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Abstract

Correlation effects show fascinating phenomena in many compounds, especially in
materials with partially filled d-and f -bands. Since band theory within the density-
functional theory (DFT) fails to describe the electronic states in these materials, in
some cases even qualitatively, many-body methods have to be applied to deal with the
electronic correlations. In this work, we use the variational cluster approximation (VCA)
and other many body methods for this problem.

First we use the variational cluster approximation for the generation of a non-local
correlation measure, which is applied on the 1D, 2D and 3D Hubbard model. There we
see a clear hint towards exact limit direction of dynamical mean field theory (DMFT)
in the infinite dimensions. In the 1D case non-local correlations are long ranged and
they decay very slowly. But for the two dimensional case there is stonger decay of the
long-range correlations. But the decay speed which is observed from the 1D case to the
2D case can not be observed from the 2D to 3D.

Next we study the effect of non-local electronic correlations at all length scales on the
Mott-Hubbard metal insulator transition in the frustrated and unfrustrated 2D Hubbard
model in collaboration. Therefore we use dynamical vertex approximation, lattice quan-
tum Monte Carlo, and variational cluster approximation. We show that the long range
antiferromagnetic fluctuations open a spectral gap in the paramagnetic phase of the
two-dimensional Hubbard model. These antiferromagnetic fluctuations can be referred
as “Slater-like paramagnons”. They lead to an insulating phase in paramagnetic phase
at low enough temperatures and there is no Mott-Hubbard metal insulator transition
for any finite interaction U .

Finally we go a step further from the Hubbard model to the real material calcula-
tions. Starting from density-functional theory calculations, we construct a low-energy
model by Wannier function construction. Adding multi-orbital Coulomb interactions,
we arrive at a many-body Hamiltonian which is solved within the VCA. As a bench-
mark of the method, we compare our results with continuous-time quantum Monte Carlo
(CT-QMC) calculations for the intensively studied vanadate SrVO3. Compared to CT-
QMC, the VCA has the advantage that its applicability and performance only slightly
depends on the actual structure of the local interacting Hamiltonian. Therefore, full
rotational invariant interactions as well as spin-orbit coupling can be treated much more
efficiently. Applying this method, we investigate the influence of spin-orbit coupling on
the electronic band structure and Fermi surfaces in ruthenates, e.g., SrRuO3.



Kurzfassung

Korrelationseffekte bringen faszinierende Phänomene in vielen Materialen hervor, im
Besonderen in Materialen mit teilweise gefüllten d- und f -Schalen. Die Bandtheorie in-
nerhalb der Dichte Funktional Theorie (DFT) ist nicht in der Lage ist die elektronischen
Zustände in diesen Materialen zu beschreiben. In vielen Fällen scheitert DFT sogar
qualitativ, deswegen muss man Vielteichenmethoden für die Befassung von elektronis-
chen Korrelationen verwenden. In diesem Arbeit verwenden wir die variationelle Cluster
Näherung (VCA) und andere Vielteichenmethoden für dieses Problem.

Zuerst starten wir mit der Generierung eines Nicht-Localitätsmaßes für die Korre-
lationen. Diesen wenden wir auf das 1D, 2D, und 3D Hubard Modell. Dabei sehen
wir eine klare Tendenz in Richtung der exakten Grenzfall von unendlichen Dimensionen
von der dynamischen Molekularfeldnäherung (DMFT). Im eindimensionalen Fall sind
die nicht lokale Korrelationen sehr reichweitig weil sie ein schwaches Abklingen mit der
Distanz aufweisen. Aber im zweidimensionalen Fall beobachtet man ein starkes Abklin-
gen von diesen lang-reichweitigen Korrelationen. Von 2D zum 3D gibt es noch immer
eine Tendenz in Richtung von Aussterben der nicht lokalen Korrelationen aber diese ist
verlangsamt.

Als Nächstes schauen wir den Impakt von elektronischen Korrelationen auf allen
Längenskalen auf den Mott-Hubbard Metal Isolator Übergang im frustrierten und nicht
frustrierten 2D Hubbard Modell. Dafür verwenden wir die dynamische Vertexnäherung,
Gitter Quantum Monte Carlo und die variationelle Cluster Näherung. Wir sehen, dass
die lang reichweitigen antiferromagnetischen Fluktuationen eine spektrale Lücke in der
paramagnetischen Phase eröffnen. Diese antiferromagnetische Fluktuationen können als
Slater-ähnliche Paramagnonen gesehen werden. Sie führen auf ein isolierendes Verhal-
ten in der paramagnetischen Phase bei ausreichend niedrigen Temperaturen und es gibt
keinen Mott-Hubbard Metal Isolator Übergang bei allen endlichen Wechselwirkungen U .

Am Ende gehen wir einen Schritt weiter von dem einfachen Hubbard Modell zu real-
istischen Material Berechnungen. Wie starten mit einer Diche Funktional Theorie Rech-
nung und dann konstruieren wir ein Nieder-Energie Modell durch die Wannier Konstruk-
tion. Durch das Hinzufügen der Multi-Orbital Coulomb Wechselwirkungen gelangen wir
zu einem Viel-Körper Hamilton, welches mit VCA gelöst wird. Als Benchmark-Test
für diese Methode vegleichen wir unsere Ergebnisse mit kontinuierlichen Zeit Quantum
Monte Carlo (CT-QMC) Rechnungen für das intensiv studierte Vanadat SrVO3. Ver-
glichen mit CT-QMC, VCA hat den Vorteil das dessen Leistung nur leicht von aktuellen
Strucktur von lokalen Wechselwirkungshamilton abhängt. Deswegen können voll rota-
tionssymmetrische Wechselwirkungen sowie Spin-Orbit Kopplung effizienter behandelt
werden. Durch die Anwendung diese Methode können wir den Einfluss von Spin-Orbit
Kopplung auf die elektronischen Bandstruktur und Fermioberfläche in Ruthenaten wie
zum Beispiel SrRuO3 untersuchen.
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1 INTRODUCTION

Strong correlated electronic systems cannot be dealt with standard established solid state
methods like density functional theory (DFT) implementations like the local density
approximation (LDA)[1, 2] or generalized-gradient approximations (GGA)[3]. These
systems are generally associated with compounds which contain partially filled d- and
f -shell materials like the transition metals, rare earths and actinide elements and exhibit
fascinating properties from the theoretical as well as from experimental point of view.
In such class of materials the spectrum of these exciting phenomena range from one
dimensional conductors, two dimensional high-TC superconductivity in copper-oxides[4]
and iron pnictides[5], huge volume collapses in 4f and 5f materials, metal-insulator
transition in transition metal oxides to three dimensional heavy fermion materials.

These phenomena are observed by the powerful experimental techniques like the angle
resolved photo emission spectroscopy (APPES), inverse photo emission spectroscopy,
electron loss spectroscopy, Raman scattering, neutron scattering measurements. Also
theoretical studies on simple models deliver much information concerning the physical
mechanisms behind these exciting effects. Nevertheless to cut a long story in shot many
of these effects can be traced back to the interplay between the kinetic and the interac-
tion energy, which can be considered in the electronic models for correlated materials.
Unfortunately it is very hard for find analytical solutions for these models. Therefore
numerical methods have opened new possibilities out of this dilemma and have induced
great progress.

For this area some very promising approaches have been devised in the last decades.
One of the most encouraging methods is the dynamical mean field theory (DMFT)[6,
7], which includes the local correlations exact and neglects the non-local ones. For
many applications and physical effects these non-local correlations are essential for an
appropriate description. The inclusion of these non-local correlations is a great challenge
from the mathematical and numerical point of view. Because of this there are different
approaches to this problem. The first class of methods are based on cluster approaches
or on cluster extensions of DMFT[8, 9, 10] and the second class of methods are based
on diagrammatic techniques. In this work we will use the cluster methods like cluster
perturbation theory (CPT)[11, 12] or variational cluster approximation (VCA)[13] and
diagrammatic methods like the dynamical vertex approximation (DΓA)[14] and quantum
Monte Carlo(QMC) methods for the investigation of the non-local correlations.

We proceed step by step and make many preparations for our investigation. The
composition of this work is the following. In Chapter 2 some basics about the Green’s
functions are refreshed. It starts with the general form of the complicated many body
Schrödinger equation. This equation can be simplified within the Born Oppenheimer
approximation, which is still not solvable because of the electron-electron interactions

7



1 INTRODUCTION

which lead to the correlation effects. The approximative solutions within the density
functional theory (DFT) approach delivers Kohn Sham energies and eigenvalues which
are related to the electronic band structures. Therefore we proceed with a short intro-
duction into the reasons behind the band formation and their experimental verifications
within the angle resolved photo emission spectroscopy. These measured quantities can
be directly related to the Green’s functions. Therefore we will give an overview over
different type of Green’s functions. Within the linear response theory it can be shown
that the many body Green’s function can be written as the expectation value of two
operators. Using this we can introduce different kind of Green’s function, which are
useful for the many body description of the correlated electronic systems. Then we will
show that the inclusion of non-local correlations is reflected into the momentum vector
k dependency of the Green’s function.

In Chapter 3 we will go into the details of the methods for the calculation of the
many body Green’s function in the respect of taking into account the local and non-local
correlations. In DMFT non-local correlations are totally neglected. For the consideration
of short-range correlations we start with the general form of the one-particle and two-
particle operators, because the many body Hamiltonian of the solids consists out of these
operators. Then we will go on with the setup for the exact diagonalization techniques
based on Lanczos- and Band Lanczos algorithm. Because of the exponential increase of
the basis states in the exact diagonalization we will go on with the CPT for the treatment
of infinite large systems. The lack of a self-consistency condition prevents the application
of this method to many problems with the symmetry-broken phases. Therefore this
approach can be improved within the self-energy functional theory (SFA)[15] which
includes a variational principle. Its application to clusters is referred to as VCA. Here we
give also a small overview of the DΓA, which takes into account long range correlations.
After this general overview of methods we can give a possible application of the VCA
on the correlated materials. Therefore we use the DFT results as an input for the VCA
calculations for the generation of an effective model, like the DFT+DMFT[16, 17, 18, 19]
for the consideration of correlated materials. Therefore we use for the downfolding of the
DFT results the maximally localized Wannier functions. At this point the only missing
point is the determination of the external parameters of this effective model. This can
be done by an ab-initio constrained RPA calculation.

In the following Chapter we use the VCA method for the construction of a non-locality
correlation measure. We apply this axiomatically generated measure to the 1D, 2D, and
3D Hubbard model. Through this we can extract an estimate for the decrease of non-
local correlations within dimensionality and cluster geometry.

In the Chapter 5 we consider the influence of the non-local correlations on the Mott-
Hubbard metal-insulator transition in the 2D Hubbard model at half filling for the frus-
trated and unfrustrated cases. The main results obtained in this Chapter are calculated
in collaboration and are published in Ref. [20]. There we compared the results from
the DMFT, VCA, DΓA, and the extrapolating lattice Blankenbecler-Scalapino-Sugar
(BSS)-QMC[21, 22] results. The necessary VCA results for this analysis were calculated
within this thesis and DΓA calculations were done by our collaborators Thomas Schäfer,
Alessandro Toschi, Karsten Held, Georg Rohringer and the BSS-QMC calculations were
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done by Nils Blümer.
In the Chapter 6 we consider the DFT+VCA approach applied on the correlated com-

pounds SrVO3 and SrRuO3 and compare this results with the very successful DFT+DMFT
results. In the last Chapter we summarize and give an outlook for the prospective cal-
culations.
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2 THEORETICAL BACKGROUND

2.1 Introduction

In solid state physics the starting point is the Hamiltonian, which describes the whole
physics of the many body system

H = −
Ne∑

i

h̄2∇2
i

2me
−

Ni∑

α

h̄2∇2
α

2mα
− 1

4πε0

Ne∑

j=1

Ni∑

α=1

Zαe
2

|rj −Rα|
+

1

4πε0

Ne∑

j<k

e2

|rj − rk|

+
1

4πε0

Ni∑

α,β

ZαZβ
|Rα −Rβ|

, (2.1)

where the first two terms describe electronic and ionic kinetic energies and the second two
terms describe electron-ion and electron-electron interactions and the last term ion-ion
interaction.

The next step is straightforward, as expected one writes down the many body Schrödinger
equation and tries to solve this equation which is not possible. Therefore Born-Oppenheimer
approximation, which says that the nuclei are much heavier and therefore much slower
than the electrons is used to simplify this problem. Consequently, one can assume that
electrons follow the configuration of the nuclei. The motion of electrons is important
and the effect of nuclei becomes an external potential to the moving electrons. So one
obtains the following much simpler Hamiltonian (in atomic units)

H = −1

2

N∑

i=1

∇2
i +

N∑

i=1

V (ri) +
1

2

N∑

i=1

∑

j 6=i

1

|ri − rj|
, (2.2)

where V (ri is the external potential, which is still difficult to solve because of the electron-
electron interaction. Materials for which the electron-electron interaction is not suffi-
ciently screened and where the electron-electron interaction is an important quantity
are strongly correlated systems. The emerging correlation effects cannot be dealt with
the methods mentioned above, because they are mainly based on the single electron pic-
ture. In order to get a solution out of these problems, methods which include the effects
beyond single particle picture are needed. Correlation effect can be included more prop-
erly by the improvement of the approximation of the exchange correlation term[3, 23]
in DFT, by diagrammatic methods or by construction of simple models, which can ex-
plain the physical nature of effects coming from correlations. The simplest model for the
correlation physics is the well known Hubbard model:

H = −
∑

i,j,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ + ε0
∑

niσ, (2.3)
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2 THEORETICAL BACKGROUND

which was proposed by three physicists ( J. Hubbard, M. C. Gutzwiller, J. Kanamori )
simultaneously for the explanation of the ferromagnetism in the 3d transition metals[24,
25, 26]. In this chapter we start with some basics about the nature of the electronic
structure i.e. band formation in compounds and the effect of correlations on the band
structure using the references [27, 28]. Then we will proceed with the mathematical
description of the correlations by the method of Green’s functions and the extraction of
important information out of the Green’s functions according to the references [29, 30].
The level of correlations which can be captured is reflected in the approximation within
the calculation of the Green’s function. This leads to some restrictions for the description
of physical effects where long range correlations are the driving force. Therefore we
will proceed step by step and analyze the development of such effects with regard to
correlations, which is taken into account. This opens new possibilities for the description
of many phenomena, which will be clarified in the next chapter.

2.2 Many body theory of electronic structure

The physical origin of the electronic band structure can be explained in the following two
ways. In the first variant one starts with atoms which are brought together to form a
crystal. At this point discrete energy levels of these atoms split into groups of levels which
then form energy bands. In the second option the starting point is the free homogeneous
electron gas, but through the influence of the lattice potential the continuous energy
spectrum of the free electron gas is broken at certain characteristic energies and momenta
because at their passage through the crystal the electrons suffer Bragg reflexions from
the lattice. In this approach the solid can be understood as an electron gas which is
subjected to the periodic potential of ions. This kind of consideration of a solid is
demonstrated in the following sketch in figure 2.1.

Typically the word ion is referring to the nuclei and core electrons which are tightly
bound in closed shells. From the considerations of an ideal reference system i.e. homo-
geneously distributed electrons and ions and free valence electrons some basic concepts
can be derived which can be also transferred to an interacting system of electrons. These
are the concept of Fermi energy EF , density of states in an energy interval which are
connected to the Pauli’s exclusion principle, Fermi Dirac distribution of fermions. Let us
start with some assumption that the ions and electrons are homogeneously distributed
and the valence electrons can be considered as free particles, which fulfill the one particle
Schrödinger equation with the solutions

ψk,s(r) = eıkrχs , E =
h̄k2

2m
, (2.4)

where χs is the spinpart with two eigenvalues for spin up and spin down. We can assume
some volume V with periodic boundary conditions and obtain a k mesh with density
of states of V/(2π)3. At each k point a state with energy εk can be occupied by two
electrons with different spin and the occupation is given by Fermi-Dirac distribution

f(ε, T ) =
1

e
ε−µ(T )
kBT + 1

. (2.5)
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2.2 Many body theory of electronic structure

Figure 2.1: Representation of the solid as a kind of electron gas subjected to the periodic
potential of ions. Solutions of this problem are given in terms of Bloch wave
functions and energy bands.

At the limit T → 0K one obtains the step function Θ(εF − ε), where µ(0) = εF is the
Fermi energy. All the states in the interval 0 ≤ ε ≤ εF are occupied and for ε > εF are
unoccupied. Here one can calculate the density of states, i.e., electronic states per spin
direction in an energy interval [ε, ε+ δε]

N(ε) =

∫
n(ε′)f(ε′, T )dε′. (2.6)

In the case of the non-interacting fermionic system of electrons (free electron approx-
imation for valence electrons) in the ground state all of the electronic states up to the
Fermi energy ε = εF are occupied and therefore εF is called the band width. In this
approximation the important electron-electron interaction is neglected and the effects of
the ionic lattice are underestimated, therefore the validity for the band structure calcu-
lations is constricted. If one switch on the periodic lattice potential in a perturbative
way, i.e., if we assume that the periodic lattice potential is weak, then at the edges of the
Brillouin zone(unit cell in k-space), where the Bragg reflexions occur band degeneracies
are lifted. Therefore bands are separated by energy ranges in which there are no states
i.e. energy gaps emerge. The next improvement is done within the Hartree Fock Theory,
where an electron feels an effective electrostatic potential generated by a distribution of
charges, which takes into account the effect of other electrons. This charge is the total
charge of the system minus an exchange charge. This exchange charge is generated due
to the Pauli principal.

In this approximation the electron-electron interaction is taken into account in a mean

13



2 THEORETICAL BACKGROUND

α θ

φ

γ
e−

Figure 2.2: Geometrical representation of the angle-resolved photo emission spec-
troscopy experiment. Monochromatical light is subjected onto a sample and
the energy and angle of the outcoming photoelectrons are measured.

field manner and one would still end up in an one particle Schrödinger equation which
has to be solved. This approximation is very powerful for atomic physics and molecular
physics but still many body effects are not included. The inclusion of the many body ef-
fects happen in the density functional theory within the local density approximation and
its extensions. Although density functional theory delivers good results for band struc-
ture calculations for many compounds it fails dramatically, for the correlated electronic
systems, because correlation effects can not be dealt within the one particle picture.

For a better physical understanding of the meaning of electronic band structure we
want to show here one of the most reliable methods concerning the empirical mea-
surement of the band structure. Over the years many reliable methods concerning the
determination of the electronic structure have been developed. Angle resolved photoe-
mission spectroscopy (ARPES) and bremsstrahlung isochromat spectroscopy (ARBIS)
are among the class of most accurate methods.

In a typical photo emission spectroscopy experiment monochromatic light is directed
on a sample and the photons with the adequate energy are absorbed by the electrons.
From the kinetic energy of the emitted electrons the binding energy can be calculated.
Using this and the angle of the emission also the momentum of the electrons can be
extracted. Geometrical representation of the angle-resolved photo emission spectroscopy
experiment (ARPES) is shown in figure 2.2. The kinetic energy of the emitted electrons

14



2.2 Many body theory of electronic structure

Figure 2.3: Energy diagram of photoemession spectroscopy in one-particle approxima-
tion picture .

is given by

Ekin = hν − EB − φ0, (2.7)

where the term φ0 denotes the work function. The quantities Ekin, φ and θ can be
measured and from this one can obtain the momentum by using the following relations

|K| =
1

h̄

√
(2mEkin),

Kx = |K| sin(θ) cos(φ),

Ky = |K| sin(θ) sin(φ),

Kz = |K| cos(θ).

Using the conservation laws Ekin = hν − EB − φ0 and K = k + (kγ) one can obtain
the binding energy EB and momentum k of the solid and the energy spectrum is demon-
strated in figure 2.3. From this the obtained ARPES signal I(k, ε) is direct proportional
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2 THEORETICAL BACKGROUND

Figure 2.4: Photoemession spectroscopy and inverse spectroscopy in many body frame-
work . A sketch of momentum integrated spectral function ρ(ω).

to the removal part of the spectral function which is the imaginary part of the Green’s
function

A(k, ω) = − 1

π
ImG(k, ω). (2.8)

In this context we can say that the spectral function gives the probability of removing
or adding an electron at energy ω and momentum k from the N-electron system which
is sketched in figure 2.4.

As mentioned photo emission spectroscopy and inverse photo emission spectroscopy
are related to the one-particle Green’s function. Therefore we will next consider the
definition and properties of the one-particle Green’s function.

2.3 Green’s Functions

Green’s functions, also correlation functions deliver important quantities which are es-
sential for the description of the dynamical properties of the many body systems. For
better understanding of the physics behind these objects let us start very elementary
and consider them as a method for dealing with differential equations. Therefore we
start with the definition of a general differential equation of the form

Lf(x) = g(x), (2.9)

where L is a linear differential operator and g(x) and f(x) are Cn functions. An arbitrary
inhomogeneity of a differential equation can be represented by delta function

g(x) =

∫
δ(x− x′)g(x′)dx′. (2.10)
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Now we can study another related equation of the form

LG(x,x′) = δ(x− x′), (2.11)

where the differential operator L acts only on the argument x and G(x,x′) is the Green’s
function of the differential equation. Once the Green’s function is known, the general
form of the solution for the differential equation can be written down as

f(x) =

∫
G(x,x′)g(x′)dx′. (2.12)

Here we can verify the correctness of this result easily

Lf(x) =

∫
LG(x,x′)g(x′)dx′ =

∫
δ(x− x′)g(x′)dx′ = g(x). (2.13)

The solution becomes unique once the boundary conditions are specified. This method
represented here can be generalized for the solution of the many body Schrödinger equa-
tion. Let us first apply this method on the single particle Schrödinger equation

[i∂t −H0(r)− V (r)]ψ(r, t) = 0, (2.14)

and treat V (r) as a perturbation. In the similar way above we define here the corre-
sponding Green’s functions

[i∂t −H0(r)]G0(r, t; r′, t′) = δ(r− r′)δ(t− t′) (2.15)

[i∂t −H0(r)− V (r)]G(r, t; r′, t′) = δ(r− r′)δ(t− t′). (2.16)

Now we can write the solution of the time-dependent Schrödinger equation

ψ(r, t) = ψ0(r, t) +

∫
dr′
∫
dt′G0(r, t; r, t′)V (r′)ψ(r′, t′). (2.17)

Green’s function is often called propagator because if the wave function is known at
some time then the wave function at a later time is obtained by

ψ(r, t) =

∫
dr′
∫
dt′G(r, t; r′, t′)ψ(r′, t′). (2.18)

Another more obvious way to see this is by following expression

G(r, t; r′, t′) = −iΘ(t− t′)〈r|e−iH(t−t′)|r′〉, (2.19)

which is also a solution of the partial differential equation defining the Green’s function
and gives the transition amplitude for the propagation of a state as demonstrated in the
figure 2.5. In order to find a closed expression for the Green’s function we start with the
response of the system on a time dependent perturbation.
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e−

e−

r′, t′, σ′

r, t, σ

Figure 2.5: Demonstration of the explanation of the Green’s function as the probability
that an electron at the time and position (r′, t′) propagates to the position
and at the time (r, t) .

