to a succeeding
similarity measurement task between requirements we will receive a strong binding between
documents about Clock Time and Time which is reasonable in our scenario. On the other
side, requirements about Time and Tense will not be linked together (at least based on these
terms).

It is also possible to use these weights to improve similarity algorithms for text comparison
such as the TF-IDF (Term Frequency - Inverse Document Frequency) algorithm which is
similar to the approach used in our current INTELLIREQ environment with an important
difference. Having no domain knowledge, we used a probability measure based on the
cardinality of concepts (cf. Chapter 4). This is based on the assumption that terms with a
high cardinality have a high probability to be used in the wrong context.

weighti =
|concept(i)|
|playedRounds|

(7.1)

To improve the quality of our proposed game to find concepts for terms (see Figure 7.5) the

104

7.2 Relations between Objects in an Area of Interest

Table 7.1: Example results of the concept game.

Game Clock Time Phase Tense

1 x
2 x
3 x
4 x

Phetch [Ahn05] game can be used with some modifications. Similar to the original game, a
player called Describer has to explain a specific term to a second player called Seeker. If
the second player can correctly guess the term looked for, both players are awarded with a
certain amount of points. Also, if it is possible to find the term looked for with the provided
description, this can be assumed as proof for the quality of the description. Additionally, by
modifying the available options to describe a term (e.g., deny the use of certain words), the
quality of the different description terms can be evaluated. As a simple example, Table 7.2
shows four played games. In the first run, the Describer proposes the terms Collaboration
Platform and also needs to show the second term Requirements Engineering to the Seeker
before he can correctly guess the term IntelliReq. In the next run the Describer uses the terms
Web Platform and Requirements Engineering and again the Seeker can find the term looked
for. Obviously, the term Requirements Engineering is useful to describe the term IntelliReq
as it was used in both previous rounds. Therefore, the system does not allow the usage of this
term in the next game so that the Describer has to come up with an alternative description.
In the third game having only the terms Web Platform and Collaboration Platform available,
both players do not succeed in finding the correct result. The reason could be that there exist
several web based collaboration platforms in the specific domain and therefore these two
terms are insufficient to correctly identify the term IntelliReq. Consequently, a description
using only Collaboration Platform and Web Service is insufficient. In the last game run, the
players are only allowed to use the remaining term Requirements Engineering to describe
IntelliReq. Again, there could be no result found which could be based on the fact that
there are different entities in a domain related to Requirements Engineering like desktop
applications and processes. Therefore, none of these terms is redundant for the description of
the term IntelliReq but the term Requirements Engineering should receive a higher weight as
it is involved in all successful game runs.

7.2 Relations between Objects in an Area of Interest

Although natural language processing has advanced, it is hard to handle informal descriptions
in Requirements Engineering documents [KS06]. We also motivated in Chapter 4 that the

105

7 Future Work: Human Computation in Requirements Engineering

Figure 7.6: CONCEPTS OF THE TERM Time: Shows the different possible concepts in which the term Time can
be used. As can be seen the cardinality of Time is three.

Table 7.2: Example game results for the term IntelliReq. An empty field in the column Second description
indicates that the correct term was found without the need for a second description shown to the other
player.

Game First description Second description Result

1 Collaboration Platform Requirements Engineering IntelliReq
2 Web Platform Requirements Engineering IntelliReq
3 Collaboration Platform Web Platform No result
4 Requirements Engineering - No result

106

7.2 Relations between Objects in an Area of Interest

Table 7.3: Example game results for the term IntelliReq. An empty field in the column Second description
indicates that the correct term was found without the need for a second description shown to the other
player.

Type Task Answer

is a IntelliReq is a ... Collaboration Platform
requires IntelliReq requires ... Web Server
is used for IntelliReq is used for ... Requirements Engineering

use of a semi-formal notation is often not possible as you cannot assume all stakeholders to
be capable of using formal notations. Thus, Requirements Engineering processes are often
bound to natural language but can be supported by lightweight semantic processing based on
a domain ontology to detect inconsistency or incompleteness in requirements descriptions
[KS06]. An ontology is a specific set of objects, concepts, and other entities which exist in
an area of interest. It also contains relations between all these items. Thus, it represents a
simplified view of the world that fits a specific purpose [Gru93]. This definition leads to the
necessity of defining an own ontology for the use in NLP within a specific project and / or
company context.

With a domain-specific ontology we can find pointers to concepts. Between atomic terms
there must be connections such as requires, is part of, aso. With that we can identify properties
of requirements which help to detect incompleteness and inconsistency. For example, if
the ontology defines the term reservation requires cancel, a requirement can be defined as
incomplete if it only mentions reservations without an option for cancellation. There is a
need to find these relations [KS06].

Similar to the task of finding annotations for terms used in a specific domain, we can use
the proposed game flow in Figure 7.1 to construct relations between terms. We only need
to change the task from Define IntelliReq to one of the question types shown in Table 7.3.
Again, the goal of the game is that two participants come up with the same result for the
given task and are rewarded with game points if they succeed.

107

8 Conclusion

8.1 Limitations of the INTELLIREQ Environment

The following section shows known limitations of the INTELLIREQ environment and sugges-
tions for future enhancements.

Keyword recommendation is currently only based on keywords used for requirements in the
past and does not provide any evaluation of the quality of recommended keywords. Thus, if
other users annotated requirements with mismatching and / or misspelled keywords, these
words will be recommended if they match with words found in a new created requirement
description. In our study, we provided an initial set of keywords suitable for the given
software development task. As shown in Chapter 7 the generation of such an initial set of
keywords can be done collaboratively by the use of games with a purpose which should
be supported in a future version of INTELLIREQ. Also, there is a need for a better support
during the keyword insertion process, e.g., a spell checker should be provided by the system
to prevent typos in the set of keywords.

Dependency detection in INTELLIREQ is done by comparing the occurrence of synsets
(synonymy sets) in two different requirements. As a consequence, the recommendation
quality of potential dependency candidates relies on the relevance of synsets used for this
comparison in the domain of interest. Currently, only the cardinality of possible meanings of
words is taken into account. To improve this approach a knowledge base with domain relevant
keywords (and related synsets) can be used. With this knowledge base, if two requirements
descriptions share a synset which is defined as domain relevant, the similarity score should
be increased.

