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1. Introduction

This PhD thesis focuses on so-called combinatorial optimization problems.
Given a finite set E = {1, 2, . . . , n}, a subset F ⊆ 2E and a real function
f : 2E → R, a combinatorial optimization problem asks for a solution
S ∈ F that minimizes/maximizes the function f , i.e.

min/max f(S) subject to S ∈ F . (1.1)

The set E is called ground set and the set F is called the set of feasible
solutions. f is called the objective function. This thesis focuses on graph
problems, especially on the problems dealing with tours and trees.

Of course, there are many possibilities of categorizing combinatorial opti-
mization problems. We can e.g. divide the problems into two groups depend-
ing whether the objective function value has to be minimized or maximized.
Another classification of combinatorial optimization problems is based on the
computational complexity. The concepts we introduce in the following are
well known to the combinatorial optimization community. Therefore we just
refer to the famous books of Korte and Vygen [32], of Ausiello et al [7]
and of Schrijver [49] for future details and exact definitions. Roughly spo-
ken, there exist problems which are “easily solvable” and others which are
most likely “hard to solve”. In the terms of mathematics, the “easy” problems
belong to the complexity class P while the hard ones belong to NP-hard.

The question whether P ?
= NP represents one of the most famous open

problems of the last century which still remains unsolved. Of course many
complexity subclasses exist that make this classification more specific. One
such class are the problems having constant-factor approximation algorithms.

This thesis has two main research goals.

(1) On the one hand, it estimates whether special cases of well known
and widely studied combinatorial optimization problems differ in their
complexity status from the general case.

(2) On the other hand, we solve selected NP-hard problems to optimality
by using ILP solvers and try to speed up the solution process by ex-
ploiting some combinatorial and polyhedral properties of the underlying

1



2 1. INTRODUCTION

problems. The results are strongly backed by thorough computational
experiments.

The PhD thesis is organized as follows. Chapter 2 deals with “trees”.
The data arrangement problem on regular trees (DAPT) consists in assigning
the vertices of a given graph G, called the guest graph, to the leaves of a
d-regular tree T , called the host graph. This is done such that the sum of
the pairwise distances of all pairs of leaves in T which correspond to the
edges of G is minimized. The problem was first considered by Luczak and
Noble [35] who have shown that the DAPT is NP-hard for every fixed
d ≥ 2. Staněk [51] and later Çela and Staněk [10] examined the problem
from a computational point of view. They introduced a lower bound and
some heuristics which were tested on (i) adopted linear arrangement problem
(LAP) instances, (ii) random instances and (iii) a class of instances based
on easily solvable special cases. The last test instance group was the main
motivation for this part of this thesis.

We start by focusing on the special case of the DAPT where both the guest
and the host graph are binary regular trees and provide a 203

200
-approximation

algorithm for this special case. The solution produced by the algorithm and
the corresponding value of the objective function are given in closed form.
The analysis of the approximation algorithm involves an auxiliary problem
which is interesting on its own, namely the k-balanced partitioning problem
(k-BPP) for binary regular trees and particular choices of k. We find a
solution algorithm for the latter problem and provide a formula yielding the
objective function value. Moreover, we estimate a lower bound for it and
subsequently, we obtain a lower bound for the original problem by solving
hG instances of the k-BPP, where hG is the height of the host graph G.

Furthermore, we generalize the introduced algorithm to another special
case of the DAPT. In this case, both the guest and the host graph are d-
regular trees for some fixed d ≥ 2. Thereafter, we provide a weaker but even
more general lower bound. It is based on the partitioning problem into sets of
bounded cardinality (PPSBC) and it leads to a proof of a 585

392
-approximation

ratio for the introduced algorithm.
Finally, we show that the DAPT remains NP-hard even if the guest

graph is a tree. This issue was posed as an open question by Luczak and
Noble [35].
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Results of this chapter are based on joint work with Eranda Çela and
Joachim Schauer. They were published in arXiv and are submitted to
Algorithmica for publication [11].

The rest of this thesis—Chapters 3 and 4—focuses on one of the most
prominent combinatorial optimization problems, namely the traveling sales-
man problem (TSP), and its variants. All discussed problems consist of find-
ing an optimal tour with respect to some pre-specified objective function.

In Chapter 3 we deal with the TSP. Given a complete graph G = (V,E)
and non-negative distances d for every edge, the TSP asks for a shortest tour
through all vertices with respect to the distances d. The method of choice
for solving the TSP to optimality is a branch-and-cut approach. Usually the
integrality constraints are relaxed first and all separation processes to identify
violated inequalities are done on fractional solutions.

In our approach we try to exploit the impressive performance of current
ILP solvers and work only with integer solutions without ever interfering
with fractional solutions. We stick to a very simple ILP model. First, we
relax the subtour elimination constraints only and solve the resulting problem
to integer optimality. The obtained solution corresponds to a 2-matching
containing one or more cycles. These cycles can be found by a simple scan
and we include a subtour elimination constraint for each such cycle and
subsequently resolve the enlarged ILP model. This process is repeated until
a feasible TSP solution is found.

In order to speed up the algorithm, we pursue several attempts to find
as many relevant subtours as possible. These attempts are based on the
clustering of vertices with additional insights gained from empirical obser-
vations and random graph theory. Computational results are performed on
test instances taken from the TSPLIB95 and on random Euclidean graphs.

At the end of this chapter some theoretical results and further empirical
observations for random Euclidean graphs are presented.

The chapter is based on a joint work with Ulrich Pferschy. The first
results were published in proceedings of the MATCOS-13 conference [42].
The final version was accepted for publication in Central European Journal
of Operations Research [44]. In addition, an extended version is available in
arXiv [43].

The results of Chapter 3 were the motivation for their application on other
variants of the TSP which are focused in Chapter 4. The symmetric quadratic
traveling salesman problem (SQTSP) associates a cost value with every three
vertices traversed in succession. If the vertices correspond to points in the
Euclidean plane and the costs are given as the turning angles of the tour, we
speak of the angular-metric traveling salesman problem (AngleTSP).



4 1. INTRODUCTION

In this chapter, we consider the SQTSP mainly from a computational
point of view. In particular, we adopt the basic algorithmic idea used for
the TSP and perform the separation of the classical subtour elimination con-
straints on integral solutions only. It turns out that this approach beats the
standard fractional separation procedure known from the literature. We also
test more advanced subtour elimination constraints introduced by Fischer
and Helmberg [21] both for the integral and the fractional separation pro-
cedures, but these turn out to slow down the computation. In addition, we
provide a completely different, mathematically interesting MILP lineariza-
tion for the AngleTSP. It introduces only a linear number of additional vari-
ables while the standard linearization requires a cubic number. However, this
theoretical advantage does not carry over to the computational results.

Finally, we deal with the maximization variant MaxSQTSP. In contrast
to the minimization counterpart it turns out that introducing some of the
stronger subtour elimination constraints by Fischer and Helmberg [21]
now outperforms the standard approaches. For the special case of MaxAn-
gleTSP we can observe an interesting split: For an odd number of vertices
it can be shown that the sum of inner turning angles in an optimal solution
always equals π. This implies that the problem can be solved by the standard
ILP model without producing any integral subtours. Moreover, we can char-
acterize the structure of an optimal solution and give a simple constructive
polynomial time algorithm to find such an optimal solution. If the number
of vertices is even, no such result exists.

The chapter is based on a joint work with Oswin Aichholzer, Anja
Fischer, Johannes Fabian Meier, Ulrich Pferschy and Alexander
Pilz. An extended abstract pointing out the computational results and the
new linearization was submitted to Cologne Twente Workshop 2016.

At the end of the thesis, some final notes, conclusions and questions for
future research are provided in Chapter 5.



2. The data arrangement
problem on d-regular trees∗

Given an undirected graph G =
(
V (G), E(G)

)
with

∣∣V (G)
∣∣ = n, an undi-

rected graph H =
(
V (H), E(H)

)
with |V (H)| ≥ n and some subset B of the

vertex set of H , B ⊆ V (H) with |B| ≥ n, the generic graph embedding
problem (GEP) consists of finding an injective embedding of the vertices
of G into the vertices in B such that some prespecified objective function is
minimized. Throughout this chapter we will call G the guest graph and H
the host graph. A commonly used objective function maps an embedding
φ : V (G) → B to

∑

(i,j)∈E(G)

d
(
φ(i), φ(j)

)
, (2.1)

where d(x, y) denotes the length of the shortest path between x and y in
H . The host graph H may be a weighted or a non-weighted graph; in the
second case the path lengths coincide with the respective number of edges.
Given a non-negative number A ∈ R, the decision version of the GEP asks
whether there is an injective embedding φ : V (G) → B such that the objective
function does not exceed A.

Different versions of the GEP have been studied in the literature; the
linear arrangement problem, where the guest graph is a one dimensional
equidistant grid with n vertices is probably the most prominent among them
(see Chung [12], Juvan and Mohar [30], Shiloach [50]).

This chapter deals with the version of the GEP where the guest graph
G has n vertices, the host graph H is a complete d-regular tree of height
⌈logd n⌉ and the set B consists of the leaves of H . From now on we will
denote the host graph by T . The height of T as specified above guarantees
that the number |B| of leaves fulfills |B| ≥ n and that the number of the
direct predecessors of the leaves in T is smaller than n. Thus ⌈logd n⌉ is the

∗Joint work with Eranda Çela and Joachim Schauer [11].
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smallest height of a d-regular tree which is able to accommodate an injective
embedding of the vertices of the guest graph on its leaves. This problem
is originally motivated by real problems in communication systems and was
first posed by Luczak and Noble [35].

We call the above described version of the GEP the data arrangement
problem on regular trees (DAPT). Luczak and Noble [35] have shown
that the DAPT is NP-hard for every fixed d ≥ 2 and have posed as an open
question the computational complexity of the DAPT in the case where the
guest graph is a tree. We answer this question and show that this particular
case of the problem is NP-hard for every d ≥ 2. In the special case where
both the guest graph G and the host graph T are binary regular trees we
give a 203

200
-approximation algorithm. Finally, we generalize the introduced

algorithm and prove its 585
392

-approximation ratio for the special case where
both the guest graph G and the host graph H are d-regular trees with d ≥ 3.

This chapter is organized as follows. Section 2.1 discusses some general
properties of the problem and introduces the notation used throughout the
chapter. Section 2.2 presents an algorithm for the DAPT on binary regular
trees, where the guest graph is also a binary regular tree. Section 2.3 deals
with the k-balanced partitioning problem (k-BPP) in binary regular trees.
This version of the k-BPP serves as an auxiliary problem in the sense that it
leads to a lower bound for the objective function value of the DAPT on binary
regular trees. In Section 2.4 we use the auxiliary problem and the lower bound
mentioned above to analyze the algorithm presented in Section 2.2 and show
that the latter is an 203

200
-approximation algorithm. Moreover, in Section 2.5

we generalize the introduced approximation algorithm for d-regular trees,
where d ≥ 3. Finally, in Section 2.6 it is proven that the DAPT is NP-hard
for every d ≥ 2 even if the guest graph is a tree.

2.1 Notations and general properties of the

DAPT

First, we formally define a d-regular tree as follows:

Definition 2.1 (d-regular tree). A tree T =
(
V (T ), E(T )

)
is called a

d-regular tree, d ∈ N, d ≥ 2, if

(1) it contains a specific vertex v1 ∈ V of degree d which is called the root
of T and is also denoted by r(T ) ,

(2) every vertex but the leaves and the root has degree d+ 1 and
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(3) there is a number h ∈ N such that the length d(l, v1) of the path between
the root v1 and a leaf l equals h for every leaf l of T .

The number h is called the height of the tree T , and is also denoted by
h(T ). For every vertex v ∈ V \{v1}, i.e. for any vertex v but the root v1, the
unique neighbor of v in the path between v1 and v in T is called the father
of v. All other neighbors of v (if any) are called the children of v. The
neighbors of the root v1 are called children of v1. The level of a vertex
v, denoted by level(v), is the length (i.e. the number of edges) of the unique
path joining v and the root v1 of the tree. Thus in a d-regular tree of height
h the level of each leaf equals h, whereas the level of the root v1 equals 0. All
vertices w, w 6= v, of the unique path joining v and the root v1 of the tree
are called ancestors of v. Given two vertices v and u their most recent
common ancestor w is their common ancestor with the highest level, i.e.
w = argmax{level(t) : t is a common ancesteor of v and u}.

A subtree of k-th order of a d-regular tree T is a d-regular subtree T ′

of T of height h(T ′) = h(T ) − k, rooted at some vertex of level k in T . A
subtree of first order will be called a basic subtree.

Consider a guest graph G = (V,E) with n vertices, and a host graph T
which is a d-regular tree of height h, h ..= ⌈logd n⌉. Let B be the set of leaves
of T . Notice that due to the above choice of h we get the following upper
bound for the number b = |B| of leaves:

b ..= |B| = dh = dh−1d < nd. (2.2)

Definition 2.2 (data arrangement problem on regular trees). Given a
guest graph G = (V,E) with |V | = n and a host graph T which is a d-regular
tree with set of leaves B and height equal to ⌈logd n⌉, an arrangement is an
injective mapping φ : V → B. The data arrangement problem on regu-
lar trees (DAPT) asks for an arrangement φ that minimizes the objective
value OV (G, d, φ)

OV (G, d, φ) ..=
∑

(u,v)∈E
dT
(
φ(u), φ(v)

)
, (2.3)

where dT
(
φ(u), φ(v)

)
denotes the length of the unique φ(u)-φ(v)-path in the

d-regular tree T . Such an arrangement is called an optimal arrangement.
The corresponding value of the objective functions is called the optimal
value of the problem. An instance of the DAPT is fully determined by the
guest graph and the parameter d of the d-regular tree T which serves as a
host graph. Such an instance of the problem will be denoted by DAPT (G, d)
and its optimal value will be denoted by OPT (G, d).
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Theorem 2.3. The DAPT is NP-hard for every fixed d ≥ 2.

Proof. See Luczak and Noble [35].

Example 2.1. A guest graph G of height 3 is shown in Figure 2.1. Figure
2.2 represents the same guest graph G, but with another coloring of its ver-
tices; the role of the coloring will be explained below. Figures 2.3 and 2.4
depict a feasible φ arrangement and an optimal arrangement φA of G, yield-
ing the objective function values OV (G, 2, φ) = 58 and OV (G, 2, φA) = 56,
respectively.

Note that the labels in the vertices of the guest graphs denote the index of
the vertices in the so-called canonical ordering (defined below). The labels of
the leaves in the host graphs represent the arrangement: The label of each leaf
coincides with the index of the vertex arranged at that leaf (in the canonical
ordering).

The colors should help to capture some properties of the arrangement at
a glance: The set of vertices of a certain color in the guest graph is arranged
at the set of leaves of the same color in the host graph T . Moreover, some
of the vertices in the guest graph have a dashed boundary, the others have
a solid boundary. The graphical representation of an arrangement preserves
the boundary property in the sense that vertices with a dashed boundary in
G are arranged at dashed-boundary leaves of the same color in T . The same
principle holds for dotted boundaries.

Definition 2.4 (canonical order). The canonical order of the vertices of
the guest graph and the canonical order of the leaves of the host graph are
defined recursively as follows.

(a) The canonical order of the leaves of a d-regular tree T is an
arbitrary but fixed order if h(T ) = 1. If h(T ) > 1 then an order of the
leaves is called canonical if (i) it implies a canonical order of the leaves
of every basic subtree of T , and (ii) for an arbitrary but fixed order of
the children ch1, . . . , chd of the root r(T ) of T all leaves of the basic
subtree rooted at chi precede all leaves of the basic subtree rooted at chj,
for i < j, i, j ∈ {1, 2, . . . , d}, in this order.

(b) A canonical ordering of the vertices of a d-regular tree T is
the unique order if h(T ) = 0. If h(T ) ≥ 1, a canonical order of the
vertices of T is an order obtained by extending the canonical order of
the vertices of the d-regular tree T ′ of height h(T ′) = h(T )− 1 obtained
from T by removing all of its leaves and fulfilling the following two
properties: (i) all vertices of T ′ precede the leaves of T , and (ii) for
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any two leaves a and b of T ′, if a precedes b, then all children of a in
T precede all children of b in T .

If the leaves of a d-regular tree T are ordered according to the canonical
order as above, then the pairwise distances between them are given by a
simple formula.

Observation 2.5. Let T be a d-regular tree of height h ..= h(T ) and let its
b leaves be labeled according to the canonical order b1 ≺ b2 ≺ . . . ≺ bb. Then
the distances between the leaves in T are given as dT (bi, bj) = 2l, where

l ..= min

{
k ∈ {1, 2, . . . , h} :

⌊
i− 1

dk

⌋
=

⌊
j − 1

dk

⌋}
, (2.4)

for all i, j ∈ {1, 2, . . . , b}. If vertex u is the most recent common ancestor of
bi and bj, then h− l = level(u).

Proof. See Çela and Staněk [10].

In this chapter we deal with the special case where both the guest graph
G and the host graph T are d-regular trees, where d ≥ 2; an instance of
this problem is fully specified by the guest graph G and will be denoted by
DAPT (G, d). From now on we denote by hG the height of the guest graph
G and by h the height of the host graph T . Moreover we will always use the
canonical order v1 ≺ v2 ≺ . . . ≺ vn of the vertices vi, 1 ≤ i ≤ n, n ..= |V (G)|,
of the guest graph, and the canonical order b1 ≺ b2 ≺ . . . ≺ bb of the b leaves
of the host graph T as in the observation above. See e.g. Figure 2.1 for an
illustration of the canonical order of the vertices of a regular tree of height
3; for simplicity we specify the indices i, 1 ≤ i ≤ 15 instead of the labels vi,
1 ≤ i ≤ 15.

In the following we list some obvious equalities which will be used through
the rest of this chapter.

Observation 2.6.

n =
dhG+1 − 1

d− 1
(2.5)

h =

⌈
logd

(
dhG+1 − 1

d− 1

)⌉
= hG + 1 (2.6)

b = dhG+1 = d · dhG (2.7)
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2.2 An approximation algorithm for binary

trees

Let us assume that d = 2 in the following three sections. First, we can
simplify the equations in Observation 2.6 and get

n = 2hG+1 − 1, (2.8)

b = 2 · 2hG = n + 1. (2.9)

In this section we describe a recursive approximation algorithm A for
the DAPT (G, 2) where the guest graph G is a binary regular tree. Later in
Section 2.4 it will be shown that this is an α-approximation algorithm with
α = 203

200
, i.e. OV (G, 2, φA) ≤ αOV (G, 2, φ∗) holds for every binary regular

tree G, where φ∗ denotes the optimal arrangement of DAPT (G, 2) and φA

denotes the arrangement computed by algorithm A described below.

Require: binary regular tree G = (V,E) of height hG whose vertices are
labeled according to the canonical order

Ensure: arrangement φA

1: b ..= 2hG+1;
2: if hG = 0 then
3: φA(v1) ..= b1;
4: else[hG > 0]

5: solve the problem for the basic subtrees Ĝ1 and Ĝ2 of height ĥG =

hG − 1 and obtain the respective arrangements φ̂A

(1)
and φ̂A

(2)
;

6: arrange the vertices of the left basic subtree on the leaves b1, b2, . . . ,

b 1
2
b according to the arrangement φ̂A

(1)
and the vertices of the right basic

subtree on the leaves b 1
2
b+1, b 1

2
b+2, . . . , bb according to the arrangement

φ̂A

(2)
;

7: φA(v1) ..= b 1
2
b;

8: if hG is odd and hG ≥ 3 then
9: exchange the vertices arranged on the leaves b 1

4
b−1 and b 1

2
b (pair-

exchange);
10: end if
11: end if
12: return φA;

Algorithm 2.1: Approximation algorithm A which computes the
arrangement φA.

In the following we apply this algorithm on an instamce of DAPT (G, 2)
with hG = 3. Observe that the leaf b 1

2
b is always free prior to the execution
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of pseudocode line 7 due to the recursion and due to the assignment in
pseudocode line 3.

Example 2.2. Consider the guest graph G = (V,E) of height hG = 3 de-
picted in Figure 2.1 and apply algorithm A.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 2.1: A guest graph G = (V,E)
(binary regular tree of height hG =
3). The colors are related to the ar-
rangement φ depicted in Figure 2.3.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 2.2: A guest graph G = (V,E)
(binary regular tree of height hG =
3). The colors are related to the ar-
rangement φ depicted in Figure 2.4.

Since hG = 3 > 0, the algorithm executes the else part beginning in pseu-
docode line 4. In pseudocode lines 5 and 6 the arrangements for both basic
subtrees, i.e. for graphs of height ĥG = hG−1 = 3−1 = 2 are computed. (The

arrangement φ̂A for ĥG = 2 is depicted in Figure 2.22 in Appendix.) In the
next step, the root is arranged at the middle leaf (see pseudocode line 7) and
the arrangement φ depicted in Figure 2.3 is obtained. The label of each leaf
corresponds to the index of the vertex of the guest graph arranged at that leaf.
The objective value which corresponds to arrangement φ is OV (G, 2, φ) = 58.

8 4 9 2 10 5 11 1 12 6 13 3 14 7 15

Figure 2.3: Arrangement φ obtained from Algorithm 2.1 for the guest graph
of height hG = 3 depicted in Figure 2.1. Its objective function value is
OV (G, 2, φ) = 58.

Next, consider the condition in pseudocode line 8: Since hG = 3 is odd
and hG = 3 ≥ 3, the pair-exchange marked in Figure 2.3 by the arrows in the
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dashed line is performed. The value of the objective function corresponding
to the resulting arrangement φA in Figure 2.4 is OV (G, 2, φA) = 56. The
guest graph colored according to this arrangement is depicted in Figure 2.2.
In fact, this arrangement is optimal, but in general Algorithm 2.1 does not
yield an optimal arrangement.

8 4 1 2 10 5 11 9 12 6 13 3 14 7 15

Figure 2.4: Arrangement φA obtained from Algorithm 2.1 for the guest graph
of height hG = 3 depicted in Figure 2.2. Its objective function value is
OV (G, 2, φA) = 56.

Next we give a closed formula for the objective function value correspond-
ing to the arrangement φA computed by the algorithm A.

Lemma 2.7. Let the guest graph G = (V,E) and the host graph T be binary
regular trees of heights hG and h = hG + 1 respectively, where hG is odd,
hG ≥ 3. Then the pair-exchange defined in Algorithm 2.1 in pseudocode
line 9 decreases by 1 the number of edges which contribute to the objective
by 4, increases by 1 the number of edges which contribute to the objective
value by 2, and does not change the number of edges which contribute to the
objective value by 2i for i ≥ 3. Summarizing such a pair-exchange improves
the value of the objective function by 2 as compared to the value corresponding
to the arrangement available prior to this pair-exchange.

Proof. Let φ be the arrangement available prior to the pair-exchange steps
done in pseudocode line 9 in Algorithm 2.1. Denote the arrangement ob-
tained after the pair-exchange by φA. Consider the vertices and edges which
are affected by the pair-exchange in pseudocode line 9. According to the
algorithm (see pseudocode line 7) the root v1 of G is arranged on the leaf b 1

2
b

and its left and right children v2 and v3 are arranged on the leaves b 1
4
b and b 3

4
b,

respectively. (Recall that the pair-exchange is performed only if hG is odd).
Moreover the algorithm places the rightmost leaf, say x, of the basic subtree
of G rooted at the child v2 on leaf b 1

4
b−1 of T . So the pair-exchange involves

the vertices v1 and x of G and φA(v1) = φ(x), φA(x) = φ(v1), φA(y) = φ(y),
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for y ∈ V \{v1, x}, hold. The change ∆ in the value of the objective functions
corresponding to φ and φA, respectively, is then given as follows.

∆ ..= OV (G, 2, φ)−OV (G, 2, φA) (2.10)

=
∑

v∈V \{x}
{v,v1}∈E

dT
(
φ(v), φ(v1)

)
+

∑

v∈V \{v1}
{v,x}∈E

dT
(
φ(v), φ(x)

)
−

∑

v∈V \{x}
{v,v1}∈E

dT
(
φA(v), φA(v1)

)
−

∑

v∈V \{v1}
{v,x}∈E

dT
(
φA(v), φA(x)

)
(2.11)

=
∑

v∈V \{x}
{v,v1}∈E

[
dT
(
φ(v), φ(v1)

)
− dT

(
φA(v), φA(v1)

)]
+

∑

v∈V \{v1}
{v,x}∈E

[
dT
(
φ(v), φ(x)

)
− dT

(
φA(v), φA(x)

)]
(2.12)

=
∑

v∈V \{x}
{v,v1}∈E

[
dT
(
φ(v), φ(v1)

)
− dT

(
φ(v), φ(x)

)]
+

∑

v∈V \{v1}
{v,x}∈E

[
dT
(
φ(v), φ(x)

)
− dT

(
φ(v), φ(v1)

)]
(2.13)

Considering that v1 has only two neighbors, namely v2 and v3, and denoting
by y the unique neighbor (i.e. the father) of leaf x in G we get

∆ =dT
(
φ(v2)φ(v1)

)
− dT

(
φ(v2)φ(x)

)
+ dT

(
φ(v3)φ(v1)

)
−

dT
(
φ(v3)φ(x)

)
+ dT

(
φ(y)φ(x)

)
− dT

(
φ(y)φ(v1)

)

=2hG − 2 + 2(hG + 1)− 2(hG + 1) + 4− 2hG

=2.

(2.14)

Lemma 2.8. Let the guest graph G = (V,E) and the host graph T be binary
regular trees of heights hG and h = hG + 1 respectively. Then the value
OV (G, 2, φA) of the objective function of the DAPT corresponding to the
arrangement φA obtained from Algorithm 2.1 is given as follows:

OV (GhG
, 2, φA) ..= OV (G, 2, φA) =





0 for hG = 0

29
3
· 2hG − 4hG − 9 + 1

3
(−1)hG

for hG ≥ 1

.

(2.15)
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Proof. The proof is done by induction with respect to hG. Let us denote
Gh a binary regular tree of height h throughout this proof. Clearly we have
OV (G0, 2, φA) = 0. For hG = 1 we obviously have OV (G1, 2, φA) = 2+4 = 6
by the construction (see Figures 2.19 and 2.20 in Appendix). Both this
equalities are consistent with (2.15).

Assume that (2.15) holds for some hG ≥ 1. For hG + 1 we get

OV (GhG+1, 2, φA) =





2OV (GhG
, 2, φA) + 2(hG + 1) + 2(hG + 2)− 2

for hG + 1 odd

2OV (GhG
, 2, φA) + 2(hG + 1) + 2(hG + 2)

for hG + 1 even

,

(2.16)

where:

• 2OV (GhG+1, 2, φA) represents the objective function value correspond-
ing to the arrangements of the basic subtrees.

• 2(hG + 1) and 2(hG + 2) represent the contribution of the edges con-
necting the root v1 with its left and right child in the objective function
value, respectively. (Prior to the pair-exchange step the root v1 is ar-
ranged at the leaf b 1

2
b while its children, v2 and v3 are arranged at the

leaves v 1
4
b and b 3

4
b, respectively.)

• −2 represents the contribution of the pair-exchange step if hG + 1 is
odd (hG + 1 ≥ 3 since hG ≥ 1), according to Lemma 2.7.

According to the induction assumption we substitute OV (GhG
, 2, φA) by

the expression on the right hand side of equation (2.15) and after simplifying
we get

OV (GhG+1, 2, φA) =





29
3
· 2hG+1 − 4(hG + 1)− 9 + 1

3
(−1)hG+1

if hG + 1 is odd

29
3
· 2hG+1 − 4(hG + 1)− 9 + 1

3
(−1)hG+1

if hG + 1 is even.

. (2.17)

Finally, notice that this approximation algorithm A does not solve the
problem to optimality as illustrated by the following example.
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Example 2.3. Consider a guest graph G = (V,E) of height hG = 6 de-
picted in Figure 2.5. The arrangement φA computed by Algorithm 2.1 is
depicted in Figures 2.7 and 2.8; it yields an objective function value of
OV (G, 2, φA) = 586. Consider now another arrangement φ for the same
graph yielding an objective function value of OV (G, 2, φ) = 584 and depicted
explicitly in Figures 2.6, 2.9 and 2.10. Later in Section 2.4 we will show
that the approximation algorithm A yields an optimal arrangement φA for
hG ≤ 5. Thus this is the smallest instance of the DAPT (G, 2) for which the
algorithm A does not compute an optimal arrangement.

2.3 The k-balanced partitioning problem

In this section we introduce the k-balanced partitioning problem and a spe-
cial case of it which will be involved in the analysis of the approximation
algorithm for the DAPT (G, 2) with a binary regular tree G.

Definition 2.9 (k-balanced partitioning problem). Given a graph G =
(V,E) with |V | = n and k ≥ 2, a k-balanced partition is a partition of
the vertex set V into k non-empty partition sets V1 6= ∅, V2 6= ∅, . . . ,
Vk 6= ∅, where ∪k

i=1Vk = V , Vi ∩ Vj = ∅ for every i 6= j and |Vi| ≤
⌈
n
k

⌉
for all

1 ≤ i ≤ k. The k-balanced partitioning problem (k-BPP) asks for a
k-balanced partition V which minimizes

c(G,V ) ..=
∣∣∣
{
(u, v) ∈ E|u ∈ Vi, v ∈ Vj, i 6= j

}∣∣∣, (2.18)

where V ..= {Vi|1 ≤ i ≤ k}.

k-BPP is a well known NP-hard problem (for k = 2 we get the mini-
mum bisection problem which is NP-hard, see Garey and Johnson [22]).
A lot of work has been done focusing on the computational complexity of the
k-BPP. Andreev and Räcke proved further complexity results for a gener-
alization allowing near-balanced partitions [5]. Krauthgamer, Naor and
Schwartz provide an approximation algorithm achieving an approximation
of O(

√
logn log k) [33]. And finally, Feldmann and Foschini proved that

the k-BPP remains APX-hard even if the graph G is restricted to be an
unweighted tree with constant maximum degree [18].

We deal with a special case of this problem where G = (V,E) is a binary
regular tree of height h ≥ 1 and where k = 2k

′
and 1 ≤ k′ ≤ h. The following

facts are obvious.
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Figure 2.5: Guest graph G = (V,E) (binary regular tree of height hG = 6).
The colors are related to the arrangement φA depicted in Figures 2.7 and 2.8.
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Figure 2.6: Guest graph G = (V,E) (binary regular tree of height hG = 6).
The colors are related to the arrangement φ depicted in Figures 2.9 and 2.10.
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64 32 8 16 66 33 67 65 68 34 69 17 70 35 2 4
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Figure 2.7: Arrangement φA obtained from Algorithm 2.1 for the guest graph
G = (V,E) depicted in Figure 2.5 – first part. Its objective function value is
OV (G, 2, φA) = 586.
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Figure 2.8: Arrangement φA obtained from Algorithm 2.1 for the guest graph
G = (V,E) depicted in Figure 2.5 – second part. Its objective function value
is OV (G, 2, φA) = 586.
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Figure 2.9: Arrangement φ for the guest graph G = (V,E) depicted in
Figure 2.6 – first part. Its objective function value is OV (G, 2, φA) = 584.
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Figure 2.10: Arrangement φ for the guest graph G = (V,E) depicted in
Figure 2.6 – second part. Its objective function value is OV (G, 2, φA) = 584.
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Observation 2.10. Let G = (V,E) be a binary regular tree of height h ≥ 1
with n = 2h+1−1 vertices. Let V = {V1, V2, . . . , Vk} be a k-balanced partition
with k = 2k

′
and 1 ≤ k′ ≤ h. Then one of the partition sets in V has

ns
..= n+1

k
− 1 elements and is called the small partition set. All other

partition sets have nb
..= n+1

k
elements and are called big partition sets.

Moreover the following equalities clearly hold

ns = 2h−k′+1 − 1 and (2.19)

nb = 2h−k′+1. (2.20)

The rest of this section is structured as follows: In Subsection 2.3.1 we
introduce an algorithm to construct an optimal 2k

′
-balanced partition V ∗ in

a binary regular tree. The optimality is proven in Subsection 2.3.2.
Subsection 2.3.3 provides a lower bound on the optimal value c(G, k,V ∗)

of the objective function of the 2k
′
-BPP in a binary regular tree.

2.3.1 A solution algorithm for the 2k′
-BPP on binary

regular trees

The algorithm consists of three simple steps. Let t ..= h − k′ + 2 and e ..=⌊
h+1
t

⌋
− 1.

(1) First, we partition the tree G by cutting all edges (u, v) ∈ E with
level(u) = h− it and level(v) = h − it + 1, where 1 ≤ i ≤ e. Roughly
spoken, we separate e horizontal bands of height t − 1 from the input
tree G, from the bottom to the top. The height of the remaining top
part is then ĥ with t− 1 ≤ ĥ ≤ 2t− 2. Let p be the number of binary
regular trees of height t− 1 contained in these bands.

(2) Next consider the binary regular trees contained in the above mentioned
bands and cut all edges connecting their roots with their right children,
respectively. After that each root remains connected to the correspond-
ing left basic subtree, thus forming a big partition set, since each root
and its left basic subtree tree have 2t−2+1−1+1 = 2h−k′+1 = nb vertices
altogether.

On the other hand each of the right basic subtrees mentioned above
has 2t−2+1 − 1 = 2h−k′+1 − 1 = nb − 1 vertices and needs one more

vertex in order to form a big partition set. Let q ..= 2h−k′+1−1
2h−k′+1 p. We

split p−q of the right basic subtrees into isolated vertices, thus obtain-

ing (p − q)(2h−k′+1 − 1) =
(
p− 2h−k′+1−1

2h−k′+1 p
)
(2h−k′+1 − 1) = q isolated

vertices. Each of them is paired with the remaining q non-split right
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basic subtrees in order to obtain further big partition sets. It is not
difficult to check that q ∈ N.

(3) Finally, let us consider the top part consisting of a binary regular tree

of height ĥ, t − 1 ≤ ĥ ≤ 2t − 2. We cut all edges (u, v) ∈ E with
level(u) = h− (e+1)t+1 and v being the right child of u. Analogously
as above we obtain one big partition set for every vertex u ∈ V with
level(u) = h − (e + 1)t + 1 together with its corresponding left basic
subtree. Moreover, each of the remaining right basic subtrees of the
vertices u as above can be paired with one of the vertices u′ ∈ V with
level(u′) < h− (e+1)t+1, (roughly spoken, these are the vertices lying
on the very top of the tree) in order to obtain further big partition
sets. Again simple computations show that the number of the right
basic subtrees mentioned above exceeds the number of the remaining
vertices by exactly one. Hence just one right basic subtree of one vertex
u ∈ V with level(u) = h− (e + 1)t + 1 remains unpaired; this subtree
builds the small partition set.

The following example illustrates this algorithm.

Example 2.4. Let us consider a binary regular tree G = (V,E) of height
h = 5 depicted in Figure 2.11 and let k = 24 = 16, i.e. k′ = 4.

We have t = h−k′+2 = 5−4+2 = 3 and e =
⌊
h+1
t

⌋
−1 =

⌊
5+1
3

⌋
−1 = 1.

(1) Thus i = 1 and we cut all edges (u, v) ∈ E with level(u) = h − it =
5− 1 · 3 = 2 and level(v) = h− it+ 1 = 5− 1 · 3 + 1 = 3, i.e. the edges
cut by the two horizontal lines in Figure 2.11.

(2) Now, consider the bottom band consisting of p = 8 binary regular trees
of height t − 1 = 3 − 1 = 2 each and in each of them cut all edges
connecting the root with the right child. Each root connected to its cor-
responding left child form a big partition set; we obtain the big partition
sets Vi, 3 ≤ i ≤ 10 depicted in Figure 2.11. Notice that in Figure 2.11
a partition set Vi contains the vertices marked by i, 1 ≤ i ≤ 16.

Set q ..= 2h−k′+1−1
2h−k′+1 p = 25−4+1−1

25−4+1 8 = 6, and cut all edges of p−q = 8−6 =
2 arbitrarily chosen right basic subtrees. Pair each of the thereby arising
isolated vertices with the remaining q = 6 right basic subtrees to obtain
the big partition sets Vi 11 ≤ i ≤ 16.

(3) Finally, notice that h− (e+1)t+1 = 5− (1+1)3+1 = 0. Thus we cut
the edge connecting the root v1 (note that level(v1) = 0) with its right
child according to the third step of the algorithm. We obtain the big
partition sets V1 and the small partition set V2 depicted in Figure 2.11.
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Figure 2.11: 16-balanced partition V ∗. Its objective value is c(G,V ∗) = 21.
The numbers on the vertices indicate the indices of the partition sets to which
the corresponding vertices belong.

The objective function value of the obtained 16-balanced partition V ∗ =
{V1, V2, . . . , V16}, i.e. the number of the cut edges, equals c(G,V ∗) = 21. By
applying the results of the following subsection we conclude that this is the
optimal 16-balanced partition of G.

2.3.2 Proof of the optimality for the algorithm de-
scribed in Subsection 2.3.1

The optimality proof will make use of the following reformulation of the
k-BPP.