2.3.1 Linear response theory

Linear response theory is a very widely used concept in physics. It states that the
response to a weak perturbation of a system is proportional to the perturbation itself.
Let us assume that a physical system is described by a time independent Hamiltonian
H0 at equilibrium. For such a system a general observable can be calculated using the
following relation

〈A〉 =
1

Z0

∑

n

〈n|A|n〉exp(−βEn) , Z0 =
∑

n

exp(−βEn). (2.20)

Here we can apply a time dependent perturbation on this system at the time t0 and this
leads to a time-dependent Hamiltonian

H(t) = H0 + V (t)Θ(t− t0). (2.21)

At this point the time-dependent expectation value of an observable is defined the fol-
lowing relation

〈A〉t =
1

Z0

∑

n

〈n(t)|A|n(t)〉exp(−βEn) , Z0 =
∑

n

exp(−βEn). (2.22)

The basis states |n(t)〉 have to satisfy the time-dependent Schrödinger equation

ih̄
∂n(t)

∂t
= H(t)|n(t)〉. (2.23)

The interaction picture representation for the basis states |n(t)〉 is given by

|n(t)〉 = e−
i
h̄
H0tU(t, t0)|n〉, (2.24)

18



2.3 Green’s Functions

where the unitary operator U(t, t0) is used for the time evolution of a state from time t0
to the time t. This unitary operator is defined by the following differential equation

∂

∂t
U(t, t0) = − i

h̄
V (t)U(t, t0), (2.25)

which is obtained from the condition that the time derivative of the equation (2.24)

∂

∂t
|n(t)〉 = − i

h̄
H0|n(t)〉+ e−

i
h̄
Ht ∂

∂t
U(t, t0)|n〉 (2.26)

has to satisfy the Schrödinger equation. The differential equation in (2.25) can be solved
iteratively and using the time ordering operator T , we obtain the following compact
form for the unitary operator(Appendix A)

U(t, t0) = T
(
e
− i
h̄

∫ t
t0
dt′V (t′)

)
. (2.27)

This operator in the linear approximation is given by

U(t, t0) ≈ 1− i

h̄

∫ t

t0

V (t′)dt′. (2.28)

Now we can insert this into equation (2.22) and obtain the following form for the expec-
tation value in linear response

〈A〉t = 〈A〉0 − i
∫ t

t0

dt′
1

Z0

∑

n

e−βEn〈n(t0)|A(t)V (t′)− V (t′)A(t)|n(t0)〉

= 〈A〉0 − i
∫ t

t0

dt′〈
[
A(t), V (t′)

]
〉0. (2.29)

One can rewrite this equation as

〈∆A〉t = 〈A〉t − 〈A〉0
=

∫ ∞

t0

CAV (t, t′)e−η(t−t′)dt′, (2.30)

where the expression in the brackets is called retarded correlation function or response
function or Green’s function

CRAV (t, t′) = −iΘ(t− t′)〈
[
A(t), V (t′)

]
〉0 (2.31)

of two operators. This Green’s function is called retarded because of it’s causality i.e.
the perturbation at the time t′ is prior to the response at the time t. The step function
Θ(t − t′) is here to ensure that the condition t > t′ is fulfilled. The exponential factor
exp(−η(t − t′)) is used for the decay of the response at the time t and in the end one
has to carry the limit η → 0+.
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2.3.2 Green’s functions for many body systems

The concrete expression for the retarded Green’s function derived in the case of the linear
response theory can be transferred to the many body systems by replacing the general
operators (A(t), B(t′)) with the field operators (ψσ(r, t), ψ†σ′(r

′, t′)). As mentioned the
Green’s function gives the transition amplitude for a particle on a position r′ at time
t′ to a position r at time t. The retarded single-particle Green’s function is defined by
following expression

Gret(r, σ, t; r′, σ′, t′) = iΘ(t− t′)〈
[
ψσ(r, t), ψ†σ′(r

′, t′)
]
〉, (2.32)

where ψ’s here correspond to the field operators and they can be translated to the
conventional operators by a basis change

Gret(ν, σ, t; ν ′, σ′, t′) = iΘ(t− t′)〈
[
aνσ(t), a†ν′σ′(t

′)
]
〉. (2.33)

These single particle Green’s functions are important because they describe the prop-
agation of single particles governed by the many body Hamiltonian. For translational
invariant systems where the Green’s function depend only on the difference r − r′ one
can perform a Fourier transformation and obtain the retarded Green’s function in the
k-space

Gret(r− r′, σt, σ′t′) =
1

V

∑

k

eik(r−r′)GR(k, σt, σ′t′), (2.34)

Gret(k, σt, σ′t′) = −iΘ(t− t′)〈
[
akσ(t), a†kσ′(t

′)
]
〉. (2.35)

For the sake of completeness we can give here the definition of another type of Green’s
function where the time ordering operator T is used. This Green’s function is called the
causal Green’s function

G(k, σt, σ′t′) = −i〈T akσ(t)a†kσ′(t
′)〉, (2.36)

where the time ordering operator T is defined as

T
(
aνσ(t)a†ν′σ′(t

′)
)

= Θ(t− t′)aνσ(t)a†ν′σ′(t)−Θ(t′ − t)a†ν′σ′(t′)aνσ(t). (2.37)

In order to learn more about the definition and extraction of physical information from
the Green’s function we are going to introduce some important concepts in the next
subsections.

2.3.3 Lehman representation

Lehman representation is the expression of the retarded Green’s function in the eigen-
basis of the Hamiltonian. Let us skip here the spin indices for clarify. Here it is useful
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to define the so-called greater and lesser Green’s functions

G>(k, t− t′) = −i〈ak(t)a†k(t′)〉, (2.38)

G<(k, t− t′) = i〈a†k(t)ak(t′)〉, (2.39)

Gret(k, t− t′) = Θ(t− t′)
[
G> −G<

]
, (2.40)

where G> gives the propagation of electrons and G< the propagation of holes, which
would correspond the photon emission and inverse photon spectroscopy as demonstrated
in the figure 2.4. We insert the completeness relation

1 =
∑

m

|m〉〈m|, (2.41)

and the corresponding time evolution of these operators and get the following result for
the greater Green’s function

G>(k, t− t′) = −i〈ak(t)a†k(t′)〉

= −i 1

Z

∑

m,n

eβEn〈n|ak(t)|m〉〈m|a†k(t′)|n〉

= −i 1

Z

∑

m,n

eβEneiEnte−iEmteiEmt
′
e−iEnt

′〈n|ak|m〉〈m|a†k|n〉

= −i 1

Z

∑

m,n

eβEn |〈n|ak|m〉|2ei(En−Em)(t−t′). (2.42)

The equivalent derivation can be done for the lesser Green’s function. Consequently we
can write an analytic expression for the retarded Green’s function

Gret(k, t− t′) = −iΘ(t− t′) 1

Z

∑

m,n

eβEn

×
[
|〈n|ak|m〉|2ei(En−Em)(t−t′) + |〈n|a†k|m〉|2ei(En−Em)(t−t′)

]
.(2.43)

Because the Propagator evolves periodically in time i.e. it depends on t − t′ we can
transform from time domain t to the frequency domain ω

Gret(k, ω) =
1

Z

∑

m,n

e−βEn

(
|〈n|ak|m〉|2

ω + (En − Em) + iη
+

|〈n|a†k|m〉|2
ω − (En − Em) + iη

)
. (2.44)

From this expression it is obvious that the evaluation of the Green’s function needs the
eigenvalues and eigenstates of the system of interest.

2.3.4 Green’s function on the Matsubara axis

Another Green’s function can be obtained by replacing the time or frequency argument
by so-called imaginary time or imaginary frequency which are referred as Matsubara
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Green’s function. This is a mathematical tool but it delivers the opportunity to many
simplifications, e.g., calculation of the Green’s function in terms of Feynman diagrams
in diagrammatic perturbation theory.

Matsubara Green’s function in real space or in ν-representation is defined in a similar
way like the retarded Green’s function

GM (r, σ, τ ; r′, σ′, τ ′) = 〈Tτψσ(r, τ)ψ†σ′(r
′, τ ′)〉, (2.45)

GM (ν, σ, τ ; ν ′, σ′, τ ′) = 〈Tτaνσ(τ)a†ν′σ′(τ
′)〉, (2.46)

but the real time is substituted by an imaginary time iτ

t −→ iτ, (2.47)

where τ is a real number and Tτ is the time ordering operator in imaginary time

Tτ (aνσ(τ)a†ν′σ′(τ
′)) = Θ(τ − τ ′)aνσ(τ)a†ν′σ′(τ

′)−Θ(τ ′ − τ)a†ν′σ′(τ
′)aνσ(τ). (2.48)

Let us note some properties of the Matsubara Green’s function for a better understanding
of the internal structure.

1. The Matsubara Green’s function depends only of the time difference i.e. for the
case τ > τ ′ this can be verified

G>νν′(τ, τ
′) = 〈aν(τ)a†ν′(τ

′)〉

= − 1

Z
Tr
[
e−βHeτHaνe

−τHeτ
′Ha†ν′e

−τ ′H
]

= − 1

Z
Tr
[
e−βHeτHe−τ

′Haνe
−τHeτ

′Ha†ν′
]

= − 1

Z
Tr
[
e−βHe(τ−τ ′)Haνe

−(τ−τ ′)Ha†ν′
]

= G>νν′(τ − τ ′), (2.49)

where for clearness we skipped the spin index. The same calculation can also be
done for the other case τ < τ ′.

2. The convergence of the G>(ν, τ ; ν ′, τ ′) is only guaranteed in the interval −β <
τ − τ ′ < β, which can be verified by using the Lehman representation.

3. Fermionic Matsubara Green’s function is anti-periodic in β i.e. G>νν′(t + β) =
−G>νν′(t+ β) and the proof of this for the case τ < 0 is given by:

G>νν′(τ + β) = = − 1

Z
Tr
[
e−βHe(τ+β)Haνe

−(τ+β)Ha†ν′
]

= − 1

Z
Tr
[
eτHaνe

−τHe−βHa†ν′
]

= − 1

Z
Tr
[
aν(τ)e−βHa†ν′

]

= − 1

Z
Tr
[
e−βHTτ (aν(τ)a†ν′)

]

= G>νν′(τ). (2.50)
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Im(ω)

Re(ω)

iω

Figure 2.6: Green’s function analyticity: retarded Green’s function, right:Matsubara
Green’s function. The poles of the Matsubara Green’s function are on the
imaginary axis while the poles of the retarded Green’s function are on the
real axis

These properties can be used to calculate the Fourier transformation of the Matsubara
Green’s function in the interval [−β, β]

Gνν′(iωn) =

∫ β

0
eiωn(τ−τ ′)Gνν′(τ − τ ′)dτ. (2.51)

The variable ωn is the so-called Matsubara frequency and it can take the values ωn =
(2n+1)π/β for fermions, where n is an integer number. In analogous manner the Lehman
representation for the Matsubara Green’s function can also be derived which looks like
the standard retarded Green’s function but the frequency ω is replaced by the complex
valued frequency iω

GM (k, iωn) =
1

Z

∑

m,n

e−βEn

(
|〈n|ak|m〉|2

iωn + (En − Em)
+

|〈n|a†k|m〉|2
iωn − (En − Em)

)
. (2.52)

One essential point missing here concerns the analytical continuation which means if one
has the Matsubara or retarded Green’s function the other is obtained by analytical con-
tinuation. For clearness we can consider the analyticity of the retarded and Matsubara
Green’s function which is demonstrated in the following sketch in figure 2.6. If we have
an analytic form of the Matsubara Green’s function, the retarded Green’s function can
be calculated at the upper half plane by the following expression

Gret(ω) = GM (iω → ω + iθ). (2.53)

For the general case it is not so obvious how to perform this transformation.
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2.3.5 Spectral function

We have considered up to this point many kinds of Green’s function with their particular
properties. The next step is the extraction of important quantities out of the Green’s
function. One of these relevant quantities is the spectral function, which includes all
information for the description of the energies of the single particle excitations implic-
itly. Consequently it can be used for the calculation of quantities like the quasi-particle
dispersion relation or the total density of states. The energy of a peak in this function
corresponds to the excitation energy at which an extra electron or hole can propagate.

The spectral function is proportional to the imaginary part of the single particle
Green’s function and is given at the energy ω and momentum k by the following expres-
sion

A(k, ω) = − 1

π
ImG(k, ω). (2.54)

Let us derive the spectral function for a non-interacting systems of fermions, which is
given by the following Hamiltonian

H0 =
∑

kσ

c†kσckσ. (2.55)

Because the Hamiltonian is diagonal in momentum k and spin σ, we obtain the following
expressions for the lesser, greater and retarded Green’s function

G>0 (k, t− t′) = −i(1− nF (εk))e
−iεk(t−t′), (2.56)

G<0 (k, t− t′) = inF (εk)e
−iεk(t−t′), (2.57)

Gret0 (k, t− t′) = −iθ(t− t′)e−iεk(t−t′), (2.58)

and if we transform this retarded Green’s function for non-interacting fermions into the
frequency domain ω we get

G0(k, ω) = −i
∫ ∞

−∞
dtθ(t− t′)e−iεk(t−t′)η(t−t′)

=
1

ω − εk + iη
. (2.59)

By exploiting the following relation

limη→0+
1

x+ iη
= P

1

x
− iπδ(x), (2.60)

we can easily calculate the spectral function for non-interacting fermions

A0(k, ω) = δ(ω − εk), (2.61)

which has the form of a delta function with excitations at ω = εk. This result does
not hold for the interacting fermions because, e.g., in the solid the electron-phonon or
electron-electron interactions lead to the broadening of this delta peaked structure.
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Σ Σ ΣG = + + + ...

Σ = ... + + ...

Figure 2.7: Green’s function calculated by a diagrammatic expansion with the self-
energy insertion.

2.3.6 Self-energy

The self-energy is another relevant quantity which can be extracted from the Green’s
function or which can be used to obtain it. As mentioned in a many body system the
self-energy gives the difference between an interacting and a non-interacting system. In
other words all the contributions due to the interactions are contained in this term.
Summing all kind of interactions in all orders as shown in the figure 2.7 gives us the
following closed form for the Green’s function

G(k, ω) = G0 +G0ΣG0 +G0ΣG0ΣG0 + ...

=
1

G−1
0 − Σ

,

which is referred to as the Dyson equation. Here we can insert the exact expression for
the free Green’s function (2.59)

G(k, ω) =
1

ω − εk − Σ(k, ω)
. (2.62)

Self-energy in general is a complex term, so we can split it in a real and imaginary part

G(k, ω) =
1

ω − εk − ReΣ(k, ω)− iImΣ(k, ω)
. (2.63)
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At small energies ω and for the k vectors close to the Fermi vector kF the inverse Green’s
function can be expanded in powers of k− kF and ω

G−1(k, ω) ≈
(
ω − ω ∂

∂ω
ReΣ− (k− kF )

∂

∂ω
(ε+ ReΣ)− iImΣ

)

= (1− ∂

∂ω
ReΣ)

(
ω − (k− kF )

∂

∂ω
(ε+ ReΣ)

1

(1− ∂
∂ωReΣ)

− iImΣ
1

(1− ∂
∂ωReΣ)

)

= Z−1

(
ω − (k− kF )

∂

∂ω
(ε+ ReΣ)Z − iImΣZ

)

= Z−1

(
ω − ε̃k +

i

2τk(ω)

)
, (2.64)

where the variables Z (quasi-particle renormalization), ε̃k (effective energy) and τk (av-
erage quasi-particle lifetime) are defined as

Z = (1− ∂

∂ω
ReΣ)|ω=0, (2.65)

ε̃k = (k− kF )
∂

∂ω
(ε+ ReΣ)Z|k=kF , (2.66)

1

τk
= −2ZImΣ(k, ω). (2.67)

Through the consideration of this quasi-particle regime we have seen that the real part of
the self energy is connected to the change of the energy dispersion relation and imaginary
part of self energy is connected to the average lifetime of the quasi particles. One can
use this result to calculate the complete spectral function by supplementing it with the
incoherent part which comes from many particle excitations

A(k, ω) = − 1

π
ImG(k, ω)

= Zδ(ω − ε̃k) +Aincoh(k, ω), (2.68)

where the first part comes from Fermi liquid theory, and the second one are the incoherent
excitations.

2.4 Local and non-local correlations

The previous section clarifies the effect of the interactions in the many body systems.
There they change the quasi-particle peak size and induce incoherent peaks. These
incoherent peaks are a correlation effect, therefore one has to go beyond the one-particle
picture.

The Green’s function method gives a systematic may for the description of correlations.
It can be obtained by diagrammatic methods where one has to sum up infinite diagrams
representing different kind of interactions which is shown in figure 2.7. The bubble
is referred as self-energy Σ which is giving the difference between an interacting and
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non-interacting Green’s function. The summation of all of the diagrams give the Dyson
equation

G(k, ω) =
1

G−1
0 (k, ω)− Σ(k, ω)

, (2.69)

where the self energy is in general not known and many approximative solutions are
possible. One can assume that the non-local correlations are negligible small and that
they can be set to zero and self-energy becomes momentum independent Σ(ω). Such
approximations are very useful in many applications, but in cases where non-local corre-
lations are important to describe some physical effects they fail to give accurate results.
Within some extensions short range or long range correlations can be included, which
will be explained in more details in the next chapter.
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3.1 Introduction

In the last chapter we have shown that the correlations are described by correlation
functions or Green’s functions, which are in general not known. In the last decades
some powerful methods have been emerged in order to calculate the Green’s function in
good approximations. Let us give a rough overview of these methods with the aspect of
the correlation level taken into account.

In the standard mean field theory the lattice problem is replaced by a single site
effective problem with less degrees of freedom. The dynamics of this site is maintained
by the interaction of the local degrees of freedom at this site with an external bath or
mean field formed by all other degrees of freedom on the other lattice sites. In contrary,
in DMFT the external bath or mean field is not a number but a function of energy ω. In
this approach the fluctuations among the four different atomic lattice site configurations
are included. There are two essential steps leading to the development of the dynamical
mean field theory for the many body systems[31].

1. In the limit of infinite coordination (neighbors) the self-energy for the interacting
fermionic models becomes local, i.e., momentum dependency cancels, so there is
no momentum dependency any more. In other words spatial fluctuations die out
because the neighbors of a lattice site behave or can be treated as an external
bath[6].

2. The lattice model is mapped on a self-consistent quantum impurity model, i.e., one
has to solve the impurity problem which is self-consistently coupled to a dynamical
field[7].

In DMFT the self-energy of the lattice problem is determined by mapping the lattice
problem to the single impurity periodic Anderson model, that means one has to solve
the corresponding Hamiltonian

HAIM = Hatom +Hbath +Hcoupling

= Hatom +
∑

i,σ

εbathi niσ +
∑

i,σ

Vi

(
b†iσcσ + c†σbiσ

)
, (3.1)

where the original problem is separated in three parts, in the first term only atomic
degrees of freedom are taken into account. The second term is a reservoir of non inter-
acting lattice sites or bath sites with the energy levels εbathi , and the task of the last term
is to combine the first two separated terms by the hybridization or hopping Vi between
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the atomic energy levels and bath energy levels. One can combine these parameters in
a generalized hybridization function

∆(ω) =
∑

i

|Vi|2
ω − εbathi

, (3.2)

which corresponds to the dynamical mean field. The electrons described by the bath
sites are the same as the electrons of the impurity. The parameters εbathi and Vi in
the generalized hybridization function has to be elected in such a way that the Green’s
function of the Anderson impurity model coincides with the Green’s function of the
lattice model. Because of this fact the hybridization function is determined from the
following self-consistency condition[31, 32]

G(ω) =
∑

k

1

∆(ω) +G−1(ω)− εk
. (3.3)

The only approximation in DMFT up to this point is that all of the non-local compounds
of the self-energy are neglected, i.e., they are set to zero

Σi,j ' Σimp , Σi 6=j ' 0. (3.4)

This means that DMFT in the atomic limit (i.e. separated atoms with local self-energy
Σ(ω) and vanishing hybridization function ∆(ω) = 0) yields exact results. It becomes
also exact in the non interacting limit U = 0, because the self-energy vanishes and only
the free on-site Green’s function is left. The third exact limit is the limit of the infinite
coordination with vanishing spatial fluctuations which has been derived from diagram-
matic considerations[6]. This approach takes into account local quantum fluctuations,
i.e., temporal fluctuations between possible quantum states at a given lattice site, while
spatial fluctuations are completely frozen or neglected.

For many applications these spatial non-local correlations are essential, e.g, for the
Luttinger liquid physics of low dimensional correlated systems[33], d-wave pairing in
the two dimensional cuprate high TC superconductors[34], ARPES spectra of 3D fer-
romagnetic iron with momentum k dependent self-energy effects[35], variations of the
quasi-particle residue, the quasi-particle lifetime and the effective mass, exotic orders
with order parameters involving several sites such as staggered flux or dimerization[9],
or short ranged spin correlations in the metallic state[10].

