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Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
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Abstract

In this work we present a hierarchical navigation system for groups
of autonomous logistics robots. The system operates in a cluttered
industrial environment with traffic regulating constraints. These traffic
rules are intended to ensure efficient and structured navigation for a
group of autonomous robots. Furthermore traffic rules are supposed
to improve the collaboration between robots and human workers in a
shared environment.
The techniques, which are developed in this work, contribute to a hier-
archical planning system by allowing an intelligent way of distributed
traffic resource allocation. As a basis an expressive environment rep-
resentation was developed. This representation is an extended graph
representing spatial relations as well as traffic regulating constraints
for dedicated regions. The resulting graph allows planning algorithms
to find efficiently a solution of a planning problem considering dif-
ferent traffic constraints. Moreover we propose high-level planning
algorithms which are able to coordinate paths of multiple robots
considering such traffic constraints. For this reason we adapted the
A* algorithm and developed a heuristic, which is capable to deal
with traffic regulating constraints. Multiple robots are using a central
reservation timetable for the coordination of the decentralized path
planning and common resource allocation. Hence robots are able to
optimize their path and arrival time to a goal of a navigation task
respecting the paths of the other robots.
Finally the proposed planning system was realized on an industrial
robotic system. We provide an extensive evaluation of the proposed
algorithms using different performance criteria. This evaluation shows
a successful coordination of multiple robots with different traffic re-
gion types. Furthermore the evaluation showed a performance gain
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compared to an existing implementation especially when considering
environments with many traffic regions.
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1 Introduction

This thesis presents a new approach for a hierarchical navigation
system for groups of autonomous logistics robots in industrial envi-
ronments.
Mobile robot systems has been playing an increasing role in intra logis-
tics scenarios for years. Earlier logistics was dominated by automation
technologies for example conveying systems. This basic technologies
are necessary for basic functionalities. However in the last decades
robots appear in logistics environments and provided more flexibility
in comparison to pure automation systems. As a first improvement
of flexibility parts of warehouses have been changed from classical
conveying systems to line-following robotics. However this is still con-
nected with extensive modifications if a product line changes since the
infrastructure for the line-following robots is often static. Although
Grossman [1] claimed in his work “Traffic control of multiple robot
vehicles” in 1988 that there will be never automated guided vehicles
(AGVs) which are navigating fully autonomously in industrial envi-
ronments comprehensive developments in the robotics fields showed
contrary incidents lately. Latest work in the field of robotics takes this
to the next level with fully autonomous transport robots in industrial
environments.

Within the 4th industrial revolution also referred as Industry 4.0 many
things have already been changed in nowadays industry. Especially in
logistics scenarios like warehouses or production areas, robotic systems
take over more and more tasks. Industry 4.0 introduces new possibili-
ties to develop intelligent warehouse management systems. In times
of short product life cycles and customized products, production lines
need to be changed frequently. This is a huge overhead for common
production areas and warehouse management system where usually
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1 Introduction

Figure 1.1: Robots of the incubedIT system. c©2016 INCUBED IT - AUSTRIA

expensive modification of the environments are necessary. Thus the
need of self-navigating AGVs arises in specific situations. However this
kind of robotic systems need to fulfill especially safety requirements
since in production areas and warehouses the collaboration between
robots and human workers is necessary. For this reason also regula-
tions of the environment in the form of traffic rules are imaginable
to provide safety for humans and a structured behavior for robots.
Moreover the structure of an environment and the throughput of a
robotic system generates a demand on traffic rules. This has already
been discussed by Cao et al. [2] in 1997.

1.1 Motivation

The company incubedIT1 near the city Graz, Austria developed an
autonomous robotic system which faces above described requirements.
They are producing a system which embeds an autonomous group of
transport robots in intra-logistics scenarios (Figure 1.1). The robots are

1http://www.incubedit.com/
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1.2 Goals and Challenges

executing transport tasks from loading stations of conveying systems
and allow a highly flexible configuration of production lines. Due to
a laser-based navigation method they are not bound to lines on the
ground or magnetic stripes to navigate. Thus they also need not to
modify the environment if product lines change.
The individual robots are aware of their environment and capable to
avoid collisions. Additionally their robots have a certified security laser
scanner to guarantee safety, which allows the direct collaboration with
human workers without any security fences. In their system every
robot is a complete decentralized unit capable of self-localization and
self-navigation in a cluttered warehouse environment.
In order to provide a structured behavior within large groups of au-
tonomous robots but also to provide a better acceptance of human
workers they introduced traffic regions which represent traffic regulat-
ing constraints. These constraints are for example one ways or single
robot zones. On the one hand these traffic rules are supposed to pro-
vide a predictable behavior of robots and therefore a more comfortable
collaboration for human personnel. On the other hand traffic rules are
intended to decrease the potential of collisions and deadlocks which
leads to a higher robustness and a more structured behavior of groups
of robots.
Since every robot is a decentralized unit and basically has no informa-
tion of the position or tasks of other robots there arises the need of a
method to coordinate the group of robots and increase the efficiency
of the whole group. Hence a planning layer is missing which is aware
of the paths of other robots and able to minimize the duration of a
transport task. This work contributes to this system with a hierarchical
planning approach among multiple robots which is able to coordinate
multiple robots with respect of the traffic region constraints.

1.2 Goals and Challenges

In the following we present the goals and challenges for this system.
The previously described system and requirements suggest a system
with multiple robots navigating through an environment with traffic

3



1 Introduction

zones. Constraints in this regions limit for example the number of
robots in a region. Thus robots have to share these traffic regions which
ends in an resource allocation problem. In order to integrate a planning
layer able to coordinate multiple robots considering shared traffic
resources an adequate environment representation is needed. This
representation of the environment has to provide the information of
traffic regions (location, size, shape) and their constraints. Additionally
a good representation of the spatial relations has to be generated.
This is important for the subsequent planning step. Therefore this
structure should be an expandable representation which provides the
possibilities to integrate information which is presently not efficiently
realizable in the currently used grid-based representation.
The challenge of this representation is to provide an efficient structure
allowing fast planning. Though this model should be expressive and
provide enough information of the environment to generate reasonable
plans increasing the efficiency of the overall system.
Moreover an intelligent method of sharing the traffic regions between
multiple robots is requested. This method should be capable of an
early determination of traffic region capacity overflows and other traffic
constraint violations. Therefore the goal is to provide plans which are
able to coordinate the usage of the traffic regions and to minimize
the arrival of a robot considering other robot paths. This challenges
the generation of paths and the scheduling of resource allocations
within planning. Furthermore algorithms and good heuristics are
required which are able to find efficiently valid plans and provide
good estimations of time slots for traffic resource allocations.
A last important goal is to provide a solution not only for academic
usage but also applicable in an industrial robotic system. This requires
a good handling of available system resources which means that
algorithms should be tractable and efficient computing of solutions on
a state of the art computation unit should be possible. Additionally
existing network resources may not be overloaded when computing a
solution for this problem.

4



1.3 Contribution

1.3 Contribution

This thesis contributes a general formal problem definition of the
multi-robot path finding problem with traffic zones as a constrained
satisfaction problem. A formulation was developed which describes an
optimization problem for finding optimal paths for individual robots
executing a navigation task and considering multiple other robots
navigating through an environment with traffic regulating constrains.
Furthermore a simplification of this problem is shown which makes
this problem tractable. In this simplification we formulate an optimiza-
tion problem which computes an optimal path of an individual robot
considering the traffic regulating constrains and the paths of all other
robots.
We propose therefore high-level planning algorithms which are able to
respect the paths of other robots and provide a solution for the above
described reduced optimization problem. Therefore we adapted the A*
algorithm and built a heuristic which is able to integrate traffic region
constraints into the planning problem.
Furthermore we developed an expressive representation of an envi-
ronment with areas and traffic regulating constraints attached. This
representation allows planning algorithms to find efficiently a solution.
The representation is based on a graph constructed out of a trian-
gulated polygon mesh depicting the spatial relations and the traffic
region constraints. This representation is automatically built from data
given by the industry.
Finally the introduced planning algorithms have been extensively eval-
uated under different criteria. We showed that the proposed system
is capable to produce a performance gain when considering envi-
ronments with many traffic regions. However even in environments
with less traffic regulating constrains the system could keep up with
the original system, meaning that the introduced system extensions
depicts only a negligible overhead.
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1 Introduction

1.4 Outline

The remainder of this thesis is organized as follows. In Chapter 2

we present the problem formalization of the given problem as a con-
strained satisfaction problem. In the following chapters (Chapter 3-
4) we related research and present basic prerequisites necessary for
building an algorithm to solve the problem and to provide an im-
plementation. In Chapter 5 we present our methodology for solving
the hierarchical navigation problem for multiple autonomous logis-
tics robots. Next we describe in Chapter 6 implementation details of
the work as well as the integration in an already existing navigation
module for autonomous transport robots. Chapter 7 presents the re-
sults of an evaluation of the proposed planning system and finally we
conclude our findings and discuss possible improvements and future
work in Chapter 8.

6



2 Problem Formulation

This work deals with a multi-robot logistic scenario with a set of n
autonomous robotsR := {R1, R2, . . . , Rn}. We define a convex polygon
P as a list of l points P := (P1, P2, . . . , Pl), Pi ∈ R2, 1 ≤ i ≤ l. For the
inclusion relation we define the operator ∈ in Equation 2.1.

∈ : R2 ×P→
{

1, i f the point lies within the area restricted by P

0, else
(2.1)

A robot is moving in an environment E . E is defined as E := {x ∈ R2 |
x∈P}. Every Ri ∈ R is a decentralized unit navigating simultaneously
in E . We define a time t where t ∈ R+. The position of the robot at
time t is defined through the function pos : R× t→ R2. We define the
driving direction vector with the function dir : R× t→ R2. The length
of the vector represents the velocity of the robots. Robots are navigating
between a set of k static loading stations L := {L1, L2, . . . , Lk}, Li ∈
E , 1 ≤ i ≤ k. A set of navigation tasks T has to be executed by the
multi-robot system. A single task T ∈ T is a tuple of 〈s, g〉 and is
assigned to exactly one Ri ∈ R. Where s ∈ L and g ∈ L determines
the fixed start and goal station of a task. In this work it is assumed
that the low-level path planning and path execution is already solved.
This thesis concentrates on a region-based traffic planning problem
in cluttered environment. Acting on plans with specific traffic rules
and regions is supposed to provide a behavior with little potential for
collisions and higher efficiency.

In order to introduce traffic regions within the given environment a
set of m areas A := {A1, A2, . . . , Am} is defined. Ai ∈ A is defined as
a tuple of Ai := 〈Pi, Ci〉. Ci ⊆ C denotes a set of possible constraints
with C := {cN, cS, cF, cO, cD, cC, cR, cV}.

7



2 Problem Formulation

In the following the constraints of C are defined:

• N-Robots cN
N robots are permitted in an area at the same time. NAi is defined
as the maximum number of allowed robots:

∀t ∈ R+.

(
∑

r∈R
pos(r, t)∈Pi

)
≤ NAi (2.2)

• Single Robot cS
Only one robot is permitted in an area at the same time:

∀t ∈ R+.

(
∑

r∈R
pos(r, t)∈Pi

)
≤ 1 (2.3)

• Forbidden cF
No robot is allowed to traverse the area:

∀t ∈ R+.

(
∑

r∈R
pos(r, t)∈Pi

)
= 0 (2.4)

• One Way cO
This region is only traversable in a specific direction: The direc-
tion of this zone is defined by dirAi .

∀t ∈ R+, r ∈ R . pos(r, t)∈Pi → dir(r, t) = dirAi (2.5)

• Dynamic One Way cD
The first robot which enters the region, determines the driving
direction for this region. No other robot in this area is allowed to
drive in the opposite direction:

∀t ∈ R+ . @r, r′ ∈ R . pos(r, t)∈Pi ∧ pos(r′, t)∈Pi∧
dir(r, t) 6= dir(r′, t) ∧ r 6= r′ (2.6)

• Velocity cV
The maximal allowed velocity of a region is restricted to velAi :

∀t ∈ R+, r ∈ R . pos(r, t)∈Pi → ‖dir(r, t)‖ ≤ velAi (2.7)

8



cS cS
cS

cS

cO cO
cO

cO

(a) Decomposition of the crossing
constraint

cS
cS

cO
cO

(b) Decomposition of the right hand
traffic constraint

Figure 2.1: Illustration of the constraint decomposition. (cS) denotes the single robot
constraints, (cO) shows the one way constraints.

• Crossing tC
A crossing consists of eight areas. Four areas have cS constraints
and four areas do have cO constraints. A polygon with cS con-
straint has to be congruent with a polygon with cO constraint.
The combination of constraints is visualized in Figure 2.1 (a). The
cS constraints allow only one robot in the segment of a crossing.
The cO constraints permit a robot to drive counter clock-wise
through a crossing similar to the concept of a roundabout.
• Right Hand Traffic cR

Robots in this region are forced to drive on the right hand side.
This constraint is built with two cO constraints. The areas corre-
sponding to the constraints have to be adjoined and oppositely
directed (Figure 2.1 (b)).

The set of constraints imposed by A is defined as C =
⋃

Ai∈A Ci. A path
of a single robot in this domain is defined as a continuous mapping
π(Ri) : [tRi , tRi + ∆tRi ] → E , referring the book of Choset [3, chap. 3].
The start of the path is furthermore restricted to π(Ri)(tRi) = sRi and
the goal to π(Ri)(tRi + ∆tRi) = gRi . The velocity along this path is
computed in Equation 2.8. The velocity constraint cV has to follow the
computed velocity.

9



2 Problem Formulation

∀t ∈ R+ . dir(Ri, t) =
dπ(Ri)(t)

dt
=

 dπ
(Ri)
x (t)
dt

dπ
(Ri)
y (t)
dt

 (2.8)

The optimization problem results in finding the set of paths Π which
minimize the maximal end time tRi + ∆tRi for all paths π(Ri) ∈ Π
subjected to C (Equation 2.9).

Π∗ = min
Π

{
max

π(Ri)∈Π
(tRi + ∆tRi)

}
s. t. C (2.9)

The optimal solution for this problem requires the complete informa-
tion of every task assigned to a robot from the beginning until the end
time of the system. Since this information is simply not available we
are not able to generate a global optimal solution for the entire robot
system. Therefore we define in Equation 2.10 a new planning problem
which minimizes the end time of a specific robot subjected to C and a
given set of paths Π from other robots.

π(Ri)∗ = min
π(Ri)

{
(tRi + ∆tRi)

}
s. t. C, Π (2.10)

The given set Π can be mapped without loss of generality to a set of N
tuples I = {I1, I2, . . . , In}, 1 ≤ n ≤ N which represents the traversal of
a robot through an area. Ii ∈ I denotes the tuple Ii := 〈tsi , tei , ri, pi〉 :
tsi , tei ∈ R+, ri ∈ R, pi ∈ P. This information formulates an additional
constraint cI :

∀Ii ∈ I . ∀t ∈ [tsi , tei ] . pos(ri, t)∈ pi (2.11)

This constraint offers the possibility to compute an optimal path for a
single robot for a given configuration I .