Consider the input graphG = (V,E) of the k-BPP, a k-balanced partition
V = {V1, V2, . . . , Vk}, and the respective induced subgraphs G[Vi], 1 ≤ i ≤
k. Assume that G[Vi] has li connected components Gi,j = (Vi,j, Ei,j) for
1 ≤ j ≤ li, for 1 ≤ i ≤ k. Define a new graph G′ = (V ′, E ′) which contains
one representative vertex v̄i,j for each connected component Gi,j, 1 ≤ i ≤ k,
1 ≤ j ≤ li. Two vertices v̄i1,j1 and v̄i2,j2 are connected in G′ iff the connected
components Gi1,j1, Gi2,j2 are connected by an edge in G. Observe that if G
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is a tree, then G′ is also a tree and the following equality holds

c(G,V ) = |E ′| = |V ′| − 1. (2.21)

Thus the value of the objective function of the k-BPP corresponding to a
k-balanced partition V of a tree G equals the overall number of the connected
components of the subgraphs induced in G by the partition sets of V minus
1. Hence the goal of the k-BPP can be rephrased as follows: Determine a
k-balanced partition V ∗ such that the number of the connected components
of the subgraphs induced in G by the partition sets is minimized.

Finally, note that the equality (2.21) holds for every (not necessarily
balanced) partition V .

Example 2.5. Let us consider the graph and the partition depicted in Fig-
ure 2.11. The tree G′ is depicted in Figure 2.12.

G1,1

G2,1

G3,1 G4,1 G5,1 G6,1 G7,1 G8,1 G9,1 G10,1

G11,1 G12,1 G13,1 G11,2 G14,1 G15,1 G16,1 G14,2

G12,2 G13,2 G15,2 G16,2

Figure 2.12: The graph G′ corresponding to the binary regular tree G and
the 16-partition V depicted in Figure 2.11.

The partition sets Vi, 1 ≤ i ≤ 10, generate one connected component
each, the partition sets Vi, 11 ≤ i ≤ 16 generate two connected components
each. Notice that equality (2.21) is fulfilled: the tree G′ has 22 vertices and
21 edges and c(G,V ) = 21, see Example 2.4.

Denote by ni(V ) be the number of partition sets in V which induce i
connected components each in G, for i ∈ N. Notice now that the following
observation holds.

Observation 2.11. Consider the 2k
′
-BPP for a binary regular tree G of

height h, h ≥ k′, and let V ∗ be the k-balanced partition computed by the
algorithm described in Subsection 2.3.1. Then

n1(V
∗) ≥ n1(V ) (2.22)
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implies

c(G,V ∗) ≤ c(G,V ∗) (2.23)

for any k-balanced partition V of G.

Proof. As argued above for every k-balanced partition V the value c(G,V )
of the objective function equals the overall number of connected components
induced in G by the partition sets of V minus 1, and hence

c(G,V ) =
∑

i∈N
ini(V )− 1 (2.24)

holds. If n1(V ∗) ≥ n1(V ) and since ni(V ∗) = 0 for i ≥ 3, the following
equalities and inequalities hold:

c(G,V ) =
∑

i∈N
ini(V )− 1 ≥ n1(V ) + 2

(
k − n1(V )

)
− 1

= 2k − n1(V )− 1 ≥ 2k − n1(V
∗)− 1

= n1(V
∗) + 2(k − n1(V

∗))− 1 = n1(V
∗) + 2n2(V

∗)− 1

= c(G,V ∗).

(2.25)

Theorem 2.12. Let G = (V,E) be a binary regular tree of height h ≥
1 and let k = 2k

′
, where 1 ≤ k′ ≤ h. Then the algorithm presented in

Subsection 2.3.1 yields an optimal k-balanced partition V ∗.

Proof. Due to Observation 2.11 it is enough to show that n1(V ∗) ≥ n1(V )
for any k-balanced partition V of G.

Let us first show that every k-balanced partition V =.. V0 can be trans-
formed step by step into a sequence V =.. V0,V1, . . . ,Vl = V ′, l ∈ N, of
k-balanced partitions with the following properties:

(a) n1(Vt) ≥ n1(Vt−1) holds for every t ∈ {1, 2, . . . , l}, and

(b) the big partition sets of V ′ which induce one connected component in
G each coincide with the big partition sets of V ∗ which induce one
connected component in G each.

In the following the steps of this transformation are explained. Consider a
k-balanced partition V whose big partition sets which induce one connected
component in G each do not coincide with the corresponding partition sets
of V ∗.
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For every vertex v ∈ V let PV (v) be the uniquely determined partition
set in V such that v ∈ PV (v). Consider the vertices v ∈ V with level(v) =
h− it+ 1, where 1 ≤ i ≤ e, e = ⌊h+1

t
⌋ − 1, and choose among them a vertex

with the largest level such that PV (v) 6= PV ∗(v). Perform now the following
transformation steps.

Case 1. If the partition set PV (v) consists of the vertex v ∈ V together
with the binary regular subtree of height h − k′ rooted at its right
child, then exchange the subtrees rooted at the left and the right child
of v, respectively, to obtain a new k-balanced partition V ′ for which
obviously n1(V ) = n1(V ′) holds.

Case 2. If Case 1 does not arise, then PV (v) contains neither the binary
regular subtree of height h − k′ rooted at the right child of v nor the
binary regular subtree of height h− k′ rooted at its left child. At least
one of these two subtrees does not build a small partition set in V . Let
this be the left subtree (otherwise we would apply an exchange of the
two subtrees as in Case 1). Denote this subtree by T . If PV (v) is a
big component, then exchange the vertices contained in PV (v) and the
vertices of T (the one by one assignment of the corresponding vertices
is done arbitrarily). Denote the resulting balanced partition by V ′.
Clearly PV ′(v) induces one connected component inG. Moreover PV (u)
induces more than one connected component in G, for every u ∈ V (T ),
because T does not build a small partition set in V . Then n1(V ′) ≥
n1(V ) holds (no partition sets inducing one connected component in G
are destroyed). If PV (v) is the small component, then again exchange
the vertices contained in PV (v) against all but one of the vertices in
the subtree T of height h− k′ rooted at the left child of v (the one by
one assignment of the corresponding vertices is again done arbitrarily).
Then add the remaining vertex of T to the partition set containing
v and resulting after that exchange. Denote the resulting balanced
partition by V ′. Clearly PV ′(v) induces one connected component in
G. Further PV (u) induces more than one connected component in G,
for every u ∈ V (T ), because T does not build a small partition set in
V . Thus n1(V ′) ≥ n1(V ) holds again for the same reason as above.

We repeat the above transformation step as long as there are vertices v
for which PV (v) 6= PV ∗(v), where V denotes the most recently constructed k-
balanced partition. We end up with a k-balanced partition V ′ which contains
as partition sets all big partitition sets of V ∗ which induce one connected
component in G, respectively. Moreover V ′ fulfills the following inequality

n1(V
′) ≥ n1(V ). (2.26)
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Notice finally that by removing from G all big partition sets of V ∗ which
induce one connected component in G, respectively, we obtain a graph whose
largest connected component contains at most 2h−k′ − 1 vertices. So, if V ′

contains any partition sets which induce one connected component in G
besides the big partition sets of V ∗ inducing one connected component, then
these partition sets should be small ones. Finally, since in every k-balanced
partition there is only one small partition set and the small partition set in
V ∗ induces one connected component in G we get

n1(V
∗) ≥ n1(V

′). (2.27)

By combining (2.26) and (2.27) we get n1(V
∗) ≥ n1(V ) and this completes

the proof.

2.3.3 The optimal value of the 2k′
-BPP on binary reg-

ular trees

According to equality (2.25) the optimal value c(G,V ∗) of the 2k
′
-BPP on a

binary regular tree of height h for 1 ≤ k′ ≤ h is given as c(G,V ∗) = 2k −
n1(V

∗)− 1. Recall that n1(V
∗) is the number of partition sets of V ∗ which

induce exactly one connencted component each in G. Observe that for every
i ∈ N, 1 ≤ i ≤ e + 1, the algorithm presented in Subsection 2.3.1 constructs
exactly 2h−it+1 big partition sets inducing one connected component in G,
respectively. More precisely, it constructs one such partition set for each
vertex of level h − it + 1, where the partition sets arise in the i-th bands of
height t−1 by cutting the edge joining the above mentioned vertices to their
right children, respectively. Finally in its last step the algorithm constructs
the small partition set which also induces one connected component in G.

Thus the following equality holds

n1(V
∗) = 1 +

e+1∑

i=1

2h−it+1 = 1 + 2h+11−
(

1
2t

)e+1

2t
(
1− 1

2t

) , (2.28)

and this implies

c(G,V ∗) = 2k − 2− 2h+11−
(

1
2t

)e+1

2t
(
1− 1

2t

) . (2.29)

For technical reasons we derive a lower bound for c(G,V ∗) which is given as
a closed formula depending just on k.
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Lemma 2.13. Let G = (V,E) be a binary regular tree of height h ≥ 1 and
let k = 2k

′
, where 1 ≤ k′ ≤ h. Let V ∗ be the optimal k-balanced partition

in G computed by the algorithm described in Subsection 2.3.1. The optimal
value c(G,V ∗) of the k-BPP in G fulfills the following (in)equalities:

c(G,V ∗) ≥ 10

7
k − 2 if k′ ≤ h− 1, (2.30)

c(G,V ∗) =
4

3
k − 3

2
+

1

6
(−1)log2 k if k′ = h and (2.31)

c(G,V ∗) =
3

2
k − 2 if k′ ≤

⌊
h
2

⌋
+ 1. (2.32)

Proof. If k′ ≤ h − 1 we get t = h − k′ + 2 ≥ h − (h − 1) + 2 = 3 and the
following inequalities hold

n1(V
∗) ≤ 1 + 2h+1

(
1

1− 1
2t

− 1

)
= 1 +

2h+1 1
2t

1− 1
2t

= 1 +
2h+1−t

1− 1
2t

= 1 +
2k

′−1

1− 1
8

= 1 +
2k

′

7
4

= 1 +
4

7
k.

(2.33)

The last inequality implies

(G,V ∗) = 2k − n1(V
∗)− 1 ≥ 10

7
k − 2. (2.34)

If k′ = h we get t = h − k′ + 2 = 2 and e =
⌊
h+1
t

⌋
− 1 =

⌊
h+1
2

⌋
− 1. If h

is odd, e = h+1
2

− 1 holds, and if h is even we get e = ⌈h+1
2
⌉ = h

2
. By

setting this values for e and t in equation (2.28) and simplifying we get

n1(V
∗) =

{
2
3
2h + 2

3
if h is odd

2
3
2h + 1

3
if h is even

. (2.35)

By plugging these expressions for n1(V ∗) into equation 2.29 we obtain

c(G,V ∗) = 2k − n1(V
∗)− 1 =

4

3
k − 3

2
+

1

6
(−1)log2 k (2.36)

in both cases.

If k′ ≤ ⌊h
2
⌋ + 1 we get t = h− k′ + 2 and e =

⌊
h+1
t

⌋
− 1 =

⌊
h+1

h−k′+2

⌋
− 1 ≤⌊

h+1

h−⌊h
2⌋+1

⌋
−1. By distinguishing the two cases when h is odd and h is
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even it can be easily observed that e = 0 in both cases. By substituting
e by 0 in equation 2.28 we get

n1(V
∗) = 1+2h+1 1

2t
= 1+

2h+1

2h−k′+2
= 1+2k

′−1 = 1+
2k

′

2
= 1+

k

2
, (2.37)

and then by plugging this into equation 2.29

c(G,V ∗) = 2k − 1− k

2
− 1 =

3

2
k − 2. (2.38)

2.4 The approximation ratio of Algorithm 2.1

In order to estimate an approximation ratio ρ for Algorithm 2.1 we will
exploit the relationship between the DAPT on binary regular trees and the
k-BPP and obtain a lower bound for the objective function value of the
DAPT in terms of the special case of k-BPP where k is a power of two.

Let the guest graph G = (V,E) and the host graph T be binary reg-
ular trees of heights hG ≥ 1 and h = hG + 1, respectively, and let φ be
an arbitrary arrangement with corresponding objective value OV (G, 2, φ) =∑

(u,v)∈E dT
(
φ(u), φ(v)

)
. The length dT

(
φ(u), φ(v)

)
of the unique φ(u)-φ(v)-

path in the binary regular tree T is even for any two vertices u and v in G
(see and Observation 2.5 ). Moreover, 2 ≤ dT

(
φ(u), φ(v)

)
≤ 2h holds for any

two vertices u and v in G. Let ai(φ), 1 ≤ i ≤ h, be the number of edges
which contribute to the value of the objective function by 2i, i.e. the number
of edges (u, v) ∈ E(G) for which dT

(
φ(u), φ(v)

)
= 2i holds. Then

OV (G, 2, φ) = ah(φ) · 2h+ ah−1(φ) · 2(h− 1) + . . .+ a1(φ) · 2

= 2

h∑

i=1

ai(φ)i.
(2.39)

The number of edges which contribute to the objective function value by at
least 2i, i.e. the number of edges (u, v) ∈ E(G) for which dT

(
φ(u), φ(v)

)
≥ 2i

holds, is given by the following the partial sums

si(φ) ..=
h∑

j=i

aj(φ) for all 1 ≤ i ≤ h. (2.40)
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Clearly, the following equalities hold

ai(φ) =

{
si(φ)− si+1(φ) for 1 ≤ i ≤ h− 1

si(φ) for i = h
. (2.41)

By plugging this into the objective function in (2.39) we get

OV (G, 2, φ) = 2
h∑

i=1

ai(φ)i

= 2

((
h−1∑

i=1

i
(
si(φ)− si+1(φ)

)
)

+ hsh(φ)

)

= 2
h∑

i=1

si(φ).

(2.42)

Example 2.6. Let us consider the guest graph in Figure 2.2 and the arrange-
ment φA obtained by applying Algorithm 2.1; this arrangement is depicted in
Figure 2.4. The coefficients ai(φA), si(φA), for 1 ≤ i ≤ h are listed in
Table 2.1.

i 4 3 2 1

ai(φA) 1 3 5 5
si(φA) 1 4 9 14

Table 2.1: Coefficients ai(φA) and partial sums si(φA) for 1 ≤ i ≤ h.

By applying (2.39) and (2.42) we obtain the corresponding objective func-
tion value, respectively, as follows:

OV (G, 2, φA) = 2

h∑

i=1

ai(φA)i = 2(5 · 1 + 5 · 2 + 3 · 3+ 1 · 4) = 56, (2.43)

OV (G, 2, φA) = 2
h∑

i=1

si(φA) = 2(14 + 9 + 4 + 1) = 56. (2.44)

For hG = 0 the arrangement φA is obviously optimal, so let us assume that
hG ≥ 1 through the rest of this section. The next lemma and its corollary
give closed formulas for the coefficents ai(φA) and the partial sums si(φA),
1 ≤ i ≤ h, corresponding to the arrangement computed by Algorithm 2.1.
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Lemma 2.14. Let the guest graph G = (V,E) and the host graph T be binary
regular trees of heights hG ≥ 1 and h = hG + 1, respectively, and let φA be
the arrangement computed by Algorithm 2.1. Then the coefficients ai(φA),
1 ≤ i ≤ h, are given as follows:

ai(φA) =





2
3
2hG − 1

2
− 1

6
(−1)hG for i = 1

7
12
2hG + 1

2
+ 1

6
(−1)hG for i = 2

3 · 2hG−i for 3 ≤ i < h

1 for i = h

(2.45)

Proof. Consider first i = 1 and determine the number of edges contributing
to the objective value OV (G, 2, φA) by exactly 2. Let us first neglect the pair-
exchanges done in pseudocode line 9. Then there are only two possibilities
how to arrange an edge in Algorithm 2.1 in such a way that it contributes
by 2 to the objective value

(1) Either it is taken over from the recursive arrangements in pseudocode
line 6

(2) or it is produced by placing the root v1 in pseudocode line 7.

In the latter case the following property P must hold: (P) A child of the
root v1 and v1 itself are placed to children vertices of a common father in
T . Since the children of the root v1 are roots in the previous recursion step,
and since the roots are always placed on the middle leaf, hG = 1 has to
hold in the corresponding recursive run, i.e. in the run when property P is
fulfilled. So exactly one edge contributing by 2 to the value of the objective
function arises in every such recursive run with hG = 1 (see also Figures 2.19
and 2.20 in Appendix). There are 2hG−1 such runs, one for each vertex with
level hG − 1 (playing the role of the root). Thus, if the pair-exchange step
is neglected, there are 2hG−1 edges which contribute 1 to the value of the
objective function.

Let pe(hG) be the number of pair-exchanges done in pseudocode line 9
when applying the algorithm on a guest graph of height hG. We prove that

pe(hG) =
1

6
2hG − 1

2
− 1

6
(−1)hG (2.46)

by induction on the height hG. For hG = 1 the formula in (2.46) yields
pe(hG) = 0 which is obviously correct (see also Figures 2.19 and 2.20 in
Appendix). Analogous arguments as in the proof of Lemma 2.8 show that
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the following recursive equations hold for hG ≥ 1:

pe(hG + 1) =

{
2pe(hG) + 1 for hG + 1 odd

2pe(hG) for hG + 1 even
. (2.47)

So by applying (2.46) and (2.47) we get:

pe(hG + 1) = 2pe(hG) + 1 = 2

(
1

6
2hG − 1

2
− 1

6
(−1)hG

)
+ 1

=
1

6
2hG+1 − 1

2
− 1

6
(−1)hG

(2.48)

if hG is odd, and

pe(hG + 1) = 2pe(hG) = 2

(
1

6
2hG − 1

2
− 1

6
(−1)hG

)

=
1

6
2hG+1 − 1

2
− 1

6
(−1)hG

(2.49)

if hG is even. Thus also pe(hG+1) fulfills (2.46), which completes the induc-
tive proof of (2.46).

In Lemma 2.7 it was proven that every pair-exchange done in pseudocode
line 9 increases by 1 the number of edges contributing by 2 to the value of
the objective function. Thus we get

a1(φA) = 2hG−1 + pe(hG) =
2

3
2hG − 1

2
− 1

6
(−1)hG , (2.50)

and hence the claim of the lemma holds for i = 1.

Let i = 2. We use the same technique: We count vertices with level(v) =
hG − 1 and the number of vertices with level(v) = hG − 2 first. Edges which
contribute by 4 to the value of the objective function arise only in recursive
runs where the guest graph has height 1 or 2 and is rooted at a vertex with
level hG − 1 or hG − 2, respectively. In every such recursive run exactly one
edge of that kind arises (see also Figures 2.19, 2.20, 2.21 and 2.22). Then we
consider the effect of the pair-exchanges done in pseudocode line 9. According
to Lemma 2.7 each such pair-exchange reduces by one the number of edges
which contribute to the value of the objective function by 4, so we get

a2(φA) = 2hG−1 + 2hG−2 − pe(hG) =
7

12
2hG +

1

2
+

1

6
(−1)hG , (2.51)

and hence the claim of the lemma holds for i = 2.
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Consider now the case i ≥ 3. According to Lemma 2.7 the pair-exchanges
done in pseudocode line 9 have no effect on the number of edges of G which
contribute to the value of the objective function by 2i, if i ≥ 3. So for
3 ≤ i < h the pair-exchanges can be neglected and we get

ai(φA) = 2hG−(i−1) + 2hG−i = 3 · 2hG−i, (2.52)

in compliance with the claim of the lemma.

Finally, for i = h there is exactly one edge which contributes by 2h to the
value of the objective function, namely the one joining the root of G with
his right child.

Corollary 2.15. Let the guest graph G = (V,E) and the host graph T be
binary regular trees of heights hG ≥ 1 and h = hG+1, respectively, and let φA

be the arrangement computed by Algorithm 2.1. Then the coefficients si(φA),
1 ≤ i ≤ h, are given as follows:

si(φA) =





2 · 2hG − 2 for i = 1
4
3
2hG − 3

2
+ 1

6
(−1)hG for i = 2

6 · 2hG−i − 2 for 3 ≤ i ≤ h
. (2.53)

Proof. This corollary is a straightforward consequence of the definition of
si(φ), 1 ≤ i ≤ h, (see (2.40)) and of Lemma 2.14.

• For i = h we get: sh(φA) = ah(φA) = 1 = 6·2hG−(hG+1)−2 = 6·2hG−i−2.

• For 3 ≤ i < h we get by induction on i and starting with i = h:
si(φA) = ai(φA)+ si+1(φA) = 3 · 2hG−i+6 · 2hG−(i+1) − 2 = 6 · 2hG−i − 2.

• For i = 2 we get: s2(φA) = a2(φA) + s3(φA) =
7
12
2hG + 1

2
+ 1

6
(−1)hG +

6 · 2hG−3 − 2 = 4
3
2hG − 3

2
+ 1

6
(−1)hG .

• For i = 1 we get: s1(φA) = a1(φA) + s2(φA) =
2
3
2hG − 1

2
− 1

6
(−1)hG +

4
3
2hG − 3

2
+ 1

6
(−1)hG = 2 · 2hG − 2.

Next we give a lower bound for si(φ), where φ is an arbitrary arrangement
of the vertices of the guest graph G with height hG into the leaves of the host
graph T with height h ..= hG+1 and where i is some integer between 1 and h.
si(φ) is the number of edges of G which contribute by at least 2i to the value
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of the objective function. Obviously, each such edge joins vertices of G which
are arranged at the leaves of different binary regular subtrees of T of height
i − 1 and rooted at vertices of level h− (i − 1) = hG − i + 2 =.. k′. Clearly,

there are 2k
′
such subtrees of T . Let us denote them by T

(i)
j , for 1 ≤ j ≤ 2k

′
.

Let V
(i)
j ⊂ V (G) be the set of vertices of G which are arranged at the leaves

of T
(i)
j . Since for all leaves b of T but one there is some vertex v ∈ V (G) with

φ(v) = b, |V (i)
j | = 2i−1 holds for all but one index j, 1 ≤ j ≤ 2k

′
, and for the

exception, say j0, |V (i)
j0

| = 2i−1 − 1 holds. Thus V (i) ..= {V (i)
j |1 ≤ j ≤ 2k

′} is

k-balanced partition of G with k = 2k
′
, k′ = hG−i+2, and si(φ) = c(G,V (i)).

Let V ∗
i be the optimal k-balanced partition of G (which can be computed

by the algorithm presented in Subsection 2.3.1 and for which lower bounds
of the objective function value as in Subsection 2.3.3 are known). Then
si(φ) ≥ c(G,V ∗

i ) holds for all i, 2 ≤ i ≤ h and for every arrangement
φ. Let us denote the lower bounds sLi

..= c(G,V ∗
i ) for 2 ≤ i ≤ h, and

sL1
..= |V (G)| − 1 = 2h − 2 for i = 1.

Thus we get

OV (G, 2, φ) ≥ 2

h∑

i=1

sLi for all arrangements φ. (2.54)

Notice that s1(φ) = |E(G)| = |V (G)|−1 = sL1 holds for every arrangement
φ of the guest graph G. Notice, moreover, that for hG ≤ 4 the bound in
(2.54) is tight, in the sense that it matches the optimal value of the objective
function of DAPT (G, 2), as illustrated in the following tables.

i 2 1

si(φA) 1 2
sLi 1 2

Table 2.2: Partial sums si(φA) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 1.

i 3 2 1

si(φA) 1 4 6
sLi 1 4 6

Table 2.3: Partial sums si(φA) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 2.
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i 4 3 2 1

si(φA) 1 4 9 14
sLi 1 4 9 14

Table 2.4: Partial sums si(φA) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 3.

i 5 4 3 2 1

si(φA) 1 4 10 20 30
sLi 1 4 10 20 30

Table 2.5: Partial sums si(φA) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 4.

In general, the lower bound in (2.54) is not tight. Already for hG = 5
there is a gap between the value of the objective function corresponding to
the arrangement φA generated by the algorithm A and the lower bound, as
shown in Table 2.6 below. Moreover, in the following example we prove that
φA is an optimal arrangement for hG = 5. Thus we conclude that the lower
bound in (2.54) does not match the optimal value of the objective function
of DAPT (G, 2) already for hG = 5.

Example 2.7. Consider the guest graph G = (V,E) to be a complete binary
tree of height hG = 5 ordered according to the canonical ordering. The partial
sums si(φA) and the lower bounds sLi , for 1 ≤ i ≤ h, computed according to
Corollary 2.15, inequality (2.54) and equation (2.29), are given in Table 2.6
below.

i 6 5 4 3 2 1

si(φA) 1 4 10 22 41 62
sLi 1 4 10 21 41 62

Table 2.6: Partial sums si(φA) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 5.

Thus in the case hG = 5 the bound of inequality (2.54) does not match
the objective function value corresponding to φA because s3(φa) > sL3 . Now,
a natural question arises:

Question: Does the bound in (2.54) match the optimal value of the objec-
tive function of the DAPT (G, 2) if hG = 5?
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We show that φA is an optimal arrangement if hG = 5, and hence the
answer to the above question is “no”. Indeed, assume that φA is not optimal
and let φ∗ be an optimal arrangement. Observe that s6(φ∗) = 1 has to hold
because s6(φ∗) ≥ 2 leads to a contradiction as follows:

OV (G, 2, φ∗)−OV (G, 2, φA) = 2

6∑

i=1

(
si(φ∗)− si(φA)

)

= 2
5∑

i=1

(
si(φ∗)− si(φA)

)
+ 2
(
s6(φ∗)− s6(φA)

)

> 2
5∑

i=1

(sLi − si(φA)) + 2 = −2 + 2 = 0.

(2.55)

By similar arguments we would get si(φ∗) = sLi = si(φA) for i ∈ {1, 2, 4, 5}.
Since s6(φ∗) = 1 there will only be one edge of G such that its endpoints are
mapped to leaves of the right and the left basic subtrees of T , respectively.
Clearly this edge can only be (v1, v2) or (v1, v3). Assume w.l.o.g. that this
edge is (v1, v3) and that φ∗ arranges the right basic subtree of G (of height 4)
at the leaves of the right basic subtree T r of T . Since algorithm A yields an
optimal arrangement for hG ≤ 4, we can than assume w.l.o.g. that φ∗ and
φA arrange the right basic subtree of G in the same way. Now consider the
left basic subtree of G together with the root v1 and denote this subgraph of
G by G1. φ∗ arranges G1 at the leaves of the left basic subtree T l of T . Let
G

(a)
1 and G

(b)
1 the two subgraphs of G1 arranged by φ∗ at the leaves of the

left and the right basic subtrees of T l, denoted by T ll and T lr, respectively.
Since the number of edges which contribute by at least 2 · 5 to the value
OV (G, 2, φ∗) is s5(φ∗) = 4, there are just two edges ei of G1 such that φ∗
arranges one endpoint of ei to some leaf of T ll and the other endpoint of ei
to some leaf of T lr, for i = 1, 2. Recalling that

∣∣V (G
(a)
1 )
∣∣ =

∣∣V (G
(b)
1 )
∣∣ we can

easily convince ourselves (in the worst case by using complete enumeration)
that one of the edges ei, i = 1, 2, has to coincide with one of the two edges
(v1, v2) or (v2, v5) (or (v2, v4), symmetrically). We obtain two cases. (A) If
e1 = (v1, v2), then e2 = (v2, v5) must hold. (B) Otherwise, if e1 = (v2, v5)
and e2 6= (v1, v2), then e2 has to join some leave of the left basic subtree of
G1 \ {v1} to its father, e.g. e2 = (v19, v39). The edges ei, i = 1, 2, fully

determine the corresponding subgraphs G
(a)
1 and G

(b)
1 , each of them having 16

vertices. For every realisation of ei, i = 1, 2, the problems DAPT (G
(a)
1 , 2)

and DAPT (G
(b)
1 , 2) can be solved by complete enumeration to observe that the

correpsonding optimal values coincide with the values of the objective function
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corresponding to the arrangement of the respective subgraphs according to
φA. Notice that it is enough to do the complete enumeration for the DAPTs
resulting in the case A and for the DAPTs resulting in the case B with e2 =
(v19, v39); all other possible realisations of e2 in case B lead to G

(a)
1 , G

(b)
1

which are isomorphic to G
(a)
1 , G

(b)
1 obtained for e2 = (v19, v39), respectively.

Notice finally, that the answer “no” to the question posed above is not
surprising. In general a collection of optimal 2k-balanced partitions, 1 ≤
k ≤ hG, of a binary tree G of height hG, does not need to coincide with the
2k-balanced partitions of G defined in accordance with some feasible solution
of the data arrangement problem in G. The reason is that the collection of
2k-balanced partitions, 1 ≤ k ≤ hG, which arises in accordance with some
arrangement φ, is laminar, meaning that the partition sets of the 2k-balanced
partition are obtained as particular partitions of the partition sets of the 2k−1-

balanced partition, for 2 ≤ k ≤ hG. More concretely, if V =
{
V

(1)
1 , V

(2)
1

}

is the 2-balanced partition in the laminar collection of balanced partitions,
then the 4-balanced partition is obtained by partitioning V

(1)
1 and V

(2)
1 into

2-balanced partitions each, and so on, until the partition sets are pairs of
vertices, and hence a 2hG-balanced partition results. On the other side, in
general, a collection of optimal 2k-balanced partitions of a complete binary
tree G of height hG, for 1 ≤ k ≤ hG, is not necessarily laminar.

Now we can state the main result of this section.

Theorem 2.16. Let the guest graph G = (V,E) and the host graph T be
binary regular trees of heights hG ≥ 1 and h = hG + 1, respectively. Then
Algorithm 2.1 is a 203

200
-approximation algorithm.

Proof. The cases hG = 0, hG = 1, hG = 2 are obvious: The arrangements
φA obtained form Algorithm 2.1 are optimal in these cases, respectively, as
one can convince himself by simple arguments or by full enumeration (see
also Figures 2.17 to 2.22 in Appendix). Moreover, we have already proved
that Algorithm 2.1 yields an optimal solution for hG = 4 (see Table 2.5) and
hG = 5 (see Example 2.7).

Let hG ≥ 6. Consider the difference

OV (G, 2, φ)− 2

h∑

i=1

sLi = 2

h∑

i=1

si(φA)− 2

h∑

i=1

sLi , (2.56)

and set

D ..=

h∑

i=1

(
si(φA)− sLi

)
. (2.57)
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As mentioned above sLh = 1 = sh(φA).

For sL2 = c(G,V ∗
2 ) we have k′ = hG − 2 + 2 = hG and k = 2k

′
= 2hG, and

thus we can apply Lemma 2.13 and Corollary 2.15 to obtain sL2 = 4
3
2hG − 3

2
+

1
6
(−1)hG = s2(φA).

Let us consider sLi = c(G,V ∗
i ), where 3 ≤ i ≤ hG. If 1 ≤ k′ ≤

⌊
hG

2

⌋
+ 1,

with k′ = hG − i+ 2 we obtain the condition i ≥ hG −
⌊
hG

2

⌋
+ 1. For hG ≥ 3

the inequality hG −
⌊
hG

2

⌋
+ 1 ≥ 3 holds and hence Corollary 2.15 applies. So

by applying Lemma 2.13 we get sLi = 3
2
2hG−i+2 − 2 = 6 · 2hG−i − 2 = si(φA)

if i ≥ hG −
⌊
hG

2

⌋
+ 1.

The remaining indices are 3 ≤ i ≤ hG −
⌊
hG

2

⌋
. Apply Corollary 2.15 and

Lemma 2.13 to obtain:

D ≤
hG−

⌊
hG
2

⌋

∑

i=3

(
6 · 2hG−i − 10

7
2hG−i+2

)
=

2

7
2hG

hG−
⌊
hG
2

⌋

∑

i=3

2−i. (2.58)

The sum of the above geometric progression is

hG−
⌊
hG
2

⌋

∑

i=3

2−i =
1

4
− 1

2
2hG−⌈hG

2
⌉ ≤ 1

4
−

√
2

2
2−

hG
2 . (2.59)

Summarizing we get

D ≤ 2

7
2hG

(
1

4
−

√
2

2
2−

hG
2

)
=

1

14
2hG −

√
2

7
2−

hG
2 . (2.60)

By applying Lemma 2.8 we get the following approximation ratio ρ

ρ(hG) ..=
OV (G, 2, φA)

OV (G, 2, φA)− 2D

=
29
3
· 2hG − 4hG − 9 + 1

3
(−1)hG

(
29
3
· 2hG − 4hG − 9 + 1

3
(−1)hG

)
− 2

(
1
14
2hG −

√
2
7
2−

hG
2

) .
(2.61)

After some standard algebraic transformations we obtain

ρ(hG) ..=
29
3
2hG − 4hG − 26

3

200
21
2hG − 4hG + 2

√
2

7
2

hG
2 − 28

3

. (2.62)

Obviously,

ρ(hG) ≤ ρU(hG) ..=
29
3
2hG

200
21
2hG − 4hG + 2

√
2

7
2

hG
2 − 28

3

. (2.63)



40 2. DATA ARRANGEMENT PROBLEM

We show that ρU(hG) is a strictly monotonically increasing sequence for

hG ≥ h
(0)
G , where h

(0)
G ≥ 6 is a constant. First, note that the denominator

corresponds to a valid positive lower bound and therefore 200
21
2hG − 4hG +

2
√
2

7
2

hG
2 − 28

3
> 0. The following inequalities are all equivalent.

ρU (hG) < ρU(hG + 1) (2.64)

⇔
29
3
2hG

200
21
2hG − 4hG + 2

√
2

7
2

hG
2 − 28

3

<
29
3
2hG+1

200
21
2hG+1 − 4(hG + 1) + 2

√
2

7
2

hG+1

2 − 28
3

(2.65)

⇔
1

200
21
2hG − 4hG + 2

√
2

7
2

hG
2 − 28

3

<
2

200
21

· 2 · 2hG − 4hG + 2
√
2

7
2

hG+1

2 − 40
3

(2.66)

⇔

−4hG +
2
√
2

7
2

hG+1

2 − 40

3
< −8hG +

4
√
2

7
2

hG
2 − 56

3
(2.67)

⇔

4hG +
4

7
(1−

√
2)
√
2
hG

+
16

3
< 0 (2.68)

Consider a function f : [6,+∞[→ R defined as follows:

f(hG) = 4hG +
4

7
(1−

√
2)
√
2
hG

+
16

3
. (2.69)

Its first derivate is

f ′(hG) = 4 +
4

7
(1−

√
2)
√
2
hG

ln
√
2. (2.70)

Obviously, there exists only one hG
(f)
0 = log√2

4
4
7
(
√
2−1) ln

√
2
≈ 11.215 with

f ′(hG
(f)
0 ) = 0 and since f ′(12) = 4+ln

√
24
7
(1−

√
2)26 ≈ −1.250, the function

f(hG) is strictly monotonically decreasing for all hG ≥ 12. Moreover, f(17) =

4 ·17+ 4
7
(1−

√
2)
√
2
17
+ 16

3
= −

(
4604
21

− 1024
7

√
2
)
≈ −12.359 and thus f(hG) =

4hG + 4
7
(1−

√
2)2

hG
2 + 16

3
< 0, i.e. the inequalities (2.64)–(2.68) are fulfilled,

for all hG ≥ 17.
Consequently ρU(hG) is a strictly monotonically increasing sequence for

all hG ≥ h
(0)
G = 17. We already proved that Algorithm 2.1 yields an optimal
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solution for hG ∈ {1, 2, 3, 4, 5}. We can also define

ρ ..= max
{
ρ(hG)|hG ∈ {6, 7, . . . , 17}, lim

hG→+∞
ρU(hG)

}
, (2.71)

where we use the tighter bound in equation (2.62) for all the cases hG =
6, 7, . . . , 17.

Finally, it is not difficult to evaluate ρ(hG) for all hG = 6, 7, . . . , 17 and
to estimate limhG→+∞ ρU(hG). It turns out that

ρ = lim
hG→+∞

ρ(hG) = lim
hG→∞

29
3
2hG − 4hG − 26

3

200
21
2hG − 4hG + 2

√
2

7
2

hG
2 − 28

3

=
203

200
= 1.015.

(2.72)

This completes the proof.

2.5 A generalized approximation algorithm

for d-regular trees

In this section we generalize the algorithm introduced in Section 2.2 for all
d-regular trees where d ≥ 2. Subsequently, we provide a weaker but more
general lower bound which leads to a constant approximation ratio proof.

The generalization of Algorithm 2.1 cannot be done in a straightforward
way. In particular, we need to split it into an (i) initialization and an (ii) im-
provement phase. The initialization phase yields an arrangement φB′ which
corresponds to the arrangement we would obtain from Algorithm 2.1 applied
without the pair-exchanges performed in pseudocode line 9. The improve-
ment phase then processes the pair-exchanges all at once. The resulting
arrangement φB corresponds to the arrangement φA obtained from Algo-
rithm 2.1 for binary regular trees.

Let us now concentrate on the arrangement φB′ constructed in the ini-
tialization phase. First, additional notation is introduced and some easy ob-
servations are done. Then the basic idea behind the algorithm is described
and after that a pseudocode and a closed formula yielding the objective value
OV (G, d, φB′) is provided.