Because of all these reasons it is necessary to include the spatial non-local correla-
tions, but there is no method which can keep them exactly. In many applications it is
enough to take them into account up to short length scales because in many correlated
compounds momentum dependence of the self-energy is assumed to be less important
than the frequency dependence. This argumentation is based on the fact that physical
properties are dominated by a weakly dispersive feature of the electronic spectra near the
Fermi surface[10]. Here we can differentiate between methods where short ranged cor-
relations are captured and long ranged correlations are neglected and on the other side
methods where long ranged correlations in different channels are also captured. Among
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3.2 One- and two-particle operators in the second quantization and the Hubbard model

the first class of methods are cluster extensions of DMFT like cluster or cellular DMFT
(C-DMFT)[8, 9] or dynamical cluster approximation (DCA)[10]. C-DMFT is a general-
ization of the standard DMFT where the cluster degrees of freedom are treated exactly
and the other degrees of freedom are considered as a reservoir of non interacting sites.
The challenge here is to find a appropriate self-consistency condition without breaking
symmetries or generating non-physical solutions which violets the causality condition.
In this approach the unknown quantity self-energy is estimated by the cluster self-energy
which depends on the cluster shape and can be chosen in such a way to minimize the
finite size effects[8]. Another method which can also be related with DMFT within the
self-energy functional approach is variational cluster approximation (VCA)[15, 13]. In
this approach also short range correlations up to the size of the regarded clusters are
taken into account.

Among the second class of methods, which capture simultaneously the local correla-
tions of DMFT and the long range correlations beyond DMFT are Dynamical vertex
approximation (DΓA)[14] and Dual Fermions approach[36]. These methods can repro-
duce DMFT results in the limit of vanishing non-local correlations and are based on
diagrammatic expansions[14, 36].

After this rough overview of the methods dealing with correlations we want to consider
the details of the VCA which is based on the exact diagonalization techniques and on the
cluster perturbation theory. We start very elementary by the second quantized version of
the many body Hamiltonian using the many body approach for solids following the book
by Bruus and Flensberg[29]. Then we will argue how the Hubbard model is obtained
from this general Hamiltonian in the second quantization. We will use Hubbard model
for the derivation of the exact diagonalization techniques for the many body methods
based on diagonalization algorithms (like standard Lanczos or band Lanczos). Because
of the strong limitation of these techniques we will use cluster perturbation theory in
order to calculate large systems. Cluster perturbation theory has many limitations due
to the absence of a self-consistency condition or variational principle. This shortcoming
can be overcomed within variational cluster approach. Then we will look very briefly to
the DΓA, which is a powerful method for dealing with long-range correlations. In the
last subsections we will introduce a method which combines density functional theory
with VCA for the correlated compounds.

3.2 One- and two-particle operators in the second quantization
and the Hubbard model

The many body Hamiltonian of the solids consists of one-particle and two-particle op-
erators. Kinetic energy operator − h̄2

2m∇2
rj or external potential v(rj) are one-particle

operators, Coulomb interaction V (ri−rj) = e2

4πε0
1

|ri−rj | is a two-particle operator. These

operators in second quantization are given by the following expressions
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one-particle operator two-particle operator

|j〉

|i〉

|k〉 |l〉

|i〉 |j〉

UijklTij

Figure 3.1: Diagrammatic representation of the one-particle and two-particle operators.

Ttot =
∑

i,j

Tija
†
iaj , (3.5)

Vtot =
1

2

∑

i,j,k,l

Uijkla
†
ia
†
jalak, (3.6)

whose representations in Feynman’s diagrammatic theory are shown in figure 3.1.

For the purpose of a rough derivation of these expressions let us consider a many body
system with N-particles, which is described by the N-particle state or wave function
ψ(r1, r2, ..., rN ) as a complex function in the 3N -dimensional configuration space. This
wave function can be also written as a product state of one particle functions with the
corresponding symmetrization of fermions or bosons

ψ(r1, r2, ..., rN ) =
∑

ν1,...,νN

Bν1,ν2,...νN Ŝ±ψν1(r1)ψν2(r2)...ψνN (rN ). (3.7)

The one-particle operator for a single particle system in the first quantization is described
by the coordinate rj given by

Tj =
∑

νa,νb

Tνa,νb |ψνb(rj)〉〈ψνa(rj)|, (3.8)

where

Tνa,νb =

∫
drjψ

∗
νb

(rj)T (rj ,∇rj )ψνa(rj). (3.9)
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3.2 One- and two-particle operators in the second quantization and the Hubbard model

The total one particle operator is the summation of each of these operators

Ttot =
N∑

j=1

Tj . (3.10)

On the other side the two-particle operator in first quantization with coordinates ri, rj
with the basis states and |ψνa(ri)〉|ψνb(rj)〉 is arranged in the following way

Vij =
∑

νa,νb,νc,νd

Vνcνd,νaνb |ψνc(ri)〉|ψνd(rj)〉〈ψνa(ri)|〈ψνb(rj)|, (3.11)

where,

Vνcνd,νaνb =

∫
dridrjψ

∗
νc(ri)ψ

∗
νd

(rj)V (ri − rj)ψνa(ri)ψνb(rj). (3.12)

The total two-particle operator is

Vtot =

N∑

i>j

Vij =
1

2

∑

i,j 6=i
Vij . (3.13)

We can apply Ttot and Vtot on a generalized state in the second quantization and get the
results in the equations (3.5) and (3.6)[29]. For some cases the many body Hamiltonian
in second quantization representation is reduced to much simpler terms. For instance if
the localization of electrons is strong, then the interaction term reduces for the single
band case to the following expression

Vijkl =

{
Viiii = U for single band model

0 else

}
. (3.14)

For the kinetic energy or hopping part, one can restrict the overlap between orbitals
to the nearest neighbors, consequently leading to us a reduced expression for the many
body Hamiltonian

H = −
∑

i,j,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ + ε0
∑

niσ

= −
∑

<i,j>,σ

tc†iσcjσ +
U

2

∑

iσσ′

niσniσ′ + ε0
∑

niσ, (3.15)

which is the famous Hubbard model. In the one dimensional cases of the Hubbard
model there are powerful techniques referred to as Bethe Ansatz techniques[37] or density
matrix renormalization group (DMRG)[38, 39]. For the infinite dimensional case DMFT
delivers exact results, but for the two or three-dimensional cases there are still many
open questions. Here exact diagonalization or related methods give some insight, which
is of tremendous importance for new developments from a methodological as well as
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U
t

t t

Figure 3.2: Graphical representation of the physical processes (hopping=kinetic term,
interaction=on-site term) occurring in the Hubbard model for a quadratic
two-dimensional lattice.

a physical point of view. For this purpose we want to show how exact diagonalization
techniques are applied on the Hubbard model. The Hubbard model describes a collection
of single orbital atoms placed at the nodes Ri of a periodic lattice. The orbitals overlap
from site to site, so that the fermions can hop with an amplitude tij . If there is no
hopping term then each of these atoms will have 4 eigenstates

|0〉, | ↑〉, | ↓〉, | ↑↓〉, (3.16)

with the corresponding energies

0, ε0, ε0, U + 2ε. (3.17)

The Hubbard model describes electrons with two spin directions σ =↑ or σ =↓, which
are moving between localized states at neighboring lattice sites i and j. There is only
an interaction between electrons, if two electrons meet on the same lattice site i, but
they have simultaneously to satisfy the Pauli’s principle. The Pauli principle applied
to this case says if two electrons meet on the same lattice site i they have to have
opposite spin directions. From this explanations, we can conclude that the kinetic energy
is characterized by the hopping term tij and the interaction energy by the Coulomb
repulsion U , which is sketched in figure 3.2. There is a competition between this two
terms, because on the one side the kinetic part favors the electrons to be as mobile as
possible, while on the other side the interaction energy is minimal, if the electrons stay
far from each other, that means if the electrons are localized on different sites.

In the Hubbard model the long ranged Coulomb interaction is replaced by a extreme
short ranged on-site interaction. Despite this rough reduction of the original system
the Hubbard model captures many interesting properties of solids which range from
metallic behaviour, insulating behaviour, metal-insulator transition, antiferromagnetism,
ferromagnetism, superconductivity depending on the choice of parameters t, U , electron
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3.3 Exact Diagonalization

filling, lattice type and spatial dimension[40]. Now we can consider some important cases
for the Hubbard model:

1. U � t: doubly occupied states are energetically unfavoured. The main contribu-
tion to the low lying eigenstates comes from the configurations where there are few
doubly occupied states as possible.

2. n = 1, half filling: Half filling means that the number of lattice sites is equal to
the number of electrons, which occupy these sites. Also the partition of electrons
between the two spin directions is equal. That means that half of the electrons
have spin up and the other half the spin down direction.The movement of elec-
trons is prevented by a potential energy barrier of height U . Depending on the
dimensionality the system is insulating beyond the critical values UC . If U is zero,
then the system is a perfect metal at half filling.

3.3 Exact Diagonalization

In the last section we have considered some elementary properties of the Hubbard model,
which are obtained by some analytical and numerical methods. Exact diagonalization
techniques belong to these class of methods and they are very useful for many appli-
cations. They are often used as a reference for a new introduced many body method.
Moreover these techniques serve as a basis for more advanced approaches like CPT[11, 12]
or VCA[15, 13]. For these reasons let us give some overview over exact diagonalization
techniques.

3.3.1 Generation of configurations for the Hubbard model

For the application of exact diagonalization to Hubbard- or Hubbard-like lattice models
an important issue is the choice of a convenient basis. Binary representation of two spin
states ±1

ni =
σi + 1

2
∈ {0, 1}, (3.18)

matches into this category and can be utilized for the generation of the basis states. In
this way a series of basis states with fixed number of spins Nσ can be generated. Let us
assume we have a fixed number of particles i.e. spins then the possible basis states and
their integer representations are

|ψ1〉 = {0, 0, · · · , 0, 0, 1, 1, 1, · · · , 1, 1} I1 = 2N − 1

|ψ2〉 = {0, 0, · · · , 0, 1, 0, 1, 1, · · · , 1, 1} I2 = 2N
↑+1 − 1 + 2N

↑−1

|ψ3〉 = {0, 0, · · · , 0, 1, 1, 0, 1, · · · , 1, 1} I3 = 2N
↑+1 − 1 + 2N

↑−2

...
...

|ψL〉 = {1, 1, 1, · · · , 1, 1, 0, 0, · · · , 0, 0} IL = 2N − 2N−N
↑
.
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For electronic systems the situation is different. In single band Hubbard Model a lattice
site can be occupied by none, one spin-↑, spin-↓ or simultaneously by two electrons with
spin-↑ and spin-↓. Therefore one needs a representation where this prescription in the
occupation is included. In the second quantization representation we can in general
write such a state as the application of creation operators of electrons on a vacuum state
which is defined as

|ψ〉 =
N↑∏

i=1

a†i,↑

N↓∏

j=1

a†j,↓|0〉, (3.19)

or

|ψ〉 =
N∏

i=1

(
a†i,↑

)ni N∏

j=1

(
a†j,↓

)nj |0〉, (3.20)

where,

ni, nj ∈ {0, 1}. (3.21)

Let us assume creation operators are applied on the vacuum state and, thereby a state,
which is occupied by two up and two down electrons | ↑, 0, ↓, ↑↓〉 is generated. This
state can be represented by n↑ = {1, 0, 0, 1} and n↓ = {0, 0, 1, 1}, which can also be
alternatively represented by two integer numbers, i.e., in this case by I = {9, 3}. This
all means that a lattice site can be empty, occupied by a spin up electron ↑ by a spin down
electron ↓ or by two electrons with different spin. The resulting number of basis states
is 4N . Because of the exponential increase of these basis states with the lattice sites,
conservation principles, respectively quantum numbers, have to be taken into account.
We can take the spin as a quantum number to reduce the number of basis states. The
z-component of the spinoperator Sz

Sz =
N∑

i=1

Szi , (3.22)

commutes with the Hamiltonian, therefore the Hamiltonian is block diagonal in the
sections with fixed Sz values, i.e, fixed numbers Nσ of σ-spins. The number of basis
states for fixed number of spins Nσ becomes

L =

(
N
N↑

)
·
(

N
N↓

)
. (3.23)

The translation and rotation invariance reduces the number of basis states even further.
The basis states with the spin quantum number generated by this way can be used to
calculate the matrix elements.
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3.3 Exact Diagonalization

3.3.2 Calculation of matrix elements for the Hubbard model

The next important point for exact diagonalization is the evaluation of the matrix ele-
ments,

Hµν = 〈ψµ|H|ψν〉. (3.24)

For this purpose we can split the Hubbard Hamiltonian into two parts, the hopping part
(kinetic part) and the onsite part (interaction part), which can be separately calculated.
Let us start with the calculation of the onsite part

Honsite = U
∑

i

ni↑ni↓ + ε0
∑

niσ. (3.25)

The basis states are characterized by occupation numbers |ψν〉 = |{ni,σ}〉, for all lattice
sites i and spin directions σ, niσ ∈ {0, 1}. Obviously this part is diagonal in our basis.
On the other side the hopping part of the Hamiltonian

Hhop = −
∑

i,j,σ

t
(
c†iσcjσ + c†jσciσ

)
, (3.26)

is off-diagonal in the occupation basis. Here one can perform a Fourier transformation,
which will result into a diagonal hopping term

Hhop =
1√
N

∑

k

εkc
†
kck, (3.27)

where,

c†iσ =
1

N

∑

k

eikric†kσ, (3.28)

εk = −2t

D∑

j=1

cos(kj) , D...dimension, (3.29)

but in the k-space onsite term becomes off diagonal. The straight forward calculation
of the hopping part of the Hubbard Hamiltonian is not so easy. To simplify the consid-
eration and also the calculation procedure, we look at the hopping part for fixed lattice
sites and fixed spin

H l = −t
(
c†i0σ0

cj0σ0 + c†j0σ0
ci0σ0

)
. (3.30)

Application of H l to a basis state |ψν〉 = |{nνiσ}〉 results in zero if ni0σ0 and nj0σ0 are
both occupied or empty, i.e.,

H l|{nνiσ}〉 = 0 if ni0σ0 = nj0σ0 . (3.31)
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Otherwise it leads to another basis state |{nν′iσ}〉, which differs from the basis state |{nνiσ}〉
through the exchange of occupation number nνi0σ0

and nνj0σ0
. Indeed there is only one

hopping process H l mediating between two basis states. The crucial question at this
point is the value of this matrix element. We get for the matrix element the following
condition

hν′ν =





−tS if nν
′
i,−σ0

= nνi,−σ0
∀i

nν
′
i,σ0

= nνi,σ0
∀i 6= i0, j0

nν
′
i0,σ0

= nνj0,σ0

nν
′
j0,σ0

= nνi0,σ0

0 else





. (3.32)

The hopping process leads to a sign S, because the electrons are fermions and they
have to satisfy Fermi-Dirac statistics. Therefore we have to take care of the sign in the
calculation of the matrix elements concerning the hopping part.

3.3.3 Lanczos algorithm

After studying the generation of the basis states and the evaluation of the matrix ele-
ments, we are going on with the diagonalization, in order to determine the ground state
and the corresponding energy. We are interested in the ground state energy and excited
states, because the quantum features of many body systems show up at very low tem-
peratures. It is advantageous to have a basis in which the Hamiltonian matrix is sparse,
i.e., most of the matrix elements are zero. This is fulfilled for the Hubbard model in the
occupation basis. Because these matrices grow exponentially with increasing lattice sites
one needs methods which can handle the diagonalisation of large matrices. The Lanczos
Algorithm[41] belongs to this class of methods. In this algorithm the diagonalisation is
not done in the full Hilbert space H (dimH = N), instead in a subspace called Krylov
space K (dimK = M), where M � N .

The starting point is a normalized random state vector |x0〉, which may fulfill a desired
symmetry, in order to guarantee the convergence towards the lowest energy. The new
basis vectors are obtained by repeated application of the Hamiltonian on this basis state

{
H|x0〉, H2|x0〉, · · · , HM |x0〉

}
. (3.33)

By this sequence the convergence towards the ground state can be easily reached, which
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can be verified for large M

HM |x0〉 = HM
N∑

j=0

cj |ψj〉

=
N∑

j=0

cjε
M
j |ψj〉

= c0ε
M
0


|ψ0〉+

N∑

j=1

cj
c0

(
εj
ε0

)M
|ψj〉


 , (3.34)

where εj and |ψj〉 are eigenvalues and eigenvectors of the Hamiltonian. The obtained
condition |ε0| < |εj | for j > 0 and the requirement of large M ensures that the expression
HM |x0〉 converges to the ground state |ψ0〉. This kind of calculation can be enhanced
by incorporating Gram Schmidt processes of orthogonalization. This is done within the
Lanczos algorithm, where firstly the energy expectation value relative to the randomly
chosen |x0〉 state is calculated in the following way

a0 = 〈x0|H|x0〉. (3.35)

The next basis state is generated by the application of the Hamilton operator on this
state vector

|x̃1〉 = H|x0〉 − a0|x0〉. (3.36)

This new basis state is orthogonal to the first basis state

〈x0|x̃1〉 = 〈x0|{H|x0〉 − a0|x0〉}
= 〈x0|H|x0〉 − a0〈x0|x0〉 = 0,

and has to be normalized like the first starting state

|x1〉 =
|x̃1〉
||x̃1||

. (3.37)

One can go on and generate another basis state from the first two basis states using the
relation

|x̃2〉 = H|x1〉 − a1|x1〉 − b1|x0〉. (3.38)

The coefficients a1 and b1 can be selected in such a way, which guarantees that the basis
state |x̃2〉 is orthogonal to the basis states |x̃0〉 and |x̃1〉. To find an expression for a1

and b1 we consider the dot product of |x̃2〉 with |x0〉 and |x1〉

〈x0|x̃2〉 = 〈x0|H|x1〉 − a1〈x0|x1〉 − b1〈x0|x0〉 = 0,
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⇒ b1 = 〈x0|H|x1〉, (3.39)

〈x1|x̃2〉 = 〈x1|H|x1〉 − a1〈x1|x1〉 − b1〈x1|x0〉 = 0,

⇒ a1 = 〈x1|H|x1〉. (3.40)

These procedures for the generation of the basis states can be generalized and for any
basis state |xn+1〉 the following recursion relations are defined by

|x̃n+1〉 = H|xn〉 − an|xn〉 − bn|xn−1, 〉
an = 〈xn|H|xn〉,
bn = 〈xn−1|H|xn〉,

|xn+1〉 =
|x̃n+1〉
||x̃n+1||

.

The Hamiltonian matrix is tridiagonal in this orthogonal basis

Hi,j =




a0 b1 0 0 0 · · ·
b1 a1 b2 0 0 · · ·
0 b2 a2 b3 0 · · ·
0 0 b3 a3 b4
...

...
. . .

. . .
. . .




(3.41)

and can be diagonalized easily.

3.3.4 Band Lanczos algorithm

The Band Lanczos algorithm[42] is a generalized version of the conventional Lanczos
algorithm. Here, at the beginning instead of a random vector |x0〉 a set of vectors

{|x1〉, |x2〉, · · · , |xL〉} , (3.42)

is used. It is applicable for problems like matrices with multiple or clustered eigenvalues.
Band Lanczos is efficient to deal with many vectors simultaneously. Again the basis here
for the block Krylov space is generated by successive application of the Hamiltonian on
these basis states

{|x1〉, |x2〉, · · · , |xL〉} , {H|x1〉, H|x2〉, · · · , H|xL〉}
· · ·

{
HM |x1〉, HM |x2〉, · · · , HM |xL〉

}
. (3.43)

The aim here is to find orthonormal vectors

{|x1〉, |x2〉, · · · , |xj〉} , (3.44)
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which give a basis for the subspace spanned by the first j linear independent vectors
of the block Krylov sequence. Band Lanczos with multiple starting vectors bring some
difficulties, which should be considered and this is related to deflation of Krylov sequence.
In the case of a single starting vector the Lanczos algorithm terminates after j iterations,
if the next vector is linearly dependent of the previous vectors. In this way the full Kyrlov
space is exhausted and adding additional vectors would not expand the Krylov subspace.
In the case of multiple starting vectors the appearance of linearly dependent vectors do
not give any hint that the Kylov space is exhausted. These linearly dependent vectors
do not give any new information, therefore they have to be identified and eliminated.
The process of identifying and eliminating of linearly dependent vectors is called exact
deflation.

3.3.5 Many body Green’s function

After the determination of the ground state and ground state energy by exact diago-
nalization techniques the many body Green’s function can be evaluated by the Lehman
representation

Gij(ω) = Gij,e(ω) +Gij,h(ω)

= 〈ψ0|c†i
1

ω − (H − E0)
cj |ψ0〉+ 〈ψ0|ci

1

ω + (H − E0)
c†j |ψ0〉, (3.45)

where the first term is related to photo emission spectroscopy (PES) and the second
one gives the inverse photo emission spectroscopy (IPES). The indices i and j of the
operator contain the lattice site, spin and orbital quantum number. Let us constrain
ourselves here on the first term. We can insert the completeness relation

1 =
∑

ν

|ψν〉〈ψν |, (3.46)

into the first term and obtain

〈ψ0|c†i
1

ω − (H − E0)
cj |ψ0〉 =

∑

ν

〈ψ0|c†i |ψν〉
1

ω − Eν + E0
〈ψν |cj |ψ0〉. (3.47)

The same procedure can also be applied to the second term. Here one can introduce the
following notations for the first and second term

Qeiν = 〈ψ0|c†i |ψν〉 , Qe∗jν = 〈ψν |cj |ψ0〉, (3.48)

Eeν = Eν − E0 < 0 , Ehµ = −Eµ + E0 > 0, (3.49)

and using these abbreviations we get the following compact form for the complete Green’s
function

Gij(ω) =
∑

ν

Qeiν ·Qe∗jν
ω − Eeν

+
∑

µ

Qh∗iµ ·Qhjµ
ω − Ehµ

. (3.50)
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This can be rewritten in a more compact version by combining the Eeν and Ehµ into the

Eν̃ and also in a equivalent way the terms Qe and Qh into the Q

Gij(ω) =
∑

ν̃

Qiν̃ ·Qjν̃
ω − Eν̃

. (3.51)

The ground state |ψ0〉 is calculated by the standard Lanczos technique. Note that

using the Band Lanczos algorithm, all matrix elements 〈ψ0|c†i |ψν〉 and 〈ψν |cj |ψ0〉 can be

calculated at once, using the set |xi〉 = c†i |ψ0〉 as starting vectors. For details we refer to
Ref[43].

