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Abstract

The boundary element method (BEM) is a well-established method and particularly well
suited to treat wave propagation phenomena in unbounded domains. However, the oc-
currence of dense system matrices is prohibitive, limiting the classical BEM to small and
mid-sized problems. In the present work we propose a Chebyshev interpolation based
multi-level fast multipole method (FMM) to reduce memory and computational cost of the
3D elastodynamic boundary integral operators. We present two versions for the proposed
algorithm: Firstly, the direct approximation of the tensorial elastodynamic displacement
and traction kernels and secondly, a version using a representation of the fundamental so-
lutions based on scalar Helmholtz kernels. The former offers easy extensibility to more
complicated kernel functions, which arise for instance in poroelastic problems. The latter
minimizes the number of moment-to-local (M2L) operations and, additionally, offers the
possibility to exploit the rotational invariance of the scalar kernel to further reduce memory
requirements. For both approaches a directional clustering scheme in combination with a
plane wave modification of the kernel function is implemented to treat the high frequency
case. In order to validate the proposed numerical schemes, the FMM approximation er-
ror is investigated for both the low and high frequency regime. Furthermore, convergence
results are given for a Dirichlet as well as a mixed boundary value problem in Laplace
domain. Finally, the applicability of the proposed FMM to transient problems treated with
the Convolution Quadrature Method is investigated.

Zusammenfassung

Für die Behandlung von Wellenausbreitungsphänomenen in unbeschränkten Gebieten eig-
net sich besonders die Randelementmethode. Da die Systemmatrizen vollbesetzt sind ist
ihre Anwendbarkeit jedoch auf kleine bis mittlere Problemegrößen beschränkt. In der
vorliegenden Arbeit diskutieren wir eine auf Chebyshev-Interpolation basierte „Fast Mul-
tipole Method“ (FMM) zur Verringerung des Speicheraufwands und der Rechenzeit. Es
werden zwei Varianten des Algorithmus vorgestellt: Erstens eine direkte Approximation
der tensorwertigen Fundamentallösung der Elastodynamik und zweitens eine Formulie-
rung basierend auf einer Darstellung durch skalare Helmholtz-Kerne. Der erste Ansatz
ermöglicht eine einfache Erweiterung auf komplexere Kernfunktion, wie sie z.B. bei po-
roelastodynamischen Problemen auftreten. Der zweite Ansatz minimiert the Anzahl der
„moment-to-local“ (M2L) Operationen und bietet zusätzlich die Möglichkeit die Rotati-
onsinvarianz der skalaren Kernfunktion zur weiteren Speicherersparnis auszunutzen. Um
Probleme im hochfrequenten Wellenzahlbereich effizient behandeln zu können, wurde für
beide Versionen ein direktionaler Cluster-Algorithmus in Kombination mit einer Modifi-
kation der Kernfunktion mittels ebener Wellen implementiert. Zur Validierung des vorge-
stellten Algorithmus wurde der FMM Approximationsfehler sowohl im nieder- wie auch
hochfrequenten Wellenzahlbereich untersucht. Des Weiteren werden Konvergenzstudien
für ein Dirichlet- und ein gemischtes Randwertproblem vorgestellt. Im letzten Teil der
Arbeit wird die Anwendbarkeit des vorgestellten Algorithmus auf transiente Probleme un-
tersucht, welche mithilfe der Faltungsquadraturmethode behandelt werden.
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1 INTRODUCTION

1.1 State of the art

The boundary element method (BEM) is a well established method with many applications
(e.g. acoustics, electromagnetics and elastodynamics [36,83]). It is particularly well suited
for exterior domain and half-space problems, as only the boundary needs to be discretized.
This leads to a significant reduction in the number of degrees of freedoms (DOFs) and
greatly simplifies the mesh generation. Furthermore, no artificial exterior boundary sat-
isfying the radiation condition needs to be imposed. However, the occurrence of dense
system matrices is prohibitive, limiting the classical BEM to small and mid-sized prob-
lems. To overcome this limitation so called fast methods need to be employed.

Many well established methods exist to reduce the computation and storage requirements
of the BEM matrices. One of them areH matrix methods [42], where off-diagonal blocks
are approximated using a low-rank representation. This low-rank approximation can be
constructed using the adaptive cross approximation (ACA) [10, 38] or kernel interpolation
[42], among others. The storage requirements can be further reduced by introducing nested
cluster bases which leads to H2 methods [14]. This idea is closely related to the classical
fast multipole method (FMM) [40] where the expansion into spherical harmonics is used to
create a degenerate kernel expansion. Other important methods are the precorrected-FFT
(pFFT) [72,91], panel-clustering [43] and wavelets [4]. In this thesis, we will solely focus
on the FMM.

An overview of the applications of FMM accelerated BEM can be found in the review
papers of Nishimura [68] and Liu et al. [53]. The 3D FM-BEM for elastodynamics in
frequency domain with applications to seismology has been discussed in the paper of
Fujiwara [34] and in the works of Chaillat, Bonnet and Semblat [19–21]. Furthermore,
scattering problems using the elastodynamic half-space fundamental solution have been
discussed in the works of Chaillat and Bonnet [17, 18]. Similarly, in the paper of Grasso
et al. [39] scattering problems using the free-space viscoelastodynamic kernel are con-
sidered. Takahashi presents a wide-band FMM for 2D elastodynamic scattering using a
Burton-Miller formulation in [84]. For a discussion on 3D wave scattering by elastic ob-
jects using the FMM and the Nyström method, the reader is referred to the paper of Tong
and Chew [88]. Time domain problems have been discussed in the work of Takahashi,
Nishimura and Kobayashi [86] considering 3D elastodynamic and in the paper of Saitho,
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2 1 Introduction

Hirose and Fukui [76] considering 2D viscoleasodynamic scattering problems. The afore-
mentioned papers rely on a representation of the elastodynamic fundamental solutions
using scalar Helmholtz kernels and their expansion into spherical harmonics.

The BEM is based on the formulation of the PDE as a boundary integral equation (BIE). In
the BIE of parabolic and hyperbolic problems, additionally to the integral over the bound-
ary, a convolution over the time variable arises. The reader is referred to the review paper
of Costabel [22] on different methods of how to treat time domain (TD) problems in the
context of a BEM formulation. A common method to deal with the temporal convolu-
tion is to use an analytic integration. However, the resulting BEM formulation suffers
from instabilities. A discussion on the numerical stability of such methods can be found
in the papers of Frangi and Novati [33] and Peirce and Siebrits [71]. Although stabiliza-
tion procedures have been proposed, see for instance the papers of Birgisson, Siebrits and
Peirce [13], Marrero and Domınguez [60], as well as Aimi and Diligenti [3], the stability
of the method still remains an issue using the Collocation method.

A different method of treating the temporal convolution is the convolution quadrature
method (CQM). Its main advantage is that it does not suffer from the above described in-
stabilities. Furthermore, since only the Laplace domain fundamental solution needs to be
known, problems where no timed domain fundamental solution is available, such as visco-
or poroelasticity, can be treated. The CQM traces back to the works of Lubich [54, 55] in
which he proposes a method of numerically evaluating a convolution integral, where one
of the two convoluted functions only needs to be known in Laplace domain. The first appli-
cation to the BEM goes back to the work of Lubich and Schneider [56] where a parabolic
BIE is considered. Soon thereafter the extension to elasto- and viscoelastodynamic prob-
lems was introduced in the works of Schanz and Antes [80, 81] and the paper of Gaul and
Schanz [37]. The poroelastic problem using the CQM was first discussed in the work of
Schanz [79] and the paper of Schanz, Antes and Rüberg [82]. The extension to partially
saturated poroelastic continua was presented in the work of Li and Schanz [51]. Concern-
ing the applications of the CQM in the context of FEM-BEM coupling the paper of Rüberg
and Schanz [74] needs to be mentioned. The CQM and its application to investigate the
dynamics of crack propagation is discussed in the paper of Zhang [94], and Zhang and
Savaidis [95].

The original formulation of CQ-BEM relies on the computation of temporal convolution
weights, with each weight being a fully populated system matrix. This results in high stor-
age requirements for this method, as the weights are computationally too expensive to be
recomputed, each time they are needed. Therefore, Banjai and Sauter introduced a refor-
mulated version of the CQM in [9], where the time domain problem is transformed into a
set of decoupled Laplace domain problems. This reformulation has the distinct advantage
of being intrinsically parallel and that only a single system matrix needs to be stored at a
time. The trade-off that has to be made is that now a large number of ill-conditioned prob-
lems in Laplace domain need to be solved, while for the original version only the first time
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matrix needs to be inverted, which has a very good conditioning. Yet another version of the
CQM presented by Banjai [6] tries to reap the advantages of both above described methods.
While the solution process takes place in time domain, the convolution is computed using a
recursive algorithm relying on matrix-vector products performed in Laplace domain. This
method is especially advantageous in the context of FMM where the computational cost
of a single matrix-vector product can be quite high compared to its precomputation time.
Finally, the important extension to multistage methods, also presented in [6], needs to be
mentioned. The original CQM relies on an A-stable multistep method for the computation
of the convolution weights. However, since A-stability is required, one is limited to mul-
tistep methods of at most second order, due to the second Dahlquist barrier. Higher order
convergence can thus only be achieved by using A-stable Runge-Kutta methods.

Several publications treat the application of fast methods within the context of a CQ-BEM.
The papers of Messner and Schanz [65] and Banjai, Messner and Schanz [8] consider elas-
todynamic problems using H matrix methods in conjunction with the ACA. Furthermore,
Saitoh and Hirose treat the wave equation using the FMM in [75], while two dimensional
viscoelastic wave propagation is considerd in the paper of Saitoh, Hirose and Fukui [76].
In the work of Banjai and Kachanovska [7] a combination of H matrix methods and the
high frequency FMM is proposed to solve the wave equation. Furthermore, one also needs
to mention the paper of Frangi and Bonnet [32] presenting numerical parameter studies
for the FMM expansion order, treating Helmholtz like kernels in Laplace domain. Fi-
nally, Kachanovska gives a comparison of the ACA and FMM for Helmholtz kernels with
complex wave numbers in [46].

Concerning the treatment of time dependent BIE using fast methods, additionally to the
CQM, the plane-wave time-domain (PWTD) approach and the exponential window method
(EWM) in conjunction with the pFFT need to be mentioned. With applications to elastody-
namics, the former is discussed in the work of Takahashi, Nishimura and Kobayashi [86]
and Otani, Takahashi and Nishimura [70]. The latter is discussed in the paper of Xiao, Ye,
Cai and Zhang [89] and Xiao, Ye and Wen [90]. Furthermore, an interpolation based FMM
in time domain for the three dimensional wave equation, presented by Takahashi [85],
needs to be mentioned. Finally, a treatment of the parabolic heat equation using analytic
time integration and an FMM in space and time is discussed by Messner, Schanz and
Tausch in [67].

1.2 Aim and outline of the thesis

We have seen that the BEM is a well established method particularly suited to treat exterior
domain scattering problems. Furthermore, we have seen that the CQM is particularly well
suited to treat time dependent problems within the context of a BEM formulation. While
the classical BEM for time dependent problems and the FMM method for elliptic problems
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both are already well studied, more work needs to be done to combine them in order to be
able to efficiently treat elastodynamic scattering problems in time domain. The aim of this
thesis is thus twofold:

• First, we propose a kernel interpolation based FMM approach to treat 3D elasto-
dynamics in Laplace domain. Here two versions of the algorithm are introduced.
We present the direct interpolation of the tensorial fundamental solution which we
denote TED and an approach utilizing the representation of the elastodynamic fun-
damental solution based on scalar Helmholtz kernels denoted HED. The presented
algorithms have several advantages over the classical expansion into spherical har-
monics. First of all, the implementation is very simple since no analytic expansion
of the kernel function is necessary. Secondly, its extension to the high-frequency
regime is straight forward using a directional clustering scheme, see [62] as a refer-
ence for the Helmholtz case. Furthermore, the TED approach can be easily extended
to more complicated kernel functions like poroelastodynamics. This is a very use-
ful feature if the representation based on Helmholtz kernels is not available or too
complicated to construct. We, therefore, think that the kernel interpolation based
FM-BEM is a useful tool to solve large scale elastodynamic scattering problems.

• Second, we utilize the presented algorithms to treat an elastodynamic benchmark
problem with the CQ-BEM. However, we will see that this can not be done in a
straightforward fashion. Therefore, we investigate a parameter optimization strat-
egy for the FMM, in order to be able to treat the problem, while maintaining the
convergence of the method.

The current thesis is structured as follows:

Chapter 2 introduces the governing equations as well as the displacement potentials and
the differential operators of linear elasticity.

Chapter 3 discusses the boundary integral equations as well as the elastodynamic displace-
ment and traction fundamental solutions necessary for the boundary element formulation
of the problem.

Chapter 4 reviews the temporal and spacial discretization of the BIE leading to the classical
dense BEM formulation.

Chapter 5 is the main part of the thesis. Here we discuss the kernel interpolation FMM for
a discretized scalar BIE. Furthermore, the high frequency version of the above algorithm
is presented. Finally, two kernel interpolation based approaches are introduced to approx-
imate the discretized Single and Double Layer potential operators of elastodynamics in
Laplace domain.

Chapter 6 presents the numerical results to validate the proposed methods. In frequency
domain timing and memory requirements for a constant approximation error as wells as a
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convergence study and an exterior scattering problem are considered. In time domain the
benchmark problem of the elastic rod loaded with a Heaviside function is discussed.

In the Appendix the reciprocity theorem, a derivation of the displacement fundamental
solution using Helmholtz kernels as well as some essential steps in the derivation of the
CQM are presented. Furthermore, an estimator for the matrix approximation error is in-
troduced.

The author wishes to acknowledge the work of Pierre Blanchard on the HED approach as
well as on the HED SYM optimization during his research stay at the Institute of Applied
Mechanics, Graz University of Technology.





2 GOVERNING EQUATIONS

In this chapter, we recall the displacement equation of motion for linear elastodynamics.
We start the derivation by presenting the fundamental definitions of the displacements and
tractions as well as of the linear stress and strain tensors. Furthermore, the stress-strain
relation given by Hooke’s law is presented. After establishing these fundamental relations
the displacement equations of motion are derived starting from the balance of momentum.
In the last section of this chapter, we discuss the Helmholtz decomposition of the displace-
ment vector field. Using this decompostions the occurence of two distinct waves, a pres-
sure and a shear wave, travelling in the elastic medium is evident. This chapter is intended
as a quick overview over the fundamentals of elastodynamics, providing the reader with
the necessary relations used throughout the subsequent chapters of this work. For a de-
tailed derivation and an in depth discussion of linear elastodynamics the reader is referred
to the textbooks of, e.g. Achenbach [2], Kupradze [49], and Eringen and Suhubi [30]. For
an introduction to the theory of large deformations and nonlinear material behaviour the
reader is referred to the textbooks of, e.g. Altenbach [5] and Ogden [69].

Let the domain Ω⊂R3 with boundary Γ = ∂Ω be occupied by a continuous homogeneous
isotropic elastic medium. Using the linearized theory of elasticity, the deformations over
time are assumed to be small and are described by the displacement vector u(x, t) with
x ∈ Ω and t ∈ [0,∞+). The deformation of an infintesimal volume dV at position x and
time t is then given by the linearized strain tensor εi j(x, t), which is defined as

εi j(x, t) =
1
2

(
∂

∂xi
u j (x, t)+

∂
∂x j

ui (x, t)
)

. (2.1)

Observe that the strain tensor as given above is a symmetric tensor of second order. Fur-
thermore we introduce the antisymmetric rotation tensor defined as

ωi j(x, t) =
1
2

(
∂

∂xi
u j (x, t)−

∂
∂x j

ui (x, t)
)

. (2.2)

We note that the first order partial derivative of the displacement vector can be written as
the sum of the strain and the rotation tensor.

∂
∂xi

u j = εi j(x, t)+ωi j(x, t) . (2.3)

The stress state of an elastic continuum at position x ∈Ω and time t ∈ [0,∞+) is uniquely
defined by the components of the stress tensor σi j (x, t), a symmetric tensor of second

7



8 2 Governing equations

order. While the symmetry of the strain tensor is obvios, the symmetry of the stress tensor
follows from the balance of angular momentum. Consequently, the force exerted on an
infinitesimal plane with normal vector n(x) is given by the traction vector t(x,n, t). The
linear relation of the traction vector to the stress tensor is given by Cauchy’s lemma

ti (x,n, t) = σ ji (x, t)n j (x) , (2.4)

where in the above and throughout this thesis, we use Einstein’s summation convention.

The stress-strain relation is given by the constitutive law. For linear elasticity it can be
expressed using the material tensor Ci jkl , a tensor of fourth order, and reads as

σi j(x, t) =Ci jklεkl(x, t) . (2.5)

Due to the symmetry of the stress and strain tensors, the following symmetry relations
need to hold for the material tensor, independent of the material properties

Ci jkl =C jikl =Ckli j =Ci jlk . (2.6)

For a homogeneous elastic isotropic medium the stress-strain relation is given by Hooke’s
law and Ci jkl takes the well known form

Ci jkl = λδi jδkl +µ
(
δikδ jl +δilδ jk

)
. (2.7)

In the equation above, the symbol δi j denotes the Kronecker delta. The parameters λ and
µ are the so called the Lamé constants and their relation to the Young’s Modulus E and
the Poission ratio ν are give by

λ =
Eν

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

. (2.8)

Inserting Hooke’s law into the stress strain relation (2.5) yields

σi j(x, t) = λδi jεkk(x, t)+2µεi j(x, t) . (2.9)

Subsequently, using the definition of the strain tensor (2.1) we obtain an expression for the
stress tensor given as a function of the displacement vector, which reads as

σi j(x, t) = λδi j
∂

∂xk
uk(x, t)+µ

(
∂

∂xi
u j(x, t)+

∂
∂x j

ui(x, t)
)

. (2.10)
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2.1 Displacement equation of motion

In the next step, we derive the displacement equation of motion for the elastodynamic
continuum. Our starting point is the balance of momentum given by

∫

Γ

ti(y)dsy +
∫

Ω

ρ fi(x, t)dx =
∫

Ω

ρ
∂ 2

∂ t2 ui(x, t)dx . (2.11)

In the above equation the symbol ρ denotes the material density, which is assumed to be
constant in the whole domain. The vector field f represents any internal body forces. Next,
we use Cauchy’s lemma (2.4) to replace the boundary tractions and obtain

∫

Γ

σ ji (y, t)n j (y)dsy +
∫

Ω

ρ fi(x, t)dx =
∫

Ω

ρ
∂ 2

∂ t2 ui(x, t)dx . (2.12)

Subsequently, we can use the divergence theorem, which relates the surfave flux of a vector
field to its divergence inside the domain, given by

∫

Ω

∂
∂xi

vi(x)dV =
∫

Γ

vi(y)ni(y)dsy x ∈Ω y ∈ Γ , (2.13)

to transorm the surface integral in (2.12) into a volume integral

∫

Ω

(
∂

∂x j
σ ji (x, t)+ρ fi(x, t)−ρ

∂ 2

∂ t2 ui(x, t)
)

dx = 0. (2.14)

Bearing in mind that (2.14) needs to be fulfilled for any infinitesimal volume located at
any point inside the domain, we can write the equation above in its differential form

∂
∂x j

σ ji(x, t)+ρ fi(x, t) = ρ
∂ 2

∂ t2 ui (x, t) . (2.15)

The above equation states the differential balance of momentum and is also called Cauchy’s
first law of motion. In the sequence, vanishing body forces f(x, t) = 0 for all (x, t) ∈
Ω× [0,∞+) are assumed to avoid the occurence of a Newton potential in the boundary in-
tegral formulation. Finally, inserting (2.10) into the above yields the displacement equation
of motion, also called Lamé-Navier equation

µ
∂ 2

∂x j∂x j
ui(x, t)+(λ +µ)

∂ 2

∂x j∂xi
u j(x, t) = ρ

∂ 2

∂ t2 ui(x, t) . (2.16)

The Lamé-Navier equation is a hyperbolic partial differential equation (PDE) of second
order. Explicit analytical solutions to the above equation are available only for a limited
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set of geometries and boundary conditions. In this work, we will thus employ the boundary
element method to solve (2.16) numerically.

However, in the sequence, we will not solve (2.16) and its resulting boundary integral
equation (BIE) (3.34) directly in time domain. We will rather employ a reformulated con-
volution quadrature method (see Section 4.1) to obtain the time domain solution. This
is done by solving a decoupled system of the Lamé-Navier equations in the Laplace do-
main and, subsequently, applying an inverse transformation to the set of Laplace domain
solutions.

For a given function f (t) the Laplace transform is defined as

f̂ (s) = L [ f ] =
∞∫

0

e−st f (t)dt , (2.17)

where ˆ(·) denotes Laplace transformed quantities with the Laplace parameter s ∈ C s.t.
Re(s) > 0, see, for example, [26]. Furthermore, we require f (t) = 0 for all t < 0. The
inverse Laplace transform is given by

f (t) = L−1 [ f̂
]
=

1
2πi

lim
R→∞

c+iR∫

c−iR

f̂ (s)estds . (2.18)

In the above, we assumed that all poles si and branch cuts of the function f̂ (s) have
Re(si)≤ c. By applying the Laplace transform (2.17) to (2.16) we obtain the Lamé-Navier
equation in Laplace domain

µ
∂ 2

∂x j∂x j
ûi(x,s)+(λ +µ)

∂ 2

∂x j∂xi
û j(x,s)−ρs2ûi(x,s) = 0 . (2.19)

2.2 Displacement potentials

The fundamental theorem of vector calculus states that any vector field can be expressed
as the sum of the divergence of a scalar field ϕ and the rotation of a vector field ψk. We
thus obtain

ui (x, t) =
∂

∂xi
ϕ (x, t)+ εi jk

∂
∂x j

ψk (x, t) (2.20)

for the displacement field. As the above equation relates the three quantities ui to the
four variables ϕ and ψk we are left with one additional degree of freedom. We, therefore,
impose the additional the gauge condition

∂
∂xi

ψi (x, t) = 0 . (2.21)
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Please note that the above is not the only possible gauge condition, but requiring ψk to be
divergence free is the one most commonly used, since by choosing (2.21) we obtain the
well kown Helmholtz decomposition of vector fields. The resulting potentials for elasto-
dynamics are called the Lamé potentials. By inserting the decomposition above into the
displacement equation of motion (2.16) we obtain

∂
∂xi

(
(λ +2µ)

∂ 2

∂x j∂x j
ϕ (x, t)−ρ

∂ 2

∂ t2 ϕ (x, t)
)

+ εikl
∂

∂xk

(
µ

∂ 2

∂x j∂x j
ψl (x, t)−ρ

∂ 2

∂ t2 ψl (x, t)
)
= 0. (2.22)

We see that (2.16) is fulfilled, if the potentials ϕ and ψk are the solution to the uncoupled
wave equations, given by

∂ 2

∂x j∂x j
ϕ (x, t)− 1

c2
P

∂ 2

∂ t2 ϕ (x, t) = 0 and
∂ 2

∂x j∂x j
ψl (x, t)−

1
c2

S

∂ 2

∂ t2 ψl (x, t) = 0 . (2.23)

with the wave velocities

cP =

√
λ +2µ

ρ
and cS =

√
µ
ρ
. (2.24)

The uniqueness of the solution is given by the completeness theorem, see [2]. We con-
clude that ϕ and ψk can be associated with two distinct waves, a longitudinal pressure
and a transversal shear wave, traveling in the elastic medium with velocitis cP and cS, re-
spectively. A general solution of the equation of motion can thus be constructed by the
superposition of these two waves. Please note that the occurence of these two distinct
waves can also be measured experimental.

2.3 Differential operators for linear elasticity

The elastostatic diffential operator or Lamé operator is a linear differential operator of
second order and given by

Ai j (∂x) = µ
∂ 2

∂xk∂xk
δi j +(λ +µ)

∂ 2

∂x j∂xi
. (2.25)

Using the above equation (2.16) can be written as

Ai j (∂x)u j−ρ
∂ 2

∂ t2 ui(x, t) = 0 , (2.26)
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or in Laplace domain
Ai j (∂x) û j−ρs2ûi(x,s) = 0. (2.27)

Next, we define the stress operator acting on the displacement field. Combining (2.4) and
(2.10) yields the tractions given as a function of the displacements

ti (x,n, t) = λni(x)
∂

∂x j
u j(x)+µn j(x)

∂
∂xi

u j(x)+µnk(x)
∂

∂xk
ui(x) . (2.28)

Consequently, we define the stress operator as

Ti j (∂x,n(x)) = λni(x)
∂

∂x j
+µn j(x)

∂
∂xi

+µδi jnk(x)
∂

∂xk
, (2.29)

and obtain
ti (x,n(x)) = Ti j (∂x,n(x))u j (x) . (2.30)



3 BOUNDARY INTEGRAL EQUATIONS

In this chapter, we present the boundary integral equations (BIEs) for the elastodynamic
problems in Laplace and time domain. These form the basis of our boundary element
formulation. In Section 3.1, we start our discussion by recalling the representation formula,
which relates the unknown displacements in the domain to the boundary data. In the
following Section 3.2, we recall the elastodynamic displacement and traction fundamental
solutions in Laplace domain. In the last Section 3.3, we present the limiting process of
the field point to the boundary to obtain the BIE and the corresponding boundary integral
operators.

For a detailed discussion of the boundary element method for elastic continua the reader is
referred to the textbooks of, e.g. Gaul, Kögler and Wagner [36] and Gaul and Fielder [35].
For a mathematical rigorous derivation of the boundary integral operators the reader is
referred to the textbooks of, e.g. Steinbach [83] and Sauter and Schwab [77] as well as the
work of Hsiao and Wendland [45] for a discussion of time dependent problems.

