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Abstract

In this thesis I study the transport properties of non-interacting topological quantum systems,
based on the Su-Schrieffer-Heeger Model and the Kitaev Model, out of equilibrium.
These two, the former describing an insulator and the latter a superconductor, are the simplest
models, where a topological phase is realized. The Kitaev Model is especially interesting, be-
cause it hosts quasiparticle excitations that are Majorana fermions.
The transport properties are evaluated with an auxiliary master equation approach. Therefore
the system of interest is connected to two electron reservoirs, either of them modeled by another
small quantum system embedded in a Markovian environment. A bias voltage is applied be-
tween them driving a current through the system.
In this thesis techniques to determine the dynamics and the non-equilibrium steady state of such
a composed system are extended and partly developed anew, based on the preceding work of our
working group. Especially the inclusion of superconductivity is an original contribution from
this thesis.
The derived techniques are finally applied to a single Su-Schrieffer-Heeger wire, a two-
dimensional array of such wires, a Kitaev wire and a wire described by a time-dependent exten-
sion of the Kitaev Model. In contrast to the ordinary Kitaev Model, the time-extended one is
self-consistently derived from an interacting model without further simplifications and therefore
maintains the originally valid conservation laws.
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Kurzfassung

In dieser Masterarbeit untersuche ich die Transporteigenschaften von nicht wechselwirkenden
topologischen Quantensystemen, basierend auf dem Su-Schrieffer-Heeger Modell und dem Ki-
taev Modell, im Nichtgleichgewicht.
Diese beiden Modelle, ersteres ein Isolator, letzteres ein Supraleiter, beschreiben die einfachsten
Systeme, in denen eine topologische Phase realisiert werden kann. Das Kitaev Modell ist beson-
ders interessant, da dort Majorana Fermionen als Quasiteilchen-Anregungen auftreten.
Die Transporteigenschaften dieser Systeme werden mit Hilfe eines Mastergleichungs-Ansatzes
ermittelt. Dazu wird das zu untersuchende System an zwei Elektronenreservoirs gekoppelt, die
jeweils durch ein weiteres kleines Quantensystem, eingebettet in ein Markov’sches Bad, model-
liert werden. Zwischen ihnen wird eine Spannung angelegt, die einen Strom durch das System
treibt.
Im Zuge dieser Masterarbeit werden Methoden zur Bestimmung der Zeitentwicklung und des
stationären Zustandes eines solchen zusammengesetzten Systems erweitert und zum Teil neu
entwickelt, basierend auf vorangegangenen Arbeiten aus unserer Arbeitsgruppe. Besonders die
Berücksichtigung supraleitender Terme stellt einen neuen Beitrag dieser Masterarbeit dar.
Diese Methoden werden schließlich auf einen einzelnen Su-Schrieffer-Heeger Draht, ein zwei-
dimensionales Array aus solchen Drähten, einen Kitaev Draht und einen Draht, der durch eine
zeitabhängige Erweiterung des Kitaev Modells beschrieben wird, angewandt. Im Gegensatz
zum gewöhnlichen Kitaev Modell, wird dieses zeitabhängige Modell selbstkonsistent und ohne
weitere Vereinfachungen von einem wechselwirkenden Modell abgeleitet. Daher bleiben die
ursprünglichen Erhaltungssätze in diesem Fall gültig.
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Throughout this thesis I have used natural units, the reduced Planck constant ~, the elementary
charge e and the Boltzmann constant kB are set equal to one.
Regarding the notation, vectors and matrices are set in boldface type, operators - except for cre-
ation and annihilation operators - are written with a hat and superoperators with a double hat.
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1 INTRODUCTION

1 Introduction

Before the discovery of the quantum Hall effect [1], phases of matter were uniquely defined,
according to Landau, in terms of the symmetries they spontaneously break. In a liquid-to-solid
transition, for instance, the translational symmetry is broken, in a paramagnetic-to-ferromagnetic
transition the rotational symmetry.
Then K. von Klitzing et al. found out that a two-dimensional electron gas in a strong perpen-
dicular magnetic field shows a current that is characterized by a quantized conductance [1]. The
conductance quantum is completely determined by physical constants, insensitive to local per-
turbations and even independent of the material probed (as long as the effect is present). This is
known as the quantum Hall effect.
This extraordinary behavior cannot be explained by spontaneous symmetry breaking and it be-
came soon clear that Landau’s definition needs further refinement. The quantum Hall effect was
explained two years after its discovery [2]. It turned out that a topological quantum number can
be defined for the bulk of the system, which determines the conductance of its boundaries. This
quantum number is associated with a phase and its change is accompanied by a change of phase.
Furthermore, in order for the effect to occur, the bulk has to show an energy gap and this gap
closes at the transition points.
Having investigated this interesting new state of matter, the research went on with the aim to
find other topological phases and to find out, whether materials exist that intrinsically show
topological behavior, without the presence of a magnetic field or other external parameters. The
first topological insulator was introduced by C.L. Kane and E.J. Mele in 2005 [3], more than
two decades after the discovery of the quantum Hall state. Ever since many systems could be
identified to have topologically non-trivial properties [4, 5]. Generally, in topological insulators
the phases can be labelled by a set of topological quantum numbers. The systems have a bulk
energy gap that closes at the transition points between phases and some phases are associated
with topologically protected gapless boundary states.
Superconductors also have a gapped energy spectrum and can show a topological phase. In topo-
logical superconductors exotic quasiparticle excitations arise at the boundaries, namely spatially
isolated Majorana fermions. These have been originally introduced in the context of high-energy
physics by E. Majorana [6]. They are especially interesting, because they are non-Abelian
anyons [7]. That is, they obey special (anti-)commutation rules, which are neither bosonic nor
fermionic. Therefore particle exchanges are non-trivial operations that can change the state of
the system fundamentally. Spatially isolated Majorana fermions have been proposed as infor-
mation carriers for quantum computing, see sec. 3.2.1.
In topological phases of matter the transport properties of the arising boundary states are of par-
ticular interest. Within this thesis I investigate systems based on the Su-Schrieffer-Heeger Model
and the Kitaev Model out of equilibrium. These two, describing an insulator and a superconduc-
tor, respectively, are the simplest models, where a topological phase can be realized. In order
to study the systems’ transport properties, they are connected to two leads and a bias voltage is
applied driving a current. They are, therefore, described as open quantum systems coupled to
reservoirs. This thesis presents and partly develops techniques to theoretically deal with such
open systems.
Specifically, sec. 2 of this thesis provides an introduction into the treatment of open quantum
systems. Most importantly, in sec. 2.2.1 the Lindblad quantum master equation is introduced,
which I used, in order to model the open systems’ dynamics. In sec. 2.3 the superfermion rep-
resentation is presented, which enables us to treat an open system similar to a closed one. This
section contains a summary of established results, taken from [8] and [9] .
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1 INTRODUCTION

In sec. 3 the basic models studied in this thesis are introduced, the Su-Schrieffer-Heeger Model,
sec. 3.1, and the Kitaev Model, sec. 3.2. There is also a part about Majorana fermions and
applications, sec. 3.2.1, where their potential for quantum computing is highlighted, and a part
about the physical realization of the Kitaev Model, sec. 3.2.2, since it does not occur naturally.
The information for this section was also taken from the literature. I did the calculations to show
the properties of the bulk and the boundaries anew, in order to present them differently and in
some more detail than the used literature.
In sec. 4 the generic solution of the Lindblad equation for a system of non-interacting fermions
is presented. In sec. 4.1 the Liouvillian, the generator of this equation, is determined for an
ordinary non-interacting system and for a generalized one that includes superconducting (BCS)
pairing terms. The generator is further rephrased, in order to simplify the task of solving the
Lindblad equation. In sec. 4.2 the time evolution of the system is determined with two different
methods, one of them based on the diagonalization of the Liouvillian. In sec. 4.3 the steady state
of the system is evaluated, following roughly the ideas in [10]. In this paper similar calculations
are performed for an ordinary non-interacting system without BCS pairing. I adapted some of
the results, as marked at the respective positions. The rest of the calculations in sec. 4, especially
all calculations for the superconducting system, are original contributions from this thesis. The
system including BCS pairing is far more complicated to handle and some non-trivial proofs are
necessary to determine the dynamics and the steady state via diagonalization. These calcula-
tions are partly long and based upon another. For a better reading they were transferred to the
Appendix, sec. 7, which also constitutes an original contribution of the present thesis.
Sec. 5 contains the results of the calculations. In sec. 5.2 a model for the leads is presented
and a scheme to apply a bias voltage between them, following the articles [9, 10]. In sec. 5.3
the Su-Schrieffer-Heeger Model is studied and in sec. 5.5 the Kitaev Model. Furthermore a
two-dimensional extension of the Su-Schrieffer-Heeger Model is examined, sec. 5.4. At the end
of this section a time dependent extension of the Kitaev Model is introduced and investigated,
sec. 5.6. This part contains probably the most interesting results of the present thesis. I have
written all programs to solve the Lindblad equation and produce these results on my own, using
Matlab and the provided functions by Matlab.
In sec. 6 the main results are summarized and discussed.
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2 OPEN QUANTUM SYSTEMS

2 Open quantum systems

In this thesis I study the transport properties of topological systems. For this purpose they are
coupled to two leads and a bias voltage is applied. The systems are open then. This section
provides an introduction into the treatment of open quantum systems. It starts with a brief
review about closed systems, sec. 2.1, followed by some general remarks about open systems,
sec. 2.2. Then the Lindblad quantum master equation is presented, which can be used to describe
the systems’ dynamics and which I applied in this thesis. Sec. 2.1 and 2.2 follow closely [8],
according information can also be found in many other introductory books. In sec. 2.3 the
superfermion representation is introduced, according to [9], which allows to treat an open system
analogously to a closed one. It is used to solve the Lindblad quantum master equation in this
thesis.

2.1 Review on closed systems

Pure states: A closed quantum system in a pure state can be described in terms of its state
vector |ψ(t)〉, whose dynamics is governed by the Schrödinger equation,

i
d
dt
|ψ(t)〉 = Ĥ |ψ(t)〉 , (1)

where Ĥ denotes the hamiltonian of the system. The solution to this equation is a unitary prop-
agation of the state vector in time, according to

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (2)

Û(t, t0) is called time evolution operator. It maps the system from its initial state at time t0 to its
final state at time t and is defined as

Û(t, t0) = T̂ exp

−i

t∫
t0

dτ Ĥ(τ)


Ĥ,Ĥ(τ)

= exp
[
−i Ĥ (t − t0)

]
.

(3)

T̂ is the time ordering operator. It rearranges products of operators standing to its right such
that their time arguments increase from right to left. If the hamiltonian has no explicit time
dependence, the second line of eq. (3) is valid. Since the hamiltonian is hermitian, Ĥ = Ĥ†, the
time evolution operator is unitary, Û†Û = ÛÛ† = 1.
If the time evolution |ψ(t)〉 is known, expectation values of system operators Ô can be calculated,
according to

〈Ô(t)〉 = 〈ψ(t) | Ô |ψ(t)〉 . (4)

Mixed states: In the more general case that the system is initially in a mixed state, described
by its density operator ρ̂(t0), the Liouville - von Neumann equation is valid,

i
d
dt
ρ̂(t) = [Ĥ, ρ̂(t)] , (5)
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2.2 Open systems 2 OPEN QUANTUM SYSTEMS

where [Ĥ, ρ̂] denotes the commutator Ĥρ̂ − ρ̂Ĥ. Its solution is calculated with the same propa-
gator as the pure state solution, given in eq. (3),

ρ̂(t) = Û(t, t0) ρ̂(t0) Û†(t, t0) . (6)

The Liouville - von Neumann equation can also be expressed as

i
d
dt
ρ̂(t) =

ˆ̂L ρ̂(t) . (7)

ˆ̂L is called Liouvillian or Liouville superoperator. It is defined by its action as ˆ̂L ρ̂ = [Ĥ, ρ̂]. The
term superoperator arises, because it acts on an operator, instead of a state vector, and the result
of this action is another operator. The solution to eq. (7) is determined as

ρ̂(t) =
ˆ̂U(t, t0) ρ̂(t0) , (8)

with the time evolution superoperator ˆ̂U,

ˆ̂U(t, t0) =
ˆ̂T exp

−i

t∫
t0

dτ ˆ̂L(τ)


ˆ̂L, ˆ̂L(τ)

= exp
[
−i ˆ̂L (t − t0)

]
.

(9)

Its application to the density operator, ˆ̂U ρ̂, is equivalent to Û ρ̂ Û†, which can be seen by com-
parison of eq. (8) with (6). As its ordinary counterpart, the time evolution superoperator is
unitary, ˆ̂U† ˆ̂U =

ˆ̂U ˆ̂U† = 1, since the Liouvillian of a closed system is hermitian, ˆ̂L =
ˆ̂L†.

