
submitted to

Graz University of Technology

DOCTORAL THESIS

Nermin Kajtazovic, Dipl.-Ing. BSc

A Component-based Approach for
Managing Changes in the Engineering of

Safety-critical Embedded Systems

Em. Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhold Weiß
Dipl.-Ing. Dr.techn. Christian Kreiner

Institute for Technical Informatics

to achieve the university degree of

 Doktor der technischen Wissenschaften

Supervisor

Graz, December 2014

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present doctoral thesis.

Date Signature

i

Kurzfassung

Die Entwicklung eingebetteter Systeme ist ein komplexes Unterfangen mit vielfältigen Her-
ausforderungen. Gründe dafür sind etwa ständig wachsende Anforderungen des Marktes,
wie Produktivität, Performance und Qualität; weiters ist die Entwicklung auch organisato-
risch aufwändig, etwa durch Anforderungen infolge einzuhaltender Gesetze und Standards,
aber auch durch das Management und die Integration komplexer Zulieferketten in vielen
Disziplinen im Zuge der Entwicklung des Gesamtsystems. Als Folge werden eingebettete
Systeme immer komplexer auch in Hinsicht auf Ihre Funktionalität. Eine besondere Her-
ausforderung stellt hier die Software dar, weil immer mehr Funktionen software-technisch
realisiert werden – die jährliche Wachstumsrate der Softwarekomplexität beträgt je nach
Anwendungsdomäne 10% bis 30%. Dieser Komplexitätstrend stellt auch für sicherheits-
kritische Systeme die größte Herausforderung dar. Im Unterschied zu anderen eingebet-
teten Systemen werden hier höhere Ansprüche an Sorgfalt, Kontrolle und Strenge in der
Entwicklung gestellt, um zu vermeiden, dass gefährliche Fehler auftreten und potentiell
Schäden verursachen (z.B. Verletzung von Menschen, die mit solchen Systemen operieren).
In den letzten Jahren hat die steigende Softwarekomplexität bedauerlicherweise auch dafür
gesorgt, dass auch mehr Fehler während des Betriebs sicherheitskritischer Systeme auftre-
ten. Die Folgen sind ungeplante Rückruf- bzw. Wartungsaktivitäten. Allerdings ist die
Durchführung derartiger Aktivitäten nicht trivial, weil oft adäquate und kosteneffektive
Methoden im Engineering dieser Systeme fehlen.

Diese Arbeit stellt eine Methode vor, mit der für sicherheitskritische Systeme die
erwähnten Wartungsvorgänge während der Einsatzphase unterstützt werden. Aus tech-
nischer Perspektive werden solche Reparaturen durch den Austausch von Softwarekompo-
nenten im Rahmen der Softwarearchitektur realisiert. Ein wesentliches Merkmal ist hier,
dass auch relevante Standards zur funktionalen Sicherheit zur Anwendung kommen, die
den gesamten Lebenszyklus dieser Systeme regulieren. Um dies zu erreichen, stellt die Ar-
beit folgende Beiträge vor: (i) eine Methode, die auf architektonischer Ebene die benötig-
ten Softwareänderungen erlaubt, um die Softwarewartung technisch zu ermöglichen – dazu
wird das Component-based Software Engineering (CBSE) Paradigma verwendet; (ii) ei-
ne entsprechende Modellierungs- und Analyseunterstützung um sicherzustellen, dass die
Auswirkungen der Änderungen die Systemintegrität nicht beeinträchtigen – hier wird das
Prinzip von Contract-based Design (CBD) eingesetzt; und (iii) die Anwendung von Regeln
der IEC 61508, einem generischen Standard für Funktionale Sicherheit von Elektrischen,
Elektronischen und Programmierbaren Systemen, um Änderungen standard-konform un-
ter Aufrechterhaltung der Systemintegrität für Funktionale Sicherheit durchführen zu
können.

Durch einen ausgewogenen Trade-Off zwischen möglichen Änderungen, Analyseun-
terstützung für Auswirkungen solcher Änderungen, sowie den Regeln des Standards wird
eine kosteneffektive Durchführung von Wartungsvorgängen auf Softwareebene ermöglicht,
d.h. ohne eine neuerliche Sicherheitszertifizierung infolge der Änderung. Dieses Konzept
wurde in dieser Arbeit für eine Steuerungsarchitektur für Wasserkraftwerke realisiert, ist
aber insbesondere auch anwendbar in Domänen, die sicherheitsgerichtete Produkte in Mas-
senfertigung herstellen, wie zum Beispiel die Fahrzeugindustrie oder Medizintechnik.

ii

Abstract

The development of today’s embedded systems is becoming a cumbersome and challenging
task for engineers in many application fields. These challenges originate, on the one side,
from the increasing market demands on various system attributes such as productivity,
performance and products quality, and on the other side, from the organizational reasons,
for instance the need to follow certain regulations, standards, to maintain the development
in the supply chain, and so forth. In response, embedded systems are becoming complex
in terms of implemented functions, their heterogeneity, and their inter-connections. For
example, the average increase rate of the software complexity in embedded systems en-
gineering lies between 10% and 30% per year. This complexity trend is currently also a
major problem facing the engineering of safety-critical systems. Safety-critical systems
in contrast to general embedded systems require more rigorous and controlled develop-
ment, in order to meet quality requirements, and in this way to prevent causing failures
that might lead to severe consequences, for example to pose threats to humans operating
with those systems. In response to the aforementioned complexity trend, more and more
failures, in particular software-related failures, are being manifested in the operation of
these systems, and therefore repairs and changes have to be performed at an increased
rate. However, safety engineering generally lacks methods and procedures to address such
repairs in a systematic and cost-effective way.

This thesis introduces an approach to perform repairs on safety-critical systems, by
allowing to replace faulty software units (i.e., software components) in their operation and
maintenance phase. A very important characteristic here is that repairs and necessary
procedures are aligned with safety standards, which regulate the safety lifecycle, so that
the system integrity can always be maintained. To this end, the thesis proposes the
following three contributions: (i) an architectural support to perform repairs by allowing
to introduce changes in software – here, a Component-based Software Engineering (CBSE)
has been utilized to make performing changes possible; (ii) a modeling and analysis support
to conduct the impact of changes – a Contract-based Design (CBD) paradigm is applied
to ensure that the system integrity is not compromised due to incorporated changes, and
(iii) the alignment with the safety standards – corresponding processes, requirements,
measures and techniques defined in standards are followed. To this end, the IEC 61508, a
generic standard applied in the industry sectors, is used as a reference.

The main outcome here is that specific type of changes can be maintained in a cost-
effective way, in particular, without introducing costs required for the re-certification. The
approach proposed here has been realized and applied to support managing changes in
controllers for the hydro power plants, in particular, for maintaining the control software.
However, the contributions it provides can also bring benefits to other application fields,
especially to fields that have mass production in focus and thus have rather frequent
repair demands, as it is the case with the automotive sector and biomedical engineering
for example.

iii

Acknowledgements

This thesis has been carried out at the Institute for Technical Informatics, Graz University
of Technology, in cooperation with the industrial partner Andritz Hydro GmbH from
Vienna, within the scope of the HIPASE project.

I would like to use this opportunity to mention some persons, who substantially con-
tributed to the success of my work and supported me during my PhD studies. First of all, I
would like to thank my supervisor Prof. Reinhold Weiß and my mentor Christian Kreiner
for their great cooperation and support. Prof. Weiß helped me in solving many issues
in the beginning of the project from the scientific point of view and in finding the right
direction towards my research problem. He was open for many discussions and he guided
me with a lot of valuable suggestions. Especially, I appreciate his readiness to share his
skills and knowledge that helped me a lot to produce the scientific work. I express many
thanks to Christian Kreiner, who offered me the PhD position, and motivated me to focus
my work on component-based systems and safety engineering. He continuously supported
me with a number of discussions and workshops that helped me to easily get in touch
with our industrial partner. One of the most notable lessons I could learn from him is the
way on how to apply some concepts from the academia in the industry. Besides, from the
Christian’s special way of mentoring I could learn how to deal with stress situations and
how stay on the right track all the time. I am very delighted that I had the opportunity
to work with Christian and Prof. Weiß.

Next, I would like to thank Rudolf Neuner from Andritz Hydro, who was my first
contact person within the company. He spent a lot of time with me during our workshops,
and was always open for my suggestions and ideas. I also thank other colleagues from the
company, including Thomas Kirchmair, Michael Cech, Edwin Fruehwirth, Norbert Lange,
Jari Fritz, and Basha Erion. With their support and quite intensive communication, we
were able to realize some new ideas and concepts and in response achieve some important
milestones in the project. I also want to express many thanks to the Andriz Hydro
company for the financial support.

For their great support and cooperation I would like to thank my colleagues from the
institute, Christopher Preschern, Andrea Höller, and Tobias Rauter, i.e., the A-Team. We
spent a lot of time together in the project, participated in diverse workshops organized
with our industrial partner, and supported each other. I was able to share the great
experience with them. I also express special thanks to my students Johannes Iber, Thomas
Hinterkircher and Mathias Blum for their great contributions in implementing diverse
features for the HIPASE project.

In the end, I would like to express acknowledgement to my parents, my brothers,
and other members of the family for their continuous support during my education. In
particular, I address my special thanks to my girlfriend Belgin. She really was my largest
motivation generator. In many stressful situation, especially in the beginning, she believed
in me more than I did, and motivated me during the whole PhD time. With her, I always
had someone with whom I could share my experience and frustration.
Thank you all again, and for Belgin, çok teşekkürler, cac!

Graz, December 2014 Nermin Kajtazovic

iv

Extended Abstract

Motivation

Development of today’s embedded systems is becoming a cumbersome and challenging task
for engineers in many application fields. Due to impulsive market demands on improve-
ments of various system attributes such as productivity, quality and performance, the com-
plexity of embedded systems in terms of implemented functions, their inter-connections,
and heterogeneity is continuously growing. For instance, when just considering the func-
tional complexity, the average growth rate of embedded software lies between 10% and
30% per year (depending on concrete field) [EJ09].

This complexity trend has even more implications on developing safety-critical sys-
tems. Safety-critical systems require more rigorous and controlled development, since
they operate in environments in which often humans, equipment or environment are in
some way related to the system, in particular, they depend on correct functioning of such
a system. Failures in the hardware, software or mechanics may therefore lead to severe
consequences, including potential threats to human life, or damages of equipment or en-
vironment. To ensure that occurring of such failures is unlikely, the general principle of
developing this class of systems is to align systems and safety engineering, within a com-
plete development lifecycle in a systematic way. This alignment is mainly provided by
safety standards, which represent a common knowledge base for engineers and for safety
assessors that aids them to achieve the desired system’s quality (i.e., the safety integrity
in the notation of standards), and to provide a means to guarantee that certain integrity
level has been achieved respectively.

The consequences of the aforementioned challenges in systems and safety engineering
are manifold. On the one hand, it becomes increasingly difficult to verify and to vali-
date the system, in particular the predominant software functions, i.e., to inspect their
behaviour with respect to functional requirements, but also, to verify the conformance to
non-functional requirements that set constraints on various system quality attributes such
as safety, security, and performance for example, which is in practice often only partly
achievable. On the other hand, considered safety standards are often missing some tech-
nical concepts and guidelines needed for the practical realization. For example, systems
engineering is currently massively based on reuse of existing, pre-fabricated components,
in form of hardware, software or complete devices, and the system is basically built by inte-
grating those components. To date, only few guidelines in the context of safety standards
have been developed, which provide a systematic way on how to design such components
for reuse and how integrate them together, to build so called composite systems [GS05].
However, the concrete techniques that in particular take into account non-functional re-
quirements while building such composite systems are not yet mature enough and can
be rarely found in the practice. Moreover, the topic of the compositional analysis and

v

reasoning is still an open research field.

In response to issues summarized here, more and more faults are remaining unidentified
in the development, and represent a potential cause for system failures in the operation.
According to some recent studies made in fields of automotive and biomedical engineering,
the major cause for recalls of products in related fields are systematic faults in software [Qi
14,AIKR13]. In addition to challenges posed to development, this trend raises an emerging
problem to maintainability of safety-critical systems – repairing a system from such faults
becomes a cumbersome and cost-intensive task, in particular, because procedures and
changes required for repairs have to be communicated with assessors, and, according to
safety standards, such actions often require a complete system re-verification, re-validation
and re-certification. Obviously, introducing faults in the development is inevitable, and
in addition to their rigorous handling in the development, safety engineering needs com-
plementary methods to manage those faults in the post-development phases systematically.

Thesis Contributions

This thesis presents an approach to perform changes on safety-critical systems in their
operation and maintenance phase, with the objective to repair those systems from certain
faults in a cost-effective way. To meet safety regulations while performing changes, a
trade-of between the flexibility in terms of supported change types and the ability of
methods to analyse the impact of such changes on system integrity has been made. Thus,
the scope of the supported change types is reduced to replacements of software units (i.e.,
software components), thereby enabling engineers to repair a system from faults on a level
of individual software components.

To support performing changes on an architectural level, a Component-based Software
Engineering (CBSE) has been utilized [Crn02]. This paradigm is currently a key tool
used for building safety-critical systems in many fields. According to principles of CBSE,
software architecture is fragmented into (re-usable) parts, i.e., software components, that
implement portions of system functions. The foundation for the correct system develop-
ment in CBSE is a component model, which specifies what components are in terms of
interface syntax, semantics and rules on how they can form a composite system, among
a number of other aspects. The component model presented in this thesis provides ba-
sic definitions on software components and syntax of their interfaces, in order to allow
performing supported changes at runtime.

Another, and more challenging issue addressed in this thesis is to ensure to which extent
the incorporated changes may impact the system integrity, and whether such changes
may compromise the system. In other words, it must be possible to verify whether new
components, which have to be put into the hierarchy of the system design, match with
the remaining parts of that system. This matching, or the compositional analysis, has
to consider many dimensions, in particular, the behaviour of components and system,
their interfaces with respect to syntax, semantics, and other aspects. To this end, a
Contract-based Design (CBD) paradigm has been applied [SVDP12]. With CBD, the
introduced component model is extended to capture various non-functional (or extra-
functional) properties on a level of software components and their execution platform.
These properties are derived from the top-level system requirements and represent just a
portion of those requirements on a component level. Contracts are used here to structure
properties, and to allow to link properties within the complete hierarchy of the system

vi

design. In this way, the integrity information is maintained and changes in any contract
can be tracked throughout the design hierarchy, and their impact on requirements can be
analysed. In summary, the contributions of this thesis are the following (see Figure 1):

C
h

an
ge

 M
an

ag
e

m
e

n
t

(I
EC

 6
15

08
 S

ta
n

d
ar

d
)

System Modeling

Consistency Analysis Dynamic Deployment

System Design

Software
Component

Platform

Software
Component

Component Contracts

Platform Contracts

Contract n-2
Contract n-1

Contract n-2
Contract n-1

...

System Constraint Network Runtime Architecture

Requirements Engineering

Figure 1: Overview of the change management proposed in this thesis: (a) system modeling using
contracts, (b) analysis of changes introduced into the system design, and (c) dynamic deployment
of the analysed system (or software component)

1. System modeling and analysis 1 2 3

In the context of modelling a formalisation is provided on how to build the system
design in terms of contracts. In particular, the modelling here includes specific types
of contracts required to capture the aforementioned non-functional properties, and
it also includes basic relations that contracts must support to build the system hier-
archy (i.e., relations between individual components and relations to their platform).
Further, to conduct the analysis, a novel method, based on Constraint Programming
paradigm (CP) [Apt03], has been proposed.

2. Runtime support to perform changes (dynamic deployment) 4 5 6

Software components that satisfy contracts within a composite system are the subject

1Constraint-Based Verification of Compositions in Safety-Critical Component-Based Systems, SCI 2015
2On Design-time Modelling and Verification of Safety-critical Component-based Systems, IJNDC 2014
3Towards Pattern-based Reuse in Safety-critical Systems, EuroPLOP 2014
4A Component-Based Dynamic Link Support for Safety-Critical Embedded Systems, ECBS, 2013
5Inversion of Control Container for Safety-critical Embedded Systems, EuroPLOP 2013
6Towards Predictable Dynamic Linking for Safety-critical Component-based Systems,WiP@SEAA 2013

vii

to dynamic deployment. To enable this deployment, a runtime support has been
provided. This mechanism allows to link components in their binary form into the
real-time operating system (RTOS) at load-time or at runtime. The distinct feature
here is that the proposed mechanism meets software safety regulations, and therefore
can be used in the context of safety-certified RTOSs.

3. Alignment with safety standards 7 8

To allow performing changes on safety-critical systems, it is necessary to align their
management with the regulations of safety standards. For this purpose, the generic
industry standard IEC 61508 has been analysed. The results of this analysis are
certain design limitations that have to be set in order to prevent performing changes
that cannot be supported. In addition, for such a limited design, a list of common
properties that have to be considered in the modelling has been proposed.

The introduced approach to manage changes brings benefits in terms of effort and
costs required to repair systems from faults in the operation and maintenance. Following
the regulations of safety standards, the approach can be aligned with the conventional
change management process, for example the one proposed in the IEC 61508 standard,
thereby allowing the engineers to perform certain repairs without having to communicate
the required procedures and changes with the safety assessors. Managing certain repairs
as introduced in this thesis can be especially beneficial in fields that have rather frequent
and cost-intensive repairs, and that, in particular, have an emphasis on mass production,
as it is the case in the automotive or biomedical engineering for example.

7Towards Assured Dynamic Configuration of Safety-Critical Embedded Systems, SAFECOMPW 2014
8Reducing Certification Costs Through Assured Dynamic Software Configuration, ISSREW 2014

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Embedded Systems: Computational Models and Applications 2

1.1.2 Challenges in Engineering Safety-critical Embedded Systems 4

1.2 Problem Statement . 7

1.3 Thesis Contributions . 8

1.4 Thesis Structure . 9

2 Background and Related Work 11

2.1 Safety Engineering and Related Paradigms . 11

2.1.1 Overview and Safety Lifecycle . 11

2.1.2 Component-based Software Engineering . 13

2.1.3 Model-driven Engineering . 16

2.1.4 Platform-based Design . 17

2.1.5 Contract-based Design . 18

2.2 Change Management Support for Safety-critical Embedded Systems 20

2.2.1 General . 20

2.2.2 Change Impact Analysis - Architecture and Requirements 24

2.2.3 Supporting Processes in Safety Standards 25

2.2.4 Discussion . 27

2.3 Modeling and Analysis of Safety-critical Embedded Systems 29

2.3.1 System Modeling: An Overview . 29

2.3.2 Specifying System Properties . 30

2.3.3 Related Component Technologies . 32

2.3.4 Discussion . 38

2.4 Summary . 39

2.5 Thesis Objectives . 40

3 Managing Changes in Safety-critical Embedded Systems 41

3.1 Identifying Characteristics of Changes: The Role of Standards 43

3.1.1 Supported Changes . 43

3.1.2 Process and Responsibilities . 44

3.2 System Modeling and Analysis . 45

3.2.1 Component Model: Modeling Aspects . 46

3.2.2 System Analysis . 48

3.3 Runtime Support to Perform Changes . 48

3.3.1 Component Model: Software Components and System Architecture 49

3.3.2 Addressing Software Safety Regulations . 50

ix

x CONTENTS

4 Case Study and Evaluation 51
4.1 Objectives, Field Data and Used Metrics . 51
4.2 Results . 55
4.3 Discussion . 56
4.4 Implementation Status and Applications . 57

5 Conclusion 61
5.1 Approach Overview . 61
5.2 Future Work . 62

6 Publications 65
6.1 Towards Assured Dynamic Configuration of Safety-Critical Embedded Systems . . 67
6.2 Reducing Certification Costs Through Assured Dynamic Software Configuration . 81
6.3 A Component-based Dynamic Link Support for Safety-critical Embedded Systems 87
6.4 Inversion of Control Container for Safety-critical Embedded Systems 95
6.5 Towards Predictable Dynamic Linking for Safety-critical Component-based Systems 107
6.6 Constraint-Based Verification of Compositions in Safety-Critical Component-Based

Systems . 109
6.7 Towards Pattern-based Reuse in Safety-critical Systems 129
6.8 On Design-time Modelling and Verification of Safety-critical Component-based Sys-

tems . 145

References 159

List of Figures

1 Overview of the change management proposed in this thesis: (a) system modeling
using contracts, (b) analysis of changes introduced into the system design, and (c)
dynamic deployment of the analysed system (or software component) vi

1.1 Controlling a physical process using an embedded system: the implementation (left)
– adopted from [OP92], and basic models of the process control theory (right) . . . 2

1.2 Taxonomy of system models, [Jan03] . 3
1.3 Complexity development: embedded software in automotive, switching systems, and

space flight control [EJ09] (left), and software and interfaces in avionic systems
[But08] (right) . 6

1.4 Distribution of recalls campaigns according to causing components: medical engi-
neering [AIKR13] (left), automotive engineering [Qi 14] (right) 7

2.1 Safety lifecycle, according to IEC 61508 standard (excerpt, [IEC10a]) 12
2.2 Synthesis process of component-based embedded system, according to AutoComp

component model, [SFA04] . 15
2.3 A time-line of some relevant component-based systems and concepts applied in the

engineering of (safety-critical) embedded systems 16
2.4 Managing complexity using MDE, [Sch06] . 17
2.5 Concept of the Platform-based Design [SVCDBS04] 17
2.6 Concept of contracts according to CESAR project [PSS+13] 18
2.7 Classification framework for types of software changes [LFR12] 21
2.8 Change management in IEC 61508 safety standard [IEC10a] (acc. to IEC 61508,

the term ”modification” is used instead of ”change”) 26
2.9 Expansion of problem solvers in the literature (number of publications) [Bar13] . . 29
2.10 A taxonomy of property specifications (left), and different scopes for events used in

properties (right) [DAC98] (Research Group at Kansas State University) 31
2.11 Automation Component Model (ACM) according to MEDIA approach [SRH+09] 33
2.12 Development lifecycle for component-based embedded systems according to CESAR

approach [PSS+13] . 36
2.13 A COMPASS approach to modeling and analysis of component-based systems (COM-

PASS Homepage: http://www.compass-research.eu) 37

3.1 Overview of the approach to manage changes proposed in this thesis: (a) system
modeling using contracts, (b) analysis of changes introduced into the system design,
and (c) dynamic deployment of the analysed system (or software component) . . . 42

3.2 Linking system design and requirements using contracts 45
3.3 Specifying requirements as contracts shown on an exemplary use case: controlled

process of the car engine adopted from [Fre10] (left); and software system (right) . 47
3.4 Software architecture in the proposed component model (left), and design of a soft-

ware component (right), adopted from Publication [4]. 49

xi

http://www.compass-research.eu

xii LIST OF FIGURES

4.1 Field data: considered scope of analysed system failures that led to product recalls
in automotive, [Qi 14] . 51

4.2 Possible reductions in costs for change scenarios related of the Use Case 2 56
4.3 Standard functions used for controlling processes in hydro power plants (source:

Andritz Hydro) . 57

6.1 Overview of the publications and their mapping to thesis objectives 65

List of Tables

2.1 Technologies and paradigms that enable to realize various change scenarios in soft-
ware [Kel08] . 22

2.2 IEC 61508-derived safety standards and their support for change management . . . 27
2.3 An overview of some common formal specification types and standard analysis tech-

niques [AFPdS11] . 32
2.4 An overview and comparison of component technologies according to their modeling

and analysis capabilities (C – composition, R – refinement, M – platform mapping,
and V – views) . 34

4.1 Distribution of recalls according to their cause in components of an embedded system 52
4.2 Describing change scenarios according to ALMA method for Use Case 2 (excerpt) 54
4.3 Estimated change effort/costs Ceff for use cases 1 and 2 and possible cost reductions 55

xiii

LIST OF TABLES xv

List of Abbreviations
OMG Object Management Group
UML Unified Modeling Language
CBD Contract-based Design
PBD Platform-based Design
CBSE Component-based Software Engineering
CP Constraint Programming
CSP Constraint Satisfaction Problem
SAT Boolean Satisfiability Problem
SMT Satisfiability Modulo Theories
IMA Integrated Modular Avionics
AUTOSAR AUTomotive Open System ARchitecture
DbC Design by Contract
MDE Model-driven Engineering
NFP Non-functional Property
RTOS Real-time Operating System
OS Operating System
OSEK Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen
ARM Advanced RISC Machines
RISC Reduced Instruction Set Computer
SIL Safety Integrity Level
IEC International Electrotechnical Commission
ISO International Organization for Standardization
HIPASE High Integrity Protection Automation Synchronization and Excitation

Chapter 1

Introduction

The use of computers to control various processes in physical environments, machines in
the industrial control or even processes of other computers has been practised since the
last five decades. In response to the successive progress in hardware technologies at that
time, in particular, the introduction of integrated circuits in the late 1950s, the engineers
were able to produce hardware devices in increasingly smaller configurations, which in
turn enabled their direct embedding in the environment they had to control [BS93]. In
parallel, more powerful and more reliable hardware was a motivation to realize flexible and
generic products, by allowing to execute some control functions in software. Although the
incorporation of software for the processes control was not widely accepted by the control
systems community, especially in the application fields such as nuclear power plants and
some sectors of the industrial automation, where the computer-based controllers were able
to damage the equipment (i.e., mechanical parts, installation, etc.), or even to pose harm
to humans in cases of malfunctioning, the real expansion of the software started in the early
1990s. This trend introduced many opportunities, but also many challenges for systems
engineering. On the one hand, the companies were able to speed-up their development
and production cycles, to give quick response to changes and to better maintain systems;
whereas, on the other hand, they were confronted with the complexity issues from the
beginning. The correctness of the hardware with respect its function and quality is due
to its simple and standard logic more easily to analyse and to verify than software, e.g.,
using formal methods, based on mathematical models of the behaviour, reliability, and
other system attributes. In contrast, software is not only error-prone because of the low-
level languages for the functional specification such as the machine code or assembler, or
even because of higher-level languages that were introduced later, but rather because of the
size and heterogeneity of the state space that it could incorporate (i.e., the representation
of numbers, and their use in state variables).

Today, software is a major innovation driver in many application fields, but, at the
same time, is represents the main source of problems, basically the old problems related
to the complexity management – and as pointed out by Leveson [Lev86]:

”... most of problems are not new, but are only of a greater magnitude.”

This trend of dominating software kept progressing in the last decades, and impacted
systems engineering in many aspects. In the following, this impact on systems engineering
is discussed more in detail and, thereafter, the problem statement for the thesis is defined.

1

2 1. Introduction

1.1 Motivation

1.1.1 Embedded Systems: Computational Models and Applications

To date, different definitions of a term embedded system have been provided in the litera-
ture. According to a very generic one given by Barr and Massa [BM06]:

”An embedded system is a combination of computer hardware and software
– and perhaps additional parts, either mechanical or electronic – desired to
perform a dedicated functions.”

A dedicated function in this context may have different meanings, mainly deepening
on the nature of the considered application field. One such a function is for example
controlling a process of a physical world – e.g., the temperature of a chemical reactor
in the context of the process control engineering; the engine control in the automotive
or avionics sector, and so forth. These are the typical systems implementing the basic
models of the control systems theory (see Figure 1.1). Generally, the physical process in a
model depicted in figure corresponds to a set of operations that are intended to influence
the physical world [OP92]. This influence is made on basic process parameters: materials,
energy, and information. Materials and energy are the main values that characterize some
physical process, such as heat and cooling in the aforementioned chemical reactor example;
whereby the information provides a means on how the embedded system influences the
state of the process, in terms of the material and energy, and vice versa. The embedded
system in this case provides a function of the controller using the information channels.

Physical Process

Environment

Embedded System
(Controller)

Material Output

Energy Output

Material Input

Energy Input

Information
Input

Information
Output

Disturbances

ProcessController

ProcessController

r u y

r u ye

f
-

+

d

d

Open-loop control

Feedback-loop control

Controlling physical process (state space)

Figure 1.1: Controlling a physical process using an embedded system: the implementation (left)
– adopted from [OP92], and basic models of the process control theory (right)

Another, and more general class where embedded systems apply are reactive systems.
In contrast to the previous system model with the narrowed control loop behaviour, these
systems perform their function based on occurrence of specific events (cf. untimed com-
putation model [Kaz09]). Distributed, event-based architectures, such as AUTOSAR for
automotive devices [KF09], or IEC 61850 for devices in electrical substation automation
systems within smart grids [YVNC11], are examples here1. Events correspond to actions,

1Both architectures implement timed and untimed computation models [Kaz09].

1.1. Motivation 3

i.e., input actions from the environment or actions performed by users like switching the
car lights in AUTOSAR architecture, or even internal actions of systems which implement
the behaviour shown in Figure 1.1, with the aim to trigger the reaction.

In general, there is a number of other, different dimensions to characterise models of
embedded systems. Their concrete form particularly depends on the nature of the desired
function and the strategy on how such a function has been realized, i.e. the characteristics
of an embedded system. Jantsch [Jan03] summarizes these dimensions and provides a
taxonomy of possible system models (see Figure 1.2).

System models

Systems

Static Dynamic

Time-varying

Linear

Continuous state

Continuous time

Event-driven

Deterministic

Time-invariant

Non-linear

Discrete state

Discrete time

Time-driven

Stochastic Non-deterministic

Figure 1.2: Taxonomy of system models, [Jan03]

These system models roughly describe the nature of a function or a physical process
to control and an embedded system, but they do not provide details on how the embed-
ded system has to realise such a function. Generally, when designing embedded systems,
their concrete implementation, in terms of hardware or hardware/software synthesized
functions that are coming from requirements, has to fit to a particular system model. To
success in this intent, a number of details about a system have to be considered. They
include functions to implement, the way on how those functions are executed, models
on their communication, refinement from requirements to implementation, and resource
models and constraints such as timing and memory, among many other aspects [Mar10].
This is a part of embedded systems engineering, which becomes increasingly important
as the complexity of embedded systems turned to be an issue. All the outlined different
engineering aspects require the distinct engineering disciplines, in order to correctly map a
system implementation into the desired system model. For example, when realizing an in-
teraction between individual control functions, a model of processes, such as Kahn Process
Networks or Petri Nets may help to first define the communication at some abstraction
level, on which the essential system properties can be analysed, before any concrete imple-
mentation has been provided and mapped onto the system model. Similarly, the system
behaviour can be abstracted using State Transition Systems (STS) [BK08].

Generally, various aspects are required to consider when specifying and refining a
system, in order to correctly conduct its synthesis. Jantsch [Jan03] summarizes relevant
aspects of the embedded system engineering into the following main groups:

• Computational model. It describes an observable behaviour of the system, or that of

4 1. Introduction

the system parts (hardware, software components), i.e., a relation between system
inputs and outputs. The representative notations are various techniques that support
specifying behaviours for both hardware and software in different aspects and at
different abstraction levels – i..e, from the low-level hardware transistor and gate level
functions, software instructions and algorithms, to the system-level relations and
functions. Those representations are based on theoretical models of computation,
including sequential (e.g., Finite State Machines (FSM)), concurrent, parallel, and
timed models, among many others [Fer09].

• Data model. This model provides a notation for data required by the system to
perform the desired function, i.e., to act with the physical system using information
channel (see Figure 1.1). A number of different formats are used to represent the
desired data, including floating-point numbers for approximating continuous values,
integer or boolean numbers for logical values, and so forth.

• Time model. The notion of time is a very important characteristics of embedded
systems. Time not only provides a reference value for the reaction on certain events,
but also the causality of such events, or the order of execution of individual functions
within a system. Again, there are many notations of time, based on considered
abstraction type. For hardware functions on gate level, usually the clock is the
trigger of transition within a circuit. On the other side, for the software system on
the application level, the execution time is often a reference value to analyse the
real-time constraints. Except of that, many state-full systems use time as part of
their data model to correctly compute the outputs (e.g., controllers, filters).

• Communication model. Since the system, per definition [JAY84], comprises a set
of smaller, individual components, each of them implementing a distinct function,
the interaction among those components has to follow the specific communication
model, according to the concurrency and parallelism of their interactions. The com-
munication model forms, in fact, the top-level system behaviour.

One of the main functions in the engineering embedded systems is first to specify a
system model, in its all necessary abstractions and aspects, based on given requirements,
and to synthesize it correctly using various notations. As pointed out by Jantsch, the
system is often a mixture of different computation and communication models, rather
than a single one, which even more complicates the tasks in the engineering. Due to
difference of application fields, different objectives in systems modeling, but also different
communities, the challenge in the engineering today is to provide sound technologies to
consider all necessary models in a holistic way.

1.1.2 Challenges in Engineering Safety-critical Embedded Systems

Embedded systems, in their form introduced previously, are also used to automate and to
control processes in critical environments. Such environments include various control tasks
in the industrial automation sector, nuclear power plants, electrical substation automation
systems and some processes in smart grids, transportation, and so forth. The distinct
characteristic of these so called safety-critical systems is that system failures, that might
arise from any functional part, i.e., hardware, software, or mechanics, may influence the

1.1. Motivation 5

controlled process in an unplanned way and thus may cause severe consequences – damage
the equipment, introduce the environmental damages, or even pose threat to humans that
eventually operate with those systems [SS10]. Since the last few decades, the society had to
undergo a number of disasters, caused by malfunctioning of embedded systems [Air14,Qi
14,AIKR13,Lev86].

To build such systems more safe and reliable, the community has established a number
of methods, standards, and disciplines, with the aim to characterize the system in terms of
its quality, in particular, the probability of failures occurring in particular context, which
is a value characterized by the safety property, and to control that property systematically.
According to the International Electrotechnical Commission [Bel06], safety is:

”... the freedom of unacceptable risk.”

The risk in this context corresponds to the probability that an accident happens (i.e.,
harm). In general, the goal of the engineering to this end is to achieve the desired system
quality by reducing that risk. From the technical viewpoint, and as mentioned previ-
ously, this achievement is possible only by specifying the system model correctly and by
conducting its complete synthesis correctly. According to Henzinger [Hen08], such a cor-
rectness can be achieved if this class of systems can feature the two main characteristics,
the predictability and robustness. The predictability relates to the determinism of the
system model, i.e., all outcomes of the communication and computation models must be
analysable beforehand. The robustness, on the other hand, is the ability of the system
to react on uncertainty of the environment. In fact, this characteristic is not part of the
functional aspect of the system, but it must be provided by the system. Examples here
are various functions that implement fault tolerance mechanisms [Dub13].

Even though the predictability and robustness have been considered thoroughly in
systems development, the practice has shown that the engineering often fails to achieve
its main goal, and failures become an inevitable part of systems lifecycle. There are many
reasons for this, but, one has to be highlighted – the complexity, which is today of few
magnitudes larger than in the last decades, and it currently represents a major challenge for
systems engineering in many application fields. In the following, some relevant field reports
on complexity issues are outlined, and thereafter, related consequences are discussed.

Managing Complexity

From the discussion above it becomes apparent that the engineering of safety-critical
systems has to be rigorous and quality-centred. On the other hand, this engineering
was constantly influenced by the market demands, as in other domains, to improve the
productivity, to shorten costs in development cycles, and, at the same time, to develop
high quality products. One of the consequences here is that more and more functions are
being shifted to software, and the complexity management is mainly focused there.

Today, software functions are inevitable part of safety-critical systems. According to
Ebert and Jones [EJ09], the average increase rate of software complexity, in terms of its
size (lines of code, instruction, interface complexity, etc.), lies between 10% and 30% per
year (concrete value depends on specific application field). In some fields that in particular
base their production on mass customization, this growth rate is up to 50% (e.g., avionic
embedded systems).

6 1. Introduction

functions in MB
signal interfaces x 1000

2005
1995

1985
1975

1965

200

400

600

Figure 1.3: Complexity development: embedded software in automotive, switching systems, and
space flight control [EJ09] (left), and software and interfaces in avionic systems [But08] (right)

Figure 1.3 illustrates the development of software complexity in some application fields.
As depicted on the left, the size of embedded software in automotive systems starts to
grow rapidly in the late 1990s, parallel to the complexity of the Linux kernel2. The
right distribution shows the exponential growth of software-implemented functions in some
avionic systems.

Consequences

To achieve the desired quality, safety-critical systems need to undergo a number of rig-
orous processes in the engineering: development, verification, validation and certification
(assessment or system qualification by the independent authority) [SS10]. With the in-
creasing complexity in software, it becomes difficult to verify and to validate those systems.
On the other side, development in many application fields is massively based on reuse of
existing parts, as it can be observed from Figure 1.3, on the left (automotive software
and Linux kernel). In some fields, this reuse goes beyond the organizational boundaries
– for example, automotive companies mainly reuse (software) parts from their suppliers,
in order to realise the top-level system functions. Unfortunately, the engineering in gen-
eral lacks strong theoretical background and practical methods on how to construct or to
compose the system out of parts, and therefore this construction is in the practice done
more or less in an add-hoc way.

In response to these issues, more and more failures are occurring in the operation of
safety-critical embedded systems3. The engineering mainly fails to accurately synthesise
the system, including all its models of computation, communication, time and data. In
fact, the real problem lies in the lack of the engineering support to perform such a synthesis
while respecting non-functional requirements, such as resource constraints, interface syntax
and semantic between system parts, power consumption, the quality and configuration of

2Note that this distribution comprises a complete software, i.e., safety-relevant one and software that
has no influence on system safety)

3There is a correlation between the complexity (in function point metric, fpN) and the number of
expected failures failN . For embedded software, it is given by: failN = fp1,22N [EJ09].

1.2. Problem Statement 7

Software

Hardware

Other

Batery

I/O

Class I: high risk

Class II: med. risk

Class III: low risk

Software
Inadequate control algorigm,

flaws in creation, modification

Sensor
Inadequate operation, change

Actuator
Inadequate operation, change

External disturbance

Controller hardware

All other causal factors

Number of recall campaigns

120100806040200

Figure 1.4: Distribution of recalls campaigns according to causing components: medical engi-
neering [AIKR13] (left), automotive engineering [Qi 14] (right)

used hardware platform, etc. (cf., reactive and execution requirements mentioned by
Henzinger [Hen08]).

Figure 1.4 illustrates the distribution of failures in two considered application fields,
biomedical engineering and automotive, based on their cause. According to both studies,
software represents a major cause for product recalls. In biomedical engineering (left part
in figure), more than 60% devices had to be returned due to various faults in software
[AIKR13]. The considered period for collecting data was (2006-2011) and (2002-2013) for
biomedical engineering and automotive respectively.

1.2 Problem Statement

The consequences on the complexity trend summarized above pose challenges not only
to development, but also to many activities in the operation of safety-critical embedded
systems. One of such activities are repairs that have to performed to remove faults from
system components. Repairing this class of systems from faults is usually a cumbersome
and cost-intensive task, because, they are often certified by the independent authorities, to
prove that they have achieved the claimed quality level and that they have followed certain
guidelines of safety standards4, and incorporating any kind of changes to perform repairs
requires a lot of re-engineering effort, in particular, to communicate with the associated
authorities to make plans for the change management, but also to follow related guidelines
in standards, which very often require to re-verify and re-validate the complete system.

Generally, the engineering of safety-critical embedded systems lacks necessary meth-
ods and procedures to systematically address repairs or changes required for repairs. In
response, even minor changes such as configuring and calibrating data models, or main-
taining algorithms, may be difficult to perform. On the other side, the motivation to have
methods to address such changes in a more cost-effective way is that software complexity
keeps growing, and software-caused failures, which correlate with this complexity trend,

4Safety standards provide guidelines to conduct systems and safety engineering together, in order to
systematically achieve the desired quality level, i.e., the safety integrity.

8 1. Introduction

are becoming inevitable part of systems lifecycle.

The problem statement : One way to reduce the engineering costs in the overall lifecycle of
safety-critical systems is to effectively handle their repairs. The challenging part that has
to be addressed by the supporting method is to analyse to which extent the system can be
changed, i.e., to identify the possible supported change scenarios that can be performed
in the operation and maintenance, while at the same time, it has to be ensured that the
necessary regulations of safety standards with respect to change management are followed.
In fact, a trade-of between flexibility and rules posed by standards has to be found.

1.3 Thesis Contributions

The approach presented in this thesis allows to perform changes on software in the oper-
ation and maintenance phase of safety-critical systems, with the objective to repair those
systems from certain faults in a cost-effective way. To meet safety regulations while per-
forming changes, the following two objectives have been achieved: (i) a trade-off has been
found between the flexibility in terms of supported change types and the ability to anal-
yse whether the impact of such changes can compromise system integrity, i.e., whether
system requirements are still satisfied, and (ii) necessary procedures to perform changes
are aligned with requirements, measures and techniques of safety standards. In summary,
the approach provides the following contributions:

1. System modeling and analysis
In the context of modelling a formalisation is provided on how to build a model
of the system that captures information about non-functional system requirements
on a level of individual design elements (system components). To allow perform-
ing changes, like exchange of instances of control algorithms and libraries for ex-
ample, the system architecture is defined following the Component-based Software
Engineering (CBSE) [Szy02,Crn02]. Using this paradigm, well-defined interfaces be-
tween the application that implements various control functions and the remaining
software layers, i.e., the container, the operating system and hardware abstraction
layer, could be established. For both parts of software, i.e., software components that
form an application, and the platform (lower layers), the modeling support provides
a means to capture portions of the non-functional requirements, so that impact of
changes in any of those parts on system requirements can be estimated. This helps
to take the decision whether changes can be performed without the extensive re-
verification and re-validation effort, and without involving associated certification
authority (assessor) or not. As a background technology, the Contract-based De-
sign [SVDP12,BCN+12] has been applied.

Finally, to conduct the analysis, a novel method, based on Constraint Programming
paradigm (CP) [Apt03], has been proposed.

2. Runtime support to perform changes
Software components that satisfy related requirements within a composite system5

5A system that is formed by wiring components, using related composition operators [GS05]

1.4. Thesis Structure 9

are the subject to dynamic deployment. To enable this deployment, a runtime
support has been provided. This mechanism allows to link components in their
binary form into the real-time operating system (RTOS) at load-time or at runtime.
The distinct feature here is that the proposed mechanism meets software safety
regulations, and therefore can be used in the context of safety-certified RTOSs.

3. Alignment with safety standards
To allow performing changes on safety-critical systems, it is necessary to align their
management with the regulations of safety standards. For this purpose, the generic
industry standard IEC 61508 has been analysed. The results of this analysis are
certain design limitations that have to be set in order to prevent performing changes
that cannot be supported. In addition, for such a limited design, a list of common
properties that have to be considered in the modelling has been proposed.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:
Chapter 2 summarizes relevant related studies. In particular, it first introduces some

background with respect to safety engineering and various software and system paradigms
applied in that engineering discipline. Then, the chapter further continues with a literature
review in the three main areas: configuration and change management in safety engineer-
ing, CBSE in safety engineering, and modeling and analysis methods for safety-critical
systems. Finally, it ends up with a summary and the difference of the work proposed in
this thesis to selected related studies.

Chapter 3 introduces the proposed approach. To this end, the chapter starts with
the analysis of the considered safety standard with respect to requirements engineering
and configuration and change management. The result of this analysis is the design
of the change management support, with respect to procedures and supported types of
changes. In the end, the chapter describes the remaining contributions: system modeling
and analysis, and the runtime support to perform changes.

Chapter 4 summarizes the evaluation of the proposed approach. To this end, the
chapter first introduces a case study, which is taken from the analysis of recall distributions
that have been conducted on a typical embedded system in two considered application
fields, and, later, the chapter introduces a metric for the evaluation, and ends up with
the evaluation results, that show possible reduction in costs (effort) when applying the
approach.

Chapter 5 concludes this work and shows the possible ongoing directions.
Chapter 6 shows a list of publications made during the work in this thesis.

10 1. Introduction

Chapter 2

Background and Related Work

This chapter summarizes related studies relevant to target the problem statement given in
this thesis. In particular, it first introduces safety engineering, basic principles and some
applied paradigms. In the remainder, it outlines related studies targeting two distinct
topics: methods for change management applied in domains of safety-critical systems, and
modeling and analysis support for safety-critical systems. The former summarizes some
recent works that target change management for this class of systems, and procedures on
how safety standards are dealing with changes. The later shows a comparative view of
formal modeling and analysis techniques, which provide essential supporting foundation
for analysing the impact of changes.

2.1 Safety Engineering and Related Paradigms

2.1.1 Overview and Safety Lifecycle

Many physical processes controlled by embedded systems are critical in terms of conse-
quences they may pose if such a controlling fails. Examples are chemical processes in
nuclear power plants, various technical processes in automotive, and processes controlled
by medical devices. Failures in embedded systems, caused by faults in their components,
e.g., hardware or software, may in some cases pose threats to humans operating with those
systems and processes, or/and cause some costs due to potential damages in the equip-
ment or environment in which the processes are being controlled. Systems used for such
a control have to be therefore developed according to rigorous and quality-centred engi-
neering. Safety engineering, to this end, is a discipline which usually in conjunction with
system engineering aims at conducting this rigorousness. In other words, the goal of the
integrated safety and system engineering is to drive the system development while taking
into account safety1 thoroughly in systems lifecycle, i.e from conception and planing to
realisation, operation and disposal [SS10].

In parallel to phases of system’s lifecycle, there are distinct activities that are pro-
vided for achieving goals of the functional safety2. These lifecycle activities are generally
provided in safety standards, which act as a common knowledge base for engineers that
guides them on developing this class of systems, i.e., safety-critical systems.

1Safety definition: ”freedom from unacceptable risk”, [SS10].
2Part of system safety that only depends on correct functioning of the control system, [SS10].

11

12 2. Background and Related Work

Concept
Scope Definition

Hazard and Risk Analysis

Safety Requirements

Planning

Operation
Maintenance

Safety
Validation

Installation
Comissioning

E/E/PE System Safety
Requiremements Specification

E/E/PE System
Realisation

Installation
Comissioning

Safety Validation

Operation, Maintenance
Repair

Conception Planning Realisation

...

...

Figure 2.1: Safety lifecycle, according to IEC 61508 standard (excerpt, [IEC10a])

One of such standards is the IEC 61508, developed for various industry sectors, and
used as a base for developing many domain-specific standards (a brief overview is given in
Section 2.2.3). Figure 2.1 illustrates the relevant parts of safety lifecycle according to IEC
61508. Basically, the safety lifecycle from the conceptional view, i.e., conception, planning
and realisation, is quite similar in derived, domain-specific standards.

The lifecycle starts with the concept phase, where the scope of the system is defined,
in relation to analysing the context (or situation) in which the system shall operate. This
context is very important, since it gives a feedback on criticality and consequently, on the
source of damages or harms (i.e., hazards) that may be caused by the system during the
operation. Next, possible risks are identified, in terms of severity3 of individual harms
and their probability of occurrence. They further serve as a source of information to
define safety requirements, i.e., requirements that a system must implement to reduce
risks to defined, tolerable level. This is actually the main objective of safety engineering,
i.e., (i) to characterize the risks by considering system and related context (situation,
environment), and (ii) to reduce risks by providing means in terms of safety requirements.
It is important to note that tolerance criteria for risk reduction is to some extent a balanced
trade-off between costs invested in development and severity of identified risks, i.e., it is
not possible to reduce risk to absolute zero, but instead the tolerance thresholds are set
for specific contexts and environments (in terms of probability of failures per time unit).

Safety requirements are further refined and allocated to design elements (in some
domains, functional and technical architecture), In further development phases, planning
is performed on different aspects, such as operation and repair, safety validation and

3Severity usually expresses a strength of damage some harm may produce (e.g., for humans: levels up
to loss of life).

2.1. Safety Engineering and Related Paradigms 13

installation. The validation, which is one of the most cost-intensive activities in the
engineering, is for higher criticality levels performed by an independent safety assessors
who also provide certificate for products.

Methods and Measures

Standards in addition to lifecycle activities also guide engineers with methods and mea-
sures that they may apply when developing safety-critical systems. These methods, on the
one hand, target the predictability as mentioned by Henzinger [Hen08] such as following
modular design, static scheduling, and static memory management for example. On the
other hand, they suggest protective measures that target runtime safety mechanisms, such
as self-tests and hardware fault tolerance for example.

Usually, such methods and measures are recommendations that are allocated to specific
criticality level (i.e., Safety Integrity Level, SIL) the system has to achieve.

Supporting Paradigms

Introducing software in controlling critical processes caused lot of problems in validating
safety. Unlike hardware, whose safety can be quantified during the whole lifecycle, for
software different measures have to be applied. Basically, those measures are oriented
towards eliminating design, systematic faults introduced in development.

As for general purpose and embedded engineering, time to marked push is also target-
ing development of safety-critical systems. Software engineering for this class of systems
becomes a grand challenge, because, and as given in the introducing section, it becomes
difficult to manage its complexity. Currently, engineers are applying different software
and system paradigms to cope with this challenge. In particular, Model-based Engineer-
ing (MDE) in conjunction with many other paradigms, such Component-based Software
Engineering (CBSE), are seen as promising support for software engineering in safety
domains.

In the following, relevant paradigms and their basic principles are introduced.

2.1.2 Component-based Software Engineering

General

Component-based Software Engineering (CBSE), or in some parts of literature, alterna-
tively – Component-based Development, is a paradigm that facilitates modular develop-
ment of software systems, by providing a means to systematically design system parts
(software components, frameworks) for use and re-use, and necessary processes and rules
to build systems out of such components. Like object-oriented programming paradigm,
the objectives are put towards providing a sound engineering support to address manag-
ing complexity, improved productivity, and system quality. On the other side, in contrast
to traditional paradigms, the focus in CBSE is given on systematic design of software
artefacts for their specific operation and specific context.

During the last decade, a number of different domains have adopted CBSE, and were
able to experience some benefits, but also some challenges. The challenges are mainly
reflected in lack of basic principles and standards in CBSE to target specific characteristics

14 2. Background and Related Work

and needs of different domains [CSVC11]. An experience report provided by Panunzio
and Vardanega [PV11] shows, for instance, that much details need to be considered to
develop a component technology for specific domain, without being supported enough by
CBSE principles and standards. To this end, the CBSE community is trying to provide
those principles and standards. As one of the consequences, several definitions on what
builds a component-based system and software components alone, have been proposed.
One of the first widely accepted definitions targeting software components, provided by
Szyperski [Szy98], states that:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third party.

Later, as pointed out by Crnkovic and colleagues [CSVC11], this definition was com-
plemented by Heineman and Councill [HC01], to target not only design of software compo-
nents and their role in the system, but also necessary activities required during the lifecycle,
which are captured in a so called component model. Chaudron and Crnkovic [CC08] define
the component model as:

... standards for 1) properties that individual components must satisfy and
2) methods for composing components.

In other words, component models provide rules on how to build individual software
components to target particular domain and context by restricting their behaviour using
properties (i.e., fragments of system requirements), and how to build composite systems
(i.e., compositions [GS05]) out of such components taking in account different phases in
systems lifecycle [CSVC11]. In contrast to definition of Szyperski, domain experts are
responsible for defining what their software components are, and what rules to apply to
build their systems.

Recently, towards more detailed but still generic view of CBSE, Crnkovic and col-
leagues in [CSVC11] developed a set of dimensions that characterize essential commonal-
ities shared among existing component models, lifecycle, construction and non-functional
properties:

Lifecycle. Separated development process for software components and systems is a dis-
tinct feature of component-based systems [CLC05]. Lifecycle dimension character-
izes different forms of software components during the development and operation,
i.e., from the specification and modeling to the final deployment and execution. In
each of these steps, different artefacts are used to represent software components
(e.g., object files in the Implementation phase). One concrete variant of such a life-
cycle is illustrated in Figure 2.2, in which software components undergo three steps
in the lifecycle to be deployed on the embedded RTOS: modeling, mapping to the
real-time model of RTOS, and deployment.

Construction. This dimension characterizes the specification of interfaces and interac-
tion capabilities for software components. Interfaces may have further specializa-
tions, such as levels – syntax, semantics; type – operation-based, port-based; used
language, etc. The interaction between software components is not necessarily in the

2.1. Safety Engineering and Related Paradigms 15

responsibility of components, but it strongly influences the way on how components
access their interfaces. For example, in the pipe&filters architectural style, software
components have standard behaviour and are accessing interfaces without being
aware of the neighbouring components (exogenous style of binding [CSVC11]). In
contrast, in CORBA Component Model [WSO01], client-side software components
may explicitly contact the naming service to get the reference to the component
providing a required function (endogenous style).

Non-functional Properties. Non-functional (or extra-functional) properties (NFPs) in
context of CBSE correspond to characteristics of software components that in some
way contribute to the top-level system requirements. In fact, they represent the qual-
ity stamp for software components [LAC12]. Examples of NFPs are the properties
related to real-time, safety and resource requirements.

Figure 2.2: Synthesis process of component-based embedded system, according to AutoComp
component model, [SFA04]

NFPs play a very important role in system construction, since they provide an im-
portant source of information to correctly build the system, in terms that considered
system properties hold. A grand challenge here is currently to reason about system
properties out of properties set on levels of software components. This topic and the
state of the art are discussed in Section 2.2 mode in detail.

The outlined definitions and classification framework give some orientation when build-
ing component-based systems for specific domain and specific context. Obviously, concrete
properties, construction, and the lifecycle have to be defined by the domain experts.

CBSE for Embedded Systems

Applying techniques for modular system construction in embedded system engineering has
been practised since 1980s, first in form of Function Block Diagrams, for example in the
Standard IEC 61131 (that was released later), then, and currently, in many application
fields that rely on principles of CBSE. Figure 2.3 summarizes some relevant component

16 2. Background and Related Work

models, released in various sectors in industry, avionics, transportation, and electrical
substation automation systems.

Concept Specifications
for Safety Standards

Figure 2.3: A time-line of some relevant component-based systems and concepts applied in the
engineering of (safety-critical) embedded systems

The below illustrated RSC (Reusable Software Component, [FAA04]) and SEooC
(Safety Element out of Context, [SBBK12]) concepts are the first guidelines targeting
safety standards that consider CBSE in the system development, in particular, the design
for reuse (RSC), and separation of the lifecycle in component development (i.e., SEooC
Development) and system development (i.e., so called Item Development).

2.1.3 Model-driven Engineering

As mentioned in the introducing Chapter 1, managing complexity in system engineering
has its roots in introducing software and its continuous growth. The common approach to
effectively cope with complexity issues is maintaining abstractions of the system, in differ-
ent aspects, and successive synthesizing such abstractions to the desired implementation
model. As pointed out by Schmidt [Sch06], in the early 1980s, the engineering followed this
strategy, but at that time it was not equipped with necessary language features and tools
that can precisely capture abstractions. Instead, various existing imperative languages
were used. However, such sparse abstraction models could not target the complexity is-
sues, in particular, growing size of existing frameworks and platforms on the one hand,
and mapping different abstractions, for example to support configuration and deployment,
on the other hand.