10



3 Related Research

In this chapter different current research topics and works in literature
related to this thesis are discussed. This chapter is composed of four
main parts. The first part describes similar multi-robot navigation sys-
tems with different fields of application. Then interesting approaches of
path planning and navigation systems in mostly single robot scenarios
are discussed. Section 3.2 considers also literature dealing with envi-
ronment representation for path planning. The last section presents
some research work on temporal planning and resource allocation.

3.1 Multi-Robot Navigation Systems

Common approaches within multi-robot navigation systems are deal-
ing with decentralized and decoupled path planning methods. Hence,
there are no or less shared resources and no centralized mechanisms
in order to strengthen scalability. These concepts follow mostly the
model of the distributed robot architecture (DRA) [4, chap. 40.2.3].

Kleiner et al. [5] describes a large system of robots operating in lo-
gistics centers and manufacturing scenarios. This paper proposes an
approach for an efficient decoupled algorithm for multi-robot navi-
gation. Their concept is based on an adaptive road map built out of
a grid map. The grid map is produced in advance by an appropriate
simultaneous localization and mapping (SLAM) method. To recog-
nize dynamic changes of the environment like pallets, boxes or other
obstacles, the grid map is updated dynamically with information of
all robots. Therefore every robot reports inconsistencies to the server.
Inconsistencies are identified with the help of an extended occupancy

11



3 Related Research

grid map. The authors combined a conventional grid map with an
hidden Markov model (HMM) that represents the belief of observation
changes. Additionally on the server exists an dynamic occupancy grid
map which tracks the reported inconsistencies with an discrete Bayes
filter. If the percentage of changed cells in this dynamic grid map
exceeds a threshold they publish a new grid map and initiate the road
map generation. Out of the dynamic grid map they generate a Voronoi
graph which serves as basis for the connectivity network. In this con-
nectivity network stations, locations and crossings are represented
as graph nodes and edges serve as connection between the nodes.
With a linear programming method they configure the ideal routing
of delivery tasks. This takes into account capacities on crossings and
lanes as well as flow directions on edges. As a result a road map is
configured where packages can be routed with minimal travel costs.
Single robots are able to extract shortest paths for their corresponding
task with their local planner module.
In this paper the approach is similar to the approach used in this the-
sis. They also use a centralized computed connectivity graph, which
deals as road map for individual robots. However our graph uses a
weighted directed graph to represent properties and constraints of
traffic regions, but deals not with an optimal configuration in the road
map generation step.

The work of Kleiner, Nebel, et al. [6] focuses again on a multi-robot
navigation problem in logistics scenarios, but uses a more improved
approach to avoid collisions in large robot teams. They use a behavior-
based multi-robot collision avoidance method based on decentralized
path planning combined with swarm technologies. The path planning
part in this method is necessary to handle the complex and cluttered
environment of logistics centers. Every robot plans its individual
path based on traditional path planning methods, like A*, in a grid
map. If a robot comes into contact with another robot, both apply
simple behaviors following specific traffic rules. These traffic rules
are desired to handle crossings, congestions, docking procedures and
more. Inspired by swarm intelligence these behaviors are coordinated
only by communicating with direct neighbors of a robot (if they enter
a specific area in front of the robot). Hence communication is kept
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low and broadcasting is avoided. In the paper they showed that this
approach outperforms other multi-robot navigation systems especially
if the teams become larger. Another advantage they found is that there
is no preprocessing of the environment, for example road maps or
graphs, needed.
Although this concept is highly scalable it leads eventually to a reactive
approach. Hence it is perfectly able to avoid and negotiate collisions
locally but does not consider to handle resources globally, in order to
make a likely collision free path available.

Wang and Premvuti [7] introduced in their work a traffic control sys-
tem for multiple autonomous robots. Robots are able to travel through
a discrete traffic network of passages (narrow directed corridors), in-
tersections and terminals. All of these traffic segments have finite
capacities. Their work is proposed to be used in scenarios where self-
regulated traffic systems are necessary, such as automated guided
vehicles on manufacturing floors or automatic roadway/railway sys-
tems. This system is again designed as a fully decentralized navigation
framework. Thus there is no central computation unit, no shared mem-
ory and no ground support which works as an arbiter. Robots are
operating in a two-dimensional discrete space consisting of traffic
segments which is represented as a static directed graph. Similar to
the work of [6] this approach uses only minor intercommunication
between robots. Communication is only triggered if they leave or enter
traffic segments. Then robots are executing so called “Basic Operating
Primitives”, which are used to compete for a traffic resource, deadlock
detection and deadlock resolution. This is achieved with a 1-out-of-N
methodology.
This paper describes a similar use case to the problem this thesis fo-
cuses on. However the work of Wang and Premvuti is again based on
local behaviors. The system emerges to a self organizing traffic system,
but does not provide possibilities to negotiate time based resources.

The following paper presents a “Constraint-based multi-robot path
planning” method [8]. Ryan showed in his work how to solve the prob-
lem of planning collision free paths for multiple robots as a constrained
satisfaction problem (CSP). In contrast to the work shown previously,
this method works as a centralized planning system. The author de-
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scribes a planner to coordinate robots with a composite graph that
represents all robots. Since this graph grows combinatorially with the
number of robots, a method to decompose the graph into subgraphs
has been shown. Therefore they exploit structural information of the
road map to build subgraphs like cliques, halls, rings and more. This
subgraphs constrain the movements of robots. Planning within this
subgraphs is encoded as CSP.
Our system does not intend to do centralized planning, but we are
able to formulate the planning problem of this work as an constraint
satisfaction problem. In our formulation we constrain regions with
traffic rules. Furthermore the method of decomposing the graph into
subproblems is for some degree similar to the method we handle
explicit traffic regions as standalone planning problems.

3.2 Path Planning and Environment
Representation

In literature there exists various different path planning techniques
using different environment representations. Path planning is still of
highly interest in research, in particular in game and robotic research.
Especially in this thesis we are focusing on planning techniques that
allow hierarchical path planning in abstract environment representa-
tions.

A hierarchical path planning method for multi-size agents is described
by Harabor and Botea [9]. In their work they developed a new path
planning algorithm called “Hierarchical Annotated A*”. Normally path
finding methods assume simplifications like homogeneous agents and
homogeneous environments. These simplifications do not fit if robots
have different sizes or are operating in heterogeneous environments
(different terrains). The approach in this paper uses a clearance-based
abstraction of grid maps. Clearance values are considering obstacles
and different terrains. The generated information is annotated to the
grid map. Their planning method is based on the classical A* algo-
rithm, but adds robot size and terrain capabilities to the search query,
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which produces optimal paths considering the agent’s size and ca-
pabilities. As this method is not tractable for larger problems they
introduced a cluster-based subdivision of the grid map with squared
clusters. The discretized adjacent regions are connected with single
shortest paths between two clusters. This represents an abstract search
graph. The planning problem could now be solved hierarchically with
much smaller search spaces.
The method of hierarchical planning is in principle the same we use in
our navigation system. The major difference is the environmental rep-
resentation. Here we use a directed graph generated out of a polygonal
representation of the environment. Additionally our graph is anno-
tated with region information. After planning on this graph the search
space on lower-level grid map based planners is reduced. On this
smaller planning domain motion plans are planned and executed.

Similar problems are solved in the article of Mitchell and Papadim-
itriou [10]. This work discussed already in 1991 an alternative way of
finding shortest paths through a weighted planar subdivision. Find-
ing shortest paths in planes of disjoint persistent polygon obstacles
is typically solved by visibility techniques. In this work a method
has been proposed that generalizes the shortest path problem with
obstacles to a weighted region problem. In this case a plane is sub-
divided into polygonal regions with an associated weight. The goal
is to minimize the total costs according to an Euclidean metric. This
method could represent problems like navigating with an autonomous
vehicle through an environment with different terrains. Terrains are
represented as polygonal patches in a map. In comparison to most
path planning techniques in literature Mitchell and Papadimitriou are
not using a grid map and heuristics to solve this planning problem,
but compute paths guaranteed to be optimal by using the continuous
Dijkstra technique. They model their problem domain into a polygonal
mesh consisting of only triangle faces. This representation is stored
in a data structure which allows fast determination of neighborhood
relations, for example a quad-edge data structure. A path with mini-
mal costs is computed in their approach on the basis of Snell’s Law of
Reflection, which provides a local optimality property analogous to
optical models.
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The problem this paper deals with has some parallels to this the-
sis. They consider planning in environments with different terrains
represented as simple weighted polygons. In our approach terrains
are different traffic regions. The way of subdividing and storing our
traffic map is mainly inspired by this paper. The following works
gives also some insight in how subdividing could benefit abstract path
planning.

The paper of Demyen and Buro [11] deals with a triangulation-based
environment representation and corresponding methods of path find-
ing. The authors found a method to exploit the advantages of triangu-
lated planes to do efficient path planning. In their work they proposed
an algorithm that finds shortest paths in a polygonal channel con-
sisting of a combination of triangle faces. This channel is computed
with their so called “Triangulated A*” which gives a series of adjacent
triangles from the start position to the goal position. In order to find an
optimal path within this channel they modified the “Funnel Algorithm”
[12] to deal with agents of different size. Hwang et al. [13] discusses
also methods of handling structured environment with triangulated
meshes. The especially found that a subdivision of large triangles in
free space improves the quality of paths. Furthermore they optimized
the positions of mesh-vertices according to obstacle curvatures.
The abstraction and planning in polygonal environment, in our case
a map with traffic regions and static obstacles, is one of our main
concerns in this thesis. Therefore we could benefit a lot of the idea of
using a Delaunay triangulation as environment representation. Fur-
thermore the proposal of a reduced subsequent search domain through
a polygonal channel has been continued. Also the idea of subdividing
triangles to provide better paths has been picked up in this thesis. A
further step in this direction is made in the work of Kallmann [14].
They built a graph out of a triangulated plane by using the midpoints
of triangle edges as graph nodes and dismissed wall edges. In our
work we handled the graph construction very similar but edges are
also constrained by specific traffic regions.

The subsequent work presents a robust navigation system for indoor
robotic systems in cluttered environment [15]. In their research they
focus on office like environments: unmodified and shared with people.
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In order to deal with these challenges the authors see an importance
of reliable sensing and representing the environment. In their paper
they describe a full navigation stack that handles all necessary steps
for a robust indoor robot platform. This stack includes sensing and
representing three-dimensional obstacles, mapping and localization in
this environment and path planning. The latter works as a two level
planning approach. The first level describes a high-level planning in-
stance, called global planner, which computes paths from an arbitrary
start to goal with a high frequency. This is usually accomplished with
an A* algorithm. However this level ignores dynamics and kinematics
of a robot. This is considered in the second level. Hereby command ve-
locities are computed with the “Dynamic Window Approach” (DWA)
introduced by Fox et al. [16].
This paper is of high interest for this thesis, because our planning
methods are supposed to work on top of the global planner. We pro-
vide a reduced search domain and intermediate waypoints forcing the
global planner to execute the abstract optimal plan.

3.3 Negotiating Environmental Resources
with Respect to Time

A topic of high interest when dealing with multi-robot systems is the
management of task and resource allocation. Although task and order
distribution is assumed to be solved in this work, we had to deal with
the resource allocation problem. In this work resources are traffic re-
gions which have to be shared with multiple robots. In literature there
are many concepts dealing with scheduling and temporal planning in
quite different research fields. In the following we present two works
that handle problems in multi-robot scenarios and are highly related
to this thesis.

The work of Alami et al. [17] describes a way to cope with the coop-
eration of large robot-teams through incremental plan-merging. They
introduce a concept called “Plan-Merging Paradigm” where decentral-
ized plans are coordinated with the help of exchanging information of
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their current status. In their paradigm a single robot creates his own
egoistic plan but has to perform plan merging operations on it. The
operations validates it in the multi-robot context. These operations in-
clude communication with other robots or using a shared resource for
coordination. With this concept they are able to cope with negotiating
resources.
This concept plays an important role in our traffic region scenario.
Here we want to coordinate the use of different traffic regions with
multiple robots. We are using this idea to coordinate the decentralized
planned paths with a centralized shared timetable.

Chatila et al. [18] describes a system enabling a robot to plan its action
considering temporal constraints. The authors present a three level
hierarchical architecture. The first level is a temporal planning instance
providing a sequence of partially ordered tasks with temporal con-
straints. The second level is a fast refinement step, splitting the tasks
into sequences of actions. The final “execution” layer takes care of
acting and sensing in the environment. They developed a temporal
planner which is able to reason on symbolic and numeric temporal
relations. Therefore they represented the planning domain as an in-
dexed time table. This is a two-dimensional array, where a column
holds a discrete time point and a row a logical assertion. The temporal
constraints are manged via a temporal relation manager. The resulting
plan is given through a sequence of ordered tasks with additional time
constraints, like duration, starting and end dates.
This work has inspired the representation of temporal intervals of allo-
cated traffic regions in this thesis. We use also a timetable to manage
and reason about temporal availability of traffic resources.
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In this chapter some basic prerequisites for this work are presented.
This includes theoretical parts as well as software frameworks and
necessary data structures. The remainder is organized as follows. The
first part deals with the robot operating system. Then a library with an
implemented half-edge data structure is explained and finally a part
of Allen’s interval algebra is discussed.

4.1 Robot Operating System

In Quigley et al. [19] the robot operating system (ROS) is introduced.
ROS is an open source robotic framework1. This framework is no
operating system in the traditional sense. It provides a structured
communication layer above the host operating system. ROS is de-
signed for heterogeneous multi-computer architectures connected in
a peer-to-peer topology. For example for a system where multiple
onboard machines are cooperating with offboard computers. There-
fore no central server is needed neither onboard nor offboard. Hence,
unnecessary traffic over a wireless link can be avoided. ROS supports
multiple different programming languages and is completely free and
open source. These two aspects are mainly responsible for the huge
amount of available tools and packages containing from low-level
communication to drivers, as well as perception and reasoning many
software modules.

In the following paragraph the main modules of ROS are described.
In ROS a system consists of nodes. A Node in this system is a process

1http://www.ros.org/
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which performs computation. In a system many nodes are cooperating
to solve a task or problem. Nodes are communicating via messages. A
message is a small data structure defined with the interface definition
language (IDL). The inter-process communication takes place on so
called topics. A topic is a named bus on which nodes can exchange
information. However nodes need not to be aware of which node they
are communicating with, instead they are publishing and subscribing
to the topic (Figure 4.1). This kind of broadcasting information has lots
of advantages. Nevertheless sometimes a synchronized communication
between nodes is necessary. This concept is realized with a service.
A service is a pair of well defined messages defining a request and
a reply message. The ROS services act analogous to web services.
The procedure of a communication based on a service is illustrated
in Figure 4.2. In order to manage the nodes and the communication
there exists a master. It is responsible to register all nodes as well as to
keep track of subscribed and advertised topics and registered services.
Once a node has registered itself on the master, the node is visible
to all others and communicates peer-to-peer. The master additionally
provides a parameter server. This is a shared dictionary on which
nodes can share and retrieve parameters at runtime.

