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Kurzfassung

Der Markt von Smartcards zeigt ständiges Wachstum speziell in den drei Domänen Kom-
munikation, Identifikation und Banking. Typischerweise verfügen diese Produkte über
einen 8 bis 16 Bit Prozessor, einige Kilobyte an RAM und mehrere Hundert Kilobyte
an nicht flüchtigen Speicher (ROM, EEPROM und Flash-Speicher). Aufgrund dieser limi-
tierten Hardwarekonfigurationen ist es gängige Praxis Applikationen in C oder Assembler
zu schreiben, um eine möglichst hohe Leistung bei geringem Speicherverbrauch zu erzie-
len. Nachteil dieses Ansatzes ist, dass der Aufwand für die Portierung auf unterschiedliche
Plattformen enorm ist. Java Card ist eine reduzierte Teilmenge der Java Umgebung, zu-
geschnitten auf Smartcards und löst dadurch das Problem der Portierbarkeit der Applika-
tionen. Darüber hinaus unterstützt Java Card Objekt orientierte Programmierparadigmen
und vereinfacht dadurch die Entwicklung von Applikationen.

In dieser Arbeit werden neuartige Komprimierungstechniken für die Komprimierung
von Java Bytecode und eine neue Interpreter Architektur erforscht. Dictionary Compres-
sion für Java Cards wird analysiert und zwei erweiterte Verfahren basierend auf verall-
gemeinerten Dictionary Makros werden vorgestellt. Darüber hinaus wird ein Komprimie-
rungsverfahren basierend auf Bytecode Instruction Folding eingeführt. Dies ermöglicht die
Reduktion des benötigten Speicherbedarfs bei gleichzeitig erhöhter Geschwindigkeit der
Ausführung der Applikationen. Die Kombination der Dictionary Compression und der
Folding Compression für die Erstellung von neuen Komprimierungsverfahren wird eva-
luiert. Darüber hinaus wird eine neue Architektur für Java Interpreter entworfen, um
die Ausführung von Applikationen zu beschleunigen. Die Architektur erlaubt es mit mo-
dernen Mitteln aus dem Hardware/Software – Co-Design Teile des Interpreters in die
Hardware auszulagern. Verglichen mit dem klassischen softwarebasierten Java Interpreter,
lassen sich dadurch bessere Performance Werte erzielen. Abschließend wird das Dictiona-
ry Decompression Modul auf der neuen Java Card Architektur implementiert, wodurch
die Ausführung von komprimierten Applikationen ermöglicht wird. Der Dictionary De-
compressor wird in zwei Varianten realisiert: Eine reine Softwarelösung und eine Hardwa-
re/Software – Co-Design Lösung für die neue Architektur.
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Abstract

Smart cards have a continuously growing market, which is spread over three main groups:
communications, identification, and banking. Typical hardware configurations have an
8 or 16 bit processor, several kilobytes of RAM and several hundred kilobytes of non-
volatile memory (including ROM, EEPROM and flash memory). In such limited hardware
configurations it is common practice to write the applications in C or assembly code in
order to keep the memory footprint small and the execution performance high. The main
drawback of this approach is the high effort needed to port the applications to different
platforms. Java Card technology is a reduced set of the Java environment tailored to smart
cards and solves the portability problem of the application thanks to its architecture based
on the Java interpreter. Moreover, Java Card allows object oriented coding and eases the
application development by third parties.

In this thesis novel compression techniques for the reduction of the Java Card ap-
plication and a new Java interpreter architecture are explored. Dictionary compression
for Java Card is analyzed and two extended dictionary compression techniques based on
generalized dictionary macros are proposed. Moreover, a compression technique based
on bytecode instruction folding is introduced. The latter allows space savings in the code
memory and at the same time speeds up the execution of the compressed application. The
combination of the dictionary compression with the folding compression for the creation
of a new compression technique with considerable space savings is evaluated. In addition,
to speed up the execution of the application a new architecture for the Java interpreter
is designed. The new architecture permits the movement of parts of the interpretation
into hardware by means of a hardware/software co-design. The new Java interpreter with
hardware support achieves better runtime performances compared with the classic inter-
preter. Finally, the dictionary decompression module that allows the interpretation of
applications compressed with dictionary techniques is implemented on the new Java Card
architecture. The dictionary decompressor is realized in two variants: one in software and
the other with a hardware support on the new architecture.
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Extended Abstract

Entering a restricted access building without a metal key, calling someone with a
smartphone, paying at the supermarket without physical money are all activities that are
possible thanks to smart cards. Smart cards are small embedded systems mainly used in
the fields of telecommunications, banking, and identification. They consist of an integrated
circuit embedded in a plastic support, which has components for processing, storing and
transmitting data. Due to their diffusion, such systems have to be cheap and therefore
have relatively limited resources. Usually they mount an 8 or 16 bit processor, several
hundred kilobytes of persistent memory and several kilobytes of RAM.

The applications running on these small systems are often written in C and assembler
to maximize the execution performance and to minimize the ROM size occupation. The
drawback of this approach is the high effort needed to obtain a high level of portability from
one platform to another. With the growth in the number and complexity of applications
present on the smart card, the software architecture has evolved from simple libraries to
small layered operating systems. The separation between operating system and application
reduces the problem of the portability between one platform and another but still does
not completely support the application development from third parties. The adoption
of a software model based on an interpreter like Java solves the portability issue, and
additionally offers a standardized platform over which third parties can develop their
applications. To meet the resource constraints in smart cards Java Card, a subset of the
Java language targeted for smart card applications, has been specified. In Java Card, an
application written in Java language is compiled off-card to be installed on the smart card
at a later stage.

The Java Card model intends the smart card to be a host for many applications. In
this context, memory resources assume a relevant role in the overall cost of the smart card.
Reducing the permanent memory needed for storing the applications or superfluous parts
of the Java Card system results in a relevant decrease of the costs. The David project’s
1 intent is to propose and evaluate new techniques for low-end smart cards enabled with
Java Card. The topics of interest of the David project can be grouped into two main
branches:

• The development of optimization techniques for reducing and enhancing the use of
hardware resources

• The development of a design flow for tailoring different variants of the Java Card
operating system to different product lines

1DAVID - Design-Flow für Java Betriebssysteme auf Low-End Smart Cards, collaborative research
project of the Graz University of Technology, NXP Semiconductors Austria GmbH. Funded by the Austrian
Federal Ministry for Transport, Innovation, and Technology under the FIT-IT contract FFG832171
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The objective of this thesis is the development of optimization techniques for reducing
the tradeoff between application ROM size and application execution speed. Two com-
pression methodologies are proposed for compressing Java Card applications off-card and
then decompressing them during run-time. To overcome the slow-down of the execution
introduced by the decompression phase, by means of a hardware/software co-design ap-
proach, parts of the Java virtual machine have been moved into the hardware architecture
making the execution faster.

Figure 1 shows an overview of the enhancements introduced into the overall Java Card
architecture. Two different phases can be distinguished: the application compression
that takes place off-card before the installation of the application, and the application
decompression that takes place on-card during the execution of the application. Two

Java Card 
Application

Application 
Compression

Interpreter HW support

Dictionary HW 
extension

Folding
Decompression 

Dictionary
Decompression 

Java Card Interpreter

HW
SW

Off-card On-card 

Java Card

Figure 1: The compression is a post issuance phase. A Java Card virtual machine enabled for
compression can install a compressed application. The additional modules in the virtual machine
permit the run-time decompression of the applications. Moreover, the hardware support for the
interpreter allows a faster interpretation.

main compression techniques have been proposed, the dictionary compression and the
folding compression. In the dictionary compression 2 repeated portions of the application
code are substituted with macros, whose definitions are stored in a dictionary. Beyond the
plain version, two additional modalities are evaluated. In the latter, the macro definitions
have some internal generalizations that make the macros usable for similar sequences.

In addition to saving space, the folding compression 3 also has the advantage of in-
creasing the execution time of the application. In this compression methodology, specific
sequences of Java bytecode instructions (foldable instructions) are substituted with new
superinstructions that perform the same task with a reduced use of the Java operand
stack. The two compression techniques can be combined in a light-weight compression 4,
but they are not orthogonal. In fact they interfere with one another in both space savings

2On the dictionary Compression for Java Card Environment, Proceedings of the 16th Workshop on
Software and Compilers for Embedded Systems (M-SCOPES’13), St.Goar, Germany, 2013

3Instruction Folding Compression for Java Card Runtime Environment, 17th Euromicro Conference
on Digital Systems Design (DSD’14), Verona, Italy, 2014

4A light-weight compression method for Java Card technology, The 4th Embedded Operating Systems
Workshop (EWiLi’14), Lisbon, Portugal, 2014

v



and run-time execution of the compressed application.
Due to the fact that Java is an interpreted language, the execution speed of an appli-

cation is lower compared with the speed achievable with a native application. To improve
the execution speed performance, the Java Card interpreter has been enhanced using hard-
ware/software co-design methodologies 5 6. In the first place, the software architecture of
the interpreter has been modified in order to make the co-design possible. In the second
place, parts of the interpreter are moved into the microcontroller architecture allowing a
consistent increase in speed of the interpretation. Additionally, the execution of applica-
tions compressed with techniques based on a dictionary is slower than the execution of
non-compressed applications. The further application of the hardware/software co-design
to the part of the interpreter responsible for the dictionary decompression reduces the
impact of the dictionary decompression on the execution speed 7.

To assess the entire system, a prototype is build. As there are multiple configurations
for different variants, the build system has to make possible the creation of different
prototypes. Hence, a variant modeling build system is implemented to combine all the
possible features in the final prototype 8.

To summarize, this dissertation presents hardware/software co-designed improvements
to the Java Card virtual machine that reduce the memory needed to store the applications
and improve the execution speed of the interpreter. For the compression of the application
we propose two compression techniques derived from the plain dictionary compression
and one technique based on the instruction folding mechanism. On the interpreter side,
we enhanced the interpretation speed by means of hardware support, where features for
speeding up the dictionary decompression were also integrated.

5A High Performance Java Card Virtual Machine Interpreter Based on an Application Specific
Instruction-Set Processor, 17th Euromicro Conference on Digital Systems Design (DSD’14), Verona, Italy,
2014

6Hardware/Software Co-Design for a high-performance Java Card Interpreter in Low-end Embedded
Systems, under review for the journal Microprocessors and Microsystems: Embedded Hardware Design
(MICPRO), Elsevier

7An Application Specific Processor for Enhancing Dictionary Compression in Java Card Environ-
ment, 5th International conference on Pervasive and Embedded Computing and Communication Systems
(PECCS’15), Angers, France, 2015

8Embedding Research in the Industrial Field: A Case of a Transition to a Software Product Line, Inter-
national Workshop on Long-term Industrial Collaboration on Software Engineering (WISE’14), Vasteras,
Sweden, 2014
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Glossary

Hardware/Software Co-design
”Hardware/software co-design investigates the concurrent design of hardware and software compo-
nents of complex electronic systems. It tries to exploit the synergy of hardware and software with
the goal of optimizing and/or satisfying design constraints such as cost, performance, and power of
the final product. At the same time, it targets the reduction in the time-to-market considerably.”[1]

Java Virtual Machine
”A virtual machine (VM) is a software abstraction of a computer that often executes as a user
application on top of the native operating system. ”[2]
A Java virtual machine is a ”Virtual machine that enables Java programs to execute on many
different architectures without recompiling Java programs into the native machine language of the
computer on which they execute. The JVM promotes application portability and simplifies pro-
gramming by freeing the programmer from architecture- specific considerations. ”[3]

Java Interpreter
”Interpreters are programs which directly execute source code or code that has been reduced to a
low-level language that is not machine code. Programming languages such as Java compile to a
format called bytecode (although Java also can be compiled to machine language), which acts as
machine code for a so-called virtual machine. ”[3]

Java Bytecode
Java bytecode can be referred to as two concepts distinguishable from the context where they are
used. The first case refers to the entirety of the executable code of a Java class. In the second case
Java bytecode is used to indicate a Java opcode. The plural refers to a multitude of Java opcodes.

xii



Chapter 1

Introduction

1.1 Motivation

Smart Cards were born in the fifties as a support for data storage to secure against forgery
and tampering. The information on the card holder was printed on the surface and the
card was presented to the person responsible for the payment. Such a system relied on
the quality and integrity of the personnel. A step further in the evolution of smart cards
is the introduction of smart cards that have a magnetic strip and are provided with a
secret PIN number that is entered for payments. In due course, the security level of smart
cards with a magnetic strip was revealed to be not sufficiently secure against attacks,
because anyone supplied with the necessary equipment could read the magnetic strip. In
the seventies, thanks to improvements in electronics, the first chips with data storage and
logic integrated together were available. Ultimately the first exemplars of smart cards
with logic and data storage were issued [4].

Nowadays, smart cards are considered an embedded system with very limited resources.
They are usually equipped with 8 or 16 bit processors, several kilobytes of RAM and
several hundred kilobytes or megabytes of non-volatile memory (ROM, EEPROM and
Flash memory). Smart cards are very pervasive in many sectors of society. It is possible
to group the applications in three main fields:

• Telecomunications (SIM cards)

• Banking (credit cards, ATM cards)

• Identification (health Insurance card, transportation)

As can be seen in Figure 1.1, the volume of shipments is growing every year. In telecom-
munications the number of shipments has begun to stabilize, whilst in banking and gov-
ernment applications the trend is increasing. In a market where the shipments are in the
order of billions, the optimization of resources means consistent improvements in profit
margins.

1.1.1 Java Card

Smart card applications are often programmed in C and assembly in order to keep their
ROM size small and the execution performance high. This development approach has a

1



1. Introduction 2

Figure 1.1: Smart card market

high cost in terms of effort required to keep the application portable on other platforms.
Moreover, in a possible future scenario where more applications are hosted in a single card,
the installation of applications developed by third parties is thwarted by the absence of
a standard platform. For these reasons, in the last few years, Java technology has been
adopted in the development of applications for smart cards. In small footprint devices
like smart cards the deployment of a standard Java environment is unfeasible, because it
would need a system with resources of a higher order of magnitude. For this reason, in
the late nineties, a new Java standard for smart cards was defined under the name of Java
Card [4, 5, 6, 7, 8].

In the last few years, Java Card has continuously gained market share as reported in
the histograms of Figure 1.2. The penetration of Java Card is particularly growing in the
identification sector as shown in the histogram on the right of the figure.

Figure 1.2: Java Card penetration in the smart card market

As standard Java, the Java Card environment is based on a Java virtual machine that
interprets the Java bytecode. Differently from standard Java, the applications for Java
Card are shipped in the format of Java Card converted applet (CAP) file. The CAP file
is the result of the conversion of the Java class file into a pre-linked version. Before the
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installation, the CAP file is checked with the Java Card bytecode verifier to assure the
correctness and security of the application that will be installed. The CAP file consists of
different components used at the time of installation. Among the components the most
relevant for the work in this thesis is the method component that contains the bytecode
of all the methods of the classes constituting the application. Statistically, the method
component occupies most of the ROM size of an installed Java Card application [9]. Hence,
the development of techniques for the reduction of the size of the method component
would decrease the overall ROM occupation of the installed applications, allowing the use
of smaller non-volatile memories.

The drawback of applying compression techniques is a general time overhead in the
execution due to the restoration of an executable form. Additionally, the Java VM is based
on an interpreter that, because of its interpretative nature, executes applications slowly,
compared with applications running natively on the hardware platform. In this context, a
hardware/software co-design approach helps to reduce the compromise between execution
speed and ROM size of the applications.

1.2 Hardware/Software Co-design for small-footprint Java
Cards

The David Project

This thesis is part of the “Design Flow for Low-End Java Card Operating Systems” (David)
collaborative research project, shared between the Institute for Technical Informatics at
the Graz University of Technology and NXP Semiconductors Austria GmbH. The David
project focuses on the trend of building Java Card systems with adequate security level
and run-time performances at a low price. Figure 1.3 sketches the area of interest of the
David project with a parallel view of the Java technology and the hardware platforms that
host the Java environment.
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As the memory is one of the most expensive components in a smart card system, the
David project proposes to minimize the memory footprint of a Java Card system. For this
purpose two strategies are addressed:

• Minimizing the Java Card application ROM size by means of compression techniques

• Minimizing the Java Card runtime environment (JCRE) memory footprint keeping
out of the ROM image unnecessary code and features

This thesis focuses on the first of the two strategies and investigates the opportunities
for the reduction of the applications footprint without compromising the run-time perfor-
mances of the Java Card system.

An advantage of the David project is the presence of the industrial partner NXP
Semiconductors Austria GmbH, a company involved in the development of a Java Card
operating system as well as in the design of smart cards. This combined design strategy
allows a complete view of the overall Java Card system and better access to the functional
concepts of the Java Card environment needed for a hardware/software co-design approach
[10, 1].

1.2.1 Problem statement

Smart card shipments as well as Java Card penetration in the smart card market are con-
tinuously growing in the past few years. Because of the large diffusion of the technology in
many disparate fields, some use cases are satisfied by cheap products with scarce resources.
In the context of smart cards, using small memories and cheap processors is the solution
for keeping the cost low. Therefore, small non-volatile memories means less space for the
applications with the consequent reduction of the functionalities available. Analogously,
the use of low-end processors lowers the run-time performance of the system with the
possible extreme consequence of no longer satisfying the timing constraints demanded by
the customers.

In the scientific community, the reduction of the application ROM size is faced with the
introduction of compression techniques while the issue of low-end processors is mitigated
through the use of application specific processors. These solutions leave open problems:

• Compression techniques have the drawback of a slow-down in the execution of the
compressed application

• Research works in the context of compression for Java Card are limited to the dic-
tionary compression

• The coordinated design of hardware and software for Java Card is usually limited
to security issues

• The adoption of application specific processors for Java environments lowers the
flexibility of the system

• Hardware acceleration techniques have never been considered for compression in
Java Card
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These limitations have been addressed by the development of new compression tech-
niques and by the proposition of a flexible hardware support for the Java Card system.
In the field of compression, extensions of the dictionary compression methodology are in-
vestigated as well as the development of a new compression technique based on execution
optimization. To improve the performance of the virtual machine a new approach for the
interpretation has been proposed; from this approach it is possible to develop hardware
solutions that improve the execution speed, without compromising the flexibility needed
in the software development of the Java Card system. Finally the dictionary compression
technique has been integrated in the new architecture, developing an additional hardware
support to speed up the dictionary decompression.

1.2.2 Contribution of this Thesis

In summary, this thesis provides contributions to the following fields:

1. Extension of dictionary compression and folding compression: Dictionary
compression is deeply investigated in this thesis. The static and dynamic dictionary
modalities are evaluated, analyzing the advantages and disadvantages. Moreover, a
dictionary compression technique based on Java subroutines is introduced. The dic-
tionary compression is extended in two variants that make use of generalized macros
with arguments. An additional compression technique based on the optimization
mechanism called instruction folding is proposed. Finally, the latter technique is in-
tegrated with the dictionary compression resulting in a new compression technique
with high space savings and low impact on the run-time of the applications.

2. Hardware support for the Java Card interpreter: The Java interpreter is
redesigned with a new interpreter architecture. The fetch and decode phases of the
interpretation are moved from a central common loop to each procedure implement-
ing the Java bytecodes. Beyond a full software implementation, two variants are
proposed. The first has the decode phase implemented in hardware, the second has
the fetch and the decode phases realized in hardware. The two implementations
with the hardware support show a sensible improvement in the execution speed.

3. Hardware support for the dictionary compression: The last contribution of
this thesis consists of the integration of the dictionary compression with the inter-
preter with hardware support. In the first realization the integration is done in
software while in the second an additional hardware module is developed to support
the interpretation of the dictionary macros directly in hardware.

1.2.3 Thesis Structure

The rest of this thesis is organized as follows:
Chapter 2 reports the research work related to compression techniques and interpreters.

The first part is dedicated to compression techniques with particular attention to the com-
pression of executable code. The second part is relative to possible execution optimizations
for Java environments, with a description of the JIT compilation and the concepts behind
it. The last part refers to hardware realizations of the Java virtual machine with an
overview of Java processors and Java co-processors.
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Chapter 3 presents the concepts and the design so that the Java card can be enabled
to execute compressed code with a hardware supported interpreter. In the first part, two
extensions of the dictionary compression and a new compression technique based on the
folding instruction optimization are proposed. In the second part the architecture of the
pseudo-threaded interpreter is described. Moreover, the design of the hardware support
for the pseudo-threaded interpreter is shown. In the last part, the hardware integration
between the dictionary decompression and the interpreter with hardware support is dis-
closed.

Chapter 4 provides the evaluation of the proposed designs. In the assessment of the
compression techniques, particular emphasis is given to the space savings and to the execu-
tion speed of a compressed application. In the sections regarding the Java interpreter with
hardware support and with hardware support for dictionary decompression, a complete
analysis of the ROM size, hardware overhead and execution speed-up are provided.

Chapter 5 draws conclusions and directions for future work from this thesis.
Chapter 6 collects the publications that constitute the back bone of this thesis.



Chapter 2

Related Work

This chapter provides a view of the related work on code compression and performance
enhancement for Java. In this section, with regards to compression we analyze the most
popular compression techniques and how they are applied to embedded systems. In the
second section we report on the most significant methodologies for speeding up the execu-
tion in Java, taking into consideration both software and hardware solutions. Finally in
a summary of this chapter the main differences between this thesis and related work are
shown.

2.1 Data Compression

Code compression encompasses many aspects of information technology. Whatever the
field, the objective of its application is the reduction in the space needed for the storage
of the information. In general it is possible to differentiate compression techniques into
those that are statistical and those that are dictionary based [11, 12].

The most popular statistical method is the Huffman coding [13]. As the name suggests,
statistical methods are based on statistical analysis of the data to be compressed. The
statistical analysis contains the probabilities for each symbol of the input data; from this
statistical table the decoding tree is built and a Huffman code is assigned to each symbol.
Generally, the higher the probability of a symbol is, the lower is the number of bits that
composes its Huffman code. To allow the decompression, beyond the compressed code,
it is necessary to forward the Huffman table with any correspondence between Huffman
codes and the original symbols.

The dictionary compression techniques are not based on statistical information but
on the analysis of the data [11, 12]. The algorithm for the compression analyzes the
data to be compressed and substitutes phrases with tokens. The phrases relative to the
tokens are stored in a dictionary that can be static or dynamic. In the case of a static
dictionary, its phrases are defined per context. In the case of a dynamic dictionary, the
dictionary is dynamically built during the analysis of the input data. Hence the phrases
of the dictionary are specific to the data to be compressed and the dictionary is also
strictly related to the data being compressed. In the decompression phase, the dictionary
is needed by the decoder, therefore the dictionary is sent with the compressed data. The
task of the decoder in the decompression phase is simple; it consists of substituting the

7
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token in the compressed code with the associated phrases contained in the dictionary.
Popular subcategories of the dictionary compression are the LZ77 and the LZ78 com-

pression techniques [14, 15]. LZ77 and LZ78 are the base algorithms for the DEFLATE
[16] and LZMA [17] algorithms that are used in the PKZIP utility [18] that creates the
.zip archives, the most popular archive format used in general purpose PCs. LZ77 and
LZ78 techniques are based on a slide window where the phrases of the dictionary are se-
lected from. The main difference between the two techniques regards the decompression:
in the LZ77 the decompression has to start from the beginning while in the LZ78 the
decompression can start at any point in the compressed data.

In Java systems, the PKZIP utility is used for the compression of the .class file and
the creation of the JAR archive, the format for the storage and the shipment of Java
applications. To execute an application stored in a JAR file, firstly the JAR archive is
usually decompressed in the RAM memory and, at a later stage, the application can be
executed [19]. Such a system is quite demanding in terms of RAM consumption, therefore
is not applicable in a system with relatively limited resources like smart cards.

2.1.1 Compression of Executable Code

Before dealing with compression techniques, we briefly mention the code compaction that
is an active field of research in compiler theory of the last years [20] [21]. Compaction
techniques optimize the code, for example eliminating unreachable code or redundant code
and performing code factorization. The code is fully executable after the application of
the compaction techniques and therefore does not require and additional actions before it
is executed.

Code compression is a different approach and it consists of a post-compilation process.
The reasons for compressing the application can be categorized into two bottlenecks:
memory occupation and transmission to the CPU. In the case of transmission, the code can
be compressed in a non-executable form, to be decompressed later, before the execution.
On the other hand, if the bottleneck is the memory, the compressed code should be directly
executable because there is not enough space to decompress it before the execution [22].

The previous section mentioned JAR archives, an example of compression for class files,
the executable code of Java. JAR files are an example of compression where the bottleneck
is the transmission. The executable code of a JAR file is completely decompressed before
the execution. The principal issue with this approach is the start-up time needed for the
complete decompression of the application and the space required to store it temporarily.

In embedded systems, where the memory available is a hard constraint, compressing
the executable code is a good way of saving space in the permanent memory. At the
same time, the decompression of the code needs temporary space either in the permanent
memory or in the random access memory. This trade-off limits the degree of freedom in
embedded system with very limited resources. There are systems where keeping an entire
application in memory is not possible. To overcome this problem, an approach presented
in literature is the adoption a profile-guided compression where only the parts of the
application less likely to be executed are compressed [23]. In this way, the decompression
only takes place if the compressed code needs to be executed, and the memory needed for
storing the decompressed code is relatively small.

Smart cards are embedded systems with very low resources [4]. An approach with a
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profile-guided compression can hardly be applied, because the RAM is scarce and therefore
it is unlikely to have hundreds of bytes available even for a partial decompression. The
only method that does not use much RAM is the dictionary compression.

The application of dictionary compression techniques implies the modification of the
architecture of the processor or of the interpreter that execute the compressed code. In the
case of compression for machine code, a post compression process analyzes the application,
creating the dictionary and compressing the code [24]. For the decompression, the standard
hardware architecture is modified to allow the handling of the macros with the dictionary
in the decode phase of the instruction execution. Other examples of hardware architectures
able to execute code compressed with other compression techniques can be found in [25]
and [26].

In Java, the compression with dictionary techniques is similar to the compression in
a hardware architecture. The compression concerns the Java bytecode that the virtual
machine executes [9] [27]. The main difference is that, instead of implementing it in a
hardware architecture, the decompressor is implemented in the Java virtual machine. The
dictionary compression is applied to embedded Java and to Java Card; the difference in
the two technologies consists of the presence of an additional file format (the CAP file)
and in the split architecture (off-card and on-card virtual machine) in the Java Card
technology [6, 5]. In the compression, the CAP file, the result of the conversion of a class
file, is analyzed. During the compression, the dictionary is created and the macros that
are defined in it are used for the substitution in the Java bytecode of the repetition of
their associated definition. After the installation of the application, the virtual machine
enabled for decompression is able to run the compressed application; when it encounters a
macro within the code, it uses the dictionary to execute the sequence of instructions that
the macro represents.

2.2 Execution Optimizations in Java Systems

The execution speed of a general software application depends on three main factors: the
hardware architecture, the compiler and the software architecture. In systems based on a
virtual machine, we can consider the virtual machine as an additional element between the
hardware platform and the application. The adoption of superoperators is a methodology
for improving the performance of a virtual machine [28]. Superoperator is an entity that
groups a bunch of instructions together, performing optimizations among the instructions,
similar to what happens in register forwarding in a RISC architecture [29]. Taking as an
example a stack based virtual machine, as the Java virtual machine is, some sequences
of operations use the stack inefficiently, storing values into the stack before immediately
fetching them in the next instruction. Superoperators optimize these kinds of inefficiencies
by bypassing the stack and behaving like an instruction of a register based processor.

Popular Java environments, like those running on a personal computer, include the
Just In Time (JIT) compilation for speeding up the application execution in Java [30,
31, 32, 33, 34]. JIT compilation, as the name suggests, compiles the Java bytecode and
transforms it into machine code during the run-time. The compilation needs a considerable
amount of RAM for keeping the compiled code in memory, and a warm-up time for
the code that is compiled for the first time. During the compilation, the JIT compiler
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performs optimizations among the bytecode instructions similar to those performed in
superoperators.

In embedded systems, JIT compilation may not be implementable, because of the
limited resources. For systems where the JIT compilation cannot be applied, an option
is the extension of the instruction set of the Java virtual machine with superinstructions.
Superinstructions consist of superoperators added into the instruction set of the Java
virtual machine. The advantage of superinstructions can be summarized in two main
points [35, 36, 37, 38]:

• A single bytecode dispatch is reduced to one compared to the number of dispatches
needed for the equivalent sequence of bytecodes

• The superinstruction takes advantage of the superoperator optimizations, hence re-
ducing the operands stack accesses

The superoperators principle has also been used in picoJava II, a hardware realization
of a Java virtual machine [39]. In this Java processor, a particular run-time mechanism
(folding mechanism) able to recognize sequences of bytecodes instructions (foldable in-
structions) is implemented. When the Java processor encounters a foldable sequence, it
performs a sort of register forwarding optimization for eliminating the unnecessary accesses
to the operand stack.

Another way to exploit superoperators specifically for foldable sequences in virtual ma-
chine consists of the usage of Java annotations [40, 41]. This methodology is particularly
useful in systems with limited resources. A post compilation analysis searches for foldable
sequences within the bytecode and annotates them. At execution time, the annotation
aware Java virtual machine recognizes the annotations and, instead of executing the fold-
able instructions, executes an equivalent superoperator, saving instructions dispatches and
accesses to the operands stack.

Virtual machines are based on interpreters, a software part responsible for the trans-
formation of the bytecodes into computational actions. The most popular techniques for
the interpreter realization are based on a big switch statement or on a token-threaded
interpreter [42, 43, 44]. An alternative and more efficient interpreter is the direct threaded
interpreter. In the direct threaded interpreter, the executable code consists of a sequence
of addresses of the procedures that have to the executed [45, 46, 35]. The executable code
is created at the compilation time; hence, the time needed for the translation of tokens
into addresses is no more part of the interpretation, with a substantial improvement of the
execution performance. The main drawback of this technique is the limited portability of
the executable code that is strictly implementation dependent.