3.1 Representation formula for elastodynamics

The basis of the boundary integral formulation is the representation formula. The starting
point of its derivation is the weak formulation of the underlying PDE. To obtain the rep-
resentation formula, in a first step, we shift the differential operator to the test function of
the weak formulation. Next, by a special choice of test function, the fundamental solution
of the PDE, we obtain the representation formula.

Laplace domain representation formula The weak formulation is obtained by mul-
tiplying equation (2.19) by an unknown test function v̂ and integrating over the domain
Ω ∫

Ω

[
Ai j (∂x) û j(x)−ρs2ûi(x)

]
v̂i(x)dV = 0. (3.1)

13
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In the next step, we use Green’s second identity for the Lamé operator, which can be
obtained by applying twice the chain rule of differentiation and the divergence theorem
∫

Ω

[
Ai j (∂x) û j(x)

]
v̂i(x)dV −

∫

Ω

[
Ai j (∂x) v̂ j(x)

]
ûi(x)dV =

+
∫

Γ

[
Ti j (∂y,n(y)) û j(y)

]
v̂i(y)dsy−

∫

Γ

[
Ti j (∂y,n(y)) v̂ j(y)

]
ûi(y)dsy . (3.2)

This relation is also called the reciprocity theorem. For a detailed derivation of the above
equation see Appendix A. Inserting the above into the weak formulation (3.1) yields
∫

Ω

[
Ai j (∂x) v̂ j(x)− s2ρ v̂i(x)

]
ûi(x)dV =

−
∫

Γ

[
Ti j (∂y,n(y)) û j(y)

]
v̂i(y)dsy +

∫

Γ

[
Ti j (∂y,n(y)) v̂ j(y)

]
ûi(y)dsy . (3.3)

Next, let v̂ = û∗ be the solution to the inhomogeneous Lamé-Navier equation with a space
concentrated unit load with position x and direction e

A jk (∂y) û∗k (x,y)− s2ρ û∗j (x,y) =−δ (x−y)e j. (3.4)

By inserting the above and choosing x̃ as the source point, (3.3) reads as
∫

Ω

δ (x̃−x)e ju j (x)dV =
∫

Γ

t̂ j (y,n(y)) û∗j (x̃,y)dsy−
∫

Γ

û j (y) t̂∗j (x̃,y,n(y))dsy . (3.5)

Please note that for the second term on the right hand side we used

t̂∗i (x̃,y,n(y)) = Ti j (∂y,n(y)) û∗j (y) , (3.6)

which is given by (2.30). Next, let {ei}3
i=1 be the basis vectors of the Cartesian coordinates

then (ei) j = δi j holds. As a consequence (3.4) can be written to

A jk (∂y)Û∗ik (x,y)− s2ρÛ∗i j (x,y) =−δ (x−y)δi j , (3.7)

where we collect the solution vectors û∗i under load ei into the rows of the tensor Û∗i j (x,y).
The columns of Û∗i j (x,y) in turn are the components of solution vector (u∗i ) j under load
ei. The tensor valued function Û∗i j (x,y), is called the displacement fundamental solution
and is a symmetric tensor of second order. The symmetry of Û∗i j (x,y) follows from the
symmetry of the Lamé operator. By applying stress operator (2.29) to the rows of Û∗i j (x,y),
i.e. the solution vectors u∗i , we obtain the traction fundamental solution

T̂ ∗i j (x,y,n(y)) = T jk (∂y,n(y))Û∗ik (x,y) . (3.8)



3.1 Representation formula for elastodynamics 15

Note that the traction fundament solution is not symmetric. Recalling the definition of the
stress operator (2.29) consequently yields

T̂ ∗i j (x,y,n(y)) = λÛ∗ik,k (x,y)n j (y)+µ
(

Û∗i j,k (x,y)nk (y)+Û∗ik, j (x,y)nk (y)
)
. (3.9)

By inserting Û∗i j and T̂ ∗i j into (3.5) and evaluating the volume integral we obtain the repre-
sentation formula of the elastodynamic problem in Laplace domain

ûi (x̃) =
∫

Γ

Û∗i j (x̃,y) t̂ j (y)dsy−
∫

Γ

T̂ ∗i j (x̃,y) û j (y)dsy for all x̃ ∈Ω . (3.10)

Remark 1 Please note that special attention needs to be paid to the definition of the dis-
placement and traction fundamental solution. An equally valid approach to the above
would be to define the columns of Û∗i j to be the solution to the load in e j direction. Conse-
quently, the stress tensor is applied to the columns of Û∗i j to obtain the stress fundamental
solution. However, if this approach is used the tensor T̂ ∗i j either needs to be transposed be-
fore it is applied on the displacement vector, or the displacement vector needs to be applied
from the right hand side (see [83]). This distinction is essential since the traction funda-
mental solution is not a symmetric tensor as opposed to the displacement fundamental
solution.

Time domain representation formula The weak formulation of equation (2.16) is given
by

t∫

0

∫

Ω

[
Ai j (∂x)u j(x,τ)−ρ

∂ 2

∂τ2 ui(x,τ)
]

vi(x,τ)dV dτ = 0 . (3.11)

Please observe the occurrence of the temporal integration in addition to the volume in-
tegral. A similar computation to the above leads to the representation formula in time
domain

ui (x̃, t) =
t∫

0

∫

Γ

U∗i j (x̃,y, t− τ) t j (y,τ)dsydτ−
t∫

0

∫

Γ

T ∗i j (x̃,y, t− τ)u j (y,τ)dsydτ , (3.12)

for all (x̃, t) ∈ Ω× [0,∞+) using the time domain displacement and traction fundamental
solution U∗i j (x̃,y, t− τ) and T ∗i j (x̃,y, t− τ), respectively. Please note that in order to obtain
the time domain representation formula not only the Lamé operator but also the second
order partial derivative with respect to the time parameter τ needs to be shifted to the test
function. This is achieved by integration by parts. However, by applying integration by
parts terms of the form

∫
Ω ui(x,0)vi(x, t)dV arise. The occurence of these terms can be
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avoided by prescribing vanishing intitial conditions ∂
∂ t u(x, t = 0) = u(x, t = 0) = 0 for all

x ∈ Ω. For a detailed derivation of the dynamic reciprocity theorem used to obtain (3.12)
as well as the time dependent fundamental solutions the reader is referred to the texbooks
of Achenbach [1], Kupradze [49], and Eringen and Suhubi [30].

Again the displacement fundamental solution used in (3.12) is defined to be the solution
to the inhomogeneous Lamé-Navier equation in time domain

A jk (∂y)U∗ik (x,y, t− τ)−ρ
∂ 2

∂τ2U∗i j (x,y, t− τ) = δ (x−y)δ (t− τ)δi j . (3.13)

Consequently the time dependent traction fundamental solution can be obtained by ap-
plying the stress operator to the rows of U∗i j (x̃,y, t,τ). Please note that the fundamental
solutions only depends on the difference t − τ . The temporal integral in (3.12) is thus
a convolution in time. Utilizing the conventional short hand notation of the convolution
defined in (4.1), the above equation can be written in the more compact form

ui (x̃, t) =
∫

Γ

U∗i j (x̃,y)∗ t j (y)dsy−
∫

Γ

T ∗i j (x̃,y)∗u j (y)dsy for all x̃ ∈Ω . (3.14)

3.2 Laplace domain fundamental solution

In this section, we present the Laplace domain fundamental solution, necessary for our
boundary element method. First, we recall a version presented in the work of Cruse and
Rizzos [24] used for the clasical dense BEM. Next, we present a modifed expression which
separates the terms corresponding to the pressure and shear wave respectively which is
used in the first approach of the kernel interpolation FMM for elastodynamics, see Sec-
tion 5.8. Finally, we present a version of the fundamental solution based on derivatives of
scalar Helmholtz kernels, introduced in the work of Yoshida [93]. This will be the basis
for the second approach of our FMM, discussed in Section 5.8.

3.2.1 Displacement fundamental solution

Observe that throughout this work the position vector r is defined as the difference between
load point y and field point x

ri = yi− xi and r = |y−x| . (3.15)

Consequently its first order partial derivatives with respect to yi reads as

∂ r
∂yi

=
yi− xi

r
=

ri

r
. (3.16)
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Using the above and following [24] the elastodynamic displacement fundamental solution
in Laplace domain is given by

Û∗i j (x,y,s) =
1

4πρc2
S

(
ψ(r,s)δi j−χ(r,s)

∂ r
∂yi

∂ r
∂y j

)
, (3.17)

with scalar functions

ψ(r,s) =− c2
S

c2
P

(
c2

P
s2r2 +

cP

sr

)
e−

sr
cP

r
+

(
c2

S
s2r2 +

cS

sr
+1
)

e−
sr
cS

r
(3.18)

χ(r,s) =− c2
S

c2
P

(
3

c2
P

s2r2 +3
cP

sr
+1
)

e−
sr
cP

r
+

(
3

c2
S

s2r2 +3
cS

sr
+1
)

e−
sr
cS

r
, (3.19)

where cP and cS denote the compression and shear wave velocities as defined in (2.24),
respectively.

Next, we note that displacement fundamental solution given above can be rewritten to

Û∗i j (x,y,s) = ∑
α=P,S

α
Û∗i j (x,y,s) (3.20a)

P
Û∗i j (x,y,s) =

e−
s

cP
r

4πρs2

(
3r,ir, j−δi j

r3

(
s

cP
r+1

)
+

(
s

cP

)2 r,ir, j
r

)
(3.20b)

S
Û∗i j (x,y,s) =

e−
s

cS
r

4πρs2

(
3r,ir, j−δi j

r3

(
s
cS

r+1
)
+

(
s
cS

)2 r,ir, j +δi j

r

)
, (3.20c)

where we separated the terms corresponding to the pressure and shear wave, respectively.
The splitting allows for an individual approximation of the two terms, which will be nec-
essary for the high frequency modification for the TED approach of our FMM.

Finall, we note that similar to the work of Yoshida [93] the displacemement fundamental
solution can be expressed as

Û∗i j (x,y,s) =
1

4πµ

(
e−

sr
cS

r
δi j +

c2
S

s2
∂ 2

∂xi∂y j

(
e−

sr
cS

r
− e−

sr
cP

r

))
. (3.21)

Using the definition of the fundamental solution of the Helmholtz problem

Gα (x,y,s) =
1

4π
e−

sr
cα

r
with α = P,S , (3.22)

we can rewrite (3.21) to

Û∗i j (x,y,s) =
1
µ

(
GS (x,y,s)δi j +

c2
S

s2
∂ 2

∂xi∂y j

(
GS (x,y,s)−GP (x,y,s)

))
, (3.23)

which will be the basis for the HED FMM formulation. In Appendix B we show that the
formulations (3.17) and (3.21) are equivalent.
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Remark 2 Please note that (3.23) can be further rewritten to

Û∗i j (x,y,s) =
c2

s
s2µ

(
εikpε jl p

∂ 2

∂xk∂yl
GS (x,y,s)+

∂ 2

∂xi∂y j
GP (x,y,s)

)
. (3.24)

The above reduces the number of FMM moments from 5 to 4 compared to (3.23) and is the
final expression used for the displacement fundamental solution in the work of Yoshida.
However preliminary numerical test showed: If (3.24) is used, then in order to obtain
the same interpolation error as the HED approach the interpolation order needs to be
increased. Therefore we chose (3.23) as the basis for the HED approach.

3.2.2 Traction fundamental solution

The traction fundamental solution reads as

T̂ ∗i j (x,y,s) =
1

4π

(
η1nk

∂ r
∂yk

δi j +η1ni
∂ r
∂y j

+η2nk
∂ r
∂yk

∂ r
∂yi

∂ r
∂y j

+η3n j
∂ r
∂yi

)
, (3.25)

with scalar functions

η1 =

(
2+6

cP

sr
+6

c2
P

s2r2

)
c2

S

c2
P

e−
sr
cP

r2 −
(

3+6
cS

sr
+6

c2
S

s2r2 +
sr
cS

)
e−

sr
cS

r2 (3.26)

η2 =

(
−12−30

cP

sr
−30

c2
P

s2r2 −2
sr
cP

)
c2

S

c2
P

e−
sr
cP

r2 +

(
12+30

cS

sr
+30

c2
S

s2r2 +2
sr
cS

)
e−

sr
cS

r2

(3.27)

η3 =

(
−1− sr

cP
+

c2
S

c2
P

(
4+6

cP

sr
+6

c2
P

s2r2 +2
sr
cP

))
e−

sr
cP

r2 −
(

2+6
cS

sr
+6

c2
S

s2r2

)
e−

sr
cS

r2 .

(3.28)

3.3 Boundary integral operators

To obtain the boundary integral equation we start with the corresponding representation
formula (3.10) and perform the limiting process x̃ ∈ Ω→ x ∈ Γ. However, due to the
singular behaviour of the integral kernels, we need to extend Γ by a ball of radius ε around
the field point x, as illustrated in Figure 3.1. In a subsequent step we perfrom the limiting
process ε→ 0.
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ε

x

y

z

x

Γ : |y−x|= ε

Γ : |y−x| ≥ ε

Figure 3.1: Boundary extension

Laplace domain boundary integral equation Starting from the Laplace domain repre-
sentation formula and performing the above described procedure we obtain

ûi(x) = lim
ε→0

∫

Γ:|y−x|≥ε

Û∗i j(x,y)t̂ j(y)dsy + lim
ε→0

∫

Γ:|y−x|=ε

Û∗i j(x,y)t̂ j(y)dsy

− lim
ε→0

∫

Γ:|y−x|≥ε

T̂ ∗i j(x,y)û j(y)dsy− lim
ε→0

∫

Γ:|y−x|=ε

T̂ ∗i j(x,y)û j(y)dsy . (3.29)

Observe that in the above we split the boundary integrals into the integral over the ball
Γ : |y−x|= ε and the remainder of the boundary Γ : |y−x| ≥ ε.

We note that the first integral exists as an improper integral due to the weak singularity of
the displacement fundamental solution. The second integral can be shown to vanish in the
limit ε→ 0. Due to the strong singularity of the traction fundamental solution the third
integral only exists in the sense of the Cauchy principal value which in the following is
denoted by the symbol−∫ . Consequently, rearranging yields

ûi(x)+ lim
ε→0

∫

Γ:|y−x|=ε

T̂ ∗i j(x,y)û j(y)dsy =

∫

Γ

Û∗i j(x,y)t̂ j(y)dsy−−
∫

Γ

T̂ ∗i j(x,y)û j(y)dsy . (3.30)

The expression on the left hand side represents the elastostatic jump term also called inte-
gral free term and is defined as

Ci j (x) û j(x) := δi jû j(x)+ lim
ε→0

∫

Γ:|y−x|=ε

T̂ ∗i j(x,y)û j(y)dsy . (3.31)
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Note that the expression above is identical to the integral free term that arises in the elas-
tostatic problem, see [78]. The computation of this term is described in detail in the work
of Mantic [57]. Furthermore, we define the integral operators

(V̂i jt̂ j)(x) :=
∫

Γ

Û∗i j (x,y) t̂ j (y)dsy (3.32a)

(K̂i jû j)(x) := −
∫

Γ

T̂ ∗i j (x,y) û j (y)dsy , (3.32b)

which are called the single layer potential (SLP) and the double layer potential (DLP),
respectively. The BIE for the elastodynamic probelm in Laplace domain consequently
reads

Ci j (x) û j(x) =
(
V̂i jt̂ j

)
(x)−

(
K̂i jû j

)
(x) . (3.33)

Time domain boundary integral equation A similar formulation to the above can be
derived for the time dependent problem, see e.g. [48]

Ci j (x)u j(x) =
∫

Γ

t∫

0

U∗i j(x,y, t,τ)t j(y,τ)dsydτ−−
∫

Γ

t∫

0

T ∗i j(x,y, t,τ)u j(y,τ)dsydτ , (3.34)

with the time domain boundary integral operators

(
Vi j ∗ t j

)
(x, t) :=

∫

Γ

t∫

0

U∗i j(x,y, t− τ)t j(y,τ)dτdsy (3.35a)

(
Ki j ∗u j

)
(x, t) := −

∫

Γ

t∫

0

T ∗i j(x,y, t− τ)u j(y,τ)dτdsy . (3.35b)

3.4 Boundary value problems

A boundary value problem (BVP) is define by the underlying PDE and a set of boundary
conditions. In the following, we present the BVPs considered in the present work.

The Dirichlet boundary value problem is given by

Ai j (∂x̃) û j−ρs2ûi(x̃,s) = 0 ∀ x̃ ∈Ω
ûi (x) = ĝD i (x) ∀ x ∈ Γ .

(3.36)
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The corresponding BIE reads as
(
V̂i jt̂ j

)
(x) = Ci j (x) ĝD j(x)+

(
K̂i jĝD j

)
(x) ∀ x ∈ Γ . (3.37)

Furthermore, the Neumann boundary value problem is given by

Ai j (∂x̃) û j−ρs2ûi(x̃,s) = 0 ∀ x̃ ∈Ω
ti (x) = gN i (x) ∀ x ∈ Γ ,

(3.38)

with the BIE
Ci j (x) û j(x)+

(
K̂i jû j

)
(x) =

(
V̂i jĝN j

)
(x) ∀ x ∈ Γ . (3.39)

Please note that both (3.37) and (3.39) are uniquely solvable only if s does not coincide
with an interior eigenvalue of the Dirichlet eigenvalue problem of the elastostatic problem.
See for example [83] for the Helmholtz case.

For engineering applications the most important BVP is the mixed problem, where dis-
placements and tractions are prescribed on different parts of the boundary. It is given by

Ai j (∂x̃) û j−ρs2ûi(x̃,s) = 0 ∀ x̃ ∈Ω
ûi (x) = ĝD i (x) ∀ x ∈ ΓD ⊂ Γ
t̂i (x) = ĝN i (x) ∀ x ∈ ΓN ⊂ Γ ,

(3.40)

with ΓD
⋂

ΓN = /0 and ΓD
⋃

ΓN = Γ. To derive the BIE we first need to split the tractions
and displacements defined on the whole boundary into a known and unknown part

û′ (x) = ĝD i (x)+ ûi (x) and t̂ ′ (x) = ĝN i (x)+ t̂i (x) , (3.41)

with

ûi (x) =

{
0 x ∈ ΓD

ûi (x) x ∈ ΓN
ĝD i (x) =

{
ĝD i (x) x ∈ ΓD

0 x ∈ ΓN

t̂i (x) =

{
t̂i (x) x ∈ ΓD

0 x ∈ ΓN
ĝN i (x) =

{
0 x ∈ ΓD

ĝN i (x) x ∈ ΓN
.

(3.42)

Note that using the above, the known and unknown fields are extended to the whole bound-
ary. We furthermore note that the displacement field is continuous and we therefore require
ûi (x) = ĝD i (x) for x ∈ ∂ΓD = ΓD

⋂
ΓN .

In the next step, we insert (3.41) into (3.33) which yield two coupled BIEs

−
(
V̂i jt̂ j

)
ΓD

(x)+
(
K̂i jû j

)
ΓN

(x) =
(
V̂i jĝN j

)
ΓN

(x)−Ci j (x) ĝD j(x)−
(
K̂i jĝD j

)
(x)ΓD

x ∈ ΓD

−
(
V̂i jt̂ j

)
ΓD

(x)+Ci j (x) û j(x)+
(
K̂i jû j

)
ΓN

(x) =
(
V̂i jĝN j

)
ΓN

(x)−
(
K̂i jĝD j

)
(x)ΓD

x ∈ ΓN .

(3.43)
Note that the symbol (·)ΓD/N denotes a boundary integral operator acting only on a sub-
set ΓD/N ⊂ Γ. We solve (3.43) for the unknown tractions t on ΓD and for the unknown
displacements u on ΓN .
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Solving the BIEs (3.33) and (3.34) analytically is only possible for a limited set of special
geometries and boundary conditions and we, therefore, choose to solve them numerically.
In this chapter, we discuss the the temporal and spacial approximations as well as the
choice of ansatz functions to obtain the fully discrete boundary element formulation. In
the first section, the foundations of the convolution quadrature method are presented, lead-
ing from the discrete convolution in time to a decoupled system of equations in Laplace
domain. Next, the spatial approximation of the boundary and the ansatz functions used to
approximate the displacement and traction solutions are discussed. Using the collocation
scheme this leads to the fully discrete system of equations in Laplace domain. Finally, in
Section 4.3, the numerical integration scheme used to compute the dense system matrices
is presented. This is done, first, for the regular integrals and, second, for the arising weakly
singular integrals, which are treated using the so called Duffy transform. Finally, in order
to deal with the strongly singular kernel, a regularized version of the traction fundamental
solution is presented .

4.1 Temporal discretization

In this section we recall the main results of the convolution quadrature method (CQM). A
detailed derivation can be found in Appendix C.

4.1.1 Convolution quadrature method

The temporal convolution of two time dependent functions f (t) and g(t) [73] is given by

( f ∗g)(t) =
t∫

0

f (t− τ)g(τ)dτ for all t > 0. (4.1)

By splitting the time interval (0,T ) equally into Nt + 1 time steps with ∆t = T/Nt+1 and
approximating the functions f and g using constant discontinuous ansatz functions the
above convolution can be written in the discrete form

( f ∗g)(t(n)) = ∆t

n

∑
m=0

f (t(n)− τ(m))g(τ(m)) with n = 0, . . . ,Nt , (4.2)

23
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Using the CQM the temporal convolution can be expressed as

( f ∗g)(t(n)) =
n

∑
m=0

ω(n−m)
(

f̂
)

g(t(m)) with n = 0, . . . ,Nt . (4.3)

We note that the discrete temporal convolution of the functions f and g in (4.2) is replaced
by a convolution of g with the convolution weights ω(n−m)

(
f̂
)
, which depend on f̂ the

Laplace transform of the function f . The weights are defined by the expansion of f̂
(

γ(z)
∆t

)

into a power series

f̂
(

γ(z)
∆t

)
=

∞

∑
n=0

ω(n) ( f̂
)

zn . (4.4)

In the above, we introduced the characteristic function γ(ζ ) of the underlying time stepping
scheme. For the BDF2 scheme γ(ζ ) is given by

γ(ζ ) =
1
2
(ζ 2−4ζ +3) . (4.5)

The coefficients of the power series (4.4) are in turn evaluated using the Taylor expansion
of f̂ (z) around z = 0. Subsequently the nth order derivative is computed using Cauchy’s
differentiation formula. Replacing the analytic contour integral by a trapezoidal rule and
choosing the number of quadrature points equal to the number of time steps yields the
expression for the convolution weights, given by

ω(n) ( f̂
)
=

R−n

Nt +1

Nt

∑
l=0

f̂ (sl)ζ nl . (4.6)

Observe that in the above we introduce the variable ζ = e
2πi

Nt+1 and the Laplace parameter
sl , which is defined by the characteristic function and time step size

sl =
γ
(
Rζ−l)

∆t
. (4.7)

The parameter R defines the radius of the circular contour integral. In accordance to previ-
ous work [65], the parameter is chosen to be R = 10−10/4Nt in order to minimize the error of
the weight computation [6]. Given the definition of the inverse discrete Fourier transform
(IDFT) [73]

ak =
1

N +1

N

∑
j=0

â jζ jk , (4.8)

equation (4.6) can be interpreted as an scaled IDFT, with scaling factor R−n.

Using these results we can replace the convolution in the time domain boundary integral
operators (3.35a) and (3.35b) by (4.3). For the single layer potential this reads as

(
Vi j ∗ t j

)(
x, t(n)

)
=

n

∑
m=0

∫

Γ

[
ω(n−m)

i j
(
Û∗i j;x,y

)
t j

(
y, t(m)

)]
dsy . (4.9)
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This can be written using a more compact notation

(
Vi j ∗ t j

)(
x, t(n)

)
=

n

∑
m=0

[
ω(n−m)

i j
(
V̂i j
)

t j

(
t(m)
)]

, (4.10)

by identifying ω(n−m)
i j

(
V̂i j
)

as new integral operator acting on t j

(
y, t(m)

)
.

4.1.2 Decoupled system of equations

In this section, we discuss a reformulation of the CQM approach, presented in [9], to
obtain a decoupled system of BIEs in Laplace domain. Solving this system of equations
consequnetly yields the solution to the time domain BIE. For simplicity we consider the
indirect Dirichlet approach in time domain, which is given by

(
Vi j ∗w j

)
(x, t) = gi (x, t) , (4.11)

where gi (x, t) are the known Dirichlet data for x∈Γ and t ∈ (0,T ). We need to solve (4.11)
for the unknown density w j (x, t). Note that all subsequent considerations are immediately
applicable to the BIE (3.34).

Introducing the temporal discretization, we use the CQM to restate (4.11) in the semi
discrete form

n

∑
m=0

[
ω(n−m)

i j
(
V̂i j
)

w j

(
t(m)
)]

= gi

(
t(n)
)
. (4.12)

For the nth time step the solution to (4.12) is given by

w j

(
t(n)
)
=
(

ω(0)
i j
(
V̂i j
))−1

(
gi (tn)−

n−1

∑
m=0

[
ω(n−m)

(
V̂i j
)

w j(tm)
])

. (4.13)

Note that this solution method is computationally very expensive. The storage require-
ments are extremely high since one needs to store Nt +1 dense system matrices given by
the convolution weights ω(n)

i j
(
V̂i j
)
. Furthermore, the direct evaluation of the convolution

requires O
(
N2

t
)

matrix-vector products. Oftentimes, if for instance the number of convo-
lution weights cannot be truncated, it is more efficient to compute the solutions to (4.11)
in Laplace domain and use the scaled IDFT to obtain the final time domain solution. This
solution process is discussed in the following.