Evaluation of the quality of requirement descriptions is only supported with a very simple
rule (how many stakeholders viewed a requirement). Although, this is a good starting point,
an improved environment should support a more intelligent approach. For example, having
the history of viewed requirements by stakeholders, INTELLIREQ could use collaborative
filtering to recommend specific requirements to stakeholders. For example, two stakeholders
with the same history of viewed requirements may posses the same expertise in a specific area.

109

8 Conclusion

As a consequence, if one stakeholder evaluated a requirement the system should recommend
this requirement to the second stakeholder with a similar expertise.

8.2 Conclusions from Research Questions and
Contributions

To support stakeholders in the process of defining complete and consistent requirements
documents, computer-aided support is required. In the following we reflect on our research
questions and contributions.

Research Question Q1:

How do recommendations and preference visibility influence the perceived usability
and quality of decision support in Requirements Engineering environments?

In this work we conducted a study with 293 participants to investigate the impact of recom-
mendation technologies applied to the field of Requirements Engineering. For this purpose
we developed a prototype environment where stakeholders could define, adapt, and store
preferences. Also, it was possible to discuss already defined preferences and to receive a
recommendation for group decisions related to the task of finding requirements for a software
project. For the evaluation we created a simple interface in which seven basic decisions had
to be defined (see Section 3.2) and divided the study participants into four different groups:
with preference view and recommendations, with preference view and without recommenda-
tions, without preference view and with recommendations, and without preference view and
without recommendations. The results were the following: although the usability does not
seem to increase through the use of recommendation technologies, the perceived decision
support is better. Additionally, group recommendation technologies seem to be a stimulating
element for information exchange and visible preferences reduce the amount of adapted
preferences as stakeholders want to be seen as consistent with their original preferences.
We detected a decision bias when stakeholders were confronted with the preferences of
other stakeholders as they base their initial preferences on the information provided by other
stakeholders. Unfortunately, this leads to less information exchange which is very important
for the quality of the decision making process. Finally, we identified a decreased satisfaction
if someones preferences are not taken into account which leads to a win-lose situation.

110

8.2 Conclusions from Research Questions and Contributions

Research Question Q2.1:

How to increase stakeholder interaction with requirements and release plans to im-
prove the quality of these artifacts?

To guide stakeholders through the Requirements Engineering process we introduced a
traffic light based status indication. For example, if only one stakeholder was involved in the
definition of a requirement and this requirement is not reviewed by another stakeholder, this
can lead to several issues with the descriptions. For example, important information can be
left out or the description itself is ambiguous. We therefore defined a minimum threshold of
involved stakeholders to assure the quality of the description of requirements. To motivate
stakeholders we used a yellow traffic light near a requirements description which has not
reached the minimum number of reviews by other stakeholders. In a similar way we used
traffic lights to indicate flaws in release plans for a set of requirements. We therefore defined
an amount of work hours available for each release and all requirements possessed hour
estimations for their implementation. Based on this information we defined three different
conditions. First, one assigned too less requirements to a release and therefore did not use
the available work hours. This condition was indicated by a yellow traffic light. Second,
a green traffic light was used if stakeholders assigned requirements with a total working
time between 90% and 100% of the available hours of a release. Finally, if stakeholders
assigned too many hours to a release this was indicated with a red traffic light. Addition-
ally, stakeholders were able to leave an explanation after they finished the release plan. If
this comment was missing, we indicated this with a yellow traffic light. In this thesis we
provided a study (see Section 6.4) with the following outcome: when supported with traffic
lights, stakeholders need less interaction steps to find requirements with the need for further
investigation and, as a consequence, can complete the task of release planning faster than
stakeholders without traffic light support. Also, we discovered an increase of explanations
for release plan decisions in the group with traffic light support.

Research Question Q2.2:

How to increase stakeholder communication about property decisions?

In our latest version of INTELLIREQ we introduced an additional Meta Data view (see
Section 6.2.2) to extend the description of requirements. Within this view stakeholders
are able to provide their preference information for requirements related to six different
dimensions: risk, feasibility, cost, relevance, priority, and preferred release. This information
is stored in a non-anonymous way and is visible for other stakeholders engaged in the
Requirements Engineering process. Consequently, stakeholders can discuss with each other

111

8 Conclusion

(directly) about their preferences and share their knowledge about requirements.

According to our findings in Chapter 3, increased commitment caused by the visibility
of preferences of other stakeholders decreases the consensus in the decision making process.
As a consequence, it is necessary to provide analytical processes for the decision making,
which is why we added group recommendations to the Meta Data view to ease the finding of
a consensus.

To motivate the interaction with the Meta Data view we used traffic light indicators with
different conditions: a red traffic light (strong dissent) and a yellow traffic light (weak dis-
sent) indicated the degree of dissent between the involved stakeholders related to a specific
dimension, e.g., the costs of a requirement. In case of a dissent, stakeholders need to start
a discussion with other involved stakeholders with the goal to find a consensus. After the
discussion changes to the initial preferences are stored by each stakeholder in the Meta Data
view in the INTELLIREQ environment. This will trigger a recalculation of the degree of
dissent and will set the affected traffic light to green in case the stakeholders could agree
on a consensus. Based on the assumption that stakeholders want to finish the Requirements
Engineering process without any dissent regarding the importance of requirements, the traffic
light annotation will increase stakeholder communication about properties with the goal to
resolve existing conflicts.

Research Question Q2.3:

How to identify candidates for dependency relations between requirement descrip-
tions?

We introduced a Dependency Recommender which uses information about synonym re-
lations stored in the lexical resource OpenThesaurus. We also used the cardinality of Word
Senses as an easy way to reduce the influence of words with a high probability of being used
in the wrong context. A major benefit of our approach is the fast identification of dependency
candidates allowing the computation of recommendations in real time. For the evaluation of
our approach we used a requirements set (n=30) created for a sports watch in an independent
brainstorming session. It should be noted that this brainstorming session did not include any
considerations about potential dependencies between the created requirements. With our
recommendation technique we calculated a ranking of all 435 possible combinations between
the requirements. We took the first 20 dependency candidates (with the highest ranking)
and presented them as recommendation to participants of a study. During the evaluation we
detected a high acceptance of the recommended dependencies.