2.3 Java in Hardware

In the last section, the opportunity to implement the Java virtual machine in hardware is
mentioned. It is possible to distinguish two kinds of hardware implementations:

• Java co-processors

• Java processors
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Java co-processors are a support architecture to a main classic processor architecture.
The co-processor speeds up the execution of Java bytecode. The most famous example of
a Java co-processor is represented by the Jazelle technology developed by ARM [47, 48].
The Jazelle co-processor executes most of the Java instructions directly in hardware, trans-
lating, by means of a hardware unit, the bytecodes in sequences of processor instructions.
The remaining Java bytecodes are handled with exceptions and software procedures. The
Java co-processor is an example of a more general scheme known as application specific
instruction set processor (ASIP). In ASIPs the instruction set is extended to allow access
to new hardware features [49, 50, 51]. In the case of the Jazelle co-processor, an extended
instruction set allows integration with the native code, e.g. with an operating system.
Similar examples of a Java co-processor are proposed in [52], [53], [54] and [55]

Differently from co-processors, Java processors are a complete implementation of the
Java virtual machine in hardware. The Java bytecodes are directly executed on a stack ar-
chitecture without intermediate translations to register machine instructions. The promi-
nent example of Java processor are picoJava and its successor picoJava II [56] [57] [58].
The main drawback of this solution is that the processor can only execute Java code;
hence, all the software on the system has to be written in Java, including, for example,
the peripheral drivers. Other related works on of Java processors are [59] and [60].

2.4 Summary and Difference to the State-of-the-Art

The work of this thesis is focused on Java for low-end embedded systems such as smart
cards, where resources are very limited. The aspects that we take into consideration are the
memory footprint of the applications and the execution speed. Usually, these two aspects
are opposed to one other and hence it is necessary to find a trade-off. Regarding the ROM
size of the applications, two different compression methods and their combination are
investigated. For the execution speed-up, a hardware/software co-design solution for the
interpreter and its combination with a compression technique are proposed. The following
points summarize the main difference from the current state-of-the-art:

• This work investigates the dictionary compression taking into consideration the static
and the dynamic dictionaries, evaluating their architectural impact in the Java Card
design flow. Moreover, the plain dictionary technique is extended with two deriva-
tions. The first takes the arguments of the bytecodes into the macro definition as
the argument of the macro. The second uses generalized instructions into the macro
definitions that are specified by the argument of the dictionary macro. Additionally,
a dictionary method that uses Java subroutines is evaluated.

• The second compression method is based on the folding mechanism. In literature, the
folding mechanism is used for a Java processor, and superinstructions are used only to
improve the execution speed. The approach presented here adopts the folding mech-
anism for compressing the bytecode, speeding up the execution of the compressed
application at the same time. Moreover, the combination of folding compression and
dictionary compression is evaluated.

• The second element to this thesis regards the hardware/software co-design for the
interpreter. In a different approach to that of the Java processor and co processor,
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the implementation proposed here does not execute the bytecodes in hardware and
keeps the execution phase of the interpretation in software, giving an higher degree
of freedom to the developers. In the proposed implementation the fetch and the
decode phases of the bytecode interpretation are performed in an application specific
processor.

• Finally, the interpreter with hardware support is extended to handle the dictionary
compression. Previous research works investigated the opportunity of implementing
dictionary compression in RISC architectures for the compression of the machine
code, but there is no approach regarding the hardware support for dictionary com-
pression on Java virtual machine.



Chapter 3

Hardware/software Co-design for
small-footprint Java Cards

This chapter provides an overview of the publications regarding bytecode compression and
interpretation enhancement.

3.1 Architectural Overview

The first part of this work regards the compression of the executable code. The Java
Card virtual machine can be subdivided into an off-card part and an on-card part. As
a consequence, the compression methods that we propose are distributed between the
two parts: the compression phase is part of the off-card Java virtual machine mechanism,
whereas the decompression phase is part of the on-card Java virtual machine. In the second
part of the work we perform hardware/software co-design to enhance the performance of
the Java interpreter that is sited in the on-card virtual machine. Figure 3.1 schematizes
the structure of the Java Card architecture, with the contribution of this work mapped to
the scientific publications.

Starting with the Java Card applet in the form of a CAP file, it is possible to apply a
compression mechanism based on a dictionary [9]. Exploiting the dictionary compression
opportunities, we propose two techniques derived from the base dictionary compression in
Publication 1. The two techniques make use of generalizations for the macros, allowing a
more flexible usage of a single macro for sequences that are similar. In the same publication
the dictionary compression is also implemented by means of the Java bytecodes JSR and
RET, therefore using procedures and keeping the realization in the Java layer. After
the installation of the compressed application, the Java virtual machine can execute the
compressed code thanks to the extension for the decompression.

In Publication 2 a compression method based on the folding mechanism (the folding
compression) is proposed. Usually, compression methods have the drawback of slowing
down the execution of the compressed application because of the decompression. In the
proposed compression method the decompression is possible with the help of the extension
of the Java virtual machine with the new superinstructions. The execution of the com-
pressed code is faster than in the case of non-compressed code, thanks to the optimizations
brought in by the superinstructions.

13
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Figure 3.1: Publications overview for a Java Card with hardware support and enabled for com-
pression

Publication 3 proposes the combination of the dictionary compression and the folding
compression and the analysis of the interactions of the two methodologies. The result is
a new compression method with higher space savings and with a very low impact on the
execution time of a compressed application.

Besides the proposition of compression methodologies, effort is put in improving the
performance of the interpreter. In Publication 4 a pseudo-threaded architecture for the
Java interpreter is introduced. By means of the application of a hardware/software co-
design, parts of the interpreter are shifted into the microcontroller architecture with the
result of a consistent reduction in the interpretation time.

The last part of the design consists of the link between the new interpreter architecture
and the compression techniques. As previously reported, in the folding compression an
extension of the instruction set of the Java interpreter with superinstructions makes the
decompression and the interpretation of the compressed code possible. The interpreter
treats the superinstructions in the same way as the standard Java bytecodes. In the case of
dictionary compression, the decompression makes use of a dictionary table. Publication 5
deals with a hardware support built over the psedo-threaded interpreter to speed up the
dictionary decompression. The hardware support accelerates the decoding of dictionary
macros performing in hardware the address resolution and the fetch of the address of the
dictionary definition.
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Finally, a variant management system is built to manage all the variants of Java Card
environments obtained with the different enhancements. The description of a transition
to a product lines system organized with variant management is given in Publication 6.

3.2 Compression in Java Card

Differently to standard Java, Java Card architecture is split into two parts, an off-card part
and an on-card part. Figure 3.2 clearly sketches the processes composing the off- and on-
card Java virtual machine. The off-card Java Card refers to the processes that transform
and verify the class and install it on the smart card. The scheme in the figure shows that
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Secure Environment

javac Converter

Verifier

Compression
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Installer

On-card JCVM

On-card 

Installer
Interpreter

CAP file

Unsafe 
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Figure 3.2: Java Card virtual machine enabled with compression. The Java VM is split into off-
and on-card VM. The compression is applied after the verification, before the installation.

the compression takes place between the verification and the installation processes. This
is not the only possible choice but it is the most convenient one. Assuming for example
the compression takes place after the conversion, the dictionary has to be stored into
a custom component of the CAP file. Java Card specification [6] states that the CAP
file can have additional custom components, but this kind of practice is discouraged in
industry, because of the possible incompatibility with existing systems. Moreover the Java
Card verifier should be able to handle the applied compression technique, increasing the
complexity of it and opening new critical scenarios in the field of security. The adopted
design solution with the compression after the verification allows the issue of applications
in standard CAP file and the use of a standard verifier. Moreover, as the verification,
compression and installation are located in a secure environment, the compression does
not decrease the level of security in the overall architecture. Both dictionary and folding
compressions accord with this scheme.
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3.2.1 Dictionary Compression

Dictionary compression consists of the substitution of repeated sequences of information
with tokens whose definitions are stored in a dictionary. The dictionary is used in the
decompression phase for substituting the tokens in the compressed code with their defini-
tions in order to reconstruct the original information. For the reduction of the code size
in Java Card, the code compressor analyzes the method component of the CAP file where
it searches for repeated sequences of bytecodes [9]. Figure 3.3 sketches the principle of
dictionary compression.

instr1

instr2

instr3

instr4

instr2

instr3

instr4

Orig. Code
Macro

macro

Compr. Code

instr5
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instr5

Figure 3.3: Principle of the dictionary compression.

Section 6.1 discusses accurately the search algorithm, paying attention to the con-
straints for the search resumed in the definition of SISE block to which each possibility
has to be compliant. Moreover, the creation of the dictionary is evaluated; a dictionary
can be related to a specific application (dynamic dictionary) or can be general for each
application (static dictionary) [61].

During the execution of the compressed code, the Java VM has to provide for the
decompression. Dictionary decompression fits very well in an architecture based on an in-
terpreter, allowing the decompression during the run-time without the need to decompress
the application before its execution. When the interpreter encounters a dictionary macro,
it looks up the macro definition in the dictionary macro table and starts the interpretation
of the instructions contained in the macro [61].

3.2.2 Dictionary Compression with Generalized Macros

Similar sequences of bytecodes repeated a number of times have a space saving potential
from which the plain dictionary compression cannot benefit. In Section 6.1 two dictionary
compression techniques with generalized macros are proposed [61]. The two techniques
collect not only sequences equal to each other, but also sequences that are similar to better
exploit the information redundancy.

Generalization of the Java Op-code Arguments

In the Java Card instruction set part of the bytecodes are composed by an op-code and an
argument. The first technique with generalized macros is based on the observation that
many sequences of Java bytecodes have the same op-codes but not the same arguments.
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The general macro has the Java op-codes in its internals but not the varying arguments
that are left out, as an argument of the general macro.
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Figure 3.4: Representation of the dictionary compression with the generalization of the op-code
arguments. The arguments of the Java op-codes are left outside the macro definition as arguments
of the macro in the compressed code.

Figure 3.4 graphically explains the composition of a macro with generalized arguments.
A bit mask is necessary to provide the option of dynamically specifying which of the
arguments are left outside the macro definition and therefore the ability to rebuild the
original sequence correctly. During the execution, the interpreter is therefore able to build
the original sequences inserting the op-code arguments contained in the macro argument in
the positions described by the bit-mask. Additional information is available in Section 6.1
[61].

Generalization of the Java Op-code

The generalization in Section 3.2.2 is not the only possible one. Sequences of Java byte-
codes may also differ for one or more Java op-code. Figure 3.5 shows how it is possible
to represent two similar sequences by means of the same macro introducing wildcard in-
structions in the macro definition. The wildcard instruction inside the macro definition
substitutes a bytecode that is in turn specified by the argument of the macro.

At the run-time, the interpreter substitutes the wildcard instruction with the original
instruction, on the basis of the argument of the macro. A more detailed explanation of
the technique with the support of clarifying examples is reported in Section 6.1 [61].

Dictionary Compression with Java subroutines

A disadvantage of dictionary compression is the complexity that it introduces for the
management of the dictionary during the decompression phase. In fact, the VM needs to
be modified in order to recognize the dictionary macros and to look for them up in the
dictionary table.

In the Java Card standard there are two bytecode instructions, JSR (jump subroutine)
and RET (return from subroutine) that are used for building subroutines. The JSR and
RET have a scope limited to the method that they belong to. In Section 6.1, a dictionary
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Figure 3.5: Representation of the dictionary compression with the generalization of the op-code.
Some of the Java op-code in the macro definition are substituted with a wildcard instruction. The
argument of the macro in the compressed code contains the information needed to identify the
original Java op-code inside the macro definition.

technique based on subroutine is proposed [61]. The main advantage of the technique
consists of its compliance with a standard Java Card VM. The limitation of the technique
is its scope, that is limited to a Java method, instead of the entire method component
as in the previous dictionary techniques; this limitation lowers the probability of finding
repeated sequences and hence the space saving potential.

3.2.3 Folding Compression

The Java VM is a stack based architecture; the operators are copied onto the stack, an
operation is performed on them, and then they are copied from the stack to a destination.
This computation scheme is in some cases (foldable sequences) redundant and can be re-
duced to a register machine operation that directly accesses the resources and destination.
Less use of the stack has the consequence of an execution acceleration. The folding mech-
anism is implemented in picoJava as a hardware acceleration module similar to a register
forwarding mechanism in a pipelined architecture [39].

Folding compression finds its basis in the folding mechanism. The folding compressor
searches for foldable sequences in the method component, and substitutes them with new
superinstructions. The folding superinstructions constitute an extension of the Java Card
VM instruction set. As for the folding mechanism, the folding compression allows for a
reduction of the operands stack use. Moreover, it creates space savings in the method
component due to the fact that the superinstructions and their arguments occupy less
space than the foldable sequences that they substitute. A more complete treatment of the
folding compression is presented in Section 6.2 [62].

An example of how the folding compression works is reported in Figure 3.6. The
original code is a typical foldable sequence formed by two load instructions, an operator
instruction, and a store instruction. At the right side of each sequence of instructions there
is a representation of the operations inside the Java stack machine. In the original sequence
there is a high use of the operand stack with copies from and to the local variables. On
the right part of the figure the compressed code with the superinstruction is shown. The
argument of the superinstruction specifies the index of the local variables in use and the
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Figure 3.6: Example of the folding compression. A foldable sequence of Java bytecode is reported
on the left side of the figure. The right side shows the equivalent folded superinstruction. On the
right side of the code examples there is a representation of the operations performed in the Java
VM.

operation to be performed. In this example the compressed code occupies three bytes that
means two bytes saved compared with the original code. To do this we expressed the local
variable indexes with a nibble (four bits) instead of a byte as the standard says. It is not
possible to compress sequences involving a local variable with index higher than fifteen,
but such sequences are statistically improbable [62].

3.2.4 The light-weight Compression

Section 6.3 presents the light-weight compression, a compression methodology created by
the combination of the dictionary compression and the folding compression [63]. The
light-weight compression consists of two successive steps: the application of the folding
compression and, in the second step, the application of the dictionary compression. The
order of application is dictated by the need to minimize the decompression time overhead.

Applying the folding compression in the first step means maximizing the advantages
that it generates in the run-time decompression. After the application of the folding
compression, the dictionary compression is applied to a code that is already compressed,
therefore to a code with a lower number of possible sequences. The total space saving S
can be expressed with the formula

S = Sf + (1 − k1) · Sd

where Sf and Sd are the space savings due to the application on the non-compressed
application of the folding compression and the dictionary compression, respectively; k1
is a coefficient that expresses the reduction of the dictionary compression efficiency in
space savings due to the previous application of the folding compression. The value of
k1 is always positive and ranges between 0 (absence of interaction) and 1 (the sequences
compressed by the folding compression overlap with the sequences potentially interested
by the dictionary compression making the dictionary compression not effective).

Analogously to the space savings, the final effect of the compression (R) on the execu-
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tion speed of the compressed code is described by the formula

R = Rf + (1 − k2) ·Rd

where Rf and Rd are the effect on the execution time due to the folding compression and
to the dictionary compression, respectively; the coefficient k2 accounts for the reduction
of the dictionary compression due to the interference from the folding compression. The
value of k2 ranges between 0 and 1, but a high value entails a lower contribution from the
dictionary compression. The contribution of the dictionary compression is negative on the
execution (slow-down); hence, in this case, the interaction improves the overall effect of
the compression on the execution time of the compressed application. Section 6.3 presents
an exhaustive explanation of the interaction of the two techniques and the influence that
such interaction has on the space saving and on the execution time of the compressed code
[63].

3.3 Hardware Support for the Java Interpreter

The Java interpreter is the part of the Java VM in charge of the translation of the Java
bytecodes into actions of the Java VM. This section proposes a new architecture for the
Java interpreter based on the thread interpretation. The new architecture is the starting
point for the hardware/software co-design of the support for the new interpreter.

3.3.1 The pseudo-threaded Interpreter

In embedded systems, the Java interpreter is usually coded in C or assembly by mean of a
big switch statement or a table of functions pointers [42, 43, 44]. The interpreter of a VM
covers a role that is functionally very similar to a processor. Indeed, in the interpretation
of a Java bytecode, it is possible to distinguish three phases that are executed cyclically:

• Fetch: the actual Java bytecode is read from the code memory at the address con-
tained in the Java program counted (JPC )

• Decode: the actual Java bytecode is used as index to fetch from the look-up table
the address of the corresponding procedure; the address of the procedure is then
written in the processor program counter (PC)

• Execute: the procedure corresponding to the actual Java bytecode is executed

Figure 3.7 depicts the functioning of a classic Java interpreter (classic token inter-
preter) based on a while loop and a look-up table of function pointers to the procedures
implementing the Java bytecodes. As can be seen in the figure, after the execution of the
procedure implementing the Java bytecode, the execution flow returns to the end of the
while loop before then branching again at the beginning of the loop and starting a new
cycle.

The return branch from the functions implementing the Java bytecodes can be avoided
unrolling the while loop and repeating the fetch and decode parts of the interpretation at
the end of each function implementing a Java bytecode as shown in Figure 3.8. As can
be seen in the figure, each bytecode procedure ends with the fetch and decode of the next
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while(true) {

  JBC = Code[JPC++];

  JBCFunction = JBCTable[JBC];

  JBCFunction();

}

Figure 3.7: Classic Java interpreter in embedded systems. On the left side the pseudo-code for
the interpreter is reported. The corresponding representation of the execution flow is reported on
the right part of the picture.

BytecodeA Function Fetch Decode

BytecodeB Function Fetch Decode

Figure 3.8: Representation of the pseudo-threaded Java interpreter. The fetch and the decode
phases of the interpretation are repeated at the end of each function implementing a Java bytecode.

bytecode and with the jump to the relative bytecode procedure. The new architecture
takes the name of pseudo-threaded interpreter to distinguish it from the threaded code in
[45]. An overview of the compiler extension for handling the pseudo-threaded code with
an analysis of the main advantages and drawbacks is given in Section 6.4 [64]. The main
advantage of this interpretation technique is the faster execution, there being only one
jump at the end of each Java bytecode function instead of a return at the end of the while
loop and a jump to the beginning of the loop. The main disadvantage consists of the
increment of the code size because of the repetition of the fetch and decode code at the
end of each Java bytecode. For this reason a complete software solution is not practicable,
but the architecture is valid for the creation of the hardware support as it is reported in
Section 3.3.2 and Section 3.3.3.

3.3.2 Hardware Support for the Decode Phase

Section 3.3.1 proposes the pseudo-threaded interpreter architecture for a faster interpre-
tation of the Java bytecodes. This section presents the hardware support for executing
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the decode phase of the interpretation in hardware. In the decode phase, the interpreter
translates a Java bytecode in an address from where the execution part of the interpreta-
tion starts. During the decode phase, the interpreter uses a look-up table where all the
addresses of the procedures implementing the Java bytecodes are contained.

STATE1:

JBCFunct = 

JBCTableOffset + 

JBC * AddrWidth

STATE2:

jmp JBCFunct

SW Domain

FETCH

SW Domain

EXECUTE

HW Domain

DECODE

Figure 3.9: Pseudo-threaded Java interpreter with the decode phase in hardware (Obtained with
modifications from [64]).

Figure 3.9 shows the finite state machine of the interpreter. As reported in the figure,
the hardware architecture needs the addition of a register where the offset of the look-up
table with the bytecode function addresses is stored. The value of the actual Java bytecode
is taken as input. The resolution of the address within the look-up table is possible thanks
to a dedicated adder that sums the offset of the look-up table with the Java bytecode value
multiplied for the address width of the code memory. This multiplication is substituted
with a simple shift operation in the case of a 16 bit memory width. Section 6.4 presents
a more detailed description of the design [64].

3.3.3 Hardware Support for Fetch and Decode Phases

The second variation of the hardware support extends the functionalities discussed in
Section 3.3.2 for the fetch phase. In the interpretation the fetch phase is based on the
Java program counter (JPC) that, analogously to the program counter (PC) of a processor,
contains the address of the next instruction to fetch. The Java bytecode fetch consists of
reading one byte from the code memory and making it available for the decode phase.

Figure 3.10 sketches the state machine of the interpreter with the hardware support.
The only part of the interpretation that remains in software is the execution phase that
corresponds to the implementation of the bytecode functions. For the implementation of
the hardware support the JPC is introduced in the hardware architecture and acts similarly
to the PC, but for the Java bytecode. In addition to the elements already introduced in
Section 3.3.2 for the decode, an additional internal register for the JPC and the logic
needed for its management is needed. A deeper analysis of the hardware support with
fetch and decode in hardware is present in Section 3.3.2 [64]. In the same section, an
additional variant with a security check over the JPC is proposed [64]. Two additional
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Figure 3.10: Pseudo-threaded Java interpreter with fetch and decode phases in hardware (Ob-
tained with modifications from [64]).

registers contain the bounds within which the values of the JPC can range. If the JPC
has a value out of bounds, an exception is thrown. Beyond two additional registers for
the bound values, the security enhancement requires two comparators for the comparison
of the JPC against its limits.

3.3.4 Hardware Support for Dictionary Decompression

In this section the final step for the integration of the interpreter with hardware support
and the compression methodologies is presented. As reported in Section 3.2, the decom-
pression techniques are integrated in the Java VM for the run-time decompression. Both
folding and dictionary compressions can be integrated into the interpreter with hardware
support transparently as with a classic interpreter. Section 6.5 gives a more accurate
explanation of the integration.

From the point of view of the interpreter, the folding compression is an extension of the
Java instruction set. Differently from folding compression, in the dictionary compression
the interpreter handles the dictionary that consists of a look-up table containing pointers
to the definitions of the dictionary macros as sketched in Figure 3.11. It is possible to
create a hardware support for the dictionary decompression that accelerates the jumps
through the macros look-up table.

The hardware support for the dictionary decompression is built over the hardware
support presented in Section 3.3.3. It takes advantage of the hardware architecture of the
fetch and decode phases, manipulating the JPC when a dictionary macro is encountered.
The functionality implemented is similar to a CALL instruction in a microcontroller archi-
tecture. The state machine of the hardware functionality for the dictionary decompression
is schematized in Figure 3.12. In the first state the JPC and the PC are stored in registers
that will be used afterwards for continuing the execution flow. In the second state the
PC is stored with the result of the addition between the offset address of the macro table
and the actual macro value multiplied for the address width. This value in the PC corre-
sponds to the address where the starting address of the actual dictionary macro definition
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Figure 3.11: Representation of the structure of the dictionary containing the macro definitions
(Obtained with modifications from [65]).

PC_RET ß PC

JPC_RET ß JPC

PC ß MACRO_TABLE 

+ macro_value

JPC ß fetch(PC)

PC ß PC_RET

Figure 3.12: State machine of the hardware support for the dictionary decompression (Obtained
with modifications from [65]).

is stored. In the third state the starting address of the macro definition is stored in the
JPC, and the PC is restored with the value contained in the return register. After the
interpretation of the macro content, the interpreter encounters a RET MACRO instruc-
tion that restores the value of the JPC with the value contained in JPC RET. Section 6.5
contains a more complete view of the hardware support for the dictionary compression
[65].

3.4 Management of different variants

In this chapter many enhancements to the Java Card system are proposed. Their eval-
uation would request different builds of the software application (i.e. with the different
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compression techniques, alone or combined, with different interpreters...) on different
hardware platforms (i.e. a standard microcontroller platform, one with the hardware
support for the interpreter, one with the hardware support for the dictionary decompres-
sion...). The result is a considerable number of variants of the Java Card system. To
manage the different variants of the Java Card prototype, a variant management system,
similar to the one used in industry for product lines management is adopted. All the
aspects of the transition to a systematic product line management engineering are visited
in Section 6.6 [66].

Application Compression

Off-card Java VM On-card Java VM
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Virtual Machine
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Java Interpreter
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Figure 3.13: Scheme of the Java Card VM architecture under variant management.

The final prototype is shown in Figure 3.13. The compression methodologies can
be activated singularly or together. The Java VM, and more specifically the interpreter,
depends on the hardware architecture where they are built; indeed, the interpreter exploits
the hardware enhancements presented in Section 3.3. The interpreter modules needed for
the decompression are all independent from the hardware architecture, except for the
decompression module that uses the features of the hardware support for the dictionary
decompression.



Chapter 4

Results and Case Studies

This chapter gives an evaluation of the compression techniques and of the proposed hard-
ware architectures. The first part relative to the compression techniques considers the
space savings obtained and the influence that the compression has on the execution of
the applications. The second and third parts of the chapter contain the assessment of
the proposed hardware supports with particular attention paid to the execution time and
implementation costs.

4.1 Compression

This section starts with the depiction of the evaluation workflow. It then analyzes in detail
the performances of the compression techniques giving some insight into their implemen-
tations for the contextualization of the results.

4.1.1 Compression Evaluation Workflow

Figure 4.1 illustrates the evaluation of the compression techniques. At the top of the
workflow there are the applications, which are diversified in industrial applications and
test-benches. The industrial applications (MChipAdvanceed, MChip and XPay) are good
tests for space saving since they consist of a very variegated code and hence they sta-
tistically give sound measurements. The test-benches (BubbleSort and BigInteger) are
basically created for the evaluation of the execution performances.

The applications under test are compressed by means of a compressor developed in
Java. The compressor contains both algorithms for dictionary (comprehending all the
derived dictionary techniques for static and dynamic dictionaries) and folding compression.
The pseudo-code for the compression techniques is available in Section 6.1 and Section 6.2.
After the compression phase, the values of the space savings are available.

Finally, the application is deployed on the Java Card system for the measurement of
the execution time of the applications. Only the test-benches are deployed, because the
industrial applications make use of proprietary libraries not available in the source code
of the Java Card reference implementation provided by Oracle 1. The time measurements

1www.oracle.com

26

www.oracle.com
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Figure 4.1: Java Card tool-chain for the evaluation of the code compression. The applications
under test are compressed for quantifying the space savings and second for measuring the execution
performance.

are performed running the Java Card environment on the simulator of the 8051 processor
provided by the Keil µVision IDE 2.

4.1.2 Space savings

This section reports an analysis of the space savings obtained with the dictionary com-
pression techniques and with the folding compression technique.

Dictionary Compression

As reported in Section 3.2.1, dictionary compression for Java consists of the substitution
of repeated sequences of Java byetcodes with macros whose definitions are stored in a dic-
tionary created apart. As described in Section 6.1, the implementation of the dictionary
compression entails the introduction of a new Java bytecode (ret macro) with the func-
tionality of returning from a macro. Each macro definition has the ret macro instruction
as the final instruction. When accounting for space savings, beyond the space saved in the
method component, the dictionary with all the macro definitions is taken into account.

Table 4.1 reports the space savings for the different dictionary compression techniques
proposed in this thesis; the results are relative to the case in which a dynamic dictionary is
used. The plain dictionary compression performs better with the dynamic dictionary. The
techniques with the generalized macros (fourth and fifth columns) are more suited when
a static dictionary is used and few dictionary entries are available [61]. Section 6.1 gives a
more complete picture of the space savings, inclusive of the case with a static dictionary.

2http://www.keil.com/

http://www.keil.com/
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Table 4.1: Space savings in the application after the application of the dictionary techniques

Application Size [B]
Space Savings [%]

Plain Dict. Gen. Arg. Gen. Istr. Subroutine

XPay 1784 12.3 5.4 9.5 4.0

MChip 23305 9.2 9.6 9.5 2.5

MChip Advanced 38255 10.5 8.9 8.6 3.9

Folding Compression

The concept and design of the folding compression is generally presented in Section 3.2.3
and with more detail in Section 6.2. The implementation of the folding compression needs
the extension of the Java Card instruction set. The folding superinstructions constituting
the extension of the instruction set are reported in Table 4.2. The extension set consists

Table 4.2: Instruction set extension for the folding compression (Obtained with modifications
from [62]).

Instruction Argument Opt. Arg.

LdSt B1[St:Ld] -

PshSt B1[Op:Cnst] B2[BPsh]B3[SPsh]

OpSt B1[St:Op] -

LdIf s2b B1[Op:Ld] B2[Br]B3[Brw]

LdPshAdd B1[Cnst:Ld] B2[BPsh]B3[SPsh]

LdPshOp B1[Cnst:Ld]B2[Op:Ord] B3[BPsh]B4[SPsh]B5[Br]B6[Brw]

LdLdOp B1[Ld2:Ld1]B2[Op] B3[Br]B4[Brw]

LdPshOpSt B1[Cnst:Ld]B2[St:Op] B3[BPsh]B4[SPsh]

PshLdOpSt(PPOC) B1[Ld:Cnst]B2[St:Op] B3[BPsh]B4[SPsh]

LdLdOpSt(PPOC) B1[Ld2:Ld1]B2[St:Op] -

of ten folding superinstructions. As can be seen, the argument of the superinstructions
concerning the local variables are four bits long. Section 6.2 presents a coverage analysis
of the foldable sequences and shows that the ten superinstructions cover about 95% of the
possible sequences in the set of industrial applications [62, 63].

Table 4.3: Space savings obtained with the folding compression (Obtained with modifications
from [63]).

Application Size [B] Space Savings [%]

XPay 1784 6.7

MChip 23305 4.0

MChipAdvanced 38255 3.7

Table 4.3 reports the space savings obtained with the folding compression. The data
does not comprehend the space needed for the implementation of the instruction set ex-
tension. The implementation of the instruction set extension determines an increment of
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about 5kB in the ROM size of the Java VM [62, 63].

Light-weight Compression

The publication in Section 6.3 contains an extended analysis of the light-weight com-
pression. For the evaluation, the light-weight compression is implemented with the plain
dictionary compression and the folding compression [63]. The space savings for the indus-
trial applications are reported in Table 4.4. In comparison with the results of Table 4.1

Table 4.4: Space savings of the light-weight compression (Obtained with modifications from [63]).

Application Space Savings [%]

XPay 15.7

MChip 12.4

MChip Advanced 11.7

and Table 4.3, the space savings of the light-weight compression are almost the sum of the
space savings of the dictionary compression (plain version) and of the folding compression.
The difference between the effective space savings of the light-weight compression and the
sum of the singular space savings of the plain dictionary compression and the folding com-
pression is given by the interference between the two techniques. This interference lowers
the contribution of the dictionary compression [63].

4.1.3 Run-time Performances

This section investigates the execution performances of compressed applications. The tests
are run on the test-benches BubbleSort and BigIntegers, two small applications that can
be run on the Java Card reference implementation released by Oracle 3. The Java card
environment runs on a 8051 simulator, but the results can be replicated for any hardware
architecture, since the performance comparison is dependent on the Java VM architecture
and not on the hardware architecture.

Table 4.5 lists the space savings obtained with the dictionary compression, the folding
compression and the light-weight compression. The space savings data are the indicator
of the effectiveness of various compression techniques. It is possible to notice that the

Table 4.5: Space savings on the test-benches after compression (Obtained with modifications
from [63]).

Application Size [B]
Space Savings [%]

Dict. Compr. Fold. Compr. Light-w. Compr.

BubbleSort 239 5.4 2.5 6.7

BigInteger 650 3.4 1.5 4.5

dictionary compression is not as effective as in the industrial applications, because of

3www.oracle.com

www.oracle.com
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Table 4.6: Execution time of the compressed test-benches. The results are in comparison with
the execution time of the non-compressed test-benches (Obtained with modifications from [63]).

Application
Execution Time [%]

Dict. Compr. Fold. Compr. Light-w. Compr.