In the first step, let ω(n)
i j
(
V̂i j
)
= 0 for all n < 0. As a consequence we can extend the sum

in (4.12) to Nt . Furthermore, by inserting the definition of the convolution weights (4.6)
we obtain

Nt

∑
m=0

R−(n−m)

Nt +1

Nt

∑
l=0
V̂i j (sl)ζ (n−m)lw j

(
t(m)
)
= gi

(
t(n)
)
. (4.14)



26 4 Boundary element formulation

Next we change the order of summation

R−n

Nt +1

Nt

∑
l=0
V̂i j (sl)ζ nl

Nt

∑
m=0

Rmζ−mlw j

(
t(m)
)
= gi

(
t(n)
)
. (4.15)

Remembering that equation (4.6) can be interpreted as a scaled IDFT given by

f
(

t(n)
)
=

R−n

Nt +1

Nt

∑
l=0

f̂ (sl)ζ nl , (4.16)

we define its inverse operation, which is a scaled DFT from time to Laplace domain and
reads as

f̂ (sl) =
Nt

∑
m=0

Rmζ−ml f
(

t(m)
)
. (4.17)

Using (4.17) to replace the time dependent density w j

(
t(m)
)

in (4.15) yields

R−n

Nt +1

Nt

∑
l=0
V̂i j (sl)ζ nlŵ j(sl) = gi

(
t(n)
)
. (4.18)

Subsequently we replace gi (tn) by its inverse transformation (4.16) and get

R−n

Nt +1

Nt

∑
l=0
V̂i j (sl) ŵ j(sl)ζ nl =

R−n

Nt +1

Nt

∑
l=0

ĝi (sl)ζ nl . (4.19)

Finally, by comparing the coefficients of the series we obtain a system of decoupled BIEs
in Laplace domain

V̂i j (sl) ŵ j(sl) = ĝi (sl) . (4.20)

The solution process to (4.11) is thus as follows. In the first step, we transform the given
time domain boundary data gi

(
x, t(n)

)
to the Laplace domain using (4.17). Next, we solve

(4.20) for the unknown densities ŵ j(sl) with l = 0, . . . ,Nt . Finally, we obtain the time

domain solution w j

(
t(n)
)

by applying the inverse transform (4.16) to ŵ j(sl).

4.2 Spatial discretization

4.2.1 Boundary approximation

In the present work, the approximation of Γ is performed by a decomposition into planar
triangles

Γ≈ Γh =
Ne⋃

l=1

τ̄l . (4.21)
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Figure 4.1: First levels of refinement of the unit cube mesh.

We call this decomposition triangulation or mesh. Observe that each flat triangle is uniquely
defined by the set of its three corner nodes {xl1,xl2,xl3}. The triangluation is thus given by
a set of triangles {τl}Ne

l=1 and corresponding nodes {xl}Nn
l=1.

Remark 3 Please, note that we use planar triangles to approximate the boundary which
is a very common and simple choice of elements. It is equally possible to use quadrangles
or higher order elements. See [48] for a discussion of various element types used in the
context of a BEM formulation.

For all convergence studies we consider a sequence of boundary approximations

{Γi
h}i∈N , (4.22)

called refinement. The refinement under consideration is globally uniform ,i.e. for every
level we recursively split each parent triangle, starting from the initial decomposition i= 0,
into four equally sized child elements. The side length of each triangle is thus halved in
every refinement step and the total number of elements quadruples.

Furthermore, to study the convergence rate of the method it is convenient to use a unit
cube as the computation domain. The reason is that the decomposition of the boundary
into flat triangles is exact. Therefore, any spurious effects caused by insufficient boundary
approximation or changing accuracy of the approximation are avoided. Fig 6.1 illustrates
the first three refinement levels for the unit cube starting from the initial level i = 0 using
the minimal number of 12 boundary elements

4.2.2 Field approximation

In the next step we define trial spaces of local polynomials on the boundary decomposition.
We use them to approximate the field variables. We note that the space of piece-wise
constant discontinuous functions is defined as

S0
h(Γ) := span

{
ϕ0

k
}Ne

k=1 and ϕ0
k =

{
1 for x ∈ τk

0 elsewhere
, (4.23)
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x y

z

(a) Constant discontinuous ansatz function

x y

z

(b) Linear continuous ansatz function

Figure 4.2: Ansatz functions

and the space of piece-wise linear and globally continuous functions is given by

S1
h(Γ) := span

{
ϕ1

k
}Nn

k=1 and ϕ1
k =





1 for x = xk

0 for x = xi 6= xk

linear elsewhere
. (4.24)

Figure 4.2 illustrates both types of ansatz functions.

We use the space of constant discontinuous functions to approximate the surface trac-
tions

t̂i(x)≈ t̂h
i (x) :=

Ne

∑
k=1

ϕ0
k (x)t̂i (xk) ∈ S0

h(Γ) , (4.25)

and the space of linear continuous functions for the approximation of the displacements

ûi(x)≈ ûh
i (x) :=

Nn

∑
k=1

ϕ1
k (x)ûi (xk) ∈ S1

h(Γ) . (4.26)

Subsequently, the collocation scheme is used to obtain the full set of linear equations. For
unknown tractions we collocate at the center of the element, and for unknown displace-
ments at the element nodes.

The fully discretized single and double layer potential, (3.32a) and (3.32b) respectively,
read as follows

V̂h
i j[nm] :=

∫

supp(ϕ0
m)

Û∗i j (xn,y)ϕ0
m (y)dsy (4.27a)

K̂h
i j[nm] := −

∫

supp(ϕ1
m)

T̂ ∗i j (xn,y)ϕ1
m (y)dsy . (4.27b)

Please note that we print the discretization index [·] in brackets in order to avoid confusion
with the index denoting the tensor components.
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x y

z xl1
xl2

xl3

τl

(a) Boundary element in R3

ξ1

ξ2

τ

(b) Reference element in R2

Figure 4.3: Illustration of a triangular boundary element and the corresponding reference
element

Observe that the integrals above can be written as
∫

supp(ϕα
m )

K(xn,y)ϕα
m (y)dsy = ∑

τl∈supp(ϕα
m )

∫

τl

K(xn,y)ϕα
m (y)dsy , (4.28)

where the symbol K(x,y) denotes the kernel function, i.e. the displacement or traction
fundamental solution, where we dropped the tensor indices for simplicity. We are con-
sequently left with the task of integrating the kernel function over the boundary element
τl .

4.3 Numerical integration

In this section, we discuss the evaluation of the Kernel integrals over the boundary ele-
ments, which is also the numerically most demanding task of the BEM. This integration
can either be performed analytically or numerically. The former is obviously strongly ker-
nel dependent and can lead to quite complicated expressions but can be quite efficient. The
latter is a more flexible approach which can be utilized independent of the kernel function
by numerically approximating the integral using a Gauss quadrature. In the present work,
we choose the latter approach where we use a highly efficient symmetric quadrature rule
for triangles presented in [28]. However, before we can apply the quadrature rule, we need
to transform the integral over the element in R3 into an integral over a reference element
given in R2.

4.3.1 Transformation to the reference element

The reference element is a right angled triangle with the short side length of one in R2

defined as
τ = {ξξξ ∈ R2 : 0 < ξ1 < 1,0 < ξ2 < ξ1} , (4.29)
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see Fig. 4.3b. For each triangle (see Fig. 4.3a) there exists a linear mapping from the
reference triangle to the boundary element xτl : τ ⊂ R2→ τl ⊂ R3 given by

xτl(ξξξ ) = xl1 +ξ1 (xl2−xl1)+ξ2
(
xl3−xl1

)
for all ξξξ ∈ τ . (4.30)

The integral over the element τl given in (4.28) is computed using the mapping to the
reference element

∫

τl

K (xn,y)ϕα
m (y)dsy =

∫

τ

K (xn,yτl(ξξξ ))ϕα
m (yτl(ξξξ ))

√
gldξξξ . (4.31)

In the above, we used the Gram determinant gl of the coordinate transformation, which is
defined as

gl := det
(

J>l Jl

)
. (4.32)

The symbol Jl is the Jacobi matrix of the linear mapping (4.30) and is given by

Jl =

(
∂x
∂ξ1

,
∂x
∂ξ2

)
=
(
xl2−xl1,xl3−xl1

)
. (4.33)

Using the following abbreviations

a = xl2−xl1 a = |a|
b = xl3−xl1 b = |b|

γ = ^ab ,
(4.34)

the Gram determinant for mapping to the element τl is given by

gl := det

(
b ·a b ·b
a ·a a ·b

)
= a2b2−a2b2 cosγ = a2b2 sinγ = 4∆2

l . (4.35)

Observe that the symbol ∆l denotes the surface area of the triangle τl .

The integral (4.31) consequently reads as
∫

τl

K (xn,y)ϕα
m (y)dsy = 2∆l

∫

τ

K (xn,yτl (ξξξ ))ϕα
m (yτl (ξξξ ))dξξξ . (4.36)

In order to compute the double layer potential we need the surface unit normal vector n(x).
For a parametrized surface the normal vector is given by

n(ξξξ ) =
∂x
∂ξ1
× ∂x

∂ξ2∣∣∣ ∂x
∂ξ1
× ∂x

∂ξ2

∣∣∣
=

1√
gl
εi jk

∂x j

∂ξ1

∂xk

∂ξ2
. (4.37)
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Using plane triangles the surface normal is constant over the element and the expression
above simplifies to

nl =
1

2∆l
(xl2−xl1)×

(
xl3−xl1

)
. (4.38)

In the following, to evaluate the strongly singular integral in (4.27b) in the case xn ∈
supp

(
ϕ1

m
)
, we will nee to compute the surface curl defined as n(x)×∇. In local coor-

dinates it is given by

n(x)×∇ =
1√
gl

(
∂xτl

∂ξ1

∂
∂ξ2
− ∂xτl

∂ξ2

∂
∂ξ1

)
. (4.39)

For flat triangles the above expression simplifies to

n(x)×∇ =
1

2∆l

(
(xl2−xl1)

∂
∂ξ2
−
(
xl3−xl2

) ∂
∂ξ1

)
. (4.40)

4.3.2 Regular integration

To perform the regular integration we use the quadrature rule for triangles presented in the
work of Dunavant [28]. For an the kernel function K (x,y) and test function ϕα

m (y) the
integral over one element τl can be approximated by an quadrature rule

∫

τl

K (xn,y)ϕα
m (y)dsy ≈

√
gl

NI

∑
i=1

ωiK (xn,yτl(ξξξ i))ϕα
m (yτl(ξξξ i)) . (4.41)

In the above the set {ωi}NI
i=1 are the Gauss weights and {ξξξ i}NI

i=1 the corresponding Gauss
points defined on the reference element. The symbol NI denotes the order of the Gauss
quadrature. The numerical error introduced in the approximation (4.41) needs to be con-
trolled in order to maintain the convergence rate of the method. This is done by varying
the integration order NI with respect to the distance of the center of element c(τl) to the
collocation point xn and the element size ∆l . This ensures high numerical accuracy while
providing a low computational effort. In the present work the integration order is chosen
according to

NI =





14 |c(τl)−xn|/∆l ≤ 3
9 |c(τl)−xn|/∆l > 3∧ |c(τl)−xn|/∆l ≤ 5
4 |c(τl)−xn|/∆l > 5

. (4.42)

For a discussion on the choice of quadrature order depending on the distance of two ele-
ments the reader is referred to the thesis of Kielhorn [48].



32 4 Boundary element formulation

ξ1

ξ2

ζ1

ζ2

Figure 4.4: Integration over triangle with collocation point at one edge using Duffy trans-
form.

4.3.3 Weakly singular integration

In this section, we discuss the weakly singular integration of the kernel function. We note
that the displacement fundamental solution (3.17) exhibits a weak singularity in the limit
x→ y. Consequently, using the regular integration scheme described above, leads to a
large numerical error. However, it is possible to utilize a regular quadrature scheme if a
special coordinate transformation is performed beforehand. This coordinate transfomation
was introduce in the work of Lachat and Watson [50] but is commonly known as Duffy
transform [27].

Let the singularity be located at ξξξ = (0,0). The mapping ξξξ (ζζζ ) from the reference quad-
rangle

σ = {ζζζ ∈ R2 : 0 < ζ1 < 1,0 < ζ2 < 1} , (4.43)

to the reference triangle τ is defines as

ξξξ (ζζζ ) : σ ⊂ R2→ τ ⊂ R2 , with

(
ξ1

ξ2

)
=

(
ζ1

ζ1ζ2

)
. (4.44)

The gram determinant gσ of the cordinate transform (4.44) reads as

gσ = 4ζ 2
1 . (4.45)

Consequently the integral over the reference triangle in (4.31) can be written as

1∫

0

ξ1∫

0

f (ξξξ )dξ2dξ1 = 2
1∫

0

1∫

0

f (ξξξ (ζζζ ))ζ1dζ1dζ2 . (4.46)

We note that the gram determinant cancels the weak singularity at ζ1 = 0. Consequently,
the modified integral (4.46) can be evaluated using a standard Gauss-Legendre quadra-
ture.
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Please note that if the collocation point coincides with a triangle corner the above proce-
dure can be applied directly. However, one might need to change the linear map (4.30)
in order to ensure that the singularity resides at ξξξ = (0,0) on the reference element. If
the collocation point is at the center of the element, the triangle is first split into three sub
triangles

∫

τl

K (xn,y)ϕα
m (y)dsy =

3

∑
i=1

∫

τ i
l

K (xn,y)ϕα
m (y)dsy . (4.47)

The resulting integrals can then in turn be evaluated using the procedure outlined above.
We note that using the coordinate transformation to obtain a regular integral only works if
the singularity of the kernel function is weak. As the traction fundamental solution exhibits
a strong singularity in the limit x→ y the DLP operator needs to be modified in order to be
suitable for the Duffy transform to be applied. The resulting regularized DLP is presented
in the following section.

4.3.4 Regularized double layer potential operator

In this section we present the regularized version of the double layer potential operator
derived in the thesis of Kielhorn [48], which is based on the work of [44]. For anisotropic
elastodynamic problems a regularized BIE can be found in the paper of Becache, Nedelec
and Nishimura [12].

The main idea of the regularization process is to shift derivatives of the kernel function to
the displacement field u(y). Note that this requires the displacement field to be approxi-
mated with at least linear ansatz function. Furthermore, as partial integration is applied to
shift the derivative we require the ansatz functions of the displacement field to be continu-
ous. This ensures that the resulting boundary terms of the partial integration vanish, since
ϕ1(x) = 0 at the edge of the support, see Fig. (4.2). On a continuous level this condition
requires the boundary to be closed.

The Günter operator given in [47, 48] is defines as

Mi j (∂x,n(x)) = n j
∂

∂xi
−ni

∂
∂x j

. (4.48)

Furthermore, we introduce the operator

Ui j (∂x,n(x)) = n j
∂

∂xi
, (4.49)
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Using these operators the regularized elastodynamic double layer potential in Laplace do-
main

(K̂i jû j)(x) =2µ
∫

Γ

Û∗i j (x,y)
(
M jk (∂y,n(y)) ûk (y)

)
dsy

−
∫

Γ

(
∂ 2

∂yk∂yk
χ(x,y)

)(
Mi j (∂y,n(y)) û j (y)

)
dsy

−
∫

Γ

[
nl

∂
∂yl

(
∂ 2

∂yk∂yk
χ(x,y)

)]
δi jû j (y)dsy

+
∫

Γ

[
s2

c2
P

(
U ji (∂y,n(y))χ(x,y)

)
− s2

c2
S

(
Ui j (∂y,n(y))χ(x,y)

)

− s2

c2
P

(
nk

∂
∂yk

χ(x,y)
)

δi j

]
û j (y)dsy . (4.50)

with

χ(x,y) =
1

4π
(

s2

c2
P
− s2

c2
S

) e−
s

cP
r− e−

s
cS

r

r
(4.51)



5 THE FAST MULTIPOLE METHOD

In this chapter, we discuss the kernel interpolation based fast multipole method and its ex-
tensions to oscillating kernel functions in the high frequency regime and to elastodynamic
problems. We start our discussion by introducing the necessary clustering of the compu-
tation domain in Section 5.1. Next, we introduce the admissibility condition to identify
low-rank matrix blocks in Section 5.2. In Section 5.3, we discuss the kernel interpolation
scheme used in the FMM algorithm, which we present in the Section 5.4. In the following
Section 5.6, we present a complexity analysis of the proposed algorithms. Subsequently,
in Section 5.7 we recall the directional clustering scheme and kernel modification for the
high frequency regime. In Sections 5.8 and 5.9, we present the extension of the kernel in-
terpolation FMM to the elastodynamic displacement and traction fundamental solutions.

The following chapter is not intendet as an introduction into the FMM as there are many
exellent papers and textbooks available on this topic. The reader is refered to the original
paper of Greengrad and Rokhlin [40] or, for a easy introduction into the FMM, the paper of
Ying [92] or the textbook of Liu [52] need to be mentioned. The implementational details
of the FMM are discussed in the paper of Darve [25]. For an overview of the FMM and its
applications to elastodynamic problems we refer the reader to the excellent review article
of Nishimura [68].

The aim of the FMM is to efficiently compute the self interaction of N particles. Instead of
computing all interactions directly, which takes O (N) operations, the necessary informa-
tion is collected from the target particles and distributed to source particles in a recursive
fashion, which significantly reduces the computational effort. This basic idea is illustrated
in Fig. 5.1.

The FMM under consideration is based on the black box FMM introduced by Fong and
Darve [31]. It can be easily extended to deal with oscillatory kernels using the idea of a
directional clustering introduced by Engquist and Ying [29] and a plane wave modification
of the kernel function [16]. For Helmholtz kernels this has been presented in the paper of
Messner et al. [66] for particle interactions and in [62] where boundary integral operators
are considered.

35
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(a) Direct approach (b) FMM approach

Figure 5.1: Evaluation of interactions: Direct vs. FMM

5.1 Clustering

In order to construct a fast summation scheme, we need a separable expansion of the kernel
function, which takes the form

K(x,y) =
`

∑
k=1

uk(x)vk(y) . (5.1)

However, it is not possible to construct such a degenerate decomposition for the whole
matrix since it is full rank, but only for off-diagonal subblocks. These subblocks can be
found using a geometrical distance criterion. To efficiently identify the matrix blocks and
their associated degrees of freedom we introduce a hierarchical, geometrical and uniform
partitioning of the computation domain Γh, see Fig. 5.2. This partitioning procedure is
performed as follows:

1. Initialization: In the first step, we create the root cluster C 0 ⊂ R3. Its boundary,
which we call bounding box, is a square box with side length

d0 = max
x̂,x̃∈Γh

||x̂− x̃||∞ (5.2)

and center c
(
C 0), given by

ci
(
C 0)= 1

2

(
max
x̂∈Γh

(x̂i)+ min
x̃∈Γh

(x̃i)

)
, (5.3)

enclosing the whole domain. Furthermore, we create an entry list of all degrees of
freedom associated with the root cluster E

(
C 0

k

)
:= { j : c

(
ϕα

j

)
∈ C 0

k }. The symbol

c
(

ϕα
j

)
denotes the center of the ansatz functions: For constant discontinuous ansatz
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Figure 5.2: Illustration of the clustering algorithm applied ot the boundary of a two dimen-
sional computation domain

functions we choose the center of the element and for linear continuous functions
the position of the element node. The root cluster’s entry list obviously contains
all degrees of freedom. Please note, that while a rectangular cuboid can be used to
define the bounding box, in this work we only consider cubic boxes.

2. Recursive partitioning: In the next step, we recursively subdivide the cluster C l
k into

8 equally sized child-clusters

Ch
(
C l

k

)
= {C l+1

8k+ j}7
j=0 ∀k = 0, . . . ,8l−1 and ∀l = 0, . . . ,L−1, (5.4)

with side length dl = d0

2l . We call the cluster P
(
C l+1

k

)
:= { j : C l+1

k ⊂ C l
j} parent

of cluster C l+1
k and the final level of subdivision L− 1 is called leaf level. Again,

the degrees of freedom are assigned to the corresponding entry lists E
(
C l+1

k

)
.

Furthermore, all non-empty clusters of level l + 1 are collected in a cluster list
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x y

z

dl

d̄l

Figure 5.3: Cluster extension. The symbol dl denotes the original and d̄l the extended
bounding box diameter, respectively.

Cl(l +1) := {k : E
(
C l+1

k

)
6= /0}. The set of entry lists together with the lists of

non-empty clusters define the cluster tree T . Finally, we create a set of ancestors
defined as A

(
C l+1

k

)
:= { j : C l+1

k ⊂ C l̃
j ∀l̃ < l}.

3. Bounding box extension: For every cluster we need to ensure that the supports of all
its associated ansatz functions are contained within that cluster’s bounding box, i.e.
x ∈ C l

k for all x ∈ supp
(

ϕα
j

)
with ϕα

j ∈ E
(
C l

k

)
. However, this is not guaranteed by

our initial definition of the cluster side length. We therefore introduce an extended
bounding box with side length d̄l , see Fig. 5.3. The leaf level extension is given by

d̄L−1 = 2 max
C l

k∈Cl(L−1)


 max

x∈supp(ϕα
j )

ϕα
j ∈E(C l

k)

(
||x− c

(
C l

k

)
||∞
)

 . (5.5)

For all other levels it is defined as

d̄l = dl +
(
d̄L−1−dL−1) . (5.6)

5.2 Interaction list

The matrix arising from a discretized boundary integral operator is spanned by a set of
collocation points and ansatz functions. We cluster both in the above described manner
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l = 2

xa

C l
X i

C l
Y j ∈NF

(
C l

X i
)

C l
Y k ∈ I

(
C l

X i
)

l +1 = 3

C l+1
X i

C l+1
Y j ∈NF

(
C l

X i
)

C l+1
Y k ∈ I

(
C l

X i
)

Figure 5.4: Construction of the near field and interaction list. We search for admissible
clusters of C l

X i only in { j : P
(
C l

Y j

)
∈NF

(
P
(
C l

X i
))
} and collect all clusters

which fulfill (5.7) into the interaction list. All other clusters are collected into
the near-field list NF

(
C l

X i
)
. Then we proceed to the next level until the leaf

level is reached.

resulting in a target cluster tree of collocation points TX and a source cluster tree TY of
ansatz functions. For the cluster trees TX and TY we need to identify cluster pairs for
which a low-rank approximation can be constructed. We call such cluster pairs admissible
clusters. Similar to [14] we introduce a distance criterion

t
(
C l

X i,C
l

Y j

)
≥ η max

(
d̄ l

X i, d̄
l
Y j

)
, with η >

√
3 (5.7)

called admissibility condition that needs to be fulfilled to construct such low-rank approx-
imations. The vector t

(
C l

X i,C
l

Y j

)
= c
(
C l

Y j

)
− c
(
C l

X i
)

connecting the cluster centers is

called transfer vector with t
(
C l

X i,C
l

Y j

)
its Euclidean norm.

For each target cluster C l
X i we create a set of non-empty source clusters C l

Y j that do not
satisfy (5.7)

NF
(
C l

X i

)
=
{

j : t
(
C l

X i,C
l

Y j

)
< η max

(
d̄ l

X , d̄
l
Y

)
∧C l

Y j ∈ Cl(l)
}
. (5.8)

We call this set the near-field of C l
X i. Admissible clusters are collected into the interaction

list I
(
C l

X i
)
. However, we need to ensure that the interaction has not already been com-

puted at a higher level. Therefore, only the near-field of the parent is considered for the
interaction list

I
(
C l

X i

)
=
{

j : t
(
C l

X i,C
l

Y j

)
≥ η max

(
d̄ l

X , d̄
l
Y

)
∧P

(
C l

Y j

)
∈NF

(
P
(
C l

X i

))
∧C l

Y j ∈ Cl(l)
}

.
(5.9)

To efficiently construct both the near-field and interaction lists in O (N) operations we
traverse the cluster tree TX starting from the root level. Fig. 5.4 illustrates this process.
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5.3 Kernel interpolation

After identifying all admissible cluster blocks, we need to construct their low-rank ap-
proximation. In the present work, we choose Chebyshev interpolation to perform this task.
This method has the distinct advantage of being independent of the explicit form of the
kernel function.

First, we note that the interpolation of an arbitrary function k(x) : [a,b]→C can be written
as

k(x)≈
`

∑
m=1

S`[a,b] (x̄m,x) k
(
Φ[a,b] (x̄m)

)
. (5.10)

In (5.10) we used the interpolation operator S`[a,b] (x̄m,x) of order `, the roots of the Cheby-
shev polynomial x̄m of the same order, and the linear transformation Φ[a,b] : [−1,1]→ [a,b].

The mth root of the Chebyshev polynomial T` is given by x̄m = cos
(
(m− 1

2)π
`

)
and the in-

terpolation operator is defined as

S`(x̄m,x) =
1
`
+

2
`

`−1

∑
n=1

Tn(x)Tn(x̄m) ∀x ∈ [−1,1] , (5.11)

with the Chebyshev polynomial of order n, given by Tn(x) = cos(narccos(x)) for all x ∈
[−1,1]. For convenience we, furthermore, define

S`[a,b] (x̄m,x) =

{
S`
(

x̄m,Φ−1
[a,b] (x)

)
x ∈ [a,b]

0 otherwise .
(5.12)

The interpolation operator S`[a,b](x̄m,x) can be extended to [a,b]⊂ Rd by

S`d
[a,b](x̄m,x) =

d

∏
i=1

S`[ai,bi]
(x̄mi,xi) mi ∈ {1, . . . , `} . (5.13)

The symbol x̄m = (x̄m1, . . . , x̄md) ∈ Rd denotes the vector of Chebyshev roots, using m as
a multi index. Furthermore, we implicitly used Φ[a,b] : [−1,1]→ [a,b], which is the linear
transformation from the d-dimensional unit cube to an arbitrary interval in Rd .