112

8.2 Conclusions from Research Questions and Contributions

Research Question Q2.4:

How to increase the reuse of requirements in software projects?

In this thesis we introduced a keyword recommendation technique for requirements (see Sec-
tion 4.4.1) which was used to support stakeholders in the task of finding a suitable annotation
for new requirements. A major goal of the recommendation was the reduction of the amount
of different keywords used to annotate requirements, e.g., instead of hotels the keyword
hotel was recommended if another requirement already was annotated by this keyword.
For this reason we provided a central storage of all keywords used in the past to annotate
requirements in a study group. Next, whenever a new requirement was created we compared
all words in the description with the existing set of keywords from the central storage. In
case we found a match between the requirements description and the set of keywords we
recommended the matching word as keyword for the new requirement. We evaluated our
recommendation approach in a study conducted at our university with 39 different soft-
ware development teams and could proof that this recommendation technology significantly
reduced the amount of different keywords used to annotate the set of requirements in the
central repository1. To evaluate the impact of the reduced amount of different keywords,
participants were confronted with the task of creating a set of requirements for a software
project and were encouraged to reuse existing requirements from the central repository. As a
result of our study we could detect a significant increase of reuse activity in the study group
with access to the Keyword Recommender.

Research Question Q2.5:

Does preference visibility influence the quality of the Requirements Engineering pro-
cess?

To evaluate the impact of visible preferences we conducted a study (see Section 5.3) where
participants had to develop a software component with an average effort of about 8 person
months. We investigated the impact of preference visibility on different dimensions. One
dimension is the degree of dissent2 considering the preferences about the different require-
ments distributed among the members of the development team. Another dimension was
the output quality which has been derived from criteria such as degree of fulfillment of the
specified requirements. Finally, we introduced decision diversity which is defined as follows:

1Although the amount of different keywords used for the annotation of all requirements in the repository
was lower, the requirements themselves did not have a lower amount of keywords. In fact, the same keywords
were used more often to annotate different requirements than in groups without our Keyword Recommender.

2Which is the inverse function of the consensus about the preferences of requirements.

113

8 Conclusion

if all requirements of a software project have the same priority, the decision diversity is
zero. On the other hand, the maximum decision diversity occurs between two requirements
if one has the highest possible priority (on the available scale) and the other the lowest
possible priority. Our study showed three results: (1) anonymous preferences increase the
consensus between stakeholders in software development teams about preference decisions.
(2) Anonymous preferences increase the diversity of decisions taken during the prioritization
process. (3) Anonymous preferences lead to an increased output quality of the software
product being developed.

Research Question Q2.6:

What is the prediction quality of group recommendation heuristics in a Requirements
Engineering scenario?

In Section 5.4.2 we introduced three new heuristics: Median Based, Ensemble, and Standard
Deviation Based with the goal to improve the prediction quality of group decision heuristics
in the Requirements Engineering context. For our evaluation we conducted a study where
participants had to collaboratively prioritize requirements for a software component. We
used the collected preferences and decisions taken by the teams to calculate the prediction
quality of well known group decision heuristics [Mas11] and to compare them with the
three new heuristics. Our study revealed that the Ensemble and the Standard Deviation
Based heuristics have the highest prediction quality. However, the Standard Deviation Based
heuristic was defined for the specific dataset (it uses the deviation of all collected preferences
and decisions), which is why it is out of competition.

Research Question Q3

How to use the idea of Human Computation to support Natural Language Processing
in the context of Requirements Engineering?

In Chapter 7 we presented ideas for future work to exploit Human Computation in the
context of Requirements Engineering. In Section 7.1 we described an adaption of the ESP
game [Ahn05]. We discussed differences between the original game setting presented by von
Ahn [Ahn05] and the Requirements Engineering context. Additionally, we motivated another
game mode in Section 7.2 to identify relations between objects in an area of interest.

114

Appendix

115

Bibliography

[AB06] A. Andreevskaia and S. Bergler. “Mining WordNet for a fuzzy sentiment:
Sentiment tag extraction from WordNet glosses.” In: EACL. Vol. 6. Trento,
Italy, 2006, pp. 209–215 (cit. on p. 50).

[Ahn05] L. Von Ahn. “Human computation.” PhD thesis. Pittsburgh, PA, USA: Carnegie
Mellon University, 2005 (cit. on pp. 3, 8, 12, 13, 97, 98, 105, 114).

[AM07] S. Anand and B. Mobasher. “Contextual recommendation.” In: From web
to social web: Discovering and deploying user and content profiles (2007),
pp. 142–160 (cit. on p. 31).

[AP05] B. Alenljung and A. Persson. “Decision-making activities in the requirements
engineering decision processes: A case study.” In: ISD 2005. Karlstad, Sweden,
2005, pp. 707–718 (cit. on pp. 4, 33, 38, 44, 71).

[AW03] A. Aurum and C. Wohlin. “The fundamental nature of requirements engineer-
ing activities as a decision-making process.” In: Information and Software
Technology 45.14 (2003), pp. 945–954 (cit. on pp. 1, 21, 33, 66).

[BFG11] R. Burke, A. Felfernig, and M. Goeker. “Recommender systems: An overview.”
In: AI Magazine 32.3 (2011), pp. 13–18 (cit. on pp. 15, 30, 83, 84).

[BGB01] B. Boehm, P. Grünbacher, and R. O. Briggs. “Developing groupware for
requirements negotiation: Lessons learned.” In: IEEE Software 18.3 (2001),
pp. 46–55 (cit. on pp. 34, 38, 42–44, 66, 70).

[BI96] B. Boehm and H. In. “Identifying quality-requirement conflicts.” In: IEEE
software 13.2 (1996), pp. 25–35 (cit. on p. 62).

[BJP91] J. R. Bettman, E. J. Johnson, and J. W. Payne. “Consumer decision making.”
In: Handbook of consumer behavior 44.2 (1991), pp. 50–84 (cit. on p. 66).

[BJP98] J. R. Bettman, E. J. Johnson, and J. W. Payne. “Constructive consumer choice
processes.” In: Journal of Consumer Research 25.3 (1998), pp. 187–217 (cit. on
pp. 4, 22, 33, 38).