We define a function ι(bi) ..= i which returns the index of the leaf bi
according to the canonical order. Moreover, let T k

φ (v) be the subtree of k-th

order of the host graph T such that φ(v) ∈ V
(
T k
φ (v)

)
. We call it subtree of

k-th order containing the leaf φ(v).
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Observation 2.17. Let G = (V,E) be a d-regular tree with the vertices v1,
v2, . . . , vn ordered according to the canonical order for some fixed d ≥ 2.
Then the index of the right most leaf of every level can be expressed in the
following way:

max
1≤i≤n

{
i|level(vi) = l

}
=

dl+1 − 1

d− 1
for all 1 ≤ l ≤ hG. (2.73)

Proof. The observation follows directly from Observation 2.6.

Observation 2.18. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG and h = hG + 1 respectively. Then

• the vertices of the guest graph cannot be arranged on the leaves of one
basic subtree of the host graph T ;

• however, they can be arranged on the leaves of two basic subtrees of the
host graph T .

Proof. The claim obviously holds for hG = 0. Let us also assume that hG ≥ 1.
According to Observation 2.17 we can define

VL
..=

{
vi

∣∣∣d
hG − 1

d− 1
+ 1 ≤ i ≤ dhG+1 − 1

d− 1

}
(2.74)

as the set of leaves of the guest graph G. Obviously, |VL| = dhG and |V \VL| =
dhG−1
d−1

. Moreover, every basic subtree of the host graph T has dh−1 = dhG

leaves. Thus the first claim holds as there exist enough leaves vL ∈ VL of the
guest graph G to occupy all leaves of one basic subtree of the host graph T
(note that V \VL 6= ∅). Moreover, dhG−1

d−1
≤ dhG and therefore the remaining

vertices v ∈ V \VL do not exceed the number of the leaves of another basic
subtree of the host graph T . This result leads to the latter claim.

Observation 2.19. Let G = (V,E) be a d-regular tree with the vertices v1,
v2, . . . , vn ordered according to the canonical order for some fixed d ≥ 2 and
let vi, where 1 ≤ i ≤ dhG−1

d−1
, be a vertex which is not a leaf. Then this vertex

has the children vc1, vc2, . . . , vcd, where cj = d · i− (d− 1) + j.

Proof. We first prove that the index of the (d−1)-st child of vi equals i
′ = d·i

for all 1 ≤ i ≤ dhG−1
d−1

. Let l = level(vi). The number of the vertices vj with

level(vj) = l and j < i is obviously i − dl−1
d−1

− 1 due to Observation 2.6 and

similarly, the number of vertices vk with level(vk) = l and k > i is dl+1−1
d−1

− i.
Therefore between the vertex vi and its (d− 1)-st child vi′ lie – according to
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the canonical order – all vertices vk with level(vk) = l and k > i, all children
of the vertices vj with level(vj) = l and j < i and the first d − 2 children of
the vertex vi. Summed up, we get

i′ = i+

(
dl+1 − 1

d− 1
− i

)
+ d

(
i− dl − 1

d− 1
− 1

)
+(d− 2)+1 = d · i. (2.75)

Finally, since the vertex vi, where 1 ≤ i ≤ dhG−1
d−1

has d children and the
(d − 1)-st child vi′ has the index i′ = d · i according to the canonical order,
we obviously get cj = d · i− (d− 1) + j.

In order to proceed, further notation is required. Let v ∈ V be a vertex
of the guest graph G = (V,E) which is not a leaf and let Ĝ1, Ĝ2, . . . , Ĝd be
the subtrees of (level(v)+ 1)-st order rooted at the children of v and ordered
according to the canonical order. Then we define

Vv
..=
(
∪d−1
j=1 V (Ĝj)

)
∪ {v}. (2.76)

Observation 2.20. Let G = (V,E) be a d-regular tree for some fixed d ≥ 2
and let v ∈ V be a vertex which is not a leaf. Then

|Vv| = dhG−l, (2.77)

where l = level(v).

Proof. We know that all subtrees Ĝ1, Ĝ2, . . . , Ĝd have the height ĥ = hG −
(l + 1) = hG − l − 1. According to Observation 2.6 we get

∣∣V (Ĝj)
∣∣ =

d(hG−l−1)+1−1
d−1

= dhG−l−1
d−1

for all 1 ≤ j ≤ d. Since we consider only d − 1

subtrees in our claim, we obtain
∣∣∣
(
∪d−1
j=1 V (Ĝj)

)∣∣∣ = (d−1)d
hG−l−1
d−1

= dhG−l−1

and after adding the vertex v itself we get the equation (2.77).

Before going into details let us describe the main idea of our algorithm.
As demonstrated in Observation 2.18, we need at least the leaves of two
basic subtrees of the host graph T to accommodate all vertices v ∈ V of
the guest graph G. Hence there always exists at least one edge e ∈ E
which contributes 2h to the objective function value OV (G, d, φ) in every
arrangement φ. Consider the root v1 of the guest graph G. According to
Observation 2.20 |Vv1 | = dhG−l = dhG−0 = dhG and since the left most basic
subtree of the host graph T has exactly dh−1 = dhG leaves, we can arrange all
vertices v ∈ Vv1 on the leaves of the first and all remaining vertices v ∈ V \Vv1
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on the leaves of the second basic subtree of the host graph T . Let us consider
an arrangement φB′ such that

{
φB′(v)|v ∈ Vv1

}
= {bk|1 ≤ k ≤ dh−1} and (2.78){

φB′(v)|v ∈ V \Vv1

}
= {bk|dh−1 + 1 ≤ k ≤ 2dh−1}. (2.79)

Thus we have only one edge (v1, vd+1) contributing 2h to the objective func-
tion value OV (G, d, φB′) in the arrangement φB′ . So the problem splits into
two subproblems. The induced subgraph G[V \Vv1 ] corresponds to a d-regular
tree of height hG − 1 which has to be arranged on the leaves of a d-regular
subtree of height hG and, therefore, we can solve it recursively. Nevertheless
the induced subgraph G[Vv1 ] has a different structure. We have

G
[
Vv1

]
= G

[
(∪d−1

j=1Ĝj) ∪ {v}
]

(2.80)

according to (2.76) and we would like to reserve one basic subtree of 2nd

order of the host graph T for every basic subtree Ĝj of the guest graph G,
where 1 ≤ j ≤ d − 1. However, we need at least two such subtrees of 2nd
order for every subtree Ĝj of the guest graph G, 1 ≤ j ≤ d − 1, according
to Observation 2.18. We can solve the problem by applying the following
idea: Let vcj be the root vertex of Ĝj for 1 ≤ j ≤ d − 1. According to
Observation 2.20 |Vvcj

| = dhG−1. Thus we can arrange the vertices of every
set Vvcj

, where 1 ≤ j ≤ d − 1, on the leaves of one separate subtree of 2nd
order of the host graph T according to some arrangement which would fulfill
an analogon of equation (2.78). We use the d − 1 left most subtrees of this
kind for the vertices of the sets Vvcj

, where 1 ≤ j ≤ d − 1, and the d-th
subtree of 2nd order, let us call it cache subtree, we use to arrange the
vertices v ∈ Vv1\

(
∪d−1
j=1 Vvcj

)
. As a consequence, every subtree Ĝj considered

in (2.80), where 1 ≤ j ≤ d − 1, contains an edge ej ∈ E(Ĝj) contributing
2(h− 1) to the objective value OV (G, d, φB′).

Let us now consider the arrangement of the remaining vertices v ∈ Vv1\(
∪d−1
j=1 Vvcj

)
on the leaves of the cache subtree. Let v′cj be the right most

child of the root vertex of the trees Ĝj for all 1 ≤ j ≤ d− 1. We can assign
every vertex set Vv′cj

to a subtree of 3rd order contained in the cache subtree

according to the same principle as used to arrange the children of v1, i.e. the
vertices vcj , 1 ≤ j ≤ d− 1.

In the following the algorithm is defined and considered in detail.

Require: d-regular tree G = (V,E) with |V | = n of height hG whose vertices
are labeled according to the canonical order
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Ensure: arrangement φB′

1: ξ(v1) ..= d− 1;
2: φB′(v1) ..= bdhG ;

3: for i ..= 1 to dhG−1
d−1

do
4: let l ..= level(vi) be the level of vi;
5: for j ..= 1 to d− 1 do
6: let cj ..= d · i− (d− 1) + j be the index of the j-th child of vi;

1

7: ξ(vcj)
..= j;

8: φB′(vcj )
..= bι(φB′ (vi))−(d−j)dhG−l−1;

9: end for
10: let cd ..= d · i+ 1 be the right most child of vi;

2

11: ξ(vcd)
..= ξ(vi);

12: φB′(vcd)
..= bι(φB′ (vi))+(d−ξ(vi)−1)dhG−l+ξ(vi)d

hG−l−1 ;
13: end for

Algorithm 2.2: Algorithm B′ which computes the arrangement φB′ .

Before describing the construction of the arrangement φB′, let us explain
the auxiliary variables i, l, j, cj and the auxiliary index function ξ(vi), 1 ≤
i ≤ n, used in Algorithm 2.2. In general, the algorithm considers the vertices
of the guest graph G one after another according to the canonical order
and i always stays for the index of the just processed vertex vi. We call
it active vertex. The variable l = level(vi) represents the level of the
active vertex vi and its usage helps to better understand the assignment
statements in pseudocode lines 8 and 12. Moreover, the for loop between the
pseudocode lines 3 and 13 guarantees that 1 ≤ i ≤ dhG−1

d−1
and thus it captures

all vertices of the guest graph G but the leaves, which guarantees that all
active vertices vi have children. Consequently, the nested for loop between
the pseudocode lines 5 and 9 iterates over the children vcj of every active
vertex vi one after another; j represents the child index. The children have
the indices c1, c2, . . . , cd according to the canonical order as demonstrated in
Observation 2.19.

Let us now explain the meaning of the auxiliary index function ξ : vi → N
whose values are assigned in pseudocode lines 7 and 11. For all vertices
vcj which are not the right most child of their father vi, the assignment in
pseudocode line 7 is executed and ξ(vcj) = j equals the child index of the
vertex vcj , i.e. the particular value of the variable j. If vcd is the d-th
(i.e. the right most) child of its father vi according to the canonical order,
pseudocode line 11 is processed and ξ(vcd) = ξ(vi) is propagated from the

1See Observation 2.19.
2See Observation 2.19.
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father vi. Since v1 has no father and thus no child index, we just define
ξ(v1) = d− 1 in pseudocode line 1, but it could be any integer k < d.

Let us now provide an example illustrating the definition of the auxiliary
index function ξ.

Example 2.8. Let us consider as guest graph G = (V,E) a 3-regular tree of
height hG = 3 depicted in Figure 2.13. The auxiliary index function values

1

2

2

1

5 1 6 2 7 1

14

1

15

2

16

1

17

1

18

2

19

2

20

1

21

2

22

1

3

2

8 1 9 2 10 2

23

1

24

2

25

1

26

1

27

2

28

2

29

1

30

2

31

2

4

2

11 1 12 2 13 2

32

1

33

2

34

1

35

1

36

2

37

2

38

1

39

2

40

2

Figure 2.13: Guest graph G = (V,E) (3-regular tree of height hG = 3). The
colors are related to the arrangement φ depicted in Figure 2.14.

ξ(vi) are placed next to the vertices vi for all 1 ≤ i ≤ n. We can see that
ξ(v1) = d − 1 = 3 − 1 = 2 according to pseudocode line 1. The function
values of the first two children of the root v1, i.e. of the vertices v2 and v3,
are assigned according to pseudocode line 7 and thus ξ(v2) = 1 and ξ(v3) = 2
(they are the first and the second child of the root vertex v1, respectively). In
contrary, the vertex v4 is the 3rd (right most) child of the root v1 according
to the canonical order and thus the assignment done in pseudocode line 11 is
applied. We get ξ(v4) = ξ(v1) = 2.
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Finally, in order to demonstrate the propagation rule, let us consider the
vertex v31. It is the 3rd child of the vertex v10 which is again the 3rd child of
the vertex v3. As explained above, ξ(v3) = 2. Thus ξ(v31) = ξ(v10) = ξ(v3) =
2.

Now, we can describe the construction of the arrangement φB′ performed
in pseudocode lines 8 and 12. Let vi be an active vertex (and thus not a leaf),

where 1 ≤ i ≤ dhG−1
d−1

, let l = level(vi) and let vcj , where 1 ≤ j ≤ d, be the

children of vi. Finally, let Vv
..=
(
∪d−1
j=1 V (Ĝj)

)⋃{v}, where Ĝ1, Ĝ2, . . . , Ĝd

are the subtrees of (level(v) + 1)-st order rooted at the children of v, be
defined as in equation (2.76).

In pseudocode line 8 we use ι(φB′(vi)) as a starting index. According to
Observation 2.17 we know that |Vcj | = dhG−l−1 for all 1 ≤ j ≤ d and
thus we arrange the children vcj one after another on the last leaves of

the subtrees of (l+2)-nd order left to the subtree T l+2
φB′ (vi) of (l+2)-nd

order containing the leaf φB′(vi).

In pseudocode line 12 we use ι(φB′(vi)) as a starting index as well, but
two positive integers are added to it in this case. In particular, (d −
ξ(vi)− 1)dhG−l can be understood as a shift to the leaves of the cache
subtree and ξ(vi)d

hG−l−1 specifies the exact position among them.

Let us now focus on the shift step. Let vf be the father of the active
vertex vi and let vi be its j(f)-th child.

(1) If j(f) < d, we need to skip over the leaves of d−j(f)−1 subtrees of
(l+1)-st order of the host graph T to reach the cache subtree. Since
every subtree of (l + 1)-st order has dh−(l+1) = dhG+1−l−1 = dhG−l

leaves, the resulting shift is
(
d− ξ(vi)− 1

)
dhG−l. Note that j(f) =

ξ(vi) according to the definition of the auxiliary index function ξ
in this case.

(2) If j(f) = d, we eventually have to skip again over the leaves of some
subtrees of (l+1)-st order of the host graph T in order to reach the
cache subtree. However, it is more complicated to determine their
number. In particular, the vertex vi has already been arranged
inside of a cache subtree in some previous stage of our algorithm.
We call it old cache subtree now. Let vI(vi) be the nearest
ancestor of vertex vi which is not the last child of its father vL(vi).
We call the vertex vL(vi) the leading vertex and the vertex vI(vi)
the index vertex of vi. Then vi was arranged in the old cache
subtree with other d− 2 vertices v with level(v) = level(vi) having
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the same leading vertex vL(v) = vL(vi) but different index vertices
vI(v) 6= vI(vi). Let now vL(vi) be the leading vertex of vi and
let vIk , where 1 ≤ k ≤ d, be its children. Then the ordering of
the vertices v with level(v) = level(vi) having the same leading
vertex vL(v) = vL(vi) inside the old cache subtree was determined
by the indices ξ(vI(vk)), 1 ≤ k ≤ d. Exactly this ordering has
to be taken into consideration when estimating the number of
subtrees of (l+ 1)-st order of the host graph T whose leaves have
to be skipped. Since the auxiliary index function ξ propagates the
ordering of the index vertices vIk , 1 ≤ k ≤ d, to the vertices v with
level(v) = level(vi) having the same leading vertex vL(v) = vL(vi)
we get a shift of

(
d− ξ(vi)− 1

)
dhG−l.

Now, we have to estimate where to arrange the vertex vcd inside of the
cache subtree. Again, analogous to the description above we use either
the position of the vertex vi with respect to its father vf , if j

(f) < d,
or the position of the index vertex vI(vi) with respect to its father,
the leading vertex vF (vi), if j

(f) = d. However, we work with subtrees
of (l + 2)-nd order each having dhG−l−1 leaves. Thus we obtain the
summand ξ(vi)d

hG−l−1.

Finally, note that we set ξ(v1) ..= d− 1 in pseudocode line 1. Therefore
the root v1 is considered as being a (d − 1)-st child of its imaginary
father. This assignment determines the arrangement of the right most
vertices v = max1≤i≤n

{
i|level(vi) = l

}
of every level 1 ≤ l ≤ hG.

Next we demonstrate this Algorithm on a 3-regular tree of height hG = 3.

Example 2.9. Let us consider the guest graph depicted in Figure 2.13. The
arrangement φB′ can be found in Figure 2.14 (the right most basic subtree of
the host graph T has not been depicted, because no vertices of the guest graph
G are arranged on its leaves). Recall that the set of vertices of a certain
color in the guest graph is arranged at the set of leaves of the same color in
the host graph T . Moreover, there exist three types of vertex boundaries: a
solid one, a dashed one and a dotted one. The graphical representation of an
arrangement preserves the boundary property in the sense that e.g. vertices
with a solid boundary in G are arranged at solid-boundary leaves of the same
color in T . The same principle holds for dashed and for dotted boundaries
as well.

Similarly to other examples, the behavior of Algorithm 2.2 is demonstrated
by the coloring and vertex boundaries in Figures 2.13 and 2.14. The root v1
is arranged according to pseudocode line 2 on the last leaf of the left most
basic subtree of the host graph T . Consider the first d − 1 = 2 children of
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14 15 5 17 18 6 16 19 2

23 24 8 26 27 9 25 28 3

20 21 7 29 30 10 22 31 1

32 33 11 35 36 12 34 37 4

38 39 13 40

Figure 2.14: Arrangement φB′ obtained from Algorithm 2.2 for the guest
graph G = (V,E) depicted in Figure 2.13. Its objective function value is
OV (G, 3, φB′) = 134.
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v1, i.e. the vertices v2 and v3. In Figure 2.13 they are arranged on the right
most vertices of the subtrees of 2nd order of our host graph T left to the
subtree T 2

φB′ (v1) of 2nd order containing the leaf φB(v1). This corresponds
to pseudocode line 8 as φB′(v2) = bι(φB′ (vi))−(d−j)dhG−l−1 = b27−(3−1)d3−0−1 = b9
and φB′(v3) = bι(φB′ (vi))−(d−j)dhG−l−1 = b27−(3−2)d3−0−1 = b18. In fact, we can
see that all leaves of the first left subtree of 2nd order of the host graph T
are occupied by the vertices v ∈ Vv2 (in gray) and similarly, the leaves of the
second subtree are occupied by the vertices v ∈ Vv3 (in red).

Let us now focus on the remaining vertices of Vv1, i.e. the vertices v ∈
Vv1\(Vv2 ∪Vv3). They are all arranged on the last (third) subtree of 2nd order
of the host graph T (see the blue colored vertices in Figures 2.13 and 2.14).
This subtree (in particular the subtree T 2

φB′ (v1) of 2nd order containing the
leaf v1) remains free for the cache subtree if the vertex v2 or v3 becomes active.
Let v2 be the active vertex now and consider its last child v7. Since v2 was
the first child of its father v1, we have to skip over the leaves of ξ(v2) = 1
subtrees of 2nd order to reach our cache subtree. In particular, we skip the
leaves of the subtree occupied by the vertices v ∈ Vv3. Finally, we have to
arrange the vertex v7 on the last leaf of the first subtree of 3rd order of the
cache subtree. Thus we have to add dh−3 = 3 in order to reach the exact
position inside the cache subtree.

Finally, consider e.g. the active vertex v10 with its children v29, v30 and
v31. The vertex v10 has already been arranged on the leaf b24 in a prior
stage of the algorithm. It is not difficult to see that φB′(v29) = b22 and
φB′(v30) = b23 according to pseudocode line 8. The case of the last child
v31 is more complicated. The leading vertex is vL(v10) = v1 and the index
vertex is vI(v10) = v3. As demonstrated in Example 2.8, ξ(v10) = ξ(v3) = 2,
and thus we have to skip over d − ξ(v10) − 1 = 3 − 2 − 1 = 0 subtrees of
(l + 1 = 2 + 1 = 3)-rd order, i.e. we do not need to consider the shift
to the cache subtree in this case. In particular, the first leaf of the cache
subtree is the leaf bι(φB′ (v10))+1 = b24+1 = b25 and the cache subtree contains
the leaves b25, b26 and b27. Nevertheless, we have to move over ξ(v10) = 2
subtrees of (l + 2 = 2 + 2 = 4)-th order, i.e. we skip the leaf b25 and assign
φB′(v31) = bφB′ (v10)+0·3+2·1 = b24+0+2 = b26.

Before considering the improving phase of our approximation algorithm,
we provide an explicite formula on the objective value of the arrangement
φB′. In order to do so, we first have to introduce Lemma 2.21.

Lemma 2.21. Let d, hG ∈ N be integers, where d ≥ 2 and hG ≥ 1. Then

hG−1∑

l=0

l · dl = dhG

d− 1
(hG − 1)− dhG − d

(d− 1)2
. (2.81)
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Proof. The starting point is

hG−1∑

l=0

ldl = 0 · 1 + 1 · d+ 2 · d2 + . . .+ (hG − 1)dhG−1. (2.82)

This equation can be multiplied by d

d

hG−1∑

l=0

ldl = 0 · 1 · d+ 1 · d2 + 2 · d3 + . . .+ (hG − 1)dhG. (2.83)

By subtracting (2.82) - (2.83) we get

(1− d)

hG−1∑

l=0

ldl = d(1 + d+ d2 + . . .+ dhG−2)− (hG − 1)dhG. (2.84)

Now, we can use the formula for the partial sum of a geometry series to
obtain

(1− d)

hG−1∑

l=0

ldl = d
1− dhG−1

1− d
− (hG − 1)dhG. (2.85)

Finally, after dividing the last equation by (1− d) we obtain the claim.

Lemma 2.22. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG and h = hG + 1 respectively for some fixed
d ≥ 2. Then the value OV (G, d, φB′) of the objective function of the DAPT
correspondig to the arrangement φB′ obtained from Algorithm 2.2 is given as
follows:

OV (G, d, φB′) =
2

d− 1

(
d2 + d− 1

d− 1

(
dhG − 1

)
− dhG

)
. (2.86)

Proof. This formula directly follows from the description of Algorithm 2.2
above. Let vi, where 1 ≤ i ≤ dhG−1

d−1
, be an active vertex and let l = level(vi).

Moreover, let vc1 , vc2, . . . , vcd be the children of vi. As shown in the descrip-
tion of Algorithm 2.2, all edges (vi, vcj), where 1 ≤ j ≤ d − 1, contribute
2(hG − l) and the edge (vi, vcd) contributes 2(hG − l + 1) to the objective
function value OV (G, d, φB′). As we have dl vertices vi with l = level(vi), we
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obtain

OV (G, d, φB′) =

hG−1∑

l=0

dl
(
(d− 1) · 2 · (hG − l) + 2 · (hG − l + 1)

)

= 2

hG−1∑

l=0

dl
(
d(hG − l) + 1

)

= 2

(
d

(
hG

hG−1∑

l=0

dl −
hG−1∑

l=0

l · dl
)

+

hG−1∑

l=0

dl

)
.

(2.87)

By using

hG−1∑

l=0

dl =
dhG − 1

d− 1
(2.88)

and Lemma 2.21 we get

OV (G, d, φB′) =

2

(
d

(
hG

dhG − 1

d− 1
−
(

dhG

d− 1
(hG − 1)− dhG − d

(d− 1)2

))
+

dhG − 1

d− 1

)
.
(2.89)

The lemma follows then by trivial algebraic operations.

In the following, we focus on the improvement phase of the algorithm.
The idea behind the particular improvement steps is the same as for binary
regular trees. The only difference is that we do the steps all at once. Recall
the main principle behind the pair-exchanges done in pseudocode line 9 of
Algorithm 2.1 (for a detailed description see Section 2.2, especially the proof
of Lemma 2.7): If hG is odd and hG ≥ 3, we arrange the root v1 together with
its left child v2 on a subtree of hG-th order by a pair-exchange and thus we
guarantee that the edge (v1, v2) contributes only 2 instead of 2(h− 1) to the
objective function value OV (G, 2, φA) after the pair-exchange. Moreover, we
prove in Lemma 2.7 that the other edges affected by the pair-exchanges do
not increase the objective function value as much as decreased by the edge
(v1, v2).

We can define the improvement phase of our generalized algorithm now.

Require: d-regular tree G = (V,E) with |V | = n of height hG ≥ 3 whose
vertices are labeled according to the canonical order and the arrangement
φB′ obtained from Algorithm 2.2

Ensure: arrangement φB
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1: for all vertices v ∈ V with hG − level(v) odd and hG − level(v) ≥ 3 do
2: let vc1 be the first child of v;
3: exchange the vertices arranged on the leaves φB′(v) and bι(φB′ (vc1 ))−1

(pair-exchange);
4: end for

Algorithm 2.3: Approximation algorithm B which computes the
arrangement φB.

We need two observations in order to analyse the algorithm.

Observation 2.23. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG ≥ 3 and h = hG +1, respectively, for some fixed
d ≥ 2 and let φB′ be the arrangement obtained from Algorithm 2.2. Finally,
let BU =

{
φB′(v)|v ∈ V

}
. Then

{
φB′(v)|v ∈ V is a leaf of G

}
=
{
b ∈ BU |ι(b) 6≡ 0 mod d

}

(2.90)

and
{
φB′(v)|v ∈ V is not a leaf of G

}
=
{
b ∈ BU |ι(b) ≡ 0 mod d

}
.
(2.91)

Proof. Consider an active vertex vi ∈ V , where 1 ≤ i ≤ dhG−1
d−1

, let l =
level(vi) and let vcj , where 1 ≤ j ≤ d, be its children ordered according to the
canonical order. As already mentioned in the description of Algorithm 2.2,
the children vcj , where 1 ≤ j ≤ d, are generally arranged on last leaves of

subtrees of (l + 2)-nd order of the host graph T . Let b̂ be the last leaf of a

d-regular tree T̂ of height ĥ ≥ 0. Then ι(̂b) 6≡ 0 mod d iff ĥ = 0. Every
subtree of (l+2)-nd order of the host graph T has the height h−(l+2). Thus
h − (l + 2) = 0 ⇔ l = h − 2 = hG − 1 ⇔ level(vcj) = hG for all 1 ≤ j ≤ d.
Therefore the children of the active vertex vi are arranged on the leaves bi
with i 6≡ 0 mod d iff they are leaves of the guest graph G.

Let v be a vertex considered in the for loop between the pseudocode lines 1
and 4 of Algorithm 2.3 and let vc1 be its first child. By using Observation 2.23
we show that there exists a vertex x ∈ G arranged on the leaf φB′(x) =
bι(φB′ (vc1 ))−1 and moreover, that x is a leaf of the guest graph G. As already
argued in the description of Algorithm 2.2, the child vc1 of the vertex v
is arranged on the last leaf of a subtree of (level(v) + 2)-nd order of the
host graph T in the arrangement φB′ . According to pseudocode line 1 of
Algorithm 2.3 we have

level(v) + 2 ≤ hG − 3 + 2 = hG − 1 (2.92)
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and thus a subtree of (level(v) + 2)-nd order of the host graph T has at least
dhG−(hG−1) = d ≥ 2 leaves. Since the vertex vc1 is arranged on the last leaf
of a subtree of (level(v) + 2)-nd order of the host graph T , we get

ι(φB′(vc1)) = a · d ≥ 2 (2.93)

for some 1 ≤ a ≤ dh−1. Thus ι(φB′(vc1)) ≡ 0 mod d and moreover, there
exists a vertex x ∈ V with φB′(x) = bι(φB′ (vc1 ))−1 and φB′(x) 6≡ 0 mod d.
Furthermore, x is a leaf of the guest graph G according to Observation 2.23.
Let y be its father. Recall that level(x) = hG and level(y) = hG − 1. As
already demonstrated in the proof of Lemma 2.22, the edge (y, x) contributes
either 2

(
hG − level(y)+ 1

)
= 2
(
hG − (hG − 1)+1

)
= 4 or 2

(
hG − level(y)

)
=

2
(
hG−(hG−1)

)
= 2 to the objective value OV (G, d, φB′) depending whether

x is the last child of y or not.

Observation 2.24. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG ≥ 3 and h = hG +1, respectively, for some fixed
d ≥ 2 and let φB′ be the arrangement obtained from Algorithm 2.2. Finally,
let vi ∈ V , where 1 ≤ i ≤ dhG−1−1

d−1
, be a vertex with hG − level(vi) ≥ 3 and let

vc1 be its first child. Then there exists a vertex x ∈ V arranged on the leaf
φB′(x) = bι(φB′ (vc1 ))−1 and x is the last child of its father y.

Proof. This observation follows from the description of Algorithm 2.2. Con-
sider that vi ∈ V is the active vertex now. Let Vv

..=
(
∪d−1
j=1 V (Ĝj)

)⋃{v},
where Ĝ1, Ĝ2, . . . , Ĝd are the subtrees of (level(v) + 1)-st order rooted at the
children of v. As already mentioned in the description of Algorithm 2.2, all
vertices v ∈ Vvi are arranged on the leaves bk with ι

(
φB′(vi)

)
− |Vvi | + 1 ≤

k ≤ ι
(
φB′(vi)

)
. In particular

{
φB′(v)|v ∈ Vv1

}
=
{
bk|ι
(
φB′(vi)

)
− |Vvi|+1 ≤ k ≤ ι

(
φB′(vi)

)}
. (2.94)

Consequently, there exists a vertex x ∈ V arranged on the leaf φB′(x) =
bι(φB′ (vc1 ))−1 and moreover, vi is an ancestor of the vertex x and thus of the
vertex y as well (note that y can be the vertex vc1). Moreover, ι(φB′(y)) <
ι(φB′(x)) and thus the vertex x was arranged in pseudocode line 12 of Algo-
rithm 2.2, i.e. it is the last child of its father.

We can also conclude that the edge (y, x) (see the proof above) contributes
4 to the objective function value OV (G, d, φB′) in the arrangement φB′ .

Lemma 2.25. Let the guest graph G = (V,E) and the host graph T be d-
regular trees of heights hG ≥ 3 and h = hG + 1 respectively for some fixed
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d ≥ 2. Then the pair-exchange defined in Algorithm 2.3 in pseudocode line 3
decreases by 1 the number of edges which contribute to the objective by 4,
increases by 1 the number of edges which contribute to the objective value by
2, and does not change the number of edges which contribute to the objective
value by 2i for i ≥ 3. Summarizing such a pair-exchange improves the value
of the objective function by 2 as compared to the value corresponding to the
arrangement available prior to this pair-exchange.

Proof. By using Observations 2.23 and 2.24 the proof is the same as the proof
of Lemma 2.7 for binary regular trees given in Section 2.2.

We can now express the number of pair-exchanges done in Algorithm 2.3.

Lemma 2.26. Let the guest graph G = (V,E) and the host graph T be d-
regular trees of heights hG and h = hG+1, respectively, for some fixed d ≥ 2.
Then the number of pair-exchanges p done in Algorithm 2.3 is given by

p =

{
0 for hG = 0

1
(d2−1)d

dhG − 1
2(d−1)

− 1
2(d+1)

(−1)hG for hG > 0
. (2.95)

Proof. The lemma obviously holds for hG = 0. Moreover, for hG = 1 and
for hG = 2 we obtain p = 0 which also corresponds to Algorithm 2.3. For
hG ≥ 3 we distinguish two cases.

For hG odd we obviously consider all vertices v ∈ V with level(v) even and
level(v) ≤ hG−3 in the for loop in pseudocode line 1 of Algorithm 2.3.
Moreover, we have dl vertices v ∈ V with level(v) = l. Therefore

p = d0 + d2 + d4 + . . .+ dhG−3

= (d2)0 + (d2)1 + (d2)2 + . . .+ (d2)
hG−3

2

=

hG−3

2∑

i=0

(d2)l =
dhG−1 − 1

d2 − 1
.

(2.96)

For hG even we similarly consider all vertices v ∈ V with level(v) odd and
level(v) ≤ hG−3 in the for loop in pseudocode line 1 of Algorithm 2.3.
Thus

p = d+ d3 + d5 + . . .+ dhG−3

= d · (d2)0 + d · d2 + d · d4 + . . .+ d · (d2)
hG−4

2

= d

hG−4

2∑

i=0

(d2)l = d
dhG−2 − 1

d2 − 1
.

(2.97)
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Finally, (2.95) reduces to (2.96) for hG odd and to (2.97) for hG even by
simple algebraic operations.

Now, we can express the objective function value OV (G, d, φB) of the
arrangement φB obtained from Algorithm 2.3.

Lemma 2.27. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG and h = hG + 1 respectively. Then the value
OV (G, d, φB) of the objective function of the DAPT corresponding to the
arrangement φB obtained from Algorithm 2.3 is given as follows:

OV (G, d, φB) =





0 for hG = 0

2
(

d4+2d3−2d+1
(d−1)2d(d+1)

dhG − d
d−1

hG − 2d2+d−1
2(d−1)2

+ 1
2(d+1)

(−1)hG

)

for hG > 0

.

(2.98)

Proof. The case hG = 0 is obvious. Let hG ≥ 1 now. We apply Lemma 2.25
and obtain

OV (G, d, φB) = OV (G, d, φB′)− 2p, (2.99)

where p denotes the number of pair-exchanges done in Algorithm 2.3.
Finally, by using Lemmas 2.22 and 2.26 we can write

OV (G, d, φB) =

2

d− 1

(
d2 + d− 1

d− 1

(
dhG − 1

)
− dhG

)
−

2

(
1

(d2 − 1)d
dhG − 1

2(d− 1)
− 1

2(d− 1)
(−1)hG

)
.

(2.100)

The claim in equation (2.98) follows by trivial algebraic operations.

Corollary 2.28. Let the guest graph G = (V,E) and the host graph T be bi-
nary regular trees of heights hG and h = hG+1 respectively. Let OV (G, 2, φB)
and OV (G, 2, φA) be the values of the objective function of the DAPT corre-
sponding to the arrangements φB and φA, respectively, where φB is the ar-
rangement obtained form Algorithm 2.3 and φA is the arrangement obtained
from Algorithm 2.1. Then

OV (G, 2, φB) = OV (G, 2, φA). (2.101)
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Proof. By substituting d = 2 in equation (2.98) of Lemma 2.27 we get
Lemma 2.8 by trivial algebraic operations. Our claim follows obviously.

Corollary 2.29. Let the guest graph G = (V,E) and the host graph T be
binary regular trees of heights hG ≥ 1 and h = hG + 1, respectively. Then
Algorithm 2.3 is a 203

200
-approximation algorithm in this special case.

Proof. Theorem 2.16 guarantees that Algorithm 2.1 is a 203
200

-approximation
algorithm. Furthermore, according to Corollary 2.28, if G is a binary regular
tree, OV (G, 2, φB) = OV (G, 2, φA), where φB is the arrangement obtained
from Algorithm 2.3 and φA the arrangement obtained from Algorithm 2.1.
Thus if d = 2, the 203

200
-approximation ratio holds for Algorithm 2.3 as well.

In fact, φB = φA for binary regular trees. However, we do not provide a
proof of this claim since we need just the objective value, i.e. Corollary 2.29,
in our approximation ratio proof later.

Let us now consider an example illustrating the behavior of Algorithm 2.3.

Example 2.10. Let us again consider the guest graph G = (V,E) of height
hG = 3 depicted in Figure 2.13. We have only one vertex v1 ∈ V with
level(v1) = 3 odd and with hG− level(v1) = 3−3 ≥ 0. This vertex is arranged
on the leaf φB′(v1) = b27 and its left most child, i.e. the vertex v2, is arranged
on the leaf φB′(v2) = b9 in the arrangement φB′. Thus we exchange the ver-
tices arranged on the leaves b27 and b9−1 = b8 according to pseudocode line 1
of Algorithm 2.3 as marked by the arrows in the dashed line in Figure 2.14.
In particular, we set φB(v1) ..= b8, φB(v19) ..= b27 and φB(vi) ..= φB′(vi)
for all 1 ≤ i ≤ n, i 6= 1, i 6= 19. The resulting arrangement φB and the
corresponding coloring of the guest graph are depicted in Figures 2.15 and
2.16.

Finally, this pair-exchange improves the objective function value in accor-
dance with Lemma 2.25: OV (G, 3, φB)−OV (G, 3, φB′) = 2 = 134−132 = 2.

In order to provide an approximation ratio ρ for Algorithm 2.3, we need
to generalize the lower bound introduced in Section 2.4. We use the same
concepts and arguments as for binary regular trees and thus we refer to
Section 2.4 for more details. Let si(φ), where 1 ≤ i ≤ h, be the partial sums
defined in the same way as for binary regular tree (see equation (2.40)), i.e.
si(φ) is the number of edges of the guest graph G which contribute with at
least 2i to the objective value OV (G, d, φ), for all 1 ≤ i ≤ h. Recall, that
OV (G, 2, φ) = 2

∑h
i=1 si(φ) (see equation (2.42)). Now, we bound the partial

sums si(φ) by lower bounds sLi such that si(φ) ≥ sLi holds for all 1 ≤ i ≤ h
and for all arrangements φ. The general lower bound is then given in the
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1

2

5 6 7

14 15 16 17 18 19 20 21 22

3

8 9 10

23 24 25 26 27 28 29 30 31

4

11 12 13

32 33 34 35 36 37 38 39 40

Figure 2.15: Guest graph G = (V,E) (3-regular tree of height hG = 3). The
colors are related to the arrangement φ depicted in Figure 2.16.

same way as for the binary regular trees, i.e. OV (G, 2, φ) ≥ 2
∑h

i=1 s
L
i holds

for all arrangements φ.