BubbleSort +3.2 -6.8 -3.8

BigInteger +1.7 -4.0 -2.2

the small size of the applications and therefore the lower probability of finding repeated
sequences.

Table 4.6 reports the execution time increment and decrement in the different com-
pression cases compared to the execution time of the non-compressed applications. As
expected, the dictionary compression slows down the execution, whereas the folding com-
pression speed it up. In the light-weight compression, the execution speed is the result of
the contrasting behaviors of the dictionary compression and of the folding compression.
In the examined cases, applications compressed with the light-weight compression are ex-
ecuted faster than the non-compressed applications, because of the low effectiveness of
the dictionary compression and of the dominant effect of the folding compression. In the
case of industrial application, where the dictionary compression has a higher impact, the
execution of an application compressed with the light-weight compression is expected to
be slower than the execution of a non-compressed application, but in any case faster than
in the case of an application compressed only with the plain dictionary compression.

4.2 Hardware Support for the Java Interpreter

This section regards the evaluation of the hardware support for the Java interpreter. After
the work-flow is clarified, the performance improvements and the costs are analyzed. A
classic interpreter is compared to the interpreter with the pseudo-threaded architecture
realized in three variants:

• Full software solution

• With hardware support for the decode phase of the Java bytecode

• With hardware support for the fetch and decode phases of the Java bytecode

The classic architecture and the pseudo-threaded interpreter run on an 8051 architecture.
The interpreter with hardware support for the decode phase and the interpreter with
hardware support for both fetch and decode phases run on the 8051 architecture extended
with decode of the Java bytecode in hardware and with fetch and decode of the Java
bytecode in hardware, respectively. Moreover, the results for the interpreters are proposed
as a solution with and without bounds check, as discussed in detail in Section 6.4 [64].
The proposed variants are evaluated for ROM size, execution performance and hardware
costs.



4. Results and Case Studies 31

4.2.1 Workflow for the Hardware Support Evaluation

The workflow used for the evaluation of the hardware support is shown in Figure 4.2.
Starting from above, the Java interpreter is written in C and assembler code. The assem-

Java Card 
Virtual 

Machine 
Prototype

C Code
Assembly 

Code

µVision Keil
Development 

Tools

Macro 
Assembler

C Compiler

Linker

8051
Architecture

VHDL Model

ModelSim
Virtex-5 

FPGA 

 

Figure 4.2: Tool-chain for the evaluation of the hardware support for the Java interpreter.

bler code is necessary especially for accessing the new hardware functionalities by means
of an extension of the processor instruction set [64]. The commercial tool-chain supplied
by Keil (Keil µVision 4 is used for the compilation of the interpreter. The hardware is
described by a VHDL model of a 8051 core architecture developed by Oregano 5 in collab-
oration with the Vienna University of Technology and available under LGPL. The model
is synthesized with the Xilinx ISE tool-chain 6. The executable ROM created with the
Keil tool-chain is synthesized together with the 8051 IP core and run on the ISE Simulator
ISim and on a FPGA starter-kit (Xilinx Virtex-5 FXT FPGA ML507).

4.2.2 Hardware Overhead

For the realization of the hardware support, the 8051 architecture is extended. The original
architecture consists of a finite state machine (FSM) that describes each op-code instruc-
tion of the 8051 architecture. The hardware support for the interpreter is inserted in the
main FSM and the additional hardware registers in the internal memory of the architec-
ture. Additional details concerning the hardware realization are available in Section 6.4

4http://www.keil.com/
5http://www.oreganosystems.at/?page_id=96
6http://www.xilinx.com

http://www.keil.com/
http://www.oreganosystems.at/?page_id=96
http://www.xilinx.com
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[64].

Table 4.7: FPGA utilization for the different architectures with hardware support for the pseudo-
threaded interpretation (Obtained with modifications from [64]).

Architecture
FPGA Util.

FFs Diff. % LUTs Diff. %

Std8051 582 - 2623 -

DI8051 597 2.6 2721 3.7

FDI8051 614 5.5 2885 10.0

Table 4.7 reports the FPGA consumption after the deployment of the different archi-
tectures. The values are expressed in terms of flip-flops (FFs) and look-up tables (LUTs).
The architectures with hardware support for the decode (DI8051) and for both fetch and
decode (FDI8051) are compared to the standard 8051 architecture (Std8051).

4.2.3 ROM Size of the Interpreter

Access to the new functionalities is made possible by an extension of the instruction set
of the 8051 architecture. A deeper understanding of the new instructions can be obtained
in Section 6.4. The pseudo-threaded architecture needs a final sequence of instructions for
each function that is implementing a Java bytecode that allows the fetch and the decode
(comprehensive of the jump to the next Java bytecode function) of the next Java bytecode
[64].

Table 4.8: ROM memory size of the code for the fetch and decode phases (Obtained with
modifications from [64]).

Interpreter
ROM Size [B]

w/o JPC Check w/ JPC Check

CWI 241 283

PTCI 9812 17108

PTCIHwD 4888 12784

PTCIHwFD 376 376

Table 4.8 lists the ROM size of the code for the fetch and the decode phases in the Java
interpreter. The results are relative to the interpreters with and without the bounds check
[64]. The data in the table shows the main limit of the pseudo-threaded interpreter: the
code size for the version completely in software (PTCI) is huge compared with the code size
for the classic version (CWI). The code size of the pseudo-threaded interpreter with the
hardware support for the decode phase (PTCIHwD) is smaller than the one completely in
software, but still big compared to the classic interpreter. The pseudo-threaded interpreter
with fetch and decode phases in hardware (PTCIHwFD) has a code size similar to the
classic interpreter. In the PTCIHwFD interpreter, the code size for the versions with and
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without the bounds check is the same because the bounds check is executed in hardware
and hence there is no code to be added.

4.2.4 Execution Speed

The new architecture of the interpreter allows time reduction for the fetch and the decode
phases. The execution phase of the interpretation remains the same for all the proposed
Java interpreters. In Table 4.9 the times needed for the fetch and the decode phases are
reported. The table collects data for the interpreters with and without bounds check and
reports the percentage difference with the classic interpreter. As can be easily inferred

Table 4.9: Times for the fetch and decode phases in the proposed interpreters (Obtained with
modifications from [64]).

Interpreter
Run-time [Clk Cycles]

w/o JPC Check Diff. % w/ JPC Check Diff. %

CWI 76 - 138 -

TCI 60 -21 122 -12

TCIHwD 38 -50 100 -28

TCIHwFD 6 -92 6 -96

from the data in the table, the pseudo-threaded interpretation gives a better performance
in general than the classic interpretation. Analyzing the variant without the bounds
check, the comparison between the classic interpreter and the pseudo-threaded interpreter
realized completely in software shows a reduction in time of 21%. The reduction in time
increments to 50% when the hardware support for the decode phase is used, and to 96%
when the fetch phase is also performed in hardware [64].

The fetch and the decode phases are the only common part of the interpretation for
each Java bytecode. The rest is represented by the execution phase that is different
for each Java bytecode, since it consists of the functionality of that Java bytecode. For
an estimation of the impact of the new architectures on the interpretation, a set of most
frequently interpreted Java bytecodes is taken into consideration. The interpretation times
are averaged and drawn in the histogram of Figure 4.3. The execute time is constant for
each architecture taken into consideration, because the code for the execute phase does
not use the hardware support. As can be seen, the contribution of the fetch and decode
phase time of the classic interpreter (CWI) is relevant and counts for almost 50% of the
overall time. The histogram clearly shows the benefit of the new interpreters, especially of
the ones with hardware support: the Java interpreter with hardware support for the fetch
and decode phases (TCIHwFD) presents a reduction in the overall interpretation time of
41% compared with the classic interpreter (CWI) [64].

Similar considerations can be made for the energy consumption needed for the Java
bytecode interpretation, due to the fact that it heavily depends on the execution time.
Section 6.4 contains a complete evaluation of the energy consumption needed for the Java
bytecode interpretation.
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Figure 4.3: Interpretation time for the Java interpreters. The execute time is in light-blue, the
fetch and decode phases in dark-blue (Obtained with modifications from [64]).

4.3 Hardware Support for the Dictionary Decompression

This section reports the results for the hardware support for the dictionary decompression.
The workflow for the evaluation of the hardware support for the dicionary decompression
is the same as that described in Section 4.2. The dictionary decompression is implemented
for three architectures:

• The classic interpreter based on a while loop

• The interpreter based on the hardware support for the fetch and decode phases

• The interpreter based on the hardware support for the fetch and decode phases with
the hardware extension for the dictionary decompression

The hardware costs and the benefits in terms of execution time are discussed for the three
proposed architectures.

4.3.1 Hardware Overhead

The hardware support for the dictionary decompression is built over the Java interpreter
with fetch and decode phases in hardware. To compare the hardware overhead, Table 4.10
reports the data relative to the standard 8051 architecture, to the variant with fetch
and decode in hardware and to the model with the hardware support for the dictionary
decompression. Since the hardware realization has been implemented on a FPGA board,
the hardware overhead is expressed in terms of flip-flops (FFs) and look-up tables (LUTs).
The increment in the FPGA utilization observed in the architecture with the hardware
support for the dictionary compression is due to the addition of the registers for handling
the look-up table containing all the addresses of the macro definitions. The complete
discussion regarding the hardware overhead due to the introduction of the support for the
dictionary decompression can be found in Section 6.5 [65].
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Table 4.10: FPGA utilization for the different architectures

Architecture
FPGA Util.

FFs Diff. % LUTs Diff. %

Std8051 582 - 2623 -

FDI8051 614 5.5 2885 10.0

FDI8051DEC 666 14.4 2946 12.3

4.3.2 Performance Improvement

The dictionary decompression is implemented in the three architectures proposed for the
Java interpreter. For the assessment of the execution time performances, the time for the
interpretation of a macro with the average length of three bytecodes with the addition
of the ret macro is measured. The average length of the dictionary macro is determined
during the compression with the plain dictionary technique of the industrial applications
already used in Section 4.1.2.
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Figure 4.4: Execution time for the interpretation of an average dictionary macro. The execution
times for the execution of the bytecodes constituting the macro are In light-blue, and the execution
times for the macros overhead are in dark-blue (Obtained with modifications from [65]).

The histogram in Figure 4.4 reports the time measurement for the complete inter-
pretation of a dictionary macro. The time for the interpretation of the Java bytecodes
contained in the macro is colored in light-blue. As can be observed, the time for the in-
terpretation of the Java bytecodes in the definition is 41% lower in the architectures with
hardware support (FDI8051 and FDI8051DEC); the decrease in execution time is due to
the hardware support for the interpreter as discussed in Section 4.2. The dark-blue part
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of the bars represents the time needed for the dictionary macro overhead that consists of
two contributions:

• The interpretation of the macro bytecode

• The interpretation of the ret macro at the end of the macro definition

The graphic shows that the hardware support reduces the time overhead for the macro
encapsulation from 13% (in the case of FDI8051) to 7% (FDI8051DEC). A more exhaustive
exposition of the results regarding the hardware support for the dictionary decompression
is in Section 6.5 [65].



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Java Card technology is a subset of the Java technology tailored for smart cards. The
penetration of Java Card in the smart card market is growing continuously, because smart
card producers are converging on a solution that offers a common platform where third
parties can also develop applications. In the wide field of possible applications of Java Card
that comprises of telecommunications, banking and identification, a diversification of the
products is taking place in terms of performance. Therefore, aside from high-end smart
cards, there is a growing sector of low-end smart cards equipped with scarce resources. In
order to minimize the applications footprint, compression techniques based on the use of
a dictionary are proposed in literature. In other research works the absence of adequate
resources with which the JIT compilation can be applied is compensated with techniques
that range from superinstructions for the Java virtual machine to the implementation of
the Java virtual machine in hardware.

This thesis addresses two issues: the footprint of the Java Card applications and the
execution performance of the Java virtual machine. Beyond saving some space in the code
memory, compressing an application means introducing some time delay in the execution
of the application because of the decompression. This work goes further and, instead
of looking at compression as a technique that irremediably slows down the application
execution, tries to alleviate this drawback with new compression methodologies and with
hardware/software co-design approaches.

The first contribution is represented by an accurate examination of dictionary com-
pression for Java Card. The use of the static and dynamic dictionaries in relation to the
Java Card architecture is evaluated. Moreover, two new dictionary compression techniques
based on generalized macros are introduced. The plain dictionary compression performs
better in the case of dynamic dictionary, but the dictionary techniques with generalized
macros are a good alternative when the dictionary is static and the number of dictionary
entries is small. This thesis also presents a compression technique based on the fold-
ing mechanism, an optimization for the execution of Java bytecodes. Beyond a discrete
space saving, the folding compression allows an increase in the speed of the application
execution. A combination of the folding compression and the dictionary compression is
proposed as a light-weight compression technique. The slow-down effect of the dictionary

37



5. Conclusions and Future Work 38

compression is compensated by the speed-up introduced by the folding compression; the
contributions produced by the two techniques in space savings are concurrent and allows
an overall space saving that is about the same as the sum of the two contributions.

To mitigate the slow-down effect of the dictionary compression and to speed up the
overall interpretation speed, the second part of this thesis proposes a new Java interpreter
architecture that incorporates the fetch and the decode phases at the end of each function
implementing the Java bytecodes. By means of a hardware/software co-design approach,
the fetch and decode phases are moved into silicon creating a hardware support that dra-
matically speeds up the interpretation speed, at the cost of little hardware overhead. To
complete the picture, dictionary compression is integrated in the new architecture having
the Java interpreter with hardware support. In the first instance the dictionary decom-
pression is realized in software, and the decompression takes advantage of the hardware
support for bytecode interpretation. In the second instance the part of dictionary decom-
pression through the dictionary look-up table is moved into hardware further speeding up
the dictionary decompression.

5.2 Directions for Future Work

5.2.1 Security in Java Card enabled for Decompression

The implementation of compression techniques increases the complexity of the Java virtual
machine. An interesting topic for future work regards the security issues introduced by the
compression techniques. An example can be found in dictionary compression, where the
management of the dictionary causes the Java program counter to point out of the method
area. Security countermeasures against potential attacks can be designed following on the
works [67, 68]. Security issues arise also in the hardware decompression unit introduced
in [65], where the possible countermeasures can be implemented in hardware analogously
to [68].

5.2.2 Java Stack Compression and Hardware Support for Operands Stack

The Java virtual machine is a stack machine. The Java stack is a fundamental part of
the virtual machine and the information regarding the execution is stored in its internals.
The stack is organized in frames; each method has its own frame that is active when the
method is in execution. In each stack frame there is an operands stack that is used as
working memory by the method owner of the stack frame. Because of the frequent use
of the operands stack, approaching the problem with a hardware/software co-design can
improve the performance on accessing it. A flexible design similar to the one proposed
in [64] gives the software developers the freedom to add additional features such as, for
example, security countermeasures. Another research direction is represented by the stack
frames compression. The inactive stack frames may be singularly compressed to reduce
the required memory and to allow the singular decompression at the moment of the reac-
tivation. To limit the time overhead due to the on-card compression and decompression,
hardware/software co-design techniques can be implemented to improve the compression
and decompression speed.
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5.2.3 Heap Compression in Java Card

The Java heap is a portion of memory where all the objects created during the execu-
tion of a Java application are allocated. In standard Java, there is a component of the
runtime environment called garbage collector, whose functionality consists of deleting the
objects that are no longer reachable by any other allocated object. The garbage collector
implements specific algorithms for taking decisions about which objects to delete. When
the garbage collector deletes an object, the remaining objects can be allocated in such a
way that the memory is highly fragmented. At the end of the object deletion, the garbage
collector provides for the compaction of the remaining objects such that the free memory
is not fragmented anymore and can be entirely utilized. In this phase, it is possible to
further reduce the memory occupation of the objects by means of compression of the Java
heap [69, 70]. In Java Card, the garbage collector is not feasible because of the scarce
resources of smart cards: there are manual mechanisms for the explicit deletion of the
objects. In the context of Java Card there would be an interesting investigation in the
field of the heap compression, also evaluating the opportunity for hardware support.



Chapter 6

Publications

This chapter presents the collection of publications which were created during this thesis.
The publications explain the related work, methodology, results, and contributions of this
thesis in more detail.

Publication 1: On the dictionary compression for Java card environment, Proceedings of the 16th
International Workshop on Software and Compilers for Embedded Systems (M-SCOPES ’13), St.
Goar , Germany, 2013.

Publication 2: Instruction Folding Compression for Java Card Runtime Environment, 17th Eu-
romicro Conference on Digital Systems Design (DSD), Verona, Italy, 2014.

Publication 3: A light-weight compression method for Java Card technology, The 4th Embedded
Operating Systems Workshop (EWiLi), Lisbon, Portugal, 2014.

Publication 4: A High Performance Java Card Virtual Machine Interpreter Based on an Appli-
cation Specific Instruction-Set Processor, 17th Euromicro Conference on Digital Systems Design
(DSD), Verona, Italy, 2014.

Publication 5: An Application Specific Processor for Enhancing Dictionary Compression in Java
Card Environment, 5th International conference on Pervasive and Embedded Computing and Com-
munication Systems (PECCS), Angers, France, 2015.

Publication 6: Embedding Research in the Industrial Field: A Case of a Transition to a Software
Product Line, International Workshop on Long-term Industrial Collaboration on Software Engi-
neering (WISE), Vasteras, Sweeden, 2014.
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The publications in this chapter discuss various HW/SW co-design aspects for a high
performance Java Card enabled for compressed applications. This secure Java Card en-
ables the secure installation and execution of different applications. Various checks and
countermeasures against attacks are proposed in this thesis. The checks and countermea-
sures are either implemented in SW or HW.
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Figure 6.1: Publications overview for a high performance Java Card enabled for compressed
applications.

The publications in the first three sections regard code compression techniques:

• The publication in Section 6.1 presents a complete analysis of dictionary compres-
sion, considering the use of static and dynamic dictionaries and proposes advanced
dictionary techniques that use generalized macros

• The folding compression technique is presented in Section 6.2. It consists of an
extension of the Java instruction set with superinstructions used for substituting
foldable sequences,

• Section 6.3 proposes a light-weight compression consisting of the combination of
dictionary compression and folding compression.

The publication in Section 6.4 describes a hardware support for the Java Card in-
terpreter. The publication is structured into two main parts: the first presents a new
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architecture for the interpreter that is used in the second part for the develop of the hard-
ware support. Section 6.5 proposes a hardware support for the run-time decompression
of dictionary compression; the enhancements in this publication are based on the work
in Section 6.4. In Section 6.6 a transition to product lines engineering is presented. The
work describes the same problems encountered in the creation of a single building system
under variant management for the Java Card system enabled for compression.
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ABSTRACT

Java Card is a Java running environment developed for low-
end embedded systems such as smart cards. In this con-
text of scarce resources, ROM size plays a very important
role and compression techniques help reducing program sizes
as much as possible. Dictionary compression is the most
promising technique and has been taken in consideration in
this field by several authors.

Java Card can adopt a dictionary compression scheme,
substituting repeated sequences of bytecodes with new macros
stored into a dictionary. This approach does not break the
Java Card standard, but requires the use of an ad hoc Java
virtual machine and an additional custom component in the
converted applet (CAP) file. This paper presents two de-
rived compaction techniques and discusses two scenarios:
the first adopts an adaptive (dynamic) dictionary, while the
second uses a static one. Although the base dictionary com-
pression technique performs better with an adaptive dictio-
nary, the two proposed techniques perform very close to the
base one with a static dictionary. Moreover, we present a dif-
ferent compression mechanism based on re-engineering the
CAP file through subroutines. This last technique achieves
a higher compression rate, but it is fully compliant with the
existing Java Card environments.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software architectures;
D.3.4 [Programming Languages]: Processors—Compil-
ers Interpreters Optimization; E.4 [Coding and Informa-
tion Theory]: Data compaction and compression
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1. INTRODUCTION
Smart cards are low-end embedded systems with limited

resources in terms of computing power, RAM and ROM
storage [11]. Typical smart cards are based on 8/16 bit pro-
cessor with one kilobyte of RAM and include up to few hun-
dreds kilobytes of ROM. In such small devices the common
practice is to develop applications in low level programming
languages such as C or assembly in order to keep the code
size small and the performance high. Problems with this ap-
proach are due to the difficulties in updating, reusing, and
porting the code. A high level language like Java partially
solves this set of problems, while also adding valuable secu-
rity features to the runtime environment, aspects that are
very important to most smart-card applications.

Due to resource constraints, smart cards cannot utilize the
complete Java standard. However, it is possible to overcome
this limitation using a subset of the language, called Java
Card. Java Card enables programmers to take advantage
of Java’s object-oriented programming model and offers a
common infrastructure for developing applications indepen-
dent from the chosen hardware and software platforms [3].
Applications are distributed in the Java Card converted ap-
plet (CAP) file format [9], where all the classes utilized by
an application package are stored. This file contains sev-
eral components used during the installation, including the
Method Component that contains all the classes’ methods
and typically occupies up to 75% of the entire CAP file.
Another advantage of Java Card is security [8]. Java Card
specification is well defined and assures a security environ-
ment where to protect sensitive information. Hence, modi-
fications to the current model are dangerous since they may
break standard security features.

One of the goals in embedded systems development is to
keep ROM size as small as possible. Popular code com-
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pression techniques usually demand resources that are not
available in nowadays smart cards, as for instance they may
require to store in RAM part of the program code for its de-
compression and successive execution [15]. Dictionary com-
pression for smart cards is the most suitable compression
technique, since it does not need large amount of resources in
the decompression phase. This technique consists in substi-
tuting repeated sequences with new macros. The compres-
sion phase consists of the search of repeated patterns later
stored in a dictionary and their substitution with macros.
These macros are afterwards decoded in the decompression
phase looking them up into the dictionary, from where the
code can be directly executed without any need of additional
translation phase.

Clausen et al. [4] have used dictionary compression and
showed that a space savings up to 15% is reachable. A re-
peated sequence of Java bytecodes is substituted with a new
bytecode. In the decoding phase the Java virtual machine
translates the new bytecode looking up into a dictionary
stored in an additional CAP file custom component [2]. The
extension of the virtual machine with new bytecodes does
not conflict with the standard. Some bytecodes are not uti-
lized in Java Card specification [9] and thus they can be used
for the extension.

This paper investigates two new techniques derived from
the base dictionary one. The first uses wildcards to gen-
eralize the arguments of the java bytecodes, whereas the
second introduces into the definitions of the dictionary gen-
eralized instructions that are fully specified by additional
arguments. We evaluate these techniques in two scenarios,
one with a dynamic dictionary and the other with a static
one. Even though we will see that the base dictionary tech-
nique performs better with dynamic dictionary, we will also
see that the two proposed techniques perform close to the
base dictionary one with a static dictionary. Finally we pro-
pose a third approach that avoids extending Java Card base
standard, and instead integrates the dictionary compression
without adding new bytecodes. This last technique allows
for smaller CAP file while also complies with all existing
Java Card virtual machines. Space savings are between 2.5
and 4.0%.

The rest of the paper is structured as follows. Section 2
resumes the state of the art in the dictionary compression
focusing on the Java Card area. In Section 3 we present our
variants to classic dictionary compression and we propose a
compression method by means of subroutines. Results from
our tests and relative discussions are reported in Section 4.
Finally in Section 5 we report our conclusions with a view
on future work.

2. RELATED WORK
Dictionary compression is based on the encoding of sym-

bols’ strings into tokens using a dictionary [12]. Dictionaries
may be static or dynamic (adaptive); the former is perma-
nent, whereas the latter is created from the input analysis.
In general the adaptive dictionary is the best choice, since it
allows a better compression, but there are situations where
a static dictionary is preferable or necessary, such as when
it is not possible to send the dictionary with the applica-
tion. A statistical compression like Huffman [12], in general
has the drawback of a more complex decodification phase.
This complexity is especially critical when the compression
regards executable code, where the complete code, or parts

of it, have to be decoded before execution. In a context
where there is a small amount of available RAM and short
execution time has a relevant importance, this kind of com-
pression is not suited. A dictionary compression where the
new introduced symbols can be easily translated jumping
through look-up tables is a better solution for these kinds of
systems.

A virtual machine (VM) is a software entity whose pur-
pose is to interpret compiled code. Virtual machines usu-
ally execute applications slower than processors executing
native compiled applications. Among the reasons for us-
ing a virtual machine there are the target independence and
the smaller size of the compiled application. Proebsting [10]
introduced the concept of Superoperators for bytecoded in-
terpreters. These are sequences of instructions that can be
grouped together to optimize execution time, and, as sec-
ondary effect, to reduce code size. Superoperators are intro-
duced into VM instruction set and then found and substi-
tuted into the application code.

The work of Clausen et al. [4] presents for the first time
an application of a dynamic dictionary compression method
to the Java bytecodes. The application of this technique
is taken in consideration for tiny embedded system such as
Java Card. The compressor analyzes the method component
of the CAP file and searches for repeated occurrences of
patterns. These patterns are stored in a custom component
of the CAP file [2] and every occurrence is substituted with
a new bytecode. The technique is able to reach about 15% of
compression with the drawback of the increase in execution
time between 5 and 30%.

The approach of Saougkos et al. in [13] is based on the
work of [4] and expands the patterns searching policy. In
fact whereas in [4] the research is after patterns with fully
specified sequence of instructions, in [13] a variable number
of non-specified bytecodes, called wildcards, are introduced
in the patterns. The problem of finding the set of possible
sequences is handled by means of the agglomerative cluster-
ing technique. Heuristic algorithm are then used for finding
the sets of patterns for the compression. The outcome is
that non-parameterized and with small number of wildcards
patterns are the best choices for most of the applications
taken in exam.

3. DESIGN AND IMPLEMENTATION
From theory of compilers a Basic Block is a sequence of

consecutive statements in which the control flow enters at
the first statement and leaves at the last one, without halt
or any possibility of branch except at the end [1]. This
definition is useful for the creation of flow graphs but in the
context of dictionary compression it is too strict. In fact
factorizing a program under this definition creates a large
number of small blocks. For this reason we introduce in
our factorization model the definition of a pseudo basic block
that extends the original definition making it suited for our
purpose. In literature this entity is known as Single Entry
Single Exit (SESE) region [6]. As shown in Figure 1 in a
SESE the last statement cannot be a branch instruction.

Moreover the content of the region does not need to be
linear, allowing the presence of internal branches having as
target internal statements. External branches cannot en-
ter into the block except into the first statement (entry is
single); internal branches cannot go outside the block (this
condition does not comprehend return and invoke instruc-
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instr_1
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instr_3 

instr_4 (branch)

instr_5 

instr_6
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instr_8

instr_9 (no branch)  

instr_10

Figure 1: Single Entry Single Exit Block

Collection collections;

for( i=0; i<instructions.size(); i++ ) {

Sequence seq;

seq = instructions[i]; //init seq

for( int j=1; j<MaxWindowSize-1; j++ ) {

seq += instructions[i+j];

if( isSeqCollected(seq) && isSeqSESE(seq) ) {

collections += searchSESESeqInTheCode(seq);

}

}

}

Figure 2: Pseudo-code for the collecting algorithm

tions inside the block). Basing on SESE concept, blocks can
have every dimension, theoretically until the entire program.
However for the needs of a dictionary compression method,
a reasonable limitation must be taken since the bigger the
block is the smaller is the possibility to find its repetitions
through the code.

In general code factorization is an NP-complete problem
[5]. However our algorithm relies upon a simple moving win-
dow search that fits well to the faced problem. In Figure 2
we show the pseudo-code for the search algorithm. Starting
from one instruction, the window extends until it reaches its
maximum width. The latter must be of a reasonable size;
in our experiments we see that patterns bigger than 20 in-
structions are very rare. For this reason the usage of larger
windows is not convenient because they would extend the
searching time enormously without any advantage. Every
time that we include a new instruction in the window, the
sequence of instructions contained is proposed as a new pat-
tern. The first step consists in checking if it has already
been collected, if not it is used for collecting equivalent pat-
terns through the entire code into a group of equivalent pat-
terns. Every equivalent pattern found, before adding it to
the collection group, is checked for compliance with SESE
characteristics, and discarded otherwise.

In Figure 3 we report the description in pseudo-code of
the phase that associates new bytecodes to the discovered
patterns. After collecting all possible patterns, a first purg-
ing is executed, with the goal of eliminating all those groups
that consists of only one sequence and so not worth com-
pressing. The successive step is to check the overlapping
among every occurrence in every group. This information is

Collection collectMacros;

purgeSinglGroups(collections);

calculateOverlapping(collections);

collectMacros = getMostSavCollect(collections);

int i=0;

do{

calcSpaceSaving(collectForMacros);

collectMacros += getMostSavCollect(collections);

i++;

}while(i<MaxNMacro || saveCollect(collections)!=0)

Figure 3: Pseudo-code for the decision algorithm

used in the following steps to give a value to every group in
relation to the others. The selection of the groups that are
worth representing with a new bytecode is not as simple as
taking groups with more than one occurrence inside. In fact
every occurrence in a group could overlap and so exclude an
occurrence in another group. These relationships make the
decision of which group to select not trivial.

A metric for the sake of taking decision is necessary and
in this compaction context the number of saved bytes is the
chosen one. In a group, every occurrence that does not over-
lap with others of an already chosen group, is substituted
into the code with a new bytecode and the pattern is writ-
ten only once into the dictionary component and terminates
with the special return from macro instruction that brings
back the execution flow to the method component. The new
bytecode can be represented with a single byte (until the
number of free bytecodes in the standard is reached) or two
and more. Generally the undefined bytecodes can be used
for several functionalities (i.e. additionally security) and us-
ing all of them for the compaction could not be possible.
In our experiments we substituted only the first 10 groups
with a single byte instruction and the remaining groups with
two-byte instructions. In this way we let several undefined
bytecodes for other possible purposes.

The decision process depends on the potential saved bytes
of every group, in turn dependent on the overlapping se-
quences among the groups. For this reason the decision pro-
cess needs to select one group as a starting point. We choose
to select as first group the one that could save the most stor-
age on memory. Once we selected an initial group, we can
find in the remaining groups all the sequences that overlap
with the ones of the initial group. The overlapping sequences
are excluded in the computation of the saved bytes of the
remaining groups. This process is iterated until a deter-
mined number of groups (and then a fixed number of new
bytecodes) is reached or there are not any other groups that
allow saving bytes. In general every group represents a dif-
ferent macro that shall be saved in an additional CAP file
component where the virtual machine will be able to find
them. From now on in this document we will call this com-
pression mechanism Plain Dictionary Compression(PDC).