Using (5.10) and (5.13), the approximation of the kernel function K(x,y) with x∈C l
X i and

y ∈ C l
Y j, consequently, can be written as

K(x,y)≈∑
m

S`
C l

X i
(x̄m,x)∑

n
K
(

ΦC l
X i
(x̄m) ,ΦC l

Y j
(ȳn)

)
S`CY j

(ȳn,y) . (5.14)

In the above equation we omitted d = 3 for better readability. We see that in (5.14) a
separation of the variables x and y is achieved.
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In the following, we need a few more tools to formulate the multi-level FMM algorithm
for scalar kernels and, subsequently, for the elastodynamic fundamental solutions. First,
we need a method to reuse the already computed interpolation coefficients to perform a
reinterpolation on either a larger or smaller interval. This is necessary to construct the
multi-level version of the FMM, which is presented in Section 5.3.1. Secondly, we need to
be able to compute derivatives of the interpolation operator. This is discussed in 5.3.2 and
will be used in the computation of the traction fundamental solution for the TED approach
as well as for both displacement and traction kernels in the HED approach.

5.3.1 Reinterpolation

Consider the partition of the interval [a,b] into subintervals [a,b] =
⋃
α
[aα ,bα ]. We note

that the approximation of k(x) on the interval [a,b] can be written as

k(x)≈
`

∑
m=1

k
(
Φ[a,b] (x̄m)

)
∑
α

`

∑
n=1

S`[a,b]
(
x̄m,Φ[aα ,bα ] (x̄n)

)
S`[aα ,bα ]

(x̄n,x) (5.15)

by using (5.10) to interpolate S`[a,b] on the smaller subintervals [aα ,bβ ]. We will use (5.15)
in the upward and downward pass of the FM algorithm. Finally, we note that we do not
necessarily need to use the same interpolation order in sub-intervals and the larger parent
interval. This is the basis of the variable order approach, where we increase the interpola-
tion order by a factor of one for every level we go up the cluster tree, see Section 5.5. The
variable order version of (5.15) consequently reads as

k(x)≈
`+1

∑
m=1

k
(

Φ[a,b]

(
x̄`+1

m

)) `

∑
n=1

S`+1
[a,b]

(
x̄`+1

m ,Φ[aα ,bα ]

(
x̄`n
))

S`[aα ,bα ]

(
x̄`n,x

)
, (5.16)

where we explicitly denoted the order of the Chebyshev roots with x̄`n and x̄`+1
m .

5.3.2 Derivatives of the interpolation operator

In the following we will need to compute fist and second order derivatives of the interpola-
tion operator. Third or higher order derivatives are not necessary for the boundary integral
operators under consideration.

The first and second order derivative of the Chebyshev polynomial of order n reads as

dTn (x)
dx

= nUn−1 (x) , (5.17)

d2Tn (x)
dx2 = n

(n+1)Tn (x)+Un (x)
x2−1

, (5.18)
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where the symbol Un denotes the Chebyshev polynomial of the second kind of order n,
given by

Un(x) =
sin((n+1)arccos(x))√

1− x2
∀x ∈ [−1,1] . (5.19)

Consequently, the first and second order derivatives of the one-dimensional interpolation
operator can be written as

dS` (x̄m,x)
dx

=
2
`

`−1

∑
n=1

nUn−1(x)Tn(x̄m) ∀x ∈ [−1,1], (5.20)

d2S` (x̄m,x)
dx2 =

2
`

`−1

∑
n=1

n
(n+1)Tn (x)+Un (x)

x2−1
Tn(x̄m) ∀x ∈ [−1,1] . (5.21)

Hence, for a d-dimensional interpolation operator Sd
` : [a,b]→ R with [a,b]⊂ Rd we can

write the first order partial derivative with respect to xi as

∂
∂xi

S`d
[a,b] (x̄m,x) :=

2
bi−ai

dS`[ai,bi]
(x̄mi,xi)

dxi

d

∏
k=1
k 6=i

S`[ak,bk]
(x̄mk ,xk) . (5.22)

Furthermore, the second order partial derivative is given by

∂ 2

∂xi∂x j
S`d
[a,b] (x̄m,x) :=





4
(bi−ai)

2

d2S`[ai,bi]
(x̄mi ,xi)

dx2
i

d
∏

k=1
k 6=i

S`[ak,bk]
(x̄mkxk) i = j

∏
l=i, j

2
(bl−al)

dS`[al ,bl ]
(x̄ml ,xl)

dxl

d
∏

k=1
k 6=i, j

S`[ak,bk]
(x̄mk ,xk) i 6= j .

(5.23)

5.4 The multi-level fast multipole algorithm

Now we are ready to define the FM algorithm to accelerate the computation of matrix-
vector products (MVP) of the form

f (xa) = ∑
b

∫

supp(ϕα
b )

K (xa,y)ϕα
b (y)dsy v(yb). (5.24)

Since the kernel interpolation can only be applied to off-diagonal sub-blocks we split f into
an f near(xa) where the direct leaf level near-field interactions are computed (P2P) and an
f FM(xa), which uses the outlined approximation scheme. The multi-level FM algorithm
reads as follows:
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1. P2M: In the first step, we compute the interpolation weights for all non-empty source
clusters at the leaf level.
For all C L−1

Y j ∈ Cl(L−1) and for all ȳn compute

gC L−1
Y j

(ȳn) = ∑
ϕ0

b∈C L−1
Y j




∫

supp(ϕα
b )

S`
C L−1

Y j
(ȳn,y)ϕα

b (y)dsy


v(yb) . (5.25)

2. M2M: In the next step, we recursively compute the interpolation weights for all
parent source clusters that have interactions. We start at the lowest non leaf level
and move up the cluster tree. This is also called upward pass:
For all l = L− 2, . . . ,2 and for all C l

Y j ∈ Cl(l) with C l
Y j ∈ I

(
C l

X i
)

and for all ȳm
compute

gC l
Y j
(ȳm) = ∑

C l+1
Y k ∈C(C l

Y j)
∑
n

S`C l
Y j

(
ȳm,ΦC l+1

Y k
(ȳn)

)
gC l+1

Y k
(ȳn) . (5.26)

3. M2L: In the third step, we transfer the interpolation weights from all source to all
target clusters at all levels:
For all l = L−1, . . . ,2 and for all C l

X i ∈ Cl(l) and for all I
(
C l

X i
)
6= /0 and for all x̄m

compute

hC l
X i
(x̄m) = ∑

Cl
Y j∈I(Cl

X i)

∑
n

K(ΦCl
X i
(x̄m) ,ΦCl

Y j
(ȳn))gCl

Y
(ȳn) . (5.27)

4. L2L: In the next step, we recursively update the interpolation weights for all target
child clusters using the weight of the parent cluster. We start one level below the
highest level with interactions and move down the cluster tree until the leaf level is
reached. This is called downward pass:
For all l = 3, . . . ,L− 1 and for all C l

X i ∈ Cl(l) with I
(
A
(
C l

X i
))
6= /0 and for all x̄n

compute

hC l
X i
(x̄n) = hC l

X i
(x̄n)+∑

m
S`

C l−1
X k

(
x̄m,
(

ΦC l
X i
(xn)

))
hC l−1

X k
(x̄m) , (5.28)

with C l−1
X k ∈P

(
C l

X i
)
.

5. L2P: In the final approximation step, we use the interpolation weights to compute
the resulting far-field f FM (xa) at the collocation points in all target leaf clusters:
For all C L−1

X i ∈ Cl(L−1) with I
(
C l

X i
)
6= /0 and for all xa ∈ E

(
C L−1

X i
)

compute

f FM
C L−1

X i
(xa) = ∑

m
S`

C L−1
X i

(x̄m,xa)hC L−1
X i

(x̄m) . (5.29)
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6. P2P: Finally, in the last step, we add the missing near field interaction f near(xa) at
the leaf level:
For all C L−1

X i ∈ Cl(L−1) and for all xa ∈ E
(
C L−1

X i
)

fC L−1
X i

(xa)= f FM
C L−1

X i
(xa)+ ∑

C L−1
Y j ∈NF(C L−1

X i )
∑

ϕα
b ∈E(C L−1

Y j )




∫

supp(ϕα
b )

K (xa,y)ϕα
b (y)dsy


v(yb) .

(5.30)

Remark 4 All aforementioned FM operators are computed at a precomputation stage.
The reason is that we need to preform multiple matrix-vector products when solving the
linear system of equations using an iterative solver. Precomputation and storing avoids the
re-assembling of FM operators for each MVP, but comes at the cost of increased storage
requirements.

Remark 5 Please note that the relative position of the child clusters with respect to the
parent cluster is independent of their actual position in the computation domain if a ge-
ometrical and uniform refinement of the domain is performed. Furthermore, for a 3-
dimensional computation domain the parent cluster is divided into 8 equally sized child
cluster using uniform partitioning. Therefore, for each level only 8 different M2M and
L2L interpolation operators are computed and stored, as they depend only on the relative
position of interpolation points within parent and child cluster.

5.5 Variable order

In this section, we discuss the variable order (VO) approach. The idea of the VO approxi-
mation is very simple. Instead of choosing a fixed global interpolation order for all levels
we vary the interpolation order with cluster size. We choose a low interpolation order
for clusters with a small bounding box diameter and conversely use a high interpolation
order for clusters with large diameter. This is achieved by keeping the interpolation order
constant at the leaf-level as we refine the octree and increase the interpolation order by a
constant increment of one for every level we go up the cluster tree.

For the DLP discretized with constant discontinuous ansatz functions the variable order
scheme leads to an optimal algorithm of linear complexityO (N). The paper of Tausch [87]
provides a proof of this property for a Galerkin-BEM and a FMM based on truncated
Taylor expansions. Similarly the paper of Börm, Löhndorf and Melenk [15] proves this for
a Galerkin-BEM and a Lagrangian interpolation based FMM. If other operators and higher
ansatz orders are considered, the algorithm does not exhibit the optimal linear complexity.
Nevertheless, our numerical examples show that for the SLP operator discretized with
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constant discontinuous ansatz functions, the variable order scheme can be used and results
in a significant performance increase, see Section 6.3.2. Furthermore, we observed that
it is not possible to apply the variable order scheme to the DLP operator discretized with
linear continuous ansatz functions while retaining convergence of the method.

5.6 Complexity analysis

In this section, we analyze the storage and computational complexity of the presented FM
algorithm. First, we note that for a two dimensional surface in R3 the number of non-empty
leaf clusters for a given octree level l is O

(
4l). To achieve a constant number of degrees

of freedom per leaf cluster for each mesh refinement level we choose L ∝ O (log(N)). It
can be easily seen that this yields the desired result by dividing the number of unknowns
by the number of non-empty leaf clusters

O (N)

O (4L)
=

O (N)

O
(
4log(N)

) = O (N)

O (N)
=O (1) . (5.31)

Furthermore, in order to ensure convergence of the method we choose ` ∝ O (log(N)).
This choice will yield a storage complexity of O

(
N log3 (N)

)
and computational com-

plexity of O
(
N log6 (N)

)
. However if a consant approximation error is considerd, which

means `= const the complexity estimates above reduce toO (N). These are the usual com-
plexity estimates one can find for the FMM for particle interaction, where the convergence
of the BEM is not considered.

5.6.1 Storage complexity

In the first step we analyze the overall memory requirement of the interpolation operators.
The size of a single P2M operator (5.13) for one ansatz function is C`3. The constant C
denotes the size of a single matrix entry. Since the P2M operator needs to be computed
for all ansatz functions the total required storage is simply given by C`3N. The M2M
interpolation operator computing a single parent-child interaction is a matrix of size `3×`3.
Since each parent cluster has a total of 8 child clusters the total M2M storage requirement
increases to 8C`6. For a given level it is sufficient to store only one set of M2M operators,
computing the interaction of one parent with it’s eight children due to its translational
invariance, see Remark 5. Using the same arguments as above we can derive the size of the
L2P and L2L operators which again read as C`3N and 8C`6, respectively. Consequently,
the combined total size of all the interpolation operators is given by

SIO = 2C
(
`3N +8(L−3)`6

)
. (5.32)
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Remembering that both the number of levels L and the interpolation order ` scale like
log(N) we obtain

O (SIO) =O
(
N log3 (N)

)
+O

(
log7 (N)

)
=O

(
N log3 (N)

)
. (5.33)

Please note that by using a constant interpolation order we obtain a linear scalingO (N) in
the estimate above.

Next, we estimate the storage complexity of the M2L operators. For a cluster at level l
all far-field interactions need to reside in a sphere, with a radius proportional to its parent
bounding box side length d l−1 = 2d l . The number of clusters in that sphere, i.e. all
possible far field interactions, can be estimated by dividing its volume by the volume of
the cluster itself. Consequently, we see that the number of far-field interactions can be
estimated to be constant O

(
(2d l)

3
/(d l)

3
)
= O (1). Using the fact that the M2L operators

are translationally invariant we require O
(
`6) of storage for all M2L operators of a given

level. Consequently, the total storage complexity for the M2L operators reads as

O (SM2L) =O
(
log7 (N)

)
. (5.34)

In the last step, we need to estimate the near-field size. From (5.31), we know that the
number of degrees of freedoms is constant for each leaf cluster. Furthermore, we note that
the number of near-field interactions is of O (1) following the same argument as in the
above. Finally, using that the total number of leaf clusters is of O (N) leads to

O (SM2L) =O (N) . (5.35)

5.6.2 Computational complexity

To derive the computational complexity of the FM algorithm we first need to estimate the
total number of non-empty clusters. First, we note that the number of non-empty clusters
for a given cluster level l can be written as

NC l = 4l = 4L−L+l = 4L4−(L−l) = cN4−(L−l) , (5.36)

where in the last step we used O (L) =O (log(N)) and c is a constant. Consequently, the
total number of non-empty clusters is given by

NC =
L−1

∑
l=2

NC l ≤ cN
L−1

∑
l=2

4−(L−l) ≤ cN
L−3

∑
i=0

4−i ≤ cN
∞

∑
i=0

4−i ≤ cN . (5.37)

In the last step we use the absolute convergence of the power series.
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The total computational cost of all M2L operators is consequently given by the total num-
ber of non-empty clusters times the number of interactions per cluster times the number of
operations per interaction

O (TM2L) =O (N)O (1)O
(
`6
)
=O

(
N log6 (N)

)
. (5.38)

The total computational costs of the P2M and the M2P operators are identical to their
storage requirement O

(
N log3 (N)

)
. The total computational cost of the M2M and the

L2L operators are given by the number of non-empty non-leaf clusters times the number
of operations per interaction, i.e. O

(
N log6 (N)

)
. Consequently, the total computational

cost of all interpolation operators is given by

O (TIO) =O
(
N log3 (N)

)
+O

(
N log6 (N)

)
=O

(
N log6 (N)

)
. (5.39)

Finally, the computational cost of the near field is given by the number of clusters in the
leaf level O (N) times the number of near-field interactions O (1) times the number of
operations per interaction O (1)

O (TNF) =O (N)O (1)O (1) =O (N) . (5.40)

Again, we note that using a constant interpolation order the estimates (5.38) and (5.39)
reduce to a linear complexity O (N).

5.6.3 Computational complexity - variable order

To achieve the desired linear complexity, the variable order approach requires the inter-
polation order to be increased by one for every octree level above the leaf level. The leaf
level interpolation order `min, however, is kept constant as mesh and octree are refined. We
note that the interpolation order for a given level can be written as `l = (L− l+ `min). The
total computational cost of all M2L operators is again given by the total number of non
empty clusters times the number of interactions per cluster times the number of operations
per interaction

TVO
M2L = c

L−1

∑
l=2

NC l(`l)
6 ≤ cN

L−1

∑
l=2

4−(L−l)(L− l + `min)
6 . (5.41)

In the first step, we used that the number of far-field interactions per cluster is of O (1).
Since the sum above can be estimated to be

L−1

∑
l=2

4−(L−l)(L− l + `min)
6 =

L−3

∑
i

(`min + i)6

4i <
∞

∑
i

(`min + i)6

4i < c , (5.42)
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the computational complexity of the M2L operator reduces to

O
(

TVO
M2L

)
=O (N) . (5.43)

Similar arguments hold true for the cost of the M2M and the L2L operators. Therefore, we
see that the overall computational cost using the variable order can be reduced to

O
(

TVO
)
=O (N) . (5.44)

5.7 Directional fast multipole method

In this section, we recall a few properties of the directional clustering and the plane wave
modification as presented in [66]. We note that we want to approximate oscillating kernel
functions of the form

K(r) = KS(r)eikr , (5.45)

where KS(r) represents the non-oscillating smooth part of the function and k denotes the
wave number. For this kind of kernel function it is not directly possible to find a low rank
approximation with constant expansion order that is independent of k in the previously
described manner. Nevertheless, if K(r) is modified by adding a plane wave

KM(r) = KS(r)eikr−ikur (5.46)

with direction u a low rank representation can be constructed. However, this is true only
if the distance between source and target clusters is at least O

(
kd2), where d denotes

the cluster diameter. Furthermore, the source cluster needs to be located with respect
to the target cluster inside a cone with direction u and aperture of at most O (1/kd). These
requirements are referred to as directional parabolic separation condition and are illustrated
in Figure 5.5. A proof of the low rank property of the kernel function using this separation
condition can be found in the work of Enquist and Ying [29]. Figure 5.6 illustrates the
effect of the directional modification on the Helmholtz kernel. We see that by adding the
plane wave eikur we achieve a smoothing of the function in a cone with direction u.

In order to separate the high and low frequency regimes, we introduce a high frequency
switching condition. For level l of the octree it can be written as

d̄l > γλ (5.47)

using d̄l = max
(
d̄ l

X , d̄
l
Y
)
. However, it is convenient to rewrite the above using λ = 2π/k

into
1
γ

kd̄l

2π
> 1 . (5.48)
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Figure 5.5: Directional parabolic separation condition
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Figure 5.6: Helmholtz Kernel and directional modification using u = (1,0,0)

5.7.1 Partitioning of the far-field into pyramids

Consider the initial partition h = 0 with h ∈ N) of R3 into a set of six pyramis or wedges
{W h=0

p }N0
c−1

p=0 . Each pyramid is identified by its central direction {u0
p}

N0
c−1

p=0 with u0
0 =

(1,0,0), u0
1 = (0,1,0), u0

2 = (0,0,1), u0
3 = (−1,0,0), u0

4 = (0,−1,0), u0
5 = (0,0,−1).

The first pyramid with central direction into the positive x-axis is defined as

W (u0
0) :=

{
d ∈ R3 : d1 > |d2|,d1 > |d3|

}
. (5.49)

All other pyramids are defined accordingly.

In the next step h > 0 we partiton each pyramid into a subset of 4h wedges. For the first
pyramid we define the angles

θp=1(d) = arctan
(

d2

d1

)
and φp=1(d) = arctan

(
d3

d1

)
, (5.50)
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Figure 5.7: Initial partition of R3 into pyramids. The pyramid W 0
0 is denoted light gray.

with d ∈ R3. Note that |θ(d)| ≤ π/4 as well as |φ(d)| ≤ π/4. For all other pyramids the
angles are defined accordingly. Consequently, the sub pyramids are defined as follows

W (uh
c) :=

{
c = p4h + i2h + j : d ∈W 0

p ,−
π
4
+

π
2h i≤ θp(d)≤−

π
4
+

π
2h (i+1),

−π
4
+

π
2h j ≤ φp(d)≤−

π
4
+

π
2h ( j+1)

}
. (5.51)

Using (5.48) the number of cones in each level can be determined by

nl
cones = 6×4floor

(
log2

(
1
γ

kd̄l
2π

))
+α

. (5.52)

In the above α ∈ N is a constant and controls the inital partition. The cone opening angel
is consequently given by

θ =
π

2 nl
cones/6

. (5.53)

For a given octree level l in the high frequency regime we collect the wedges W (uh
c) with

central directions uh
c into the setsW l and U l , respectively.

5.7.2 High frequency admissibility condition

The directional clustering is illustrated in Figure 5.4. Following [29, 66] we introduce the
parabolic separation condition, which reads as

t
(
C l

X ,C
l

Y

)
≥ ηHF

(
1
γ

kd̄l

2π

)
d̄ l , (5.54)
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with ηHF ≥ η . The high frequency interaction list consequently reads as

IHF
(

u;C l
X i

)
=





j :

t
(
C l

X i,C
l

Y j

)
≥ ηHF

(
1
γ

kd̄l

2π

)
d̄ l∧

t
(
C l

X ,C
l

Y
)
∈W (u)∧

P
(
C l

Y j

)
∈NF

(
P
(
C l

X i
))
∧

C l
Y j ∈ Cl(l)





. (5.55)

for u ∈ U l . Thus, for each cluster C l
X i there exists a set of high frequency interaction lists

corresponding to a set of pyramids with central direction vectors U l .

5.7.3 High frequency kernel interpolation and modified FMM operators

In this section, we discuss the approximation of the kernel function in the high frequency
regime. Consider two cluster x∈CX and y∈CY fulfilling the directional parabolic separa-
tion condition for a cone with central direction u, i.e. CY ∈ IHF (u;CX). First, we multiply
the original kernel function with two plane waves of opposite directions

K(x,y) = K(x,y)e−ikum(xm−ym)eikun(xn−yn)︸ ︷︷ ︸
=1

. (5.56)

Next, we split up the exponential functions and rearrange the terms

K(x,y) = eikumxm
[
e−ikunxnK(x,y)eikuryr

]

︸ ︷︷ ︸
=KM(x,y)

e−ikusys . (5.57)

The approximation of the modified kernel function KM (x,y) reads as

KM(x,y)≈∑
m

S`CX
(x̄m,x)∑

n
KM (x̄m, ȳn)S`CY

(ȳn,y) . (5.58)

Please note that for better readability we did not include the necessary linear transform
ΦCX/Y

of the interpolation nodes ȳn and x̄m which are defined only on the unit interval.
Inserting the definiton of the modified kernel function yields

KM(x,y)≈∑
m

S`CX
(x̄m,x)e−ikux̄m ∑

n
K (x̄m, ȳn)eikuȳnS`CY

(ȳn,y) . (5.59)

Finally by inserting the above into (5.57) we obtain

K(x,y)≈ eikux ∑
m

S`CX
(x̄m,x)e−ikux̄m

︸ ︷︷ ︸
HF−L2P

∑
n

K (x̄m, ȳn)

︸ ︷︷ ︸
M2l

eikuȳnS`CY
(ȳn,y)e−ikuy

︸ ︷︷ ︸
HF−P2M

. (5.60)

The modified high frequency interpolation operators consequently read as follows:
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u

Figure 5.8: Directional admissibility criterion and interaction list

1. HF-P2M: For all C L−1
Y j ∈ Cl(L−1), for all ȳn and for all u ∈ UL−1 compute

gHF
C L−1

Y j
(u; ȳn) = eikuȳn ∑

ϕ0
b∈C L−1

Y j




∫

supp(ϕα
b )

S`
C L−1

Y j
(ȳn,y)e−ikuyϕα

b (y)dsy


v(yb) .

(5.61)

2. HF-M2M: For all l = L−2, . . . ,2 and for all C l
Y j ∈ Cl(l) and u′ ∈ U l , with C l

Y j ∈
I
(
u′;C l

X i
)
, and for all ȳm compute

gHF
C l

Y j

(
u′; ȳm

)
= eiku′ȳm ∑

C l+1
Y k ∈C(C l

Y j)
∑
n

S`
C l

Y j
(ȳm, ȳn)e−iku′ȳngHF

C l+1
Y k

(u, ȳn) , (5.62)

with u′ ∈W (u).

4. HF-L2L: For all l = 3, . . . ,L−1 and for all C l
X i ∈Cl(l) and u′ ∈U l with I

(
A
(
u;C l

X i
))
6=

/0, u ∈W (u′) and for all x̄n compute

hHF
C l

X i

(
u′; x̄n

)
= hC l

X i

(
u′; x̄n

)
+ e−iku′x̄n ∑

m
S`

C l−1
X k

(x̄m, x̄n)eiku′x̄mhC l−1
X k

(u; x̄m) . (5.63)

5. HF-L2P: For all C L−1
X i ∈ Cl(L−1) with I

(
u;C l

X i
)
6= /0,u ∈ UL−1 and for all xa ∈

E
(
C L−1

X i
)

compute

f FM
C L−1

X i
(xa) = e−ikuxa ∑

m
S`

C L−1
X i

(x̄m,xa)eikux̄mhC L−1
X i

(u; x̄m) . (5.64)
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5.7.4 Computational complexity

In this section, we briefly review the numerical complexity of the directional FMM. The
complete proof is given in the paper of Engquist and Ying [29].

In the first step, it is convenient to scale the boundary such that the wave number k is
equal to one. As a consquence the diameter of the computation domain is proportinal to k.
Furthermore, the computation domain’s surface area scales like O

(
k2). It is assumed that

the surface is sampled with a fixed number of degrees of freedom per wavelength, which
results in O (N) =O

(
k2).

Due to the scaling the diameter of clusters in the high frequency regime are dl = 1,2,4, . . . ,
√

k.
Clusters with a diameter less than one are treated with the conventional FMM which re-
sults in an complexity of O (N) for a constant error. Clusters with a diameter larger than√

k have no far-field interactions due to the parabolic separation condition.

First, we consider the M2M and P2P operators. Due to the partitioning of the far field
into pyramids we need to compute (5.62) for

(
dl

HF
)2 directions. The number of clusters

for a given level can be estimated by dividing the boundary area by the area of a cluster
O
(

k2/(dl)
2). The total computational complexity of the interpolation operators is then

given by the number of levels times the number of clusters in that leave times number of
cones times the number of operatons per M2M-/L2L-operator.