A final module which is brought to ROS by the actionlib library
provides a possibility to get feedback of a long lasting task and even
cancel this task. This is realized similar to the service concept. A node
has to provide the action server which handles the computation. This
server is requested by another node which implements the action
client. This node has the possibility to get periodically feedback from
the action server and can even cancel the task. The corresponding
concept is shown in Figure 4.3.

An important software package of the ROS community is the Move-
Base2. Marder-Eppstein et al. [15] introduced in their work “The Office
Marathon” a software component which allows robust indoor nav-
igation without any modification of the environment. The software
component is based on an action server which takes a goal with real
world coordinates and combines a path planner (GlobalPlanner) and

2http://wiki.ros.org/move_base
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Figure 4.1: Concept of the topic-based publisher-subscriber model in ROS. Adapted
from http://wiki.ros.org/

21



4 Prerequisites

Figure 4.2: Concept of the service model in ROS. Figures adapted from http://wiki.

ros.org/

Figure 4.3: Illustration of the action-server and action-client communication.
Adapted from http://wiki.ros.org/
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a planner which computes valid command velocities(LocalPlanner).
Hence this package provides a complete low-level navigation stack.

4.2 OpenMesh - Half-Edge Data Structure

With OpenMesh3 Bischoff et al. [20] present an efficient implementa-
tion of a half-edge data structure. OpenMesh is a generic and efficient
polygon mesh data structure, which is not restricted to triangles, but
can handle arbitrary polygon types. Polygon meshes are very impor-
tant in the field of computer graphics. In this field the representation
of arbitrary complex three-dimensional shapes is usually handled with
polygon meshes.
A polygonal mesh consist of different elements. Typically a mesh in-
cludes faces, edges, vertices and topological relations between them.
In order to operate with these elements efficiently, an intelligent data
structure is necessary. Relating to these meshes there are existing two
kinds of representations: face-based and edge-based data structures.
The former stores for each face a pointer to every vertex and neigh-
boring faces. However face-based data structures are usually not able
to deal with polygons of different valence. Additionally the one-ring
neighborhood is not efficiently computable.
In edge-based data structures pointers from an edge to its adjacent
vertices and neighboring edges are stored. This enables the edge-based
data structures to handle polygons with different valence.

The underlying data structure in the OpenMesh library is a special
case of an edge-based data structure. In this library a so called half-
edge data structure is used. This data structure splits every edge in
two halves. Therefore the data structure is expanded by the following
pointers: every edge points to a vertex, a face and its opposite half-
edge (Figure 4.4). A half-edge data structure provides in contrast to a
face-based data structure following advantages. Edges, vertices and
faces are represented explicitly. This provides the ability to attach any
data to those elements. In a mesh one can now easily mix faces with

3http://www.openmesh.org/
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Figure 4.4: This figure shows the connectivity relation in the half-edge data structure.
(1) points from a vertex to an outgoing half-edge; (2) from the half-edge
to the target vertex; (3) from a half-edge to next half-edge and (4) to the
previous half-edge; (5) to half-edge related faces; (6) from a face to one
half-edge; (7) to the opposite half-edge

different count of vertices. The one-ring neighborhood of a face can be
accessed easily through so called circulators in constant time.

4.3 Allen’s Interval Algebra

In the work of Allen [21] a formalism is presented to represent tem-
poral reasoning problems. In more detail Allen introduced temporal
intervals for temporal representation. A interval is denoted as an or-
dered pair of two time points with the first point ts less than the second
te. Therefore well defined relationships between intervals exist. Allen’s
Interval Algebra (AIA) is based on thirteen basic relations (Table 4.1).

The basic relations includes six pairs (during, meet, start, end, before,
after) which have a direct converse and one additional relation (equal)
which is its own converse. Where the basic relations describe relations
between definite intervals, general relations describe interval relations
between indefinite intervals. The 213 = 8192 general relations can be
formulated by the combinations of the basic relations. For further
reading please see [21].
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Relation Symbol Illustration Endpoint Relation
X before Y b Xs < Ys, Xs < Ye
Y after X b′ Xe < Ys, Xe < Ye
X meets Y m Xs < Ys, Xs < Ye
Y is-met-by X m′ Xe = Ys, Xe < Ye
X overlaps Y o Xs < Ys, Xs < Ye
Y is-overlapped-by X o′ Xe > Ys, Xe < Ye
X during Y d Xs > Ys, Xs < Ye
Y includes X d′ Xe > Ys, Xe < Ye
X starts Y s Xs = Ys, Xs < Ye
Y is-started-by X s′ Xe > Ys, Xe < Ye
X finishes Y f Xs > Ys, Xs < Ye
Y is-finished-by X f ′ Xe > Ys, Xe = Ye

X equals Y e Xs = Ys, Xs < Ye
Xe > Ys, Xe = Ye

Table 4.1: Basic relations of Allen’s Interval Algebra
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5 Concept

In the subsequent sections of this chapter the concept of the developed
hierarchical navigation system is presented. This concept is intended
to solve the problem of planning with temporally available traffic
resources, called traffic regions, in a multi robot logistics scenario.
At the beginning a short overview of the individual parts of this system
is given. Then we provide a more detailed view on the representation
of the environment. Next planning on this representation is presented
and finally the integration and controlling in an existing multi-robot
system is presented.

5.1 Overview

The concept of our system relies on a hierarchical planning structure
integrated in decentralized units. This planning structure uses a central
generated static graph as well as a shared timetable to coordinate the
path of all units. The shared timetable is also under central administra-
tion. Figure 5.1 gives a schematic overview of our system integrated
in an existing multi-robot navigation system. The existing navigation
system is based on the work of Marder-Eppstein et al. [15]. This system
already includes for each individual robot a complete navigation stack,
including a path planning module (Global Planner) as well as a Local
Planner responsible for path following. Every robot operates on a grid
map representing the environment. A central server performs tasks
like order and goal distribution to the individual robots. Additionally
an user can interact with the system via a graphical user interface
(GUI) provided by the server. Within this GUI a user can add and
modify traffic regions in the environment.
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In this work we introduce extensions to this navigation system to
enhance the ability of multi-robot coordination. A first important step
is the generation of a meaningful representation of the environment.
This module is called Region Parser. It produces out of the map and the
traffic regions a graph constituting spatial relations as well as traffic
region properties. The Region Planner exploits information annotated
to the graph and provides a high-level plan for a single robot. This
plan specifies waypoints, restricts the grid map to a planning window
which reduces the planning domain for lower level planners and
determines a schedule representing the planed entry times along
the waypoints. Therefore this planner is capable to determine time
intervals on which the robot would need specific traffic regions. Based
on these time intervals reservations on the central timetable can be
requested. The last step considers controlling and executing the high-
level plan. This step includes maintaining the robot’s schedule to
guarantee the functionality of the system and deal with unpredictable
events. Unpredictable events have to be communicated with the server,
for example high-level plans canceled or early entries requested. Here
interaction with the central Timetable and the corresponding Timetable
Manager plays an important role. Furthermore the lower level planners
are forced to follow the waypoints and to consider the waiting times
of the high-level plan.
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Figure 5.1: Schematic overview of the navigation system. (blue) denotes the novel
parts integrated into the existing system (black)

5.2 Environment Representation

In the following algorithms and methodologies for creating an envi-
ronment representation fitting to our needs are presented. In other
research the environment representation problem is often solved by
grid map based solutions with four or eight neighbors. The grid cells
have obstacle related costs attached. However using grid maps for
this problem has some major drawbacks. First to represent the envi-
ronment well, extremely fine grids are necessary. Additionally grid
maps suffer from discretization problems and digitization bias [10].
The representation of environmental costs is also limited within grid
maps.
The goal of the presented approach is a graph, capable to represent
the traffic region map and to avoid above described problems. A traffic
region map comprises multiple polygons which have traffic rules at-
tached. These constrained polygons are furthermore referred as traffic
regions. The resulting graph of the environment representation deals
as a road map representing paths through free space and the traffic
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1
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Figure 5.2: Illustration of an exemplary map with traffic regions. This map serves
as running example throughout this chapter. The map compromises:
oneway traffic regions (yellow); a n-robot region (orange); a single robot
region (blue); a simple traffic region (magenta); obstacles (grey); free
space (white)

regions. This road map can be computed offline. Updating this graph
is only necessary if the shape or the traffic constraints of a traffic region
is changed.
Figure 5.2 shows an exemplary map with different region types ar-
ranged likewise to a typical real-world problem. This constructed map
will deal as running example throughout this chapter.

5.2.1 Polygon-Mesh out of Traffic Regions

Traffic regions are represented in this work as polygons with specific
traffic regulating constraints. Robot teams operate in maps composed
of these traffic regions. Considering these circumstances a representa-
tion is needed where the structure of polygons is not lost and planning
is fast and efficient.

Typical path planning methods are dealing with the shortest-path prob-
lem with obstacles. In this problem the environment is only modeled
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as free space and obstacles. Here motion planning can be in prin-
ciple divided into two categories: sampling-based motion planning
and combinatorial motion planning. The former is usually used if the
explicit construction of obstacles should be avoided because of high
complexity. These methods use a sampling based approach to deter-
mine the configuration space. The latter looks for paths trough the
configuration space without approximations. In contrast to the former
planning techniques the latter are exact algorithms. The combinatorial
motion planning algorithms typically operate on road maps. For road
map generation there exist several different approaches. Some are gen-
erated from cell decompositions of the environment, others directly
from environment. So there also exists a wide variety of different
algorithms to perform cell decomposition. They are also applicable for
different use cases. Some provide advantages for different dimensions,
some provide smoother transitions in road maps. [22, chap. 5-6]

In the traffic region scenario a generalization of above described plan-
ning and road map techniques is needed. This scenario requires a
constitution where polygons are not automatically depicted as ob-
stacles, but have additional properties. Hence, a representation that
ideally combines free space, obstacles and traffic regions is needed.

Free Space Determination

In order to get a sequence of traversable traffic regions it is necessary
to determine the free space exactly. Furthermore the representation of
free space and traffic regions has to be equal. Therefore the following
two-step procedure has been used: (1) inflate all obstacles, (2) cut-out
all inflated obstacles and traffic regions from the map. In the first
step every polygon is expanded with the inflation radius of a robot.
The inflation radius is defined through the circumscribed radius of a
robot footprint (Figure 5.3). This guarantees that a robot with a fixed
geometry will not collide with any obstacle in the environment and
that computed paths are traversable by the robot. The abstraction of in-
flating obstacles is in this work made with a “squared” miter approach
(Figure 5.4). In this approach all convex edge joins are approximated
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Circumscribed
Radius

Robot
Footprint

Inscribed
Radius

Figure 5.3: Representation of the circumscribed and inscribed radii of a robot foot-
print. The circumscribed radius is used as inflation radius. Adapted from
[15].

Obstacle Squared Inflation Round Inflation

(a) (b) (c)

Figure 5.4: Illustration of two obstacle inflation methods. (a) obstacle to be inflated;
(b) obstacle inflated with “squared” approximations of all convex edge
joins; (c) obstacle inflation with rounded convex edge joins

in the way shown in this figure. Other inflation techniques use a round
miter or exact miter representation. The former is disadvantageous
for later triangulation since an arc creates many triangles. The latter
is critically if the object to be inflated consists of acute angles. The
squared miter approach provides a solid and good approximation of
edge joins and has been chosen for our free space representation.
The second step creates one or more polygons, which are most likely
concave or include multiple holes. These polygons depict the free space
in the environment. Figure 5.5 presents the structure of a possible free
space polygon with holes.
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Figure 5.5: Illustration of an exemplary free space polygon (white) with holes, result-
ing from obstacles (blue) cut-out.

Advanced Region Determination

The traffic region map consists of arbitrary polygons. Every traffic re-
gion is associated with a specific region type that constrains the actions
of robots. Since positioning of regions in the map is not constrained,
regions may also overlap each other. For this reason we consider the
overlaps of two or more regions as new regions with the union of prop-
erties and constraints. In the following we propose Algorithm 1 which
performs this advanced region determination. This algorithm iterates
over a list of valid traffic regions. This list comprises all traversable
traffic region types. Hence every not traversable traffic region, for
example a forbidden area, is declared as invalid traffic region and is
excluded. The resulting valid traffic region list includes all traversable
and therefore valid traffic regions. In the first step of an iteration the
first valid traffic region from the list is reduced by any overlapping
obstacle or invalid traffic region. In the inner loop the current region is
intersected with every not yet investigated traffic region. If the result
of the intersection is empty, the region does not overlap with any
other traffic region and the next iteration starts. If the result of the
intersection is not empty the region is investigated in more detail.
First the difference of the current region region i and the next region
in the list region j is computed. If the difference is empty region i
is fully enclosed by region j. Thus the traffic constraints of region i
are extended with the constraints of region j. If the difference is not
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empty, the polygon of region i has to be updated with the resulting
polygon of the difference. This test is repeated with the difference of
region j \ region i. If none of the tests results in a fully enclosed region
the result of the intersection is added as new region with constraints
of region i and region j. In Figure 5.6 this procedure is illustrated with
an example.

Triangulation of Polygons

Triangulating the polygonal environment is one of the essential points
of our traffic region representation. This cell decomposition method
generates for all parts of the environment the same geometric shape
and provides the benefits of representing the map using triangles.
We use constrained Delaunay triangulation (CDT) to decompose our
polygons. The Delaunay triangulation maximizes the minimum angle
of all angles in the triangulation. A CDT provides the ability to respect
defined constraints, for example predefined edges which have to ap-
pear in the triangulation. However this constraints could lead to the
loss of the Delaunay condition.[23]
The decomposition of polygons into triangles has two major advan-
tages. A possible concave polygon is reduced to a set of convex poly-
gons. Thus, every edge has complete visibility of all other edges in
this polygon (triangle). This means that any straight line between any
combination of two edges of this polygon is completely enclosed by the
polygon. Secondly a set of triangles brings up a simple but expressive
possibility to build a road map. These advantages are exploited in
Section 5.2.2.

Representing Polygons in a Data Structure

Due to previous steps the triangulated free space and traffic regions
share the same geometric shape. Furthermore the triangles form a
polygon mesh. Obstacles result in holes in this mesh. Thus, this mesh
is able to combine every polygon type we discussed so far.
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Algorithm 1: Advanced Region Determination
Data: valid regions . . . list of valid map regions
Data: obstacles . . . list of obstacle polygons
Result: planner regions . . . list of identified regions for planning

1 begin
2 new regions←− {}
3 for i← 0 to valid regions.size() do
4 region i←− valid regions[i] \ obstacles
5

6 for j← i + 1 to valid regions.size() do
7 region j←− valid regions[j]
8 intersection←− region i ∩ region j
9

10 if intersection 6= {} then
11 region i cut←− region i \ region j
12 region j cut←− region j \ region i
13

14 if region i cut 6= {} then
/* polygon of region i is updated with

region i cut */

15 region i←− region i cut
16 else
17 region i.updateProperties(region j cut)
18 f ully enclosed←− true
19 end
20 if region j cut 6= {} then

/* polygon of region j is updated with

region j cut */

21 region j←− region j cut
22 else
23 region j.updateProperties(region i cut)
24 f ully enclosed←− true
25 end
26 if f ully enclosed = f alse then
27 new regions.add(Properties(region i), Properties(region j),

28 intersection)
29 end
30 end
31 end
32 valid regions.append(new regions)
33 end
34 planner regions←− valid regions
35 end
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Figure 5.6: Illustration of the Advanced Region Determination Algorithm. This figure
shows the sequence of intersection and difference operations to obtain all
subregions generated through overlaps. The first rectangle denotes the
initial situation. Loop 1-3 shows the effect of the iterations in the inner
loop of the algorithm. The first column (I) represents the intersection of
the regions. (II) denotes the difference of two regions, while (III) denotes
the difference of the exchanged regions.