Here let us recapitulate our status at this point. Using exact diagonalization tech-
niques and Lehman representation many body Green’s can be calculated. Unfortunately
one is here restricted to very small systems, because of the exponential increase of the
basis states. Here one needs some clever ideas out of this dilemma to calculate the
Green’s function of an infinite large system. Cluster perturbation theory (CPT), which
will be explained in the next section, is a simple way of doing this.

3.4 Cluster perturbation theory

In the Hubbard-I approximation the starting point is the atomic limit, because the local
part of the Hubbard model can be solved easily. Then one embeds the atom into the
lattice. So the approximation in the Hubbard I approximation is, that the self-energy of
the lattice system is replaced by the self-energy of the atomic system. This self-energy
can be used to calculate one electron Green’s function. A more general form of this
simple approximation is the CPT[11, 12]. For a rough derivation of the CPT let us start
with the Hubbard model written with lattice site position vector R and spin index σ

H = −
∑

<R,R′>,σ

tc†RσcR′σ +
U

2

∑

Rσσ′

nRσnRσ′ . (3.52)

In the cluster perturbation theory the lattice with L sites is separated into L/LC
disconnected clusters. Here LC is the number of lattice sites inside each cluster. After
this procedure the lattice Hamiltonian can be written as

H = H ′ + V

=
∑

R,a,b

Hcl
0 (R)a,b +Hcl

I (R)a,b +
∑

R,R,a,b′

H icl
0 (R,R′)a,b, (3.53)

where H ′ is the cluster Hamiltonian and V contains the hopping terms between the
clusters and is treated perturbatively. This procedure is sketched in figure 3.3. The first
sum in the second line includes the hopping and interaction processes inside the cluster,
the second sum gives the intra cluster coupling, R denotes the individual clusters and
a,b are quantum numbers within the cluster.
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Figure 3.3: Schematic representation of the cluster perturbation theory. The original
lattice system is replaced by a system of equivalent clusters. These clusters
are connected in a perturbative way. In two-dimensional systems the shape
of the chosen clusters is not unique as it is the case for the one-dimensional
clusters.

By the method of strong coupling perturbation theory[44, 45] the following expression
is obtained for the lattice Green’s function in the lowest order

G−1
Ra,R′b(ω) = G′−1

R,a,b(ω)− VRa,R′b, (3.54)

where G′ is the cluster Green’s function. Because of the tiling of the original system into
finite clusters translational invariance is lost. We can restore the translational invariance
in terms of wave vectors k, which belong to the super lattice of the corresponding
Brillouin zone. So we can perform a partial Fourier transformation and the following
expression is obtained for the Green’s function

G−1
a,b(k, ω) = G′−1

a,b (ω)− Va,b(k). (3.55)

At this point we have a mixed representation of quantum numbers a and b within the
cluster and k wave vector within the super cell BZ. This obstacle can be overcomed by a
Fourier transformation at the level of clusters because the translation invariance is broken
at this level. Finally the restoration of the translational invariance is re-established by
this Fourier transformation and the final result is given by

Gper.(k, ω) =
1

LC

∑

ra,rb

e−ik(ra−rb)Ga,b(k, ω), (3.56)

where ra, rb are the lattice position vectors according to the quantum number a and b.
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In CPT the self-energy of the original system, which is in general not known, is
approximated by the self-energy of the chosen cluster. This can be shown by using CPT
equation and the Dyson equation

G−1(k, ω) = G′(ω)− V (k)

G−1(k, ω) = G0(k, ω)− Σ(ω). (3.57)

From these equations we can extract the so-called cluster Green’s function G′ and free
non-interacting Green’s function G0

G′−1(k, ω) = ω − t′ − Σ′(ω)

G−1
0 (k, ω) = ω − t′ − V (k), (3.58)

and inserting these equations into the CPT Green’s function we obtain an expression

G−1(k, ω) = ω − t′ − Σ′(ω)− V (k)

= G−1
0 (k, ω)− Σ′(ω), (3.59)

which looks like the Dyson equation with the cluster self-energy Σ′. So in the CPT
approximation the self-energy of the whole lattice problem is replaced by self-energy of
the cluster. Only for the case of small clusters the self-energy can be calculated exactly
by some numerical methods (e.g. Lanczos algorithm ). The inter cluster hopping V can
be treated as a perturbation of the system of disconnected clusters with intra cluster
hopping t′. The Green’s function can be calculated by the summation of diagrams in
perturbation theory to all orders in U and V. Within the CPT the vertex corrections are
neglected[46]. CPT becomes exact in the limits where cluster sites are infinite LC →∞,
U = 0 and t/U = 0. Correlations beyond cluster extensions are neglected. There is no
self consistent condition, i.e. there is no feedback of the resulting Green’s function on the
cluster embedding and there is no feedback of the Weiss mean field. For these reasons
CPT cannot describe different phases of a thermodynamic system or phase transitions.
Consequently this approach cannot describe metal-insulator transition. Many of these
drawbacks can be overcomed in the framework of the variational cluster approximation.

3.5 Variational cluster approximation (VCA)

To overcome the drawbacks of CPT one needs a self consistent embedding scheme. This
comes from a variational principle of a general thermodynamic potential, defined in terms
of dynamical quantities such as self-energy or Green’s function. These are related to the
one-particle excitation spectrum and static quantities like the grand potential which is
connected to thermodynamics. The physical self-energy is obtained by requiring that
the thermodynamic potential be stationary. Such a thermodynamic potential can be
derived by using the Luttinger Ward functional Φ̂U [G][47, 46].

Luttinger Ward functional is the sum over all closed linked Feynman diagrams as
shown in figure 3.4[48]. In practice such a sum over infinitely many diagrams can not be
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Φ [G] = + + + · · ·

Figure 3.4: Diagrammatic expansion of the Luttinger Ward functional Φ [G].

done. There is the possibility the truncate the Luttinger Ward functional, i.e., a selected
class of diagrams are taken into account. In many cases these diagrams are the ladder
and bubble diagrams. One of such approximations is the GW approximation. Here
we will take another way as the truncation of the Luttinger Ward functional. For this
purpose let us consider some properties of Luttinger Ward functional obtained from the
study of the diagrammatic perturbation theory. Luttinger Ward functional is universal
in interaction U , i.e., two systems with the same interaction, but different one-particle
parameter t are described by the same Luttinger Ward functional and it is vanishing
for a non-interacting fermionic system. Functional derivative of the Luttinger Ward
functional gives another functional

1

T

∂Φ̂U [G]

∂G
= Σ̂U [G], (3.60)

and the evaluation of this functional on the physical Green’s function gives the real
physical self-energy

Σ̂U [Gt,U ] = Σt,U . (3.61)

At this point we can do a Legendre transformation of the Luttinger Ward functional

F̂U [Σ] = Φ̂U [ĜU [Σ]]− Tr(ΣĜU [Σ]), (3.62)

and obtain a functional which depends on the self-energy. The functional derivative of
this Legendre transformed Luttinger Ward functional gives also another functional

1

T

δF̂U [G]

δΣ
=

1

T

δ

δΣ

(
Φ̂U [ĜU [Σ]]− Tr(ΣĜU [Σ]

)

=
δΦ̂U [ĜU [Σ]]

δG

δĜ[Σ]

δΣ
− Ĝ[Σ]− Σ

δĜ[Σ]

δΣ

= Σ
δĜ[Σ]

δΣ
− Ĝ[Σ]− Σ

δĜ[Σ]

δΣ

= −Ĝ[Σ], (3.63)

and the evaluation of this functional on the physical real self-energy gives the Green’s
function

Ĝ[Σ] = G. (3.64)
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We can use this expression to define the self-energy functional

Ω̂t,U [Σ] = Trln

(
1

G−1
t,0 − Σ

)
+ F̂U [Σ]. (3.65)

The functional derivative of the self-energy functional gives an expression

1

T

δΩ̂t,U [Σ]

δΣ
=

1

G−1
t,0 − Σ

− Ĝ[Σ], (3.66)

which is very similar to the Dyson equation. It is obvious that the stationary point of
the self-energy functional

δΩ̂t,U [Σ]

δΣ
= 0 (3.67)

corresponds to the solution of the equation

Ĝ[Σ] =
1

G−1
t,0 − Σ

, (3.68)

where no closed form for the functional exists. We haven’t used any approximation
up to this point. It is generally not possible to calculate the self-energy functional.
Therefore some approximations are necessary for the construction and evaluation of the
stationary point of the self-energy functional. One needs an approximation, which can
be systematically improved. Variational cluster approach matches into this criterion.

In variational cluster approximation one restricts the domain of the functional, i.e., a
mapping to a reference system is done, where it is possible to evaluate the self-energy
functional

Ω̂t′,U [Σ] = Trln

(
1

G−1
t′,0 − Σ

)
+ F̂U [Σ]. (3.69)

For the original system and for the reference system the Legendre transformed Lut-
tinger Ward functionals FU [Σ] are the same because of the universality of FU [Σ]. This
can be exploited or utilized to obtain an expression, which is independent of FU [Σ]
by subtracting the self-energy functional for the original system from the self-energy
functional for the reference system:

Ω̂t,U [Σ] = Ω̂t′,U [Σ] + Trln

(
1

G−1
t,0 − Σ

)
− Trln

(
1

G−1
t′,0 − Σ

)
.

We consider a reference system with fixed U , but different one particle parameters t′

and assume that the self energy of the reference system can be obtained for any t′. This
is demonstrated in figure 3.6.

Then the grand potential functional can be evaluated on the subspace of self-energies
Σt′,U parametrized by one particle parameter t′. This idea is visualized in figure 3.5,
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3.5 Variational cluster approximation (VCA)

Figure 3.5: Grand potential Ω is calculated in the space of the trial reference self-energies
Σ(t) parametrized in the space of one-particle parameters. The optimal
values for the one-particle parameters are reached at the point, where the
grand potential Ω becomes stationary.

H : original system H ′ : reference system

U t

i j

U t′

t′

t′

Figure 3.6: Grand potential calculation of the original system is replaced by an accessible
system, e.g., clusters with the restored symmetry with optimized parameters.
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where for a area of one particle parameters a space of self-energies is identified. At
the physical self-energy with optimized one-particle parameters the grand potential is
minimized. For this procedure one can select clusters as the reference system, because
their self-energy Σt′,U for different one-particle parameters is exactly available. If we
insert these self-energies into the self-energy functional it becomes an ordinary function

Ω(t′) ≡ Ω̂t,U (Σt′,U ) (3.70)

Here we can make use of Green’s function of the cluster perturbation theory (CPT). In
this approximation the following expression is obtained for the grand potential functional[15,
13, 46]

Ω(t′) = ΩCl + Trln (GCPT)− Trln
(
G(Cl)

)
. (3.71)

The final step is to find a stationary point of this function

∂Ω(t′)

∂t′
= 0 for t′ = topt. (3.72)

An explicit expression for this equation can be obtained either by exact frequency inte-
gration or by numerical frequency integration[43, 49].

3.6 Dynamical vertex approximation (DΓA)

Until now we have considered the methods, where the correlations are kept up to small
cluster sizes. But correlations in larger order can be included within the within interac-
tion channels of diagrammatic methods.

Dynamical vertex approximation belongs to the diagrammatic class of methods, which
goes beyond standard DMFT. It keeps on the one hand the important local correlations
of DMFT and on the other hand also the non-local correlations. Therefore DΓA allows
us to deal with many physical phenomena such as spin fluctuations, magnons, quantum
criticality, superconductivity appearing at low temperatures because of non-local corre-
lations. DΓA can be seen as the natural extension to the DMFT, because in DMFT
the one-particle fully irreducible vertex is assumed to be local, i.e., the self energy is
completely local. On the other side DΓA approach assumes that the n-particle fully
irreducible vertex Γir is local[14], which goes beyond DMFT and is demonstrated in
figure 3.7[50].

Let us consider the main steps of the DΓA algorithm. The starting point is an ar-
bitrarily chosen local Green’s function Gii(ω). The next step is the calculation of the
fully irreducible vertex Γiiii from the diagrammatic studies. In a practical calculation
Γiiii is calculated through local parquet equations[51, 52, 53] out of the three frequency
charge and spin susceptibilities obtained by the solution of the Anderson impurity model
numerically via exact diagonalization or CT-QMC.

The second step is the calculation of the non-local irreducible vertex Γijkl out of
the fully irreducible vertex Γiiii. For this purpose one has to sum over all reducible
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3.6 Dynamical vertex approximation (DΓA)

Dynamical Vertex Approximation (DΓA)

Approximation : n− particle fully irreducible vertex Γir is local

n = 1 : one particle fully irreducible vertex (self − energy) corresponds to DMFT

n = 2 : DΓA two− particle irreducible vertex Γir yields Σ (local and non− local diagrams)

n = ∞ : exact solution

...

Figure 3.7: Dynamical vertex approximation and its connection to DMFT in a short
schematic table representation.

diagrams. This summation can be in principle done within the parquet equations, but
in a practical application this evaluation is a intricate challenge. Therefore the evaluation
of the parquet equations in this step can be approximated by restricting the summation of
the Parquet diagrams to the particle-hole channels, i.e, the particle-particle channels are
neglected. This approximation here is justified for cases like the antiferromagnetic phase
transition, where the Parquet diagrams to the particle-hole channels are dominating. On
the other side for the considerations of physical phenomena like the superconductivity
one has also to take into account the Parquet diagrams to the particle-particle channels.

In the third step the non local self-energy Σij(k, ω) can be easily extracted from the
non-local irreducible vertex Γijkl through an exact equation[52, 53]:

Σ(k, ω) = U
n

2
− T 2U

∑

k′qνν′

Γνν
′ω

kk′qG(k′ + q, ν ′ + ν)G(k′, ν ′)G(k + q, ω + ν ′), (3.73)

derived from the Heisenberg equation of motion, where k, k′, q are the wave vectors and
ω, ν, ν ′ are the corresponding Matsubara frequencies, n is the number of electrons per
lattice site, Γνν

′ω
kk′q is the reducible four point vertex, Gs are the Fourier transformation

non local Green’s functions Gij .

At the last step one can write the local and non-local Green’s function by Dyson
equation

G(k, ω) =
1

iω − εk + µ− Σ(k, ω)
, (3.74)

and then go back to the step one and iterate until convergence is reached. This method
is very powerful compared to VCA or C-DMFT, but it’s practical implementation is a
great challenge from the mathematical and numerical point of view.
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3.7 Density functional theory combined with VCA

After the introduction of variational cluster approximation as a many body method, we
are going to combine it with the density functional theory for the correlated compounds.
Before, it is useful to give a small overview of density functional theory. This is useful
on the one side for the identification of the important steps and approximations and
on the other site for the interpretation of results which are used as the input for VCA
calculations.

3.7.1 Overview over density functional theory

There are approximate solutions of the Schrödinger equation for the electronic wave
function with several electrons. In density functional theory (DFT) instead of putting
effort on the electronic wave function, an alternative approach is done, where the cen-
tral quantity of interest is the electron density function n(r). There are two essential
advantages of DFT which should be considered here. DFT focuses on the quantities in
the 3-dimensional space like the electronic density of ground state n0(r) or the exchange
correlation hole density nxc(r, r

′), which describes the effect of the presence of an elec-
tron at the point r diminish the total density of the other electrons at the point r′ and
the linear response function χ(r, r′, ω). It describes the change of the total density at
point r due to the perturbing potential at the point r′ with frequency ω.

These quantities are physical and easily visible even for large systems. Their under-
standing provides a transparent and complementary insight into the nature of multi-
particle systems.

The second advantage of DFT is the practicality of this approach. Traditional multi-
particle wave function methods are restricted to a certain number of atoms (e.g. N ≈
10 for systems without symmetries). Therefore for problems where the consideration
of much more interacting atoms is necessary, they are not applicable and alternative
approaches are required. DFT fills this gap, because with this approach much more
atoms (N = O(102)−O(103)) can be handled.

There are a few steps which lead to the formulation of the DFT. The first one is the
lemma of Hohenberg and Kohn[1] which says that the ground state density n(r) of an
electronic system in an external potential v(r) is uniquely determined. In other words
the system is determined by the knowledge of the ground state density. Let us verify
the Hohenberg-Kohn Theorem for a non-degenerate ground state: We start with the
assumption that the n(r) is the density in a potential v1(r), with the corresponding
ground state ψ1 and ground state energy E1. The ground state energy is then defined
as

E1 = 〈ψ1|H1|ψ1〉 =

∫
v1(r)n(r)dr + 〈ψ1|T + U |ψ1〉, (3.75)

with H1 as the total Hamiltonian and T the kinetic energy operator and U the potential
energy operator. Here we will proceed with a second assumption for the existence of a
second external potential v2(r) not equal to v1(r) + const with the same ground state
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density n(r). For this case the ground state energy is defined as

E2 = 〈ψ2|H2|ψ2〉 =

∫
v2(r)n(r)dr + 〈ψ2|T + U |ψ2〉, (3.76)

which results in a different Hamiltonian H2 due to external potential v2. Here we can
make use of the Rayleigh-Ritz principle, which says that the total energy E0 of a system
in ground state |ψ0〉 is smaller than the expectation value for the arbitrary states |ψ〉

E0 < 〈ψ|H|ψ〉. (3.77)

Hence we get the following relations

E1 < 〈ψ2|H1|ψ2〉 =

∫
v1(r)n(r)dr + 〈ψ2|T + U |ψ2〉, (3.78)

E2 < 〈ψ1|H2|ψ1〉 =

∫
v2(r)n(r)dr + 〈ψ1|T + U |ψ1〉. (3.79)

These two inequalities can be rewritten by adding and subtracting the term with external
potential

E1 < E2 +

∫
(v1(r)− v2(r))n(r)dr, (3.80)

E2 < E1 +

∫
(v2(r)− v1(r))n(r)dr. (3.81)

We can add these to inequalities and get

E2 + E2 < E1 + E2, (3.82)

which leads to a contradiction of our assumption. This contradiction shows that, there
exist no second external potential which leads to the same ground state density. Through
this proof we have seen that the density n(r) determines the external potential v(r).
Consequently it gives the total Hamiltonian H and implicitly all quantities which are
obtained by the solution of many body Schrödinger equation. For the determination of
the ground state density Hohenberg-Kohn minimal principle is used. In contrast to the
Rayleigh Ritz minimal principle

E0 = min
(
〈ψ̃|H|ψ̃〉

)
, (3.83)

where the ground state energy is found by trial functions |ψ̃〉. Hohenberg-Kohn minimal
principle is formulated in terms of trial densities ñ(r), which correspond to trial functions
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ψ̃. The minimization is done in two steps. The starting point is the energy functional
Eν [ñ(r)] with fixed density ñ(r)

Eν [ñ(r)] = minα

(
〈ψ̃αñ |H|ψ̃αñ〉

)

=

∫
v(r)ñ(r)dr + F [ñ(r)], (3.84)

with

F [ñ(r)] = min
(
〈ψ̃αñ |(T + U)|ψ̃αñ〉

)
, (3.85)

as a universal functional of density ñ(r). The next step is the minimization of Eν [ñ(r)]
over all ñ.

Eν [ñ(r)] = minñ(r)Eν [ñ(r)]. (3.86)

For the ground state the minimum is obtained, when ñ(r) is the ground state density.
Now we want to derive the self-consistent Kohn-Sham equations[2] for the description
of the electronic structure using Hohenberg Kohn variational principle. In this case the
energy functional for fixed density has the following form

Eν [ñ(r)] = minα

(
〈ψ̃αñ |H|ψ̃αñ〉

)

=

∫
v(r)ñ(r)dr + F [ñ(r)]

=

∫
v(r)ñ(r)dr + TS [ñ(r)] +

1

2

∫
ñ(r)ñ(r′)

r− r′
drdr′ + Exc[ñ(r)]. (3.87)

The second term TS [ñ(r)] is the kinetic energy functional for non-interacting electrons
and the term Exc[ñ(r)] is the exchange correlation energy functional. The corresponding
Euler Lagrange equations for a fixed number of electrons are

δEν [ñ(r)] =

∫
ñ(r)

(
veff (r) +

δ

δñ(r)
TS [ñ(r)]|ñ(r)=n(r) − ε

)
dr = 0, (3.88)

where

veff (r) = v(r) +

∫
n(r′)

r− r′
dr′ + vxc(r), (3.89)

and

vxc(r) =
δ

δñ(r)
Exc[ñ(r)]|ñ(r)=n(r). (3.90)

This equation looks like the equation for non-interacting particles moving in an effective
external potential veff (r). The condition of the minimization is fulfilled by the solution
of the one-particle equation

(
−1

2
∇2 + veff (r)− εj

)
ψj(r) = 0, (3.91)
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n(r) =

N∑

j=1

|ψ(r)|2, (3.92)

veff (r) = v(r) +

∫
n(r′)

r− r′
dr′ + vxc(r). (3.93)

These self-consistent equations are called Kohn-Sham equations. Through the solution
of these equations the ground state density can be obtained, which would be used to
calculate the ground state energy

E =

N∑

j=1

εj + Exc[n(r)]−
∫
vxc(r)n(r)dr− 1

2

∫
n(r)n(r′)

r− r′
drdr′. (3.94)

If one omits the terms Exc and vxc, the self consistent Kohn-Sham equations would end
up in the self consistent Hartree equations. So it is obvious that the many body effects are
included in these terms, which are in general not known. One of the simplest but powerful
approximations for these terms is the local density approximation (LDA)[1, 54, 55].