O
(
T HF

IO
)
=O (log(N))O

((
dl
)2
)
O
(

k2

(
dl
)2

)
O (1) =O

(
k2 logN

)
=O (N log(N)) .

(5.65)

Next, we consider the overall complexity of the M2L interactions. For a cluster of level l in
the high frequency regime using the parabolic separation condition all far-field interactions
need to reside in a sphere with a radius proportinonal to its parent bounding box side length
squared

(
2d l)2. Note, the degrees of freedom are located on a two dimensional surface

in R3. As a consequnece, we obtain the following estimate O
(
(2d l)

4
/(d l)

2
)
=O

((
d l)2

)

for the number of far-fiel interactions per cluster. Furthermore, we have O
(

k2/(d l)
2) non-

empty cluster at level l. Consequently, the overall complexity of the M2L operatons is
given by the number of levels times the number of non-empty clusters in that level times
number of far-field interactions times the number of operatons per interaction

O
(
T HF

M2L
)
=O (log(N))O

(
k2

(
d l
)2

)
O
((

d l
)2
)
O (1) =O (N log(N)) . (5.66)



54 5 The fast multipole method

5.8 Fast multipole method - TED

In this section, we will discuss how the FMM for scalar kernel functions, introduced in
the previous section, needs to be modified in order to be applied to the tensor valued elas-
todynamic fundamental solution. As already mentioned, we can achieve this goal either
by direct interpolation of the tensorial kernel function, we denote this approach TED, or
by expressing the fundamental solution as a function of scalar Helmholtz kernels, which
is subsequently referred to as HED approach. For both approaches we derive modified
P2M-, M2L-, L2P- and P2P-operators.

We start the discussion of the TED approach by recalling the displacement fundamental
solution given in [24], which can be written in the following form:

Û∗i j(r,s) = ∑
α=P,S

α
Û∗i j(r,s) (5.67a)

P
Û∗i j(r,s) =

e−
s

cP
r

4πρs2

(
3r,ir, j−δi j

r3

(
s

cP
r+1

)
+

(
s

cP

)2 r,ir, j
r

)
, (5.67b)

S
Û∗i j(r,s) =

e−
s

cS
r

4πρs2

(
3r,ir, j−δi j

r3

(
s
cS

r+1
)
+

(
s
cS

)2 r,ir, j +δi j

r

)
. (5.67c)

Here we split Û∗i j into two separate terms corresponding to the pressure and shear wave
respectively. We note that both (5.67b) and (5.67c) are now of the form (5.45), with
kα = Im

(
s

cα

)
and α = S,P. Thus, we will approximate the two terms individually. Fur-

thermore, we create separate interaction
α
I
(
C l

X k

)
and near-field lists

p
NF
(
C l

X k

)
for both

terms, see Fig. 5.9, as in the high frequency regime the admissibility distance is a function
of kα .

Remark 6 Please note that a different approach to the one outlined above is an indepen-
dent scaling and clustering of the domain for the pressure and shear wave components of
the fundamental solution. This method is discussed in the work of Tong and Chew [88]
and might be computationally advantageous. However if the pressure and shear wave
components of the fundamental solution are scaled independently, the arsing strong singu-
larities do not cancel anymore. Therefore great care needs to be taken when the near-field
contributions are evaluated.
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l = 3

C l+1
X i

C l+1
Y j

C l+1
Y k

C l+1
Y l

Figure 5.9: This figure illustrates the difference between the interaction and near-filed lists
of the P- and the S-term for the elastodynamic fundamental solution in the high
frequency regime. The red cluster C l+1

Y j is in the near-field of C l+1
X i for both

the P- and the S-term. The blue clusters are already in the interaction list of the
pressure wave since kP < kS but still in the near-field of shear wave. Finally,
all green clusters are again in the interaction lists for both terms.

5.8.1 Single layer potential

Following (5.14), the interpolation of the displacement fundamental solution for x ∈ CX
and y ∈ CY can be written as

Û∗i j(x,y)≈ ∑
α=P,S

∑
m

S`CX
(x̄m,x)∑

n

α
Û∗i j (x̄m, ȳn)S`CY

(ȳn,y) , (5.68)

where we dropped the explicit dependence of Û∗i j on s. Again, we split the matrix vector
product defined by (3.32a) into its near and far field contributions. Using (5.68) and (4.27a)
we can identify the modified FM operators for the SLP.

1. SLP-P2M: Compute the two (α = P,S) vector valued interpolation weights
α
gSLP

C L−1
Y k

in

all source clusters at the leaf level. This is done by applying the scalar interpolation
operator to all three components of the traction vector t̂ individually

α
gSLP

C L−1
Y k j

(ȳn) = ∑
ϕ0

b∈E(C L−1
Y k )

SI,0
C L−1

Y k
(ȳn,yb) t̂ j (yb) . (5.69)

For better readability we introduced the integrated interpolation operator

SI,α
C L−1

Y k
(ȳn,yb) =

∫

supp(ϕα
b )

S`
C L−1

Y k
(ȳn,y)ϕα

b (y)dsy . (5.70)
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3. M2L: Compute the two vector valued interpolation weights
α
hC l

X k
in all target clusters

by applying the tensorial displacement fundamental solution
α

Û∗i j

α
hC l

X k i (x̄m) = ∑
C l

Y r∈
α
I(C l

X k)

∑
n

α
Û∗i j

(
ΦC l

X k
(x̄m) ,ΦC l

Y r
(ȳn)

)α
gSLP

C l
Y r j (ȳn) . (5.71)

5. L2P: Compute the resulting far field in all leaf target clusters by applying the scalar
interpolation operator to all three components of the interpolation weights separately
and adding both P and S components

f FM
C L−1

X k i (xa) = ∑
α=P,S

∑
m

S`
C L−1

X k
(x̄m,xa)

α
hC L−1

X k i (x̄m) . (5.72)

6. P2P: In the last step we need to add the missing near field contributions. This is done
in two stages. First we compute the near-field using the full fundamental solution

for
p

NF
(
C L−1

X k

)

P
f near
C L−1

X k i
(xa) = ∑

C L−1
Y r ∈

p
NF(C L−1

X k )

∑
ϕ0

b∈E(C L−1
Y r )




∫

supp(ϕ0
b )

Û∗i j (xi,y)ϕ0
b (y)dsy


 t̂ j (yb) .

(5.73)

Next, since
p

NF(C L−1
X k ) is only a subset of

s
NF(C L−1

X k ) in the high frequency case,
as illustrated in Fig. 5.9, we need to add these missing near-field contributions.
Here, we only use the S-term of the fundamental solution, as the P-term is already
approximated by the far-field interactions

fC L−1
X k i (xa)=

P
f near
C L−1

X k i
(xa)+ ∑

C L−1
Y r ∈

s
NF(C L−1

X k )

C L−1
Y r /∈

p
NF(C L−1

X k )

∑
ϕ0

b∈E(C L−1
Y r )




∫

supp(ϕ0
b )

s
Û∗i j (xi,y)ϕ0

b (y)dsy


 t̂ j (yb) .

(5.74)

Remark 7 Please note that in the above, step two and four (i.e. the M2M and L2L step)
have been omitted as they only differ slightly from the scalar version of the FM algorithm.
In the elastodynamic case scalar interpolation operators are applied to each vector com-

ponent of the interpolation weights
α
gC l

Y k
and

α
hC l

X k
individually.
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Remark 8 The elastodynamic displacement fundamental solution is a symmetric tensor.

Therefore, only the matricx entries
α

Û∗i j

(
ΦC l

X k
(x̄m) ,ΦC l

Y r
(ȳn)

)
with j ≥ i are stored in

the precomputation stage.

5.8.2 Double layer potential

It is not possible to apply (5.14) directly to approximate the traction fundamental solution.
However, we note that the traction fundamental solution is defined as

T̂ ∗i j (x,y) = λ n j (y)
∂

∂yk
U∗ik (x,y)+µ nk (y)

∂
∂yk

U∗i j (x,y)+µ nk (y)
∂

∂y j
U∗ik (x,y) , (5.75)

with the surface normal vector n(y).

In the first, step we plug in the approximation of the displacement fundamental solution
(5.68), which leads to

T̂ ∗i j (x,y)≈λ n j (y)
∂

∂yk

(
∑

α=P,S
S`CX

(x̄m,x)
α

Û∗ik (x̄m, ȳn)S`CY
(ȳn,y)

)

+µ nk (y)
∂

∂yk

(
∑

α=P,S
S`CX

(x̄m,x)
α

Û∗i j (x̄m, ȳn)S`CY
(ȳn,y)

)

+µ nk (y)
∂

∂y j

(
∑

α=P,S
S`CX

(x̄m,x)
α

Û∗ik (x̄m, ȳn)S`CY
(ȳn,y)

)
. (5.76)

All partial derivatives in the above are taken with respect to y and, thus, can we shifted to
the interpolation operator S`CY

T̂ ∗i j (x,y)≈ ∑
α=P,S

S`CX
(x̄m,x)

α
Û∗ik (x̄m, ȳn)

(
λ n j (y)

∂
∂yk

S`CY
(ȳn,y)

)

+ ∑
α=P,S

S`CX
(x̄m,x)

α
Û∗i j (x̄m, ȳn)

(
µ nk (y)

∂
∂yk

S`CY
(ȳn,y)

)

+ ∑
α=P,S

S`CX
(x̄m,x)

α
Û∗ik (x̄m, ȳn)

(
µ nk (y)

∂
∂y j

S`CY
(ȳn,y)

)
. (5.77)
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By rearranging the terms we obtain the modified interpolation operator for the traction
fundamental solution

T̂ ∗i j (x,y)≈ ∑
α=P,S

S`CX
(x̄m,x)

α
Û∗ik (x̄m, ȳn)

(
λ n j (y)

∂
∂yk

S`CY
(ȳn,y)+δ jkµ nl (y)

∂
∂yl

S`CY
(ȳn,y)+µ nk (y)

∂
∂y j

S`CY
(ȳn,y)

)
.

(5.78)

It is convenient to define an integrated interpolation operator including the first order partial
derivative of S` and the i th-component of the surface normal vector n

PI,α
C L−1

Y k ni∂ j
(ȳn,yr) :=

∫

supp(ϕα
r )

ni (y)
∂

∂y j
S`

C L−1
Y k

(ȳn,y)ϕα
r (y)dsy . (5.79)

Using (5.79) the tensorial DLP interpolation operator can, consequently, be written as

PI,1
C L−1

Y k i j
(ȳn,yp) := λPI,1

C L−1
Y k n j∂i

(ȳn,yp)+µPI,1
C L−1

Y k nk∂k
(ȳn,yp)δi j +µPI,1

C L−1
Y k ni∂ j

(ȳn,yp) .

(5.80)
The modified FM operator for the DLP consequently reads as follows

1. DLP-P2M: Compute the vector valued interpolation weights
α
gDLP
C L

Y k
by applying the

tensorial interpolation operator PI,1
C L−1

Y k i j
to the displacement vector u

α
gDLP
C L

Y k i (ȳn) = ∑
ϕ0

b∈C L
Y

PI,1
C L−1

Y k i j
(ȳn,yp) û j (xb) . (5.81)

Remark 9 We note that the M2L-operators for the SLP and DLP do not differ. Therefore,
the M2L-matrices assembled in the precomputation stage are stored only once and used
for both integral operators.

5.9 Fast multipole method - HED

The starting point of the HED formulation is again the displacement fundamental solution
in Laplace domain. Similar to [93] we can write

Û∗i j(x,y) =
1
µ

[
GS(x,y)δi j−

c2
s

s2
∂

∂xi

∂
∂y j

(
GS−GP

)
(x,y)

]
, (5.82)
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using the Helmholtz kernels given by

Gα(x,y) =
1

4πr
e−

s
cα r α = P,S . (5.83)

We split fundamental solution into three parts

S,0
Û∗i j(x,y) =

1
µ

GS(x,y)δi j , (5.84a)

α,1
Û∗i j(x,y) =

c2
s

µs2
∂

∂xi

∂
∂y j

Gα(x,y) α = P,S , (5.84b)

which will be approximated separately. Consequently,

Û∗i j(x,y) =
S,0
Û∗i j(x,y)+ ∑

α=S,P

α,1
Û∗i j(x,y) . (5.85)

We can now define the FM operators for the HED approach in a manner similar to the
previous section, where again we start with the single layer potential.

5.9.1 Single layer potential

First we note that the approximation of the Helmholtz kernel function is given by

Gα(x,y)≈ S`CX
(x̄m,x)Gα(x̄m, ȳn)S`CY

(ȳn,y) . (5.86)

By plugging the above into (5.84a) we obtain

S,0
Û∗i j(x,y)≈

[
1
µ

S`CX
(x̄m,x)

]

︸ ︷︷ ︸
L2P

GS(x̄m, ȳn)︸ ︷︷ ︸
M2L

[
S`CY

(ȳn,y)δi j

]

︸ ︷︷ ︸
P2M

. (5.87)

Similarly we obtain

α,1
Û∗i j(x,y)≈

c2
s

µs2
∂

∂xi

∂
∂y j

[
S`CX

(x̄m,x)Gα(x̄m, ȳn)S`CY
(ȳn,y)

]
, (5.88)

where we again can shift the partial derivative with respect to y to the interpolation operator
S`CY

α,1
Û∗i j(x,y)≈

[
c2

s
µs2

∂
∂xi

S`CX
(x̄m,x)

]

︸ ︷︷ ︸
L2P

Gα(x̄m, ȳn)︸ ︷︷ ︸
M2L

[
∂

∂y j
S`CY

(ȳn,y)
]

︸ ︷︷ ︸
P2M

. (5.89)
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1. SLP-P2M: Compute the vector valued interpolation weights
S,0
g SLP

C L−1
Y k i

(ȳn) and the

two scalar interpolation weights
α,1
g SLP

C L−1
Y k

(ȳn) in all source clusters at the leaf level

S,0
g SLP

C L−1
Y k i

(ȳn) = ∑
ϕ0

b∈E(C L−1
Y k )

SI,0
C L−1

Y k
(ȳn,yb)δi j t̂ j (xb) , (5.90)

α,1
g SLP

C L−1
Y k

(ȳn) = ∑
ϕ0

b∈E(C L−1
Y k )

PI,0
C L−1

Y k ∂ j
(ȳn,yb) t̂ j (xb) . (5.91)

Please note that in (5.90) we used the previously defined integrated interpolation
operator (5.70). Furthermore, in the above we introduced PI,α

C L−1
Y k ∂ j

which denotes an

integrated interpolation operator including the first partial derivative ∂/∂yi and reads
as

PI,α
C L−1

Y k ∂ j
(ȳn,y) :=

∫

supp(ϕα
r )

∂
∂y j

S`
C L−1

Y k
(ȳn,y)ϕα

r (y)dsy . (5.92)

3. M2L: Compute the vector valued interpolation weights
S,0
h C l

X k i (x̄m) in all target clus-

ters by applying the scalar Helmholtz kernel GS (x̄m, ȳn) to all three components

of the interpolation weights
S,0
g SLP

C l
Y r i

(ȳn). Furthermore, the two scalar interpolation

weights
α,1
h C l

X k
(x̄m) need to be computed

S,0
h C l

X k i (x̄m) = ∑
C l

Y r∈
S
I(C l

X k)

∑
n

GS
(

ΦC l
X k
(x̄m) ,ΦC l

Y r
(ȳn)

)S,0
g SLP

C l
Y r i (ȳn) , (5.93)

α,1
h C l

X k
(x̄m) = ∑

C l
Y∈FF(C l

X )

∑
n

Gα
(

ΦC l
X k
(x̄m) ,ΦC l

Y r
(ȳn)

)α,1
g SLP

C l
Y r
(ȳn) . (5.94)

4. L2P: Finally, compute the resulting far field in all leaf target clusters. For the S,0
term a scalar operator is applied to each individual term of the vectorial interpolation
weight, while for the scalar P,α a vectorial interpolation operator is applied

S,0
f C L−1

X k i (xa) =
1
µ ∑

m
S`

C L−1
X k

(x̄m,xa)
S,0
h C L

X i (x̄m) , (5.95)

α,1
f C L

X k i (xa) =
c2

s
µs2 ∑

m

∂
∂xi

S`
C L−1

X k
(x̄m,xa)

α,1
h C L

X
(x̄m) . (5.96)
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5.9.2 Double layer potential

Similar to the TED approach the traction operator is shifted to the P2M operators. It can be
shown that for the S,0 term we obtain the already defined tensorial interpolation operator
(5.80). Applying the same procedure, as outlined in Section 5.8.2, to the P,α terms yields
the operator

QI,1
` i

(
ȳn,Φ−1

CL
Y
(yb)

)
= λQI,1

ni∂k∂k

(
ȳn,Φ−1

CL
Y
(yb)

)
+2µQI,1

nk∂i∂k

(
ȳn,Φ−1

CL
Y
(yb)

)
. (5.97)

In the above we used an integrated interpolation operator including the second order partial
derivative ∂ 2/∂y j∂yk of S` and the i th-component of the surface normal vector n

QI,1
ni∂ j∂k

(ȳn,yβ ) :=
∫

supp(ϕr)

ϕ1
β (y)ni∂y j∂ykS`(ȳs,y)dsy . (5.98)

Consequently, the modified FM operators for the DLP using the HED approach read as
follows:

1. DLP-P2M:

S,0
g DLP
C L

Y i (ȳn) = ∑
ϕ0

b∈C L
Y

PI,0
` i j(ȳn,Φ−1

CL
Y
(yb)) û j (xb) , (5.99)

α,1
g DLP

C L
Y

(ȳn) = ∑
ϕ0

b∈C L
Y

QI,1
` j(ȳn,Φ−1

CL
Y
(yb)) û j (xb) . (5.100)





6 NUMERICAL RESULTS

In this chapter, we present numerical experiments to validate the proposed algorithms. We
start by presenting the computation domains and the simulation parameters employed in
all boundary value problems under investigation in Section 6.1.

In Section 6.2 we discuss the error of the fast multipole approximation. We investigate
the low and high frequency approximation error in Sections 6.2.1 and 6.2.2, respectively.
Along with the approximation error the timing of the matrix vector product and storage
requirements are given.

In the next section, we investigate the convergence of the method in the low frequency
regime of the Laplace domain. In Section 6.3.1, we consider a Dirichlet boundary value
problem for which we present convergence rates as well as timing and memory measure-
ments to prove the feasibility of the presented algorithms. Moreover, we investigate an
optimization for the scalar M2L-operators of the HED approach to reduce storage require-
ments. Furthermore, we analyze convergence results and timing measurements for the
variable order scheme. Finally, in Section 6.3.3 we discuss the application of the presented
FM-BEM to a mixed boundary value problem, where we again provide convergence results
for validation purposes.

In Section 6.4, we discuss the frequency domain scattering of an incident plane pressure
wave on a rigid object. For the numerical computation in this section we consider a series
of mesh refinements and Laplace parameters.

Finally, in Section 6.5, the application of the proposed methods to a time domain problem
is discussed. For this purpose we consider the model example of an elastic rod under a
Heaviside loading. The problem description along with an analytic solution is given in
Section 6.5.1. Appropriate error measures are introduced in Section 6.5.2. In Section 6.5.3
we investigate the effect of the timestep size on the stability of the CQM and present con-
vergence results for a dense computation. Finally, in Section 6.5.4, we present a parameter
optimization procedure for the FMM along with convergence results of the presented prob-
lem.

All numerical examples in this paper have been computed using the HyENA software
library developed at the Institute of Applied Mechanics at Graz University of Technology
[64]. For the implementation of the scalar M2L optimization in HyENA we used parts
of the freely available dFMM library [61]. We used the GMRES solver of the AHMED
library [11] for all FMM computations and Eigen’s partial pivoting LU decomposition

63
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[41] to solve any dense linear systems. Furthermore, we utilize the OpenMP library to
parallelize the FMM matrix-vector products.

6.1 Computation domains and parameters

Table 6.1 list all computation domains denoted with prefix (M), material parameters (P)
and Laplace parameters (S) used for the numerical experiments in this chapter.

Material parameters
E = 1N/m2 ν = 0.2 ρ = 1kg/m3 P.A
E = 1N/m2 ν = 0 ρ = 1kg/m3 P.B

Laplace parameters
s = (1+2i)s−1 S.A
Re(s) = 0 Im(s)> 0 S.B

Computation domains
Rotated unit cube M.A
Unit sphere M.B
Rod M.C

Table 6.1: Computation domains and parameters

For better comparability we use the same material parameters (P.A) for all numerical ex-
periments in this work except for Section 6.5. In this experiment we compare to a one
dimensional solution and thus a vanishing Poisson’s ratio is prescribed, see Section 6.5.1.
Using the material parameters (P.A) compression and shear wave velocities compute to

cP = 1.0541m/s cS = 0.6455m/s. (6.1)

Using the parameter set (P.B) yields

cP = 1m/s cS =
√

1/2 m/s. (6.2)

The Laplace parameter (S.A) is used in Sections 6.2.1 and 6.3 as well as in Appendix D. To
test the directional fast multipole method in the high frequency regime we use the Laplace
parameter (S.B), see Sections 6.2.2 and 6.4.

As the computation domains we consider a unit cube [−0.5,0.5] ⊂ R3 rotated about 45◦

around the x- y- and z-axis, as shown in Fig. 6.10 in Section 6.3. Furthermore we consider
a unit sphere Ω̄ =

{
x ∈ R3 : |x| ≤ 1

}
, as shown in Fig. 6.11 in Section 6.4, and a rod of
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lvl = 3 lvl = 4 lvl = 5 lvl = 6

(a) box

lvl = 3 lvl = 4 lvl = 5 lvl = 6

(b) sphere

lvl = 3 lvl = 4 lvl = 5 lvl = 6

(c) rod

Figure 6.1: Four mesh refinement levels for the cube sphere and rod geometries.

dimension 3×1×1m, see Fig. 6.13 in Section 6.5. We use CUBIT to create the geome-
tries and corresponding boundary meshes. For all geometries, we perform a globally and
uniform refinement of the initial mesh to create a sequence of triangulations. For the initial
mesh (level 0) of the box and the rod we choose a side length of h= 1m. The coarsest mesh
of the sphere is created with an average element side length of approximately h = 0.125m,
which corresponds to refinement level 3 of the rectangular geometries. For better com-
parability we use the same level index for all geometries which corresponds to a certain
element side length in all meshes. Note that for the domains containing only flat surfaces,
i.e. the cube and the rod, the initial triangulation is already an exact representation of
the boundary while for the sphere the geometry approximation becomes increasingly bet-
ter in each refinement step. Figure 6.1 shows the meshed geometries for a few selected
refinement levels.
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6.2 Fast multipole approximation error

6.2.1 Low frequency fast multipole error

In this section we analyze the the approximation error as well as the timing of the matrix
vector product and the memory consumption for the low frequency FMM. Similar to the
classical FMM we expect a constant approximation error as the number of degrees of
freedom is increased. Furthermore we expect a linear scaling of the MVP timing and the
memory consumption.

For the numerical experiments we used the rotated unit cube as the computation do-
main,see in Fig. 6.10 in Section 6.3. The chosen set of material parameter is (P.A) given
in Table 6.1 and the Laplace parameter used is s = (1+ 2i)s−1 (S.A). Please note that,
for better comparability, these are the same parameters used as in Section 6.3 discussing
the convergence of the Dirichlet and mixed problem in Laplace domain. For all computed
levels the octree depth is chosen to be equal to the refinement level (L = lvl). This leads to
a constant average number of 16.7 and 8.5 vectorial traction and displacement degrees of
freedom per cluster in the leaf level for all mesh refinement steps. For all error computa-
tions in this section we use the error estimator introduced in Appendix D. Please note that
the uncertainty bounds have been checked but are omitted in the plots.

In the the first numerical experiment we fix the interpolation order and vary the refinement
level of the mesh starting at level three. We consider both the TED and HED approach
using an interpolation order of `T ED = 3 and `HED = 4 respectively. Figure 6.2 plots the
resulting FMM approximation error or the SLP and the DLP. Observe the significant in-
crease of the approximation error in the first refinement level. As discussed in Appendix D
this is caused by the large admissibility distance compared to the computation domain
diameter resulting in only few far field interactions. As expected for higher refinement
levels the error stays essentially constant for the TED approach and increases only slightly
using the HED approach. Surprisingly the TED approach shows a slight decrease in the
DLP error after the initial jump at the first refinement step. However, this behavior was
only observed in this particular setup. Furthermore please note that the DLP error is of the
same order of magnitude as the SLP error. Again this result was not expected as the ker-
nel interpolation error of the DLP is higher than that of the SLP caused by the additional
numerical error of shifting the partial derivatives to the interpolation operator. The reason
is most probably the use of linear continuous ansatz functions as the test functions for the
DLP as opposed to constant discontinuous functions for the SLP. In Fig. 6.3 we observe
that the timing of the MVP and the total memory consumption scale linearly as expected.
Please note that we use the symmetric version of the HED in this example. Furthermore,
please note, that in order to be able to obtain the results for the highest refinement level in
a reasonable amount of time 32 CPU cores were used for all computations.
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Figure 6.2: Estimated FMM approximation error over the number of degrees of freedom
for a constant interpolation order (`= 3).
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Figure 6.3: Timing of the SLP matrix-vector product and total memory consumption of
SLP and DLP for a constant interpolation order (computed on 32 CPU cores).