36



5.2 Environment Representation

In order to execute our algorithms on this mesh a powerful data struc-
ture is necessary. The half-edge data structure (see Section 4.2) allows
to query fast and efficient boundary and neighborhood relations. With
this data structure the operations necessary to build the road map
graph can be easily implemented. For the subsequent steps especially
the possibility to iterate over edges belonging to a triangle face, attach-
ing properties to faces and determining the center of particular edges
has been exploited.

5.2.2 Road Map Graph

In the following the free space and region determination as well
as the triangulation are combined to form an expressive road map.
Algorithm 2 describes the basic procedure of generating this represen-
tation.

Algorithm 2: Road Map Graph Generation
Data: map regions . . . list of all map regions
Data: obstacles . . . list of obstacle polygons
Data: map . . . polygon representing the map size
Result: road map . . . graph representing the environment

1 begin
2 valid regions←− map regions \ obstacles
3 f ree space←−

Polygon(map.height, map.width) \ (map regions ∪ obstacles)
4 triangles←− f reeSpaceTriangulation( f ree space)
5 polygon mesh.add(triangles)
6

7 planner regions←−
regionDetermination( f ree space, valid regions, obstacles)

8 polygon mesh.add(planner regions)
9

10 subdivide(polygon mesh)
11 road map←− generateRegionGraph(polygon mesh)
12 end

The completely triangulated environment is the basis for our road
map graph. Since triangulation is one of the basic cell decomposition
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methods, building road maps from this representation is quite com-
mon. A typical way of using triangulations to fabricate road maps is
connecting the center of gravity (COG) of every neighboring triangle
(Figure 5.7 (a)) [22, chap. 6.3.2]. A benefit of road maps generated out
of triangulations is the low degree of a node. In this case the maximal
number of three edges per node is limited by the geometric shape.
In our approach we want to conserve the information provided by
the triangle regions. This includes the constraints of map regions and
the spatial relations. Thus, we are taking the center of a triangle edge
(COE) and connect it with every other COE of the triangle (Figure 5.7
(b)). Consequently we receive a connectivity graph G = (V, E). G is or-
ganized as directed weighted graph. A vertex V is denoted, as already
mentioned, by the center of a triangle edge and represents an entrance
to a triangle, regardless if the polygon is part of a traffic region or
free space. An edge E in the graph depicts the distance between a
triangle entry and exit. An edge inherits the constraints attached to the
corresponding traffic regions. This method leads to a degree of four
per node. The degree of a node plays an important role because this
has a crucial effect on the performance of heuristic search methods.
This structure of the road map provides an easy method to compute
traversal costs through arbitrary regions and shortest paths in the
graph. In Figure 5.8 the generated connectivity graph belonging to the
running example is presented.

Region Integration

The above described road map structure allows to deal with different
configurations of different traffic region types. In the following we
present configurations and modifications of the connectivity graph.
We show a method to integrate the constraints of various traffic region
types already in the road map generation step.

Simple Traffic Regions This traffic region type is intended to provide
additional properties to the corresponding region. For example to mark
an area in the environment where by trend more people are moving
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(a) Road map generated from triangle
COGs

(b) Road map generated from triangle
COEs

Figure 5.7: Two variants of road map generation with a triangulated polygon. (a)
road map generated via connecting neighboring COGs; (b) road map
generated via connecting neighboring COEs. Adapted from [22, chap.
6.3.2]

or dynamic obstacles like pallets are preserved. Therefore a caution
and maximal allowed velocity value can be set.
These properties can be directly integrated into edge costs in the road
map graph. Hence every edge corresponding to the region is weighted
according to the properties.

Oneways A benefit of the directed graph is visible if one considers
oneway (OW) traffic regions. This traffic region type constrains the
traversable direction through this region. With the directed graph ap-
proach it is easy to dismiss every edge in an oneway region that points
in the wrong direction. The traversal direction is defined through the
angle ϕ between the orientation of the region r and the corresponding
graph edge e. ne and nr denote the normalized vectors of e and r (see
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(a) Triangulation of the free space and traffic regions

(b) Connectivity graph overlaid with the map

Figure 5.8: Illustration of the generated connectivity graph out of the triangulation
within our running example. (a) Triangulation, shown in green, of the
free space and traffic regions considering the inflated obstacles (obstacles
visualized with “rounded” inflation, triangulation executed on “squared”
inflation); (b) Connectivity graph (red) representing the road map. Note
that this illustration depicts only the connections between the nodes of
the road map not the underlying directed edges.
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φ 
r

e

Figure 5.9: Illustration of a resulting graph for an oneway traffic region. The figure
denotes the directed edges (red), represents the OW (yellow), indicates a
triangulation of the regions (grey) and visualizes the angle test for one
specific edge (blue)

Equations 5.1).

ϕ = cos−1
(

e · r
ne · nr

)
ne =

e
‖e‖ , nr =

r
‖r‖ (5.1)

valid(e) =
{

true : 0 ≤ ϕ < π
f alse : π ≤ ϕ ≤ 2π

Right-Hand Traffic Regions In Right-Hand Traffic (RHT) regions
robots should rather drive on the right side (based on their driving
direction) than on the left side of a region. Thus, this type is supposed
to be an extension of two opposite directed OWs. These regions are
desired to bring up a better flow in highly crowded areas. Nevertheless
this region allows behaviors like overtaking another robot and avoiding
obstacles.
The RHT traffic type is realizable similar to the OW type. First the
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RHT is split into two regions. The region edges are treated equally to
OW.

Capacity Regions and Dynamic Oneways Capacity regions, namely
N-Robot and Single-Robot areas, limit the number of robots allowed
to traverse a region simultaneously. Dynamic Oneways (DOW) are
intended to negotiate narrow corridors or similar space configurations
with multiple robots. The first entering robot determines the allowed
traversal direction. If robots queue up on the other side, they have to
wait until the region is completely free or an specified time interval of
using the traffic region in one direction is over.
These regions do not need a manipulation of the graph structure. How-
ever they are integrated into the planning problem by considering an
estimated traversal time through a region. With the estimated traversal
time a time interval can be built which represents a reservation on the
central timetable. How these intervals effect planning is described in
detail in Section 5.3.2.

Crossings The crossing concept is also supposed to provide a better
traffic flow with multiple robots. Hence, common crossing points could
be traversed more fluently. A crossing works in this concept like a
roundabout. In this roundabout robots up to the number of entries
can be handled.
The crossing region type can be modeled in our system as multiple sub-
regions, where every subregion handles one entrance. An individual
subregion is a combination of a single-robot area and an oneway.

5.2.3 Subdivision of Triangles

Our road map generation technique creates a very sparse graph. How-
ever, this has positive and negative sides. On the one hand a sparse
graph provides a small planning domain. Hence, searching on this
graph is supposed to be very fast. On the other hand a road map
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(a) Road map generated with longest
edge subdivision

(b) Road map generated with loop
subdivision

Figure 5.10: Two variants of road map generation (red) with a subdivided triangular-
mesh (black triangles). (a) represents the longest edge subdivision. At
is clearly visible that graph nodes of large triangles have a very high
degree after this subdivision method; (b) dense road map generated via
the loop subdivision procedure. This method keeps the low degree of
maximal four edges connected to a node.

generated from the approach we discussed above is a coarse abstrac-
tion of the environment. Thus, paths found on this road map will
not necessarily correspond to optimal paths computed by lower level
planners. This is mainly a problem in the context of shortest paths,
but one can argue that the high-level plan suggests only a sequence
of regions and waypoints for lower level planners, which are then
computing optimal paths. Nevertheless we are using topological rela-
tions to estimate arrivals and traversal times in traffic regions. If this
estimations do not fit to the real path execution times the planned
schedule and the corresponding reservations are inaccurate and will
probably fail.
In order to counteract this problem subdivision methods are used.
Subdivision is widely known in computer graphics where subdivision
algorithms are used to refine and smooth polygon meshes to represent
three-dimensional objects more precisely. For our need subdivision is
used to generate road maps which are able to produce paths closer
to optimal paths already in the high level plan. In the following we
describe two methods which are generally used and applicable to our
road map generation procedure.
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Subdivide Longest Edge Subdividing the longest edge of a triangle
is a rather simple approach. This method simply splits an edge if this
is longer than a specified value. Splitting means adding an additional
vertex to this edge. The left plot of Figure 5.10 shows an illustration
of this method. As a result triangles obtain additional vertices. Hence
these polygons are no triangles anymore. However the shape of these
polygons is still equal to the previous triangles. Therefore the above
mentioned advantage of visibility is still available. The resulting graph
after subdividing the triangles is much denser than before. Every split
edge provides an additional node in the graph. Therefore paths are
smoother, less detouring and so closer to optimal paths. Nevertheless
this has also a drawback: the degree of a graph node increases rapidly
with the subdivision factor and the size of the triangle. As already
discussed a high degree of graph nodes has disadvantages for graph
search methods.

Loop Subdivision Loop subdivision was introduced by Loop [24]
and is a method which splits a polygon mesh into irregular triangles
introduced. In more detail this procedure replaces one element of a
triangle mesh with multiple elements of the same geometric shape.
Hence a single triangle is subdivided into four triangles and so forth
(Figure 5.10, (b)). This method provides also the advantage of a denser
graph. Moreover this approach does not change the maximal degree
of a graph node.
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5.3 Region Planner

Previous findings allow to produce an useful representation of the
environment. The outcome is a directed weighted graph with anno-
tated traffic region constraints. At this point we want to introduce our
planning mechanisms to generate the fastest plan for a robot. There-
fore the planner requests a timetable from the central server which
represents reservations corresponding to the paths of other robots in
the static environment. This planner is able to consider all traffic region
constraints and able to respect traffic region reservations of multiple
other robots. In the following a well known graph based planning
algorithm, namely A* [25], has been extended in order to handle the
constraints with a temporal heuristic planner. This additional planner
tries to find a valid time slot in the given timetable for traversing traffic
regions which does not conflict with the constraints. The last part of
this section discusses the resulting plan.

5.3.1 Fastest Path Planner

The A* algorithm is a graph based planner which belongs to the
group of informed search algorithms. Informed search algorithms use
a heuristic function to find shortest paths between two nodes on a
graph. A* is optimal and additionally complete if the heuristic function
is admissible. A heuristic is admissible if the real costs of reaching a
goal are never overestimated. In this case the algorithm is able to find
the optimal solution, if one exists. For further reading please see [26,
chap. 10.4].

As already pointed out the heuristic function plays an important role
in this planning method. In the following the composition of our basic
heuristic function and edge costs are described. In the road map graph
presented in Section 5.2.2 nodes and edges maintain several informa-
tion about their topological relations and traffic region constraints. In
principle edges denote the distance between two nodes and nodes
denote the location on a map. The intention of our planning approach
is to find fastest paths between an initial start node and a goal node.
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Hence, the edge costs have to represent the time it takes to go from a
node A to a node B. In more detail if the Euclidean distance between
two points ∆x is known, we could estimate an approximate traversal
time ∆ttraversal, assuming a robot is driving constantly the maximum
speed vmax allowed to drive in this region (Equation 5.2).

∆ttraveral =
∆x

vmax
(5.2)

Here the traversal time is the minimal time needed to traverse the
edge between two nodes. Since the road map is representing even
more traffic regulating constraints than only the spatial relations, for
example maximal velocities and caution values, this time has to be
weighted. The constraints contribute as an increasing factor to the
estimated traversal time. For further considerations the weight of an
edge we denotes the set we = {∆x, ttraversal, tweighted}. In this planning
domain we are talking now about finding fastest rather than shortest
paths in a graph.
The corresponding heuristic function to this planning problem is based
on the straight line distance (SLD). In our problem we transform this
function into the time dimension and call it straight line time (SLT).
The hSLT(n) of a node n is calculated identically to the edge traversal
times in the graph. The SLT is at maximum equally high than the
weighted traversal time mapped to an edge. Thus, hSLT(n) is never
overestimating the real costs and therefore an admissible heuristic.
hSLT(n) follows also the geometrical relations of the triangle inequality
(Equation 5.3), which implies that this heuristic is also consistent
heuristic even in this domain. This is also illustrated in Figure 5.11.

hSLD(n) ≤ c(n, n′) + hSLD(n′)
c(n, n′) = distance(n, n′)

hSLT(n) =
hSLD(n)

vmax
hSLD(n)

vmax
≤ c(n, n′)

vmax
+

hSLD(n′)
vmax

(5.3)
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G

c(n,n’)

hSLD(n’)

hSLD(n)

n n’

Figure 5.11: Illustration of the triangle inequality for a consistent heuristic function.
The figure shows: the straight line heuristic (blue); edges in graph
(black).

With this heuristic we are able to find a fastest path through the road
map representing our environment. In the following an additional
planning procedure is proposed. This planning method takes capacity
regions into account and allows considering current region reserva-
tions from other robots.

5.3.2 Temporal Heuristic Planner

Within this section algorithms are proposed in order to include the
scheduling of region reservations needed for finding a path in a set of
already existing reservations already in the path finding step.

A quite simple approach to handle this problem would consider first
path planning with the planning method and heuristic function ex-
plained above. The computed path has then to be analyzed whether it
hits a traffic region. In case the path never goes through a traffic region
the procedure has already finished. However if the path would lead a
robot through a region with capacity constraints a check is necessary
if the path is valid. Therefore the path costs from the start to a region
entry determines the start time and the path costs between the region
entry and exit the end time of a time slot the robot would need through
the region. Hence it has to be checked if this time slot conflicts with
the reservations on the timetable. If this is not the case the whole plan
has to be rejected the corresponding edges in the graph temporary
dismissed and the complete procedure inclusively path planning has
to be repeated.
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This approach is eventually very time consuming since every path has
to be validated with the current reservation situation and every flaw
requires immediately a complete new plan.

We introduce now a planning approach which could handle this prob-
lem already in the path finding step. In short our approach identifies
traffic regions while planning and computes online traversal costs and
waiting costs if the region is temporary not available. In addition a
more accurate heuristic through that region is computed. The resulting
path is used to request reservation grants for the needed traffic regions
by the planning robot. Therefore the computed traversal times have to
be coordinated with all robot reservations on the central timetable.