Definition 2.30 (partitioning problem into sets of bounded cardi-
nality). Given a graph G = (V,E) with |V | = n and an integer r ≥ 1, a
partition into sets of bounded cardinality is a partition of the vertex
set V into k non-empty partition sets V1 6= ∅, V2 6= ∅, . . . , Vk 6= ∅, where⌈
n
r

⌉
≤ k ≤ n, ∪k

i=1Vk = V , Vi ∩ Vj = ∅, for all i 6= j, and |Vi| ≤ r for all
1 ≤ i ≤ k. The partitioning problem into sets of bounded cardinal-
ity (PPSBC) asks for a partition into sets of bounded cardinality U which
minimizes

cU (G,U ) ..=
∣∣∣
{
(u, v) ∈ E|u ∈ Vi, v ∈ Vj, i 6= j

}∣∣∣, (2.102)

where U ..= {Vi|1 ≤ i ≤ k}.

This problem plays only an auxiliary role in this thesis and we just refer
toKoivisto [31] for details about its complexity. The PPSBC is very similar
to the k-BPP. However, not the number but the cardinality of the partition
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14 15 5 17 18 6 16 1 2

23 24 8 26 27 9 25 28 3

20 21 7 29 30 10 22 31 19

32 33 11 35 36 12 34 37 4

38 39 13 40

Figure 2.16: Arrangement φB obtained from Algorithm 2.2 for the guest
graph G = (V,E) depicted in Figure 2.15. Its objective function value is
OV (G, 3, φB′) = 132.



60 2. DATA ARRANGEMENT PROBLEM

sets is bounded. The PPSBC and the k-BPP have one important property in
common (cf Subsection 2.3.2). Consider the input graph G = (V,E) of the
PPSBC, a partition into sets of bounded cardinality U = {V1, V2, . . . , Vk},
and the respective induced subgraphs G[Vi], 1 ≤ i ≤ k. Assume that G[Vi]
has li connected components Gi,j = (Vi,j, Ei,j), 1 ≤ j ≤ li, for every i, 1 ≤
i ≤ k. Define a new graph G′ = (V ′, E ′) which contains one representative
vertex v̄i,j for each connected component Gi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ li. Two
vertices v̄i1,j1 and v̄i2,j2 are connected in G′ iff the connected components
Gi1,j1, Gi2,j2 are connected by an edge in G. Observe that if G is a tree, then
G′ is also a tree and the following equality holds:

cU (G,U ) = |E ′| = |V ′| − 1. (2.103)

In particular, if G is a tree, the objective function value c(G,U ) of a partition
U into sets of bounded cardinality equals the overall number of the connected
components of the subgraphs induced in G by the partition sets of V minus 1.
The construction of the graph G′ = (V ′, E ′) is illustrated in Example 2.5 (the
16-balanced partition V ∗ of the binary regular tree of height h = 5 depicted
in Figure 2.11 corresponds to a partition into sets of bounded cardinality
with r = 4).

We can now use the PPSBC in order to bound the partial sums si(φ),
1 ≤ i ≤ h, in a similar way as done for binary regular trees in Section 2.4.
Since si(φ) is the number of edges of G which contribute by at least 2i to the
value of the objective function, each such edge joins vertices of G which are
arranged at the leaves of different d-regular subtrees of T of order h− (i− 1)
rooted at vertices v with level(v) = h−(i−1) = hG−i+2. Each such subtree
has di−1 leaves. Thus we look for a not necessarily balanced partition into
sets of bounded cardinality U (i) = {V (i)

j |1 ≤ j ≤ k(i)} with |V (i)
j | ≤ di−1,⌈

n
di−1

⌉
≤ k(i) ≤ n, which minimizes the objective function value cU (G,U (i))

for every 1 ≤ i ≤ h. Then

si(φ) ≥ cU (G,U (i)) (2.104)

is valid for all arrangements φ and for every 1 ≤ i ≤ h. We do not know the
optimal objective function value of the PPSBC in general, but we can use the
equation (2.103) and consider the best (hypothetical) case for every 1 ≤ i ≤
h. In particular, for every 1 ≤ i ≤ h we would like to have a partition into
sets of bounded cardinality U (i) consisting of the smallest possible number
of partition sets each inducing only one connected component. I.e. we would
like to have k(i) =

⌈
n

di−1

⌉
and cU (G,U (i)) = k(i) − 1 =

⌈
n

di−1

⌉
− 1 for every

1 ≤ i ≤ h.
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Thus we can define

sLi
..=
⌈ n

di−1

⌉
− 1 (2.105)

for every 1 ≤ i ≤ h. However, for i = h, we get a better bound by using
Observation 2.18; thus we set

sLh
..= 1. (2.106)

The general lower bound is now given by

L ..= 2
h∑

i=1

sLi = 2

(
n− 1 +

h−1∑

i=2

(⌈ n

di−1

⌉
− 1
)
+ 1

)
(2.107)

and can be approximated as follows

L ≥ 2

(
n +

h−1∑

i=2

( n

di−1
− 1
))

(2.108)

= 2

(
n− (h− 2) + n

h−2∑

i=1

(
1

d

)i
)

(2.109)

= 2

(
n− (h− 2) + n

1− dh−2

dh−2 − dh−1

)
(2.110)

= 2

(
dhG+1 − 1

d− 1
+

dhG+1 − 1

(d− 1)2

(
1− d

(
1

d

)hG

)
− (hG − 1)

)
(2.111)

Notice that in the last equation we substituted n = dhG+1−1
d−1

and h = hG +1.
Let us now consider a guest graph G = (V,E) of height hG = 1. The

lower bound is tight in this case as illustrated in Table 2.7.

i 2 1

si(φB) 1 3
sLi 1 3

Table 2.7: Partial sums si(φB) and the corresponding lower bounds sLi , where
1 ≤ i ≤ h, for a guest graph G = (V,E) of height hG = 1.

We assume that hG ≥ 2 in further computations. Let now f(x) = 1 −
d
(
1
d

)x
be a function of x ∈ R+, x ≥ 2 and let d ≥ 2 be a constant. Obviously,

f ′(x) = −d
(
1
d

)x
ln 1

d
> 0 and thus the function f is strictly monotonically
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increasing. Since hG ≥ 2, we get 1 − d
(
1
d

)hG ≥ 1 − d
(
1
d

)2
= d−1

d
and as

dhG+1−1
(d−1)2

> 0, L can be bounded as follows:

L ≥ 2

(
dhG+1 − 1

d− 1
+

dhG+1 − 1

(d− 1)2

(
1− d

(
1

d

)2
)

− (hG − 1)

)

≥ 2

(
d+ 1

d− 1
dhG − d+ 1

d(d− 1)
− (hG − 1)

)
.

(2.112)

We can now state the main theorem of this section.

Theorem 2.31. Let the guest graph G = (V,E) and the host graph T be
d-regular trees of heights hG ≥ 1 and h = hG + 1 respectively for some fixed
d ≥ 2. Algorithm 2.3 is a 585

392
-approximation algorithm.

Proof. In Corollary 2.29, we have already proved by other techniques that
Algorithm 2.3 (i.e. the algorithm B) is a 203

200
-approximation algorithm if G

is a binary regular tree. Thus we can skip the case d = 2 since 203
200

< 585
392

and
prove the claim for d ≥ 3.

The theorem obviously holds for hG = 0. For hG = 1 Algorithm 2.3 yields
an optimal solution as demonstrated in Table 2.7 and thus the claim holds
as well. Let hG ≥ 2 hold; by using Lemma 2.27 and equation (2.112) we
obviously get the approximation ratio

ρ(d, hG) ..=
2
(

d4+2d3−2d+1
(d−1)2d(d+1)

dhG − d
d−1

hG − 2d2+d−1
2(d−1)2

+ 1
2(d+1)

(−1)hG

)

2
(

d+1
d−1

dhG − d+1
d(d−1)

− (hG − 1)
) . (2.113)

Both the numerator and the denominator are positive as OV (G, d, φB) > 0
and L > 0 (for hG ≥ 2). Therefore

ρ(d, hG) ≤
d4+2d3−2d+1
(d−1)2d(d+1)

dhG − d
d−1

hG − 2d2+d−1
2(d−1)2

+ 1
2(d+1)

d+1
d−1

dhG − d+1
d(d−1)

− (hG − 1)

=

d4+2d3−2d+1
(d−1)2d(d+1)

dhG + f(d, hG)

d+1
d−1

dhG − d+1
d(d−1)

− (hG − 1)
,

(2.114)

where

f(d, hG) ..= − d

d− 1
hG − 2d2 + d− 1

2(d− 1)2
+

1

2(d+ 1)
. (2.115)
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Consider now that f : [2,+∞[×R → R is a function with d, hG ∈ R and let
d ≥ 2 hold. Let d ∈ [2,+∞[ be fixed. f(d, hG) is a strictly monotonically
decreasing linear function. For hG = 0 we have

f(d, 0) = −2d2 + d− 1

2(d− 1)2
+

1

2(d+ 1)

=
−d3 − d2 − d+ 1

(d− 1)2(d+ 1)
.

(2.116)

Now, we show that f(d, 0) < 0, for d ≥ 2, which implies that f(d, hG) < 0 for
all hG ≥ 0. Since d ≥ 2, (d− 1)2(d+ 1) > 0 holds and thus the denominator
does not influence the sign of f(d, 0). Let

g(d) ..= −d3 − d2 − d+ 1. (2.117)

Then

g′(d) = −3d2 − 2d− 1 < 0, (2.118)

and thus the function g(d) is a strictly monotonically decreasing cubic func-
tion. g(2) = −13 and therefore g(d) < 0 for all d ≥ 2. This implies
f(d, 0) < 0, which again implies f(d, hG) < 0 for any hG ≥ 2 (recall that
f(d, hG) is monotonically decreasing for every fixed d ∈ [2,+∞[). Conse-
quently,

ρ(d, hG) ≤ ρU(d, hG) ..=

d4+2d3−2d+1
(d−1)2d(d+1)

dhG

d+1
d−1

dhG − d+1
d(d−1)

− (hG − 1)
. (2.119)

We show that ρU(d, hG) is a strictly monotonically decreasing sequence for
every fixed d ≥ 2. The denominator is positive since it corresponds to the
lower bound L > 0. Define a function r : [2,+∞[→ R such that

r(d) ..=
d4 + 2d3 − 2d+ 1

(d− 1)2d(d+ 1)
dhG. (2.120)

Since (d−1)2d(d+1) > 0 for every d ≥ 2, the denominator does not influence
the sign of r(d). Let o : [2,+∞[→ R be defined as

o(d) ..= d4 + 2d3 − 2d+ 1. (2.121)

Then

o′(d) = 4d3 + 6d2 − 2 = 4

(
d− 1

2

)
(d+ 1)2 > 0 for d ≥ 2. (2.122)
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Consequently, o(d) is a strictly monotonically increasing function for d ≥ 2
and o(2) = 29 implies that d4+2d3− 2d+1 > 0 for all d ≥ 2. Thus r(d) > 0
for all d ≥ 2.

Next, let us define

s(d) ..=
d+ 1

d− 1
> 0, (2.123)

t(d) ..=
d+ 1

d(d− 1)
> 0 and (2.124)

L(d, hG) ..=
d+ 1

d− 1
dhG − d+ 1

d(d− 1)
− (hG − 1) > 0 (2.125)

for some d ≥ 2 and hG ≥ 2. Consider the equivalences

ρU (d, hG) > ρU(d, hG + 1)⇔ r(d)dhG

L(d, hG)
>

r(d)dhG+1

L(d, hG + 1)

⇔
L(d, hG + 1) > d · L(d, hG)

⇔
s(d) · dhG+1 − t(d)− (hG + 1− 1) > d

(
(s(d) · dhG − t(d)− (hG − 1)

)

⇔ (2.126)

−t(d)− hG > −d · t(d)− d · hG + d

⇔

hG(d− 1) > d− d+ 1

d(d− 1)
d+

d+ 1

d(d− 1)

⇔

hG >
d3 − 2d2 + 1

d(d− 1)2
⇔ hG >

d2 − d− 1

d(d− 1)
.

Let now p : [2,+∞[→ R be defined by

p(d) ..=
d2 − d− 1

d(d− 1)
. (2.127)

Obviously,

p′(d) =
2d− 1

d2(d− 1)2
> 0 for all d ≥ 2. (2.128)

The function p(d) is monotonically increasing for d ≥ 2. Consequently, hG >
p(d) holds for all d ≥ 2, because

hG ≥ 2 > lim
d→+∞

p(d) = lim
d→+∞

d2 − d− 1

d(d− 1)
= 1. (2.129)
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Thus the equivalent inequalities (2.126) hold for every hG ≥ 2 and ρU(d, hG)
is a monotonically decreasing sequence for every fixed d ≥ 2. We can also
define ρ : [2,+∞[→ R by

ρ(d) ..= ρU(d, 2) =
d6 + 2d5 − 2d3 + d2

d6 + d5 − 2d4 − d3 + 1
(2.130)

and obtain

ρ(d, hG) ≤ ρU(d, hG) ≤ ρU (d, 2) = ρ(d) (2.131)

by considering (2.119). Observe that

ρ′(d) = −d10 + 4d9 + d8 + 4d7 + 7d6 − 10d5 − 11d4 + 6d2 − 2d

(d6 + d5 − 2d4 − d3 + 1)2
< 0, (2.132)

because

d10 + 4d9 + d8 + 4d7 + 7d6 − 10d5 − 11d4 + 6d2 − 2d

= (d10 + 4d9 + d8 + 4d7) + d4(7d2 − 10d− 11) + 2d(3d− 1)

> 0

(2.133)

since d10 + 4d9 + d8 + 4d7 > 0, d4 > 0, 7d2 − 10d − 11 > 0, 2d > 0 and
3d − 1 > 0 for d ≥ 3, where we have to verify that 7d2 − 10d − 11 > 0
for d ≥ 3 by solving a quadratic inequality. Consequently, ρ(d), d ≥ 3, is a
monotonically decreasing sequence.

By applying (2.131) we finally obtain

ρ(d, hG) ≤ ρ(d) ≤ ρ(3) =
585

392
=.. ρ for d ≥ 3. (2.134)

Recall that Algorithm 2.3 is a 203
200

-approximation algorithm according to
Corollary 2.29. Thus we get

ρ =
585

392
≈ 1.492 (2.135)

as the overall approximation ratio for all hG ∈ N0 and all d ≥ 2.

2.6 The complexity of the DAPT with a tree

as a guest graph

In this section we show that the DAPT where the guest graph G is a tree
on n vertices and the host graph T is a complete d-regular tree of height
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⌈logd n⌉, for some fixed d ∈ N, d ≥ 2, is NP-hard. This result also settles
a more general open question posed by Luczak and Noble [35] about the
complexity of the GEP when both input graphs are trees.

First let us state a simple result on the optimal value of the objective
function of the DAPT (G, d) in the case where G is a start graph; this result
was proven in Çela and Staněk [10].

Lemma 2.32. Let G = (V,E) be a star graph (i.e. a complete bipartite graph
with 1 vertex in one side of the partition and the rest of the vertices in the
other side) with n vertices and the central vertex v1. Let the host graph T
be a complete d-regular tree of height h = ⌈logd n⌉, with d ∈ N, 2 ≤ d ≤ n.
Then the optimal value of the objective function OPT (G, d) is given by

OPT (G, d) = 2

(
h n− dh − 1

d− 1

)
. (2.136)

Moreover, an arrangement is optimal if and only if it arranges the central
vertex v1 together with other dh−1 − 1 arbitrarily selected vertices of G at the
leaves of some (arbitrarily selected) basic subtree of T (and the other vertices
arbitrarily).

Proof. See Çela and Staněk [10].

Next we will consider another very special case where the guest graph G
is the disjoint union of three star graphs.

Lemma 2.33. Let the guest graph G be the disjoint union of three star graphs

Si, 1 ≤ i ≤ 3, i.e. V (G) =
⋃̇3

i=1 V (Si) and E(G) =
⋃̇3

i=1E(Si). Assume that
|V (Si)| =.. ni, 1 ≤ i ≤ 3, and n1 ≥ n2 ≥ n3, where V (Si) is the vertex set of
Si, 1 ≤ i ≤ 3. Assume that n ..=

∣∣V (G)
∣∣ = n1 + n2 + n3 is a power of d for

some fixed d ∈ N, d ≥ 2, and n1 ≥ n
d
. Let the host graph T be a complete

d-regular tree of height h = logd n. Then the optimal value of the objective
function OPT (G, d) is given by

OPT (G, d) =2

(
h1n1 −

dh1 − 1

d− 1

)
+ 2

(
h2n2 −

dh2 − 1

d− 1

)
+

2

(
h3n3 −

dh3 − 1

d− 1

)
,

(2.137)

where hi = ⌈logd ni⌉, i ∈ {1, 2, 3}.
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Proof. Let B = {b1, b2, . . . , bn} be the set of the leaves of T labeled accord-
ing to the canonical order. Arrange the central vertex of S1 together with
other 2h−1 − 1 vertices of S1 at the leaves b1, b2, . . . , bdh−1 of the leftmost
basic subtree of T . The other vertices of S1 will be arranged later at other
appropriately chosen leaves of T . Notice, however, that independently on
the arrangement of these vertices the contribution of the edges of S1 to the

objective function value of DAPT (G, d) will be equal to 2
(
h n1 − dh−1

d−1

)
,

according to Lemma 2.32.
Arrange the vertices of S2 to the n2 leaves bn−n2+1, . . . , bn of T with the

largest indices. According to Lemma 2.32 the edges of S2 will then contribute

by 2
(
h2 n2 − dh2−1

d−1

)
to the objective function value of DAPT (G, d). Next,

arrange the vertices of S3 to the n3 leaves bdh−1+1, . . . , bn1+n3 of T (which are
still free because n1 + n2 + n3 = dh and only the leaves with the dh−1 ≤ n1

smallest indices as well as the leaves with the n3 largest indices have been
occupied already). According to Lemma 2.32 the edges of S2 will then con-

tribute by 2
(
h3 n3 − dh3−1

d−1

)
to the objective function value of DAPT (G, d).

Finally arrange the n1 − dh−1 vertices of S1 not arranged yet to the remain-
ing dh − n2 − n3 − dh−1 = n1 − dh−1 leaves. Summarizing, this arrangement
yields an objective function value equal to the expression in (2.137), and is
therefore optimal because the following inequality

OV (G, d, φ) =
∑

(u,v)∈E(G)

dT
(
φ(u), φ(v)

)
=

3∑

i=1

∑

(u,v)∈E(Si)

dT
(
φ(u), φ(v)

)
≥

2

(
h1n1 −

dh1 − 1

d− 1

)
+ 2

(
h2n2 −

dh2 − 1

d− 1

)
+

2

(
h3n3 −

dh3 − 1

d− 1

)

(2.138)

holds for any arrangement φ of DAPT (G, d) due to Lemmma 2.32.

Next we state the main result of this section.

Theorem 2.34. The DAPT with a host graph T being a complete d-regular
tree is NP-hard for every fixed d ≥ 2 even if the guest graph G is a tree.

Proof. The problem obviously belongs to NP. The NP-hardness is proven
by means of a reduction from the numerical matching with target sums
(NMTS) problem.
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The NMTS is NP-hard and is defined as follows (see Garey and John-
son [22]): Let three sets X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} and
Z = {z1, z2, . . . , zn} of positive integers, with

∑n
i=1 zi =

∑n
i=1 xi +

∑n
i=1 yi

with n ≥ 2 be given. The goal is to decide whether there exist two permuta-
tions (j1, j2, . . . , jn) and (k1, k2, . . . , kn) of the indices {1, 2, . . . , n}, such that
zi = xji + yki for all i = 1, 2, . . . , n hold.

Consider an instance of the NMTS and a given integer d ≥ 2. We con-
struct an instance DAPT (G, d) of the DAPT as follows. Let ly ∈ N be the
smallest natural number such that yi ≤ dly−4, for all 1 ≤ i ≤ n. Let lx ∈ N
be the smallest natural number such that xi + yj + (d − 1)dly−4 < dlx−2,
for all 1 ≤ i, j ≤ n, Finally, let lz be the smallest natural number such
that zi ≤ dlz − (d − 1)dlz−4 − (d − 1)dlz−2, for all 1 ≤ i ≤ n. Let then
l ..= max{lx, ly, lz}, and let L ∈ N be the smallest natural number such that
ndl ≤ dL−1. Define three vertex disjoint star graphs Sx

i , S
y
i and Sz

i , for every
1 ≤ i ≤ n, with |V (Sx

i )| = (d − 1)dl−2 + xi, |V (Sy
i )| = (d − 1)dl−4 + yi and

|V (Sz
i )| = dl − (d− 1)dl−4 − (d− 1)dl−2 − zi, for i = 1, 2, . . . , n. Notice that∑n

i=1(|V (Sx
i )|+ |V (Sy

i )|+ |V (Sz
i )| = ndl.

Let v1(S
x
i ), v1(S

y
i ) and v1(S

z
i ) be the central vertices of the stars graphs

introduced above for 1 ≤ i ≤ n, respectively. Next introduce the vertices
u1, u2, . . . , un̂, where n̂ = dL−1−1 and one vertex v1. Finally consider a family
of stars S ′

i, 1 ≤ i ≤ n′, with dl vertices each and n′ ..= (d− 1)dL−1−l − n ≥ 0.
Denote by v1(s

′
i), 1 ≤ i ≤ n′, their central vertices respectively.

The guest graph G = (V,E) is defined in the following way. The vertex
set is given by all vertices defined above, and the edge set contains all edges
contained in the stars Sx

i , S
y
i and Sz

i , 1 ≤ i ≤ n, and S ′
i, 1 ≤ i ≤ n′, together

with edges connecting the vertex v1 with the central vertices v1(S
x
i ), v1(S

y
i ),

v1(S
z
i ), 1 ≤ i ≤ n, and v1(S

′
i), 1 ≤ i ≤ n′, and with all vertices u1, u2, . . . ,

un̂. Thus we have

V =
[ n⋃

i=1

[V (Sx
i ) ∪ V (Sy

i ) ∪ V (Sz
i )]
]⋃

[ n′⋃

i=1

V (S ′
i)
]⋃

{u1, u2, . . . , un̂, v1}
(2.139)

and

E = E1 ∪ E2 ∪ E3, (2.140)

where

E1 =
{
(v1, ui) : 1 ≤ i ≤ n̂

}
, (2.141)
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E2 =
[ n′⋃

i=1

E(S ′
i)
]⋃{(

v1, v1(S
′
i)
)
: 1 ≤ i ≤ n′

}
(2.142)

and

E3 =
n⋃

i=1

[
E(Sx

i ) ∪ E(Sy
i ) ∪ E(Sz

i )∪
{
(v1, v1(S

x
i )), (v1, v1(S

y
i )), (v1, v1(S

z
i ))
}]

.

(2.143)

The number of vertices in G is given as |V (G)| =∑n
i=1(|V (Sx

i )|+ |V (Sy
i )|+

|V (Sz
i )| + n̂ + n′dl + 1 = dL. Thus the host graph is a d-regular tree T of

height h =
⌈logd |V (G)|⌉ = L.

We show that the optimal value OPT (G, d) of the objective function of
DAPT (G, d) equals the expression in (2.145) if and only if the corresponding
NMTS instance is a YES-instance, and this would complete theNP-hardness
proof.

Prior to showing the above if and only if statement, consider the optimal
arrangement of the substar G′ induced in G by v1 and its neighbors, i.e. by
the following set of vertices

{v1}∪{ui : 1 ≤ i ≤ n̂}∪{v1(S ′
i) : 1 ≤ i ≤ n′}∪

[
∪n
i=1{v1(Sx

i ), v1(S
y
i ), v1(S

z
i )}
]
.

Assume w.l.o.g. that the vertex v1 is arranged at the left most leaf of T
(i.e. the first leaf b1 of T in the canonical ordering). The vertex v1 has
3n + n̂ + n′ = dL−1 − 1 + 3n + n′ > dL−1 − 1 neighbors (note that n′ ≥ 0)
and hence |V (G′)| = 3n + n̂ + n′ + 1 = dL−1 + 3n + n′. According to
Lemma 2.32, any arrangement of G′ which arranges the dL−1 − 1 neighbors
{u1, u2, . . . , un̂} of v1 at the leaves of the leftmost basic subtree of T and
the remaining 3n+n′ neighbors at some other (arbitrarily selected) leaves of
T is optimal. In particular such an arrangement would not arrange v1(S

x
i ),

v1(S
y
i ), v1(S

z
i ), i = 1, 2, . . . , n, and v1(S

′
i), 1 ≤ i ≤ n′, at the leaves of the

leftmost basic subtree.

Let us now proof the if and only if statement formulated above.

The “if” statement. Assume that the NMTS instance is a YES-instance.
We show that the equality (2.145) holds. Consider two permutations
(j1, j2, . . . , jn) and (k1, k2, . . . , kn) of the indices {1, 2, . . . , n}, such that
zi = xji + yki, for all i = 1, 2, . . . , n. Then for all i ∈ {1, 2, . . . , n} we
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have

|V (Sx
ji
)|+ |V (Sy

ki
)|+ |V (Sz

i )| =
(d− 1)dl−2 + xji + (d− 1)dl−4 + yki+

dl − (d− 1)dl−4 − (d− 1)dl−2 − zi =

dl.

(2.144)

Thus, for every i ∈ {1, 2, . . . , n} the disjoint stars graphs Sx
ji
, Sy

ki
and Sz

i

can be optimally arranged at the leaves of the i-th rightmost subtree of
l-th order according to Lemma 2.33. Notice that the assumptions of the
lemma are fulfilled because |V (Sz

i )| > (d− 1)dl−1 ≥ dl−1. (Indeed, due
to yki ≤ dl−4 and xji+yki+(d−1)dy−4 < dl−2 we get |V (Sy

ki
)|+|V (Sx

ji
)| =

(d− 1)dl−4 + yki + (d− 1)dl−2 + xji < dl−1 which together with (2.144)
implies |V (Sz

i )| > (d−1)dl−1 ≥ dl−1.) Since ndl ≤ dL−1 the n rightmost
subtrees of the l-th order are subtrees of the rightmost basic subtree
(of height L− 1).

It remains to arrange the vertices v1, u1, u2, . . . , un̂ and the stars S ′
i,

1 ≤ i ≤ n′. This is done by arranging v1, u1, u2, . . . , un̂ at the leaves
of the leftmost basic subtree and the stars S ′

i, 1 ≤ i ≤ n′ in one of
the n′ still free subtrees of l-th order each. These arrangements are
cleary optimal for each of the stars S ′

i, 1 ≤ i ≤ n′ (recall that they
have dl vertices each). Moreover, as mentioned above this is also an
optimal arrangement of G′. Thus this arrangement arranges optimally
the following subgraphs of G: G′, S ′

i, 1 ≤ i ≤ n, and the disjoint
unions of the triples (Sx

ji
, Sy

ki
, Sz

i ), for 1 ≤ i ≤ n, respectively. Since the
edge sets of the above mentioned graphs yield a partition of the edge
set E(G), the arrangement described above is an optimal arrangement
of G. The corresponding value OPT (G, d) of the objective function is
given as the sum ofOPT (G′, d), OPT (S ′

i, d), 1 ≤ i ≤ n′, andOPT (Sx
ji
∪

Sy
ki
∪ Sz

i , d), for 1 ≤ i ≤ n. According to Lemma 2.32 and Lemma 2.33
we get

OPT (G, d) =2
(
Ln′′ − dL − 1

d− 1

)
+ 2n′

(
ldl − dl − 1

d− 1

)
+

2

n∑

i=1

[
l|V (Sz

i )| −
dl−1

d− 1
+ (l − 1)|V (Sx

ji
)| − dl−1 − 1

d− 1
+

(l − 3)|V (Sy
ki
)| − dl−3 − 1

d− 1

]
,

(2.145)

where n′′ ..= |V (G′)| = n̂+ n′ + dL−1.
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The “only if” statement. Assume that OPT (G, d) is given as in (2.145)
and consider some optimal arrangement φ of G. We show that the
corresponding NMTS instance is a YES-instance. Notice that (2.145)
implies

OPT (G, d) =OPT (G′, d) +
n′∑

i=1

OPT (S ′
i, d)+

n∑

i=1

(
OPT (Sx

i , d) +OPT (Sy
i , d) +OPT (Sz

i , d
)
.

(2.146)

Thus, in particular, φ yields optimal arrangements of G′, S ′
i, 1 ≤ i ≤ n′,

and Sx
i , S

y
i and Sz

i , 1 ≤ i ≤ n. Assume w.l.o.g. that φ arranges v1 at the
leftmost leaf of T . Then according to Lemma 2.32 φ arranges neighbors
of v1, i.e. vertices of G

′, to each leaf of the leftmost basic subtree of T .
Thus, none of the neighbors of v1 arranged at the leaves of the leftmost
basic subtree of T can be the central vertex of some of the stars S ′

i,
1 ≤ i ≤ n′, or Sx

i , S
y
i and Sz

i , 1 ≤ i ≤ n, because then according
to Lemma 2.32 φ would not lead to an optimal arrangement of the
corresponding star. It follows that the vertices arranged at the leaves
of the leftmost basic subtree of T are ui, 1 ≤ i ≤ n̂.

According to Lemma 2.32 φ arranges each star S ′
i, 1 ≤ i ≤ n′, to the

leaves of some subtree of l-th order. Hence there remain (d−1)dL−1−l−
n′ = n subtrees of l-th order at the leaves of which φ the stars Sxi, Syi

and Szi, 1 ≤ i ≤ n.

Recall now that (d − 1)dl−1 < |V (Sz
i )|, (d − 1)dl−2 < |V (Sx

i )| < dl−1

and (d − 1)dl−4 < |V (Sy
i )| < dl−3 for 1 ≤ i ≤ n. Thus in each of

the n remaining free subtrees of l-th order can not be arranged more
than one of the stars Sz

i , 1 ≤ i ≤ n, and since there are n such stars
to be arranged in n subtrees of l-th order, exactly one of them will
be arranged in each subtree. By analogous arguments we get that
exactly one of the stars Sx

i will be arranged in each of the subtrees
of l-th order mentioned above, and finally, exactly one of the stars Sy

i

will be arranged in each of these subtrees. Thus in each of the n-th
subtrees of l-th level exactly one star Sz

i , one star Sx
i and one star

Sy
i will be arranged. For all i ∈ {1, 2, . . . , n} denote by ji and ki the

indices of the stars arranged together with Sz
i in the same subtree,

i.e. Sx
ji
, Sy

kj
and Sz

i are arranged in the same subtree of l-th order,

1 ≤ i ≤ n. Clearly, (j1, j2, . . . , jn) and (k1, k2, . . . , kn) are permutations
of {1, 2, . . . , n}, respectively. Since the stars Sx

i , S
y
i and Sz

i , 1 ≤ i ≤ n,
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have ndl vertices altogether, which is the number of leaves of the n
subtrees of l-th level, the equality

|V (Sx
ji
)|+ |V (Sy

ki
)|+ |V (Sz

i )| = dl (2.147)

must hold, for all 1 ≤ i ≤ n. By substituting the cardinalities of the
vertex sets of the stars in (2.147) we get xji + yki − zi = 0, for all
1 ≤ i ≤ n, and this completes the proof.
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2.A Appendix

2.A.1 Arrangements φA obtained from Algorithms 2.1

and 2.3 for different heights hG of the guest
graph G

Binary trees

1 1

Figure 2.17: Guest graph G = (V,E)
(binary regular tree of height hG =
0). The colors are related to the ar-
rangement φ depicted in Figure 2.18.

1

Figure 2.18: Arrangement φA ob-
tained from Algorithm 2.1 for the
guest graph G = (V,E) depicted in
Figure 2.17. Its objective function
value is OV (G, 2, φA) = 0.

2 1 3

1

2 3

Figure 2.19: Guest graph G = (V,E)
(binary regular tree of height hG =
1). The colors are related to the ar-
rangement φ depicted in Figure 2.20.

2 1 3

Figure 2.20: Arrangement φA ob-
tained from Algorithm 2.1 for the
guest graph G = (V,E) depicted in
Figure 2.19. Its objective function
value is OV (G, 2, φA) = 6.

4 2 5 1 6 3 7

1

2 3

4 5 6 7

Figure 2.21: Guest graph G = (V,E)
(binary regular tree of height hG =
2). The colors are related to the ar-
rangement φ depicted in Figure 2.22.

4 2 5 1 6 3 7

Figure 2.22: Arrangement φB ob-
tained from Algorithm 2.1 for the
guest graph G = (V,E) depicted in
Figure 2.21. Its objective function
value is OV (G, 2, φB) = 22.
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3-regular trees

1 1

Figure 2.23: Guest graph G = (V,E)
(3-regular tree of height hG = 0). The
colors are related to the arrangement
φ depicted in Figure 2.24.

1

Figure 2.24: Arrangement φB ob-
tained from Algorithm 2.3 for the
guest graph G = (V,E) depicted in
Figure 2.23. Its objective function
value is OV (G, 3, φB) = 0.

2 3 1 4

1

2 3 4

Figure 2.25: Guest graph G = (V,E)
(3-regular tree of height hG = 1). The
colors are related to the arrangement
φ depicted in Figure 2.26.

2 3 1 4

Figure 2.26: Arrangement φB ob-
tained from Algorithm 2.3 for the
guest graph G = (V,E) depicted in
Figure 2.25. Its objective function
value is OV (G, 3, φB) = 8.

1

2 3 4

5 6 7 8 9 10 11 12 13

Figure 2.27: Guest graph G = (V,E) (3-regular tree of height hG = 2). The
colors are related to the arrangement φ depicted in Figure 2.28.
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5 6 2 8 9 3 7 10 1

11 12 4 13

Figure 2.28: Arrangement φB obtained from Algorithm 2.3 for the guest
graph G = (V,E) depicted in Figure 2.27. Its objective function value is
OV (G, 3, φB) = 38.
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3. Generating subtour
elimination constraints for the
traveling salesman problem
from pure integer solutions†

The traveling salesman/salesperson problem (TSP) is one of the best
known and most widely investigated combinatorial optimization problems
with four famous books entirely devoted to its study (Lawler et al. [34],
Reinelt [46], Gutin and Punnen [25], Applegate et al. [6]). Thus, we
will refrain from giving extensive references but mainly refer to the treatment
in Applegate [6]. Given a complete graph G = (V,E) with |V | = n and
|E| = m = n(n − 1)/2, and nonnegative distances de for each e ∈ E, the
TSP asks for a shortest tour with respect to the distances de containing each
vertex exactly once.

Let δ(v) ..= {e = (v, u) ∈ E | u ∈ V } denote the set of all edges adjacent
to v ∈ V . Introducing binary variables xe for the possible inclusion of any
edge e ∈ E in the tour we get the following classical ILP formulation:

min
∑

e∈E
dexe (3.1)

s.t.
∑

e∈δ(v)
xe = 2 ∀v ∈ V, (3.2)

∑

e=(u,v)∈E
u,v∈S

xe ≤ |S| − 1 ∀S ⊂ V, S 6= ∅, (3.3)

xe ∈ {0, 1} ∀e ∈ E (3.4)

(3.1) defines the objective function, (3.2) is the degree equation for each ver-
tex, (3.3) are the subtour elimination constraints, which forbid solutions con-

†Joint work with Ulrich Pferschy [44].
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sisting of several disconnected tours, and finally (3.4) defines the integrality
constraints. Note also that some subtour elimination constraints are redun-
dant: For the vertex sets S ⊂ V , S 6= ∅, and S ′ = V \S we get pairs of
subtour elimination constraints both enforcing the connection of S and S ′.

The established standard approach to solve TSP to optimality, as pursued
successfully during the last 30+ years, is a branch-and-cut approach, which
solves the LP relaxation obtained by relaxing the integrality constraints (3.4)
into xe ∈ [0, 1]. In each iteration of the underlying branch-and-bound scheme
cutting planes are generated, i.e. constraints that are violated by the current
fractional solution, but not necessarily by any feasible integer solution. Since
there exists an exponential number of subsets S ⊂ V implying subtour elim-
ination constraints (3.3), the computation starts with a small collection of
subsets S ⊂ V (or none at all), and identifies violated subtour elimination
constraints as cutting planes in the so-called separation problem. Moreover,
a wide range of other cutting plane families were developed in the literature
together with heuristic and exact algorithms to find them (see e.g. Schri-
jver [49, ch. 58] and Applegate et al. [6]). Also the undisputed champion
among all TSP codes, the famous Concorde package, is based on this principle
(see Applegate et al. [6]).