In the second numerical experiment we vary the interpolation order for a fixed mesh refine-
ment level and octree depth. Again the FMM error for both the SLP and DLP as well as the
timing of the SLP matrix vector product and the total memory consumption are studied.
In Fig. 6.4 we see that we obtain the expected spectral convergence of the error for both
SLP and DLP as the interpolation order is increased. In Fig. 6.5 we see that the timing
of the matrix vector product scales like `6 as expected. In Fig. 6.6 we can clearly see
that the M2L and interpolation operator storage requirements scales like `6 and `3, respec-
tively. Furthermore, we see that for small interpolation orders the near field contribution
dominates the storage requirements.
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Figure 6.4: Estimated FMM approximation error over the interpolation order for mesh re-
finement level five.
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Figure 6.5: Timing of the SLP matrix-vector product and total memory consumption of
SLP and DLP over the interpolation order (computed on 1 CPU cores).
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Figure 6.6: Total memory consumption of SLP and DLP split into the near field (NF), the
interpolation operator (IO) and the M2L operator part.

6.2.2 High frequency fast multipole error

In this section, we study the high frequency FMM approach. First, we will investigate the
performance of the FMM depending on the high frequency switching condition γ . Sec-
ond, after choosing an appropriate γ value, the FMM error as well as timing and memory
requirements for the DFMM approach are investigated for a sequence of mesh refine-
ments.

In the first step we need to define the frequency range under consideration. We note that
the wavenumber k for the pressure and shear wave is given by

kP/S =
Im(s)
cP/S

(6.3)

In order for the solution to be reasonably approximated by the discretized field variables,
a condition for the minimal wavelength to element ratio needs to be imposed. A com-
mon choice is to use a minimum of approximately six elements per wavelength which is
represented by the condition

kh < 1 (6.4)

where we used k = λ/2π. For a detailed discussion on the choice of the minimum wave-
length to element ratio to obtain a prescribed accuracy for the Helmholtz equation the
reader is referred to the works of Marburg [58,59]. Please note that in the case of elastody-
namics the fundamental solution in Laplace domain is the superposition of two waves with
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wavelengths λP and λS. To accurately approximate the resulting wave pattern a higher ele-
ment to wavelength ratio can be necessary. For instance in the works of Chaillat [17,19–21]
the ratio is chosen to be 10.

Using Eqs. (6.3) and (6.4) we can determine the maximum imaginary part of the Laplace
parameter

Im(s)
cP/S

h < 1 (6.5)

Bearing in mind that cs < cp always holds true we obtain

Im(s)<
cs

h
(6.6)

In the first example, we use the mesh refinement level 7 with an element width of

hlvl=7 =
1
27 = 7.8125×10−3 m (6.7)

The resulting maximum imaginary part for the Laplace parameter consequently is Im(smax)=
82.63 with wavelength λmin = 4.91× 10−2 m. This is equal to approximately 35 wave-
lengths per domain for the unit cube geometry.

A second limit for the minimum wavelength is the requirement that the leaf-level is in the
low frequency regime. The reason for this is as follows: For large problems and small
interpolation orders the memory requirement is dominated by the near field and the leaf
level interpolation operator, which scale like O (N) and O

(
`3N
)
, respectively. If the leaf

level switches to a high frequency approximation the size of the leaf level interpolation op-
erator initially increases by a factor of 24 (assuming that all leaf clusters have interactions
in all cone directions). After that its size quadruples as the wavenumber doubles. We con-
sequently see that if the wavenumber increases above the high frequency switching condi-
tion of the leaf level the required storage cost increase dramatically. We therefore limit the
wavenumber to be below the high frequency switching condition of the leaf level

d̄L−1 > γλS (6.8)

This leads to the second condition for the maximum imaginary part of the Laplace param-
eter

Im(s)< γ
2πcS

d
L−1 (6.9)

As a consequence we choose the highest possible octree depth for a given mesh refinement.
For the mesh refinement level 7 of the unit cube the maximum octree depth is 8, which
results in an average number of 2.4 and 4.5 vectorial displacement and traction degrees of
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γ Im(smax) λmin λmin/h7 diam(Ω)/λmin

(m)

1 117.7014 0.0345 4.4106 50.2653
1/2 58.8507 0.0689 8.8213 25.1326
1/4 29.4254 0.1378 17.6426 12.5663
1/8 14.7127 0.2757 35.2852 6.2832

Table 6.2: Maximum Laplace parameter and resulting wavelength and wavelength to ele-
ment ratio for different high frequency switching parameters γ .

freedoms per cluster in the leaf level. The resulting leaf-level bounding box and bounding
box extension side lengths are computed as

d7 = 1.3337×10−2 m d̄7 = 3.4458×10−2 m (6.10)

Table 6.2 lists the maximum Laplace parameter for a given high frequency switching con-
dition while requiring the leaf-level to be low frequency.

Figure 6.7 plots the FMM approximation error of the SLP over the Laplace parameter for
different choices of high frequency switching conditions γ . To determine the minimum
Laplace parameter, the wavelength is chosen to be equal to the root cluster extension,
which results in Im(smin) = 2.35. The maximum Laplace parameter is chosen according
to (6.4) and Table 6.2. We note that by varying γ we can prescribe the approximation accu-
racy for the high frequency FMM. Observe the jumps in the approximation error which are
especially pronounced for γ equal to 1 and 1/2. These jumps occur after a level switches
from the low frequency to the high frequency regime. Due to the parabolic separation
condition (5.54) a lot of interactions are now not admissible anymore and are thus pushed
down to the child level which is still in the low frequency regime. The child level accu-
mulates all interactions until itself becomes high frequency and the interactions are pushed
down further to the level below. A high frequency switching condition γ of 1/4 seems to be
the optimal choice to obtain a nearly constant approximation error. Furthermore, by exam-
ining the plots γ equal to 1/4 and 1/8, we observe that for small Laplace parameters the high
frequency approximation of the kernel yields a worse approximation error than the low
frequency version. This error is introduced by using the modified kernel function, which
results in an adding and subtracting of a plane wave in the high frequency interpolation
operators, see Eqs. (5.61) and (5.62).

For the second numerical experiment we fix the high frequency condition to the previously
determined optimal γ = 1/4. Similar to Section 6.2.1 we vary the refinement level of the
mesh for a fixed interpolation order ` = 3. However, for each mesh refinement level the
Laplace parameter is chosen according to Im(slvl) = 0.95× Im(smax), where Im(smax) is
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Figure 6.7: Estimated FM approximation error of the SLP as a function of the high fre-
quency switching condition γ over the Laplace parameter.

lvl N hlvl d̄L−1 Im(slvl) λmin λmin/hlvl

(m) (m) (m)

3 2304 0.1250 0.5455 1.7658 2.2968 18.3746
4 9216 0.0625 0.2727 3.5316 1.1484 18.3746
5 36864 0.0312 0.1373 7.0159 0.5781 18.4986
6 147456 0.0156 0.0688 13.9931 0.2898 18.5499
7 589824 0.0078 0.0345 27.9541 0.1451 18.5712
8 2359296 0.0039 0.0172 55.9078 0.0725 18.5713

Table 6.3: Maximum Laplace parameter and resulting wavelength and wavelength to ele-
ment ratio for a sequence of mesh refinements of the unit cube.

given by the right hand side of (6.9). This leads to an approximately constant element to
wavelength ratio for all refinement levels. Table 6.3 lists the resulting Laplace parameter as
well as the leaf level bounding box and bounding box extension for each refinement level.
Fig. 6.8 shows that using the high frequency DFMM approach yields a nearly constant FM
approximation error. Furthermore Fig. 6.9 indicate that the proposed method scales well
in terms of memory rquirement and timing of the MVP.
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Figure 6.8: Estimated high frequency DFMM approximation error (γ = 1/4). The resulting
approximation error of the low frequency FMM is included as a reference.
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Figure 6.9: Timing and memory consumption for the high frequency DFMM (computed
on 32 CPU cores, γ = 1/4).
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z
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Figure 6.10: Computation domain Ω for convergence results of the direct Dirichlet and
mixed boundary value problem. The root cluster bounding box is indicated
with dashed lines. The Dirichlet boundary ΓD of the mixed problem is colored
dark gray. The source location is indicated by ys.

6.3 Convergence results

In this section, we investigate the convergence of the method in the low frequency regime
of the Laplace domain. To do this we solve a discretized Dirichlet and a mixed Dirichlet
and Neumann problem on a series of mesh refinements, see Section 6.3.1 and Section 6.3.3,
respectively. The goal is to ensure that the approximation of the system matrices via the
FM approach does not alter the convergence of the error compared to a dense computa-
tion.

We consider a unit cube [−0.5,0.5] ⊂ R3, rotated about 45◦ around the x- y- and z-axis
(see Fig. 6.10), as the computation domain for all numerical examples in the present sec-
tion. The computation domain is rotated so that it does not coincide exactly with the root
cluster bounding box. We perform a global uniform refinement of the boundary to create
a sequence of triangulations, starting at level 0 with a mesh consisting of 12 elements, see
Fig. 6.1a in Section 6.1. Furthermore, in all examples in this section we use the material
parameter set (P.A) and the Laplace parameter (S.A), respectively.

We use analytic functions to prescribe the boundary conditions in order to compute the
numerical error of the approximate solution. As analytic function we employ the dis-
placement and adjoint traction fundamental solutions with the source point located at
ys = (1,1,1) and direction d = (1,0,0).

ûi(x) = Û∗i j(x,yS)d j x ∈ Ω̄ yS /∈ Ω̄ (6.11a)

t̂i(x) = T̂ ∗′i j (x,yS)d j x ∈ Γ (6.11b)

Finally, for all computations, we choose a high relative accuracy of εGMRES = 1e−8 as the
convergence criterion for the iterative solver.
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level N M L `T ED `HED NT ED
it

3 2304 1158 3 3 4 31
4 9216 4614 4 4 5 38
5 36864 18438 5 5 6 51
6 147456 73734 6 6 7 65
7 589824 294918 7 7 8 84

Table 6.4: Dirichlet problem: computation parameters.

Dense TED HED

level elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc
(N/m2) (N/m2) (N/m2)

3 5.610E-3 5.654E-3 5.617E-3
4 2.698E-3 1.06 2.468E-3 1.20 2.705E-3 1.05
5 1.307E-3 1.05 1.309E-3 0.91 1.307E-3 1.05
6 - - 6.422E-4 1.03 6.417E-4 1.03
7 - - 3.196E-4 1.01 3.194E-4 1.01

Table 6.5: Dirichlet problem: L2 error and convergence rate for the tractions.

6.3.1 Dirichlet problem

Computation parameters The numerical parameters chosen to solve the Dirichlet bound-
ary value problem are listed in Table 6.4. In the first column the refinement level of the
triangulation is given. The resulting numbers of traction and displacement DOFs are listed
in column N and M, respectively. The depth of the octree is given in column L. The
interpolation order is indicated by ` for both the TED and the HED approach. Finally,
the resulting number of iterations for the TED approach are listed in column NT ED

it . Note
that the iteration numbers for the HED approach are not listed, since they do not differ
significantly from the TED approach. Furthermore, please note that in order to reduce the
number of iterations, a block-diagonal preconditioner was employed.

Error For the Dirichlet problem we compute the error of the traction solution in the L2
norm on the boundary and the error of the displacement solution on a set of interior points.
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Dense TED HED

level elvl
P (û) eoc elvl

P (û) eoc elvl
P (û) eoc

(m) (m) (m)

3 1.147E-4 1.103E-4 1.121E-4
4 2.801E-5 2.03 2.844E-5 1.96 2.696E-5 2.06
5 7.034E-6 1.99 7.070E-6 2.01 7.107E-6 1.92
6 - - 1.761E-6 2.01 1.750E-6 2.02
7 - - 4.401E-7 2.00 4.387E-7 2.00

Table 6.6: Dirichlet problem: inner point-wise error and convergence rate for the displace-
ments.

The traction error is given by

elvl
L2

(
t̂
)
= |t̂− t̂lvl|L2(Γ) =




N

∑
i=1

∫

supp(ϕ0
i )

(
t̂(x)− t̂lvl (xi)ϕ0

i (x)
)2

dsx




1
2

(6.12)

and the displacement error is defined as

elvl
P (û) =

(
Npts

∑
i=1

(
û(xi)− ûlvl(xi)

)2
) 1

2

. (6.13)

The symbols t̂lvl and ûlvl denote the approximate numerical solution for a given refinement
level lvl, and t̂ and û the analytic solution given by (6.11a) and (6.11b), respectively.
We use numerical integration to evaluate the integral in (6.12). Furthermore, we need
to evaluate the representation formula (3.10) to compute the displacements at the interior
points. The points are uniformly distributed in the interior of a cube of [−0.01,0.01] ⊂
R3. Although we use the collocation scheme, the convergence rates of the dense problem
indicate that we can expect a convergence rate similar to the Galerkin approach for both
errors, i.e. linear order of convergence for the tractions and quadratic convergence for the
displacements. The order of convergence is computed as

eoc = log2

(
elvl

elvl+1

)
. (6.14)

Table 6.5 shows the resulting traction errors and convergence rates for several refinement
levels lvl. In this table, we list errors and convergence rates for both the TED and the HED
approach as well as for a dense computation without FM approximation of the far-field as
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Dense TED HED

level time prec. scal time prec. scal time prec. scal
(s) (s) (s)

3 1.500E+1 2.206E+1 2.528E+1
4 1.079E+2 1.42 9.549E+1 1.06 1.248E+2 1.15
5 1.285E+3 1.79 3.822E+2 1.00 5.784E+2 1.11
6 - - 1.612E+3 1.04 2.897E+3 1.16
7 - - 7.228E+3 1.08 1.553E+4 1.21

Table 6.7: Dirichlet problem: Precomputation time for the dense, TED and HED approach
in seconds and scaling factor.

a reference. We observe that for all approaches the convergence rates match the expected
linear order of convergence. The interior pointwise error of the displacements and its
convergence rate for TED, HED and a dense computation are given in Table 6.6. Again,
we confirm that all three methods exhibit the desired quadratic order of convergence. From
the data in Tables 6.5 and 6.6 we can consequently conclude that the proposed methods
indeed work and that the error of the FM approximation can be controlled such that the
convergence of the BEM method is preserved.

Remark 10 Note that in order to ensure convergence of both the traction and displace-
ment errors, the interpolation order needs to be increased in every refinement step by a
constant factor of one as can be seen in Table 6.4. This is necessary since the FM accu-
racy needs to be increased to match the discretization error of that level.

Timings In Table 6.7, we study the precomputation times for both the TED and HED
approach. The timings include the assembly of the all FM-operators, i.e. the P2M-, M2M-,
M2L-, L2L- and L2P- as well as the computation of the direct leaf-level interaction, the
P2P-operator. Again the values for a dense computation without FM approximation are
given as a reference. The scaling factor is computed as

scal = log4

(
t lvl+1

t lvl

)
. (6.15)

Note that all timings were performed on a single CPU core to eliminate any spurious effects
of parallelization. We observe a nearly linear scaling for the TED approach. The reason is
that the computation of the P2P-operator dominates all other computations and the number
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Dense TED HED

level time MVP scal time MVP scal time MVP scal
(s) (s) (s)

3 2.261E-2 3.288E-2 3.534E-2
4 3.623E-1 2.00 4.081E+0 3.48 3.737E+0 3.36
5 5.862E+0 2.01 8.289E+1 2.17 6.352E+1 2.04
6 - - 9.076E+2 1.73 7.023E+2 1.73
7 - - 1.040E+4 1.76 6.979E+3 1.66

Table 6.8: Dirichlet problem: Timing of the SLP matrix-vector product for the dense, TED,
HED approach in seconds and scaling factor.

of near-field interactions scales linearly with the simultaneous refinement of the mesh and
octree. Furthermore, we note that the scaling of the HED approach is only slightly worse.
This can be attributed to the fact that the P2M- and L2P-operators are more complex to
construct for the HED approach. Nevertheless, both methods are significantly faster than
the dense approach.

Table 6.8 lists the timings for the matrix vector product of the SLP operator. Again we see
that both methods scale better than quadratic. Furthermore, we observe that the scaling
improves for larger problems due to the smaller influence of the increase in interpolation
order. However, the timings are still not optimal. We thus introduce a variable order
scheme in Section 5.5 that significantly improves the application times for the SLP opera-
tor.

Remark 11 One might object that the fast multipole method should scale linearly with
problem size. This, however, is only true if the accuracy of the FM approximation is kept
constant. For the convergence study under consideration the accuracy needs to be in-
creased in every refinement step to match the discretization error. For a constant accuracy
both TED and HED methods exhibit the desired linear scaling, as has been discussed in
Section 6.2.1

Remark 12 We note a significant jump in computation time for the first refinement step.
The reason is as follows: Although the computation of the dense MVP scales quadratically,
it is highly optimized and thus, for small matrix sizes, can be computed very efficiently.
The FMM on the other hand scales well but initially results in a significant computational
overhead. This can lead to a dense computation being computationally more efficient than
using the FMM for a small number of degrees of freedoms. In refinement level 3 only
few far-field interactions are computed due to the large admissibility distance compared
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Dense TED HED HED SYM

level memory scal memory scal memory scal memory scal
(GB) (GB) (GB) (GB)

3 0.13 0.11 0.16 0.15
4 2.04 2.00 1.27 1.74 1.30 1.52 0.85 1.27
5 32.62 2.00 7.13 1.24 6.21 1.13 3.91 1.10
6 - - 28.19 0.99 25.34 1.01 18.05 1.10
7 - - 100.53 0.92 104.94 1.03 85.68 1.12

Table 6.9: Dirichlet problem: Memory consumption in GB.

to the computation domain diameter, see also Section 6.2.1 and Appendix D, and thus the
dense computation dominates the timing. Subsequently in level 4 for the first time we have
a significant number of far-field interactions and the FMM contribution dominates the
computation time. This gives rise to the jump in computation time from level 3 to 4, which
results in the scaling factors of 3.48 and 3.36 for the TED and HED approach, respectively.

Memory consumption Table 6.14 compares the memory consumption of the dense ver-
sion to the TED and HED approach. The memory measurement for the FM approaches
includes all FM-operators, i.e. the P2M-, M2M-, M2L-, L2L- and L2P- as well as the
direct leaf-level interaction, the P2P-operator. Note that we store the M2L-operators only
once for both the SLP and DLP. The memory consumption of the dense approach is the
total memory required to store the dense SLP and DLP matrices. We see from Table 6.14
that the memory consumption of the FM approaches scale very well. We notice that for
mid-sized problems the HED approach performs slightly better than the TED approach in
terms of memory consumption, due to the scalar M2L operators. Conversely for the largest
problem the TED approach is slightly superior due to the lower interpolation order needed
to achieve the desired accuracy.

Scalar M2L-optimization The rotational symmetry of the scalar kernel of the HED
approach can be used to reduce the number of M2L-operators stored. The basic idea is as
follows: The interpolation points in both clusters lie on a regular grid. Therefore, M2L-
operators in certain directions are identical up to a permutation of coefficients if the kernel
is rotational invariant. See the paper of Messner et al. [63] for a detailed discussion and
implementational details. We can significantly reduce the memory requirements for the
HED approach using this optimization referred to as HED SYM as shown in Table 6.14.
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TED VO HED VO

level L `L−1
SLP `DLP `L−1

SLP `DLP

3 3 3 3 4 4
4 4 3 4 4 5
5 5 3 5 4 6
6 6 4 6 4 7
7 7 4 7 5 8

Table 6.10: Dirichlet problem (Variable Order): computation parameters.

Dense TED VO HED VO

level elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc
(N/m2) (N/m2) (N/m2)

3 5.610E-3 5.654E-3 5.617E-3
4 2.698E-3 1.06 2.769E-3 1.03 2.711E-3 1.05
5 1.307E-3 1.05 1.381E-3 1.00 1.313E-3 1.05
6 - - 6.429E-4 1.10 6.480E-4 1.02
7 - - 3.210E-4 1.00 3.196E-4 1.02

Table 6.11: Dirichlet problem (Variable Order): convergence rates for the tractions.

Note that in the sequence we will use this optimization for all computations using the HED
approach without further annotation.

6.3.2 Dirichlet problem - variable order

Computation parameters Again, we consider the Dirichlet boundary value problem.
All numerical parameters except for the interpolation order are chosen as in the previous
example for better comparability. The leaf-level interpolation order for the SLP operator
and the global interpolation order for the DLP operator are listed in Table 6.10 for both the
TED and HED approach respectively.

Error As in the previous section we investigate the convergence of both the traction and
displacement approximate solution. Again the L2 error of the tractions and the pointwise
error of the displacements for different levels are computed according to (6.12) and (6.13)
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Dense TED VO HED VO

level elvl
P (û) eoc elvl

P (û) eoc elvl
P (û) eoc

(m) (m) (m)

3 1.147E-4 1.103E-4 1.121E-4
4 2.801E-5 2.03 2.424E-5 2.19 2.659E-5 2.08
5 7.034E-6 1.99 6.690E-6 1.86 6.987E-6 1.93
6 - - 1.761E-6 1.93 1.701E-6 2.04
7 - - 4.409E-7 2.00 4.194E-7 2.02

Table 6.12: Dirichlet problem (Variable Order): convergence rates for the displacements.

Dense TED VO HED VO

level time MVP scal time MVP scal speedup time MVP scal speedup
(s) (s) (s)

3 2.261E-2 5.265E-2 0.62 6.162E-2 0.57
4 3.623E-1 2.00 9.049E-1 2.05 4.51 1.037E+0 2.04 3.61
5 5.862E+0 2.01 5.942E+0 1.36 13.95 6.447E+0 1.32 9.85
6 - - 1.306E+2 2.23 6.95 3.058E+1 1.12 22.97
7 - - 5.736E+2 1.07 18.13 4.003E+2 1.86 17.44

Table 6.13: Dirichlet problem (Variable Order): Timing of the SLP matrix-vector product
for TED and HED in seconds and scaling factor.

and are listed in Tables 6.11 and 6.12, respectively. We observe that we are indeed able
to retain the desired order of convergence for both errors while utilizing the variable order
scheme.

Timing Table 6.13 lists the timings and the scaling factors for the matrix vector prod-
uct of the SLP operator using the VO approximation, with the dense timings given as a
reference. Furthermore, the speedup factor, which is the ratio between the timing of the
conventional FM approach and the timing of the VO scheme, is computed. The data con-
firms that using the VO interpolation yields a significant performance increase. Note that
the precomputation times of the VO approach do not differ significantly from the data
given in Table 6.7, as the precomputation time is largely dominated by the computation of
the direct near-field interaction and are thus not listed separately.
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Dense TED VO HED VO

level memory scal memory scal memory scal
(GB) (GB) (GB)

3 0.13 0.12 0.12
4 2.04 2.00 1.39 1.74 0.64 1.19
5 32.62 2.00 7.64 1.23 2.84 1.07
6 - - 36.24 1.12 12.43 1.07
7 - - 113.96 0.83 59.10 1.12

Table 6.14: Dirichlet problem (Variable Order): Memory consumption in GB.

Remark 13 Numerical experiments show that in order to maintain the desired conver-
gence of the method the leaf-level interpolation number has to be increased by one in level
6 and 7 for the TED and HED approach, respectively. The increase in the interpolation
order causes a jump in computation time and the scaling factor, as can be observed in
Table 6.13. This behavior is in accordance with the fact that only for the DLP discretized
with constant discontinuous ansatz functions the variable order scheme leads to an optimal
algorithm of linear complexity, see Section 5.5.

Memory In the previous example we were able to reuse the M2L-operators for both the
SLP and the DLP which is not possible using the VO scheme. This results in a slight
memory increase as the M2L-operators for SLP and DLP need to be stored separately.
However, this is mostly compensated by the smaller interpolation order of the SLP-M2Ls
in the low octree levels and the low leaf-level interpolation order of the P2M-and L2P-
operators.

6.3.3 Mixed problem

In this section, we consider a mixed boundary value problem. The computation domain is
again the rotated unit cube (M.A). On one side of the cube, marked dark gray in Fig. 6.10,
we impose Dirichlet boundary conditions. On all other sides of the cube Neumann bound-
ary conditions are imposed. We use (6.11a) and (6.11b) to prescribe the given Dirichlet
and Neumann data respectively. All numerical parameters are chosen according to (P.A),
(S.A) and Tab. 6.4.
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Dense TED HED

level elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc elvl
L2

(
t̂
)

eoc
(N/m2) (N/m2) (N/m2)

3 4.401E-3 4.420E-3 4.405E-3
4 2.182E-3 1.01 2.187E-3 1.02 2.183E-3 1.01
5 1.090E-3 1.00 1.091E-3 1.00 1.090E-3 1.00
6 - - 5.434E-4 1.01 5.433E-4 1.00
7 - - 2.727E-4 0.99 2.726E-4 0.99

Table 6.15: Mixed problem: convergence rates for the tractions.

Dense TED HED

level elvl
L2
(û) eoc elvl

L2
(û) eoc elvl

L2
(û) eoc

(m) (m) (m)

3 7.692E-4 7.738E-4 7.706E-4
4 2.074E-4 1.89 2.236E-4 1.79 2.107E-4 1.87
5 5.428E-5 1.93 5.428E-5 2.04 5.391E-5 1.97
6 - - 1.390E-5 1.97 1.377E-5 1.97
7 - - 3.299E-6 2.07 3.319E-6 2.05

Table 6.16: Mixed problem: convergence rates for the displacements.