This method requires some extensions to a traditional A* planner.
Algorithm 3 denotes a pseudo algorithm [27] of the widely used A*
algorithm from Hart et al. [25] with the extensions. The algorithm uses
two data structures: the open list is a priority queue and the closed
list is a set. openList.insert() inserts a node into the list, openList.pop()
returns the lowest element of the list, openList.remove(n) removes the
node from the list. The extensions to solve this problem are integrated
in the algorithm and mainly located in the cost computation function.
First we are looking for planning costs that represent resource alloca-
tion efforts (line 31). In Algorithm 4 these costs are modeled with a
waiting time, a robot has to wait before it is allowed to enter a region.
Therefore in line 2 region entrances are determined in the planning
step. If a node n′ is detected, which is an entrance to a region, a new
temporal heuristic planner (THP) instance is invoked (line 3). The THP
computes within a region the best path considering the global goal.
If the THP detects a node n′′ which determines a region exit a path
through that region has been found. If the THP finds the goal before a
region exit has been determined, the global goal lies within the region.
The THP consists of two parts. The first part describes an additional
A* planning instance which works in particular equally to the one
described in Algorithm 3. The planner computes a complete path to
either the goal, if it is inside a region, or to the exit best situated to the
goal (n′′). This path represents the traversal time through this region.
The second part builds an interval out of the estimated arrival time
at the entry node plus the traversal time and schedules an earliest
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starting time (tEST) considering all existing region related reservations.
The waiting time tw = tEST − g(n′) results directly from the computed
earliest starting time and g(n′). g(n′) represents the time the robot
arrives at n′ using the so far generated path. The method of interval
scheduling is explained in more detail in Section 5.3.3.
The computed waiting time adds to the costs g(n′) of vertex n′ and
the heuristic results in h(n′) = hTHP(n′) + hSLT(n′). The path costs
through a region are represented by hTHP(n′) which is the exact heuris-
tic. hSLT(n′) is again the straight line time to the goal. The sum of this
two parts will never overestimate the real costs. Therefore we can still
guarantee admissibility and consistency of our heuristic function.
Figure 5.12 shows a scenario, which illustrates the invocation of a
THP instance. In this scenario the investigation of the graph starts at
the node nstart and chooses the node n because of the better heuristic
value. At this point the algorithm identifies the next node n′ to be a
region entry. Thus a THP instance is started. The THP searches within
the region (cyan) the best path related to the global goal and arrives
eventually at node v′′ which is a region exit. As a result the THP has
computed the blue path between the two green spots representing the
traversal time. Supposing the path states that v′ will be reached in
t = 5 and the traversal costs between n′ and n′′ are 4 time units, but
this SR zone has been already reserved by a different robot from t = 2
to t = 8 then the plan would add to the node v′ the additional waiting
costs of tw = 3.

5.3.3 Interval Scheduling

In this section the interval scheduling procedure is described more
closely. For interval planning the relations of Allen’s Interval Algebra
(IA) [28, chap. 13.2] are used. IA has already been described in detail in
Section 4.3. The goal of this planning component is to find the earliest
possible starting time of a requested interval in a timetable.

For planning with intervals we define a query interval Q = [qs, qe]
which represents an interval lasting from a query start qs to a query
end point qe. In the following a timetable is related to the currently
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Algorithm 3: A* extensions (Adapted from [27])
Data: G . . . directed graph
Data: nstart ∈ G . . . start node of the graph
Data: ngoal ∈ G . . . goal node of the graph

1 begin
2 openList←− {}
3 closedList←− {}
4 g(nstart)←− 0
5 f (nstart) = g(nstart) + hSLT(nstart)
6 openList.insert(nstart, f (nstart)))
7 while openList 6= {} do
8 n←− openList.pop()
9 if n = ngoal then

10 return “found path”
11 end
12 closedList←− closedList ∪ {n}
13 foreach n′ ∈ successor(n) do
14 if n′ 6∈ closedList then
15 if n′ 6∈ openList then
16 g(n′)←− ∞
17 parent(n′)←− NULL
18 end
19 UpdateVertex(n, n′)
20 end
21 end
22 end
23 return “no path found”
24 end

25 Function UpdateVertex(n, n′)
26 if g(n) + we(n, n′) < g(n′) then
27 if n′ ∈ openList then
28 openList.remove(n′)
29 end

/* calculate heuristic and waiting time */

30 g(n′)←− g(n) + we(n, n′)
31 h(n′), tw ←− CalculateHeuristic(n′)
32 g(n′)←− g(n′) + tw
33 f (n′) = g(n′) + h(n′)
34 parent(n′)←− n
35 openList.insert(n′, f (n′))
36 end
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1

Figure 5.12: The figure presents a small graph through a single robot region. The
illustration comprises: a traffic region (cyan); the connectivity graph
(red); obstacles (gray); path through the SR region (blue) with entry
and exit nodes (green). A* will eventually choose n for expansion, n
investigates the node n′. From the entry node a path is computed
through the traffic region until an exit (n′′) has been determined.

Algorithm 4: Calculate Heuristic
Data: G . . . directed graph
Data: ngoal ∈ G . . . start node of the graph
Input: n′ ∈ G . . . next node
Output: h(n′) . . . heuristic value of the next node
Output: tw . . . waiting time for the next node

1 Function CalculateHeuristic(n′)
2 if isRegionEntry(n′) then
3 hTHP, tw ←− TemporalHeuristicPlanner(n′)
4 h(n′)←− hTHP + hSLT(n′′)
5 else
6 h(n′)←− hSLT(n′)
7 tw ←− 0
8 end
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processed traffic region. A timetable is considered as set of intervals
T = {t(1), t(2), . . . , t(N)} with t(i) = [t(i)s , t(i)e ] where N denotes the
current number of reserved intervals in a timetable.

For planning we consider three queries defined with the IA relations
from Table 4.1:

• WITHIN(Q, T):
This query uses a composition of the relations {during, starts, f inishes,
equals}.

When considering multiple time intervals with a within-query
this results in a set of all intervals met by the query (equation 5.4).

WITHIN(Q, T)→ {t(1), . . . , t(k)}, t(i) ∈ T, 1 ≤ i ≤ k (5.4)

• OVERLAPS(Q, T): This query is represented by the Q overlap t(i) ∈
T relation from IA.

When considering multiple time intervals with a overlaps-query
this results again in a set of all intervals met by the query (equa-
tion 5.5).

OVERLAPS(Q, T)→ {t(1), . . . , t(k)}, t(i) ∈ T, 1 ≤ i ≤ k (5.5)

• CONTAINS(Q, T): This query is represented by the Q includes t(i) ∈
T relation from IA.
When considering multiple time intervals with a contains-query
this results in a set of all intervals met by the query (equation 5.6).

CONTAINS(Q, T)→ {t(1), . . . , t(k)}, t(i) ∈ T, 1 ≤ i ≤ k (5.6)
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Within all queries the earliest starting time respecting a single timetable
interval results in the end time of the met interval: t(i)EST = t(i)e .

Algorithm 5 presents the planning approach with the query and
timetable intervals. This algorithm tries to schedule Q to get an optimal
earliest start for the query interval considering all timetable intervals.
In line 2 the algorithm tests if the query fulfills the constraints of the
current traffic region. In case of not fulfilling the constraints the reason
for this flaw is determined with one of the three explained queries.
In function computeBestInterval() provided by Algorithm 6, which
computes a new query Q′ supposed to fit the constraints. In order to
guarantee that there is no new flaw arising Q′ must be tested again
with the above procedure. If the constraint test for the query is suc-
cessful a valid tEST has been found. Figure 5.13 depicts a scheduling
procedure for two different capacity regions.

Algorithm 6 performs an iterative search which determines the best
starting time for this query considering all timetable entries and creates
a new query Q′ consisting of tEST.

The fulfillConstraints() function determines to which constraint
set the current region belongs. Currently the algorithm considers two
different types:

• Capacity Regions: In order to fulfill the capacity region con-
straints the number of interval intersections of the query and
the timetable entries must be lower than the capacity amount
(Equation 5.7).

|Q ∩ T| < C.capacity (5.7)

• Dynamic Oneway Region: In this case their is no fixed capacity
but a time span in which all robots have to finish traversing this
region. This is realizable through attaching the traversal direction
to the time interval. Hence, the region planner is aware of the
valid direction and is able to compute a valid tEST.
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Algorithm 5: Interval Scheduling
Data: Q = [qs, qe] . . . query interval
Data: T = {t(1), t(2), . . . , t(i)}, t(i) : [t(i)s , t(i)e ], 1 ≤ i ≤ N . . . N timetable

intervals
Data: C . . . constraints of the traffic region
Result: tEST . . . earliest starting time within timetable

1 begin
2 while fulfillConstraints(Q, C, T) = f alse do
3 result←−WITHIN(Q, T)
4 Q′ ←−computeBestInterval(Q, result)
5 if Q′ ! = Q then
6 Q←− Q′

/* continue with next loop iteration */

7 continue
8 end

9 result←− OVERLAPS(Q, T)
10 Q′ ←−computeBestInterval(Q, result)
11 if Q′ ! = Q then
12 Q←− Q′

/* continue with next loop iteration */

13 continue
14 end

15 result←− CONTAINS(Q, T)
16 Q′ ←−computeBestInterval(Q, result)
17 if Q′ ! = Q then
18 Q←− Q′

/* continue with next loop iteration */

19 continue
20 end
21 end
22 tEST ←− qs
23 end
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If the corresponding constraints fail on the query this test invokes the
interval scheduling algorithm to search for another fitting time slot.

Algorithm 6: Compute Best Interval
1 Function computeBestInterval(Q, R)

Input: Q . . . query interval
Input: R . . . resulting set of N elements met by the query
Output: Q′ . . . query with new time interval

2 tEST ←− minr∈R{t
(r)
e }

3 Q′ ←− [tEST , tEST + qe − qs]

5.3.4 Formal Properties of the Region Planner

In the following we provide propositions and proof sketches regard-
ing the termination, soundness and completeness of the introduced
algorithms. For this propositions we made the following assumptions.
We assume that T(i) ∈ T of a timetable T consists of a finite set of
intervals where every intervals holds a finite end time. Furthermore
we assume that the algorithms are operating on a finite directed graph
with N nodes and positive weights.

• Algorithm 6: Compute Best Interval

Proposition 1. Given the finite set of intervals in T(i) which has to be
investigated for the minimization of tEST the algorithm terminates with
O(|T(i)|).

Proof sketch. The algorithm has only one loop iterating once
through the set T(i).

Given the finite end points of the intervals the result of the
algorithm is the earliest possible starting time of the requested
interval regarding the intervals in T(i).

Proposition 2. The Algorithm is sound and complete.
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(a) Time allocation example for a single robot traffic region

(b) Time allocation example for a two-robot traffic region

Figure 5.13: Schematic illustration of the interval scheduling procedure. (a) shows the
waiting time (red) for a invalid query q (gray) and the earliest possible
start time q′s for a single robot region; (b) shows this mechanism for
two-robot traffic region.
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Proof sketch. This follows directly from line 2-3.

• Algorithm 5: Interval Scheduling

Proposition 3. Given the finite set of intervals T(i) the algorithm
terminates with O(|T(i)|2).

Proof sketch. Based on Proposition 2 and an absolute sortable
time-sheet T(i) the query will be shifted by at least one interval
per iteration. Therefore in every iteration the algorithm can dis-
card one interval for further investigation. Thus the algorithm
iterates at most |T(i)| times. Based on this bound of the iterations,
Proposition 1 and the constraints are investigated at most |T(i)|
times this proposition follows.

Given the finite end points of the intervals the result of the
algorithm is the earliest possible starting time of the interval
regarding the intervals in T(i).

Proposition 4. The Algorithm is sound and complete.

Proof sketch. In every iteration all intervals are computed which
are intersected by the query. Based on Proposition 2 in every
iteration there exists no start point, which is not in conflict,
earlier than the earliest start point. It follows that the returned
start point is the earliest possible starting point.

• Temporal Heuristic Planner

Proposition 5. Both algorithms combined result in a run time of
O(|T(i)|2 + N2).

Proof sketch. The heuristic planner is composed of an A* al-
gorithm and the interval scheduling algorithm. Since previ-
ously shown the interval scheduling algorithm terminates with
O(|T(i)|2). A* is known to terminate on a finite graph with pos-
itive weighted edges in worst case with O(N2) where N is the
number of nodes. The THP result provides the path costs com-
puted by A* and the waiting time computed by the interval
scheduler.
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• Algorithms 3-4: Extended A*

Proposition 6. The Algorithm terminates with O(N2 · (|T(i)|2 +
N2)).

Proof sketch. The Algorithms are using only finite functions, as
previously shown, and insert and delete operations on lists which
are terminating in finite time. Every iteration removes an element
n from the openList and adds this element to the closedList. n is
added at most once to the openList, thus the list contains at most
N elements. The Algorithm investigates at most all k successors
of a node n. Thus the algorithm calls THP at most N2 times.

Given a set of constraints, a finite timetable and a finite graph as
denoted in our assumption, the algorithm finds a path satisfying
all constraints if such a path exists.

Proposition 7. The algorithm is sound regarding the computation of
paths fulfilling all given constraints.

Proof sketch. The algorithm generates with the help of A* a ge-
ometric path through the graph. If the path traverses a zone
the THP calculates a valid interval, this follows from Proposi-
tion 4. Thus the path will never lead through a zone which is not
available and therefore the algorithm is sound.

Proposition 8. The algorithm is complete regarding the computation
of paths fulfilling all given constraints.

Proof sketch. If no geometric path exists, A* terminates without
finding a path, thus the proposition holds for this case. If a
geometric path exists, there exists a path satisfying all constraints.
This is argued with the assumption of a finite set of T(i) with
finite interval end points. Thus one can traverse every zone after
the last endpoint of all intervals. Furthermore the geometric path
will be found through the completeness of the A* algorithm.
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Figure 5.14: Visualization of a scenario with a non optimal plan. The scenario shows
two single robot zones (blue) with forbidden areas (gray). The direct
path to the goal (red) is shorter but obtains a waiting time due to
reservations. The optimal path (green) respects the given reservation
scenario and traverses only a part of the upper SRZ.