Today, this intent of abstracting complex systems is supported by the distinct paradigm,
Model-driven Engineering (MDE) [Sch06]. MDE aims at providing means to precisely de-
scribe desired abstractions and to synthesize them to desired implementation models (see
Figure 2.4). According to Schmidt [Sch06], MDE achieves this by utilizing principles of
Domain-specific Modeling (DSM, [KT08]), i.e., (i) domain-specific languages (DSLs) –
that provide necessary formalization (abstract, concrete, formal, or semi-formal), and (ii)
transformation engines and generators for the synthesis.

Currently, MDE has been applied to different domains, to capture different abstrac-
tions, and to serve different purposes. Persson [Per09] summarizes MDE domain classes
into the following three groups: Information Modeling – organizing documentation, i.e.,

2.1. Safety Engineering and Related Paradigms 17

replaces the traditional way of informal documenting (e.g., class diagrams in OMG UML);
Executional Modeling – various executable models (e.g., Matlab Simulink); and Formal
Modeling – systems with formal semantics (e.g., automata, axiomatic models, etc. – see
Section 2.2).

In the following sections thorough this thesis, the focus is oriented towards describing
abstractions using formal models.

Figure 2.4: Managing complexity using MDE, [Sch06]

2.1.4 Platform-based Design

Using modular approaches to build systems, combining the top-down and bottom-up de-
sign flows, has been practised in the engineering of electronic systems for many years, in
particular, for the synthesis of integrated circuits (ICs) [SNWSV09]. To cope with com-
plexity issues associated with such an integration-oriented development, the community
in this domain has established a new engineering paradigm, the Platform-based Design
PBD [SVCDBS04].

Figure 2.5: Concept of the Platform-based Design [SVCDBS04]

The PBD paradigm has been applied to balance the development costs and system
performance by providing a stack of individual abstraction layers that can be successively
refined. According to the PBD stack illustrated in Figure 2.5, there is on the one hand,
an abstraction stack that captures the essential information about system functions or

18 2. Background and Related Work

application, and, on the other hand, the set of abstractions that describe the platform on
which that application shall run. Basically, PBD abstractions allow the customizations of
the design, by providing a means to rigorously validate every step in refinements.

As pointed out by Sangiovanni [SVM01], PBD is a promising approach to support
rigorous development of embedded systems. The standard form of PBD illustrated Figure
2.5 can be applied to different types of systems (not only ICs), for example to perform
allocation of the application software onto standardized AUTOSAR middleware, or on
some standardized OS interfaces such as that of the OSEK RTOS for example. These basic
principles of PBD have been used as a foundation to build component models for safety-
critical systems. In particular, the Contract-based Design (CBD) paradigm, which is
currently considered a promising tool for engineering safety-critical systems, inherits PBD
principles with regard to abstractions and refinements. The following section introduces
CBD more in detail.

2.1.5 Contract-based Design

Applying CBSE in embedded systems engineering was a challenging task since beginning
of CBSE era, and is today also the case. Many existing component technologies recently
applied in various sectors of industry4 are still based on interface specifications that only
consider the functional view of the system, and mostly ignore much details about the
context, i.e., the platform and environment in which the system shall operate, or in other
words, the non-functional system properties (in some parts in literature [VSC+09], extra-
functional properties). To enable rigorous development and to prevent introducing design
faults by only applying CBSE (e.g., due to add-hoc reuse and lack of techniques for
compositional modeling and analysis), non-functional system properties have to be put as
first class entities in component models for embedded systems.

Figure 2.6: Concept of contracts according to CESAR project [PSS+13]

On the other side, from the academical point of view, a lot of effort has been invested
in the last decade to provide sound technologies towards integrating those properties in

4AUTOSAR, IEC61850 Logical Node, IEC61499, Avionic IMA, just to name few.

2.1. Safety Engineering and Related Paradigms 19

component models (more details about concrete projects are given in Section 2.2). One of
the success stories in this intent is the Contract-based Design (CBD) [SVDP12]. The CBD
paradigm has its roots in classical Meyer’s Design-by-Contract principle for object-oriented
software [Mey92], which is in turn based on Hoare logic on formal reasoning of computer
programs, in terms of setting pre-conditions and post-conditions on program executions
[Hoa69]. During the last decade, this classical view of Design-by-Contract (DbC) has been
adopted to CBSE by several authors, including Benveniste et al. [BCN+12], Sangiovanni-
Vincentelli [SVDP12], and Damm et al. [DVM+05], and in the scope of several research
projects (see Section 2.2).

The main difference to DbC is that in addition to capturing component behaviour,
contracts for CBSE also provide means to integrate (software) components in the design
hierarchy. That is, they also capture the context in which (software) components shall
provide their services, in terms of provided and required services to/from other compo-
nents, to/from neighbouring abstraction layers, and in terms of interfaces with respect to
the platform on which those components shall function. This basic principle of contracts
is depicted in Figure 2.6. In short, a contract describes, in terms of properties, what
particular (software) component provides (promised services), while it also sets necessary
requirements which must be satisfied by the context, i.e., assumptions, in order to provide
promised behaviour. This notation of contracts is not the only one, for example Benveniste
and colleagues use assumptions/guarantees, which is also the notation used in Henzinger’s
Interface Automata [dAH01].

The outcome of the recent studies associated with CBD is a so called meta-theory on
contracts, which, according to Benveniste and colleagues, provides a common model for
contracts targeting composite designs. This model sets formal semantic foundations on
basic operators that have to be supported when developing such composite designs. In
other words, to make strong integrity between system requirements and implementation,
the following operators have to be provided:

Composition. Integration between (software) components in horizontal dimension (i.e.,
from neighbourhoods, to neighbourhoods in figure).

Abstraction and Refinement. Like in PBD, this operator allows to represent the sys-
tem in different abstraction levels, and to build refinement relations between those
levels (i.e., from/by higher/lower design levels in figure).

Platform Mapping. Mapping of the system design to the model of its execution plat-
form. In the case of software, the execution platform may correspond to hardware
devices in terms of resource models for example.

Viewpoint Fusion. Support to fuse different system views with respect to non-functional
system properties (e.g., safety and real-time).

The contract meta-theory provided by Benveniste and colleagues is a general form
CBD, and can be refined depending on the type of the system model considered. For ex-
ample, in Henzinger’s Interface Automata [dAH01], the properties on composition between
two automata are describing the order of operations the automata have to respect during
their interaction. In contrast, Sun et al. in their work about contract-based support for

20 2. Background and Related Work

PBD of analogue circuits [SNWSV09] are using algebraic properties on data models (i.e.,
variables used to characterize some analogue element).

2.2 Change Management Support for Safety-critical Em-
bedded Systems

This section introduces some basic engineering concepts, methods and paradigms used to
conduct the software change management that particularly address safety-critical systems.

2.2.1 General

Change management in the context of software engineering comprises a process and tech-
niques to perform, to approve and to track change requests [BD00]. It is part of the config-
uration management, which basically provides engineering disciplines required to release
software products (i.e., approved configurations, or baselines). According to Crnkovic et
al. [CAD03], change management has the following two objectives: the first one is the
process support that incorporates several steps and responsible roles, in order to conduct
changes systematically; and second objective is the traceability support that is required
to perform the change impact analysis.

In embedded system engineering, in particular, for dependable and safety-critical sys-
tems, it is much more difficult and error-prone to conduct such processes, and due to
cost reasons as given in introducing section, changes are often omitted in many products.
One of the first approaches to enable and to improve change management for this class of
systems, in particular, to enable system upgrades, was started by the Software Engineer-
ing Institute (SEI) – Dependable System Upgrade Initiative, in the late 1990s [GW97].
The most important outcomes here were the challenges to be addressed by the systems
engineering. The most relevant challenges are the following:

Design for Changes. or Design for Dependable Evolution [SEI01], includes the architec-
tural support that can facilitate cost-effective change management, tools to analyse
the impact on system components, methods to isolate the impact of changes5, etc.
In fact, specific types of supported changes have to defined in the early phases of
systems lifecycle and incorporated into system architecture. The main characteris-
tics of such an architectural support are: design simplicity, high cohesion, and low
coupling [Rie01].

Required Processes. In original version the ”Online Upgrade”, includes procedures and
methods that have to be developed to plan upgrades, to certify and re-certify up-
grades, to develop criteria for accepting upgrades (also from the assessment point of
view), etc. This includes the alignment of processes with regulations of considered
safety standards.

In summary, assurance in performing changes is essential objective here. On the one
hand, all necessary types of changes must be planned beforehand, which includes not
only architectural support, but also processes and related responsibilities (e.g., parts that

5In SEI Dependable System Upgrade Initiative [GW97], upgrades are the only supported change types.

2.2. Change Management Support for Safety-critical Embedded Systems 21

have to be communicated with assessor), and on the other hand, it must be ensured that
changes are isolated and that they cannot compromise the initial or currently established
system integrity. Also, the strategies on how to certify and to re-certify various types of
changes have to be developed.

Characterising Changes

Changes may have an impact on different artefacts in the project landscape, with different
strengths of that impact. Further, different operations may be required when changing the
system, like adding/removing class members in the object-oriented software for example.
During last decades, several approaches have been developed with the aim to generalize
some aspects of change management and to provide a common framework to characterize
changes.

According to Lehnert et al. [LFR12], there are few generic dimensions that charac-
terise how changes influence the software system, in particular, its representation. The
representation in this context corresponds to a system model that can be used to analyse
the impact of changes, like graph-like representations for example [Leh11].

Classification Dimensions

Abstraction Level

Generic

Concrete

Composition Type

Atomic

Composite

Type of Operation

Add

Delete

Scope

Update

Move

Merge

Split

Replace

Swap

Requirements

Architecture

Source Code

Documentation

Configuration Files

Other

Representation

Type

Elements

Relations

Attributes

Figure 2.7: Classification framework for types of software changes [LFR12]

Any of the artefacts, shown in the scope dimension in figure, may therefore be part of
the graph, represented in terms of elements, relations and attributes. Another important
classification framework was proposed by Buckley et al. [BMZ+05] . In addition to only
focusing on artefacts and representation, it also includes some dimensions relevant for the
change management process:

Object of Change : Like the scope in the taxonomy from Figure 2.7, the object of
change is any project artefact. In addition, object of change is characterized with
the granularity of change, its impact, and propagation to other objects.

Temporal Properties : Time, frequency and history of changes.

Change Support : Process support – e.g., change management in IEC61508); degree
of formality – a formal way to define the system and to analyse changes; type –
operations required to perform changes; degree of automation – automated, partially-
automated, and manual change support.

22 2. Background and Related Work

Technology/paradigm Description

Conventional Programming Practice:
Adaptors

Simplest form of incorporating changes, using copy &
adapt approach (e.g., adapter design pattern for object-
oriented (OO) software systems).

Scripting and Glue Using scripts to build composite systems (e.g., pipes and
filters architectural pattern).

Adaptation by Name Changes supported by reflection (e.g., Microsoft .NET
Common Language Runtime).

Linking and Interconnection Languages Linkers, Loaders, Dependency injection, Component con-
tainers (e.g., .NET and Java runtimes).

Aspects, subjects and decentralised modu-
larisation

Patching, Aspect-oriented Programming (AOP),
Subject-oriented Programming, etc.

Program transformation Runtime transformation of managed code (Java).
Software connectors Connectors for component-based software, [Kel07].
Packaging Packaging of component (object) executables.
Orchestration Linking services (context: Service-oriented Architec-

tures, SOA) using notations for business process mod-
eling.

Coordination Techniques that define communication models (e.g., syn-
chronisation between components).

Specialised adaptation Binary rewriting such as in Virtual Machine Monitors
(VMMs).

Table 2.1: Technologies and paradigms that enable to realize various change scenarios in software
[Kel08]

System Properties : affected non-functional requirements (e.g., safety, in the case when
technical safety requirements are affected).

Supporting Techniques

Different technologies and paradigms are used to enable change management. Basically,
they provide a support to perform changes on a level of code, models (architecture, re-
quirements), and other artefacts such as documentations and configurations [Leh11]. Table
2.1 summarizes some relevant applied paradigms [Kel08]. For example, the representative
mechanisms of the Linking and Interconnection Languages are the low-level operating sys-
tem mechanisms such as linkers and loaders [Lev00], some middleware services or patterns
– Dependency Injection [Fow04], or more advanced loaders in component frameworks.

Except of the concrete techniques, some of relevant engineering paradigms that may
help in designing system for changes, in particular, the changes that have to be performed
in the operation and maintenance (e.g., for so called dynamic architectures [Crn02]), are
the following [MSKC04]:

Separation of concerns : Separation of the system’s functional view and the cross-
cutting aspects like safety, security, quality of service, etc. One of the supporting
technique is the Aspect-oriented Programming (AOP), where different parts of the
system, each representing particular system aspect, are combined (weaved) at some
point of time. Separation of concerns simplifies the change management process by
allowing to focus only on particular aspects of the system.

Computational reflection : This is the ability of the system to reason about its own

2.2. Change Management Support for Safety-critical Embedded Systems 23

behaviour. It is more relevant for change requests that have to performed online
(e.g., online maintenance), or for adaptive systems. Basically, the reflection provides
knowledge about relevant traceability information inside the system, so that the
system can decide whether to perform changes or not.

Component-based design : CBSE provides a sound basis for performing architectural
changes. The interfaces between components enable low coupling on an architectural
level, whereas on a component level, they provide information about functional and
non-functional aspects of components (i.e., for component-based systems that have
specified syntax and semantics, to some extent). The integrated description of vari-
ous functional, non-functional properties on interfaces allows to identify how changes
may propagate from software components to system requirements. CBSE is one of
the promising paradigms that can provide some answers to the challenges set by SEI
Initiative, in particular, the Design for Changes.

Runtime Support (Middleware) : For specific type of changes, in particular, the ones
that have to be performed online, such as upgrades or adaptations, various services
have to be provided by the runtime (middleware). Those services basically rely on
low-level communication mechanisms such as function pointers, middleware inter-
ception (e.g., CORBA, .NET, Java RMI), aspect weaving, proxy pattern, virtual
component pattern, and other.

Technologies Used in Embedded System Engineering

In embedded systems engineering, there are several approaches that provide a runtime
support to performing changes, i.e., that facilitate the use of linkers and loaders, and
specific component frameworks. One of such approaches is the THINK Component Model
[PS08,POS06], that implements dynamic linker and provides an adequate representation
of component binaries to be used by the proposed linker. The linker design is based on
a typical Unix-like model, which basically loads binaries in ELF format (Executable and
Linking Format) and performs finding necessary interfaces (functions) and connecting
them (relocating) inside of component binaries. Thus, changes in the architecture are
supported on a level of individual software components.

Another class of embedded systems where such a runtime support is provided are
Wireless Sensor Networks (WSN) [HKS+05,DCL+09]. Here, due to more restricted mem-
ory and computation resources, simple linkers with so called indirection tables are pro-
vided [KPK13]. These tables are used to route the function calls between involved bina-
ries. The entries inside of tables are memory addresses, for example contained in function
pointers.

There is also a trend on implementing runtime services for change management in
modern embedded systems. For component-based architecture AUTOSAR, the linking
support is proposed that facilitates the usage of indirection tables, like in aforementioned
WSN approaches [MFRV13, MVFR14, AK13, NKA14]. However, the linking support is
still not part of the AUTOSAR specification (standard), but this topic is currently very
present in ongoing AUTOSAR workshops.

More advanced linking support has been provided in the scope of the RECOMP project
(Reduced Certification Costs for Trusted Multi-core Platforms) [PTV+13], which uses

24 2. Background and Related Work

annotations at the source level to setup the links between binaries and the remaining
system. One of the project goals is to reduce the cost for certifying mixed-critical systems
by splitting their functionality based on criticality and by allowing to change some parts
dynamically.

2.2.2 Change Impact Analysis - Architecture and Requirements

Depending on the concrete type of changes and applied process, change impact analysis
is performed on different levels: source code, models – i.e., architecture and requirements,
and other artefacts such as documentations and configurations [Leh11]. In the following
some recent and relevant studies that in particular handle change impact analysis on level
of models and are focusing on the engineering of safety-critical systems are summarized.

One of the latest approaches that address the complete change management for auto-
motive safety-critical systems was proposed by Oertel and Rettberg [OR13]. The approach
uses formal representation of non-functional requirements, in particular, safety require-
ments to synthesize the system. On a level of individual components, those requirements
are represented in form of so called Safety Contracts, which capture the failure model of
individual components. Thus, every contract defined properties (assumption), that have
to be satisfied by components in order to prevent firing specified faults. Faults are de-
rived from the specification of safety requirements, that are results of the hazard and risk
analysis. The essential part of the approach is the link between requirements and their
implementations on a level of components. To this end, the authors propose the formal
definition on how to verify the conformance between the implementation and the specifi-
cation [OKB14]. Any change in the system model, in terms of change in properties, can be
therefore tracked to the high level requirements and in this way necessary change requests
can be derived. The analysis of the system is performed using tools for model checking.

Another approach to analyse changes on a level of requirements is proposed by Mon-
tano [Mon11]. Here, the approach targets the embedded avionic systems that implement
IMA (Integrated Modular Avionic) architecture which standardizes hardware and soft-
ware platforms (middleware) so that many software functions can be hosted by different
devices. This especially brings benefits in availability, since in case of device failures, re-
quired functions can be migrated to functioning devices and can continue their operation.
To enable this, Montano proposes a model of a system based on constraints. Constraints
describe different system aspects, such as timing and memory budgets for example. Every
constraint is connected to top level constraint that describes certain requirement – i.e., the
non-functional system requirement. In case of failures in certain device, another device (so
called LRU - Line Replaceable Module), is inspected with respect to available resources,
including changes that have to incorporated due to migration. The impact on changes is
automatically analysed by inspecting constraints. As a background technology, Constraint
Satisfaction Programming is used [Apt03]. The advantage of using CSP for this purpose
is that not only the conformance to constraints of certain device can be analysed, but also
the possible configurations that fit demanded resource constraints of particular function
can be identified.

In the scope of automotive engineering, the formal approach for analysing the impact
on changes was proposed by Adler et al. [ASTPH11]. The approach utilizes CBSE to de-
sign the system in a way that individual implementations of software components can be

2.2. Change Management Support for Safety-critical Embedded Systems 25

changed, however, only statically defined implementations. The motivation of performing
changes at runtime is to increase the availability by incorporating the design diversity
principle [Dub13]. To this end, every software component provides different implementa-
tions, each having specific quality level. In case of failures, for example in sensors – which
is more often undergo failures that controllers or actuators, the system has to adapt all
components so that the provided quality of sensors can be processed. To enable this, the
authors define a global type system, which comprises static quality levels, which can be
assigned to individual software components. In response to changes of quality in certain
software component, the impact is performed to find a proper configuration of the whole
system. The software components are then configured according to the given quality level.

Another method to improve the productivity and to reduce the certification costs
in domain of nuclear power-plants was developed in the project PINCETTE (Validat-
ing Changes and Upgrades in Networked Software) [ZOF13, Cho10]. The idea behind
PINCETTE project is to analyse the feasibility of formal methods, in particular, model
checking approaches, to enable the validation of changes. Changes are here performed at
runtime, like in many modern Dynamic Software Updating systems (DSU) [HN05], and
allow to modify the behaviour of the system, which is represented in form of State Tran-
sition Systems. Although the approach is far away from real practical use, it shows the
feasibility of available formal approaches to support such disruptive changes of systems
behaviour.

Summary

In addition to summarized studies above, a number of approaches have been proposed
to analyse the change impact on the scope of models in software engineering in general.
However, most of the those approaches are focusing on syntactical view of the system, such
as inspecting the model instance with respect to its meta-model, e.g., relations between
components, ports, and interfaces [Leh11]. As pointed out by Henzinger [Hen08], very
important prerequisite to correctly synthesize the system is to align its implementation to
related execution and platform requirements (i.e., non-functional requirements). The in-
troduced approach by Oertel and Rettberg [OR13], and Montano [Mon11] as well provide a
sound technologies to analyse changes when considering such non-functional requirements.
This analysis is on the other side considerably simplified by applying the basic principles
of CBSE, which allow to fragment the essential requirements into properties on a level of
individual software components and to track the impact of changes by considering changes
on a level of software components.

2.2.3 Supporting Processes in Safety Standards

Some safety standards have defined guidelines on how to conduct the the configuration
and change management for the system and software. These guidelines are basically set
of processes, requirements, and techniques that have to be applied in order to be conform
with the standard. In the following, the change management support in some common
safety standards is briefly introduced.

IEC 61508 Configuration and change management support is provided in parts 2 and
3 of the IEC 61508 safety standard. Basically, the standard provides processes,

26 2. Background and Related Work

requirement on achieving functional safety, techniques and measures for system and
for software, depending on considered safety integrity level the system has to reach.

Figure 2.8 illustrates the flow of the change management process, that is triggered
due to failures in operation. The first step in the process is to determine the type
of failures in order to build a change request. For systematic failures, caused by
development faults introduced in software for example, the change request is built
immediately – for random hardware failures, on the other side, the performance of
the system has to be evaluated first, in order to get the delta to the initial system
performance. The changes request is further processed to perform the impact anal-
ysis. After performing the change impact analysis, the current hazard and risk data
is updated (i.e., the technical safety and other non-functional requirements). The
complexity of changes and related costs depend on the impact on this data.

IEC 61508 Change Management Process (excerpt)

Figure 2.8: Change management in IEC 61508 safety standard [IEC10a] (acc. to IEC 61508, the
term ”modification” is used instead of ”change”)

The process illustrated in figure is accompanied with a number of requirements,
techniques and measures to apply. For example, one of the requirements states that
for systems with SIL 2, only the affected parts of the system have to be re-verified
and re-validated, in order to achieve the desired safety integrity (more details about
requirements, techniques and measures are given in Section 3.1).

Change management in IEC 61508 is related with processes for configuration man-
agement and maintenance.

IEC61508-derived Standards The domain specific standards, that are based on IEC61508,
provide the same or to some extent refined concepts for change management and re-
lated processes. For example, the automotive standard ISO 26262 provides refined
configuration and change management, with more details about input documents

2.2. Change Management Support for Safety-critical Embedded Systems 27

Standard Domain Change Management Support

IEC 61511 process indus-
try

modification procedures for software ; modification pro-
cedures for safety-instrumented system6; part 1, clause
16-17

ISO 26262 automotive change management part 8, clause 7; configuration man-
agement part 8, clause 8; operation and service (main-
tenance and repair) part 7, clause 6 (all for hardware,
software and system level)

IEC 60601 medical modifications of PEMS (Programmable Electrical Medi-
cal Devices), part 1, clause 14.12

IEC 62061 machinery modification procedures; configuration procedures clause
9 (safety-related electrical control system)

IEC 61513 nuclear power
plants

maintenance part 1, clause 8; system design modification
requirements part 1, clause 6.2.8; system maintenance
plan part 1, clause 6.3.8

Table 2.2: IEC 61508-derived safety standards and their support for change management

and work products each of the processes has to generate. On the other side, some of
the derived standards provide such a support only for certain level, i.e., system or
software. The summary of these differences to IEC61508 are provided in Table 2.2.

DO-178B/C The DO-178B standard and its successor, the DO-178C, are guidelines for
software safety in avionic systems. The standards are developed by the RTCA (Radio
Technical Commission for Aeronautics), the US organisation that provides technical
guidelines used in industry or by certification authorities such as US FAA (Federal
Aviation Administration) or European EASA (European Aviation Safety Agency).
The standards are accompanied with several advisory guidelines that address par-
ticular engineering aspects, like for example DO-331 – Model-Based Development
and Verification, or DO-333 – Formal Methods.

One of such documents are guidelines on change management, which focus on char-
acterization of changes with respect to their impact (major, minor), and types with
respect to impact on non-functional system requirements [FAA00]. The document
is released by the FAA, for the older standard DO-178B, and allows the engineers to
easily conduct the impact of changes and to identify whether required change request
has an adversary impact on functional safety [Bre05]. The document provides a list
of properties or non-functional requirements that are commonly affected by changes
in software.

2.2.4 Discussion

The main challenge facing change management in the context of safety-critical systems is
to find a trade-off between costs, i.e., especially costs related to re-engineering, and the
characteristics or the complexity of supported changes. As introduced by the SEI Initiative
on Dependable System Upgrade [SEI01], the design for changes and an adequate process
support are the key success factors for the effective change management. To this end, the
key facts about related studies described above can be summarized as follows:

28 2. Background and Related Work

• Lack of a runtime support to perform changes. Many change scenarios intended to
repair systems from certain faults can be performed more cost-effectively, if they
could be conducted on the site, e.g., in the system maintenance mode for example,
without having a need to re-compile the complete software. However, current com-
mercial real-time operating systems (RTOS) for safety-critical applications do not
provide such a support. Some linking models mentioned in this section, i.e., the
model introduced in the THINK component framework, or some new linking con-
cepts in AUTOSAR or RECOMP project, do not consider the certification issues
associated with such mechanisms. The behaviour of the most standard dynamic
linkers is not predictable, and is difficult to verify and therefore difficult to certify.
Since such mechanisms are an integral part of the operating system, they have to be
developed according to software safety regulations, like any other RTOS services.

• CBSE and CBD as supporting paradigms. As introduced in several studies, including
Adler [ASTPH11], Montano [Mon11] and Oertel [OKB14], CSBE allows to perform
simple, but effective changes. With loose coupling between components, the essen-
tial parts of software architecture can be maintained, in particular, the application
software.

Further, as proposed by Adler, separation of concerns can help to simplify the specifi-
cation of various non-functional properties. He splits the functional view that allows
system designer to define basic component functions, whereas so called adaptation
view allows them to focus on change scenarios for each component, thereby leaving
all other details hidden.

Last, CBSE hierarchical composition helps in making refinements with fine-grained
steps from requirements to atomic (software) components. As mentioned in contract
frameworks in Section 2.1.5, stepwise refinement allows to setup relations between in-
dividual levels in component-based design, which may help in analysing conformance
of implementations with requirements.

In summary, CBSE in conjunction with CBD and their views can provide sound
technologies to effectively analyse the impact of various change types, from their
cause in (software) components to the corresponding specifications in the top-level
requirements.

• Supporting processes provided by safety standards. Most safety standards provide
guidelines on how to conduct change management. To this end, they provide very
rough descriptions of processes, work products that have to be provided, and set
some requirements and techniques that have to applied. These guidelines can help
in taking decisions on defining and planning changes and their concrete processes.
Especially, the FAA supplemental guidelines for the DO-178B standard, which list
a common non-functional requirements, may help in building a common repository
of properties or contracts that can be further used to improve and, in some cases, to
automate the support for the change impact analysis.

2.3. Modeling and Analysis of Safety-critical Embedded Systems 29

2.3 Modeling and Analysis of Safety-critical Embedded Sys-
tems

This section provides an overview of modeling and analysis techniques commonly used in
engineering of embedded systems. In particular, component-based systems are targeted
here. Modeling and analysis in context of CBSE is mainly focused on (i) characterising
software components in an isolation, i.e., on their properties that capture portion of non-
functional system requirements and that represent a kind of quality stamps for software
components, and (ii) on trying to reason about the system level properties or the top-level
requirements out of such individual, but composed, properties. Many existing techniques
associated with compositional modeling and analysis are based on formal methods (at
least on the specification level).

Figure 2.9: Expansion of problem solvers in the literature (number of publications) [Bar13]

Although the use of formal methods in the practice is still rare, their expansion in
the last years showed that the industry cannot answer on many relevant challenges in the
engineering. Figure 2.9 illustrates the situation that shows the expansion of approaches
that use automated problem solvers (proof tools) to analyse systems in various application
fields (tools are described later). This is to some extent motivated by the modern safety
standards such as ISO 26262 and DO-178C (its advisory document, DO-333 – Formal
Methods) which explicitly recommend the use of formal methods. The reason is that
today’s complex, safety-critical systems cannot be any more considered as a whole, in a
classical top-down refinement process, but rather as a composition of parts, and currently,
the industry is not enough supported by the sound theoretical background and practical
tools to perform such compositional construction and analysis.

In the following, the section first gives some introducing material about different system
modeling techniques to setup the context. Thereafter, the summary of related component
technologies that provide specific modeling and analysis support is provided.

2.3.1 System Modeling: An Overview

Different system models with respect to communication, computation, time and data are
briefly introduced in Section 1.1. Each of these models require specific modeling notations

30 2. Background and Related Work

to be analysed or executed. For example, in the continuous-time model the system be-
haviour is represented in form of equations over continuous variables. In simulation tools,
such as Matlab Simulink for example, the dynamics of the system is represented using
differential equations over real-numbers [Kaz09]. In the context of formal modeling and
analysis, different models for describing system behaviour are used. The most commonly
used models fall into the following two groups [AFPdS11]:

State-based Modeling. The behaviour of the system for this class of modeling notations
is represented in form of states and operations or actions that perform changes on
such states.

Automata-based Modeling. Automata are commonly used notation to model
synchronous, reactive, concurrent and communicating systems. In the standard
form, Finite State Machine (FSM), the system behaviour is defined in terms
of states and transition functions (informally). This basic notation allows to
model typical sequential systems. To date, several extensions of automata have
been proposed, in order to model and to analyse the essential properties of
(distributed) real-time systems. Timed automata and hybrid automata such
as priced timed automata, which allow to model and to analyse dynamic re-
source consumption, are examples here. The extended versions of automata are
supported by several recent model checking tools.

Abstract State Machines (ASM). ASM is a modeling notation that describes
the system behaviour in terms of states, state transitions, and rules on how such
transitions shall be activated. In contrast to Finite State Machines (FSM), it
provides a more precise description of the system behaviour, and can be used to
define different abstraction levels, with refinement facilities that enable to syn-
thesize high-level abstraction of the system down to implementation model that
can be in turn translated to concrete notation in some programming language
for example.

Set and Category Theory. This class of modeling is similar to ASM, but in con-
trast, states are represented as functions, mathematical relations or sets. The
abstraction level is usually close to the implementation so that synthesis to
concrete programming language is possible (e.g., like in some VDM (Vienna
Development Method) tools [AFPdS11]).

Axiomatic Modeling. The system behaviour is specified using the data model only.
This data model corresponds to a collection of data types, their instances, possibly
inter-related, and a set of constraints or axioms on those variables. A very important
class of system modeling notations here are logic-based languages. They are used as
a supporting modeling technique in this thesis to realise necessary system modeling
tasks (see Section 3.2).

2.3.2 Specifying System Properties

To analyse the system described in one of the notations introduced previously, the cor-
responding formulations of certain system properties to inspect have to be set. For au-
tomated analysis, these formulations are typical expressions that rely on logic formula

2.3. Modeling and Analysis of Safety-critical Embedded Systems 31

(see Table 2.3). The corresponding tools, proof systems or model checkers, inspect the
behaviour of the system model with respect to given formula (property).

Using a collection of logic languages from Table 2.3, many different system properties
can be specified. For example, safety property7, which has a usual format that ”nothing
bad will happen” [Hen92], is a common specification for embedded systems, among few
others. The word ”bad” can refer to a system failure, caused by the fault when system
reaches certain, invalid state, or in axiomatic models, when certain value is not within valid
intervals for example. Various system properties, including safety, liveness, and real-time,
can be represented in form of states, events, and transitions, using quite similar language
constructs and patterns. Figure 2.10 shows a collection of commonly used properties
for the formal specification, that are particularly designed for automata-based models.
However, some of the properties are also applicable in some axiomatic system models.

Property

Order

Precedence

Response Chain Precedence

Chain Response

Occurrence

Absence

Universality Existence

Bounded Existence

Global

Before Q

After Q

Between
Q and R

After Q until R

State Sequence

Figure 2.10: A taxonomy of property specifications (left), and different scopes for events used in
properties (right) [DAC98] (Research Group at Kansas State University)

Basically, these properties can be classified into the following two categories:

Occurrence : Properties which describe the occurrence of events or states. There are
several refinements of this category that generally include some temporal quantifiers:
never (Absence) – certain state will never be reached or event will never occur, always
(Universality) – state property holds forever, eventually (Existence) – system has at
some point of time certain set of events and states, and Bounded Existence – certain
event or state must occur for a given number of times.

Order : Properties which describe the order of occurrence of specified events and states
(if there are multiple events and/or states specified). As for occurrence properties,
there are few refinements (see Figure 2.10)8.

These basic forms of properties can be represented by many property specification
languages. For example, Contract Specification Language (CSL) that was developed in
the context of the SPEEDS project [PHB+09] provides a set of specification patterns for
components contracts, which are derived versions of properties from Figure 2.10. Con-
tracts in SPEEDS approach are customized to specify various temporal properties on
timed automata models. In contrast to SPEEDS approach, which targets specific types

7Not to mix with the notion of functional safety.
8Meaning of these properties can be observed from their names.

32 2. Background and Related Work

Specification Description

Propositional logic Logic formulas (boolean expressions) with boolean oper-
ators (e.g., 3 < 5).

First order logic Contains in addition functions, predicates and quan-
tifiers. Evaluation of formula is based on values of
operands, e.g., x < (x + 1).

Higher order logic Contains quantifiers over more complex structures (e.g.,
functions).

Temporal logic Include notion of time (see Fig. 2.10).
Derivatives Instance of SAT (Boolean Satisfiability Problem), SMT

(Satisfiability Modulo Theories), etc.
Analysis Technique Description

Proof Tools Automated theorem provers (e.g., constraint solver),
Proof assistants.

Model Checking In contrast to proof tools, they can verify finite-state sys-
tems.

Table 2.3: An overview of some common formal specification types and standard analysis tech-
niques [AFPdS11]

of embedded systems, there is a number of other languages which target different sys-
tem models and more general scenarios, such as IEEE Property Specification Language
(PSL) [IEC10b] for asserting hardware design models and various property specification
languages for COMPASS Modeling Language (CML) for analysing component-based sys-
tems [Rid12]. Finally, some approaches build properties from basic operators to form
logic expressions from Table 2.3, cf. [SVP09]; some of them use extended operators such
as function symbols in expressions to define resource constraints in SMT logic for exam-
ple [Mon11].

2.3.3 Related Component Technologies

Modeling and analysis techniques discussed above are an integral part of many component
frameworks developed for safety-critical systems. The differences among those frameworks
are basically reflected in a formal model they consider, and analysis capabilities, i.e., which
parts they consider when composing a system (behaviour, data models, refinement of that
behaviour, etc.). In the following, an overview and comparison of the most recent and
relevant component frameworks is given (see Table 2.4). The comparison is made based
on relevant attributes that must be considered to provide strong traceability support from
individual components (implementations) to the top-level requirements. This support is,
as introduced in Section 2.2, important for the change management and thus, provides a
basis for the work in this thesis.

The basic principles of Contract-based Design (CBD), proposed by Benveniste et
al. [BCN+12], Sangiovanni-Vincentelli [SVDP12], and Damm et al. [DVM+05], are used
here to characterize the traceability support. As introduced in Section 2.1.5, CBD pro-
vides basic rules or operators that component-based systems have to support, to rigorously
enable building systems out of individual (software) components. The following are the
attributes used to characterize the modeling and analysis capabilities of considered com-
ponent technologies:

2.3. Modeling and Analysis of Safety-critical Embedded Systems 33

Composition. Support for the formal syntax and semantics on building hierarchical com-
posite systems.

Abstraction and Refinement. Ability to represent the system in different abstraction
levels in a formal way, and to link those abstraction levels (refinement).

(Platform) Mapping. Ability to map the functional system design to its execution plat-
form (e.g., in case of software components, the platform may correspond to an em-
bedded system in terms of resources).

Views. Ability to represent different views of the system, with respect to non-functional
system properties, and to link those views.

Formal foundation for these attributes is essential, in particular, when changing parts
of the system, or even some aspects, to precisely identify impacted system components
and requirements. In the following, some recent projects targeting CBSE for safety-critical
systems are briefly introduced (the complete list is provided in Table 2.4).

MEDEIA Model-Driven Embedded Systems Design Environment for the Industrial Au-
tomation Sector, MEDEIA project, is targeting development of embedded systems
in Europeran industrial automation sector, by utilizing synergies between MDE and
CBSE paradigms [SRH+09]. The MEDEIA approach provides a common model
(meta-model) that comprises the integration of the component model, i.e., the Au-
tomation Component Model (ACM), and the model for the corresponding execution
platform (hardware).

Figure 2.11: Automation Component Model (ACM) according to MEDIA approach [SRH+09]

Figure 2.11 shows the conceptional view of ACM. Basically, the approach does not
provide semantics for composing ACM software components and their refinements,
and is mainly focused on modeling, rather on analysis.

SPEEDS Heterogeneous Rich Components is a model-based approach for rigorous de-
velopment of component-based systems, developed in the scope of the SPEEDS EU

34 2. Background and Related Work

Apprach C R M V Sys. Model Comments

BIP
[BBB+11]

x x automata
(FSMs)

Composition of FSMs (behaviour, interaction, pri-
ority). Platform mapping by code generation.

Palladio
[BKR09]

x* x x axiomatic
models

*Not analysis, but performance prediction (use of
solvers for stochastic processes).

HRC
SPEEDS
[PHB+09]

x x x hybrid au-
tomata

Formal model for composition, refinement, and
views. Support for hybrid system models: con-
tinous, discrete; timed and untimed.

ProCom
[VSC+09]

x x FSMs, timed
automata, ax-
iomatic mod-
els

Composition: syntax only. Different add-ons in
context of PRIDE environment [BCF+11] (e.g.,
resource analysis in REMES [SVP09], attribute
framework [SvCC09], synthesis [BC11]).

SaveCCM
[CHP06]

x timed au-
tomata

Behaviour of atomic and composite components
as timed automata (standard semantics for com-
posites).

RCM
[DVM+05]

x x x x automata
(interface
automata
[dAH01])

RCM provides formalism incremental, vertical
analysis, horizontal composition, and platform
mapping. Multiple views of NFRs are supported.

Rubus
[HMTN+08]

x – Composition: only syntax.

X-MAN
[LNRT12]

x x automata, ax-
iomatic mod-
els

Uses model checker and proof tools for analysis.

ComFort
(PECT)
[CISW05]

x x FSMs, ax-
iomatic
models

Uses C code as input to generate FSMs and pro-
cesses.

COMDES II
[KSA07]

x x x x hybrid au-
tomata

Synthesis views (platform independent, imple-
mentation, and deployment aspect).

Autofocus3
[KRSV13]

x x x x FSMs, ax-
iomatic
models

Provides functional, logical and technical (deploy-
ment) view.

Frescor
[MAP+07]

– No formal semantics. Contracts are defined for
resources, and evaluated at runtime.

CESAR
[PSS+13]

x x x x automata, ax-
iomatic mod-
els

A comprehensive modeling support for
component-based embedded systems. They
underlying formal notation is based on X-MAN
and RCM component models.

RECOMP
[PTV+13]

x x x x automata, ax-
iomatic mod-
els

CESAR extensions for functional safety.

COMPASS
[Rid12]

x x axiomatic
models

Different types of semantics for composition and
refinement. The underlying model: process alge-
bra.

VEST [Sta01] x* x – *No formal semantics.
MEDEIA
[SRH+09]

x x – Only syntax for platform mapping.

DECOS
[Gru04]

axiomatic
models

No formal semantics (composition, refinement).
Allocation and scheduling using constraint
solvers.

Table 2.4: An overview and comparison of component technologies according to their modeling
and analysis capabilities (C – composition, R – refinement, M – platform mapping, and V – views)

2.3. Modeling and Analysis of Safety-critical Embedded Systems 35

project (SPEculative and Exploratory Design in Systems Engineering) [PHB+09].
The essential part of the approach is the comprehensive modeling and analysis sup-
port, which rely on CBD. The formal model of contracts is defined that provides
important background for rigorous system design: composition of contracts taking
in account the atomic behaviour of corresponding components, refinement of the
system design, in terms of behavioural refinements, and explicit definition of views
that allows to focus on individual non-functional aspects of the system, such as
real-time, timing, and behaviour for example. The approach provides the thorough
modeling support on top of hybrid automata, and therefore allows to model timed
and untimed system models, but also to mix continuous and discrete system models.

The concept of ”components” goes beyond the traditional CSBE concepts (software
components, framework, and component models), since ”component” may refer to
any architectural part that may perform certain system function (hardware, software,
mechanics, but also plant models).

PRIDE PRIDE is a modeling and analysis ecosystem for the ProCom component model –
i.e., ProCom Integrated Development Environment [BCF+11]. It provides a number
of different modeling facilities, with the objective to rigorously model, synthesize
and analyse component-based embedded systems, from their abstract definition to
the synthesis on RTOS platform. Like in many formal component models, syntax is
provided on defining composite and atomic software components, their interaction
and execution. On the other side, semantics is provided in form of external add-
ons, such as the attribute framework [SvCC09] – allows to model the distinct non-
functional system properties, REMES [SVP09] – resource analysis framework, and
synthesis semantics on real-time tasks proposed by Borde and Carlson [BC11]. The
underlying modeling technique are FSMs, timed automata, and various axiomatic
models, on which various properties can be analysed, including value intervals on
ports, resource consumption, among many others.

CESAR Cost-efficient Methods and Processes for Safety-relevant Embedded Systems,
CESAR project, targets rigorous development of safety-critical embedded systems
by utilizing synergies between MDE, CBSE and various analysis, test and verifica-
tion techniques [PSS+13]. It provides a common model (meta-model) that captures
various aspects or views of embedded system, and techniques and tools to synthesize
the system through stepwise refinements and fusions of different views.

Figure 2.12 shows an overview of the CESAR approach. The system is fragmented
into different views, each corresponding to certain abstraction level: operational,
functional, logical and physical. In each of these views, CESAR provides dis-
tinct modeling and analysis facilities. For instance, modeling and analysis of non-
functional system properties is provided on functional view. In this view the ap-
proach utilizes the formal semantics for compositional modeling and analysis of RSC
and XMAN component model [LPC+13].

Except of formal modeling and analysis, different analysis facilities are provided on
other levels – for example, tools for schedulability analysis are used to map the
functional and the physical view. Further, a modeling means is provided to define

36 2. Background and Related Work

artefacts of safety engineering, for example elements required for the hazard and risk
analysis and their traces to design elements.

In addition to technical aspects, the CESAR approach provides the lifecycle support
that manages all these views, and corresponding modeling and analysis techniques.
In summary, CESAR approach is a distinct engineering approach for developing
safety-critical, component-based embedded systems.

Figure 2.12: Development lifecycle for component-based embedded systems according to CESAR
approach [PSS+13]

RECOMP Reduced Certification Costs Using Trusted Multi-core Platforms, the RE-
COMP approach, is a successor of CESAR, and inherits some features of the Auto-
Focus3 component model. In contrast to CESAR, the RECOMP approach provides
support for defining data relevant for certification of individual components, such as
Safety Integritiy Level, traceability links to tests and evidence, and other modeling
elements related to safety engineering. Further, it extends the configuration and
deployment support of Autofocus3 to multi-core embedded systems [PTV+13].

COMPASS Similar to the strategy of PRIDE and SPEEDS, but with the broader scope,
the COMPASS project [Rid12] targets model-based development of System of Sys-
tems (SoS) [Mai98]. For this class of systems, the compositional reasoning is a first
class entity in systems engineering, and components are, as for SPEEDS, software,
hardware, mechanics, physical processes, or combinations of them. To provide sound
modeling and analysis support, COMPASS approach relies on Unifying Theory of

2.3. Modeling and Analysis of Safety-critical Embedded Systems 37

Programming [HJ98] -– a set of different formalisms to enable strong formal seman-
tics for systems.

Figure 2.13: A COMPASS approach to modeling and analysis of component-based systems
(COMPASS Homepage: http://www.compass-research.eu)

Figure 2.13 shows the overview of the COMPASS approach. The system modelled
using SysML (System Modeling Language) is enriched with contracts, which are
specified using COMPASS Modeling Language (CML). The CML provides the syn-
tax and semantics for SoSs that rely on some axiomatic system models, in particular,
process algebra (e.g., Communicating Sequential Processes, CSP), and related re-
finement calculus [HMC13]. Basically, such system models are more process-centric,
i.e., they describe the interaction between heterogeneous system components, while
the formalism for building compositions (syntax, semantics) are provided by CML.
Thus, the COMPASS analysis ecosystem, i.e., the Semantic Foundation block in
figure, allows to analyse composition and refinements of data and behaviours of
communicating components (processes).

Other Component Technologies In addition to introduced projects that target the
use of CBSE for the engineering of safety-critical systems, a number of different
approaches have been proposed, with mainly similar goals and directions. Some of
the approaches are using (hybrid) automata to define system models for the pur-
pose of analysis of non-functional system properties [AM07, CB08], safety require-
ments [OR13,OKB14] or analysis of the adaptation behaviour [ASTPH11], whereas,
on the other side, some of them are using axiomatic models, in particular, constraint
solving techniques to analyse adaptation behaviour with respect to resource require-
ments [Mon11], deployment constraints [BSAB14], or combinations of both [PV14].
In the end of this landscape, there are some approaches that do not rely on for-
mal analysis but only on formal specification [PG13]. Except of difference in the
representations of the system model, these approaches differ in strength of the mod-
eling support for CBD attributes. For example, the Choi and Bunse [CB08] define
a formal semantics for composition and refinement operators between component
specifications and realizations, whereas Montano [Mon11] does not consider these
operators. Further, in contrast to all mentioned approaches, Panunzio and Var-
danega [PV14] provide a component model with comprehensive process support and
ability to define various system views.

http://www.compass-research.eu

38 2. Background and Related Work

2.3.4 Discussion

During the last decade, a considerable number of different approaches relying on CBSE
have been proposed, with the goal to enable rigorous development of safety-critical systems
and to better utilize CBSE principles for those systems. In particular, several research
projects have been realized, and have provided interesting results, both in applying CBSE
and related lifecycle to safety domains, and in providing various analysis methods for
component-based systems. The following are the main key points of the introduced studies:

• CBSE, CBD and MDE as supporting paradigms for rigorous development. The
issues targeting system development from individual (possibly heterogeneous) parts
and related compositional reasoning are present since the beginning of CBSE era and
are today one of the major challenges facing the engineering of safety-critical systems.
As proposed in several projects, in particular, SPEEDS, CESAR and COMPASS,
the synergy between CBD and MDE is the promising approach to cope with such
challenges. Model-driven engineering allows to manage system complexity, in terms
of capturing its different aspects and abstractions in a holistic way, while CBD allows
to setup the links between those aspect, abstractions, and to rigorously synthesize
system designs. A very important concern the approaches are targeting here is the
development of the formal semantics to enable different reasoning tasks, in particular,
building hierarchical compositions, design refinement, platform mapping, and fusion
of different system views.

• CBSE: From Software Engineering to System Engineering One important concern
that could be observed from SPEEDS, CESAR, and COMPASS approach is that
applied engineering principles for component-based systems go beyond the tradi-
tional CBSE. Components correspond in these approaches to any part of the sys-
tem, especially in COMPASS, where a system is a composition of heterogeneous
communicating sub-systems. Considering not only software, but rather arbitrary
system parts as components, is to some extent motivated by the increase of system
complexity, and thus mandated by some standards. For example, in automotive
industry, the supplier chain is sharing different kinds of system functions with the
manufacturers, including software layers, or complete devices. The SEooC principle
defined in the ISO 26262 standard, Safety Element out of Context [SBBK12], is one
of the first standard-based guidelines that help in developing such supplier parts,
and for manufactures, to compose them together. However, such guidelines are just
high-level description for the involved roles. The results of the projects introduced
here provide therefore some concrete techniques on how to build system of systems
using existing principles of CBSE.

• Adaptation of existing formal methods to component-based systems. Analysis tech-
niques used by introduced component technologies mainly rely on existing formal
methods and tools, which are in turn adopted to formal model of contracts, and their
related semantics. For example, the BIP framework utilizes solvers for Mixed Integer
Linear Programming9 to analyse composition of FSMs; X-MAN uses CBMC model

9MILP solver homepage: http://sourceforge.net/projects/lpsolve

http://sourceforge.net/projects/lpsolve

2.4. Summary 39

checker10; CESAR project uses Isabelle proof tool11 to analyse processes in system
of systems environments; Approach by Montano [Mon11] uses the Choco constraint
solver [YVNC08] to analyse resource availability in IMA architectures, etc. The
adaptation is basically done by defining a template for the problem statement that
describes the contracts and related properties using the notation of the considered
tool.

• New directions: integrating CBSE and Safety Engineering From the projects CE-
SAR and RECOMP, it can observed that the trend in research is directed towards
an integrated system and safety engineering, i.e., providing modeling means and
necessary traceability support. First steps have already been done, for example
the traceability between design elements and tests (evidence) and safety lifecycle in
CESAR. Currently, this topic is handled in the context of SafeCer [SMLA13] and
OpenCoss [dlVPW13] projects, which put more focus on reuse and certification for
component-based systems by linking the two engineering principles.

2.4 Summary

Related studies discussed in this chapter focus on the change management support for
safety-critical systems, in particular, on methods to analyse the change impact on non-
functional system requirements (and related properties), and later, they focus on various
techniques for the formal analysis applied to these systems. Some recent studies showed
that there is a trend towards building dynamic architectures, to improve the flexibility
and maintenance of safety-critical systems, as proposed for example in several approaches
targeting the automotive sector [MFRV13, MVFR14, AK13, NKA14]. However, much de-
tails have not been considered yet, from the technical, process and organizational point of
view. In summary, according to the problem statement given in Section 1.2, the following
are the key points for improvements targeting discussed related studies:

• Focusing on specific changes. Reports on recalls given in introducing Section 1.1
show that different kinds of changes need to be conducted to perform necessary
repairs. Different change types have possibly different impacts on development, re-
verification and re-validation effort and costs, and therefore, may require different
procedures and techniques to conduct repairs. In general there is a lack for such a
specific support.

• Runtime support to perform changes. As discussed in Section 2.2.4, current operating
systems applied in safety domains lack a support to perform changes on software (i.e.,
linkers, loaders). Some mechanisms, proposed as add-ons to existing RTOSs, ignore
to consider safety standards and related software safety regulations. As such, they
cannot be certified as part of RTOSs.

• Relations with safety standards. Safety standards provide not only processes re-
garding the configuration and change management, but also they set necessary re-
quirements that have to be followed, and techniques that have to be applied. The

10CBMC model checker homepage: http://www.cprover.org/cbmc/
11Isabelle tool homepage: http://www.cl.cam.ac.uk/research/hvg/Isabelle

http://www.cprover.org/cbmc/
http://www.cl.cam.ac.uk/research/hvg/Isabelle

40 2. Background and Related Work

alignment with the standards also gives a feedback about required effort to per-
form changes, since the supported change types have to defined in the planning
phase of the safety lifecycle, and have to be communicated with safety assessors.
This is essential for defining different strategies for different change types, and may
help to better optimize effort/costs required to conduct changes. However, recent
approaches ignore considering these regulations in general.

2.5 Thesis Objectives

The objectives of the thesis are oriented towards providing a solution that can answer the
questions on the three issues outlined previously. These objectives are the following:

Objective 1: Identify supported change types (trade-off analysis). As mentioned
in the previous section, different types of changes may generate different costs, and
in the worst case, may require the complete system re-verification, re-validation and
finally the re-certification. This decision additionally depends on applied safety stan-
dards. Therefore, regulations of standards have to be analysed, and a trade-off has
to be found between possible types of changes and costs on performing such changes.

Objective 2: Provide a support and corresponding system model to perform changes.
Based on change types identified in Objective 1, an adequate support to their per-
forming has to be provided. This support has to include necessary mechanisms and
tools, the adequate system model that can support changes (cf., SEI initiative on
design for changes [SEI01]), and finally, it has to be ensured that such a support is
conform with related safety regulations.

Objective 3: Provide a support to analyse the impact of changes on system integrity.
The system integrity must be re-established after performing changes, either in the
initial or in the new configuration. A challenge that has to be addressed here is to
identify whether and to which extent particular changes may have impact on system
integrity.

Chapter 3

Managing Changes in
Safety-critical Embedded Systems

A very important prerequisite to address managing changes for safety-critical systems
it to ensure that the initially established system integrity cannot be compromised when
incorporating changes. This is usually achieved by the extensive verification and validation
of affected system components and requirements, or even in some cases, by the validation
of the complete system and consequent validation of the functional safety [SS10].

Design for changes, traceability and an adequate processes support are the essential
factors that can strongly influence the effort required to perform such verification and
validation activities. The approach proposed in this thesis utilises some principles of
paradigms discussed in previous sections to enable managing changes while ensuring that
system integrity remains maintained. In particular, software architecture, which is accord-
ing to repair statistics given in introducing Chapter 1 the system component that most
frequently undergoes changes and repairs, is defined in a way that certain software com-
ponents are systematically designed for changes, in terms of their interfaces, incorporated
interaction styles and non-functional properties required to characterise system integrity.

The basic principles of Component-based Software Engineering (CBSE) have been
utilized here, supported by the Contract-based Design (CBD) paradigm [Crn02,BCN+12].
Applying CBSE allows to define the granularity of changes and interfaces of changing
artefacts, in terms of software components, and it also allows to isolate such components
in order to support structural changes by incorporating specific interaction styles. On
the other side, the information that captures the way on how the individual software
components can influence system integrity is provided using CBD. The integrated CBD
and specific component-based architecture allow to perform certain, but rather frequent
repairs and to analyse the impact of required changes on system integrity.

Figure 3.1 shows an overview of the proposed approach to manage changes. The
model of the system design, that captures the application software and essential parts of
the corresponding execution platform (e.g., an embedded device and necessary component
container or framework), is represented as a hierarchy of contracts. Component contracts
structure specific non-functional properties (NFPs) that are relevant when wiring software
components into a composition, whereas the platform components are used to analyse the
platform mapping, as introduced in CBD Section 2.1.5.

41

42 3. Managing Changes in Safety-critical Embedded Systems

C
h

an
ge

 M
an

ag
e

m
e

n
t

(I
EC

 6
15

08
 S

ta
n

d
ar

d
)

System Modeling

Consistency Analysis Dynamic Deployment

System Design

Software
Component

Platform

Software
Component

Component Contracts

Platform Contracts

Contract n-2
Contract n-1

Contract n-2
Contract n-1

...

System Constraint Network Runtime Architecture

Requirements Engineering

Figure 3.1: Overview of the approach to manage changes proposed in this thesis: (a) system mod-
eling using contracts, (b) analysis of changes introduced into the system design, and (c) dynamic
deployment of the analysed system (or software component)

The information that is captured in contracts is originating from the top level sys-
tem requirements, in particular from safety and other non-functional requirements, such
as those that represent resource and quality constraints for example. Using contracts,
properties are linked throughout the abstraction levels of the system design to these re-
quirements. In fact, the two introduced types of contract are the essential traceability links
between software components and system requirements. More importantly, they hold the
system integrity information, because requirements they link are resulting from the risk
reduction performed in the conception phase of safety lifecycle (i.e., safety requirements).
In this way, violation of system requirements can be identified when some of the contracts
are violated, for example due to incorporated changes.