We show now by means of the very simple Java class in
Figure 4 an example of how the technique is applied. In
Figure 5 we report the relative compiled bytecode through
which the three macros reported in Figure 6 have been found.
We show the calculation of the saved space taking in con-
sideration the first macro. In the original bytecode the in-
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public class Point {

private short x;

private short y;

private short z;

public Point() {

x=0;

y=0;

z=0;

}

public Point(short x, short y, short z) {

this.x=x;

this.y=y;

this.z=z;

}

public short absXDist(short x) {

return absDiff(this.x, x);

}

public short absYDist( short y ) {

return absDiff(this.y, y);

}

public short absZDist( short z ) {

return absDiff(this.z, z);

}

public short absDiff(short a, short b) {

short diff;

if( a > b ) {

diff = (short)(a - b);

return diff;

}

else {

diff = (short)(b - a);

return diff;

}

}

Figure 4: Example of a class file

structions sequence is 5 bytes long and it is repeated 2 times
through the code. This sequence is stored into the dictio-
nary adding the macro return instruction in a 6 bytes long
definition. The macro is represented with a new bytecode
one byte long. The substitution with the new macro takes
2 bytes since it is repeated 2 times. The first macro finally
lets save 2 bytes. Similarly, the second and the third macros
save 6 and 1 bytes, respectively. In this paper we henceforth
define the compression ratio as

r =
Scompressed

S

where S is the size of the original size of the method com-
ponent of the application, and Scompressed is the size of the
method component of the application after the compression.
Complementary the space savings is defined as

s = 1− r = 1− Scompressed

S

In the example the three macros allow a total of 9 bytes
saved, that, respect to an original amount of 71 bytes, means
about the 12.7% of space savings (s) and hence 87.3% of

compression ratio (r). To avoid misunderstanding we under-
line that we are aware that the function absDiff is redundant
in its content, but it is written in that way for the sake of
simplicity and to show that the compaction techniques can
also be a tool against bad code style.

3.1 Variations to plain dictionary
Our work proposes some variation to the PDC, for the

sake of making comparisons in a qualitative and quantitative
aspect. The algorithm previously described in the previous
section is adapted with opportune modifications for fitting
these variations.

3.1.1 Dictionary Compression with Wildcards

Saougkos et al. in [13] proposed a variation to the method
proposed in [4] which introduces the concept of wildcards. In
a bytecode sequence using wildcards consists in not defining
one or more bytecodes making the sequence more general.
Every sequence is substituted with the new macro bytecode,
followed by a bit mask that indicates the position of the
wildcards and by the wildcards themselves. When the vir-
tual machine interpreter encounters the new bytecode, it
fetches the bit mask, from which it knows the number of
wildcards (i.e. the number of set bits) and the wildcards
that afterwards will be inserted into the pattern. We pro-
pose a similar approach that allows wildcard utilization only
for the arguments of Java bytecodes. Not all the arguments
are substituted with a wildcard. If a bytecode has the same
argument through all the sequences collected, this argument
will be not collected as a wildcard but as a normal bytecode
into the dictionary, as in the plain dictionary compression.

Going back to the example of Figure 5, now we can ex-
pand the second macro of the plain dictionary compression
as showed in Figure 7. In fact thanks to wildcard we can
add also the getfield instruction letting blank the place for
its argument. Referring to Figure 6 the second macro is
applied as:

::short absXDist(short x)

P:00 macro2’ 0x02 0x00

The arguments of macro2’ are two bytes. The first is a
bit mask that declares the position of the wildcard, while
the second is the wildcard content (the argument of get-
field s this bytecode instruction).
This new macro allows to save a total of 5 bytes, one less
than the same one in the plain compaction, and we can save
11.3% of the utilized space.

3.1.2 Dictionary Compression with Generalized In-
structions

We propose a second technique, derived from the plain
one, that inserts into the pattern generalized instructions
for certain groups of java bytecodes.
The Java Card standard presents some groups of instruc-
tions like SLOAD 0, SLOAD 1, SLOAD 2 and SLOAD 3
that have the same functionality but differ only for the tar-
get (in these cases a short integer is loaded respectively from
the local variable 0, 1, 2, 3 onto the Java operand stack).
Sequences that have this kind of instructions will be stored
into the dictionary with the generalized instruction in place
of the generalizable one; every occurrence of the pattern is
substituted with a new op-code followed by the needed bytes
for the encode information about the generalized instruc-
tions (i.e. for covering the four SLOAD instructions only 2
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::Point()

P:00 aload_0

P:01 invokespecial 00 07

P:04 aload_0

P:05 sconst_0

P:06 putfield_s 00

P:08 aload_0

P:09 sconst_0

P:0a putfield_s 01

P:0c aload_0

P:0d sconst_0

P:0e putfield_s 02

P:10 return

::Point( short x, short y, short z)

P:00 aload_0

P:01 invokespecial 00 07

P:04 aload_0

P:05 sload_1

P:06 putfield_s 00

P:08 aload_0

P:09 sload_2

P:0a putfield_s 01

P:0c aload_0

P:0d sload_3

P:0e putfield_s 02

P:10 return

::short absXDist(short x)

P:00 getfield_s_this 00

P:02 sload_1

P:03 invokestatic 00 08

P:06 sreturn

::short absYDist(short y)

P:00 getfield_s_this 01

P:02 sload_1

P:04 invokestatic 00 08

P:06 sreturn

::short absZDist(short z)

P:00 getfield_s_this 02

P:02 sload_1

P:03 invokestatic 00 08

P:06 sreturn

::short absDiff(short a, short b)

P:00 sload_0

P:01 sload_1

P:02 if_scmple 08

P:04 sload_0

P:05 sload_1

P:06 ssub

P:07 sstore_2

P:08 sload_2

P:09 sreturn

P:0a sload_1

P:0b sload_0

P:0c ssub

P:0d sstore_2

P:0e sload_2

P:0f sreturn

Figure 5: Bytecodes of the compiled class file

Macro1:

aload_0

invokespecial 00 07

aload_0

Macro2:

sload_1

invokestatic 00 08

sreturn  

Macro3:

ssub

sstore_2

sload_2

sreturn  

Figure 6: Macros for Plain Dictionary Compression

Macro1:

aload_0

invokespecial 00 07

aload_0

Macro3:

ssub

sstore_2

sload_2

sreturn  

Macro2':

getfield_s_this XX

sload_1

invokestatic 00 08

sreturn   

Macro1:

aload_0

invokespecial 00 07

aload_0

Macro3:

ssub

sstore_2

sload_2

sreturn  

Macro2':

getfield_s_this XX

sload_1

invokestatic 00 08

sreturn   

Figure 7: Macros for Dictionary Compression with
Wildcards

bits are needed). Also in this case where all the occurrences
of a pattern have the same generalizable instruction, the al-
gorithm puts the original instruction into the pattern of the
dictionary, as in the normal PDC.

In our example of Figure 5, starting from the plain com-
paction results we can expand the third macro as in Fig-
ure 8. It is important to notice into the macro the presence
of SLOAD N, a new bytecode to indicate a general SLOAD
that has specified the referring local variable into the argu-
ments of the macro bytecode (in this case the arguments of
the two load can be stored in one byte since only 2 bits are
needed for each one). With reference to Figure 6 an example
of the application of the third macro within the code is:

::short absDiff(short a, short b)

P:00 sload_0

P:01 sload_1

P:02 if_scmple 08

P:04 macro3’ 0x04

The argument of macro3’ is a byte. The first two bits of the
byte are 00 (SLOAD 0 ) and the third and fourth bits are
01 (SLOAD 1 ).
With this expansion we save the same amount of bytes of
PDC.

3.2 Static and Dynamic Dictionary
Security is a major requirement for smart cards. Cus-

tomers are very concerned about every potential security
threat, and they typically adhere to the principle that sim-
pler architectures are easier to protect. Hence, the intro-
duction of new components is not always considered a good
design practice, even if allowed by the standard [9]. The
additional component in the case of dictionary compression
is the dictionary itself that is sent along with the applica-
tion in the form of a custom CAP component, as described
in [4, 2]. In this case the dictionary is dynamic since it is

Macro1:

aload_0

invokespecial 00 07

aload_0

Macro2:

sload_1

invokestatic 00 08

sreturn  

Macro3':

sload_N  

sload_N

ssub

sstore_2

sload_2

sreturn

Figure 8: Macros for Dictionary Compression with
Generalized Instructions
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           .

           .

::Call of the sbr

P:B2       jsr McrA

P:B4       instr3

           .

           .

           .

::Subroutine:

P:McrA     astore N

P:McrA+1   instr1

P:McrA+2   instr2

           .

           .

           .

P:McrA+L   ret N

Method

Local Variables
subroutine

content

...

...

Operand Stack

jsr

astore

00B4

Java PC

00B2

ret

00B4

Figure 9: Structure of a Subroutine Macro

built during compression and is strictly related to the appli-
cation. A solution to this problem is the substitution of the
dynamic dictionary with a static one, internally stored into
the virtual machine. Static dictionaries generally target a
specific context. The building of the dictionary can not be
based on a single application but on a set of applications.
With high probability, only the applications taken as base
in the build process of the dictionary will take advantage of
the definitions stored in it. This solution is less effective in
terms of compression respect to a dynamic dictionary, since
the dictionary has to be shared and therefore made more
general.

3.3 Dictionary Compression with Subroutine
The previous techniques all need both a modification of

the Java virtual machine and, to be really effective, an ad-
ditional CAP file component for storing the dictionary. To
overcome these two drawbacks we propose a pure Java so-
lution that uses subroutine for compacting the code. In the
Java instruction set [9] there are two bytecodes for the pur-
pose of building subroutines.

JSR instruction, acronym for “Jump Subroutine”, loads
the Java program counter (JPC) of the following instruc-
tion into the Java operand stack and adds its argument (an
offset) to the actual JPC. In this way the new JPC points the
first instruction of the subroutine, whereas the “return”JPC
is stored in the stack. The first instruction of the subrou-
tine saves the return JPC on the Java operand stack into
an ad hoc local variable (LV). After the execution of the
subroutine content, the RET (“Return from Subroutine”)
instruction allows to return to the main execution, loading
the address contained in the ad hoc LV into the JPC again.
Figure 9 shows the structure of the macro with a view of the
LVs where the ad hoc LV is highlighted with a gray fill.

This model needs to add a LV to every stack frame owned
by a method interested by compaction. This LV has the
purpose of storing the return JPC and is necessary for the

Application Name Meth. Comp. Size [bytes]
xPAY 1680
MChip 23305

xPAYAdvanced 1784
MChipAdvanced 38255

Table 1: Sizes in bytes of the analyzed applications

sake of a complete isolation of the compression mechanism
from the operational flow of the method. The main draw-
back of this schema is its applicability. In fact JSR and
RET instructions can only manipulate the JPC to addresses
within the method they belong to and this limits the poten-
tial compaction. Another limit is the cost of the structure;
every occurrence is substituted by the JSR instruction (2
bytes) and the subroutine has an initial ASTORE instruc-
tion (2 bytes in the worst case) and a final RET instruction
(2 bytes). Beyond the pure Java nature that does not need
any extension of the virtual machine, the main advantages
of this technique is that no additional component is needed
to store the dictionary. In fact all the definitions used into
a method are stored at the end of the method itself. In this
way there is a different dictionary for every method.

Making now a short digression about the opportunity of
using JSR and RET instructions, we are aware of the prob-
lems related to the verification process as described in [14].
JSR and RET are used for translating the try-catch-finally
in the Oracle’s implementation of compiler for the Java pro-
gramming language prior to Java SE 6 [7]. The complexity
that this process introduces is not easily handled by veri-
fiers. These problems do not affect the proposed technique
since we do not combine the JSR/RET instructions with
other branch types, and we do not modify the order of cre-
ation/access of the local variables.

4. RESULTS AND DISCUSSION
For analyzing the developed techniques we used a set of

four industrial banking applications. These applications are
written paying a lot of attention to performance and ROM
size minimization. This means that code is written fully
using Java Card language potential. The applications are of
different sizes as can be seen in Table 1.

In the following sections we analyze first of all the behav-
ior of the compaction methods with a dynamic dictionary
that can be stored into an additional CAP file component,
and then with a static dictionary. As mentioned before all
the percentages are calculated respect to the method com-
ponent.

4.1 Plain Dictionary Compression
In Table 2 we report all the compaction ratios reached for

the examined applications. In the second column we show
the number of new bytecodes needed to represent all the
sequences found.

As already said it is not surprising that the number of
new bytecodes is higher than the number of the available
ones from the standard, since after the tenth, two bytes are
used for every pattern. Comparing respectively the num-
ber of new bytecodes with the size of every application is
interesting to see that the bigger the latter is, the higher is
the first. We also see that the ratios we achieved here are
comparable to the compression ratios reached in [4]. The
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Figure 10: Trend of the MChipAdvanced application with dynamic dictionary

Appl. Nr. of Bytecodes Compr. Ratio [%]
xPAY 28 88.2
MChip 229 89.2

xPAYAdv 28 87.2
MChipAdv 303 87.5

Table 2: Compression ratios for PDC with dynamic
dictionary

Appl. Nr. of Bytecodes Compr. Ratio [%]
xPAY 19 95.2
MChip 158 90.4

xPAYAdv 20 94.6
MChipAdv 252 91.1

Table 3: Compression using wildcards with dynamic
dictionary

little gap in compression values is probably due to the high
optimization of the applications tested.

4.2 Dictionary Compression with Wildcards
and with Generalized Instructions

Tables 3 and 4 show the results for the dictionary com-
pression with wildcards and with generalized instructions,
respectively. Generally for every case we see that the com-
pression ratios reached are higher than those from PDC.

The reason for this behavior can be individuated in the
higher cost for the substitutions bound to the low number
of similar sequences that can be grouped with these criteria.
On the other side we see that compression rates saturate
for lower numbers of new bytecodes. We also propose for
the biggest application (MChipAdvanced) a graph in Fig-
ure 10 where we show the trend of space savings for the

Appl. Nr. of Bytecodes Compr. Ratio [%]
xPAY 8 92.4
MChip 160 91.4

xPAYAdv 17 90.5
MChipAdv 224 91.4

Table 4: Compression using generalized instructions
and a dynamic dictionary

three techniques in relation to the number of new bytecodes
introduced. Beyond recognizing that after a threshold the
space savings does not improve any further, we see that also
taking a finite number of new instructions the PDC performs
in any case better than the other techniques.

4.3 Compression with Static Dictionary
All previous results are achieved by means of dynamic

dictionaries meaning that each application is associated to a
dedicated dictionary. In this section we analyze the behavior
of compression with static dictionary. The static dictionary
as expected is bigger than the single dynamic ones. As an ex-
ample in the case of PDC, maximum dictionary dimension,
rated as number of definitions inside, contains up to 462 en-
tries compared against the 290 entries of the dynamic dictio-
nary for MChipAdvanced. Having a complete dictionary in
this case makes sense only if all the applications are installed
together on the same smart card and hence its cost can be
shared among multiple programs. This is not the case of
these applications since, for application-specific issues, only
the couple MChip (or MChipAdv) - xPAY (or xPAYAdv)
is installed. Figure 11 shows two important aspects of the
static compression taking in exam the MChipAdvanced ap-
plication. In the figure the horizontal axis indicates the def-
initions in the static dictionary. In the vertical axis on the
left we have the space savings percentage for the same three
compression techniques above examined, while on the right
vertical axis we have the number of dictionary definitions
not used in MChipAdvanced but for the other applications.
Looking to this latter is interesting to notice that, about
after 90 definitions, the number of unused definitions starts
to grow faster. For the same horizontal axis point also the
space savings percentage starts to grow slower. This crossed
information tells that it is not worth keeping more than 90
definitions (new bytecodes) in the static dictionary which
allow to save about the 7% of the size. In general, also the
other applications have the same behavior with a reduction
of the original size into the range between 5 and 7%. The
compression performance is lower than in case of using dy-
namic dictionaries but this can be the best solution in case
of design constraints where additional CAP components are
not allowed. Looking again at Figure 11, it is interesting to
notice that all space savings rates of the two techniques pro-
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Figure 11: Trend of the MChipAdvanced application with static dictionary

Appl. Compr. Ratio [%] Additional LV
xPAY 97.6 2
MChip 97.5 28

xPAYAdv 96.0 3
MChipAdv 96.1 35

Table 5: Compression ratios and additional local
variables using subroutine compression

posed in this paper are very close to the PDC one. This very
low decrease of compression efficiency makes the proposed
techniques a good choice for a static dictionary since more
generalized definitions have a higher probability to be suited
for other applications not used for the dictionary building
process.

4.4 Compression with Subroutine
Compression with subroutines does not need additional

components for the dictionary so there is no need to limit the
number of definitions but, as Table 5 shows, ratios reached
are higher than in the previous cases.

The same table also shows the number of additional lo-
cal variables (local variables are words of two bytes). This
information does not concern the additional RAM needed.
The latter depends on the calling tree, hence the informa-
tion on the table represents a worst case (all the methods
with additional local variables are called one by the other,
and there are not recursive loops) of additional RAM con-
sumption. The higher compression ratio in comparison to
the other techniques analyzed in this paper could make the
other techniques preferable, but also other aspects have to
be taken in consideration. First in order is its applicabil-
ity to any application, that can be uploaded to any existing
Java Card. Another strong point is its easy insertion into
the software developing flow as a post compiling process that
does not need additional effort by developers.

5. CONCLUSIONS
In this paper we proposed two novel dictionary-based tech-

niques for compressing Java methods by means of the intro-

duction of new bytecodes. When compared against a non-
parametrized solution, we show that, on average, the latter
performs better. A flexible combination of the three tech-
niques presented here seems promising for achieving lower
compression ratios, and we are evaluating the development
of such a solution as future work.

Moreover, we investigated the applicability of compression
techniques in scenarios where software architects’ degree of
freedom is low. In this context, a static dictionary stored
inside the virtual machine is a first solution to avoid us-
ing additional custom components in the CAP file. The two
dictionary-based techniques proposed in this work are a pos-
sible choice for a static dictionary. The higher generalization
of the definitions makes them suitable with higher probabil-
ity for applications not taken in consideration in dictionary
building phase. This paper presented a first study of such
approach, and we want to extend this work to develop a full
and functional algorithm that could balance the weight of
the applications taken as population respect to specific fac-
tors (i.e. percentage of devices where the application will be
uploaded), in the phase of dictionary creation.

Finally, we analyzed the opportunity of compressing byte-
code by means of Java subroutines. Since such solution com-
plies with every existing Java Card, it can be applied to ev-
ery application, regardless of where the application will be
installed. This elegant solution can achieve a space savings
between 2.5 and 4.0%. More importantly, this technique
could be included as an automatic post-compiling process,
greatly simplifying its deployment.
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Abstract—Java Card is a secure Java running environment
targeted for smart cards. In such low-end embedded systems,
ROM size and execution time play very important, usually
opposing roles.

Dictionary compression can be applied to the Java Card
software architecture, but pays for the reduced ROM size of
the applications with a higher execution time. On the other
hand, acceleration mechanisms to speed up the execution need
additional information or additional software complexity, with
the effect of increasing ROM size.

In this paper, we propose a dictionary compression system
based on an instruction folding mechanism that permits a
reduction in the ROM size of Java Card applications, and
at the same time, a speed-up of their execution.

Keywords-Smart card; Java Card; compression; instructions
folding;

I. INTRODUCTION

Smart cards are nowadays a very widespread technology.
The main fields of application are banking, e-government,
and identification. Because of this large diffusion, these
systems have to be cheap, and therefore can only rely upon
very limited resources. Typical hardware configurations are
based on 8/16 bit processors with some kilobytes of RAM
and up to a few hundred kilobytes of non-volatile memory,
distributed between ROM, Flash and EEPROM memory. In
such a category of embedded systems, the programming
language for applications is often C or even assembly [1].
The usage of an object oriented, interpreted language (e.g.
Java) would help improve portability, but with the side effect
of a slower execution. Unfortunately, the adoption of the
complete Java standard in smart cards is unrealistic because
of the very limited resources available in these systems. This
is the main motivation that led to the development of a
Java standard expressly for smart cards called Java Card
[2] [3]. The additional advantage of this environment is a
high degree of security due to the Java architecture, and to
specific functionalities such as cryptography.

In Java the applications are distributed in class files, while
in Java Card they are distributed in CAP files. The structure
of a CAP file is similar to that of a class file but it is
a compressed form similar to a JAR file. Like the class

file, the CAP file has several components. The Java Card
environment relies on these components when it has to
install an application [4]. We focus our attention on the
Method Component that contains all the classes’ methods
compiled in the form of bytecode sequences. At run-time
the Java virtual machine interprets the bytecodes, making
the real hardware execute machine instructions. The method
component and the Java virtual machine have been the
object of several research contributions, focusing on code
compression or instruction execution acceleration; however,
none of them achieves both of these outcomes.

In this paper we propose a method to decrease the code
size and to speed up its execution. With the introduction
of a small number of new instructions in the Java Card
instruction set, it is possible to substitute sequences of
bytecodes into the method component, shrinking down the
code size. Since the new instructions are the optimized
version of the instructions contained within the substituted
equivalent sequences, the execution of the new instructions
is faster. The result of this combination is a reduction in the
application code size, and at the same time a speed-up of
its execution.

The structure of the rest of the paper is as follows. Section
II reviews the published work on code compression and
execution acceleration that forms the basis of this research.
Section III explains our concept of folding compression. In
Section IV, we provide a description of the implementation
of the technique. Section V presents the results of the
compression, focusing on ROM size and run-time. Finally,
in Section VI we report our conclusions and a view on future
work.

II. RELATED WORK

Compression of applications is a very delicate topic
and several compression mechanisms concerning executable
code have been proposed. On the one hand, compression
allows for a reduction in ROM size; on the other hand,
there is the problem of the decompression phase. The latter
can be reduced to two main aspects: the time necessary to
decompress the program and the RAM resources needed for
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storing it. Classic compression methods such as Huffman
coding need to decompress the entire compressed informa-
tion. Even if the compression is profile-guided, as Debray et
al. show in [5], the decompression phase needs an additional
amount of RAM; this memory consumption hardly fits with
smart cards, where the hardware is usually strictly tailored
to software requirements, and where there are not many free
resources left.

In the context of smart cards, dictionary compression is
a more suitable solution due to its simpler decompression
phase [6]. The compression phase consists of substituting
repeated sequences of information units with macros, whose
definitions are stored in a dictionary. In the decompression
phase, the system looks into the dictionary for the macros
encountered through the compressed stream and makes a
substitution. In the case of Java Card, compression involves
the bytecodes in the method component and can be done
at compile time off-card [7]. Thanks to the software archi-
tecture of the virtual machine, the bytecode interpreter is
easily customizable for handling the dictionary. Clausen et
al. show that macros used in compression can be introduced
as new instructions in the interpreter instruction set. At run-
time, when the interpreter encounters a macro it looks up
the macro definition in the dictionary, and can then execute
directly the equivalent sequence of bytecodes. Therefore,
there is no need to separate the entire decompression phase
from the execution phase. The definitions of the macros
are stored in a dictionary that is application specific and
sent with the application CAP file [7]. Space savings of
about 15% are obtained, with a run-time speed penalty of
between 2% and 20%. In [8], we propose an architecture
differentiation between a static and a dynamic dictionary.
We also propose modifications to the classical dictionary
compression to make the macros more general with the
addition of arguments.

Software architectures based on interpreters such as Java
pay for the “write once, run anywhere” property with
a slower execution compared to applications compiled in
native machine language. Hence, execution time has always
been a critical factor for any system deploying Java. The
main approach present in most widely spread Java environ-
ments is the “Just-In-Time” (JIT) compilation [9] [10] [11].
It consists of compiling the bytecode sequences during run-
time into machine instructions performing optimizations that
make execution faster than a simple interpretation on the
Java virtual machine. This run-time compiler has to be fast
enough to bring benefits to the total execution time and needs
RAM space for temporary storage of the compiled code. In
an embedded system such as a smart card, RAM is a very
scarce resource and the processor does not have high speed;
hence, a mechanism like JIT compilation is not feasible.

Superoperator theory, introduced by Proebsting in [12],
is the idea behind one of the optimizations present in JIT
compilers. According to superoperator theory, a sequence of

bytecode instructions can be optimized, keeping intermedi-
ate result values in machine registers instead of pushing them
into the operand stack. This reduction of memory accesses
allows a speed-up in the entire execution.

For systems where JIT compilation is not possible, the
introduction of superinstructions provides the possibility
of improving the performance of the interpreter [13] [14]
[15] [16] [17]. Superinstructions are superoperators that are
added to the instruction set of the Java virtual machine as
new instructions. In contrast to the equivalent sequence of
instructions that they substitute for, superinstructions have
the advantage of a single fetch and the possibility of elim-
inating redundant operations (i.e. operand stack accesses).
In addition, superinstructions represent a form of dictionary
compression, owing to the fact that a sequence of bytecodes
is substituted with only one bytecode. In [16], Casey et al.
discuss the policy for choosing the superinstructions from
among the available sequences.

To enhance execution performance, a Java processor is
proposed [18]. Java processors are CPUs designed to execute
Java bytecode instructions directly in hardware. Beyond
the direct bytecode execution, a Java processor such as
picoJava has a hardware optimization mechanism called
the Instruction Folding Unit [19]. This hardware feature
analyzes a finite number of sequential instructions in the
instruction buffer and decides if it is possible to fold them
into a single register machine like instruction. As with
superinstructions, this feature avoids redundant read/write
operations onto the operand stack.

In [20], Badea et al. introduce an Annotation Aware
Virtual Machine able to recognize foldable sequences. The
virtual machine includes the superoperators in the instruction
set. When it encounters an annotation, instead of executing
the sequence of bytecodes, it executes the corresponding
superoperator. The compilation phase takes charge of the
bytecode analysis, the search of superoperators, and of the
creation of the annotation. Hence, the virtual machine is
relieved of this computational effort at the run-time. Azevedo
et al. propose a similar concept for smart cards running the
Java Card environment [21]. The annotation-aware JCVM
allows for a run-time speed-up between 10% and 130% at
the price of a class-file size increase between 6.6% and 14%.

III. FOLDING COMPRESSION

Folding compression is the combination of dictionary
compression and folding mechanism. The latter is an opti-
mization applicable on specific sequences of bytecodes. The
key factor for the identification of these sequences is the
Java Operand Stack utilization. In fact, a Java bytecode can
be categorized respect to the number of operands that it pops
from and pushes into the operand stack. We use the same
classification introduced for the Java Processor in [19]. For
example a SLOAD instruction, which pushes a word into
the operand stack, is a Producer; a SSTORE, which pops a
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P:00 sload_1
P:01 sload_2
P:02 ssub
P:03 sstore_3

Figure 1. Example of a foldable sequence
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sload_1
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sstore_3

Bytecode

Argument 
Byte1

Argument 
Byte2

8 bits

Substituted
Sequence

Figure 2. Example of a new instruction with argument specification

word, is a Consumer. A SSUB, which pops two words and
pushes one, with a balance of a word popped, is an Operator.
In Figure 1, we report a sequence of instructions where there
is heavy use of the stack with three writes and three reads. If
we consider the sequence as a block, we can reduce it into a
register machine like instruction that operates directly on the
local variables. This register machine instruction bypasses
the stack, and hence, it avoids the three reads and the three
writes with the consequent reduction in execution time.

As often happens, ideas come from observation. Searching
for every possible folding sequence, we realized that most
of the sequences do not use any other local variables than
the first sixteen. Theoretically, Java Card instructions (e.g.
SSTORE) can address up to 256 local variables, but a
method is unlikely to have many more than sixteen local
variables shared between automatic variables and param-
eters. From this observation arose the idea to abstract a
register machine over the actual Java method frame. The
abstract register machine can map up to the sixteenth local
variable of the actual Java method frame as source and
destination for its instructions. If a sequence does not fit
in this model, it is not taken into consideration for the
folding compression; the JCVM will execute the instructions
contained in this sequence as standard bytecode instructions.

For the sake of a more clear explanation, in Figure 2 we
report the structure of the instruction that will substitute for
the sequence in Figure 1. The first byte is the new bytecode
that a modified JCVM can decode as a sequence of SLOAD

SLOAD [Operator] SSTORE instructions. The second byte
is subdivided into two digits:

• the lowest digit contains the local variable number of
the first SLOAD instruction

• the highest digit contains the local variable number of
the second SLOAD instruction

The third byte is also subdivided into two digits:
• the lowest digit specifies the operation to execute

(SADD, SSUB, SAND, SSHL, ...)
• the highest digit contains the local variable number of

the last SSTORE instruction
The substitution of a sequence of instructions with a new
one is definitely a dictionary compression, in which the
dictionary consists on an extension of the instruction set
of the JCVM. The presence of an argument makes the
substituting instruction more general, and therefore suitable
for similar foldable sequences (e. g. with the same new
instruction of Figure 2 we can represent as well a sequence
composed by SLOAD 3 - SLOAD 4 - SXOR - SSTORE 1,
but with a different argument for a proper specification). In
the example, whereas the starting sequence occupies four
bytes in ROM memory, the new instruction occupies only
three bytes; the final balance is one byte saved.

IV. DESIGN AND IMPLEMENTATION

In this section we present the implementation of the entire
system. We modified the Java Card virtual machine, ex-
tending its Instructions Set, and we added a post-compiling
process to adapt the CAP files. The approach of simultane-
ously designing both of these components is analogous to a
hardware-software co-design.

A. CAP File Transformation

Figure 3 shows the process for creating and installing
an applet in Java Card. Unlike the standard Java virtual
machine, JCVM is split into two parts: one that runs off-
card and the other that works on-card. The converter is
part of the off-card JCVM and creates the CAP file pre-
linking the .class file. Pre-linking reduces the size of the
application and allows for a faster installation process. The
CAP file represents the means through which the application
is distributed. Between the creation time and the installation
time, the CAP file is exposed to an unsafe environment,
where the corruption of its content is possible. Hence, before
the installation, the verifier checks the content of the CAP
file and assures that the application can be securely installed
into the Java card and executed. During the installation
process, the installer loads the verified CAP file into the
permanent memory of the smart card. The installer consists
on two parts, one off-card and the other on-card; the two
parts exchange the CAP file content through an application
protocol data unit (APDU). Once the application is installed,
the interpreter starts its execution.
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Figure 3. Java Card Virtual Machine architecture

In the JCVM architecture, we perform our folding com-
pression after the applet verification process. Therefore,
the distributed CAP file can be generic for every virtual
machine. Only virtual machines enabled for executing the
new folding instructions will transform the CAP file before
the installation. The folding compression process could also
be located after the converter but two issues would arise:

• the CAP file has to be specific for Java Card enabled
for executing the new folding instructions

• the verifier has to be adapted to support the new folding
instructions

Regarding the backward compatibility, the on-card JCVM
enabled for the folding compression remains compliant with
off-card JCVMs that are not enabled for the folding com-
pression. In fact, due to the fact that the folded instructions
constitute just an extension of the standard JCVM, the on-
card JCVM enabled for folding compression is still able to
run standard applications.