Concerning the optimality of the proposed algorithms the following
pathologic scenario indicates that the algorithm is not optimal. This
scenario consists of an environment composition similar to the illus-
tration of Figure 5.14. Without any time constraints (reservations) our
algorithms will find the optimal path, in this case the optimal path is
the direct path (red) to the goal. We consider now a specific reservation
configuration: there exists two consecutive reservations with a gap
between them of the upper single robot zone (SRZ) and no reservation
of the lower single robot zone. The proposed algorithms are still result-
ing in the direct path (red) to the goal, but with an additional waiting
time, that allows the entrance after both reservations. In this scenario
there exists a faster path. If the gap between two configurations allow
traversing a part of the upper SRZ with a consecutive change from
the upper SRZ to the lower SRZ and further continuing to the goal
(green). This path is not computable within our algorithms since the
A* in the THP finds the best region exit regarding the global goal (see
Figure 5.15).
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Figure 5.15: Reservation visualization of a scenario with a non optimal plan. The
Path shows the timing of the location of the robot for the non-optimal
path and the optimal path. In the first scenario (a) the robot starts in the
free space (FS) and hast to wait until a query through the entire first
single robot zone (SRZ 1) is valid. Then it progresses in the FS to the
goal. In (b) the robot starts again in the FS and has to wait in front of
the SRZ 1, but it is capable to find a faster path via SRZ 2. Finally it
proceeds with the path via the SR to the goal. The second path is the
optimal path, but this path cannot be generated with our algorithm.
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5.3.5 Planner Result

The result of the previously described algorithms is a so called region
plan. This plan consists of three parts which includes the information
processed in the previous algorithms. The first part specifies waypoints
for the fastest path from a start position to a goal position. These
waypoints represent the entries and exits of traffic regions. The second
part is a set of polygons which builds a planning window representing
the sequence of regions enclosing the fastest path. The union of these
polygons determines a planning window on which the grid map based
planner (Global Planner) may plan low level paths. This represents
the planning domain planning domain for the underlying robot path
planning algorithm. The third part depicts a schedule for the robot.
This schedule is a list of time points that suggests the arrival times of
a robot at the corresponding waypoints.

In Figure 5.16 the planner result is illustrated. The figure shows a
resulting plan through a free SR traffic region in our running example.
Figure 5.17 shows a plan for the same start and goal combination, but
this time the SR region is blocked by another robot reservation. One
can see that the high-level plan respects the reservation and determines
a new fastest path through the N-Robot region.
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Figure 5.16: Resulting high-level plan for a start goal combination in our running ex-
ample. (green) visualizes the triangulation and (red) illustrates the road
map graph. The high-level plan goes through the empty single robot
region: path connecting the waypoints (blue); corresponding planning
window (cyan).

62



5.3 Region Planner

Figure 5.17: Resulting high-level plan for a start goal combination in our running
example with a blocked SR region. (green) visualizes the triangulation.
(red) illustrates the road map graph. The high-level plan bypasses the
blocked single robot region, since waiting in front of the region would
take longer than detouring the blocked region: path connecting the
waypoints (blue); corresponding planning window (cyan).

63



5 Concept

5.4 Plan Integration and Execution

This part of the concept describes the high-level plan integration and
execution within the hierarchical planning system. We describe first
the integration and influences of the high level plan on lower level
planning layers. Then the server communication modules and the
timetable is discussed in more detail. Finally a validation step on the
server is explained.

5.4.1 High-Level Plan Integration

Our high-level plan is directly integrated in a hierarchical navigation
system based on the work of Marder-Eppstein et al. [15]. Our planning
instance operates on top of a so called Global Planner. The Global Planner
is in this case again an A* algorithm which plans the shortest path
to a goal on a costmap. The computed high-level plan by the Region
Planner is supposed to give a direct input to the Global Planner. It
computes based on the waypoints and the restricted planning polygon
a continuous path to the goal. The global planner path is executed
from the Local Planner. This instance computes command velocities
with a trajectory roll-out approach. These commands enables the robot
to follow the path. If the robot is closely in front of a waypoint of the
high-level plan, it is controlled using the schedule of the region plan.
Here it is checked if the robot is allowed to enter the region, has to wait
or missed a time slot. If the robot is in time everything is fine and it is
allowed to enter the region. If the robot misses the timeslot suggested
by the schedule it is forced to replan a new high-level plan, since we
made the assumption that every unit keeps the schedule generated by
the high-level plan. If the robot arrives at an intermediate waypoint
earlier than expected it has to wait for the same reason. In this case
we provide an opportunity to ask the Timetable Manager if it is allowed
to enter the region earlier. In Figure 5.18 a conceptual overview of the
new elements in the navigation system is provided.
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Figure 5.18: Conceptual overview of the navigation system extensions cooperating
with the existing navigation stack.

5.4.2 Server Communication

The navigation system works in principle decentralized. This means
that every robot is capable to navigate on his own through the en-
vironment. The central server in this system is responsible for map
distribution and to distribute high-level goals, like orders or simply
planning goals. With the extension of the region planner an additional
shared central resource is necessary. This resource is a timetable. In
detail the timetable includes for every region a separate timesheet
with intervals representing the reservations of robots (Figure 5.19). The
communication with the server can be divided into four requests.

Get Timetable and Reserve Time Slot Request

In the following the procedure for getting and reserving a robot time
slot is presented. A robot pulls a snapshot of this timetable every time it
starts to create a region plan. In Figure 5.20 the concept corresponding
to the get timetable request is presented. This locally stored timetable
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Figure 5.19: Schematic visualization of timesheets in a timetable. The timetable holds
multiple region related timesheets. A timesheet keeps all robot intervals

Figure 5.20: Concept of the get timetable server request.

is used to generate the plan in the way described in Section 5.3. Out of
the generated schedule the robot tries to request grants for these time
slots on the server. If the server validates the time slots the procedure
is successful. If the server rejects the reservation the planner module
has to repeat these steps. Here we have to deal with an semi-statical
environment. Thus it is unlikely that two or more robots are planning
simultaneously with exactly the same timetable snapshot but it is not
impossible. In this case the requested time slot of the robot could
lead to inconsistencies of the central timetable and has to be rejected.
Figure 5.21 depicts the procedure for the reserve time slots server
request.
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Figure 5.21: Concept of the reserve time slots and early entry server request.

Figure 5.22: Concept of the cancel robot time slots request.

Cancel Robot Reservation Request

During the high-level plan execution there can be some reasons a robot
is not able to fulfill his schedule. This could be affected by obstacles
which are not represented in the environment, but also through human
coworkers or even other robots. However if a robot is late and misses
a reserved time slot, the complete plan has to be dismissed and the
robot has to replan. Figure 5.22 shows the procedure for canceling the
remaining reservations of the canceled plan of a robot on the server.

Early Region Entry Request

When executing the high-level plan produced by the Region Planer the
system usually follows the schedule. However if the time estimation is
not correct or the robot is for some circumstances at a region entrance
earlier than expected a early entry request is called. This request
includes the current time point and the original reserved time interval
for the traffic region. The Timetable Manager on the server evaluates
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Figure 5.23: Concept of the early entry server request.

if the robot is allowed to enter the region and replies with a grant or
rejection. In Figure 5.23 the concept of this mechanism is shown.

5.4.3 Central Server Validation

The central server maintains the central timetable and coordinates the
requests of all robots. This module is called the Timetable Manager. It
is also responsible to keep the integrity of the timetable after reser-
vations have been requested and granted. The need of an additional
validation step is necessary, since robots may request the timetable
simultaneously. The computation of a high-level plan with a snapshot
of the server timetable suggests conflicting intervals. However locking
the timetable and providing access only to a single robot simultane-
ously is not an option because this would slow down the reservation
procedure dramatically and is not scalable to large robot teams. Thus,
the Timetable Manager checks every reservation whether it fits to the
traffic region constraints of the requested traffic region. The constraints
test is in principle similar to the test described in Section 5.3.3 beside
there is no interval scheduling necessary in this step. Additionally to
keep the timetable compact all outdated intervals on the timesheets
are removed automatically.
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This chapter gives some implementation details related to this work.
Our algorithms have been implemented with the ROS framework1,
described in Section 4.1. It starts with a description of the RegionParser
module. Then details of the RegionPlanner are presented and finally a
more detailed view is given on the integration and controlling step of
the generated high-level plan in an already existing navigation module
for autonomous transport robots.

6.1 Region Parsing

In the following the implementation details of the RegionParser node
are described. This module is responsible to generate the road map
graph out of a list of map regions. It is supposed to be run on the
central server. Figure 6.1 shows the class diagram of the node. In this
diagram the most important functions are listed. The listed functions
provide basically the functionality described in Section 5.2. The main
part of this module is realized by a thread, which generates a graph
representing the environment. A new computation is triggered and
generates a new graph on every change of either the map regions
or any parameter which influences the resulting graph. Therefore
the node listens on the /central_server/map_regions topic where
every change of a map region is published. A map region consists of
several information which is used to produce the road map graph.
This information is listed in Listing 6.1.

1http://wiki.ros.org/
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Figure 6.1: Overview of the classes necessary for the RegionParser module.

In the graph building step (generateRegionGraphMsg()) the weights
get computed by the GeometricWeightEstimator class. This class parses
all properties from the edge related traffic regions and builds a corre-
sponding weight out of it. The output of this function is the complete
road map graph in a ROS message format (Listing 6.2). This message is
published on the topic: /central_server/region_parser/region_graph.

Listing 6.1: MapRegion ROS message
i n t 3 2 r e g i o n i d
i n t 3 2 reg ion type # t r a f f i c region type
incubed msgs/Footpr in t f o o t p r i n t # polygon points
s t r i n g name
s t r i n g d e s c r i p t i o n
f l o a t 3 2 max veloci ty # maximal allowed v e l o c i t y
i n t 3 2 al lowed robots # number of allowed robots
i n t 3 2 caut ion # dangerousness of a region
incubed msgs/MapSubRegion [ ] sub regions # included subregions

i n t 3 2 sub reg ion id
incubed msgs/Footpr in t f o o t p r i n t # polygon points

Listing 6.2: ROS message of the road map graph
# A message r e p r e s e n t a t i o n of a graph f o r the region planner module

f l o a t 3 2 map resolution
incubed msgs/MapRegion [ ] map regions # L i s t of a l l map regions
region planner msgs/Region [ ] regions # L i s t of a l l regions
region planner msgs/GraphNode [ ] nodes # L i s t of graph nodes

uint32 [ ] r e g i o n i d s # ad jacent t r a f f i c regions
region planner msgs/Point2D p o s i t i o n # p o s i t i o n of the node
region planner msgs/Point2D [ ] l i n e # node r e l a t e d polygon edge

region planner msgs/GraphEdge [ ] edges # L i s t of graph edges
uint32 r e g i o n i d # polygon region id
uint32 [ ] node ids # connect ing nodes
f l o a t 6 4 d i s t a n c e # eucledean d i s t a n c e between nodes
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f l o a t 6 4 c o s t # computed weight of the edge
f l o a t 6 4 max vel # maximal allowed v e l o c i t y

6.2 Region Planning

The RegionPlanner node is the main part of this work. In this node the
road map graph of the RegionParser is parsed into a directed graph
data structure and the planning invoked by the regionPlanThread()

in the MoveBase module (see Section 6.3). Figure 6.2 gives an overview
of the acting classes and their most important functions.
In the first step the graph message is parsed into an extra data structure.
This structure keeps adjacency lists and allows to derive immediately
the successors of a node. The adjacency list represents the outgoing
edges and keeps the weight information to every connected node. This
is not directly possible in the ROS message format, since we have
to publish a separate edge and node list because of missing object
oriented features in the ROS message types. The directed graph is
implemented in our DiGraph library.

The generation of a new RegionPlanner plan follows the procedure
illustrated in Figure 6.3. After an invocation the first step is to catch a
current timetable snapshot from the central server (see Section 5.4.2).
The current timetable and the DiGraph data structure is transferred
to the TAstar. The TAstar module provides the planning functionality
described in Section 5.3.
In the planning step again the GeometricWeightEstimator comes into
play. This class provides the functionality to compute the SLT heuristic
function. Additionally in the TAstar module the TemporalWeightEstima-
tor computes the temporal costs through a traffic region and the more
accurate heuristic through that region. Therefore the TemporalWeightEs-
timator holds an instance of the TemporalQueryProvider which provides
the methods to perform the interval scheduling algorithm. By taking
a closer look at the class diagram, one can see that the TAstar has an
aggregation to the TemporalWeightEstimator and vice versa. The reason
for this pattern is the extra planning instance which is invoked by a
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Figure 6.2: Conceptual class diagram of the region planner module. This diagram
includes the most important functions of the planning module.

region entry. The TemporalWeightEstimator class in the primary TAstar
instance is called if a new region is entered. Withing The Temporal-
WeightEstimator another TAstar instance is triggered to compute the
fastest path within this region.
Finally the computed high-level plan is communicated with the central
server.

6.2.1 Boost R-Tree

The underlying data structure for the interval scheduling function-
ality is provided by the Boost R-Tree library2. A R-Tree is a multi-
dimensional spatial index data structure which can be used to rep-
resent geometric objects. R-Trees are balanced index structures and
allow fast and efficient queries on relations between geometric objects.
For further reading please consider [29].
The implementation in the Boost library provides queries like overlaps,
intersects, contains, within, disjoint and some more. We use this data
structure to represent our time intervals and their relations formalized
by AIA (see Section 5.3.3). An interval is in this context a rectangle

2http://www.boost.org/doc/libs/1_60_0/libs/geometry/doc/html/

geometry/reference/spatial_indexes/boost__geometry__index__rtree.html
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Figure 6.3: Illustration of the planning procedure in the RegionPlanner module. This
diagram shows only the conceptual process of this module.

with zero width and a length representing the interval duration. The
position of the lower left corner of the rectangle denotes the start point
of the interval. We benefit from the index based data structure and are
able to determine fast and efficient intersection points and the amount
of overlaps between intervals.

6.2.2 Server Requests

In order to generate a high-level plan a timetable snapshot of the
current timetable held by the server is necessary. This timetable is
returned by the /get_region_timetable service provided by the Re-
gionTimetableManagerRos. The response of this request includes all
timesheets in the way presented in Listing 6.3.

Listing 6.3: ROS service message of the get timetable request
s t r i n g robot # request ing robot
−−−
region planner msgs/Timetable t i m e t a b l e # responded t i m e t a b l e

std msgs/Header header
region planner msgs/RegionTimetable [ ] r t a b l e s # t imesheet f o r a region

uint32 map region id # t r a f f i c region id
region planner msgs/TimeInterval [ ] i n t e r v a l s # l i s t of i n t e r v a l s

bool success # va l id request
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After a plan has been successfully created the time intervals have to be
validated by the central server. This validation is necessary since the
timetable could have been changed through requests of other robots.
With the /reserve_region_timetable_slot service the schedule of
the high-level plan is sent to the server. The request message includes
the intervals for every computed region interval (Listing 6.4).

Listing 6.4: ROS service message for time slot reservations
s t r i n g robot # request ing robot
region planner msgs/TemporalPlanSlot [ ] t i m e s l o t s # l i s t of time s l o t s

i n t 3 2 r e g i o n i d # t r a f f i c region id
i n t 3 2 reg ion type # t r a f f i c region type
region planner msgs/TimeInterval [ ] i n t e r v a l s # des ired i n t e r v a l s

−−−
bool success # va l id request

Additionally the RegionTimetableManagerRos provides the /cancel_

region_timetable_slot and /request_early_entry service. The Re-
gionPlanner performs also service calls invoked by the MoveBase node
(see Section 6.3). The cancel region timetable slots service cancels all
intervals of a robot. The early entry request asks the server if an al-
ready reserved time interval is allowed to be moved to a previous time
point.