In the remaining parts of the workflow illustrated in Figure 3.1, the system modeled
in form of contracts is analysed against violating system integrity (Consistency Analysis),
and finally, changes are incorporated into the system (Dynamic Deployment), according
to rules and procedures defined in the change management of the considered standard, in
this case the IEC 61508. These are the main contributions of the work in this thesis, and
are briefly introduced in the following sections.

3.1. Identifying Characteristics of Changes: The Role of Standards 43

3.1 Identifying Characteristics of Changes: The Role of
Standards

Changes and necessary procedures for the operation and maintenance have to be defined
in the planing phase of the safety lifecycle, as introduced in Section 2.2.3. The benefit
of targeting these operation activities systematically is that safety assessors can be early
involved in the lifecycle, which in response enables that allowed change scenarios and
procedures with respect to requirements of the considered standard can be agreed in
advance, and thus the effort when performing such activities can be reduced.

In the following, guidelines on change management defined in the IEC 61508 standard
are briefly analysed to identify potential change types that can be supported by the flow
illustrated in Figure 3.1.

3.1.1 Supported Changes

Requirements, Measures and Techniques

As discussed in Section 2.2.3, many safety standards provide guidelines on how to sup-
port performing some processes in the operation, including maintenance, configuration
and change management. Regarding processes related to change management, the IEC
61508 standard sets some requirements to consider, and measures and techniques to apply.
Basically, requirements are oriented towards ensuring that the current evidence data (e.g.,
tests and reports) or in other words, the system integrity is not compromised, or that
new integrity has been established, for example degraded integrity due to incorporation
of complex changes [SS10]. Regulations are defined both on software and on system level.

The most relevant part here with respect to the effort or costs required to perform
changes is actually a decision on when the system has to be re-engineered, in terms of
repeating lifecycle activities, and consequent verification and validation activities. Basi-
cally, according to certain requirements in the standard1, there are two options in managing
changes: (i) if changes to incorporate have an impact on system integrity, i.e., they modify
the current evidence data and violate safety requirements, it is mandatory to return to the
appropriate lifecycle phase, and to perform necessary re-engineering work, that is often
followed by the re-verification, re-validation, and re-certification; (ii) on the other side, if
changes do not compromise system integrity, there is no need to return to development
phases.

This second option is actually the motivation to provide a support for specific, minor,
changes that can be managed in a cost-effective way. Many recalls from the field statistics
introduced in Chapter 1 can be solved by incorporating such minor changes, for example
exchange of faulty algorithms and libraries. Another, very important benefit here is that
certain minor changes can be usually planned in the safety lifecycle, including necessary
detailed procedures, so that safety assessors can approve their management in the op-
eration and maintenance without having to be involved in assessing that process. The
approach in this thesis focuses on managing this type of changes.

1Detailed analysis can be observed from Publication [1].

44 3. Managing Changes in Safety-critical Embedded Systems

Architectural Support

Software architecture proposed in this thesis utilizes CBSE, the classical form with software
components on the top layer, the container (or framework) and underlying OS support.
The distinct feature is that it provides a support to load software components dynamically
(cf., dynamic software architecture in [Crn02]). The benefit of this feature is that in case of
changes incorporated in software applications there is no need to re-build and to re-deploy
the complete software system, and therefore no need for the comprehensive configuration
management for different software layers, as mandated by the standard.

From the technical point of view, different types of changes can be incorporated into
software applications, ranging from simple changes on single software components to dy-
namic reconfigurations of complete software applications. However, to be able to define all
necessary procedures in the planing phase of the safety lifecycle, so that change manage-
ment process can be conducted as described before, certain design limitation have to be set.
For example, if the behaviour of a software component is changed (e.g., like in PINCETTE
approach [Cho10]), or the sequence of events that influence the communication between
software components (e.g., like in computational model of AUTOSAR [MFRV13]), it is
very difficult to analyse the impact of changes, especially on functional requirements,
without manual intervention. Except of that, in such cases, it is very difficult to define
procedures on how to ensure that changes have no impact on system integrity, because
there are no general procedures that can apply to all possible outcomes of such changes.

In the approach proposed in this thesis, supported changes are limited to replacements
or exchanges of individual software components only. This has the following benefits: (i)
procedures to conduct managing such changes can be planned, and are generally applicable
to replacements; and (ii) the impact on system integrity can be analysed in an automated
way. Although replacements are rather simple type of changes, many recall scenarios can
be managed by replacing faulty software components.

3.1.2 Process and Responsibilities

The system integrity can also be compromised by incorporating simple replacements of
software components. As mentioned in the beginning of Chapter, contracts are used to
prevent such situations. Basically, the information that contracts capture has to be defined
in the planning phase of the safety lifecycle, and communicated with assessors. The intent
of such planning is to show that this information completely supports exchanges of all
involved software components, in terms that incompatible software components can be
identified and their deployment prevented. A list of commonly used attributes that build
this information for contracts is given in Publication [1].

In summary, to enable supported changes from the viewpoint of the change manage-
ment process, the information captured in contracts must be complete, in terms of being
able to analyse the impact of such replacements on system integrity, on the one side, and
on the other side, the engineering has to ensure that targeted software components, i.e.,
the faulty and repaired ones, implement the same functional requirements.

3.2. System Modeling and Analysis 45

Guarantee 1

Guarantee 2

Guarantee n

Requirement 1

System Design

Top-level Contract

Contract

Contract

Contract

Safety Requirements

Assumption 1

Assumption 2

Assumption n

Requirement 2

Requirement n

Contract
Hierarchy

Figure 3.2: Linking system design and requirements using contracts

3.2 System Modeling and Analysis

This section introduces the modeling support for the system, and the analysis of that
system built out of contracts. Figure 3.2 shows the system design from Figure 3.1 in a
conceptual view, where the source of information that is captured in contracts is illustrated.

Contracts structure properties in terms of assumptions and guarantees [BCN+12],
which are expressions, for example represented as logic formula, like first order logic or
even informal statements like in some requirements (see Section 2.2 for a list of com-
monly used expressions). Guarantees correspond to the desired behaviour of a contract,
and therefore the desired behaviour of a (software) component or a system which im-
plements that contract. They can be considered as typical requirements. On the other
side, in contrast to requirements, contracts provide assumptions that define conditions
under which the underlying (software) component or system can guarantee the desired
behaviour. Assumptions are very important constructs because they ensure the correct
integration between contracts. In fact, they serve as requirements that neighbouring (soft-
ware) components or layers have to satisfy in order to communicate with related (software)
components.

46 3. Managing Changes in Safety-critical Embedded Systems

In order to link the individual software components with the system integrity infor-
mation, every element of the detailed system design, i.e., software components and the
platform, is expressed in terms of contracts, thereby forming the design hierarchy out of
contracts. Further, the contracts are inter-related so that the top-level contract links all
the underlying contracts of the system design, and is related to system requirements, in
particular, to safety requirements2. Safety requirements, as introduced in Section 2.1.1,
set functions that must be implemented by the system in order to target risks identified
in the hazard and risk analysis phase. Contracts does not directly specify the information
defined in requirements, but instead, the risk information associated with those require-
ments. This relation between contracts and relation between contracts and requirements
is described in the following sections in more detail.

3.2.1 Component Model: Modeling Aspects

As discussed in the previous section, changes with the broad scope, such as those that
influence the behaviour or the communication between processes have more disruptive
consequences on system requirements, are rather difficult to manage. They also require
to construct a component model with the explicit modeling support and means for the
analysis, like proposed in CESAR or COMPASS projects for example [PSS+13, Rid12].
Ultimately, such kind of analysis is difficult to plan and to perform in the operation
and maintenance phase without involving safety assessors. The benefit of replacements of
software components, on the other side, is that their impact on non-functional requirements
can be captured in a data model, which is for example used as a basis in several component
technologies to analyse various requirements (cf., axiomatic formal models in Section 2.2).
Such a data model can be considered as a rough description of the system, from the non-
functional aspects, and allows to analyse the system in an automated way in cases when
requirements are represented using formal notations.

Elements of the system design illustrated in Figure 3.1, i.e., software components and
their platform, are from the modeling perspective defined in way that they can capture
necessary information from non-functional requirements. This is achieved by the simple
data model that describes software components as a set of data variables. Such a model is
typical and commonly used in many data-flow systems, like for example Matlab Simulink
or classical IEC 61131-based systems. Here, data variables are used to characterize, on the
one side, the syntax of interfaces and of the internal state for software components and
the platform, and on the other side, the syntax of the information that is shared between
dependent modeling elements. The later are the variables used to set constraints or prop-
erties on quality and resources, for example required and provided safety integrity levels,
memory and timing margins, operational characteristics and other (for more detailed and
formal semantics, see Publication [8]).

Contract Model

The information about non-functional requirements on level of software components and
their platform is captured in properties and structured in contracts. To support the data

2Also other non-functional requirements that do not contribute to the system integrity are linked in the
same way.

3.2. System Modeling and Analysis 47

Figure 3.3: Specifying requirements as contracts shown on an exemplary use case: controlled
process of the car engine adopted from [Fre10] (left); and software system (right)

model introduced previously, so called data flow contracts are applied [BCN+12]. This
class of contracts sets in assumptions and guarantees the assertions on data variables
of software components (or the platform). Requirements are therefore represented in
guarantees as specific logical expressions (more details are following in System Analysis
section).

Basically, the information related to requirements that is describing the risk, is defined
formally as a logical expression. A trivial example is illustrated in Figure 3.3. On the
right, the figure shows an engine controller, implemented as a component-based software
system. In short, the controlling software function here is to make a decision on when
the engine actuators shall trigger the fuel injection and thereafter the ignition, which is
actually nothing else than computing the time distance that depends on several factors,
including the engine rotation speed and some information about requests from the driver.
Although the function is rather simple, it is critical, in terms that it can damage the
engine mechanics if the time distance is too short. Thus, the associated risk here is a
concrete consequence when the timing is below the allowed threshold, i.e., 40ms in this
case. The corresponding safety requirement specifies the safety function that the system
has to implement in order to reduce posed risk. Ultimately, the information captured in the
contract of the software system is a guarantee that this requirement has been considered,
independently on how the system implements related safety function.

To propagate this contract information to the individual, atomic software compo-
nents, standard contract operators are utilized: composition, refinement, and platform
mapping [BCN+12]. Since contracts are self-contained elements, i.e., do not depend on
other contracts, these operators provide the connecting features – they inter-relate con-
tracts on the same or different system abstractions, or different models, thereby allowing
to analyse the impact of contract properties on the system level.

48 3. Managing Changes in Safety-critical Embedded Systems

3.2.2 System Analysis

Different formal methods and tools can be used to analyse the contract system described
previously. However, concretely for the system that shall support the introduced types of
changes, the following two characteristics are important: (i) providing a system configu-
ration that satisfies requirements, and (ii) scalability. To target the former, in addition to
providing a decision on satisfying requirements, it is often necessary also to provide the
concrete values of data variables for which the contracts are valid. For example, the plat-
form mapping can generate different configurations, e.g., due to alternative contracts, and
concrete values may be required in deployment plans to configure software application.
Scalability is, on the other side, relevant here because the data model can comprise a lot
of information that is spread in the contract hierarchy.

To target these concerns, a Constraint Programming (CP) paradigm is used as an
underlying analysis technique [Apt03]. For the analysis, the system model defined as a
hierarchy of contracts is translated into the network of constraints, i.e., the Constraint
Satisfaction Problem (CSP). The CSP is a typical axiomatic model, in which constraints
and variables form a problem statement. Basically, the problem solving tool performs the
analysis by searching a domain space (variables) so that constraints are satisfied.

To enable the translation of the component-based system into CSP, the correspond-
ing CSP representation of the targeted component model is defined. This definition is
a mapping of contracts, their assumptions and guarantees, and operators to constraints
and variables of CSP. Concretely, the representation consists of the type system, the ex-
pressions used in assumptions and guarantees, software components (and platform), and
representation of composite structures. Constraints in CSP are in fact contract assump-
tions and guarantees, and are with special constraints inter-related with the neighbouring
contracts (for more details, please refer to Publication [6]).

The proposed CSP-representation of the component-based system allows to automat-
ically translate the system design into CSP and to analyse that design using problem
solvers. Another benefit of using CP is that many problem solving tools exist nowadays,
with a comprehensive support for defining expressions (e.g., SAT, SMT, functions, etc.),
and targeting different domains such as integers, real numbers, and sets. Moreover, some
of the tools from the palette are better performing than the other, for particular kinds of
problems, for example when solving allocation problems, or when working with specific
domains only.

3.3 Runtime Support to Perform Changes

As summarized in related work Section 2.2, there is currently a trend towards providing
a support to change or to upgrade software for safety-critical systems, and in response,
few approaches have already been proposed. In contrast these approaches, the runtime
support proposed in this thesis particularly addresses software safety regulations so that
such mechanisms can be applied in the context of safety-certified operating systems. The
essential factor that enables this application is a strategy on how the platform and software
components are managing their interactions, from the viewpoint of their linking and inter-
connection mechanisms. This strategy has to some extent the influence on how the software
components are designed and how they use their interfaces and communication services.

3.3. Runtime Support to Perform Changes 49

Interfaces for Dynamic Linking

Figure 3.4: Software architecture in the proposed component model (left), and design of a software
component (right), adopted from Publication [4].

In the following, some relevant details on such a design are given.

3.3.1 Component Model: Software Components and System Architec-
ture

Figure 3.4 shows an excerpt of the runtime architecture from Figure 3.1, with some details
on interfaces between software components and the platform. Here, a software component
is designed in a way that functions (i.e., the implementation or business logic, Runnable
in figure3) it provides are the only part that is dynamically linked, and from the physical
or deployment view it corresponds to an object file (executable) with relevant interface
information, whereas the another part of that component is Home Component which runs
on the platform, and concretely, it is statically linked with the component container.
This element has the role of providing interfaces to the container in order to manage
the lifecycle of software components, which is a concept that is commonly used in some
general purpose component models, such as the Home Interface construct in EJB or CCM
for example [WSO01]. In fact, the container can be considered here as a client using
services from software component implementations.

The realization of the binding between interfaces of both parts of a software component
is based on function/data symbol addresses or function pointers4, with minimal degree of
indirection, to avoid runtime performance penalties. These pointers in fact connect or bind
symbols (interfaces) of software components and component container, as it is done when
linking object files and libraries for example. To this end, the linking process has to identify
and to bind required and provided interfaces from the viewpoint of software components.
In the proposed approach, this is done by utilizing the indirection or routing tables. These
tables are provided to software components by the container at runtime, every time when
software components are executing and when they require particular interface operations.
This is quite different strategy compared to standard dynamic linkers, for example the

3Notation Runnable is used because of the analogy to the AUTOSAR concept of Runnables [KF09].
4Please refer to Kell [Kel07] for different possible realizations of software binding mechanisms.

50 3. Managing Changes in Safety-critical Embedded Systems

GNU Linux dynamic linker, which generally do not have static tables, but are computing
interface addresses at load-time or at runtime. The reason for this strategy is explained
in the following, and has a strong correlation with software safety regulations.

3.3.2 Addressing Software Safety Regulations

Many standards for functional safety provide methods, techniques and measures as rec-
ommendations for developing software. Examples are using modular design to manage
complexity, limited use of pointers, and static scheduling, among many other [SS10]. Ba-
sically, these recommendations shall assist the development to produce software that can
be verified, that is easily maintainable and that has predictable behaviour. In the end, it
should be possible to provide an evidence that software is functionally correct and that it
conforms to safety regulations, in form of test, verification and other kinds of reports.

The problem with standard dynamic linkers for their application in safety-certified
RTOSs is that they have a rather complex behaviour for computing the locations of sym-
bols required by object files (i.e., compared to required interfaces of software components).
For every required interface (or function and data symbol), the linkers require the runtime
memory layout of the software system, and based on specific processor architecture, they
compute the final location (address) of that interface. The validity of this final location
cannot be easily verified, because the machine code is not analysable, i.e., has no metadata
or an adequate reflection mechanism as it is the case with the intermediate code in some
virtual machines such as .NET or Java runtime for example. In response, it is very difficult
to test and to provide an evidence that such a mechanism works as expected, for possible
operational situations (e.g., for different memory layouts). In contrast, using static routing
tables as proposed in this work, no computation is required at runtime. The locations of
symbols or interfaces are statically estimated and linked with the component container,
and can be verified at design-time, with offline tests. These tests are valid during the
complete system lifecycle, because their absolute location is always constant (for details,
please refer to Publication [3]).

Chapter 4

Case Study and Evaluation

An important outcome of managing changes as introduced in this thesis is that specific
repairs can be performed on systems, in particular repairs on software applications. Such
repairs are supported by planned and systematic procedures, so that in response the ex-
tensive communication with safety assessors and consequent re-certification of the system
can be avoided. The supported types of changes that are required for repairs are rather
simple, but may to some extent contribute in many application fields to save the effort
or costs during the systems lifecycle. In the following, some of these fields are targeted
and a brief evaluation is performed, to show how much they can benefit from applying the
proposed approach. This evaluation is based on the material from Publication [2].

4.1 Objectives, Field Data and Used Metrics

The aim of the evaluation is to show the possible reductions in effort or costs that can be
achieved when performing repairs as proposed here.

Figure 4.1: Field data: considered scope of analysed system failures that led to product recalls
in automotive, [Qi 14]

51

52 4. Case Study and Evaluation

Recall data for Use Case 1

Faulty system components # of recalls

Software (control algorithm, flaws in creation, change) 82

Sensor (inadequate operation, change) 52

Actuator (inadequate operation, change) 30

External disturbance 26

Controller hardware (faults in hardware, change) 25

Other 100

Considered period 2002-2013

Recall data for Use Case 2

Faulty system components # of recalls

Software (software, application, function, code, version, backup,
database, program, bug, java, run, upgrade)

778

Hardware (board, chip, hardware, processor, memory, ...) 179

Battery (battery, power, power-up, discharge, charger, ...) 70

I/O (sensor, alarm, screen, interface, monitor, connect, wireless,
...)

41

Other 142

Considered period 2006-2011

Table 4.1: Distribution of recalls according to their cause in components of an embedded system

As a reference case study, field data about recalls in two application fields have been
used for consideration. The first case, i.e., the Use Case 1, is targeting the automotive
sector, and provides a collection of analysed failures that were caused by different system
components, and that contributed to product recalls [Qi 14]. Another case, i.e., the
Use Case 2, provides the analogue data collection but for the biomedical engineering
sector [AIKR13]. Figure 4.1 shows the architecture of a considered system model, i.e.,
an embedded system and controlled process, and the scope of analysed failures for the
Use Case 1. Generally, failures are collected and classified according to their cause in the
signal chain from sensors, controllers, to actuators, including software, hardware and other
components such as mechanics, battery, and external influences. This classification is for
both use cases summarized in Table 4.1, including a time period used for the analysis.
From these tables it can observed that for example 64% of medical devices had to be
recalled due to failures caused by software faults. For automotive embedded systems,
this rate is about 26%1. Finally, the considered studies have also outlined which parts of
software contributed to failures, like for example control algorithms in Use Case 1, software
application, code, and program in Use case 2, among few other.

The introduced recalls and related necessary repair actions have contributed to the
overall costs in system lifecycle for the considered period. The goal of the evaluation here
is to estimate the potential reduction in those costs for both studies. To this end, the
system models applied in studies are compared with the introduced approach, taking into
account some quality attributes that enable the comparison. In the following, the applied
metrics for the comparison is introduced, and a report on possible reductions in costs is
given.

1It should be noted that there is no standard classification scheme for such failures or recalls, and
therefore the two studies cannot be objectively compared.

4.1. Objectives, Field Data and Used Metrics 53

Used Metrics to Compare System Models

To date, a number of different methods and metrics on how to characterize the quality of
systems and to compare systems based on quality attributes have been developed. Many of
the metrics require details about system components and specific information about pro-
cess performance (e.g., the effort for developing and changing particular components). The
field data introduced previously, in contrast, provides just a rough description of failures,
recalls, and mainly lacks standard classification scheme for details about causing compo-
nents, for example on the level of software architectures. To characterize a system with
respect to this field data, the metrics proposed by Bengtsson and colleagues [BLBvV04],
i.e., the Architecture-level Modifiability Analysis (ALMA), has been applied. This metrics
allows to compare system architectures by considering their capabilities with respect to
the modifiability quality attribute. According to this metrics, characterizing the system
modifiability is performed in the following steps:

• Develop change scenarios

• Define architecture

• Evaluate scenarios

• Overall evaluation

Change scenarios correspond to concrete activities in the engineering to perform spe-
cific types of changes, like adding new functions for example. Evaluating scenarios means
characterising their effort or costs with respect to supported system architecture. The ul-
timate goal of the ALMA method is to collect all supported change scenarios, to evaluate
them by estimating their costs, and to estimate the overall costs for the targeted architec-
ture. The final value can be used to predict the change costs for example. Formally, this
cost value is defined as follows:

Cnext :=

[
P

N
·

N∑
j=1

(sizej · weightj)

]
·Mnum (4.1)

Parameters sizej and weightj characterize a single change scenario j by its effort or
cost required for the realisation and its frequency of occurrence in given period of time,
respectively. The parameter N is used here to get the average value for costs, that is then
used to predict the future costs, i.e., the Cnext. This is done by simply multiplying the
average change costs with the expected maintenance interval Mnum. Finally, the parameter
P is a constant, which is used to adjust the final value to specific project performance.

To estimate the reduction in costs, the ALMA method is applied as follows: for the
Use Case 1 and 2 the change costs are estimated under assumption that the system
model applied is the commonly used one, i.e., without the support to perform changes
dynamically. Then, the cost values are computed for both studies again, but now under
assumption that the applied system model incorporates the proposed approach to manage
changes. The change costs are given as follows (from Equation 4.1):

Ceff :=

N−1∑
j=1

(sizej · weightj) + (sizef · weightf) (4.2)

54 4. Case Study and Evaluation

Change scenarios and their volumes

SNr. Change scenario (repair of) size weight

1 Software cdev1 + ccert1 0.643

2 Hardware cdev2 + ccert2 0.147

...

Sum 1.0

Table 4.2: Describing change scenarios according to ALMA method for Use Case 2 (excerpt)

The part of the equation (sizef · weightf) corresponds to costs required to repair
the application software, whereas the another part corresponds to costs for repairing the
remaining system components from Table 4.1. This separation is used just to easily
understand how the cost reduction is estimated later.

In order to get Ceff , some assumptions on parameters of the ALMA method are given
In the following.

Assumption 1: The ALMA method requires to first define a collection of scenarios in
order to evaluate system architectures. A change scenario in this case corresponds to a
repair action that needs to be conducted on the system in order to remove faults from a
defective system part. According to this scheme, there are 6 different change scenarios for
the Use Case 1 and 5 scenarios for the Use Case 2 (see Table 4.1).

Assumption 2: The parameter size defines a volume of a change scenario in terms of
required effort/costs, and can depend on many factors. Usually, this value is observed
from the history, i.e., the experience about the same or similar scenarios, or it can be in
some cases rated by the experts. Because the size parameter is not known in provided
field data, it will be considered as a variable, and defined as follows:

size := (cdev + ccert) (4.3)

The parameters cdev and ccert correspond to costs of change scenarios related to de-
velopment and certification. These are normalized values, and show to which extent a
particular change scenario impacts the development and certification (or re-certification).

Assumption 3: As mentioned previously, field data are not sufficiently precise when
considering details (e.g., software parts and layers). It is, for example, not completely
clear how much the applications, device drivers or libraries are contributing to recalls
with respect to the overall software. The use cases provide some classification scheme,
which is mainly based on keywords collected from recall reports. Because the approach
proposed in this thesis targets the application software, it needs to be known how much
the application software contributes to the recalls. In contrast to the Use Case 1, the Use
Case 2 provides more detailed information, in particular, the application-caused recalls
are 1/12 of the overall software-related recalls. It should be noted that also the program,
function or code, may belong to this category, but, in order to have more precise results
with regard the cost reduction, it will be therefore assumed that software applications are
contributing to max. 12% of the overall software-related recalls.

4.2. Results 55

UC # of # of sw Change effort/costs Cost reduction
recalls related Ceff (·100) [%]

1 315 82 0.229 · (cdev1 + ccert1) 0.031 · (cdevf + ccertf)

+... 0.031 · (cdevf + ccertf) + [0.229 · (cdev1 + ccert1) + ...]
+0.317 · (cdev6 + ccert6)]
+0.031 · (cdevf + ccertf)

2 1210 778 [0.565 · (cdev1 + ccert1) 0.077 · (cdevf + ccertf)

+... 0.077 · (cdevf + ccertf) + [0.565 · (cdev1 + ccert1) + ...]
+0.117 · (cdev5 + ccert5)]
+0.077 · (cdevf + ccertf)

Table 4.3: Estimated change effort/costs Ceff for use cases 1 and 2 and possible cost reductions

4.2 Results

Identifying and Evaluating Change Scenarios

As one of the first steps towards applying ALMA method, change scenarios have to be
defined based on recall data and corresponding causing components from Table 4.1. An
excerpt of these scenarios is given in Table 4.2. For every scenario, weight and size
parameters are defined. As mentioned, size is a cost related to a change scenario, and is
consiederd as a variable here, whereas weight corresponds to a frequency of occurrence of
a given scenario, normalized to the overall number of recalls. For example, 64,3% software-
related recalls correspond to 778 recall actions and thus 778 occurrences of a single change
scenario.

Estimating Change Costs and Possible Cost Reductions

Change scenarios from Table 4.2 are used to estimate the costs of changes, according
to Equation 4.2. Table 4.3 summarizes costs for both use cases, i.e., their Ceff . This
value is estimated for both use cases, once under an assumption of having a system model
without a support to perform changes dynamically, and once with the system model
that incorporates the proposed approach to manage changes. Generally, the difference
between assumed system models is that the application software in the later case can be
repaired without impacting the size parameter, i.e., in other words, without impacting
the certification costs.

The cost reduction is therefore estimated relative to the Ceff of the first system model.
Table 4.3 shows the possible cost reduction, in the last column. The concrete distribu-
tion of this cost reduction is illustrated in Figure 4.2, with concrete values for the size
parameter. This distribution in fact shows the cost reduction when considering the ratio
between costs required to repair the system from application-caused failures and costs re-
quired to repair the system from failures caused by remaining system parts. For example,
in the case of an uniform distribution, i.e., when the same costs are required for all kind
of repairs (which is rather unlikely in the practice), the cost reduction lies at about 7%
(point P1 in the figure), and 3% for the Use Case 1. At the other extreme point P2, there
is no reduction at all. This can for example be the case when the first system model can
manage the changes on the application software, without having an impact on the size
parameter. In contrast to P2, the point P3 shows the cost reduction for the case when

56 4. Case Study and Evaluation

P1

P2

P3

P4

Figure 4.2: Possible reductions in costs for change scenarios related of the Use Case 2

change scenarios related to the application software are the only scenarios that require
costs (which is in fact never the case). Finally, at the point P4, there are no costs for any
change scenario at all (which is, again, never the case).

Generally, the real concrete scenarios would be expected to be around the point P2,
with more focus in direction towards P1, because, obviously change scenarios related to
all other components, including hardware, sensors, actuators etc., have more impact on
costs than just the application software. This would mean that the cost reduction in some
concrete scenarios would likely be below 7%. This, of course, holds for the assumption
that 12% of software-related recalls are caused by faults in applications.

4.3 Discussion

In this brief evaluation, it was shown to which extent the proposed approach may help in
reducing costs for repairs of safety-critical systems, by considering two application fields,
both focused on series production. From the statistics, it could be observed that repairing
the application software is just a small excerpt of the overall repair actions, and possible
reductions range just from 0% to < 7%, under given assumptions. However, for application
fields which focus on mass customization, this reduction is considerable. For example,
according to Hommes [Qi 14], 2.6 millions cars were recalled due to failures caused by
software, in period of time given in Table 4.1. By applying the proposed approach to
manage changes, up to 312000 repair actions or car recalls could be managed in a cost-
effective way. For example, a dedicated maintenance channel would be conceivable, that
would allow to transmit repaired software components and to upgrade the system, possibly
without a need for visiting the service stations and a need for cost-intensive scheduling
and planing of time slots with the customers.

One of the most delicate parts of this evaluation is that field data does not provide a

4.4. Implementation Status and Applications 57

Protection

Excitation

Turbine control

Synchronization

Generic device
(new generation)

Figure 4.3: Standard functions used for controlling processes in hydro power plants (source:
Andritz Hydro)

classification scheme that particularly considers details for different system elements, so
that the cause of recalls can be more precisely addressed. For example, the Use Case 1 just
maps software caused failures to control algorithms, and in general to software caused fail-
ures due to changes or upgrades. These recall distributions are imprecise mainly because
of different systems being analysed, their different architectures, functions, and differ-
ent involved organizations (i.e., car manufacturers) that were considered in the analysis.
Further refinement and standardization of such classification schema would bring much
benefits in conducting more precise statements about possible cost reductions, even for
cases when the concrete costs for individual change scenarios are not publicly known.

4.4 Implementation Status and Applications

This section summarizes the implementation status of individual prototypes developed in
the context of the thesis and their concrete application. Note that in the following the
focus is given only on contributions of the thesis and not on evaluation and case studies
introduced previously.

Application: Controllers for Hydro Power Plants

As introduced in the acknowledgements part, the work in this thesis has been carried out
in a cooperation with the Andritz Hydro GmbH company (Vienna), in the scope of the
HIPASE project (High Integrity Protection Automation Synchronization and Excitation).

58 4. Case Study and Evaluation

The goal of the project was to develop next generation controllers with generic architec-
ture and abilities to customize applications of the product line to different functions and
purposes. Besides, the project goals are put towards providing high quality products with
strong emphasis on safety and dependability requirements.

Basically, hydro power plants are used in different configurations to utilize the water
energy for producing the electricity. During the last decades, computer-based controllers
have been intensively deployed to automatically control, monitor and protect various pro-
cesses in the plants. Figure 4.3 shows the plant internal structure and the installation
including the control functions that are performed by the embedded systems. In sum-
mary, these functions are the following:

Turbine Control. Controlling the produced energy by regulating the volume of water
flowing into the turbine blades.

Protection. The plant is monitored according to some operational requirements and
characteristics, including the behaviour of the current produced and frequency. In
cases of deviation from the desired behaviour, the protecting devices are capable to
turn the plant into the safe state before any damage can be incorporated.

Excitation. The energy produced by generators is originating from the magnetic field
that is produced by rotating electromagnets, which are usually supplied with the
current from external excitation machines. This configuration is realized in order to
be able to dynamically control the strength of the magnetic field, with the aim to
balance the produced and consumed energy.

Synchronization. In many cases, multiple generators are used in a composition to
produce the energy and are connected to the distribution network. To realise this
scenario, it is very important that they are synchronized with respect to current
characteristics. Otherwise, disastrous damages are likely to occur.

Due to different nature and configurations of plants, many possible ways exist on
how to realize and to deploy these four functions. The HIPASE new generation devices,
shown in Figure 4.3 on the right, provide a common platform for the application software,
by utilizing the principles of CBSE. That is, the functions are realized as compositions
of software components, which correspond to small functions, such as ones that provide
basic logic, arithmetic operations but also some complex functions such as controllers and
filters that can be found in the IEC 61131 standard for example.

An important feature of these new generation devices is that they are highly recon-
figurable and allow to deploy applications dynamically. To enable this deployment, the
operating system support to perform changes proposed in this thesis has been applied.
Thus, software components and corresponding interfaces to the container are defined as
described in Section 3.3.

Runtime Support to Perform Changes

The proposed runtime support to perform changes has been developed to fit characteristics
of the ARM processor family, in particular ARM9, and has been evaluated on the Freescale

4.4. Implementation Status and Applications 59

i.mx287 Board (ARM926EJ-S)2. The applied operating system that runs the application
software is SafeRTOS, which is based on functional models of OpenRTOS and FreeRTOS,
and is certified according to the IEC 61508 standard for applications in safety-critical
embedded systems. The operating system software is certified for the use up to SIL 3.

The i.mx287 has been also used to evaluate the runtime performance, scalability and
to identify eventual performance penalties, by comparing the proposed support with the
functionally same, but statically linked, software configuration. In response, some perfor-
mance penalties could be observed, mainly because of the level of indirection introduced
between software components and their container, but these penalties are predictable.
This can be seen as one of the possible topics for the future work.

System Modeling and Analysis

The modeling and analysis support, as introduced in Section 3.2, are developed follow-
ing the principles of Contract-based Design (CBD) and Constraint Programming (CP)
paradigm, respectively3. For the analysis, the Java-based Choco Solver has been ap-
plied [YVNC08], to demonstrate the feasibility of using CP. Thus, the system defined in
form of contracts is translated into a constraint network using notations of the Choco
Solver. Roughly, the implementation can be characterized as follows:

Data Model. Used solver allows to define various kinds of expressions in constraints,
including logical, arithmetic, and some functions like computing a sum over real
numbers for example (cf., Table 2.3). Besides, it supports few different domains
for used variables. In the current implementation, some basic expressions can be
defined so that fixed values or intervals can be observed for a single data variable
inside contracts.

Contract Operators. Composition, refinement, platform mapping and viewpoint fusion
are the contract operators required to build robust designs. The current implemen-
tation supports the composition and platform mapping, using the expressions in
contract properties mentioned previously. Although the viewpoint fusion is not sup-
ported directly (as modeling part), it can be realized by analysing each of the system
views independently. The refinement, on the other hand, is to some extent more dif-
ficult to analyse automatically, and is a topic for the future work.

One of the most delicate characteristics of tools for formal analysis is their runtime
performance and scalability. In CP, the scalability can be influenced by many factors,
including the variable domain and used concrete configuration of variables (e.g., ranges,
fixed values), the problem statement in terms of variables, constraints and complexity of
their relationships, and solver algorithm, among few other factors. The current imple-
mentation used integers as domain of variables, to optimize performance. The approach
has been evaluated with respect to scalability for different complexities of system config-
urations, i.e., number of contracts and used properties. The results can be observed from
Publication [6].

2For details about these ARM-specific characteristics, please refer to Publication [3]
3System modeling and analysis are not integrated into the development process of HIPASE controllers.

60 4. Case Study and Evaluation

Chapter 5

Conclusion

5.1 Approach Overview

This thesis proposed a systematic approach to manage software changes in the engineering
of safety-critical systems, with the objective to reduce the effort/costs associated with
repairs that such systems have to undergo in the case of failures in their operation. The
problem statement behind this work was motivated by the fact that safety-critical systems
currently face a number of challenges in their engineering. In particular, the growing
system complexity is one of the major reasons why the development fails to effectively
eliminate systematic design faults, which consequently often lead to system failures and
in some application fields, such failures are occurring at an increased rate. As showed in
some recent reports from the field data, most of those failures are caused by software. The
work in this thesis addressed this problem from a different perspective, as it is handled
in related studies introduced here. In particular, it is based on the assumption that
introducing faults in the development due to complexity issues and a lack of an adequate
engineering support becomes inevitable, and that costs associated with such faults can be
alternatively targeted by employing systematic approaches for managing system repairs,
or concretely, for managing changes required for such repairs. For this class of systems,
repairs are usually cost-intensive engineering activities, and often require the intervention
of the external safety certification authorities (assessors) to approve the required changes.
To this end, the proposed approach provided a solution to target specific repairs, in terms
of supported types of changes and necessary procedures to manage those changes. Changes
are performed on software, by replacing or exchanging defective software components. The
distinct feature here is that procedures required for such replacements/exchanges can be
planned in the safety lifecycle, which allows to perform certain repairs without involving
external assessors, and thus saving related costs, in cases when system integrity is not
compromised.

From the technical perspective, the approach utilized the synergies between emerg-
ing paradigms in safety engineering, i.e., Component-based Software Engineering (CBSE)
and Contract-based design (CBD), to support managing changes as introduced. CBD
was applied to provide a modeling means for designing a system with necessary infor-
mation about its integrity, in order to be able to analyse whether intended changes can
be performed or not, in terms of their impact on system integrity. One the other side,

61

62 5. Conclusion

the architectural and runtime operating system support have been provided to enable per-
forming changes dynamically, i.e., focusing only on defective software components without
a need for re-building and re-deploying the complete software. Finally, the procedures on
managing changes were aligned with regulations of the IEC 61508 safety standard. This
alignment comprises on the one side, the choice on the type of supported changes which
resulted from requirements, procedures, measures and techniques defined in the standard,
and the system integrity information on the other side, that needs to be modelled in order
to be able to analyse the impact of changes. With CBD, such an integrity information
can defined on a design level, and can be tracked to the top level system requirements.

The approach was evaluated using two studies which deal with the analysis of failures
and related recall actions caused by malfunctioning of embedded systems. The studies
provide a collection of recalls from the field data taken from some defect reports in the
automotive domain and biomedical engineering. Recalls are classified according to source
of their cause, i.e., the system components, including software, hardware, and interfaces,
among few other. They have contributed to costs required to repair targeted systems, and
the goal of the evaluation was to identify how much of the repair costs can be reduced,
when applying the proposed approach to manage changes. Although the studies did not
provide a detailed classification schema for failures and recalls, it could be observed from
the evaluation results that application fields which mainly rely on a mass customization of
products, with predominating software-implemented functions, can benefit from applying
the approach presented here. On the other side, repairs on the level of software, in particu-
lar on the level of applications as supported here, are just an excerpt of the overall possible
defects embedded systems are facing, and managing only this kind of repairs would not
bring much benefits in costs for the application fields that release products (devices) in
small numbers.

In the end, the application of the proposed approach was introduced. Some parts
of the contributions, in particular the runtime operating system support for performing
changes, have been deployed in an industrial setup to drive component-based applications
for controlling physical processes in hydro power plants (in the scope of the HIPASE
project). This runtime support is used to deploy and to reconfigure control software for
different functions and different purposes on a common platform, that should be safety
certified. Although this domain cannot take much benefits from managing changes as
proposed here, the application of the runtime support shows that different use cases can be
utilized from the contributions of this thesis and that potential advantages in maintaining
software for safety-critical systems can be achieved.

5.2 Future Work

This section summarizes some potential improvement suggestions for the future work. The
improvements are on the one side targeting limitations of the implementation features in-
troduced in Section 4.4, and, on the other side, they focus on possible extensions regarding
the theoretical aspects of the proposed approach to manage changes.

Systematic way for gathering the system integrity information. The information
about system integrity is crucial to enable the analysis of change impacts. This infor-
mation cannot be completely derived from individual software components or their

5.2. Future Work 63

contracts, but instead, when integrating or composing those components, i.e., in the
system development process. The system developers or integrators usually have to
know to which failures the invalid composition may contribute, and then, based on
those failures, they may adjust contracts or add some new ones if needed. However,
there is no general and systematic way on conducting related cause of failures from
contracts, for such a low level design details. In this thesis, the non-functional re-
quirements or attributes defined for the DO-178B standard have been proposed as
guidelines for building contracts (see Publication [1]), but they are not the guar-
antee that all possible failures or failure modes for all possible system models have
been considered.

A very important support in modeling systems out of contracts would be a system-
atic method or workflow on how to gather faults that might be introduced when
composing contracts, when refining the system design and when mapping the sys-
tem design onto its platform. The main outcome of this support is that information
about possible faults would be more complete and the standard procedure can help
to easily conduct the system integrity information that has to be documented in the
planning phase of the safety lifecycle.

Analysis Support for Different Types of Contracts. The system analysis applied
in this thesis is based on Constraint Programming (CP) paradigm and related prob-
lem (constraint) solvers. CP provides a lot of features, with respect to the repre-
sentation of domains (integer, real, set), their expressions (SAT, SMT, functions,
etc.), but it is not always an adequate tool for certain use cases. In particular,
the platform mapping in some cases requires more complicated expressions, to solve
resource allocation problems for example. Therefore, as also proposed in the COM-
PASS project [Rid12], a landscape of tools for the (formal) analysis are required to
address different system properties or requirements. New methods and tools have
to be evaluated with regard to modeling requirements using contracts and runtime
performance or scalability.

Extension of Supported Changes. The introduced types of changes provide a support
to target rather simple repairs, but in response, they allow to define the necessary
procedures in advance in the safety lifecycle, and to perform repairs in a cost-effective
way. Addressing particular types of repairs as presented in this thesis could be a
promising way to manage costs in systems lifecycle after production. The existing
support for changes should be extended, to allow for targeting more complex repairs.
In particular, the following two essential issues have to be addressed: (i) to define a
model that allows for analysis of change impacts, and (ii) to define the responsibility
of roles, i.e., which parts can be performed without involving assessors and which
are necessary to be approved by the assessors on-site.

The above outlined improvement suggestions particularly target the modeling and
analysis support, and managing changes in general. The following points are the improve-
ments related to the runtime operating system support for performing changes.

Portability to Other Processor Architectures. The introduced architecture for sys-
tem and software components is tailored to specific processor architectures. In par-
ticular, the interfaces between software components and their container (part of

64 5. Conclusion

the platform) are realized by exploiting mechanisms for relative addressing modes1.
Software components in response can access their required interfaces by using rel-
ative locations, for example based on the current location of the program counter.
In addition, these mechanisms allow to link some required services directly with the
object code of software components, thereby allowing to utilize the optimal run-
time performance. However, some processors do not have such a support, and new
methods have to be analysed on how this interfacing can be realized.

Runtime Performance Analysis and Improvement. Interfaces between software com-
ponents and their container introduce an additional level of indirection, and thus,
some runtime performance penalties. As shown in Publication [3], these penalties
are predictable, but might for some systems be considerable. They mainly depend
on the interaction intensity between the container and software components. To
this end, adequate design strategies have to be employed to optimize the runtime
performance, at least for cases of intensive interactions.

1The way on how a reference to some symbol (data, function) is realized in instructions.

Chapter 6

Publications

This chapter lists publications made during the work in this thesis. A collection of publi-
cations and their mapping to thesis objectives is illustrated in Figure 6.1.

Objectives

Publications

Objective 1
Identify supported change types (a trade-off

analysis)

Publication 1
Towards Assured Dynamic Configuration of

Safety-Critical Embedded Systems

Publication 2
Reducing Certification Costs Through Assured

Dynamic Software Configuration

Publication 3
A Component-Based Dynamic Link Support for

Safety-Critical Embedded Systems

Publication 4
Inversion of Control Container for Safety-critical

Embedded Systems

Publication 5
Towards Predictable Dynamic Linking for Safety-

critical Component-based Systems

Publication 6
Constraint-Based Verification of Compositions in

Safety-Critical Component-Based Systems

Publication 7
Towards Pattern-based Reuse in Safety-critical

Systems

Publication 8
On Design-time Modelling and Verification of

Safety-critical Component-based Systems

Objective 2
Provide a support and corresponding system

model to perform changes

Objective 3
Provide a support to analyse the impact of

changes on system integrity

SAFECOMP Workshops 2014, Springer

ISSRE Workshops 2014, IEEE

ECBS 2013, IEEE

EuroPLOP 2013

WIP@SEAA 2013

SNPD 2014, Springer

EuroPLOP 2014

IJNDC 2014, Atlantis-Press

Figure 6.1: Overview of the publications and their mapping to thesis objectives

65

66 6. Publications

Towards Assured Dynamic Configuration

of Safety-Critical Embedded Systems

Nermin Kajtazovic, Christopher Preschern,
Andrea Höller, and Christian Kreiner

Institute for Technical Informatics,
Graz University of Technology,
Infeldgasse 16, Graz, Austria

{nermin.kajtazovic,christopher.preschern,
andrea.hoeller,christian.kreiner}@tugraz.at

Abstract. Assuring systems quality is an inherent part of developing
safety-critical embedded systems. Currently, continuous increase of sys-
tems complexity, in particular that of software, makes this development
challenging. In response, more and more software faults are remaining
unidentified at design-time so that changes and maintenance need to be
performed at an increased rate. Unfortunately, today’s safety-critical sys-
tems are not designed to be upgraded or maintained in a seamless way, so
that the overhead of performing changes may be considerable, especially
when such changes require to re-verify and re-validate the whole system.

In this paper, we present an approach to perform software changes in
the operation and maintenance phase of the systems lifecycle. Changes
are performed dynamically, by replacing parts of software (i.e., software
components) with their functionally equal out-of-the-box instances. In
order to prevent the impact of changes on systems integrity, we provide
a support to model and to analyze the system. The main outcome here
is that specific kind of changes can be maintained without adding any
development costs.

Keywords: safety-critical embedded systems, component-based systems,
dynamic configuration.

1 Introduction

Maintaining a correct function even in presence of faults is an important charac-
teristic of safety-critical embedded systems. In order to reduce the risk of failures,
and thus to avoid the potential environmental damages or harm on humans, their
hardware/software development has to be rigorous and quality assured.

Currently, rapid and continuous increase of systems complexity, in particular
that of software, makes the development of these systems challenging [4] [12]. In
response, more and more software faults are remaining unidentified at design-
time so that changes and maintenance need to be performed at an increased rate.
Concrete examples of such change and maintenance demands are quite often

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 167–179, 2014.
c© Springer International Publishing Switzerland 2014

6. Publications Publication 1 - SAFECOMP Workshops 2014 67

c© 2014 Springer. Reprinted, with permission, from Proceedings of Computer Safety,
Reliability, and Security Lecture Notes in Computer Science Volume 8696, 2014.

168 N. Kajtazovic et al.

recalls of vehicles, medical devices, and other products. Some of these recalls are
related to faults located in the software functions, such as the control algorithms,
libraries, flaws in modification or adaptation, and other. According to recent
studies related to defect analysis in recalls, those faults are getting more frequent,
as more and more functions are being implemented in software [2]. Eliminating
those faults in most current safety-critical systems is quite difficult, in particular
because it has to be evidenced that the changed system still maintains certain
level of quality – a so called safety integrity in the notation of safety standards.
To provide such an evidence, many steps in the development lifecycle have to
be repeated. In addition, depending on the impact of changes and regulations of
the considered safety standard, new certification might be required.

In this paper, we present an approach to perform software changes in the
operation and maintenance phase of the systems lifecycle. Changes are per-
formed dynamically, by replacing parts of software (software components [5])
with their functionally equal out-of-the-box instances. Before any change can
be performed, a new system configuration is analyzed against the violation of
the safety integrity. Thus, only the configurations that pass this analysis step
can be installed into the system dynamically. To enable such assured dynamic
configurations, we have provided the following basis in our previous work: (a) a
runtime mechanism that allows to load the out-of-the-box software components
into a real-time operating system dynamically – the dynamic linker [10], and
(b) a design-time mechanism to ensure the consistency of new system config-
urations [11]. This consistency mechanism performs the analysis of a changed
system based on modelled properties which describe certain system attributes,
such as memory and timing budgets for example1. In order to determine whether
changes caused by replacing software components have an impact on the safety
integrity, there is a need to identify which attributes may be relevant here. For
this purpose, we analyze in this paper how the change management is regu-
lated in some safety standards, and under which conditions the replacements of
components are allowed.

The main outcome here is that for specific kind of changes, in which software
components can be replaced, the system does not need to be turned back into the
development phase. Furthermore, if the re-certification of the system is required,
the original certification data can be reused, since they are not impacted by those
changes. In response, replacements of software components can be maintained
without any development costs.

The remainder of this paper is organized as follows: Section 2 provides a
brief overview of relevant related work. Section 3 describes how changes are
handled in safety standards, and which system attributes have to be considered
when analyzing changes. In Section 4 the proposed approach is described, and
a short discussion is given in Section 5. Finally, concluding remarks are given in
Section 6.

1 We use the notation system attributes to identify various functional and non-
functional system aspects, such as performance requirements, constraints, etc.

68 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 169

2 Related Work

Now we turn to a brief overview of related studies. We summarize here some
relevant articles that handle the analysis of changes in safety-critical embedded
systems.

To date, much research has been done on analyzing planned changes in soft-
ware architectures for safety-critical systems [1] [15] [13] . In the work by Adler
et al. [1], an adaptive architecture for safety-critical automotive systems is pro-
posed. The main goal here is to increase the systems availability by allowing
software components to implement diverse behaviours, so that in the event of
failures or degradation of quality, the automotive system can continue operating
by switching between correct implementations. Since different implementations
of components may have different quality, the authors provide a design-time
analysis to prevent mixing not allowed combinations of component implementa-
tions. For this purpose, they define a quality system, with a set of fixed quality
types. A more advanced framework for dynamic adaptation of avionics systems
was developed by Montano [15]. The goal is to adapt the system to new, correct
configurations, in case of failures. To perform this, a common quality system de-
fines the contracts between functions and available static resources (e.g. memory
consumption, CPU utilization, etc.) and in this way it restricts the possible set of
correct configurations. An important aspect of this work is that it demonstrates
the CP approach to solving the composition problem. However, the quality type
system only considers static resources, and does not consider contracts between
functions. Ultimately, the approach is strongly focused on dynamic adaptation
with human-assisted decision making. Similar reconfiguration strategy is used in
[13], but the consistency of the reconfiguration here is ensured by the runtime
mechanisms (partitioning).

There are also some works which focus on upgrading safety-critical systems
[20] [16] [19]. One of the most notable is work done in the scope of the project
PINCETTE, which has as a goal to perform live upgrades of software systems
that control the safety-critical processes [20]. Although the topic is beyond the
scope of available validation methods in the practice, the aim is to evaluate
the feasibility of formal methods to such use cases. In contrast to our data
flow-oriented analysis, the focus here is on validating the interaction between
upgraded behaviours. Another work [16], done in the scope of the RECOMP
project, addresses also live upgrades as one of the goals to reduce the costs
for certifying systems. However, only dynamic linker has been realized here,
without considering the analysis of changes. Finally, the work in [19] shows how
to validate changes of upgraded safety-critical system. Here, model checker is
used to verify changed behaviour.

In summary, various analysis methods have been developed to validate changes.
However, none of the approaches discussed here consider regulations of stan-
dards, to identify whether changes they support are allowed and, if so, to which
extent.

Publication 1 - SAFECOMP Workshops 2014 69

170 N. Kajtazovic et al.

3 Addressing Changes in Engineering of Safety-Critical
Embedded Systems

Identifying system requirements affected by changes is a crucial step in the
change management process. To determine which requirements and which re-
lated system attributes influence the systems safety integrity, we analyze in the
following how changes are regulated in safety standards. Based on this analysis,
we build a list of system attributes that we further use to construct our software
architecture, and to build properties for our software components.

3.1 Change Management in Safety Standards

In general, standards for functional safety provide the guidelines on how to
align the system development with the safety lifecycle in each phase. One aspect
of these guidelines are activities related to maintenance and operation phase
of the systems lifecycle. Changes in the operation phase are usually handled
in the context of the supporting processes defined in standards, such as the
maintenance, the configuration management, and the change management [18].
In the following, we describe the change management defined in the IEC 61508,
which is a generic safety standard applied in the industry. We align our approach
to this standard, because many guidelines it provides can also be found in other
standards applied in specific industrial sectors, since they represent derivatives
of the IEC 61508 (e.g., the ISO26262 standard provides similar guidelines for
maintaining changes in automotive systems).

The lifecycle of the IEC 61508 standard comprises the engineering activi-
ties for software and systems scope. Changes in the operation and maintenance
phase of systems are described in parts 1, 2 and 3 of the standard, in the con-
text of the supporting processes: maintenance, configuration management, and
change management. Each of these processes has defined steps, the inputs and
the work products it shall produce. To ensure the safety integrity after imple-
menting changes, the standard prescribes requirements that have to be fulfilled
and a list of possible techniques and measures to apply within these processes.
The requirements are mainly related to activities that need to be performed if
safety integrity is affected by changes. In Table 1, we have filtered out the most
relevant requirements. Basically, if safety integrity is affected by changes the
standard recommends to (i) perform the hazard and risk analysis in order to
identify additional faults that might be introduced by such changes and (ii) to
return to the appropriate phase in the software lifecycle to implement changes.
On the system level (part IEC61508-2), it is recommended to use the same de-
velopment equipment and expertise (e.g., tools, previous system configuration,
project artifacts, etc.), in order to just focus on changed parts only. In addi-
tion to requirements, developers have the option to choice which techniques and
measures to perform, based on the level of safety integrity they want to achieve
after implementing changes (bottom part of the table). Among them, the most
influential measure here from the aspect of costs is a need for the verification and
validation. For the highest levels of safety integrity, the standard recommends to

70 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 171

Table 1. IEC 61508 requirements, measures and techniques related to change man-
agement (an excerpt)

Requirements on software change management, IEC 61508-3
7.8.2.3 An analysis shall be carried out on the impact of the proposed software modification on

the functional safety of the E/E/PE safety-related system: a) to determine whether or
not a hazard and risk analysis is required; b) to determine which software safety lifecycle
phases will need to be repeated.

7.8.2.5 All modifications which have an impact on the functional safety of the E/E/PE safety-
related system shall initiate a return to an appropriate phase of the software safety lifecycle.
All subsequent phases shall then be carried out in accordance with the procedures spec-
ified for the specific phases in accordance with the requirements in this standard. Safety
planning (see Clause 6) shall detail all subsequent activities.

Requirements on system change management, IEC 61508-2
7.8.2.3 Modifications shall be performed with at least the same level of expertise, automated tools

(see 7.4.4.2 of IEC 61508-3), and planning and management as the initial development of
the E/E/PE safety-related systems.

7.8.2.4 After modification, the E/E/PE safety-related systems shall be reverified and revalidated.
Recommended techniques and measures, IEC 61508-3 A.8

2 Reverify changed software module
3 Reverify affected software modules
4a/4b Revalidate complete system or Regression validation

perform the re-verification and re-validation of the complete system (measures
2, 3, 4a in the Table 1). Alternatively, regression validation would also suffice
(measure 4b). Nevertheless, changed artifacts (from the work products of the
hazard and risk analysis down to the test reports) have to be newly certified.

In summary, the change impact on safety integrity implies to update many
work products throughout the systems lifecycle, to repeat particular steps of
that lifecycle and to re-verify and re-validate the system. However, according
to requirements 7.8.2.3 and 7.8.2.5, those activities have to be performed only
if there is an impact on the functional safety (i.e., the systems safety integrity
is changed). Our goal in this context is to allow changes to an extent to which
they have no impact on the systems safety integrity. For this purpose, we need
to evaluate the requirement 7.8.2.3-a, for every change request. If there is no
need for the hazard and risk analysis, changes are allowed, otherwise not. To
realize this, we first need to identify the system attributes that have an impact
on systems safety integrity. Based on these attributes, we can set constraints
on the architectural level (e.g., software components, layers, operating system
configuration, etc.) that would allow us to evaluate the requirement 7.8.2.3-a. In
the following, we introduce these attributes.