3.7.2 Practical application of DFT

There is still need of some approximation for the functionals F [n(r)] in Hohenberg
Kohn formulation and Exc[n(r)] in the Kohn Sham formulation. We start with a general
expression for Exc[n(r)]

Exc[n(r)] =

∫
exc(r; [n(r′)])n(r)dr, (3.95)

where exc(r; [n(r′)]) is a functional of density n(r′) and exhibits the exchange correlation
energy per particle at the position r. We still do not have an explicit expression for
Exc[n(r)], therefore in the next step we introduce the simplest approximation, the so
called local density approximation

Exc[n(r)] =

∫
exc(n(r))n(r)dr, (3.96)

where exc(n) is the exchange correlation energy of a uniform electron gas of density n.
This term is composed of a exchange part ex(n) and a correlation part ec(n)

exc[n(r)] = ex(n) + ec(n)

= −0.458

rs
− 0.44

rs + 7.8
. (3.97)

Obviously LDA is exact for a homogeneous electron gas, and it delivers good results for
systems with slowly varying densities (at the scale of local Fermi wavelength λF ). There
are other approximative schemes for exchange correlation term Exc[n(r)] beyond LDA,
which contain different versions of generalized gradient approximations (GGA), hybrid
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methods, LDA+U[56] etc. After we have considered all of the ingredients of the DFT,
we can write a sketch for the implementation for the DFT algorithm, which is drawn
below. Here we can assume this algorithm has been implemented, and the so-called
Kohn-Sham orbitals ψj and Kohn-Sham eigenvalues εj have been calculated. But still
one has to consider their physical interpretation.

In Hartree Fock theory the eigenvalues represent the energy which is necessary to add
or remove an electron from the an orbital. This interpretation is given by Koopman’s
theorem. In DFT there is an equivalent theorem the so-called Janak’s theorem[57]

∂E

∂nj
= εj , (3.98)

which says that the highest occupied εf relative to the vacuum equals the ionization
energy, but neither the Kohn-Sham orbitals ψj nor the energies εj have any strict physical
meaning except the connection between the Kohn-Sham orbitals ψj and the physical
density n(r). Nevertheless it has been observed in many cases that the eigenvalues give
a reasonable description of the physical band structure.
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Start with an initial density nin(r):

• atomic charge density

• previous calculated density

• determined by some wavefunction method

Determine the effective potential veff (r) by using the density nin(r)

veff (r) = vion(r) + vHartree(r) + vxc(r)

Select an approximative term for vxc(r) (LDA or GGA by Perdew et.al.)

Solution of single particle Kohn Sham equations

(
−1

2
∇2 + veff (r)− ǫj

)
ψj(r) = 0

• expand ψj(r) in a basis φ

• diagonalize matrices of a k-point grid

Calculate the new density

nnew(r) =
∑

k

ψ∗
kψk

Check if nnew(r) equal to nin(r)! If yes the cal-
culation is finished else nin(r) = nnew(r)

n(r) = nnew(r), ǫj , ψj

many quantities can be calculated (charge densities, band struc-
ture, relaxed atomic positions, total energies, forces on atoms etc.)
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3.7.3 Bloch functions and Wannier functions

In the last subchapter we gave an overview over density functional theory, which is
also often referred as first principle calculations, because one is tackling the many body
Schrödinger equation directly without any modeling. The Kohn-Sham equations are
solved in terms of Bloch functions, they fulfill special properties which are required for
the calculation of the electronic structure of periodic materials. Bloch functions ψnk(r)
exhibit a band index n and a crystal momentum k. The crystal electrons were described
by Bloch functions and are named Bloch electrons. Bloch functions can be written as

ψnk(r) = exp(ik.r)unk(r). (3.99)

If we set unk(r) to a constant value we will end up with the eigenfunctions of free particles
or electrons. The periodic lattice potential modulates the plane wave by a term unk(r),
which has the lattice periodicity. If we insert the Bloch functions into the eigenvalue
equation we see that the eigenvalues En depend on k

En = En(k). (3.100)

Because of

ψn,k(r) = ψn,k+Km(r), (3.101)

it is sufficient to know the solutions of Schrödinger equation and the corresponding En(k)
in terms of k in the first Brillouin zone (Wigner Seitz cell in the k-space). The function
En(k) gives for every fixed k value a discrete energy spectrum (n = 1, 2, ...), which
represents the energy bands. The complete En(k) is referred to as the band structure.

Alternatively for the electronic structure calculations instead of extended Bloch func-
tions spatially localized Wannier functions can be used. We can use the relation, which
says that the Bloch functions are periodic in k-space to rewrite the Bloch functions as
a Fourier series

ψn,k =
1√
N

∑

m

wn(Rm, r) exp(ik.Rm). (3.102)

The terms wn(Rm, r) in this expansion are identified as Wannier functions. We can
invert this equation to find an expression for Wannier functions

wn(Rm, r) =
1√
N

∑

k

exp(−ik.Rm)ψn,k(r)

=
1√
N

∑

k

exp(ik.(r−Rm))unk(r). (3.103)

The summation is over all k vector values in the first Brillouin zone. Let us consider some
properties of Wannier functions. The Wannier functions depend only on the difference
wn(r−Rm), therefore they are centered on the midpoint of a Wigner-Seitz cell. For
different bands n and different primitive translations Rm they are orthogonal
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∫
w∗n(Rm − r)wn′(R

′
m − r)dr =

1

N

∑

k,k′

exp(i(k.Rm − k′.Rm′))

∫
ψ∗n,k(r)ψn′,k′(k)dr

=
1

N

∑

k,k′

exp(i(k.Rm − k′.Rm′))δn,n′

= δm,m′δn,n′ . (3.104)

Wannier functions with their special properties are very useful in some cases for char-
acterizing the special properties of solids. There is no unique way how to construct
the Wannier functions because of the arbitrariness of the phases of Bloch functions. To
demonstrate this in a better way, let us consider the effect of a gauge transformation on
the lattice periodic part of the Bloch functions

unk(r) −→ eiφn(k)unk(r), (3.105)

on the Wannier functions. This phase does not change the overall phases of the Wannier
functions but their shape and spatial extent will be effected. If we have not a simple
isolated band but a set of isolated bands then the gauge transformation would look like

unk(r) −→
N∑

m=1

U (k)
mnunk(r), (3.106)

where U
(k)
mn are unitary matrices which mix the bands at wave vector k. We can now use

this expression to write a generalized form of Wannier functions

wn(R− r) =
V

(2π)3

∫

BZ

(∑

m

U (k)
mnunk(r)

)
exp(ik.r)dk. (3.107)

The gauge transformation U can be utilized to construct optimized Wannier functions.

3.7.4 Maximally localized Wannier functions

The arbitrariness in the phases of Bloch functions can be used to construct maximally
localized Wannier functions[58, 59]. For this purpose the phases in the expression (3.107)
have to be fixed, which is done by a delocalization or spread functional defined as

Ωdeloc =
∑

n

(
〈wn(0)|r2|wn(0)〉 − 〈wn(0)|r|wn(0)〉2

)

=

N∑

n=1

(
〈r2〉n − 〈r〉2n

)
, (3.108)

where the sum is over a set of bands and

〈r〉n =

∫
r|wn(R− r)|2dr. (3.109)
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This functional can be seen as a measure for the spread of the Wannier functions. The

aim here is to find values for the phases U
(k)
mn, that minimize this functional. The proce-

dure of finding maximally localized Wannier functions works in the following way. The
starting point is a set of Bloch functions ψnk(r), which are discretized on a mesh of
k points. The explicit expression for the delocalization functional in terms of overlaps
between Bloch functions

M (k,h)
m,n = 〈umk|un,k+h〉 (3.110)

can be derived (AppendixB), where h corresponds to vectors which are connecting neigh-

boring mesh points. The aim is to find the unitary matrices U
(k)
mn in equation (3.107)

with the condition that the value of the delocalization functional Ωdeloc is minimized.
So we have to calculate the gradient of delocalization functional

∇Ωdecol =
dΩdecol

dW
, (3.111)

with respect to an infinitesimal unitary rotation of a set of Bloch functions

|unk〉 = |unk〉+
∑

m

dW (k)
mn |umk〉, (3.112)

where dW
(k)
mn is a infinitesimal antiunitary matrix i.e. dW † = −dW such that

U (k)
mn = δmn + dW (k)

mn . (3.113)

Through this steps we get an equation of motion for the evolution of the unitary matrices

U
(k)
mn and Wannier functions towards the minimum of the delocalization functional until

the minimum is reached.

3.7.5 Construction of the model-Hamiltonian

As mentioned in section 2.2 strongly correlated materials can not be dealt with by ab-
initio methods. There is a large discrepancy which arise from strong effective electron-
electron interaction[60]. In the recent years ab-initio calculations combined with many
body techniques produced many results which are in good agreement with the empirical
ARPES measurements. An example for such a success story is LDA+DMFT. Here
minimal low energy models, which deal with the conduction bands, are constructed.
These are used to include the electronic correlations adequately[61, 17, 62, 63], but it
implicates that there is still much effort for similar applications necessary.

Variational cluster approximation as a powerful many body technique can be also
utilized for such an approach. To use the variational cluster approximation for correlated
materials one needs a Hamiltonian which contains the multi-orbital character of the real
materials. Therefore we will spend some time on the construction of such a Hamiltonian.
The multi-orbital Hamiltonian which we want to construct consists of many parts, where
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each part is physically motivated. The first part is equivalent to the hopping part of a
single band Hubbard model.

Hwan =
∑

i,j

ti,jm,nc
†
iασcjβσ, (3.114)

and corresponds to the kinetic energy of the system of interest. This part is completely
delocalized and is obtained by density functional theory. From the Bloch basis a Wannier
basis is constructed through an unitary transformation. At the end we get the kinetic
part of our Hamiltonian in the Wannier basis.

The second part of the Hamiltonian is the interaction, which is given by

Hint =
1

2

∑

i,αβγδ,σσ′

Uαβγδc
†
iασc

†
iβσ′ciδσ′ciγσ. (3.115)

Choosing as basis states spherical harmonics YL we can write:

Hint =
∑

Li,m,σσ′

2l∑

k=0

4πF kl
2k + 1

〈YLa | Ykm | YLc〉

× 〈YLd | Ykm | YLb〉c†Laσc
†
Lbσ′

cLdσ′cLcσ,

where F k are Slater integrals.
F 0 = U is the usual Hubbard U commonly calculated by constrained LDA, while

the rest of Slater integrals are computed using atomic physics. One can give also some
relations between the Slater integrals

J =
(F 2 + F 4)

14
, (3.116)

F 2

F 4
≈ 0.625[64, 65]. (3.117)

At this point it is quite useful to do a table for values of Slater integrals F k calculated
from atomic orbitals

1. p-electrons : F 0 = U , F 2 = 5J

2. d-electrons : F 0 = U , F 2 = 14
1+0.625J , F 4 = 0.625F 2

3. f-electrons : F 0 = U , F 2 = 6435
286+195×0.668+250×0.494J , F 4 = 0.668F 2, and F 6 =

0.494F 2

Let us go on with our analysis of the interaction part. Assume that we are only
interested in the local part of the interaction, i.e., density-density part. Then we can
consider which assumptions are necessary to get only local part. Two conditions have
to be satisfied:
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1. α = δ and β = γ and σ = σ′ ⇒ Uαββα

2. α = γ and β = δ ⇒ Uαβαβ

Using these conditions we can calculate an expression for the local part of the interaction

1) σ 6= σ′ :

1

2

∑

i,αβ,σ 6=σ′
Uαβαβc

†
iασc

†
iβσ′ciβσ′ciασ =

1

2

∑

i,αβ,σ 6=σ′
Uαβαβniασniβσ′

2) σ = σ′ :

1

2

∑

i,αβ,σ=σ′

Uαβαβc
†
iασc

†
iβσ′ciβσ′ciασ

+
1

2

∑

i,αβ,σ=σ′

Uαββαc
†
iασc

†
iβσ′ciασ′ciβσ

=
1

2

∑

i,αβ,σ=σ′

(Uαβαβ − Uαββα)niασniβσ′

So we can now write the whole local interaction Hamiltonian as

Hloc.int. =
1

2

∑

i,αβ,σ 6=σ′
Uαβαβniασniβσ′

+
1

2

∑

i,αβ,σ=σ′

(Uαβαβ − Uαββα)niασniβσ′ . (3.118)

The parameters which are feeded into this Hamiltonian are the Hubbard U and the
Hund’s coupling J . The Hubbard U corresponds to the Coulomb interaction between
two electrons on the same site. The meaning of the Hund’s coupling in this context is
not clear yet. Therefore some explanations are necessary.

In cases where only partially filled single bands are crossing the Fermi level, the ratio
between the Hubbard U and bandwidth W are sufficient parameters for the description
of many body effects. On the other side if many bands are crossing the Fermi level
more parameters are necessary. Inter-orbital and intra-orbital interactions are differing,
because of the distribution of the electrons between different orbitals. This distribution
is not randomly but by Hund’s rules, whose main statement is that electron distribution
among different orbitals is done by minimizing the energy. That means that high spin
states play a role[66]. The interaction strength of electrons changes, if the electrons
occupy the same or different orbitals and it also depends on the electrons mutual spin
alignment. A measure for this influence is the Hund’s coupling J .

60



3.7 Density functional theory combined with VCA

3.7.6 Sketch of the DFT+VCA scheme

3.7.7 Parameters in the Model-Hamiltonian and Constrained RPA

In many applications the values of screened Coulomb interaction is taken as a parameter
named Hubbard U . It can be viewed as the energy cost for moving an electron between
two orbitals, e.g. in the following reaction

2(dn)→ dn−1 + dn−1, (3.119)

U corresponds to the energy cost for moving a 3d electrons between two atoms, where
both possess n 3d electrons. The parameter U should also contain the effect of screening
by other orbitals, which in the case of 3d electrons are s or p electrons. There are
some attempts to calculate the value of it from first principle calculations. One of
this attempts is the so-called constrained local density approximation (cLDA) [67, 68],
where the Hubbard U is obtained by the variation of the total energy with respect to
the occupation number of localized orbitals. An alternative approach is the constrained
random phase approximation (cRPA)[69]. It delivers the energy dependence of the
interaction and all components of the interaction matrix simultaneously. Let us start
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with the definition of the screened Coulomb interaction

W (r, r′, ω) =

∫
V (r− r′′)ε−1(r′′, r′, ω)dr′′, (3.120)

where v(r−r′′) is the bare Coulomb interaction and ε−1(r′′, r′, ω) is the inverse dielectric
function, which gives the change of total Coulomb potential V , if an external perturbing
field is applied. It can be written as the ratio of bare and screened Coulomb potential

ε(r, r′, ω) =
V (r− r′)

W (r, r′, ω)
. (3.121)

The effective Coulomb interaction can be calculated by using the RPA, i.e., Feynman
diagrams of the form shown in figure 3.8.

W = V +W · P · V
= (1− V · P )−1 V. (3.122)

The term in the denominator is the famous dielectric function of the electron gas

ε = 1− V · P. (3.123)

The polarization function in the RPA is given by

P (r, r′, ω) =
∑

spin

occu∑

n,k

unoccu∑

n′,k′

ψ∗nk(r)ψn′k′(r)ψ∗n′k′(r
′)ψnk(r′)×

(
1

ω − εnk′ + εnk + iδ
− 1

ω + εn′k′ − εnk − iδ

)
, (3.124)

where ψnk(r) are the Bloch eigenstates and the εnk corresponding eigenvalues. Here all
transitions between all bands are included. Within the constrained random phase ap-
proximation the polarization is divided into two terms, the so-called Pw, which accounts
for polarization in a chosen energy window (e.g. 3d to 3d orbital transitions) and Pr for
the rest of the polarization. The total polarization is the sum of both terms P = Pw +Pr.
Inserting this in the definition of the effective interaction we obtain

W = (1− V · P )−1 V

= (1− V · (Pw + Pr))
−1 V

= (1−Wr · Pw)−1Wr, (3.125)

where Wr = (1− V · Pr)−1 V is the screened interaction which does not include the
polarization of the selected energy window. The orbitals in the selected energy window
screen the screened Coulomb interaction Wr further, which are represented by the polar-
ization Pw between the orbitals in this window. The Wannier function on the position
Ri {|φnRi〉} can be exploited for the calculation of the matrix elements of the dynamical
Coulomb interaction matrix

UnR1n′R2,mR3m′R4(t− t′) =

∫
drdr′φ∗nR1

(r)φn′R2(r)Wr(r, r
′, t− t′)φ∗mR3

(r)φm′R4(r).
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= + + +...

= +

Figure 3.8: Calculation of the effective interaction within the random phase approxima-
tion (RPA). The loop which represents particle hole creation and annihilation
process also called the polarization insertion is responsible for polarization
effects of electron gas which comes from Coulomb interaction.

For the local case, i.e., Wannier orbitals at the position R = 0, this expression can be
simplified to

Unn′,mm′(t− t′) =

∫
drdr′φ∗n(r)φn′(r)Wr(r, r

′, t− t′)φ∗m(r)φm′(r).

From this the static interaction matrix Unn′;mm′ is obtained by performing the zero-
frequency limit U = Wr(ω = 0).
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4 A MEASURE OF THE NON-LOCALITY
OF CORRELATIONS FOR THE
HUBBARD MODEL

4.1 Introduction

In quantum cluster methods correlations are taken into within small clusters while
long range correlations are either approximated in a perturbative or in a mean-field
manner[70]. This kind of approximation is reflected in the momentum dependence of
the self-energy, i.e., self-energy retains momentum dependence which differs from the
limits where only local correlations survive and momentum dependence cancels out.
Here we are going to postulate some kind of measure, which illustrates on the one hand
the spatial evolution of the non-locality of the self-energy and on the other hand reflects
the level of the approximation, when non-local terms of the self-energy are neglected.
For this purpose we can define the following expression as a measure of the non-locality

g̃(∆) =
1

n

∑

i,j

∫ ∞

−∞
ImΣij(ω)dω

∣∣∣∣∣
|i−j|=∆

,

(4.1)

and then normalize it

g(∆) =
g̃(∆)

g̃(∆ = 0.0)
. (4.2)

Now we can go straight forward and apply this expression to the Hubbard model. One
of the milestones of DMFT is the prove of the locality of the self-energy in the infinite
dimensional case[6]. Because of this fact dimensionality analysis in this area is an im-
portant issue, which should be considered. The main difference in the dimensionality of
the Hubbard model in a cluster based approach, e.g., in the cluster perturbation the-
ory (CPT), can be easily observed in the non-interacting limit, which is shown for the
spectral function A(k, ω) and the corresponding density of states ρ(ω) in figure 4.1.

In the one-, two-, and three-dimensional Hubbard model the physics is completely
different which is obviously apparent. There are Van-Hove singularities[71] at the edges
of the Brillouin zone in the one-dimensional Hubbard model and a logarithmic singularity
at the origin[72] in the two-dimensional case. There are some open questions at this
point which we are interested in. How close is the three-dimensional case to the infinite
dimensional case in the respect of the correlations? Is the two-dimensional case more
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Figure 4.1: Comparison of the spectral function A(k, ω) and density of states ρ(ω) of the
Hubbard model for the non-interacting ( U = 0 ) case: (a) one-dimensional
Hubbard model; (b) two-dimensional Hubbard model; (c) three-dimensional
Hubbard model. In the 1D case there are Van-Hove singularities[71] at the
edges of the Brillouin zone. In the 2D case there is a logarithmic singularity
at the origin[72].
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4.2 One-dimensional Hubbard Model

(a) (b) (c)

0 0.5 1 1.5
-8

-6

-4

-2

0

2

4

6

8

ω
 
/
e
V

0 0.1 0.2 0.3 0.4 0.5 0.6
-8

-6

-4

-2

0

2

4

6

8

ω
 
/
e
V

0 0.1 0.2 0.3 0.4 0.5
-8

-6

-4

-2

0

2

4

6

8

ω
 
/
e
V

Figure 4.2: Comparison of the spectral function A(k, ω) and density of states ρ(ω) of the
Hubbard model for the interacting ( U = 8t, t = −1 ) case at the half filling (
µ = U/2, n = 1 ): (a) one-dimensional Hubbard model; (b) two-dimensional
Hubbard model; (c) three dimensional Hubbard model.

close to the one-dimensional case or to the three-dimensional case? Can one give some
quantitative estimate for the spatial extend of correlations in this these cases? If one
switches on the interaction a gap appears for a not so large interaction strength (U = 8t)
in the cluster perturbation theory which is shown in figure 4.2. The gap size within
this approach differs strongly within the dimensionality of the lattice, which can be
potentially explained by the different spatial correlations. Using this we are going to
apply the introduced measure 4.1 to investigate different cluster sizes regarding their
non-local correlations and dimensionality.

4.2 One-dimensional Hubbard Model

The physics of the one-dimensional Hubbard model is very special and non-local corre-
lations are in this case very important. For cluster perturbation theory implementation
one has to chose a cluster tiling. The shape of the clusters in this case are unique as
it is illustrated in figure 4.3. For these cluster tilings the spectral function A(k, ω) and
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Figure 4.3: Possible one-dimensional cluster tilings with differing cluster sizes: 2×1
clusters, 4×1 clusters, 6×1 clusters.

the corresponding density of states ρ(ω) can be calculated and this is demonstrated in
figure 4.4.

The increase in the cluster size gives a broadening in the spectral function and a
small decrease in the gap which comes from long range non-local correlations. We can
use our measure defined above to consider the behaviour and the range of these spatial
correlations.

First to check the validity of this measure we have to reproduce the atomic limit
where only local correlations survive i.e. our measure should vanish in this limit. This
criterion is fulfilled and is shown in figure 4.5, where for decreasing values of the hopping
parameter t, our self-energy non-locality measure is vanishing faster.

After this verification we can consider the behaviour of this non-locality measure with
increasing cluster sites. Within the limit of the exact diagonalization we can see in figure
4.6 (a) that a saturation or vanishing behaviour of our measure is not observed. But one
can also use in the construction of this non-locality measure instead of imaginary part
of self-energy, the real part of the self-energy which gives a saturating but not vanishing
behaviour that can be observed in figure 4.6 (b).

A parameter study for the interaction strength values in the interval [U = 0.0625t, U =
80t] of this non-locality measure gives very interesting results as shown in figure 4.7. Such
an analysis is useful because we can on the one side study the evolution of the non-locality
behaviour of the self-energy for the different parameters and on the other side it gives
us a clue in which parameter regime our method works best. This is because of the fact
that in these cluster methods only short range spatial correlations are respected.

Here we can summarize our results for the one-dimensional case. Our method is useful
for small one particle parameter values t or small interaction parameter values. This is
also very intuitive because of the exact limites of the cluster perturbation theory. In
the medium parameter regime it shows a decreasing behaviour within the cluster spatial
extension up to a point where the finite size perturbing effects coming from cluster border
are changing this dramatically. For larger clusters this effects are pushed further away.