[BK04] D. M. Berry and E. Kamsties. “Ambiguity in requirements specification.” In:
Perspectives on software requirements. Springer, 2004, pp. 7–44 (cit. on p. 98).

117

Bibliography

[Bly02] J. Blythe. “Visual exploration and incremental utility elicitation.” In: AAAI/IAAI.
Edmonton, Alberta, Canada, 2002, pp. 526–532 (cit. on pp. 4, 34, 44, 71).

[Boe88] B. Boehm. “A spiral model of software development and enhancement.” In:
Computer 21.5 (1988), pp. 61–72 (cit. on p. 66).

[BP84] V. R. Basili and B. T. Perricone. “Software errors and complexity: An empirical
investigation.” In: Communications of the ACM 27.1 (1984), pp. 42–52 (cit. on
p. 1).

[BT12] C. Bouras and V. Tsogkas. “A clustering technique for news articles using
WordNet.” In: Knowledge-Based Systems 36 (2012), pp. 115–128 (cit. on
p. 49).

[Bur00] R. Burke. “Knowledge-based recommender systems.” In: Encyclopedia of
Library and Information Systems 69.32 (2000), pp. 180–200 (cit. on pp. 15, 16,
23, 27, 84, 85, 89).

[Bur02] R. Burke. “Hybrid recommender systems: Survey and experiments.” In: UMUAI
12.4 (2002), pp. 331–370 (cit. on pp. 2, 15, 84).

[CA07] B. H. C. Cheng and J. M. Atlee. “Research directions in requirements engi-
neering.” In: 2007 Future of Software Engineering. IEEE Computer Society.
Minneapolis, USA, 2007, pp. 285–303 (cit. on pp. 2, 6, 47–49).

[Cas+08] C. Castro-Herrera et al. “Using data mining and recommender systems to
facilitate large-scale, open, and inclusive requirements elicitation processes.”
In: 16th IEEE Intl. Conf. on Req. Engineering (RE’08). Barcelona, Spain, 2008,
pp. 165–168 (cit. on pp. 3, 17–19, 33, 44, 71).

[Cas+09] C. Castro-Herrera et al. “A recommender system for requirements elicitation in
large-scale software projects.” In: Proceedings of the 2009 ACM Symposium on
Applied Computing. ACM. Hawaii, USA, 2009, pp. 1419–1426 (cit. on p. 52).

[Cha05] R. N. Charette. “Why software fails [software failure].” In: Spectrum, IEEE
42.9 (2005), pp. 42–49 (cit. on pp. 1, 2).

[Cha06] F. J. Chantree. “Identifying nocuous ambiguity in natural language require-
ments.” PhD thesis. The Open University, 2006 (cit. on p. 48).

[Che+05] K. Chen et al. “An approach to constructing feature models based on require-
ments clustering.” In: 13th IEEE Intl. Conf. on Req. Engineering (RE’05). Paris,
France, 2005, pp. 31–40 (cit. on pp. 44, 71).

[Cia01] R. B. Cialdini. “The science of persuasion.” In: Scientific American 284.2
(2001), pp. 76–81 (cit. on pp. 38, 39, 41, 42, 72, 75).

118

Bibliography

[Cle+09] J. Cleland-Huang et al. “Automated support for managing feature requests
in open forums.” In: Communications of the ACM 52.10 (2009), pp. 68–74
(cit. on pp. 17, 20).

[CNR04] J. R. Curhan, M. A. Neale, and L. Ross. “Dynamic valuation: Preference
changes in the context of face-to-face negotiation.” In: Journal of Experimental
Social Psychology 40.2 (2004), pp. 142–151 (cit. on pp. 67, 82).

[CO90] F. Can and A. Ozkarahan. “Concepts and effectiveness of the clustering method-
ology for text databases.” In: ACM Transactions on Database Systems 15.4
(1990), pp. 483–517 (cit. on p. 24).

[CP12] L. Chen and P. Pu. “Critiquing-based recommenders: Survey and emerg-
ing trends.” In: User Modeling and User-Adapted Interaction 22.1-2 (2012),
pp. 125–150 (cit. on p. 66).

[CR00] J. L. Cybulski and K. Reed. “Requirements classification and reuse: Crossing
domain boundaries.” In: Sixth International Conference on Software Reuse.
Lecture Notes in Computer Science. Vienna, Austria: Springer, 2000, pp. 190–
210 (cit. on pp. 6, 49, 51).

[Dag+02] J. N. och Dag et al. “A feasibility study of automated natural language require-
ments analysis in market-driven development.” In: Requirements Engineering
7.1 (2002), pp. 20–33 (cit. on pp. 49, 58, 61).

[Dav03] A. Davis. “The art of requirements triage.” In: IEEE Computer 36.3 (2003),
pp. 42–49 (cit. on pp. 2, 21, 73, 75, 83, 95).

[Dua+09] C. Duan et al. “Towards automated requirements prioritization and triage.” In:
Requirements Engineering 14.2 (2009), pp. 73–89 (cit. on pp. 17, 21).

[Dum+11] H. Dumitru et al. “On-demand feature recommendations derived from mining
public product descriptions.” In: 33rd ACM/IEEE International Conference on
Software Engineering. Waikiki, Honolulu, Hawaii: ACM/IEEE, 2011, pp. 181–
190 (cit. on pp. 17, 19, 94).

[EL02] A. Eberlein and J. Leite. “Agile requirements definition: A view from re-
quirements engineering.” In: Proceedings of the International Workshop on
Time-Constrained Requirements Engineering (TCRE’02). Essen, Germany,
2002, pp. 4–8 (cit. on p. 48).

[FB08] A. Felfernig and R. Burke. “Constraint-based recommender systems: Technolo-
gies and research issues.” In: ACM Intl. Conference on Electronic Commerce
(ICEC’08). Innsbruck, Austria, 2008, pp. 17–26 (cit. on pp. 16, 23, 27, 85, 89,
95).

119

Bibliography

[FCM05] A. Felfernig, L. Chen, and M. Mandl. “RecSys’11 workshop on human de-
cision making in recommender systems.” In: ACM Recommender Systems
2011 Workshop on Human Decision Making in Recommender Systems (Deci-
sions@RecSys’11). Chicago, IL, 2005, pp. 389–390 (cit. on p. 30).