The set of equations (7) - (9) formally look the same as the equations (1) - (3), except for the
fact that the former deal with superoperators instead of ordinary operators, acting on operators
instead of state vectors.
Expectation values of system operators Ô in dependence of time are determined by

〈Ô(t)〉 = tr
{
ρ̂(t)Ô

}
. (10)

2.2 Open systems

An open quantum system is a quantum system that is coupled to its surrounding environment.
Depending on the nature of the coupling, the environment exerts influence on the system’s
dynamics. Under certain mathematical conditions it is possible to obtain the dynamics of an
open quantum system from a master equation. This is a first order differential equation for the
reduced density operator of the system. Within this equation the density operator changes due
to the action of other system operators, with coefficients determined by the coupling to the envi-
ronment.
A master equation can be thought of as being derived from the evolution equation of a universal
closed system, involving the system of interest and its environment, by taking the partial trace
over the environment’s degrees of freedom. This procedure can also be applied to the solution
of the universal evolution equation, yielding the solution to the master equation, as sketched in
the diagram (11), adapted from [8].
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2.2 Open systems 2 OPEN QUANTUM SYSTEMS

In (11) ρ̂u, ρ̂ and ρ̂e are the density operators of the universe, the system and its environment,
respectively. It has been assumed that the initial state of the universe factorizes and that the state
of the environment is independent of time. The latter is plausible, if the environment is much
larger than the system and thus its state only marginally affected by the coupling.

ρ̂u(t0) = ρ̂(t0) ⊗ ρ̂e
unitary evolution
−−−−−−−−−−−−→ ρ̂u(t) =

ˆ̂Uu(t, t0)
[
ρ̂(t0) ⊗ ρ̂e

]
tre

y ytre (11)

ρ̂(t0) −−−−−−−−−−−−→
map

ρ̂(t) =
ˆ̂U(t, t0) ρ̂(t0)

The superoperators ˆ̂Uu and ˆ̂U describe the propagation of the universe and the system. They
yield the solutions to the universal evolution equation and the master equation, respectively.
Since the universe is closed, eq. (5) - (10) apply and it evolves unitarily in time. This does
not hold for the system, as highlighted in sec. 2.2.1. In general a derivation like this cannot be
exercised in practice. Therefore a master equation is usually an approximation.

2.2.1 The Lindblad quantum master equation

Within this thesis I work with the Lindblad quantum master equation. It has the following
structure,

i
d
dt
ρ̂(t) = [Ĥ, ρ̂(t)] + i

∑
i j

γi j

[
2 M̂i ρ̂(t) M̂†j −

{
M̂†j M̂i , ρ̂(t)

}]
, (12)

ρ̂ is the reduced density operator of the system, describing its quantum state. Ĥ is a hermitian
operator that acts as effective hamiltonian. It includes the free hamiltonian of the system, if
it were closed, and potentially additional terms, due to the coupling to the environment. The
operators M̂i are called Lindblad operators. They are also system operators, but in general not
hermitian. Their actual manifestation depends on the environment and the nature of the coupling
to it. This also holds for the coefficient matrix γ, which is hermitian and positive semidefinite.
The expression

{
M̂†j M̂i , ρ̂

}
= M̂†j M̂i ρ̂ + ρ̂ M̂†j M̂i means the anticommutator. In summary, the

quantities in eq. (12) have the following properties,

Ĥ = Ĥ† , (13)

γ = γ† , (14)

υ†γυ ≥ 0 for all vectors υ . (15)

The Lindblad master equation is the most general master equation that may be obtained featuring
the properties that it is local in time, has constant coefficients and preserves the interpretation
of ρ̂ as a density operator. The last condition means that ρ̂ keeps its defining qualities as a
density operator during the time evolution, a proper initialization provided. These qualities are
hermiticity, normalization and positive semidefiniteness,

ρ̂ = ρ̂† , (16)

tr{ρ̂} = 1 , (17)

〈ψ| ρ̂ |ψ〉 ≥ 0 for all vectors |ψ〉 . (18)

11



2.3 Superfermion representation 2 OPEN QUANTUM SYSTEMS

The first condition implies that the future state of the system ρ̂(t + dt) is solely dependent on its
present state ρ̂(t) and other quantities in the master equation. There is no additional information
encoded in the system’s past, hence there is no memory effect.
The Lindblad master equation can be rewritten in terms of a Liouville superoperator, analogue
to the Liouville - von Neumann equation (5), and also resulting in eq. (7). Its solution is then
given by the set of equations (8) to (10), but with a different Liouvillian,

ˆ̂L =
ˆ̂LH +

ˆ̂LD , (19)
ˆ̂LH ρ̂(t) = [Ĥ, ρ̂(t)] , (20)
ˆ̂LD ρ̂(t) = i

∑
i j

γi j

[
2 M̂i ρ̂(t) M̂†j −

{
M̂†j M̂i , ρ̂(t)

}]
. (21)

ˆ̂L is divided into two parts, depending on its action. The first one, eq. (20), results from the
hamiltonian and is marked by the subscript H. It has the same structure as the Liouvillian of
a closed system. Therefore it contributes a unitary propagation to the system’s dynamics. The
second part, eq. (21), has no closed system - analogue. It is not hermitian and therefore generates
a non - unitary propagation. As a consequence, the time evolution superoperator, eq. (9), which
is calculated from the total Liouvillian, eq. (19), is not unitary. Hence, this part of the Liouvillian
accounts for the dissipation in the system and is marked by the subscript D. In summary,

ˆ̂L , ˆ̂L† (22)
ˆ̂U−1 , ˆ̂U† (23)

in open systems, whereas in closed systems equalities are valid.

2.3 Superfermion representation

In order to solve the Lindblad quantum master equation, it is beneficial to fully exploit the
structural analogies between its superoperator formulation (7), with the Liouvillian (19) - (21),
and the Schrödinger equation (1). To this end, eq. (7) is rephrased in an augmented state space.
The calculation follows the article [9].

Rephrasing the Lindblad equation: In addition to the Hilbert space of the system, which
can be defined by a complete set of orthonormal state vectors |n〉, a second, identical Hilbert
space is introduced, analogously defined by state vectors |ñ〉,∑

n

|n〉〈n| = 1 , 〈n|m〉 = δnm , (24)∑
n

|ñ〉〈ñ| = 1̃ , 〈ñ|m̃〉 = δnm . (25)

The product space of the original and the additional state spaces can be defined by the vectors
|n〉 ⊗ |m̃〉. It is furthermore useful to introduce the so - called left vacuum vector |I〉,

|I〉 =
∑

n

|n〉 ⊗ |ñ〉 . (26)

12



2.3 Superfermion representation 2 OPEN QUANTUM SYSTEMS

The density operator of the system is defined on the original state space and thus can be repre-
sented in terms of the state vectors |n〉,

ρ̂(t) =
∑
nm

ρnm(t) |n〉〈m| , ρnm(t) = 〈n| ρ̂(t) |m〉 . (27)

By applying the density operator to the left vacuum, it can be rewritten as a state vector in the
augmented state space, according to

|ρ(t)〉 = ρ̂(t) |I〉 (28)

=
∑
nm

ρnm(t) |n〉 ⊗ |m̃〉 . (29)

The vector |ρ(t)〉 is called nonequilibrium wave function. If the whole differential equation (7)
is applied to |I〉, the result is a Schrödinger - like equation for the nonequilibrium wave function,

i
d
dt
|ρ(t)〉 = L̂ |ρ(t)〉 . (30)

L̂ is an ordinary operator in the augmented state space, achieved by
[ ˆ̂Lρ̂

]
|I〉 = L̂ |ρ(t)〉. It is just

another representation of the Liouvillian corresponding to the Lindblad equation and therefore
not hermitian.
Given the time evolution, expectation values of system operators are calculated within this
framework as the following matrix element,

〈Ô(t)〉 = 〈I | Ô | ρ(t)〉 . (31)

The starting point for the considerations above, eq. (7), is a differential equation for an operator
changed by a superoperator, whereas the result, eq. (30), describes the change of a state vector,
due to an ordinary operator, the same as the Schrödinger equation (1) does, but in an augmented
state space and with a non-hermitian generator. This has benefits for the numerical treatment.
In a particular basis both generators, Ĥ and L̂ , are matrices and can be treated with similar
methods.

Eigenstates of the Liouvillian: From the normalization of the density operator (17) follows
that 〈I|ρ(t)〉 = 1 is valid at all times. If 〈I| is applied to eq. (30) from the left, it furthermore
follows for all times that

〈I| L̂ = 0 . (32)

This means that 〈I| is a left eigenvector of L̂ to the eigenvalue 0.
If the system is allowed to evolve for some time, it may overcome its transient behavior and
reach a steady state, where its density operator does not depend on time anymore. In this case
eq. (30) yields

L̂ |ρ∞〉 = 0 . (33)

|ρ∞〉 denotes the nonequilibrium wave function in the steady state. It is formally reached with
t → ∞ and therefore marked by the corresponding subscript. |ρ∞〉 is a right eigenvector of L̂
to the eigenvalue 0. So the problem of determining the steady state reduces to the problem of
finding this eigenvector of the Liouvillian.
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2.3 Superfermion representation 2 OPEN QUANTUM SYSTEMS

Fermionic multiparticle systems: The systems I study within this thesis are fermionic mul-
tiparticle systems. Having to deal with multiparticle systems, the Hilbert space is a Fock space
and it is convenient to work in the particle number representation. The state vectors |n〉 and |ñ〉
then correspond to a certain occupation configuration,

|n〉 = |n1n2 . . . nN〉 ,

|ñ〉 = ˜|n1n2 . . . nN〉 .
(34)

n j denotes the number of particles in the quantum state j, e.g. the j-th site of a lattice. The
creation and annihilation operators that add or destroy a particle in state j are called c†j and c j ,
respectively.

c†jc j |n1n2 . . . nN〉 = n j |n1n2 . . . nN〉

c̃†j c̃ j
˜

|n1n2 . . . nN〉 = n j
˜

|n1n2 . . . nN〉
(35)

Since these operators are fermionic, they obey the familiar anticommutation relations,

{ci , c
†

j} = {c̃i , c̃
†

j} = δi j ,

{ci , c j} = {c†i , c
†

j} = {c̃i , c̃ j} = {c̃†i , c̃
†

j} = 0 .
(36)

Additionally, the anticommutator of operators acting in different Fock spaces is zero. Working
with fermions, it is convenient to add a phase to the left vacuum vector. Such a phase does not
change the expectation values (31), because it is also contained in |ρ〉 = ρ̂ |I〉. |I〉 is redefined as

|I〉 =
∑

n

(−i ) S n |n〉 ⊗ ˜|n〉 ,

=
∑

n1n2...nN

(−i ) n1+n2+...+nN |n1n2 . . . nN〉 ⊗ ˜|n1n2 . . . nN〉 ,
(37)

where S n = n1 + n2 + . . .+ nN is the total number of particles in the multiparticle state |n〉. From
this representation so-called the tilde conjugation rules can be derived,

c j |I〉 = −i c̃†j |I〉 ,

c†j |I〉 = −i c̃j |I〉 .
(38)

They represent a useful tool in calculating expectation values, since they allow for a switch
between operators in the original and the tilde - state space. By rephrasing the tilde conjugation
rules, the left vacuum annihilators, A†j and B†j , can be defined,

A†j = c†j − ic̃ j , 〈I| A†j = 0 ,

B†j = c j − ic̃†j , 〈I| B†j = 0 .
(39)

They obey analogous anticommutation relations to eq. (36),{
Ai , A

†

j
}

=
{
Bi , B

†

j
}

= δi j{
A(†)

i , A
(†)
j

}
=

{
B(†)

i , B
(†)
j

}
=

{
A(†)

i , B
(†)
j

}
= 0

(40)

(†) means that the relations hold for operators with and without † likewise.
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3 MODELS

3 Models

This section presents the basic models studied in this thesis, the Su-Schrieffer-Heeger Model,
sec. 3.1, and the Kitaev Model, sec. 3.2. Each subsection starts with a description of the model
hamiltonian, followed by a summary of the topological properties. Then the calculations are
presented showing these properties. In case of the Kitaev Model, there is also a small part about
Majorana fermions and applications, sec. 3.2.1, and one about the physical realization of the
model, sec. 3.2.2.