4.3 Two-dimensional Hubbard Model

Now we want to consider the evolution of the non-locality self-energy measure for the two
dimensional Hubbard model. Therefore we will apply the same procedure as for the one
dimensional case. Here the cluster shape is not unique and therefore one is forced to select
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Figure 4.4: The evolution direction or the trend of the spectral function A(k, ω) and the
corresponding density of states ρ(ω) for the one-dimensional Hubbard model
in the interacting ( U = 8t, t = −1 ) case at the half filling ( µ = U/2, n = 1
); used cluster tilings are: (a) 4× 1; (b) 8× 1; (c) 12× 1.
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Figure 4.5: Normalized self-energy non-locality measure for the one-dimensional clusters
with 12 sites for different values of the one particle parameter values t at the
half filling ( µ = U/2, n = 1 ).
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Figure 4.6: Normalized self-energy non-locality measure for different one-dimensional
clusters and at the following parameter values: ( U = 8t, t = −1 ) case at
the half filling ( µ = U/2, n = 1 ); (a) imaginary part of self-energy used,
(b) real part of self-energy used
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Figure 4.7: Normalized self-energy non-locality measure for different clusters and differ-
ent values of interaction strength U , at the half filling ( µ = U/2, n = 1 ) :
(a) 10 sites clusters, (b) 12 sites clusters.
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some class of cluster tilings of the original lattice. Because of the exact diagonalization
limitations we are constricted to small clusters. We choose for our analysis the following
class of cluster tilings which are sketched in figure 4.8.

For these cluster tilings we can again calculate the spectral function A(k, ω) and the
corresponding density of states ρ(ω) of the two dimensional Hubbard model system.
The obtained results are shown in the figure 4.9. For larger clusters again the spectral
function is more spread out and the gap is reduced. Another development is that for the
cluster tilings where the cluster shape extension in x and y axis direction are not equal
we find is a larger reduce in the gap which is observed in the figures 4.9 (b), (d) and (h).
This can be denoted as the cluster shape effect.

Again we can apply our non-locality self-energy measure to this problem. For the
two-dimensional Hubbard model the spatial cluster extension is more restricted than for
the one-dimensional case. Therefore there are strong fluctuations in our measure as it
is demonstrated in Figure 4.10, but the trend is obviously in the direction of the more
suppressed spatial correlations. These fluctuations in the measure come from the cluster
shape geometry and from finite-size effects. Their effect is also visible in the spectral
function and density of states calculations.

To minimize these strong fluctuations, we are going to do an averaging of the calculated
values within the clusters with equal lattice sites. This procedure reduces the spatial
fluctuations dramatically and gives us the results which is demonstrated in figure 4.11.
In these results the cluster geometry, or rather the cluster shape effects, are reduced but
still the finite size effects remain.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.8: Two-dimensional clusters with differing cluster sites and cluster geometries:
(a) 2×2 clusters, (b) 2×3 clusters, (c)-(e) different 8 site clusters with differ-
ent shapes (f) 10 site clusters, (g)-(h) 12 site clusters with different shapes.
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Figure 4.9: Comparison of the spectral function A(k, ω) and density of states ρ(ω) of
the two-dimensional Hubbard model for the parameters ( U = 8t, t = −1 ),
at the half filling ( µ = U/2, n = 1 ) for different cluster tilings : (a) 2×2
clusters, (b) 2×3 clusters, (c)-(e) different 8 site clusters with different shape
(f), 10 site clusters, (g)-(h) 12 site clusters with different shapes.
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Figure 4.10: Spatial evolution of the normalized self-energy non-locality measure for
different two dimensional clusters and at the following parameter values: (
U = 8t, t = −1 ), Half filling ( µ = U/2, n = 1 )
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Figure 4.11: Averaged spatial evolution of the normalized self-energy non-locality mea-
sure for different two dimensional clusters and at the following parameter
values: ( U = 8t, t = −1 ), Half filling ( µ = U/2, n = 1 ). The average is
done within clusters with the same lattice sites but different shapes
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Figure 4.12: Three-dimensional 2×2×2 clusters.

4.4 Three-dimensional Hubbard Model

After the consideration of the one- and two-dimensional case it would be of great benefit
to view evolution of our non-locality self-energy measure for the three-dimensional Hub-
bard model. For the three-dimensional case the possible cluster tilings are much more
restricted. We can choose 2× 2× 2 or 3× 2× 2 cluster tilings as it is shown for the first
case in figure 4.12.

After the consideration of the non interacting limit we have seen that there are major
differences in all this cases. The differences also remain in the interacting case. Here the
gap size is changing with the dimensionality which is observed in figure 4.13.

We can again consider the evolution of our non-locality self-energy measure and ob-
serve the fluctuative behaviour again which comes from the finite size effects and from
cluster geometry. Here we can again say that the level of strongly suppressed correla-
tions within the cluster extension is obtained but cluster geometry effects and finite size
effects disturb the smoothness of the curves which can be seen in figure 4.14.
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Figure 4.13: Comparison of the spectral function A(k, ω) and density of states ρ(ω) in
the three-dimensional Hubbard model for the interacting ( U = 8t, t = −1
) case at the half filling ( µ = U/2, n = 1 ): (a) cubic 2× 2× 2 cluster tiling
; (b) 3× 2× 2 cluster tiling.

78



4.4 Three-dimensional Hubbard Model

0 0.5 1 1.5 2 2.5 3

|i-j|

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g
ij
 /

g
ii

3 dim 8 site
3 dim 12 site

Figure 4.14: Spatial evolution of the normalized non-locality self-energy measure for dif-
ferent three dimensional clusters and at the following parameter values: (
U = 8t, t = −1 ), at the half filling ( n = 1, µ = U/2 ); black curve: 2×2×2
clusters, red curve; 3× 2× 2 clusters.
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Figure 4.15: Spatial evolution of the normalized non-locality self-energy measure. Com-
parision of the one-, two-, three-dimensional clusters for the parameters:
U = 8t, µ = U/2, t = −1, n = 1.

4.5 Comparison of the dimensionality in the Hubbard Model

In the separate consideration of the cases for the Hubbard model we have tried to under-
stand the output which we obtained. All of the spectral functions and the corresponding
density of states clarify the major differences in one-, two- and three-dimensional Hub-
bard model or rather within the approximation. It is quite intuitive that this difference
will propagate in the evolution of our spatially evaluated self-energy localization measure.
Now we can summarize all of this cases in figure 4.15.

From this it is apparent that the dimensionality suppresses more and more the non
local correlations and the weight of the local correlations increases. For instance, at
distance 1 the measure drops to around 0.75 in 1D, to 0.55 in 2D, and to 0.4 in 3D.
Even in 3D, non-local correlations cannot be neglected completely. But compared to
1D, short-length scales obviously capture the relevant physics much better in higher
dimensions.
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5 MOTT-HUBBARD TRANSITION IN
THE TWO-DIMENSIONAL HUBBARD
MODEL

5.1 Introduction

The main results obtained in this Chapter are calculated in collaboration and are pub-
lished in Ref. [20]. Therefore the necessary VCA results for this analysis were calculated
within this thesis and DΓA calculations were done by our collaborators Thomas Schäfer,
Alessandro Toschi, Karsten Held, Georg Rohringer and the BSS-QMC calculations were
done by Nils Blümer.

The main idea of this work is the study of the the effect of the non-local electronic cor-
relations at all length scales on the Mott-Hubbard metal-insulator transition (MIT)[73]
in the unfrustrated two-dimensional Hubbard model. In the regime where the short range
correlations are taken into account, frustration and their impact on the metal-insulator
transition can be easily considered. This gives an important clue to the physical mech-
anisms which are playing a role.

The Mott-Hubbard metal-insulator transition (MIT) belongs to the important areas
of electronic correlation physics. It concerns the competition between kinetic energy and
correlation energy which manifests itself in the particle-like and wave-like character of
the electrons. This particle-like and wave-like character of the electrons is related to
quasi-particles and Hubbard bands[74]. In an experimental setup the Mott transition
can be observed in form of spectral weight transfer from wave-like quasi-particles to
the atomic-like Hubbard bands[60]. This spectral weight transfer can be generated by
several mechanisms, such as temperature, pressure or doping. Nevertheless, there are still
many open issues, even for the simplest model, the single-band Hubbard Hamiltonian.
Analytical and numerical exact solutions for this model are only available in the limiting
cases of one and infinite dimensions.

Let us consider these two special cases in respect of MIT. In the one-dimensional case,
the Bethe Ansatz shows that for the vanishingly small Hubbard interaction parameter
U there is no Mott-Hubbard MIT, i.e., the system remains in the insulating phase with
a gapped spectral function. More exactly, at any U > 0 the one-dimensional Hub-
bard model at half filling is insulating[37, 75, 76]. The physics of the one-dimensional
case is differing from other cases in many aspects. There are strong, long-ranged anti-
ferromagnetic spin fluctuations which are decaying slowly. These fluctuations prevent
antiferromagnetic ordering even at the zero temperature (T = 0). Also the metallic
phase for this case is not a Fermi liquid but a Luttinger liquid, which is reached by
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doping.

In the other limiting case of infinite dimensions (D =∞) dynamical mean field theory
(DMFT) is exact and delivers an idealized description of a pure Mott-Hubbard MIT.
In this limit non-local correlations vanish and only local correlations survive, which
was obtained from diagrammatic techniques[6]. Here, after the transition, one obtains
a collection of localized (but not long-range ordered) magnetic moments. This way,
if antiferromagnetic order is neglected or sufficiently suppressed, DMFT describes a
paramagnetic first-order MIT, ending a critical end point[7, 77].

After the consideration of the MIT for the extreme limiting cases, we can look at the
realistic cases of the two- and three-dimensional Hubbard model. For this purpose we
shall consider the DMFT description of the MIT. Because of the mean-field character of
this method antiferromagnetic fluctuations above the antiferromagnetic ordering tem-
perature TN (Néel temperature) have no influence on the DMFT spectral function and
self-energy.

In the three dimensional case these antiferromagnetic fluctuations reduce TN which
can be seen in figure 5.2. DMFT gives appropriate results for this case except close
to the antiferromagnetic transition, whereas deviations from the DMFT entropy and
susceptibilities can be significant also at higher T [78]. Nevertheless DMFT yields a
good description of the MIT of realistic materials such as V2O3[79, 80].

The two-dimensional case is of great interest because a lot of interesting physical
phenomena occur in layered systems. For instance, in the class of cuprate high-TC
superconductors[4] there are relevant CuO2 planes and in the class of prictinide high-TC
superconductors[5] there are relevant iron and a prictinide layers which are conducting.
This layered structure is shared by these materials. There is also a rapidly emerging field
of oxide thin films and heterostructures which is of great interest from a the technological
point of view. Because of these reasons the study of two dimensional Hubbard model is
important. In this area there are still many open questions. Numerical and analytical
studies indicate a metallic phase with a MIT in the weak coupling regime with a critical
finite value UC [81, 82, 83]. On the other hand two particle self-consistent approach gives
a pseudo-gap in the weak coupling perturbative regime[84].

New emerging advanced numerical methods such as cluster DMFT (CDMFT)[85], dy-
namical cluster approximation (DCA)[70], second order dual-fermion approach[36] where
non-local correlations are systematically included, show a reduced critical interaction UC .
This comes from short-range spin fluctuations as it is seen in figure 5.2.

In this chapter we are going to consider MIT in two dimensions on a square lattice.
We will compare different methods such as the variational cluster approximation (VCA),
which includes short-range correlations, the dynamical vertex approximation (DΓA),
which includes short-and long-range correlations beyond DMFT on the same footing, and
extrapolating lattice quantum Monte Carlo (BSS-QMC) simulations of higher accuracy.
These more accurate methods take into account physical mechanisms and interactions
such as spin-fluctuations.
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Figure 5.1: Schematic representation of the generation of reference systems out of the
original system. Left column: the original two-dimensional lattice system;
middle column: the original system is tiled into finite clusters (2× 2, 2× 2,
2×3,

√
8×
√

8) which are connected perturbatively. Right column: addition
of bath sites, represented by blue dots for the generation of reference systems
(2× 2 + 4B, 2× 2 + 8B, 2× 3 + 6B,

√
8×
√

8 + 4B), where finite size effects
are minimized.

5.2 System and methods

First let us give some general information concerning our system of interest. Here we are
going to study the half-filled two-dimensional Hubbard model on a square lattice with
nearest neighbor hopping. For the VCA calculations we consider the reference systems
in figure 5.1, where the original system of interest is replaced by cluster tilings which
are in the CPT approximation perturbatively connected. In the VCA calculations one-
particle variational parameters are added to enhance the calculations. This can be done
by adding bath degrees of freedom in order to minimize the finite-size effects and to
reach a metal insulator transition. The hybridizations (tb)i and the on-site energies (εb)i
of the bath sites are variationally determined. The VCA calculations are performed at
the zero temperature T = 0 and are compared with CDMFT.

On the other side for the DΓA data which is a diagrammatic extension of DMFT[36, 86]
we will use the two-particle vertex[87] in its ladder version[88]. The results from this
approach are directly at the thermodynamic limit and can be compared with lattice
Blankenbecler-Scalapino-Sugar (BSS)-QMC calculations[21]. In these kind of Monte
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Carlo calculations there is still a bias due to a Trotter discretization of the imaginary
time. It is applicable to the Hubbard model with fixed number of lattice sites L, where
the numerical affort scales as L3/T at temperature T . But one can perform a reliable
extrapolation to the thermodynamic limit[22].

5.3 Phase diagram

After some motivation concerning the system of interest and the corresponding methods
for the analysis, let us collect the results in figure 5.2, which gives us a summarized picture
for the metal-insulator transition for the half-filled Hubbard model. In this figure the
temperature T and the Coulomb interaction U are plotted for different methods with
different level of approximation.

In the DMFT approach Hubbard model at half filling delivers for the control param-
eters T and U four different phases. These are the paramagnetic metallic phase, the
paramagnetic insulating phase, insulating antiferromagnetic phase, antiferromagnetic
metallic phase (in presence of magnetic frustration)[89, 90]. The blue region in figure
5.2 shows the DMFT data where only local correlations are respected and indicates a
coexisting critical region of paramagnetic metallic and insulating solutions bounded by
the dotted lines at the energies UC1(T ) and UC2(T ). The dark blue line UC(T ) gives
the separation line where the metallic phase disappears, but with a wrong slope, i.e., an
increasing critical UC with decreasing temperature T → 0.

In contrast with this our VCA calculations at T = 0 marked by orange cross in figure
5.2, where short range antiferromagnetic correlations are included, are consistent with
the CDMFT[85], DCA, previous VCA[91] and dual-fermion[36] calculations. Again a
critical region which is bounded by dotted violet lines at the energies UC1(T ) and UC2(T )
is obtained, but the violet solid line gives the critical UC(T ) with an opposite slope.
Other important aspects compared to the standard DMFT results are that the width
of the coexistence region, which is obtained from CDMFT, and the critical interaction
strength UC are strongly suppressed.

In order to consider this evolution further we have to include the important long-range
correlations. This can be done within the DΓA approach. The corresponding data in
figure 5.2 represented by the red dashed line shows the opening of a spectral gap which
is due to the strong antiferromagnetic spin fluctuations and the strong enhancement of
the electronic scattering rate in the very low frequency regime . This spectral gap exists
even at arbitrarily small interaction values U . Consequently one can say that there is
no MIT for the two-dimensional Hubbard model for T → 0, UC → 0, which is similar to
the one-dimensional case. This result can be compared with the extrapolated BSS-QMC
data with their corresponding error bars. Indeed they show a strong confirmation of the
DΓA results.

Let us summarize our statements or rather the implications from the results in figure
5.2. These results indicate that there is a strong effect of the spatial extended anti-
ferromagnetic correlations on the Mott-Hubbard metal-insulator transition in the two-
dimensional Hubbard model which is in the paramagnetic phase. In the next sections
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5.3 Phase diagram

Figure 5.2: Metal-insulator transition of the two dimensional Hubbard model on a
square lattice[20] calculated by different non-perturbative many body tech-
niques: DMFT, CDMFT, VCA, DΓA, BSS-QMC. The dotted lines give the
Néel temperature TN . Blue region: In DMFT only local correlations are
respected and it gives a coexistence regime with a finite critical UC but with
a wrong slope. Orange and violet region: CDMFT and VCA where short
ranged correlations are respected give a shrinked regime with a right slope
and a suppressed critical UC in comparision to the DMFT results. Red line:
DΓA and BSS-QMC results, where long range correlations are included in-
dicate a vanishing critical UC . This plotted data are in units of the half
bandwidth W = 4t.
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we are going to differentiate between these spatial non-local correlations over different
length scales and their physics concerning the MIT. We will also consider the influence
of the frustration for the short length scales.

5.4 Unfrustrated short range correlations

In the last chapter we have realized that CPT and VCA calculations without bath sites
deliver for a finite U always an insulating solution because of the finite size effects and the
strong localizations tendency of the electrons. Also the influence of the infinite spatially
extended lattice sites on the finite clusters is not incorporated in an appropriate manner,
at least not for the metallic solutions. This impact can be simulated by a reservoir of
electrons or, for a finite system, by a finite number of non-interacting lattice sites, i.e.,
bath sites. For a 8 site cluster tiling with four bath sites (the configuration sketched
in figure 5.1) we can consider the physical solutions, i.e., the stationary points of the

VCA grand potential ∂Ω(t′)/∂t′
!

= 0 which is demonstrated in figure 5.3. Because of
the particle hole symmetry, we get a symmetric grand potential function Ω(t′) and with
regard to this fact there is only one non-trivial, i.e., t′ 6= 0 insulating solution for every
fixed U value, which can be identified by the consideration of the density of states and
imaginary part of the self-enery .

This statement concerning the insulating behaviour can also be confirmed by the
consideration of the corresponding density of states in figure 5.4 for the non-trivial
solutions. It is obvious that the system remains in the insulating phase even for a very
small value of U . From these results we can conclude that for the observation of a metal-
insulator transition in this case there are still not enough bath degrees of freedom which
would allow the system to get into the metallic regime. Because of these results and
the consideration of other reference systems with different bath configurations we can
conclude that the number of bath sites has to be at least equal to the number of cluster
sites. Now we can switch to another reference system, i.e., 2× 2 cluster tilings with four
bath site configurations. In this system the number of bath sites is equal to the cluster
sites. For this reference system there is indeed a coexistence region for a metallic and an
insulating solution which is shown in figure 5.5. For the corresponding solutions at the
metal-insulator transition the study of the density of states ρ(ω) and of the self energy
in figure 5.6 show indeed the coexistence of the metallic and insulating solution.

Now we have reached a point where a metal insulator transition occurs because in
our VCA approach we are taking into account short-range correlations up to the cluster
sizes exact, and the effect of the infinite system is taken into account in a mean-field
manner. These variationally optimized bath site hybridization improve the description
of the local quantum fluctuations. Our VCA calculations describe the physics of short
range correlations in the paramagnetic phase very well because the critical interaction
value U = 1.4 W for T = 0 is within the CDMFT coexistence region of the metallic and
insulating phase as it is shown in figure 5.2. In the critical region we can consider the
density of states ρ(ω) and the self-energy Σ(iωn) which is demonstrated in figure 5.6.

Here we get an insulating and a metallic solution. The insulating solution is charac-
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Figure 5.3: VCA: Grand potential Ω(tb) as a function of the bath hybridization tb for
the reference system

√
8 ×
√

8 + 4B. Physical solutions correspond to the

condition ∂Ω(t′)/∂t′
!

= 0, where t′ represends arbitrary one-particle parame-
ters (t′ = {t, tb, εB, µ, ...}). There is only one non-trivial insulating solution
because the function is symmetric with respect to the y axis. The interaction
strength U is given in the units of the hopping parameter t = 1. For this
reference system the metallic solution is reached only at U = 0.
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Figure 5.4: Density of states ρ(ω) for the reference system
√
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8+4B. Optimal value
of the one particle parameters (t∗

′
= {t∗, t∗b , ε∗b ...}) is found by the condition

of the stationarity of the grand potential ∂Ω(t′)/∂t′
!

= 0. The system is
insulating for large interaction (U = 8t) in the units of t = 1. For decreasing
values of interaction U , there is no metal-insulator transition, even for very
small values until the point U = 0, where the spectral gap is continuously
closed and the metallic state is reached.
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Figure 5.5: VCA: Grand potential Ω versus bath hybridization tb for the reference sys-
tem: 2×2 clusters with 4 additional bath sites . Physical solutions corre-

sponds to the condition ∂Ω(t′)/∂t′
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= 0. For large U values there is only one
non-trivial insulating solution. In the critical region there are two compet-
ing solutions: metal (large tb) and insulator (small tb). There is a MIT at
U = 5.8t.

89



5 MOTT-HUBBARD TRANSITION IN THE TWO-DIMENSIONAL HUBBARD MODEL

Figure 5.6: Density of states ρ(ω) for the reference system 2 × 2 + 4B[20]. Optimal
value of the one particle parameters (t, tb, εb) is found by the condition of the

stationarity of the grand potential ∂Ω(t′)/∂t′
!

= 0. The system is insulating
for large interaction strength (U = 8t). For decreasing values of interaction
strength (U ≈ 5.8t) metal-insulator transition. Two competing solutions:
metal (large tb) and insulator (small tb) at transition. In the panel above
the self-energies for the corresponding density of state at the k = (π, 0) is
displayed.
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Figure 5.7: VCA: determination of the grand potential Ω versus bath hybridization tb
for the reference system: 2×2 clusters with 8 additional bath sites . Physical
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= 0. Variational parameters
for this reference system are: t (intra cluster hopping), tb (bath hybridiza-
tion), εb (bath energy levels) For large U values there is only one non-trivial
insulating solution. In the critical region there are two competing solutions:
metal (large tb) and insulator (small tb) at the transition.

terized by a vanishing spectral weight at the Fermi energy and by a diverging self-energy.
The metallic one has a large spectral weight at the Fermi energy and one can extract
from the self-energy the value of the quasi-particle weight as ZV CA = 0.37 at k = (π, 0).