[Fel+07] A. Felfernig et al. “Persuasive recommendation: Serial position effects in
knowledge-based recommender systems.” In: Persuasive technology. Springer,
2007, pp. 283–294 (cit. on pp. 7, 67).

[Fel+09] A. Felfernig et al. “Plausible repairs for inconsistent requirements.” In: 21st
Intl. Joint Conference on Artificical Intelligence (IJCAI’09). Pasadena, CA,
USA, 2009, pp. 791–796 (cit. on pp. 22, 28).

[Fel+10a] A. Felfernig et al. “Diagnosing inconsistent requirements preferences in dis-
tributed software projects.” In: 3rd International Workshop on Social Software
Engineering. Paderborn, Germany, 2010, pp. 1–8 (cit. on pp. 17, 20, 22, 28, 29,
95).

[Fel+10b] A. Felfernig et al. “Recommendation and decision technologies for require-
ments engineering.” In: ICSE 2010 Workshop on Recommender Systems in
Software Engineering. Cape Town, South Africa, 2010, pp. 1–5 (cit. on pp. 15,
38, 83).

[Fel+12] A. Felfernig et al. “Group decision support for requirements negotiation.”
In: Advances in User Modeling. Ed. by Liliana Ardissono and Tsvi Kuflik.
Vol. 7138. Springer Berlin / Heidelberg, 2012, pp. 105–116 (cit. on pp. 1, 9,
17, 22, 30, 33, 82, 85, 87, 91, 92).

[Fel+13] A. Felfernig et al. “An overview of recommender systems in requirements
engineering.” In: Managing Requirements Knowledge Book. Berlin Heidelberg:
Springer, 2013, pp. 315–332 (cit. on p. 15).

[Fer+14] A. Ferrari et al. “Pragmatic ambiguity detection in natural language require-
ments.” In: 1st International Workshop on Artificial Intelligence for Require-
ments Engineering (AIRE). Karlskrona, Sweden: IEEE, 2014, pp. 1–8 (cit. on
p. 5).

[Fes57] L. Festinger. A theory of cognitive dissonance. Vol. 1. Stanford University
Press, 1957 (cit. on pp. 7, 67).

[Fir04] D. Firesmith. “Prioritizing requirements.” In: Journal of Object Technology 3.8
(2004), pp. 35–48 (cit. on pp. 2, 7, 65).

[Fir05] D. Firesmith. “Are your requirements complete?” In: Journal of Object Tech-
nology 4.1 (2005), pp. 27–44 (cit. on p. 5).

120

Bibliography

[FLF11] C. Fitzgerald, E. Letier, and A. Finkelstein. “Early failure prediction in feature
request management systems.” In: 19th IEEE International Conference on
Requirements Engineering. Trento, Italy: IEEE, 2011, pp. 229–238 (cit. on
pp. 17, 20).

[FN12] A. Felfernig and G. Ninaus. “Group recommendation algorithms for require-
ments prioritization.” In: Third International Workshop on Recommendation
Systems for Software Engineering (RSSE). IEEE. Zurich, Switzerland, 2012,
pp. 59–62 (cit. on pp. 2, 65, 66, 87).

[FNR12] A. Felfernig, G. Ninaus, and F. Reinfrank. “Eliciting stakeholder preferences
for requirements prioritization.” In: Decisions@ RecSys. Dublin, Ireland, 2012,
pp. 27–31 (cit. on p. 65).

[FS05] A. Fantechi and E. Spinicci. “A content analysis technique for inconsistency
detection in software requirements documents.” In: Requirements Engineering
Workshop (WER2005). Porto, Portugal, 2005, pp. 245–256 (cit. on pp. 21, 31,
64, 95).

[FSR13] A. Felfernig, M. Schubert, and S. Reiterer. “Personalized diagnosis for over-
constrained problems.” In: 23rd International Conference on Artificial Intelli-
gence (IJCAI 2013). Peking, China, 2013, pp. 1990–1996 (cit. on p. 89).

[Gar11] Gartner Group. Hype cycle for application development: Requirements elicita-
tion and simulation. 2011 (cit. on pp. 1, 47).

[GB01] P. Grünbacher and R. O. Briggs. “Surfacing tacit knowledge in requirements
negotiation: Experiences using EasyWinWin.” In: Proceedings of the 34th
Annual Hawaii International Conference on System Sciences. IEEE. Maui, HI,
USA, 2001, pp. 1–8 (cit. on pp. 5, 98).

[Ger00] V. Gervasi. “Environment support for requirements writing and analysis.” PhD
thesis. Pisa, Italy: University of Pisa, 2000 (cit. on p. 48).

[GKB08] A. Goknil, I. Kurtev, and K. van den Berg. “A metamodeling approach for
reasoning about requirements.” In: 4th European Conference Model Driven
Architecture - Foundations and Applications (ECMDA-FA). Vol. 5095. Lecture
Notes in Computer Science. Berlin, Germany, 2008 (cit. on p. 48).

[GN02] V. Gervasi and B. Nuseibeh. “Lightweight validation of natural language re-
quirements.” In: Software: Practice and Experience 32.2 (2002), pp. 113–133
(cit. on p. 48).

[Gol09] J. Golbeck. Computing with social trust. Springer, 2009 (cit. on pp. 16, 18, 23).

[Gon+98] J. Gonzalo et al. “Indexing with WordNet synsets can improve text retrieval.”
In: ACL/COLING Workshop on Usage of WordNet for Natural Language
Processing. Montréal, Canada, 1998 (cit. on p. 50).

121

Bibliography

[Grü00] P. Grünbacher. “Collaborative requirements negotiation with EasyWinWin.”
In: Proceedings of the 11th International Workshop on Database and Expert
Systems Applications. IEEE. Greenwich, London, 2000, pp. 954–958 (cit. on
p. 67).

[Gru93] T. R. Gruber. “A translation approach to portable ontology specifications.” In:
Knowledge acquisition 5.2 (1993), pp. 199–220 (cit. on p. 107).

[GS03] T. Greitemeyer and S. Schulz-Hardt. “Preference-consistent evaluation of in-
formation in the hidden profile paradigm: Beyond group-level explanations
for the dominance of shared information in group decisions.” In: Journal of
Personality and Social Psychology 84.2 (2003), pp. 322–339 (cit. on pp. 38,
39, 41, 43, 66, 70, 73).