In this chapter we introduce and examine another concept for solving the
TSP. In Section 3.1 we introduce the basic idea of our approach. Some im-
provement strategies follow in Section 3.2 with our best approach presented
in Subsection 3.2.6. Since the main contribution of this chapter are compu-
tational experiments, we discuss them in detail in Section 3.3. The common
details of all these tests will be given in Subsection 3.3.1. In Section 3.4, we
present some theoretical results and further empirical observations. Finally,
we provide an Appendix with two summarizing tables (Tables 3.8 and 3.9).

3.1 General solution approach

Clearly, the performance of the above branch-and-cut approach depends cru-
cially on the performance of the used LP solver. Highly efficient LP solvers
have been available for quite some time, but also ILP solvers have improved
rapidly during the last decades and reached an impressive performance. This
motivated the idea of a very simple approach for solving TSP without using
LP relaxations explicitly.

The general approach works as follows (see Algorithm 3.1). First, we re-
lax all subtour elimination constraints (3.3) from the model and solve the re-
maining ILP model (corresponding to a weighted 2-matching problem). Then
we check if the obtained integer solution contains subtours. If not, the solu-
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tion is an optimal TSP tour. Otherwise, we find all subtours in the integral
solution (which can be done by a simple scan) and add the corresponding
subtour elimination constraints to the model, each of them represented by
the subset of vertices in the corresponding subtour. The resulting enlarged
ILP model is solved again to optimality. Iterating this process clearly leads
to an optimal TSP tour.

Require: TSP instance
Ensure: an optimal TSP tour
1: define current model as (3.1), (3.2), (3.4);
2: repeat
3: solve the current model to optimality by an ILP solver;
4: if solution contains no subtour then
5: set the solution as optimal tour;
6: else
7: find all subtours of the solution and add the corresponding subtour

elimination constraints into the model;
8: end if
9: until optimal tour found;

Algorithm 3.1: Main idea of our approach.

Every execution of the ILP solver (see line 3) will be called an iteration.
We define the set of violated subtour elimination constraints as the set of all
included subtour elimination constraints which were violated in an iteration
(see line 7). Figures 3.1 and 3.2–3.13 illustrate a problem instance and the
execution of the algorithm on this instance respectively.

Figure 3.1: Instance RE A 150. Euclidean distances between vertices.
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Figure 3.2: Instance RE A 150:
Main idea of our approach – itera-
tion 1.

Figure 3.3: RE A 150: iteration 2.

Figure 3.4: RE A 150: iteration 3. Figure 3.5: RE A 150: iteration 4.

Figure 3.6: RE A 150: iteration 5. Figure 3.7: RE A 150: iteration 6.
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Figure 3.8: RE A 150: iteration 7. Figure 3.9: RE A 150: iteration 8.

Figure 3.10: RE A 150: iteration 9. Figure 3.11: RE A 150: iteration 10.

Figure 3.12: RE A 150: iteration 11. Figure 3.13: RE A 150: iteration 12.
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It should be pointed out that the main motivation of this framework is its
simplicity. The separation of subtour elimination constraints for fractional
solutions amounts to the solution of a max-flow or min-cut problem. Based
on the procedure by Padberg and Rinaldi [40], extensive work has been
done to construct elaborated algorithms for performing this task efficiently.
On the contrary, violated subtour elimination constraints of integer solutions
are trivial to find. Moreover, we refrain from using any other additional
inequalities known for classical branch-and-cut algorithms, which might also
be used to speed up our approach, since we want to underline the strength
of modern ILP solvers in connection with a refined subtour selection process
(see Subsection 3.2.6).

This approach for solving TSP is clearly not new but was available since
the earliest ILP formulation going back to Dantzig et al. [14] and can be
seen as folklore nowadays. Several authors followed the concept of generat-
ing integer solutions for some kind of relaxation of an ILP formulation and
iteratively adding violated integer subtour elimination constraints. However,
it seems that the lack of fast ILP solvers prohibited its direct application
in computational studies although it was used in an artistic context (see
Bosch [9]).

Miliotis [37] also concentrated on generating integer subtour elimina-
tion constraints, but within a fractional LP framework. The classical paper
by Crowder and Padberg [13] applies the iterative generation of integer
subtour elimination constraints as a second part of their algorithm after gen-
erating fractional cutting planes in the first part to strengthen the LP relax-
ation. They report that not more than three iterations of the ILP solver for
the strengthened model were necessary for test instances up to 318 vertices.
Also Grötschel and Holland [23] follow this direction of first improv-
ing the LP model as much as possible, e.g. by running preprocessing, fixing
certain variables and strengthening the LP relaxation by different families
of cutting planes, before generating integer subtours as last step to find an
optimal tour. It turns out that about half of their test instances never reach
this last phase. In contrast, we stick to the pure ILP formulation without
any previous modifications.

From a theoretical perspective, the generation of subtours involves a cer-
tain trade-off. For an instance (G, d) there exists a minimal set of subtours
S∗, such that the ILP model with only those subtour elimination constraints
implied by S∗ yields an overall feasible, and thus optimal solution. However,
in practice we can only find collections of subtours larger than S∗ by adding
subtours in every iteration until we reach optimality. Thus, we can either
collect as many subtours as possible in each iteration, which may decrease
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the number of iterations but increases the running time of the ILP solver
because of the larger number of constraints. Or we try to control the number
of subtour elimination constraints added to the model by trying to judge
their relevance and possibly remove some of them later, which keeps the ILP
model smaller but may increase the number of iterations. In the following
we describe various strategies to find the “right” subtours.

3.1.1 Representation of subtour elimination con-
straints

The subtour elimination constraints (3.3) can be expressed equivalently by
the following cut constraints:

∑

e=(u,v)∈E
u∈S,v 6∈S

xe ≥ 2 ∀ S ⊂ V, S 6= ∅ (3.5)

Although mathematically equivalent, the two ways of forbidding a subtour
in S may result in quite different performances of the ILP solver.

It was observed that in general the running time for solving an ILP in-
creases with the number of non-zero entries of the constraint matrix. Hence,
we also tested a hybrid variant which chooses between (3.3) and (3.5) by
picking for each considered set S the version with the smaller number of
nonnegative coefficients on the left-hand side as follows:

∑
e=(u,v)∈E

u,v∈S
xe ≤ |S| − 1

∀ S ⊂ V, S 6= ∅
if |S| ≤ 2n+1

3∑
e=(u,v)∈E
u∈S,v 6∈S

xe ≥ 2 if |S| > 2n+1
3

(3.6)

We performed computational tests of our approach to compare the three
representations of subtour elimination constraints, namely (3.3), (3.5) and
(3.6), and list the results in Table 3.1. Technical details about the setup of
the experiments can be found in Subsection 3.3.1.

It turned out that the three versions sometimes (but not always) lead
to huge differences in running time (up to a factor of 5). This is an in-
teresting experience that should be taken into consideration also in other
computational studies. From our limited experiments it could be seen that
version (3.5) was inferior most of the times (with sometimes huge deviations)
whereas only a small dominance of the hybrid variant (3.6) in comparison
with the standard version (3.3) could be observed. This is due to the small
size of most subtours occurring during the solution process (the representa-
tion (3.3) equals to the representation (3.6) in these cases). But since also
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instance s.e.c. as in (3.3) s.e.c. as in (3.5) s.e.c. as in (3.6)
sec. #i. #c. sec. #i. #c. sec. #i. #c.

kroA150 89 12 82 75 12 82 62 12 82
kroB150 52 13 77 237 13 77 54 13 77
u159 9 5 39 13 5 39 9 5 38
brg180 62 14 56 36 5 29 64 16 67
kroA200 2153 11 95 1833 11 95 2440 11 95
kroB200 45 7 65 146 7 65 37 7 65
tsp225 149 15 102 376 16 105 155 16 106
a280 114 10 59 249 10 56 132 10 63
lin318 7171 13 177 8201 13 177 7158 13 177
gr431 5973 22 186 19111 22 187 5925 22 186
pcb442 4406 43 215 6186 41 197 2393 43 207
gr666 33259 14 216 189421 14 217 40111 14 216
mean ratio (sec.) 2.305960 0.971694

RE A 150 23 12 61 65 12 61 26 12 61
RE A 200 81 15 84 139 15 84 76 15 84
RE A 250 156 14 82 208 14 82 133 14 82
RE A 300 534 14 123 4819 14 123 692 14 123
RE A 350 404 9 110 789 9 110 650 9 110
RE A 400 49234 16 179 247511 16 179 24619 16 179
RE A 450 4666 8 117 13806 8 117 3022 8 117
RE A 500 68215 12 167 155977 12 167 30809 12 167
mean ratio (sec.) 3.390678 0.928176

mean ratio all 2.739847 0.954287

Table 3.1: Comparison of the behavior of the algorithm for different represen-
tations of subtour elimination constraints. Mean ratios refer to the arithmetic
means over ratios between the running times of the approaches using the sub-
tour elimination constraints represented as in (3.5) and (3.6) respectively and
the running time of the approach using the subtour elimination constraints
represented as in (3.3). “sec.” is the time in seconds, “#i.” the number of
iterations and “#c.” the number of subtour elimination constraints added
to the ILP before starting the last iteration.

bigger subtours can occur (mostly in the last iterations), we use the repre-
sentation (3.6) for all further computational tests. For more details about
different ILP models see Öncan et al. [39].

3.2 Generation of subtours

As pointed out above, the focus of our attention lies in the generation and
selection of a “good” set of subtour elimination constraints, including as
many as possible of those required by the ILP solver to determine an optimal
solution which is also feasible for TSP, but as few as possible of all others
which only slow down the performance of the ILP solver.

Trying to strike a balance between these two goals we followed several
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directions, some of them motivated by theoretical results, others by visually
studying plots of all subtours generated during the execution of Algorithm
3.1.

3.2.1 Subtour elimination constraints from suboptimal

integer solutions

Many ILP solvers report all feasible integer solutions found during the un-
derlying branch-and-bound process. In this case, we can also add all cor-
responding subtour elimination constraints to the model. These constraints
can be considered simply as part of the set of violated subtour elimination
constraints. Not surprisingly, these additional constraints always lead to a
decrease in the number of iterations for the overall computation and to an
increase in the total number of subtour elimination constraints generated
before reaching optimality (see Table 3.2). While the time consumed in each
iteration is likely to increase, it can also be observed that the overall running
time is often decreased significantly by adding all detected subtours to the
model. On the other hand, for the smaller number of instances where this is
not the case, only relatively modest increases of running times are incurred.
Therefore, we stick to adding all detected subtour elimination constraints
for the remainder of the chapter. The algorithm in this form will be called
BasicIntegerTSP.

3.2.2 Subtours of size 3

The next idea we tried was to add subtour inequalities corresponding to some
subtours of size 3 into the model before starting the iteration process (i.e. in
line 1 of Algorithm 3.1). This idea was motivated by the observations that
in many examples smaller subtours (with respect to their cardinality) occur
more often than the larger ones. However, there are

(|V |
3

)
such subtours and

thus we should concentrate only on a relevant subset of them. After studying
our computational tests we decided to use the shortest ones with respect to
their length. Table 3.3 summarizes our computational results and it can be
seen that this idea actually tends to slow down our approach. Thus we did
not follow it any more.

3.2.3 Subtour selections

As mentioned above, a large number of subtour inequalities which are not
really needed only slow down our approach. Thus we also tried not to use
all subtour inequalities we are able to generate during one iteration, but to
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only subtours all subtours:
from ILP optima BasicIntegerTSP

instance sec. #i. #c. sec. #i. #c.

kroA150 62 12 82 19 7 136
kroB150 54 13 77 179 8 148
u159 9 5 38 6 4 49
brg180 64 16 67 44 4 103
kroA200 2440 11 95 677 8 237
kroB200 37 7 65 31 5 121
tsp225 155 16 106 178 9 261
a280 132 10 63 157 11 143
lin318 7158 13 177 6885 8 357
gr431 5925 22 186 2239 9 453
pcb442 2393 43 207 2737 11 501
gr666 40111 14 216 17711 8 789
mean ratio (sec.) 0.946130

RE A 150 26 12 61 23 8 100
RE A 200 76 15 84 72 7 163
RE A 250 133 14 82 138 9 186
RE A 300 692 14 123 866 6 295
RE A 350 650 9 110 411 5 252
RE A 400 24619 16 179 8456 8 454
RE A 450 3022 8 117 2107 5 279
RE A 500 30809 12 167 15330 6 436
mean ratio (sec.) 0.786451

mean ratio all 0.882259

Table 3.2: Using all constraints generated from all feasible integer solutions
found during the solving process vs. using only the constraints generated from
the final ILP solutions of each iteration. Mean ratios refer to the arithmetic
means over ratios between the running times of BasicIntegerTSP over the
other approach. “sec.” is the time in seconds, “#i.” the number of iterations
and “#c.” the number of subtour elimination constraints added to the ILP
before starting the last iteration.

make a proper selection. We again used our computational tests in order
to identify two general properties which seem to point to such “suitable”
subtour inequalities.

• Sort all obtained subtours with respect to their cardinality, choose the
smallest ones and add the corresponding subtour inequalities into the
model.

• Sort all obtained subtours with respect to their length and proceed as
above.

The corresponding results are summarized in Tables 3.4 and 3.5 and it is
obvious that this idea does not speed up our approach as intended. Thus we
dropped it from our considerations.
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instance p = 0 p = 1
10000

p = 1
1000

sec. #i. #c. sec. #i. #c. sec. #i. #c.

kroA150 19 7 136 19 7 97 40 5 116
kroB150 179 8 148 71 7 178 134 5 105
u159 6 4 49 8 4 46 6 3 24
brg180 44 4 103 34 15 108 82 9 270
kroA200 677 8 237 879 5 157 504 4 133
kroB200 31 5 121 32 5 61 43 5 60
tsp225 178 9 261 149 10 224 167 9 202
a280 157 11 143 138 9 98 156 6 101
lin318 6885 8 357 5360 8 302 1435 8 291
gr431 2239 9 453 3196 10 534 3648 10 571
pcb442 2737 11 501 3483 15 414 3989 14 466
gr666 17711 8 789 – – – – – –
mean ratio 1.002535 1.188732

RE A 150 23 8 100 30 7 130 30 6 77
RE A 200 72 7 163 74 8 135 57 6 76
RE A 250 138 9 186 155 7 163 140 6 109
RE A 300 866 6 295 884 6 203 1344 7 211
RE A 350 411 5 252 642 6 147 879 6 150
RE A 400 8456 8 454 6623 7 285 4876 8 296
RE A 450 2107 5 279 1226 4 220 5386 5 215
RE A 500 15330 6 436 13473 6 366 6114 5 237
mean ratio 1.035264 1.291607

mean ratio all 1.016316 1.232048

Table 3.3: Using no subtours of size 3 vs. using the shortest subtours of size
3 for generation of subtour constraints before starting the solving process.
The parameter p defines the proportion of used subtour constraints. Mean
ratios refer to the arithmetic means over ratios between the running times
of the particular approaches and the running time of the BasicIntegerTSP
(corresponding to p = 0). “sec.” is the time in seconds, “#i.” the number of
iterations and “#c.” the number of subtour elimination constraints added
to the ILP before starting the last iteration. The entries “–” by TSPLIB
instances cannot be computed with 16 GB RAM.

3.2.4 Clustering into subproblems

It can be observed that many subtours have a local context, meaning that
a small subset of vertices separated from the remaining vertices by a rea-
sonably large distance will always be connected by one or more subtours,
independently from the size of the remaining graph (see also Figures 3.1 and
3.2 to 3.13). Thus, we aim to identify clusters of vertices and run the Ba-
sicIntegerTSP on the induced subgraphs with the aim of generating within a
very small running time the same subtours occurring in the execution of the
approach on the full graph. Furthermore, we can use the optimal tour from
every cluster in order to generate a corresponding subtour elimination con-
straint for the original instance and therefore enforce a connection between
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instance p = 1 p = 2
3

p = 1
3

sec. #i. #c. sec. #i. #c. sec. #i. #c.

kroA150 19 7 136 34 8 109 69 19 115
kroB150 179 8 148 51 8 135 477 15 134
u159 6 4 49 30 4 52 19 11 56
brg180 44 4 103 27 6 77 59 19 80
kroA200 677 8 237 714 7 171 2846 14 131
kroB200 31 5 121 39 6 98 89 13 77
tsp225 178 9 261 100 14 183 173 34 166
a280 157 11 143 141 12 154 239 27 127
lin318 6885 8 357 7069 12 367 9444 32 392
gr431 2239 9 453 3210 20 522 4924 38 413
pcb442 2737 11 501 1867 18 384 5129 85 386
gr666 17711 8 789 7643 7 505 71594 25 597
mean ratio 1.252892 2.488345

RE A 150 23 8 100 28 9 109 52 17 94
RE A 200 72 7 163 69 8 134 112 23 98
RE A 250 138 9 186 131 10 149 208 20 119
RE A 300 866 6 295 792 10 259 1720 29 293
RE A 350 411 5 252 715 7 232 849 19 177
RE A 400 8456 8 454 129380 8 311 107987 26 299
RE A 450 2107 5 279 1544 7 236 7987 11 238
RE A 500 15330 6 436 18594 8 324 13738 16 308
mean ratio 2.878162 3.354102

mean ratio all 1.903000 2.834648

Table 3.4: Using all subtours vs. using only the smallest subtours with
respect to their cardinality for generation of subtour constraints. The pa-
rameter p defines the proportion of used subtour constraints. Mean ratios
refer to the arithmetic means over ratios between the running times of the
particular approaches and the running time of the BasicIntegerTSP (corre-
sponding to p = 1). “sec.” is the time in seconds, “#i.” the number of
iterations and “#c.” the number of subtour elimination constraints added
to the ILP before starting the last iteration.

this cluster and the remainder of the graph.
For our purposes the clustering algorithm should fulfill the following prop-

erties:

• clustering quality: The obtained clusters should correspond well to the
distance structure of the given graph, as in a classical geographic clus-
tering.

• running time: It should be low relative to the running time required
for the main part of the algorithm.

• cluster size: If clusters are too large, solving the TSP takes too much
time. If clusters are too small, only few subtour elimination constraints
are generated.
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instance p = 1 p = 2
3

p = 1
3

sec. #i. #c. sec. #i. #c. sec. #i. #c.

kroA150 19 7 136 41 10 131 46 16 90
kroB150 179 8 148 495 7 152 250 16 112
u159 6 4 49 14 5 60 23 12 55
brg180 44 4 103 24 13 86 161 8 78
kroA200 677 8 237 862 6 124 1829 13 132
kroB200 31 5 121 59 7 121 79 11 89
tsp225 178 9 261 112 13 197 197 32 159
a280 157 11 143 94 9 101 212 21 96
lin318 6885 8 357 7688 13 355 9593 36 390
gr431 2239 9 453 6091 15 565 9434 45 530
pcb442 2737 11 501 2365 18 487 5913 70 399
gr666 17711 8 789 14713 10 735 – – –
mean ratio 1.478194 2.434945

RE A 150 23 8 100 24 9 115 45 22 81
RE A 200 72 7 163 60 10 123 113 25 108
RE A 250 138 9 186 138 7 117 209 22 103
RE A 300 866 6 295 1099 10 321 953 23 201
RE A 350 411 5 252 876 7 231 934 16 167
RE A 400 8456 8 454 29625 9 311 301125 27 378
RE A 450 2107 5 279 2926 7 259 4789 14 237
RE A 500 15330 6 436 15786 7 329 37460 16 330
mean ratio 1.524891 6.092589

mean ratio all 1.496873 3.975006

Table 3.5: Using all subtours vs. using only the smallest subtours with
respect to their length for generation of subtour constraints. The parameter
p defines the proportion of used subtour constraints. Mean ratios refer to
the arithmetic means over ratios between the running times of the particular
approaches and the running time of the BasicIntegerTSP (corresponding to
p = 1). “sec.” is the time in seconds, “#i.” the number of iterations and
“#c.” the number of subtour elimination constraints added to the ILP before
starting the last iteration. The entries “–” by TSPLIB instances cannot be
computed with 16 GB RAM.

Clearly, there is a huge body of literature on clustering algorithms (see
e.g. Jain andDubes [29]) and selecting one for a given application will never
satisfy all our objectives. Our main restriction was the requirement of using
a clustering algorithm which works also if the vertices are not embeddable
in Euclidean space, i.e. only arbitrary edge distances are given. Simplic-
ity being another goal, we settled for the following approach described in
Algorithm 3.2:

Require: complete graph G = (V,E), where |V | = n and |E| = m = n(n−1)
2

,
distance function d : E → R+

0 and parameter c, where 1 ≤ c ≤ n
Ensure: clustering C = {V1, . . . , Vc}, where V1 ∪ . . . ∪ Vc = V
1: sort the edges such that de1 ≤ . . . ≤ dem;
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2: define G′ = (V ′, E ′) such that V ′ = V and E ′ = ∅;
3: let i ..= 1;
4: define C ..=

{
{v1}, . . . , {vn}

}
;

5: while |C| > c do
6: set E ′ ..= E ′ ∪ {ei};
7: set C ..= {V1, . . . , V|C|}, where V1, . . . , V|C| are the connected compo-

nents of graph G′;
8: end while

Algorithm 3.2: Clustering algorithm.

First, we fix the number of clusters c with 1 ≤ c ≤ n and sort the edges
in increasing order of distances (see line 1). Then we start with the empty
graph G′ = (V ′, E ′) (line 2) containing only isolated vertices (i.e. n clusters)
and add iteratively edges in increasing order of distances until the desired
number of clusters c is reached (see lines 5 and 6). In each iteration the
current clustering is implied by the connected components of the current
graph (see line 7). We denote this clustering approach by C | c. Note
that this clustering algorithm does not make any assumptions about the
underlying TSP instance and does not exploit any structural properties of
the Metric TSP or the Euclidean TSP. An example illustrating the behavior
of our clustering algorithm on the instance RE A 150 for different parameters
c can be found in Figures 3.14–3.19.

It was observed in our computational experiments that the performance
of the TSP algorithm is not very sensitive to small changes of the cluster
number c and thus a rough estimation of c is sufficient. The behavior of the
running time as a function of c can be found for particular test instances in
Figure 3.33, see Subsection 3.3.2 for further discussion.

Figure 3.14: Instance RE A 150:
Clustering for c = 5.

Figure 3.15: Instance RE A 150:
Clustering for c = 10.
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Figure 3.16: Instance RE A 150:
Clustering for c = 15.

Figure 3.17: Instance RE A 150:
Clustering for c = 20.

Figure 3.18: Instance RE A 150:
Clustering for c = 25.

Figure 3.19: Instance RE A 150:
Clustering for c = 30.

3.2.5 Restricted clustering

Although the clustering algorithm (see Algorithm 3.2) decreases the com-
putational time of the whole solution process for some test instances, we
observed a certain shortcoming. There may easily occur clusters consisting
of isolated points or containing only two vertices. Clearly, these clusters do
not contribute any subtour on their own. Moreover, the degree constraints
(3.2) guarantee that each such vertex is connected to the remainder of the
graph in any case. The connection of these vertices to some “neighboring”
cluster enforced in BasicIntegerTSP implies that the clustering yields differ-
ent subtours for these neighbors and not the violated subtour elimination
constraints arising in BasicIntegerTSP.
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To avoid this situation, we want to impose a minimum cluster size of 3. An
easy way to do so is as follows: After reaching the c clusters, continue to add
edges in increasing order of distances (as before), but add an edge only, if it is
incident to one of the vertices in a connected component (i.e. cluster) of size
one or two. This means basically that we simply merge these small clusters
to their nearest neighbor with respect to the actual clustering. Note that this
is a step-by-step process and it can happen that two clusters of size 1 merge
first before merging the resulting pair to its nearest neighboring cluster. The
resulting restricted clustering approach will be denoted by RC3 | c. An
example containing restricted clusterings for different values of the parameter
c is contained in Figures 3.20–3.25.

Figure 3.20: Instance RE A 150: Re-
stricted clustering for c = 5.

Figure 3.21: Instance RE A 150: Re-
stricted clustering for c = 10.

Figure 3.22: Instance RE A 150: Re-
stricted clustering for c = 15.

Figure 3.23: Instance RE A 150: Re-
stricted clustering for c = 20.
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Figure 3.24: Instance RE A 150: Re-
stricted clustering for c = 25.

Figure 3.25: Instance RE A 150: Re-
stricted clustering for c = 30.

Against our expectations, the computational experiments (see Section
3.3) show that this approach often impacts the algorithm in the opposite
way (see also Figure 3.33 and Table 3.9 in Appendix) if compared for the
same original cluster size c.

Surprisingly, we could observe an interesting behavior if c ≈ n. In this
case, the main clustering algorithm (see Algorithm 3.2) has almost no ef-
fect, but the “post-phase” which enforces the minimum cluster size yields
a different clustering on its own. An example depicting such clustering for
the instance RE A 150 is depicted in Figure 3.26. This variant often beats

Figure 3.26: Instance RE A 150: Restricted clustering for c = 150.

the previous standard clustering algorithm with c ≪ n (see Table 3.9 in Ap-
pendix). Note that we cannot fix the actual number of clusters c′ in this
case. But our computational results show that c′ ≈ n

5
usually holds if the
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points are distributed relatively uniformly in the Euclidean plane and if the
distances correspond to their relative Euclidean distances (see Figure 3.27).

n

c′

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

3
6
9
12
15
18
21
24
27

Figure 3.27: Restricted clustering with c = n on random Euclidean graphs
with minimum cluster size 3. The number of obtained clusters c′ is plotted
for every n. For every number of vertices n we created 100000 graphs.

3.2.6 Hierarchical clustering

It was pointed out in Subsection 3.2.4 that the number of clusters c is chosen
as an input parameter. The computational experiments in Subsection 3.3.2
give some indication on the behavior of Algorithm 3.2 for different values of
c, but fail to provide a clear guideline for the selection of c. Moreover, from
graphical inspection of test instances, we got the impression that a larger
number of relevant subtour elimination constraints might be obtained by
considering more clusters of moderate size. In the following we present an
idea that takes both of these aspects into account.

In our hierarchical clustering process denoted by HC we do not set a
cluster number c, but let the clustering algorithm continue until all vertices
are connected (this corresponds to c = 1). The resulting clustering pro-
cess can be represented by a binary clustering tree which is constructed in a
bottom-up way. The leaves of the tree represent isolated vertices, i.e. the n
trivial clusters given at the beginning of the clustering algorithm. Whenever
two clusters are merged by the addition of an edge, the two corresponding
tree vertices are connected to a new common parent vertex in the tree rep-
resenting the new cluster. At the end of this process we reach the root of
the clustering tree corresponding to the complete vertex set. An example of
such a clustering tree is shown in Figures 3.28 and 3.29.



3.2. GENERATION OF SUBTOURS 95

v1 v2

v3

v4 v5

Figure 3.28: Example illustrating the hierarchical clustering: Vertices of the
TSP instance. Distances between every two vertices correspond to their
respective Euclidean distances in this example.

{v1} {v2} {v3} {v4} {v5}

{v1, v2} {v4, v5}

{v1, v2, v3}

{v1, v2, v3, v4, v5}

Figure 3.29: Example illustrating the hierarchical clustering: Clustering tree.

Now, we go through the tree in a bottom-up fashion from the leaves to
the root. In each tree vertex we solve the TSP for the associated cluster, after
both of its child vertices were resolved. The crucial aspect of our procedure
is the following: All subtour elimination constraints generated during such
a TSP solution for a certain cluster are propagated and added to the ILP
model used for solving the TSP instance of its parent cluster. Obviously, at
the root vertex the full TSP is solved.

The advantage of this strategy is the step-by-step construction of the
violated subtour elimination constraints. A disadvantage is that many con-
straints can make sense in the local context but not in the global one and thus
too many constraints could be generated in this way. Naturally, one pays for
the additional subtour elimination constraints by an increase in computation
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time required to solve a large number of – mostly small – TSP instances. To
avoid the solution of TSPs of the same order of magnitude as the original
instance, it makes sense to impose an upper bound u on the maximum cluster
size. This means that the clustering tree is partitioned into several subtrees
by removing all tree vertices corresponding to clusters of a greater size than
u. After resolving all these subtrees we collect all generated subtour elimi-
nation constraints and add them to the ILP model for the originally given
TSP. This approach will be denoted as HC | u. Computational experiments
with various choices of u indicated that u = 4 n

log2 n
would be a good upper

bound.
Let us take a closer look at the problem of including too many subtour

elimination constraints which are redundant in the global graph context. Of
course the theoretical “best” way would be to check which of the propa-
gated subtour elimination constraints were not used during the runs of the
ILP solver and drop them. To do this, it would be necessary to get this
information from the ILP solver which often is not possible.

However, we can try to approximately identify subtours which are not
only locally relevant in the following way: All subtour elimination constraints
generated in a certain tree vertex, i.e. for a certain cluster, are marked as
considered subtour elimination constraints. Then we solve the TSP for the
cluster of its parent vertex in the tree without using the subtours marked as
considered. If we generate such a considered subtour again during the solution
of the parent vertex, we take this as an indicator of global significance and add
the constraint permanently for all following supersets of this cluster. If we
set the upper bound u, we take also all subtour elimination constraints found
in the biggest solved clusters. This approach will be denoted as HCD | u.

Of course, it is only a heuristic rule and one can easily find examples,
where this prediction on a subtour’s relevance fails, but our experiments
indicate that HCD | 4n/ log2 n is the best approach we considered. A com-
parison with other hierarchical clustering methods for all test instances can
be found in Table 3.8 in Appendix. It can be seen that without an upper
bound we are often not able to find the solution at all (under time and mem-
ory constraints we made on the computational experiments). In the third
and fourth column we can see a comparison between approaches both using
the upper bound u = 4 n

log2 n
where the former collects all detected subtour

elimination constraints and the latter allows to drop those which seem to be
relevant only in a local context. Both these methods beat BasicIntegerTSP
(for the comparison of this approach with other presented algorithms see the
computational experiments in Section 3.3).
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3.3 Computational experiments

In the following the computational experiments and their results will be
discussed.

3.3.1 Setup of the computational experiments

All tests were run on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with
16 GB RAM under Linux1 and all programs were implemented in C++2 by
using the SCIP MIP-solver (see Achterberg [2]) together with CPLEX as
LP solver3. It has often been discussed in the literature (see e.g. Naddef and
Thienel [38]) and in personal communications that ILP solvers are relatively
unrobust and often show high variations in their running time performance,
even if the same instance is repeatedly run on the same hardware and same
software environment. Our first test runs also exhibited deviations up to a
factor of 2 when identical tests were repeated. Thus we took special care
to guarantee the relative reproducibility of the computational experiments:
No additional swap memory was made available during the tests, only one
thread was used and no other parallel user processes were allowed. This leads
to a high degree of reproducibility in our experiments. However, this issue
makes a comparison to other simple approaches, which were tested on other
computers under other hardware and software conditions, extremely difficult.

We used two groups of test instances: The first group is taken from
the well-known TSPLIB95 collected by Reinelt [45], which contains the
established benchmarks for TSP and related problems. From the collection
of instances we chose all those with (i) at least 150 and at most 1000 vertices
and (ii) which could be solved in at most 12 hours by our BasicIntegerTSP.
It turned out that 25 instances of the TSPLIB95 fall into this category (see
Table 3.9), the largest having 783 vertices.

We also observed some drawbacks of these instances: Most of them (23
of 25) are defined as point sets in the Euclidean plane with distances cor-
responding to the Euclidean metric or as a set of geographical cities, i.e.
points on a sphere. Moreover, they often contain substructures like meshes
or sets of colinear points and finally, since all distances are rounded to the

1Precise version: Linux 3.8.0-29-generic #42∼precise1-Ubuntu SMP x86 64 x86 64
x86 64 GNU/Linux.

2Precise compiler version: gcc version 4.6.3.
3Precise version: SCIP version 3.0.1 [precision: 8 byte] [memory: block] [mode: opti-

mized] [LP solver: CPLEX 12.4.0.0] [GitHash: 9ee94b7] Copyright (c) 2002-2013 Konrad-
Zuse-Zentrum für Informationstechnik Berlin (ZIB).
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nearest integer, there are many instances which have multiple optimal solu-
tions. These instances are relatively unstable with respect to solution time,
number of iterations, and – important for our approach – cardinality of the
set of violated subtour elimination constraints. For our approach instances
with a mesh geometry (e.g. ts225 from TSPLIB95) were especially prone to
unstable behavior, such as widely varying running times for minor changes
in the parameter setting. This seems to be due to the fact that these in-
stances contain many 2-matchings with the same objective function value as
illustrated in the following example: Consider a 3 × (2n + 2) mesh graph
(see Figure 3.30, left graph). It has 2n optimal TSP tours (see Tošić and
Bodroža [52]). If we fix a subtour on the first 6 vertices, we obviously have
2n−1 optimal TSP tours on the remaining 3 ×

(
(2n + 2) − 2

)
vertices (see

Figure 3.30, right graph) and together with the fixed subtour we have 2n−1

2-matchings having the same objective value as an optimal TSP tour on the
original graph. Thus the search process for a feasible TSP tour can vary
widely.

2n+ 2

3

(2n+ 2)− 2

3

Figure 3.30: Example illustrating the behavior of our approaches by instances
based on graphs containing mesh substructures. Distances between every two
vertices correspond to their respective Euclidean distances in this example.

In order to provide further comparisons, we also defined a set of instances
based on random Euclidean graphs: In a unit square [0, 1]2 we chose n uni-
formly distributed points and defined the distance between every two vertices
as their respective Euclidean distance4. These random Euclidean instances
eliminate the potential influence of substructures and always have only one
unique optimal solution in all stages of the solving process. We created 40
such instances named RE X n where n ∈ {150, 200, 250, . . . , 500} indicates
the number of vertices and X ∈ {A,B,C,D,E}.

The running times of our test instances, most of them containing between
150 and 500 vertices, were often within several hours. Since we tested many

4We represented all distances as integers by scaling with 214 and rounding to the nearest
integer.
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different variants and configurations of our approach, we selected a subset of
these test instances to get faster answers for determining the best algorithm
settings for use in the final tests. This subset contains 12 (of the 25) TSPLIB
instances and one random instances for every number of vertices n (see e.g.
Table 3.1.)

All our running time tables report the name of the instance, the running
time (sec.) in wall-clock seconds (rounded down to nearest integers), the
number of iterations (#i.), i.e. the number of calls to the ILP solver in the
main part of our algorithm (without the TSP solutions for the clusters) and
the number of subtour elimination constraints (#c.) added to the ILP model
in the last iteration, i.e. the number of constraints of the model which yielded
an optimal TSP solution. We often compare two columns of a table by taking
the mean ratio, i.e. computing the quotient between the running times on
the same instance and taking the arithmetic mean of these quotients.

3.3.2 Computational details for selected examples

Let us now take a closer look at two instances in detail. While this serves
only as an illustration, we studied lots of these special case scenarios visually
during the development of the clustering approach to gain a better insight
into the structure of subtours generated by BasicIntegerTSP.

We selected instances kroB150 and u159 whose vertices are depicted in
Figures 3.31 and 3.32. Both instances consist of points in the Euclidean

Figure 3.31: Instance kroB150. Eu-
clidean distances between vertices.

Figure 3.32: Instance u159. Eu-
clidean distances between vertices.

plane and the distances between every two vertices correspond to their re-
spective Euclidean distances, however, they represent two very different in-
stance types: The instance kroB150 consists of relatively uniformly dis-
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tributed points, the instance u159 is more structured and it contains e.g.
mesh substructures which are the worst setting for our algorithm (recall
Subsection 3.3.1).

Figure 3.33 illustrates the behavior of the running time t in seconds as
a function of the parameter c for the instances kroB150 and u159. The
full lines correspond to standard clustering approach C | c described in Sec-
tion 3.2.4 (see Algorithm 3.2), while the dashed line corresponds to the re-
stricted clustering RC3 | c of Subsection 3.2.5 with minimum cluster size 3.
The standard BasicIntegerTSP without clustering arises for c = 1.

Instance kroB150 consists of relatively uniformly distributed points in
the Euclidean plane, but has a specific property: By using Algorithm 3.2 we
can observe the occurrence of two main components also for relatively small
coefficient c (already for c = 6). This behavior is rather atypical for random
Euclidean graphs, cf Penrose [41, ch. 13], but it provides an advantage for
our approach since we do not have to solve cluster instances of the same order
of magnitude as the original graph but have several clusters of moderate size
also for small cluster numbers c.

Considering the standard clustering approach (Algorithm 3.2) in Fig-
ure 3.33, upper graph, it can be seen that only a small improvement occurs
for c between 2 and 5. Looking at the corresponding clusterings in detail,
it turns out in these cases that there exists only one “giant connected com-
ponent” and all other clusters have size 1. This structure also implies that
for the restricted clustering these isolated vertices are merged with the giant
component and the effect of clustering is lost completely. For larger clus-
ter numbers c, a considerable speedup is obtained, with some variation, but
more or less in the same range for almost all values of c ≥ 6 (in fact, the
giant component splits in these cases). Moreover, the restricted clustering
performs roughly as good as the standard clustering for c ≥ 6.