3.1 Su-Schrieffer-Heeger Model

Model: The Su-Schrieffer-Heeger Model describes a one-dimensional topological insulator. It
can be used as a simple model for polyacetylene. The alternating single and double bonds are
described by an alternating small and big hopping strength, [11]. The hamiltonian for this model
reads

Ĥ =

N∑
n=1

(t + δ) c†AncBn +

N−1∑
n=1

(t − δ) c†An+1cBn + h.c. (41)

The operators c†α,n and cα,n create and destroy an electron on site n of the sublattice α ∈ {A, B}.
All electrons are assumed to have the same spin, redundantizing an extra index. Each unit
cell in the system hosts two lattice sites, one of type A and B, respectively. t + δ denotes the
hopping strength between sites within a unit cell and t − δ is the hopping strength between unit
cells. [12, 13]

Properties: The Su-Schrieffer-Heeger Model exhibits a topological phase transition at |t+δ| =
|t − δ|. In the phase |t + δ| < |t − δ| the edge sites are weakly bonded and the system forms states
at zero energy, which are localized at the edges and decay to zero into the bulk. This phase is the
topological phase. If the edge bonds are strong ones, |t + δ| > |t − δ|, the system is in the trivial
phase, where no edge states are present. On both sides of the phase transition the bulk has an
energy gap. The gap closes at the transition point |t + δ| = |t − δ|. The two phases are illustrated
in fig. 1. [12, 13]

Figure 1: Phases in the Su-Schrieffer-Heeger Model. Upper panel: Trivial phase, |t + δ| > |t − δ|,
strongly bonded edge sites. Lower panel: Topological phase, |t + δ| < |t − δ|, weakly
bonded edge sites, zero - energy edge states arise. a is the size of a unit cell. The
illustration has been adapted from [12].

In the next paragraph the bulk properties are shown, the existence of an energy gap and its closing
at |t + δ| = |t− δ|, by imposing periodic boundary conditions. It is followed by a paragraph about
open boundaries, where the existence of edge states is demonstrated.
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3.1 Su-Schrieffer-Heeger Model 3 MODELS

Calculations for the bulk: Following [12], the hamiltonian eq. (41) is periodized by extend-
ing the second sum to N and demanding cN+1 = c1. Then a discrete Fourier transformation can
be applied, according to

ak =
1
√

N

∑
n

e−iknacAn , bk =
1
√

N

∑
n

e−iknacBn , (42)

and passing the hamiltonian to momentum space,

Ĥ = (t + δ)
∑

k∈(−π,π)

(
a†kbk + b†kak

)
+ (t − δ)

∑
k∈(−π,π)

(
e−ika†kbk + eikb†kak

)
. (43)

In eq. (43) the lattice constant a has been absorbed into k which is now bounded by (−π, π). By
introducing two component operators ψk, the hamiltonian can be rewritten as follows,

Ĥ =
∑

k

ψ†k Hkψk , Hk =

(
0 (t + δ) + (t − δ) e−ik

(t + δ) + (t − δ) eik 0

)
, ψk =

(
ak

bk

)
. (44)

Diagonalizing the coefficient matrix Hk yields the energies

E±(k) = ±
√

2
√

t2 + δ2 +
(
t2 − δ2) cos k . (45)

The energy spectrum is symmetric. There are two bands, E+(k) and E−(k), separated by an
energy gap,

∆I = E+ − E− = 2E+ . (46)

A detailed investigation of eq. (45) yields that the size of the gap at its minima is

∆I,min = 2||t + δ| − |t − δ|| ,

= 4 min (|t|, |δ|) .
(47)

It depends linearly on the difference in the absolute hopping strengths and closes for |t+δ| = |t−δ|,
which is fulfilled only for t = 0 or δ = 0. Fig. 2 shows an example for the energy bands directly

(a) Trivial phase, t = 4, δ = 1. (b) Transition point, t = 4, δ = 0. (c) Topological phase, t = 4, δ = −1.

Figure 2: Energy bands in the Su-Schrieffer-Heeger Model, according to eq. (45). The subfig-
ures show examples for the two phases and the transition point. The size of the energy
gap at its minimum is 4|δ|.

at and on either side of the gap closing. The bulk properties are the same in both parameter
regions, in contrast to the properties of the boundaries, if they are open, which is demonstrated
in the following.
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3.1 Su-Schrieffer-Heeger Model 3 MODELS

Calculations for open boundaries: In case of open boundaries, edge states are present for
|t + δ| < |t − δ| and missing for |t + δ| > |t − δ|. In order show this, the special cases δ = ±t are
examined. Then the adiabatic theorem can be applied to generalize the results to the respective
parameter regions, see the next paragraph. [14]

1. δ = t , 0

This set of parameters belongs to the trivial phase. Inserting them into the hamiltonian (41) yields

Ĥ = 2t
N∑

n=1

c†AncBn + h.c. (48)

The unit cells are decoupled from each other, each site is only connected to a single other one.
Therefore the hamiltonian is easily diagonalized,

Ĥ = 2t
N∑

n=1

∑
σ=±1

σ d†σndσn , dσn =
1
√

2

(
cAn + σcBn

)
. (49)

It can be verified that the d - operators are also fermionic. Adding a d - fermion to the system
causes an energy change of ±2t. Therefore the spectrum is gapped, as for periodic boundary
conditions, eq. (46). There are no zero - energy edge states.

2. δ = −t , 0

For these parameters the system is in the topological phase. The hamiltonian (41) reads

Ĥ = 2t
N−1∑
n=1

c†A,n+1cB,n + h.c. (50)

The sites are connected in pairs, again. In this case the cut is made within the unit cells and not
between them. Diagonalizing the hamiltonian yields

Ĥ = 2t
N−1∑
n=1

∑
σ=±1

σ d†σndσn , dσn =
1
√

2

(
cAn+1 + σcBn

)
. (51)

The creation of a d - fermion again changes the energy by ±2t. Therefore a gap persists also in
this case. The gap refers only to the bulk, because the edge sites A1 and BN are absent from the
hamiltonian (51). Two additional d - fermions can be constructed from them,

dσN =
1
√

2

(
cA1 + σcBN

)
. (52)

Occupying one of the c or d - states in eq. (52) costs zero energy, since they are missing in the
hamiltonian. Eq. (51) can be extended, according to

Ĥ = 2t
N−1∑
n=1

∑
σ=±1

σ d†σndσn + 0
∑
σ=±1

d†σNdσN . (53)

The cA1 and cBN - states are the zero - energy edge states. Due to their presence, the ground state
of the system is four - fold degenerate. Both edge states can either be occupied or empty without
changing the energy of the system.
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Application of the adiabatic theorem: The existence of edge states is a property found in
certain topological phases. Instead of testing the whole parameter space for this property, the
adiabatic theorem can be applied. If the result has been determined for a special case, the whole
region in parameter space that can be reached by adiabatically changing the hamiltonian without
closing the energy gap and preserving locality also shows this property. The parameter region
satisfying this condition belongs to the same phase.
In case of the Su-Schrieffer-Heeger Model and also the Kitaev Model, sec. 3.2, the closing of
the bulk gap splits the parameter space in two. Therefore it is sufficient to investigate two special
sets of parameters, respectively. They are chosen in a way that makes the calculations especially
easy. For both models the requirements of the adiabatic theorem to extend the results to the
whole parameter space can be fulfilled, [14]. For general parameters in the topological phase the
edge states are not perfectly localized at the ends of the chain but decay exponentially to zero
into the bulk. They remain at zero energy as long as their overlap is negligible, otherwise the
states split. See [15] for the Su-Schrieffer-Heeger Model, [16] for the Kitaev Model.

3.2 Kitaev Model

Model: The Kitaev Model is a toy model for a one-dimensional spinless p-wave superconduc-
tor. It was first introduced by A.Y. Kitaev in 2001 [17]. The hamiltonian describing this model
reads

Ĥ = −µ

N∑
n=1

c†ncn −

N−1∑
n=1

(
tc†ncn+1 + ∆cncn+1 + h.c.

)
. (54)

The operators c†n and cn create or annihilate an electron on lattice site n, respectively. The spin
index has been dropped, because all electrons have the same spin. µ is the chemical potential,
t the nearest neighbor hopping strength and ∆ denotes the p-wave pairing amplitude. These
parameters are the same for all lattice sites.

Properties: The Kitaev Model shows a topological phase transition at |µ| = 2|t|. For |µ| < 2|t|
it is in the topological phase, where it forms edge states at zero energy that decay into the bulk.
These states are spatially isolated Majorana fermions. The phase is furthermore associated with
weakly bonded Cooper pairs of infinite size. For |µ| > 2|t| the system is in the trivial phase,
where no edge states arise. In this phase the electrons form strongly bonded, molecule - like
Cooper pairs. In both phases the energy spectrum of the bulk has a gap. The gap closes only at
the transition point |µ| = 2|t|. [16]
The next paragraph deals with bulk properties, the spectral gap and its closing at |µ| = 2|t|. It
is followed by a paragraph about open boundaries, where the existence of edge states is shown.
Then comes a part about Majorana fermions and applications, sec. 3.2.1, and another one about
the physical realization of the Kitaev model, sec. 3.2.2.

Calculations for the bulk: According to [16], the bulk properties of the system are exam-
ined by imposing periodic boundary conditions. Then both sums in eq. (54) run to N and the
operators obey cN+1 = c1. Performing a discrete Fourier transformation yields

Ĥ =
∑

k∈(−π,π)

[
ξkc†kck − ∆

(
eikc
−kck + e−ikc†kc†

−k

)]
, ck =

1
√

N

N∑
n=1

e−ikncn , (55)
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where ξk = −2t cos k − µ denotes the kinetic energy. For k = 0 the hamiltonian is already
diagonal in the c operators with energy ξ0, due to the Pauli exclusion principle. This mode is not
very interesting and thus disregarded in the following. Since the other k values lie symmetric to
zero, the hamiltonian can be expressed with k > 0 only,

Ĥ =
∑
k>0

ψ†k Hkψk +
∑
k>0

ξk1 , Hk =

(
ξk 2i∆ sin k

−2i∆ sin k −ξk

)
, ψk =

(
ck

c†
−k

)
. (56)

This has the advantage of omitting redundancies in the operator basis. The two component op-
erators ψk are called Nambu spinors. Diagonalizing the coefficient matrix Hk yields the energies

E±(k) = ±

√
ξ2

k + 4∆2 sin2 k . (57)

The energy spectrum is symmetric, as was the spectrum of the Su-Schrieffer-Heeger model.
There is, in general, also a gap between the positive and negative energy branch,

∆sc = E+ − E− = 2E+ . (58)

For ∆ , 0 the gap can only close, if both summands in eq. (57) are zero. This requires sin k = 0,
which means either k = 0 or k = π. Summarizing both cases, a closing of the superconducting
gap can be observed only at |µ| = 2|t|.

Calculations for open boundaries: Following [17], [16], in order to study the system with
open boundaries, eq. (54), the cn are expressed as the sum of two hermitian operators γαn = γ†αn,

cn =
1
2

(γBn + i γAn) ,
γBn = c†n + cn ,

γAn = i
(
c†n − cn

)
.

(59)

These operators are called Majorana fermion operators. From the fermionic anticommutation
relations of cn and c†n follows {

γαn , γβm
}

= 2δαβδnm . (60)

Thus they are not fermionic by themselves. They have very interesting properties, whose dis-
cussion is delayed to sec. 3.2.1. In terms of the Majorana operators the hamiltonian (54) reads

Ĥ = i µ
N∑

n=1

γAnγBn −
i
2

N−1∑
n=1

[
(∆ − t) γAnγBn+1 + (∆ + t) γBnγAn+1

]
−

1
2
µN . (61)

In the following two special cases are investigated, one on either side of the gap closing, |µ| ≶ 2|t|.
The existence of edge states is evaluated, respectively. Then the adiabatic theorem can be ap-
plied to generalize the results, as in case of the Su-Schrieffer-Heeger model.

1. µ , 0 and ∆ = t = 0

For these parameters the system is in the trivial phase. The hamiltonian (54) is already diagonal
in the c operators,

Ĥ = −µ

N∑
n=1

c†ncn . (62)

Adding an electron to the system changes the energy by µ. Therefore the spectrum is gapped
again. No edge states arise in this case. The ground state of the system is unique and corresponds
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to the c - vacuum, |0c〉. In the Majorana representation (61) the hamiltonian reads, apart from
constants,

Ĥ = i µ
N∑

n=1

γAnγBn . (63)

It couples Majorana operators corresponding to the same lattice site. This case is pictured in the
upper panel of fig. 3.

γA1 γB1 γA2 γA3γB2 γB3 γAN γBN

γA1 γB1 γA2 γB2 γA3 γB3 γAN γBN

Figure 3: Coupling of Majorana fermions in two special cases, representing the behavior of the
Kitaev Model in its two phases. Upper panel: trivial phase with µ , 0, ∆ = t = 0.
Majorana fermions at the same lattice site are coupled. Lower panel: topological
phase with µ = 0, ∆ = t , 0. Coupling of Majorana fermions at adjacent sites. The
illustration has been adapted from [18].