B. Code Parsing

In Java Card, the Java converter creates the CAP file that
contains the executable bytecodes in the method component.
The compression phase consists on the substitution, in
the method component, of existing foldable sequences of
bytecodes with new bytecodes.

In [8], the authors use Single Entry, Single Exit blocks
for dictionary compression. The nature of the folding com-
pression, as described in this paper, is slightly different.
A foldable block cannot have internal branches but may
finish with a branch. Once the flow of control starts at the
beginning of the block, it leaves the block at the end without
prior halt or branching. The block cannot have internal labels

Table I
POSSIBLE FOLDABLE COMBINATIONS OF PRODUCER(P),

CONSUMER(C), AND OPERATOR(O) BYTECODES

Nr. of instr. Poss. combinations

2 P-C, P-O, O-C

3 P-P-O, P-O-C

4 P-P-O-C

(i.e. destination of branches) because if the block were
substituted with a single bytecode, an internal instruction
would not be reachable anymore. These characteristics lead
to the classical definition of a Basic Block, commonly used
in compiler theory [22].

Because the CAP file analysis is a post-compilation activ-
ity performed off-card, the computing resource is not critical.
The first step is the interpretation of the bytes forming the
method component, transforming them into a sequence of
Java bytecodes with the respective arguments. For the sake
of the foldable sequences search, every bytecode instruction
is marked with an additional attribute that describes its be-
havior with respect to the Java operator stack. This attribute
can identify the Java bytecode as a producer, a consumer, an
operator or a neutral instruction. A neutral instruction does
not access to the Java operand stack; hence, it will not be part
of a foldable sequence. The instruction characterization is
fundamental because not every sequence is possible. Table I
shows a summary of the possible foldable combinations
according to [18]. Foldable sequences have a minimum of
two (i.e. SLOAD SSTORE sequence) and a maximum of
four bytecode instructions (i.e. SSLOAD SSLOAD SADD
SSTORE sequence).

231

6. Publications Publication 2 - IEEE DSD 2014 55



#define MAX_NR_INSTR 4

FoldableSequence sequences[];

for(i=0;i<instrs.size();i++) {
Instruction seq[];

if(isFoldableInstr(instrs[i])) {
for(j=1;j<MAX_NR_INSTR;j++) {
if(isFoldableInstr(instrs[i+j]) {
seq.add(instrs[i+j]);
}
else {
break;
}

}
}
if(isFoldableSeq(seq)) {
sequences.add(seq);
i=i+j;

}
}

for(i=0;i<sequences.size();i++) {
substituteFoldSeq(sequences[i]);
}

Figure 4. Pseudo-code for the code compression

The bytecodes in the method component are not sorted;
therefore, we used a linear search algorithm to find the
foldable blocks. The algorithm is very simple and consists
basically of finding the largest foldable basic blocks. In
Figure 4 we report the pseudo-code for the search and
substitute algorithm. This approach leads to a maximizing of
both the space savings and the run-time performance. After
the search, the process converts all the foldable sequences
into new bytecode instructions that we present in Subsec-
tion IV-E.

C. Local Variables Coverage

As anticipated, the reduced set of new instructions does
not cover all the possible foldable sequences. In Figure 5
we show the distribution of the local variables used in the
sequences. This data is the result of the analysis of three
industrial applications. The figure takes into consideration
the foldable sequences that access one and two local vari-
ables (for sequences with three local variable accesses, the
result is analogous). We discretize the local variable indexes
in segments depending on the bits needed to express the
indexes. We draw also line and surface between values
with the purpose of showing the distribution trend, but
the interpolation between values is meaningless. It can be
seen that accesses to local variables with index higher than
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Figure 5. Distribution of local variable index

fifteen are very unlikely. The coverage of foldable sequences
reachable considering only the first sixteen variables is about
95%. Based on this observation, we decided to use only four
bits (instead of a byte, as in SLOAD and SSTORE Java
Card instructions) to specify the local variable index in the
argument of our new instructions.

D. Constants Coverage

A foldable sequence may contain also bytecode for con-
stants usage (i.e. SSPUSH, CONST 0, ...). The strategy
for encoding constants in the new bytecode arguments is
similar to that used in Java bytecodes. In Java, there are
seven immediate push constant instructions that write into
the operand stack constants from -1 to 5. In addition, there
are two push operators that write into the stack a short
integer value stored in the code, in the form of a byte and
of a short respectively.

Our approach is the same for the latter two instructions,
but we use a digit in the bytecode option to specify constants
in the range from -1 to 11. The last two combinations of the
digit specify the presence of an additional argument for the
constant expression. The optional argument may be one or
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Table II
INSTRUCTION SET EXTENSION

Instruction Argument Opt. Arg. Comb.

LdSt B1[St:Ld] - PC

PshSt B1[Op:Cnst] B2[BPsh]B3[SPsh] PC

OpSt B1[St:Op] - OC

LdIf s2b B1[Op:Ld] B2[Br]B3[Brw] PO

LdPshAdd B1[Cnst:Ld] B2[BPsh]B3[SPsh] PPO

LdPshOp B1[Cnst:Ld]B2[Op:Ord] B3[BPsh]B4[SPsh]B5[Br]B6[Brw] PPO

LdLdOp B1[Ld2:Ld1]B2[Op] B3[Br]B4[Brw] PPO

LdPshOpSt B1[Cnst:Ld]B2[St:Op] B3[BPsh]B4[SPsh] PPOC

PshLdOpSt B1[Ld:Cnst]B2[St:Op] B3[BPsh]B4[SPsh] PPOC

LdLdOpSt B1[Ld2:Ld1] B2[St:Op] - PPOC

two bytes long and allows coverage of all the push variants.

E. Instruction Set Extension

Table II lists the ten instructions that we introduced
into the virtual machine instruction set. The first column
contains the intuitive name of the instruction that helps in
understanding the kind of sequence involved. The second
column has the fixed argument, and the third reports the
optional argument that always contains constants that are not
possible to express as a digit, as discussed in the previous
subsection. In the fourth column we report the foldable
combinations that the new instructions substitute for. We
point out that the combination P-O-C is not represented with
a new instruction because of its low incidence in the set of
applications taken in consideration. Java Card specification
has 68 undefined bytecodes available; using ten of them
allows the remainder to be available for other eventual
purposes.

The new instructions except OpSt do not access to the
stack. OpSt pops one or two (depending on the operation
being performed) instructions from the stack, executes the
specified operation and stores the result in the specified local
variable. The remaining new instructions have a behavior
similar to the example shown in Section III. In addition,
we can consider LdPshAdd instruction as optional, because
it is a subset of LdPshOp instruction. The reason for the
introduction of LdPshAdd instruction is the high number
of SPUSH-SLOAD-SADD and SLOAD-SPUSH-SADD se-
quences in the applications. As a result of the hard-coded
SADD operand, LdPshAdd instruction allows for the saving
of one byte for the argument and for a faster execution
compared to the LdPshOp instruction.

V. RESULTS

In this section we present the methodology and the results
of the ROM size and run-time analyses for the method
proposed in this work.

A. Methodology

For the evaluation of the folding compression we took
as starting point the Oracle Java Card reference implemen-

Table III
METHOD COMPONENT SIZE AND PERCENT SPACE SAVINGS

Application Size[B] Space Savings [%]

MChip 23305 4.2

MChip Advanced 38255 3.9

XPay 1784 5.6

tation, which constitutes the simulator for the Java Card
Development Kit. For our purpose we isolated the code of
the on-card software component and ported it into an 8051-
based microcontroller. We used a commercial IDE with the
capability to compile the system and run it on an instruction
set simulator where execution time measurement is possible.
The level of accuracy of the simulation is high enough for
the time performance evaluation of the additional bytecodes
in the virtual machine.

For the evaluation of both the ROM size and the run-
time performances we implemented the new instructions in
two variants. The first variant has a normal C style; that
means, it uses variables for intermediate results, internal
of the instruction function implementations. In the second
variant, we minimized manually the usage of variables to
reduce the passage of values among variables. We refer to
this implementation from now on as Performance Folding
Implementation (PFI). In both cases, the compilation was
performed with the minimal C compiler optimization set
(Constant Folding, Simple Access Optimizing and Jump
Optimizing).

B. ROM Size Reduction

We evaluated the ROM size reduction, taking as examples
three industrial applications. In Table III, we report the size
of the method components of the applications and the space
savings; the latter is defined as

space savings =
Sorig − Scompr

Sorig

where Sorig is the size of the original method component
and Scompr is the size of the method component after the
compression process. The average of the methods space
savings weighted by their relative method sizes is 4.0%.

For the completeness of the analysis, we also evaluated
the impact of the introduction of the new instructions on the
virtual machine ROM size. Table IV shows the increase in
ROM size for the two implementations. It is evident that the
second variant pays for the performance optimization with
a higher ROM occupation of 2.0%. The space saved for an
application is smaller than the additional ROM space needed
for the integration of the new bytecodes.

The idea behind Java Card is to host several applications
installed in a single card [4]; hence, the space saved by
compressing all applications is likely to exceed the ad-
ditional space needed for the Java Run-time Environment
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Figure 6. Execution time of the new instructions

Table IV
JAVA CARD RUN-TIME ENVIRONMENT ROM SIZES

JCRE Type ROM Size [B] Size incr. [%]

Standard 48950 -

W. Folding Instr. 53863 10.0

W. Folding Instr. PFI 54914 12.2

modification. If we consider the average applet size of 20 kB
and the space savings owing to folding compression of 4%,
we can estimate that the installation of six applets will
balance the ROM size increase of the virtual machine.

C. Execution Speed-up

To evaluate the execution time performance we focused
on the improvements regarding the single new instructions.
For each new instruction we measured the time needed for
its execution in the two variants of Java Card environment
and we compared it with the time needed for the execution of
the equivalent sequence of standard Java Card instructions.
For example, in the case of the foldable sequence in figure 1,
we compared the time needed for the execution of the four
bytecodes (the two SLOADs the SSUB and the SSTORE)
with the time needed for the execution of the new instruction
LdLdOpSt in the two versions (normal implementation and
PFI).

Figure 6 shows the results of this analysis; for each
instruction there are three bars. The first bar represents
the execution time of the normal Java Card sequence of
bytecodes. The second bar is the time needed to execute the
respective folded instruction implemented in normal C style,
while the third relates to the folded instruction of the PFI.
All execution times are shown as a percentage of that for
the normal Java Card (hence, the normal Java Card is shown

as 100% for each sequence). The graph shows a reduction
in the execution time of 50% for the normal implementation
and of 53% for the PFI. The reduction in the execution
time of the new instructions is due to Java operand stack
bypassing. Comparing these results to the ROM size results
in the previous subsection, we point out that for the PFI,
with an increase in the virtual machine ROM size of 2.0%,
we have a reduction in execution time of 6% compared
to the virtual machine with the normal implementation of
the new instructions. Therefore, the choice between the two
implementations depends on which of the aspects needs to
be fostered between speed and ROM size.

To complete the assessment of the execution time, we
evaluated a simple Java Card test-bench application. The
assessment on the industrial applications was not possible,
because of the use of proprietary libraries not available
on the Java Card reference implementation. The test-bench
application performs operations on big-integers using a
custom big-integer class part of the test-bench. Applying
the folding compression, we achieved space savings of 5.5%
that is consistent with the results obtained with the industrial
applications. The decrease in execution time of the test
application amounts to 3.5%.

VI. CONCLUSIONS

In this work we have proposed a novel dictionary-based
system for compressing Java Card applications that needs
a small extension of the Java Card instruction set. The
proposed framework consists of two main parts. The first
part is the CAP file analysis and manipulation where we
achieve space savings for the method component of 4.0%.
The second part is the Java Card virtual machine modifi-
cation where we implemented the functions needed for the
interpretation of the new bytecode instructions. With the new

234

6. Publications Publication 2 - IEEE DSD 2014 58



instructions we have a decrease in execution time of 50%
compared to the interpretation of the equivalent sequence of
standard bytecodes; the decrease of the time needed for the
overall application execution is of 3.5%.

The drawback of the method is the increase in ROM
memory occupation of the Java Card Runtime Environment.
In a context like Java Card, where multiple applications
are installed in a single card, the space saved with the
compression of the installed applications can balance and
exceed the increase in the Java Card Runtime Environment
ROM size.

The combination of the presented technique with other
compression techniques seems to be promising and feasible,
and we are evaluating its investigation as part of future work.
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ABSTRACT
Java Card is a Java running environment tailored for smart
cards. In such small systems, resources are limited, and
keeping application size as small as possible is a first order is-
sue. Dictionary compression is a promising technique taken
into consideration by several authors. The main drawback
of this technique is a degradation in the execution speed.

In this paper we propose combining the dictionary com-
pression with another compression technique based on the
folding mechanism; the latter is less effective in terms of
space savings, but has the advantage of speeding up the
execution. A combination of the two techniques leads to
higher space savings with a very low decrease in execution
time compared with the plain dictionary compression.

Categories and Subject Descriptors
C.2.5 [Special-purpose and application-based systems]:
Smartcards; D.4.7 [Organization and Design]: Real-time
systems and embedded systems; E.4 [Coding and Infor-
mation Theory]: Data compaction and compression

General Terms
Languages, Experimentation, Measurements, Performance

Keywords
Smart card, Java Card, virtual machine, bytecode compres-
sion

1. INTRODUCTION
Smart cards are a very widespread technology, applied in

the fields of banking, telecommunication and identification.
Because of their large scale diffusion, these systems have to
be cheap, hence with limited resources. Typical hardware
configurations are based on a 8/16 bit processor, have some
kilobytes of RAM and some hundreds of kilobytes of per-
sistent memory. The applications running on these systems
are often written in C or Assembly to keep the code size low
and the performance high, but with the drawback of a low
portability between different platforms. A virtual machine

EWiLi’14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

based system like Java resolves the portability problem, but
the resources needed to run Java do not meet the smart
card constraints. For this reason Java Card, a reduced set
of the Java language specific for smart card applications, has
been developed [8] [7]. Beyond the object-oriented program-
ming language, Java Card offers a high security environment
equipped with cryptographic functionalities and plays a role
analogous to an operating system for the smart card.

The distribution of applications in Java Card takes place
through the Java Card converted applet (CAP) file. The
CAP file contains all the classes of the package application
and it is organized in components. The Java Card envi-
ronment uses the latter at installation time to install the
application on the smart card.

Despite of the Java bytecode format being a compact in-
struction format, some research works based on dictionary
compression go into the direction of compressing it, but at
the price of a slower execution time. On the other hand
research work regarding the speed-up of the bytecode ex-
ecution does not usually take into consideration the ROM
size as an issue, because they are applied to systems that
are not as resource-constrained as smart cards.

In this work we focus on the compression of the method
component by combining two techniques. The first one
is based on the folding mechanism and substitutes fold-
able sequences of Java bytecodes with equivalent single su-
perinstructions introduced as an instruction set extension of
the virtual machine. The second one is based on the dic-
tionary compression and substitutes repeated sequences of
bytecodes with macros, whose definition is contained in a
dictionary. Both techniques reduce the ROM size of the ap-
plication, but while the second negatively affects the execu-
tion time of the application, the first speeds up its execution.
Thanks to this approach we obtain better compression ra-
tios paying a smaller price in terms of run-time performance
compared to the plain dictionary compression.

The structure of the rest of the paper is as follows. Sec-
tion 2 reviews the published research about code compres-
sion and execution speed-up that constitute the basis of this
work. Section 3 provides a description of the new technique
as a combination of the dictionary compression and the fold-
ing compression. Section 4 evaluates the proposed technique
in terms of space savings and execution performance. Fi-
nally, in Section 5 we report our conclusions and outlooks
on future work.
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2. RELATED WORK
In the context of embedded systems, keeping the appli-

cation ROM size as small as possible is an important issue.
It is even more important in the case of smart cards, where
the memory size is smaller than in today’s typical embedded
systems. Compressing the executable code is one possible
solution to overcome this problem, beyond following good
programming practices.

Classic compression methods like Huffmann may demand
resources that are not available in smart cards systems [11].
These methods usually need significant RAM memory for
decompressing the entire information. Moreover, the de-
compression phase is time consuming and slows down the
application execution, making the time constraints of the
application domain hard to respect.

Dictionary compression does not have the limitations that
prevent classical compression methods to be applied in low-
end embedded systems [11]. It consists of the substitution of
repeated sequences of information with a macro whose def-
inition is stored in a dictionary. Claussen et al. introduce
dictionary compression for low-end embedded systems run-
ning Embedded Java or Java Card [4]. The authors show
that space savings up to 15% are achievable, but with an
increase in execution time between 5% and 30%.

Systems based on virtual machines such as Java have a
slower execution compared to systems where the applica-
tions are compiled in native machine instructions. The main
approach present in most widely spread Java environments
for speeding-up the execution is the ”Just In Time” (JIT)
compilation [5] [12]. It works by compiling sequences of
frequently executed bytecodes directly into machine instruc-
tions during run-time. Throughout the compilation, the JIT
mechanism performs optimizations within Java bytecodes
sequences, making their execution faster compared to the
plain Java bytecode interpretation. To store the temporary
compiled code, JIT compilation makes use of remarkable
quantities of RAM that are not available in smart cards.

One of the key-factors behind JIT compilation is the su-
peroperators concept, introduced by Proebsting in [10]. Ac-
cording to it, a sequence of bytecodes can be reduced to a
sequence of machine instructions where intermediate results
are kept in registers instead of using the operand stack. A
method for integrating superoperators in a low-end embed-
ded system deploying Java consists of introducing superin-
structions into the virtual machine instruction set [3] [9].
Thus, the new superinstruction can substitute the sequence
of bytecodes equivalent to the superoperator. In addition
to the advantages provided by the superoperators (e.g. less
memory accesses), superinstructions need only one instruc-
tion fetch compared to the number of fetches needed during
the execution of the sequence of bytecodes that they substi-
tute.

A different approach to make Java environment faster is
based on the use of a Java processor. The Java processor
executes the Java bytecodes directly in hardware, given that
the Java bytecodes constitute the machine instruction set.
In [6], McGahm et al. propose picoJava, an example of a
Java processor. Beyond the advantage provided by a direct
hardware execution, picoJava has an optimization mecha-
nism implemented in the Instruction Folding Unit [13]. This
mechanism consists of analyzing the bytecodes to be exe-
cuted next, and determining if they are foldable.

A software reproduction of the folding mechanism in a

Java virtual machine is proposed in [2]. In that work, the
virtual machine is able to recognize foldable instructions by
means of Java annotations. Azevedo et al. introduce a simi-
lar approach for the Java Card environment [1]. The execu-
tion time improvement obtained within that work is up to
120%, but the class size increases up to 14%, because of the
introduction of the annotations.

3. DESIGN AND IMPLEMENTATION
In this section we provide a brief description of the dic-

tionary compression and the folding compression. Then,
we present the light-weight compression technique analyz-
ing how the two techniques interact. In the last subsection
we discuss where the compression process can be inserted
within the Java Card installation process.

3.1 Dictionary Compression
Dictionary compression consists of substituting repeated

sequences of bytecodes with macros, whose definitions are
stored into a dictionary. The dictionary can be static if it
is used for every application, or dynamic if it is relative to
a specific application. Dictionary compression can be plain,
with wildcards or with generalized instructions [14]. The
former case consists of completely substituting repeated se-
quences with a simple macro; in the latter cases the macros
definitions are more general and can substitute similar se-
quences of bytecodes, keeping out of the definition the un-
common parts of the sequences as arguments of the macros.
In this work we apply the plain dictionary compression, but
the concept can be extended to the other two dictionary
methods.

The sequences that can be substituted cannot be arbi-
trary, but they must respect the rule of being Single Entry
Single Exit (SESE) blocks. Hence, no jumps are possible
into the block except into the first instruction, and jumps
are not possible from inside to outside the block but only
within the block.

After all possible sequences have been found and grouped
in sets of equal sequences that can be represented with the
same macro, the most convenient superset of macros is se-
lected. The number of elements of the superset is finite and
corresponds to the number of undefined Java Card byte-
codes reserved for the dictionary compression. In the Java
Card standard 187 of the 256 possible values are defined
bytecodes. In our experiments, we used only twelve unde-
fined bytecodes for the dictionary compression; ten of them
for one byte long macros (10 macros) and the remaining
two for two byte long macros (2 × 255 macros), potentially
allowing 522 macro definitions.

During bytecode execution, as sketched in Figure 1, when
the Java Card virtual machine encounters a macro, it saves
the return Java program counter (JPC RET← JPC). In the
second step, the virtual machine jumps through a look-up
table into the corresponding dictionary definition (JPC ←
macroAddr). Afterwards, the execution of the Java byte-
codes contained in the definition are performed. At the end
of the macro definition, the execution of a special Java byte-
code ret_macro will restore the Java program counter to the
return value (JPC ← JPC RET).

3.2 Folding Compression
We developed the folding compression technique on the

basis of the folding mechanism introduced for picoJava, a
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……

JPC : 00   instr_1

JPC : 01   instr_2

JPC : 02   instr_3

JPC : 03   macro_1

JPC : 04   instr_7

JPC : 05   instr_8

JPC : 06   instr_9

……

JPC : 30   instr_4

JPC : 31   instr_5

JPC : 32   instr_6

JPC : 33   ret_macro

Macro definition

Method

JPC_RET<--JPC

JPC<--macroAddr

JPC<--JPC_RET

Figure 1: Execution flow in dictionary compressed
code
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Figure 2: (a) Example of a foldable sequence; (b)
Equivalent folded superinstruction

Java processor [13]. The bytecodes can be classified accord-
ing to the usage of the Java Operand Stack as:

• Producers if they push an element onto the operand
stack (e.g. spush, sload, ...)

• Consumers if they pop an element from the operand
stack (e.g. sstore, ...)

• Operands if they pop one or two elements from the
operand stack and they perform an operation (e.g.
sadd, sxor, ifeq, ifscmpeq, ...)

Defined sequences of Java opcodes can be reduced to a sin-
gle register machine like instruction. From now on, we will
refer to these sequences as ”foldable sequences”. To clarify
the concept, Figure 2 (a) reports a typical example of fold-
able sequence. The two initial load instructions (sload_1
and sload 6) push the values of two local variables onto the
stack, the subtract instruction (ssub) pops them, executes
their addition and pushes the result onto the stack. Finally,
the store instruction (sstore_3) pops the value on the stack
and stores it in a local variable. The entire sequence can be
substituted with a single register like instruction (Figure 2
(b)) that takes the values directly from the local variables,

Instruction Argument Opt. Arg.

LdSt(PC) B1[St:Ld] -

PshSt(PC) B1[Op:Cnst] B2[BPsh]B3[SPsh]

OpSt(PO) B1[St:Op] -

LdIf s2b(PO) B1[Op:Ld] B2[Br]B3[Brw]

LdPshAdd(PPO) B1[Cnst:Ld] B2[BPsh]B3[SPsh]

LdPshOp(PPO) B1[Cnst:Ld]B2[Op:Ord]B3[BPsh]B4[SPsh]B5[Br]B6[Brw]

LdLdOp(PPO) B1[Ld2:Ld1]B2[Op] B3[Br]B4[Brw]

LdPshOpSt(PPOC) B1[Cnst:Ld]B2[St:Op] B3[BPsh]B4[SPsh]

PshLdOpSt(PPOC) B1[Ld:Cnst]B2[St:Op] B3[BPsh]B4[SPsh]

LdLdOpSt(PPOC) B1[Ld2:Ld1]B2[St:Op] -

Table 1: Instruction set extension

performs their addition and stores the results on the des-
tination local variable. The use of such a register-like in-
struction saves three instruction fetches and avoids all the
memory writes and reads to and from the operand stack.

Like dictionary compression, the folding compression also
makes use of undefined Java Card bytecodes. In the fold-
ing compression case, ten undefined bytecodes are used for
extending the Java Card instructions set with the new su-
perinstructions. In Table 1, we report all the new folded su-
perinstructions forming the instruction set extension. The
superinstructions consist of an initial byte identifying the
type of instruction, followed by a variable number of bytes
constituting the argument. In the first column of the table,
near the mnemonic of the superinstruction, there is the kind
of sequence (in terms of (P)roducer, (C)onsumer, (O)perand
classification) that the superinstruction substitutes.

The new superinstructions do not cover all the possible
foldable sequences but only the most frequent ones. In fact,
by means of the arguments, one superinstruction can rep-
resent many combinations (i.e. LdLdOpSt can represent
the sload_1 sload 6 ssub sstore_3 sequence as well as
the sload_3 sload_1 sxor sstore 10 sequence). Moreover,
within the instructions belonging to the foldable sequences,
the load and the store instructions are covered only for the
first sixteen local variables. This allows to encode the local
variable index with only four bits, thus we can express two
load instructions with a one byte long argument. Covering
only the first sixteen local variables allows to cover most
of the cases anyway; the analysis on a set of three indus-
trial applications (i.e. a statistically sound set of bytecodes
combinations) points out a coverage of about 95% of all the
foldable sequences.

To clarify how the space savings are obtained, we look
again at the example of Figure 2, where we can compare
the foldable sequence with the equivalent folded superin-
struction. The first byte argument of the latter will be 0x61
whose digits indicate respectively the first and the sixth local
variable for the load operations; the second byte will be 0x31
whose digits indicate respectively the subtraction operation
and the third local variable for the store operation. Com-
pared with the foldable bytecode sequence that occupies five
bytes of ROM memory, the new superinstruction occupies
only three bytes allowing space savings of two bytes.

3.3 The light-weight Compression
The combination of the folding compression and the dic-

tionary compression constitutes the light-weight compres-
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Original Method Compr. Method

Dictionary
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Dictionary
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Foldable sequence Dictionary sequence Folded superinstruction Dictionary macroLegend:

Figure 3: Possible cases in the combination of the compression techniques

sion. The first step consists of the compression with the
folding method, while in the second step the application re-
sulting from the first step is compressed with the dictionary
method. The two techniques coexist with a small interfer-
ence that affects the dictionary compression space savings.
Figure 3 shows the three possible cases of interaction.

In case A the foldable sequence and the dictionary se-
quence are separated, hence there is no interference and the
space savings due to the dictionary compression does not de-
grade. In Case B the foldable sequence is contained into the
dictionary sequence, and it becomes part of the dictionary
definition. It is also possible that the foldable instruction
identifies with the dictionary definition, but the dictionary
definition cannot be contained into the foldable sequence.
Case C presents the case in which the foldable sequence and
the dictionary sequence partially overlap. In this case, either
the dictionary sequence is not substituted, or the dictionary
definition is shortened, depending on the convenience for
the overall space savings. However, in case C and B the
space savings owing to the dictionary compression dimin-
ishes. We can express the overall space savings S due to the
light-weight compression as:

S = Sf + (1− k1) · Sd

where Sf and Sd are the space savings due to the folding
compression and the dictionary compression respectively,
and k1 is the coefficient that expresses the degradation of
the dictionary compression due to the interference with the
folding compression. The coefficient k1 ranges between 0
and 1; where a value of 0 means absence of interference, and
hence the final space savings is the arithmetical sum of the
two partial space savings.

The two techniques have opposite effects on the execu-
tion time. While the dictionary compression decreases the
execution speed, the folding compression increases it. Also
in this case, if there is interference from the folding com-
pression on the dictionary compression, the slowing effect
on the run-time provided by the dictionary compression is
mitigated. The second option of case C in Figure 3 is the
only case in which the execution performance effect due to
the dictionary compression is reduced. Hence, the interfer-
ence of the two techniques in the execution performance is
lower than the interference they have in the space savings.
The overall run-time effect R due to the application of the

light-weight compression can be expressed with the formula:

R = Rf + (1− k2) ·Rd

where Rf and Rd are the effect on the execution time due
to the folding compression and to the dictionary compres-
sion, respectively, and k2 is the coefficient that accounts for
the reduction of the dictionary compression due to the in-
terference from the folding compression. In this case Rd

is negative, because the dictionary compression slows the
application execution; hence, a value of k2 greater than 0
would positively affect the overall effect of the light-weight
compression on the execution time.

Summing up, the combination of the two compression
techniques leads to space savings that approximately equal
the sum of the space savings due to the two techniques.
Regarding the speed performance, the two techniques com-
pensate each other.

3.4 Integrating the light-weight compression
into the JCVM

The installation process in Java Card is different than in
Java. It is split in two parts: one off-card and the other
on-card. After the compilation and the creation of the class
file, the off-card Java Card converts the class file into a CAP
file, which is the distribution format of the application. The
installation on the smart card starts with the verification of
the CAP file. During this operation, the off-card Java Card
checks the validity of the CAP file assuring a secure instal-
lation. At this point, the CAP file is handled by the off-card
installer that establishes a communication channel with the
on-card installer. The installer transfers and instantiates the
application on the smart card. Once that the application is
installed, the application exists until it is uninstalled; be-
tween a power-down and a power-on of the smart card, the
application status is saved into non-volatile memory.

In this architecture, the most convenient point to perform
the compression is after the verification and before the in-
stallation. In this way, the distributed CAP file is general
for all Java Card systems, whether they are enabled with
the light-weight compression or not. Moreover, the off-card
Java Card is able to distinguish between an on-card Java
Card enabled for the light-weight compression and one that
is not only at installation time. Therefore, the Java Card
verifier can be common for each Java Card and does not
need to know the extended Java Card instruction set used
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Application Size [B]
Space Savings [%]

Dict. Compr. Fold. Compr.

XPay 1784 12.28 6.73
MChip 23305 9.16 4.02

MChip Advanced 38255 10.52 3.72
BubbleSort 239 5.44 2.51
BigInteger 650 3.39 1.54

Table 2: Applications memory size and partial space
savings

Application Space Savings [%]

XPay 15.70
MChip 12.43

MChip Advanced 11.73
BubbleSort 6.70
BigInteger 4.46

Table 3: Space savings of the light-weight compres-
sion

for the compression.

4. RESULTS AND DISCUSSION
In this section we report the space savings and the run-

time analyses obtained with the proposed technique. We
first analyze the folding compression and the dictionary com-
pression, separately; afterwards, we report the result of their
interaction in the light-weight compression technique.

4.1 Space Savings
For the assessment of the space savings, we took into

consideration a set of three industrial banking applications
(MChip, MChip Advanced and XPay). We also developed
two test-benches that we used for the evaluation of the exe-
cution performances. The first test-bench performs a ”bub-
ble sorting”, while the second implements a basic big-integer
class and performs a sequence of operations on big-integer
variables. The space saving SXcompr owing to the compres-
sion technique Xcompr is defined as

SXcompr =
AppSizeoriginal −AppSizeXcompr

AppSizeoriginal

where AppSizeoriginal is the application size of the original
application and AppSizeXcompr is the application size after
the compression with Xcompr.