Error We analyze both the error of the traction and displacement approximate solution
in the L2 norm on the boundary for the mixed boundary value problem. Similar to (6.12)
the displacement error is given by

elvl
L2
(u) = |u−ulvl|L2(Γ) =




M

∑
i=1

∫

supp(ϕ1
i )

(
û(x)− ûlvl (xi)ϕ1

i (x)
)2

dsx




1
2

. (6.16)

Again, we expect linear order of convergence of the traction error as well as quadratic
order of convergence for the displacement error, both computed in the L2 norm. The data
in Table 6.15 and Table 6.16 confirm that the desired order of convergence for both errors
and both FM-BEM approaches is indeed obtained.
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Figure 6.11: Computation domain and surface used for the inner evaluation of the scatter-
ing problem

6.4 Frequency domain scattering

In this section, we consider the scattering of an incomming plane pressure wave on a fixed
rigid object. As the scattering object we consider a unit sphere, see Fig. 6.11. In order for
the discertization error to stay approximately constant we use a series of mesh refinements
of the geometry, see Fig. 6.1b in Section 6.1, as we increase the frequency of the incoming
wave. Furthermore, we choose the FM parameters according to the analysis performed in
Section 6.2.2 to maintain an constant FM approximation error for all frequencies under
investigation.

The displacement field of a plane pressure wave travelling in the positive x-direction is
given by

u1(x, t) = u0 cos(kPx1−ωt) and u2(x, t) = u3(x, t) = 0 (6.17)

where kP and ω denote the wavenumber and angular frequency, respectively, which are
related by kP = ω/cP. In frequency domain the plane wave is given by

û1(x) = u0eikPx1 (6.18)

To obtain (6.18) in Laplace domain we replace s =−iω (see Appendix B) and obtain

û1(x) = u0e−
s

cP
x1 (6.19)

As the scattering object we use a fixed rigid unit sphere centered at the origin

Ω̄ =
{

x ∈ R3 : |x| ≤ 1
}

(6.20)

Consequently we solve the Lamé-Navier equation in the unbounded exterior domain Ωe =
R3\Ω̄. The total displacement field is the sum of the incoming and the scattered displace-
ment field in the exterior domain.

û(x̃) = ûi(x̃)+ ûs(x̃) for all x̃ ∈Ωe (6.21)
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lvl N M Me Im(s) nit

3 5652 2832 12753 1.81 19
4 23238 11625 50595 3.51 43
5 94410 47211 202776 6.99 51
6 382218 191115 824214 13.87 122
7 1539396 769704 3189000 27.69 169

Table 6.17: Computation parameters of the scattering problem.

For a rigid fixed object the boundary conditions are of Dirichlet type and are given by

û(x) = 0 and thus ûs(x) =−ûi(x) for all x ∈ Γ = ∂Ωe (6.22)

We solve the corresponding BIE (3.37) to obtain the traction solution t̂s(x) on Γ. Finally,
the representation formula (3.10) is evaluated to compute ûs(x) in the exterior domain.

As the boundary mesh we use a sequence of triangluations of the unit sphere. The mesh
width is set to h = 1

2lvl . The resulting total displacement field is evaluated, using the repre-
sentation formual, on a square of side length D equal to 8m in the xz-plane

Γe :=
{

x ∈ R3 : |x1|, |x3|<
D
2
∧ x2 = 0

}
\
{

x ∈ R3 : |x| ≤ 1+2h
}

(6.23)

Please note that we need to exclude a sphere of radius r = 1+ 2h, as shown in Fig. 6.11.
This is necesssary, as it is well known that the accuracy of the displacement solution de-
creases rapidly near the boundary. The surface Γe is discretized using the same mesh width
h that has been used to discretize the boundary Γ.

We use the high frequency TED approach to compute the solution to the discretized BIE
(3.37). Furthermore, we use the FMM to evaluate the discrete representation formula
(3.10) to compute the total displacement field on Γe. The material parameters are chosen
according to (P.A) and the Laplace parameter according to (S.B). Again, we choose the
imaginary part of s according to the leaf-level low frequency condition (6.9). The FMM
interpolation order is set to ` = 3 and `e = 2 for the evaluation of the boundary integral
operators and the representation formula, respectively. Furthermore, we choose L = lvl+1
and Le = L+2 as the corresponding octree depths. The accuracy of iterative solver for the
FMM computation was set to εsolve = 1e−3. All computations were performed on 32 CPU
cores. For the first two levels, we used a dense computation to check the relative accuracy
of the traction solution on Γ and the displacement solution of Γe in the `2-norm.

e`2
(
t̂s
)
=

∣∣t̂D
s − t̂FMM

s
∣∣
`2

|t̂D
s |`2

and e`2 (û) =

∣∣ûD− ûFMM
∣∣
`2

|ûD|`2
(6.24)
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lvl e`2
(
t̂s
)

e`2 (û)

3 4.765E-2 3.946E-2
4 5.858E-2 5.078E-2

Table 6.18: Relative FM error of the traction and displacement solution using the dense
solution as a reference.

The chosen Laplace parameter for a given refinement level and the resulting number of
iterations of the GMRES are given in Table 6.17. The computed relative errors of the
traction and displacement solution as defined in (6.24) are listed in Table 6.18. We ob-
serve the relative deviation from the dense solution is below 6% for both tractions and
displacements. From our analysis in Section 6.2.2 we expect this deviation to stay essen-
tially constant for the higher frequencies. The computed total displacement fields on Γe

are shown in Fig. 6.12. We conclude that using the directional FM approach we are indeed
able obtain a numerical solution of a scattering problem with more than one and a half
million degrees of freedom for a prescribed accuracy of less than 10%.
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lvl = 3 lvl = 4
Im(s) = 1.81 Im(s) = 3.51

lvl = 5 lvl = 6
Im(s) = 6.99 Im(s) = 13.87

lvl = 7
Im(s) = 27.69

Figure 6.12: Scattering of a plane pressure wave on a rigid sphere computed in frequency
domain.
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6.5 Elastodynamic rod with longitudinal step load

In this section, we will consider a common benchmark problem for numerical software
treating time domain elastodyanmics: an elastic rod loaded with a Heaviside step function.
First, we present a detailed problem description. Next, we derive the analytical solution
to the equivalent one dimensional problem in Laplace and time domain. In the following
section, we use the obtained solutions to define appropriate error measuers in Laplace and
time domain. Next, we analyze the effect of the choice of timestep size on the stability of
the method and present convergence result for a uniform space-time refinement. After this
preliminary work we apply the TED and HED FMM approach to the model problem in the
last section.

6.5.1 Problem description and analytic solution

x
y

z

L = 3 m

1 m

1 m

F

Figure 6.13: Elastodynamic rod with Heaviside loading in negtive x-direction.

We consider an elastic rod with dimensions 3× 1× 1m. One end of the rod is fixed at
x = 0, which corresponds to homogeneous Dirichlet BCs. The lateral surfaces of the rod
are free, i.e. we prescribe homogeneous Neumann BCs. At the free end of the rod a
uniform Heaviside step load in the negative x-direction is applied which reads as

t1 (x, t) =−σ0 t2 (x, t) = t3 (x, t) = 0 N/m2 for x1 = L and t > 0 . (6.25)

Furthermore, we assume homogeneous initial conditions u(x̃,0) = u̇(x̃,0) = 0 for all x̃ ∈
Ω. The setup is illustrated in Fig. 6.13. The material parameters are chosen to be (P.B). By
prescribing a vanishing Poisson’s ratio the three dimensional problem above reduces to a
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one dimensional problem, which is given by

∂ 2u(x, t)
∂x2 − 1

c2
P

∂ 2u(x, t)
∂ t2 = 0

u(0, t) = 0m ∀ t ∈ (0,T )
t(L, t) =−σ0 ∀ t ∈ (0,T )
u(x,0) = 0m ∀ x ∈ (0,L)

u̇(x,0) = 0 m/s ∀ x ∈ (0,L) .

(6.26)

Performing a Laplace transformation of the problem yields

∂ 2û(x,s)
∂x2 − s2

c2
P

û(x,s) = 0 ∀ s ∈ C with Re(s)> 0

û(0,s) = 0m
t̂ (L,s) =−σ̂0 .

(6.27)

Note that in the above we use the arbitrary stress σ̂0 instead of inserting the Laplace trans-
form of the Heaviside function to obtain a more general solution. The reason is as follows:
We use the analytic solution of (6.26) and (6.27) to compute the error of the numerical
simulation in time and Laplace domain, respectively. However applying the CQMs scaled
DFT to the Heaviside step function does not yield the same result as the the exact Laplace
transform. To account for this difference we use the output of the DFT as the input BC σ̂0
of the analytic Laplace domain solution.

The stress tensor for the one dimensional problem is given by

σ = 2µ
∂u
∂x

= c2
Pρ

∂u
∂x

. (6.28)

We solve (6.27) by choosing the ansatz

û(x,s) = A0e−
s

cP
x
+A1e

s
cP

x, (6.29)

which yields the following Laplace domain displacement and stress solutions

û(x,s) =
σ̂0

cPρs
−e−

s
cP

x
+ e

s
cP

x

e−
s

cP
L
+ e

s
cP

L

σ̂(x,s) = σ̂0
−e−

s
cP

x
+ e

s
cP

x

e−
s

cP
L
+ e

s
cP

L .

(6.30)

Consequently, we obtain the time domain solutions by performing the inverse Laplace
transform

u(x, t) =
σ0

ρcP

∞

∑
n=0

[χn (−x, t)H(χn (−x, t))−χn (x, t)H(χn (x, t))]

σ(x, t) = σ0

∞

∑
n=0

(−1)n [H(χn (−x, t))+H(χn (x, t))] .
(6.31)
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Note that in the above we introduced the function χn (x, t) defined as

χn (x, t) := t− (2n+1)L+ x
cP

. (6.32)

The displacement and traction solutions are plotted for two oscillations of the free end
in Fig. 6.14. Observe the discontinuity of the traction solution at the fixed end caused
by the Heaviside loading at t = 0+. Lateron we will see that this discontinuity limits the
convergence rate of the numerically computed traction solution.
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Figure 6.14: Analytic solution of the elastodynamic rod with Heaviside loading in negtive
x direction. Displacements are plotted at the free end and the middle of the
rod, tractions at the fixed end.

6.5.2 Error measures

Using the analytic solutions (6.30) and (6.31) we define the following error measuers in
Laplace and time domain respectively. The relative errors of the Laplace domain solutions
read as

elvl
L2(ΓN)

(û,s) :=
|û(x,s)− ûlvl(x,s)|L2(ΓN)

|û(x,s)|L2(ΓN)

elvl
L2(ΓD)

(
t̂,s
)

:=
|t̂(x,s)− t̂lvl(x,s)|L2(ΓD)

|t̂(x,s)|L2(ΓD)

.

(6.33)
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The absolut errors of the time domain Dirichlet and Neumann solutions are given by

elvl
L2(ΓN)

(u, t) := |u(x, t)−ulvl(x, t)|L2(ΓN)

elvl
L2(ΓD)

(t, t) := |t(x, t)− tlvl(x, t)|L2(ΓD) .
(6.34)

Note that in the above we choose the absolute error since both |u(x, t)|L2(ΓN) and |tlvl(x, t)|L2(ΓD)

are equal to zero for some t ∈ (0,T ).

Furthermore, the total relative space-time errors are defined as

elvl
ST (u) :=

(
∆t ∑Nt

i=1

∣∣∣u(x, t(n))−ulvl(x, t(n))
∣∣∣
2

L2(ΓN)

) 1
2

(
∆t ∑Nt

i=1

∣∣u(x, t(n)))
∣∣2
L2(ΓN)

) 1
2

elvl
ST (t) :=

(
∆t ∑Nt

i=1

∣∣∣t(x, t(n))− tlvl(x, t(n))
∣∣∣
2

L2(ΓD)

) 1
2

(
∆t ∑Nt

i=1

∣∣t(x, t(n)))
∣∣2
L2(ΓD)

) 1
2

.

(6.35)

Note that in the above we use the L2 norm in space and and the `2 in time.

6.5.3 Choice of timestep size and dense convergence

The aim of this chapter is to identify a suitable timestep size for a given spatial discretiza-
tion. We start by introducing the dimensionless ratio

β =
cp∆t

h
(6.36)

commonly known as the Courant-Friedrichs-Lewy number (CFL) [23, 73].

In the first numerical experiment we vary β for a given fixed mesh width h and time interval
T . We choose h = 0.25 m and the time interval to be T = 12 s, which corresponds to one
osscillation period of the rod for the chosen material parameters. Figure 6.15 illustrates
the results. In Fig. 6.15a the set of Laplace parameters for each computation is shown.
Figure 6.15b plots the Dirichlet error in Laplace domain over the normalized running index
of the Laplace parameter, which is given by dividing the index l of sl with l = 1, . . . ,Nt/2+1
by the total number of Laplace parameters Nt/2+1. We use the normalized running indices
in this plot for better comparability of the curves. Please note that (6.30) used in the
error computation causes numerical problems for some Laplace parameters with very large
Re(s), resulting in a not a number (NaN) output. These data points have been excluded in
Fig. 6.15b. Figures 6.15c and 6.15d show the Dirichelt and Neumann time domain error,
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respectively. Finally, the space-time error for the displacement and traction solutions are
plotted in Fig. 6.15e.

First, we note that β = 1/16 leads to a diverging solution. The occurence of an instability is
already visible in the time domain solution of the displacements for β = 1/4 and β = 1/8.
This instability is a direct result of the drop in accuracy of the Laplace domain solution
caused by frequencies that can not be resolved by the spacial discretization. From these
results we conclude that β should be chosen to be larger or equal 1/2. However, we see
that using β = 1/2 the imaginary part of the Laplace parameter still reaches the limit of
λS/h = 1. As a consequence we choose β = 1 for all further investigations.

Next we perform a convergence study for the chosen CFL number of one. The results
of the study are illustrated in Fig. 6.16. Figure 6.16b plots the Dirichlet error in Laplace
domain, while Figs. 6.16c and 6.16d show the time domain error of the displacement and
traction solution, respectively. Finally, Fig. 6.16e illustrates the convergence of the space-
time errors for both the displacement and traction solution. Again we note the severe
drop in accuracy of the displacement solution in Laplace domain as the running index of
s increases. Furthermore, we note the reduced convergence of the time domain traction
solution due to the temporal discontinuous boundary conditions. An estimate for the cov-
ergence order can be found in the work of Banjai, Messner and Schanz [8]. The observed
order of convergence agrees well with the theoretical estimate of 0.38 for the BDF2 as the
underlying time stepping scheme. In the next section, we will discuss the application of
the FMM to approximate the system matrices while maintaining the numerical observed
rate of convergence of the dense computation.
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Figure 6.15: Solution of the elastic rod for a fixed mesh h = 0.25 m and varying β i.e.
timestep size.
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Figure 6.16: Convergence study for the elastic rod for a constant β = 1. In each mesh
refinement level the mesh width and timestep size are halved starting from
level 0 with h = 1 m and ∆t = 1 s.
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6.5.4 FMM parameter optimization and FMM convergence

In the last section, we have seen, that by choosing a CFL number of one, we can obtain the
desired rate of convergence. However, using β = 1 results in a set of Laplace parameters
with corresponding shear wave wavelengths that fall far below the miminum wavelength
to element ratio of approximately λS/h ≥ 18. Remeber, we have obtained this value as the
minimum wavelength to element ratio for the optimal high frequency switching condition
γ = 1/4 while maintaining the leaf level low frequency condition (Section 6.2.2). As a
result the leaf level will switch to a directional approximation as Im(s) increases which
results in a drastic increase in the storage requirements. Furthermore, it was observed,
that the parabolic admissibility distance of the leaf level exceeds the dimensions of the
computation domain for certain sl using γ = 1/4, which results in a dense system matrix
without any FMM approximation at all. For this reasons, we will not apply the DFMM to
the CQM problem.

However, using a naive LF-FMM approach we observe a severe loss in accuracy of the
approximation as the frequency increases. Consequently, we are facing the optimization
problem of ajusting the FMM parameters to suit the accuracy requirements for each fre-
quency. For this purpose we need two things. First, we need to define the target accuracy,
which we determine by using the results of the dense computation. We define the upper
limit of the FMM approximation error to be

εFMM
rel (s)< αelvl

L2(ΓN)
(û,s) =: εtarget withα < 1 (6.37)

where α is a scaling parameter. Second, we need to adjust the FMM approximation accu-
racy accordingly. There are two options to do this. Either we can increase the interpolation
order, or we can scale the admissibility distance (5.7) by a constant factor ηscale. As we
have seen, the cost of increasing the interpolation order is very high since the size of the
M2L-operator scales like `6. We therefore choose the latter option of scaling the admissi-
bility distance. The optimization problem consequently reas as follows: Vary the admissi-
bility distance using the scaling factor ηscale and choosing the shortest distance such that
the target acccuracy is met.

We perform the above described optimization procedure for the mesh refiment levels three
to five of the rod geometry. It is not possible to apply this optimization procedure to
higher refiment levels as the solution of the dense computation is required to define the
traget accuracy. Please note that we use the SLP system matrix of the Dirichlet problem to
compute the estimated approximation error. The employed FMM parameters are listed in
Table 6.19. Please note that we use α = 1×10−1 and α = 1×10−2 for optimization of the
TED and HED approach respectively. This turned out to be necessary as the solution seems
to be more sensitive to perturbations of the system matrix caused by the HED approach.
Using α = 1×10−1 for HED leads to strong deviations from the dense solution.
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The results of the optimization procedure performed for the mesh refinement levels three
to five are shown in Figs. 6.17 and 6.18. On the left hand side of each figure the FMM
approximation error for a set of scaling parameters ηscale over the Laplace parameter index
is shown. Furthermore, the target accuracy and the optimized parameter is indicated. On
the right hand side the optimized scaling parameter as well as the estimated resulting mar-
tix compression, which is given by the total size of the FMM matrices divided by the size
of the dense system matrices, are plotted over the Laplace parameter index. Please note
that the plotted compression is the overall compression of system matrices of the Dirichlet
problem which is a good indication on the performance of the mixed problem. Further-
more we note that the compression may exceed one if the overhead of the FMM is high.
In this case a dense computation would be favourable.

Next we use the optimized FMM parameters obtained in the previous step to solve the
elastodynamic rod. Tables 6.20 and 6.21 list the computed displacement and traction er-
rors for the TED and HED approach respectively. The results of the dense computation
are given as a reference. We observe that using the FMM and the optimization procedure
outlined above we obtain the desired rate of convergence for both the Dirichlet and Neu-
mann data. Please note that prescribing a constant high accuracy for the GMRES solver
for all Laplace parameters leads to unfeasibly long computation times. As a consequnecy,
we used εGMRES = 1× 10−2elvl

L2(ΓN)
(û,s) as the convergence criterion for both the inner

and outer interative solver of the Schur complement system, which significantly reduces
the computation time for high frequencies.

lvl h Nt L `T ED `HED

3 0.125 96 3 3 5
4 0.0625 192 4 4 6
5 0.03125 384 5 5 7

Table 6.19: Computation parameters for the elastic rod using FMM

Dense TED HED

lvl h elvl
ST (u) eoc elvl

ST (u) eoc elvl
ST (u) eoc

3 0.125 3.18E-2 3.55E-2 3.20E-2
4 0.0625 1.61E-2 0.98 1.65E-2 1.11 1.66E-2 0.95
5 0.03125 8.13E-3 0.99 8.39E-3 0.97 8.19E-3 1.02

Table 6.20: Space time error and convergence rate for the displacements
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Dense TED HED

lvl h elvl
ST (t) eoc elvl

ST (t) eoc elvl
ST (t) eoc

3 0.125 2.36E-1 2.34E-1 2.38E-1
4 0.0625 1.86E-1 0.35 1.87E-1 0.32 1.87E-1 0.35
5 0.03125 1.46E-1 0.34 1.48E-1 0.34 1.47E-1 0.35

Table 6.21: Space time error and convergence rate for the tractions
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Figure 6.17: Parameter optimization of ηscale for the TED approach. On the left hand side
the FMM approximation errors for a set of scaling parameters ηscale are plot-
ted over the Laplace parameter index. Furthermore a computation using only
near-field interactions (ηscale = 1) indicated by ’NF only’, the target accuracy
εtarget and the resulting εopt are plotted. On the right hand side the optimized
scaling parameter as well as the estimated resulting matrix compression are
given.
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Figure 6.18: Parameter optimization of ηscale for the HED approach. On the left hand side
the FMM approximation errors for a set of scaling parameters ηscale are plot-
ted over the Laplace parameter index. Furthermore a computation using only
near-field interactions (ηscale = 1) indicated by ’NF only’, the target accuracy
εtarget and the resulting εopt are plotted. On the right hand side the optimized
scaling parameter as well as the estimated resulting matrix compression are
given.





7 CONCLUSION AND OUTLOOK

In this thesis, we have established a kernel interpolation based FMM approach to treat
3D elastodynamic problems in Laplace and time domain using the convolution quadarture
method (CQM). Starting from the governing equations, we have derived the corresponding
BIE formulation and, subsequently, presented the temporal and spatial discretization tech-
nique that leads to the fully discretized system of equations. In the main part of the thesis
the kernel interpolation FMM for scalar problems has been introduced and two possible
extensions to the elastodynamic case have been developed. Furthermore, the application
of a variable order scheme for the FMM has been discussed. To validate the proposed
algorithms, timing and memory requirements for a constant approximation error as well
as a convergence study in Laplace domain and an exterior scattering problem have been
presented. Finally, a time domain problem has been considered, where a parameter opti-
mization strategy for the FMM has been proposed.

We have seen that both proposed methods, the direct interpolation of the tensorial fun-
damental solution denoted as TED and the approach utilizing the representation of the
elastodynamic fundamental solution based on scalar Helmholtz kernels denoted as HED,
are feasible for large scale elastodynamic problems in Laplace domain. Furthermore, we
have observed that the advantages of using scalar M2L-operators in the HED approach
are somewhat offset by the higher interpolation order needed. Finally, we have observed
that using the variable order approach significantly reduces application times for the SLP-
operator.

In order to further increase the performance of the presented FMM, a recompression of
the M2L operators using the SVD should be considered. Concerning the application of the
FMM to CQ-BEM several open points remain to be solved for the method to be success-
fully applied to elastodynamic problems:

• First of all, an error estimate for the solution depending on the Laplace parameter is
needed to be able to define the target accuracy of the FMM parameter optimization,
without the use of a dense computation.

• Second, a better optimization strategy is required. For instance the optimization of
the admissibility condition for each individual octree level might lead to a better
compression for high frequencies. However, in order to do this efficiently an a priori
error estimate of the matrix approximation error is needed.

101



102 7 Conclusion and outlook

• Finally, the extension of the method to the reformulated CQM by Banjai as presented
in [6] seems to be promising in order to avoid the expensive solution process in
Laplace domain.



A RECIPROCITY THEOREM

Observe that the first order partial derivative of the displacement vector can be written as
the sum of the symmetric strain tensor and the antisymmertic rotation tensor

∂
∂x j

ui =
1
2

(
∂

∂x j
ui +

∂
∂xi

u j

)

︸ ︷︷ ︸
εi j

+
1
2

(
∂

∂x j
ui−

∂
∂xi

u j

)

︸ ︷︷ ︸
ωi j

. (A.1)

Since the material tensor Ci jkl is symmetric, Ci jklωkl = 0 holds. As a consequence the
stress tensor can be written as

σi j =Ci jklεkl +Ci jklωkl =Ci jkl
∂

∂xl
uk. (A.2)

Using the above the differential balance of momentum (2.15) in Laplace domain reads
as

Ci jkl
∂ 2

∂xl∂x j
ûk(x)−ρs2ûi(x) = 0, (A.3)

where we dropped the explicit dependence of the displacements û on the Laplace parame-
ter s.

The weak formulation is obtain by multiplying with an unknown test function v̂ and inte-
grating over the whole domain Ω

∫

Ω

(
Ci jkl

∂ 2

∂xl∂x j
ûk(x)−ρs2ûi(x)

)
v̂i(x)dV = 0. (A.4)

Next, our goal is to shift the partial derivatives ∂ 2

∂xl∂x j
to the test function v. First, we note

that using the chain rule of differentiation we can write
(

∂ 2

∂xl∂x j
ûk

)
v̂i =

∂
∂x j

((
∂

∂xl
ûk

)
v̂i

)
−
(

∂
∂xl

ûk

)
∂

∂x j
v̂i, j. (A.5)

Using the above relation we can express the first term of the weak formulation (A.4) as
∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
ûk

)
v̂idV =

∫

Ω

Ci jkl
∂

∂x j

((
∂

∂xl
ûk

)
v̂i

)
dV −

∫

Ω

Ci jkl

(
∂

∂xl
ûk

)
∂

∂x j
v̂i, jdV.

(A.6)
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104 A Reciprocity theorem

Subsequently, we apply the divergence theorem (2.13) to the first term on the right hand
side and obtain

∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
ûk

)
v̂idV =

∫

Γ

Ci jkl

(
∂

∂yl
ûk

)
v̂in jdsy−

∫

Ω

Ci jkl

(
∂

∂xl
ûk

)
∂

∂x j
v̂idV.