3.2 Impact of Changes on System Requirements

Safety standards set requirements to achieve the functional safety, while leaving
the space for the developers on details on how they should implement those re-
quirements. The same holds for the change management, i.e., the IEC 61508 does
not specify which system attributes have to be considered when analysing the im-
pact of changes. More concrete guidelines about this can be found in the avionics
domain, concretely in the concept Reusable Software Component (RSC) from
the Federal Aviation Administration (FAA) that was developed for the standard

Publication 1 - SAFECOMP Workshops 2014 71

172 N. Kajtazovic et al.

DO-178B, to enable reuse of software components and their late integration into
a certified safety-critical system [7]. Similar to change management, the aim is
to maintain the functional safety after integrating components. Although RSC
provides concrete information about reusing pre-fabricated components, no fo-
cus has been given on how to design such components for reuse – for example,
how to describe the context in which components have to operate (embedded
system, environment, etc.) and which system attributes contribute to that con-
text. Similar to RSC, the concept Safety Element out of Context (SEooC) as
part of the automotive standard ISO26262 defines reuse for the sub-systems, but
on the abstraction level of requirements.

To our knowledge, the only available official publication that handles change
management in detail and is related to safety standards are the FAA guidelines
on analyzing the impact of changes in software [6] [17]. Here, a collection of
the concrete system attributes that might be affected by changes is presented.
This collection is made to help developers in the post-certification process of
the DO-178B standard to ensure the safety integrity of the changed system by
determining the impact of changes on the system, and by estimating the overhead
to re-verify, re-validate and re-certify the system. Although avionics domain is
addressed here, most of those attributes are common to embedded systems in
general. In Table 2, we summarize the common system attributes.

Table 2. Considered system attributes to analyze impact of changes, according to
Federal Administration Aviation (FAA) [6]

System attribute Description
traceability requirements, design, tests, procedures
memory margin memory allocation requirements (volatile, non-volatile mem-

ory)
timing margin timing requirements (task scheduling, interface timing, ...)
data flow coupling between software components (data syntax, seman-

tics)
control flow coupling between software components (events, calls, ...)
input/output interfaces with the external world (bus, hardware, memory,

...)
development environment and pro-
cess

compilers, linkers, loaders, tools

operational characteristics runtime mechanisms (changes on limits, i.e. contracts, excep-
tion handling, ...)

partitioning change on protective safety mechanisms

We use some of the FAA attributes as the first class entities to maintain the
consistency of the system, and to estimate the impact of changes. We discuss
the selection of attributes in the following section more in detail.

4 Ensuring Consistency of System Configurations

In this section, we introduce our approach to ensuring the consistency of system
configurations. To this end, we show how we define a system using attributes

72 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 173

System Model

System Constraint Network
Constraint

Variable

Variable

Constraint

Software
Component 1

Platform
(Embedded System)

Software
Component n

Component Contracts System
Definition

Platform Contracts

Contract n-2Contract n 2
Contract n-1Contract n-1

Contract nSystem
Attributes

Contract n-2Contract n 2
Contract n-1Contract n-1

Contract nSystem
Attributes

Consistency
Analysis

System Architecture Dynamic
DeploymentDynamic Parts

(Exchangeable) Load Software
Component
Load Application

Constraint

Variable

Variable

Constraint

Constraint Variable...
Software Component 1 Software Component n

...

Static Parts
(Fixed or Configurable)

Component level:
definition of
contracts on system
attributes (e.g. FAA
system attributes)
System level:
definition of
contracts for the
Platform
System composition

Software Application

Component Container (Middleware)

Operating System

Initial analysis
Change impact
analysis

Hardware

...

Fig. 1. Proposed workflow for ensuring systems consistency: system modelling using
contracts to describe attributes (top), consistency analysis (middle) and dynamic de-
ployment of software components (bottom)

described in the previous section, and how we analyze the impact of changes.
All information about systems consistency is contained in those attributes.

The proposed approach in the workflow form is depicted in Figure 1. On the
top, a model of the system is defined. This model consists of the two elements:
software components which implement certain application-level functions, and
the platform, which is a model of an embedded system. Both software compo-
nents and the platform implement certain contracts, in order to express relations
to other dependent components or platform. These contracts are the fundamen-
tal elements of the system model that allow us to maintain the consistency of the
system. They contain the information about system attributes discussed in the
previous section, and provide means to build relationships to other contracts.
Based on those relationships, impact of changes in one particular contract can be
tracked throughout the complete system. We introduce contracts later in Section
4.2. In the next step of the workflow, the system in terms of contracts is trans-
lated into a so called constraint network, i.e., a set of inter-connected variables
and constraints. This constraint network represent contracts and their relation-
ships in another problem domain, which allows us to automatically analyze the
consistency of the system by evaluating constraints.

Publication 1 - SAFECOMP Workshops 2014 73

174 N. Kajtazovic et al.

In the last step of the workflow, components can be dynamically loaded into
the platform, depending on results of the analysis. If all constraints in the anal-
ysis step are satisfied, the system modelled in the first step is consistent, i.e., we
say the system configuration is assured. Thus, any change in the modelling step
can be captured and analyzed in the constraint network.

In the following, we describe parts of this workflow more in detail.

4.1 Software Architecture

To perform changes in the system by replacing some parts of it, there is a need
for an adequate architectural support, i.e. a design for upgrades [9]. Another im-
portant aspect here is that a degree of flexibility shall be balanced to an extent
to which an the impact of changes on system attributes listed in Table 2 can be
managed. For example, if changes in behaviour of certain software functions can-
not be analyzed (e.g., in the constraint network from Figure 1), replacing those
functions with different behaviours shall not be approved. Therefore, certain
limitations are necessary to set on the design.

For our system, we use a Component-based Software Engineering (CBSE) [5],
which is currently a key paradigm applied for building safety-critical systems.
Automotive AUTOSAR, standards such as IEC61131/499 and IEC61850, are
some of the reference component-based architectures. In those architectures, soft-
ware components implement parts of systems functions, such as the controllers,
software sensor and actuators. Due to well-defined interfaces, component may
implement functions on different granularity levels, e.g., like Matlab Simulink
function blocks and sub-systems, thus allowing for compositional (hierarchical)
design. Moreover, well-defined interfaces allow their reuse, customization for the
use in different contexts, and so forth.

Our software architecture is depicted in Figure 1 (bottom part). Here, software
components implement certain software functions composed into an application,
whereas their lifecycle, their coordination and resources from the operating sys-
tem are managed by the underlying middleware, i.e., a component container.
Changes related to software may impact any of these layers, and therefore any
of the introduced system attributes. In order to be able to analyze such an
impact, we set limitation on the design so that replacements of software com-
ponents are allowed only. That means, some of the system attributes are fixed
at design-time so that changes have no influence on those attributes. For ex-
ample, connections between software components have to be static, since they
may affect the functional requirements if changed (e.g., adding/removing soft-
ware components, or changing connectors may affect systems behaviour), and
this can only be analyzed manually.

With our limitations, the impact of changes is related to software components
and their interaction with the platform only. However, such cases are also not
trivial, since changes may still have an impact on systems consistency. For ex-
ample, the consistency may be compromised if the replaced software component
implements interfaces with different semantics, e.g. different value intervals pro-
vided to dependent components, and new intervals were not considered during

74 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 175

the system verification. Similarly, mixing components with different quality lev-
els may cause the same effects, e.g. deploying components qualified for the lower
level of the safety integrity than the integrity of the platform.

The main impact of changes here is on (i) resource management, in particular
on task and memory management for components, and on (ii) interfaces between
components and their interfaces to the platform. From the perspective of the
software architecture, the configuration of tasks (i.e., number of tasks, their
scheduling policy, etc.) and the organisation of memory (i.e., memory layout,
size of the heap, and allocation to tasks) are static features. However, they have
to be included in the analysis since exchanged components may have different
demands with regard to resources (timing, memory).

Similarly, the connections and interfaces between components are static, but
many details have to be considered in order to ensure that the integration or the
composition is correct (i.e., the syntax and the semantics, such as units, valid
intervals of certain data values, etc.). In addition, some components may imple-
ment many alternative behaviours so that different configurations of interfaces
are possible. Therefore, we consider interfaces in our analysis. Finally, details
with regard to the development process and the operational profile are also parts
of the analysis. In Table 3, we summarize system attributes that we include in
the analysis, and possible types of changes (right column). The systems consis-
tency is therefore analysed based on these changes only. The remaining systems
attributes from Table 2 are fixed at design time, and cannot be influenced, i.e.,
the control flow of components, their interaction semantics and behaviour are
implemented as a static part of the architecture.

Table 3. System attributes considered in the consistency analysis, selected from FAA
attribute collection [6]

System attributes Allowed changes
memory margin components: volatile and non-volatile memory

platform: volatile memory (allocated to tasks), non-volatile mem-
ory

timing margin components: execution time
platform: task execution time

data flow components/platform: syntax (datatype, interface), semantics (in-
tervals, values, specific constraints (units, standard compliance,
configuration and calibration data, ...))

development environment
and process

components/platform: tools (compiler, linker, specific constraints
(build options, ...)), version

execution platform components/platform: architecture (cpu, floating point support,
...), safety integrity level

4.2 System Modelling

To integrate the information about selected attributes from Table 3 into the sys-
tems structure, we use Contract-based Design paradigm (CBD) [3]. According to
CBD, software components and the platform implement certain contracts, which
capture part of that information (i.e., a quality stamps or properties). In addi-
tion to capturing information, contracts provide means to integrate components
and platform.

Publication 1 - SAFECOMP Workshops 2014 75

176 N. Kajtazovic et al.

Among few types of different contract available, such as state transition-based
contracts like interface automata, probabilistic contracts, etc., we use a form that
is based on data semantics, i.e., data flow contracts [3]. According to this type,
every contract consists of data parameters, and expressions (or properties) on
those data parameters in form of assumption and guarantees. The guarantees
describe a valid behaviour in form of expressions, that can evaluate to true/-
false, depending on the evaluation of expressions in assumptions. For specifying
contracts, various formalisations can be used, for example logic languages such
as propositional logic, first order logic, their extensions, and other.

In Figure 2, we show how the structure of our software components is defined
to match with used contracts, and how different types of system attributes are
modelled using contracts. A trivial example is shown here just to simplify the
demonstration. Similar to the structure of contracts, every software component
and the platform are defined as a set of data parameters, input and output data
variables. In addition to this information, they contain a list of implemented
contracts. Thus, data parameters in contracts relate to data parameters of their
corresponding components/platform.

Another essential aspect of CBD are the relationships between contracts,
which allow to verify the composition between two contracts, if their assump-
tions and guarantees are defined in a formal way. In our example, the contracts
of components MIS and MIIAS are related with each other using a composition
relation, which is valid only if these contracts are compatible and can interact.
Concretely, this means the relation is valid if the contract of a component which
accepts data, the C1 implemented by component MIIAS, can be satisfied by

Injection Time
and

Ignition Time
Actuation System

MIIAS

Ignition System
MIS

Injection System
MFS

Mass Air
Flow

Engine Speed

Injection Time

Ignition TimeIgnition System
MIS

Ignition System

Component Structure Specification

Data Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

... sen in min int16

...

-1

Data

Implemented Contracts
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
()

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
ANANANANANANDDDDDD000000<<<<<<======ssssssigigigigigig<<<<<<======646464646464000000000000

50<=tig<=150

000000<<<<<<======ffffffigigigigigig<<<<<<======101010101010000000

IMPLIES
((((((())))))

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES
()

()

ffl

ffl

sen tig

tin

tig

tin

Platform

Contract C1 for MIS

0<=sen<=6400
0<=ffl<=100

Assumptions

Guarantees

Contract C1 for MIIAS

Assumptions

Guarantees

tig-tin>=40

25<=tig<=200

Contract C1 for MFS

mem1=2400

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
mem1<=44000

true

Contract C1 for MFS

sil=3

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
sil>=2

true

AND

Resources

Quality information

Interfaces

50<=tig<=150

Fig. 2. Structure definition of software components and the platform, and supported
types of contracts shown on an example of the engine controller, adopted from [8]

76 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 177

the guarantees of the providing component. In the example, this can evaluate to
true only if the assumption (25 ≤ tig ≤ 200) can also evaluate to true2. This can
only be satisfied, if the guarantee of the contract C1 of MIS , (50 ≤ tig ≤ 150),
matches with the assumption (25 ≤ tig ≤ 200), which is the case in the example,
since MIIAS can accept more values of tig (for more details, please refer to [11]).
Therefore, guarantees and assumptions of dependent components are interre-
lated by their expressions. In a similar way, we define contracts for resources
and quality information, as shown in the figure.

Based on relationships between contracts, information about the system at-
tributes on a system level is maintained. Changes in any contract (or exchanges
of contracts) can be captured by evaluating assumptions/guarantees of other
dependent contracts.

4.3 Consistency Analysis

The consistency analysis is based on verifying relations between contracts, in
particular, by evaluating their assumptions and guarantees. As a background
technology, we use Constraint Programming paradigm (CP) [14], which is a
widely applied method to solve decision and optimization problems. The essen-
tial aspect of CP is a problem definition, which is represented as a network of
variables of various types and constraints. Here, constraints represent various
kinds expressions on variables (logical, arithmenic, etc.), and can be related to
other constraints. Solving that problem means evaluating all constraints in the
network. Thus, there is a solution if all constraints in the network are satisfied.

In our approach, we translate the system modelled in form of contracts into
such a constraint network. For this purpose, we have defined a model of a con-
tract, its variables, assumptions and guarantees, and relations between contracts
as network elements, i.e., variables and constraints. The systems consistency is
therefore analyzed by evaluating constraints that are derived from contracts (for
more details, please refer to [11]).

5 Discussion

We showed in this paper that simple replacements of software components are
not trivial. Many details about functional and non-functional aspects of software
components have to be considered to ensure that replacements have no impact
on systems integrity. One of the major challenges here is to determine how much
information should be considered in the analysis, to have a confidence in its
results. With the list of systems attributes we introduced in this work, some
fundamental aspects are covered, but much more details might be required,
depending on the specific domain. This collection of attributes can be extended
according to types of contracts introduced.

2 This data is related to the ignition time of an engine controller tig. The components
modelled here implement contracts in order to satisfy the timing requirement on
allowed difference between injection and ignition time, i.e. (tig − tin).

Publication 1 - SAFECOMP Workshops 2014 77

178 N. Kajtazovic et al.

The analysis method presented here can also be applied to some existing
component-based systems, but in some cases with certain limitations. In AU-
TOSAR for example, changes would be possible on a level of Runnables, which
are units of the execution inside of AUTOSAR software components, and have a
generalized standard behaviour (read, execute, write) [12]. In contrast, changes
of complete software components could not be supported, because events for
the execution of Runnables are user-defined, and other techniques are required
here to analyze the interaction between those events. Generally, for synchronous
data flow systems, such as IEC61131-based systems, or Matlab Simulink func-
tion blocks, it is more easily to apply the analysis, since software components
used here have a standard behaviour and standard execution semantics.

6 Conclusion

In this paper, we presented an approach to perform changes on safety-critical
embedded systems in the operation and maintenance phase. Changes are lim-
ited to replacements of software components. To prevent the impact of such
type of changes on systems integrity, we have analyzed which related system at-
tributes might be affected when replacing software components. Based on those
attributes, we provided a modelling means to build a system including attributes
on the level of software components and their platform (embedded system), and
we provided a consistency analysis of such a modelled system. The main out-
come of this work is that for replacements of software components the system
does not need to be turned back into the development phase.

The collection of attributes described here provides a foundation for the future
work. One of the major challenges here is to determine how much information
is required to describe software components and their platform, in order to have
a confidence on results of the consistency analysis. This may depend on many
factors, such as used software architecture, domain-specific details, and so forth.

As part of our ongoing work, we will analyse different component-based ar-
chitectures with regard to the use case of replacing software components, and
derive specific system attribute out of them. The aim is to extend the proposed
modelling and analysis support to system attributes, which can be commonly
used in safety domains.

References

1. Adler, R., Schaefer, I., Trapp, M., Poetzsch-Heffter, A.: Component-based modeling
and verification of dynamic adaptation in safety-critical embedded systems. ACM
Trans. Embed. Comput. Syst. 10(2), 20:1–20:39 (2011)

2. Alemzadeh, H., Iyer, R., Kalbarczyk, Z., Raman, J.: Analysis of safety-critical
computer failures in medical devices. IEEE Security Privacy 11(4), 14–26 (2013)

3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts
for Systems Design. Tech. rep., Research Report, Nr. 8147, 2012, Inria (2012)

78 6. Publications

Assured Dynamic Configuration of Safety-Critical Embedded Systems 179

4. Butz, H.: Open integrated modular avionic (ima): State of the art and future
development road map at airbus deutschland. Department of Avionic Systems at
Airbus Deutschland GmbH Kreetslag 10, D-21129 Hamburg, Germany (-)

5. Crnkovic, I.: Building Reliable Component-Based Software Systems. Artech House,
Inc., Norwood (2002)

6. FAA: Guidelines for the Oversight of Software Change Impact Analyses used to
Classify Software Changes as Major or Minor. Notice 8110.85, FAA (2000)

7. FAA: AC20-148 Reusable Software Components. Tr, FAA (2004)
8. Frey, P.: Case Study: Engine Control Application. Tech. rep., Ulmer Informatik-

Berichte, Nr. 2010-03 (2010)
9. Gluch, D., Weinstock, C.: Workshop on the State of the Practice in Dependably

Upgrading Critical Systems: April 16-17, 1997. Special report, Carnegie Mellon
University, Software Engineering Institute (1997)

10. Kajtazovic, N., Preschern, C., Kreiner, C.: A component-based dynamic link sup-
port for safety-critical embedded systems. In: 20th IEEE ECBS (2013)

11. Kajtazovic, N., Preschern, A., Hoeller, C., Kreiner, C.: Constraint-based verifica-
tion of compositions in safety-critical component-based systems. In: IEEE/ACIS
SNDP (Juni 2014)

12. Kindel, O., Friedrich, M.: Softwareentwicklung mit AUTOSAR: Grundlagen, En-
gineering, Management in der Praxis. dpunkt Verlag, Auflage: 1 (2009)

13. Lopez-Jaquero, V., Montero, F., Navarro, E., Esparcia, A., Catal’n, J.: Supporting
arinc 653-based dynamic reconfiguration. In: 2012 Joint WICSA and ECSA (2012)

14. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. The
MIT Press (March 1998)

15. Montano, G.: Dynamic reconfiguration of safety-critical systems: Automation and
human involvement. PhD Thesis (2011)

16. Pop, P., Tsiopoulos, L., Voss, S., Slotosch, O., Ficek, C., Nyman, U., Ruiz, A.:
Methods and tools for reducing certification costs of mixed-criticality applications
on multi-core platforms: the recomp approach. In: WICERT (2013)

17. Rierson, L.: A systematic process for changing safety-critical software. In: Proceed-
ings of the 19th Digital Avionics Systems Conference, DASC, vol. 1, pp. 1B1/1–
1B1/7 (2000)

18. Smith, D., Simpson, K.: A Straightforward Guide to Functional Safety, IEC 61508
(2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery
IEC 62061 and ISO 13849. Elsevier Science (2010)

19. Soliman, D., Thramboulidis, K., Frey, G.: A methodology to upgrade legacy indus-
trial systems to meet safety regulations. In: 2011 3rd International Workshop on
Dependable Control of Discrete Systems (DCDS), pp. 141–147 (June 2011)

20. Zhang, M., Ogata, K., Futatsugi, K.: Formalization and verification of behavioral
correctness of dynamic software updates. Electronic Notes in Theoretical Computer
Science 294, 12–23 (2013); Proceedings of the 2013 VSSE Workshop

Publication 1 - SAFECOMP Workshops 2014 79

80 6. Publications

Reducing Certification Costs Through Assured
Dynamic Software Configuration

Nermin Kajtazovic, Andrea Höller, Tobias Rauter, and Christian Kreiner
Institute for Technical Informatics
Graz University of Technology

Graz, Austria
{nermin.kajtazovic, andrea.hoeller, tobias.rauter, christian.kreiner}@tugraz.at

Abstract—Engineering activities in the operation and mainte-
nance phase of safety-critical systems are becoming increasingly
important. The ever more rising software complexity in terms
of an amount of implemented functions led to a proportional
increase of various change demands. Most of these demands are
initiated to repair the system from defects, i.e., due to design
faults not identified in the development for example. Maintaining
changes in the operation phase can be very cost-intensive, because
regulations of safety standards require to re-verify and re-validate
the system in most cases, in order to ensure that the systems
integrity is not compromised by the incorporated changes.

In this paper, we describe an approach to perform changes
on software in the operation and maintenance phase of sys-
tems lifecycle. To prevent the impact of changes on systems
integrity, certain design limitations are set, so that controlled
types of changes are permitted only. Furthermore, since also in
cases of strong design limitations the systems integrity can be
compromised, a support for systems modelling and analysis has
been provided. The modelling captures certain functional and
non-functional aspects of the system, which are then analyzed
to decide whether changes can be performed or not. The main
outcome here is that specific types of changes can be maintained
without having an impact on systems integrity and therefore
without requiring an extensive re-verification and re-validation.
We report on possible improvements in costs of changes, by
considering several industrial use cases and their typical change
scenarios in the maintenance phase.

Keywords—dynamic configuration; component-based systems;
safety-critical systems

I. INTRODUCTION

The complexity of today’s safety-critical systems in terms
of provided software functions, their distribution, and reuse,
represents one of the major issues in safety engineering
[1][2]. To cope with the market demands on cost reduction,
flexibility, and performance, the industry has made a signif-
icant technological progress in the last decades by adopting
new paradigms and methods in their engineering landscapes
[1]. Currently, the synergies between modular architectures,
(international) standards, and model-based engineering are the
main supporting drivers in developing safety-critical systems.

On the other side, though significant improvements in sys-
tems engineering, managing software complexity still remains
a very tedious task. According to some recent studies that deal
with the analysis of defects in the operation phase of safety-
critical systems, software faults introduced in the development
are one of the main causes for computer-related recalls of

products1. Taking in account that annual increase of software
complexity for embedded systems in general lies between 10
and 30 percent (depending on domain [1]), it is expected
that maintenance activities will need to be performed at an
increased rate, proportionally. However, managing changes to
repair the introduced defects is a challenge. Recommenda-
tions on change management defined in safety standards, in
particular in a generic industrial standard IEC 61508, mainly
require to perform a complete system re-verification and re-
validation, in order to ensure that the systems integrity cannot
be compromised due to introduced changes [5]. In the worst-
case, i.e., when the system integrity is compromised and has
to be re-established, a new certification has to be conducted.
For many change scenarios this can be a very cost-intensive
activity, especially for minor changes which usually require
only to exchange control algorithms, software components,
libraries or to calibrate and configure certain system parameters
for example. Providing a systematic way on handling such
changes would bring benefits in reduction of costs in the
change management process. However, an additional problem
is that safety-critical systems in general are not designed to
support changes, i.e., new software configurations can only be
built and installed at design-time. This also requires to rebuild
the complete software system even for minor changes and to
re-map it onto the target embedded platform.

In our previous work, we proposed an approach to perform
controlled changes on software in the operation and main-
tenance phase of systems lifecycle [6]. Changes are related
to dynamic replacements of software components, and can
address defect repairs on a level of those components (e.g.,
exchange of control algorithms, certain libraries). The essential
part here is that every new software configuration is assured,
i.e., verified against compromising systems integrity. Another
important contribution is that assured software configurations
can be dynamically deployed onto an embedded system.

In this paper, we analyze possible improvements in cer-
tification costs when applying the approach. We compare the
approach with some industrial use cases by taking into account
typical change scenarios collected from defect analysis.

Section II summarizes the main contributions of our as-
sured dynamic software configuration. In Section III, possible
improvements by applying the approach are outlined. A brief
overview of relevant related work is given in Section IV.
Finally, concluding remarks are given in Section V .

1Studies are related to medical products and automotive [3][4]

2014 IEEE International Symposium on Software Reliability Engineering Workshops

978-1-4799-7377-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ISSREW.2014.90

515

6. Publications Publication 2 - ISSRE Workshops 2014 81

c© 2014 IEEE. Reprinted, with permission, from Proceedings of IEEE International
Symposium on Software Reliability Engineering Workshops.

System Model

System Constraint Network
Constraint

Variable

Variable

Constraint

Software
Component 1

Platform
(Embedded System)

Software
Component n

Component Contracts System
Modelling

Platform Contracts

Contract n-2ConConContratratractctct nnn 222
Contract n-1ConConContratratractctct nnn--111

Contract nSystem
Attributes

Contract n-2ConConContratratractctct nnn 222
Contract n-1ConContratractct nn-11

Contract nSystem
Attributes

Consistency
Analysis

System Architecture Dynamic
Deployment

tencnnnnnncnn y

mi
Dynamic Parts
(Exchangeable) ��Load Software

Component
��Load Application

Constraint

Variable

Variable

Constraint

Constraint Variable...
Software Component 1 Software Component n

...

Static Parts
(Fixed or Configurable)

��Component level:
definition of
contracts on system
attributes

��System level:
definition of
contracts for the
Platform

��System composition

Software Application

Component Container (Middleware)

Operating System

��Initial analysis
��Change impact

analysis

Hardware

...

Fig. 1. Workflow for managing changes: system modelling using contracts to describe attributes (top), consistency analysis (middle) and dynamic deployment
of software components (bottom)

II. ASSURED DYNAMIC SOFTWARE CONFIGURATION

In this section, we introduce our approach to performing
changes in the operation and maintenance phase of safety-
critical systems. The following three distinct contributions can
be identified here: (a) a system modelling – it allows to
capture certain functional and non-functional system attributes
such as memory and timing budgets for example2, so that
changes in a certain part of a system can be identified and their
impact can be estimated (e.g., change in timing of the replaced
component can influence the overall timing of a real-time
task that executes that particular component), (b) consistency
analysis – the systems integrity or consistency is automatically
analysed based on modelled functional and non-functional
system attributes, and (c) dynamic deployment – a runtime
support is provided that allows to deploy software components
into a Real-Time Operating System (RTOS) dynamically.

The introduced modeling, analysis and dynamic deploy-
ment are summarized in the workflow in Figure 1. First,
the system attributes required to estimate the impact of the
aforementioned changes are captured within a system model.
This model consists of (i) software components, which realize
some application-level functions, and (ii) the platform, which
describes an embedded system (hardware). Both software
components and the platform implement certain contracts, in

2We use the notation system attributes to identify various functional and
non-functional system aspects, such as performance req. and constraints [7]

order to structure the system attributes and to inter-relate those
attributes thorough the complete systems hierarchy. To this
end, contracts provide means to inter-relate those attributes by
incorporating different types of relationships. In this way, the
impact of changes in any of the contracts can be estimated, i.e.,
all affected, dependent contracts in the system hierarchy can
be identified. We describe contracts in Section II-A in more
detail. In the analysis step of the workflow, the component-
based system is translated into a so called constraint network –
a set of inter-connected variables and constraints. This network
allows us to automatically analyze the consistency of the
system by evaluating constraints (see Section II-B).

In the last step of the workflow, an architectural support
is provided to perform replacements of software components
dynamically. Those replacements are first modelled, and then
analyzed against violating systems integrity (consistency).
Thus, they are only permitted if they do not compromise
systems integrity, i.e., in case when no contracts are violated.

The workflow described above can be attached to an
existing change management process, for example the one
defined in the IEC 61508 standard (in part 2 and 3). If
defects identified in the operation are related to individual
software components, this workflow can be used to manage
the corresponding changes and to upgrade the system. In the
following, we describe parts of this workflow more in detail.

516

82 6. Publications

A. System Modelling

For our system model illustrated in Figure 1 (bottom), we
use a typical modular architecture that relies on a component-
based paradigm [8], in order to distribute the functions of
software applications to individual software components. The
information about the functional and non-functional system at-
tributes is therefore defined on a level of software components
and the platform. To technologically enable this definition, we
use a Contract-based Design paradigm (CBD) [9]. According
to CBD, software components and the platform implement
certain contracts, which capture part of that information (i.e.,
a quality stamps or properties). In Figure 2, we show the
structure of used software components, and the structure of
contracts including supported types of system attributes (i.e.,
quality, resource, and data-flow attributes). Here, a trivial
example is shown just to simplify the demonstration (for
more details, please refer to [10]). Every contract captures
the information about system attributes in a form of so-called
assumptions and guarantees. The later are the constructs which
are very similar to requirements but on a component-level,
whereas the assumptions describe a context that must be
provided to components in order to satisfy such requirements.
For example, a software component Ignition System MIS

from figure guarantees certain values on its outputs only if
assumptions it defines on inputs are respected by the other,
dependent components, i.e., the inputs sen and ffl in this case.
Based on the structure of contracts, software components and
the platform are defined as a set of data parameters, input and
output data variables. In addition to this information, software
components contain a collection of implemented contracts.
Assumptions and guarantees of these contracts are therefore
related to data variables of those software components.

Another important aspect of CBD are the relationships be-
tween contracts, which allow to make contracts dependent on
each other within the complete system hierarchy. For example,
the top-level requirement for the system in figure, which states
that the time difference between the fuel injection tin and
ignition tig shall be above 40ms (for more details, please refer
to [11]), depends on contracts of the containing components
MIS , MFS , and MIIAS . In this way, the information about
the system attributes on a system level is maintained. Thus,
changes in any of the contracts, or even exchanges of contracts,
can be captured by evaluating relationships between contracts.

To have a confidence in results of the analysis in the
next step, i.e., to be sure that all impacts of changes can be
captured, the essential part of systems modelling is to first
define the required attributes, based on used system model. In
our previous work [6], we provided a collection of the most
general system attributes that should be considered during the
modelling. This collection is based on FAA (Federal Aviation
Administration) guidelines for software change management
in the avionics domain [12].

B. Consistency Analysis

In the analysis part of the workflow, the systems integrity
(consistency) is verified by evaluating contracts and their
relationships. As a supporting technology, we use Constraint
Programming (CP) [13], which is a paradigm applied in many
application fields to solve decision and optimization problems.

Injection Time
and

Ignition Time
Actuation System

MIIAS

Ignition System
MIS

Injection System
MFS

Mass Air
Flow

Engine Speed

Injection Time

Ignition TimeIgnition System
MIS

Ignition System

Component Structure Specification

Data Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

... sen in min int16

...

-1

Data

Implemented Contracts
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
(())

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
ANDANDANDANDANDANDAND0000000<<<<<<=====ssssssigigigigigig<<<<<<=====6 00640064006400640064006400

50<=tig<=150

0000000<<<<<<=====fffffffigigigigigig<<<<<<===== 00100100100100100100

IMPLIES
(((((((()))))))

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES
()

()

ffl

ffl

sen tig

tin

tig

tin

Platform

Contract C1 for MIS

0<=sen<=6400 0<=ffl<=100
Assumptions

Guarantees
50<=tig<=150

Contract C1 for MIIAS

Assumptions

Guarantees
tin-tin>=40

25<=tig<=200

Contract C1 for MFS

mem1=2400

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
mem1<=44000

true

Contract C1 for MFS

sil=3

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
sil>=2

true

AND

Resources Quality information Interfaces

Fig. 2. Structure definition of software components and the platform, and
supported types of contracts shown on an example of the engine controller,
adopted from [10]

According to CP the system is represented as a network
of variables and constraints – a problem definition in CP.
Constraints are used here to put variables in expressions such
as logical, and arithmetic expressions, and can be also related
to other constraints. Solving CP problem means evaluating all
constraints in the network.

In our approach, we translate the component-based system
modelled using contracts into such a constraint network. To
this end, we have defined a model of contracts, its variables,
assumptions and guarantees, and relations between contracts
as CP network elements, i.e., variables and constraints. The
systems consistency is therefore analyzed by evaluating con-
straints derived from contracts (for more details, see [11]).

C. Dynamic Deployment

To deploy software components at load-time or runtime,
we have realized a dynamic linker for Unix-like RTOSs [14].
It allows to load binaries of software components, in a similar
way to shared library concept in Linux. Using this mechanism
in context of operating systems for safety applications is a
challenge, because the process of linking is quite complex and
faults it may introduce may have considerable consequences
at runtime. In our work [14], we report on several problems
by applying the existing, standard dynamic linker to RTOSs
for safety applications and how those problems can be solved.

517

Publication 2 - ISSRE Workshops 2014 83

Recalls data for Use Case 1
Faulty system components # of recalls
Software (control algorithm, flaws in creation, change) 82
Sensor (inadequate operation, change) 52
Actuator (inadequate operation, change) 30
External disturbance 26
Controller hardware (faults in hardware, change) 25
Other 100
Considered period 2002-2013

TABLE I. DISTRIBUTION OF RECALLS ACCORDING TO THEIR CAUSE
IN COMPONENTS OF AN EMBEDDED SYSTEM - USE CASE 1

III. EVALUATION

In this section, we analyze the possible reductions in costs
when applying the approach to maintain changes. To this end,
we first outline considered use cases and metrics used to
conducts the evaluation. In the end, we present the results.

A. Use Cases

We use in this evaluation the reports on an analysis of
recalls carried out in two studies, in particular in fields of
medical engineering [3] and automotive [4]. Both studies
provide a comprehensive analysis of repair demands, and
provide a classification frameworks which show a distribution
of such recalls according to several aspects, including systems
components that caused systems failures. Tables I and II show
an excerpt of the analysis focusing on this distribution, for
use cases 1 and 2 respectively. The right column shows a
number of recalls caused by failures of system components.
For instance, 64% of the overall computer-related recalls in
medical domain are caused by software failures.

B. Metrics

In order to estimate the overall costs of changes required to
repair all components from Table I or II, the volume in terms
of development costs and certification of every change (or a
recall) has to be considered.

We use here a simple cost estimation metrics proposed by
Bengtsson [15], the Architecture-Level Maintainability Anal-
ysis (ALMA), which is basically made to predict the mainte-
nance costs or to quantitatively compare system architectures.
The benefit of this method is that only a volume of changes
of individual system components has to be provided – more
precisely, their costs and probability of occurrence. According
to ALMA, the predicted change costs Cnext for the next
maintenance period are defined as follows:

Cnext :=

⎡
⎣P

N
·

N∑

j=1

(sizej · weightj)

⎤
⎦ · Mnum (1)

, where sizej is an impact of a change scenario j (e.g.,
repair of a component), in terms of function points for exam-
ple; weight is a frequency of occurrence of a particular change
scenario in a given period; N is a number of change scenarios;
Mnum is a number of maintenance tasks in a given period; P
is a productivity constant (concrete values depend on a type
of a change – modifying, adding, etc.).

Recalls data for Use Case 2
Faulty system components # of recalls
Software (software, application, function, code, version,
backup, database, program, bug, java, run, upgrade)

778

Hardware (board, chip, hardware, processor, memory, ...) 179
Battery (battery, power, power-up, discharge, charger, ...) 70
I/O (sensor, alarm, screen, interface, monitor, connect,
wireless, ...)

41

Other 142
Considered period 2006-2011

TABLE II. DISTRIBUTION OF RECALLS ACCORDING TO THEIR CAUSE
IN COMPONENTS OF AN EMBEDDED SYSTEM - USE CASE 2

Basically, this estimation method requires (i) to identify
change scenarios and (ii) to estimate their volume in terms
of size and weights, in order to predict the costs. Change
scenarios correspond to actions to perform in the change
management process, such as modifying and adding new
components for example. The concrete definition of scenarios
depends on a context. Similarly, the factors size and P are also
depending on the context. For example, for change scenarios
on a source level, size can be defined in terms of changes in
lines of code [15]. To use parameters from Eq. 1, we set the
following assumptions:

Assumption 1: A change scenario in our case corresponds
to an action required to repair certain type of system compo-
nents. Considering the distributions in Tables I and II, we have
6 scenarios for the use case 1 and 5 scenarios for the use case
2 respectively.

Assumption 2: The impact of a change scenario on devel-
opment and certification costs is expressed as follows:

size := (cdev + ccert) (2)

We have to assume the values for cdev and ccert here,
since statistics about cost per change scenario are not known
(i.e., they are usually observed from the history of previous
maintenance activities, or by interviews with experts [15]).
Note that we use here normalized values for parameters cdev

and ccert to express the impact of changes on development
and certification costs respectively.

Assumption 3: With the introduced approach, the
application-level functions such as control algorithms and
certain libraries can be exchanged without having an impact
on certification. The amount of this part of software has to be
known. However, in the classification framework for the Use
Case 1 there is no distinction between application functions,
middleware, OS, etc., in contrast to User Case 2, in which
12% of software faults are located in applications. We assume
therefore that automotive systems have the same distribution,
i.e., that an amount of functions to repair is max. 12% of the
overall software.

Finally, to estimate the reduction in costs, we use part of the
Eq. 1 to just consider the costs required to repair components
from Tables I and II in given periods, i.e.:

Ceff :=
N−1∑

j=1

(sizej · weightj) + (sizef · weightf) (3)

518

84 6. Publications

Change scenarios and their volumes
SNr. Change scenario (repair of) size weight
1 Software cdev1 + ccert1 0.643
2 Sensor cdev2 + ccert2 0.147
...
Sum 1.0

TABLE III. APPLYING ALMA TO USE CASE 1 AND 2 - CHANGE
SCENARIOS AND THEIR VOLUME IN TERMS OF SIZE AND WEIGHTS

The right part of the equation are costs required to repair
the application software, whereas the left part corresponds to
costs for repairing the remaining system components.

C. Results

The identified change scenarios and their corresponding
weights are summarized in Table III. The occurrence of each
of the scenarios is estimated from a number of related recalls
for the time period from Tables I and II. Based on this data,
we get the change costs Ceff for each use case, and a relative
cost reduction when applying the introduced approach. The
final results are summarized in Table IV.

The last column in the table shows the cost reduction
relative to the Ceff of the corresponding use case. Generally,
this reduction is related to repairs that have to be made on
the application software. For such kind of repairs, there are no
certification costs using the proposed approach, so that Ceff

for both use cases is reduced by (weight · ccertf). The overall
reduction may therefore vary depending on the distribution of
cost of individual system components, i.e., concretely, on a
ratio between the ccertf for the application software and the
ccert1 + ... + ccertn for other components. For example, in a
case of an uniform distribution, in which all recalls require
the same costs, the overall cost reduction for the use case 1
would be 7,7%. On the other hand, if the application-related
recalls for that use case have no impact on certification, there
would be no reduction at all. We summarize the possible
cost reductions with Figure 3 (cdev is not considered here).
The horizontal axes represent normalized change impact on
certification costs, in particular for software functions ccertf ,
and for remaining components ccert1 + ... + ccertn . The peak
values are marked with points P1 (uniform cost distribution,
i.e., ccertf = ccert1 + ... + ccertn), P2 (no reduction at all),
and P3 (changing remaining system parts at no costs, which
is unlikely in practice).

IV. RELATED WORK

Now we turn to a brief overview of related studies. We
summarize here some relevant articles that handle the analysis
of changes in safety-critical embedded systems3.

To date, much research has been done on analyzing planned
changes in software architectures for safety-critical systems
[16] [17] [18]. In the work by Adler et al. [16], an adaptive
architecture for safety-critical automotive systems is proposed.
The main goal here is to increase the systems availability by al-
lowing software components to implement diverse behaviours,
so that in the event of failures or degradation of quality,
the automotive system can continue operating by switching

3This collection is partially taken from our previous work in [6]

P1

P2

P3

Fig. 3. Reduction in costs (relative to Ceff for the Use Case 2)

between correct implementations. Since different implementa-
tions of components may have different quality, the authors
provide a design-time analysis to prevent mixing not allowed
combinations of component implementations. For this purpose,
they define a quality system, with a set of fixed quality types. A
more advanced framework for dynamic adaptation of avionics
systems was developed by Montano [17]. The goal is to adapt
the system to new, correct configurations, in case of failures.
To perform this, a common quality system defines the contracts
between functions and available static resources (e.g. memory
consumption, CPU utilization, etc.) and in this way it restricts
the possible set of correct configurations. An important aspect
of this work is that it demonstrates the CP approach to solving
the composition problem. However, the quality type system
only considers static resources, and does not consider con-
tracts between functions. Ultimately, the approach is strongly
focused on dynamic adaptation with human-assisted decision
making. Recently, the approach proposed by Oertel et al. [18],
[19] describes a comprehensive configuration management
strategy for safety-critical systems. Similar to our work, it
captures various non-functional system attributes to ensure the
consistency of changes. On the other side, the approach is
more general in terms of provided types of changes. More
flexibility is given to make changes on a system, however,
more effort is required for modelling to represent many types
of requirements. Furthermore, the approach basically performs
change management offline, i.e., a support for the dynamic
software deployment is not considered.

There are also some works which focus on upgrading
safety-critical systems [20] [21] [22]. One of the most notable
is work done in the scope of the project PINCETTE, which
has as a goal to perform live upgrades of software systems
that control the safety-critical processes [20]. Although the
topic is beyond the scope of available validation methods in
the practice, the aim is to evaluate the feasibility of formal
methods to such use cases. In contrast to our data flow-
oriented analysis, the focus here is on validating the interaction
between upgraded behaviours. Another work [21], done in the
scope of the RECOMP project, addresses also live upgrades
as one of the goals to reduce the costs for certifying systems.

519

Publication 2 - ISSRE Workshops 2014 85

UC # of # of software Change effort Cost reduction
recalls related Ceff (·100) [%]

1 315 82 0.229 · (cdev1 + ccert1) 0.031 · (cdevf + ccertf)

+... 0.031 · (cdevf + ccertf) + [0.229 · (cdev1 + ccert1) + ...]

+0.317 · (cdev6 + ccert6)]
+0.031 · (cdevf + ccertf)

2 1210 778 [0.565 · (cdev1 + ccert1) 0.077 · (cdevf + ccertf)

+... 0.077 · (cdevf + ccertf) + [0.565 · (cdev1 + ccert1) + ...]

+0.117 · (cdev5 + ccert5)]
+0.077 · (cdevf + ccertf)

TABLE IV. COST REDUCTIONS COMPARED TO CHANGE EFFORT Ceff FOR USE CASES 1 AND 2

However, only dynamic linker has been realized here, without
considering the analysis of changes. Finally, the work in [22]
shows how to validate changes of upgraded safety-critical
system. Here, a model checker is used for the verification

V. CONCLUSION

In this paper, we described an approach to perform changes
on safety-critical embedded systems in the operation and
maintenance phase. The main contribution here is that con-
trolled changes on the application software can be performed
dynamically, without having an impact on systems integrity,
and therefore without requiring to re-verify, re-validate and
finally to re-certify the system. Performing such controlled
changes can bring benefits in maintaining safety-critical sys-
tems, especially if there are high maintenance demands on the
application software.

We analyzed here the possible reduction in certification
costs when applying the approach. To this end, we considered
here two exemplary use cases, which describe recalls caused
by failures of embedded systems in domains of automotive
and medical engineering. Some of these failures are caused
by faults introduced by the application software. For instance,
out of 1210 recall actions in medical engineering, 7,7% are
caused by faults in the control algorithms. With the proposed
approach, repairing software from such faults such can be
managed without introducing costs for the certification. Based
on a simple cost model, and the distribution of faults to system
components, we showed the possible reduction in certification
costs when applying this approach.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, April 2009.

[2] O. Kindel and M. Friedrich, Softwareentwicklung mit AUTOSAR:
Grundlagen, Engineering, Management in der Praxis. dpunkt Verlag;
Auflage: 1, 2009.

[3] H. Alemzadeh, R. Iyer, Z. Kalbarczyk, and J. Raman, “Analysis of
safety-critical computer failures in medical devices,” IEEE Security
Privacy, vol. 11, no. 4, pp. 14–26, 2013.

[4] Qi Van Eikema Hommes, “Applying STAMP Framework to Analyze
Automotive Recalls,” The National Transportation Systems Center,
Research report, 2014.

[5] D. Smith and K. Simpson, A Straightforward Guide to Functional
Safety, IEC 61508 (2010 Edition) and Related Standards, Including
Process IEC 61511 and Machinery IEC 62061 and ISO 13849. Elsevier
Science, 2010.

[6] N. Kajtazovic, C. Preschern, A. Hoeller, and C. Kreiner, “Towards
assured dynamic configuration of safety-critical embedded systems,”
in Computer Safety, Reliability, and Security, ser. Lecture Notes in
Computer Science. Springer International Publishing, 2014, vol. 8696,
pp. 167–179.

[7] M. Glinz, “On non-functional requirements,” in Requirements Engineer-
ing Conference, 2007. RE ’07. 15th IEEE International, Oct 2007, pp.
21–26.

[8] I. Crnkovic, Building Reliable Component-Based Software Systems.
Norwood, MA, USA: Artech House, Inc., 2002.

[9] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for Systems Design,” Research Report, Nr.
8147, 2012, Inria, Tech. Rep., 2012.

[10] P. Frey, “Case Study: Engine Control Application,” Ulmer Informatik-
Berichte, Nr. 2010-03, Tech. Rep., 2010.

[11] N. Kajtazovic, C. Preschern, A. Hoeller, and C. Kreiner, “Constraint-
based verification of compositions in safety-critical component-based
systems,” in Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, ser. Studies in Computational
Intelligence. Springer International Publishing, 2015, vol. 569, pp.
113–130.

[12] FAA, “Guidelines for the Oversight of Software Change Impact Analy-
ses used to Classify Software Changes as Major or Minor,” FAA, Notice
8110.85, 2000.

[13] K. Marriott and P. J. Stuckey, Programming with Constraints: An
Introduction. The MIT Press, Mar. 1998.

[14] N. Kajtazovic, C. Preschern, and C. Kreiner, “A component-based
dynamic link support for safety-critical embedded systems,” in 20th
IEEE ECBS, 2013.

[15] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-
level modifiability analysis (alma),” J. Syst. Softw., vol. 69, no. 1-2, pp.
129–147, Jan. 2004.

[16] R. Adler, I. Schaefer, M. Trapp, and A. Poetzsch-Heffter, “Component-
based modeling and verification of dynamic adaptation in safety-critical
embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 2,
pp. 20:1–20:39, Jan. 2011.

[17] G. Montano, “Dynamic reconfiguration of safety-critical systems: Au-
tomation and human involvement,” PhD Thesis, 2011.

[18] M. Oertel, O. Kacimi, and E. Bde, “Proving compliance of implemen-
tation models to safety specifications,” in Computer Safety, Reliability,
and Security, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2014, vol. 8696, pp. 97–107.

[19] M. Oertel and A. Rettberg, “Reducing re-verification effort by
requirement-based change management,” in Embedded Systems: De-
sign, Analysis and Verification, ser. IFIP Advances in Information and
Communication Technology. Springer Berlin Heidelberg, 2013, vol.
403, pp. 104–115.

[20] M. Zhang, K. Ogata, and K. Futatsugi, “Formalization and verification
of behavioral correctness of dynamic software updates,” Electronic
Notes in Theoretical Computer Science, vol. 294, no. 0, pp. 12 – 23,
2013, proceedings of the 2013 VSSE Workshop.

[21] P. Pop, L. Tsiopoulos, S. Voss, O. Slotosch, C. Ficek, U. Nyman, and
A. Ruiz, “Methods and tools for reducing certification costs of mixed-
criticality applications on multi-core platforms: the recomp approach,”
WICERT, 2013.

[22] D. Soliman, K. Thramboulidis, and G. Frey, “A methodology to upgrade
legacy industrial systems to meet safety regulations,” in Dependable
Control of Discrete Systems (DCDS), 2011 3rd International Workshop
on, June 2011, pp. 141–147.

520

86 6. Publications

A Component-based Dynamic Link Support for Safety-critical Embedded Systems

Nermin Kajtazovic
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

nermin.kajtazovic@tugraz.at

Christopher Preschern
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

christopher.preschern@tugraz.at

Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
Graz, Austria

christian.kreiner@tugraz.at

Abstract—Safety-critical embedded systems have to undergo
rigorous development process in order to ensure that their
function will not compromise humans or environment where
they operate. Therefore, they rely on simple and proven-
in-use design. However, with growing software complexity,
maintenance becomes very important aspect in safety domain.
Recent approaches for managing maintenance allow to perform
changes on software at design-time, which implies that the
whole system has to be rebuilt when the application software
changes. In this paper, we describe more flexible solution for
updating the application software. We apply the component-
based paradigm to construct the application software, i.e. we
define a model of a software function that can be dynamically
linked with the entire operating system (OS). In order to avoid
the usage of the OS-provided support for dynamic linking,
we design software functions as position-independent and
relocation-free binaries with well-defined interfaces. With the
help of component-based paradigm we show how to simplify
the link support and make it suitable for safety domain.

Keywords-component-based engineering; safety-critical em-
bedded systems, dynamic linking

I. INTRODUCTION

Maintenance in software engineering is important aspect
to cope with changes in software environment. Software
as a product continuously undergoes changes which may
originate from request to fix errors, to adapt the product to
new requirements or to improve the product’s performance
[7]. Built-in operating system (OS) mechanisms such as
dynamic linking and loading are the main driver for updating
software products, but they do not ensure that the products
are designed for maintenance. Thus, the crucial factor here
is the software architecture. In the last decade, the expansion
of component-based paradigm improved the maintenance
considerably, since the software architecture has moved from
monolithic structure to modular design. Because of loose
coupling between parts that constitute the component-based
software products, maintenance can be managed at lower
costs.

Component-based paradigm has also been identified as
a key tool for developing software for safety-critical em-
bedded systems. The examples are AUTOSAR Standard for
automotive domain and IEC61499 Standard for industrial
automation. Systems in this domain have to undergo rig-
orous development process, because their correct function

is crucial for humans and environment where they operate.
Therefore, they are conservatively designed and lack a lot
of features present in general purpose systems. Software
maintenance is also very limited here. In AUTOSAR [2] for
example, each change request to the application software
requires to compile and to rebuild the whole system (i.e.
OS and application). The component models for real-time
systems such as SaveCCM [8] and SOFA-HI [9] have also
the same strategy for managing software updates. The ability
to update the application software without compiling or
linking it statically with the OS would be very practical,
in particular for domains where the application and OS
development are in responsibility of separated organizations.
The application developer would therefore be only con-
fronted with its own application logic. However, the existing
OS support for dynamic linking is relatively complex and
therefore it is difficult to assure its quality. Further, it has
higher runtime overhead than static linking model. Some
alternatives for dynamic linking in domain of wireless sensor
networks (WSN) have been proposed, but they use static
indirection tables (fixed memory addresses) as interfaces
between the application software and OS services [4], [5].
Another domain of alternatives for dynamic linking are DSU
systems (Dynamic Software Updating), which perform on-
line patching of software [13], [11]. Although DSU systems
are far away of safety domain, they use more flexible models
for dynamic linking.

In this paper, we propose a component-based dynamic link
support for safety-critical embedded systems. We show how
the component-based paradigm can be utilized to make the
link support simple and easy to verify. Compared to existing
solutions that use static linking, the application developers
can benefit from improved flexibility.

The remainder of this paper is organized as follows:
Section II summarizes the requirements for the linker related
to safety domain. Section III introduces the component-
based paradigm and outlines the existing linking models.
In Section IV, the proposed component-based dynamic link
support is described. Section V describes how the safety
is addressed in the linking process. Section VI covers the
evaluation and concluding remarks are given in Section VII.

20th Annual IEEE International Conference and Workshops on the Engineering of Computer Based Systems (ECBS)

978-0-7695-4991-0/13 $26.00 © 2013 IEEE

DOI 10.1109/ECBS.2013.19

92

6. Publications Publication 3 - ECBS 2013 87

c© 2013 IEEE. Reprinted, with permission, from Proceedings of 20th IEEE International
Conference and Workshops on the Engineering of Computer Based Systems (ECBS) 2013.

II. REQUIREMENTS FOR DYNAMIC LINKER

In this section we briefly summarize some of the most
relevant requirements that the target system (including the
dynamic linker) has to satisfy in safety domain. The system
in our context is a software comprising the OS and the
application software on top of that OS. We further use the
linker requirements to evaluate our contribution.

The requirements are:

• Flexibility: the system shall not be re-built when the
application software changes. That is, the OS shall
be able to exchange the application at least at load-
time (i.e. system initialization phase). The granularity
of exchange shall be the application binary image at
least.

• Safety: many safety-critical systems strictly follow the
principle of simplicity, thereby reducing the system
complexity and risk of failures. As a consequence,
they also reduce the overhead of getting certified (i.e.
evidence that they will operate correctly with certain
failure rate). Concretely for the linker support, the
correctness of the dynamic linking shall be predictable.
That is, the correctness of the interfaces between the
application and the OS shall be ensured before the
system can compromise safety. Therefore, the linker
support shall be as simple as possible.

• Low runtime overhead: compared to statically linked
image, the system shall not introduce significant run-
time overhead between the application and the OS.

III. BACKGROUND

In this section, we introduce the component-based
paradigm. The intent is to show which aspects of
component-based paradigm are relevant for this work. Fur-
ther, we review linking models for Unix-like systems and
show their implications on safety-critical embedded systems.

A. Component-based Engineering

Component-based Software Engineering (CBSE) is a
paradigm to systematically design software for reuse and
maintenance [1]. The literature offers different definitions for
a software component, but in general, a software component
represents a reusable piece of software that is used for
modular construction of software applications. This means
that a binary object file with some functions can be defined
as a component for example, but actually, a component is
more than that. To ensure reuse, the system which follows
the component-based paradigm has to provide features to
independently deploy components. Further, it has to care
about dependencies introduced between components and to
manage their lifecycle. In fact, the change of software (due
to reconfiguration for example) shall only be a subject of
deployment, rather than an implementation issue. Therefore,

systematic reuse has the implications on design of com-
ponents and their execution environments as well. Such a
component-based system is constituted by following parts:

• Components: A component consists of an implemen-
tation (application logic) and interfaces. The interfaces
act as an access point to the component implementation
from the outside. They are usually the only visible part
of components and describe the implementation syntac-
tically (e.g. signature of operations) and semantically
(e.g. contracts set on operations). The interfaces are
the main driver for ensuring reuse, because components
access and provide the functionality only through their
local interfaces and are therefore not dependent on other
components.

• Framework (Container): A container is an execution
environment for components. It takes the responsibility
for the part of the component lifecycle, in which a
component serves as a part of the software application.

Another important aspect of the CBSE is a development
process, which, in contrast to the process used for mono-
lithic design, distinguishes between system development and
component development [3]. Within the later process, a
component undergoes several phases until it is ready for
deployment. Thereafter, a component is used in system
development process to assemble the software application.

The specification of the framework, its features and com-
ponents is often referred as a component model.

B. Linking Binary Code

Object linking is a process which combines object files in
order to produce application image (executable) or library.
Two aspects of this process are important when changing
software: granularity level (which is an object file) and time
when linking is performed. In following, we introduce these
two aspects.

1) Executable and Linkable Format (ELF): Object files
that participate in the linking process are, for Unix-like
systems, represented in the ELF binary file format. This
format describes, besides a raw binary, the memory layout
of a binary. This information is essential when linking
independently created object files or when loading them at
runtime. Depending on binary type, ELF provides two views
on how to express memory layouts: linking view - code and
data are temporarily stored in sections for further linking,
and executable view - final memory layout that is used at
runtime.