Table 2 and Table 3 list all the space savings obtained
during the evaluation. The third and the fourth column of
Table 2 report the space savings obtained with the folding
compression and with the dictionary compression, respec-
tively. We see that the dictionary compression performs
better. In the second column of Table 3 we can see the
space savings for the light-weight compression. Comparing
the two tables, we see that the effects of the two techniques
are concordant and their combination (average space savings
of 12%) is better than a pure dictionary compression (aver-
age space savings of 10%) with an improvement of 20%.

In the results reported above, we took into consideration
the dictionary ROM space, but not the additional ROM
space needed for the implementation of the extended in-
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Figure 4: Execution speed-up for foldable sequences

struction set needed for the folding compression. The ad-
ditional ROM space needed for the implementation of the
extended instruction set is about 5kB. Java Card environ-
ment is designed for hosting multiple applications in a single
card. Hence, if we consider an average space savings of 12%
and an average applet size of 20kB, we can estimate that the
installation of two applets will balance the additional ROM
space needed for the instruction set extension (to be more
precise, the set of applications should occupy at least 42kB).

4.2 Run-time performance
For the evaluation of the run-time performance, we took

as a starting point the Oracle Java Card reference implemen-
tation, that we ported to the 8051 architecture, which is a
plausible platform for a smart card. Afterwards, we added
the instruction set extension for the folded instructions, and
the mechanism for managing the dictionary compression.

Regarding the dictionary compression, we evaluated the
increase in the execution time owing to the macro execu-
tion. For this purpose, we measured the time needed for the
execution of a bytecode sequence whose length corresponds
to the average number of bytecodes in the dictionary defi-
nitions of the test-set of industrial applications. We found
that the execution time of a dictionary macro increases by
about 50%, compared to the execution time of the average
sequence contained in the dictionary definition. This in-
crease is due to the jump through the look-up table to the
dictionary definition and to the execution of the ret_macro

instruction, as already discussed in Section 3.
To evaluate the folding compression mechanism, we com-

pared the time needed for the execution of a foldable se-
quence of Java bytecodes with the time needed for the exe-
cution of the equivalent folded instruction belonging to the
extended instruction set. Figure 4 shows the comparison; for
each instruction of Table 1, the background bar (light gray)
represents the time needed for the execution of the equiv-
alent foldable sequence, whereas the foreground bar (dark
gray) accounts for the execution time of the folded instruc-
tion. The execution of the folded instructions is about two
times faster compared to the execution of the equivalent
foldable sequences.

The industrial applets used for the assessment of the space
savings make use of proprietary libraries that are not avail-
able in the reference implementation. For this reason we per-
formed our test on our test-bench applications. We define
the execution speed-up UXcompr for the generic compression

6. Publications Publication 3 - ACM EWiLi 2014 64



Application
Execution Time [%]

Dict. C. Fold. C. LightW. C.

BubbleSort +3.2 -6.8 -3.8
BigInteger +1.7 -4.0 -2.2

Table 4: Applications execution time

technique Xcompr as

UXcompr =
ExTimeoriginal − ExTimeXcompr

ExTimeoriginal

where ExTimeoriginal is the execution time of the origi-
nal applet, and ExTimeXcompr is the execution time of
the applet compressed with the generic technique Xcompr.
Table 4 reports the measurements on the execution time af-
ter the application of the different compression techniques;
the results expressed in percentage are relative to the execu-
tion of the original applications. We point out that the dic-
tionary compression slightly slows down the execution time,
while the folding compression significantly speed it up. This
behavior derives from the nature of the test-benches that
have a small ROM size (dictionary compression is less effec-
tive in small application where there is a lower probability
of repeated sequences) and a high computation level (fold-
ing compression is more effective in parts of code involved
in computation). Considering the space savings of the in-
dustrial applications, we expect a slight slow-down of the
execution after the application of the light-weight compres-
sion because of the dominance of the dictionary compression.
The slow-down will be anyway lower compared to the case
where only the dictionary compression is applied.

5. CONCLUSIONS
In this work we have proposed a novel compression tech-

nique for applications running on smart cards enabled with
the Java Card System. The compression technique is the
result of the combination of two compression methods: the
dictionary compression and the folding compression. While
the former pays for a good compression ratio with a higher
application execution time compared to the original appli-
cation execution time, the latter has lower space savings but
offers at the same time a speed-up of the application execu-
tion. The final result is a light-weight compression method
with an average space savings of 12% and a slight execution
slow-down; compared to the plain dictionary compression,
the light-weight compression has higher space savings and
causes a lower slow-down in the execution of the application.

Providing a hardware support with an extension of the mi-
crocontroller instruction set specifically for the light-weight
compression technique seems to be promising for resolving
the execution slow-down, and it will therefore be the object
of investigation in future research work.
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Abstract—Java Card is a Java running environment specific
for smart cards. In such low-end embedded systems, the
execution time of the applications is an issue of first order.
One of the components of the Java Card Virtual Machine
(JCVM) playing an important role in the execution speed is
the bytecode interpreter. In Java systems the main technique
for speeding-up the interpreter execution is the Just-In-Time
compilation (JIT), but this resource consuming technique is
inapplicable in systems with as restricted resources available
as in smart cards.

This paper presents a hardware/software co-design solution
for the performance improvement of the interpreter. In the soft-
ware domain, we adopted a pseudo-threaded code interpreter
that allows a better run-time performance with a small amount
of additional code. In the hardware domain, we proceeded
moving parts of the interpreter into hardware, giving origin
to a Java Card interpreter based on an application specific
instruction set processor.

Keywords-Smart card; Java Card; interpreter; application
specific instruction set processor;

I. INTRODUCTION

Smart cards are nowadays a widespread technology used
mainly in the field of banking, e-government, and identifi-
cation. Typical hardware configurations are based on 8/16
bit processors with some kilobytes of RAM and up to a
few hundred kilobytes of non-volatile memory, distributed
between ROM, Flash and EEPROM memory. In such small
devices, the programming language for the applications
development is often C or assembly in order to keep the code
size small and the performance high. Issues that arise with
these kinds of languages are the portability and the update of
the applications. An interpreted language like Java alleviates
these problems, also adding a high degree of security to the
run-time environment.

Because of the resource constraints in smart cards, the
adoption of a complete Java standard is unfeasible. Java
Card standard is a reduced version of Java targeted for smart
cards [1] [2]. Java Card inherits the main features of Java,
easing object oriented programming and the compile once

run anywhere feature. The applications for Java Card are
distributed in form of CAP files for the executable binaries
and of export files for the interface binaries. The CAP file
contains the intermediate code in form of bytecodes that
is the result of the Java compilation. In this paper we use
the terms “Java bytecode” to indicate the result of the Java
compilation and to distinguish the latter from the machine
instructions (opcodes), which constitute the instruction set
of the processor. Once the application has been installed on
the smart card, its execution starts and continues until the
application is uninstalled.

Like Java, Java Card Virtual Machine has an interpreter
whose task is the interpretation of the Java bytecodes. The
Java interpreter is a critical part of the Java Card virtual
machine (JCVM), since it directly affects the execution time
of the applications. This aspect is very important in industry,
since applications often have very strict requirements. In
standard Java, the interpreter has been subject of many
optimization techniques aimed to improve the execution
speed, but these techniques are not applicable on smart cards,
because of the limited resources available.

In this paper, we propose a hardware/software co-design
solution that improves the performances of the Java Card
interpreter. In the software domain we adopted a pseudo-
threaded code solution for the interpreter; in the hardware
domain, we integrated parts of the interpreter into the
microcontroller architecture. We investigated three solutions
with different degrees of integration of the interpreter into
the microcontroller architecture and compared them to a
classic interpreter implementation.

The structure of the rest of the paper is as follows.
Section II reviews the previous literature related to this
research. Section III provides a functional description of the
hardware aided interpreter architectures. Section IV gives
an overview of the design and the implementation for the
software and hardware part of the Java Card interpreter.
Section V presents the results on the performance evaluation
of the proposed interpreters. In Section VI we report our

2014 17th Euromicro Conference on Digital System Design

978-1-4799-5793-4/14 $31.00 © 2014 IEEE

DOI 10.1109/DSD.2014.47

270

6. Publications Publication 4 - IEEE DSD 2014 66

c© 2014 IEEE. Reprinted, with permission, from Proceedings of 17th Euromicro Conference on Digital
System Design (DSD), 2014).



conclusions and an outlook on future work.

II. RELATED WORK

The interpreter of Java Card Virtual Machine is usu-
ally a classic interpreter ideally based on a huge switch
wrapped by a while loop [3]. This solution is simple and
compact in terms of ROM code size, but suffers from low
speed performance. Nevertheless, the classic interpreter is a
clean solution that executes hardware independent code, and
hence, complies with the compile once run anywhere model.
An alternative interpreter is the direct threaded interpreter
(DTI) [4] [5]. This interpreter is based on a compiler that
produces a machine depended code. In fact, the executable
code consists of a sequence of subroutine addresses that have
to be handled; the presence of machine specific addresses
into the executable code makes the latter not portable. The
portability problem is solved in [5] separating the compila-
tion of the application in two phases: the first produces a
preliminary code that is portable, while the second creates
the threaded code.

An application of the DTI to the Java System is proposed
in [6]. Analogously to [5], the problem of the portability is
overcome by adopting a pre-execution phase that transforms
the Java bytecode into threaded code. This solution hardly
fits into a Java Card environment, because of the remarkable
increase of the executable code size (i.e. in an architecture
with 16-bit wide address space, the executable threaded code
would be about twice the size of the original bytecode).

The main approach to reduce execution time present in
most widely spread Java environments is the Just-In-Time
(JIT) compilation [7] [8] [9]. Instead of being intepreted,
the bytecodes are compiled into machine code performing
optimizations that make their execution faster than a normal
interpretation. Although this mechanism is very effective in
general purpose systems and high-end embedded systems, it
is not applicable in smart cards because of the high amount
of RAM it needs for storing the compiled code.

To overcome the issue of limited resources in smart cards,
some authors have proposed alternative methods. Azevedo
et al. introduced an Annotation Aware Virtual Machine able
to recognize annotations that indicate foldable sequences
[10]. Hence, during the execution, when the virtual machine
encounters an annotation, it executes the superoperator rela-
tive to the foldable sequence instead of the normal bytecode
sequence. Since the superoperator is an optimized form of
the bytecode sequence, the execution is faster than in the
plain interpretation.

Another direction in which research has gone for enhanc-
ing performance in Java is the hardware implementation of
the Java Virtual Machine. The hardware acceleration can be
achieved in two main ways, a direct Java bytecode execution
or a Java bytecode translation. McGham et al. proposed
picoJava [11], a Java processor that executes Java bytecodes
directly on hardware. The Java virtual machine is completely

implemented in hardware and the Java bytecodes constitute
the instruction set of the processor. In this model there is no
longer an interpreter, because the processor executes the Java
bytecode natively, with outstanding runtime performance. A
problem of this architecture is the integration with estab-
lished operating systems or existing applications, since the
processor is not able to execute programs written in other
programming languages. An example of bytecode translation
into native machine op-code sequences is ARM Jazelle [12].
The integration of the Jazelle with existing operating systems
and the concurrent execution of other applications written in
other programming languages is possible using the extended
instruction set.

The instruction set extension is common practice in
application specific instruction set processor (ASIP) [13]
[14] [15]. With the new opcodes of the instruction set,
it is indeed possible to activate hardware functionalities
added for the purpose of enhancing the performance of a
specific application. In the solution that we propose in this
paper we extended the instruction set of a microcontroller
to support a pseudo-threaded interpreter whose fetch-decode
part is executed in hardware. The execution phase of the
Java bytecodes is kept in software for taking advantage of
its flexibility. The latter is indeed necessary, for example, to
add security checks inside the Java bytecode functions [16].

III. INTERPRETER

This section presents the evaluated solutions for the in-
terpreter in a functional view. The first subsection regards
software interpreters running on standard architecture, while
the last two regard two interpreters, where parts of the
functionality are moved to hardware.

A. Software Interpreter

An interpreter is a software entity that executes instruc-
tions without compiling them into machine instructions.
In the case of Java language, the interpreter executes an
intermediate representation of the Java source code. The
intermediate representation is a sequence of Java bytecodes
and is the product of the Java compiler.

The interpreter activity can be subdivided in three main
phases: fetch, decode and execute. The fetch phase consists
in reading the instruction (the Java bytecode). The decode
phase recognizes the actual Java bytecode and makes the
execute flow of the microcontroller start the right sequence
of machine instructions that constitute the Java bytecode.
The execution of the machine instructions constituting the
Java bytecode represents the execute phase of the interpreter.
The three phases are repeated sequentially for each Java
bytecode of the application, analogously to what happens in
a hardware processor that executes the machine instructions
of an application compiled natively.

Figure 1 shows a plain example of a Java Card interpreter
written in pseudo-code. The while loop allows to reiterate
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FETCH
JPC = JPC + 1

JBC = JProgram[JPC]
DECODE

JBCFunct = JBCTable[JBC]
call JBCFunct

EXECUTE
Exec JBCFunct

while (1) {
  JBC = JProgram[++JPC];
  JBCFunct = JBCTable[JBC];
  JBCFunct();
}

Figure 1. Pseudo-code and state machine of the Java Card interpreter

the fetch-decode-execute phases cyclically. The first line of
code inside the while loop represents the fetch phase; JPC
is the Java program counter and JProgram is the bytecode
to be executed. In the second line, the interpreter extracts
from a look-up table (JBCTable) the address corresponding
to the Java bytecode function. The third line consists in the
execution of the actual bytecode function. In literature this
kind of interpreter is also known with the name of token-
threaded interpreter [17]. In the finite state machine of the
figure, the call of the function is part of the decode phase
while the execution of the function represents the execute
phase of the interpreter. In this interpreter we count a call to
the Java bytecode function with the relative return instruction
and a final jump at the beginning loop.

To improve the execution speed, we propose an interpreter
that is not based on a loop and that we will call pseudo-
threaded interpreter. While in the classic interpreters the
fetch-decode phase is centralized in the main loop, in the
pseudo-threaded interpreter each Java bytecode function
ends with the fetch and decode phase and jumps to the next
Java bytecode function to execute. The name of the inter-
preter derives from its similarity to the threaded interpreter,
where the execution flow jumps from each Java bytecode
function to the next one, as shown in Figure 2. With the
exception of this similarity, the pseudo-threaded interpreter
maintains the look-up table like the classic interpreter and
performs the fetch and decode phase in the same manner.
The drawback of this solution is the growth of the code
size of the interpreter, because of the repetition of the fetch-
decode code in each Java bytecode function. On the other
hand, the execution flow does not return to a main loop,
using a jump instead of a call and saving the use of the
return instruction and of a jump instruction compared to the
classic interpreter.

Start            JBCFunct1            End

Start            JBCFunct2            End

Start            JBCFunct3            End

Start            JBCFunctN            End

JMP JMP

JMP

Start            JBCFunctN+1       End

Start            JBCFunctM       End

JMP

Interpreter Execution Flow

Figure 2. Representation of the behavior of the pseudo-threaded interpreter

State1
JBCFunct = 

JBCTableOffset + 
JBC * AddrWidth

State2
jmp JBCFunct

SW Domain
FETCH

SW Domain
EXECUTE

HW Domain
DECODE

Figure 3. State machine for the interpreter with decode phase in hardware

B. ASIP based Interpreter

In the previous subsection we presented the pseudo-
threaded interpreter. In the latter, the final part of each Java
bytecode function is dedicated to the fetch-decode of the
next Java bytecode, increasing dramatically the code size
of the interpreter. Moreover, since the fetch and decode
phases of the interpreter are performed at every bytecode
interpretation, the improvement of the two phases is a key
factor for the execution speed. In this context, to improve the
run-time performance, we adopted a hardware/software co-
design to introduce application specific hardware features
into the microcontroller architecture. We developed two
solutions: one executes directly in hardware the decode
phase, and the other executes directly in hardware both the
fetch and the decode phases.

1) Hardware Decode: Within this design approach, the
decode phase is situated in the hardware domain, while the
fetch phase remains in the software domain. The microarchi-
tecture has to be aware of the position of the Java bytecode
functions table. The argument of the functionality is the Java
bytecode to be decoded. Figure 3 reports the finite state
machine representing the functionality. After the fetch of the
Java bytecode in the software domain, the first step of the
hardware decode fetches from the look-up table the address

272

6. Publications Publication 4 - IEEE DSD 2014 68



State2
JBCFunct = 

*(JBCTableOffset + 
JBC * AddrWidth)

State3
jmp JBCFunct
Increment JPC

SW Domain
EXECUTE

HW Domain
DECODE

State1
JBC = *(JPC)

HW Domain
FETCH

Figure 4. State machine for the interpreter with fetch-decode phase in
hardware

of the Java bytecode function, and calculates the absolute
address within the look-up table with the formula

JBCFunct = JBCTableStrtAddr + JBC ∗AddrWidth

where JBCTableStrtAddr is the starting address of the
look-up table containing the addresses of the Java bytecode
functions, JBC is the actual Java bytecode fetched by the
interpreter, and AddrWidth is the ROM memory address
bus width expressed in bytes (i.e. 2 bytes for a standard
8051 architecture). In the second step, the state machine
jumps to the address fetched. Henceforth, the interpreter
continues in the software domain and executes the Java
bytecode function. The state machine has a behavior similar
to a jump instruction that has its target depending on the
Java bytecode it has to elaborate.

2) Hardware Fetch-Decode: While in the previous ap-
proach we moved to hardware only the decode part, here
also the fetch phase is executed in hardware. In the first step
of the finite state machine in Figure 4, the Java bytecode is
fetched according to the value of the variable JPC. Once the
bytecode is fetched, the state machine proceeds as the state
machine of the previous subsection with the calculation of
the absolute address in the bytecode table, the fetch of and
the jump to the address of the next operand function, but
with the additional increment of the JPC. Every time the
hardware part of the interpreter is active, its functionality
depends on the status of the interpreter at the last activation,
status represented by the JPC. After the hardware decode
phase, the interpreter switches in the software domain for
the execution of the Java bytecode.

IV. DESIGN AND IMPLEMENTATION

Due to the fact that Java Card is a subset of Java designed
for smart cards, we chose to implement our system in a

microcontroller architecture that is typically used for smart
card application. The 8051 microcontroller fits well into
the smart card context, where cheapness and low power
consumption are requirements of the first order. The main
characteristics of the architecture are an 8-bit arithmetic and
a 16-bit addressable space. The considered 8051 core is
distributed by Oregano under LGPL license [18]. The design
is fully synchronous, allowing the core to be up to ten times
faster than conventional 8051 architecture.

For the software development, we used the Keil μVision4
IDE, whose compiler supports the Oregano 8051 microcon-
troller.

A. Classic Interpreter

Compared to the classic version in Figure 1 used for
the sake of a clear explanation, the implemented version
is more compact and avoids time consuming passages into
intermediate variables. The variable JBC and the function
pointer JBCFunct are not used anymore and the internal
of the while loop consists on the single line instruction
JBCTable[JProgram[++JPC]](). The actual Java byte-
code pointed by the Java program counter (JPC) is fetched
from the Java program (JProgram); the Java bytecode is
used as the index of the look-up table (JBCTable) to select
the corresponding Java bytecode function to execute.

B. Pseudo-threaded Interpreter

As anticipated in Section III-A, for implementing an
interpreter with pseudo-threaded code, the final part of every
Java bytecode function has to be able to fetch the next
Java bytecode, decode it, and perform the jump to the
next Java bytecode function. A direct jump to a function
is possible with the GCC compiler using the “labels as
value” feature [19]. The latter is neither available in ANSI
C, nor in the Keil Compiler. Hence, we added a portion of
assembly code at the end of each Java bytecode function to
implement the threaded code as Figure 5 reports in pseudo-
code for the 8051 processor. The pseudo-code does not take
into consideration the register and address length for the
sake of a better readability. In the 8051 architecture, this
portion of assembly code requires 49 bytes for every Java
bytecode instruction. In Java Card technology, where 188
Java bytecodes are defined, the code threaded feature has
a code overhead of about 9kB. In smart cards, where the
resources are limited and a typical Java Card implementation
has a ROM size in the order of 100kB, such an amount of
ROM memory overhead could be an issue.

C. Interpreter with Decode in Hardware

For the realization of the decode phase in hardware, we
already claimed in Section III that the system needs to know
the address of the look-up table where all the addresses
of the Java bytecode functions are stored. In the hardware
implementation, we added a special function register (SFR)
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void JavaBytecodeFunctionN (void) {
/*
Execution part of the bytecode

*/
#pragma asm

;;Fetch
MOV R0, JPC
INC @RO
MOV A, JProgram
MOV DPTR, A
MOV A, @R0
MOV A, @A+DPTR
;;Decode
MOV B, #02
MUL AB
MOV DPTR, A
MOV A, @DPTR
MOV DPTR, A
JMP DPTR

#pragma endasm
}

Figure 5. Pseudo-code for the interpreter with pseudo-threaded code

that allows to store the address of the Java bytecode table
and to access it quickly. The additional information needed
to extract the right function address from the look-up table
is represented by the Java bytecode and is supplied to the
microcontroller by means of the accumulator register. The
state machine of Figure 3 has been integrated in the main
finite state machine of the 8051 microcontroller. The main
additions for the integration of the described functionality
consist of the adder and the multiplier needed for the
calculation of the absolute address within the Java bytecode
table.

To interface the new functionality with the software layer,
we extended the instruction set of the microcontroller using
undefined opcode A5. More in detail, in the executable code,
the byte after the A5 opcode tells the microcontroller which
of the new interpreter specific machine functions to execute.
In fact, beyond the main opcode representing the jump to
the next Java bytecode function, we added an instruction for
the initialization of the SFR containing the address of the
Java bytecode functions table.

In the software domain, the assembly part at the end of
the Java bytecode functions is reduced to the sequence in
Figure 6. The final assembly instruction JMPJTABLE is
the mnemonic for the new jump opcode discussed above.
The ROM space needed for the new sequence of assembly
instructions at the end of each Java bytecode function
amounts to 26 bytes. The ROM space overhead for the 188
Java bytecodes is about 4.8kB.

void JavaBytecodeFunctionN (void) {
/*
Execution part of the bytecode

*/
#pragma asm

;;Fetch
MOV R0, JPC
INC @RO
MOV A, JProgram
MOV DPTR, A
MOV A, @R0
MOV A, @A+DPTR
;;Decode
JMPJTABLE

#pragma endasm
}

Figure 6. Pseudo-code for the interpreter running on an architecture with
decode phase in hardware

opCode � fetch @PC

opCode execution

incr PC

JBC � fetch @JPC

PC � JBCTable + 
JBC * AddrWidth

JBCFunct � fetch 
@PC

PC � JBCFunct
Increment JPC

opCODE = GOTONEXTJBCFUNCT

opCODE != GOTONEXTJBCFUNCT

Figure 7. Execution flow in the 8051 architecture for the new instruction
performing the fetch and decode phase of the Java interpreter

D. Interpreter with Fetch and Decode in Hardware

The interpreter with fetch and decode in hardware is an
extension of the system described in the previous subsection.
Beyond the introduction of an SFR for storing the address
of the Java bytecode function table, we introduced also an
internal register for storing the Java Program Counter (JPC).
In the internal architecture, the JPC and the microcontroller
Program Counter (PC) have a similar behavior, and interact
during the fetch and decode phase of the interpreter. To
explain the model, Figure 7 sketches the execution flow
resulting from the combined use of the two registers within
the modified 8051 microcontroller. When the hardware inter-
preter is activated, the PC is inhibited and the next processor
fetch is based on the content of the JPC that points to the
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void JavaBytecodeFunctionN (void) {
/*
Execution part of the bytecode

*/
#pragma asm

;;Fetch and Decode
GOTONEXTJBCFUNCT

#pragma endasm
}

Figure 8. Pseudo-code for the interpreter running on an architecture with
fetch-decode phase in hardware

next Java bytecode; the PC is then used again for fetching the
address of the next Java bytecode function from the look-up
table. Finally, the address of the Java bytecode function is
loaded into the PC and the JPC is incremented. Henceforth,
the control returns to the standard microcontroller mode,
until the next activation of the state machine.

As in the previous subsection, to make the activation of
the fetch-decode state machine from the software domain
possible, we extended the instruction set of the microcon-
troller with interpreter specific machine instructions. With
the availability of the new instruction, the final part of the
Java bytecode functions looks like in Figure 8. The instruc-
tion GOTONEXTJBCFUNCT is the mnemonic for the new
opcode. The new opcode needs only two bytes; thus the
ROM memory needed to implement pseudo-threaded code
for the 188 Java bytecodes functions of Java Card amounts
to 376 bytes. Furthermore we added set and get opcodes
for the manipulation of the JPC. As for the interpreter
with hardware decode there is an instruction for setting the
SFR with the address of the look-up table containing the
addresses of all the Java bytecode functions.

In Java Card standard, there are also bytecodes provided
with arguments. The latter have to be accessible within the
Java bytecode function, but their location is bound to the
information contained in the JPC. Therefore, we provided
an additional opcode, whose functionality is to fetch the
byte pointed by the JPC, to copy it in the accumulator, and
to increment the JPC by one unit.

1) Bounds Check: To counteract control-flow attacks like
EMAN4 [20], the interpreter have to perform checks on the
JPC against specific bounds [21]. Since in our implemen-
tation the fetch-decode is completely executed in hardware,
we introduced the JPC bounds check in hardware. For this
purpose, we added two 16-bit registers for storing the values
of the upper and lower limits of the JPC with the relative
set opcodes. If the JPC has a value out of the bounds, an
interrupt is activated and, eventually, an interrupt service
routine can be executed.

#pragma ___JBytecodeThreadFunct___

void JavaBytecodeFunctionN (void) {
/*
Execute part of the bytecode

*/
}

Figure 9. Example of pragma usage for marking Java bytecode functions

root function

pseudo-threaded code
functionJBCFunctA

JBCFunctB

JBCFunctD

JBCFunctE
JBCFunctC

Interpreter 
entry-point

Funct1 Funct2 Funct3

Figure 10. Schematic of the call-tree for the pseudo-threaded interpreter

E. Outlook to the Compiler Integration

In this subsection we spend a few words on the feasibility
of the integration of the new feature into the compiler. In
Figure 9 we report a template of Java bytecode function
written in C. The compiler will use the information given by
the pragma statement to identify the functions implementing
Java bytecodes, and to deploy the latter in the call-tree
as schematized in Figure 10. In fact, the threaded code
functions are never called, but each function belonging to
this set ends jumping to another function of the same set;
based on this behavior the compiler will consider all the
threaded functions as a single function in the call tree.

Moreover, the compiler will insert the ad-hoc fetch-
decode sequence discussed in the previous subsections at the
end of each Java bytecode function. As a consequence, all
the functions called from each of the Java bytecode functions
belonging to the threaded set have to be considered as
called from the same single function, in turn called from the
interpreter root function. To identify the latter, the compiler
will expect a unique, special named or marked function that
it will interpret as the interpreter entry point.

V. RESULTS

In this Section we report the results regarding the different
software interpreters that we took into consideration. We
evaluated the classic interpreter based on while loop (CWI),
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Table I
ROM MEMORY SIZE OF THE INTERPRETER FETCH AND DECODE PART

Interpreter
ROM Size [B]

w/o JPC Check w/ JPC Check
CWI 241 283
PTCI 9812 17108

PTCHwD 4888 12784
PTCHwFD 376 376

the interpreter based on pseudo-threaded code (PTCI), the
interpreter based on pseudo-threaded code with decode in
hardware (PTCHwDI), and the interpreter based on pseudo-
threaded code with both fetch and decode in hardware
(PTCHwFDI).

At the same time, we evaluate the different hardware
architectures where the interpreters run. These are the stan-
dard Oregano 8051 microcontroller (Std8051), the Oregano
8051 with the addition for the decode phase (DI8051), and
the Oregano 8051 extended for the fetch and the decode
phase (FDI8051). The first subsection briefly resumes the
ROM size needed for the software layer; in the remaining
sections we reported some performance analysis in terms of
additional hardware, execution time, and power and energy
estimation. The results are relative to the standard Oregano
8051 architecture implemented on a Virtex-5 FXT FPGA
ML507 Evaluation Platform. For the software compilation
we used the Keil μVision4 IDE tool chain.

A. ROM Size of the Software Layer

As seen in Section IV each version of the interpreter has
a different implementation in the software layer. Table I
resumes the ROM size of the software part performing
the fetch and decode of the different interpreters. The two
columns report the sizes in terms of bytes of the fetch and
decode phase, but the second one includes also the check for
the JPC minimum and maximum limits. We observe that the
CWI and the PTCHwDFI have the lowest overhead in terms
of code size, while the TCI has the highest overhead.

B. Additional Hardware

The architectures proposed in this paper were synthesized
on FPGA, thus the estimation of the chip area was done in
terms of FPGA utilization (used flip-flops (FFs) and used
look-up tables (LUTs)). The two architectures (DI8051 and
FDI8051) derived from the standard Oregano 8051 VHDL
(Std8051) do not utilize a great amount of additional hard-
ware as Table II shows; with a very rough estimation, the
average additional utilization is about 3.2% for the DI8051
and about 7% for the FDI8051 compared to the Std8051. In
fact, the modification consists of a few additional registers
and little logic, with which we integrated the additional
functionalities in the existing 8051 state machine.

Table II
FPGA UTILIZATION FOR THE DIFFERENT ARCHITECTURES

Architecture
FPGA Util.

FFs Diff. % LUTs Diff. %
Std8051 582 - 2623 -
DI8051 597 2.6 2721 3.7

FDI8051 614 5.5 2885 10.0

Table III
RUN-TIME PERFORMANCE OF THE INTERPRETERS FOR THE FETCH AND

DECODE PART

Interpreter
Run-time [Clk Cycles]

w/o JPC Check Diff. % w/ JPC Check Diff. %
CWI 76 - 138 -
TCI 60 -21 122 -12

TCHwD 38 -50 100 -28
TCHwFD 6 -92 6 -96

C. Run-time Performance

The assessment of run-time performance was done by
counting the clock cycles needed for the fetch-decode
phase of the interpreter. The CWI and PTCI only make
use of standard 8051 instructions; the difference between
their run-time performances is due to the pseudo-threaded
code technique present in PTCI as already discussed in
Section III. PTCHwDI and PTCHwFDI are based on the
non-standard 8051 instructions introduced in DI8051 and
FDI8051, respectively. Table III shows a clear improvement
in terms of clock cycles reduction for the PTCHwDI and
the PTCHwFDI compared to the two interpreters running
on the standard architecture. The improvement is due to
the execution of the fetch and the decode functionalities
directly in hardware instead of executing a sequence of many
standard 8051 instructions. The fourth column of Table III
is relative to the run-time performance for interpreters with
the check on the JPC bounds. The trend of the improvement
is similar to the second column where no check is done; but
for the PTCHwFDI the improvement is impressive and due
to the fact that the bounds check is done in hardware.