2. µ = 0 and ∆ = t , 0

These parameters drive the system into the topological phase. Inserting them into the hamilto-
nian (61) and disregarding constants yields

Ĥ = −i t
N−1∑
n=1

γBnγAn+1 . (64)

In this case Majorana operators at adjacent lattice sites are coupled to each other, as illustrated
in the lower panel of fig. 3. They can be combined to new operators dn,

dn =
1
2

(γBn − i γAn+1) ,
γBn = dn + d†n ,

γAn+1 = i
(
dn − d†n

)
,

(65)

which again obey the fermionic anticommutation relations. The new operators diagonalize the
hamiltonian (64). Apart from constants, the result is

Ĥ = 2t
N−1∑
n=1

d†ndn . (66)

Introducing a d - fermion into the system causes an energy change of 2t. Therefore a bulk
gap persists. The Majorana operators at the edges, γA1 and γBN , though, are absent from the
hamiltonian. They can be combined to a highly non - local fermionic operator,

dN =
1
2

(γBN − i γA1) . (67)

Since dN does not arise in the hamiltonian, the occupation of this state costs zero energy. The
underlying Majorana operators refer to the edge states. They also lie at zero energy, but their
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occupation is not defined, see sec. 3.2.1. The hamiltonian can be extended by dN , according to

Ĥ = 2t
N−1∑
n=1

d†ndn + 0 d†NdN . (68)

Due to the zero - energy edge states, the ground state of the system is twofold degenerate. One
ground state is the d vacuum |0d〉, satisfying dN |0d〉 = dn |0d〉 = 0 ∀n. The other ground state is
given by d†N |0d〉. They have opposite parity, as the number of fermions they host differs by one.

3.2.1 Majorana fermions and applications

Majorana fermions are particles, which are their own antiparticles [19]. They have been in-
troduced into theoretical physics by E. Majorana in 1937 [6]. Their existence as elementary
particles or as quasiparticle exitations has not yet been definitely proven [20] .
Being their own antiparticles, Majorana fermions are created by operators that are hermitian.
Two of them can be combined to form a single fermion operator, according to eq. (59). They are
not fermions by themselves, because they don’t obey the fermionic anticommutation relations,
but instead fulfill eq. (60). Therefore γ2

αn = 1 is valid, which means that there is no Pauli exclu-
sion principle.
It can be shown that Majorana fermions are non-Abelian anyons [7]. Under exchange of par-
ticles the wavefunction does not only pick up a phase, as it is the case with ordinary anyons,
fermions and bosons, but the state can change fundamentally. Two exchange operations gener-
ally do not commute, therefore the term non-Abelian.
Due to γ2

αn = 1 and the hermiticity of these operators, a Majorana fermion state has no well -
defined occupation. The relation γ†αnγαn = 1 = γαnγ

†
αn is always fulfilled. In this sense, the state

is always occupied and empty at the same time. It is only possible to measure the occupation of
the fermionic state, formed by Majoranas, see also [16, 20].
In the Kitaev model and also in other models for topological superconductors Majorana fermions
occur as quasiparticle exitations. If the Kitaev chain is in the topological phase, spatially sepa-
rated Majorana fermions combine to regular fermions at zero energy. In principle they could be
localized arbitrarily far apart from each other [17].
The last two properties make them especially interesting for quantum computing. A qubit could
be spanned by the occupation number states of zero-energy fermions, each formed by two spa-
tially isolated Majorana fermions, and it could be changed by exchange of Majorana fermions.
In order to perform nontrivial operations, at least four Majorana fermions or two zero energy
fermions are required for one qubit. Such exchange processes, called braiding operations, are
not sufficient for universal quantum computing, but they could be used in combination with
other operation schemes. The advantage of using these special Majorana fermions is that they
are localized far from each other and thus form a fermionic state that is robust against local
perturbations and separated from the other states by the superconducting gap [17, 20].

3.2.2 Physical realization of the Kitaev model

Superconductors that exhibit a p-wave pairing are extremely rare in nature, see [16]. No natu-
rally occurring system is known that can faithfully be modeled by the Kitaev hamiltonian (54),
but it is still possible to engineer such systems.
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A common setup to engineer the Kitaev Model involves a semiconducting wire with a strong
spin-orbit coupling, a superconducting substrate with s-wave symmetry and a magnetic field, as
sketched in fig. 4, see [20, 21, 22].
The engineering method is based on the proximity effect: The wire is coupled to the substrate
allowing electrons to tunnel between the two systems. They also feel a pairing potential within
the wire, due to the proximity to the bulk superconductor [23, 24, 25]. The pairing symmetry
is usually inherited from the superconductor. Thus, if no further modifications are made, it is
s-wave in this case. In the following it is highlighted, how the spin-orbit coupling and the mag-
netic field can be exploited to induce an effective p-wave pairing.

Figure 4: Setup for engineering the Kitaev Model. A nanowire (InAs or InSb) with strong spin-
orbit coupling is connected to an s-wave substrate (Nb or Al) and an external magnetic
field is applied (missing in the sketch). Effective p-wave pairing can be induced in
the wire by the proximity effect, although the substrate has s-wave symmetry. With
gate electrodes the chemical potential in the wire can be adjusted, driving it into the
topological phase, where Majorana edge states arise. The black curve sketches the
decay of the wave functions of the edge states into the bulk. This illustration has been
taken from [20] and coordinates have been added.

The initial point of the considerations is a one-dimensional noninteracting wire without further
couplings (neither spin-orbit nor proximity) and without magnetic field. One-dimensional means
in this case that it has a macroscopic length and therefore the size quantization along its axis is
negligible and it is very thin causing the 1D subbands to be nicely separated. The bands have a
parabolic form and always two of them, corresponding to the two different spin projections, lie
upon another.
If, in addition, spin-orbit coupling is present, the two parabolas are shifted in momentum, de-
pending on the spin polarization in the direction of the spin-orbit field. This is illustrated in fig.
5(a). The different spin orientations are indicated by red arrows. It can be seen that the bands
are separated, but there are still two solutions with opposite spin for each energy. Therefore this
setup is not yet sufficient to create an effectively spinless regime.
The spin degeneracy can be lifted by application of an external magnetic field with a component
perpendicular to the spin-orbit field, see fig. 5(b). A weak magnetic field favors an alignment
of spins in parallel or antiparallel to the direction of the field and assigns different energies to
electrons depending on their principal alignment. Therefore a gap opens that separates the bands
by this measure. If the chemical potential is placed within the gap, which can be accomplished
with a number of gate electrodes along the wire, see fig. 4, only the lower band is occupied.
The only states playing a role in the behavior of the system lie around the chemical potential.
They all have the same principal spin direction in this case, which makes the system effectively
spinless.
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Due to the spin-orbit field, the spins are not perfectly aligned, but depend on the momentum
along the wire, as indicated by the red arrows in fig. 5(b). If the magnetic field is increased, as
illustrated in fig. 5(c), the spins are more strongly forced to align, their momentum dependence
fades away and the gap widens. The latter is a benefit, because it provides more room for placing
the chemical potential within the gap. The momentum dependence of the spin, in contrast, is
crucial to induce p-wave superconductivity with an s-wave superconductor, as explained in the
following.

(a) B = 0 (b) small B

(c) large B (d) large B, induced pairing ∆

Figure 5: Band structure of the wire for different magnetic fields without, fig. (a), (b), (c), and
with proximity-induced pairing, fig. (d). The red arrows indicate the spin direction
perpendicular to the wire axis. The spin-orbit coupling is necessary, if the p-wave
superconductivity is to be induced with an s-wave substrate, because it pairs opposite
spin projections. All figures are taken from [20].

It has been previously stated that the wire inherits the pairing symmetry from the superconduc-
tor. If it had a p-wave symmetry the spin-orbit coupling would be redundant and the pairing
potential would simply couple neighboring wire electrons with the same spin, separated from
the other spin kind by the magnetic field. Since the substrate is an s-wave superconductor, only
electrons showing spin components that are antiparallel are coupled to each other. Such compo-
nents are provided by the spin-orbit coupling, because it breaks the polarization axis of the spins,
which is present in a magnetic field, and makes them momentum dependent. Since the principal
spin direction is still the same for all electrons, it turns out that the system can be treated as an
effective p-wave superconductor.
Fig. 5(d) shows the band structure, when the proximity coupling is turned on. There are four
solutions to each value of kx, but only two of them are linearly independent. Due to the particle-
hole symmetry, the positive energy bands are mirrored with respect to E = 0 and thus appear
twice in the band structure. Otherwise the curves look similar to the ones obtained without prox-
imity coupling, see fig. 5(b) and 5(c).
If the proximity-induced pairing amplitude in the wire is increased from zero and the other pa-
rameters are fixed, the gap gets smaller until it closes. Before this happens the system is in the
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topological phase, after the closing of the gap it is in the trivial phase. The hamiltonian can be
mapped onto the Kitaev hamiltonian in both phases by distinct transformations.
The benefit of this engineering method is that all ingredients are easily available and well stud-
ied. As semiconducting wires with a large spin-orbit coupling InAs or InSb, for example, have
been tried by experimentalists. There are a number of systems that show s-wave superconduc-
tivity and represent suitable candidates for the substrate. For the wire materials just proposed
Nb or Al have been adopted so far.
This paragraph follows mainly the review article [20] and the figures have been taken from this
source, but I have abstained from using formulas here. Some more details can be found in [20].
[16] also holds an overview of the topic providing even more details. This article is better suited
for the already well-versed reader. In [16] other realization methods are described, as well. Both
articles list a number of papers with experiments.
The Kitaev Model can also be engineered with a half-metallic ferromagnetic wire, where only
one spin kind is conducting. Since the spins are perfectly aligned in this system, a different
method to induce superconductivity is necessary in this case. For details see [16].
Another very interesting proposal to realize Majorana fermions involves a graphene - supercon-
ductor junction, in this method spin-orbit coupling is not necessary [26].
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4 SOLUTION OF THE LINDBLAD EQUATION

4 Solution of the Lindblad equation

Before the Lindblad equation can be solved for the model systems, the Liouvillians are deter-
mined in sec 4.1. The calculations are carried out in superfermion representation, see sec. 2.3,
where the Lindblad equation has the same structure as the Schrödinger equation and can be
treated alike. One possibility to determine the systems’ dynamics is via diagonalization of the
Liouvillian. This method can be found in sec. 4.2 together with an alternative solution scheme.
If the Liouvillian is already diagonalized and independent of time and the state of the system,
the steady state can be determined directly, without evaluating the time evolution explicitely, as
presented in sec. 4.3. The whole section 4 is based on my own work. The rough idea for the
steady state - calculation in sec. 4.3 has been adapted from [10].

4.1 The Liouvillian

In sec. 4.1.1 the Liouvillian is calculated in the superfermion representation. In sec. 4.1.2 it
is transferred to a matrix structure, in order to diagonalize it later. As an intermediate step a
unitary transformation is applied, leading to a simpler matrix representation, see sec. 4.1.3. This
serves to simplify the diagonalization task, finally carried out in sec. 4.1.4, and to gain important
insights about the eigenvectors and eigenvalues for further analytical calculations. These insights
are used for the direct evaluation of the steady state and the dynamics via diagonalization. Sec.
4.1.2 - 4.1.4 can be skipped, if the alternative calculation scheme is applied.

4.1.1 Superfermion representation

Hamiltonian: In the models studied within this thesis two different types of hamiltonians
arise. The normal non-interacting hamiltonian Ĥn couples creation and annihilation operators
pairwise, whereas the anomalous hamiltonian Ĥa originating from BCS pairing combines two
creators or two annihilators, respectively. A generalized non-interacting hamiltonian Ĥ contains
both contributions,

Ĥ = Ĥn + Ĥa ,

Ĥn =
∑
µν

c†µhµνcν ,

Ĥa =
∑
µν

(
cµaµνcν + c†µa∗νµc†ν

)
.

(69)

The coefficients can be arranged in NxN matrices, where N is the number of sites in the system.
The hermiticity of the hamiltonian is inherited by the coefficient matrix h. From the anticom-
mutation relations (36) furthermore follows that a is skew symmetric,

h = h† ,
a = −aᵀ .