[GZ05] V. Gervasi and D. Zowghi. “Reasoning about inconsistencies in natural lan-
guage requirements.” In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 14.3 (2005), pp. 277–330 (cit. on pp. 47, 48).

[Her+04] J. Herlocker et al. “Evaluating collaborative filtering recommender systems.”
In: ACM Transactions on Information Systems 22.1 (2004), pp. 5–53 (cit. on
pp. 15, 85).

[HGR10] W. Heider, P. Gruenbacher, and R. Rabiser. “Negotiation constellations in
reactive product line evolution.” In: 4th International Workshop on Software
Product Management (IWSPM’10). Sydney, Australia, 2010, pp. 63–66 (cit. on
pp. 44, 70).

[HK05] R. Hastie and R. Kameda. “The robust beauty of majority rules in group
decisions.” In: Psychological Review 112.2 (2005), pp. 494–508 (cit. on p. 40).

[HL01] H. F. Hofmann and F. Lehner. “Requirements engineering as a success factor
in software projects.” In: IEEE software 18.4 (2001), p. 58 (cit. on pp. 2, 7, 33,
47, 65, 83).

[HM08] H. J. Happel and W. Maalej. “Potentials and challenges of recommendation
systems for software development.” In: Proceedings of the 2008 international
workshop on Recommendation systems for software engineering. ACM. Atlanta,
Georgia, USA, 2008, pp. 11–15 (cit. on p. 31).

[HRL12] S. W. Hansen, W. N. Robinson, and K. J. Lyytinen. “Computing requirements:
Cognitive approaches to distributed requirements engineering.” In: 45th Hawaii
International Conference on System Science (HICSS). IEEE. Maui, HI, USA,
2012, pp. 5224–5233 (cit. on p. 47).

[HSS03] A. Hotho, S. Staab, and G. Stumme. “Ontologies improves text document
clustering.” In: Proc. of the SIGIR 2003 Semantic Web Workshop. Toronto,
Canada, 2003, pp. 541–544 (cit. on pp. 50, 51).

122

Bibliography

[IPW10] P. G. Ipeirotis, F. Provost, and J. Wang. “Quality management on amazon
mechanical turk.” In: Proceedings of the ACM SIGKDD workshop on Human
Computation. ACM. Washington, USA, 2010, pp. 64–67 (cit. on p. 64).

[IR04] J. Iyer and D. Richards. “Evaluation framework for tools that manage re-
quirements inconsistency.” In: Proceedings of the 9th Australian Workshop
on Requirements Engineering (AWRE’04). Adelaide, South Australia, 2004
(cit. on pp. 20, 94).

[Jan+10] D. Jannach et al. Recommender systems: An introduction. Cambridge University
Press, 2010 (cit. on pp. 58, 83, 86).

[JBK04] A. Jameson, S. Baldes, and T. Kleinbauer. “Two methods for enhancing mutual
awareness in a group recommender system.” In: ACM Intl. Working Conference
on Advanced Visual Interfaces. Gallipoli, Italy, 2004, pp. 48–54 (cit. on pp. 3,
23, 26, 33, 37–39, 43, 70, 85, 87).

[Jun04] U. Junker. “QuickXplain: Preferred explanations and relaxations for over-
constrained problems.” In: 19th National Conference on Artificial Intelligence
(AAAI04). San Jose, CA, USA, 2004, pp. 167–172 (cit. on p. 29).

[Kon+97] J. Konstan et al. “GroupLens: Applying collaborative filtering to usenet news
full text.” In: Communications of the ACM 40.3 (1997), pp. 77–87 (cit. on
pp. 16, 19, 23–25).

[KS06] H. Kaiya and M. Saeki. “Using domain ontology as domain knowledge for re-
quirements elicitation.” In: 14th IEEE International Conference Requirements
Engineering. IEEE. Minneapolis/St.Paul, Minnesota, USA, 2006, pp. 189–198
(cit. on pp. 51, 105, 107).

[Lam00] A. Van Lamsweerde. “Requirements engineering in the year 00: A research
perspective.” In: Proceedings of the 22nd international conference on Software
engineering. ACM. Limerick, Ireland, 2000, pp. 5–19 (cit. on pp. 47, 48).

[Lef97] D. Leffingwell. “Calculating the return on investment from more effective
requirements management.” In: American Programmer 10.4 (1997), pp. 13–16
(cit. on p. 83).

[LF12] S. Lim and A. Finkelstein. “StakeRare: Using social networks and collaborative
filtering for large-scale requirements elicitation.” In: Software Engineering,
IEEE Transactions on 38.3 (2012), pp. 707–735 (cit. on pp. 17, 19).

[Lin99] K. R. Linberg. “Software developer perceptions about software project failure:
A case study.” In: Journal of Systems and Software 49.2 (1999), pp. 177–192
(cit. on p. 1).

123

Bibliography

[LKT01] E. A. Lind, L. Kray, and L. Thompson. “Primacy effects in justice judgments:
Testing predictions from fairness heuristic theory.” In: Organizational behavior
and human decision processes 85.2 (2001), pp. 189–210 (cit. on p. 67).

[LMP04] M. Luisa, F. Mariangela, and N. I. Pierluigi. “Market research for requirements
analysis using linguistic tools.” In: Requirements Engineering 9.1 (2004),
pp. 40–56 (cit. on pp. 2, 6, 48).

[LQF10] S. Lim, D. Quercia, and A. Finkelstein. “Stakenet: Using social networks to
analyse the stakeholders of large-scale software projects.” In: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering. Cape
Town, South Africa: ACM/IEEE, 2010, pp. 295–304 (cit. on pp. 17–19, 83,
94).

[LRA08] S. Lohmann, T. Riechert, and S. Auer. “Collaborative development of knowl-
edge bases in distributed requirements elicitation.” In: Software Engineering
(Workshops): Agile Knowledge Sharing for Distributed Software Teams. Mu-
nich, Germany, 2008, pp. 22–28 (cit. on p. 28).

[LS04] H. Liu and P. Singh. “ConceptNet—A practical commonsense reasoning tool-
kit.” In: BT technology journal 22.4 (2004), pp. 211–226 (cit. on pp. 8, 97).