Instance u159 is much more structured and has many colinear vertices.
Here, we can observe a different behavior. While the standard clustering is
actually beaten by BasicIntegerTSP for smaller cluster numbers and has a
more or less similar performance for larger cluster numbers, the restricted
clustering is almost consistently better than the other two approaches. For c
between 2 and 10 there exists a large component containing many mesh sub-
structures which consumes as much computation time as the whole instance.

These two instances give some indication of how to characterize “good”
instances for our algorithm: They should

• consist of more clearly separated clusters and

• not contain mesh substructures and colinear vertices.
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Figure 3.33: Computation time t in seconds depending on the number of clusters c for clustering (full line) and for
restricted clustering (dashed). Illustrative instances kroB150 (upper figure) and u159 (lower figure).
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3.3.3 General computational results

A summary of the computational results for BasicIntegerTSP and the most
promising variants of clustering based subtour generations can be found in
Table 3.9. For random Euclidean instances we report only the mean values
of all five instances of the same size. It turns out that HCD | 4 n

log2 n
, i.e. the

hierarchical clustering approach combined with dropping subtour elimination
constraints and fixing them only if they are generated again in the subsequent
iteration and with the upper bound on the maximum cluster size u = 4 n

log2 n
,

gives the best overall performance. A different behavior can be observed
for instances taken from the TSPLIB and for random Euclidean instances.
On the TSPLIB instances this algorithm HCD | 4 n

log2 n
is on average about

20% faster than pure BasicIntegerTSP and beats the other clustering based
approaches for most instances. In those cases, where it is not the best choice,
it is usually not far behind.

As already mentioned, best results are obtained with HCD | 4 n
log2 n

for

instances with a strong cluster structure and without mesh substructures
(e.g. pr299). For instances with mesh substructures it is difficult to find
an optimal 2-matching which is also a TSP tour. For random Euclidean in-
stances the results are less clear but approaches with fixed number of clusters
seem to be better then the hierarchical ones.

It was a main goal of this study to find a large number of “good” subtour
elimination constraints, i.e. subtours that are present in the last iteration
of the ILP model of BasicIntegerTSP. Therefore, we show the potentials
and limitations of our approach in reaching this goal. In particular, we will
report the relation between the set S1 consisting of all subtours generated by
running a hierarchical clustering algorithm with an upper bound u (set as in
the computational tests to u = 4 n

log2 n
) before solving the original problem

(i.e. the root vertex) and the set S2 containing only the subtour elimination
constraints included in the final ILP model of BasicIntegerTSP. We tested
the hierarchical clustering with and without the dropping of non-repeated
subtours.

There are two aspects we want to describe: At first, we want to check
whether S1 contains a relevant proportion of “useful” subtour contraints,
i.e. constraints also included in S2, or whether S1 contains “mostly useless”
subtours. Therefore, we report the proportion of used subtours defined as

pused ..=
|S1 ∩ S2|

|S1|
. (3.7)

Secondly, we want to find out to what extend it is possible to find the “right”
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instance HC | 4 n
log2 n

HCD | 4 n
log2 n

pused pcov pused pcov

kroA150 0.262712 0.455882 0.476190 0.367647
kroB150 0.222222 0.351351 0.396040 0.270270
u159 0.085271 0.448980 0.153226 0.387755
brg180 0.133929 0.145631 0.714286 0.145631
kroA200 0.209713 0.324895 0.450704 0.270042
kroB200 0.206612 0.413223 0.423423 0.388430
tsp225 0.134752 0.218391 0.297143 0.199234
a280 0.064935 0.314685 0.161943 0.279720
lin318 0.234589 0.383754 0.440273 0.361345
gr431 0.073701 0.209713 0.221053 0.185430
pcb442 0.056759 0.151697 0.133117 0.163673
gr666 0.076048 0.271229 0.220379 0.235741
mean 0.146770 0.307453 0.340648 0.271243

RE A 150 0.179191 0.310000 0.289157 0.240000
RE A 200 0.122642 0.239264 0.212329 0.190184
RE A 250 0.120773 0.268817 0.172727 0.204301
RE A 300 0.191235 0.325424 0.331915 0.264407
RE A 350 0.151274 0.376984 0.285714 0.333333
RE A 400 0.170455 0.297357 0.254157 0.235683
RE A 450 0.148148 0.415771 0.311178 0.369176
RE A 500 0.165485 0.321101 0.276596 0.268349
mean 0.156150 0.319340 0.266722 0.263179

mean of all 0.150522 0.312207 0.311078 0.268018

Table 3.6: Proportion of used and proportion of covered subtours for our
hierarchical clustering approaches with the upper bound u = 4 n

log2 n
which

(i) does not allow (HC | 4 n
log2 n

) and which (ii) does allow (HCD | 4 n
log2 n

) to

drop the unused subtour elimination constraints.

subtours by our approach. Hence, we define the proportion of covered sub-
tours defined as

pcov ..=
|S1 ∩ S2|

|S2|
. (3.8)

The values of pused and pcov are given in Table 3.6. It can be seen that
empirically there is the chance to find about 26–31% (pcov) of all required
violated subtour elimination constraints. If subtour elimination constraints
are allowed to be dropped, we are able to find fewer such constraints, but our
choice has a better quality (pcov is smaller, but pused is larger), i.e. the solver
does not have to work with a large number of constraints which only slow
down the solving process and are not necessary to reach an optimal solution.

Furthermore, we can observe a relative big difference between the values of
the proportion of used subtour elimination constraints (pused) for the TSPLIB
instances and for random Euclidean instances if the dropping of redundant
constraints is allowed.
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3.3.4 Adding a starting heuristic

Of course, there are many possibilities of adding improvements to our basic
approach. Lower bounds and heuristics can be introduced, branching rules
can be specified, or cutting planes can be generated. We did not pursue
these possibilities since we want to focus on the simplicity of the approach.
Moreover, we wanted to take the ILP solver as a “black box” and not interfere
with its execution.

Just as an example which immediately comes to mind, we added a starting
heuristic to give a reasonably good TSP solution as a starting solution to the
ILP solver. We used the improved version of the classical Lin-Kernighan
heuristic in the code written by Helsgaun [26]. The computational results
reported in Table 3.7 show that a considerable speedup (roughly a factor of
3, but also much more) can be obtained in this way.

instance without starting with starting
heuristic heuristic

sec. #i. #c. sec. #i. #c.

kroA150 19 7 136 16 10 34
kroB150 179 8 148 17 8 104
u159 6 4 49 4 5 40
brg180 44 4 103 0 2 15
kroA200 677 8 237 42 8 135
kroB200 31 5 121 28 6 124
tsp225 178 9 261 73 13 176
a280 157 11 143 32 8 58
lin318 6885 8 357 4941 8 259
gr431 2239 9 453 838 10 318
pcb442 2737 11 501 447 18 207
gr666 17711 8 789 13225 11 485
mean ratio (sec.) 0.432074

RE A 150 23 8 100 14 11 65
RE A 200 72 7 163 38 11 99
RE A 250 138 9 186 63 9 124
RE A 300 866 6 295 146 8 173
RE A 350 411 5 252 126 6 151
RE A 400 8456 8 454 1274 6 251
RE A 450 2107 5 279 482 7 197
RE A 500 15330 6 436 1997 9 241
mean ratio (sec.) 0.322231

mean ratio all 0.388137

Table 3.7: Results for BasicIntegerTSP used without / with the Lin-
Kernighan heuristic for generating an initial solution. Mean ratios refer to the
arithmetic means over ratios between the running times of the approaches.
“sec.” is the time in seconds, “#i.” the number of iterations and “#c.” the
number of subtour elimination constraints added to the ILP before starting
the last iteration.
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3.4 Some theoretical results and further em-

pirical observations

Although our work mainly aims at computational experiments, we also tried
to analyze mainApproach from a theoretical point of view. In particular we
studied the expected behavior on random Euclidean instances and tried to
characterize the expected cardinality of the minimal set of required subtours
S∗ as defined in Section 3.1. It is well known that no polynomially bounded
representation of the TSP polytope can be found and there also exist in-
stances based on a mesh-structure for which E [|S∗|] has exponential size,
but the question for the expected size of |S∗| for random Euclidean instances
and thus for the expected number of iterations of our solution algorithm
remains an interesting open problem.

We started with extensive computational tests, some of them presented
in Figures 3.34 and 3.36, to gain empirical evidence on this aspect.

n

Mean number of iterations

0 35 70 105 140 175 210 245
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Mean length
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Figure 3.34: Mean number of iterations used by the mainApproach (upper
figure), mean length of an optimal TSP tour (lower figure, dashed) and mean
length of an optimal weighted 2-matching (lower figure, full line) in random
Euclidean graphs. For every number of vertices n we created 100 graphs.
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The upper graph in Figure 3.34 illustrates the mean number of iterations
needed by mainApproach to reach optimality for different numbers of vertices
n (we evaluated 100 random Euclidean instances for every value n). The
lower graph of Figure 3.34 shows the mean length of the optimal TSP tour
and of the optimal 2-matching (i.e. the objective value after solving the ILP
in the first iteration) by using the same setting.

It was proven back in 1959 that the expected length of an optimal TSP
tour is asymptotically β

√
n, where β is a constant (see Beardwood et

al. [8]). This approach was later generalized for other settings and other
properties of the square root asymptotic were identified (Rhee [47], Yu-
kich [53]. We used these properties to prove the square root asymptotic also
for the 2-matching problem (cf Figure 3.34, lower graph, dashed).

We need some definitions, lemmas and theorems originally introduced by
Rhee [47] and summarized by Yukich [53] first in order to prove this result.

Definition 3.1 ((2-)matching functional and boundary (2-)matching func-
tional).

Let F ..= F(dim) denote the finite subsets of Rdim and let R ..= R(dim)

denote the dim-dimensional rectangles of Rdim.

Furthermore, let F ∈ F be a point set in Rdim and let R ∈ R be a

dim-dimensional rectangle in Rdim where dim ≥ 2.
And finally, let d : R × R → R+

0 be a metric and let G = G(F,R) =(
V (G), E(G)

)
be a complete graph with the vertex set V (G) = F ∩R and with

the distances d(e) between every two vertices u, v ∈ V (G) where e = (u, v).
Then we will denote

M(F,R) ..= M(F ∩R) ..= min
m

{OV (G,m)|m is a matching in G} (3.9)

the matching functional.
Furthermore, we will denote

MB(F,R) ..= MB(F ∩R)

..= min




M(F,R), inf

(Fi)i≥1∈F
{ai,bi}i≥1∈∂R

{∑

i

M(Fi ∪ {ai, bi}, R)

}


(3.10)

the boundary matching functional. F stays for the set of all partitions (Fi)i≥1

of F and ∂R stays for the set of all sequences of pairs of points {ai, bi}i≥1

belonging to the boundary of the rectangle R denoted by ∂R. Additionally,
we set d(a, b) = 0 for all a, b ∈ ∂R.
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Similarly, we define the 2-matching functional L and the boundary 2-
matching functional LB.

L(F,R) ..= L(F ∩R) ..= min
x

{
OV (G, x)|x is a 2-matching in G

}
(3.11)

LB(F,R) ..= LB(F ∩ R)

..= min




L(F,R), inf

(Fi)i≥1∈F
{ai,bi}i≥1∈∂R

{∑

i

L(Fi ∪ {ai, bi}, R)

}


(3.12)

If it is obvious which rectangle R is considered, we also write M(F ) for
M(F,R), MB(F ) for MB(F,R), L(F ) for L(F,R) and LB(F ) for LB(F,R).

Finally, we define L(F,R) = LB(F,R) = 0 if |F ∩ R| < 3

Definition 3.2 (simple subadditivity, geometric subadditivity and superad-

ditivity). Let R be a rectangle defined as [0, t]dim for some positive constant
t ∈ R+ partitioned into two rectangles R1 and R1 (R1 ∪ R2 = R). Further-

more, let F,G be finite sets in [0, t]dim and let P (F,R) : F ×R → R+
0 be a

function.
The function P is simple subadditive if the following inequality is satis-

fied:

P (F ∪G,R) ≤ P (F,R) + P (G,R) + C1t (3.13)

where C1
..= C1(dim) is a finite constant.

If

P (F,R) ≤ P (F,R1) + P (F,R2) + C2diam(R) (3.14)

is fulfilled, we will call the function P geometric subadditive. diam(R) de-
notes the diameter of the rectangle R and C2

..= C2(dim) is a finite constant.
If

P (F,R) ≥ P (F,R1) + P (F,R2) (3.15)

is satisfied, we will call the function P superadditive.

Definition 3.3 (subadditive and superadditive Euclidean functional). Let
P (F,R) : F×R → R+

0 be a function satisfying

∀R ∈ R, P (∅, R) = 0 , (3.16)

∀y ∈ Rdim, R ∈ R, F ⊂ R : P (F,R) = P (F + y, R+ y) , (3.17)
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∀α > 0, R ∈ R, F ⊂ R : P (αF, αR) = αP (F,R) . (3.18)

Then we will say that P is translation invariant (condition (3.17)) and ho-
mogeneous (condition (3.18)).

We will call P an Euclidean functional.
Let R be a rectangle defined as [0, t]dim for some positive constant t ∈ R+

partitioned into two rectangles R1 and R1 (R1 ∪ R2 = R). If P satisfies the
geometric subadditivity (3.14), we will say that P is a subadditive Euclidean
functional. If P is supperadditive (3.15), we will say that P is a superadditive
Euclidean functional.

Lemma 3.4 (Yukich [53], originally Rhee [47]). The matching functional
M and the boundary matching functional MB are subadditive Euclidean func-
tionals.

Proof. See Yukich [53].

Lemma 3.5 (growth bounds – Yukich [53], originally Rhee [47]). Let P
be a subadditive Euclidean functional. Then there exists a finite constant

C4
..= C4(dim) such that for all dim-dimensional rectangles of Rdim and for

all F ⊂ R we have

P (F,R) ≤ C4diam(R)|F |
dim−1

dim . (3.19)

Proof. See Yukich [53].

Definition 3.6 (smoothness). An Euclidean functional P is smooth if there

is a finite constant C3
..= C3(dim) such that for all sets F,G ∈ [0, 1]dim we

have

∣∣P (F ∪G)− P (F )
∣∣ ≤ C3|G| d−1

d . (3.20)

Definition 3.7 (pointwise closeness). Say that Euclidean functionals P and

PB are pointwise close if for all subsets F ⊂ [0, 1]dim we have
∣∣∣P
(
F, [0, 1]dim

)
− PB

(
F, [0, 1]dim

)∣∣∣ = o
(
|F | d−1

d

)
. (3.21)

Definition 3.8 (complete convergence). A sequence of random variables Xn,
n ≥ 1, converges completely (c.c.) to a constant C if and only if for all ε > 0
we have

∞∑

n=1

P [|Xn − C| > ε] < ∞ . (3.22)
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Theorem 3.9 (basic limit theorem for Euclidean functionals – Yukich [53],
originally Rhee [47]). Let Xi, 1 ≤ i ≤ n, be independent and identically dis-
tributed random variables with values in the unit dim-dimensional rectangle

[0, 1]dim, dim ≥ 2.

If PB is a smooth superadditive Euclidean functional on Rdim, dim ≥ 2,
then

lim
n→∞

PB(X1, X2, . . . , Xn)

n
dim−1

dim

= α(PB, dim) c.c. , (3.23)

where α(PB, dim) is a positive constant.

If P is an Euclidean functional on Rdim, dim ≥ 2, which is pointwise
close to PB, then

lim
n→∞

P (X1, X2, . . . , Xn)

n
dim−1

dim

= α(PB, dim) c.c. (3.24)

Proof. See Yukich [53].

We can prove our result now.

Lemma 3.10. The 2-matching functional L and the boundary 2-matching
functional LB fulfill the conditions of Theorem 3.9.

Proof. The proof is a modification of similar proofs for other combinatorial
optimization problems contained in Yukich [53].

(1) First, we show that the boundary 2-matching functional LB is a super-
additive Euclidean functional. Equalities (3.16), (3.17) and (3.18) are
fulfilled obviously.

Let us now show the superadditivity. We can distinguish 2 cases in
general:

(a) Either the solution over the whole rectangle R does not cross the
boundary between the rectangles R1 and R2 at all or

(b) at least one subtour crosses the boundary between the rectangles
R1 and R2.

LB(F,R) = LB(F,R1) + LB(F,R2) obviously holds in the first case.

Let us now consider a subtour crossing the boundary between the rect-
angles R1 and R2 (for an example see Figure 3.35). W.l.o.g. we can
assume that the boundary is crossed between the points v1 and v2,
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and v3 and v4 and that the crossing points are x and y respectively.
Furthermore, w.l.o.g. we can assume that v1, v3 ∈ R1. Then the new
subtour, containing the vertices v1 and v3, and lying in the rectangle
R1, consists of the following parts:

• the same path between the vertices v1 and v3 belonging to the
rectangle R1 as in the whole rectangle R,

• the orthogonal connections between the vertices v1 and v3 and the
boundary between the both rectangles, and finally

• a piece of this boundary (see also Figure 3.35).

We have to choose the vertices a and b on this boundary in such a
way that a = arg min

α∈∂R1∩∂R2

{d(v1, α)} and b = arg min
β∈∂R1∩∂R2

{d(v3, β)} hold

in order to achieve the minimality. Due to this choice of the vertices a
and b we can write d(v1, a) ≤ d(v1, x) and d(v3, b) ≤ d(v3, y) and since
d(a, b) = 0 and the remaining part of the subtour belonging to the
rectangle R1 yield the same contribution to the objective value, we can
claim that the contribution of this new subtour to the objective value is
smaller or equal to the contribution of the part of the original subtour
lying in the rectangle R1. The same argument can be used for the
second rectangle R2 and for all other subtours crossing the boundary
between the rectangles R1 and R2.

v1

v2

v3

v4v5

v6

v7

v8
v9

v10
v11

x

y

a

b

a′

b′

R1 R2

Figure 3.35: Example illustrating the superadditivity of the boundary 2-
matching functional LB.

(2) Next, we check some properties of the 2-matching functional L. Equal-
ities (3.16), (3.17) and (3.18) obviously hold.
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Further, it is easy to see that the 2-matching functional L fulfill the
geometric subadditivity. Since we minimize, the minimum weighted 2-
matching over the whole rectangle R can have only a smaller objective
value than the sum of the objective values for the rectangles R1 and
R2 taken separately.

As a next step, we have to prove the pointwise closeness of the 2-
matching functional L to the boundary 2-matching functional LB.

First, note that LB

(
F, [0, 1]dim

)
≤ L

(
F, [0, 1]dim

)
always hold (see

(3.12)). Thus it suffices to show

L
(
F, [0, 1]dim

)
≤ LB

(
F, [0, 1]dim

)
+ C7|F | d−1

d (3.25)

where C7
..= C7(dim) is a finite constant.

Let F ∗ ⊆ F be the set of vertices which are connected with the bound-
ary ∂[0, 1]dim by a path. Now, we remove all edges incident with the
vertices contained in the vertex set F ∗. If |F ∗| < 3, we can just put
these vertices to an arbitrary subtour (if such a subtour exists) and get
the above inequality (the increase of the objective value can be eas-
ily bounded by 4

√
dim in this case). If |F ∗| ≥ 3, we can construct a

minimum weighted 2-matching on this vertex set and obtain

L
(
F, [0, 1]dim

)
≤ LB

(
F, [0, 1]dim

)
+ L

(
F ∗, [0, 1]dim

)
. (3.26)

And since |F ∗| ≤ |F |, we can use Lemma 3.5 and get inequality (3.25).

(3) Finally, we prove the smoothness of the boundary 2-matching func-
tional LB. We will show the simple and geometric subadditivity of this
functional first in order to be ably to show the smoothness.

Let F and G be finite sets in [0, t]dim. If the minimum weighted 2-
matching for the vertex set F ∪G equals to the minimum weighted 2-
matchings for the vertex sets F and G joined together, inequality (3.13)
holds with equality. Since we can always construct such a solution for
the vertex set F ∪ G, the objective value can be only smaller in the
other case (note that we minimize it).

Let us now prove the geometric subadditivity in order to fulfill the
conditions of Lemma 3.5. We know that the 2-matching functional
L is geometric subadditive. Now, it is easy to see that the proof of
inequality (3.25) can be easily modified in order to obtain

L(F,R) ≤ LB(F,R) + C7diam(R)|F | d−1
d (3.27)
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for an arbitrary dim-dimensional rectangle. Since LB(F,R) ≤ L(F,R),
we obtain inequality (3.14) immediately.

Using the simple subadditivity and Lemma 3.5 we get for all finite sets

F,G ⊂ [0, 1]dim

LB(F ∪G) ≤ LB(F ) +
(
C1 + C4

√
dim

)
|G|

dim−1

dim

≤ LB(F ) + C5|G|
dim−1

dim

(3.28)

where C5
..= C5(dim) denotes a finite constant. This completes this

part of the proof if LB(F ∪ G) − LB(F ) ≥ 0. Hence we just need to
show the following inequality

LB(F ∪G) ≥ LB(F )− C6|G|
dim−1

dim (3.29)

for some finite constant C6
..= C6(dim).

Consider the global minimum weighted 2-matching on the vertex set
G ∪ F and remove all edges from all subtours incident with a vertex
g ∈ G. This yield at most |G| paths of a length of at least 1 containing
only vertices from the vertex set F and some isolated points F ′ ⊆ F .
Let F ∗ denote the set of all endpoints of those paths. Clearly, we have
|F ′| ≤ |G| and |F ∗| ≤ 2|G|. Consider now the boundary matching
functional MB(F

∗) and the corresponding matching m. This matching
together with the disconnected paths and with parts of the boundary of

the dim-dimensional rectangle [0, 1]dim yield a set of subtours {F̃i}Ni=1

for some particular positive integer N . Furthermore, we can construct
an minimum weighted 2-matching on the vertex set F ′ and get a feasible
minimum weighted 2-matching. We can write

LB(F ) ≤ LB(F ∪G) +MB(F
∗) + LB(F

′) . (3.30)

By using Lemmas 3.4 and 3.5 we obtain

LB(F ) ≤ LB(F ∪G) + C6

(
|F ∗|

dim−1

dim + |F ′|
dim−1

dim

)
. (3.31)

And since |F ′| ≤ |G| ≤ 2|G| and |F ∗| ≤ 2|G|, we get

LB(F ) ≤ LB(F ∪G) + C6

(
(2|G|)

dim−1

dim + 2 (|G|)
dim−1

dim

)

≤ LB(F ∪G) + C6 (|G|)
dim−1

dim .

(3.32)
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This is exactly inequality (3.29).

Theorem 3.11. Let G = (V,E) be a random Euclidean graph with n = |V |
vertices and let d : E → R+

0 be the Euclidean distance function. Furthermore,
let M2(G, d) be the length of an optimal 2-matching. Then

lim
n→∞

M2(G, d)√
n

= α c.c., where α > 0. (3.33)

Proof. The theorem immediately follows from Theorem 3.9 and Lemma 3.10.

Based on these results the following idea might lead to a proof that the
expected cardinality S∗ is polynomially bounded: After the first iteration
of the algorithm we have a solution possibly consisting of several separate
subtours of total asymptotic length α

√
n = α1

√
n. If there are subtours, we

add subtour elimination constraints (in fact at most ⌊n
3
⌋), resolve the enlarged

ILP and get another solution whose asymptotic length is α2

√
n. By proving

that the expected length of the sequence α = α1, . . . , α#i = β is polynomially
bounded in n, one would obtain that also E [|S∗|] is polynomially bounded
since only polynomially many subtours are added in each iteration. Our
intuition and computational tests illustrated in Figure 3.34, upper graph,
indicate that the length of this sequence could be proportional to

√
n as

well. Unfortunately, we could not find the suitable techniques to show this
step.

A different approach is illustrated by Figure 3.36, where we examine the
mean number of subtours contained in every iteration. In particular, we chose
n = 60, generated 100000 random Euclidean instances and sorted them by
the number of iterations #i. required by mainApproach. The most frequent
number of ILP solver runs was 7 (dotted line), but we summarize the re-
sults for 5 (full line), 6 (dashed), 8 (loosely dashed) and 9 (loosely dotted)
necessary runs in this figure as well. For every iteration of every class (with
respect to the number of involved ILP runs) we compute the mean number
of subtours contained in the respective solutions. As can be expected these
numbers of subtours are decreasing (in average) over the number of itera-
tions. To allow a better comparison of this behavior for different numbers of
iterations we scaled the iteration numbers into the interval [0, 10] (horizontal
axis of Figure 3.36). It can be seen that the average number of subtours
contained in an optimal 2-matching (first iteration) is about 9.2 while in the
last iteration we trivially have only one tour. Between these endpoints we
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iteration ·λ

Mean number of subtours

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 3.36: Mean number of subtours during the mainApproach in random
Euclidean graphs for n = 60 sorted according to the number of iterations
(λ = 4/10 (full line), 5/10 (dashed), 6/10 (dotted), 7/10 (loosely dashed),
8/10 (loosely dotted)). We created 100000 graphs.

can first observe a mostly convex behavior, only in the last step before reach-
ing the optimal TSP tour a sudden drop occurs. It would be interesting to
derive an asymptotic description of these curves. An intuitive guess would
point to an exponential function, but so far we could not find a theoretical
justification of this claim.
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3.A Appendix

instance BasicIntegerTSP HC | n HC | 4n/ log2 n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

ch150 13 7 74 150 2 435 9 5 223 14 6 129
kroA150 19 7 136 11 2 268 8 2 245 11 4 130
kroB150 179 8 148 72 2 301 34 4 315 21 4 168
pr152 16 13 184 5 3 214 5 3 205 9 4 174
u159 6 4 49 29 3 292 14 4 303 11 4 140
si175 52 10 183 99 6 494 40 8 415 44 7 263
brg180 44 4 103 54 2 185 102 18 359 24 2 27
rat195 347 6 274 241 3 491 272 4 419 267 5 322
d198 10986 10 301 483 7 894 1094 10 582 3986 9 326
kroA200 677 8 237 177 2 362 941 3 353 690 5 238
kroB200 31 5 121 37 3 292 23 3 269 31 4 164
gr202 39 11 77 2430 3 1216 61 8 330 60 8 217
tsp225 178 9 261 1113 3 981 138 6 551 151 6 341
pr226 5183 10 409 18 1 593 13 1 585 59 3 357
gr229 239 6 311 2984 4 1056 172 7 490 173 8 324
gil262 179 7 268 1052 2 807 169 3 564 217 4 368
a280 157 11 143 – – – 124 3 733 181 7 352
pr299 9263 9 413 4051 2 782 1998 5 745 1716 5 455
lin318 6885 8 357 457 2 756 274 5 660 275 5 355
rd400 2401 9 467 9329 5 1494 983 6 1018 1579 8 539
gr431 2239 9 453 – – – 4748 9 1734 4214 10 833
pcb442 2737 11 501 – – – 3830 16 1796 2277 15 888
u574 17354 6 423 – – – 18050 4 1290 8664 4 629
gr666 17711 8 789 – – – 23212 4 3104 18031 7 1408
rat783 30156 6 457 – – – – – – – – –
mean ratio 6.016088 0.890955 0.804727

RE A 150 23 8 100 103 5 363 36 5 238 28 6 162
RE B 150 13 7 78 99 1 424 13 3 255 14 4 146
RE C 150 9 5 70 21 1 235 7 3 195 7 3 98
RE D 150 8 6 60 50 2 274 7 4 197 7 4 112
RE E 150 9 7 55 76 1 339 22 4 274 17 5 149
mean RE 150 12.4 6.6 72.6 69.8 2 327 17 3.8 231.8 14.6 4.4 133.4
RE A 200 72 7 163 560 3 613 77 4 376 157 6 304
RE B 200 125 7 148 452 2 582 76 6 348 205 5 250
RE C 200 84 8 178 107 1 373 35 4 341 43 4 220
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instance BasicIntegerTSP HC | n HC | 4n/ log2 n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

RE D 200 29 5 102 173 2 425 40 3 336 44 5 190
RE E 200 65 9 139 411 2 561 29 4 301 21 2 151
mean RE 200 75 7.2 146 340.6 2 510.8 51.4 4.2 340.4 94 4.4 223
RE A 250 138 9 186 1154 4 923 158 6 540 163 7 334
RE B 250 642 7 263 689 3 599 198 5 497 533 5 359
RE C 250 156 6 219 1545 1 846 57 3 333 136 4 275
RE D 250 273 6 220 501 2 542 192 6 479 199 5 292
RE E 250 103 5 156 339 1 675 70 4 511 105 4 252
mean RE 250 262.4 6.6 208.8 845.6 2.2 717 135 4.8 472 227.2 5 302.4
RE A 300 866 6 295 3574 2 1142 575 5 648 460 4 357
RE B 300 1411 8 348 4297 3 1059 627 4 672 865 6 402
RE C 300 1071 8 339 2071 3 848 236 6 567 687 7 474
RE D 300 229 6 290 2419 4 962 320 5 544 339 5 416
RE E 300 577 7 272 1543 3 726 283 6 526 436 6 344
mean RE 300 830.8 7 308.8 2780.8 3 947.4 408.2 5.2 591.4 557.4 5.6 398.6
RE A 350 411 5 252 3186 2 904 332 3 657 286 4 377
RE B 350 1021 8 339 11818 2 1102 1234 7 691 985 5 463
RE C 350 248 6 207 1243 2 936 232 4 750 358 5 390
RE D 350 1718 9 412 4271 3 1087 529 3 691 957 5 428
RE E 350 556 5 261 4560 3 1208 485 4 695 323 4 408
mean RE 350 790.8 6.6 294.2 5015.6 2.4 1047.4 562.4 4.2 696.8 581.8 4.6 413.2
RE A 400 8456 8 454 82054 3 1328 10463 5 980 8245 5 594
RE B 400 88849 7 438 1043519 2 1661 57469 5 879 39759 6 589
RE C 400 780 6 312 53580 3 1755 779 6 858 875 4 450
RE D 400 2052 8 451 122357 2 1998 1546 4 796 1081 4 434
RE E 400 2847 7 332 222902 2 1409 2450 4 660 2151 4 515
mean RE 400 20596.8 7.2 397.4 304882.4 2.4 1630.2 14541.4 4.8 834.6 10422.2 4.6 516.4
RE A 450 2107 5 279 – – – 2947 3 872 3595 4 535
RE B 450 68338 8 413 – – – 57921 8 906 94135 6 575
RE C 450 46360 10 596 – – – 33505 6 1166 13425 7 723
RE D 450 1212 6 368 – – – 1718 3 902 1644 4 520
RE E 450 1539 8 391 – – – 2438 5 1098 1345 7 637
mean RE 450 23911.2 7.4 409.4 – – – 19705.8 5 988.8 22828.8 5.6 598
RE A 500 15330 6 436 – – – 7531 4 1000 10323 5 629
RE B 500 16883 6 352 – – – 33464 4 1558 79362 5 727
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instance BasicIntegerTSP HC | n HC | 4n/ log2 n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

RE C 500 3724 5 428 – – – 1337 4 955 1437 5 585
RE D 500 322951 9 567 – – – 339694 7 1236 307921 6 743
RE E 500 243378 9 679 – – – 110212 4 1113 134563 9 889
mean RE 500 120453.2 7 492.4 – – – 98447.6 4.6 1172.4 106721.2 6 714.6
mean ratio 12.132531 0.898420 1.040018

mean ratio all 9.760849 0.895621 0.951784

Table 3.8: Results for BasicIntegerTSP and for different variants of the approach which uses the hierarchical clus-
tering. Mean ratios refer to the arithmetic means over ratios between the running times of the particular approaches
and the running time of the BasicIntegerTSP. “sec.” is the time in seconds, “#i.” the number of iterations and
“#c.” the number of subtour elimination constraints added to the ILP before starting the last iteration. The entries
“–” by TSPLIB instances cannot be computed with 16 GB RAM or would take more than 12 hours.

• BasicIntegerTSP

• HC | n – hierarchical clustering; the constraints cannot be dropped and the maximum size of a solved cluster
is u = n (i.e. in fact, there is no upper bound)

• HC | 4n/ log2 n – hierarchical clustering; the constraints cannot be dropped and the maximum size of a
solved cluster is u = 4 n

log2 n

• HCD | 4n/ log2 n – hierarchical clustering; the constraints can be dropped and the maximum size of a
solved cluster is u = 4 n

log2 n
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instance BasicIntegerTSP C | ⌊n/5⌋ RC3 | ⌊n/5⌋ RC3 | n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

ch150 13 7 74 12 6 114 9 6 109 16 7 117 14 6 129
kroA150 19 7 136 25 6 187 43 6 166 33 5 185 11 4 130
kroB150 179 8 148 53 4 219 138 5 215 44 5 202 21 4 168
pr152 16 13 184 17 12 181 17 11 204 18 12 181 9 4 174
u159 6 4 49 6 4 149 5 5 151 3 3 70 11 4 140
si175 52 10 183 31 10 213 55 13 250 35 9 196 44 7 263
brg180 44 4 103 17 3 81 19 8 102 121 11 316 24 2 27
rat195 347 6 274 246 4 268 275 6 315 114 6 257 267 5 322
d198 10986 10 301 4253 11 315 – – – 4762 9 321 3986 9 326
kroA200 677 8 237 332 6 214 350 5 190 287 4 171 690 5 238
kroB200 31 5 121 29 5 148 21 5 147 32 4 123 31 4 164
gr202 39 11 77 50 8 233 36 6 174 25 6 143 60 8 217
tsp225 178 9 261 100 9 223 84 10 235 100 8 300 151 6 341
pr226 5183 10 409 3614 6 363 36744 5 403 12944 9 415 59 3 357
gr229 239 6 311 335 6 289 152 6 256 311 7 341 173 8 324
gil262 179 7 268 250 8 250 133 7 268 152 6 274 217 4 368
a280 157 11 143 61 4 299 196 11 350 117 9 221 181 7 352
pr299 9263 9 413 6376 7 387 7410 6 416 16059 6 414 1716 5 455
lin318 6885 8 357 537 7 331 386 6 364 1560 6 391 275 5 355
rd400 2401 9 467 1212 7 420 1827 7 438 1522 8 398 1579 8 539
gr431 2239 9 453 3098 9 626 3384 9 647 2496 10 704 4214 10 833
pcb442 2737 11 501 3868 16 770 1815 17 567 2626 16 594 2277 15 888
u574 17354 6 423 11702 4 498 35204 5 580 13722 5 572 8664 4 629
gr666 17711 8 789 11756 7 919 14223 7 1001 13573 7 1002 18031 7 1408
rat783 30156 6 457 184381 5 701 37805 5 735 38630 6 779 – – –
mean ratio 1.014009 1.170299 0.983280 0.804727

RE A 150 23 8 100 18 5 142 26 6 141 36 7 155 28 6 162
RE B 150 13 7 78 8 4 117 13 5 129 7 4 86 14 4 146
RE C 150 9 5 70 6 4 63 8 4 111 9 5 89 7 3 98
RE D 150 8 6 60 7 4 100 8 5 97 6 4 78 7 4 112
RE E 150 9 7 55 9 6 103 8 4 103 10 4 114 17 5 149
mean RE 150 12.4 6.6 72.6 9.6 4.6 105 12.6 4.8 116.2 13.6 4.8 104.4 14.6 4.4 133.4
RE A 200 72 7 163 54 7 218 69 6 237 81 6 223 157 6 304
RE B 200 125 7 148 97 6 217 64 6 213 58 5 199 205 5 250
RE C 200 84 8 178 39 6 181 30 6 140 54 7 159 43 4 220
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instance BasicIntegerTSP C | ⌊n/5⌋ RC3 | ⌊n/5⌋ RC3 | n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

RE D 200 29 5 102 52 4 204 34 3 194 36 4 147 44 5 190
RE E 200 65 9 139 36 5 217 26 6 144 54 6 193 21 2 151
mean RE 200 75 7.2 146 55.6 5.6 207.4 44.6 5.4 185.6 56.6 5.6 184.2 94 4.4 223
RE A 250 138 9 186 160 8 258 338 9 287 119 7 242 163 7 334
RE B 250 642 7 263 306 6 295 542 5 313 366 6 259 533 5 359
RE C 250 156 6 219 104 4 175 110 6 229 135 5 211 136 4 275
RE D 250 273 6 220 186 6 262 377 6 316 403 7 293 199 5 292
RE E 250 103 5 156 66 5 207 68 4 271 110 5 239 105 4 252
mean RE 250 262.4 6.6 208.8 164.4 5.8 239.4 287 6 283.2 226.6 6 248.8 227.2 5 302.4
RE A 300 866 6 295 1233 7 343 576 6 324 467 5 311 460 4 357
RE B 300 1411 8 348 1139 6 391 1100 7 431 1146 7 372 865 6 402
RE C 300 1071 8 339 608 6 392 331 6 314 458 6 312 687 7 474
RE D 300 229 6 290 276 6 321 268 7 307 396 7 374 339 5 416
RE E 300 577 7 272 353 7 322 353 5 320 464 6 334 436 6 344
mean RE 300 830.8 7 308.8 721.8 6.4 353.8 525.6 6.2 339.2 586.2 6.2 340.6 557.4 5.6 398.6
RE A 350 411 5 252 695 5 275 513 5 277 375 4 268 286 4 377
RE B 350 1021 8 339 793 7 363 1027 8 362 900 7 353 985 5 463
RE C 350 248 6 207 196 5 232 326 7 280 296 5 310 358 5 390
RE D 350 1718 9 412 749 8 385 1047 5 381 781 6 428 957 5 428
RE E 350 556 5 261 471 6 356 364 4 368 352 4 339 323 4 408
mean RE 350 790.8 6.6 294.2 580.8 6.2 322.2 655.4 5.8 333.6 540.8 5.2 339.6 581.8 4.6 413.2
RE A 400 8456 8 454 16648 6 471 24941 7 489 28803 7 516 8245 5 594
RE B 400 88849 7 438 72010 7 496 77325 7 503 59499 7 497 39759 6 589
RE C 400 780 6 312 1198 6 430 831 5 406 1095 7 453 875 4 450
RE D 400 2052 8 451 1639 5 436 591 5 454 1595 6 452 1081 4 434
RE E 400 2847 7 332 1602 6 434 3724 5 390 1608 6 408 2151 4 515
mean RE 400 20596.8 7.2 397.4 18619.4 6 453.4 21482.4 5.8 448.4 18520 6.6 465.2 10422.2 4.6 516.4
RE A 450 2107 5 279 2921 4 333 2915 5 456 1385 4 383 3595 4 535
RE B 450 68338 8 413 15587 7 439 12828 5 442 24941 8 494 94135 6 575
RE C 450 46360 10 596 38930 9 697 35388 6 632 22898 7 647 13425 7 723
RE D 450 1212 6 368 948 6 460 2175 6 429 2120 7 388 1644 4 520
RE E 450 1539 8 391 2210 8 480 1786 7 434 1901 7 432 1345 7 637
mean RE 450 23911.2 7.4 409.4 12119.2 6.8 481.8 11018.4 5.8 478.6 10649 6.6 468.8 22828.8 5.6 598
RE A 500 15330 6 436 10907 6 576 14786 5 543 6118 6 531 10323 5 629
RE B 500 16883 6 352 12299 5 453 19681 4 483 186708 5 535 79362 5 727
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instance BasicIntegerTSP C | ⌊n/5⌋ RC3 | ⌊n/5⌋ RC3 | n HCD | 4n/ log2 n
sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c. sec. #i. #c.