The VCA grand potential gives for U < UC = 1.4W the thermodynamically stable
metallic solution and for U > 1.4W the insulating solution. There is a level crossing
at U = UC which is in fairly good agreement with CDMFT[85]. This value is slightly
reduced for other difference reference systems, i.e., for NC = 4 = 2× 2 with 8 additional
bath sites a critical value of UC = 1.3375W as indicated in figure 5.7. and for the
reference system NC = 6 = 2× 3 with 6 additional bath sites as indicated in figure 5.7
a critical value of UC = 1.325W is obtained.

From these results we can conclude that the short-range correlations are strong enough
to destroy the low-temperature metallic phase at intermediate coupling but these are
less effective for lower values of the interaction strength U . Therefore, for a correct
description of the weak-coupling regime, one has to include correlations on all length
scales. This will be done in the next sections but before that let us consider the effect
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= 0. Variational parameters
for this reference system are: t (intra cluster hopping), tb (bath hybridiza-
tion). For large U values there is only one non-trivial insulating solution. In
the critical region there are two competing solutions: metal (large tb) and
insulator (small tb) at the transition.

92



5.5 Frustrated short range correlations

−π

π−π

π

kx

ky

0

Q

Figure 5.9: Sketch of the Brillouin zone for a square lattice where the thick black line
shows the Fermi surface at half-filling for non interacting fermions. Fermi
surface has essential parallel segments connected by a vector Q. This is
called nesting property.

of the frustration on the MIT.

5.5 Frustrated short range correlations

Now let us consider the effect of the frustration on the MIT. We are going to motivate
this from the perspective of perfect nesting of Fermi surfaces, which is sketched for
non-interacting fermions on a square lattice in figure 5.9.

In the 2D Hubbard model for U = 0 the Fermi surface is a perfect square with a
nesting vector Q = (π, π) which connects sides of the Fermi surface. For example, if you
consider a scattering process which takes an electron and adds a momentum Q, then
it is obvious that there is a single vector Q = (π, π) which connects a lot of k states
in the Brillouin zone. These k states have the same energy. The k states around the
Fermi surface are the only important states for the low temperature regime. The static
structure factor is peaked around that Q. Here it is obvious that Fermi surface nesting
gives rise to different orders. Spin preserving scattering would lead to a charge density
waves but for the magnetic scattering which flips the spin of the electron, one would get
a spin density waves state.

We will see in the next section that the long-ranged antiferremagnetic fluctuations
suppress the critical UC to vanishing values. But on the other side, if we suppress this
antiferromagntic fluctuations on the cluster level by frustration we would obtain exacly
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the other case, i.e., the critical interaction UC will be shifted to higher values. This
can be verified in our VCA clusters by the addition of frustration, which lead to the
disturbtion of the ordering caused by nesting of the Fermi surface. The results for this
calculations are shown in figure 5.10 for the reference systems 2×2+4B and 2×3+6B,
where the grand potential at the optimal value is plotted for various external chemical
potential values. At the metal insulator transition the energetic level of the metallic
and insulating state should be equal. This is observed in figure 5.10, where the critical
interaction at a low value of frustration t′ = 0.15 is shifted to the following values: For
the reference system 2 × 2 + 4B we get a shift of UC = 5.8 → 5.9 and for the other
reference system 2× 3 + 6B a similar shift of UC = 5.3→ 5.5 is obtained.

5.6 Unfrustrated long range correlations

Long range correlations at all length scales can be included in many ways. Here we
will compare the results obtained within the DΓA approach and the extrapolating BSS-
QMC. Each of these methods has an approximative character. In the case of DΓA,
which is a diagrammatic method, the approximation is due to the selection of a class of
more relevant diagrams out of many other classes. For the BSS-QMC the results which
are obtained for finite systems the approximation comes from the extrapolation to the
infinite system NC →∞.

For this comparision we consider the imaginary part of the self-energy Σ(k, iωn) as a
function of the momentum k and Matsubara frequency iωn obtained by these methods.
The momentum vector k is calculated at the nodal k = (π/2, π/2) and the antinodal k =
(π, 0) points, which are special points at the Fermi surface. For completeness we include
also the DMFT and VCA results to this comparison. All the data are summarized in
figure 5.11. The subplots in this picture give us the results for two different temperatures
(T = 0.025 and T = 0.010) and for the interaction value U = 0.5W . There is a quite
good agreement between the DΓA and extrapolated lattice BSS-QMC results. At the
temperature T = 0.025 all methods deliver a self-energy with a metallic, Fermi-liquid
type behaviour. Therefore for this case one can calculate an important quantity called
quasiparticle renormalization which was defined in Chapter 2, and obtain the following
value

Z =

(
1− ImΣ(k, iωn)

∂ωn
|ωn→0

)−1

' 0.9 (5.1)

Here we can also evaluate the scattering rate γ at the Fermi surface for the DMFT and
DΓA

γDMFT = −ImΣDMFT (k, i0+) = 0.002

γ̄DΓA ' 0.014 (5.2)

where for the DΓA the γ value is averaged over the nodal and antinodal k values (there is
a small difference between the two values). By reducing the temperature from T = 0.025
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Figure 5.10: Grand potential on the stationary point ∂Ω(t′)/∂t′
!

= 0 for the different
external chemical potential µ. Frustration shifts the finite critical interac-
tion value UC > 0 to higher values, i.e.: ad a) reference system 2× 2 + 4B
with frustration, diagonal hopping t′ = 0.15, UC = 5.8 → 5.9, ad b) ref-
erence system 2 × 3 + 6B with frustration, diagonal hopping t′ = 0.15,
UC = 5.3→ 5.5
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Figure 5.11: Self-energy as a function of Matsubara frequency iωn and momentum k
at the nodal k = (π/2, π/2) and the antinodal k = (π, 0) points as special
points of the Fermi surface[20]. At the temperature T = 0.025 all methods
indicate metallic solutions, but on the other hand for lower temperature
T = 0.010 methods (DΓA, BSS-QMC), where long range correlations are
included, give insulating solutions. Both plots are calculated for the same
interaction: U = 0.5W .

to T = 0.010 the Fermi-liquid behaviour of the imaginary part of the self-energy changes
dramatically for the the DΓA and extrapolating lattice BSS-QMC. The self-energies
diverge at all k-points, indicating an insulating solution.

5.7 Physical interpretation

For the unfrustrated two-dimensional Hubbard model we have seen that there is no MIT
for a finite interaction U . For this effect, i.e., shift of the MIT towards U = 0, long range
spatial fluctuations are essential. These fluctuations emerge close to the T = 0 long-
range antiferromagnetic order. For the verification of these statements we can study the
DΓA spin-correlation function

χs(r, iΩn = 0) =

∫ β

0
dτ < Sz(r, τ)Sz(0, 0) >, (5.3)

in real space and in the low-T weak coupling regime, which is demonstrated in figure
5.12. There one can observe that the spin-correlation function χS is decaying along the x
direction with a fluctuating sign, which is a evidence for antiferromagnetic fluctuations.
One can fit χS by its asymptotic limit[92]:

|χS(r →∞)| ∝
√
ξ

r
e−r/ξ. (5.4)
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Figure 5.12: First row: Spin correlation function χS(r)/χS(0) in the real space[20]. The
x-axis gives the cut r = (x, 0), where x has the units of lattice spacing a = 1.
Gray line gives the interpolation between different lattice vectors. One can
fit these data with a function and by this procedure following values for the
correlation length ξ are obtained: At T = 0.025 ⇒ ξ = 4 and at T = 0.010
⇒ ξ = 1000. Second line: Inverse correlation length ξ−1 as a function of
temperature T for different interaction values U .
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From this fit one can extract the correlation length ξ. For the metallic case of T = 0.025
one obtains ξ ≈ 4 and for the insulating low-T case of T = 0.010 the value ξ ≈ 1000 is
obtained. From here we can go a step further and analyze the temperature T dependence
of the ξ in DΓA approach in figure 5.12. The low-T regime reveals a ξ of exponential
behaviour because spin fluctuations in this regime have large spatial extensions. These
spin fluctuations destroy the Fermi surface. Because of these reasons this regime can
not be resolved within the VCA calculations.

For the extended spin correlation (ξ � 100) one can observe a small reduction in
potential energy Un↑n↓ by about 1%, which is a clear evidence for the Slater like nature
of the antiferromagnetic fluctuations. Therefore prelocalization of the magnetic moments
in destroying the Fermi-liquid state, as well as the possibility of mapping the whole low-
T physics onto the 2D Heisenberg model, as proposed by Anderson cannot be used to
explain effect.

These antiferromagnetic fluctuations can be interpreted as “Slater paramagnons.”
This is because for a finite interaction strength U > 0, a gap is opened at low enough
T which comes from enhanced electronic scattering with extended antiferromagnetic
paramagnons. These spin fluctuations are reflecting the T = 0 ordered phase from
which they originate. They smoothly evolves from Slater-like (weak to intermediate
coupling) to Heisenberg-like (strong coupling) spin fluctuations[93].

5.8 Conclusions

We have considered the effects of the spatial short and long range correlations on the
MIT in the 2D half-filled unfrustrated Hubbard model. The results indicate that for all
finite U > 0 at low temperature T the model is a paramagnetic insulator because of
the strong extended antiferromagnetic fluctuations (paramagnons). These fluctuations
gradually show an evolution from a Slater-like behaviour to a Heisenberg-like behaviour,
which is similar to the evolution for the T = 0 antiferromagnet.

The methods like DMFT, CDMFT or VCA where local or rather short range cor-
relations are included deliver a finite critical interaction UC for the (metastable) para-
magnetic phase. On the other side an effective low-T 2D Heisenberg model at strong
coupling assumes preformed spins even at low U .

The methods like DΓA or BSS-QMC where long range correlations are included, give
for the 2D Hubbard model a vanishing critical interaction value UC = 0 and indicate
that the nature of the most relevant spin fluctuations is Slater-like in the whole weak-
to intermediate-coupling regime.

For this system the vanishing critical interaction UC = 0 can be shifted towards finite
values by frustration, because it suppresses the antiferromagnetic fluctuations. Such a
frustration induces a perturbation of the perfect nesting case. It can be either induced by
adding a nearest-neighbor hopping or the application of an antiferromagnetic field. For
the VCA case we introduce frustration by adding nearest neighbor diagonal hoppings.
Consequently the finite critical UC is rised into higher values. On the other side MIT,
which has been observed due to the long-ranged correlations at the vanishing critical
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5.8 Conclusions

interaction value UC = 0 is expected to shift to a finite UC > 0 in the frustrated case.
It will result into a quantum critical point.
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6 COMBINATION WITH AB-INITIO
METHOD FOR REALISTIC
COMPOUNDS: THE APPLICATION TO
SrVO3 AND SrRuO3

6.1 Introduction

Ab initio calculations, i.e, tackling the many body Schrödinger equation within a set
of approximations without fitting the model to experimental data gives in many cases
good results for the electronic properties of materials. This is the case in the DFT
approach within its local approximation LDA. LDA works good for weakly correlated
materials because it relies on electronic correlations in jellium. However on the other side
for materials with strongly correlated electrons, e.g, for 3d or 4f states this approach is
insufficient for the description of the ground state and excited state properties[94, 95, 96],
because the electron density in these systems is strongly varying and the assumption of
a constant density for the exchange correlation term is no more suitable. Consequently
the properties of these materials change dramatically upon a small change of external
parameters like the magnetic field, pressure or temperature[97]. Many transition metal
oxides belong to this class of materials.

In the correlated systems electrons hesitate between localization and delocalization
because of the strong Coulomb interaction[98]. This property can be observed in the
study of the evolution of the spectral weight of transition metal oxides with open d-shells.
There one can identify the appearance of atomic-like incoherent peaks[60] and a wave like
coherent peak. These incoherent peaks can be referred as the lower and upper Hubbard
band, and it is not possible to describe them within the conventional band theory. They
are related to the narrow bands with a width of a few eV , e.g., W ≈ 3 − 5 eV formed
by 3d states. The existence of the well separated narrow bands around the Fermi level
is a common feature shared by the transition metal oxides[99]. Because of this narrow
bands there is a strong Coulomb interaction between the electrons and in some case this
can be the reason for a material to an insulator. Electronic correlations in the narrow
bands of transition metal compounds can be studied within models like the Hubbard
model. DMFT is a powerful tool for dealing with such models for correlation physics.

Here comes the idea to treat the correlated bands within the DMFT and the rest of the
system by DFT and such a combination of methods is referred to as DFT+DMFT[16, 17,
18, 19]. This approach helps to deal with the correlations in a proper way and was applied
for the calculation of the spectral, transport, and thermodynamic properties of some
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transition metal oxides and rare earth metals[18, 19]. Although this application delivers
very good results in many cases, it is not adequate for the description of phenomena like
the d-wave superconductivity or spin density wave phases because spatial correlations in
this approach are neglected[100]. Another powerful tool for the study of the correlation
physics is the variational cluster approximation(VCA). In VCA short range correlations
up to the cluster size are taken into account. It can be used for the study of broken
phases like the antiferromagnetic phase of the two dimensional Hubbard model at half-
filling[13], for the calculation of the single particle spectral function and thermodynamic
quantities of transition metal oxides like MnO, CoO, NiO, LaCoO3[101, 102]. In an
analogous manner one can introduce a combination of this method with the DFT for
the realistic material calculations.

In Chapter 3 we have introduced separately the DFT and VCA method. Therefore
here we want to go through the application of the DFT+VCA combination in a brief
manner, which is very similiar to the DFT+DMFT method. It can be used on the one
side for the verification of the DFT+DMFT calculations and on the other side it can
open new possibilities for the research of correlation physics in low dimensions. The
starting point for such a DFT+VCA calculation is a DFT calculation, where the band
structure is determined as shown for the compound SrVO3 in figure 6.1.

The next step is the identification of the bands with strong electronic correlations.
Usually such bands are coming from strongly interacting, more localized open d and
f -shells. In the compound SrVO3 these bands are formed by 3d electrons. Because of
the electric field of neighboring atoms the 5-fold (10 fold with spin) degeneracy of the
d-orbitals in the atom is lifted in the solid. Consequently one obtains 3-fold degenerate
t2g(dxy, dyz, dxz) states and 2-fold eg(dx2−y2 , d3z2−r2) states. Due to the fact that SrVO3

is a d1 oxide, the energetically higher lying eg orbitals are empty and we can restrict the
calculation to the degenerate t2g states[98].

Here one can use for the calculation of the Wannier functions out of the Bloch functions
of a DFT calculation the Nth order muffin-tin orbitals (NMTO)[104] downfolding or the
program packages Wien2Wannier[105] and Wannier90[106]. Using this we can obtain
an effective Hamiltonian in the real space, which is restricted to the t2g orbitals, i.e., it
consists of 3 × 3 matrices. The diagonalization of these matrices gives the DFT band
structure εklm of t2g bands, which is shown for the material SrVO3 in figure 6.2.

So we have generated the kinetic part of the Hamiltonian using the downfolding
method. It enables us to describe the band structure close to the Fermi energy in
terms of finite number of Wannier functions and consequently eliminate the rest of basis
states. This effective Hamiltonian can be supplemented by a Coulomb interaction term,
which is responsible for the electronic correlations. The Coulomb interaction term can
be written in terms of Slater integrals[107]. In a practical calculation one has to deter-
mine the screened values of the Coulomb interaction U , and Hund’s exchange J , which
can be done for a parameter free, i.e., ab-initio calculation within the cLDA or cRPA
approach, as explained in the chapter 3. Here we are taking U = 4 eV and J = 0.6 eV
from the literature[100].

After setting up the many body Hamiltonian for a realistic material calculation, we
are going to apply the VCA for the solution of this Hamiltonian which was constructed
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Figure 6.1: Band structure of SrVO3 compound obtained from DFT package Wien2k
based on linearized augmented plane waves[103]. The colorful thick solid
lines around the Fermi level are t2g bands.
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Figure 6.2: Parametrization of the kinetic part of t2g orbitals obtained from the Wannier
construction. These values are used for the generation of the one-particle ef-
fective Hamiltonian. These bands are obtained by the Fourier transformation
of this Hamiltonian.
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for specific compounds like SrVO3 or SrRuO3. This method can be easily transferred to
other compounds, too.

Here we are going to study first the compound SrVO3 because it can be considered
as a prototype, i.e., simple example for transition metal oxide with a cubic perovskite
crystal structure. This compound has a simple crystal structure, and there is plenty
of experimental and theoretical data[108, 109, 110, 63], which would help to check the
validity of our theoretical study. It would also give important clues in the study of
the electronic properties of more complex systems. Then we will go on to another
compound SrRuO3, where spin-orbit coupling is an important quantity. This would
lead to the splitting of the electronic bands, which have to be considered and this brings
new physics. But before let us consider the optimal selection of the cluster configurations
for such kind of VCA calculations.

6.2 Reference systems for SrVO3

In the last section we have reduced the system of interest into some bands of interest,
where electronic correlations are considered to be strong. For the VCA calculation we
have to select an accessible reference system. This has to represent the original system as
good as possible, i.e., finite size and reference system specific errors have to be minimized.
Some of the possible configurations of clusters are demonstrated in figure 6.3, where the
original system of interest is a lattice with 3 orbitals per lattice site.

The next step is the selection of a numerical accessible cluster tiling. Here one can
perform 1 site, 2 site and 2 × 2 site cluster tilings. An improvement of these reference
systems can be achieved in most cases by adding additional bath sites, which simulate
the environment. These bath sites are important in the regimes where the overlap
between the neighboring atoms is large, i.e., the value of bath hybridization (tb)i is in a
non-vanishing range. The value of these parameters are determined variationally by the
VCA condition.
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Figure 6.3: Schematic representation of the generation of reference systems out of the
original system. Left column: the original multi-orbital lattice system with
3 orbitals per site; middle column: the original system is tiled into finite
clusters (1 site, 2 sites, 2×2 sites) which are connected perturbatively. Right
column: addition of bath sites, represented by blue dots for the generation of
reference systems (3 Orbital + 3B, 3 Orbital + 9B1, 3 Orbital + 9B2), where
finite size effects are minimized.
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Figure 6.4: Cubic perovskite crystal structure of SrVO3

6.3 Results for SrVO3

Let us now apply the DFT+VCA approach to the compound SrVO3, which is a cubic
perovskite with a paramagnetic metallic ground state, where Sr is an alkaline earth
metal and V is a transition metal as demonstrated in figure 6.4. The unit cell contains
5 constituent atoms with a lattice parameter of a = 7.2605 Å.

There has been some early studies which argued that the material SrVO3 exhibits weak
electronic correlations[111]. In their justification for this assumption they argued that if
the d-band electrons of vanadium were completely localized due to the strong electronic
correlation then the resultant spin of vanadium should be 1/2 and which would result
in spin ordering but there is no experimental evidence of such an ordering. Furthermore
it was argued that band theory based LDA result for the effective mass of m∗ = 2.98m0

is a good estimate.

Through the enhancement of the ab-initio and band body methods this statement
about weak correlations of SrVO3 has been corrected towards modest correlations[100].

The electronic states near the Fermi level are mainly contributed from the d-orbitals
of the vanadium atom because the s- and p-bands of oxygen are completely occupied
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and d-bands of vanadium are partially occupied as demonstrated in figure 6.5. The t2g
bands with a bandwidth of W = 2.8 eV are crossing the Fermi level which has been
shown in LDA calculations as shown in figure 6.1.

Now we are going to construct an effective Hamiltonian for these t2g bands, therefore
we have to fix an energy window around these bands. Through the consideration of
the band structure in figure 6.1 one can choose such a window from −1 eV to 2 eV .
In next step we use for the downfolding the program packages Wien2Wannier[105] and
Wannier90[106]. The program package Wien2Wannier is used as an interface for the
generation of the input files for the Wannier90 program package out of the ab-initio
electronic structure package Wien2k. This input files are used for the generation of the
maximally localized Wannier functions. By this procedure we obtain parametrization of
the kinetic part of t2g orbitals which is used for the construction of the hopping part
of the Hamiltonian. The Fourier transformation of this Hamiltonian delivers exactly
the t2g LDA bands as shown in figure 6.2. In the next step this effective spin-diagonal
one-particle Hamiltonian

Heff =
∑

ijαβσ

tiα,jβc
†
iασcjβσ (6.1)

with the lattice site indices i and j orbital indices α and β and spin index σ is supple-
mented by a two-particle Coulomb interaction term.

Hint =
1

2

∑

i,αβγδ,σσ′

Uαβγδc
†
iασc

†
iβσ′ciδσ′ciγσ (6.2)

For a three band model one can write this term in the following way

Hint =
1

2
[
∑

i,αβ,σ 6=σ′
Uαβαβniασniβσ′

∑

i,αβ,σ=σ′

(Uαβαβ − Uαββα)niασniβσ′

+
∑

i,αβ,σ 6=σ′
Uααββc

†
iασc

†
iασ′ciβσ′ciβσ − Uαβαβc

†
iασciασ′c

†
iβσ′ciβσ] (6.3)

where the first two terms corresponds to the density-density interactions and the third
term to pair hopping and the last term to spin flip terms. We have to fix the input
parameters Hubbard interaction U and Hund’s coupling J . We set them according to
the literature to the values U = 4 eV and J = 0.6 eV [100]. The interaction term can
be approximated further by constricting it to the density-density terms because the pair
hopping and spin flip contributions are small.

After these preparations of our setup, we can apply the VCA method on the generated
Hamiltonian. For the VCA approach we have to fix the reference system. First we start
with reference systems without bath sites as shown in the second column of figure 6.3,
where the original three orbital per site lattice system is replaced by 1 site, 2 sites and
2 × 2 sites cluster systems. For these reference systems one can consider the evolution
of the density of states ρ(ω), as shown in figure 6.6. There the figure 6.6 shows the
non-interacting case, more precisely the LDA result, which is equal for every reference
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Figure 6.5: Total and partial contributions of the orbitals to the density of states close
to the Fermi energy level. The blue dotted line gives the total density of
states. The red solid line shows that the spectral weight around the Fermi
energy comes almost from the vanadium t2g bands.
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system. In figures 6.6 (b), (c), (d) are the results for the reference systems 1 site, 2
site and 2× 2 reference systems for the interacting case with the parameters U = 4 eV ,
J = 0.6 eV and with a filling of n = 1/3, i.e., one electron in 3 orbitals. These results
show an evolution into the right direction but they are far away from LDA+DMFT
results because of large finite size effects and it is no metal.