[LS06] S. Lichtenstein and P. Slovic. The construction of preference. Cambridge
University Press, 2006 (cit. on p. 22).

[LSY03] G. Linden, B. Smith, and J. York. “Amazon.com recommendations: Item-to-
item collaborative filtering.” In: IEEE Internet Computing 7.1 (2003), pp. 76–
80 (cit. on pp. 15, 85).

[LW00] D. Leffingwell and D. Widrig. Managing software requirements: A unified
approach. Addison-Wesley Professional, 2000 (cit. on p. 47).

[Mas04] J. Masthoff. “Group modeling: Selecting a sequence of television items to suit
a group of viewers.” In: UMUAI 14.1 (2004), pp. 37–85 (cit. on pp. 16, 26).

[Mas11] J. Masthoff. “Group recommender systems: Combining individual models.” In:
Recommender Systems Handbook. Springer, 2011, pp. 677–702 (cit. on pp. 3,
22, 33, 37–40, 43, 66, 70, 76, 81, 85, 87, 89, 114).

[MC11] B. Mobasher and J. Cleland-Huang. “Recommender systems in requirements
engineering.” In: AI Magazine 32.3 (2011), pp. 81–89 (cit. on pp. 15, 17–20,
83).

[McF99] D. McFadden. “Rationality for economists?” In: Journal of Risk and Uncer-
tainty 19.1 (1999), pp. 73–105 (cit. on pp. 4, 22, 33, 44, 71).

124

Bibliography

[MG10] C. M. Meyer and I. Gurevych. “Worth its weight in gold or yet another re-
source—A comparative study of Wiktionary, OpenThesaurus and GermaNet.”
In: Computational Linguistics and Intelligent Text Processing. Springer, 2010,
pp. 38–49 (cit. on pp. 50, 53, 54).

[MKD07] S. Marczak, I. Kwan, and D. Damian. “Social networks in the study of col-
laboration in global software teams.” In: International Conference on Global
Software Engineering (ICGSE’07). Munich, Germany, 2007 (cit. on p. 18).

[MKF14] W. Maalej, Z. Kurtanovic, and A. Felfernig. “What stakeholders need to know
about requirements.” In: 4th International Workshop on Empirical Require-
ments Engineering (EmpiRE). IEEE. Karlskrona, Sweden, 2014, pp. 64–71
(cit. on p. 2).

[MMW06] D. Milne, O. Medelyan, and I. H. Witten. “Mining domain-specific thesauri
from Wikipedia: A case study.” In: Proceedings of the 2006 IEEE/WIC/ACM
international conference on web intelligence. IEEE Computer Society. Hong
Kong, China, 2006, pp. 442–448 (cit. on p. 51).

[MR00] R. Mooney and L. Roy. “Content-based book recommending using learning
for text categorization.” In: Proceedings of the fifth ACM conference on Digital
libraries. ACM. San Antonio, TX, USA, 2000, pp. 195–204 (cit. on pp. 23,
85).

[MR01] S. Mohammed and E. Ringseis. “Cognitive diversity and consensus in group
decision making: The role of inputs, processes, and outcomes.” In: Organi-
zational behavior and human decision processes 85.2 (2001), pp. 310–335
(cit. on p. 82).

[MS10] A. Mojzisch and S. Schulz-Hardt. “Knowing other’s preferences degrades the
quality of group decisions.” In: Journal of Personality & Social Psychology
98.5 (2010), pp. 794–808 (cit. on pp. 38, 39, 41, 43, 70, 73).

[MT09] W. Maalej and A. Thurimella. “Towards a research agenda for recommendation
systems in requirements engineering.” In: International Workshop on Managing
Requirements Knowledge. Atlanta, USA, 2009 (cit. on pp. 15, 44, 71, 83).

[Nab05] D. Naber. “OpenThesaurus: ein offenes deutsches Wortnetz.” In: Sprachtech-
nologie, mobile Kommunikation und linguistische Ressourcen: Beiträge zur
GLDV-Tagung, Bonn, Germany (2005), pp. 422–433 (cit. on p. 53).

[NE00] B. Nuseibeh and S. Easterbrook. “Requirements engineering: A roadmap.” In:
Proceedings of the Conference on the Future of Software Engineering. ACM.
Limerick, Ireland, 2000, pp. 35–46 (cit. on pp. 38, 47, 49, 53).

125

Bibliography

[NFR12] G. Ninaus, A. Felfernig, and F. Reinfrank. “Anonymous preference elicitation
for requirements prioritization.” In: Foundations of Intelligent Systems, 20th
International Symposium, ISMIS 2012. Vol. 7661. Macau, China: Springer,
2012, pp. 349–356 (cit. on pp. 11, 65).

[Nin+14a] G. Ninaus et al. “Content-based recommendation techniques for requirements
engineering.” In: 1st International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE). Karlskrona, Sweden: IEEE, 2014, pp. 27–
34 (cit. on pp. 3, 11, 47).

[Nin+14b] G. Ninaus et al. “INTELLIREQ: Intelligent techniques for software require-
ments engineering.” In: 21st European Conference on Artificial Intelligence
/ Prestigious Applications of Intelligent Systems (PAIS 2014). Prague, Czech
Republic, 2014, pp. 1161–1166 (cit. on pp. 2, 9, 10, 51, 83).

[Nin12] G. Ninaus. “Using group recommendation heuristics for the prioritization of
requirements.” In: Proceedings of the sixth ACM conference on Recommender
systems. ACM. Dublin, Ireland, 2012, pp. 329–332 (cit. on pp. 2, 12, 65, 87).

[PB97] M. Pazzani and D. Billsus. “Learning and revising user profiles: The identifica-
tion of interesting web sites.” In: Machine Learning 27.3 (1997), pp. 313–331
(cit. on pp. 15, 16, 18, 23, 85).

[PC08] P. Pu and L. Chen. “User-involved preference elicitation for product search and
recommender systems.” In: AI Magazine 29.4 (2008), pp. 93–103 (cit. on pp. 4,
34, 39, 44, 71).

[Pei+10] B. Peischl et al. “Constraint-based recommendation for software project effort
estimation.” In: Journal of Emerging Technologies in Web Intelligence 2.4
(2010), pp. 282–290 (cit. on p. 94).