6.2.3 Server Communication and Validation

The RegionManagerRos on the central server holds a RegionTimeTable-
ManagerRos instance which manages all timetable interactions. These
include following requests:

• /get_region_timetable

• /reserve_region_timetable_slot

• /cancel_region_timetable_slot

• /request_early_entry

The individual requests are handled by the RegionTimeTableManager
class. Figure 6.4 shows the relationship of the interacting server classes
as well as the most important functions.

74



6.3 System Integration and Controlling

Figure 6.4: Acting classes of the timetable management. This diagram includes the
most important functions of the timetable validation and management.

As already mentioned the server is responsible for the timetable in-
tegrity. This is important if two robots are planning simultaneously on
a snapshot of the central timetable and their plans are using the same
traffic regions. In order to synchronize the requests on the server and
provide a valid timetable every request has to be locked for the dura-
tion of the request. Furthermore every reservation request is checked
beforehand on a copy of the timetable. This copy serves as consistency
table, if the desired intervals are valid the reservations are integrated
in the real timetable. Additionally the timetable keeps itself compact
by deleting outdated intervals automatically.

6.3 System Integration and Controlling

System integration is realized in the MoveBase3 module which is part
of the ROS navigation stack4. In the class diagram (Figure 6.5) and in
Figure 6.6 one can see the extensions of the existing MoveBase module.

3http://wiki.ros.org/move base
4http://wiki.ros.org/navigation
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The MoveBase consists of three planner instances: RegionPlanner, Base-
GlobalPlanner, BaseLocalPlanner. These planner instances are responsible
for planning a valid path, which is coordinated with all other robots,
and computing command velocities which will not drive the robot
into any obstacle. A robotic system has to react on dynamic changes in
the environment produced by robots or other circumstances. For this
reason it is necessary to provide periodically updated navigation plans
and command velocities. This requirement suggests an individual
thread for every planning instance. In the available MoveBase this has
been already realized with the planThread() and executeCallback().
The planThread() is intended to handle the global path planning
procedure while the executeCallback() represents the callback of an
action server. This callback is in principle a thread and is intended to
trigger path planning and to execute the computation of command
velocities corresponding to the computed global planner paths. In
addition to this structure a regionPlanThread() is introduced for the
Region Planner instance.
The thread related to the Region Planner produces periodically high-
level plans. This way of planning creates plans fitting to the current
position of a robot and current timetable reservations, even if robots
have to perform any obstacle avoiding behaviors. The high-level plan
provides intermediate waypoints, a planning window which is restrict-
ing the search space for path planning with the global planner and
a schedule which represents the time intervals of the traffic region
reservations. It is integrated and interacts in the way described in
Section 5.4.1.

6.3.1 Planning Procedure

For goal execution the MoveBase provides an action server. The action
server of a robot X is callable via the action (/robot_X/move_base).
If this action is called a goal pose is provided. This goal triggers the
planning threads to generate new plans. In the following the procedure
of generating navigation plans is explained. Additionally Figure 6.7
illustrates this procedure as a sequence diagram.
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Figure 6.5: Illustration of the RegionPlanner classes interacting with the MoveBase.
This diagram shows only the function necessary for integration and
controlling of the high-level plan.

Figure 6.6: Overview of the composition of the extended MoveBase package. (gray)
components are novel parts necessary for region planning. Adapted from
http://wiki.ros.org/move_base
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Figure 6.7: Illustration of the interaction procedure of the MoveBase integrated with
the RegionPlanner. This diagram shows only the conceptual process of
the module.

If a callback receives a goal first the region planner thread is notified
that there is a new goal available. The regionPlanThread() requests
the current robot position and triggers the RegionPlanner to produce
a high-level plan out of the robot pose and the goal pose. If the
region planner accomplishes generating a new plan the planThread()

is notified with the high-level plan.

The planThread() is responsible for requesting paths from the Glob-
alPlanner plugin. In order to cope with the intermediate goals and
the planning window of the high-level plan we had to modify the
planThread(). The extended planThread() provides a possibility to
trigger the generation of a path between two waypoints respecting the
planning window specified by the high-level plan. This plan parts are
then combined to a global continuous path. In Figure 6.8 the combined
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global path respecting the region-plan is illustrated.
The produced plan to reach the next intermediate waypoint is used by
the callback thread to induce the TrajectoryPlannerRos to compute valid
command velocities. The callback thread is amongst others responsi-
ble to handle goal and more important intermediate goal completion.
Intermediate goals are defined by the waypoints of the high-level plan.
If an intermediate goal is reached, the callback thread reviews the
schedule given by the high-level plan. If necessary actions to restore a
consistent schedule are initiated. This ends in three possible situations:
If the robot is in time, everything is fine and the robot is allowed to
enter the region. In this situation the succeeded intermediate goal is
automatically marked as reached and the LocalPlanner processes the
next intermediate waypoint of the region plan. If a robot misses its
time slot the complete region plan has to be canceled in order to keep
other robots’ high-level plan valid. Canceling time slots triggers the
/cancel_region_timetable_slot service and forces the region plan-
ner to compute a new plan. If the robot arrives earlier than expected at
a region entry, it is allowed to query if an earlier entrance is valid with
other robot reservations (/request_early_entry). If this request fails
the robot has to wait in front of the entrance until its schedule allows
to enter the reserved traffic region.
Meanwhile the regionPlanThread() and planThread() are producing
periodically new plans, fitting to the current environmental situation.
In more detail due to the progress on an already computed plan, the
RegionPlanner is able to compute a new plan corresponding to the
latest position of the robot and changes on the central timetable. In
the planThread() paths corresponding to this new high-level plan are
generated again. During these two planning steps the LocalPlanner
computes still valid command velocities for the last complete plan
until the GlobalPlanner provides a new path.

6.3.2 Update Planning Graph

The high-level plan enforces the GlobalPlanner to plan only paths within
the given planning window. If the low-level planners (GlobalPlanner,
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Figure 6.8: Illustration of the region-plan. The region-plan is visualized with the
planning window (light-blue) and the path (blue) which connects the
waypoints (blue-squares). The GlobalPlanner path (black) is respecting
the waypoints of the region-plan.

LocalPlanner) are for some circumstances not able to compute valid
paths and command velocities it is assumed that a robot is blocked by
a not represented obstacle in the map, for example a temporary parked
palette. In case the lower level planners report that problem in the form
of an incomplete path and the location of the assumed obstacle we
have to include this information into our representation. Otherwise the
RegionPlanner would suggest equal waypoints and planning windows.
Therefore we provide a functionality to avoid this issue. We introduce
a possibility to determine the obstacle related polygon represented
by the graph and to remove the corresponding edge which led to
the inconsistency of the path for the next region planning trial. Thus
the new high-level plan is aware of this obstacle in the environment.
If this procedure does not help, there is the opportunity for a more
aggressive behavior. If the high-level plan is not executable for a
while the complete path, besides the edge related to the start and
goal position, will be set invalid temporary. This behavior indicates a
complete new plan avoiding the blocked path.
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The following chapter presents the results of the evaluation of this
work. The first part of this chapter gives an overview of the functional-
ity of the planning concept we will use in this evaluation. The second
part focuses on the used evaluation scenarios and describes proper-
ties of the used environment representation. Then the performance
of the planner is investigated independently from the overall system
including the multi-robot approach and the low-level navigation. This
is used to evaluate the scalability of the basic planning approach. Then
the performance of a multi-robot system using the introduced high-
level planning procedures is evaluated and finally some use cases
are demonstrated where our hierarchical planning approach yields
performance gain for a multi robot system.

7.1 Overview

In this chapter we investigate the properties of the hierarchical planner
extension. We showed in Chapter 5 a way of integrating different traffic
region types into a hierarchical path planning system. In this chapter
we show the performance of the hierarchical planning approach for
a set of integrated region types. The implementation of our system
processes the region types presented in Table 7.1. Region types marked
with a check are fully integrated in the system. Region types with
an asterisk are integrated in a conceptual way in the environment
representation and the planning problem.

Region types described by this table are used to generate evaluation
scenarios. This scenarios are used to evaluate the performance of the
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Region Type Abbreviation Integration
N-Robot NR X

Single Robot SR X
Forbidden F X

Simple S X
Oneway OW X

Dynamic Oneway DOW ∗
Right Hand Traffic RHT ∗

Crossing C ∗

Table 7.1: Integration status of the traffic region types.

new planner and the overall system. Our evaluation methods focus
on two different aspects. First we investigate the performance of the
new planning instance by executing the planner on environments with
increasing complexity. The second aspect focuses on the execution
time of navigation tasks in a multi-robot system.

7.2 Evaluation Scenario

As already described in Section 5.2 an environment may consist of mul-
tiple traffic regions with different types. In order to generate evaluation
scenarios, we took the traffic region types that are fully integrated into
our system, and built environments of increasingly complexity. Our
assumption in this evaluation is that environments with increasing
number of traffic regions provide increasing complexity. This assump-
tion is based on the resulting graph generated from the environment
representation. The higher the degree of fragmentation of the environ-
ment the more nodes are in the road map graph. As a consequence
the planning domain grows. Additionally the traffic region type is
supposed to have an influence of the planning problem. Since capacity
regions (NR, SR) triggers the temporal heuristic planner (THP), we
assume that capacity regions would also increase complexity. In Fig-
ure 7.1 we introduce three evaluation scenarios of the same map size
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# Traffic Regions # Graph Nodes
Level 1 10 65

Level 2 20 148

Level 3 32 254

Table 7.2: Tabular overview of the created evaluation scenarios and their measurable
quantities

of 50m× 100m but following the previous assumptions.

If one takes a closer look at the different scenarios one can see that the
evaluation scenario (b) is a reduction of the most complex scenario
(c) and (a) a reduction of (b). This composition is important and al-
lows to generate the same tasks, that start and goal positions, for all
three scenarios. The environments of the scenarios are built out of a
frame of forbidden areas. Additional forbidden areas have been used
to fragment the environment and to build narrow corridors with space
for only a few robots. Corridors are filled with capacity regions to
ensure that robots are not deadlocking in those corridors. Addition-
ally in scenario (b) and (c) one way regions and simple regions are
introduced. In Table 7.2 the characteristics of the evaluation scenarios
are demonstrated. In this table one can clearly see that the number of
nodes in the resulting graph grows with the number of regions and
therefore the defined complexity.

7.3 Planner Evaluation

This section aims at a performance evaluation of the RegionPlanner
instance. The performance criteria in this evaluation is defined by the
computation time needed for plan generation. With this evaluation we
intend to show that the introduced heuristic in Section 5.3 is suitable
for the graph search procedure with our algorithm.

The evaluation setup consists of 1000 randomly generated pairs of
start and goal positions. We sample the positions in the most complex
scenario (Level 3). Based on the previous definition of the environment
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(a) Level 1 (b) Level 2

(c) Level 3

Figure 7.1: Evaluation scenarios with increasing complexity. The variable v describes
the maximal allowed velocity in the corresponding region. The blue and
green spots in the free space denotes goal stations. The maps comprises:
one ways (yellow); n-robot zone where maximal two robots are allowed
(orange); single Robot zone (green); simple traffic areas (blue); forbidden
areas (gray)
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Figure 7.2: Planner evaluation on three different evaluation scenarios.

we can guarantee to sample valid start and goal positions in every
scenario. Furthermore we provide equal problems for every evaluation
scenario which allows for a fair comparison. In order to dismiss not
significant tasks the position pairs have to have a minimal Euclidean
distance of d = 10m.

In Figure 7.2 the evaluation results of the previous evaluation setup
are illustrated. This figure shows the distribution of the computation
time per evaluation scenario with a box plot. By examining these
results one can see that the RegionPlanner is able to find plans in
reasonable time. Another observation provided by this figure is that
the assumed increasing complexity of the evaluation scenarios does
not affect the performance dramatically. The medians of the individual
evaluations are approximately equal. Even the whole data distribution
shows many similarities. Since good average performance on growing
graphs is the nature of good heuristics in heuristic search methods
(the heuristic function ideally avoids expanding unnecessary graph
nodes), the observation is not surprising. As a result on can say the
chosen heuristic performs well.
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7.3.1 Worst Case Analysis

The observations of the first evaluation suggests that the used heuristic
is performing well on problems of this kind. However these obser-
vations raises the need of harder problems in order to quantify the
worst case computation of the planner. Considering harder problems
difficulties for the planning instance have to be identified. We assume
that paths through reserved regions will challenge the RegionPlanner
module. Realizing harder problems requires on the one hand plans
traversing most allocatable regions and on the other hand a simulation
of other robot plans. The former can be realized with a larger Eu-
clidean distance between a start and end goal (at least the map width).
Due to the scenario topology this would necessarily result in more
paths going through an allocatable region. The latter is realized with
randomly sampled intervals requested on the server before a plan is
generated. The interval is created with a randomly generated duration
and start time.
We define two reservation models: (1) fluctuating reservations, (2) long
reservations. The first model creates reservations with durations sam-
pled in the range of [10, 200] seconds and start times between [0, 10]
seconds. Therefore intervals are generated that do not reserve regions
continuously. Hence, the planner has to find a path and schedule
corresponding the interval set to find a valid plan. This includes the
computation of waiting times. (2) generates reservations with dura-
tions in the interval of [100, 200] and start times in the range of [0, 1]
seconds. Thus, reservations tend to start immediately and last “long”
which likely prohibits a robot to find a valid time slot for the region
quickly.

In Figure 7.3 the distribution of four experiments in the scenario of
Level 3 are shown. The first box labeled with “First Eval.” illustrates the
previous evaluation which serves as a base line. The “No Reservation”
box is already part of the worst case analysis, but this experiment is
without reservations. Box “Fluctuating Res.” and “Long Res.” corre-
spond to the new problem definition with interval models of (1) and
(2) respectively. As one can see the performance of the planner applied
on the new problems is actually worse than for the primarily defined
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Planner Evaluation: Worst Case Analysis

Figure 7.3: Evaluation of a worst case scenario for the RegionPlanner. The asterisk
denotes the average value (computation time per goal).

problem. Although already the enlarged Euclidean distance increases
the computation time. The evaluation trials considering reservations
between start and goal are even worse. Furthermore it seems to be not
relevant for the worst case computation whether the planner has to
deal with (1) or (2). These observations indicate that we can generate
the worst case for our planning algorithm by forcing the planner to
investigate any region reservations and to detour allocatable traffic
regions.

7.3.2 Subdivision Evaluation

A further evaluation considers the computation time of the Region-
Planner when using the proposed subdivision methods (described in
Section 5.2.3) in the road map generation phase. Unfortunately we
have no direct possibility to compare the path quality of the Region-
Planner with the plan generated by the low-level navigation module.
However we assume that smoother paths, which are fitting better to
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Subdivision Degree # Traffic Regions # Graph Nodes

Level 1
No

10

65

Normal 328

Fine 888

Level 2
No

20

148

Normal 397

Fine 996

Level 3
No

32

254

Normal 552

Fine 1308

Table 7.3: Characteristics of the subdivided evaluation scenarios.

the path a robot has to follow, provide better estimations of traversal
times through regions. As a consequence a more accurate resource
management would be possible.