This organization of the binary ensures that code, data
and the entire references are flexible regarding their memory
location and can be aligned to the address space of other ob-
ject files. The information for dynamic linking, in particular
dynamic relocations and linker reference, persist in special
sections (see Sec. III-B2).

93

88 6. Publications

Linker Requirements
Linking model Flexibility Safety Runtime overhead
Static link - Re-linking is required. + All symbol references are resolved

at design-time and binary (i.e. sym-
bol references) can be verified at
design-time.

+ No runtime/load-time overhead.
All symbols are resolved at design-
time.

Shared library + Update of the application image at
granularity of an object file.

- Symbol references cannot be veri-
fied at design-time.
- Binary is modified at runtime.

- Load-time overhead due to symbol
resolution (O(n) for n references).

PIC + Same as shared library. - Same as shared library. - Load-time and runtime overhead
due to symbol resolution and indi-
rection table respectively.

Binary rewriting + Update of the application image
at granularity of a symbol (patching
symbols).

+ Symbols can be statically resolved.
- Binary is modified at runtime.

+ If no indirection used, same as
static link model.

Indirection tables + Update of the application image at
granularity of a symbol (redirecting
symbols).

+ Symbols can be statically resolved.
+ Binary is not modified at runtime.

- Potential performance penalty (de-
pends on implementation).

Table I
COMPARISON OF LINKING MODELS WITH RESPECT TO REQUIREMENTS INTRODUCED IN SEC. II

2) Linking Models: Basically, ELF object files can be
statically or dynamically linked. Further, dynamic linking
can be performed either at load time or at runtime. Both
linking models have different impacts on performance: stat-
ically linked executables have no runtime overhead since
all external symbols are already resolved (i.e. an object file
has no relocations), but they require much more space than
dynamically linked executables [6]. Though their memory
demands, they are still very important for embedded sys-
tems. In following, we describe object file types that are
used to facilitate static and dynamic linking:

Relocatable Code: In static linking model, several
object files are combined to a single application image, i.e.
an executable object file. A relocatable object file typically
consists of the unresolved symbol references. For instance, if
an access to a symbol in an external library has been made,
a relocation entry for this reference will be created in the
compile phase. This indicates that the linker has to fix this
relocation when it is aware of the location of the imported
library. Fig. 1 illustrates this scenario. Function mainFct
uses a function that is available in another object file. As a
result of such an unresolved reference, a single relocation
entry is created (at offset c in Fig. 1b). At link-time, this
relocation entry is removed (see Sec. III-B3).

Shared Libraries: The problem of static linking is
that required object code is imported in every executable.
This problem is solved by sharing that code among other
applications. Correcting the relocations in shared library
model is performed earliest at application load-time. To
trigger that correction, the location of the dynamic linker
or loader is set in the .interp section of the ELF file.
When the application starts, the loader is first started to fix
all relocations.

Position-independent Code: The idea behind position-
independent code (PIC) is to have only relative symbol

references within an ELF file. The independence between
symbol references and their real locations is made using
the indirection table, the Global Offset Table (GOT) [10].
Thus, each reference to an external symbol is an offset to
a specific entry in this table. When fixing relocations, only
the address of the first GOT entry has to be added to this
offset. However, this address is absolute one and has to be
previously known. In most processor architectures, the GOT
entry is stored in a separated register. The PIC model is
also practical for MMU-less (Memory Management Unit)
systems, because the relative addressing allows to place the
code anywhere in the address space. The uCLinux1 OS,
for instance, uses this model to allow dynamic linking for
MMU-less embedded systems.

3) Symbol Resolution: Resolving symbol references and
correcting relocations is not a trivial process. For functions,
the intent is to change the operand of a branch instruction
that points to an external symbol. In Fig. 1b, the relocation
entry of the type R_ARM_CALL, which is created for the
symbol externFct, is used to identify the right oper-

1ucLinux Homepage - http://www.uclinux.org/

extern void externalFct();

void mainFct(){
 externalFct();
}

void externalFct(){
 ...
}

(a)

00000000 <mainFct>:
 0: e1a0c00d mov ip, sp
 4: e92dd800 stmdb sp!, {fp, ip, lr, pc}
 8: e24cb004 sub fp, ip, #4 ; 0x4
 c: ebfffffe bl 0 <externalFct>

c: R_ARM_CALL externalFct
 10: e89da800 ldmia sp, {fp, sp, pc}

(b)

Figure 1. Symbol relocation: (a) sample code and (b) its assembly code

94

Publication 3 - ECBS 2013 89

ation that shall be applied to get the correct address of
externFct. In architectures that support relative address-
ing (i.e. relative to program counter (PC)), this value will
be an offset that has to be added to the current value of
the PC to resolve the externFct. Shared libraries or PIC
have different resolution schemes, and therefore, different
relocation types are applied there.

4) Alternatives for Dynamic Linking: Introduced link-
ing models have the granularity of object files. In some
domains, however, there is a need for more fine granular
linking where functions, their signatures, data, etc. can be
changed at runtime. The examples are distributed systems
with high availability and maintenance demands. Linking is
here based either on binary rewriting technique or indirection
tables [13]. Former technique modifies the original binary at
runtime, in order to establish the symbol references between
loaded binary and application or to upgrade a binary. The
indirection tables, in contrast, just redirect the symbol ref-
erences between dependent binaries. This technique is very
similar to PIC.

In Tab. I we summarize the introduced linking models and
show their characteristics with respect to requirements from
Sec. II.

IV. PROPOSED COMPONENT-BASED SYSTEM

Both standard models for dynamic linking are not suitable
for safety-critical embedded systems, since results of the
symbol resolution cannot be predicted at design-time. For
binaries which are safety certified this is an issue, because
they have to be modified in the symbol resolution process.
The linker, on the other side, has to undergo more extensive
validation and verification process in order to ensure that
symbol resolution will not fail. More effective way would
be to avoid the load-time and runtime symbol resolution, but
relocations within a binary make this impossible.

Our work is based on indirection tables, which act as inter-
faces between the OS and applications. The OS maintains
a set of indirection tables that consist of the OS symbols
required by the applications. To avoid the symbol resolution,
the applications follow some design and implementation
constraints. In this section, we describe our linker as a part
of the component-based system.

A. Component-based System Architecture

According to Crnkovic and Larson [1] a component-based
system can be separated in concepts forming the framework
layer (i.e. a component container), the interface model (in-
terface between components and container) and component
implementations. Based on this model, we separate our
component-based system into static and dynamic parts. The
former is the OS, which is statically linked with the container
and required libraries. The dynamic part corresponds to the
applications which are subject to dynamic linking. Fig. 2

Application

Component Container
(app. lifecycle management, deployment, naming, communication)

Home
Component C1

Real-time Operating System (RTOS)
(scheduling, memory man. and protection, task man. and synchronization)

Home
Component C2

Home
Component Cn

Runnable R1 Runnable R2 Runnable Rn

...

St
at

ic
al

ly
 li

nk
ed

Dy
na

m
ic

al
ly

 li
nk

ed

Dy
na

m
ic

al
ly

 a
llo

ca
te

d AI - Application Interface
CI – Container Interface

Figure 2. Layered architecture of the proposed component-based system

shows the layered architecture of that system. To ensure dy-
namic linking for the application layer, following constraints
have to be satisfied:

• the application shall not have relocations,
• the application shall be position-independent (for

single-address space systems),
• the container shall support dynamic memory manage-

ment (for varying number of components).
By applying the CBSE the application is divided into

components, which can be independently deployed. There-
fore, it is sufficient to satisfy the first two constraints for
components only. In the architecture above, the component
implementations, called runnables, constitute the applica-
tion logic. Their lifecycle and inter-connections between
runnables are maintained by the container in the OS. For
each of the runnables the container allocates and instantiates
corresponding home component. Both parts, i.e. runnable
and home component, constitute a software component in
the proposed component-based system. In following, we
describe the component architecture more in details.

B. Software Component Architecture

The runnable introduced in previous section represents
a piece of code that implements a part of the application
logic (PID controller for example). The other part of the
component, i.e. home component, consist of non-functional
component features such as interfaces for inter-component
communication, lifecycle methods, etc (see Fig. 3a). The
reason for this separation is to avoid relocations in the
application logic. The relocations can be avoided if a bi-
nary has no explicit dependencies to external symbols. The
runnables are, therefore, fully isolated binaries and make no
references to external symbols. Some of the runnables are
stateful and have to maintain their local storage. Referencing
other segments from code would also introduce relocations.
Therefore, runnables maintain their local storage within
corresponding home components. For this purpose, home

95

90 6. Publications

components manage a generic storage pool that can be
provided to any runnable.

For systems with single-address space the runnables have
to use relative symbol addresses only. This ensures the
position-independence of a binary and consequently multiple
applications can be hosted by the container. Therefore, the
indirection table is placed on the stack of the container. All
symbols which are required by runnables are included in
this table. The indirection table acts as required interface
from runnable viewpoint. The runnable functions, on the
other side, are provided interfaces used by the container.
In following, we describe the interface model for dynamic
linking.

Home Component

Component Services
Container Services

Runnable Proxy

Services required by
Runnable – accessed

through
 Execution Context

Services required by
component – accessed
through dynamic
table (Proxy)

Execution Context

Runnable Init, Execute
Terminate, Test

RTOS Services
External Libraries

(a)

St
ac

k

ExecutionContext
Symbol 1

Symbol 2

...

RunnableProxy
initRef

execRef

...

init

exec

...

ExecutionContextRef

RunnableHome Component

Re
la

tiv
e

Ad
dr

es
s

...

...

Absolute
Address

He
ap

Co
de

......

......

(b)

Figure 3. Software component: (a) architecture and (b) runtime memory
layout

C. Interface Model for Dynamic Linking

In Fig. 2 we depicted two types of interfaces used in the
proposed component-based system: application interfaces
(AI) for interaction between components and runnables (i.e.
interfaces for dynamic linking), and (2) container interfaces
(CI) for interaction between components and container.

1) Application Interfaces: Fig. 3a shows the architecture
of the software component and interfaces between runnable
and its home component. In this interaction model it is
required that runnables can access their home compo-
nents and vice versa. The interfaces ExecutionContext and

bool execFct(IExecutionContext* context)
{
 ...
 double setP = context->getInterface(DIN1, ...);
 double currV = context->getInterface(DIN2, ...);

 ...
 context->setEvent(EOUT1, val);
 ...
}

Figure 4. Application interfaces between runnable and home component:
communication from runnable to container (example)

RunnableProxy

+ executeFunction() : boolean
+ initialize() : boolean
+ terminate() : boolean
+ test() : void

+ getState() : RunnableStateInfo
...

Runnable disassembly (ELF)

40000000 <execFct>:
...
 10: str r0, [fp, #-40]
 14: ldr r3, [fp, #-40]
 18: ldr r3, [r3]
...
400000a0 <initFct>:
 ...
 a8: sub fp, ip, #4 ; 0x4
 ac: sub sp, sp, #8 ; 0x8
...

Proxy internal members

Figure 5. Application interfaces between RunnableProxy and runnable:
communication from container to runnable (example)

RunnableProxy ensure this. They form the indirection tables
between dynamically linked runnables and the container.
The interface ExecutionContext exposes the services (i.e.
functions) that runnables need in order to perform their
function. From the runnables viewpoint, this interface is
required interface and allows runnables to access to: external
libraries, container services for inter-component communi-
cation, OS services for resource management and component
services for local resource management (i.e. state allocation,
interface access, etc.). An excerpt of this type of interfacing
is depicted in Fig. 4, where the runnable, which implements
a PID controller in C, requires a data interface from its home
component. The access to the ExecutionContext is made over
the stack of the container (see Fig. 3b), since stack variables
are accessed relative to some position (e.g. relative to frame
pointer in ARM). All references to mentioned OS services
and libraries are provided by the home component (see home
component in Fig. 3a).

Another direction is realized by the interface
RunnableProxy. It references four standard methods
of runnables (i.e. provided interface): Init, Execute,
Terminate and Test. Fig. 5 shows the structure of the
RunnableProxy and an exemplary runnable assembly code.
The references to runnable methods are function pointers
that are initialized by the container. For establishing
these references the container adds the load address of
the runnable to the offset of each method. This is most
critical operation in dynamic linking, because the incorrect
addresses could lead to a failure and compromise safety.
Therefore, runtime verification shall ensure that this cannot
occur (see Sec. V-B).

2) Container Interfaces: This type of interfaces is used
(1) to interrelate software components and (2) to provide
container, OS services and libraries to software components.

96

Publication 3 - ECBS 2013 91

The runnable, for instance, can access another runnable by
setting the specific event that is handled by the home compo-
nent. The home component in turn triggers the execution of
the target runnable. On a similar way, the runnables access
the external libraries and other services2.

V. ENSURING SAFETY IN DYNAMIC LINKING

In this section, we show how the correctness of the
proposed dynamic link support is ensured.

Generally, two types of faults can occur in the linking
process: (1) interface faults due to incorrectly estimated
addresses of runnable interfaces, and (2) component faults
due to incorrectly produced runnable binary. The former
are faults caused by the container, and occur when the
container makes an access to runnable interfaces using
the incorrect absolute addresses. Component faults, on the
other side, are concerned with runnables only. They occur
when the runnables do not follow the specification of the
component model (constraints in Sec. IV-A are just a part
of that specification). Examples are incompatible versions
of runnables. Note that any of these faults can cause the
failures with major consequences [12]. To ensure the absence
of these faults, we perform the verification in two phases:
at design-time and at load-time.

A. Design-time Verification

Faults in runnables are typically caused in component
development process (e.g. systematic faults by developer).
In our context, a runnable is faulty if it consists of relo-
cations, or does not have the interface that is conform to
RunnableProxy, or is eventually not runnable binary, etc. In
fact, if the runnable binary does not conform to the compo-
nent model, it can cause the address failure when loaded
by the container. Therefore, as a part of the component
development process, we verify each of the runnables for
conformance with the component model. This verification
is automated process and has following phases:

• Architecture verification: inspects the binary according
to the target processor architecture (e.g. CPU type,
address width, endianness, etc.).

• Binary verification: inspection according to the binary
(e.g. relocatable binary)

• Symbol verification: inspection according to the struc-
ture of binary (e.g. relocations, segments and sections,
aligning, provided symbols, etc.).

B. Load-time Verification

Verification performed at design-time does not ensure that
the container will correctly host each of the runnables. As
described in Sec. IV-C it is obvious that the estimation of the
resulting absolute address of each of the runnable methods
is very simple, i.e. each of the methods follows the same

2The execution semantic of components and their domain-specific char-
acteristics are out of scope in this work.

scheme: load address of a runnable added to the offset
of the method in a binary. However, to guarantee that all
interfaces are inspected before the system starts operating,
they have to be tested. For this purpose, the runnables
provide a test method. This method takes the estimated
addresses of runnable methods as a parameter. When the
container starts the execution, the test method inspects all
other runnable methods by calling them. Negative test would
mean addressing failure, which in the worst case cannot
be handled. Therefore, test execution is performed only
once in system initialization phase, where the system cannot
compromise safety.

VI. EVALUATION

In this section, we evaluate the introduced dynamic link-
ing using requirements from Sec. II. For observing quanti-
tative results, we implemented a prototype of the proposed
component-based system in C language. The prototype has
been launched on an ARM processor with 454MHz, 128MB
of RAM.

A. Qualitative Results

1) Flexibility: As in usual systems with dynamic link
support it is possible to update the software application
without rebuilding the system. The granularity of the update
is a runnable binary. Because of safety requirement in Sec.
II, the link can only happen at load-time, i.e. at system
initialization time. Another advantage of applying the CBSE
is that the application developers do not have to consider the
container and OS in their application (component) develop-
ment process. They just use the OS-provided services to
deploy their software components.

2) Safety: One of the most important outcomes of ap-
plying the CBSE for dynamic linking is that the results of
the linking can be predicted at design-time. Compared to
the standard dynamic link model, there are no symbol ref-
erences which are unknown until load-time or runtime. The
runnable methods (provided interfaces) are simply estimated
by adding the load address of a runnable to the offsets of the
methods. Further, the required symbols (required interfaces)
are placed by the container on the stack. As shown in Sec.
V, design-time verification process ensures that the container
always gets the correct runnable binary. Therefore, the only
changing part in dynamic linking are the addresses of the
runnable methods, but they always have the same estimation
scheme.

To sum it up, dynamic linking of the runnables is safe,
since the runnables do not contain any symbols which
have to be estimated at runtime by using a relocation
scheme, which is present in standard linking models. Further,
the symbols required by the runnables are part of a data
structure called ExecutionContext, which is statically linked
with the OS and the container. Therefore, each symbol which

97

92 6. Publications

#Iterations / Runtime [μs]
Linking model 50 100 150
Static link 1,67 3,31 4,98
Proposed (with context) 2,40 4,77 7,33
Proposed (without context) 1,96 3,92 5,82

Table II
BENCHMARK 1: RUNTIME OVERHEAD FOR PROVIDED INTERFACES

is intended to be used by the runnables can be verified at
design-time, i.e. before delivery of the OS and container.

Another advantage of using the CBSE is that no type
safety checks have to be performed, as it is done by
some linkers [14]. Because runnables implement standard
interfaces, type casting to RunnableProxy will always work.

B. Quantitative Results

1) Runtime Overhead: Dynamic indirection tables Exe-
cutionContext and RunnableProxy consist of function and
data pointers for function and data symbols respectively.
Generally, it is expected that indirection tables introduce an
additional runtime overhead compared to statically linked
binaries [13]. In order to estimate this overhead, we have
constructed two benchmarks:

• benchmark for provided interfaces - runtime overhead
for calling the runnable from the container using the
RunnableProxy interface,

• benchmark for required interfaces - runtime overhead
for calling the container from the runnable using the
ExecutionContext.

For both benchmarks, no implementations are provided
within method bodies, because only the overhead of indirec-
tion tables is relevant. We performed tests in three iterations,
each of them consisting of 50, 100 and 150 interface calls.
The average value for runtime is computed using 1000000
samples for each iteration.

For the first benchmark, we first estimate the runtime
overhead without the ExecutionContext, i.e. nothing on the
stack of the container, in order to just consider the provided
interfaces. Thereafter, we include the ExecutionContext,
since it stays always on the stack for all runnable methods,
regardless of if it used or not.

For the second benchmark, we estimate the runtime
overhead once for the ExecutionContext containing the
references to required data (i.e. data pointers) and once
containing the direct data. These are possible configurations
for the ExecutionContext. When referencing functions, only
the variant with references can be used.

Observations: Tab. II shows the results of the first
benchmark. For the variant without the ExecutionContext on
the stack (Proposed (without context)), there is a negligible
runtime overhead, which originates from de-referencing
function pointers. Direct calls, which are used in statically
linked variant, do not need to perform de-referencing.

#Iterations / Runtime [μs]
Linking model 50 100 150
Static link <1 1,48 2,19
Proposed (with references) 1,20 2,35 3,47
Proposed (with data) <1 1,49 2,18

Table III
BENCHMARK 2: RUNTIME OVERHEAD FOR REQUIRED INTERFACES

More runtime overhead is required for the variant with
the ExecutionContext on stack. The reason is that the
ExecutionContext has to be copied on the stack before
calling the provided interfaces. Thus, compared to static
link model, the overall additional runtime overhead for
provided interfaces rPI is:

rPI = rcopy on stack + rdereference pointers

Runtime overhead for required interfaces depends only
on number of pointers that have to be de-referenced. When
requiring data symbols for example, it is possible to use
direct data instead of data pointers. In this case, there is no
additional runtime overhead, compared to static link model
(see Proposed (with data) in Tab. III). In the worst case, the
additional runtime overhead for required interfaces rRI is:

rRI = rdereference pointers

Note that the results above represent the runtime overhead
of interfaces between the home component and runnable.
That is, the values are estimated on runnables and container
with empty method bodies. For real-life examples, the
implementation if often the main contributor to the runtime
overhead, and the values above are in this case often negli-
gible. To demonstrate the variant with the implementation,
we constructed an exemplary case study that implements
runnable provided interfaces (its function is not relevant
here). Tab. IV shows the results. The first two columns show
the number of pointers that need to be de-referenced within
a single iteration, and the third column shows the runtime.
As expected, slight deviations from results for static link
model are observed.

Linking model # pointers
in Ex.Ctx.

pointers
in
R.Proxy

Runtime
[μs]

Static link 0 0 4,96
Proposed (with references) 65 3 5,20
Proposed (with data) 49 3 4,93

Table IV
CASE STUDY: RUNTIME OVERHEAD FOR IMPLEMENTATION AND

INTERFACES

98

Publication 3 - ECBS 2013 93

C. Implications on Target System

Implementing runnables as relocation-free binaries is an
implementation issue, because the developer is constrained
to a very small set of the features provided by the program-
ming language. All symbols required by a runnable have to
be accessed using the ExecutionContext interface (see Fig.
4 for example). Therefore, any eventual relocation has to be
manually fixed by the developer.

VII. CONCLUSION

In this paper we presented a component-based dynamic
link support for safety-critical embedded systems. Compared
to approaches that rely on static linking or alternatives for
dynamic linking that use static indirection tables, better
flexibility can be achieved when applying the CBSE. More
importantly, the results of the link process can be predicted
at design-time, which makes the link support suitable for
safety domain.

Following the CBSE, we defined a model of a software
component that consists of dynamic and static parts and
ensures loose coupling between them. The dynamic part is
represented as a so-called runnable, a position-independent
and relocation-free binary that forms a part of the application
software. Only runnables in the proposed component-based
system can be dynamically linked. Static part of a compo-
nent, which is represented by a so-called home component,
is managed by the container and is statically linked with
the OS. The essential part of the container that contributes
to dynamic linking is an indirection table, which consists
of the symbols required by the runnables to perform their
function. This indirection table is statically linked with the
container and therefore the locations of the symbols required
by the runnables are always predictable.

Compared to pure static link model, an expected increase
of runtime overhead has been observed. Because of us-
age of the indirection tables as interfaces between home
components and runnables it is often required to make the
indirections to get desired data.

One of the major limits in our component-based system
is that runnables have to access their resources using the
standard interfaces, which obligates the developer to follow
the certain guidelines when implementing runnables.

REFERENCES

[1] Crnkovic I. and Larsson M., Building Reliable Component-Based
Software Systems. Artech House Publishers, ISBN 1-58053-327-2,
2002.

[2] AUTOSAR: Software Component Template, AUTOSAR Homepage:
http://www.autosar.org, 2010.

[3] Crnkovic I. and Chaudron M. and Larsson S.: Component-Based
Development Process and Component Lifecycle, Proceedings of the
International Conference on Software Engineering Advances (ICSEA
’06), 2006, IEEE Computer Society, Washington, DC, USA

[4] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani
Srivastava: A Dynamic Operating System for Sensor Nodes. In Pro-
ceedings of the 3rd international conference on Mobile systems,
applications, and services (MobiSys ’05). pp. 163-176, ACM, New
York, NY, USA

[5] Wei Dong; Chun Chen; Xue Liu; Jiajun Bu; Yunhao Liu: Dynamic
Linking and Loading in Networked Embedded Systems, IEEE 6th
International Conference on Mobile Adhoc and Sensor Systems, MASS
2009, 12-15 October 2009, Macau (S.A.R.), China

[6] Franz, M.; Dynamic Linking of Software Components, Computer,
vol.30, no.3, pp.74-81, Mar 1997

[7] April A. and Abran A., Software Maintenance Management: Evalu-
ation and Continuous Improvement. Wiley-IEEE Computer Society
Press, May 2008.

[8] Hansson H., Akerholm M., Crnkovic I., and Torngren M.: SaveCCM
- A Component Model for Safety-Critical Real-Time Systems. In Pro-
ceedings of the 30th EUROMICRO Conference (EUROMICRO ’04).
IEEE Computer Society, Washington, DC, USA, 627-635, 2004.

[9] Hosek P., Pop T., Malohlava M., Hnetynka P., Bures T.: Supporting
Real-Time Features in a Hierarchical Component System, Tech. Report
No. 2010/5, Dep. of Distributed and Dependable Systems, Charles
University in Prague, December 2010

[10] Levine J. R.; Linkers and Loaders. Morgan Kaufmann, 256 pages,
ISBN 1558604960, 9781558604964, 2000.

[11] Hayden, C.M. and Smith, E.K. and Hardisty, E.A. and Hicks, M.
and Foster, J.S.; Evaluating Dynamic Software Update Safety Using
Systematic Testing. IEEE Transactions on Software Engineering, 2012.

[12] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C.; Basic Con-
cepts and Taxonomy of Dependable and Secure Computing, IEEE
Transactions on Dependable and Secure Computing, vol.1, no.1, pp.
11- 33, Jan.-March 2004

[13] Hicks M. and Nettles S. Dynamic Software Updating. ACM Trans.
Program. Lang. Syst. 27, 6 (November 2005), p. 1049-1096.

[14] Michael W. Hicks, Stephanie Weirich, and Karl Crary: Safe and
Flexible Dynamic Linking of Native Code, In Selected papers from
the Third International Workshop on Types in Compilation (TIC ’00),
2000, Robert Harper (Ed.). Springer-Verlag, London, UK, 147-176.

99

94 6. Publications

Inversion of Control Container for Safety-critical Embedded
Systems
Nermin Kajtazovic, Institute for Technical Informatics, Graz University of Technology
Christopher Preschern, Institute for Technical Informatics, Graz University of Technology
Christian Kreiner, Institute for Technical Informatics, Graz University of Technology

It is common for safety-critical embedded systems that strategies for software reuse and maintenance are mainly planned and managed at
design-time. Currently, most frameworks for managing application software in the safety domain use a component-based paradigm to allow
applications to be constructed from reusable parts. This construction is mainly conducted at design-time in order to comply with stringent
safety requirements. In contrast, the runtime support for construction of the application software would be very practical, particularly for
domains where the framework and application development are in the responsibility of different organizations. Further, the overhead of
maintaining these systems would be considerably reduced. However, standard mechanisms for handling such dynamic construction are not
applicable to the safety domain and therefore frameworks in this domain are not designed for such use cases.
In this paper, we present a component-based framework with the architectural support for runtime application construction and maintenance.
To allow this, we apply the inversion of control principle, which is a technique used in many domains to ensure loose coupling between
interrelated components and consequently to make them reusable. Since there are many ways on how to implement the inversion of control,
we show its realization for resource-constrained systems by applying design patterns which are primarily used for object interaction and
resource management in general purpose systems.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Modules and interfaces; D.2.11 [Software
Engineering]: Software Architectures—Patterns; D.2.13 [Software Engineering]: Reusable Software—Reuse models

1. INTRODUCTION

Inversion of control (IoC) is a widely applied technique to systematically design software for reuse and maintenance.
It offers a pragmatic way to ensure loose coupling between dependent parts that constitute a software application (in
further text components). In most common scenarios, the control over explicit dependencies between components
is shifted to the infrastructure, thereby ensuring flexible construction of the application software1. Because of the
cross-domain support, the IoC relies on different strategies and idioms [Prasanna 2009]. For the most flexible
variant of the IoC, it is not only necessary to provide a good architectural support, but also to have a system
that would allow to achieve the desired degree of flexibility. For instance, the operating system (OS) support for
dynamic linking may be required when reconfiguring the application at runtime. In this context, the existing IoC
containers for enterprise applications such as Spring or PicoContainer use Java class loaders to dynamically load
and link dependent components [SpringSource 2013;PicoContainer 2013].

In the safety domain, the application construction is mainly fixed at design-time. That is, there is no support for
maintaining dependencies between components at runtime. The reason for such a limited flexibility is meeting a
trade-off between safety and maintainability on one hand, and resource limitations on the other hand. To address

1Considering that a software system is composed of the infrastructure and applications on top of that infrastructure.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission. A preliminary version of this paper was presented in a writers’ workshop at the EuroPLoP 2013.
Copyright 2013 is held by the author(s).

6. Publications Publication 4 - EuroPLOP 2013 95

c© 2013 held by the authors. Reprinted from Proceedings of 18th European Conference on
Pattern Languages of Programs.

the former concern, safety-critical systems mostly follow the principle of simplicity, thereby ensuring that they
expose predictable behavior and low risk of failures. As a consequence, they lack a lot of features present in
general-purpose systems like Enterprise Resource Planing (ERP) for example. On the other hand, resource
limitations such as the absence of the virtual memory, file system, and others prevent these systems to have
a maintainable runtime model, i.e. a model that would allow for changing only relevant dependencies between
components, instead of requiring to re-build the whole system for each change request. However, because of
the exponential grow of software-implemented functions in safety-related domains, new models for software
maintenance are desirable [Butz 2007].

Current approaches mainly address the problems of maintaining software by employing standardized, modular
architectures and automated support for software development process. In the automotive domain, for instance,
the reuse issue has been addressed by the introduction of a new development methodology and component-based
architecture called AUTOSAR [Kindel and Friedrich 2009]. This approach enabled to have a clear separation
between infrastructure software and applications. Further, it has created a baseline for involved development
organizations that independently have to maintain their parts of software (e.g. infrastructure software is typically
delivered as a product to the vehicle company). Unfortunately, the application software, although component-based,
is strongly coupled and has no runtime support for maintaining dependencies. Similar concepts for software
architecture are present in the industrial automation sector, and they mostly rely on component frameworks based
on IEC61131 and IEC61499 standards. Some reference implementations that follow these standards allow for
changing dependencies at runtime (i.e. some Programmable Logic Controllers, PLCs), but in this paper we address
a more general class of embedded systems which have the Unix-like system model and software implemented in
C/C++ programming languages.

To narrow our problem statement, let us consider the component-based system depicted in Fig. 1. It shows
the simplified form of the vehicles’ anti-lock braking system, realized in AUTOSAR. As mentioned, the software
system is separated into the infrastructure (i.e. runtime environment, the RTE) and the application. In the example
above, three software components form the execution chain from the brake sensor to the brake actuator. From the
viewpoint of a vehicle company (i.e. application developer), it is important to be able to deploy and to maintain
different kinds of applications on top of the RTE. Based on a high-level application description, the application
developer automatically generates a part of the RTE responsible for inter-component communication, thus
conforming to AUTOSAR methodology. The problem is here that explicit dependencies between components are
introduced. Namely, the component BrakePedalSensor routes its values to BrakePedalController using the
RTE API Rte_Write_PPosition_PData and becomes dependent on it, since this part of RTE is generated based
on naming conventions used to model the application [AUTOSAR 2011]. The last part of the API corresponds to
interface and data names of the sending component. Because of the explicit dependencies between software
components and the infrastructure software, the following limitations can be observed:

—Design-time software maintenance: the software application can be assembled not later than at design-time. For
instance, in order to extend the BrakePedalController to get values for the wheel speed, the RTE has to be
newly generated. This requires a high maintenance effort for devices in operation, since the whole software
stack has to be re-built.

—Dependent development: the application development is not really independent from the infrastructure software.
In fact, the application developer has to include the RTE in its development process. Further, in order to track
different versions of the application software consistently, there is a need for the RTE configuration and version
management on the application developer side.

—Dependent safety certification: modifications of the application software directly imply modifications of the RTE.
Although safety is a system property, with clearly separated infrastructure and application software, various
combinations to ensure safety would be possible. One of the variants would be, for instance, certified hardware

Inversion of Control Container for Safety-critical Embedded Systems — Page 2

96 6. Publications

Fig. 1. Motivation example: application software for anti-lock braking system, adopted from [Piper et al. 2012]

and RTE provided to the application developer. In the current framework, however, it is only possible to certify
the whole software system (i.e. to evidence that it will operate correctly with certain failure rate).

The issues listed above are common also for other customized component frameworks for (safety-critical)
embedded systems such as SOFA-HI or SaveCCM [Hansson et al. 2004;Hosek et al. 2010]. To overcome these
issues, the software architecture has to be systematically designed to manage dependencies between software
components at runtime. Further, there is a need for a runtime mechanism which would allow to load software
components when needed (i.e. dynamic linker). These two features might look completely independent from each
other, but our experience in realizing and adopting the dynamic linker for component-based and safety-critical
systems showed that this is not the case. Thus, the dynamic linker influences the architecture and the use of
available mechanisms to realize dependencies between software components. Therefore, we handle it as part of
the overall contribution, which we summarize as follows: we present the IoC container for component-based and
safety-critical embedded systems. In this context, we show how to cope with stringent safety requirements while
having dynamic link support and, on the other side, we also show how to realize the IoC using reduced set of
features available in these domains (e.g. single address space, function pointers as flexible interaction mechanism,
etc.). We further map these features to some relevant design patterns for object-oriented systems and show how
the composition of these patterns forms the IoC container. The IoC structured in such a way can be practical for
software developers who have to consider safety requirements when implementing their runtime mechanism for
software maintenance.

The remainder of this paper is structured as follows: Sec. 2 briefly introduces the problem of using dynamic linking
mechanism in the safety domain. Further, it outlines the IoC technique conceptually. In Sec. 3 the proposed IoC
container is described, including the patterns that constitute it. Sec. 4 describes a case study which demonstrates
the application of the IoC container (in further text, the framework). Sec. 5 describes related work and Sec. 6 gives
concluding remarks.

Inversion of Control Container for Safety-critical Embedded Systems — Page 3

Publication 4 - EuroPLOP 2013 97

2. BACKGROUND

As previously mentioned, dynamic linking is required when integrating out-of-the-box components in the application.
In this section, we outline existing models for linking binary code and briefly document their conformance to the
safety domain. At the end of the section, we introduce the IoC principle.

2.1 Dynamic Linking vs. Safety

The linking process combines object files in order to produce an application binary (executable) or library. Object
files, in our context, are software components (e.g. compiled source code of the BrakePedalController). For
Unix-like systems, these object files are represented in the Executable and Linkable Format (ELF), which describes
their memory layout [Levine 1999]. The information behind the ELF is essential when linking independently created
object files or when loading them at runtime, since it contains references to required libraries in form of symbolic
names (i.e. symbols). For instance, if the BrakePedalController requires the sinus function from the cmath

library, the symbol entry for this request will be placed into the ELF at compile-time. These entries are known as
relocations and they instruct the linker how to find the appropriate symbols. The linking process, therefore, has to
fix these relocations. Depending on the time when the linking is performed, there is a difference between static
and dynamic linking. In the earlier linking model, the application is monolithic, and cannot be modified anymore.
This is the most commonly used variant for resource-constrained systems.

Let us now consider the scenario where the RTE has to load the BrakePedalController dynamically. In this
case, the object file of the BrakePedalController has the symbol references to the RTE libraries, which are
unresolved until the begin of the linking process. Unfortunately, this is a problem from the safety aspect, because
the symbol references between dependent binaries are not known until load-time or runtime, and therefore are
not predictable (i.e. the absolute address of the required library symbol cannot be reproduced at design-time).
Because it is difficult to ensure the correctness of the symbols resolved on such a way, the dynamic link model is
often omitted in the safety domain [Kindel and Friedrich 2009].

To overcome the mentioned problem of dynamic linking, relocations have to be eliminated early at design-time.
One way to do this is to access the required symbols using a so called indirection table. This is a common technique
for patching software in Dynamic Software Updating (DSU) systems [Hicks and Nettles 2005]. Concretely for the
example in Fig. 1, the BrakePedalController has to get the reference to that table in order to consume the
required symbol located on RTE. How this table is realized and how components access it, is an architectural
issue and is handled in Sec. 3. An additional prerequisite to avoid relocations is to have components implemented
in plain C language (refer to [Kajtazovic et al. 2013] for more details).

2.2 Inversion of Control

The first concepts of the IoC principle were introduced in the late eighties when the software reuse has become
an important research topic [Johnson and Foote 1988]. Many object-oriented constructs like polymorphism,
inheritance and frameworks were used in that time as a main driver to reuse recurring functionality. Because of
benefits gained from such a reuse, the IoC is nowadays a widely applied principle in many object-oriented and
component-based containers.

Following this principle, loose coupling is ensured by inverting the responsibilities that would introduce de-
pendencies between dependent components or introduce poor control over their lifecycle and configurations.
According to the IoC principle of the PicoContainer, not only wirings between components are managed by
some central entity (i.e. this instance of the IoC is known as dependency injection [Fowler 2004]), but also their
creation and configuration [PicoContainer 2013]. Fig. 2 illustrates the IoC principle. The component Dependent
as a client has to consume services of the component it depends on, i.e. the Dependency. In the worst case,
the Dependent would take control over the lifecycle and the configuration of Dependency and thus increase the
coupling between them. Instead, the responsibility of the creation and the configuration of the Dependency, and
injection of its reference into the Dependent as well, are moved to the object Injector, thereby fully decoupling

Inversion of Control Container for Safety-critical Embedded Systems — Page 4

98 6. Publications

Fig. 2. Inversion of control principle, adopted from [Prasanna 2009]

both inter-related components. How the Injector realizes this, depends on implementation, features provided by
the system and the used programming language. Therefore, IoC relies on different idioms. In most Java-based IoC
containers, for instance, the reference to Dependency is provided to the component Dependent using its class
constructor or setter methods (i.e. known as constructor and setter injection idioms [Prasanna 2009]). For systems
implemented in C++, these types of injection are more difficult to realize, because of lacking relevant language
features such as reflection mechanisms and annotations. Therefore, just experimental but no mature C++ IoC
containers are currently present.

Related to the example shown in Fig. 1, the Injector is the infrastructure software (i.e. RTE), and the injected
parts, i.e. Dependent and Dependency are software components that build the application software. However, the
AUTOSAR framework does not follow the IoC principle completely, and Fig. 2 is just an idealized form of it.

In our framework, we have to deal with components realized in the C language and an application constructed
following the component-based paradigm [Crnkovic 2002]. Considering components as black-box entities with
only visible interfaces, other injection strategies for assembling applications are required than those used for
object-oriented IoC containers. In this case, the application developer is not aware of the component internals
such as the source code or objects while establishing dependencies between components. Thus, an IoC container,
which is feasible to handle injections based on only visible aspects of components, is required here.

3. PROPOSED INVERSION OF CONTROL CONTAINER

In this section, we describe the architecture of our framework and show the patterns applied to realize the inversion
of control.

3.1 Overview and Scope

Prior to the framework description, we first briefly outline some relevant characteristics of the target software
system:

—Component-based architecture: the component-based paradigm has been identified as the best architectural
solution to support black-box software reuse. As in introduced frameworks for (safety-critical) embedded systems,
we apply it to separate the infrastructure from applications.

—Event-driven execution semantic: it is common for embedded control that applications are driven by occurrence of
events (e.g. brake pedal event caught by the BrakePedalSensor component). Therefore, component activations
are managed based on events produced by the infrastructure or neighboring components.

—Dynamic memory management: to allow load-time or runtime reconfiguration of the applications, the framework
uses the OS-support for dynamic allocation of components.

Inversion of Control Container for Safety-critical Embedded Systems — Page 5

Publication 4 - EuroPLOP 2013 99

Fig. 3. Software architecture of the proposed component framework

—Dynamic linker: in order to load out-of-the-box components, the framework uses a linker mechanism as described
in Sec. 2, i.e. it only loads component object files without having to relocate any symbols.

The main goal of the framework is to allow to dynamically load and reconfigure the application software. As
mentioned, the application on top of the infrastructure software is constructed by wiring components, which
form parts of the application logic. Therefore, loading the application implies loading and configuring individual
components, and finally wiring them together. These are well-known issues in the domain of distributed object-
oriented and component-based applications, and they have been soundly handled in the last decade. For instance,
in the fourth part of the POSA, a pattern language which addresses the holistic view of cross-domain distributed
computing has been presented [Buschmann et al. 2007]. We realize the inversion of control based on some
of these patterns, in particular patterns for resource management and object interaction, and show how they
complement the applied component-based paradigm.

3.2 Architecture

Based on the linking models from Sec. 2.1, we separate the architecture of the framework into static and dynamic
parts. The former is the infrastructure software, statically linked with the OS. It consists of all libraries and services
needed by applications, which represent another part of the framework. In order to allow to configure applications
dynamically, each of the out-of-the-box binaries that constitute the application logic owns its local container within
the infrastructure, the so called home component. Home components reside within the static part of the framework,
and are dynamically allocated by it. Fig. 3 shows the framework architecture. This way of interfacing with the
framework can be compared with the concept of home interface in the CORBA component model (CCM) [OMG
2006].

The home component together with the out-of-the-box binary, called runnable, form a software component in
the proposed framework. The reason for such a separation is to shift the configuration, lifecycle and dependency
management of runnables to the infrastructure, thus making the scope of components more flexible. In contrast to
the AUTOSAR framework described in Sec. 1, a component has only one object, because of easier configuration
of component’s internals. However, the same effect as in AUTOSAR can be achieved when grouping home
components.

Inversion of Control Container for Safety-critical Embedded Systems — Page 6

100 6. Publications

1

2

Legend:

Provided interfaces

Required interfaces

2a

2b

Extern libraries
OS services
State management

Inter-component
communication

Stack

Execu
tion

Co
ntext

Sym
b

o
l 1

Sym
b

o
l 2

...

H
om

e Com
p

onen
t 1

initR
ef

execRef

term
in

ateRe
f

init

exec

term
in

ate

Exe
cu

tio
n

C
o

n
te

xtR
e

f

R
u

n
n

a
b

le
 1

Relative Address

...

...

A
b

so
lu

te
A

d
d

ress

Heap

Code

...
...

...
...

E
xe

cu
tio

n
C

o
n

te
x

t

S
ym

b
o

l 1

S
ym

b
o

l 2

...

H
om

e Com
p

onen
t 2

in
itR

e
f

execRef

te
rm

in
ate

Re
f

...

......

M
e

d
ia

tio
n

 O
b

je
ct 1

init

exec

term
in

ate

R
un

nable 2

...

Exe
cu

tio
n

C
o

n
te

xtR
e

f

...

MEDIATOR

CONTEXT-OBJECT

LIFECYCLE-CALLBACK

1

2

2a
2b

IN
FR

A
ST

R
U

CT
U

R
E

A
P

P
LI

C
A

T
IO

N

Fig. 4. Runtime memory layout of the framework and applied patterns (COMPONENT-CONFIGURATOR is out of the context here)

The right part of Fig. 3 shows the more detailed architecture of the software component with the focus on
interaction between runnables and home components. From the viewpoint of a runnable, there are two types of
interfaces:

—Provided interfaces: interfaces that provide access to the application logic from the infrastructure software.

—Required interfaces: interfaces required by a runnable to perform their functions. These include external
libraries, infrastructure services for inter-component communication, OS services for resource management and
component services for local resource management (e.g. state allocation).

3.3 Interfaces for Dynamic Linking

The interfaces described above are dynamically bound at deployment time of runnables. As discussed in Sec. 2.1,
runnables use indirection tables to access required symbols. These tables corresponds to required interfaces,
and are realized as structures of function and data pointers, placed on the stack. Accessing the tables from the
stack is beneficial for systems lacking virtual memory, because in this way the position-independence of the
runnables can be achieved, i.e. runnables can be placed anywhere in the address space, thus allowing to host
multiple applications on top of the infrastructure. The reason for position-independence is that communication
using the stack is based on relative symbol addressing, i.e. address of the sinus function within the libc library for
example is estimated at runtime. Fig. 4 shows the runtime memory layout which describes the interaction between
runnables and the rest of the framework.

Another direction, i.e. provided interfaces, are absolute symbol references, and are automatically estimated in
the deployment process of runnables (see usage of COMPONENT-CONFIGURATOR pattern in Sec. 3.6).

3.4 Application Context

Besides symbols required for dynamic linking, runnables have to be in position to allocate their local state, to
communicate with other runnables or with the infrastructure and to take the responsibility of the component’s
lifecycle on their own. Because all these services are not present in the binary of runnables, but inside of home

Inversion of Control Container for Safety-critical Embedded Systems — Page 7

Publication 4 - EuroPLOP 2013 101

components, runnables have to access them using the indirection table from the stack. Thus, part of the indirection
table used for these services corresponds to the execution context of a runnable (see Fig. 4). For each execution of
the runnables, the infrastructure places that context on the stack. This sort of interaction between the infrastructure
and runnables is based on the CONTEXT OBJECT pattern [Buschmann et al. 2007]. The aim is to share the information
between both parties, with possibly low coupling. In the original form of the pattern described in POSA, the intent
is to allow clients to propagate their execution context such as the session state to the service. In the proposed
framework, not only services of the infrastructure are contained in the execution context, but also the state of
related runnable, since runnables cannot carry any data.

3.5 Loose Coupling Through Mediation

Using the execution context to propagate the state to runnables is just one step towards loose coupling. It allows
runnables to interface with the infrastructure, but not to use dependencies to other components.

The interaction between components is based on events, which may contain data or just signals to trig-
ger the execution. Considering the example in Fig. 1, the component BrakePedalController routes the
computed values for the actuator to the BrakePedalActuator component by signaling those values with the
Rte_Write_PTorque_TData call. From the viewpoint of the BrakePedalActuator component, this is an event
indicating that data are available and execution can start. Similar to this principle, the interaction in the proposed
framework is realized, but with the exception that components are fully decoupled.

In order to trigger the execution of another component, a runnable has to use an API call provided within
the execution context, described in the previous section. Further, to route that call to the target component, the
framework instantiates an intermediate object, i.e. mediation object, that holds the event values (see Mediation
Object 1 in Fig. 4). In a similar way, the receiving component consumes the event values by scanning all its
mediation objects using the execution context. This principle is based on the MEDIATOR design pattern, which allows
to decouple dependent components by moving their dependencies to the external mediation object [Buschmann
et al. 2007]. For each dependency created between two components, one such mediation object is created.

3.6 Application Configuration

By applying the CONTEXT OBJECT and MEDIATOR patterns, the desired inversion of control with minimal coupling was
achieved. Now, it is the task of the framework to load and configure components according to the design described
above. This includes loading runnable binaries (see Sec. 2.1), allocating their home components, initializing their
execution context and allocating mediation objects. The latter corresponds to the wiring between components,
and is declaratively specified in an application assembly file (such as XML, see Fig. 2). Similar to this description,
information about a single component such as required interfaces, state members, etc. are also declaratively
specified and used to configure a component. Each of the created instances has a flexible lifetime, so that the
application can be reconfigured at runtime, if required. Here, we apply the COMPONENT-CONFIGURATOR pattern in
order to allow for flexible configuration of applications [Buschmann et al. 2007].

3.7 Application Lifecycle and Scope

Since there are no standard ways for managing component’s creation and destruction as it is done with objects,
components have to implement some standard interfaces which the infrastructure can use to manage their lifecycle.
These are particularly initialization and finalization routines that have to be explicitly handled by each of the
runnables. However, the creation and destruction of mediation objects is not in the responsibility of runnables,
but the initialization of the state and values within the mediator objects. Therefore, runnables provide interfaces
as documented in the LIFECYCLE-CALLBACK pattern [Buschmann et al. 2007]. Concretely, they only implement
initialization, finalization and activation methods, i.e. init, terminate and execute respectively.

Inversion of Control Container for Safety-critical Embedded Systems — Page 8

102 6. Publications

4. EXAMPLE: AUTOMOTIVE BRAKE SYSTEM USING PROPOSED IOC

In this section, we revise the example from Sec. 1 and show how dependencies between components are now
handled by the introduced IoC container. It is obvious that we are now able to interconnect software components
without having strong coupling links like it is the case with the initial example from Sec. 1. As a consequence,
software components can be seamlessly exchanged.

4.1 Overview and Scope

In this example, we just consider the communication between BrakePedalSensor and BrakePedalController

from the viewpoint of the BrakePedalController. This component has two interfaces, i.e. PPosition and
BTorque, each of them of the type float. To compute the value of the BTorque, the component maintains a single
state member prevPosition of the same type.

4.2 Realization

The configuration of each of the components including the syntax and semantics of their interfaces is specified in
an application assembly file. In a similar way, the composition of the components (i.e. the application) is provided in
another description file. For each component description, the component developer provides the lifecycle routines
and implements the application logic. The following code listing shows the exemplary initialization routine of the
BrakePedalController runnable.

#define PREVIOUS_BRAKE_POSITION 1
. . .
i n t i n i t (Execut ionContext∗ c tx)
{

ctx−>setSFValue (PREVIOUS_BRAKE_POSITION, 0.0F) ;
return SUCCESS;

}

In this example, the runnable BrakePedalController just initializes its state member to 0. Using the context,
the runnable gets the reference to the state member prevPosition, located in the home component. Considering
the runtime memory layout from Fig. 4, this action takes the paths marked as 2 and 2a. In order to find the
requested members, the infrastructure software uses the identifiers specified in the application assembly file.
Therefore, both the code and the specification within the assembly file have to be consistent.

In a similar way, the runnable interacts with the execution context when accessing interfaces. The following code
listing shows an excerpt of the application logic of the BrakePedalController runnable.

#define BRAKE_POSITION 2
#define BRAKE_TORQUE 3
. . .
i n t execute (Execut ionContext∗ c tx)
{

f l o a t prevPos = ctx−>getSFValue (PREVIOUS_BRAKE_POSITION) ;
f l o a t currentPos = ctx−>get IFValue (BRAKE_POSITION) ;

f l o a t torqueOut = 0.0F ;

. . . / / es t imate torque value

ctx−>set IFValue (BRAKE_TORQUE, torqueOut) ;

return SUCCESS;
}

Inversion of Control Container for Safety-critical Embedded Systems — Page 9

Publication 4 - EuroPLOP 2013 103

In the listing above, the prevPos state and the currentPos interface are used to compute the torque value and to
route it to the output interface BTorque. All these values are accessed using the standard API of the execution
context.

4.3 Observations

For the interaction between BrakePedalSensor and BrakePedalController, one mediation object was created.
However, none of the runnables are aware of it. They make the reference to their interfaces and state members
using identifiers defined in a component description, while assembly description is only known to the infrastructure
software. The components, therefore, just know their local structure and configuration, whereby the infrastructure
is aware of the standard interfaces (API) of the execution context, instantiated mediator objects and home
components.

In contrast to the example from Fig. 1, it is possible to maintain dependencies, configurations and the lifecycle of
components at runtime. However, the main limitation in this framework is that also the symbols used for dynamic
linking have to be accessed using the execution context. For instance, to use any function from cmath library, it is
necessary to first define it in the execution context. For large number of symbols, this may introduce a significant
overhead when implementing the execution context.

5. RELATED WORK

Most component frameworks in safety the domain have no support for dynamic linking and therefore are not
designed for maintaining software at runtime. On the other hand, existing C++ IoC containers such as Qt IOC
Container2 or autumnframework3, which rely on macros and templates, are pure object-oriented IOC containers
and are therefore not compatible with the introduced concept for dynamic linking. In this section, we outline some
similar works which indirectly address the inversion of control.

Fractal THINK is a component-based framework implemented in the C language [Polakovic et al. 2006]. It offers a
built-in reflection mechanism and a flexible inversion of control concept. Each of the components gets so-called
controllers which manage the component’s lifecycle and bindings. These controllers are infrastructural elements
and they ensure the late binding of components by managing function and data pointers used for binding at runtime.
This framework, unfortunately, uses the standard dynamic linking mechanism for deploying the components, i.e. it
performs relocation of the symbols when loading the component binaries.

An approach for dynamic linking based on indirection tables was presented by Han et. al [Han et al. 2005]. It
extends the TinyOS operating system for wireless sensor networks (WSN) to load binaries dynamically. In contrast
to FRACTAL , the dynamic linking mechanism is based on relocation-free loading of binaries. These binaries are,
similar to our concept of linking, position-independent modules and require no relocations. The framework is,
however, not component-based and dependencies between modules are managed by the central indirection table
within the OS kernel. The inversion of control is based on the indirection table, which is placed on a fixed address
within the kernel and therefore is known to all binaries. Since the framework is not component-based, binaries that
are dynamically loaded have no standard interfaces and the identification of the methods of binaries is based on
names or profiles of these methods. Therefore, safety-relevant features such as type safety checks and testing of
the interfaces for dynamic linking are difficult to perform.

6. CONCLUSION

It is common practice for safety-critical embedded systems that strategies for software reuse and maintenance
are mainly planned and managed at design-time. Because systems in this domain have to undergo a rigorous
software development process, any behavior which is difficult to predict is usually omitted. This is also the case

2Qt IOC Container Homepage - http://qtioccontainer.sourceforge.net/
3autumnframework Homepage - http://code.google.com/p/autumnframework/

Inversion of Control Container for Safety-critical Embedded Systems — Page 10

104 6. Publications

with dynamic linking support, which is the main driver for reconfiguring software at runtime. Because of a lack of
such a support, current frameworks in this domain are not designed for runtime software maintenance.

In this paper, we presented a lightweight variant of the framework with a simple dynamic link support and the
architectural means to allow for maintaining software at runtime. We applied here the inversion of control principle
with the aim to ensure loose coupling between components that constitute the software application. Since the
framework is a component-based system (i.e. as many other frameworks in this domain), we have shown that
inversion of control can be effectively realized using patterns for object interaction and resource management,
which are primarily used in general purpose systems. From the viewpoint of dependency injection, it is important to
have the infrastructure decoupled from components and components decoupled from each other. This is ensured
by the CONTEXT-OBJECT and MEDIATOR pattern respectively. On the other hand, the runtime support for lifecycle and
configuration management is realized according to LIFECYCLE-CALLBACK and COMPONENT-CONFIGURATOR patterns.
Applied patterns provide a holistic view of the inversion of control in the proposed component-based framework.

7. ACKNOWLEDGMENTS

We would like to thank our shepherd Eduardo Fernandez for being ready to analyze this paper and to improve it by
providing very constructive and helpful feedback.

REFERENCES

AUTOSAR. 2011. Specification RTE. Tech. rep., AUTOSAR Consortium, Homepage: http://www.autosar.org.
BUSCHMANN, F., HENNEY, K., AND SCHMIDT, D. C. 2007. Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Distributed

Computing. Wiley.
BUTZ, H. 2007. Open integrated modular avionic (ima): State of the art and future development road map at airbus deutschland. White paper,

Department of Avionic Systems at Airbus Deutschland GmbH Kreetslag 10, D-21129 Hamburg, Germany.
CRNKOVIC, I. 2002. Building Reliable Component-Based Software Systems. Artech House, Inc., Norwood, MA, USA.
FOWLER, M. 2004. Inversion of Control Containers and the Dependency Injection pattern. Tech. rep., Homepage: http://martinfowler.com.
HAN, C.-C., KUMAR, R., SHEA, R., KOHLER, E., AND SRIVASTAVA, M. 2005. A dynamic operating system for sensor nodes. In Proceedings of

the 3rd international conference on Mobile systems, applications, and services. MobiSys ’05. ACM, New York, NY, USA, 163–176.
HANSSON, H., AKERHOLM, M., CRNKOVIC, I., AND TORNGREN, M. 2004. Saveccm - a component model for safety-critical real-time systems.