RE C 500 3724 5 428 3063 6 519 2643 4 471 2339 5 440 1437 5 585
RE D 500 322951 9 567 514403 8 701 231961 6 618 314232 9 684 307921 6 743
RE E 500 243378 9 679 167194 8 718 125303 9 685 82051 9 671 134563 9 889
mean RE 500 120453.2 7 492.4 141573.2 6.6 593.4 78874.8 5.6 560 118289.6 6.8 572.2 106721.2 6 714.6
mean ratio 0.898743 0.964008 1.180427 1.040018

mean ratio all 0.943076 1.041367 1.104601 0.951784

Table 3.9: Comparison between different variants of our approach. Mean ratios refer to the arithmetic means over
ratios between the running times of the particular approaches and the running time of the BasicIntegerTSP. “sec.”
is the time in seconds, “#i.” the number of iterations and “#c.” the number of subtour elimination constraints
added to the ILP before starting the last iteration. The entries “–” by TSPLIB instances cannot be computed with
16 GB RAM.

• BasicIntegerTSP

• C | ⌊n/5⌋ – clustering for c = ⌊n
5
⌋

• RC3 | ⌊n/5⌋ – restricted clustering for c = ⌊n
5
⌋; the minimum size of a cluster is 3

• RC3 | n – restricted clustering for c = n; the minimum size of a cluster is 3

• HCD | 4n/ log2 n – hierarchical clustering; the constraints can be dropped and the maximum size of a
solved cluster is u = 4 n

log2 n



4. Minimization and
maximization versions of the
quadratic traveling salesman
problem‡

4.1 Introduction

In Chapter 3 we focused the traveling salesman problem (TSP), which asks
for a shortest tour through all vertices of a graph with respect to the distances
of the edges. In this chapter we consider an extension of the TSP concerning
its cost structure. While we are still looking for a tour, we do not simply
sum up the distances of the edges of the tour in the objective function, but
we consider the transition in each vertex, i.e. for each vertex i we take a cost
coefficient depending both on the predecessor and on the successor of i on the
tour into account. Thus, we can model transition costs such as the effort of
turning in path planning (see Aggarwal et al. [3]), changing the equipment
in scheduling or the transportation means in logistic networks from one edge
to another (see Amaldi et al. [4]).

Mathematically, this can be modeled via a quadratic objective function.
The resulting optimization problem is known as symmetric quadratic travel-
ing salesman problem (SQTSP). Due to its quadratic cost structure, it is in
general computationally much more difficult than the classical (linear) TSP.

4.1.1 Formal problem definition and related literature

In the SQTSP we associate costs with every pair of adjacent edges, repre-
sented by the corresponding triple of vertices. So, using an edge (i, j) followed

‡Joint work with Oswin Aichholzer, Anja Fischer, Johannes Fabian Meier,
Ulrich Pferschy and Alexander Pilz.
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by edge (j, k) in the tours incurs a certain cost value which is assigned to the
ordered triple denoted by 〈i, j, k〉. Since we deal with the symmetric case, the
direction of traversal of the tour is irrelevant and so the costs for 〈i, j, k〉 and
〈k, j, i〉 are identical. This allows us to half the number of objects considered
and so of variables below.

Our notation follows Fischer andHelmberg [21]. Let V = {1, 2, . . . , n}
be a vertex set. An edge e ..= (i, j) ∈ V {2} ..=

{
(i, j) = (j, i) : i, j ∈ V, i 6= j

}

consists of an undirected pair of vertices and a 2-edge e〈3〉 ..= 〈i, j, k〉 ∈
V 〈3〉 ..=

{
〈i, j, k〉 = 〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| = 3

}
is defined as a sequence

of three distinct vertices where the reverse sequence is regarded as identical.
If there is no danger of confusion, we simply write ij instead of (i, j) and ijk
instead of 〈i, j, k〉. Furthermore, we define a 2-graph G = (V,A) as a pair
of a vertex set and a set of 2-edges A ⊆ V 〈3〉. A 2-graph is called complete
if A = V 〈3〉. Finally, a tour T =

(
σ(1), σ(2), . . . , σ(n)

)
is a permutation σ of

the vertices 1, 2, . . . , n.
Given a complete 2-graph G = (V, V 〈3〉) with n ≥ 3 and non-negative 2-

edge costs ce〈3〉 ∈ R+
0 for every 2-edge e〈3〉 ∈ V 〈3〉, the symmetric quadratic

traveling salesman problem (SQTSP) asks for a shortest tour with re-
spect to the sum of the corresponding 2-costs ce〈3〉 of the 2-edges contained
in the tour, i. e. with respect to the objective value

OV (G, T ) ..=

(
n−2∑

i=1

cσ(i)σ(i+1)σ(i+2)

)
+ cσ(n−1)σ(n)σ(1) + cσ(n)σ(1)σ(2) . (4.1)

In this chapter we will also consider the maximization version of that
problem, which has not been studied in the literature before. Formally,
we introduce the maximum symmetric quadratic traveling salesman
problem (MaxSQTSP) which asks for the longest tour T w.r.t. (4.1). For
the complexity of MaxSQTSP one can easily derive the following result:

Theorem 4.1. MaxSQTSP is Max-SNP-hard.

Proof. We know that the maximum symmetric traveling salesman problem
(MaxTSP) with distances dij is Max-SNP-hard (see Gutin and Punnen
[25, ch. 12]). We can now define 2-edge costs cijk ..= djk for all ijk ∈ V 〈3〉, i <
k. Solving the resulting MaxSQTSP instance and the original MaxTSP in-
stance is obviously equivalent.

The quadratic TSP was first introduced by Jäger and Molitor [28] in
its more general asymmetric version with a motivation from biology (see also
Fischer et al. [19]). The authors provide seven different heuristics and two
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exact solution approaches for the asymmetric version. Polyhedral studies on
the SQTSP were done by Fischer and Helmberg [21] who also derived
several classes of strengthened subtour elimination constraints and proved
that many of them are facet defining. They also provide computational
comparisons based on an ILP linearization and on the standard separation
approach known from the TSP literature (see e.g. Reinelt [46]).

An important application of the SQTSP arises in robotics. Aggarwal et
al. [3] discussed the situation of a robot where changing the driving directions
is more energy consuming for larger turning angles. Thus one would prefer
a tour which keeps the movement of the robot as closely as possible to a
straight line. Formally, the following angular-metric traveling salesman
problem (AngleTSP) was introduced in the same paper [3]. We assume in
this case that the vertices correspond to points in the Euclidean plane and
that the costs cijk are given by the turning angles αijk defined as

cijk = αijk
..= arccos[0,π]

(
j − i

‖j − i‖ · k − j

‖k − j‖

)
(4.2)

where the dot · denotes the scalar product (for illustration see Figure 4.1). In
slight abuse of notation we will sometimes also use the notation 〈i, j, i〉, i, j ∈
V, i 6= j, for going from i to j and immediately back to i. Then (4.2) gives
αiji = arccos(−1) = π.

The same authors proved theNP-hardness of the AngleTSP and provided
a polynomial time approximation algorithm guaranteeing an approximation
ratio within O(logn) in [3].

In analogy to MaxSQTSP we will also consider the maximum angular-
metric traveling salesman problem (MaxAngleTSP) where the sum
of the turning angles should be large, i.e. the sum of the angles contained
between two adjacent edges should be as small as possible. Thus we can
consider the problem as a minimization problem where the costs ĉijk are
given by the inner angles as illustrated in Figure 4.1 and defined by

ĉijk = α̂ijk
..= π − αijk. (4.3)

The corresponding reverse objective value is defined as

ÔV (G, T ) ..= n · π − OV (G, T ). (4.4)

Our considerations of the MaxAngleTSP are related to Fekete and
Woeginger [17] and Dumitrescu et al. [16] where angle-restricted tours
are studied. Given points in the Euclidean plane the authors investigate in
which cases there exist tours such that all inner angles defined on (−π,+π]
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i

j

k

αijk

α̂ijk

Figure 4.1: Illustration of the turning angle αijk and of the inner angle α̂ijk.

belong to some set A ⊆ (−π,+π] and consider the complexity of the corre-
sponding decision problems. Fekete and Woeginger [17] prove that for
at least five vertices there always exists a so called “pseudo-convex” tour, i.e.,
a tour having only clockwise or only counterclockwise turns in all vertices.
Our result on the MaxAngleTSP for an odd number of vertices will imply
the theorem by Fekete and Woeginger [17] in this case. Furthermore,
Dumitrescu et al. [16] show that there always exists a tour such that the
largest inner angle is at most 2π

3
if the number of vertices is even.

4.1.2 Our contribution

The previous ILP-based solution approaches done by Fischer and Helm-
berg [21] perform all separation processes to identify the violated subtour
elimination constraints on fractional solutions of a linearized model. On con-
trary, motivated by the impressive performance of today’s ILP solvers we
will pursue the strategy to do all separation processes only on integral solu-
tions. The same idea was tested with very limited success for the standard
TSP in the previous chapter but turned out to be much more promising for
the SQTSP, as we will show in Section 4.2. In Section 4.4 we will com-
bine this approach with different variants of the classical subtour elimination
constraints (see e.g. Dantzig et al. [14]) and the strengthened variants
introduced by Fischer and Helmberg [21]. We also give experimental re-
sults for MaxSQTSP which was never treated in the literature before and
turns out to be very challenging from a computational point of view. These
computational studies belong to the main contributions of this paper and
show that in many cases our integral approach is faster in total and that
sophisticated separation strategies do not pay off in the minimization case.
The benchmark instances and the computational test environment of all our
experiments are described in Section 4.3.
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Second, we provide a completely different, mathematically interesting
MILP linearization for the AngleTSP and related problems combining angle
change and distances in Subsection 4.4.2. This model has the advantage that
only linearly many new variables are introduced. For instances with up to
55 vertices, where the angle change is weighted against the distances, the
running times can be improved. However, for larger instances or classical
AngleTSP instances our computation tests will illustrate that for large n
the branch-and-cut approaches based on the linearization by Fischer and
Helmberg [21] are faster.

The third main contribution concerns the theoretical solution structure of
the MaxAngleTSP. It is shown in Subsection 4.5.1 that there is a surprising
split of the problem: For n odd, it can be shown that the reverse optimal
solution value is always π, i. e. 180 degrees and the problem can be solved by
the standard ILP model without producing any subtours. Nevertheless, even
without subtour elimination constraints the solution of the remaining ILP,
a 2-matching problem (also called cycle cover problem), requires very large
running times. Fortunately, we can bypass this difficulty since we can char-
acterize the structure of an optimal solution and derive a simple constructive
algorithm to find such an optimal solution.

For n even, no such statement is possible and we can show that the reverse
objective function is bounded by 2π, i.e. 360 degrees.

4.2 Fractional vs. integral approach

The quadratic traveling salesman problem can be written as the following
quadratic integer program with binary edge variables xe = xij for e = (i, j) ∈
V {2}, and δ(i) := {e : e = (i, j) ∈ V {2}} denoting the set of all edges adjacent
with i ∈ V .

min/max
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

e=(i,j), f=(j,k)

ce〈3〉xexf (4.5)

s.t.
∑

e∈δ(i)
xe = 2 ∀ i ∈ V, (4.6)

∑

e=(i,j)∈V {2}
i,j∈S

xe ≤ |S| − 1 ∀ S ⊂ V, S 6= ∅, (4.7)

xe ∈ {0, 1} ∀ e ∈ V {2}. (4.8)
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In the objective function (4.5) for determining the objective function value
a cost ce〈3〉 for some 2-edge e〈3〉 ∈ V 〈3〉 is taken into account if both edges
e = (i, j) and f = (j, k) are contained in the tour. Equations (4.6) are the
degree constraint ensuring that each vertex is visited once, (4.7) are the well-
known subtour elimination constraints and, finally, (4.8) are the integrality
constraints on the edge variables. In comparison to the standard model for
the TSP introduced in Chapter 3 (see equations (3.1) – (3.4)) we just changed
the objective function.

This quadratic integer program can easily be linearized by introducing
a cubic number of additional integer variables ye〈3〉 = yijk for all 2-edges
e〈3〉 = 〈i, j, k〉 ∈ V 〈3〉, where yijk = 1 if and only if the vertices i, j and
k are visited in the tour in consecutive order. This linearization was first
introduced and extensively studied by Fischer and Helmberg [21].

min/max
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

ce〈3〉ye〈3〉 (4.9)

s.t. xe =
∑

k∈V \{i,j}
yijk

=
∑

k∈V \{i,j}
ykij ∀ e = (i, j) ∈ V {2}, (4.10)

∑

e∈δ(i)
xe = 2 ∀ i ∈ V, (4.11)

∑

e=(i,j)∈V {2}
i,j∈S

xe ≤ |S| − 1 ∀ S ⊂ V, S 6= ∅, (4.12)

xe ∈ {0, 1} ∀ e ∈ V {2}, (4.13)

ye〈3〉 ∈ {0, 1} ∀ e〈3〉 ∈ V 〈3〉. (4.14)

The x-variables have to correspond to a tour. Apart from that this model has
a linear objective function (4.9). Constraints (4.10) couple the x- and the y-
variables. Finally, conditions (4.14) ensure the integrality of the y-variables.

This ILP can be used to solve the SQTSP by using the “standard” TSP
techniques which were also applied by Fischer and Helmberg [21] and
by Fischer et al. [19] in their computational studies. In particular, we
can separate the subtour elimination constraints (4.7) in the same way as
described in the TSP literature (see e.g. Reinelt [46]), i. e. by identifying
the violated constraints on fractional solutions during the branch-and-cut
solution process solving appropriate min-cut problems.
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In this paper we focus on a different strategy which was already described
in Chapter 3: We relax all subtour constraints (4.7) first and then solve the
remaining model to integral optimality using an ILP solver. We get a 2-
matching (a cycle cover) usually containing more than one cycle. These
cycles can be found by a simple scan. Now, we can include a subtour elim-
ination constraint for each such cycle and resolve the enlarged ILP model.
This process is repeated and in each iteration additional subtour elimination
constraints are added until we get a solution consisting of only one cycle, i.e.
containing only an optimal SQTSP/MaxSQTSP tour.

A short pseudocode description of this approach is given in Algorithm 4.1
(which corresponds to Algorithm 3.1 in Chapter 3). An example illustrating
its execution is given in Figures 4.2–4.4: We can see that we need 3 iterations
(ILP solver runs) and 4 subtour elimination constraints to solve the problem
to optimality.

Require: SQTSP/MaxSQTSP instance
Ensure: an optimal SQTSP/MaxSQTSP tour
1: define current model as (4.6), (4.8), (4.9), (4.10), and (4.14);
2: repeat
3: solve the current model to optimality by an ILP solver;
4: if solution contains no subtour then
5: return the solution as optimal tour;
6: else
7: find all subtours of the solution and add the corresponding subtour

elimination constraints of type (4.7) to the current model;
8: end if
9: until optimal tour found;

Algorithm 4.1: Main idea of our elementary integral approach.

Let us concentrate on the subtour elimination constraints (4.7) first. They
can be expressed equivalently by the following cut constraints:

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe ≥ 2 ∀ S ⊂ V, S 6= ∅. (4.15)

Although mathematically equivalent, it was observed that the two versions
of forbidding a subtour may result in quite different performances of the ILP
solver in the TSP context (see Chapter 3). Thus we tested these two variants
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Figure 4.2: Angle-instance
with n = 30: Iteration 1.

Figure 4.3: Angle-instance
with n = 30: Iteration 2.

Figure 4.4: Angle-instance
with n = 30: Optimal

AngleTSP tour.

together with the combined variant

∑

e=(i,j)∈V {2}
i,j∈S

xe ≤ |S| − 1

∀ S ⊂ V, S 6= ∅
if |S| ≤ 2n+ 1

3

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe ≥ 2 if |S| > 2n+ 1

3

, (4.16)

where we chose the variant which adds less non-zero entries to the overall
constraint matrix (see also Section 1 in Dey et al. [15] for some comments
on constraints with large support). The computational results are summa-
rized in Table 4.1 (see Section 4.3 for detailed description of the benchmark
instances and of the test environment). Our tests will show that the com-
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Instance I I I
(constr. (4.7)) (constr. (4.15)) (constr. (4.16))

Angle 25 1.3 1.11 1.11
Angle 30 3.3 1.01 1.01
Angle 35 6.6 1.08 1.08
Angle 40 57.9 1.06 1.06
Angle 45 129.1 1.12 1.12
Angle 50 321.3 1.00 1.00
Angle 55 1099.8 1.07 1.07
mean 1.07 1.07

Angle-Distance 50 19.2 0.98 0.98
Angle-Distance 55 80.6 1.02 1.02
Angle-Distance 60 68.5 1.01 1.01
Angle-Distance 65 104.3 1.10 1.08
Angle-Distance 70 543.4 1.01 1.01
Angle-Distance 75 773.2 0.98 0.98
Angle-Distance 80 1719.5 0.95 0.95
mean 1.00 1.00

Random 20 3.8 0.97 1.05
Random 25 34.2 1.12 1.05
Random 30 331.4 0.82 0.83
Random 35 2979.1 1.03 0.92
mean 0.98 0.96

Table 4.1: Minimization case: Comparing the running times of the ap-
proaches I (subtour elimination constraints as in (4.7)), I (subtour elimina-
tion constraints as in (4.15)) and the elementary integral approach I (subtour
elimination constraints as in (4.16)).

bined variant (4.16) tends to slightly outperform the other two variants for
randomly generated instances and for some AngleTSP instances, where the
angle changes are weighted against the distances for larger n. Since this rep-
resentation of subtour elimination constraints was also used in Chapter 3 for
computational tests, we stick to using (4.16) for the basic reference methods
F and I, i. e. for the elementary fractional and elementary integral approach,
respectively, in the rest of this chapter.

4.3 Computational experiments

Since a major part of this chapter relies on computational experiments, we
describe in this section the test setup.

4.3.1 Benchmark instances

Our benchmark instances are mainly based on the instance specification de-
veloped by Fischer [20] and by Fischer and Helmberg [21], however, we
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usually do not round the costs to integers since the second MILP lineariza-
tion we will introduce (see Section 4.4.2) requires the exact turning angle
values α for instances of the AngleTSP or variants thereof. We test three
instance classes:

Angle-instances are based on points in the Euclidean plane: First, we
choose n points discrete uniformly at random out of {0, . . . , 500}2 and
then compute the turning angles α which we multiply by 1000 first and
then we round them to 12 decimal places. The multiplicative constant
of 1000 is introduced to allow a comparison of our programs with the
work by Fischer [20].

Instances of this type are named Angle n where n denotes the number
of points/vertices.

Angle-Distance-instances extend the above Angle-instances by combin-
ing them with the Euclidean distances between the points in a weighted
sum. Taking the identical point sets in the plane as generated for An-
gle n (to allow a better comparison) we denote the Euclidean distances
between vertices i and j as dij. For a parameter ρ ∈ R+

0 we construct
SQTSP-costs as follows:

cijk ..= 100

(
ρ · αijk +

dij + djk
2

)
(4.17)

We again round all costs to 12 decimal places.

This kind of instances was introduced by Savla et al. [48] for an ap-
proximate solution of the TSP for Dubins vehicle, which has appli-
cations in robotics. These instances are between Angle-instances (for
ρ → ∞) and standard TSP instances (for ρ = 0). For compatibility
with the literature we set ρ = 40 for all our tests as done by Fis-
cher [20].

Instances of this type are named Angle-Distance n.

Random-instances assign random costs ce〈3〉 to all 2-edges e〈3〉 ∈ V 〈3〉,
in particular the costs are chosen discrete uniformly at random from
{0, . . . , 10000}.
The resulting instances are named Random n.

For each type of instance and each size n we generated 10 test instances.



4.4. MINIMIZATION PROBLEM 131

4.3.2 Layout of test results

The tables containing computational results are all created in the following
way: The first column always contains the instance type and size. The
second column contains the running times for the first method which acts as a
reference method in the particular table. All further columns report the ratios
between the running times of the particular approaches and the reference
method. The only exception concerns the root node ratios in Table 4.2 where
the ratios between the values of the LP relaxation in the root node and the
optimal solution values are reported. We generated 10 instances for every
instance type and every size n and report the mean values over these 10
instances, in particular arithmetic means for running times and geometric
means for all ratios. Entries for instances where a particular method cannot
be used are marked by “–” and, finally, entries which could be expected to
cause excessive running times were omitted from the tests and are marked
by “Ø”.

4.3.3 Test environment

All tests were run on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with
16 GB RAM under Linux1 and all programs were implemented in C++2 by
using CPLEX3 as the ILP solver. Moreover, in order to guarantee the relative
reproducibility of our computational results, we (i) allowed no additional
swap memory and (ii) ran all tests separately without other user processes
in background.

4.4 Minimization problem

The minimization problem SQTSP and its special case AngleTSP were ex-
haustively studied by Fischer and Helmberg [21] from a theoretical point
of view: After introducing the ILP linearization (4.9)–(4.14), stronger forms
of subtour elimination constraints which also involve the y-variables are de-
scribed and analyzed. Their paper also contains a small computational study
which is based on a larger set of computational experiments reported by Fis-
cher [20]. However, the authors only deal with the “standard” fractional
approach and its variants.

1Precise version: Linux 3.5.0-23-generic #35∼precise1-Ubuntu SMP x86 64 x86 64
x86 64 GNU/Linux.

2Precise compiler version: gcc version 4.8.1.
3Precise version: IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.0.
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One of the main goals of this paper is to provide an exhaustive com-
putational comparison of different solution strategies. First, we compare
the elementary fractional approach with the elementary integral approach
and then we combine both approaches with the stronger subtour elimination
constraints from [21] in Section 4.4.1. In this section we also examine some
weaker types of subtour elimination constraints. Finally, in Section 4.4.2 we
introduce a new and completely different MILP linearization with only a lin-
ear number of additional variables. It is based on a geometric argument and
works only for AngleTSP and Angle-Distance-instances.

Instance F FL I IL ratio ratioL

Angle 25 1.6 1.55 0.91 1.30 0.91 0.89
Angle 30 3.7 1.98 0.95 1.72 0.92 0.90
Angle 35 7.7 3.39 0.92 2.77 0.91 0.88
Angle 40 63.9 5.30 0.98 4.03 0.91 0.86
Angle 45 148.1 10.02 0.84 9.12 0.90 0.86
Angle 50 443.9 Ø 0.81 Ø 0.91 Ø
Angle 55 2183.3 Ø 0.86 Ø 0.91 Ø
mean 3.53 0.89 2.96 0.91 0.88

Angle-Distance 30 0.8 0.59 1.04 0.56 0.98 0.97
Angle-Distance 35 2.3 0.53 0.96 0.43 0.97 0.96
Angle-Distance 40 3.4 0.60 0.90 0.53 0.97 0.96
Angle-Distance 45 11.8 0.75 0.95 0.51 0.96 0.95
Angle-Distance 50 22.4 0.76 0.84 0.47 0.95 0.95
Angle-Distance 55 85.7 0.93 0.92 0.61 0.95 0.94
Angle-Distance 60 80.3 1.36 0.87 1.00 0.95 0.94
Angle-Distance 65 126.7 2.07 0.84 1.36 0.95 0.94
Angle-Distance 70 909.1 1.91 0.67 1.28 0.95 0.94
Angle-Distance 75 1035.8 4.55 0.77 3.11 0.95 0.93
Angle-Distance 80 3742.4 6.46a 0.60 3.91 0.95 0.93
mean 1.27 0.84 0.92 0.96 0.95

Random 20 4.6 – 0.90 – 0.66 –
Random 25 41.1 – 0.87 – 0.64 –
Random 30 306.1 – 0.90 – 0.63 –
Random 35 2990.1 – 0.81 – 0.62 –
mean – 0.87 – 0.64 –

Table 4.2: Minimization case: Comparing the running times of the elemen-

tary fractional approach F, the approach IL, the elementary integral ap-

proach I and the approach IL. Moreover, the table compares the respective
root node ratios (i. e. the ratio between root node value of the LP relaxation
and optimal solution value) of the two linearizations in columns ratio and

ratioL.

Our first computational results are given in Table 4.2. The first column
(F) contains the results for the elementary fractional and the third column

aMean of 9 instances (one instance did not fit into 16 GB RAM).
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(I) the results for the elementary integral approach. We can see that the el-
ementary integral approach outperforms the elementary fractional approach
significantly and, moreover, this trend seems to increase for larger n by all
classes of test instances. This behavior is quite surprising since the analogous
integral solution strategies are clearly outperformed by the fractional ones for
the standard TSP (cf Chapter 3). To find an explanation for this difference we
analyzed numerous test instances individually and could observe one main
difference between SQTSP and TSP (cf Chapter 3, especially Table 3.9):
The SQTSP instances usually produce significantly less subtour elimination
constraints than the TSP instances of similar size and thus solving them
involves much less ILP solver runs. In fact, we obtained less than 10 sub-
tour elimination constraints for most of our test instances. By studying the
particular stages of the solution process for the Angle- and Angle-Distance-
instances we could also observe that the structure of the generated subtours
is different: While the subtours in the TSP case are typically small and often
consist of only a few vertices and thus we usually have many of them (see
e.g. the example of Figures 3.2–3.13 in Chapter 3), for the SQTSP instances
we obtained large subtours. For the AngleTSP the subtours have the form
of large “circles” or “spiral” shapes. This behavior was also illustrated in
the example of Figures 4.2, 4.3 and 4.4, where only 4 subtour elimination
constraints were required for determining an optimal SQTSP tour.

4.4.1 Extending the subtour elimination constraints

In this section, we extend the elementary fractional and the elementary in-
tegral approach by including the subtour elimination constraints introduced
by Fischer and Helmberg [21]. We also examine some variants of these
constraints. More detailed descriptions and illustrations of the underlying
geometric ideas can be found in [20]. All computational results for the intro-
duced variants are summarized in Tables 4.3 and 4.4.

F(I)/I(I): We try to reduce the number of unnecessary subtour elimination
constraints in this variant. In fact, one subtour elimination constraint
can be skipped in every iteration as the corresponding tour is implicitly
excluded by the other ones. Thus we always omit the constraint for
the largest subtour (i. e. for the subtour which causes the most non-zero
entries in the constraint matrix).

Since we introduce in every iteration only one subtour elimination con-
straint less than in the elementary fractional / elementary integral ap-
proach, we cannot expect huge computational time improvements. In-
deed, the methods F(I)/I(I) perform similarly to F/I for the Angle-
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Instance F F(I) F(II) F(III) F(IV) F(V)

Angle 25 1.6 1.07 1.03 1.03 1.14 1.02
Angle 30 3.7 1.00 1.01 1.04 1.00 1.08
Angle 35 7.7 0.99 1.01 1.07 0.98 1.14
Angle 40 63.9 1.03 1.07 1.10 1.08 1.14
Angle 45 148.1 0.99 0.90 1.00 1.04 1.03
Angle 50 443.9 0.97 1.14 1.03 1.05 1.14
Angle 55 2183.3 1.03 1.06 1.06 1.00 1.12
mean 1.01 1.03 1.05 1.04 1.09

Angle-Distance 50 22.4 1.00 1.03 0.97 0.93 0.90
Angle-Distance 55 85.7 1.02 0.95 1.30 1.04 1.03
Angle-Distance 60 80.3 1.06 0.98 1.13 1.02 0.98
Angle-Distance 65 126.7 1.02 1.02 1.13 0.89 1.04
Angle-Distance 70 909.1 1.02 1.07 1.13 0.98 1.05
Angle-Distance 75 1035.8 1.05 1.15 1.43 1.21 1.13
Angle-Distance 80 3742.4 0.93 0.90 1.22 0.93 0.99
mean 1.01 1.01 1.18 0.99 1.01

Random 20 4.6 0.86 0.79 0.89 0.92 0.87
Random 25 41.1 0.76 0.94 0.92 0.89 0.82
Random 30 306.1 1.12 1.10 1.09 0.87 1.01
Random 35 2990.1 0.98 1.11 1.13 1.11 1.07
mean 0.92 0.98 1.00 0.94 0.94

Table 4.3: Minimization case: Comparing the running times of the elemen-
tary fractional approach F and other approaches using different variants of
subtour elimination constraints.

and Angle-Distance-instances. We can observe a larger variance of the
ratios for the Random-instances, but this trend does not seem to hold
for larger values of n.

F(II)/I(II): In this variant, we make the constraints (4.7) weaker by includ-
ing the x-variables only for pairs of vertices i, j which are connected
with an edge in the particular subtour. So we have

∑

e=(i,j)∈V {2}
i,j∈S
x∗
ij=1

xe ≤ |S| − 1 ∀ S ⊂ V, S 6= ∅ (4.18)

where x∗
ij = 1 if the vertices i and j are connected by an edge in

the current solution. Since there does not exist a cut version of such
subtour elimination constraint, we always use (4.18) independently of
the subtour size |S|.
The performance of this variant is mostly similar to our elementary
approaches. This is a bit surprising, because this kind of subtour elim-
ination constraints is significantly weaker from a theoretical point of
view if |S| > 3.
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Instance I I(I) I(II) I(III) I(IV) I(V)

Angle 25 1.4 1.08 1.01 1.10 1.13 1.03
Angle 30 3.4 1.01 1.03 1.04 1.04 1.07
Angle 35 6.8 1.04 1.04 1.06 1.00 1.17
Angle 40 59.5 0.95 0.98 0.95 0.99 1.09
Angle 45 125.7 1.04 1.02 1.07 1.04 1.15
Angle 50 323.1 1.11 1.12 0.96 1.09 1.23
Angle 55 1299.2 0.94 0.92 1.00 1.05 1.22
mean 1.02 1.02 1.02 1.05 1.13

Angle-Distance 50 19.1 1.11 1.26 1.02 1.10 1.14
Angle-Distance 55 78.2 0.94 1.13 1.12 1.09 1.25
Angle-Distance 60 70.4 0.92 1.04 0.90 0.97 0.97
Angle-Distance 65 102.6 1.01 1.14 1.09 1.13 1.08
Angle-Distance 70 444.7 1.13 1.55 1.17 1.40 1.26
Angle-Distance 75 784.1 0.98 0.94 1.07 0.96 1.10
Angle-Distance 80 1699.2 0.99 0.96 1.00 0.98 1.03
mean 1.01 1.13 1.05 1.08 1.11

Random 20 3.9 0.99 0.97 0.90 0.88 0.91
Random 25 37.0 0.76 0.88 0.82 0.92 0.79
Random 30 235.3 0.97 1.15 1.35 1.05 1.27
Random 35 2887.0 1.07 1.04 1.07 1.07 1.37
mean 0.94 1.00 1.01 0.98 1.06

Table 4.4: Minimization case: Comparing the running times of the elemen-
tary integral approach I and other approaches using different variants of
subtour elimination constraints.

F(III)/I(III): We use the strengthened variant of the subtour elimination
constraints introduced by Fischer and Helmberg [21]. They are
based on the idea that a y-variable yikj, ikj ∈ V 〈3〉, almost acts like an
x-variable xij , ij ∈ V {2}. If they are one in a solution both express that
the vertices i and j are close in the tour. So, in the following formulas we
do not only count the number of direct connections between the vertices
of some set S, but also the connections that leave S but immediately
return.

We get

∑

e=(i,j)∈V {2}
i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉

i,j∈S, k∈V \S

ye〈3〉 ≤ |S| − 1

∀ S ⊂ V, S 6= ∅
if |S| < n

2

∑

e=(i,j)∈V {2}
i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉

i,j∈S, k∈V (\S∪{t̂})

ye〈3〉 ≤ |S| − 1 if |S| ≥ n

2

(4.19)
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as a stronger form of (4.7) and, similarly,

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe − 2
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i,k∈S, j∈V \S

ye〈3〉 ≥ 2

∀ S ⊂ V, S 6= ∅
if |S| < n

2

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe − 2
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i,k∈S, j∈V \(S∪{t̂})

ye〈3〉 ≥ 2 if |S| ≥ n

2

(4.20)

as a stronger form of the cut variant (4.15), which is equivalent to
(4.19). These can be interpreted in the following way. We only count
those edges leaving S that do not immediately reenter S. Note, if |S| ≥
n
2
then we have to exclude one vertex t̂ ∈ V \S in summation in order to

not forbid tours in both variants (for detailed proofs see Fischer and
Helmberg [21]). Of course there are many possibilities how to deter-
mine this vertex; we just chose t̂ = argmaxk∈V \(S∪{t̂})mini,j∈S, i 6=j dikj
as the influence of this choice seems to be rather limited. Finally, we
keep the case distinction introduced in (4.16) and thus use (4.19) if
|S| ≤ 2n+1

3
and (4.20) otherwise.

Although these strengthened subtour elimination constraints are facet
defining for the SQTSP polytope as long as 2 ≤ |S| ≤ n − 3 and
the constraints are much stronger than (4.7) from a theoretical point
of view, we cannot observe any computational time improvements in
Tables 4.3 and 4.4. On the contrary, these kinds of subtour elimina-
tion constraints increase the computational times for almost all test
instance groups and this trend becomes even stronger for larger values
of n. Additionally, we want to note that determining a maximally vi-
olated inequality (4.19) in the case |S| < n

2
is an NP-hard problem

(see Fischer and Helmberg [21]), the complexity of the separation
problems is currently unknown.

F(IV)/I(IV): This variant combines the subtour elimination constraints
used in F(III) and I(III) with the idea introduced for F(II) and I(II),
however, this idea is adopted only for the y-variables. So we add the
associated y-variable into the set of constraints only if x∗

ij = 1 in (4.19)
or x∗

ik = 1 in (4.20), where x∗
ij = 1 if the vertices i and j are connected

by an edge in the current solution. In particular, we get
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∑

e=(i,j)∈V {2}
i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉

i,j∈S, k∈V \S
x∗
ij=1

ye〈3〉 ≤ |S| − 1

∀ S ⊂ V, S 6= ∅
if |S| < n

2

∑

e=(i,j)∈V {2}
i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉

i,j∈S, k∈V (\S∪{t̂})
x∗
ij=1

ye〈3〉 ≤ |S| − 1 if |S| ≥ n

2

(4.21)

as a variant of (4.19). Subsequently, we get

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe − 2
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i,k∈S, j∈V \S
x∗
ik=1

ye〈3〉 ≥ 2

∀ S ⊂ V, S 6= ∅
if |S| < n

2

∑

e=(i,j)∈V {2}

i∈S, j∈V \S

xe − 2
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i,k∈S, j∈V \(S∪{t̂})
x∗
ik=1

ye〈3〉 ≥ 2 if |S| ≥ n

2

(4.22)

as a variant of (4.20).

This idea tries to reduce the number of non-zero entries in the constraint
matrix and can be seen as the compromise between the elementary
approaches and variants F(III)/I(III). Obviously, we lose the facetness
of the added inequalities.