For the sake of a more complete investigation of the
improvement of the run-time performance, we measured and
averaged the execution times of a set of eight often used
Java Card bytecode instructions (sconst n, bspush, sspush,
sstore n, sload n, sadd, ifeq, ifcmpeq). Figure 11 refers to
the interpreter without bounds check and shows how the
fetch and decode time reduction influences the overall Java
Card bytecode interpretation time. The TCHwFD implemen-
tation presents an overall time reduction of 41% compared
to the CWI implementation.

D. Power and Energy Analysis

We ran and tested our system on a Virtex 5 FPGA;
hence, the only estimation that we made is related to this
technology. To estimate the power consumption of the three
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Figure 11. Run-time evaluation for the bytecode interpretation

Table IV
DYNAMIC POWER OF THE ARCHITECTURE CORE

Architecture
Dynamic Power [mW]

w/o JPC check Diff. % w/ JPC check Diff. %
Std8051 25 - 25 -
DI8051 21 -16 22 -12

FDI8051 18 -28 18 -28

architectures in use, we based our analysis on the XPower
Analyzer tool in the Xilinx design Suite [22]. For the sake
of a more precise estimation of the dynamic power, the
tool can use the switching activity data of the circuit nodes
obtained during a testbench simulation. To get an even better
result, we used the switching activity data extracted from the
testbenches simulations of the fetch and decode phases of the
interpreter. With this setting the power information is strictly
correlated to the fetch-decode activity. From the XPower
Analyzer we took the power relative to the switching activity
(dynamic power) into consideration, that means without
taking the leakage contribution into account. Looking at
Table IV, we observe how the power consumption decreases
from a maximum value in the Std8051 architecture to a
minimum value in the FDI8051 architecture. The nature
of the test-bench explains the power trend. In fact, in the
Std8051, a wide set of various instructions are involved in
the fetch and decode of the interpreter (and hence, a spread
part of the circuits has switch activity); on the other hand,
in the FDI8051, only the new instruction is involved (and
hence, a focused part of the circuits has switch activity).
We counter-check the results running the test-bench of the
CWI on the FDI8051 architecture. The XPower Analyzer
estimates the same power as for the Std8051 architecture.
This demonstrates that also in the modified architecture, a
set of various instructions has the same dynamic power as
the STD8051 architecture. With the power analysis and the
run-time analysis it is possible to calculate the dynamic
energy needed for the fetch-decode phase with the well-

Table V
DYNAMIC ENERGY CONSUMPTION OF THE INTERPRETERS IN

PERFORMING THE FETCH AND DECODE PHASES

Interpreter
Energy Cons. [mJ/Tck]

w/o JPC Check Diff. % w/ JPC Check Diff. %
CWI 1900 - 3450 -
PTCI 1500 -21 3050 -12

PTCHwD 798 -58 2200 -36
PTCHwFD 108 -94 108 -97
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Figure 12. Dynamic energy consuption evaluation for the bytecode
interpretation

known formula

E =

∫
p(t)dt = pm ·Δt = pm ·N · Tck

where p(t) is the power at a point in the time, pm is the
average over the time of the power, Δt is the time interval
taken into consideration, N is the number of clock periods of
the time interval, and Tck is the clock period. Table V reports
the energy consumption for the fetch and decode phases in
the different interpreters. It is expressed in mJ/Tck, because
the run-time of Table V is expressed in the number of clock
cycles. The second column regards the basic interpreters,
while the fourth regards interpreters performing also bounds
check. The trend shows a consistent decrease of the energy
consumption for all the interpreters compared to the CWI.
This behavior is the result of the combination between a
lower run-time and a lower power consumption.

As previously in the run-time assessment, we analyzed the
energy needed for a complete Java bytecode interpretation
(i.e. fetch, decode and execution). Figure 12 presents the en-
ergy consumption for the interpreter without bounds check.
Considering the CWI and the TCHwFD, the overall energy
consumption for the complete Java bytecode interpretation
presents a reduction of 42%.

VI. CONCLUSIONS

In this paper, we proposed the modification of a stan-
dard architecture generally used in embedded systems for
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enhancing the performance of the Java Card interpreter.
We designed the interpreter with the pseudo-threaded code
architecture, and we integrated in two different hardware
architectures the decode phase, and both the fetch and
decode phases of the interpreter, respectively. The interpreter
with both fetch and decode performed in hardware has a
reduction in the bytecode interpretation time of 41%, and a
reduction in the energy consumption of 42%, compared to a
classic interpreter implemented on a standard platform. The
price for the improvement is a slight increase of the FPGA
utilization (about 7%) and a negligible increase of the ROM
size for the implementation of the software part.

Considering Java bytecode engineering techniques like
dictionary compression promising , we see an opportunity
for future work in the integration of such techniques with the
Java Card interpreter based on the introduction of application
specific functionalities into the microcontroller.
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Abstract: Smart cards are low-end embedded systems used in the fields oftelecommunications, banking and identifi-
cation. Java Card is a reduced set of the Java standard designed for these systems. In a context of scarce
resources such as smart cards, ROM size plays a very important role and dictionary compression techniques
help in reducing program sizes as much as possible. At the same time, to overcome the intrinsic slow execu-
tion performance of a system based on interpretation it is possible to enhance the interpreter speed by means
of specific hardware support. In this paper we apply the dictionary compression technique to a Java interpreter
built on an application specific processor. Moreover, we move part of the decompression functionalities in
hardware with the aim of speeding up the execution of a compressed application. We obtain a new interpreter
that executes compressed code faster than a classic interpreter that executes non-compressed code.

1 INTRODUCTION

Entering a building with restricted access with-
out a metal key, calling someone with a mobile
phone, and paying at the supermarket without phys-
ical money are all activities based on the use of smart
cards. With the increase of informatization in many
sectors of society, these systems are destined to be-
come even more widespread.

Smart cards are low-end embedded systems con-
sisting of a 8/16 bit processor, some hundreds kilo-
bytes of persistent memory and some kilobytes of
RAM. The applications running on smart cards are
often developed in C and in assembly to maximize
execution time and minimize ROM size. Even fol-
lowing good programming practices, developing the
applications in C and assembly has the problem of
portability and demands a great amount of time for
porting the applications from one platform to another.
A programming language based on an interpreter like
Java would resolve the problem of portability and also
introduce security mechanisms included in the Java
run-time environment.

A complete Java run-time environment requires
hardware resources two orders of magnitude higher
than the typical smart card hardware configuration.
Java Card standard is a reduced set of the Java stan-
dard tailored for smart cards (Oracle, 2011a) (Ora-

cle, 2011b). Moreover, with the “sandbox model”,
the Java Card run-time environment offers a secure
and sound environment protecting against many types
of security attacks. In contrast to standard Java envi-
ronments, Java Card virtual machine is split in two
parts: one off-card and the other on-card. The off-
card Java Card Virtual Machine consists of the con-
verter, the verifier, and the off-card installer. The con-
verter transforms theclassfile into a CAP file, which
is the shipment format of Java Card applications. The
verifier checks the CAP file for legitimacy so that the
code can be safely installed. After verification, the
off-card installer establishes a communication chan-
nel with the on-card installer to transfer the content of
the CAP file to the smart card. The on-card installer
proceeds with the installation of the application, so
that afterwards the application execution is possible.

In smart cards, where the persistent memory size
is a first order issue, keeping the ROM size of the
application as small as possible is a prominent is-
sue. Compression techniques based on the dictionary
mechanism fit very well in a software architecture
based on a “token” interpreter like Java. The com-
pression phase is performed off-card between the ver-
ification and the installation processes. The on-card
Java Card virtual machine provides for the decom-
pression during run-time. The drawback of this ap-
proach is the slow-down of the application execution
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due to the decompression phase. As a consequence,
time performance issues could prevent the adoption of
the compression system especially in contexts where
time constraints are strict.

The most popular technique for speeding-up the
Java interpreter is the Just In Time (JIT) compilation.
Unfortunately, this approach is not compliant with the
typical smart card hardware configurations. A differ-
ent approach based on an interpreter with hardware
support is more suitable for smart cards.

In this paper we integrate the dictionary decom-
pression functionality on an interpreter with hardware
support. As final result, we obtain an interpreter able
to execute compressed applications faster than a stan-
dard software interpreter executing a non-compressed
application.

The structure of the rest of this paper is as follows.
Section 2 reviews the previous work that forms the
basis of this research. Section 3 analyzes the dictio-
nary compression and its application to the interpreter
with hardware support. In section 4 we evaluate the
proposed models with particular attention to the exe-
cution time. Finally, in section 5 we report our con-
clusions and present suggestions for future work.

2 RELATED WORKS

Java Card is a Java subset specifically created for
smart cards that allows developers to use an object-
oriented programming language and to write appli-
cations hardware independently (Chen, 2000). The
virtual machine in the run-time environment repre-
sents a common abstraction layer between the hard-
ware platform and the application, and makes it pos-
sible to compile the application once and run it in each
platform deploying a compliant Java Card environ-
ment. The issuing format of Java Card applications
is the CAP file, whose inside is organized in compo-
nents (Oracle, 2011b). All the methods of the classes
are stored in the method component; consequently the
latter is usually the component with the highest con-
tribution to the overall application ROM size. For this
reason, a reduction of the size of the method compo-
nent would mean a significant reduction of the ROM
space needed to install the application on the smart
card.

Alongside following good programming prac-
tices, the main solution for reducing the ROM size
of an application is the compressing of said applica-
tion. The drawback of common compression tech-
niques based on Huffmann and LZ77 algorithms is
their need of a considerable amount of memory to
decompress the application before its execution (Sa-

lomon, 2004).

Dictionary compression is a technique based on
a dictionary containing the definitions of new sym-
bols (macros) (Salomon, 2004). Each definition in
the dictionary consists of a sequence of symbols that
is often repeated in the data to compress. In the com-
pression phase the repeated sequences are substituted
with the respective macros (the macro definition and
the substituted sequence have to be the same), while
in the decompression phase the macros are substituted
with their definition. Claussen et al. applied dictio-
nary compression to Java for low-end embedded sys-
tems (Clausen et al., 2000). Applied to interpreted
languages like Java, the main advantage of this com-
pression technique, when compared to the traditional
techniques, resides in the possibility to decompress
the code on-the-fly during run-time. In fact, when the
interpreter encounters a macro in the code, it starts
the interpretation of the code in the macro definition,
not needing the decompression of the entire code.
Claussen et al. could save up to 15% of the appli-
cation space, but this had also the disadvantage of a
slower execution speed quantifiable between 5% and
30%. In (Zilli et al., 2013), we explored the exten-
sions of the base dictionary technique. In that work,
we evaluated the static and dynamic dictionary as well
as the use of generalized macros with arguments.

The main disadvantage of interpreted languages
compared with native applications is the low execu-
tion performance. The system commonly used to im-
prove the execution speed in standard Java environ-
ments is the “Just In Time” (JIT) compilation (Sug-
anuma et al., 2000) (Cramer et al., 1997) (Krall and
Grafl, 1997). JIT compilation consists of the run-time
compilation and optimization of sequences of byte-
codes into native machine instructions. The disadvan-
tage of this technique is the amount of RAM memory
required to temporary store the compiled code. For
low-end embedded systems such as smart cards, the
amount of RAM memory needed for JIT compilations
does not comply with the memory configurations.

Another solution for overcoming the low execu-
tion speed is the hardware implementation of the Java
virtual machine. Previous works can be categorized
into two main approaches: the direct bytecode execu-
tion in hardware, and the hardware translation from
Java bytecode to machine instructions. An example
of the first case is picoJava (McGhan and O’Connor,
1998), a Java processor that executes the bytecodes
directly in hardware. This approach reaches high ex-
ecution performance, but has the disadvantage of a
difficult integration with applications written in na-
tive code. An example of hardware bytecode transla-
tion is the ARM Jazelle technology (Steel, 2001). In
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this case the integration with native code is possible
through an extension of the machine instruction set,
but the performances are not as good as in the Java
processor.

In the context of Java Card, we proposed a Java
interpreter with hardware support (Zilli et al., 2014).
In this work, we re-designed the interpreter as a
“pseudo-threaded” interpreter where each bytecode
provides for the jump to the next one. Moreover we
moved the part of the Java interpreter responsible for
the fetch and decode of the bytecode into the hard-
ware. With this approach, we obtain a time reduction
on the single bytecode execution of 40%.

The base of this research is the work in (Zilli et al.,
2014). We extend the interpreter proposed for the
handling of the dictionary decompression and present
two solutions. One is in software, while, in the sec-
ond, we implement part of the dictionary functional-
ities in hardware. For the evaluation of our work, we
compare the two solutions with a software implemen-
tation on a standard hardware platform.

3 DESIGN AND
IMPLEMENTATION

3.1 Dictionary Compression

In the context of Java Card, dictionary compression is
an off-card process and consists of the substitution of
repeated sequences of bytecodes with a macro whose
definition is stored in a dictionary (Clausen et al.,
2000) (Zilli et al., 2013). Given that 68 of the pos-
sible bytecode values are not defined by the standard,
part of these can be used to extend the virtual machine
instruction set and to represent the macros.

While the compression phase is performed in the
off-card part of the Java Card virtual machine, the
decompression phase is done on-card during the run-
time. The decompression phase adapts well to the in-
terpreter architecture, because every dictionary macro
can be interpreted similarly to a “call” instruction. In
Figure 1 we convey the structure of the dictionary,
where two main components can be found. The first
one consists of the look-up table containing the ad-
dresses of the macro definitions. The second com-
ponent of the dictionary is the set of the macro def-
initions. The latter consists of sequences of Java
bytecodes with a final Java bytecode being specific
to the dictionary compression, whose mnemonic is
ret macro.

The realization of the decompression module in
the Java Card virtual machine requires the imple-
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Figure 1: Organization of a dictionary

mentation of the Java bytecode functions for the
dictionary macro (macro jbc) and for ret macro
(ret macro jbc). These two Java bytecodes are sim-
ilar to the call and the return opcodes of a micro-
controller, but they act on the program counter of
the Java Card virtual machine (JPC). Figure 2 shows
pseudo-assembly code for the implementation of the
two bytecodes on a standard architecture. For the

macro_jbc:
MOV A, JPC
MOV JPC_RET, A
MOV A, #LOOKUP_TABLE
ADD A, JBC
MOV DPTR, A
MOV A, @DPTR
MOV JPC, A
RET

ret_macro_jbc:
MOV A, JPC_RET
MOV JPC, A
RET

Figure 2: Macro function andret macro function in
pseudo-assembly code for the standard architecture

sake of easier readability, the pseudo-code does not
take the real address width into consideration. In
the first part of themacro jbc function, the actual
JPC is stored into a “return” variable. Afterwards,
the actual Java bytecode (e.g. the macro value) is
used to calculate the offset in the look-up table from
which the address of the corresponding macro def-
inition is fetched. At this point, the JPC is loaded
with the address of the macro definition. From this
point on, the Java virtual machine interprets the byte-
codes contained in the macro until it encounters the
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ret macro Java bytecode. Figure 2 shows the im-
plementation of theret macro bytecode in pseudo-
assembly code. As can be seen, the Java program
counter value contained in the “return” variable is re-
stored within the function. After the interpretation of
the ret macro bytecode, the Java Card virtual ma-
chine continues with the execution of the bytecodes
following the macro instruction.

3.2 Decompression with the Hardware
Supported Interpreter

In a context such as that of smart cards where the
resources are limited, a solution to speed up the vir-
tual machine is represented by an interpreter that uses
hardware extensions specific for the Java Card in-
terpretation (Zilli et al., 2014). Figure 3 explains,
by means of a state machine, how the fetch and the
decode phase of the interpretation are performed in
hardware.

State2

JBCFunct = 

*(JBCTableOffset + 

JBC * AddrWidth)

State3

jmp JBCFunct

Increment JPC

SW Domain

EXECUTE

HW Domain

DECODE

State1

JBC = *(JPC)

HW Domain

FETCH

Figure 3: State machine of the intepreter with the fetch and
the decode phase performed in hardware

To do this, the authors added the JPC register to
the hardware architecture of the microcontroller, and
extended the instruction set of the latter to enable ac-
cess to the new functionalities. Moreover, they modi-
fied the interpreter from a classical “token” model to a
“pseudo-threaded” model where every Java bytecode
function has at its end the instructions to fetch and to
decode the next bytecode.

We implement the dictionary decompression
functionality for this enhanced architecture. In Fig-
ure 4 we show the pseudo-code for the implementa-
tion of the Java bytecode functionsmacro jbc and
ret macro jbc. In this implementation the dictio-
nary decompression is completely performed in soft-
ware and is analogous to the implementation for the
normal interpreter, except for the use of the extended
functionalities for manipulating the JPC that is now
an internal register of the hardware architecture. The
macro implementation is the same as the standard
case except for the fact that we use the new machine

macro_jbc:
GET_JPC_IN_A
MOV JPC_RET, A
MOV A, #LOOKUP_TABLE
ADD A, JBC
MOV DPTR, A
MOV A, @DPTR
SET_JPC_FROM_A
GOTONEXTJBCFUNCT

ret_macro_jbc:
MOV A, JPC_RET
SET_JPC_FROM_A
GOTONEXTJBCFUNCT

Figure 4: Macro function andret macro function in
pseudo-assembly code for the interpreter with the fetch and
the decode phase in hardware

instructions and that, at the end of the function, in-
stead of a normal RET instruction, we have the acti-
vation of the hardware fetch and decode of the next
Java bytecode. The same considerations can be made
for theret macro bytecode.

3.3 Hardware Extension for Dictionary
Decompression

The architecture extension of the hardware aided in-
terpreter represents the core of this work. In a hard-
ware/software co-design context, we moved parts of
the software implementation of the dictionary decom-
pression to hardware. Referring to Figure 1, it is nec-
essary for the hardware architecture to have access to
the dictionary look-up table base address and to the
actual value of the macro. Moreover, we added a reg-
ister for storing the return address of the Java program
counter (JPC) and an internal register to temporary
store the value of the processor program counter (PC).

PC_RET <-- PC

JPC_RET <-- JPC

PC <-- MACRO_TABLE 

+ macro_value

JPC <-- fetch(PC)

PC <-- PC_RET

Figure 5: State machine of the PRECALLMACRO ma-
chine opcode
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Figure 5 sketches the finite state machine tak-
ing charge of the macro decodification. In the first
step, the PC and the JPC are stored in the respec-
tive “return” register. In the second step, thePC is
loaded with the value resulting from the sum of the
macro look-up table base address (MACROTABLE)
and the offset relative to the actual macro being de-
coded (macrovalue). At this point, the value fetched
from the ROM at the address pointed by the PC cor-
responds to the address of the macro to be executed.
The fetched value is then stored into the JPC and the
PC is restored.

The hardware functionality just described is ac-
tivated by means of an additional machine instruc-
tion (whose mnemonic isPRECALLMACRO) part
of the extended instruction set. In Figure 6 we
report the implementation of themacro jbc and
ret macro jbc bytecode functions. After the modi-

macro_jbc:
MOV A, #LOOKUP_TABLE
SET_DICTLOOKUP_TABLE
MOV A, JBC
PRECALL_MACRO
GOTONEXTJBCFUNCT

ret_macro_jbc:
REST_DICT_JBC
GOTONEXTJBCFUNCT

Figure 6: macro jbc and ret macro jbc functions in
pseudo-assembly code for architecture with hardware sup-
port for dictionary decompression

fication of the JPC, theGOTONEXTJBCFUNCT instruc-
tion starts the execution of the bytecodes of the
macro definition. When the interpreter executes the
ret macro bytecode, theREST DICT JBC machine in-
struction is executed to restore theJPC value previ-
ously stored into the internal return register within the
PRECALL MACRO machine instruction. Afterwards, the
instructionGOTONEXTJBCFUNCT continues the execu-
tion flow from the first bytecode after the macro byte-
code.

4 RESULTS AND DISCUSSION

The results of this work can be subdivided into
two parts: one related to the compression phase and
the other to the decompression phase. For the first
part we consider the space savings that we obtained
by applying the dictionary compression to a set of in-
dustrial applications. For the decompression we ana-
lyze the run-time improvements due to the use of the
new microcontroller architecture.

4.1 Compression

The main aspect regarding the compression phase is
the space savings that can be obtained. We did not
evaluate the compression speed performance because
it is performed off-card, hence in a platform with no
particular hardware constrains. For the assessment
of the space savings, we applied the dictionary com-
pression method to a set of three banking applications
(XPay, MChip and MChip Advanced).

Table 1: Space savings obtained with the dictionary com-
pression

Application Size [B] Space Savings [%]

XPay 1784 12.2

MChip 23305 9.2

MChip Advanced 38255 10.5

Table 1 summarizes the space savings obtained for
the three applications. The second and third columns
show the sizes of the method component and the
space savings over the method component expressed
in percentage. The reported space savings also ac-
count for the ROM space needed for the storage of
the dictionary.

4.2 Decompression

To evaluate the decompression, we implemented the
proposed architectures before building the relative in-
terpreters onto them . The 8051 architecture is a low-
end microcontroller consistent with hardware config-
urations of typical smart cards. As a starting point we
took the 8051 implementation provided by Oregano
and we added to it the extensions described in Sec-
tion 3. We created two different architectures: one
has the fetch and decode phase of the interpreter re-
alized in hardware (FDI8051); the other, in addition
to the fetch and decode of the interpreter, also has the
hardware extension for the dictionary decompression
(FDI8051DEC).

4.2.1 Additional Hardware

We synthesized the proposed hardware architectures
on a Virtex-5 FPGA (FXT FPGA ML507 Evaluation
Platform). In this way we are able to quantify the
FPGA usage in terms of flip-flops (FFS) and look-up
tables (LUTs). Table 2 shows the necessary hardware
for the three available architectures. Both architec-
tures have an increment of the FPGA usage with an
higher increment for the FDI8951DEC. The higher
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Table 2: FPGA utilization for the different architectures

Architecture
FPGA Util.

FFs Diff. % LUTs Diff. %

Std8051 582 - 2623 -

FDI8051 614 5.5 2885 10.0

FDI8051DEC 666 14.4 2946 12.3

FPGA usage in the FDI8051DEC is due to the in-
troduction of the decompression mechanism in hard-
ware.

4.2.2 Execution Speed-up

For the evaluation of the run-time performance we
proceeded with the evaluation of the execution of a
dictionary macro. For the sake of this assessment we
proceeded in two steps. The first step consists of the
execution time measurement of a sequence of byte-
codes running on a completely software-based inter-
preter (on the Std8051 architecture) and on the inter-
preter running on the architecture with the fetch and
the decode phase of the interpretation in hardware
(FDI8051 architecture). In the second step we eval-
uated the increment of the execution time due to the
encapsulation of the sequence under test into a macro
definition.

The analysis coming from the off-card compres-
sion shows that macros have an average length of
three bytecodes. In a second instance, we mea-
sured and averaged the interpretation time of a set
of frequently used bytecode instructions (sconst n,
bspush, sspush, sstore n, sload n, sadd, ifeq,
ifcmpeq) to calculate the “average bytecode interpre-
tation time”. For the assessment, we took the imple-
mentation of the bytecodes from the Java Card refer-
ence implementation provided by Oracle. The mea-
surement of the interpretation time was performed on
two architectures: one with the interpreter completely
in software (Std8051), and the other with the fetch
and the decode phase of the interpreter performed in
hardware (FDI8051).

Table 3: Execution time of a bytecode sequence

Architecture Exec. Time [Clk Cycles] Diff [%]

Standard 8051 680 -

FDI8051 400 -41%

At this point it is possible to evaluate the time
needed for the execution of a sequence composed of
general bytecodes with a length equal to the average
length of a macro definition. Table 3 lists the execu-
tion time for the two architectures.

To assess the influence on the execution time due
to the sequence being encapsulated into a macro defi-
nition, we took into consideration the same “average”
sequence previously examined. In this case we com-
pleted the evaluation using the three hardware archi-
tectures available, because each of them displays dif-
ferent behavior during the execution of a macro. The
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Figure 7: Execuiton time of a macro on three architectures

graphic of Figure 7 summarizes the results regard-
ing the interpretation of the macro. The execution
time (vertical coordinate) is expressed in clock cy-
cles. In each bar the light-gray part represents the time
needed for the interpretation of the sequence. The
dark gray part accounts for the overhead due to the
macro encapsulation, which means the interpretation
of the macro bytecode and theret macro bytecode.
The entire bar represents the time needed to execute a
macro. At the top-right corner of each bar there is a
percentage number representing the macro overhead
compared to the overall macro execution.

4.3 Discussion

Dictionary compression allows space savings of about
10% of the applications ROM footprint. With a stan-
dard architecture, the execution overhead due to the
macro encapsulation would take 20% of the overall
macro interpretation (Figure 7).

The architecture with the fetch and the decode
phase of the interpreter in hardware (FDI8051) pro-
vides a significant acceleration of the macro execution
because of the increase in speed of the single bytecode
execution. Compared to the macro execution on the
standard 8051 architecture, the FDI8051 architecture
permits a decrease in the execution time of 45%.

The new architecture with the support for the dic-
tionary compression (FDI8051DEC) further improves
the execution performance, reducing the time over-
head owed to the macro encapsulation of the se-
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quence. Compared to the FDI8051 architecture, the
overhead time is reduced by about 50%. Compared to
the standard 8051 architecture, the FDI8051DEC ar-
chitecture allows a speed-up of 2 in the execution of a
dictionary macro.

5 CONCLUSIONS

In this paper we combined the dictionary com-
pression technique with a Java Card interpreter based
on an application specific processor. Moreover, we
moved part of the decompression functionalities to
the hardware architecture, further extending the ap-
plication specific processor. The result of this design
is a new Java Card interpreter able to execute com-
pressed code twice as fast as a standard interpreter.
Although the new hardware architecture needs a little
additional hardware, the compressed Java Card appli-
cations need about 10% less memory footprint than
the non-compressed ones.

Beyond plain dictionary compression, dictionary
compression techniques that make use of general
macros definitions with arguments are available. The
integration of these dictionary compression tech-
niques in the application specific processor provides
opportunities for future research.
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ABSTRACT
Java Cards [4][5] are small resource-constrained embedded
systems that have to fulfill rigorous security requirements.
Multiple application scenarios demand diverse product per-
formance profiles which are targeted towards markets such
as banking applications and mobile applications. In order to
tailor the products to the customer’s needs we implemented
a Software Product Line (SPL). This paper reports on the
industrial case of an adoption to a SPL during the develop-
ment of a highly-secure software system. In order to provide
a scientific method which allows the description of research
in the field, we apply Action Research (AR). The rationale
of AR is to foster the transition of knowledge from a mature
research field to practical problems encountered in the daily
routine. Thus, AR is capable of providing insights which
might be overlooked in a traditional research approach. In
this paper we follow the iterative AR process, and report on
the successful transfer of knowledge from a research project
to a real industrial application.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.13 [Reusable Software]: Domain Engineering; K.6.1
[Project and People Management]: Systems analysis
and design; K.6.1 [Project and People Management]:
Systems development
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1. INTRODUCTION
As the field of Software Product Line Engineering [3][6]

is now maturing, it is of growing importance to provide in-
dustrial cases. In the industrial context, many challenges
exist in the establishment of a SPL which are not obvious to
academia. Nevertheless, it is important to provide such an
experience to an audience who is interested in establishing
a SPL but has no prior real-life experience. For such an au-
dience, it is beneficial to draw on a catalog of documented
experiences. In this paper we strive to provide such a cata-
log.
In a matured research field, when the scientific results are
about to be transfered to real applications, it is important to
leave the proverbial research lab and apply research in the
field. The classical scientific model requests to first state
a problem, solve it, then evaluate the solution. In an in-
dustrial context, the evaluation of a process improvement is
often not bound to a single and consistent problem. Rather,
an evaluation is more oriented towards improving an existing
solution. Action Research (AR) is an established research
method which can be applied in such a context [2][7]. In
order to assess the improvement a specific action has to a
solution, this research method is cyclic and iterative. At
the end of each iteration, the outcome and experiences are
digested into lessons learned. In addition we describe how
AR helps to elicit field experience in a knowledge transfer
project. We show that the applied method can provide dif-
ferent insights to the traditional research approach.

2. RESEARCH METHOD
The more a science field grows and matures, the more it

loses relevance for practitioners. This difficulty has been ob-
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served for different fields [7]. Action research is an approach
that bridges a highly developed research field and industrial
practice. Thusly, as action researchers we are interested in
the way a working system was established and how prob-
lems have been resolved. The research is accomplished en
route [7]:

”objectives, the problem, and the method of the
research must be generated from the process it-
self, and that the consequences of selected actions
cannot be fully known ahead of time”.

We are interested in the process of the transition itself, and
thus the iterative AR process is beneficial.

2.1 The Process of Action Research
As can be seen in Fig. 1, the AR process is iterative. Each

iteration incorporates the following process steps [7]: diag-
nosing, action planning, action taking, evaluating and spec-
ifying learning.

Diagnosing

Action 
Planning

Action 
Taking

Evaluating

Specifying 
Learning

Start

Figure 1: The Action Research process [7] is itera-
tive and encompasses the following steps: Diagnos-
ing, Action Planning, Action Taking, Evaluating and
Specifying Learning. Each iteration starts with the
Diagnosing process step.

• Diagnosing: An iteration starts with a problem. The
problem is further elaborated and described. It states
the requirements (research question) for the current
iteration.

• Action Planning: In this phase the possible solu-
tions for the diagnosed problem are investigated. If
there are alternative solutions, they need to be com-
pared with each other. In the end, a specific action
has to be selected.

• Action Taking: Action needs to be taken. In the
scope of this report this an increment of a prototype
towards a running solution.

• Evaluation: The actions are evaluated against the
diagnosed problems.

• Specifying Learning: Comparing the actions and
the evaluation leads to lessons learned (LL). Moreover,
reflecting on the lessons learned leads to newly diag-
nosed industrial problems and research questions.

3. FIRST ITERATION: DESIGN
The first iteration was accomplished mainly by the re-

search partner. The industrial partner was inolved via in-
terviews. In this phase we strived to create an initial big
picture of a Software Product Line approach applied to the
existing software system.