[PH97] A. Pinsonneault and N. Heppel. “Anonymity in group support systems research:
A new conceptualization, measure, and contingency framework.” In: Journal
of Management Information Systems 14.3 (1997), pp. 89–108 (cit. on pp. 65,
69).

[PJ90] J. K. Pinto and S. J. Mantel Jr. “The causes of project failure.” In: Engineering
Management, IEEE Transactions on 37.4 (1990), pp. 269–276 (cit. on p. 1).

[PL02] P. Pantel and D. Lin. “Discovering word senses from text.” In: Proceedings of
the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. Edmonton, AB, Canada, 2002, pp. 613–619 (cit. on
p. 51).

[Poh13] K. Pohl. “The three dimensions of requirements engineering.” In: Seminal
Contributions to Information Systems Engineering. Springer, 2013, pp. 63–80
(cit. on p. 5).

126

Bibliography

[Poh96] K. Pohl. Process-centered requirements engineering. John Wiley & Sons, Inc.,
1996 (cit. on p. 33).

[QB11] A. J. Quinn and B. B. Bederson. “Human computation: A survey and taxonomy
of a growing field.” In: Proceedings of the SIGCHI conference on human
factors in computing systems. ACM. Vancouver, Canada, 2011, pp. 1403–1412
(cit. on p. 97).

[Reg+01] B. Regnell et al. “Requirements mean decisions! - Research issues for under-
standing and supporting decision-making in requirements engineering.” In: 1st
Swedish Conference on Software Engineering Research and Practice (SERP
01). Ronneby, Sweden, 2001, pp. 49–52 (cit. on pp. 3–5).

[Rei87] R. Reiter. “A theory of diagnosis from first principles.” In: Artificial intelligence
32.1 (1987), pp. 57–95 (cit. on pp. 20, 29, 89, 94).

[Ren+13] D. Renzel et al. “Requirements Bazar: Social requirements engineering for
community-driven innovation.” In: RE 2013. Rio de Janeiro, Brazil, 2013,
pp. 326–327 (cit. on p. 83).

[REP03] G. Ruhe, A. Eberlein, and D. Pfahl. “Trade-off analysis for requirements
selection.” In: Journal of Software Engineering and Knowledge Engineering
(IJSEKE) 13.4 (2003), pp. 354–366 (cit. on pp. 21, 22).

[RS05] G. Ruhe and M. O. Saliu. “The art and science of software release planning.”
In: IEEE Software 22.6 (2005), pp. 47–53 (cit. on p. 22).

[RSW08] B. Regnell, R. B. Svensson, and K. Wnuk. “Can we beat the complexity of
very large-scale requirements engineering?” In: Requirements Engineering:
Foundation for Software Quality. Springer, 2008, pp. 123–128 (cit. on p. 2).

[RWZ10] M. Robillard, R. Walker, and T. Zimmermann. “Recommendation systems
for software engineering.” In: IEEE Software 27.4 (2010), pp. 80–86 (cit. on
p. 94).

[Rya93] K. Ryan. “The role of natural language in requirements engineering.” In:
Proceedings of IEEE International Symposium on Requirements Engineering.
IEEE. San Diego, CA, USA, 1993, pp. 240–242 (cit. on pp. 2, 48).

[Sch98] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., 1998 (cit. on p. 22).

[SM99] S. Scott and S. Matwin. “Feature engineering for text classification.” In: Pro-
ceedings of the Sixteenth International Conference on Machine Learning.
Vol. 99. Citeseer. Bled, Slovenia, 1999, pp. 379–388 (cit. on p. 50).

[Som11] I. Sommerville. Software engineering. Pearson, 2011 (cit. on pp. 15, 83).

127

Bibliography

[SSK00] D. Schkade, C. R. Sunstein, and D. Kahneman. “Deliberating about Dollars:
The severity shift.” In: Columbia Law Review (2000), pp. 1139–1175 (cit. on
pp. 79, 81).

[Tab+11] M. Taboada et al. “Lexicon-based methods for sentiment analysis.” In: Compu-
tational linguistics 37.2 (2011), pp. 267–307 (cit. on p. 51).

[Tsa93] E. Tsang. Foundations of constraint satisfaction. London: Academic Press,
1993 (cit. on pp. 20, 90).

[Tsu+05] M. Tsunoda et al. “Javawock: A Java class recommender system based on
collaborative filtering.” In: SEKE 2005. Taipei, Taiwan, 2005, pp. 491–497
(cit. on p. 94).

[Voo93] E. M. Voorhees. “Using WordNet to disambiguate word senses for text re-
trieval.” In: Proceedings of the 16th annual international ACM SIGIR confer-
ence on Research and development in information retrieval. ACM. Pittsburgh,
PA, USA, 1993, pp. 171–180 (cit. on p. 50).

[WE86] D. Von Winterfeldt and W. Edwards. Decision analysis and behavioral research.
Vol. 604. Cambridge University Press Cambridge, 1986 (cit. on p. 66).

[WF05] I. H. Witten and E. Frank. Data mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005 (cit. on pp. 16, 23, 24, 31, 64, 95).

[Wie99] K. Wiegers. “First things first: Prioritizing requirements.” In: Software Devel-
opment 7.9 (1999), pp. 48–53 (cit. on pp. 7, 65, 66).

[WK04] L. Wallace and M. Keil. “Software project risks and their effect on outcomes.”
In: Communications of the ACM 47.4 (2004), pp. 68–73 (cit. on p. 1).

[Yan+08] D. Yang et al. “WikiWinWin: A Wiki based system for collaborative require-
ments negotiation.” In: Proceedings of the 41st Annual Hawaii International
Conference on System Sciences. IEEE. Waikoloa, Big Island, Hawaii, 2008,
p. 24 (cit. on p. 2).

[Zav97] P. Zave. “Classification of research efforts in requirements engineering.” In:
ACM Computing Surveys (CSUR) 29.4 (1997), pp. 315–321 (cit. on p. 1).

[ZCW92] J. A. Zuber, H. W. Crott, and J. Werner. “Choice shift and group polarization:
An analysis of the status of arguments and social decision schemes.” In: Journal
of Personality and Social Psychology 62.1 (1992), p. 50 (cit. on pp. 7, 79).

128