(A.7)
Now we repeat the above procedure of shifting the derivative to the test function and ap-
plying the divergence theorem for the second term in (A.7) which leads to

∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
ûk

)
v̂idV =

∫

Γ

Ci jkl

(
∂

∂yl
ûk

)
v̂in jdsy−

∫

Γ

Ci jkl ûk

(
∂

∂y j
v̂i

)
nldsy

+
∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
v̂i

)
ûkdV. (A.8)

Finally, utilizing the symmetry Ci jkl =Ckli j and renaming of indices yields

∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
ûk

)
v̂idV −

∫

Ω

Ci jkl

(
∂ 2

∂xl∂x j
v̂k

)
ûidV =

∫

Γ

Ci jkl

(
∂

∂yl
ûk

)
v̂in jdsy−

∫

Γ

Ci jkl ûk

(
∂

∂y j
v̂i

)
nldsy. (A.9)

The above relation is Green’s second identity for the Lamé operator also known as the
static reciprocity theorem, see [1]. Using the Lamé operator (2.25) and the stress operator
(2.29) the above can be written in the more compact form

∫

Ω

[
Ai j (∂x) û j

]
v̂idV −

∫

Ω

[
Ai j (∂x) v̂ j

]
ûidV =

∫

Γ

[
Ti j (∂y,n(y)) û j

]
v̂idsy−

∫

Γ

[
Ti j (∂y,n(y)) v̂ j

]
ûidsy. (A.10)



B DISPLACEMENT FUNDAMENTAL SOLUTION USING
HELMHOLTZ KERNELS

Following the work of Yoshida [93], the elastodynamic fundamental solution in Fourier
space can be written as

Ui j (x,y,ω) =
1

4πµ

(
eikSr

r
δi j +

1
k2

S

∂ 2

∂yi∂y j

(
eikSr

r
− eikPr

r

))
. (B.1)

We note that the symbol ω ∈ R denotes the frequency and the the compression and shear
wave wave numbers are defined as

kP =
ω
cP

and kS =
ω
cS
. (B.2)

For the BIE formulation in the present work the fundamental solution in the Laplace do-
main is needed. We thus substitute s = −iω . Furthermore we substitute ∂/∂yi = −∂/∂xi,
which will be convenient for our fast multipole formulation and obtain

Ui j =
1

4πµ

(
e−

sr
cS

r
δi j +

c2
S

s2
∂ 2

∂xi∂y j

(
e−

sr
cS

r
− e−

sr
cP

r

))
. (B.3)

Note that in the formulation (B.3) scalar Helmholtz kernels of the form

Gα (x,y,s) =
1

4π
e−

sr
cα

r
with α = P,S (B.4)

appear.

In the following, we will shot that the formulation above is indeed equivalent to (3.17).
First, we note that the first order partial derivative of the Helmholtz kernel with respect to
y j is given by

∂
∂y j

(
e−

sr
cα

r

)
=− 1

r2 e−
sr
cα

∂ r
∂y j
− s

cα

1
r

e−
sr
cα

∂ r
∂y j

. (B.5)

Subsequently, we compute the second derivative with respect to xi separately for both terms
on the right hand side of the equation above

∂
∂xi

(
− 1

r2 e−
sr
cα

∂ r
∂y j

)
=

(
3
r3 +

s
cα

1
r2

)
e−

sr
cα

∂ r
∂xi

∂ r
∂yi

+
1
r3 e−

sr
cα δi j, (B.6)
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106 B Displacement fundamental solution using Helmholtz kernels

∂
∂xi

(
− s

cα

1
r

e−
sr
cα

∂ r
∂y j

)
=

(
s

cα

2
r2 +

s2

c2
α

1
r

)
e−

sr
cα

∂ r
∂xi

∂ r
∂y j

+
s

cα

1
r2 e−

sr
cα δi j, (B.7)

In the above, we replaced the arising second order partial derivative of the position vector
with respect to xi and y j by

∂ r
∂xiy j

=−1
r

∂ r
∂xi

∂ r
∂yi
− 1

r
δi j. (B.8)

Adding the two terms and rearranging yields

∂ 2

∂xiy j

(
e−

sr
cα

r

)
=

(
3
r2 +

s
cα

3
r
+

s2

c2
α

)
e−

sr
cα

r
∂ r
∂xi

∂ r
∂y j

+

(
1
r2 +

s
cα

1
r

)
e−

sr
cα

r
δi j. (B.9)

The second order derivative of the Helmholtz kernel for the P and S term of (B.3) read
as

c2
S

s2
∂ 2

∂xiy j

(
e−

sr
cS

r

)
=

(
c2

S
s2

3
r2 +

cS

s
3
r
+1
)

e−
sr
cS

r
∂ r
∂xi

∂ r
∂y j

+

(
c2

S
s2

1
r2 +

cS

s
1
r

)
e−

sr
cS

r
δi j (B.10)

and

c2
S

s2
∂ 2

∂xiy j

(
e−

sr
cP

r

)
=

c2
S

c2
P

(
c2

P
s2

3
r2 +

cP

s
3
r
+1
)

e−
sr
cP

r
∂ r
∂xi

∂ r
∂y j

+
c2

S

c2
P

(
c2

P
s2

1
r2 +

cP

s
1
r

)
e−

sr
cP

r
δi j.

(B.11)
Finally, by inserting the above results back into (3.21) we obtain

Ui j =
1

4πµ




((
c2

s
s2

1
r2 +

cs

s
1
r
+1
)

e−
sr
cs

r
− c2

s

c2
P

(
c2

P
s2

1
r2 +

cP

s
1
r

)
e−

sr
cP

r

)

︸ ︷︷ ︸
ψ(r,s)

δi j

+

((
c2

s
s2

3
r2 +

cs

s
3
r
+1
)

e−
sr
cs

r
− c2

s

c2
P

(
c2

P
s2

3
r2 +

cP

s
3
r
+1
)

e−
sr
cP

r

)

︸ ︷︷ ︸
χ(r,s)

∂ r
∂xi

∂ r
∂y j



.

(B.12)

Observe that the expression above is indeed equal to (3.17) if we substitute

∂ r
∂xi

=
−(yi− xi)

r
=
−ri

r
=− ∂ r

∂yi
. (B.13)



C CONVOLUTION QUADRATURE METHOD

C.1 Convolution quadrature method

As the staring point of our derivation we recall the temporal convolution of two time de-
pendent function f (t) and g(t), given by

( f ∗g)(t) =
t∫

0

f (t− τ)g(τ)dτ for all t > 0. (C.1)

In the first step, we replace f by its inverse Laplace transform L−1 [ f̂
]
(t) given by

f (t) = L−1 [ f̂
]
(t) =

1
2πi

lim
R→∞

c+iR∫

c−iR

f̂ (s)estds, (C.2)

where we assumed that all poles and branch cuts si of the function f̂ (s) have Re(si) ≤ c.
Inserting the above into (C.1) and exchanging the order of integration yields

( f ∗g)(t) =
1

2πi
lim

R→∞

c+iR∫

c−iR

f̂ (s)
t∫

0

es(t−τ)g(τ)dτds. (C.3)

In the next step, we define a new function h(t,s), given by the inner integral

h(t,s) :=
t∫

0

es(t−τ)g(τ)dτ. (C.4)

We note that the function h(t,s), as defined in (C.4), is the solution to the ordinary differ-
ential equation (ODE) of first order

(
d
dt
− s
)

h(t,s) = g(t), (C.5)

with initial conditions h(0,s) = 0, see [47].

Our goal is to compute h(t,s) numerically. We thus employ a linear multistep method to
solve the corresponding ODE (C.5). Consequently, we split time interval (0,T ) equally
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108 C Convolution quadrature method

into Nt + 1 time steps with time step size ∆t = T/(Nt+1). The solution h(t(n+ j),s) at time
step t(n+ j) is then given by

k

∑
j=0

α jh
(

t(n+ j),s
)
= ∆t

k

∑
j=0

β j

[
sh
(

t(n+ j),s
)
+g
(

t(n+ j)
)]

. (C.6)

Observe that in the above we used the general definition of a multistep method.

In the next, step our goal is to obtain a power series representation relating the functions
h(t,s) and g(t). We thus multiply (C.6) by zn and sum up all coefficients from zero to
infinity

∞

∑
n=0

k

∑
j=0

α jh
(

t(n+ j),s
)

zn = ∆t

∞

∑
n=0

k

∑
j=0

β j

[
sh
(

t(n+ j),s
)
+g
(

t(n+ j)
)]

zn. (C.7)

Assuming absolute convergence of the series we can exchange the order of summation

k

∑
j=0

α j

∞

∑
n=0

h
(

t(n+ j),s
)

zn = ∆t

k

∑
j=0

β j

∞

∑
n=0

[
sh
(

t(n+ j),s
)
+g
(

t(n+ j)
)]

zn. (C.8)

Next, we assume vanishing initial conditions for the first k timesteps, i.e.,

h
(

t(0),s
)
= . . .= h

(
t(k−1),s

)
= 0 and g

(
t(0)
)
= . . .= g

(
t(k−1)

)
= 0, (C.9)

to be able to rewritten the inner sums of (C.8) to

∞

∑
n=0

h
(

t(n+ j),s
)

zn = z−k
∞

∑
n=0

h
(

t(n),s
)

zn

∞

∑
n=0

g
(

t(n+ j)
)

zn = z−k
∞

∑
n=0

g
(

t(n)
)

zn.

(C.10)

By inserting this result we obtain

k

∑
j=0

α jz− j
∞

∑
n=0

h
(

t(n),s
)

zn = ∆t

k

∑
j=0

β jz− j

[
s

∞

∑
n=0

h
(

t(n),s
)

zn +
∞

∑
n=0

g
(

t(n)
)

zn

]
. (C.11)

Next we use the definition of the characteristic function γ(z) of the underlying time step-
ping algorithm given by

γ(z) =
k

∑
j=0

α jz− j

(
k

∑
j=0

β jz− j

)−1

(C.12)
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We note that for the A-stable BDF2 scheme the characteristic function reads as

γ(ζ ) =
1
2
(ζ 2−4ζ +3). (C.13)

Using γ(ζ ) we can rewrite (C.11) and obtain the desired power series relation

∞

∑
n=0

h
(

t(n),s
)

zn =

(
γ(z)
∆t
− s
)−1 ∞

∑
n=0

g
(

t(n)
)

zn. (C.14)

The convolution given in (C.3) for a given discrete time steps t(n) can be written as

( f ∗g)
(

t(n)
)
=

1
2πi

lim
R→∞

c+iR∫

c−iR

f̂ (s)h
(

t(n),s
)

ds, (C.15)

using the function h(t,s). We transform the above into a power series by multiplying by zn

and summing up all coefficients from zero to infinity

∞

∑
n=0

( f ∗g)
(

t(n)
)

zn =
1

2πi
lim

R→∞

c+iR∫

c−iR

f̂ (s)
∞

∑
n=0

h
(

t(n),s
)

znds. (C.16)

In the next step, we can utilize our result (C.14) to replace the sum over the coefficients
h
(

t(n),s
)

which leads to

∑
n
( f ∗g)

(
t(n)
)

zn =
1

2πi
lim

R→∞

c+iR∫

c−iR

f̂ (s)
γ(z)
∆t
− s

ds
∞

∑
n=0

g
(

t(n)
)

zn. (C.17)

Next we assume f̂ (s)→ 0 in the limit of |s| → ∞ and convert the above integral into a
closed contour integral

∑
n
( f ∗g)

(
t(n)
)

zn =
1

2πi

∮

C

f̂ (s)
γ(z)
∆t
− s

ds
∞

∑
n=0

g
(

t(n))
)

zn. (C.18)

We can now evaluated the integral using Cauchy’s integral formula

1
2πi

∮

C

f̂ (s)
γ(z)
∆t
− s

ds
∞

∑
n=0

g
(

t(n))
)

zn = f̂
(

γ(z)
∆t

) ∞

∑
n=0

g
(

t(n)
)

zn. (C.19)

Note that in (C.2) we required that all poles of f̂ (s) lie to the left of the integration path.
Therefore the only pole of the contour integral is 1

γ(z)
∆t
−s

.
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In the last step of our derivation, we expand f̂
(

γ(z)
∆t

)
into a power series with yet unknown

coefficients ω(n) ( f̂
)

f̂
(

γ(z)
∆t

)
=

∞

∑
n=0

ω(n) ( f̂
)

zn. (C.20)

Inserting the power series into (C.19) and applying Cauchy’s product rule to change the
order of summation yields

∑
n
( f ∗g)

(
t(n)
)

zn =
∞

∑
m=0

ω(m)
(

f̂
)

zm
∞

∑
n=0

g
(

t(n)
)

zn =
∞

∑
n=0

n

∑
m=0

ω(n−m)
(

f̂
)

g
(

t(m)
)

zn.

(C.21)
Again assume absolute convergence of the series. By comparing coefficients we finally
get

( f ∗g)
(

t(n)
)
=

n

∑
m=0

ω(n−m)
(

f̂
)

g
(

t(m)
)

with n = 0, . . . ,Nt . (C.22)

We see that the discrete temporal convolution of the functions f and g can be replaced by
a convolution of g with some yet unknown convolution weights ω(n−m)

(
f̂
)
.

C.2 Computation of the convolution weights

In the next step we compute the convolution weights ω(n) ( f̂
)
. This is done by computing

the Taylor expansion of f̂
(

γ(z)
∆t

)
around z = 0.

ω(n) ( f̂
)
=

1
n!

∂ n

∂ zn f̂
(

γ(z)
∆t

)∣∣∣∣
z=0

. (C.23)

The nth order derivative of f̂ is evaluated by applying Cauchy’s differentiation formula
given by

∂ n

∂ zn f̂
(

γ(z)
∆t

)∣∣∣∣
z=0

=
n!

2πi

∮

C

f̂
(

γ(s)
∆t

)

sn+1 ds. (C.24)

Then the closed contour integral is evaluated on a a circle with radius R < 1. We note that
s = Re−iϕ and ds =−iRe−iϕdϕ which leads to

ω(n) ( f̂
)
=

1
2πi

∮ f̂
(

γ(s)
∆t

)

sn+1 ds =
R−n

2π

2π∫

0

f̂
(

γ(Re−iϕ)

∆t

)
eiϕndϕ. (C.25)
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We evaluate numerically by applying the trapezoidal rule. Observe that the trapezoidal
rule with uniform spacing for a closed contour integral on a circle can be written as

2π∫

0

f (ϕ)dϕ =
2π

N +1

N

∑
l=0

f
(

2πl
N +1

)
. (C.26)

In the above we used the fact that f (0) = f (2π).

By choosing the number of integration points of the trapezoidal rule equal to the number
of timesteps Nt +1 we finally get the expression for the convolution weights

ω(n) ( f̂
)
=

R−n

Nt +1

Nt

∑
l=0

f̂ (sl)ζ nl. (C.27)

In the above we introduced the variable ζ = e
2πi

Nt+1 and the Laplace parameter

sl =
γ
(
Rζ−l)

∆t
. (C.28)

We note that the inverse discrete Fourier transform (IDFT) is given by

ak =
1

N +1

N

∑
j=0

â jζ jk. (C.29)

Consequently the result (C.27) can be intepreted as a scaled IDFT with scaling factor
R−n.

Remark 14 The integral (C.2) is computed numerically using the trapezoidal rule by
splitting the integral into Nt + 1 integration points equally distributed around the circle.
We note that every integration point ζ−l with Im

(
ζ−l) > 0 has a corresponding integra-

tion point ζ (Nt+1)−l with Im
(

ζ (Nt+1)−l
)
=− Im

(
ζ−l). As a consequence ζ (Nt+1)−l = ζ̄ l

holds, a property that directly translates to the Laplace parameters s(Nt+1)−l = s̄l as well

as to f̂
(
s(Nt+1)−l

)
= f̂ (sl). We, therefore, only need to evaluate Nt/2+1 coefficients f̂ (sl)

in order to obtain the convolution weights ω(n) ( f̂
)
.





D MATRIX APPROXIMATION ERROR ESTIMATOR

We note that only for small problems is it possible to evaluate the exact approximation error
of the fast multipole method. Therefore, we need a way to compute an error estimate. It is
important to note that no individual entries in the FMM matrix can be computed as only the
result of a matrix-vector product (MVP) is available. However we see that by computing
the MVP for an unite vector in the space of the degrees of freedoms we can compute
a single column of the FMM matrix approximation. Therefore we will use individual
column norms to compute an estimate for the total approximation error.

We note that for the discretized boundary operator AD
[i j] and the its approximation using the

FMM denoted by AFMM
[i j] the relative error in the Frobenius norm is given by

εrel =

∣∣∣AD
[i j]−AFMM

[i j]

∣∣∣
F∣∣∣AD

[i j]

∣∣∣
F

=

√
N
∑

i=1

M
∑
j=1

∣∣∣AD
[i j]−AFMM

[i j]

∣∣∣
2

√
∑N

i=1

M
∑
j=1

∣∣∣AD
[i j]

∣∣∣
2

, (D.1)

where the symbols N and M denote the number of row and columns, respectively. The
squared column norm of the error and dense matrix are

NE
C j :=

N

∑
i=1

∣∣∣AD
[i j]−AFMM

[i j]

∣∣∣
2

and ND
C j :=

N

∑
i=1

∣∣∣AD
[i j]

∣∣∣
2
. (D.2)

Using the above the relative approximation error is simply given by the sum of column
norms

εrel =

√
M
∑
j=1

NE
C j

√
M
∑
j=1

ND
C j

. (D.3)

We note that the sum over all column norms can be written as the column norm expectation
value E

[
NE/D

C j

]
times the number of columns

M

∑
j=1

NE/D
C j = M E

[
NE/D

C

]
. (D.4)
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In the next step we approximate the expectation value by choosing a batch of MB sample
column indices b := { j}MB

NE/D
C := E

[
NE/D

C

]
=

1
MB

∑
j∈b

NE/D
C j . (D.5)

Please note that we sample without replacement since this is a finite problem and choosing
MB = M leads to the exact estimation value. Furthermore note that in order to maintain the
desired accuracy we choose the bunch sampling size MB to scale like O

(√
M
)
.

Subsequently we need to quantify the uncertainty of the approximated column norm ex-
pectation value NE/D

C , which is given by the standard error. To compute the standard error
we create NB sets of sample batches {bi}NB

i=1 for which NE/D
C i is evaluated. Again we sam-

ple without replacement and therefore bi
⋂

b j = /0 for all i, j ∈ NB with i 6= j. First we note
that using the union of all batch samples we obtain a refined estimate for the expectation
value E

[
NE/D

C

]

NE/D
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]
=

1
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∑
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Second, the standard error is given by the standard deviation of the individual batch expec-
tation values NE/D

C i

σE/D
C :=

√
E
[(

NE/D
C i −NE/D

C

)2
]
=

√√√√ 1
NB

NB

∑
i

(
NE/D

C i −NE/D
C

)2
, (D.7)

which defines our uncertainty bounds.

Finally the estimate of the matrix approximation error is given by

εrel =

(
NE

C

ND
C

) 1
2

. (D.8)

We obtain its uncertainty bounds by the propagation of error

σ ε =
1

2
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NE
CND

C

) 1
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σE
C +

(
NE

C

) 1
2

2
(

ND
C

) 3
2

σD
C . (D.9)
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D.1 Numerical examples error estimator

In this section, we test the robustness of our error estimator. In Fig. D.1 we plot the
histograms of the column norms for three example computation domains: the rotated box,
the unit sphere and the rod. For all three geometries we us the fourth refinement level of the
boundary mesh. The octree depth L is chosen to be 3 for the box and 4 for the sphere and
the rod. Furthermore the FMM interpolation order is set to 3. For all FMM computations
in this section the TED approach is used. Finally the batch size MB is set to 8 and the
number of batches is 24. We see that the approximate expectation value matches the true
expectation value quite nicely and that the true expectation value is well contained with the
uncertainty bounds for all three example problems. Furthermore we see that we get a good
approximation result if even if the distribution of column norms is very inhomogeneous.

Figure D.2 shows the approximated column norm expectation values for the individual
sample batches i = 1, . . . ,NB. For all geometries we see a strong fluctuation of the batch
expectation value around the exact value. This is caused by the inhomogeneous distribution
of column norms and the reason for the large uncertainty bounds. Nevertheless we can
conclude that the true expectation value is sufficiently well approximated using the method
described above to estimate the order of magnitude of the exact error.

Finally, Fig. D.3 illustrates the standard deviation of the batch expectation values as a
function of the batch size MB for a constant number of batches NB = 24. We see that
we get a fast convergence of the standard deviation for small batch sizes for all example
geometries. As a result choosing the batch size of 8 leads to a relative error in the range of
30%−10% which is sufficient to asses the quality of the FMM approximation. However
we also note that the convergence slows down significantly as the batch size increases. This
indicates that tighter error bounds can be defined since σ → 0 in the limit of MB→M.

Finally, Table D.1 shows the error estimate for the three example geometries. The error
estimates for SLP and DLP are given along with the absolute and relative uncertainty
bounds as well as the exact computed error value. Three interpolation orders ` = 3,4,5
and three mesh refinement levels lvl = 3,4,5 are under consideration. We note that for the
box geometry the chosen octree depth is L = lvl− 1. For the sphere and rod the octree
depth equals the level. As already mentioned, to maintain the desired accuracy, we choose
the batch sampling size to scale like

√
M. Therefore MB is increased by a factor of two

for every mesh refinement level, starting with MB = 4 at lvl = 3. The number of sample
batches is kept constant at NB = 24 for all computations. From Table D.1 we can see
that the error estimator works well for all geometries, refinement levels and interpolation
orders. We note that in order to see the good agreement with the exact value, εrel is not
rounded to the significant figures on purpose, despite the quite large uncertainty bounds.

Furthermore please not that the uncertainty bounds for the box and mesh lvl = 3 are large
compared to the other values in the table. This can be explained by the fact that for this
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level only few FMM interactions are computed due to a large admissibility distance com-
pare to the domain size. Consequently many columns of the matrix are computed dense
resulting in the error to be exactly zero. The resulting distribution of error column norms
spans over many orders of magnitude. Nevertheless even in this case we see that the error
estimator works sufficiently well.
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Figure D.1: Histogram of the column norms of matrix approximation error NE
C j and of the

dense operator ND
C j for the SLP. The exact expectation value is marked by a

green line and the approximated expectation value is indicated in red. The
uncertainty bounds are indicated by dashed red lines.
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Figure D.2: Estimation values NE/D
C i of the individual batches (MB = 8)for the matrix ap-

proximation error and the dense operator for the SLP. The exact expectation
value and its approximation are marked by a green and red line, respectively.
The uncertainty bounds are indicated by dashed red lines.
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SLP DLP

` lvl εrel εrel σ ε
rel εrel εrel σ ε

rel

Box
`= 3 3 1.08E-3 1.07E-3 ± 6E-4 55 % 8.79E-4 8.41E-4 ± 3E-4 38 %

4 2.73E-3 2.72E-3 ± 3E-4 10 % 1.74E-3 1.79E-3 ± 3E-4 16 %
5 2.86E-3 2.85E-3 ± 2E-4 7 % 1.45E-3 1.45E-3 ± 1E-4 8 %

`= 4 3 1.23E-4 1.19E-4 ± 6E-5 49 % 1.53E-4 1.55E-4 ± 1E-4 63 %
4 3.24E-4 3.29E-4 ± 3E-5 10 % 3.12E-4 3.12E-4 ± 4E-5 13 %
5 3.65E-4 3.59E-4 ± 3E-5 9 % 2.67E-4 2.71E-4 ± 2E-5 8 %

`= 5 3 2.39E-5 2.31E-5 ± 1E-5 53 % 2.75E-5 2.66E-5 ± 1E-5 42 %
4 4.40E-5 4.37E-5 ± 5E-6 12 % 5.05E-5 5.10E-5 ± 8E-6 15 %
5 5.41E-5 5.38E-5 ± 5E-6 9 % 4.89E-5 4.92E-5 ± 6E-6 13 %

Sphere
`= 3 3 3.52E-3 3.43E-3 ± 5E-4 14 % 2.96E-3 3.12E-3 ± 4E-4 14 %

4 2.76E-3 2.73E-3 ± 3E-4 10 % 1.90E-3 1.91E-3 ± 2E-4 9 %
5 3.25E-3 3.25E-3 ± 2E-4 7 % 1.57E-3 1.56E-3 ± 1E-4 7 %

`= 4 3 5.08E-4 5.12E-4 ± 8E-5 16 % 5.91E-4 5.93E-4 ± 8E-5 13 %
4 3.57E-4 3.51E-5 ± 4E-5 10 % 3.47E-4 3.47E-4 ± 3E-5 7 %
5 4.81E-4 4.76E-4 ± 4E-5 9 % 3.02E-4 3.02E-4 ± 2E-5 8 %

`= 5 3 6.89E-5 6.73E-5 ± 1E-5 14 % 9.18E-5 8.56E-5 ± 1E-5 16 %
4 4.45E-5 4.47E-5 ± 5E-6 12 % 5.45E-5 5.48E-5 ± 5E-6 9 %
5 7.39E-5 7.59E-5 ± 1E-5 16 % 5.49E-5 5.63E-5 ± 1E-5 18 %

Rod
`= 3 3 2.92E-3 2.91E-3 ± 5E-4 16 % 2.68E-3 2.69E-3 ± 5E-4 17 %

4 3.50E-3 3.49E-3 ± 5E-4 13 % 2.26E-3 2.21E-3 ± 2E-4 11 %
5 3.63E-3 3.62E-3 ± 3E-4 7 % 2.03E-3 2.07E-3 ± 3E-4 14 %

`= 4 3 3.91E-4 3.80E-4 ± 5E-5 13 % 3.88E-4 4.01E-4 ± 7E-5 18 %
4 4.97E-4 5.01E-4 ± 8E-5 16 % 3.91E-4 3.99E-4 ± 5E-5 12 %
5 4.92E-4 4.96E-4 ± 4E-5 8 % 3.89E-4 3.94E-4 ± 5E-5 12 %

`= 5 3 5.99E-5 6.08E-5 ± 8E-6 13 % 7.25E-5 7.30E-5 ± 1E-5 18 %
4 8.84E-5 8.96E-5 ± 2E-5 19 % 5.16E-5 5.11E-5 ± 9E-6 18 %
5 9.41E-5 9.36E-5 ± 1E-5 12 % 5.94E-5 6.10E-5 ± 9E-6 15 %

Table D.1: Error estimate for the matrix approximation of the SLP and DLP for three sam-
ple geometries. Under investigation are three refinement levels of the boundary
mesh and three interpolation orders.
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