(70)

The anomalous hamiltonian does not commute with the operator of the total number of particles
in the system, Ŝ , defined in eq. (72), in contrast to its normal counterpart,

[Ŝ , Ĥn] = 0 ,

[Ŝ , Ĥa] = −2
∑
µν

(
cµaµνcν − c†µa∗νµc†ν

)
, 0 . (71)
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As a consequence, the number of particles in a generalized non-interacting system is not con-
served, d

dt 〈Ŝ 〉 , 0, if the anomalous coefficient matrix is a = const. , 0, with

Ŝ =
∑

i

c†i ci , i
d
dt
〈Ŝ 〉 = 〈[Ŝ , Ĥ]〉 . (72)

Dissipator: The vector of Lindblad operators M̂ and the coefficient matrix γ, describing the
dissipative part in the Lindblad equation (12), are chosen as

M̂ =

(
c
c†

)
, γ =

(
Γ(−) Υ(−)

Υ(+) Γ(+)

)
. (73)

c(†) is a Nx1 vector of annihilation (creation) operators, Γ(±) and Υ(±) are NxN matrices, de-
scribing normal and anomalous couplings, respectively, see eq. (77). In order to comply with
the properties of γ, eq. (14) and (15), they have to obey

Γ(−) = Γ(−)† , x†Γ(−)x ≥ 0 ∀x , (74)

Γ(+) = Γ(+)† , y†Γ(+)y ≥ 0 ∀y , (75)

Υ(+) = Υ(−)† . (76)

The positive semidefiniteness of Γ(±) follows from eq. (15) by taking υ = (xᵀ, 0)ᵀ and υ =

(0 , yᵀ)ᵀ, respectively, where x, y and 0 are Nx1 vectors. That Υ(±) preserves eq. (15) has to be
ensured independently. Inserting eq. (73) into the Liouvillian (21) yields

ˆ̂LD =
ˆ̂LDn +

ˆ̂LDa ,

ˆ̂LDn ρ̂ = i
∑
µν

[
Γ

(−)
µν

(
2cµ ρ̂ c†ν − { ρ̂, c

†
νcµ}

)
+ Γ

(+)
µν

(
2c†µ ρ̂ cν − { ρ̂, cνc†µ}

) ]
,

ˆ̂LDa ρ̂ = i
∑
µν

[
Υ

(−)
µν

(
2cµ ρ̂ cν − { ρ̂, cνcµ}

)
+ Υ

(+)
µν

(
2c†µ ρ̂ c†ν − { ρ̂, c

†
νc
†
µ}

) ]
.

(77)

ˆ̂LDn and ˆ̂LDa denote the normal and anomalous contributions to the dissipator.

Liouvillian: The hamiltonian (69) is first inserted in eq. (20) and then in (19) together with
the dissipator (77). The resulting Liouville superoperator is applied to ρ̂ and then to the left
vacuum (37). By exploiting the anticommutation relations (36), the tilde conjugation rules (38),
the fact that the density operator is defined on the non-tilde state space and the definition of the
nonequilibrium wave function (28), the Liouvillian L̂ in superfermion representation, defined by
eq. (30), can be determined.

L̂ =
∑
µν

[
hµν

(
c†µcν + d̃†µd̃ν − δµν1

)
+ aµν

(
cµcν + d̃µd̃ν

)
+ a∗νµ

(
c†µc†ν + d̃†µd̃†ν

) = L̂Hn

= L̂Ha

 = L̂H

+ i Ωµν
(
c†µcν − d̃†µd̃ν

)
+ 2Γ

(+)
µν c†µd̃ν − 2Γ

(−)
νµ d̃†µcν − δµνΛµν1

+ Υ
(−)
µν

(
2cµd̃ν + icµcν − id̃µd̃ν

)
+ Υ

(+)
µν

(
2c†µd̃†ν + ic†µc†ν − id̃†µd̃†ν

) ] = L̂Dn

= L̂Da

 = L̂D

(78)
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The indices H, D, n, a again denote, whether the contribution to the Liouvillian is due to a
hamiltonian or a dissipator and if it originates from a normal or an anomalous coupling. Within
this formula new coefficients and operators arise

Ω = Γ(+) − Γ(−)ᵀ , (79)

Λ = Γ(+) + Γ(−)ᵀ , (80)

d̃µ = c̃†µ . (81)

The d̃ operators obey the same anticommutation relations as the original c̃ operators, eq. (36),

{d̃i , d̃
†

j } = δi j ,

{d̃ (†)
i , d̃ (†)

j } = {d̃ (†)
i , c (†)

j } = 0 .
(82)

The particle-hole transformation (81) ensures that normal (anomalous) superoperators give only
rise to normal (anomalous) operators in superspace, which means that this property survives the
map into superspace.

4.1.2 Matrix representation I

Within this subsection a matrix representation of the Liouvillian is determined. A distinction of
cases is made between problems described by a Liouvillian with and without anomalous terms,
respectively. In principle, they could be treated alike by considering only the generalized system
and setting all anomalous coefficients to zero in the end, if the other case were in demand. In
practice, it has proven useful to treat the normal system separately.

Normal system: In case of a normal system, a = Υ(±) = 0 in eq. (78) and the Liouvillian
reduces to

L̂ = L̂Hn + L̂Dn . (83)

By exploiting the anticommutation relations (36) and (82), L̂ is brought into the following form,

L̂ = b†L′b + C1 , (84)

with the 2N x 2N matrix L′, the 2N x 1 vector of operators b and the constant C,

L′ =

(
h + i Ω 2Γ(+)

−2Γ(−)ᵀ h − i Ω

)
, b =

(
c
d̃

)
, C = − tr

{
h + i Λ

}
. (85)

Since the basis operators are independent of each other, the matrix representation L′ is unique.

Generalized system: If a , 0 or Υ(±) , 0 in eq. (78), the system has to be treated as a
generalized system and L̂ reads

L̂ = L̂Hn + L̂Ha + L̂Dn + L̂Da . (86)

The operator basis in eq. (85) is not sufficient to represent the Liouvillian as

L̂ = b†L′b + C1 . (87)
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To include anomalous couplings, it has to be extended by the hermitian conjugated operators. In
this case L′ is a 4N x 4N matrix, b a 4N x 1 vector and C again a constant,

L′ =


1
2 (h + i Ω) a† + i Υ(+) Γ(+) Υ(+)

a + i Υ(−) − 1
2 (h + i Ω)ᵀ Υ(−) Γ(−)

−
(
Γ(−)

)ᵀ
−

(
Υ(+)

)ᵀ 1
2 (h − i Ω) a† − i Υ(+)

−
(
Υ(−)

)ᵀ
−

(
Γ(+)

)ᵀ
a − i Υ(−) − 1

2 (h − i Ω)ᵀ

 , b =


c
c†
d̃
d̃†

 , C = −i tr
{
Λ
}
.

(88)

The matrix L′ is not unique anymore. The coefficient α of a particular coupling c†i cj in L̂ can be
arbitrarily split up and assigned to the two elements in L′ connecting these operators via eq. (87),

L′i j c†i cj + L′j+N, i+N cjc
†

i =
(
L′i j − L′j+N, i+N

)︸              ︷︷              ︸
=α

c†i cj + const.
(89)

In eq. (88) the coefficients of L̂ have been evenly distributed onto dependent matrix blocks. By
considering the evolution equation for the b operators in the Heisenberg picture, it can be learned
that this is the correct way of representation.

4.1.3 Matrix representation II

In this subsection the previously obtained matrix representation, eq. (85) or (88), is simplified
by carrying out a unitary transformation. With this intermediate step the Liouvillian can be
diagonalized more efficiently. The new representation allows to gain insights into the structure
of its eigenvectors and eigenvalues, which are crucial for determining the time evolution and the
steady state of the system by diagonalization. Eq. (84) is rewritten as

L̂ = b†L′b + C1

= e†L′′e + C1 .
(90)

The transformation is described by the unitary matrix R,

R =
1
√

2

(
1 i1
1 −i1

)
, (91)

L′′ = RL′R† , e = Rb . (92)

1 is the N x N or the 2N x 2N identity matrix, depending on which of the systems, the normal or
the generalized one, is regarded. In order to investigate, how the transformation acts in detail,
the two systems are again treated separately.

Normal system: In case of a normal system, eq. (85), L′′ and e are given by

L′′ =

(
h − i Λ 2i Ω

0 h + i Λ

)
, e =

(
A
B†

)
. (93)

A†j and B†j are the left vacuum annihilators, eq.(39). Obviously, the new matrix L′′ has a block
upper triangular structure.
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Generalized system: Applying the transformation (92) to the generalized system, eq. (88),
yields

L′′ =


1
2 (h − i Λ) (a + i X)† i Ω i (2Z + X)†

a − i X −1
2 (h + i Λ)ᵀ i (2Z + X) −i Ωᵀ

0 i X† 1
2 (h + i Λ) (a − i X)†

i X 0 (a + i X) − 1
2 (h − i Λ)ᵀ

 , e =


A
B
B†

A†

 . (94)

e can again be expressed in terms of the left vacuum annihilators. New matrices X and Z have
been introduced,

X =
1
2

(
Υ(−) + Υ(−)ᵀ

)
,

Z =
1
2

(
Υ(−) − Υ(−)ᵀ

)
.

(95)

If Υ(±) = −Υ(±)ᵀ, which means X = 0, is fulfilled, L′′ becomes a block upper triangular matrix
also in case of a generalized system,

L′′ =


1
2 (h − i Λ) a† i Ω 2i Υ(+)

a −1
2 (h + i Λ)ᵀ 2i Υ(−) −i Ωᵀ

0 0 1
2 (h + i Λ) a†

0 0 a − 1
2 (h − i Λ)ᵀ

 . (96)

This is assumed in the following calculations.

4.1.4 Diagonalization

As previously stated, one possibility to solve the Lindblad equation leads across the diagonaliza-
tion of the generating Liouvillian. This method corresponds to the solution of the Schrödinger
equation in a closed system by diagonalizing the hamiltonian. Starting from eq. (90), the Liou-
villian is expressed as

L̂ = e†L′′e + C1

= f̄ D f + C1 .
(97)

The transformation is described by a non-unitary matrix U with V ≡ U−1 , U†, because the
Liouvillian is not hermitian and this property is inherited by the coefficient matrices L′ and L′′,

D = VL′′U ,

f = V e ,

f̄ = e†U .

(98)

The matrix U maps L′′ onto the diagonal matrix D, which has the eigenvalues λi of L′′ as entries,

Di j = λi δi j . (99)

Since U is not unitary, the eigenmode operators fi and f̄i are not related to each other by hermi-
tian conjugation, in contrast to the operators resulting from a unitary transformation,

f †i , f̄i . (100)
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In case of a normal system, they still obey the fermionic anticommutation relations, see eq.
(114), in case of a generalized one they don’t, see eq. (117), but they satisfy the K - relations,
eq. (157). With eq. (99) the Liouvillian is expressed as

L̂ =
∑

i

λi f̄i fi + C1 . (101)

Realization in practice: This paragraph shows, how the diagonalization can be carried out in
practice. For a normal as well as a generalized system the matrix L′′ has a block upper triangular
form and the following structure,

L′′ =

(
α β

0 α†

)
. (102)

α and β serve as placeholders for the block matrices in eq. (93) and (96). In the following the
consequences of this structure for U and V are determined. The eigenvalue equation for L′′

reads
L′′υ = λ υ , (103)

where λ is an eigenvalue of L′′ and υ the corresponding eigenvector. Inserting υᵀ = (xᵀ, yᵀ) in
eq. (103) yields the following set of equations,

αx + βy = λ x , (104)

α†y = λ y . (105)

It has two different types of solutions. By exploiting that the eigenvalues of a matrix and its
adjoint are complex conjugated to each other, the solutions read

1. υ1 =

(
xα
0

)
, λ = λ(α) : xα is an eigenvector of α to the eigenvalue λ(α)

2. υ2 =

(
xyα†
yα†

)
, λ = λ(α)∗ :

yα† is an eigenvector of α† to the eigenvalue λ(α)∗,
xyα† is calculated from (104) as xyα† = (λ(α)∗ 1 − α)−1β yα†

The columns of the diagonalizing matrix contain the eigenvectors of the matrix to diagonalize.
If the eigenvectors of α form the columns of the matrix u, the columns of u−1† contain the
eigenvectors of α†,

α = u D(α) u−1 , (106)

α† = u−1†D(α)†u† . (107)

The second equation follows from the first one by hermitian conjugation. The diagonal matrix
containing the eigenvalues λ(α) has been called D(α). According to the previous considerations,
U and D have the following structure,

U =

(
u u(c)

0 u−1†

)
, D =

(
D(α) 0
0 D(α)†

)
. (108)

The columns of u(c) contain the calculated vectors xyα† for each λ(α)∗, as presented in point 2.
The overall eigenvalue equation (103) can also be written as

L′′U = UD . (109)
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Inserting eq. (102) and (108) yields in addition to the eigenvalue equations (106) and (107) the
following equation,

αu(c) + βu−1† = u(c) D(α)† . (110)

In order to determine U, it is sufficient to diagonalize only α, yielding u and D(α). The other
matrix blocks can be calculated from the result. Assuming a general form for the inverse V,

V =

(
v1 v2
v3 v4

)
,

the blocks are achieved with UV = 1 ( = VU ) from eq. (108) by comparison of coefficients. It
turns out that V can be calculated by inverting only the block matrix u,

V =

(
u−1 −u−1u(c)u†
0 u†

)
. (111)

The block upper triangular form of L′′results in a block upper triangular form of the diagonal-
izing matrix U and its inverse V. In practice, it is not necessary to diagonalize or invert the full
matrix, but it is sufficient to handle block matrices of half the size.