In Proceedings of the 30th EUROMICRO Conference. EUROMICRO ’04. IEEE Computer Society, Washington, DC, USA, 627–635.
HICKS, M. AND NETTLES, S. 2005. Dynamic software updating. ACM Trans. Program. Lang. Syst. 27, 6, 1049–1096.
HOSEK, P., TOMAS, P., MICHAL, M., PETR, H., AND TOMAS, B. 2010. Supporting real-time Features in a Hierarchical Component System.

Tech. rep., Dep. of Distributed and Dependable Systems, Charles University in Prague.
JOHNSON, R. E. AND FOOTE, B. 1988. Designing Reusable Classes. Object-Oriented Programming 1, 2.
KAJTAZOVIC, N., PRESCHERN, C., AND KREINER, C. 2013. A Component-based Dynamic Link Support for Safety-critical Embedded Systems.

In Proceedings of the IEEE International Conference and Workshop on the Engineering of Computer Based Systems. ECBS 2013. IEEE.
KINDEL, O. AND FRIEDRICH, M. 2009. Softwareentwicklung mit AUTOSAR: Grundlagen, Engineering, Management in der Praxis. dpunkt

Verlag; Auflage: 1 (8. Juni 2009).
LEVINE, J. R. 1999. Linkers and Loaders. Morgan Kaufmann; 1 edition (October 25, 1999).
OMG. 2006. Corba components - version 4.0, specification. Technical report, Object Management Group Inc., formal/06-04-01. April.
PICOCONTAINER. 2013. Picocontainer - ioc container. Homepage: http://picocontainer.com/.
PIPER, T., WINTER, S., MANNS, P., AND SURI, N. 2012. Instrumenting AUTOSAR for dependability assessment: A guidance framework. In

Proceedings of the 2012 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). DSN ’12. IEEE
Computer Society, Washington, DC, USA, 1–12.

POLAKOVIC, J., OZCAN, A., AND STEFANI, J.-B. 2006. Building Reconfigurable Component-Based OS with THINK. In Software Engineering
and Advanced Applications, 2006. SEAA ’06. 32nd EUROMICRO Conference on. 178 –185.

PRASANNA, D. R. 2009. Dependency Injection - Design Patterns Using Spring and Guice. Manning Publications.
SPRINGSOURCE. 2013. Spring framework. Homepage: http://www.springsource.org.

Inversion of Control Container for Safety-critical Embedded Systems — Page 11

Publication 4 - EuroPLOP 2013 105

APPENDIX

Table I. List of applied patterns
Pattern Problem Solution
CONTEXT-OBJECT [Buschmann
et al. 2007]

Interrelated components usually share com-
mon data by accessing global variables or
some central SINGLETON. The coupling
between components on this way is very
strong, since it is hard-coded and cannot be
changed at runtime.

The component, which requires the services
(i.e. the client), has to provide its environ-
ment to the service component using the
context object. By doing so, the service com-
ponent can access the environment data
of the client, without being dependent on
it. This pattern is a typical example for the
inversion of control.

MEDIATOR [Buschmann et al. 2007] It is often required that communicating com-
ponents are fully decoupled. An example
is component-based application which can
be easily reconfigured at runtime. Currently,
using the global variables or SINGLETON,
or even CONTEXT-OBJECT, is not practical,
since these options make the components
explicitly coupled.

For each connection between components,
there is an individually instantiated object
which maps both components (i.e. the me-
diator object). By doing so, none of com-
ponents is responsible for managing depen-
dencies and routing of data is just delegated
to the mediator object.

COMPONENT-CONFIGURATOR
[Buschmann et al. 2007]

Although many application models used in
frameworks for safety-critical systems are
component-based, their runtime structure
is monolithic. It is therefore difficult to main-
tain the lifecycle of components designed
on such a way. The components have to be
replaced at application runtime or load-time,
e.g. due to changed environment, bug fix-
ing or because of the improvement in their
performance.

The components that constitute the appli-
cation have to be designed as dynamically
linked objects with well-defined interfaces
that expose the functionality and configura-
tion of the components. Based on this de-
sign, the component configurator can rely
on generic mechanism for reconfiguring the
application by deploying and re-deploying
the components. Maintaining the application
at runtime is therefore based on deploying
and re-deploying the components.

LIFECYCLE-CALLBACK
[Buschmann et al. 2007]

The components have access to system re-
sources and the usage of these resources
is typically component-specific. Further, typ-
ical creation and disposal of simple objects
is for most components not possible (e.g.
components may consist of several objects).
Managing the lifecycle of such components
from a central framework is difficult, particu-
larly because the internals of components
are not known (e.g. when and how they ac-
quire which resources).

The components have to expose standard
interfaces that would allow the framework to
manage their lifecycle transparently. Each
component is therefore obligated to imple-
ment these interfaces.

Copyright 2013 is held by the author(s).

Inversion of Control Container for Safety-critical Embedded Systems — Page 12

106 6. Publications

Towards Predictable Dynamic Linking for
Safety-critical Component-based Systems

Nermin Kajtazovic, Christopher Preschern, Norbert Druml, Christian Kreiner
Institute for Technical Informatics
Graz University of Technology

Graz, Austria
{nermin.kajtazovic, christopher.preschern, norbert.druml, christian.kreiner}@tugraz.at

I. INTRODUCTION AND MOTIVATION

Safety-critical systems have stringent requirements regard-
ing systems quality. They drive the processes in which failures
in their functions can lead to catastrophic consequences for
operating environment and humans. Depending on the applica-
tion domain, hardware and software quality of these systems is
regulated by safety standards (e.g. ISO 26262 for automotive,
generic IEC 61508 for industry, etc.). In order to get desired
quality for software, a rigorous development process has to be
conducted. It is therefore common for these domains to follow
the principle of simplicity, thereby removing all unpredictable
behaviors and making the system testable at all. This usually
leads to typical monolithic system’s structure which is difficult
to maintain.

In parallel, due to continuous increase of software complex-
ity (i.e. more software-implemented functions, more electronic
devices in automobiles), there is a need to shorter development
cycles and costs of change and maintenance. This resulted with
the paradigm shift from monolithic to modular and standard-
ized component-based architectures. Exemplary specifications
are AUTOSAR for automotive and IEC 61131/61499 for
industrial automation. Using new approaches enabled a clear
separation between common and specific (custom) software
functions and corresponding roles (i.e. such as suppliers and
manufacturers in automotive). In this way, the system design
was utilized to allow for constructing software by reusing
existing artifacts, such as pre-fabricated binaries or source
code. However, the runtime system created in such a way is
still monolithic and maintenance operations (upgrades) can-
not be performed without re-building it. To this end, some
approaches go one step further and employ the adaptation in
software architectures [1] [2]. In case of failures or degradation
of quality, they are able to switch between different system
configurations at runtime in order to reach again normal
behavior. Binding static configurations at design-time allows to
verify the adaptive behavior prior to deployment of the system,
which is promising when it comes to the safety certification
(i.e. all possible outcomes of the adaptation can be predicted).

The next step towards more effective way of maintaining
safety software would be the ability for late binding of out-of-
the-box software artifacts (in further text, components). This
would allow to have a repository of reusable components that
can be used for software construction and maintenance of the
system in mission, like it is a long practice in many enter-
prise applications. However, the standard binding mechanisms
(i.e. dynamic linkers) are not directly applicable to safety

domains, since the results of the bindings they produce are
not predictable. In this article, we give a brief overview of our
approach for dynamic linking and its ongoing work. Similar to
mentioned adaptation approaches, we focus on predictability
of the underlying mechanism.

II. APPROACH FOR DYNAMIC LINKING OF SAFETY
SOFTWARE

The system we describe in this article comprises a
component-based architecture, conceptually similar to AU-
TOSAR [3]. The components are on the top of this architecture
and represent the application software. The underlying infras-
tructure software is a Component Container that manages the
components. Both parts are running on a Unix-like Real-time
Operating System (RTOS). Regarding software maintenance,
the system allows to dynamically link the applications and
required libraries.

A. Dynamic Linking and Safety

In order to perform certain application function, the compo-
nents may require external functionality, such as mathematical
libraries, communicate with other components, use resources
from RTOS, etc. In binary form, these needs are expressed
in terms of relocations. The process of dynamic linking in
this context has to read this information in order to find
desired functions or data (in further text, symbols) within the
remaining system and finally to link the both ends. Within
this process, two problems arise: (1) final symbol location is
known not before runtime and (2) component binary has to be
modified after symbols are found. These are the properties of
the linking process which are difficult to verify at design-time.

B. Ensuring Predictability of Dynamic Linking

Having binaries without relocations would not introduce
the problems mentioned above. However, they always arise as
long as the binaries are accessing the external symbols directly
(e.g. by calling functions). To still avoid the relocations, we
use the indirection tables as interfaces between component
binaries and the Component Container. The indirection tables
are one of the alternatives to realize dynamic linking [4]. Based
on these tables, the components can express their needs (i.e.
required interfaces) and access the symbols of the Component
Container without producing any relocations. On the other
side, the Component Container builds the list of symbols which
it uses to manage the components’ lifecycle (initialization,

6. Publications Publication 5 - SEAA 2013 107

c© 2013 IEEE. Reprinted, with permission, from Proceedings of Work in Progress Session of
the 39th EUROMICRO Conference on Software Engineering and Advanced Applications 2013.

activation and finalization, i.e. the provided interfaces). After
both these interfaces are instantiated so that components get
their indirection tables and the Component Container gets
the components’ symbols, the process of dynamic linking is
completed.

The problem with the concept above is that the components
have to know the location of the indirection tables. In order
to avoid having the components with hard-coded location,
we provide the indirection table on the stack of components’
functions each time they are active. In this way the components
can access their required interfaces using relative addresses
(relative to the frame pointer for example). Using relative
addressing mode has the following advantages: (1) components
are position-independent so that they can be deployed any-
where in the address space and (2) the infrastructure software
can evolve independently from the components. In similar way,
we defined a concept for libraries which evolve and have to
be integrated into an existing infrastructure software. Those
libraries are designed as components, and can be accessed by
other components using the mechanisms for inter-component
communication.

Another problem is that the usage of the indirection tables
can be tedious in some cases. For example, in processor
architectures which have no hardware support for floating point
operations, the request to indirection tables has to be made for
each such an operation. To avoid this, we allow to link the
libraries with the component binaries directly, including the
inspection of the correctness for that linking (see Sec. II-C).
In this way, the symbols which are intensively used by the
component code are injected within its binary so that no inter-
action with the infrastructure software is required. However,
this alternative is only possible for processor architectures that
allow relative addressing mode in instructions (such as relative
branches in ARM for example).

C. Verification of Dynamic Linking

To verify the correctness of the proposed dynamic linking,
we have to verify that dynamically established provided and re-
quired component interfaces are correct and that a component
binary is conforming to the specification of our component
model (refer to [5] for more details).

1) Verifying Bindings: Required interfaces are provided
to a component using its stack. Further, they are bundled
within an indirection table which is statically linked with the
Component Container. Since this table contains the symbols
to the infrastructure software which are resolved statically, the
correctness of these interfaces can therefore be easily verified
at design-time. Similar to this, the verification of the provided
interfaces can be conducted.

2) Verifying Binaries: It is very easy to produce the compo-
nent binaries that are not conforming to the target component
model, i.e. binaries that are position-dependent and contain
absolute relocations. In such cases, the components cannot
function, because their static memory layout does not conform
to the runtime memory layout. Therefore, we have to identify
(1) whether a component binary does access the symbols using
the absolute addressing mode and (2) whether the required
libraries are conforming to the target component model too.
We perform both verification steps by analyzing the binaries

in the ELF (Executable and Linkable Format, [6]) format as
follows:

• Verifying Components: a component is valid only if
it does not use the absolute addressing mode locally
(e.g. access to local data, local functions, etc.). This
can be easily verified using the ELF-attributes related
to relocation information which are stored within a
binary.

• Verifying Libraries: to verify required libraries we
construct a directed graph, in which nodes represent
the binaries and directed edges are symbols connecting
the binaries. Starting from the root node, we verify
each binary according to the same rules we apply for
the components.

III. CONCLUSION AND FUTURE WORK

Safety-critical systems have to follow a rigorous develop-
ment process in order to attain optimal quality. On the other
side, due to growing complexity of software there is a push
towards cost reduction in development cycles and maintenance.
In this article, we have introduced our approach for dynamic
linking, as an important step towards more effective maintain-
ing of safety software. The essential in this process is that the
results of the linking can be predicted. Instead of modifying
the relocations in component binaries, we use the relative
addressing mode and indirection tables as a link between the
components and remaining system. This allows us to verify all
dynamic behaviors of the linking mechanism at design-time.

As stated, we are supporting linking external libraries either
with components directly or deploying them as components.
Depending on verification of the linking or performance issues
(i.e. direct linking is faster than indirection), the developer
can choose one of the options. Currently, we are working
on automated allocation for used libraries. The intent is to
accelerate the component development process by suggesting
optimal and feasible configurations. Further, based on required
interfaces of the components and of the dependency graph we
conducted in the verification process, the aim is to generate the
test cases which would allow to easily conduct the performance
of the configurations.

REFERENCES

[1] R. Adler, I. Schaefer, M. Trapp, and A. Poetzsch-Heffter, “Component-
based modeling and verification of dynamic adaptation in safety-critical
embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 2,
pp. 20:1–20:39, Jan. 2011.

[2] G. Montano, “Dynamic reconfiguration of safety-critical systems: Au-
tomation and human involvement,” PhD Thesis, 2011.

[3] O. Kindel and M. Friedrich, Softwareentwicklung mit AUTOSAR: Grund-
lagen, Engineering, Management in der Praxis. dpunkt Verlag, 2009.

[4] M. Hicks and S. Nettles, “Dynamic software updating,” ACM Trans.
Program. Lang. Syst., vol. 27, no. 6, pp. 1049–1096, Nov. 2005.
[Online]. Available: http://doi.acm.org/10.1145/1108970.1108971

[5] N. Kajtazovic, C. Preschern, and C. Kreiner, “A Component-based
Dynamic Link Support for Safety-critical Embedded Systems,” in Pro-
ceedings of the IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, ser. ECBS 2013. IEEE, 2013.

[6] J. R. Levine, Linkers and Loaders, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999.

108 6. Publications

Constraint-based Verification of Compositions in
Safety-critical Component-based Systems

Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

Abstract Component-based Software Engineering (CBSE) is currently a key paradigm
used for building safety-critical systems. Because these systems have to undergo a
rigorous development and qualification process, one of the main challenges of in-
troducing CBSE in this area is to ensure the integrity of the overall system after
building it from reusable components. Many (formal) approaches for verification of
compositions have been proposed, and they generally focus on behavioural integrity
of components and their data semantics. An important aspect of this verification is
a trade-off between scalability and completeness.

In this paper, we present a novel approach for verification of compositions for
safety-critical systems, based on data semantics of components. We describe the
composition and underlying safety-related properties of components as a Constraint
Satisfaction Problem (CSP) and perform the verification by solving that problem.
We show that CSP can be successfully applied for verification of compositions for
many types of properties. In our experimental setup we also show how the proposed
verification scales with regard to size of different system configurations.

Key words: component-based systems; safety-critical systems, compositional ver-
ification, constraint programming

Nermin Kajtazovic
Institute for Technical Informatics, Graz University of Technology, Austria
e-mail: nermin.kajtazovic@tugraz.at

Christopher Preschern
Institute for Technical Informatics, Graz University of Technology, Austria
e-mail: christopher.preschern@tugraz.at

Andrea Höller
Institute for Technical Informatics, Graz University of Technology, Austria
e-mail: andrea.hoeller@tugraz.at

Christian Kreiner
Institute for Technical Informatics, Graz University of Technology, Austria
e-mail: christian.kreiner@tugraz.at

1

6. Publications Publication 6 - SNPD 2014 109

c© 2014 Springer. Reprinted, with permission, from Proceedings of Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing SCI, Volume 569.

2 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

1 Introduction

Safety-critical systems drive the technical processes in which failures can cause
catastrophic consequences for humans and the operating environment. Automotive,
railway and avionics are exemplary domains here, just to name few. In order to
make these systems acceptably safe, their hardware/software engineering has to be
rigorous and quality-assured.

Currently, rapid and continuous increase of system’s complexity is one of the ma-
jor challenges when engineering safety-critical systems. For instance, the avionics
domain has seen an exponential growth of software-implemented functions in the
last two decades (Butz (-)), and a similar development has also occurred in other do-
mains with a focus on mass production (Kindel and Friedrich (2009)). In response,
many domains have shifted towards using component-based paradigm (Crnkovic
(2002)). The standards such as the automotive AUTOSAR and IEC 61131/61499
for industrial automation are examples of widely used component systems. This
paradigm shift enabled the improvement in reuse and reduction of costs in devel-
opment cycles. In some fields, the modularity of the system structure is utilized to
distribute the development across different roles, in order to perform many engineer-
ing tasks in parallel (e.g. the automotive manufacturers are supplied by individually
developed middleware and devices which can run their applications).

However, the new paradigm also introduced some new issues. One of the ma-
jor challenges when applying CBSE is to ensure the integrity of the system after
building it from reusable parts (components). The source of the problem is that
components are often developed in the isolation, and the context in which they shall
function is usually not considered in detail. In response, it is very difficult to localize
potential faults when components are wired to form a composition – an integrated
system (Gössler and Sifakis (2005)), even when using quality-assured components.
The focus of the current research with regard to this problem is to enrich compo-
nents with properties that characterize their correct behavior for particular context,
and in this way to provide a basis for the design-time analysis or verification1 of
compositions (Clara Benac Earle et al (2013)).

This verification is also the subject of consideration in some current safety stan-
dards. For instance, the ISO 26262 standard defines the concept Safety Element out
of Context (SEooC), which describes a hardware/software component with neces-
sary information for reuse and integration into an existing system. Similarly, the
Reusable Software Components concept has been developed for systems that have
to follow the DO-178B standard for avionic software. These concepts both share the
same kind of strategy for compositional verification: contract-based design. Each
component expresses the assumptions under which it can guarantee to behave cor-
rectly. However, the definition of the specific contracts, component properties and
validity criteria for the composition is left to the domain experts.

1 In the remainder of this paper, we use the term verification for static, design-time verification (cf.
static analysis (Tran (1999))).

110 6. Publications

Constraint-based Verification of Compositions 3

From the viewpoint of the concrete and automated approaches for compositional
verification and reasoning, many investigations have focused on behavioural in-
tegrity, i.e. they model the behaviour of the components and verify whether the
composed behaviours are correctly synchronized (de Alfaro and Henzinger (2001)),
(Basu et al (2011)). On the other side, compositions are often made based on data
semantics shared between components (Benveniste et al (2012)). Here, the correct
behaviour is characterized by describing valid data profiles on component interfaces.
In both cases, many properties can be required to describe a single component and
therefore scalability of the verification method is crucial here.

In this paper, we present a novel approach for verification of compositions based
on the data semantics shared between components. We transform the modelled com-
position along with properties into a Constraint Satisfaction Problem (CSP), and
perform the verification by solving that problem. To realize this, we provide the
following contributions:

• We define a component-based system that allows modelling properties within a
complete system hierarchy.

• We define a structural representation of our modelled component-based system
as a CSP, which provides us a basis to verify the preservation of properties.

• We realize the process that conducts the transformation of the modelled component-
based system into a CSP and its verification automatically.

The CSP is a way to define the decision and optimization problems in the con-
text of Constraint Programming paradigm (CP) (Apt (2003)). Using this paradigm
for our component-based system, many types of properties can be supported. Also,
various parameters that influence the scalability of the verification can be controlled
(used policy to search for solutions for example). In the end of paper, we discuss the
feasibility of the approach with regard to its performance.

The remainder of this paper is organized as follows: Section 2 describes the prob-
lem statement more in detail and gives some important requirements with regard to
modelling a system. In Section 3 the proposed verification method is described. Sec-
tion 4 describes the experimental results. A brief overview of relevant related work
is given in Section 5. Finally, concluding remarks are given in Section 6 .

2 Problem Statement

Properties are an important means to characterize functional and extra-functional
aspects of components. Safety, timing and resource budgets are examples here, just
to name few (Sentilles et al (2009)). Recently, they get more and more attention
in the safety community, since efficient (an practical) reuse methods are crucial in
order to reduce costs in development cycles and costs for certification of today’s
safety-critical systems (i.e. their extensive qualification process). In this section, we
give an insight into the main challenges when using properties to verify composi-

Publication 6 - SNPD 2014 111

4 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

tions, and based on these challenges, we outline the main objectives that we handle
in this paper.

2.1 Motivating Example

In our work, we address properties that in general describe data semantics. To clar-
ify this, let us consider now the example from Figure 1. The system in this figure

Air Flow System
MAFS

Injection Time
and

Ignition Time
Actuation System

MIIAS

Injection System
MFS

Ignition System
MIS

Throttle Angle Mass Air
Flow

Engine Speed

Injection Time

Ignition Time

Ignition System

Component Structure Specification (Data Semantics)

Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

...
sen in min int16

...

-1

Data

Properties

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES

()

()

ffl

ffl

sen

tig

tin

tig

tin

atr

Fig. 1 Motivating example: a component-based system of automotive engine control function,
adopted from (Frey (2010)) (top), and detailed view of the component Ignition System (structure
and specification, bottom)

shows the composition of four components that form the automotive engine control
application on a higher abstraction level. The basic function of this application is
to decide when to activate the tasks of the fuel injection and ignition (Frey (2010)).
To do this, the application takes the sensed values of the air flow volume, current
speed and some parameters computed from the driver’s pedal position. In a typical
automotive development process2, the system structure from figure is made based
on stepwise decomposition of top-level requirements, having several intermediate

2 Note that we do not limit our approach to automotive domain.

112 6. Publications

Constraint-based Verification of Compositions 5

steps such as the functional and technical system architecture with several levels in
the hierarchy. Let us assume now that involved components are already developed,
eventually for the complete car product line, and are stored in some repository. Let
us further assume that we have a top-level requirement with regard to the engine
timing for particular car type, which states the following:

The minimal allowed time delay between the task of the fuel injection and ignition
shall be greater than 40 ms.

The main contributors to this requirement are software components MAFS, MFS,
MIS, MIIAS, and their execution platform (e.g. concrete mapping of components on
real-time tasks, task configurations, and other). In order to satisfy this timing prop-
erty, the developer has to analyze the specification for each component in order to
find the influence of the component behaviour on that property. The example of such
a specification is given in Figure 1, bottom. Here, the context for the component Ig-
nition System is defined in terms of the syntax and semantics related to component
inputs, outputs and parameters. With the properties shown below, the concrete be-
havior can be roughly described – in this example, for certain intervals of inputs,
the component can guarantee that the output tig lies within the interval [50,150]
(note that pseudo syntax is used here). When building compositions based on such
properties, the developer has to consider their influence on the remaining, depen-
dent components – in this case, it has to be decided whether the MIIAS component
can accept such values of the tig and what should components MFS and MAFS pro-
vide so that higher delay than 40ms between tig and tin can be achieved. This can be
very tedious and error prone task when doing it manually, because of the following
reasons:

• Many components may be required to build a complete system, depending on
their granularity. For example, current automotive systems comprise several hun-
dreds of components, and many of them may depend on each other (Kindel and
Friedrich (2009)).

• Some components that directly influence the safety-critical process are usually
certified, i.e. developed according to rigorous rules from safety standards. Be-
cause of costs for such a certification, the practice is to develop components for
different context and to certify them just once (e.g. to support different engine
types in our example). In response, many properties have to be defined for a
single component to capture all context information.

The main problem here is how to define and to inter-relate all properties thorough
the complete system hierarchy in a way that the preservation of properties of all
components can be verified automatically? Another problem is how to complete
with such a verification in a ”reasonable time”?

Publication 6 - SNPD 2014 113

6 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

2.2 Modelling and Verification Aspects

To narrow the problem statement above, very important prerequisite to structure
properties within a system hierarchy consistently is to define basic relations among
them. For example, properties of the component MIS are related with properties
of the component MIIAS, because of direct connections between their output and
input variables. On the other hand, properties of all four components influence the
semantics of the mentioned top-level property. We summarize different types of
these relations as following:

• Composition: hierarchical building of composed properties based on their con-
tained properties (e.g. the top-level timing property is composed of properties
contained in components MAFS, MIS, MFS and MIIAS). We discuss this later in
more detail.

• Refinement/abstraction: properties characterize the component behaviour at cer-
tain abstraction level. With refined properties, more specialized behaviours can
be described. For example, the property in Figure 1 may include some additional
parameters to define conditions for the tig more precisely.

• Alternatives: properties may have alternative representations for different context
(e.g. the Injection System component MIS can provide different properties for
different engine types).

These relations have to be supported when modelling a component-based system
and they have to be considered when such a system has to be verified.

3 Constraint-based Verification

In this section, we describe the proposed approach for compositional verification.
To get a rough image of our approach, we summarized the basic steps in Figure 2

Component-based System Msys

M

M

M

M

M

M

Constraint Satisfaction Problem
 CSPsys

Constraint

Variable

Variable

Constraint

Satisfied CONSTRAINT
SOLVER

1 - Transform

2 - Verify

Not satisfied

M - Component

Fig. 2 Overview of the proposed verification method: (1) transformation of the component-based
system Msys into the CSP representation CSPsys, (2) verification of the composition CSPsys by solv-
ing a CSP

114 6. Publications

Constraint-based Verification of Compositions 7

that we perform to conducts the verification process. The input to the verification
is a modelled component-based system, enriched with properties – Msys in figure.
This model is further transformed into a Constraint Satisfaction Problem (CSP) –
CSPsys in figure, which is a network of inter-connected variables and constraints
(we discuss this later). The CSP model is processed by the constraint solver, i.e. a
tool to solve the CSPs, in order determine the preservation of all properties in the
system. As a result, we get a decision about such a preservation. In addition, we get
concrete values of data (i.e. inputs, outputs, parameters), for which properties are
preserved. All steps in the process are performed automatically.

In the following, we describe how we defined each model described above. We
first give some basic assumptions for our system Msys. Then we describe the main
elements of that system, including properties. In the end, we describe its represen-
tation as a CSP.

3.1 General: Components and Compositions

In our system, we define a component M as follows:

M :=
〈
Σ in,Σ out ,Σ par,Mc

〉
(1)

, where Σ in, Σ out , and Σ par are inputs, outputs and parameters respectively (i.e.
Σ -alphabets define input, output and parameter variables in terms of datatypes, val-
ues, and some additional attributes), whereby Mc is an optional set of contained
components, and is defined according to relation (1). To clarify this, we distinguish
between following two types of components:

• Atomic components: components that can not be further divided to form hierar-
chies, i.e. components for which Mc = /0. They perform the concrete computation.
The Ignition System for example may contain many atomic components, such as
integrators, limiters, simple logical elements and other.

• Composite components: hierarchical components that may contain one or more
atomic and composite components, i.e. Mc 6= /0. Note that we use the term com-
position to indicate composite components, which also may represent a complete
component-based system (cf. our system in Figure 1).

The component model introduced above is typical for data-flow systems such as
the ones modelled in the Matlab Simulink for example. Similar models are used
when considering properties for resource budgets (Benveniste et al (2012)).

3.2 Modelling Compositions Enriched with Properties

As illustrated in Figure 1, properties are defined as expressions over component
variables. In order to be able to interpret these expressions during the verification,

Publication 6 - SNPD 2014 115

8 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

we formulate them in a SMT form3: each expression can be represented in terms of
basic symbols, such as 0,1, ...sen, ...,+,−,/, ...min. Using this form, various expres-
sions can be supported for our system, including logical, arithmetic, and other. The
property from Figure 1 for instance, (0≥ sen ≤ 6400)∧ (0≥ f f l ≤ 100), conforms
to the SMT form.

In order to link properties throughout the system hierarchy with regard to three
basic relations introduced in Section 2.2, we encapsulate them in assume/guaran-
tee (A/G) contracts. According to the general contract theory in (Benveniste et al
(2012)), a contract C is a tuple of assumption/guarantee pairs, i.e.:

C := 〈Σ ,A,G〉 (2)

, where A and G are expressions over sets of variables Σ . In this way, we can split
properties for each component in (a) part that has to be satisfied, i.e. assumptions,
and (b) part that is guaranteed if assumptions hold, i.e. guarantees. For example, the
top-level contract CII for our system in Figure 1 guarantees the 40ms delay under
assumptions that the rotational speed sen and values for the throttle angle atr are
within certain ranges:

CII =

variables

inputs sen,atr
parameters −

outputs tin, tig
types sen,atr, tin, tig ∈ N
assumptions (0≥ sen ≤ 6400)∧ (0≥ atr ≤ 100)
guarantees tig− tin > 40

Based on this structure, we can link properties between dependent components
in a similar way it is done when wiring components using connectors (i.e. links be-
tween their input/output variables). Figure 3 shows our example system modelled
using contracts. Every component provides certain guarantees which stay in rela-

CAFS

CIIAS

CFS

CISA G

GA

A G

GA

A G

System Contract CII

Refinement/
Abstraction Composition

Alternatives

Fig. 3 The Engine Controller system represented using contracts and their basic relations (A –
assumptions, G – guarantees, C – contracts)

3 Syntax in SMT (Satisfiability Modulo Theories) allows to define advanced expressions, e.g. on
integers, reals, etc.

116 6. Publications

Constraint-based Verification of Compositions 9

tion to assumptions of dependent components. These components in turn provide
guarantees based on their own assumptions, and so forth. In this way, all proper-
ties within a system hierarchy can be linked together. In Figure 3, we have also
highlighted different types of relations between contracts, required to build such a
hierarchy (see Section 2.2). These are:

• Composition: two contracts can interact when after connecting their guarantees
and assumptions both contracts can function correctly (we discuss this in more
detail in Section 3.3). We use the operator⊗ to define a composition (Benveniste
et al (2012)). An example of such relations is shown in Figure 3, where contracts
CFS, CIS, and CIIAS form a composite contract, i.e. (CFS⊗CIS)⊗CIIAS).

• Refinement/abstraction: similar to refinement of properties, contracts refine other
contracts in terms of refined assumptions and guarantees. We use the operator �
for this relation. The top-level contract CII has such a relation with the contained
contracts, i.e. (CFS ⊗CIS)⊗CIIAS) � CII . Note that only the relation with the
contract CIS is highlighted here.

• Alternatives: when designing components for more than one context, each new
context is described in a separated contract. Contracts that describe the same
property for different context are alternatives. In example in Figure 3, any of
contained contracts may have alternatives – here, we just highlighted CFS to in-
dicate that it may have alternative contracts.

Based on definitions for contracts and their relations, we can now define the top-
level system/composition contract, Csys, as follows:

Csys := (⊗i∈NCi) (3)

, i.e. a hierarchical composition of contracts Ci, where Ci represents further compo-
sition according to relation (3).

Finally, to relate contracts with components, i.e. the concrete implementations of
contracts, we extend the relation (1) as follows:

M :=
〈
Σ in,Σ out ,Σ par,Cc,Mc

〉
(4)

, where Cc is a set of contracts that the component M can implement. Based on this
relation, any implementation of the Csys contract represents a complete component-
based system or a top-level composition. We identify this implementation as Msys
and use it later as a basis to define our CSP.

3.3 Ensuring Correctness of Compositions

For our component-based system defined previously, two contracts C1 and C2 can
form a composition (i.e. can be integrated) when their connected assumptions/guar-
antees match in the syntax of their variables (i.e. datatypes, units, etc.), and when
following holds:

Publication 6 - SNPD 2014 117

10 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

G(C1)⊆ A(C2) (5)

In other words, the contract C1 shall not provide values not assumed by the contract
C2. This relation is a basis in our CSP to verify the complete composition.

3.4 Composition as a Constraint Satisfaction Problem

Now, we describe how we define the composition Msys as a CSP. We name our CSP
representation of Msys as CSPsys, and define it as follows:

CSPsys := 〈XCSP,DCSP,CCSP〉 (6)

, where XCSP is a finite set of variables, DCSP their domains (datatypes, values),
and CCSP a set of constraints related to variables and constraints in CCSP. In other
words, the CSP represents a network of variables inter-connected with each other
using constraints. The constraints set variables in relations using some operators,
and in this way they form expressions. Various types of expressions can be used
to define constraints (e.g. Boolean, SMT – depending on supported features of the
solver). The solution of the CSPsys is a set of values of XCSP for which all constraints
CCSP are satisfied. The constraint solver performs the task of finding solutions.

In order to represent the composition Msys in a CSP, we need to map the top-
level contract structure ((sub-)contracts, variables, and A/G expressions) into the
CSP constructs mentioned above. Important aspects of this representation are CSP
definitions for (1) a type system, (2) A/G expressions or properties, (3) the structure
of components and contracts and (4) the structure of compositions. We can now turn
to these representations.

3.4.1 Type System

The CSP tools, i.e. constraint solvers, usually provide the support for several do-
mains to represent various types of variables. Integers, reals, and sets are examples
here, just to name few. In order to avoid type castings between modelled system Msys
and CSPsys, we use the same domains for both Msys and CSPsys. Another reason is
that the time needed for the constraint solver to solve the CSP strongly depends on
a particular domain. For example, there is a significant difference in runtime when
dealing with real numbers instead of integers. Therefore, we use integers for both
system representations, i.e. Msys and CSPsys.

3.4.2 A/G Expressions (Properties)

Concerning the representation of values of variables in the CSP, limits have to be
set on their intervals. The intervals are possible search space for the solver, and can

118 6. Publications

Constraint-based Verification of Compositions 11

have significant influence on solver’s runtime. It is therefore important to limit the
variables on smallest possible intervals.

In our CSPsys, each variable which is used in an expression is represented by two
CSP variables: one indicating the begin of the interval, another one for the end of
that interval. The size of this interval is determined based on intervals defined in ex-
pressions. For example, the variable sen in the expression (0≥ sen ≤ 6400) is limited
on the interval [0,6400]. The reason for using two CSP variables here is that solving
the CSP results with not only decision about the correctness of a composition with
regard to the relation (5), but it also provides values for which the relation (5) is
satisfied. In this way, we can obtain the concrete intervals (instead of just values)
for all variables in all contracts (for correct compositions). This information can be
useful for example when the composition Msys has many alternative contracts, to
observe which of them are identified as correct.

Relations or operations between variables in expressions are represented as con-
straints. Since both Msys and CSPsys use the SMT syntax for expressions, every op-
eration is represented as a single constraint.

3.4.3 Components

From the perspective of structural organization, every component is represented in
a CSP as a set of variables (inputs, outputs, parameters) from the integer domain,
and a set of constraints, which correspond to the contracts implemented by that
component (see Figure 4). Note that we distinguish here between variables used in

Component

Variables: Inputs, Outputs, Parameters

Contract 1

Contract Part 1 Csp1

Local A/G Variables

A/G Constraints Cagc

Composition Constraints Ccc

Binding Constraints Cbc

Contract Part n Cpn

Contract n

Contract C1

Assumptions Guarantees

Refined/Alternative Contract C1'

Assumptions Guarantees

C
o

n
st

ra
in

ts
V

ar
ia

b
le

s
V

ar
ia

b
le

s

Contract Constraint Cs1C
o

n
st

ra
in

ts

Component Constraint Cm

...

...

C
o

m
p

o
n

e
n

t
Lo

ca
l A

/G
To

p
-l

ev
el

Su
b

-

Fig. 4 Representation of a component in CSP (left) and an excerpt of the mapping the contracts to
constraints and variables (right)

Publication 6 - SNPD 2014 119

12 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

components, i.e. Σ in relation (4), and variables used in contracts, i.e. Σ in relation
(2). Although they are identical, we define separated variables in the CSP for each
of them. This means, when a component has two contracts, we have CSP variables
for (a) component variables (inputs, outputs and parameters) and (b) CSP variables
(inputs, outputs and parameters) for each contract. With this separation of contracts
and components, we can identify which contracts are satisfied if the verification
succeeds. As mentioned, the constraint solver not only responds with a decision,
but it also finds all values of XCSP for which the verification succeeds. Similarly, if
the verification fails, the conflicting contracts can be easily identified.

Now we describe how the contracts are defined in a CSP, how they are linked with
components, and how the criteria for correctness from relation (5) is represented in
a CSP.

3.4.4 Contracts

As shown in Figure 4, each contract is represented as a single top-level constraint Cs.
This constraint is further related to a set of local A/G variables (inputs, outputs, pa-
rameters) and a set of sub-constraints. The sub-constraints represent the constraints
of the refined/abstracted or alternative contracts (contract parts Csp in figure). Be-
cause refined/abstracted and alternative contracts do not depend on each other, we
define the top-level constraint Cs as follows: Cs := (∨i∈NCspi). In this relation, any
contract which can satisfy the relation (5) implies that the top-level contract con-
straint Cs is satisfied.

As illustrated in Figure 4, every contract consists of the following sub-constraints:

• A/G constraints Cagc: constraints related only to local A/G variables. These con-
straints define the assumptions and guarantees for a contract. They are defined
based on A/G expressions in contracts, as described in Section 3.4.2.

• Binding constraints Cbc: constraints that link the local A/G variables to the global
component variables so that both types of variables get the same values. In this
way, we can observe which contracts were satisfied, after successful verification.

• Composition constraints Ccc: constraints that integrate the contracts. These con-
straints express the integration or composition between two contracts, as de-
scribed in Section 3.3. They link two contracts according to relation (5).

All three top-level constraints have to be satisfied for a contract Csp, i.e. Csp :=
(Cagc∧Cbc∧Ccc).

Finally, the top-level constraint of a component is satisfied, if all contract con-
straints Cs are satisfied, i.e. Cm := (∧i∈NCsi).

3.4.5 System/Composition

The compositions have very similar structure to basic or atomic components. Be-
cause they abstract some contracts of the contained components, additional con-

120 6. Publications

Constraint-based Verification of Compositions 13

straints are defined to link these variables. An example of such a composition is
given in Figure 3, where assumptions and guarantees of the contract CII are an ab-
straction of assumptions and guarantees of the contained contracts.

Like atomic components, the complete component-based system Msys is repre-
sented in a CSP as a set of variables and constraints. Within this set of constraints,
there is a single top-level constraint of the composition Cm which links the complete
hierarchy of the sub-constraints and variables discussed previously. The CSP has a
solution only if this top-level constraint is satisfied. Finally, the Cm corresponds to
the top-level constraint in the constraint set CCSP from the relation (6).

4 Experimental Results

In the following, we describe the results of the preliminary evaluation and we dis-
cuss the performance of our approach.

To conduct the experiment, we used Java-based Choco constraint solver (choco
Team (2010)). In our experiment, we defined the composition Msys as a XML de-
scription, which is then used to generate the CSP in memory.

The main goal of this experiment is to show whether the proposed CSP is appli-
cable to solve the composition problems defined with data properties, and for which
system configurations. We conduct the experiment by showing how the verifica-
tion responds with regard to attributes that might have an effect on runtime. These
attributes include:

• Components and properties: how the verification scales with regard to number of
components and properties, including also the presence of the alternative proper-
ties.

• Nature of properties: different properties may require different expressions in the
CSP, including operations on fixed values, intervals, or more advanced operations
such as ones used to define resource constraints (e.g. sum, min, etc.).

M

Environment Component ME

M M

MM

M

...

...

......

...

Component-based System Msys (System Under Test)

Fig. 5 System configuration used to conduct the experiments (M - component, ME - environment
component)

Publication 6 - SNPD 2014 121

14 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

Figure 5 shows the system configuration used to conduct the experiments. The
inputs for the verification are provided by the Environment component, which en-
closes the component-based system under test. All experiments were executed on
Intel i7-3630QM, 4 cores, 2.40GHz.

4.1 Quantitative Results

For this experiment, we performed two measurements. In the first measurement,
we show the response time with regard to the number of components, properties
and alternative properties, having specified assumptions and guarantees as intervals.
Then, in the second measurement, we use the same configurations but with fixed
values for expressions. With these two measurements, we are able to observe the
limits on modeling the component-based system with regard to number components,
properties, and expressions used to describe the properties.

4.1.1 Measurements

In the first measurement, we execute several thousands of system configurations
with the varying number of components and properties. The measurement has two
parts. In the first part, we verify the system configurations with the varying number
of components, each having varying number of properties but with constant number
of assumptions or guarantees (i.e., each component variable is therefore related to
only one expression). In the second part, each of the components has varying num-
ber of alternative and refined properties, so that many solutions are possible. In this
case, each component variable is related to many expressions.

The expressions in the first measurement are defined in a way that always the
intervals of the component variables have to be satisfied, and not the fixed values.
An example for such expression is given in Section 3.2 for the contract CII , which is
satisfied only if the variables sen and atr are in ranges [0,6400] and [0,100] respec-
tively.

For the input test data, i.e. the operands of the assumption and guarantee expres-
sions, we generate the values for each expression randomly, but with the rule that
the assumptions are always satisfied. The advantage of performing the positive tests
here is to get more clear statement about the runtime of the verification. In both parts
of the measurement, we use the relational and logical operations on values.

In the second measurement, we execute the same system configurations as in
previous measurement, but this time using the fixed values for component variables.

122 6. Publications

Constraint-based Verification of Compositions 15

4.1.2 Observations

First results of the experiments are illustrated in Figure 6. On the left, an excerpt of
the results for the first measurement is shown, where the properties have a constant
number of assumptions and guarantees. The reason why the verification responds in

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

R
u

n
ti

m
e

 [
m

s]

components

10
20

50

400 800 1200 1600 2000

of assumptions/guarantees per component
R

u
n

ti
m

e
 [

m
s]

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100200 400 600 800 1000

of components

alternatives per component

4

6
8

R
u

n
ti

m
e

[m
s]

Fig. 6 Experimental results: runtime for system configuration with varying number of assump-
tion/guarantee expressions and components (left) and varying number of components and alterna-
tive properties (right)

short time is that each component variable has only one expression (assumption or
guarantee constraint, Cagc), and it is then immediately instantiated to a value indi-
cated by that expression. The runtime depends in this case therefore on the number
of components and properties.

On the right in Figure 6, a scenario that is more likely to occur in practice is
shown. Here, each component variable has an increasing number of expressions,
and these expressions are alternatives (as mentioned in the description of the mea-
surement). The response time of the verification strongly depends on the number of
alternatives, because each of the expressions represents different interval. The solver
has to adjust the component variables to adequate intervals, in order to find a solu-
tion. Furthermore, since the choice of the particular alternative may influence the
choice of the intervals in other connected components, often the backtracks have to
be done to the state where the constraints were satisfied, which is time consuming.

In the second measurement, we observed very similar results as illustrated in
Figure 6 on the left. Having fixed values on component variables, no search has to
be performed, but just the constraint verification. For the case where the alternatives
are used, more time is required to find a solution, but this time is negligible in
contrast to situation when using intervals (i.e. Figure 6, right).

In the end, we summarize our observations with Figure 7. This figure shows the
region for which the verification can complete in a ”reasonable time”. We set the
limit for this time on 2 minutes, just to get a first feedback about possible con-
figurations for the system under test. To establish this region, we used the system
configuration with the worst case in response time, i.e. the one having the alternative
properties from the first measurement.

Publication 6 - SNPD 2014 123

16 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

4.2 Qualitative Results: Discussion

Figure 7 shows the worst-case scenario, in which a component-based system is
modelled having varying number of assume guarantee expressions. The verification

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

o

f
al

te
rn

at
iv

es
 p

e
r

co
m

p
o

n
e

n
t

of components

Response time < 2 min

Not usable configurations

Fig. 7 Region of possible system configurations for which the verification completes within a
given time

scales well but for configurations with only few instances of either components or
properties. In nowadays automotive systems for example, there are more than 800
software components, that control various technical sub-processes in automobiles
(Kindel and Friedrich (2009)). However, it is still possible to support these config-
urations, since each such sub-system can be provided to verification independently,
and also, not all components are massively interconnected as in Figure 5. For exam-
ple, the simplified system from Figure 1 is modelled using 13 software components
(is just one option to realize that system).

5 Related Work

Now we turn to a brief overview of related studies. We summarize here some rele-
vant articles that handle compositional verification based on data semantics.

Similar problems to those described in our problem statement were identified by
Sun et. al (Sun et al (2009)) in their work on verifying the composition of analogue
circuits for analogue system design. In their approach, each analogue element (re-
sistor, capacitor, etc.) is characterized by its performance profile and this profile is
used to build the contract; that is, for certain values of the inputs the element re-
sponds with certain output values. Using contracts made from performance profiles,
it was possible to eliminate many integration failures early in the system design

124 6. Publications

Constraint-based Verification of Compositions 17

phase. These structural compositions of analogue elements are very similar to the
compositions in CBSE. However, the model of Sun et al. only considers connections
between elements (horizontal relations).

Another article describes a runtime framework for dynamic adaptation of safety-
critical systems in the automotive domain (Adler et al (2011)). In the event of fail-
ures or degradation of quality, the intent is to reconfigure the automotive system
while it is operating. In contrast to the previous approach, the compositional verifi-
cation in this case is based on a common quality type system shared among compo-
nents. Two components can form a composition only when their interfaces or ports
have the compatible type qualities. In this way, wrong type castings between com-
ponents can be avoided. However, using a type system in our case would just verify
the syntax but not the semantics of data (i.e. the concrete values).

A more advanced framework for dynamic adaptation of avionics systems was
developed by Montano (Montano (2011)). The goal is to adapt the system to new,
correct configurations, in case of failures. To perform this, a common quality system
defines the contracts between functions and available static resources (e.g. memory
consumption, CPU utilization, etc.) and in this way it restricts the possible set of cor-
rect configurations. An important aspect of this work is that it demonstrates the CSP
approach to solving the composition problem. However, the quality type system
only considers static resources, and does not consider contracts between functions.
Ultimately, the approach is strongly focused on dynamic adaptation with human-
assisted decision making.

In the field of industrial automation, the authors in (de Sousa (2012)) propose
the static verification of compositions based on data types of the IEC 61131-3 com-
ponent model (or standard). This model defines the standard data types but it also
allows definition of customized data types (derived from existing ones) and com-
bination of existing data types into complex structures. The authors identified am-
biguities in the standard for user-defined data types and defined a proper compati-
bility criteria. Like the adaptation approach in the automotive domain (Adler et al
(2011)), this work considers only a type system. However, the approach verifies not
only compositions, but also the use of variables in IEC 61131-related languages.

In the last few years, several research projects have begun to handle the topics
of compositional verification (SPEEDS (2006-2012)), (COMPASS (2011-2014)),
(SAFECER (2011-2015)) by formalizing system models (component models) and
languages for specification of contracts. These approaches share many concepts, es-
pecially contract-based design and formal behavioural verification of compositions.
Although our model is conceptually very similar, it differs in that it considers the
data semantics of property values, and it addresses a specific type of component-
based systems in which data semantics can be used to express the validity criteria
for compositions.

Publication 6 - SNPD 2014 125

18 Nermin Kajtazovic, Christopher Preschern, Andrea Höller and Christian Kreiner

6 Conclusion

In this paper, we presented a method for the verification of compositions in component-
based systems. The components modelled here are enriched with properties, which
describe the data semantics of components. The novelty of our verification lies in
representing the composition along with modelled properties as a Constraint Satis-
faction Problem (CSP), which allows us to achieve two important objectives. First,
using relational, logical and more advanced operators on data, many types of prop-
erties can be supported. Second, for properties that use basic logical and arithmetic
operators, the verification can scale up to several hundreds of components, each of
them consisting of few tens of properties, which makes the approach promising for
the use in practice.

As part of our ongoing work, we want to characterize the runtime performance
based on different types of properties, since they impact the scalability at most. In
addition, we also want to investigate other parameters such as solver search policy,
solver engine, etc., in order to find best configuration for the verification method.

References

Adler R, Schaefer I, Trapp M, Poetzsch-Heffter A (2011) Component-based model-
ing and verification of dynamic adaptation in safety-critical embedded systems. ACM
Trans Embed Comput Syst 10(2):20:1–20:39, DOI 10.1145/1880050.1880056, URL
http://doi.acm.org/10.1145/1880050.1880056

de Alfaro L, Henzinger TA (2001) Interface automata. SIGSOFT Softw Eng Notes 26(5):109–120,
DOI 10.1145/503271.503226, URL http://doi.acm.org/10.1145/503271.503226

Apt K (2003) Principles of Constraint Programming. Cambridge University Press, New York, NY,
USA

Basu A, Bensalem S, Bozga M, Combaz J, Jaber M, Nguyen TH, Sifakis J (2011) Rigorous
component-based system design using the bip framework. Software, IEEE 28(3):41–48, DOI
10.1109/MS.2011.27

Benveniste A, Caillaud B, Nickovic D, Passerone R, Raclet JB, Reinkemeier P, Sangiovanni-
Vincentelli A, Damm W, Henzinger T, Larsen K (2012) Contracts for Systems Design. Tech.
rep., Research Report, Nr. 8147, November 2012, Inria

Butz H (-) Open integrated modular avionic (ima): State of the art and future development road map
at airbus deutschland. Department of Avionic Systems at Airbus Deutschland GmbH Kreetslag
10, D-21129 Hamburg, Germany

choco Team (2010) choco: an Open Source Java Constraint Programming Library. Research report
10-02-INFO, École des Mines de Nantes

Clara Benac Earle, Elena Gómez-Martı́nez, Stefano Tonetta, Stefano Puri, Silvia Mazzini,
Jean Louis Gilbert, Olivier Hachet, Ramón Serna Oliver, Cecilia Ekelin, Katiusca Zedda (2013)
Languages for Safety-Certification Related Properties. In: Proc. Work in Progress Session at
39th Euromicro Conf. on Software Engineering and Advanced Applications (SEAA’13)

COMPASS (2011-2014) Compass - comprehensive modelling for advanced systems of systems.
Homepage: http://www.compass-research.eu

Crnkovic I (2002) Building Reliable Component-Based Software Systems. Artech House, Inc.,
Norwood, MA, USA

126 6. Publications

Constraint-based Verification of Compositions 19

Frey P (2010) Case Study: Engine Control Application. Tech. rep., Ulmer Informatik-Berichte, Nr.
2010-03

Gössler G, Sifakis J (2005) Composition for component-based modeling. Sci
Comput Program 55(1-3):161–183, DOI 10.1016/j.scico.2004.05.014, URL
http://dx.doi.org/10.1016/j.scico.2004.05.014

Kindel O, Friedrich M (2009) Softwareentwicklung mit AUTOSAR: Grundlagen, Engineering,
Management in der Praxis. dpunkt Verlag; Auflage: 1 (8. Juni 2009)

Montano G (2011) Dynamic reconfiguration of safety-critical systems: Automation and human
involvement. PhD Thesis

SAFECER (2011-2015) Safecer - safety certification of software-intensive systems with reusable
components. Homepage: http://safecer.eu

Sentilles S, Štěpán P, Carlson J, Crnković I (2009) Integration of extra-functional properties in
component models. In: Proceedings of the 12th International Symposium on Component-Based
Software Engineering, Springer-Verlag, Berlin, Heidelberg, CBSE ’09, pp 173–190, DOI
10.1007/978−3−642−02414−611, URL http://dx.doi.org/10.1007/978-3-642-02414-6 11

de Sousa M (2012) Data-type checking of iec61131-3 st and il applications. In: Emerging
Technologies Factory Automation (ETFA), 2012 IEEE 17th Conference on, pp 1–8, DOI
10.1109/ETFA.2012.6489534

SPEEDS (2006-2012) Speculative and exploratory design in systems engineering - speeds. Home-
page: http://www.speeds.eu.com

Sun X, Nuzzo P, Wu CC, Sangiovanni-Vincentelli A (2009) Contract-based system-level composi-
tion of analog circuits. In: Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE,
pp 605–610

Tran E (1999) Verification/validation/certification. Carnegie Mellon University, 18-849b Depend-
able Embedded Systems

Publication 6 - SNPD 2014 127

128 6. Publications

Towards Pattern-based Reuse in Safety-critical Systems
Nermin Kajtazovic, Institute for Technical Informatics, Graz University of Technology
Christopher Preschern, Institute for Technical Informatics, Graz University of Technology
Andrea Höller, Institute for Technical Informatics, Graz University of Technology
Christian Kreiner, Institute for Technical Informatics, Graz University of Technology

Challenges such as time-to-market, reduced costs for change and maintenance have radically influenced development of today’s safety-critical
systems. Many domains have already adopted their system’s engineering to support modular and component-based architectures. With
the component-based design paradigm, the system engineering is utilized allowing to distribute development among different development
teams, however, with the price that there is no full trust in independently developed parts, which makes their reuse challenging. Until now,
many approaches that address reuse, on conceptual or detailed level, have been proposed. A very important aspect addressed here is to
document the information flow between system parts in detail, i.e. from higher abstraction levels down to the implementation details, in order
to put more trust into independently developed parts of the system.
In this paper, we describe a compact pattern system with the aim to establish a link between high level concepts for reuse and detailed
description of the behavior of system parts. The main goal is to document these details up to the higher levels of abstraction in more
systematic way.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Modules and interfaces; D.2.11 [Software
Engineering]: Software Architectures—Patterns; D.2.13 [Software Engineering]: Reusable Software—Reuse models

1. INTRODUCTION

Development of safety-critical systems is currently confronted with challenges related to continuous increase
in complexity of hardware and software. For instance, in the avionic domain, it was reported that number of
software-implemented functions in aircraft systems had an exponential growth in the last decade [Butz 2010].
Similar statistics are also known from the automotive domain [Kindel and Friedrich 2009]. As response to this
problem, especially in domains that have mass production in focus, many domains have already adopted their
development process to support modular and component-based architectures. With modular approaches, the
system development is utilized to allow development of parts or components independently from the system,
thus enabling to distribute that process across different development teams/organizations. The consequence of
this strategy is a considerable reduction in costs for change and maintenance, and also improvements in reuse
[Crnkovic 2002]. Another reason for adopting the component-based approach is to allow special stakeholders
such as customers to define and to maintain the system functions on their own. Examples are Programmable-
Logic-Controllers (PLC) based on the IEC 61131/61499 industrial standard, which allow to build the functions
using pre-defined blocks (components), initially provided by developers.

Though reduction in costs for change and maintenance, adopting the component-based approaches to safety
domain rises some new challenges. One of the major problems, which are also a subject of consideration in some
current safety standards, is to ensure the safety of the overall system that is constructed from components. The
main assumption here is that components are developed independently from the system, i.e. in an isolation, so

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission. A preliminary version of this paper was presented in a writers’ workshop at the EuroPLoP 2014.
Copyright 2014 is held by the author(s).