3.1 Diagnosing
In the first iteration the diagnosing step is a general elic-

itation of requirements for a Software Product Line. The
initial adoption of a SPL is expensive because appropriate
tools are needed. Moreover, there is a large amount of effort
required for refactoring. Thusly, a decision needs to be taken
whether the SPL shall be implemented on an industrial scale
or not. For this reason, we started with a research project
with the intention of gradually increasing the industrial par-
ticipation. We can then also regard each iteration of the AR
cycle as an evaluation if the transition to a SPL shall be con-
tinued. Basically, the problem set by the first iteration is:
The SPL approach is usually not known to everyone who is
involved in the software development. Before starting a big
implementation (which is expensive) the responsible people
need to be convinced that the approach works. Moreover,
there is no way to alter the software system to the needs of
an SPL. It has to be minimally invasive in the sense that
the existing software system shall continue working as it is
without much refactoring.

3.2 Action Planning
For an initial action plan we listed the most problematic

pain points in the design and configuration process:

• Requirements consistency: There are many inter-
relations between requirements (product features and
security features). Requirements may demand the in-
clusion or exclusion of other requirements. Due to
the high number of requirements and corresponding
dependencies, it is hard to maintain the consistency
across the selected requirements of a certain product.

• Mapping features to source code: Features and
source code are two distinct worlds with different roles
involved: product managers, security engineers, test
engineers and developers. It is important to bridge
these two worlds with a mapping between the high-
level features to existing source code and tests.

• Build configuration: The build configuration shall
be consistent with the selected product and security
features. This is only possible, if there is an automatic
derivation of build information from the features men-
tioned.

• Test selection: The test selection shall be consistent
with the product and security features. Again, the
test selection shall be derived automatically from the
high-level information.

For providing a feasibility study, we sought to rapidly cre-
ate a first prototype. The design of this prototype is given in
Fig. 2. The design states that the inputs for a configuration
are the product and security features. Based on their selec-
tion, the appropriate set of components is calculated. Since
unit tests and integration tests are bound to components,
the component set also determines the set of these tests.

4
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Figure 2: Variability models are imported from a re-
quirements management system and from the source
code. The user selects a set of product and security
features. The resulting configuration is calculated.
As a result, a test and a product build configuration
is generated.

3.3 Action Taking
As a proof of concept, we implemented a first prototype

of the design. The first prototype is not an appropriate
implementation of the industrial problem. The industrial
implementation would take lots of expert knowledge for the
exact mapping of: features to components, and features to
system tests (which has been omitted in the prototype).

3.4 Evaluation
We have modeled four main artifacts: product features,

security features [1], components and tests. Thus, it is nec-
essary to demonstrate the approach involving all of them.
Moreover, all pain points shall be covered by the evalua-
tion. We designed a use case for this purpose: First, select
a specific feature and generate the build and test configura-
tion. Demonstrate that the test passes in this case. Second,
deselect a specific feature and generate build and test con-
figuration. Demonstrate that the test is not executed. All
the other previously executed tests should deliver the same
results as before. Although the use case seems trivial at a
first glance, it is in fact a real improvement in an industrial
setting and has made considerable impression.

3.5 Specifying Learning
LL1: Don’t start with a big implementation. It is not fea-

sible to start with a big implementation for several reasons:
First, the SPL approach is usually not commonly known
within a company. Before starting a big implementation
(which is expensive) the responsible people need to be con-
vinced of the feasibility of the approach. This is one of the
most important issues, because a transition of real-world
source code is extremely expensive. Moreover, a first pro-
totype can be demonstrated and encourages reflection pro-
cesses within and in-between individuals and influences the
requirements for the SPL. In the following, we provide a

short example: Variant management in an industrial con-
text is usually associated with source code configuration.
People are not aware that more artifacts come into play,
such as documentation and tests. After the demonstration
of the prototype, people regarded the test selection and con-
figuration as the most valuable asset of such an SPL.

LL2: It is not apparent where the product features come
from. The first apparent source of features are high-level re-
quirements in requirements management systems and tables
from product management. Nevertheless, the number of fea-
tures from such sources are in the range of several hundred.
A consistent mapping of so many features to source code ar-
tifacts would require too much effort from domain experts.
It is hard to justify so much effort for building a prototype
solution. Although, it makes sense to address these points
later in the transition, there needs to be a smaller feature
set.

LL3: We learned also, that the mining of component de-
pendencies is not facile. For the first prototype, we retrieved
these dependencies from include statements. However, this
approach is just an approximation: includes may mask other
inclusions of dependencies. Such nested ifdef constructs oc-
curred frequently but could be avoided with adhere coding
guidelines and appropriate refactoring.

LL4: One of the most surprising lessons learned was that
the complexity of the Software Product Line was underesti-
mated. We, as research partners did underestimate the size
of the software, the complexity of the configuration and the
dynamics of an industrial project. Moreover, the complexity
of the problems that come with a SPL were underestimated.
This is due to the reason that some mechanisms for variant
management were still implemented in the software project.
These mechanisms worked fine but with the rising number
of configuration switches they grew too complex.

4. SECOND ITERATION: BUILD
The second iteration was accomplished by the research

partner and the industrial partner. As a research partner we
participated in the daily routine of the industrial software
project. Together, we sought to create an applicable solution
for a sophisticated build management.

4.1 Diagnosing
The purpose of the second iteration was the improvement

of the existing build system for variant management. At the
time of diagnosing, variant management was still accom-
plished to a certain degree. The problems with the existing
approach were the following: First, nested ifdef constructs
were becoming increasingly unreadable. There were no con-
cise coding guidelines for such constructs. Second, the gran-
ularity was not consistently defined: sometimes makefiles
were split into more files and sometimes not. There was
no evident splitting criterion. Third, configuration switches
were spread over the code: they exist in makefiles, scripts,
xml files, source code and the like.

4.2 Action Planning
The rationale of this iteration is to show that a consid-

erable number of features can be managed systematically.
However, the outcome of this iteration shall not only be a
feasibility study, but also the development of appropriate
tools, guidelines and practices. It is not possible to evaluate
these improvements in an active project because the risk of
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interruption and the resulting cost is too high. Thus, we
decided to implement the build iteration in a small team.

4.3 Action Taking
We started with refactoring the existing makefiles and

writing a proposal for the respective makefile coding guide-
lines. The refactoring of the makefiles was only possible to
a very limited degree: each change of a makefile had to be
tested for several product configurations. This diligent test-
ing was necessary, because the refactoring was considered
risky for the product development. Before the refactored
makefile was tested fully, the makefile had been changed by
the industrial team and needed adjustments again. Summa-
rizing, a makefile refactoring is only feasible, if the entire
team focuses on this objective.
The definition of a common vocabulary was a major issue.
A variant management existed beforehand with different vo-
cabulary to that used in academia. This was the source of
several misconceptions. Another issue was the development
of a naming scheme for compiler flags and constant defini-
tions.
It was important to discuss the configuration of the high-
level switches (features). The existing set of several hundred
product features was considered as too complex to be linked
to source code artifacts. This is not a technical limitation.
It is a limitation of complexity. In an industrial context it is
nearly impossible to map several hundred features to source
code, because the required domain expertise is rare. Thusly,
we decided to limit the number of product features to 30.
Nevertheless, handling such a number of high-level switches
in a complex industrial project is a challenge and deemed
appropriate as a starting point.
In order to connect the existing makefiles with the soft-
ware product line tooling, it was necessary to find the exist-
ing switches within makefiles and source code files. During
this examination we found that there are several high-level
switches available in the makefiles.We planned to use them
for the first product feature set because their number did not
exceed the mentioned 30. With these rare existing product
features it was feasible to build another increment of the
variant management prototype and to demonstrate the fea-
sibility of our approach.

4.4 Evaluation
The most relevant achievement was the agreement on the

concept of mapping features, makefiles and compiler flags.
We decided to start with up to 30 features in order to keep
complexity low. In fact, controlling up to 30 features in an
industrial environment is a challenge: the knowledge of the
mapping between features and source code artifacts is not
apparent. It is spread over many developers and domain
experts whose time is limited. For this purpose we first
mined this knowledge from the source code and makefiles.
We have shown the feasibility of the approach when the
number of features is up to 30. We managed to agree on a
makefile concept that satisfies all parties such as developers,
configuration managers and the like. We could elicit a set of
coding guidelines for makefiles. Unfortunately, the makefiles
could not be refactored in the active project, because of the
frequently altering dependencies.
We agreed on a concept of storing all features in a string.
This string is then parsed in the makefiles and conditions
are evaluated according to the feature set in the string. The

makefiles are then responsible for further configuration of
the source code.

4.5 Specifying Learning
LL5: Configuration switches were scattered across many

different locations. A goal of this transition is to centralize
the logic of the configuration. As a rule of thumb, avoiding
nested ifdefs is a good coding practice because this is an in-
dicator of there being no hidden configuration knowledge.

LL6: Regarding the number of product features there is
a difference between technical feasibility and the actual fea-
sibilty (which is limited by complexity and effort). At the
beginning of a SPL establishment it is necessary to demon-
strate the feasibility with a reduced feature set.

LL7: The sources of product features are often not so
apparent. Initially, we mined them in tables from prod-
uct management and in Requirement Management Systems
(RMS). Later we found, that makefiles and source code are
a better starting point for retrieving features.

LL8: Building up a common vocabulary is difficult. Be-
cause there were many involved parties (industry, tool ven-
dor, academia), many different phrases were used to denote
the same meaning. Since this vocabulary was not consistent,
it lead to many misunderstandings. It took a long time and
many discussions to build up a vocabulary that was conse-
quently used by all involved parties.

5. THIRD ITERATION: INDUSTRIAL DE-
VELOPMENT

Before the start of the third iteration much knowledge was
transfered to the industrial partner who was then excellently
prepared for establishing a SPL. Moreover, a tool vendor was
involved in order to tailor the existing tool to the specific
needs.

5.1 Diagnosing
The main issues are: build and test configuration on an

industrial scale. The approach must be minimally invasive:
the tooling must create configuration artifacts which can be
used without the tool. This is due to the fact that many
software developers work on the project: First, not every-
one shall be able to change the variability model. We agreed
that it is better to a few well trained developers working on
the model and generating configuration artifacts with the
tool. These configuration artifacts are then submitted to
the version management system. Second, the transition to
a product line with dedicated tooling is costly in terms of
software licenses and resources. Thus, a possible termina-
tion of the transition shall not result in a system which no
longer works.
As mentioned above, the makefiles will be controlled by con-
figuration artifacts. As an addition, it is necessary to refac-
tor the makefiles. Such a refactoring has failed in the previ-
ous iteration. Therefore, co-ordination needs to be planned
more effectively.
Again,we want to address the problem of test configuration.
There are actually two dimensions of test case selection:
First, tests are selected regarding their functionality, which
means that the tests shall cover the functionality defined by
the product feature set. The respective tests are unit tests,
integration tests and system tests. Second, the tests are also
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selected regarding the degree of coverage: smoke tests are
very few tests which shall detect possible errors. The full
test set strives to cover each line of code. Moreover, the
test selection also depends on the test platform: simulator,
emulator, real hardware.
Currently, we utilize a test selection mechanism, based on
JUnit1 pre-conditions. However, these pre-conditions shall
be removed and deployed to the variant model.
At present, there is no single point of test selection. In the
underlying industrial context, this is the major argument for
the introduction of a variant management tool.

5.2 Action Planning
Initially, there was a phase of requirements engineering

and many interactions between the industrial partner and
the tool vendor. This phase was intended to gather infor-
mation and demands regarding the SPL project.
We decided to first start with the build configuration and
proceed with the configuration of unit and integration tests.
Afterwards, we intend to manage the selection of system
tests. For each of these objectives, we defined three different
phases: a development phase, a pilot phase and a transfer
phase. In the development phase, the software and the tool
are developed in order to meet the requirements. It is not
used in the active software project. In the pilot phase, the
finished solution is evaluated in order to find its flaws and
possible corrections. If the solution is regarded as mature
enough, it passes to the transfer phase. In the transfer phase
the solution is used in the industrial project and developers
are trained to apply it.

5.3 Action Taking
The new variant model is similar to the model of the first

iteration (see Fig. 2). It contains product features, compo-
nents and tests. It has been taken over by the industrial
partner, for the bigger part. Also, the mapping of unit tests
and integration tests to components is similar to the first
prototype.
System tests cause the test selection to be problematic: sev-
eral thousand of them cannot be mapped to components.
Thus, they need to be mapped to features. This can only be
done by experienced domain experts whose time is limited.
Thus, we still strive to find the dependencies in a different
way.

5.4 Evaluation
The industrial project was successful, so far. With the lim-

ited feature set, the mapping between features and source
code is feasible. At the moment, the pilot phase of the solu-
tion seems to work as desired. What is missing is experience
from the broad transfer of the solution to the daily routine.
academic partner’s previous work could be reused in the in-
dustrial setup. So, it can be concluded that the knowledge
transfer was successful to a considerable degree.

5.5 Specifying Learning
LL9: What we especially learned is that such a transition

to a SPL can only be successful, if there is one insider re-
sponsible for it. It is usually much easier for such an insider
to get information and support. This is especially the case,
when an academic project starts to become industrial.

1http://junit.org/

LL10: A very important point is the following: such a
project must deliver some early successes to get enough sup-
port. For this reason and to minimize risk, the industrial
partner fostered a staged transition to a SPL. After each
stage the solution is evaluated with the possibility of the
project being canceled.

6. CONCLUSION
In Table 1 the lessons learned are summarized. As can

be seen we gathered 10 lessons learned in 3 iterations. In
the third iteration we could only identify 2 lessons learned:
this is due to the fact that this iteration is not yet fully
completed. We rated the experience of each lesson learned
regarding the degree of technical and field experience. The
more the experience is field-related the less it can be re-
produced in a traditional research lab setting. Field-related
experience may have a technical facet but usually involves
more aspects. The relation between pure technical experi-
ence and field experience shows to which degree action re-
search can enhance traditional research methods. We rated
each dimension on a scale between zero and three plus: No
related experience results in a zero rating. A rating of three
plus denotes a highly related experience.

0

1

2

3

4

5

6

7

8

1 2 3

technical

field

iteration

rating

Figure 3: The rated technical and field experience
of the lessons learned for all three iterations.

Fig. 3 shows the evolution of the learning experience over
the three iterations. In the first iteration, the focus of the
SPL transition was on the research partner. Following the
rated experience is lower than in the second iteration. There,
the research partner and the industrial partner were closely
working together on a solution. In the third iteration the
rated experience is lower than in the previous iterations.
That is because this iteration is not yet fully completed. It
is interesting to see that the field experience is always rated
higher than the technical experience. This is due to the fact
that we were participating in a large and dynamic software
project. In such a setting, the research conditions are differ-
ent to an isolated research project. However, the research
method also helps to gather insights which are not possible
to elicit with a traditional research method. Such a method
would only reveal the same technical experience, in the best
case.
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Table 1: Summary of all lessons learned.
Lesson
Learned

Description Iteration Technical Experience Field Experience

LL 1 don’t start big 1 +++
LL 2 unclear source of features 1 + +
LL 3 mining component dependencies 1 ++ +
LL 4 underestimated complexity 1 ++
LL 5 avoid nested ifdefs 2 ++ +
LL 6 limit number of features 2 +++
LL 7 retrieve features from source 2 ++ +
LL 8 build up a common vocabulary 2 +++
LL 9 insider responsibility 3 +++
LL 10 early successes 3 +++

In this paper we reported on a successful knowledge trans-
fer from academia to industry. We described this transfer
with an established research method which fosters the trans-
fer of science to real and practical applications. This re-
search method has enabled the extraction of several lessons
learned which are likely to appear in a similar setting. The
lessons learned have demonstrated that the action research
approach is capable of providing more insight to field expe-
riences than the traditional research method which focuses
solely on problem solving.
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[6] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

[7] G. Susman and R. Evered. An assessment of the
scientific merits of action research. Administrative
science quarterly, Jan. 1978.

8

6. Publications Publication 6 - ACM WISE 2014 87



Bibliography

[1] J. Teich, “Hardware/software codesign: The past, the present, and predicting the
future,” Proceedings of the IEEE, vol. 100, pp. 1411–1430, May 2012.

[2] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma, and
J. Rodriquez-Rosell, “A virtual machine emulator for performance evaluation,” Com-
mun. ACM, vol. 23, pp. 71–80, Feb. 1980.

[3] H. M. Deitel, P. J. Deitel, and D. R. Choffnes, Operating systems. Pearson/Prentice
Hall, 2004.

[4] W. Rankl and W. Effing, Smart Card Handbook. Wiley, 2010.

[5] Oracle, Java Card 3 Paltform. Runtime Environment Specification, Classic Edition.
Version 3.0.4. September 2011.

[6] Oracle, Java Card 3 Paltform. Virtual Machine Specification, Classic Edition. Version
3.0.4. September 2011.

[7] J. Susser, M. Butler, and A. Streich, “Techniques for implementing security on a
small footprint device using a context barrier,” Jan. 13 2009. US Patent 7,478,389.

[8] J. Susser, M. Butler, and A. Streich, “Techniques for permitting access across a
context barrier on a small footprint device using an entry point object,” Oct. 20
2009. US Patent 7,607,175.

[9] L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller, “Java Bytecode Compression
for low-end Embedded Systems,” ACM Trans. Program. Lang. Syst., vol. 22, pp. 471–
489, May 2000.

[10] J. Staunstrup and W. Wolf, Hardware/Software Co-Design. Springer US, ISBN:
1441950184, September 2010.

[11] D. Salomon, Data Compression: the Complete Reference. Springer, 2004.

[12] M. Nelson and J.-L. Gailly, The Data Compression Book 2nd Edition. 1995.

[13] D. A. Huffman et al., “A method for the construction of minimum redundancy codes,”
proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[14] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

88



Bibliography 89

[15] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”
Information Theory, IEEE Transactions on, vol. 24, no. 5, pp. 530–536, 1978.

[16] P. Katz, “String searcher, and compressor using same,” Sept. 24 1991. US Patent
5,051,745.

[17] I. Pavlov, “LMZA,” 1999.

[18] P. W. Katz, “PKZIP,” Commercial compression system, version 1, 1990.

[19] Oracle, “JAR File Specification,” 2014.

[20] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, vol. 1009. Pearson/Addison Wesley, 2007.

[21] S. K. Debray, W. Evans, R. Muth, and B. De Sutter, “Compiler Techniques for Code
Compaction,” ACM Trans. Program. Lang. Syst., vol. 22, pp. 378–415, Mar. 2000.

[22] J. Ernst, W. Evans, C. W. Fraser, T. A. Proebsting, and S. Lucco, “Code Compres-
sion,” SIGPLAN Not., vol. 32, pp. 358–365, May 1997.

[23] S. Debray and W. Evans, “Profile-guided Code Compression,” SIGPLAN Not.,
vol. 37, pp. 95–105, May 2002.

[24] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge, “Improving code density using
compression techniques,” in Microarchitecture, 1997. Proceedings., Thirtieth Annual
IEEE/ACM International Symposium on, pp. 194–203, Dec 1997.

[25] A. Orpaz and S. Weiss, “A Study of CodePack: Optimizing Embedded Code Space,”
in Proceedings of the Tenth International Symposium on Hardware/Software Code-
sign, CODES ’02, (New York, NY, USA), pp. 103–108, ACM, 2002.

[26] D. R. Ditzel, H. R. McLellan, and A. D. Berenbaum, “The Hardware Architecture
of the CRISP Microprocessor,” in Proceedings of the 14th Annual International Sym-
posium on Computer Architecture, ISCA ’87, (New York, NY, USA), pp. 309–319,
ACM, 1987.

[27] G. Bizzotto and G. Grimaud, “Practical Java Card bytecode compression,” in Pro-
ceedings of RENPAR14/ASF/SYMPA, Citeseer, 2002.

[28] T. A. Proebsting, “Optimizing an ANSI C Interpreter with Superoperators,” in Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, POPL ’95, (New York, NY, USA), pp. 322–332, ACM, 1995.

[29] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: the Hard-
ware/Software Interface. Newnes, 2013.

[30] A. Krall and R. Grafl, “CACAO - A 64-bit JavaVM Just-in-Time Compiler,” Con-
currency Practice and Experience, vol. 9, no. 11, pp. 1017–1030, 1997.

[31] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wolczko, “Com-
piling Java Just in Time,” Micro, IEEE, vol. 17, no. 3, pp. 36–43, 1997.



Bibliography 90

[32] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani, “Overview of the IBM Java Just-in-Time Compiler,”
IBM Systems Journal, vol. 39, no. 1, pp. 175–193, 2000.

[33] J. Aycock, “A Brief History of Just-In-Time,” ACM Comput. Surv., vol. 35, pp. 97–
113, June 2003.

[34] A. Gal, C. W. Probst, and M. Franz, “HotpathVM: An Effective JIT Compiler for
Resource-constrained Devices,” in Proceedings of the 2Nd International Conference
on Virtual Execution Environments, VEE ’06, (New York, NY, USA), pp. 144–153,
ACM, 2006.

[35] D. Gregg, M. A. Ertl, and A. Krall, “A Fast Java Interpreter,” in Proceedings of
the Workshop on Java optimisaton strategies for embedded systems (JOSES), Genoa,
Citeseer, 2001.

[36] K. Casey, D. Gregg, M. A. Ertl, and A. Nisbet, “Towards Superinstructions for
Java Interpreters,” in Software and Compilers for Embedded Systems, pp. 329–343,
Springer, 2003.

[37] B. Stephenson and W. Holst, “Multicodes: Optimizing Virtual Machines using Byte-
code Sequences,” in Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOPSLA ’03,
(New York, NY, USA), pp. 328–329, ACM, 2003.

[38] M. A. Ertl, C. Thalinger, and A. Krall, “Superinstructions and Replication in the
Cacao JVM interpreter,” Journal of .NET Technologies, vol. 4, no. 1, pp. 31–38,
2006.

[39] H. McGhan and M. O’Connor, “PicoJava: A Direct Execution Engine For Java
Bytecode,” Computer, vol. 31, no. 10, pp. 22–30, 1998.

[40] A. Azevedo, A. Kejariwal, A. Veidenbaum, and A. Nicolau, “High Performance
Annotation-aware JVM for Java Cards,” in Proceedings of the 5th ACM international
conference on Embedded software, EMSOFT ’05, (New York, NY, USA), pp. 52–61,
ACM, 2005.

[41] C. Badea, A. Nicolau, and A. V. Veidenbaum, “A Simplified Java Bytecode Compi-
lation System for Resource-Constrained Embedded Processors,” in Proceedings of the
2007 international conference on Compilers, architecture, and synthesis for embedded
systems, CASES ’07, (New York, NY, USA), pp. 218–228, ACM, 2007.

[42] M. Rossi and K. Sivalingam, “A Survey of Instruction Dispatch Techniques for Byte-
Code Interpreters,” tech. rep., Seminar on mobile code, Number TKO-C-79, Labo-
ratory of Information Processing Science, Helsinki University of Technology, 1995.
Bibliography 92 [77], 1996.

[43] I. Piumarta and F. Riccardi, “Optimizing Direct Threaded Code by Selective Inlin-
ing,” SIGPLAN Not., vol. 33, pp. 291–300, May 1998.



Bibliography 91

[44] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual Machine Showdown: Stack
Versus Registers,” ACM Trans. Archit. Code Optim., vol. 4, pp. 2:1–2:36, Jan. 2008.

[45] J. R. Bell, “Threaded Code,” Communications of the ACM, vol. 16, no. 6, 1973.

[46] P. Klint, “Interpretation Techniques,” Software: Practice and Experience, vol. 11,
no. 9, pp. 963–973, 1981.

[47] C. Porthouse, “High performance Java on embedded devices,” ARM Limited, Oct,
2005.

[48] S. Steel, “Accelerating to Meet the Challenges of Embedded Java,” Whitepaper, ARM
Limited, 2001.

[49] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “Instruction Set Definition
and Instruction Selection for asips,” in Proceedings of the 7th international symposium
on High-level synthesis, pp. 11–16, IEEE Computer Society Press, 1994.

[50] M. Arnold and H. Corporaal, “Designing Domain-specific Processors,” in Proceedings
of the Ninth International Symposium on Hardware/Software Codesign, CODES ’01,
(New York, NY, USA), pp. 61–66, ACM, 2001.

[51] C. Galuzzi and K. Bertels, “The instruction-set extension problem: A survey,”
in Reconfigurable Computing: Architectures, Tools and Applications, pp. 209–220,
Springer, 2008.

[52] R. Radhakrishnan, R. Bhargava, and L. K. John, “Improving java performance us-
ing hardware translation,” in Proceedings of the 15th International Conference on
Supercomputing, ICS ’01, (New York, NY, USA), pp. 427–439, ACM, 2001.

[53] D. Wu, L. Wu, and X. Zhang, “Design and fpga implementation of java card co-
processor for emv compatible ic bankcard,” in ASIC, 2009. ASICON ’09. IEEE 8th
International Conference on, pp. 971–974, Oct 2009.

[54] J. He, L. Wu, and X. Zhang, “Design and implementation of a low Power Java
Coprocessor for dual-interface IC Bank Card,” in ASIC (ASICON), 2011 IEEE 9th
International Conference on, pp. 965–969, Oct 2011.

[55] P. Capewell and I. Watson, “A RISC hardware platform for low power Java,” in VLSI
Design, 2005. 18th International Conference on, pp. 138–143, Jan 2005.

[56] J. O’Connor and M. Tremblay, “picoJava-I: the Java virtual machine in hardware,”
Micro, IEEE, vol. 17, pp. 45–53, Mar 1997.

[57] Sun microsystems, picoJava-IITM Microarchitecture Guide. March 1999.

[58] Sun microsystems, picoJava-IITM Programmer’s Reference Manual. March 1999.

[59] Y. Tan, C. Yau, K. Lo, W. Yu, P. Mok, and F. A.S., “Design and implementation
of a Java processor,” IEE Proceedings - Computers and Digital Techniques, vol. 153,
pp. 20–30(10), January 2006.



Bibliography 92

[60] M. Schoeberl, “A Java processor architecture for embedded real-time systems,” Jour-
nal of Systems Architecture, vol. 54, no. 1–2, pp. 265 – 286, 2008.

[61] M. Zilli, W. Raschke, J. Loinig, R. Weiss, and C. Steger, “On the Dictionary Compres-
sion for Java Card Environment,” in Proceedings of the 16th International Workshop
on Software and Compilers for Embedded Systems, pp. 68–76, ACM, 2013.

[62] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger, “Instruction folding com-
pression for java card runtime environment,” in Digital System Design (DSD), 2014
17th Euromicro Conference on, pp. 228–235, Aug 2014.

[63] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger, “A light-weight compres-
sion method for java card technology,” in Proceedings of the 4th Embedded Operating
Systems Workshop, 2014, EWiLi’14, Nov 2014.

[64] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger, “A high performance
java card virtual machine interpreter based on an application specific instruction-
set processor,” in Digital System Design (DSD), 2014 17th Euromicro Conference
on, pp. 270–278, Aug 2014.

[65] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger, “An application specific
processor for enhancing dictionary compression in java card environment,” in Pro-
ceedings of the 5th International Conference on Pervasive and Embedded Computing
and Communication Systems, 2015, PECCS’15, Feb 2015.

[66] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Embedding
research in the industrial field: A case of a transition to a software product line,”
in Proceedings of the 2014 International Workshop on Long-term Industrial Collab-
oration on Software Engineering, WISE ’14, (New York, NY, USA), pp. 3–8, ACM,
2014.

[67] G. Bouffard and J.-L. Lanet, “The next smart card nightmare,” in Cryptography and
Security: From Theory to Applications (D. Naccache, ed.), vol. 6805 of Lecture Notes
in Computer Science, pp. 405–424, Springer Berlin Heidelberg, 2012.

[68] M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and C. Steger, “A defensive Java
Card virtual machine to thwart fault attacks by microarchitectural support,” in Inter-
national Conference on Risks and Security of Internet and Systems (CRiSIS), pp. 1–8,
Oct 2013.

[69] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and M. Wol-
czko, “Heap compression for memory-constrained java environments,” SIGPLAN
Not., vol. 38, pp. 282–301, Oct. 2003.

[70] M. Kato and C.-T. Lo, “Impact of java compressed heap on mobile/wireless com-
munication,” in Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, vol. 2, pp. 2–7 Vol. 2, April 2005.


	Title
	Kurzfassung
	Abstract
	Acknowledgements
	Extended Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary
	1 Introduction
	1.1 Motivation
	1.1.1 Java Card

	1.2 Hardware/Software Co-design for small-footprint Java Cards
	1.2.1 Problem statement
	1.2.2 Contribution of this Thesis
	1.2.3 Thesis Structure


	2 Related Work
	2.1 Data Compression
	2.1.1 Compression of Executable Code

	2.2 Execution Optimizations in Java Systems
	2.3 Java in Hardware
	2.4 Summary and Difference to the State-of-the-Art

	3 Hardware/software Co-design for small-footprint Java Cards
	3.1 Architectural Overview
	3.2 Compression in Java Card
	3.2.1 Dictionary Compression
	3.2.2 Dictionary Compression with Generalized Macros
	3.2.3 Folding Compression
	3.2.4 The light-weight Compression

	3.3 Hardware Support for the Java Interpreter
	3.3.1 The pseudo-threaded Interpreter
	3.3.2 Hardware Support for the Decode Phase
	3.3.3 Hardware Support for Fetch and Decode Phases
	3.3.4 Hardware Support for Dictionary Decompression

	3.4 Management of different variants

	4 Results and Case Studies
	4.1 Compression
	4.1.1 Compression Evaluation Workflow
	4.1.2 Space savings
	4.1.3 Run-time Performances

	4.2 Hardware Support for the Java Interpreter
	4.2.1 Workflow for the Hardware Support Evaluation
	4.2.2 Hardware Overhead
	4.2.3 ROM Size of the Interpreter
	4.2.4 Execution Speed

	4.3 Hardware Support for the Dictionary Decompression
	4.3.1 Hardware Overhead
	4.3.2 Performance Improvement


	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Directions for Future Work
	5.2.1 Security in Java Card enabled for Decompression
	5.2.2 Java Stack Compression and Hardware Support for Operands Stack
	5.2.3 Heap Compression in Java Card


	6 Publications
	6.1 On the dictionary compression for Java card environment
	6.2 Instruction Folding Compression for Java Card Runtime Environment
	6.3 A light-weight compression method for Java Card technology
	6.4 A High Performance Java Card Virtual Machine Interpreter Based on an Application Specific Instruction-Set Processor
	6.5 An Application Specific Processor for Enhancing Dictionary Compression in Java Card Environment
	6.6 Embedding Research in the Industrial Field: A Case of a Transition to a Software Product Line

	References