Normal system: From the definition of the operators f̄ and f , eq. (98), follows directly by
inserting eq. (93), (108) and (111).

fn =



N∑
k=1

[ (
u−1

)
n,k Ak −

(
u−1u(c)u†

)
n,k B†k

]
for n ∈ [1,N]

N∑
k=1

(
u†

)
n−N, k B†k for n ∈ [N + 1, 2N]

(112)

f̄n =



N∑
k=1

uk,n A†k for n ∈ [1,N]

N∑
k=1

[
u(c)

k, n−N A†k +
(
u−1†

)
k, n−N Bk

]
for n ∈ [N + 1, 2N]

(113)

By exploiting eq. (40) it can be learned that the eigenmode operators also obey the fermionic
anticommutation relations, {

f̄n, fm
}

= δnm ,{
fn, fm

}
=

{
f̄n, f̄m

}
= 0 ,

(114)

although they are not hermitian conjugate to each other.
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Generalized system: The eigenmode operators for the generalized system are calculated
from eq. (98) with (94), (96), (108) and (111). The result is:

fn =



N∑
k=1

[ (
u−1

)
n,k Ak +

(
u−1

)
n, k+N Bk

−
(
u−1u(c)u†

)
n, k+N A†k −

(
u−1u(c)u†

)
n,k B†k

] for n ∈ [1, 2N]

N∑
k=1

[ (
u†

)
n−2N, k+N A†k +

(
u†

)
n−2N, k B†k

]
for n ∈ [2N + 1, 4N]

(115)

f̄n =



N∑
k=1

[
uk,n A†k + uk+N, n B†k

]
for n ∈ [1, 2N]

N∑
k=1

[ (
u−1†

)
k+N, n−2N Ak +

(
u−1†

)
k, n−2N Bk

+ u(c)
k, n−2N A†k + u(c)

k+N, n−2N B†k
] for n ∈ [2N + 1, 4N]

(116)

By using again eq. (40) their anticommutation relations are determined.{
f̄n , fm

}
= δnm

Knm := { fn , fm} =

=



−

N∑
k=1

[ (
u−1

)
n,k

(
u−1u(c)u†

)
m, k+N +

(
u−1

)
n, k+N

(
u−1u(c)u†

)
m,k

+
(
u−1u(c)u†

)
n,k

(
u−1

)
m, k+N +

(
u−1u(c)u†

)
n, k+N

(
u−1

)
m,k

] for n,m ∈ [1, 2N]

N∑
k=1

[ (
u−1

)
n,k

(
u†

)
m−2N, k+N +

(
u−1

)
n, k+N

(
u†

)
m−2N, k

] for n ∈ [1, 2N] ,
m ∈ [2N + 1, 4N]

0 for n,m ∈ [2N + 1, 4N]

Knm :=
{
f̄n , f̄m

}
=

=



0 for n,m ∈ [1, 2N]
N∑

k=1

[
uk,n

(
u−1†

)
k+N,m−2N + uk+N, n

(
u−1†

)
k,m−2N

] for n ∈ [1, 2N] ,
m ∈ [2N + 1, 4N]

N∑
k=1

[
u(c)

k, n−2N

(
u−1†

)
k+N,m−2N + u(c)

k+N, n−2N

(
u−1†

)
k,m−2N

+
(
u−1†

)
k, n−2N u(c)

k+N,m−2N +
(
u−1†

)
k+N, n−2N u(c)

k,m−2N

] for n,m ∈ [2N + 1, 4N]

(117)

{ f̄n , fm} is the same for the normal system, the other anticommutators are not identical to zero
and therefore differ from the fermionic anticommutation relations and the results achieved for
the normal system. This hardens the analytical part of the calculations, fortunately it can be
shown that they obey, what I called, K - relations, eq. (157).
These relations are used to evaluate sums over the anticommutators K and K, as they arise in
the calculation of the time evolution and the steady state via diagonalization. They are explicitly
used in sec. 7.3 only, to calculate commutators of the f - operators with the Liouvillian. The
factor κ that arises in the time evolution, eq. (125) and (126), is determined with their help and
also the proof in sec. 7.5 that contributes to identify the steady state in sec. 4.3.
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4.2 Time evolution

In this subsection the Lindblad equation (30) is solved for the Liouvillian from sec. 4.1 and the
time evolution of the system is determined. I do not solve the differential equation directly for
the nonequilibrium wave function, but calculate the time dependent expectation values of system
operators instead,

i d
dt 〈Ô(t)〉 = 〈I| Ô i d

dt | ρ(t)〉

= 〈I| ÔL̂ | ρ(t)〉

= 〈I|
[
Ô, L̂

]
| ρ(t)〉 .

(118)

Eq. (118) follows from eq. (31) by taking the derivative with respect to time, inserting the Lind-
blad equation (30) and then exploiting the property (32). In case of a generalized noninteracting
system I am especially interested in the following expectation values,

ρµν = 〈c†µcν〉 ,

ηµν = 〈cµcν〉 ,

ξµν = 〈c†µc†ν〉 .

(119)

In case of a normal system ρ is sufficient. These expectation values can be used to calculate
the retarded Green’s function and thus the spectral function of the system. Eq. (140) displays
the result in the steady state. Furthermore the occupation numbers and bond currents can be
determined from ρ, according to eq. (145) and (146). In sec. 4.2.1 and 4.2.2 two schemes are
presented to solve eq. (118) for the relevant operators in eq. (119).

4.2.1 Solution by diagonalization

The first solution scheme for eq. (118) is based on the diagonalization of the Liouvillian, which
yields the representation (101). By chosing for all possible pairs of indices (r, s),

Ô = b†r bs , (120)

with b from eq. (85) or (88), all relevant operators in eq. (119) are considered. In order to
evaluate the commutator with the Liouvillian, they are also expressed in terms of eigenmode
operators,

b = R†U f ,

b† = f̄ VR .
(121)

Eq. (121) follows by combining eq. (92) with (98). Inserting the respective components into eq.
(120) yields the following transformation, together with its inverse.

b†r bs =
∑

mnpq

(
R†

)
sqUqm f̄n fmVnp Rpr (122)

f̄n fm =
∑
h jkl

Vmh Rh j b†k bj

(
R†

)
kl Uln (123)

The calculation of the commutator in eq. (118) therefore reduces to the calculation of
[
f̄n fm , L̂

]
.

For the normal system this is easily evaluated, using the simple anticommutation relations (114).
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For the generalized system these relations are far more complicated, see eq. (117). The commu-
tator can be evaluated with the help of the K - relations (157), see sec. 7.3. Exploiting eq. (177)
yields [

f̄n fm , L
]

= κ (λm − λn) f̄n fm . (124)

κ =

{
1 , normal system
2 , generalized system

(125)

Thus the differential equation (118) decouples different pairs of eigenmode operators f̄n fm. It
can be solved for them independently and the solutions can be superposed afterwards to the
original operators b†r bs.

i
d
dt
〈 f̄n fm〉 = κ (λm − λn) 〈 f̄n fm〉

〈 f̄n fm〉t = e−i κ (λm−λn) t 〈 f̄n fm〉0
(126)

In the second line the differential equation has been integrated from 0 to t. For simplicity the
time variable is written as a subscript. Inserting the result in eq. (122) yields

〈b†r bs〉t =
∑

mnpq

(
R†

)
sqUqm e−i κ (λm−λn) t 〈 f̄n fm〉0 Vnp Rpr . (127)

The initial expectation values are also expressed in terms of b operators, using eq. (123).

〈b†r bs〉t =
∑

mnpq

∑
h jkl

(
R†

)
sqUqm e−i κ λm t Vmh Rh j 〈b

†

kbj〉0

(
R†

)
kl Uln e i κ λn t Vnp Rpr

=
∑

jk

(
R†U e−i κ D t VR

)
s j 〈b

†

kbj〉0

(
R†U e i κ D t VR

)
kr

=
∑

jk

(
R† e−i κ L′′ t R

)
s j 〈b

†

kbj〉0

(
R† e i κ L′′ t R

)
kr

=
∑

jk

(
e−i κ L′ t

)
s j 〈b

†

kbj〉0

(
e i κ L′ t

)
kr

(128)

The last two lines follow from eq. (98) and (92) by power series expansion of the exponential.
Note that the solution (128) is only valid, if the Liouvillian does not depend on the state of the
system and is independent of time. This has been assumed in the steps (126) - (128). Otherwise
an alternative solution method is necessary, as presented in sec. 4.2.2.

4.2.2 Direct solution

Alternatively, the commutator in eq. (118) can be directly evaluated for the operators in eq.
(119) without an intermediate diagonalization step. This yields the following set of coupled
differential equations:

ρ̇ =Hᵀρ +Aᵀη + Γ(+)ᵀ + h.c.

η̇ =H†η +A†ρ + C† − trs. (129)

ξ̇ = ξH + ρA + C − trs.

’h.c.’ again means hermitian conjugate and ’trs.’ transposed. From this representation it can be
immediately seen that the properties ρ = ρ†, η = −ηᵀ, ξ = −ξᵀ and ξ = η† are maintained
during the time evolution as required. Due to the last property, the equation for ξ is redundant
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and can thus be skipped. Eq. (129) follows from a long but simple calculation, exploiting the
fermionic anticommutation relations (36), the tilde conjugation rules (38) and the symmetries of
h, a, Γ(±) and Υ(±), eq. (70) and (74) - (76). These matrices form the coefficients in eq. (129)
with the definitions (80) and (95):

H = (i h − Λ)

A = 2 (i a − X) (130)

C = − (i a + Z)

If these coefficients are constants, the set of equations can be solved by rearranging the elements
into a matrix-vector equation, v̇ = Mv + const., and diagonalizing the matrix M, as in sec. 4.2.1.
If the coefficients in eq. (130) depend on time or on the variables ρ or η, eq. (129) can be solved
with a Runge-Kutta scheme, for example.

4.3 Steady state

If the system is left alone to evolve for some time, a steady state may be reached, where the
observables do not depend on time anymore. If such a steady state exists, expectation values of
eigenmode operators 〈 f̄n fm〉t are bounded and tend to a constant value for t → ∞. By rephrasing
the time evolution (126),

〈 f̄n fm〉t = e−iκ<(λm−λn) te κ=(λm−λn) t 〈 f̄n fm〉0 , (131)

it can be learned that these conditions are fulfilled in case of λm = λn and a finite or zero initial
value 〈 f̄n fm〉0, or if either = (λm − λn) < 0 or 〈 f̄n fm〉0 = 0. These three are the only possibilities,
as highlighted by the following distinction of cases.

• λm − λn = 0 :
lim
t→∞
〈 f̄n fm〉t = 〈 f̄n fm〉0

• <(λm − λn) = 0 and =(λm − λn) , 0 :

lim
t→∞
〈 f̄n fm〉t =

∞ , =(λm − λn) > 0 and 〈 f̄n fm〉0 , 0
0 , =(λm − λn) < 0 or 〈 f̄n fm〉0 = 0

• <(λm − λn) , 0 and =(λm − λn) = 0 :

lim
t→∞
〈 f̄n fm〉t =

not existing , 〈 f̄n fm〉0 , 0
0 , 〈 f̄n fm〉0 = 0

• <(λm − λn) , 0 and =(λm − λn) , 0 :

lim
t→∞
〈 f̄n fm〉t =

∞ , =(λm − λn) > 0 and 〈 f̄n fm〉0 , 0
0 , =(λm − λn) < 0 or 〈 f̄n fm〉0 = 0

If a steady state exists, expectation values 〈 f̄n fm〉t corresponding to different eigenvalues, λm −

λn , 0, are either identical to zero or they decay to zero with t → ∞. 〈 f̄n fm〉t and 〈 f̄m fn〉t cannot
both be of the decaying type, because the eigenvalues contribute with opposite signs. If one of
them occurs, the other must be identical to zero.
In the steady state only expectation values 〈 f̄n fm〉∞ corresponding to equal eigenvalues, λn = λm,
are nonzero. If the eigenvalues are nondegenerate, this means that only 〈 f̄n fn〉∞ are finite and
thus contribute to the expectation values of general system operators.
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Since in case of an existing steady state, λn , λm and 〈 f̄n fm〉0 , 0 the imaginary part con-
tained in the exponential (131) has to be negative, it is reasonable to carry out a particle-hole
transformation, such that all super energies have a negative imaginary part:

f ′n =

 fn =λn < 0
f̄n =λn > 0

λ′n = −λn sgn=λn =

 λn =λn < 0
−λn =λn > 0

(132)

From eq. (114) and (117) follows immediately { f̄ ′n , f ′n} = 1. Inserting the new operators and
super energies, eq. (132), into eq. (101) and using this property yields

L̂ =
∑

n

λ′n f̄ ′n f ′n + C′1 , C′ = C +
∑

n|=λn>0

λn . (133)

In the following |0 f ′〉 denotes the vacuum for the f ′ operators. Thus it fulfills f ′n |0 f ′〉 = 0. The
time evolution of this state is determined by eq. (30) with the Liouvillian (133),

i
d
dt
|0 f ′〉 = C′ |0 f ′〉 ,

|0 f ′〉t = e−i<C′te=C′t |0 f ′〉0 .