In our work we implemented the method of “Longest Edge Subdivi-
sion”. The following evaluation investigates the subdivided evaluation
scenarios introduced in Section 7.2 in comparison to the standard road
map graph. We introduce three degrees of subdivision: No, Normal,
Fine. No subdivision is self-explanatory. Normal subdivision splits
every edge longer than a length of l = 5m. Fine applies this procedure
for edges with a length of l = 2m. The three degrees produce different
densities of road map graphs (illustrated in Figure 7.4). Table 7.3 shows
the characteristics of the subdivided scenarios.

The evaluation setup consists again of the same 1000 randomly gener-
ated start goal pairs introduced in the first planner evaluation (minimal
Euclidean distance of two positions d = 10m). The computation time tc
for a plan is measured for every goal and every degree of subdivision
of the evaluation scenarios. The resulting distributions are visualized
in Figure 7.5 via box plots. The individual plots (a-c) show the compu-
tation times for every evaluation scenario with increasing subdivision
degree.

The data in Figure 7.5 shows clearly an increasing trend of the compu-
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7.3 Planner Evaluation

(a) Road map graph with No subdivision
(b) Road map graph with Normal

subdivision

(c) Road map graph with Fine subdivision

Figure 7.4: Application of the longest edge subdivision method with subdivision
degree No, Normal, Fine.
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Figure 7.5: Resulting computation time distributions with different subdivision de-
gree applied on all evaluation scenarios.

tation time for every applied subdivision degree. Especially the Fine
subdivision creates a significant increase of the computation time for
plans in all levels. In comparison to the approximate median of no
subdivision levels t(No)

c,median ≈ 10ms, the median of Fine subdivision

computation times is about t(Fine)
c,median ≈ 39ms.

Basically this result relates to assumptions made already beforehand.
The longest edge subdivision method produces many additional ver-
tices. The added vertices do not change the shape of the triangle but
our road map graph generation approach takes every center of edge
(COE) of a polygon and connects it with every other COE. Thus, the
degree of a graph node is likely to grow fast which negatively affects
the heuristic search methods. Furthermore we observed an interesting
behavior by comparing the complexity levels. Interestingly a least
complex scenario tend to produce the worst computation times. A
closer investigation of this observation shows that the topology of the
environment plays an important role for the subdivision algorithm.
Level 1 provides big areas of free space. These areas can be represented
with a small number of big triangles. Since the longest edge subdivi-
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sion algorithm has to split long edges more often than short edges,
big triangles inherit an intensively interconnected mesh in the road
map graph. Hence, environments which generates big triangles tend
to have worse computation times.
Summarizing this evaluation shows that the subdivision algorithm we
have implemented is working but not performing well. The second
subdivision algorithm “Loop Subdivision” is supposed to be more
promising for this problem. The loop subdivision method would keep
the degree of nodes small but also provides a better path quality. Nev-
ertheless there has to be made a trade-off between the computation
time and a desired path quality.

7.4 System Evaluation

The second part addresses an evaluation of the overall system perfor-
mance. As described in Section 6.3 we integrated the RegionPlanner in
an existing multi-robot system which operates in an industrial logistics
scenario. We evaluated this system with a simulation of the navigation
system provided by the company (Figure 7.6). The system evaluation
investigates the performance gain of the execution time te of an indi-
vidual robot executing a plan and the overall completion time tA of
a fleet of robots representing a criteria for the throughput. Therefore
we compare the existing “Original System” currently running on the
robots with the RegionPlanner extensions, further referred as “New
System”. In this evaluation not all traffic types are considered. Here
we focus on the region types also working in the Original System.

The evaluation is set up with 50 evaluation trials, where every trial
comprises a navigation task per robot, consisting of a start and goal
position randomly sampled in the Level 3 scenario. The number of
trials is in this evaluation lower, since the robots have to execute the
navigations tasks in real time, thus the system evaluation takes much
more time. in have to execute In this evaluation we consider fleets
of R = {2, 4, 10} robots performing individual tasks. We perform
evaluations for all scenarios and the three different sizes of robot fleets
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Figure 7.6: Multiple robots of the incubedIT system are performing tasks in a logistics
scenario. c©2016 INCUBED IT - AUSTRIA

with the Original System and the New System. For the system evaluation
the Normal subdivision degree has been chosen. As already mentioned
in Section 6.3 we trigger a new plan periodically. In this setup the
planner generates every 10s a new plan this is necessary to be able to
react to changes in the environment on the real system.

Figure 7.7 shows the results of the evaluations for the different sce-
narios. The plots compare the execution times of the navigation tasks
executed by the Original System and the New System. The left bars in
the scenario groups correspond to the New System, right bars to the
Original system.
The plots in the figure generally state a continuous increase of the exe-
cution times with increasing complexity of the scenarios. Furthermore
the execution times rise with the number of robots in a fleet. The for-
mer observation can be motivated by the scenario topology. The more
obstacles a scenario consists of the more likely longer paths which
have to detour obstacles are. The latter is basically due to the fact that
in multi-robot scenario the probability of colliding paths increase with
the number of robots in a fleet. However the amount of time loss due
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Figure 7.7: Visualization of the system evaluation with different number of robots.
Comparison of the execution time (te) distributions of the New System
(light-blue) and the Original System (dark-blue). The execution time
denotes the time an individual robot need for executing the task. The
asterisk (*) denotes the average value (execution time per goal).

to the path collision is obviously depending on the evaluation setup.
The data of the Original System show in general higher execution times
than the New System. The average value denoted as execution time per
goal shows also the same characteristics. Hence this figures state that
the New System is actually increasing the performance, but the data
shows that the gain of performance is small.

For this reason we tried to generate a setup which favors the region
planner and is moreover closer to a realistic scenario. Therefore we
define a list of fixed goal stations in the map. These stations are denoted
as blue and green spots in the evaluation scenarios (Figure 7.1). The
setup consists of 50 random goals drawn from this list. We perform
this evaluation only on scenario Level 3 but again with R = {2, 4, 10}.
The results of this evaluation are depicted in Figure 7.8.

This figure shows again the execution time per goal and the distribu-
tion of the measured execution times via a box plot. In this plot the
performance gain of the New System is even higher. This is of course the
desired effect, since this more realistic scenario provokes paths through
allocatable regions. This paths generate the need of reservations and a
high-level plan which considers paths of other robots too.
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Figure 7.8: Visualization of a more realistic system evaluation with different number
of robots. Comparison of the execution time (te) distributions of the New
System (light-blue) and the Original System (dark-blue). The execution
time denotes the time an individual robot need for executing the task.
The asterisk (*) denotes the average value (execution time per goal).

Furthermore we investigated the throughput of this system. We define
the throughput as the completion time of an evaluation trial consider-
ing the complete fleet of robots. This is actually the arrival time of the
last robot at the goal of its current navigation task. Figure 7.9 shows
plots considering Level 3 with the previous more realistic evaluation
setup. These plots show that even the throughput is significantly in-
creased by the New System. In the evaluation runs situations appeared
where a robot could not finish its navigation task. This problem is
normally handled by a high-level state machine, which was not us-
able in the system evaluation. The problem with incomplete tasks is a
disturbance of the completion time of one evaluation trial. There are
probably only a few tasks leading to an incomplete goal, but the eval-
uation runs have been executed for 50 navigation goals per robot only.
Nevertheless we had to remove the evaluation trials of an incomplete
task from both the Original System results and the New System results.
Otherwise a comparison of the corresponding completion times would
not be fair. However this is not affecting the previous results because
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Figure 7.9: Visualization of the completion time tA for the evaluation trials of the all
robots in fleet. The completion time represents the execution time of the
last finishing robot and represents the throughput.

there we consider the execution time of the individual robots, which
provides much more data.

7.5 Use Cases

The previous evaluations suggest some use cases where the RegionPlan-
ner is able to produce a performance gain. In the following we describe
two exemplary scenarios presenting the effects of the high-level plans
for two robots.
The use cases are demonstrated in the Level 3 scenario. In the first use
case we focus on the long corridor at the bottom of the scenario. This
corridor is partitioned with two single robot areas and an additional
one way entrance in the middle of the map. We sketch the following
scenario: two robots are located in front of the right entrance of the
corridor. The first robot R1 receives a navigation task to a goal on the
left side of the long corridor. For this robot both systems will deliver a
similar path directly through the corridor since no region is reserved.
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Eventually the second robot R2 receives also a navigation task with a
goal on the left side of the corridor. The first robot has already entered
the second single robot zone. The path planner of the Original System
tries to find a shortest path R2. Due to the blocked single robot zone
by R1 this path has to detour the corridor (Figure 7.10 (a)).
The New System is aware of the time span the second single robot zone
is reserved by R1 and suggests R2 to traverse this corridor too. This
is reasonable since the reservations of the corresponding regions do
not overlap. This plan is visualized in Figure 7.10 (b). One can see that
both planning windows are overlapping. Thus the high-level plans of
both robots are suggesting a traversal of the long corridor.

The second scenario demonstrates a typical goal execution similar to
the more realistic evaluation shown in the previous section. This use
case is sketched as follows: Two robots are located on two start stations
in the upper left part of the map (see Figure 7.11). They receive simul-
taneously a navigation task to go to a goal in the lower right part of
the map. The Original System plans in this case an equal path for both
robots which traverses two single robot zones and additionally a one
way area. However if one takes a closer look on the path visualization
in Figure 7.11 (a) it is likely that both robots are arriving at approxi-
mately the same time at one of the single robot zones. Since the robots
are not aware of single robot zones, they will go into the direction until
one of the robots actually enters the region. Hence the single robot
zone is blocked for every other robot. Thus one of them is requested
to make a detour, but an earlier knowledge of the reservation would
have created a better path.
The New System is computing a path which considers the reservations
of both robots. Thus a plan is generated which can prevent this behav-
ior beforehand. In Figure 7.11 (b) the high-level plan demonstrates how
the paths of both robots are coordinated. Instead of leading both robot
in front of the the single-robot zone, one robot is detoured early to
guarantee still a fast path to the goal. The n-robot area is additionally
avoided since this region has a velocity constraint which makes it
advantageous to detour this region too.
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(a) Resulting paths of the Original System

(b) Resulting high-level plan of the New System

Figure 7.10: Illustration of a use case for pursuing robots. Two robots are navigating
consecutively a long corridor with two single robot zones. (a) shows the
realization of this problem with the Original System; (b) visualizes the
resulting planning windows and waypoints of the New System
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(a) Resulting paths of the Original System

(b) Resulting high-level plan of the New System

Figure 7.11: Visualization of a goal execution of two robots for the same navigation
goal. (a) depicts the mainly overlapping paths from the Original System
(red, green) even through single robot zones; (b) shows the coordinated
paths (blue, green) provided by the New System.
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8 Conclusion

This chapter discusses and summarizes the work of this thesis. Addi-
tionally improvements of the system and future work are suggested.

8.1 Discussion

This thesis presented an approach for a hierarchical navigation system
which is able to coordinate groups of autonomous logistics robots in
industrial environments.
We introduced a formal description of this problem as a constrained
satisfaction problem. This formulation results in a global optimization
problem of finding the optimal plans for all robots in a given envi-
ronment and a set of traffic regulating constraints. This is a general
formulation which assumes that the information of the tasks of all
robots is available beforehand. Since this information is not available
we had to reduce this formulation to an optimization problem of an
individual robot given the traffic regulating constraints and the current
paths of all other robots.

In order to realize a solution of this problem we proposed concepts
for generating an abstract environment representation and a high-
level planning instance. Our environment representation brings up
an expressive road map graph with an explicit representation of traf-
fic regions and their constraints which is easily expendable. A new
planning instance is used to generate a high-level plan on this road
map graph. Therefore we enhanced an existing hierarchical planning
approach with an additional planning layer. This layer, namely the
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RegionPlanner, computes the high-level plan which is used and exe-
cuted by the lower level planners. The RegionPlanner is intended to
find fastest paths to a navigation goal considering all other robot paths.
Therefore we adapted the A* algorithm and developed a heuristics
able to consider all traffic regulating constraints. The additional plan-
ning layer operates decentralized on every robot, but uses the data of
a central timetable to coordinate the common resource allocation. A
high-level plan consists of waypoints, a restrictive planning window
and a time schedule. This plan is communicated with the other robots
via a centralized timetable.
The proposed algorithms allow the system to coordinate multiple
robots with respect to different kind of traffic constraints and are in-
tended to improve the overall performance of a multi-robot system.

We provided an extensive evaluation of the performance of the hier-
archical navigation system. Therefore the planning instance and the
multi-robot system had been investigated separately. The first evalua-
tion regarded the computation time of the RegionPlanner considering
different scenarios of increasing complexity. These evaluations showed
that the developed heuristics and planner is able to cope with the
different scenarios. Furthermore we suggested a worst case scenarios
to challenge the worst case behavior of the planner.
The system evaluation showed a significant performance gain in com-
parison to the current implementation used especially when consid-
ering scenarios with higher number of allocatable traffic regions and
multiple robots. We found that the new hierarchical navigation system
is suggested to perform even better if more realistic scenarios with
fixed goal stations are used.
For simpler scenarios with a few robots the system seems to be an
overhead but it can still bring up a similar performance to the original
system.
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8.2 Future Work

The methods used for environment representation are able to generate
an useful graph of the given environment. Nevertheless there are two
aspects that could lead to further improvements.
In order to improve the path quality of our high-level plan we showed
in the evaluation the effects of the implemented subdivision algorithm.
The longest edge subdivision provided at least visually a better path
quality but the performance was worsened dramatically because of the
resulting graph structure. Hence there is a need of a method which
can produce a better path quality, but still provides an acceptable
performance. One algorithm supposed to achieve these requirements
is the loop subdivision method discussed in Section 5.2.3 which has
not been implemented within this work.
As a further improvement waiting positions in front of capacity regions
could be integrated in the graph. Waiting positions could provide a
well-regulated behavior of multiple robots waiting in front of an region
entry. The current implementation may lead to a blocking behavior
if multiple robots stand in front of an entrance and are waiting until
the reserving robot exits the region. This should be basically a simple
extension to the current graph generation step which is supposed to
be implementable within the planning instances quite easily.

The implementation of the RegionPlanner is currently able to react on
obstacles, for example a pallet or defect robot, which are not repre-
sented in the environment. A possible improvement is to share this
information within our road map graph with other robots. The idea
is simple, if one robot is not able to pass through a place in the envi-
ronment, another robot would not be able too. An obstacle in the road
map graph could be simply added by removing the corresponding
edges from the graph.

The hierarchical navigation system uses currently a rather simple
prioritization of robots. The first robot reserving a time slot on the
central timetable receives the grant (first come first serve). This leads
potentially to a globally not optimal task fulfillment by the fleet of
robots. Therefore it would be probably an significant improvement if
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the prioritization for a fleet of robots in a logistics scenario takes into
account the position and the order sequence of all robots.

Furthermore the navigation system has to be intensively tested and
evaluated in practice to define strengths and weaknesses more accu-
rate.
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