6. Publications Publication 7 - EuroPLOP 2014 129

c© 2014 held by the authors. Reprinted from Proceedings of 19th European Conference on
Pattern Languages of Programs.

that a context in which they should operate is often not considered in detail. For software components, such a
context may comprise the interface semantics to connected neighbouring components, representing valid ranges
of transmitted data, their physical units and certain component states in which this data can be transmitted for
example. On the other hand, the context may also describe an environment in which such components have to
run (e.g. a platform, an embedded system with some characteristics such as the runtime memory layout and
its partitions). Generally, the system integration alone is a challenging task, i.e. when just using components
within a single project, and requires a good communication between teams and an adequate system engineering.
However, in this case the context information is still present inside the project, i.e. development teams can
resolve the integration issues at any time by collaborating with each other. A more difficult scenario is when such
isolated components have to be reused in different projects, especially when there is no maintenance support for
components and the only source of the context information is a component documentation. In the worst case, such
documentation does not describe the context sufficiently, so that much effort has to be invested in the verification
phase to identify the potential integration problems. Due to limited budged reserved to perform such an extensive
verification or when not considering the reuse aspect in the development process, many faults may remain in an
integrated system and can be manifested in the operation. This was a common scenario in a few cases where
mission and safety-critical systems failed to perform their function and resulted with disastrous consequences
[Gao et al. 2003].

In order to address reuse in a more systematic way, there is a need (1) to document the behavior of components
so that they can be properly reused and (2) to provide a theory for their composition – how to estimate the
functional and extra-functional system properties when connecting properties of components together [Crnkovic
2002]. Examples of these properties are aforementioned valid value ranges, assertions on behavior, timing and
resource constraints, and others [Clara Benac Earle et al. 2013].

Concerning the first aspect, i.e. the documentation for reuse, some of the current safety standards have already
developed concepts. One of the examples is a Safety Element Out of Context (SEooC) concept in the automotive
standard ISO 26262, which provides guidelines on how to integrate components developed and provided by the
suppliers. Similarly, the Reusable Software Components (RSC), made according to the DO-178B standard in
the avionic domain, defines how to design and to document components so that they can be exchanged without
having significant additional certification costs. In general, these concepts capture high-level aspects, and details
on documentation and criteria on how much is enough for reuse are left to domain experts.

From the perspective of the second aspect, i.e. concrete theories and approaches for composition, many
solutions have been developed until now. Although most of them have no direct focus on safety-critical systems,
they have considered the problem of compositions earlier for general-purpose systems, which provide a helpful
basis for safety-critical systems. Generally, in order to ensure the composition or integration of components, it is
necessary to ensure the correctness with regard to their syntax and semantic. For syntax, the interfacing between
components has to match, while for semantic more advanced engineering is required because the functional and
extra-functional properties have to be considered here. Many approaches that consider semantic while integrating
components, are mainly based on formal methods. They abstract the components usually as state transition
systems and verify their behavior by using model checking techniques [Basu et al. 2011]. Other approaches
focus on analyzing static resource properties such as timing and memory consumption [Lévêque and Sentilles
2011]. Although these approaches represent just an excerpt of the extensive verification and validation process,
they provide very important information about components – the concrete and precise assumptions under which
components behave correctly. Another important fact is that these assumptions often describe recurring statements
over behavior or data of components, which makes them attractive from the viewpoint of reuse, as they represent
some kind of specification patterns [Evans and Fowler 1997].

From the viewpoint of system integrators and component developers, it would be very beneficial if they would
be able to share the knowledge using these assumptions/specifications in a structured way. Also, a better link
between aspects discussed above could be established. For example, the system integrator could recognize

Towards Pattern-based Reuse in Safety-critical Systems — Page 2

130 6. Publications

patterns used to describe a valid behavior of components with regard to certain inputs, and based on this, he
could approve or disapprove reuse. In this paper, we describe a pattern system with the aim to link the detailed
specification patterns with the high level system concepts for reuse. With these links, more precise description of
the system parts throughout the system hierarchy can be achieved.

The remainder of this paper is structured as follows: Sec. 2 introduces the problem statement more in detail and
outlines main objectives of this work. In Sec. 3 related work is described. Sec. 4 describes the proposed pattern
system. A brief discussion about some important aspect for the practical use of the proposed pattern system is
provided in Sec. 5. Finally, Sec. 6 gives concluding remarks.

2. PROBLEM STATEMENT, OBJECTIVES AND TARGET AUDIENCE

To narrow our problem statement, let us consider now the motivating example from Fig. 1. The figure shows
an excerpt of the top-down component-based development process for the automotive engine control function.
Basically, the objective of this control function is to decide, based on certain inputs such as the angle of the throttle
position, current engine speed and air volume, when to perform the tasks of the fuel injection and ignition [Frey
2010]. Development of systems like this is usually distributed, because of a need for special knowledge in certain
engineering fields, better handling of complexity (this is only a part of the overall system), and time-to-market push.

In the example above, the development process is shared between system developers (in further text manu-
facturer) and part/component developers (suppliers). In the first phase, the manufacturer defines the system by
decomposing the requirements down to the fine grained functions/components. These functions represent the
boundaries of responsibility – they are further provided as requirements to suppliers, which have to implement
them using their own engineering techniques. This implementation may relate to reuse of the in-house components
that match to the supplier’s requirements for example. In the end, all supplied parts are integrated together in the
last phase.

In order to successfully perform the integration, the information flow between manufacturers and suppliers
have to be detailed enough, i.e. the manufacturers have to provide what they want, and the suppliers have to
provide the information on how to use their parts. Considering time between injection and ignition for example,
the question is how the manufacturer can ensure that this time does not exceed 40 ms based on properties of
supplied parts/components? This is, of course, verified later in the test integration phase, but in order to early
identify potential faults and to reduce the time for the integration, it is very important to previously know which
properties contribute to that time. This is just an excerpt of large number of properties and aspects that might have
to be considered in the integration.

Another aspect where such properties can be beneficial is the system verification phase. Usually, during
this phase the manufacturers have to follow some methods provided by the safety standards to implement the
integration tests. Similarly, if there are components on the supplier’s site that consist of many other components,
they have to perform the same procedure. These methods are collection of various types of tests for hardware
and software systems, including the integration tests on hardware, software and system level, various types of
black-box and white-box software tests and other [Smith and Simpson 2010]. For selected methods, appropriate
test cases have to be provided, and test reports have to be produced as an evidence that the integration is
performed according to the standard. With precise information about the system and its context described by
properties, it would be possible to derive the test cases directly from such information, and therefore to reduce
the time to implement tests and to early achieve the coverage required by certain methods (e.g. call coverage,
function coverage).

Problem Statement: how to define the context information that may describe various types of functional and
extra-functional requirements for a single component in a way that such information can be easily compared or
matched with information of other, dependent components1? In our example, the supplier may need to match

1Components from different layers in the hierarchy, or connected components (horizontal connection).

Towards Pattern-based Reuse in Safety-critical Systems — Page 3

Publication 7 - EuroPLOP 2014 131

Air Flow System

Injection
Time
and

Ignition Time
Actuation

System

Injection
System

Ignition
System

Engine

Throttle Angle

Engine ControllerMass Air Flow

Mass Air Flow

Injection Time Ignition Time

Manufacturer

Mass Air Flow
Sensor

Injection Time
Actuator

Ignition Time
Actuator

Mass Air Flow
Sensor

Mass Air Flow
Sensor

Supplier 1 Supplier 2 Supplier 3

Phase 1: Top-down system
development

Responsible role: manufacturer

Phase 2: Distribution of
development to suppliers

Responsible role: supplier

Phase 3: Integration of parts
from suppliers (composition)

Responsible role: manufacturer

Engine Control System

Sensors
Actuators

Air Flow System

Injection
Time
and

Ignition Time
Actuation

System

Injection
System

Ignition
System

Throttle Angle

Mass Air
Flow

Engine Speed

Injection Time

Ignition Time

Set Throttle
Position

Mass Air Flow
Sensor

Injection Time
Actuator

Ignition Time
Actuator

Mass Air Flow
Sensor

Mass Air Flow
Sensor

Manufacturer

Throttle
Actuator

Fig. 1. Motivation example: distributed development of engine control application, adopted from [Frey 2010]

the context information provided by the manufacturer (as requirements) to identify the potential candidates of
the in-house components which he may reuse. On the other hand, the manufacturer has to ensure that supplied
components conform to the high level concepts, like SEooC2.

To address this problem, following aspects/objectives have to be considered, from both system and component
development perspective:

—Representation of reusable artifacts.
Like in Software Product Lines (SPL), the very first step in domain engineering is to define the product artifacts
with regard to the product scope (software, documentation, requirements, etc.). The question is now how to
represent different artifacts of all involved teams/organizations so that they can easily understand the information
of each others. For example, the Supplier 2 from Fig. 1. can deliver a complete device including operating
system, middleware and application, whereby Supplier 1 and 3 may deliver software application only, and the
automotive manufacturer has just the responsibility over the system functions. The boundaries of components
shall not be fixed to some specific structure.

2SEooC is a generic component having described context in form of Safety Requirements (typical extra-functional requirements).

Towards Pattern-based Reuse in Safety-critical Systems — Page 4

132 6. Publications

—Representation of information flow between reusable artifacts.
There are two independent aspects of representing the information flow. First, from the perspective of a single
team/organization, the components can be refined or abstracted, as illustrated in Fig. 1 – the Supplier 2 has
refined the Engine Controller function with three sub-components. In order to satisfy the requirement(s) of the
Engine Controller function, the supplier has to define criteria on how each component contributes to these
requirements (because the refined components have additional properties which contribute to the top-level
requirements). Second, the information flow between components that belong to different development teams
has to be defined. This is more challenging because the main assumption from the perspective of the system
development is that it is known which services the components provide but not how.

In following sections, we build a pattern system based on objectives discussed above. The target audience in
this context are stakeholders in the system engineering (system architects) who have to design their safety-critical
systems/components for reuse. Note that in this paper we only consider project artifacts and interfaces between
them, and not the development process, or the project management aspect of the system.

3. RELATED WORK

In this section, we outline some relevant works related to general reuse methods, state-of-art for reuse in
safety-critical systems and reuse by applying patterns.

3.1 Systematic Reuse

The motivation behind reuse of hardware/software systems were factors that have improved the production in
development of automobiles in their early manufacturing phase, and later the adaptation of the same strategy for
consumer electronics [Pohl et al. 2005]. In software engineering, the software product lines engineering (SPLE)
define the principles of systematic reuse for software products. At this time, the SPL are the only approach that
focuses on systematic reuse in software engineering. In general, the aim is to prepare the development process,
the project lifecycle and different core assets/project artifacts for reuse. The main enabler technologies for the
SPL are generative and compositional approaches – to highlight some of these, generative programming and
component-based paradigm or aspect oriented programming are widely applied in this context. Some domains
with the mass-production in focus have already adopted the concepts developed according to SPL principles,
but they are still not fully utilized in production [Kindel and Friedrich 2009], [EAST-ADL 2010]. There is too much
overhead of managing many artifacts and dependencies among them.

3.2 Reuse in Safety-critical Systems

Some important approaches related to reuse in safety domains were already discussed in the introduction.
Basically, from the perspective of reuse, there are two trends. First, there is a need for development of the concepts
and methods for integration of components based on their functional and extra-functional aspects. Examples are
mentioned SEooC and RSC concepts. Common to these concepts is that they define the assumptions that have to
be met by the remaining system (or environment) in order to ensure that the components will behave as expected.
Although not explicitly mentioned by the approaches, this is a typical principle of assume/guarantee contracts from
the contract-based design [Benveniste et al. 2012]. In this way, reuse can be approved only if the contracts of the
system (or environment) and the corresponding contracts of the components are valid. Similarly, contracts can
help to systematically refine the system down to the implementation details [Benveniste et al. 2012], but this is not
considered in the aforementioned concepts.

The second trend is to provide the argumentation that a system is acceptably "safe". This is a structured
collection of documents, usually specified in a Goal Structuring Notation (GSN), which links the arguments and
evidence (such as test cases) for the overall system. For component-based systems, many of these documents
are defined out-of-the-box (i.e. on the side of the component developer) and have to be reused. In the last decade,

Towards Pattern-based Reuse in Safety-critical Systems — Page 5

Publication 7 - EuroPLOP 2014 133

Table I. Relevant concepts and ideas from related work
Concept Purpose
Software product lines [Pohl et al.
2005]

Defining reusable components in very early stages of system’s development – in a
domain engineering.

Contract-based design [Benveniste
et al. 2012]

A key technology/principle for describing information flow between components ((1)
components which are owned by different development teams and (2) components in
the hierarchy (refined, abstracted components)).

Property specification patterns
[SPEEDS 2010], [SpecPatterns
1998]

Precise and detailed description of functional and extra-functional aspects of the com-
ponents.

some methods have been developed that consider component-based argumentation using modular variant of
the GSN [Kelly 2001]. Very important aspect of these methods is that they describe concepts that are practically
usable, simple to maintain, and are promising for certification of component-based safety-critical systems.

3.3 Pattern-based Reuse

Reuse methods for argumentation have always in context system’s safety, i.e. the argumentation that certain failure
modes collected in hazard and risk analysis are addressed and eliminated. On the other side, reuse concepts
SEooC and RSC describe high-level views of the system. Until now, only few works have considered reuse with
regard to functional and extra-functional properties in general. In late nineties, a project Spec Patterns was started
with the aim to collect patterns that describe behavior of concurrent and reactive systems [SpecPatterns 1998].
The outcome of the project was a taxonomy of patterns that can be shared among developers who want to specify
behavior of systems in a standard way. Further mapping of the patterns to concrete syntax such as Linear Temporal
Logic (LTL), Computation Tree Logic (CTL), and others, is defined. Another, and very current, pattern collection for
specifying system properties has been developed in the project SPEEDS [SPEEDS 2010]. In contrast to the Spec
Patterns, component-based systems are addressed here and more attention on reuse has been given. These
two projects provide a fundamental basis to reuse parts between involved development teams on a very low and
detailed implementation level.

In order to establish a strong link to general concepts like SEooC and RSC, except of having pattern-like standard
structure, the concrete property specifications have to be somehow documented up to the high level requirements
of the system developer (e.g. how the properties of the supplier’s Ignition System from Fig. 1 contribute to the
requirements of the Engine Controller?). In Tab. I we summarize some relevant ideas from related work.

4. PROPOSED PATTERN SYSTEM

In this section, we describe the pattern system that address objectives outlined in Sec.2.

4.1 Overview

Fig. 2 shows the main components of the proposed pattern-based reuse approach. On the left, two mentioned
levels of system abstraction and existing methods on how reuse is addressed there are depicted. A compact pattern
system on the right represents a link between both levels of abstraction by (1) standardizing the representation of
reusable components and (2) a way on how they exchange the information.

The central component in the figure below is a contract. It defines a "frame" for reuse for any artifact or
component in any abstraction level. For a given high-level concept, such as the SEooC for example, the contract
allows to stepwise refine the system down to details where the properties arise.

In general, contracts capture the information that is needed to verify syntactic and semantic compatibility (1)
between dependent components and (2) between components and their platform. Some examples were already
introduced in Sec.13. Many of the functional and extra-functional properties that represent the context information

3For the complete list of properties, refer to [Clara Benac Earle et al. 2013].

Towards Pattern-based Reuse in Safety-critical Systems — Page 6

134 6. Publications

Patterns for specification of
functional and extra-functional properties

Component

Composition
Criteria

Contract

Property
Specification

Repository

EU SPEEDS Project Patterns

SPEC Patterns

...

High-level concepts for reuse
(standard-based reuse)

SEooC

RSC

...

Concept

Proposed pattern system

Pattern

Pattern

Pattern

Pattern

implements
contract

defines rules for
composition of

contracts

represents
concept in a

structured way

represents
property

specification in
a structured

way

High-level Properties

Aspect

Pattern
classifies
contract

Fig. 2. Proposed patten-based reuse: high-level concepts for standard-based reuse, low-level property specification patterns (left) and pattern
system (right)

can be defined in terms of data and behavior of components put into simple relations (such as aforementioned
40ms delay, resource constraints etc.), while for some of them only the natural language is applicable (e.g. read
input every 20 ms). We assume that there is a repository of reusable property specification patterns that may
describe semantics and behavior of components for both types of properties. Obviously, for the second type
it is much more difficult to determine whether two contracts are compatible, because there is more space for
ambiguities due to natural language and therefore (a lot of) manual work could be required to do such a reasoning.
However, with the standard set of specification patterns many problems when comparing/matching contracts
will repeat so that this information, i.e. experience from previous comparisons, can be used to simplify later
reasoning. The specification patterns will enforce the developers to express their functional and extra-functional
properties for components using the standard format, whereby the pattern system will support them while they are
looking for identical contracts, e.g. when identifying candidate components that suppliers may reuse based on the
specification of the manufacturer.

4.2 Patterns

Our pattern system is based on concepts from Tab. I, especially on work described in the contract theory
[Benveniste et al. 2012]. We use the POSA-style to describe the patterns from Fig. 2 [Buschmann et al. 1996].

4.3 Contract

—Context
Safety-critical system is planed for the development. There are some components that have to be built for further
reuse in the later projects or they have to be delegated to other teams for the development. To enable this, the
developers have to define and to organize the context information thorough the complete system hierarchy.

Towards Pattern-based Reuse in Safety-critical Systems — Page 7

Publication 7 - EuroPLOP 2014 135

—Example
Assume the following top-level requirement with regard to the system from Fig. 1.: "Time between fuel injection
and fuel ignition shall not drop below 40 ms". This requirement is provided to the Supplier 2 for the Engine
Controller function. The supplier has to somehow document how the entire system, the components, contribute
to the timing. For example, this requirement can only be satisfied if the rotational engine speed does not exceed
6000 rpm (see engine speed signal in figure). Further, the computation can only be reliable, if the sensor signals
are sampled twice than the supplier’s system. Issues:
—How to link the properties such as the speed to the high-level timing?
—How to communicate the requirement on sampling period to the Supplier 1?
—How the system developer can verify the consistency with respect to the low level properties?

—Problem
Using typical requirements to define the responsibility of components ensures just uni-directional relation
between the specification and implementation. Although requirements often may contain the context information,
such information is not explicit visible, and therefore is not systematically considered as a first class entity. The
requirements are not absolutely valid and they always need a context. How to structure requirements throughout
the system hierarchy so that every project artifact that has a requirement includes the context information, which
defines the scope of that requirement?
This implies following forces:
—The system is hierarchical and parts of that hierarchy might be in responsibility of different teams (i.e. they

have to be exchangeable, reusable).
—Many project artifacts such as software components interact with other artifacts in the same layer (horizontal

communication) or in different layers (vertical communication) and therefore influence their context.
—The platform such as an embedded system in which some project artifacts exist during the operation may

influence their context.

—Solution
Structure a requirement (of any abstraction level) as a contract in the following way: set of assumption and
guarantee pairs. The guarantees contain the original requirement, without the context information. Hence, the
context information is put into assumptions. In this way, we have a structure that enforce the developers to always
consider the context in which a given requirement is valid. For every requirement that have to be guaranteed by
some artifact, there is always at least one assumption describing the context for which that requirement can be
satisfied.

—Implementation
Top-down process (isolated development):
—Break down the system requirements into high-level contracts.
—Define assumptions for which each of the requirements has to be satisfied. This is very important, because

with assumptions we are able to specialize the context and interfacing with other contracts. The final contract
has to contains a list of assumptions and guarantee pairs that completely describe the given requirement.
Early note: for defining assumptions and guarantees look at the repository of property specification patterns.
Identify patterns that best describe the assumptions and guarantees (see COMPOSITION CRITERIA pattern for a
reason of using property specification patterns).

—Build the system hierarchy by decomposing contracts into refined contracts.
Bottom-up process (integration or composition):
—For a given component to reuse, verify compatibility between related component contracts according to

composition criteria and define a composed contract (see COMPOSITION CRITERIA pattern).

—Consequences
(+) All parts in the system hierarchy (components, layers) have defined requirements in terms of guarantees,

Towards Pattern-based Reuse in Safety-critical Systems — Page 8

136 6. Publications

Assumption

Guarantee

Contract

CONTRACT Metamodel

contains

contains

implies

1

*

*

1

1

1

Instantiated contract (Example: EngineController)

Contract

(rotational engine speed shall not exceed 6000
rpm)
AND
(buffer containing the sensor data shall not be
empty at the time of reading data)

(time between fuel injection and ignition will not
drop below 40 ms)

Guarantee

Assumption

implies

Property P

)[

State/event R

Specification Pattern: Property P is true before event/state R occurs

Representation of assumption property as specification pattern

Fig. 3. Contract meta-model (left) and an exemplary instance that shows the contract for the EngineController component (assumptions and
guarantees are described textually, but in original form property specification patterns are used - an example is given on bottom of figure)

and context in terms of assumptions. Each part can therefore be exchanged, without loosing the context.
(+) The context information captured in assumptions of project artifacts also includes the requirements on
dependent artifacts from the same or different layers (e.g. valid range of the signal that an external component
has to provide).
(+) Assumptions can be made on environment, platform. Similarly, the platform may set assumptions on project
artifacts (e.g., to constrain the number of used software components to maintain memory budget).
(−) Identifying property specification patterns to describe assumptions and guarantees can be a tedious task –
textual requirements have to be translated into more formal description.

—Example Resolved
Based on time contract given for Engine Controller component, the Supplier 2 defines its top-level subcontract
as follows:
—Guarantees: (time between fuel injection and ignition will not drop below 40 ms).
—Assumptions: (rotational engine speed shall not exceed 6000 rpm) and (buffer containing the sensor data

shall not be empty at the time of reading data).
Expressions in assumptions and guarantees are represented using property specification patterns. For example,
the second assumption above can be defined using the occurrence pattern from the Spec Pattern collection,
which states that the buffer where the sensor values are stored always contains data before a read event occurs,
see Fig. 3. Using standard representation for all expressions (in form of events, states, data, as in the mentioned
pattern collections) simplifies later integration of components, especially when the components contain many
properties. Also, ad-hoc description of expressions is avoided.
Based on pattern description for sensor data assumption, the system developer can perform actions such as
configure the sensor sub-system to be sampled at higher rate than the Engine Controller sub-system.

—Known Uses
—SEooC and RSC - high-level concepts for standard-based reuse. Interfaces are described in similar way as

assumptions and guarantees.
—Heterogeneous Rich Components (HRC) - contracts for integrating components in safety-critical systems.

Contracts are here parts of the component assemblies.

Towards Pattern-based Reuse in Safety-critical Systems — Page 9

Publication 7 - EuroPLOP 2014 137

—Modular safety cases - representation of modular arguments using similar structure as contracts.
—Object-oriented software - contracts define expressions over object methods and its states.

4.4 Component

—Context
Organization plans to develop a safety-critical system. It has been arranged that some parts of the system
have to be distributed among different teams in development. The overall system is built by reusing those
parts. Further, there is no clear distinction what can be reused (complete devices, hardware, software (parts of
software layers), and other). Also, the organization may reuse own parts for later products.

—Example
We consider again the supplier’s Control Engine function in Fig. 1, which is provided as a complete device
(hardware/software system). Assume now that the supplier has to take legacy software including operating
system and runtime libraries for performing floating point operations for example. The libraries depend on
particular processor architecture. In some cases they also depend on certain type of the same architecture,
whereas for some architectures with the built-in support for aforementioned operations they are not needed at
all. Libraries are just one small excerpt of a very large and complex artifact ecosystem. In the end, the objective
of the supplier is to ensure that artifacts are correctly interfacing with each other and that they are properly
configured for the intended context. Similarly, the manufacturer has to consider the same problem statements
when reusing the Control Engine function.

—Problem
It is often required to reuse various existing project artifacts (various software artifacts like functional software
components, middleware and operating system, libraries, and others). Without having the explicit information
about these artifacts and their context, it is not possible to determine whether they implement given contracts.
This implies following forces:
—Project artifacts are strongly narrowed to the context in which they live (as aforementioned architecture-

dependent libraries for example).
—Defining artifacts for specific purpose like application software as standardized components for example (as it

is a practice in many current component-frameworks), limits the reuse of the remaining parts of the system
(operating system services, libraries, and similar).

—Solution
Make the information about artifacts and their context explicit so that every artifact has an additional description.
Use the same structure as for contracts, i.e. assumptions and guarantees to describe functional and extra-
functional properties. In contrast to contracts, this information represents the implemented specification for a
particular contract. We use the term component to represent artifacts augmented with the context information.

—Implementation In case there is a contract that has to be implemented, the process of defining components is
the following:
—For a given contract, develop a component or extend a function for an existing component based on guarantees

that it has to provide.
—Use assumptions to verify whether a component can provide given guarantees (e.g. by deriving tests from

assumptions and guarantees).
For project artifacts for which no real requirements exist (like libraries), simple data contracts can be defined
based on basic knowledge about them (required memory, compliance with the processor architecture, endiannes
(if binary form), etc.).

—Consequences
(+) A basis to build contracts is provided.
(+) More safe and simplified identification of the project artifacts with regard to requirements or contracts (in

Towards Pattern-based Reuse in Safety-critical Systems — Page 10

138 6. Publications

some cases and for specific artifacts, automatically).
(+) Involved development teams follow the same structure for their artifacts – exchange of artifacts is simplified.
(−) Overhead of defining components – it is often difficult to capture the profile of components, so that in some
cases an extensive verification of components might be required.

—Example Resolved
Based on contracts, which the supplier has already defined for his own sub-system previously, the corresponding
libraries are identified and defined as components. Having libraries augmented with information about function
and interfaces (assumptions, guarantees), it is easy to identify them for the next time they have to be reused
(eventually in different context). Also, if enough information with regard to the context and interfaces is collected,
it is easy to verify the conformance to the context, and in some cases to perform this verification automatically.
Similar to libraries, the supplier provides the Engine Control component to the manufacturer.

—Known Uses
Standardizing representation of project artifacts has been used in many application fields in order to improve
reuse and to reduce the costs for change and maintenance. AUTOSAR, EAST-ADL, IEC61131/499, IEC61850
are some of the component-based systems in safety domain, just to name few.

4.5 Composition Criteria

—Context
Safety-critical system is in the integration phase. The system developer has already the complete system
hierarchy in form of contracts. Independently developed parts have to be integrated now. That means, the
compatibility between guarantees and assumptions of dependent components have to be verified. Alternative
scenario: the component developer tries to identify reusable components that match to contracts given by the
system developers.

—Example
We continue with the last example where the Supplier 2 has defined the contract for the Supplier 1 so that the
sensor sub-system and the Engine Controller must have certain sampling rates. The question is, how to take
such a decision based only on information about the sub-system of the Supplier 2? This implies to consider
following points:
(1) How to decide whether the contracts of the two sub-systems are compatible?
(2) Based on which information is the sampling rate the crucial for the fulfillment of the contract?

—Problem
Due to ambiguities in the natural language, which is used to define assumption and guarantees in contracts, it
is difficult to verify the compatibility between contracts. How to conclude, based on definition of contracts, i.e.
property specification in assumptions and guarantees, that two contracts are compatible? Forces:
—The contracts that have to be compared might be defined by the development teams independently. Therefore,

it is likely to have different representations of contracts, at least for data values used in patterns. In worst case,
the teams may use different patterns to describe the same contracts.

—Solution
Define a composition criteria for contracts based on the specification of their assumptions and guarantees. This
sets the following requirement on contracts: use the standardized format to specify assumptions and guarantees
in contracts (concretely, the property specification patterns). The main objective is to have a clear link between
specification parts involved into guarantees and assumptions used when integrating contracts. With property
specification patterns, it is more easily to judge about the compatibility of contracts.

—Implementation
—Identify applied property patterns in assumptions and related guarantees.

Towards Pattern-based Reuse in Safety-critical Systems — Page 11

Publication 7 - EuroPLOP 2014 139

Composition of Contracts

Sensor Contract Engine Controller Contract

Whenever [C] occurs [W] occurs within [3ms]

Whenever [C] occurs implies [R] during following [0]

[P] true before [R]

C - clock

W – write event P – property: input buffer not empty

R – read event

C – clock

Guarantee:

Guarantee:

Assumption

Tinj – Tign > 40ms

Assumption

C(Sensor Contract) = 2 x C(Engine Controller Contract)

Guarantee:

Tinj – Tign > 40ms

Fig. 4. Contracts of the sensor sub-system and Engine Controller

—Identify elements used in patterns (events, properties, states, data, etc.), or if the property is not described
using a pattern format, try to extract the elements using same representations as in property specification
patterns.

—Find relation between elements, and verify the compatibility.
—If there is no direct relation, define a global property which links the both contracts. Then, verify the compati-

bility.
—Consequences
(+) Using a structured way on verifying the compatibility between contracts reduces the overhead for the
integration (or deciding whether components can be reused).
(−) It often requires manual work and can be extensive when contracts are represented using different
specification patterns (like in example from Fig. 4, see description below).

—Example Resolved
The only way to satisfy high-level requirement related to timing from the perspective of the Supplier 2 is to define
the assumption on providing the sensor data before read operation is active, as illustrated in Fig. 4. Now, the
first step of the system integrator is to compose the sensor sub-system with the Engine Controller. We have
following definitions of contracts (see Fig. 4):
—Assumption [P] is true before [R] states that the buffer that stores the sensor data must not be empty when

the event of reading this buffer occurs.
—Guarantee of the sensor sub-system, Whenever [C] occurs [W] occurs within [13ms], states that write event

W occurs 13ms after the clock C, which is a periodic event.
Patterns used to describe the assumption and guarantee above are different. Moreover, elements used in
patterns are different, so that direct compatibility cannot be concluded. However, it is obvious that the property P
is related to the write event W, since W triggers the provision of data to the Engine Controller. Further, it is clearly
defined how and when the sensor system provides data. On the other hand, the read event R is also periodic,
which is defined in the guarantee of the Engine Controller contract. In order to satisfy the assumption, write
event must always happen before R. To ensure this, the system integrator configures the sensor sub-system
to operate on a double sampling rate than the Engine Controller. Finally, for correct composition, the system
integrator defines a contract on composed sub-system, having now global assumption, as illustrated in Fig. 4.

Towards Pattern-based Reuse in Safety-critical Systems — Page 12

140 6. Publications

—Known Uses
Some of the notable references that systematically handle the composition criteria:
—Contract-based design [Benveniste et al. 2012]: rules for ensuring compatibility between contracts in order to

verify the composition automatically.
—BIP [Basu et al. 2011]: framework to verify composition with regard to behavior of components.
—PLCOpen [PLCopen 2006]: rules and design verification method for compositions with regard to the quality

system (distinguishing between safety-related and non-safety-related components and data).

4.6 Aspect

—Context
Safety-critical system is under development. The requirements describe the functional and non-functional
properties that have to be represented using contracts. There are many system properties which have to be
captured within contracts.

—Problem
Capturing many properties within a single contract may impact the usability and managing contracts, especially
when contracts have to be verified with respect to their compatibility. Forces:
—Contracts may describe various system quality attributes such as safety, security, real-time, availability, etc.
—There are different representations of property specification patterns for assumptions and guarantees when

describing behavior of components and when using contracts to define resource constraints for example.
—Example

Each of the suppliers from Fig. 1 may define resource constraints on their devices such as memory usage
and communication profile, in order to reuse devices for different applications. Further, they get the system
properties from the manufacturers, which may have very different nature.

—Solution
Use aspects to categorize property types. Each aspect represents a collection of assumptions and guarantees
related to particular type of properties. Each contract express properties in certain aspect.

—Implementation
When defining contracts, avoid to mix properties of different types.

—Example Resolved
Supplier can easily identify requirements and expectations for his system, and similarly the system integrator
can easily verify the composition.

—Known Uses
Heterogeneous Rich Components [SPEEDS 2010]: different types of properties (real-time, safety, etc.) are
grouped into views. Views are parts of contracts here.
Contract-based design [Benveniste et al. 2012]: representing contracts as views.

—Consequences
(+) The team can distribute the task of solving the integration issues to members according to their skills in
related quality attributes (safety, real-time, etc.).
(+) The team can classify contracts according to their complexity, and define own strategy on how to solve the
integration issues. For example, many contracts which describe data semantic of components (i.e. the first type
in Sec. 4.1) can be verified automatically, using design tools.
(−) Grouping of contracts may not be precise, if there is no consensus on used aspects.

5. DISCUSSION

From the introduced pattern system it is obvious that for some properties, in particular the ones that describe the
behaviour of components, it might be difficult to take decisions about the compatibility between contracts. This

Towards Pattern-based Reuse in Safety-critical Systems — Page 13

Publication 7 - EuroPLOP 2014 141

problem gets more challenging with the increasing number of components and required properties, since most of
the work has to be done manually. On the other hand, properties that describe data semantics, i.e. components
without any clocks, events, or behaviour, have a relatively simple and precise definition, but they alone are not
powerful enough to describe all details about functional and extra-functional aspects of components4.

To apply the proposed pattern system effectively, a trade-off between a level of detail and costs for defining
contracts and verifying their compatibility has to be found. Not all components require the behavioral description –
for example, the context information for libraries, some operating system services, and similar components which
are proven-in-use, can be defined using properties for data semantics, i.e. to describe a tool-chain that was used
to generate those components, safety integrity level of a system in which they may operate, processor architecture,
and similar. In contrast, components that from a chain of complex interactions, where deadlocks or timing violations
may occur, need more complex properties with behavioral descriptions.

Another important aspect that has to be considered here is an extent to which the verification and validation
methods defined in safety standards can be supported by contracts and properties. As mentioned in Section 2,
standards define recommendations on methods that have to be implemented in order to achieve certain level of
quality for a system. The information from contracts can be used here to generate some important input data,
scripts, etc. for those verification methods. However, because not all details about context information can be
captured for every component, the functional and extra-functional aspects remaining have to be handled later in
the system verification and validation phase. The more information is captured in contracts, the lower is the effort
to perform the later verification.

6. CONCLUSION

In this paper, we have described a compact pattern system with the aim to address some problems with regard to
reuse in safety-critical systems. Currently, these systems follow the guidelines of safety standards to increase the
system’s quality and reduce the risk of failures. Some of the standards describe also the concepts for reuse, but
on higher levels of abstraction so that many details are left to domain experts. The promising approach to help
developers to more systematically reuse parts of their system, is a contract-based design. We built our pattern
system based on this principle, and we linked it to the low-level property specification patterns, which describe the
behavior and data semantic of system parts very precisely. With the link from property specification patterns to the
pattern system, the properties of the system parts can be documented up to the higher levels of abstraction more
systematically.

7. ACKNOWLEDGMENTS

We would like to thank our shepherd Dietmar Schuetz for reading the paper, analyzing it and for providing us with
very constructive and helpful suggestions that made the paper more readable and more easily to understand.

REFERENCES

BASU, A., BENSALEM, S., BOZGA, M., COMBAZ, J., JABER, M., NGUYEN, T.-H., AND SIFAKIS, J. 2011. Rigorous component-based system
design using the bip framework. Software, IEEE 28, 3, 41–48.

BENVENISTE, A., CAILLAUD, B., NICKOVIC, D., PASSERONE, R., RACLET, J.-B., REINKEMEIER, P., SANGIOVANNI-VINCENTELLI, A., DAMM, W.,
HENZINGER, T., AND LARSEN, K. 2012. Contracts for Systems Design. Tech. rep., Research Report, NÂř 8147, November 2012, Inria.

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996. Pattern-oriented Software Architecture: A System of
Patterns. John Wiley & Sons, Inc., New York, NY, USA.

BUTZ, H. 2010. Open integrated modular avionic (ima): State of the art and future development road map at airbus deutschland. Department
of Avionic Systems at Airbus Deutschland GmbH Kreetslag 10, D-21129 Hamburg, Germany.

CLARA BENAC EARLE, ELENA GÓMEZ-MARTÍNEZ, STEFANO TONETTA, STEFANO PURI, SILVIA MAZZINI, JEAN LOUIS GILBERT, OLIVIER

HACHET, RAMÓN SERNA OLIVER, CECILIA EKELIN, AND KATIUSCA ZEDDA. 2013. Languages for Safety-Certification Related Properties. In
Proc. Work in Progress Session at 39th Euromicro Conf. on Software Engineering and Advanced Applications (SEAA’13).

4Except of data-flow systems like ones modelled using the Matlab Simulink, where all components share the same behaviour.

Towards Pattern-based Reuse in Safety-critical Systems — Page 14

142 6. Publications

CRNKOVIC, I. 2002. Building Reliable Component-Based Software Systems. Artech House, Inc., Norwood, MA, USA.
EAST-ADL. 2010. EAST-ADL Domain Model Specification. Tech. rep., ATTEST EAST-ADL, Homepage: http://www.atesst.org/.
EVANS, E. AND FOWLER, M. 1997. Specifications RTE. Tech. rep., Martin Fowler, Homepage: http://martinfowler.com/.
FREY, P. 2010. Case Study: Engine Control Application. Tech. rep., Ulmer Informatik-Berichte, Nr. 2010-03.
GAO, J. Z., TSAO, J., WU, Y., AND JACOB, T. H.-S. 2003. Testing and Quality Assurance for Component-Based Software. Artech House, Inc.,

Norwood, MA, USA.
KELLY, T. P. 2001. Concepts and Principles of Compositional Safety Case Construction. Tech. rep., COMSA/2001/1/1.
KINDEL, O. AND FRIEDRICH, M. 2009. Softwareentwicklung mit AUTOSAR: Grundlagen, Engineering, Management in der Praxis. dpunkt

Verlag; Auflage: 1 (8. Juni 2009).
LÉVÊQUE, T. AND SENTILLES, S. 2011. Refining extra-functional property values in hierarchical component models. In Proceedings of the 14th

International ACM Sigsoft Symposium on Component Based Software Engineering. CBSE ’11. ACM, New York, NY, USA, 83–92.
PLCOPEN. 2006. Safety Software - Technical Specification, Part 1: Concepts and Function Blocks. Tech. rep., Technical Committee 5, Version

1.0,Jan 2006.
POHL, K., BÖCKLE, G., AND LINDEN, F. J. V. D. 2005. Software Product Line Engineering: Foundations, Principles and Techniques.

Springer-Verlag New York, Inc., Secaucus, NJ, USA.
SMITH, D. AND SIMPSON, K. 2010. Safety Critical Systems Handbook: A STRAIGHTFOWARD GUIDE TO FUNCTIONAL SAFETY, IEC 61508

(2010 EDITION) AND RELATED STANDARDS, INCLUDING PROCESS IEC 61511 AND MACHINERY IEC 62061 AND ISO 13849. Elsevier
Science.

SPECPATTERNS. 1998. Specification patterns. Homepage: http://patterns.projects.cis.ksu.edu/.
SPEEDS. 2010. Speculative and exploratory design in systems engineering - speeds. Homepage: http://www.speeds.eu.com/.

Copyright 2014 is held by the author(s).

Towards Pattern-based Reuse in Safety-critical Systems — Page 15

Publication 7 - EuroPLOP 2014 143

144 6. Publications

On Design-time Modelling and Verification
of Safety-critical Component-based Systems

Nermin Kajtazovic, Christopher Preschern, Andrea Höller, and Christian Kreiner

Institute for Technical Informatics, Graz University of Technology,
Inffeldgasse 16, 8010 Graz, Austria

E-mail: {nermin.kajtazovic, christopher.preschern, andrea.hoeller, christian.kreiner}@tugraz.at

Abstract

Component-based Software Engineering (CBSE) is currently a key paradigm used for developing safety-
critical systems. It provides a fundamental means to master systems complexity, by allowing to design
systems parts (i.e., components) for reuse and by allowing to develop those parts independently. One of
the main challenges of introducing CBSE in this area is to ensure the integrity of the overall system after
building it from individual components, since safety-critical systems require a rigorous development and
qualification process to be released for the operation. Although the topic of compositional modelling and
verification in the context of component-based systems has been studied intensively in the last decade,
there is currently still a lack of tools and methods that can be applied practically and that consider major
related systems quality attributes such as usability and scalability.
In this paper, we present a novel approach for design-time modelling and verification of safety-critical
systems, based on data semantics of components. We describe the composition, i.e., the systems design,
and the underlying properties of components as a Constraint Satisfaction Problem (CSP) and perform the
verification by solving that problem. We show that CSP can be successfully applied for the verification
of compositions for many types of properties. In our experimental setup we also show how the proposed
verification scales with regard to the complexity of different system configurations.

Keywords: component-based systems; safety-critical systems, compositional verification, constraint pro-
gramming.

1. Introduction

Safety-critical systems are controlling the techni-
cal processes in which certain failures may lead to
events causing catastrophic consequences for hu-
mans and the operating environment. Automotive,
railway, and avionics are exemplary domains here,
just to name few. In order to make these systems ac-
ceptably safe, their hardware/software engineering
has to be rigorous and quality-assured.

Currently, rapid and continuous increase of sys-
tems complexity represents one of the major chal-

lenges when engineering safety-critical systems.
The avionics domain for instance has seen an expo-
nential growth of software-implemented functions
in the last two decades (6), and a similar devel-
opment has also occurred in other domains with a
focus on mass production, such as automotive or
biomedical engineering (16). In response, many do-
mains have shifted towards using component-based
paradigm (24, 10). The standards such as the auto-
motive AUTOSAR and IEC 61131/61499 for indus-
trial automation are examples of widely used com-
ponent systems. This paradigm shift enabled the im-

International Journal of Networked and Distributed Computing, Vol. 2, No. 3 (August 2014), 175-188

Published by Atlantis Press
Copyright: the authors

175

6. Publications Publication 8 - IJNDC 2014 145

c© 2014 held by the authors. Reprinted from Proceedings of International Journal of Networked
and Distributed Computing, Vol. 2, No. 3, Atlantis Press.

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

provement in reuse and reduction of costs in devel-
opment cycles. In contrast to traditional paradigms
such as the procedural and the object-oriented pro-
gramming, in CBSE more attention is given on sys-
tems engineering for parts of the system rather than
considering the system as a whole, i.e., on devel-
oping components. This opens many opportunities
for developers and maintainers, such as more pre-
cise control and traceability over parts of the sys-
tem, and possibility on their systematic reuse, which
goes beyond the plain add-hoc reuse of code, ob-
jects and libraries. In some fields, the modularity of
the system structure is utilized to distribute the de-
velopment across different roles, in order to perform
many engineering tasks in parallel. For instance, the
automotive manufacturers are supplied by individ-
ually developed middleware and devices which can
run their applications.

On the other side, the new paradigm also intro-
duced some new issues. One of the major challenges
when applying CBSE is to ensure the integrity of the
system after building it from reusable parts (compo-
nents). The source of the problem is that compo-
nents are often developed in the isolation, and the
context in which they shall function is usually not
considered in detail. In response, it is very diffi-
cult to localize potential faults when components are
wired to form a composition – an integrated sys-
tem (12), even when using quality-assured compo-
nents. The focus of the current research with regard
to this problem is to enrich components with proper-
ties that characterize their correct behavior for par-
ticular context, and in this way to provide a basis for
the design-time analysis or verification∗of composi-
tions (8).

This verification is also the subject of considera-
tion in some current safety standards. For instance,
the ISO 26262 standard defines the concept Safety
Element out of Context (SEooC), which describes
a hardware/software component with necessary in-
formation for reuse and integration into an existing
system. Similarly, the Reusable Software Compo-
nents concept has been developed for systems that
have to follow the DO-178B standard for avionic

software. These concepts both share the same kind
of strategy for compositional verification: contract-
based design. Each component expresses the as-
sumptions under which it can guarantee to behave
correctly. However, the definition of the specific
contracts, component properties and validity criteria
for the composition is left to the domain experts.

From the viewpoint of the concrete and auto-
mated approaches for compositional verification and
reasoning, many investigations have focused on be-
havioural integrity, i.e., they model the behaviour of
the components and verify whether the composed
behaviours are correctly synchronized (2), (4). On
the other side, compositions are often made based
on data semantics shared between components (5).
Here, the correct behaviour is characterized by de-
scribing valid data profiles on component interfaces.
In both cases, many properties can be required to de-
scribe a single component and therefore scalability
of the verification method is crucial here.

In this paper, we present a novel approach for
verification of compositions based on the data se-
mantics shared between components†. We transform
the modelled composition along with properties into
a Constraint Satisfaction Problem (CSP), and per-
form the verification by solving that problem. To
realize this, we provide the following contributions:

• We define a component-based system that allows
modelling properties within a complete system hi-
erarchy.

• We define a structural representation of our mod-
elled component-based system as a CSP, which
provides us a basis to verify the preservation of
properties.

• We realize the process that conducts the transfor-
mation of the modelled component-based system
into a CSP and its verification automatically.

The CSP is a way to define the decision and opti-
mization problems in the context of Constraint Pro-
gramming paradigm (CP) (3). Using this paradigm
for our component-based system, many types of
properties can be supported. Also, various param-
eters that influence the scalability of the verification

∗In the remainder of this paper, we use the term verification for the static, design-time verification (cf. static analysis (25)).
†This article is an extended version of our previous work (14).

Published by Atlantis Press
Copyright: the authors

176

146 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

can be controlled (used policy to search for solutions
for example). In the end of paper, we discuss the
feasibility of the approach with regard to its perfor-
mance.

The remainder of this paper is organized as fol-
lows: Section 2 describes the problem statement
more in detail and gives some important require-
ments with regard to modelling a system. In Section
3 and 4, the proposed approach to systems modelling
and verification is described. Section 5 describes the
experimental results. A brief overview of relevant
related work is given in Section 6. Finally, the con-
cluding remarks are given in Section 7.

Air Flow System
MAFS

Injection Time
and

Ignition Time
Actuation System

MIIAS

Injection System
MFS

Ignition System
MIS

Throttle Angle Mass Air
Flow

Engine Speed

Injection Time

Ignition Time

Ignition System

Component Structure Specification (Data Semantics)

Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

...
sen in min int16

...

-1

Data

Properties

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES

()

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES

()

()

ffl

ffl

sen

tig

tin

tig

tin

atr

Fig. 1. Motivating example: a component-based system of
automotive engine control function, adopted from (11) (top),
and detailed view of the component Ignition System (struc-
ture and specification, bottom).

2. Problem Statement

Properties are an important means to characterize
functional and extra-functional aspects of compo-
nents. Safety, timing and resource budgets are ex-
amples here, just to name few (21). Recently, they
get more and more attention in the safety commu-
nity, since efficient (an practical) methods for reuse

and system composition are crucial in order to re-
duce costs in development cycles and costs for certi-
fication of today’s safety-critical systems (i.e., their
extensive qualification process). In this section, we
give an insight into the main challenges when us-
ing properties to verify compositions, and based on
these challenges, we outline the main objectives that
we handle in this paper.

2.1. Motivating Example

In our work, we address properties that in general
describe data semantics. To clarify this, let us con-
sider now the example from Figure 1. The system
in this figure shows the composition of four com-
ponents that form the automotive engine control ap-
plication on a higher abstraction level. The basic
function of this application is to decide when to ac-
tivate the tasks of the fuel injection and ignition (11).
To do this, the application takes the sensed values of
the air flow volume, current speed and some param-
eters computed from the driver’s pedal position. In a
typical automotive development process‡, the system
structure from figure is made based on stepwise de-
composition of top-level requirements, having sev-
eral intermediate steps such as the functional and
technical system architecture with several levels in
the hierarchy (20). Let us assume now that involved
components are already developed, eventually for
the complete car product line, and are stored in some
repository. Let us further assume that we have a top-
level requirement with regard to the engine timing
for particular car type, which states the following:

The minimal allowed time delay between the task
of the fuel injection and ignition shall be greater
than 40 ms.

The main contributors to this requirement are
software components MAFS, MFS, MIS, MIIAS, and
their execution platform (e.g., concrete mapping of
components on real-time tasks, task configurations,
and other). In order to satisfy this timing property,
the developer has to analyze the specification for
each component in order to find the influence of the
component behaviour on that property. The exam-
ple of such a specification is given in Figure 1, bot-

‡Note that we do not limit our approach to automotive domain.

Published by Atlantis Press
Copyright: the authors

177

Publication 8 - IJNDC 2014 147

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

tom. Here, the context for the component Ignition
System is defined in terms of the syntax and seman-
tics related to component inputs, outputs and param-
eters. With the properties shown below, the concrete
behavior can be roughly described – in this exam-
ple, for certain intervals of inputs, the component
can guarantee that the output tig lies within the inter-
val [50,150] (note that pseudo syntax is used here).
When building compositions based on such proper-
ties, the developer has to consider their influence on
the remaining, dependent components – in this case,
it has to be decided whether the MIIAS component
can accept such values of the tig and what should
components MFS and MAFS provide so that higher
delay than 40ms between tig and tin can be achieved.
This can be very tedious and error prone task when
doing it manually, because of the following reasons:

• Many components may be required to build a
complete system, depending on their granularity.
For example, current automotive systems com-
prise several hundreds of components, and many
of them may depend on each other (16).

• Some components that directly influence the
safety-critical process are usually certified, i.e.,
developed according to rigorous rules from safety
standards. Because of costs for such a certifica-
tion, the practice is to develop components for dif-
ferent context and to certify them just once (e.g.,
to support different engine types in our example).
In response, many properties have to be defined
for a single component to capture all context in-
formation.

The main problem here is how to define and to
inter-relate all properties thorough the complete sys-
tem hierarchy in a way that the preservation of prop-
erties of all components can be verified automati-
cally? Another problem is how to complete with
such a verification in a ”reasonable time”?

2.2. Modelling and Verification Aspects

To narrow the problem statement above, very im-
portant prerequisite to structure properties within a
system hierarchy consistently is to define basic rela-
tions among them. For example, properties of the

component MIS are related with properties of the
component MIIAS, because of direct connections be-
tween their output and input variables. On the other
hand, properties of all four components influence the
semantics of the mentioned top-level property. We
summarize different types of these relations as fol-
lowing:

• Composition: hierarchical building of composed
properties based on their contained properties
(e.g., the top-level timing property is composed
of properties contained in components MAFS, MIS,
MFS and MIIAS). We discuss this later in more de-
tail.

• Refinement/abstraction: properties characterize
the component behaviour at certain abstraction
level. With refined properties, more specialized
behaviours can be described. For example, the
property in Figure 1 may include some additional
parameters to define conditions for the tig more
precisely.

• Alternatives: properties may have alternative rep-
resentations for different context (e.g., the Injec-
tion System component MIS can provide different
properties for different engine types).

These relations have to be supported when mod-
elling a component-based system and they have to
be considered when such a system has to be verified.

3. System Modelling, Verification and
Deployment: An Overview

In this section, we summarize the workflow that in-
tegrates the proposed approach for systems mod-
elling and verification. We use this workflow to ver-
ify the consistency of systems design, i.e., when the
system is initially developed by assembling com-
ponents, or when changes on that system have to
be performed – such as component replacements or
changes of the internal systems state, represented in
terms of component or systems parameters.

In our previous work (13), we described a method
on how to change safety-critical systems, with the
aim to repair that system in the operation and main-
tenance phase by replacing malfunctioning software

Published by Atlantis Press
Copyright: the authors

178

148 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

System Model

System Constraint Network

Constraint

Variable

Variable

Constraint

Software
Component 1

Platform
(Embedded System)

Software
Component n

Component Contracts
System
Modelling

Platform Contracts

Contract n-2
Contract n-1

Contract n
Properties

Contract n-2
Contract n-1

Contract n
Properties

Systems Design
Verification

System Architecture Dynamic
DeploymentDynamic Parts

(Exchangeable) Load Software
Component

 Load Application

Constraint

Variable

Variable

Constraint

Constraint Variable...

Software Component 1 Software Component n

...

Static Parts
(Fixed or Configurable)

 Component level:
definition of
component and
platform contracts

 System level:
contract
composition

Software Application

Component Container (Middleware)

Operating System

 Initial verification
 Change verification

Hardware

...

Fig. 2: Application of the proposed modelling and verification – workflow to verify an impact of changes on system integrity (13):
system modelling using contracts (top), system design verification (middle) and dynamic deployment of software components (bottom)

components or by changing systems configuration
at reduced development and maintenance costs. To
this end, we defined types of supported changes and
properties that have to be considered in the mod-
elling and verification. Further, to allow to change
the system in the operation we introduced a runtime
support to load software components into a real-time
operating systems used for safety applications (15).
The overall workflow for the modelling, verifica-
tion and deployment is depicted in Figure 2. In this
paper, we focus only on modelling and verification
parts of the workflow.

In the first step of the workflow, a model of
a system is provided. This model basically cap-
tures properties on a level of software components,
i.e., (i) to express their behaviour and relationships
they have to neighbouring components, and (ii) to
express relationships between components and the
platform (i.e., an embedded system). Properties are
here structured using contracts, which are constructs
very similar to system requirements – they express
what components shall do (functional) or how they

shall be (extra-functional or non-functional), while
at same time they define a context in which com-
ponents have to satisfy those requirements. A
very important role of contracts in system design is
that they allow for defining specific relationships,
so that the information about system integrity ex-
pressed through functional and extra-functional re-
quirements can be maintained. Based on this fun-
damental feature, the impact of changes can be eas-
ily estimated and also necessary measures to handle
changes can be easily identified. The next step of the
workflow deals with the analysis of the system mod-
elled using contracts. Here, a complete system is
translated into a so called constraint network – a col-
lection of inter-connected variables and constraints.
This network represents contracts in a problem do-
main using CP. In this way, we are able to anal-
yse whether a modelled system violates any of the
contracts. In the same way, we can verify whether
changes within a system design eventually require to
change requirements.

Finally, the last step of the workflow is an archi-

Published by Atlantis Press
Copyright: the authors

179

Publication 8 - IJNDC 2014 149

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

tectural support to perform changes. To this end, we
have realized a dynamic linker that is customized for
the use in real-time operating-systems for safety ap-
plications. The distinct feature of this linker is that
its behaviour is predictable, and the mechanism it-
self is designed to meet software safety regulations
(please refer to (15) for more details).

In the following, we describe the modelling and
verification parts of this workflow more in detail.

4. Constraint-based Verification

To get a rough image of the proposed approach, we
highlight the modelling and verification steps in Fig-
ure 3. The input to the verification is a modelled
component-based system, enriched with properties,
which are structured in contracts – Msys in figure.
This model is further transformed into a Constraint
Satisfaction Problem (CSP) – CSPsys in figure, which
corresponds to the problem domain mentioned in the
previous section (we discuss this later). The CSP
model is processed by the constraint solver, i.e., a
tool to solve the CSPs, in order determine the preser-
vation of all properties in the system. As a result, we
get a decision about such a preservation. In addition,
we get concrete values of data (i.e., inputs, outputs
and parameters), for which properties are preserved.
All steps in the process are performed automatically.

In the following, we describe how we defined
each model described above. We first give some ba-
sic assumptions for our system Msys. Then we de-
scribe the main elements of that system, including
properties. In the end, we describe its representation
as a CSP.