(134)

If a steady state exists, either C′ ≡ 0 or =C′ < 0 has to be fulfilled. In fact, C′ = 0 is valid, as
demonstrated in sec. 7.4. Therefore the f ′ vacuum is constant in time. The time evolution of a
state with one f ′ particle is given by

i
d
dt

f̄ ′n |0 f ′〉 = κ λ′n f̄ ′n |0 f ′〉 ,

f̄ ′n |0 f ′〉t = e−iκ<λ′nteκ=λ
′
nt f̄ ′n |0 f ′〉0 ,

−→
t→∞

0 .

(135)

The calculation has been transferred to sec. 7.5. The amplitude of the state decays exponentially
to zero with t → ∞, since =λ′n < 0. This also holds for states with more than one f ′ particles,
see sec. 7.5. Therefore the f ′ vacuum is the steady state,

|ρ∞〉 = |0 f ′〉 . (136)

Expectation values of eigenmode operators in the steady state, 〈 f̄n fm〉∞, can be calculated with
the knowledge that for nondegenerate eigenvalues only diagonal terms, n = m, survive and by
transforming to the f ′ operators and exploiting the vacuum property, f ′n |ρ∞〉 = 0:

〈 f̄n fm〉∞ = δnm 〈 f̄n fn〉∞

= δnm

〈I| f̄ ′n f ′n |ρ∞〉 = 0 =λn < 0
〈I| f ′n f̄ ′n |ρ∞〉 = 〈I|1 − f̄ ′n f ′n |ρ∞〉 = 1 =λn > 0

= δnm Θ (=(λn))

≡ D>
nm

(137)

In the second line also the anticommutation relation, { f̄ ′n , f ′n} = 1, has been used and 〈I|ρ〉 = 1,
see sec. 2.3. According to eq. (137), only those eigenmode operators that correspond to eigen-
values with a positive imaginary part contribute. With eq. (122) follows that expectation values
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of quadratic operators 〈b†r bs〉 in the steady state are determined by

〈b†r bs〉∞ =
∑
nm

(
R†

)
sqUqm 〈 f̄n fm〉∞ Vnp Rpr

=
(
R†UD>VR

)
sr
.

(138)

The retarded Green’s function for the b operators in the steady state is defined as

GR
rs(t) = −i Θ (t) 〈I | {br(t), b†s} | ρ∞〉 , GR

rs(ω) =

∫
dt eiωtGR

rs(t) . (139)

The calculation of GR(ω) for the normal noninteracting system is presented in detail in [10] and
can be taken from this source. To make it valid also for a generalized system, an additional
factor κ, eq. (125), has to be introduced, analogous to the time evolution. The result is

GR(ω) = U
D<

ω1 − κD
V −

(
U

D>

ω1 − κD
V
)†
, (140)

with the definition

D<
nm = δnm − D>

nm . (141)

The spectral function is calculated from eq. (140), according to

A(ω) = −
1
π
=GR(ω) . (142)

Note that the calculation of the steady state presented in this subsection is only valid, if the co-
efficients of the Liouville matrix L′ (L′′) are constants and thus depend neither on time nor on
the density operator, the same requirements as for the time evolution in sec. 4.2.1.
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5 Results

In the first subsection 5.1 the simulation results for a simple model are presented, in order to
give an impression of the consequences that a coupling to the environment exerts on a quantum
system and to make some general remarks. Sec. 5.2 presents a model for the leads and a way to
apply a bias voltage between them. The results are used to represent the leads in the following
subsections. Sec. 5.3 shows the simulation results for the Su-Schrieffer-Heeger Model and sec.
5.4 those for a two-dimensional extension of this model. In sec. 5.5 the Kitaev Model is studied
and in sec. 5.6 a time dependent extension of the Kitaev Model. The presented results are
original contributions from this thesis.

5.1 A first simulation and the impact of the dissipation parameters Γ

For a first study of the impact that the Γ matrices exert on a system, a simple and well known
model, the one-dimensional tight binding model is used. This model is the basis for both systems
I aim to study in the end: It emerges as a limiting case in the Su-Schrieffer-Heeger Model (41)
for δ = 0 and also in the Kitaev Model (54) for ∆ = 0. Its hamiltonian reads,

Ĥ = ε

N∑
n=1

c†ncn + t
N−1∑
n=1

(
c†ncn+1 + h.c.

)
, (143)

with nearest neighbor hopping strength t and on-site energy ε.
I chose one Lindblad dissipator coupled to the first site of the chain that introduces particles into
the system with rate Γ(+) and a second dissipator extracting particles at the last site of the chain
with rate Γ(−). The matrices Γ(±) read in this case

Γ(+) =

(
Γ(+) 0

0 0

)
, Γ(−) =

(
0 0
0 Γ(−)

)
. (144)

This simple setup already drives the system out of equilibrium. It is the first approximation of a
bias voltage applied. Obviously, the result is a particle current passing through the system from
the left to the right. Fig. (6) shows a picture of this setup.

Γ(+)

1

t

2 3

ε

4

Γ(−)

5

Figure 6: Tight binding Model with a single dissipator at each end. Γ(+) and Γ(−) are the rates
with which electrons are created and destroyed at opposite ends of the chain, driving a
particle current through the system from the left to the right.

In order to calculate this current and also the occupation numbers of the sites quantitatively, the
coefficient matrix h is determined from eq. (143) and inserted together with Γ(+), Γ(−) from eq.
(144) into the Liouville matrix L′′, eq. (93) with (80) and (81), which is then diagonalized. It is
sufficient to do this for the α block only, see eq. (187), and use eq. (106) - (110) to determine the
result for the whole matrix L′′. From eq. (128) and (138) the time evolution and the steady state
for the expectation values 〈b†r bs〉 from eq. (85) can be determined. For the time evolution an
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initial state 〈b†kbj〉0 is chosen first. More precisely, 〈c†kcj〉0 = 〈b†kbj〉0| j,k ∈ [1,N] is chosen, the other
expectation values are calculated from this. Then eq. (128) and (138) are applied to obtain the
time evolution and the steady state. It is sufficient to evaluate these equations for r, s ∈ [1,N],
again yielding 〈b†r bs〉 |r,s ∈ [1,N] = 〈c†r cs〉 = ρrs, the single particle density matrix. The other indices
do not hold additional information. The occupation numbers nr can be read directly from ρ, the
current flowing on the bond between sites r and s, coupled by t, has to be calculated,

nr = 〈c†r cr〉 = ρrr , (145)

Jrs = it
(
〈c†r cs〉 − 〈c

†
scr〉

)
= −2t=ρrs . (146)

Fig. 7 shows simulation results for N = 5 sites with the parameters ε = 0 and t = Γ(+) = Γ(−) = 1.
It has been assumed that initially each site is equally occupied, ρk j (0) = N−1δk j.
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(a) Time evolution of the occupation number nr(t).
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(b) Time evolution of the bond current Jrs(t)
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(c) Single particle density matrix in steady state: <ρrs
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(d) Single particle density matrix in steady state: =ρrs.
This yields the current Jbond = 0.5, according to (146).

Figure 7: Simulation results for the tight binding model coupled to two dissipators, according to
fig. 6, with N = 5 sites, ε = 0 and t = Γ(+) = Γ(−) = 1. (a) and (b) show the time
evolution of the occupation number and the bond current. (c) and (d) show the real
and imaginary part of the single particle density matrix in the steady state. The indices
r, s denote system sites, the color indicates the value of<ρrs or =ρrs, according to the
legend.

In fig. 7(a) and 7(b) the time evolution of the occupation of each site and the bond currents
between two sites are plotted. For small times the system shows transient behavior. Site 5 is
directly coupled to the dissipator extracting electrons from the system. This happens at a con-
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stant rate Γ(−). The system is initially in equilibrium with an equal occupation, insufficient to
satisfy the demand for electrons after a short time. The particles have to be drawn from the ad-
jacent sites to the left and ultimately from the dissipator coupled to site 1, which is pumping in
electrons with rate Γ(+). Injected into the system, they are driven by the difference in occupation
between adjacent lattice sites and their velocity is bounded by the hopping strength t. They need
time to traverse the system. Therefore it takes time for the last site to be resupplied again. For
this reason the occupations of the last and also the next to last site, n5 and n4, decrease before
increasing again. The first two sites, in contrast, are essentially filled from the beginning. The
reaction of the interior sites on the Γ - parameters is less distinct, as there is no direct coupling.
This can also be observed from the bond currents. For small simulation times the currents flow-
ing at the edge bonds are larger than the interior currents.
After a settling time of t ' 12 a steady state is reached, where these quantities do not depend on
time anymore. The most important result is that in the steady state each bond carries the same
current. Thus Kirchhoff’s point rule is fulfilled, which was not the case during the transient.
Furthermore all interior sites have the same occupation nk. It differs from the occupation of the
edge sites that are coupled directly to the Lindblad dissipators, n1 > nk > nN . The results are
sustained by the figures 7(c) and 7(d), which show the whole single particle density matrix in the
steady state, calculated from eq. (138). The described properties are generally inherent in a tight
binding system as shown by fig. 6 for N ≥ 3 sites, with one exception: If more sites involved, it
takes the system more time to overcome the transient and reach the steady state.
The dynamics and the steady state of the system are governed by the eigenvalues of the Liou-
villian. Fig. (8) shows the eigenvalues λn corresponding to the discussed results, before the
particle-hole transformation is applied. The eigenvalues are complex, since the Liouvillian is
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Figure 8: Eigenvalues of the Liouvillian for the tight binding model coupled to two dissipators,
according to fig. 6, with N = 5 sites, ε = 0 and t = Γ(+) = Γ(−) = 1. The figure shows
the real and imaginary parts of the eigenvalues λn, according to eq. (101), before the
particle-hole transformation, eq. (132).

not hermitian. They generally appear in complex conjugated pairs, irrespective of the model
studied, see eq. (108). Thus they lie symmetric with respect to the real axis. For this special
system they are also symmetric with respect to the imaginary axis. Since the eigenvalues are
complex, the corresponding eigenmodes don’t only pick up a phase with proceeding time, as
in a closed system described by a hermitian Liouvillian with real eigenvalues, but they are also
subject to a dampening. Eq. (131) shows that<λn causes a phase change and =λn is responsible
for the dampening. From the imaginary part of the eigenvalues it is possible to estimate the sim-
ulation time until the steady state is reached with a certain accuracy. After the time τ = |κ=λn|

−1,
with κ from eq. (125), the amplitude of the n-th eigenmode is decayed by a factor e−1, compare
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eq. (131). Thus the eigenvalue with the smallest imaginary part determines the necessary simu-
lation time. This time scales with the number of sites N.
Finally, the dependence of the steady state on the parameters Γ(+) and Γ(−) is studied. Fig. 9(a)
shows the occupation numbers and the bond current, if Γ(+) and Γ(−) increase symmetrically from
zero. This figure does not hold any surprises. As expected, the first site is filled with increasing
Γ(+) and the last site emptied with increasing Γ(−). The occupation in between remains constant,
since the rates change symmetrically. The current has a maximum at Γ(+) = Γ(−) = t and van-
ishes for very small and large rates. The behavior of the system is much more interesting, if Γ(+)

and Γ(−) change independently, as shown in fig. 9(b) and 9(c). If Γ(+) is large in comparison to
the other parameters, Γ(−) and t, site 1 is filled with electrons, as expected. Furthermore the last
and the interior sites are emptied, which is not immediately plausible. The reason for this is the
loss of coherence: Site 1 is decoupled from the rest of the chain, leaving back a system, where
only Γ(−) is acting. A similar behavior can be observed for large Γ(−). In this case the last site is
decoupled from the system, yielding nN → 0 and n1, nk → 1.
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Figure 9: Steady state occupation numbers and bond current for the tight binding model coupled
to two dissipators, according to fig. 6 for ε = 0, t = 1. The figures show the dependence
of these quantities on (a) Γ(+) = Γ(−), (b) Γ(+) for Γ(−) = 1 and (c) Γ(−) for Γ(+) = 1.

All results in this subsection have been achieved through diagonalization of the Liouville matrix.
Alternatively, the time evolution could be determined by solving the set of equations (129) with
a Runge-Kutta scheme, see sec. 4.2.2. If the Liouvillian is non-interacting and independent of
the system’s state and of time, the diagonalization method is more efficient. Dealing with a time
dependent problem, the Runge-Kutta scheme is better suited.
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5.2 Buffer model for the leads

The final goal of this section is to study the transport properties of several different quantum
systems connected to two electronic leads, where a bias voltage is applied. In the previous
subsection the system has been biased with a single and constant pump rate Γ(±) at each end,
which is a rather poor approximation. A more realistic situation can be established following
the suggestion in [9] and [10], where the leads are modeled by a number of bath sites coupled
to a Markovian environment, which is created by a set of Lindblad dissipators. The setup is
illustrated in fig. 10.