Consequently in order to reduce these problems we need additional degrees of freedom,
i.e., more variational parameters. These demands can be fulfilled by a reservoir of non-
interacting electrons, which can be simulated by non-interacting lattice sites, i.e., bath
sites. Examples for accessible cluster configurations with bath sites are shown in the
third column of figure 6.3.

The results for the simplest possible cluster configuration with 3 orbitals + 3 bath
sites brings a large enhancement of the previous results. Figure 6.7 shows the results for
this configuration in comparision with the DFT+DMFT calculation with a continuous-
time quantum Monte Carlo (CT-QMC)[112, 113] impurity solver. The peak structure of
DFT+VCA result comes from the finite bath discretization. In the DFT+VCA result we
see that the coherent peak of the DFT+DMFT calculation around 0.5 eV is reproduced
up to a good approximation. On the other side for the incoherent atomic like Hubbard
satellite we obtain a peak around −1.5 eV . These results are in good agreement with
the APRES measurements [110]. The appearance of an extra peaked structure in the
IPES region is due to the finite number of bath sites.

The same calculation is repeated in figure 6.8 for another configuration with 3 orbitals
+ 9 bath sites, which gives similiar results with a small enhancement of the results.

Another important quantity is the self-energy which reveals many important features
of this system of interest. Figure 6.9 shows the comparison between the imaginary part
of self-energies ImΣ(iω) on the Matsubara axis for this system, where the orange line
corresponds to the VCA result and the blue line corresponds to the DMFT result. Both
cases deliver for the imaginary part of the self-energy non-diverging finite values, i.e.,
a system with a metallic behaviour. One can also use this quantity for the calculation
of the quasiparticle renormalization and the effective mass, which describe the residual
Fermi liquid character of this system. We obtain for the quasiparticle renormalization
Z and for the effective mass m∗ the following values

Z =

(
1− ImΣ(k, iωn)

∂ωn
|ωn→0

)−1

' 0.48 (6.4)

m∗ = 1/Z ≈ 2.08m, (6.5)

which are in good agreement with the experimental value from the ARPES measurements
m∗ ≈ (1.8±0.2)m[109]. In the next section we are going to apply this method to another
compound SrRuO3, where the spin-orbit coupling is an important quantity, which has
to be included into the consideration.
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Figure 6.6: Density of states for t2g orbitals for different clusters without bath sites. The
values of parameters Hubbard U and Hund’s coupling: (a) U = 0.0, J = 0.0,
it is exact for all clusters. (b)-(d) U = 4.0 eV , J = 0.6 eV . Used reference
systems: (b) 1 site(3 orbitals) clusters, (c) 2 site clusters with 3 orbitals per
site, (d) 4 site cluster with 3 orbitals per site. These results are compared
with DFT+DMFT results.
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Figure 6.7: Comparison of density of states obtained from VCA and DMFT. The param-
eters used are U = 4.0 eV , J = 0.6 eV . For the VCA calculations 3 orbitals
+ 3 bath sites are used. The three t2g-orbitals are degenerate and the effect
of the surrounding is simulated by bath sites, where the bath hybridization
tb and the on-site energies εb are variationally determined. The result shows
a coherent quasi-particle peak and two incoherent peaks referred as the lower
and the upper Hubbard satellites.

112



6.3 Results for SrVO3

-4 -2 0 2 4 6 8

ω

0

1

2

3

4

5

6

7

ρ
(
ω

)

VCA

DMFT

Figure 6.8: Comparison of density of states obtained from VCA and DMFT. The pa-
rameters used are U = 4.0 eV , J = 0.6 eV . For the VCA calculations the
configuration 3 orbitals + 9 bath sites is used. The three t2g-orbitals are de-
generate and the effect of the surrounding is simulated by bath sites, where
the bath hybridization parameters (tb)i and the on-site energies (εb)i are vari-
ationally determined. The result shows a coherent quasi-particle peak with
a substructure and two incoherent peak regions referred as the lower and the
upper Hubbard satellites.
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Figure 6.9: The comparison of imaginary part of self-energy on the Matsubara axis
ImΣ(iω) obtained from VCA and DMFT calculations for the t2g bands.
The parameters necessary for this analysis are fixed to the following values:
U = 4.0 eV , J = 0.6 eV . For the VCA calculation the reference system with
3 orbitals + 3 bath sites is used.
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Figure 6.10: Band structure of SrRuO3 compound obtained from DFT package Wien2k
based on linearized augmented plane waves[103]. The colorful thick solid
lines around and on the Fermi level are t2g bands.

6.4 Results for SrRuO3

SrRuO3 is the next compound we want to study within the method LDA+VCA. It
has a large spin orbit coupling which is defined as the interaction of the spin-magnetic
moment with the magnetic field induced by its own orbital motion. But first, let us
consider some general properties of this compound. SrRuO3 belongs to the class of
ruthenates. It exhibits a orthorhombic perovskite structure with a bad metal behaviour
at high temperatures and a Fermi liquid like behaviour at low temperatures[114].

Photoemission studies show that the physical properties of the ruthenates or ruthe-
nium oxide series are effected by the electronic correlations. Here we can again construct
an effective model from t2g orbitals. There is a large spin-orbit coupling of the ruthenium
ion therefore one has to take into account this effect. Therefore we have to do a spin
polarized calculation where the spin-up and spin-down states are calculated separately
and spin-orbit coupling mixes the spin up and spin down states. This leads to splitting
of the electronic bands in the band structure picture as shown in figure 6.10. The next
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Figure 6.11: Kinetic part parametrization of t2g orbitals obtained from the Wannier
construction. These values are used for the generation of the one-particle
effective Hamiltonian. These bands are obtained by the Fourier transfor-
mation of this Hamiltonian.

step is the construction of the effective one-particle Hamiltonian

Heff =
∑

ijαβσσ′

tσσ
′

iα,jβc
†
iασcjβσ′ , (6.6)

which is not spin diagonal because spin-orbit coupling mixes the spin-up and spin-down
states. The diagonalization of this effective Hamiltonian results in the LDA band struc-
ture as shown in figure 6.11, where the small deviations (fluctuations) from the LDA
results come due to the small k-mesh and due to the non-optimized selection of the
energy window.

In the next step this effective Hamiltonian is supplemented by the Coulomb interaction
term and the corresponding results are shown in figure 6.12.

As like the SrVO3 we start again with the check of the LDA result in figure 6.12 (a)
for the non-interacting limit, where the emergence of the peaked structure comes from
the non-optimization of the Wannier calculation, which can be removed by variation of
the energy window and by an increase of the k-mesh. But beside these small deviations
the result agrees with the LDA result. For the interacting case without bath sites the
1 site (3 orbitals with orbital splitting) reference system as shown in figure 6.12 (b)
deliver metallic solutions due to the spin-orbit coupling which was not the case for the
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Figure 6.12: Density of states for t2g orbitals of SrRuO3 for different clusters without
bath sites. The values of parameters Hubbard U and Hund’s coupling: (a)
U = 0.0, J = 0.0, it is exact for all clusters. (b)-(c) U = 2.8 eV , J = 0.4 eV .
Used reference systems: (b) 1 site (3 orbitals with orbital splitting) clusters,
(c) 1 site clusters with 3 additional bath sites.
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6 COMBINATION WITH AB-INITIO METHOD FOR REALISTIC COMPOUNDS: THE APPLICATION
TO SrVO3 AND SrRuO3

SrVO3. But still the finite size effects are supposed to be strong. Again we can improve
the results by bath sites which induce a noticeable improvement of finite size effects as
shown in figure 6.12 (c), where a three peak structure is obtained. Also the consideration
of effective mass (m∗ ≈ 1.15) for this compound SrRuO3 gives decreased values compared
to the layered structure Sr2RuO4, which coincides with the experimental measurements.

6.5 Summary

Here we have considered a possible combination of VCA and LDA for the application
on the multi-orbital correlated materials in analogy to the LDA+DMFT method. For
the downfolding we used Wien2Wannier90 and Wannier90, which is inducing the max-
imally localized Wannier functions by exploiting the gauge freedom in the definition of
the Wannier functions. Using this one can generate an effective Hamiltonian which is
supplemented by a Coulomb term for the electronic correlations. Through this way a
minimal model for the correlated bands can be generated. As a benchmark we used the
material SrVO3 where a three band Hubbard Hamiltonian like system can be generated.
This model is solved within VCA method. The results for this material show a good
agreement with the LDA+DFMT method and experimental results.

This method can be applied to the material like SrRuO3, where spin orbit coupling is
an important quantity and brings a spitting of the orbitals. Therefore one has to perform
a spin polarized LDA calculation which brings a doubling of the electronic bands. The
results show us that the spin-orbit coupling gives us more smooth results and helps us
to reach for the smaller systems, e.g., 1 site cluster to get into the metallic phase.
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Correlations at different length scales are important for a proper description of many
materials, therefore their study is important from the aspect fundamental research and
from the view of the of the technological applications.

We analyzed the spatial correlation dependency of the Hubbard model, which is the
simplest model for the standard correlation physics as a function of dimensionality and
cluster shape geometry. In the Hubbard model the dimensionality suppresses more and
more the non-local correlations and the weight of the local correlations increases. This
is obvious for instance, at distance 1 lattice site the measure drops to around 0.75 in 1D,
to 0.55 in 2D, and to 0.4 in 3D. Even in 3D, non-local correlations cannot be neglected
completely. But compared to 1D, short-length scales obviously capture the relevant
physics much better in higher dimensions.

Also the study of Mott-Hubbard metal-insulator transition of two dimensional Hub-
bard model with regard to non-local correlations display the importance of the cor-
relations. The results which include short range correlations deliver a finite critical
interaction UC for the (metastable) paramagnetic phase. On the other hand the results
where long range correlations are included, indicate that for all finite U > 0 at low
temperature T the model is a paramagnetic insulator because of the strong extended
antiferromagnetic fluctuations (paramagnons). These fluctuations gradually show an
evolution from a Slater-like behaviour to a Heisenberg-like behaviour, which is similar
to the evolution for the T = 0 antiferromagnet. The critical interaction UC is shifted to
the value UC = 0. The inclusion of the frustration turns down this scenario. It shifts the
vanishing critical interaction UC = 0 towards finite values which ends into a quantum
critical point.

After the study of the correlation within the Hubbard model we go over to the real
material calculations. Therefore we have considered a possible combination of VCA
and LDA for the application on the multi-orbital correlated materials in analogy to the
LDA+DMFT method. For the downfolding we used Wien2Wannier90 and Wannier90,
which is inducing the maximally localized Wannier functions by exploiting the gauge
freedom in the definition of the Wannier functions. Using this one can generate an
effective Hamiltonian, which is supplemented by a Coulomb term for the electronic cor-
relations. Through this way a minimal model for the correlated bands can be generated.
As a benchmark we used the material SrVO3 where a three band Hubbard Hamiltonian
like system can be generated. This model is solved within VCA method. The results
for this material for the effective mass m∗ is in good agreement with the LDA+DFMT
method and experimental results.

This method can be applied to the material like SrRuO3, where spin orbit coupling is
an important quantity. Therefore one has to perform a spin polarized LDA calculation
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which brings a doubling of the electronic bands.
Finally we comment that the analytical and numerical efforts for the study of strongly

correlated electronic systems lead to a significant progress in this area. But still there is
still a lot to be done. The research in this area is significant for many reasons. Beside
the technological applications it helps to get a more clear understanding progress in the
fundamental research and in the understanding of collective aspects.
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8 Appendix

8.1 AppendixA:

8.1.1 Atomic units

In atomic units the central atomic constants

elementary charge: e
mass of electron : me

Planck Constant: h̄
Dielectric constant ε0

have the following value

e = me = h̄ =
1

4πε0
= 1 (8.1)

8.1.2 Theta function

The so-called theta function or step function is defined by

Θ(t) =

{
1 for t > 0
0 for t < 0

}
(8.2)

8.1.3 Time ordering operator

Time ordering operator for real time is defined by

T [A(t1)B(t2)] =

{
A(t1)B(t2) if t1 > t2
B(t2)A(t1) if t1 < t2

}
(8.3)

and for the imaginary time iτ is defined in the analogous manner

Tτ [A(τ1)B(τ2)] =

{
A(τ1)B(τ2) if τ1 > τ2

B(τ2)A(τ1) if τ1 < τ2

}
(8.4)

8.1.4 time evolution operator

Definition:

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (8.5)
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8 Appendix

It evolutes a state from time t0 to the time t. U(t, t0) is an unitarian operator and fulfills
the boundary condition U(t, t0) = 1. Now we are interested in a compact form for U
therefore the following differential equation which defines the time evolution operator
has to be solved

∂

∂t
U(t, t0) = − i

h̄
V (t)U(t, t0) (8.6)

By integration we obtain

U(t, t0) = 1 +
1

i

∫ t

t0

V (t′)U(t′, t0)dt′ (8.7)

This integral equation can be solved iteratively

U(t, t0) = 1 +
1

i

∫ t

t0

V (t1)dt1 +
1

i2

∫ t

t0

V (t1)dt1

∫ t1

t0

V (t2)dt2 + · · · (8.8)

From this result we can obtain a compact expression by using the time ordering operator
T . Let us show how the third term can be rewritten
∫ t

t0

V (t1)dt1

∫ t1

t0

V (t2)dt2 =
1

2

∫ t

t0

V (t1)dt1

∫ t1

t0

V (t2)dt2 +
1

2

∫ t

t0

V (t2)dt2

∫ t2

t0

V (t1)dt1

=
1

2

∫ t

t0

dt1

∫ t1

t0

dt2V (t1)V (t2)θ(t1 − t2)

+
1

2

∫ t

t0

dt2

∫ t2

t0

dt2V (t2)V (t1)θ(t2 − t1)

=
1

2

∫ t

t0

dt1

∫ t

t0

dt2 [V (t1)V (t2)θ(t1 − t2) + V (t2)V (t1)θ(t2 − t1)]

=
1

2

∫ t

t0

dt1

∫ t

t0

dtT [V (t1)V (t2)]

This expression can be easily generalized to higher order terms and finally the following
compact form

U(t, t0) =

∞∑

n=0

1

n!

(
1

i

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnT [V (t1) · · ·V (tn)]

= T
[
e
−i

∫ t
t0
dt′V (t′)

]
(8.9)

8.2 AppendixB: Spread or delocalization functional

From the Bloch functions ψnk i.e. LAPW(linear augmented plane wave) Bloch functions
general Wannier functions of a band n at site ~R0 can be constructed

wn(r−R0) =
1

N

∑

k

eik.R0eiφn(k)ψnk, (8.10)
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where the arbitrary phase φn(k) have to be determined to reach some level of localization
around the point R0. The first choice in such a case is to take the average square radius

〈r2〉ave =

∫
r2|wn(r)|2dr. (8.11)

The average square radius is not invariant under the transformation of the phase φn(k),
therefore the phases can be used to derive a differential equation[115] to reach the min-
imal value of the average square radius, which has to be fulfilled at every k vector

∇k

∫
u∗nk(r)i∇kunk(r)dr = 0. (8.12)

This procedure can be optimized and rewritten for a set of orbitals which are described
by general Wannier functions

wn(r−R) =
V

(2π)3

∫

BZ

(∑

m

U (k)
mnunk(r)

)
exp(ik.r)dk, (8.13)

where U
(k)
mn are unitary matrices which mix the bands at wave vector k. These unitary

matrix have to be determined For this purpose equivalently a similar expression like the
average square radius can be written. This expression is to the second moment of the
corresponding Wannier functions and is defined delocalization functional

Ωdeloc = 〈r2〉 − 〈~r〉2. (8.14)

Here for clearness we introduce the following notation for the Wannier functions at the
position R

wn(r−R) = |Rn〉. (8.15)

The delocalization functional in these notation looks like

Ωdeloc =
∑

n

(
〈0n|r2|0n〉 − 〈0n|r|0n〉2

)
. (8.16)

This functional can be rewritten by adding and subtracting off-diagonal term

Ω̃ =
∑

n

∑

~Rn 6=~0n

|〈Rm|r|0n〉|2. (8.17)

Hence using this term the delocalization functional can be decomposed in the following
terms

Ωdeloc = ΩI + Ω̃

= ΩI + ΩD + ΩOD, (8.18)
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where

Ω̃ =
∑

n

[
〈0n|r2|0n〉 −

∑

Rm

|〈Rm|r|0n〉|2
]
,

ΩD =
∑

n

∑

~R 6=0

|〈Rn|r|0n〉|2,

ΩOD =
∑

m6=n

∑

R

|〈Rm|r|0n〉|2.

We can use (7.3) to write these matrix elements in the Fourier space as

〈Rn|r|0n〉 = i
V

(2π)3

∫
dkeikR〈unk|∇k|unk〉 (8.19)

〈Rn|r2|0n〉 = − V

(2π)3

∫
dkeikR〈unk|∇2

k|unk〉. (8.20)

These expressions have two major advantages. They allow us to calculate the affects of
any unitary transformation on the localization behaviour of the delocalization functional
because we have a direct relation to Bloch functions and we do not have to recalculate
expensive scalar products. For the calculation of some numerical values for these terms
we need Bloch functions defined on a mesh of k vectors. Now one can calculate the gra-
dient on this k mesh using the following discretization schemes for any smooth function
f(x)

∇f(x) =
∑

b

wbb [f(x + b)− f(x)] (8.21)

|∇f(x)|2 =
∑

b

wbb [f(x + b)− f(x)]2 (8.22)

to solve the expressions (7.10)− (7.11). The quantity b corresponds to a vector which is
connecting to neighboring k vectors and wb is the weight which depends on number of
neighbors in the unit cell. After some calculation and some algebra we obtain following
expressions for the delocalization functional

〈r〉n =
1

N

∑

k,b

wb.b.lnM
(k,b)
n,n , (8.23)

〈r2〉n =
1

N

∑

k,b

wb

([
1− |M (k,b)

n,n |2
]

+
[
ImlnM (k,b)

n,n

])
, (8.24)
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ΩI =
1

N

∑

k,b

wb

(
Nbands −

∑

m,n

|M (k,b)
n,n |2

)
, (8.25)

ΩOD =
1

N

∑

k,b

wb
∑

m6=n
|M (k,b)

n,n |2, (8.26)

ΩD =
1

N

∑

k,b

wb
∑

n

[
−ImlnM (k,b)

n,n − b.〈r〉n
]2
. (8.27)

Obviously for the terms which are necessary to obtain the delocalization functional
the only quantities of interest are the matrix elements between the lattice periodic part
of Bloch orbitals at neighboring k vectors[116]:

M (k,b)
n,n = 〈umk|un,k+b〉. (8.28)
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U. Schollwöck, eds., vol. 3 of Schriften des Forschungszentrums Jülich Reihe
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[49] D. Sénéchal, “An introduction to quantum cluster methods,” Lectures given at
the CIFAR - PITP International Summer School on Numerical Methods for
Correlated Systems in Condensed Matter, Sherbrooke, Canada, May 26 - June 6
(2008) .

[50] K. Held, A. A. Katanin, and A. Toschi, “Dynamical vertex approximation – an
introduction,” Prog. Theor. Phys. Suppl. 176 (2008) 117.

[51] J. A. Bychkov, L. P. Gorkov, and I. E. Dzyaloshinskii, “Possibility of
superconductivity type phenomena in a one-dimensional system,” J. Exptl.
Theoret. Phys. 50 (1966) 738–758.

[52] N. E. Bickers and S. R. White, “Conserving approximations for strongly
fluctuating electron systems. ii. numerical results and parquet extension,” Phys.
Rev. B 43 (1991) 8044–8064.
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Öğrenme hayatimda bana yaptiklari amansiz bitmek tükenmez katkilarindan dolayi.

This work was supported by the Austrian Science Fund (FWF) SFB-VICOM project
F04103.

136


	Contents
	INTRODUCTION
	THEORETICAL BACKGROUND
	Introduction
	Many body theory of electronic structure
	Green's Functions
	Linear response theory
	Green's functions for many body systems
	Lehman representation
	Green's function on the Matsubara axis
	Spectral function
	Self-energy

	Local and non-local correlations

	METHODS
	Introduction
	One- and two-particle operators in the second quantization and the Hubbard model
	Exact Diagonalization
	Generation of configurations for the Hubbard model
	Calculation of matrix elements for the Hubbard model
	Lanczos algorithm
	Band Lanczos algorithm
	Many body Green's function

	Cluster perturbation theory
	Variational cluster approximation (VCA)
	Dynamical vertex approximation (DA)
	Density functional theory combined with VCA
	Overview over density functional theory
	Practical application of DFT
	Bloch functions and Wannier functions
	Maximally localized Wannier functions
	Construction of the model-Hamiltonian
	Sketch of the DFT+VCA scheme
	Parameters in the Model-Hamiltonian and Constrained RPA 


	A MEASURE OF THE NON-LOCALITY OF CORRELATIONS FOR THE HUBBARD MODEL
	Introduction
	One-dimensional Hubbard Model
	Two-dimensional Hubbard Model
	Three-dimensional Hubbard Model
	Comparison of the dimensionality in the Hubbard Model

	MOTT-HUBBARD TRANSITION IN THE TWO-DIMENSIONAL HUBBARD MODEL
	Introduction
	System and methods
	Phase diagram
	Unfrustrated short range correlations
	Frustrated short range correlations
	Unfrustrated long range correlations
	Physical interpretation
	Conclusions

	COMBINATION WITH AB-INITIO METHOD FOR REALISTIC COMPOUNDS: THE APPLICATION TO SrVO3 AND SrRuO3
	Introduction
	Reference systems for SrVO3
	Results for SrVO3
	Results for SrRuO3
	Summary

	CONCLUSIONS AND OUTLOOK
	Appendix
	AppendixA:
	Atomic units
	Theta function
	Time ordering operator
	time evolution operator

	AppendixB: Spread or delocalization functional

	Bibliography
	Acknowledgements