4.1. General: Components and Compositions

In our system, we define a component M as follows:

M :=
〈
Σin,Σout ,Σpar,Mc

〉
(1)

, where Σin, Σout , and Σpar are inputs, outputs and pa-
rameters respectively (i.e., Σ-alphabets define input,
output and parameter variables in terms of datatypes,
values, and some additional attributes), whereby Mc
is an optional set of contained components, and is

defined according to relation (1). To clarify this, we
distinguish between following two types of compo-
nents:

• Atomic components: components that can not be
further divided to form hierarchies, i.e., compo-
nents for which Mc = /0. They perform the con-
crete computation. The Ignition System for exam-
ple may contain many atomic components, such
as integrators, limiters, simple logical elements
and other.

• Composite components: hierarchical components
that may contain one or more atomic and com-
posite components, i.e., Mc 6= /0. Note that we
use the term composition to indicate composite
components, which also may represent a complete
component-based system (cf. our system in Fig-
ure 1).

The component model introduced above is typi-
cal for data-flow systems such as the ones modelled
in the Matlab Simulink for example. Similar models
of component-based systems are used when consid-
ering properties for resource budgets (5).

Component-based System Msys

M

M

M

M

M

M

Constraint Satisfaction Problem
 CSPsys

Constraint

Variable

Variable

Constraint

Satisfied CONSTRAINT
SOLVER

1 - Transform

2 - Verify

Not satisfied

M - Component

Fig. 3. Overview of the proposed verification method: (1)
transformation of the component-based system Msys into
the CSP representation CSPsys, (2) verification of the com-
position CSPsys by solving a CSP.

4.2. Modelling Compositions Enriched with
Properties

As illustrated in Figure 1, properties are defined
as expressions over component variables. In or-
der to be able to interpret these expressions dur-
ing the verification, we formulate them in a SMT
form§: each expression can be represented in terms of
basic symbols, such as 0,1, ...sen, ...,+,−,/, ...min.

§Syntax in SMT (Satisfiability Modulo Theories) allows to define advanced expressions, e.g., on integers, reals, etc.

Published by Atlantis Press
Copyright: the authors

180

150 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

Using this form, various expressions can be sup-
ported for our system, including logical, arithmetic,
and other. The property from Figure 1 for instance,
(0 6 sen 6 6400)∧ (0 6 f f l 6 100), conforms to the
SMT form.

In order to link properties throughout the system
hierarchy with regard to three basic relations intro-
duced in Section 2.2, we encapsulate them in as-
sume/guarantee (A/G) contracts. According to the
general contract theory in (5), a contract C is a tuple
of assumption/guarantee pairs, i.e.:

C := 〈Σ,A,G〉 (2)

, where A and G are expressions over sets of vari-
ables Σ. In this way, we can split properties for each
component in (a) part that has to be satisfied, i.e., as-
sumptions, and (b) part that is guaranteed if assump-
tions hold, i.e., guarantees. For example, the top-
level contract CII for our system in Figure 1 guaran-
tees the 40ms delay under assumptions that the rota-
tional speed sen and values for the throttle angle atr
are within certain ranges:

CII =

variables

inputs sen,atr
parameters −

outputs tin, tig
types sen,atr, tin, tig ∈ N
assumptions (0 6 sen 6 6400)∧ (0 6 atr 6 100)
guarantees tig− tin > 40

Based on this structure, we can link properties
between dependent components in a similar way
it is done when wiring components using connec-
tors (i.e., links between their input/output variables).
Figure 4 shows our example system modelled us-
ing contracts. Every component provides certain
guarantees which stay in relation to assumptions of
dependent components. These components in turn
provide guarantees based on their own assumptions,
and so forth. In this way, all properties within a sys-
tem hierarchy can be linked together. In Figure 4,
we have also highlighted different types of relations
between contracts, required to build such a hierarchy

(see Section 2.2). These are:

CAFS

CIIAS

CFS

CISA G

GA

A G

GA

A G

System Contract CII

Refinement/
Abstraction Composition

Alternatives

Fig. 4. The Engine Controller system represented using
contracts and their basic relations (A – assumptions, G –
guarantees, C – contracts).

• Composition: two contracts can interact when af-
ter connecting their guarantees and assumptions
both contracts can function correctly (we discuss
this in more detail in Section 4.3). We use the op-
erator ⊗ to define a composition (5). An example
of such relations is shown in Figure 4, where con-
tracts CFS, CIS, and CIIAS form a composite con-
tract, i.e., ((CFS⊗CIS)⊗CIIAS).

• Refinement/abstraction: similar to refinement of
properties, contracts refine other contracts in
terms of refined assumptions and guarantees. We
use the operator � for this relation. The top-level
contract CII has such a relation with the contained
contracts, i.e., ((CFS⊗CIS)⊗CIIAS) � CII . Note
that only the relation with the contract CIS is high-
lighted here.

• Alternatives: when designing components for
more than one context, each new context is de-
scribed in a separated contract. Contracts that de-
scribe the same property for different context are
alternatives. In example in Figure 4, any of con-
tained contracts may have alternatives – here, we
just highlighted CFS to indicate that it may have
alternative contracts.

Based on definitions for contracts and their relations,
we can now define the top-level system/composition
contract, Csys, as follows:

Csys := (⊗i∈NCi) (3)

Published by Atlantis Press
Copyright: the authors

181

Publication 8 - IJNDC 2014 151

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

, i.e., a hierarchical composition of contracts Ci,
where Ci represents further composition according
to relation (3).

Finally, to relate contracts with components, i.e.,
the concrete implementations of contracts, we ex-
tend the relation (1) as follows:

M :=
〈
Σin,Σout ,Σpar,Cc,Mc

〉
(4)

, where Cc is a set of contracts that the component M
can implement. Based on this relation, any imple-
mentation of the Csys contract represents a complete
component-based system or a top-level composition.
We identify this implementation as Msys and use it
later as a basis to define our CSP.

4.3. Ensuring Correctness of Compositions

For our component-based system defined previ-
ously, two contracts C1 and C2 can form a compo-
sition (i.e., can be integrated) when their connected
assumptions/guarantees match in the syntax of their
variables (i.e., datatypes, units, etc.), and when fol-
lowing holds:

G(C1)⊆ A(C2) (5)

In other words, the contract C1 shall not provide val-
ues not assumed by the contract C2. This relation is a
basis in our CSP to verify the complete composition.

4.4. Composition as a Constraint Satisfaction
Problem

Now, we describe how we define the composition
Msys as a CSP. We name our CSP representation of
Msys as CSPsys, and define it as follows:

CSPsys := 〈XCSP,DCSP,CCSP〉 (6)

, where XCSP is a finite set of variables, DCSP

their domains (datatypes, values), and CCSP a set
of constraints related to variables and constraints in
CCSP. In other words, the CSP represents a network
of variables inter-connected with each other using
constraints. The constraints set variables in relations

using some operators, and in this way they form ex-
pressions. Various types of expressions can be used
to define constraints (e.g., Boolean, SMT – depend-
ing on supported features of the solver). The so-
lution of the CSPsys is a set of values of XCSP for
which all constraints CCSP are satisfied. The con-
straint solver performs the task of finding solutions.

In order to represent the composition Msys in a
CSP, we need to map the top-level contract structure
((sub-)contracts, variables, and A/G expressions)
into the CSP constructs mentioned above. Important
aspects of this representation are CSP definitions for
(1) a type system, (2) A/G expressions or properties,
(3) the structure of components and contracts and
(4) the structure of compositions. We can now turn
to these representations.

4.4.1. Type System

The CSP tools, i.e., constraint solvers, usually pro-
vide the support for several domains to represent
various types of variables. Integers, reals, and sets
are examples here, just to name few. In order to
avoid type castings between modelled system Msys

and CSPsys, we use the same domains for both Msys

and CSPsys. Another reason is that the time needed
for the constraint solver to solve the CSP strongly
depends on a particular domain. For example, there
is a significant difference in runtime when dealing
with real numbers instead of integers. Therefore,
we use integers for both system representations, i.e.,
Msys and CSPsys.

4.4.2. A/G Expressions (Properties)

Concerning the representation of values of variables
in the CSP, limits have to be set on their inter-
vals. The intervals are possible search space for the
solver, and can have significant influence on solver’s
runtime. It is therefore important to limit the vari-
ables on smallest possible intervals.

In our CSPsys, each variable which is used in an
expression is represented by two CSP variables: one
indicating the begin of the interval, another one for
the end of that interval. The size of this interval

Published by Atlantis Press
Copyright: the authors

182

152 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

Component M1

(Contracts)

Component

Variables: Inputs, Outputs, Parameters

Contract C1

Contract Part 1 Csp1

Local A/G Variables

A/G Constraints Cagc

Composition Constraints Ccc

Binding Constraints Cbc

Contract Part n Cpn

Contract Cn

Contract C1

Assumptions Guarantees

Refined/Alternative Contract C1'

Assumptions Guarantees

C
o

n
st

ra
in

ts
V

ar
ia

b
le

s
V

ar
ia

b
le

s

Contract Constraint Cs1C
o

n
st

ra
in

ts

Component Constraint Cm

...

...

C
o

m
p

o
n

e
n

t
Lo

ca
l A

/G
To

p
-l

ev
el

Su
b

-

Cm

Cm

Cm

System

Component

Cm

Cm

Cm

Cm

Cm

Cs1 Cs2 Csn

Component Constraint

Component Constraint

Contract Constraints

System Constraint Network (CSP, Csys)System Model Msys

Contract Cn

Assumptions Guarantees

(excerpt)

...

Fig. 5: Representation of a component in CSP: an exemplary component with three contracts (left) and an excerpt of the mapping of
contracts to constraints and variables (right)

is determined based on intervals defined in expres-
sions. For example, the variable sen in the expression
(0 6 sen 6 6400) is limited on the interval [0,6400].
The reason for using two CSP variables here is that
solving the CSP results with not only decision about
the correctness of a composition with regard to the
relation (5), but it also provides values for which the
relation (5) is satisfied. In this way, we can obtain
the concrete intervals (instead of just values) for all
variables in all contracts (for correct compositions).
This information can be useful for example when the
composition Msys has many alternative contracts, to
observe which of them are identified as correct.

Relations or operations between variables in ex-
pressions are represented as constraints. Since both
Msys and CSPsys use the SMT syntax for expressions,
every operation is represented as a single constraint.

4.4.3. Components

From the perspective of the structural organization,
every component is represented in a CSP as a set
of variables (inputs, outputs, parameters) from the
integer domain, and a set of constraints, which cor-
respond to the contracts implemented by that com-
ponent (see Figure 5).

Note that we distinguish here between variables
used in components, i.e., Σ in relation (4), and vari-
ables used in contracts, i.e., Σ in relation (2). Al-
though they are identical, we define separated vari-
ables in the CSP for each of them. This means,
when a component has two contracts, we have CSP
variables for (a) component variables (inputs, out-
puts and parameters) and (b) CSP variables (inputs,
outputs and parameters) for each contract. With
this separation of contracts and components, we can
identify which contracts are satisfied if the verifica-
tion succeeds. As mentioned, the constraint solver
not only responds with a decision, but it also finds
all values of XCSP for which the verification suc-
ceeds. Similarly, if the verification fails, the con-
flicting contracts can be easily identified.

Now we describe how the contracts are defined
in a CSP, how they are linked with components, and
how the criteria for correctness from relation (5) is
represented in a CSP.

4.4.4. Contracts

As shown in Figure 5, each contract is represented
as a single top-level constraint Cs. This constraint is
further related to a set of local A/G variables (inputs,

Published by Atlantis Press
Copyright: the authors

183

Publication 8 - IJNDC 2014 153

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

outputs, parameters) and a set of sub-constraints.
The sub-constraints represent the constraints of the
refined/abstracted or alternative contracts (contract
parts Csp in figure). Because refined/abstracted and
alternative contracts do not depend on each other, we
define the top-level constraint Cs as follows: Cs :=
(∨i∈NCspi). In this relation, any contract which can
satisfy the relation (5) implies that the top-level con-
tract constraint Cs is satisfied.

As illustrated in Figure 5, every contract consists
of the following sub-constraints:

• A/G constraints Cagc: constraints related only to
local A/G variables. These constraints define the
assumptions and guarantees for a contract. They
are defined based on A/G expressions in contracts,
as described in Section 4.4.2.

• Binding constraints Cbc: constraints that link the
local A/G variables to the global component vari-
ables so that both types of variables get the same
values. In this way, we can observe which con-
tracts were satisfied, after successful verification.

• Composition constraints Ccc: constraints that inte-
grate the contracts. These constraints express the
integration or composition between two contracts,
as described in Section 4.3. They link two con-
tracts according to relation (5).

All three top-level constraints have to be satisfied
for a contract Csp, i.e., Csp := (Cagc∧Cbc∧Ccc).

Finally, the top-level constraint of a component
is satisfied, if all contract constraints Cs are satisfied,
i.e., Cm := (∧i∈NCsi).

4.4.5. System/Composition

The compositions have very similar structure to ba-
sic or atomic components. Because they abstract
some contracts of the contained components, addi-
tional constraints are defined to link these variables.
An example of such a composition is given in Figure
4, where assumptions and guarantees of the contract
CII are an abstraction of assumptions and guarantees
of the contained contracts.

Like atomic components, the complete
component-based system Msys is represented in a
CSP as a set of variables and constraints. Within
this set of constraints, there is a single top-level con-
straint of the composition Cm which links the com-
plete hierarchy of the sub-constraints and variables
discussed previously (the top-level constraint Cm is
shown in Figure 5 right). The CSP has a solution
only if this top-level constraint is satisfied. Finally,
the Cm corresponds to the top-level constraint in the
constraint set CCSP from the relation (6).

5. Experimental Results

In the following, we describe the results of the pre-
liminary evaluation and we discuss the performance
of our approach.

To conduct the experiment, we used Java-based
Choco constraint solver (7). In our experiment, we
defined the composition Msys as a XML description,
which is then used to generate the CSP in memory.

The main goal of this experiment is to show
whether the proposed CSP is applicable to solve the
composition problems defined with data properties,
and for which system configurations. We conduct
the experiment by showing how the verification re-
sponds with regard to attributes that might have an
effect on runtime. These attributes include:

• Components and properties: how the verification
scales with regard to number of components and
properties, including also the presence of the al-
ternative properties.

• Nature of properties: different properties may re-
quire different expressions in the CSP, including
operations on fixed values, intervals, or more ad-
vanced operations such as ones used to define re-
source constraints (e.g., sum, min, etc.).

Figure 6 shows the system configuration used to
conduct the experiments. The inputs for the veri-
fication are provided by the Environment compo-
nent, which encloses the component-based system
under test. All experiments were executed on Intel

Published by Atlantis Press
Copyright: the authors

184

154 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

i7-3630QM, 4 cores, 2.40GHz.

M

Environment Component ME

M M

MM

M

...

...

......

...

Component-based System Msys (System Under Test)

Fig. 6. System configuration used to conduct the experi-
ments (M - component, ME - environment component).

5.1. Quantitative Results

For this experiment, we performed two measure-
ments. In the first measurement, we show the re-
sponse time with regard to the number of compo-
nents, properties and alternative properties, having
specified assumptions and guarantees as intervals.
Then, in the second measurement, we use the same
configurations but with fixed values for expressions.
With these two measurements, we are able to ob-
serve the limits on modeling the component-based
system with regard to number of components, prop-
erties, and expressions used to describe the proper-
ties.

5.1.1. Measurements

In the first measurement, we execute several thou-
sands of system configurations with the varying
number of components and properties. The mea-
surement has two parts. In the first part, we ver-
ify the system configurations with the varying num-
ber of components, each having varying number of
properties but with constant number of assumptions
or guarantees (i.e., each component variable is there-
fore related to only one expression). In the second
part, each of the components has varying number of
alternative and refined properties, so that many so-
lutions are possible. In this case, each component
variable is related to many expressions.

The expressions in the first measurement are de-
fined in a way that always the intervals of the com-

ponent variables have to be satisfied, and not the
fixed values. An example for such expression is
given in Section 4.2 for the contract CII , which is
satisfied only if the variables sen and atr are in ranges
[0,6400] and [0,100] respectively.

For the input test data, i.e., the operands of the
assumption and guarantee expressions, we generate
the values for each expression randomly, but with
the rule that the assumptions are always satisfied.
The advantage of performing the positive tests here
is to get more clear statement about the runtime of
the verification. In both parts of the measurement,
we use the relational and logical operations on val-
ues.

In the second measurement, we execute the same
system configurations as in previous measurement,
but this time using the fixed values for component
variables.

5.1.2. Observations

First results of the experiments are illustrated in Fig-
ure 7. On the left, an excerpt of the results for the
first measurement is shown, where the properties
have a constant number of assumptions and guar-
antees. The reason why the verification responds in
short time is that each component variable has only
one expression (assumption or guarantee constraint,
Cagc), and it is then immediately instantiated to a
value indicated by that expression. The runtime de-
pends in this case therefore on the number of com-
ponents and properties.

On the right in Figure 7, a scenario that is more
likely to occur in practice is shown. Here, each
component variable has an increasing number of ex-
pressions, and these expressions are alternatives (as
mentioned in the description of the measurement).
The response time of the verification strongly de-
pends on the number of alternatives, because each
of the expressions represents different interval. The
solver has to adjust the component variables to ade-
quate intervals, in order to find a solution. Further-
more, since the choice of the particular alternative
may influence the choice of the intervals in other
connected components, often the backtracks have to

Published by Atlantis Press
Copyright: the authors

185

Publication 8 - IJNDC 2014 155

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

R
u

n
ti

m
e

 [
m

s]

components

10
20

50

400 800 1200 1600 2000

of assumptions/guarantees per component
R

u
n

ti
m

e
 [

m
s]

0

10000

20000

30000

40000

50000

60000

70000

0 20 40 60 80 100200 400 600 800 1000

of components

alternatives per component

4

6
8

R
u

n
ti

m
e

 [
m

s]

Fig. 7: Experimental results: runtime for system configuration with varying number of assumption/guarantee expressions and compo-
nents (left) and varying number of components and alternative properties (right)

be done to the state where the constraints were sat-
isfied, which is time consuming.

In the second measurement, we observed very
similar results as illustrated in Figure 7 on the left.
Having fixed values on component variables, no
search has to be performed, but just the constraint
verification. For the case where the alternatives are
used, more time is required to find a solution, but
this time is negligible in contrast to situation when
using intervals (i.e., Figure 7, right).

In the end, we summarize our observations with
Figure 8. This figure shows the region for which
the verification can complete in a ”reasonable time”.
We set the limit for this time on 2 minutes, just to
get a first feedback about possible configurations for
the system under test. To establish this region, we
used the system configuration with the worst case
in response time, i.e., the one having the alternative
properties from the first measurement.

5.2. Qualitative Results: Discussion

Figure 8 shows the worst-case scenario, in which a
component-based system is modelled having vary-
ing number of assume guarantee expressions.

The verification scales well but for configura-
tions with only few instances of either components
or properties. In nowadays automotive systems for

example, there are more than 800 software compo-
nents, that control various technical sub-processes
in automobiles (16). However, it is still possible
to support these configurations, since each such
sub-system can be provided to verification indepen-
dently, and also, not all components are massively
interconnected as in Figure 6. For example, the sim-
plified system from Figure 1 is modelled using 13
software components (is just one option to realize
that system).

6. Related Work

Now we turn to a brief overview of related studies.
We summarize here some relevant articles that han-
dle compositional verification based on data seman-
tics.

Similar problems to those described in our prob-
lem statement were identified by Sun et al. (23)
in their work on verifying the composition of ana-
logue circuits for analogue system design. In their
approach, each analogue element (resistor, capaci-
tor, etc.) is characterized by its performance profile
and this profile is used to build the contract; that is,
for certain values of the inputs the element responds
with certain output values. Using contracts made
from performance profiles, it was possible to elim-
inate many integration failures early in the system

Published by Atlantis Press
Copyright: the authors

186

156 6. Publications

On Design-time Modelling and Verification of Safety-critical Component-based Systems

design phase. These structural compositions of ana-
logue elements are very similar to the compositions
in CBSE. However, the model of Sun et al. only
considers connections between elements (horizontal
relations).

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

o

f
al

te
rn

at
iv

es
 p

er
 c

o
m

p
o

n
en

t

of components

Response time < 2 min

Not usable configurations

Fig. 8. Region of possible system configurations for which
the verification completes within a given time.

Another article describes a runtime framework
for dynamic adaptation of safety-critical systems in
the automotive domain (1). In the event of failures or
degradation of quality, the intent is to reconfigure the
automotive system while it is operating. In contrast
to the previous approach, the compositional verifi-
cation in this case is based on a common quality
type system shared among components. Two com-
ponents can form a composition only when their in-
terfaces or ports have the compatible type qualities.
In this way, wrong type castings between compo-
nents can be avoided. However, using a type system
in our case would just verify the syntax but not the
semantics of data (i.e., the concrete values).

A more advanced framework for dynamic adap-
tation of avionics systems was developed by Mon-
tano (18). The goal is to adapt the system to new,
correct configurations, in case of failures. To per-
form this, a common quality system defines the
contracts between functions and available static re-
sources (e.g., memory consumption, CPU utiliza-
tion, etc.) and in this way it restricts the possible
set of correct configurations. An important aspect
of this work is that it demonstrates the CSP ap-
proach to solving the composition problem. How-

ever, the quality type system only considers static
resources, and does not consider contracts between
functions. Ultimately, the approach is strongly fo-
cused on dynamic adaptation with human-assisted
decision making.

In the field of industrial automation, the authors
in (17) propose the static verification of composi-
tions based on data types of the IEC 61131-3 com-
ponent model (or standard). This model defines the
standard data types but it also allows definition of
customized data types (derived from existing ones)
and combination of existing data types into complex
structures. The authors identified ambiguities in the
standard for user-defined data types and defined a
proper compatibility criteria. Like the adaptation ap-
proach in the automotive domain (1), this work con-
siders only a type system. However, the approach
verifies not only compositions, but also the use of
variables in IEC 61131-related languages.

In the last few years, several research projects
have begun to handle the topics of compositional
verification (22), (9), (19) by formalizing system
models (component models) and languages for spec-
ification of contracts. These approaches share many
concepts, especially contract-based design and for-
mal behavioural verification of compositions. Al-
though our model is conceptually very similar, it
differs in that it considers the data semantics of
property values, and it addresses a specific type of
component-based systems in which data semantics
can be used to express the validity criteria for com-
positions.

7. Conclusion

In this paper, we presented a method for modelling
and verification of compositions in component-
based systems. The components modelled here are
enriched with properties, which describe the data se-
mantics of components. The novelty of our veri-
fication lies in representing the composition along
with modelled properties as a Constraint Satisfac-
tion Problem (CSP), which allows us to achieve two
important objectives. First, using relational, logical

Published by Atlantis Press
Copyright: the authors

187

Publication 8 - IJNDC 2014 157

N. Kajtazovic, C. Preschern, A. Höller, C. Kreiner

and more advanced operators on data, many types
of properties can be supported. Second, for proper-
ties that use basic logical and arithmetic operators,
the verification can scale up to several hundreds of
components, each of them consisting of few tens of
properties, which makes the approach promising for
the use in practice.

As part of our ongoing work, we want to char-
acterize the runtime performance based on different
types of properties, since they impact the scalabil-
ity at most. In addition, we also want to investigate
other parameters such as solver search policy, solver
engine, etc., in order to find best configuration for
the verification method.

References

1. Adler, R., Schaefer, I., Trapp, M., Poetzsch, A.:
Component-based modeling and verification of dy-
namic adaptation in safety-critical embedded systems.
ACM Trans. Embed. Comput. Syst. 10(2) (2011)

2. de Alfaro, L., Henzinger, T.A.: Interface automata.
SIGSOFT Softw. Eng. Notes 26(5), 109–120 (2001)

3. Apt, K.: Principles of Constraint Programming. Cam-
bridge University Press, New York, NY, USA (2003)

4. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber,
M., Nguyen, T.H., Sifakis, J.: Rigorous component-
based system design using the bip framework. Soft-
ware, IEEE 28(3), 41–48 (2011)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone,
R., Raclet, J.B., Reinkemeier, P., Sangiovanni-
Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.:
Contracts for Systems Design. Tech. rep., Research
Report, Nr. 8147, November 2012, Inria (2012)

6. Butz, H.: Open integrated modular avionic (ima):
State of the art and future development road map at
airbus deutschland. Dept. of Avionic Systems at Air-
bus Deutschland, Hamburg, Germany (-)

7. choco Team: choco: an Open Source Java Constraint
Programming Library. Research report 10-02-INFO,
École des Mines de Nantes (2010)

8. Clara Benac Earle: Languages for Safety-Certification
Related Properties. In: WIP Session at SEAA’13

9. COMPASS: Compass - comprehensive modelling
for advanced systems of systems. Homepage:
http://www.compass-research.eu (2011-2014)

10. Crnkovic, I.: Building Reliable Component-Based
Software Systems. Artech House, Inc., Norwood,
MA, USA (2002)

11. Frey, P.: Case Study: Engine Control Application.

Tech. rep., Ulmer Informatik, Nr. 2010-03 (2010)
12. Gössler, G., Sifakis, J.: Composition for component-

based modeling. Sci. Comp. Prog. 55 (2005)
13. Kajtazovic, N., Preschern, C., Höller, A., Kreiner,

C.: Towards assured dynamic configuration of safety-
critical embedded systems. In: Computer Safety, Re-
liability, and Security, LNCS, vol. 8696, pp. 167–179.
Springer International Publishing (2014)

14. Kajtazovic, N., Preschern, C., Höller, A., Kreiner,
C.: Constraint-based verification of compositions in
safety-critical component-based systems. In: SNPD,
Studies in Computational Intelligence, vol. 569, pp.
113–130. Springer International Publishing (2015)

15. Kajtazovic, N., Preschern, C., Kreiner, C.: A
component-based dynamic link support for safety-
critical embedded systems. In: 20th IEEE Interna-
tional Conference and Workshops on the Engineering
of Computer Based Systems, pp. 92–99 (2013)

16. Kindel, O., Friedrich, M.: Softwareentwicklung mit
AUTOSAR: Grundlagen, Engineering, Management
in der Praxis. dpunkt Verlag; Auflage: 1 (2009)

17. M., D.S.: Data-type checking of iec61131-3 st and
il applications. In: 2012 IEEE 17th Conference on
Emerging Technologies Factory Automation (ETFA),
pp. 1–8 (2012)

18. Montano, G.: Dynamic reconfiguration of safety-
critical systems: Automation and human involvement.
PhD Thesis (2011)

19. SAFECER: Safecer - safety certification of software-
intensive systems with reusable components. Home-
page: http://safecer.eu (2011-2015)

20. Schäuffele, J., Zurawka, T.: Automotive Software
Engineering: Grundlagen, Prozesse, Methoden und
Werkzeuge effizient einsetzen. V+T Verlag (2010)

21. Sentilles, S., Štěpán, P., Carlson, J., Crnković, I.:
Integration of extra-functional properties in compo-
nent models. In: Proceedings of the 12th Inter-
national Symposium on Component-Based Software
Engineering, pp. 173–190. Springer-Verlag, Berlin,
Heidelberg (2009)

22. SPEEDS: Speculative and exploratory design
in systems engineering - speeds. Homepage:
http://www.speeds.eu.com (2006-2012)

23. Sun, X., Nuzzo, P., Wu, C.C., Sangiovanni-
Vincentelli, A.: Contract-based system-level com-
position of analog circuits. In: Design Automation
Conference, 2009. DAC ’09. 46th ACM/IEEE, pp.
605–610 (2009)

24. Szyperski, C.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. Addison-Wesley LP
Co., Inc., Boston, MA, USA (2002)

25. Tran, E.: Verification/validation/certification.
Carnegie Mellon University, 18-849b Dependable
Embedded Systems (1999)

Published by Atlantis Press
Copyright: the authors

188

158 6. Publications

Bibliography

[AFPdS11] J.B. Almeida, M.J. Frade, J.S. Pinto, and S.M. de Sousa. Rigorous Software
Development: An Introduction to Program Verification. UTiCS. Springer
London, 2011.

[AIKR13] H. Alemzadeh, R.K. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of safety-
critical computer failures in medical devices. IEEE Security Privacy, 2013.

[Air14] Airbus. Airbus Report: Commercial Aviation Accidents 1958-2013 – A Sta-
tistical Analysis. Accidents & Incidents, Design & Certification, Fixed Wing,
Safety Management, Aberdeen, Scotland, UK, 2014.

[AK13] Jakob Axelsson and Avenir Kobetski. On the conceptual design of a dy-
namic component model for reconfigurable autosar systems. SIGBED Rev.,
10(4):45–48, December 2013.

[AM07] Vasu Alagar and Mubarak Mohammad. Specification and verification of
trustworthy component-based real-time reactive systems. In Proceedings of
the 2007 Conference on Specification and Verification of Component-based
Systems: 6th Joint Meeting of the European Conference on Software Engi-
neering and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, SAVCBS ’07, pages 89–93, New York, NY, USA, 2007. ACM.

[Apt03] Krzysztof Apt. Principles of Constraint Programming. Cambridge Univer-
sity Press, New York, NY, USA, 2003.

[ASTPH11] Rasmus Adler, Ina Schaefer, Mario Trapp, and Arnd Poetzsch-Heffter.
Component-based modeling and verification of dynamic adaptation in
safety-critical embedded systems. ACM Trans. Embed. Comput. Syst.,
10(2):20:1–20:39, January 2011.

[Bar13] Clark Barret. From sat to smt : The dpll(t) architecture. Technical report,
Stanford University, CS357, 2013.

[BBB+11] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, Thanh-Hung
Nguyen, and J. Sifakis. Rigorous component-based system design using
the bip framework. Software, IEEE, 28(3):41–48, May 2011.

[BC11] Etienne Borde and Jan Carlson. Towards verified synthesis of procom, a
component model for real-time embedded systems. In Proceedings of the

159

160 Bibliography

14th International ACM Sigsoft Symposium on Component Based Software
Engineering, CBSE ’11, pages 129–138, New York, NY, USA, 2011. ACM.

[BCF+11] E. Borde, J. Carlson, J. Feljan, L. Lednicki, T. Leveque, J. Maras, A. Petri-
cic, and S. Sentilles. Pride - an environment for component-based develop-
ment of distributed real-time embedded systems. In Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on, pages 351–354,
June 2011.

[BCN+12] Albert Benveniste, Benôıt Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Tom Henzinger, and Kim Larsen. Contracts for Systems De-
sign. Technical report, Research Report, Nr. 8147, 2012, Inria, 2012.

[BD00] B. Bruegge and A.H. Dutoit. Object-oriented software engineering: conquer-
ing complex and changing systems. Prentice Hall, 2000.

[Bel06] Ron Bell. Introduction to iec 61508. In Proceedings of the 10th Australian
Workshop on Safety Critical Systems and Software - Volume 55, SCS ’05,
pages 3–12, Darlinghurst, Australia, Australia, 2006. Australian Computer
Society, Inc.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Rep-
resentation and Mind Series). The MIT Press, 2008.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component
model for model-driven performance prediction. J. Syst. Softw., 82(1):3–22,
January 2009.

[BLBvV04] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet.
Architecture-level modifiability analysis (alma). J. Syst. Softw., 69(1-2):129–
147, January 2004.

[BM06] Michael Barr and Anthony Massa. Programming Embedded Systems: With
C and GNU Development Tools. O’Reilly Media, Inc., 2006.

[BMZ+05] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter
Kniesel. Towards a taxonomy of software change: Research articles. J.
Softw. Maint. Evol., 17(5):309–332, September 2005.

[Bre05] Brenda S. Ocker. Software Change Impact Analysis. Research report, Fed-
eral Aviation Administration, 2005.

[BS93] J. Bowen and V. Stavridou. Safety-critical systems, formal methods and
standards. Software Engineering Journal, 8(4):189–209, Jul 1993.

[BSAB14] Klaus Becker, Bernhard Schätz, Michael Armbruster, and Christian Buckl.
A formal model for constraint-based deployment calculation and analysis
for fault-tolerant systems. In Software Engineering and Formal Methods -
12th International Conference, SEFM 2014, Grenoble, France, September
1-5, 2014. Proceedings, pages 205–219, 2014.

Bibliography 161

[But08] Henning Butz. Open integrated modular avionic (ima): State of the art and
future development road map at airbus deutschland. Department of Avionic
Systems at Airbus Deutschland GmbH Kreetslag 10, D-21129 Hamburg,
Germany, 2008.

[CAD03] I. Crnkovic, U. Asklund, and A.P. Dahlqvist. Implementing and Integrating
Product Data Management and Software Configuration Management. Artech
House computer library. Artech House, Incorporated, 2003.

[CB08] Yunja Choi and Christian Bunse. Towards component-based design and
verification of a u-controller. In MichelR.V. Chaudron, Clemens Szyperski,
and Ralf Reussner, editors, Component-Based Software Engineering, volume
5282 of Lecture Notes in Computer Science, pages 196–211. Springer Berlin
Heidelberg, 2008.

[CC08] Michel Chaudron and Ivica Crnkovic. Component-based software engineer-
ing, January 2008.

[Cho10] H. Chockler. Pincette 2014: Validating changes and upgrades in networked
software. In Formal Methods in Computer-Aided Design (FMCAD), 2010,
pages 277–277, Oct 2010.

[CHP06] Jan Carlson, John H̊akansson, and Paul Pettersson. Saveccm: An analysable
component model for real-time systems. Electronic Notes in Theoretical
Computer Science, 160(0):127 – 140, 2006. Proceedings of the International
Workshop on Formal Aspects of Component Software (FACS 2005) Pro-
ceedings of the International Workshop on Formal Aspects of Component
Software (FACS 2005).

[CISW05] Sagar Chaki, James Ivers, Natasha Sharygina, and Kurt Wallnau. The
comfort reasoning framework. In Kousha Etessami and SriramK. Raja-
mani, editors, Computer Aided Verification, volume 3576 of Lecture Notes
in Computer Science, pages 164–169. Springer Berlin Heidelberg, 2005.

[CLC05] I. Crnkovic, S. Larsson, and M.R.V. Chaudron. Component-based develop-
ment process and component lifecycle. Journal of Computing and Informa-
tion Technology – CIT, 13(4):321–327, 2005.

[Crn02] Ivica Crnkovic. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

[CSVC11] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M.R.V. Chaudron. A classifi-
cation framework for software component models. IEEE Transactions on
Software Engineering, 37(5):593–615, Sept 2011.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
specification patterns for finite-state verification. In Proceedings of the Sec-
ond Workshop on Formal Methods in Software Practice, FMSP ’98, pages
7–15, New York, NY, USA, 1998. ACM.

162 Bibliography

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. SIGSOFT
Softw. Eng. Notes, 26(5):109–120, September 2001.

[DCL+09] Wei Dong, Chun Chen, Xue Liu, Jiajun Bu, and Yunhao Liu. Dynamic
linking and loading in networked embedded systems. In Mobile Adhoc and
Sensor Systems, 2009. MASS ’09. IEEE 6th International Conference on,
pages 554–562, Oct 2009.

[dlVPW13] JoseLuis de la Vara and RajwinderKaur Panesar-Walawege. Safetymet: A
metamodel for safety standards. In Ana Moreira, Bernhard Schätz, Jeff
Gray, Antonio Vallecillo, and Peter Clarke, editors, Model-Driven Engineer-
ing Languages and Systems, volume 8107 of Lecture Notes in Computer
Science, pages 69–86. Springer Berlin Heidelberg, 2013.

[Dub13] Elena Dubrova. Fault-Tolerant Design. Springer, 2013.

[DVM+05] Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko,
Thomas Peikenkamp, and Eckard Böde. Boosting re-use of embedded auto-
motive applications through rich components. Proceedings of Foundations
of Interface Technologies, 2005, 2005.

[EJ09] C. Ebert and C. Jones. Embedded software: Facts, figures, and future.
Computer, 42(4):42–52, April 2009.

[FAA00] FAA. Guidelines for the Oversight of Software Change Impact Analyses
used to Classify Software Changes as Major or Minor. Notice 8110.85, FAA,
2000.

[FAA04] FAA. AC20-148 Reusable Software Components. Tr, FAA, 2004.

[Fer09] Maribel Fernndez. Models of Computation: An Introduction to Computabil-
ity Theory. Springer Publishing Company, Incorporated, 1st edition, 2009.

[Fow04] Martin Fowler. Inversion of control containers and the dependency injection
pattern. Technical report, Martin Fowler Homepage, 2004.

[Fre10] Patrick Frey. Case Study: Engine Control Application. Technical report,
Ulmer Informatik-Berichte, Nr. 2010-03, 2010.

[Gru04] Manfred Gruber. Decos – dependable embedded components and systems.
Technical report, DECOS consortium, 2004.

[GS05] Gregor Gössler and Joseph Sifakis. Composition for component-based mod-
eling. Sci. Comput. Program., 55(1-3):161–183, March 2005.

[GW97] D.P. Gluch and C.B. Weinstock. Workshop on the State of the Practice in
Dependably Upgrading Critical Systems: April 16-17, 1997. Special report,
(CMU/SEI-97-SR-014). Carnegie Mellon University, Software Engineering
Institute, 1997.

Bibliography 163

[HC01] George T. Heineman and William T. Councill, editors. Component-based
Software Engineering: Putting the Pieces Together. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[Hen92] Thomas A. Henzinger. Sooner is safer than later. Inf. Process. Lett.,
43(3):135–141, September 1992.

[Hen08] Thomas A Henzinger. Two challenges in embedded systems design: Pre-
dictability and robustness. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 366(1881):3727–3736,
2008.

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Pren-
tice Hall College Division. p. 320. ISBN 978-0-13-458761-5. Retrieved 17
September 2014, New Jersey, USA, 1998.

[HKS+05] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivas-
tava. A dynamic operating system for sensor nodes. In Proceedings of the
3rd International Conference on Mobile Systems, Applications, and Services,
MobiSys ’05, pages 163–176, New York, NY, USA, 2005. ACM.

[HMC13] Jon Holt, Alvaro Miyazawa, and Ana Cavalcanti. Refinement strategies for
sos models. COMPASS Consortium, http://www.compass-research.eu,
2013.

[HMTN+08] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and
K.-L. Lundback. The rubus component model for resource constrained real-
time systems. In International Symposium on Industrial Embedded Systems,
2008. SIES 2008., pages 177–183, June 2008.

[HN05] Michael Hicks and Scott Nettles. Dynamic software updating. ACM Trans.
Program. Lang. Syst., 27(6):1049–1096, November 2005.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, October 1969.

[IEC10a] IEC. Functional safety of electrical/electronic/programmable electronic
safety-related systems. IEC Standard 61508-1:2010, 2010.

[IEC10b] IEC. Ieee standard for property specification language (psl). IEEE Std
1850-2010 (Revision of IEEE Std1850-2005), pages 1–188, April 2010.

[Jan03] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency and
Time in Models of Computation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[JAY84] F. JAY. IEEE Standard Dictionary of Electrical and Electronic Terms.
IEEE, 1984.

http://www.compass-research.eu

164 Bibliography

[Kaz09] M.P. Kazmierkowski. Embedded systems design and verification (zurawski,
r.; 2009) [book news]. Industrial Electronics Magazine, IEEE, 3(3):56–57,
Sept 2009.

[Kel07] Stephen Kell. Rethinking software connectors. In International Workshop
on Synthesis and Analysis of Component Connectors: In Conjunction with
the 6th ESEC/FSE Joint Meeting, SYANCO ’07, pages 1–12, New York,
NY, USA, 2007. ACM.

[Kel08] Stephen Kell. A survey of practical software adaptation techniques. jjucs,
14(13):2110–2157, jul 2008.

[KF09] Olaf Kindel and Mario Friedrich. Softwareentwicklung mit AUTOSAR:
Grundlagen, Engineering, Management in der Praxis. dpunkt Verlag; Au-
flage: 1, 2009.

[KPK13] N. Kajtazovic, C. Preschern, and C. Kreiner. A component-based dynamic
link support for safety-critical embedded systems. In Engineering of Com-
puter Based Systems (ECBS), 2013 20th IEEE International Conference
and Workshops on the, pages 92–99, April 2013.

[KRSV13] Antoaneta Kondeva, Daniel Ratiu, Bernhard Schatz, and Sebastian Voss.
Seamless model-based development of embedded systems with af3 phoenix.
In Proceedings of the 20th Annual IEEE International Conference and Work-
shops on the Engineering of Computer Based Systems, ECBS ’13, pages
212–, Washington, DC, USA, 2013. IEEE Computer Society.

[KSA07] Xu Ke, K. Sierszecki, and C. Angelov. Comdes-ii: A component-based
framework for generative development of distributed real-time control sys-
tems. In Embedded and Real-Time Computing Systems and Applications,
2007. RTCSA 2007. 13th IEEE International Conference on, pages 199–
208, Aug 2007.

[KT08] S. Kelly and J.P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley, 2008.

[LAC12] Rikard Land, Mikael Akerholm, and Jan Carlson. Efficient software compo-
nent reuse in safety-critical systems — an empirical study. In Proceedings of
the 31st International Conference on Computer Safety, Reliability, and Se-
curity, SAFECOMP’12, pages 388–399, Berlin, Heidelberg, 2012. Springer-
Verlag.

[Leh11] Steffen Lehnert. A review of software change impact analysis. Technical
report, Department of Software Systems / Process Informatics, Germany,
2011.

[Lev86] Nancy G. Leveson. Software safety: Why, what, and how. ACM Comput.
Surv., 18(2):125–163, June 1986.

Bibliography 165

[Lev00] J.R. Levine. Linkers and Loaders. Operating Systems Series. Morgan Kauf-
mann, 2000.

[LFR12] Steffen Lehnert, Q. Farooq, and Matthias Riebisch. A taxonomy of change
types and its application in software evolution. In Engineering of Com-
puter Based Systems (ECBS), 2012 IEEE 19th International Conference
and Workshops on, pages 98–107, April 2012.

[LNRT12] Kung-Kiu Lau, Keng-Yap Ng, Tauseef Rana, and Cuong M. Tran. Incre-
mental construction of component-based systems. In Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Software Engineering,
CBSE ’12, pages 41–50, New York, NY, USA, 2012. ACM.

[LPC+13] Kung-Kiu Lau, Marc Pantel, DeJiu Chen, Magnus Persson, Martin Törn-
gren, and Cuong Tran. Component-based development. In Ajitha Rajan and
Thomas Wahl, editors, CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems, pages 179–212. Springer Vienna, 2013.

[Mai98] Mark W. Maier. Architecting principles for systems-of-systems. Systems
Engineering, 1(4):267–284, 1998.

[MAP+07] R. Marau, L. Almeida, P. Pedreiras, M.G. Harbour, D. Sangorrin, and J.L.
Medina. Integration of a flexible time triggered network in the frescor re-
source contracting framework. In Emerging Technologies and Factory Au-
tomation, 2007. ETFA. IEEE Conference on, pages 1481–1488, Sept 2007.

[Mar10] Peter Marwedel. Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems. Springer Publishing Company, Incorporated,
2nd edition, 2010.

[Mey92] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51,
October 1992.

[MFRV13] Hélène Martorell, Jean-Charles Fabre, Matthieu Roy, and Régis Valentin.
Towards dynamic updates in autosar. In Computer Safety, Reliability, and
Security Lecture Notes in Computer Science, pages –1–1, 2013.

[Mon11] Giuseppe Montano. Dynamic reconfiguration of safety-critical systems: Au-
tomation and human involvement. PhD Thesis, 2011.

[MSKC04] Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty
H. C. Cheng. A taxonomy of compositional adaptation. Technical report,
MSU-CSE-04-1, 2004.

[MVFR14] H. Martorell, R. Valentin, J.C. Fabre, and M. Roy. Dynamic software up-
dates vs autosar embedded real-time software and systems. In ERTS2 -
Congress on Embedded Real Time System and Software, pages –1–1, 2014.

166 Bibliography

[NKA14] Ze Ni, A. Kobetski, and J. Axelsson. Design and implementation of a dy-
namic component model for federated autosar systems. In Design Automa-
tion Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6, June
2014.

[OKB14] Markus Oertel, Omar Kacimi, and Eckard Böde. Proving compliance of im-
plementation models to safety specifications. In Andrea Bondavalli, Andrea
Ceccarelli, and Frank Ortmeier, editors, Computer Safety, Reliability, and
Security, volume 8696 of Lecture Notes in Computer Science, pages 97–107.
Springer International Publishing, 2014.

[OP92] Gustaf Olsson and Gianguido Piani. Computer Systems for Automation and
Control. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[OR13] Markus Oertel and Achim Rettberg. Reducing re-verification effort by
requirement-based change management. In Gunar Schirner, Marcelo Götz,
Achim Rettberg, MauroC. Zanella, and FranzJ. Rammig, editors, Embedded
Systems: Design, Analysis and Verification, volume 403 of IFIP Advances
in Information and Communication Technology, pages 104–115. Springer
Berlin Heidelberg, 2013.

[Per09] Magnus Persson. Adaptive Middleware for Self-Configurable Embedded Real-
Time Systems. Stockholm: KTH, 2009.

[PG13] Steffen Peter and Tony Givargis. Utilizing intervals in component-based
design of cyber physical systems. In Proceedings of the 2013 IEEE 16th
International Conference on Computational Science and Engineering, CSE
’13, pages 635–642, Washington, DC, USA, 2013. IEEE Computer Society.

[PHB+09] Roberto Passeron, Imene Ben Hafaiedh, Albert Benveniste, Daniela Can-
cila, arnaud Cuccuru, Werner Damm, Alberto Ferrari, Sebastien Gerard,
Susanne Graf, Bernhard Josko, Leonardo Mangeruca, Thomas Peikenkamp,
Alberto Sangiovanni-Vincentelli, and Francois Terrie. Meta–models in eu-
rope: Languages, tools and applications. -, 12 2009.

[POS06] J. Polakovic, A.E. Ozcan, and J.-B. Stefani. Building reconfigurable
component-based os with think. In Software Engineering and Advanced
Applications, 2006. SEAA ’06. 32nd EUROMICRO Conference on, pages
178–185, Aug 2006.

[PS08] Juraj Polakovic and Jean-Bernard Stefani. Architecting reconfigurable
component-based operating systems. J. Syst. Archit., 54(6):562–575, June
2008.

[PSS+13] Nikolaos Priggouris, Adeline Silva, Markus Shawky, Magnus Persson, Vin-
cent Ibanez, Joseph Machrouh, Nicola Meledo, Philippe Baufreton, and Ja-
sonMansell Rementeria. The system design life cycle. In Ajitha Rajan and
Thomas Wahl, editors, CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems, pages 15–67. Springer Vienna, 2013.

Bibliography 167

[PTV+13] Paul Pop, Leonidas Tsiopoulos, Sebastian Voss, Oscar Slotosch, Christoph
Ficek, Ulrik Nyman, and Alejandra Ruiz. Methods and tools for reduc-
ing certification costs of mixed-criticality applications on multi-core plat-
forms: the recomp approach. Workshop on Industry-Driven Approaches
for Cost-effective Certification of Safety-Critical, Mixed-Criticality Systems,
WICERT, 2013.

[PV11] Marco Panunzio and Tullio Vardanega. Pitfalls and misconceptions in
component-oriented approaches for real-time embedded systems: lessons
learned and solutions. SIGBED Review, pages 6–13, 2011.

[PV14] Marco Panunzio and Tullio Vardanega. A component-based process with
separation of concerns for the development of embedded real-time software
systems. Journal of Systems and Software, 96(0):105 – 121, 2014.

[Qi 14] Qi Van Eikema Hommes. Applying STAMP Framework to Analyze Au-
tomotive Recalls. Research report, The National Transportation Systems
Center, 2014.

[Rid12] S. Riddle. Contract-based modelling and analysis technologies for systems-
of-systems. In 2012 7th International Conference on System of Systems
Engineering (SoSE), pages 469–470, July 2012.

[Rie01] L.K. Rierson. Changing safety-critical software. Aerospace and Electronic
Systems Magazine, IEEE, 16(6):25–30, Jun 2001.

[SBBK12] R. Schneider, W. Brandstaetter, M. Born, and O. Kath. Safety element out
of context - a practical approach. In SAE Technical Paper 2012-01-0033,
2012.

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[SEI01] SEI. Dependable Systems Upgrade Initiative. Special report. Carnegie Mellon
University, Software Engineering Institute, 2001.

[SFA04] Kristian Sandstrom, Johan Fredriksson, and Mikael Akerholm. Introducing
a component technology for safety critical embedded real-time systems. In
Ivica Crnkovic, JudithA. Stafford, HeinzW. Schmidt, and Kurt Wallnau, ed-
itors, Component-Based Software Engineering, volume 3054 of Lecture Notes
in Computer Science, pages 194–208. Springer Berlin Heidelberg, 2004.

[SMLA13] C. Sala, R. Moreno, M.C Lomba, and E. Alana. Proceedings of dasia 2013
conference. In CPAIOR’08 Workshop on Open-Source Software for Integer
and Contraint Programming (OSSICP’08), 2013.

[SNWSV09] Xuening Sun, P. Nuzzo, Chang-Ching Wu, and A. Sangiovanni-Vincentelli.
Contract-based system-level composition of analog circuits. In Design Au-
tomation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 605–610, July
2009.

168 Bibliography

[SRH+09] T. Strasser, M. Rooker, I. Hegny, M. Wenger, A. Zoitl, L. Ferrarini, A. Dede,
and M. Colla. A research roadmap for model-driven design of embedded
systems for automation components. In Industrial Informatics, 2009. INDIN
2009. 7th IEEE International Conference on, pages 564–569, June 2009.

[SS10] D.J. Smith and K.G.L. Simpson. A Straightforward Guide to Functional
Safety, IEC 61508 (2010 Edition) and Related Standards, Including Process
IEC 61511 and Machinery IEC 62061 and ISO 13849. Elsevier Science,
2010.

[Sta01] John A. Stankovic. Vest - a toolset for constructing and analyzing com-
ponent based embedded systems. In Proceedings of the First International
Workshop on Embedded Software, EMSOFT ’01, pages 390–402, London,
UK, UK, 2001. Springer-Verlag.

[SvCC09] Séverine Sentilles, Petr Štěpán, Jan Carlson, and Ivica Crnković. Integration
of extra-functional properties in component models. In Proceedings of the
12th International Symposium on Component-Based Software Engineering,
CBSE ’09, pages 173–190, Berlin, Heidelberg, 2009. Springer-Verlag.

[SVCDBS04] Alberto Sangiovanni-Vincentelli, Luca Carloni, Fernando De Bernardinis,
and Marco Sgroi. Benefits and challenges for platform-based design. In
Proceedings of the 41st Annual Design Automation Conference, DAC ’04,
pages 409–414, New York, NY, USA, 2004. ACM.

[SVDP12] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone.
Taming dr. frankenstein: Contract-based design for cyber-physical systems*.
European Journal of Control, 18(3):217 – 238, 2012.

[SVM01] Alberto Sangiovanni-Vincentelli and Grant Martin. Platform-based design
and software design methodology for embedded systems. IEEE Des. Test,
18(6):23–33, November 2001.

[SVP09] C. Seceleanu, A. Vulgarakis, and P. Pettersson. Remes: A resource model
for embedded systems. In Engineering of Complex Computer Systems, 2009
14th IEEE International Conference on, pages 84–94, June 2009.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-oriented Program-
ming. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
1998.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 2002.

[VSC+09] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson.
Formal semantics of the procom real-time component model. In Software
Engineering and Advanced Applications, 2009. SEAA ’09. 35th Euromicro
Conference on, pages 478–485, Aug 2009.

Bibliography 169

[WSO01] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. Component-based
software engineering. In George T. Heineman and William T. Councill,
editors, Component-based Software Engineering, chapter Overview of the
CORBA Component Model, pages 557–571. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

[YVNC08] ChenWei Yang, V. Vyatkin, N.C. Nair, and J. Chouinard. The choco con-
straint programming solver. In CPAIOR’08 Workshop on Open-Source Soft-
ware for Integer and Contraint Programming (OSSICP’08), 2008.

[YVNC11] ChenWei Yang, V. Vyatkin, N.C. Nair, and J. Chouinard. Programmable
logic for iec 61850 logical nodes by means of iec 61499. In IECON 2011
- 37th Annual Conference on IEEE Industrial Electronics Society, pages
2717–2723, Nov 2011.

[ZOF13] Min Zhang, Kazuhiro Ogata, and Kokichi Futatsugi. Formalization and ver-
ification of behavioral correctness of dynamic software updates. Electronic
Notes in Theoretical Computer Science, 294(0):12 – 23, 2013. Proceedings
of the 2013 VSSE Workshop.

	Kurzfassung
	Abstract
	Acknowledgements
	Extended Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.1.1 Embedded Systems: Computational Models and Applications
	1.1.2 Challenges in Engineering Safety-critical Embedded Systems

	1.2 Problem Statement
	1.3 Thesis Contributions
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Safety Engineering and Related Paradigms
	2.1.1 Overview and Safety Lifecycle
	2.1.2 Component-based Software Engineering
	2.1.3 Model-driven Engineering
	2.1.4 Platform-based Design
	2.1.5 Contract-based Design

	2.2 Change Management Support for Safety-critical Embedded Systems
	2.2.1 General
	2.2.2 Change Impact Analysis - Architecture and Requirements
	2.2.3 Supporting Processes in Safety Standards
	2.2.4 Discussion

	2.3 Modeling and Analysis of Safety-critical Embedded Systems
	2.3.1 System Modeling: An Overview
	2.3.2 Specifying System Properties
	2.3.3 Related Component Technologies
	2.3.4 Discussion

	2.4 Summary
	2.5 Thesis Objectives

	3 Managing Changes in Safety-critical Embedded Systems
	3.1 Identifying Characteristics of Changes: The Role of Standards
	3.1.1 Supported Changes
	3.1.2 Process and Responsibilities

	3.2 System Modeling and Analysis
	3.2.1 Component Model: Modeling Aspects
	3.2.2 System Analysis

	3.3 Runtime Support to Perform Changes
	3.3.1 Component Model: Software Components and System Architecture
	3.3.2 Addressing Software Safety Regulations

	4 Case Study and Evaluation
	4.1 Objectives, Field Data and Used Metrics
	4.2 Results
	4.3 Discussion
	4.4 Implementation Status and Applications

	5 Conclusion
	5.1 Approach Overview
	5.2 Future Work

	6 Publications
	6.1 Towards Assured Dynamic Configuration of Safety-Critical Embedded Systems
	6.2 Reducing Certification Costs Through Assured Dynamic Software Configuration
	6.3 A Component-based Dynamic Link Support for Safety-critical Embedded Systems
	6.4 Inversion of Control Container for Safety-critical Embedded Systems
	6.5 Towards Predictable Dynamic Linking for Safety-critical Component-based Systems
	6.6 Constraint-Based Verification of Compositions in Safety-Critical Component-Based Systems
	6.7 Towards Pattern-based Reuse in Safety-critical Systems
	6.8 On Design-time Modelling and Verification of Safety-critical Component-based Systems

	References