Looking at the running times, we can expect that these fluctuate be-
tween F/I and F(III)/I(III) as well. Indeed, in our tests the results for
the methods F(IV)/I(IV) are a bit worse than the results for F/I and
a bit better than the results for F(III)/I(III).

F(V)/I(V): We use an equivalent version of (4.19) or (4.20), respectively,
that only uses y-variables.

∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i∈S, j,k∈V \S

ye〈3〉 ≥ 2

∀ S ⊂ V, S 6= ∅
if |S| < n

2

∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i∈S, j,k∈V \S

ye〈3〉 + 2
∑

e〈3〉=〈i,j,k〉∈V 〈3〉

i,k∈S, j=t̂

ye〈3〉 ≥ 2 if |S| ≥ n

2

,
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(4.23)

where t̂ = argmaxk∈V \S\{t̂}mini,j∈S,i 6=j dikj. They can be interpreted
similarly to the constraints above. We only count those 2-edges that
leave the set S without immediately returning. In our tests, we always
use (4.23) independently of the subtour size |S|.
These constraints are facet defining if n ≥ 6 and 2 ≤ |S| ≤ n − 3
(see Fischer and Helmberg [21]), but do not speed up the solution
process, as it can be seen in Tables 4.3 and 4.4. The methods F(V)/I(V)
tend to perform worse for all instance groups (at least for larger n) and
they are significantly worse for the Angle-instances.

Finally, let us take a short overview of the computational results in Ta-
bles 4.3 and 4.4. We can observe that subtour elimination constraints which
are stronger from a theoretical point of view tend to slow down the algo-
rithm. This fact is surprising since one would expect that stronger models
will lead to better bounds during the solution process. One possible expla-
nation might be the number of non-zero entries in the constraint matrix (see
Dey et al. [15]): The methods F(I)/I(I) and F(II)/I(II) perform similarly to
the elementary approaches F/I, whereas variants F(III)/I(III), F(IV)/I(IV)
and F(V)/I(V) all require larger running times and all have a larger number
of non-zero entries in their constraint matrix. However, since we use the ILP
solver as a “black box”, this is only a guess.

4.4.2 A geometry-based MILP linearization for An-
gleTSP

The standard linearization described in Section 4.2 requires a cubic num-
ber of additional integer variables ye〈3〉 = yijk for all e〈3〉 = 〈i, j, k〉 ∈ V 〈3〉.
Exploiting the geometry of the AngleTSP we can derive a different lineariza-
tion adding only a linear number of real-valued variables. A related con-
struction was used by Meier and Clausen [36] for a single allocation hub
location problem. Clearly, this approach can be applied immediately also to
the Angle-Distance-instances by splitting the objective function into a linear
distance component and the turning angle:

min w1

∑

e∈V {2}

dexe + w2

∑

e〈3〉=〈i,j,k〉∈V 〈3〉

e=(i,j), f=(j,k)

αe〈3〉xexf (4.24)

Euclidean distances between vertices i and j are denoted by de = dij and
αe〈3〉 = αijk gives the turning angle as defined in (4.2). The parameters w1
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and w2 can be used to weight the two components of the objective function.
Our Angle-instances and Angle-Distance-instances defined in Section 4.3.1
correspond to the settings w1 = 0, w2 = 1000 and w1 = 100, w2 = 4000,
respectively.

The quadratic terms in the second part of (4.24) can be easily moved into
the set of constraints by introducing a new variable yj ∈ R+

0 for every vertex
j ∈ V corresponding to the turning angle of a tour in vertex j. Thus, we
replace (4.24) by

min w1

∑

e∈V {2}

dexe + w2

∑

j∈V
yj (4.25)

with

yj ≥
∑

i,k∈V \{j}
i<k

αijkxijxjk ∀j ∈ V (4.26)

as new constraints. We will now prove that the set of quadratic inequalities of
type (4.26) is—assuming that the degree constraints (4.6) and the integrality
conditions (4.8) are satisfied—equivalent to the following linear inequalities:

yj ≥
∑

k∈V \{j}
αijkxjk − π ∀i, j ∈ V, i 6= j. (4.27)

For the proof we need the following geometric lemma.

Lemma 4.2. For each i, j, k, l ∈ V with i 6= j, k 6= j and l 6= j we have

αijk + π ≥ αljk + αlji. (4.28)

Proof. Recall from (4.3) that α̂ijk = π − αijk denotes the inner angle. For
any l ∈ V we have α̂ijl + α̂ljk ≥ α̂ijk which shows the claim (using also the
symmetry of the first and last index in α̂).

Theorem 4.3. The set of constraints (4.6) and (4.26) is equivalent to the set
of constraints (4.6) and (4.27) for binary variables xij ∈ {0, 1}, i, j ∈ V {2},
and variables yj ∈ R+

0 , j ∈ V .

Proof. Assume first that (4.6) and (4.26) are satisfied. Let y ∈ V be fixed.
Then we can do the following calculation by applying Lemma 4.2 for a vertex
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l ∈ V, l 6= j:

yj ≥
∑

i,k∈V \{j}
i<k

αijkxijxjk ≥
∑

i,k∈V \{j}
i<k

(
αljk + αlji − π

)
xijxjk (4.29)

=
∑

i,k∈V \{j}
i<k

αljkxijxjk +
∑

i,k∈V \{j}
i<k

αljixijxjk − π
∑

i,k∈V \{j}
i<k

xijxjk (4.30)

i⇔k
=

∑

i,k∈V \{j}
i<k

αljkxijxjk +
∑

i,k∈V \{j}
k<i

αljkxkjxji − π
∑

i,k∈V \{j}
i<k

xijxjk (4.31)

=
∑

i,k∈V \{j}
i 6=k

αljkxijxjk − π
2

∑

i,k∈V \{j}
i 6=k

xijxjk. (4.32)

Then we eliminate the condition i 6= k by subtracting the sum for i = k and
exploit the binarity of the x-variables. This results in:

yj ≥
∑

i,k∈V \{j}
αljkxijxjk −

∑

k∈V \{j}
αljkxkjxkj

− π

2


 ∑

i,k∈V \{j}
xijxjk −

∑

k∈V \{j}
xjkxjk


 (4.33)

=
∑

k∈V \{j}
αljkxjk

∑

i∈V \{j}
xij −

∑

k∈V \{j}
αljkxkj

− π

2


 ∑

i∈V \{j}
xij

∑

k∈V \{j}
xjk −

∑

k∈V \{j}
xjk


 (4.34)

(4.6)
=

∑

k∈V \{j}
αljkxjk · 2−

∑

k∈V \{j}
αljkxkj − π (4.35)

=
∑

k∈V \{j}
αljkxjk − π. (4.36)

This shows that (4.6) and (4.26) together with the integrality of the x-
variables imply (4.27).

To prove the other direction, let x̂, ŷ fulfill (4.6) and (4.27). For every
j ∈ V , (4.6) implies the existence of ij and kj with x̂ijj = 1, x̂kjj = 1 and
x̂ij = 0 for all i ∈ V, i 6= ij , j 6= kj. Now we evaluate (4.27) for i = ij and get
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ŷj ≥
∑

k∈V \{j}
αijjkx̂jk − π = αijjkj + αijjij − π = αijjkj

=
∑

i,k∈V \{j}
i<k

αijkx̂ij x̂jk.
(4.37)

Therefore, x̂, ŷ also satisfy (4.26).

Computational experiments for the linearization given by (4.27) are re-
ported in Table 4.2. Two variants were tested, the former using the standard

separation process done on fractional solutions (column FL) and the latter

based on the integer subtour approach (column IL). It turns out that the lin-
earization works quite well for medium-sized Angle-Distance-instances with
up to 55 vertices where it is superior to the respective elementary versions.
However, for larger n it is clearly outperformed by the elementary fractional
and by the elementary integral approach. Moreover, the performance is sig-
nificantly worse for all Angle-instances. Recall that this approach can be
used neither for the Random-instances nor for the maximization problems.

From a theoretical perspective it is also interesting to look at the root node
gap, i. e. the difference between objective function values of the LP relaxation
in the root node of the ILP solver (without any subtour constraints) for both
linearizations and the optimal solution values. Clearly, these are the same
for the fractional and integral approaches since the differences in the subtour
elimination have effects only later. In Table 4.2 we report the corresponding

ratios in columns ratio and ratioL. It can be seen that the linearization with
(4.27) yields larger root node gaps for all instance classes. Yet they do not
differ for the Angle-Distance-instances as much as for the Angle-instances
which may explain the differences in performance. However, it should also
be pointed out that in the Angle-Distance-instances the linearizations of the
y variables is less significant than for the Angle-instances due to the weighted
sum in the objective function given by the parameters w1 and w2. It can be
assumed that the behavior of both linearizations would converge for both
models as ρ → 0, i. e. w2 → 0 in (4.25).

The close relationship to the TSP may also be the reason for the extremely
small variance between the root node ratios for different Angle-Distance-
instances. Beardwood et al. [8] proved that the expected length of an
optimal TSP tour is asymptotically equal to β

√
n, where β is a constant, if

uniformly random points in the Euclidean planes are considered. Moreover,
in Chapter 3 we empirically observed that this convergence property leads
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to very small variances of TSP solution values even for small values of n.
A similar behavior can be observed in Table 4.2 in the Appendix where the
average root node ratios for the Angle-Distance-instances do not vary at all.

Summarizing, this linearization does not yield competitive results for
large instances with at least 60 vertices and thus we did not consider it with
the other variants of subtour elimination constraints given in Section 4.4.1.

4.5 Maximization problem

In this section we deal with the maximization variant of SQTSP. First, we
focus on the MaxAngleTSP from a theoretical point of view and then we
provide computational tests for all instance classes of MaxSQTSP as in the
minimization case.

4.5.1 Theoretical Analysis of MaxAngleTSP

Recall that for MaxAngleTSP the vertices of the graph correspond to points
in the Euclidean plane and the weights dijk represent the turning angles
αijk for all i, j, k ∈ V, i, k 6= j. Moreover, in (4.3) and (4.4) we defined
inner angles α̂ijk

..= π − αijk and the corresponding reverse objective value

ÔV (G, T ) ..= n·π−OV (G, T ). It will be convenient to address MaxAngleTSP

as a minimization problem w. r. t. ÔV (G, T ).
While for SQTSP there was no fundamental difference between Angle-

instances and other instance groups, there is a surprising and highly inter-
esting dichotomous behavior to be observed for MaxAngleTSP. We will show
below that the optimal reverse objective value equals π for any instance if
n is odd. This means that for odd n the optimal solution value of MaxAn-
gleTSP does not require any computation at all. Note that this remarkable
result implies that the solution of MaxAngleTSP by our integral approach
will never produce any subtour elimination constraint if the vertices are in
general position (i.e. if no three vertices are on a line) and so we need ex-
actly one iteration step without adding subtour elimination constraints at
all. This follows from the observation that any partition of the odd vertex
set into subtours will contain at least one subset of odd cardinality which
again would have an optimal reverse objective value equal to π on its own.
As every subset of even cardinality implies a solution having a positive re-
verse objective value (at least for vertices in general position), the overall
reverse objective value of such solution is strictly greater than π and thus
this solution cannot be optimal. Nevertheless, even without subtours the
solution of the ILP model for odd instances of MaxAngleTSP by a standard
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solver requires extensive running times as described in Section 4.5.2. As an
alternative solution variant we will present a constructive algorithm which
calculates an optimal tour in polynomial time.

For n even no equivalent statement holds. In fact, the optimal value of
the reverse objective function can attain values between 0 and 2π.

MaxAngleTSP: n is odd

Let n be odd. First, we prove that ÔV (G, T ) ≥ π for every tour T and
thereafter we provide a constructive algorithm which yields a tour T ∗ reaching
this lower bound, i. e., with ÔV (G, T ∗) = π.

Let ijk be three vertices traversed in succession in a tour T . If the vertex
k lies left to the ray

#”
ij , we say that the tour T has a left orientation in the

vertex j. Otherwise, we say that the tour T has a right orientation in the
vertex j ∈ V (if the vertex k lies on the line ij, we say that the tour has a
right orientation in the vertex j as well).

Lemma 4.4. Let G = (V,E) be an instance of MaxAngleTSP. If n is odd,
then the following holds for any tour T :

ÔV (G, T ) ≥ π. (4.38)

Proof. Consider an arbitrary tour T in G and let L ⊆ V be the set of vertices
in which the tour T has a left orientation and R ⊆ V the set of vertices in
which the tour T has a right orientation. Furthermore, let us define the
turning angles of T in j as αT

j
..= αijk and the inner angles in j as α̂T

j
..= α̂ijk,

where ijk are three vertices traversed in succession in the tour T . Since the
tour T has to be closed, there is

∑

j∈L
αT
j −

∑

j∈R
αT
j = 2πk

for some k ∈ Z. The identity can be reformulated by using (4.3):
∑

j∈L
(π − α̂T

j )−
∑

j∈R
(π − α̂T

j ) = 2πk

(
|L| · π −

∑

j∈L
α̂T
j

)
−
(
|R| · π −

∑

j∈R
α̂T
j

)
= 2πk

(
|L| − |R|

)
π −

∑

j∈L
α̂T
j +

∑

j∈R
α̂T
j = 2πk.
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Since either |L| or |R| is odd, we get
∑

j∈R
α̂T
j −

∑

j∈L
α̂T
j = π + 2πk′

for some k′ ∈ Z. Moreover,∑

j∈V
α̂T
j =

∑

j∈R
α̂T
j +

∑

j∈L
α̂T
j ≥

∣∣∑

j∈R
α̂T
j −

∑

j∈L
α̂T
j

∣∣ ≥
∑

j∈R
α̂T
j −

∑

j∈L
α̂T
j ,

and thus

ÔV (G, T ) ≥ π + 2πk′.

ÔV (G, T ) ≥ 0 trivially implies

ÔV (G, T ) ≥ π.

Observe that the proof also reveals an interesting property of the structure
of T in case ÔV (G, T ) = π. This extremal situation can only happen if∑

j∈R α̂T
j +
∑

j∈L α̂
T
j equals

∣∣∑
j∈R α̂T

j −
∑

j∈L α̂
T
j

∣∣, which only happens if the
orientation of the tour is the same at all vertices.

Theorem 4.5. Let P be a set of n points in the Euclidean plane, with n
being odd. Then there exists a solution to the MaxAngleTSP with reverse
objective value π. The tour can be constructed in O(n logn) time.

Proof. Assume first that P is in general position, i. e., no three points are
on a line. Let p ∈ P be an extreme point of P , i. e., a vertex of the convex
hull CH(P ) of P , and let v be a line through p that separates P \ {p} into
two equal halves. For ease of presentation, we rotate the plane such that v
becomes vertical, in a way that the bottommost point of v inside the convex
hull of P be p. Let L ⊂ P be the points to the left of v and R ⊂ P be the
points to the right of it. We have |L| = |R| = n−1

2
. Let b be a line that (i)

contains a point of l ∈ L and a point of r ∈ R, that (ii) is directed from
r to l, and that (iii) has CH(L) in its left closed half-plane and CH(R) in
its right closed half-plane. See Figure 4.5 for an illustration. We call b the
counterclockwise bitangent of L and R. Note that p is to the left of b. We
set l1 ..= l and let l1 be the successor of p in our tour. Next, we consider the
counterclockwise bitangent of L \ {l1} and R, which is defined by two points
r′ ∈ R and l′ ∈ L\{l1}. Note that r′ may be different from r. We set r1 ..= r′

and let r1 be the successor of l1 in our tour. In general, we connect li to
the point ri that is on the counterclockwise bitangent of Li

..= L \ {l1, . . . , li}
and Ri−1

..= R \ {r1, . . . , ri−1}, and connect ri to the point li+1 that is on the
counterclockwise bitangent of Li and Ri. Finally, we connect r(n−1)/2 to p,
closing the tour.
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We show that the tour makes a clockwise turn at ri. Observe that li is to
the right of the counterclockwise bitangent β of Li and Ri−1, as it has been
on the counterclockwise bitangent of Li−1 and Ri−1 together with some point
r ∈ R; see Figure 4.6. By definition, ri is on β, and it is also by definition
that ri is to the right of v. Thus v and β divide the plane into four quadrants,
where li is on the upper-left quadrant, ri is on β between the lower-right and
the upper-right quadrant, and li+1 can only be in the lower-left quadrant or
on β between the upper-left and the lower-left quadrant. Hence, the tour
makes a clockwise turn at ri. Note that this also holds when L is empty
and we connect r(n−1)/2 to p. With the analogous arguments, we see that we
always make a clockwise turn at each point in L. Observe that the slope of
liri is less than the slope of β (ri is on β and li is in the upper-right quadrant),
while the slope of rili+1 is equal to or greater than the slope of β.

Thus, our edges always intersect v, and their slopes are increasing. We
can think of an upward-directed copy v′ of v that rotates counterclockwise
around p until it contains l1, at which time it continues rotating around l1
until it contains r1 and so on. The slope of v′ is increasing until it reaches p
again, where we can rotate it counterclockwise around p until it matches v
again. By this, v′ is in total rotated by π, which is thus our reverse objective
value. For an illustration of an optimal tour we refer to Figure 4.7.

Finally, observe that our argument also holds if there are three points on
a line. In fact, if we are to choose the next point of, say, L and there are two
points of L on the current counterclockwise bitangent, then we can choose
either of them. The next counterclockwise bitangent will be identical to the
current one, and we will end up with an angle of 0. Also, if our halving line v
has to contain additional points, we can slightly perturb it to a halving line
of P \ {p} that does not contain any point by a counterclockwise rotation.

It remains to show that our construction can be done in O(n logn) time.
Hershberger and Suri [27] give an O(n logn) time algorithm to construct
a data structure that maintains the convex hull while deleting a sequence of
up to n points. The overall cost of deleting these points is O(n logn). We
apply this independently to our sets L and R. Since the data structure of
Hershberger and Suri supports binary search [27, p. 254], one can apply
an algorithm by Guibas et al. [24, Lemma A.1] to find the counterclockwise
bitangent in O(logn) time in each iteration.

We remark that the proof is inspired by the technique used by Abel-
lanas [1, Theorem 3.1], where bitangents with both subsets on the same
side are used for creating a plane path that alternates between the two sub-
sets.
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R

Figure 4.5: Angle-instance with
n = 7: Construction of an
optimal tour: First bitangent.
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r

v
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R

Figure 4.6: Angle-instance with
n = 7: Construction of an
optimal tour: Second bitangent.

p

Figure 4.7: Angle-instance
with n = 7: Optimal
MaxAngleTSP tour.

Even case

Lemma 4.6. Let G = (V,E) be an instance of MaxAngleTSP. If n is even,
then for every optimal tour T ∗ there is:

0 ≤ ÔV (G, T ∗) ≤ 2π. (4.39)

Proof. The lower bound is trivial. To show the upper bound we apply the
algorithm described in Section 4.5.1 after removing an arbitrary vertex q to
obtain a tour T̃ on V \ {q}. Pick an arbitrary edge ij of T̃ and replace it by
the edges iq and qj, obtaining a tour T on V . The reverse objective value for
T̃ was π, and T̃ and T only differ in the inner angles at i, j and q. The sum
of the changes in these three inner angles is the angle sum of the triangle ijq,
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which is π. Hence, the reverse objective value for T can increase by at most
π, hence the upper bound of 2π. (Observe that this increase may be less

than π if, say, the edge jk of T̃ , k 6= i, intersects the interior of the triangle
ijq.)

Note that the lower bound can be reached e.g. if all vertices lie on a line.

4.5.2 Computational results for MaxSQTSP

Let us now focus on the both considered maximization variants of our prob-
lem MaxSQTSP and MaxAngleTSP from a computational point of view.
The results are summarized in Tables 4.5 and 4.6. They both use the ele-
mentary fractional approach (column F) as the reference method and thus
the ratios in the remaining columns are comparable. In particular, Table 4.5
contains the results for all methods based on the fractional and Table 4.6
for the integral separation process, respectively. As we have seen in Sub-
section 4.5.1, MaxAngleTSP behaves differently in the odd and in the even
case from a theoretical point of view. Thus, we evaluated the Angle- and
Angle-Distance-instances separately for n even and odd in our tables.

Angle-instances, n even: Similar to the minimization problems, all intro-
duced integral approaches beat their fractional counterparts. However,
different from the minimization case, the stronger subtour elimination
constraints improve the performance in the case of maximization. All
the methods F(III)/I(III), F(IV)/I(IV) and F(V)/I(V) beat the elemen-
tary integral approach. Moreover, the methods F(IV)/I(IV) lie between
the elementary approaches and the variants F(III)/I(III) as one could
expect from a theoretical point of view (for details see Section 4.4.1).
The best approach among all is I(III) for this instance type.

Angle-instances, n odd: As already proved in Section 4.5.1, the inclusion
of subtour elimination constraints is not necessary to solve these in-
stances (at least for points in non-collinear position). However, some
subtour elimination constraints can be separated inside the branch and
bound tree during the solution process. Consequently, we can observe
different solution times caused by the particular methods. In fact, the
elementary fractional approach performs as well as the elementary in-
tegral approach and moreover, we cannot observe a clear split between
the fractional and integral methods. Among all tested approaches, the
method F(III) outperforms the other ones significantly. Contrary to the
even case, the variants (II) and (IV) seem to slow down the solution
process.
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Instance F F(I) F(II) F(III) F(IV) F(V)

Angle 10 0.1 0.99 1.01 0.98 0.95 0.85
Angle 12 1.2 0.96 1.04 0.80 0.88 0.80
Angle 14 6.2 1.04 0.95 0.75 0.95 0.72
Angle 16 263.2 0.89 0.94 0.49 1.03 0.59
Angle 18 4270.8 0.97 1.16 0.38 0.98 0.57
mean 0.97 1.02 0.65 0.96 0.70

Angle 11 0.3 1.02 0.99 0.91 0.98 0.83
Angle 13 1.1 1.17 1.25 0.93 0.98 0.92
Angle 15 7.3 0.95 1.02 0.69 0.92 0.85
Angle 17 22.9 0.79 1.20 0.82 1.34 1.10
Angle 19 254.1 1.05 1.24 0.41 1.08 0.90
mean 0.99 1.13 0.72 1.05 0.92

Angle-Distance 16 0.8 0.98 1.00 0.94 1.01 0.97
Angle-Distance 18 1.3 0.99 1.07 0.81 1.04 0.95
Angle-Distance 20 2.8 0.98 1.02 0.56 1.09 0.83
Angle-Distance 22 24.4 0.86 0.89 0.41 0.86 0.55
Angle-Distance 24 50.0 0.97 0.92 0.44 1.18 0.63
Angle-Distance 26 304.8 0.85 1.10 0.42 1.19 0.62
mean 0.94 1.00 0.56 1.06 0.74

Angle-Distance 41 4.8 0.99 0.98 0.78 1.04 1.02
Angle-Distance 43 5.3 0.94 0.93 0.70 0.91 0.91
Angle-Distance 45 17.3 0.95 0.86 0.51 0.96 0.71
Angle-Distance 47 6.3 1.02 1.06 0.68 0.93 0.86
Angle-Distance 49 16.1 1.21 1.17 0.77 1.18 1.02
Angle-Distance 51 17.7 0.86 0.91 0.45 0.97 0.98
Angle-Distance 53 39.3 1.03 1.05 0.60 0.99 1.00
Angle-Distance 55 32.1 0.91 0.96 0.60 0.81 0.85
Angle-Distance 57 74.2 1.04 0.99 0.42 0.96 1.14
Angle-Distance 59 325.7 0.86 0.74 0.33 0.86 0.78
Angle-Distance 61 63.4 1.11 0.94 0.59 1.00 0.97
Angle-Distance 63 107.7 1.00 0.90 0.48 0.84 0.78
Angle-Distance 65 257.6 0.84 0.99 0.32 0.86 0.77
mean 0.98 0.95 0.54 0.94 0.90

Random 20 4.1 0.95 0.94 1.02 0.93 1.04
Random 25 39.8 0.90 1.02 1.01 0.75 0.92
Random 30 425.0 0.77 0.87 0.89 0.70 0.97
Random 35 3911.1 0.88 1.15 1.11 0.75 0.91
mean 0.87 0.99 1.00 0.78 0.96

Table 4.5: Maximization case: Comparing of the running times. We compare
the elementary fractional approach I with approaches using different variants
of subtour elimination constraints.

Angle-Distance-instances, n even: The variants F(III)/I(III) and F(V)/
I(V) yield the best running times in this case, similarly as for the Angle-
instances with n even. We can also observe that the integral approaches
outperform their fractional counterparts with the notable exceptions of
methods I(II) and I(IV) which surprisingly perform extremely poor.
Although the entries greater than 20 are always caused by one single
outlier instance, also the other ratios are quite high. The overall best
running times for this instance type are derived with the methods I(III)
and I(V), where I(III) slightly outperforms I(V).
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Instance F I I(I) I(II) I(III) I(IV) I(V)

Angle 10 0.1 0.95 0.95 0.97 0.96 0.96 0.83
Angle 12 1.2 0.95 0.97 1.05 0.77 0.86 0.75
Angle 14 6.2 0.86 0.84 1.12 0.69 0.96 0.71
Angle 16 263.2 0.62 0.58 1.04 0.44 1.04 0.49
Angle 18 4270.8 0.40 0.32 0.62 0.33 0.72 0.42
mean 0.72 0.68 0.94 0.59 0.90 0.62

Angle 11 0.3 0.97 0.94 0.93 0.92 0.90 0.81
Angle 13 1.1 1.00 0.96 1.16 1.01 1.11 0.84
Angle 15 7.3 0.92 0.77 1.02 0.83 1.04 0.92
Angle 17 22.9 1.34 1.08 1.34 0.92 1.23 0.97
Angle 19 254.1 0.83 0.79 0.88 0.69 0.89 0.72
mean 1.00 0.90 1.05 0.87 1.03 0.85

Angle-Distance 16 0.8 1.05 0.98 1.64 0.93 1.69 0.99
Angle-Distance 18 1.3 1.03 1.11 2.28 0.79 2.20 0.73
Angle-Distance 20 2.8 1.07 1.02 5.91 0.61 4.73 0.62
Angle-Distance 22 24.4 0.69 0.65 22.31 0.33 21.24 0.44
Angle-Distance 24 50.0 0.84 0.69 9.04 0.46 8.57 0.48
Angle-Distance 26 304.8 0.73 0.59 20.80 0.37 12.65 0.45
mean 0.89 0.81 6.73 0.54 5.86 0.59

Angle-Distance 41 4.8 1.16 1.20 1.30 0.91 1.35 1.11
Angle-Distance 43 5.3 1.03 1.01 0.88 0.99 0.96 1.10
Angle-Distance 45 17.3 0.98 1.04 0.96 0.74 1.27 0.99
Angle-Distance 47 6.3 1.16 1.19 1.11 0.86 1.11 0.91
Angle-Distance 49 16.1 1.13 1.22 1.27 1.11 1.24 1.06
Angle-Distance 51 17.7 1.03 1.08 0.96 0.62 1.10 0.81
Angle-Distance 53 39.3 1.26 0.97 1.29 0.89 1.18 0.89
Angle-Distance 55 32.1 0.82 0.96 0.83 0.80 1.02 0.82
Angle-Distance 57 74.2 1.32 1.27 1.19 0.71 1.45 0.83
Angle-Distance 59 325.7 0.90 0.98 1.05 0.60 0.77 0.69
Angle-Distance 61 63.4 0.94 0.89 0.87 0.71 1.01 0.82
Angle-Distance 63 107.7 1.16 1.13 1.24 0.75 1.45 0.93
Angle-Distance 65 257.6 0.80 0.85 0.77 0.51 0.69 0.60
mean 1.04 1.05 1.04 0.77 1.10 0.88

Random 20 4.1 0.81 0.93 0.85 0.86 0.83 0.98
Random 25 39.8 0.80 0.90 0.64 0.89 0.73 0.88
Random 30 425.0 0.86 0.72 0.73 0.72 0.74 0.97
Random 35 3911.1 1.02 0.80 0.77 0.87 0.74 0.93
mean 0.87 0.83 0.74 0.83 0.76 0.94

Table 4.6: Maximization case: Comparing of the running times. We compare
the elementary integral approach I with the elementary fractional approach
F and with approaches using different variants of subtour elimination con-
straints.

Angle-Distance-instances, n odd: For these instances the trends are less
clear. We can see that even the absolute running times in the first
column do not increase monotonically and similar variances can be
observed in other columns. Looking at all the table entries and not
only the mean values, the method F(III) provides the best performance.
Moreover, apart from the methods F(V)/I(V) the fractional approaches
outperform their integral counterparts.
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A rather surprising observation shows that many instances yield the
same optimal tour as it would be obtained by solving the correspond-
ing Angle-instances on the same point sets. Of course, the optimization
goals of maximizing the turning angles and the distances are not con-
tradictory, but we could observe that even for ρ = 0 we often got
an optimal MaxAngleTSP tour. For these instances, the optimal tour
does not change by increasing ρ, however, a significant increase of the
running time occurs for larger values of ρ.

Random-instances: Finally, the integral methods mostly beat their frac-
tional counterparts for Random-instances. The methods I(II) and I(IV)
yield the best running times, although I(I) and I(III) do not lag far be-
hind.

Summing up the results for the maximization problem we cannot iden-
tify a clear winner for all instance classes. Different from the minimization
case, the variants of stronger subtour elimination constraints improve the
performance in many cases. In particular, the stronger subtour elimination
constraints (III) improve the performance for all angle-based test instances.
However,

• the integral approach outperforms the fractional one if n is even and

• the fractional approach outperforms the integral one if n is odd

for both the Angle- and Angle-Distance-instance classes.
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This PhD thesis deals with three different problems: the data arrangement
problem on regular trees (DAPT), the traveling salesman problem (TSP)
and the symmetric quadratic traveling salesman problem in its minimiza-
tion (SQTSP) and maximization (MaxSQTSP) version. Our contribution
related to the DAPT focuses on some approximable special cases of the
problem and on its complexity. Our contributions concerning the TSP,
SQTSP and MaxSQTSP address computational tests and a special case of
the MaxSQTSP.

Summary of the contribution concerning the DAPT. The DAPT is
an NP-hard special case of the generic graph embedding problem (GEP). In
Chapter 2 we deal with the case where both the guest and the host graph
are d-regular trees of heights hG and h = hG + 1, respectively. After iden-
tifying some basic properties, we focus on binary regular trees first (i.e. on
the case d = 2). In particular, an approximation algorithm with approxi-
mation ratio 203

200
is proposed. Moreover, we provide a closed formula for the

objective function value of the arrangement generated by that approximation
algorithm.

The analysis of the approximation algorithm and the estimation of the
approximation ratio involve a special case of the k-balanced partitioning prob-
lem (k-BPP) as an auxiliary problem. More precisely, we give a formula and
a lower bound for the optimal objective function value of the k-BPP, where
the input graph is a binary regular tree and k is a power of 2.

Further, we investigate the relationship between the considered particular
cases of the DAPT and the k-BPP and derive a lower bound for the value
of the objective function of the DAPT (G, 2). This is done by solving hG

instances of the 2k
′
-BPP, where hG is the height of the guest graph G and

k′ = 1, 2, . . . , hG. This lower bound then leads to the above mentioned
approximation ratio.

After that we generalize the introduced algorithm for all d-regular trees,
where d ≥ 3 is arbitrary but fixed. A weaker general lower bound based on a

151
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similar partitioning problem is provided. In particular, we use the property
that the objective function value c(G,V ) of every partition V equals the
overall number of the connected components of the subgraphs induced in
G = (V,E) by the partition sets of V minus 1. The following analysis leads
to a proof of a 585

392
-approximation ratio for the generalized algorithm.

Finally we consider the complexity of the DAPT and settle an open ques-
tion from the literature. We prove that the DAPT with a host graph being
a d-regular tree, d ≥ 2, d ∈ N, is NP-hard, even if the guest graph is a tree.
The proof is done by means of a reduction from the numerical matching with
target sums (NMTS) problem.1

However, the complexity of the DAPT in the case where both the guest
and the host graph are d-regular trees, where d ≥ 2 is fixed, remains an
open question. Other open questions concern the more general cases of the
DAPT where the guest graph G is a dG-regular tree and the host graph T is
a d-regular tree with dG 6= d.

It would be also interesting to investigate whether some alternative anal-
ysis of the proposed algorithm for the DAPT (G, d) could lead to a better
approximation ratio. Numerical results provide some hints that the answer
to this question might be “yes” and suggest an empirical approximation ratio
of 1.0098 in the case of binary regular trees (i.e. for d = 2) and 1.2038 in the
general case (i.e. for every fixed d ≥ 2).

Summary of the contribution concerning the TSP. In Chapter 3 we
provide a “test of concept” of a very simple approach to solve TSP instances
of medium size to optimality by exploiting the power of state-of-the-art ILP
solvers. The approach consists of iteratively solving incomplete ILP models
with relaxed subtour elimination constraints to integer optimality. Then it is
easy to identify integral subtours in the current optimal solution and add the
corresponding subtour elimination constraints to the ILP model. Iterating
this process until no more subtours are contained in the solution obviously
solves the TSP to optimality.

Further, we focus on the structure of subtour elimination constraints and
address the question of how to find a “good” set of subtour elimination con-
straints in reasonable time. Therefore we aim to identify the local structure of
the vertices of a given TSP instance by running a clustering algorithm. Based
on empirical observations and results from random graph theory we extend
this clustering-based approach and develop a hierarchical clustering method
with a mechanism to identify subtour elimination constraints as “relevant”

1This reduction could also be used to prove the NP-hardness of the DAPT if the guest
graph is limited to be a union of more stars.
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if they appear in consecutive iterations of the algorithm.

Additionally, we provide some theoretical results for random Euclidean
graphs. In particular, we apply proof techniques from literature to show that
the expected length of an optimal 2-matching (i.e. the objective function
value of the first iteration of our algorithm) is asymptotically equal to β

√
n,

where β is a constant, if uniformly distributed random points in the Euclidean
plane are considered. This might be the first step towards a more exhaustive
theoretical analysis of our approach.

We mostly refrained from adding features which are highly likely to im-
prove the performance considerably. These include starting heuristics (cf.
Section 3.3.4), lower bounds or adding additional cuts. In the future it would
be interesting to explore the limits of the performance one can reach with
a pure integer linear programming approach by adding these improvements.
Clearly, we cannot expect such a basic approach to compete with the perfor-
mance of Concorde (see Applegate et al [6]), which has been developed over
many years and basically includes all theoretical and technical developments
known so far. However, it turns out that most of the standard benchmark
instances with up to 400 vertices can be solved in a few minutes by this pure
integer strategy.

Summary of the contribution concerning the SQTSP and Max-
SQTSP. In Chapter 4 we deal with the symmetric quadratic traveling sales-
man problem (SQTSP) and its geometric variant on the Euclidean plane,
namely the Angular-Metric Traveling Salesman Problem (AngleTSP) where
the costs correspond to the turning angles of the tour. Moreover, we intro-
duce the maximization variants MaxSQTSP and MaxAngleTSP which have
not been treated in the literature before.

Contributing to ILP-based solution approaches, we consider a standard
linearization and test a purely integral subtour elimination process. This
basic approach turns out to significantly outperform the standard fractional
separation procedure known from the literature for all types of test instance
in all problem variants. After that we implant other kinds of subtour elim-
ination constraints introduced by Fischer and Helmberg [21] into the
separation process. Although stronger from a theoretical point of view, the
usage of these constraints consistently leads to larger computational times
in the minimization variants of the problem as more non-zero entries are
contained in the constraint matrix.

We also introduce a completely new, geometrically based MILP lineariza-
tion for the AngleTSP which involves only a linear number of additional vari-
ables while the standard linearization requires a cubic number. The downside
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of this approach are larger root node gaps which may be the reason for worse
running times of this approach.

In the second part of the chapter we deal with the MaxSQTSP. From a
computational point of view, in the maximization case – different from the
minimization case – some of the subtour elimination constraints suggested by
Fischer andHelmberg [21] do speed up the solution process in many cases.
The comparison between purely integral and fractional subtour elimination
is less clear and depends on the particular type of test instances. It also turns
out that for geometrically based test instances a dramatic difference between
the cases of even and odd number of vertices can be observed which led us
to interesting theoretical results.

If n is odd, we can show a surprising result for MaxAngleTSP by a ge-
ometric argument: In this case the optimal value of the reverse objective
function (sum of inner turning angles) is always equal to π. This also implies
that the solution of the standard ILP model will never produce subtours and
no integral separation occurs at all. Nevertheless, the solution times for this
simple ILP increase dramatically in the maximization case. Fortunately, this
result can be complemented by a characterization of the optimal solution
structure and we can also provide a simple constructive polynomial time al-
gorithm to find such an optimal solution. On the other hand, if n is even, it
can be shown that the optimal value of the reverse objective function can be
any value between 0 and 2π.

Note that the complexity status of MaxAngleTSP for n even remains
an open question. It is also unknown whether the upper bound 2π on the
optimal value of the reverse objective function can be reached.

From a computational point of view, it could be also interesting to inves-
tigate whether the pure integer linear programming approach outperforms
the standard one for TSP problems of higher than quadratic order.
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