Lindblad
dissipators
Γ
(+)
kL , Γ(−)

kL

Left lead

Discrete
energy
levels εkL

System
Discrete
energy
levels εkR

Right lead

Lindblad
dissipators
Γ
(+)
kR , Γ(−)

kR

Figure 10: Sketch of a system connected to two leads, adapted from [9]. In this model each
lead is partitioned into a number of bath sites that couple directly to the system and a
Markovian environment, generated by Lindblad dissipators. The representation can
be improved with increasing number of bath sites.

The system of interest and the bath sites together form a central region that is characterized in
terms of a hamiltonian. The general structure of this hamiltonian is

Ĥ = ĤS +
∑

k,α=L,R

εkαc†kαckα +
∑

n,k,α=L,R

(
tnkαc†kαcn + h.c.

)
. (147)

The first summand describes the system, the second one the bath sites and the last summand
their coupling to the system. c†kα and ckα creates and destroys an electron at site k in lead α.
c†n and cn are the creation and annihilation operators in the system. The bath sites have on-site
energies εkα and their coupling to the system is described by the hopping strengths tnkα.
Each bath site is furthermore coupled to two Lindblad dissipators that introduce and extract
electrons with the rates Γ

(+)
kα and Γ

(−)
kα . In order to faithfully describe the leads, these rates must

depend on the occupation of the energy levels εkα , since electrons can only be introduced to an
empty site and extracted from a filled one. For disconnected leads in thermodynamic equilibrium
these occupation numbers are determined by the Fermi function and the rates can be represented
as

Γ
(+)
kα = γkα f kα ,

Γ
(−)
kα = γkα

(
1 − f kα

)
,

fkα =

1 + exp
εkα − µα

Tα

−1

. (148)

Tα and µα are the temperature and the chemical potential in lead α. The parameters γkα are again
constant rates. Perfect leads are infinitely large electron reservoirs that nearly stay in equilibrium
when coupled to the system. Therefore the Fermi distribution and the rates in eq. (148) are kept
in this case. In this setup a current can be driven through the system by shifting the chemical
potential and/or the temperature in one lead with respect to the other one.
Prior to this simulation the parameters γkα, εkα and tnkα have to be determined for each lead. It is
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assumed that both leads are identical and each bath site couples only to a single adjacent system
site. Thus the considerations are confined to the left lead coupled to site 1 of the system and
the indices α and n are dropped. The lead is characterized by its retarded hybridization function
∆(ω). For the considered “star configuration” it reads

∆(ω) =
∑

k

t2
k gk(ω) , gk(ω) =

1
ω − εk + i γk

. (149)

gk(ω) is the retarded Green’s function of bath site k in the disconnected lead. It has been assumed
that the hoppings tk are real. If they are furthermore identical, tk = t′, the imaginary part of the
hybridization function is proportional to the density of states in the lead D(ω),

D(ω) ∝ −
1
π
=∆(ω) =

1
π

∑
k

t2
k

γk

(ω − εk)2 + γ2
k

. (150)

Eq. (150) describes a sum of Lorentzians, centered at ω = εk, each with a prefactor t2
k , yielding

a peak height of t2
k/γk. The width of the peaks is determined by γk.

The purpose of the discussed auxiliary system, consisting of the bath sites and the Lindblad dis-
sipators, is to faithfully represent real physical leads. Given the exact hybridization function of
a physical lead ∆ex(ω), the parameters tk, γk and εk are determined through a fit of =∆ex(ω) with
=∆(ω) from eq. (150). Considering all tk, γk, εk as fit parameters limits the model to a small
number of bath sites, in order for the calculation to be feasible in practice. By imposing further
constraints on the parameters the number of bath sites may be raised and thus the quality of the
representation. In the following it is shown, how this can be done in detail.
For a first study the hoppings are assumed to be identical, tk = t′. Furthermore =∆ex(ω) and thus
the exact density of states Dex(ω) are assumed to be constant within the bandwidth ω ∈ [−W,W]
and zero outside. If the energies εk are evenly spaced within this bandwidth, it is reasonable
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Figure 11: Fit results for evenly spaced bath site energies. (a) shows the quality of the repre-
sentation of the exact hybridization function ∆ex(ω) by the modeled one ∆(ω), eq.
(150), with only two fit parameters, t′ and γ′. (b) shows the resulting steady state oc-
cupation of the bath sites when the lead is coupled to a single site with on-site energy
ε = µ = 0. The choice of parameters is explained in the running text.

to take all γk = γ′ identical, too, as they determine the Lorentzians’ widths. This leaves two
parameters, t′ and γ′, to determine, e.g. by minimizing the quadratic deviation of =∆(ω) from
=∆ex(ω). Fig. 11(a) shows the fit result for NB = 30 bath sites representing a constant hy-
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bridization Γ = −=∆ex(ω) = 1 within the bandwidth [−10, 10]. In fig. 11(b) the steady state
occupation of the bath sites is plotted, when they are coupled to a single system site with on-site
energy ε = 0. The chemical potential and the temperature in the lead are chosen as µ = 0 and
T = 0. In the case of ideal leads, the occupation would reproduce the Fermi function, which is
a step function at T = 0. As the leads are not perfect, the Fermi function is only approximately
reproduced. Around ε = µ it varies most, thus the plotted scenario shows the worst case. The
result can be improved by using more bath sites and/or a tighter εk - spacing around zero.
The latter can be managed by using logarithmically spaced εk that accumulate around zero. It
is reasonable to assume that the other parameters space in energy distances δεk of neighboring
εk, according to tk = t′

√
δεk and γk = γ′δεk. This way the height of the individually observed

Lorentz peaks in eq. (150) is t′2/γ′ and thus constant for all energy levels. Furthermore the
width of the peaks increases the farther they are separated from each other, compensating for the
sparse arrangement outside the region around zero. Fig. 12 shows the fit results achieved with
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Figure 12: Fit results for logarithmically spaced bath site energies. (a) shows again the quality
of the representation of the exact hybridization function ∆ex(ω) by the modeled one
∆(ω), eq. (150), with fit parameters t′ and γ′.(b) shows the resulting steady state
occupation of the bath sites when the lead is coupled to a single site with ε = µ = 0
for different hybridizations.

this method. The parameters are the same as before, except for εk, tk and γk. In fig. 12(a) the
hybridization function is less well represented as before in fig. 11(a). If the exclusive goal had
been the achievement of the best fit result for =∆(ω), this method would be not so appropriate.
In that case it would be advantageous to take a high energy resolution at the band’s edges ±W to
represent them well and larger energy spacings in the center. But the occupation resulting from
the fit is also very important. For the occupation the region around µ is crucial and should have
the highest point density. By comparison of the blue curve in fig. 12(b) with fig. 11(b), it can
be observed that the Fermi function is better reproduced using a logarithmic energy spacing. An
even better result can be obtained by additionally reducing the coupling of the lead to the system
site which means reducing the hybridization. The purple curve in fig. 12(b) shows the bath’s
occupation, if the hybridization is reduced by a factor of 100 with respect to the hybridization
yielding the blue curve. This transformation, Γ→ Γ

100 , is equivalent to t′ → t′
10 .

Since this thesis is concerned about systems that exhibit edge states at low energies, their behav-
ior at low voltages is especially interesting. Low voltages are associated with a high sensitivity
at the leads’ Fermi edges. Thus the shortcomings of the second method regarding the represen-
tation of the hybridization function will be less weighted and the decision is made in favor of the
Fermi function and the logarithmically spaced points.
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In the following simulations the modeled leads are coupled to the system, according to eq. (147).
Their temperature is kept constant at T = 0. A bias voltage VB is applied by shifting the chemical
potential and the on-site energies of the bath sites in one lead with respect to the other one. If
not stated otherwise, the effect of the voltage is divided evenly onto both leads, resulting in(

µL

εkL

)
→

(
0
εk

)
+

VB

2
,

(
µR

εkR

)
→

(
0
εk

)
−

VB

2
. (151)

Other realizations are possible. It is sufficient that the chemical potentials in the leads differ by
VB. If e.g. the right lead is fixed, VB exerts its influence exclusively on the left lead, yielding(

µL

εkL

)
→

(
0
εk

)
+ VB ,

(
µR

εkR

)
→

(
0
εk

)
. (152)

The bias voltage drives a current through the system. The current on a bond between two system
sites coupled by t is calculated with eq. (146). Different realizations of VB end in different
simulation results.

5.3 Su-Schrieffer-Heeger Model

In this subsection the transport properties of the Su-Schrieffer-Heeger Model, eq. (41), are ex-
amined in both phases and at the phase transition. The results are presented in terms of the
parameters tA := t + δ and tB := t − δ.
The leads are modeled by NB = 100 bath sites with a logarithmic energy spacing representing a
constant hybridization Γ = 10−2 on [−30, 30]. They are coupled to opposite edge sites of a wire
with N = 80 sites. A bias voltage VB is applied symmetrically, according to eq. (151), driving a
current through the system.
The main simulation results in the steady state are presented in fig. 13. The left column shows
the current between adjacent system sites in dependence of the bias voltage for tB = 1 and dif-
ferent values of tA > 0, associated with different phases. The right column shows the trace, the
sum over all sites, of the local spectral function of the wire corresponding to one of the curves
to the left at VB = 1.
In the topological phase, defined by tA < tB, the current starts to rise at a certain threshold volt-
age VT > 0, as demonstrated in fig. 13(a). The threshold voltage decreases with increasing tA

and approximates zero for tA . tB. This behavior can be understood by studying the spectral
function. Fig. 13(b) shows the local spectral function of the wire for tA = 0.3, summed over
all sites. The peak centered at ω = 0 corresponds to the edge states that arise in the topolog-
ical phase. They are localized at the edges of the wire and decay to zero into the bulk. This
is demonstrated in fig. 14. Because of this property these states are not able to carry a current
along the wire. An electron can move from one site to another one, if the sites are coupled by
a finite hopping strength and if the target site hosts a state at the same energy that the electron
can occupy. In order to drive a current along the wire, states are necessary that extend over the
whole bulk. There are no such states at ω ' 0, the next states with a finite weight within the
bulk lie at ω ' ±0.71. Therefore the size of the bulk gap is ∆I ' 1.42. Only electrons with a
high enough energy to overcome the bulk gap can cross the wire and contribute to a current. The
necessary energy can be acquired from a bias voltage. As the occupation in the leads is nearly
a step function and the voltage is applied symmetrically, electrons from one lead can overcome
the gap, cross the system and vanish into the other lead for VB ≥ ∆I . This defines the threshold
voltage as VT = ∆I . By comparison with fig. 13(a) it can be learned that the current for tA = 0.3
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(f) Spectral function for tA = 1.8.

Figure 13: Phase diagram of the Su-Schrieffer-Heeger Model in the steady state, showing the
current voltage characteristics and the spectral functions. The hopping tB = 1 is
fixed, the phase transition is made by varying tA. The spectral functions are plotted
at VB = 1, which lies within the bulk gap for the studied parameters in both phases.
The figures show the local spectral function of the wire summed over all sites (trace).
The peak at ω = 0 in the topological phase (b) is localized at the edges and vanishes
in the bulk, which is demonstrated in fig. 14. The other modes extend over the bulk.
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indeed starts to flow at VT = 1.42 = ∆I . The threshold voltage decreases with increasing tA in
this phase, because the gap gets smaller. This is illustrated in fig. 15, which shows the gap size
in dependence of tA in both phases and at the phase transition. At a certain voltage VS the current
saturates. This can also be explained by having a look at the spectral function. Fig. 13(b) shows
that for |ω| > 1.32 no additional states are present. By increasing the bias voltage across this
point no additional electrons can be hosted by the wire. Therefore the current is independent of
VB from then. Since the leads’ occupation is nearly a step function and the voltage is applied
symmetrically, this point is reached for VS ' 2.64. This agrees with the saturation voltage that
can be directly read from fig. 13(a) in the case of tA = 0.3. VS increases with increasing tA,
because the spectral function is broadened. The velocity of the electrons moving along the wire
is bounded above by min (tA, tB). Therefore the strength of current is determined by the minimal
hopping strength. In the topological phase this is tA and therefore the saturation current also
increases with increasing tA, see fig. 13(a).
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Figure 14: Local spectral function in the vicinity of the edges for different values of ω within the
bulk gap at VB = 1. d denotes the distance from the nearest edge site. The parameters
tA = 0.3, tB = 1 correspond to the topological phase. Obviously only edge states are
present at low energies. They have their maximum weight at d = 0 and ω = 0 and
decay to zero away from these parameters.

At tA = tB a phase transition takes place. Fig. 13(d) shows the trace over the local spectral
function of the wire for these parameters. There is no hint of an energy gap in this figure, but the
figure lacks a spatial resolution. Further investigation shows that the states, also the low energy
ones, extend over the whole wire including the edges. Thus the bulk gap is closed, ∆I = 0,
and the edge states vanished, as demonstrated in equilibrium. Since there is no energy gap, the
current in fig. 13(c) rises from zero voltage without a threshold. The current saturates at VS ' 4,
which corresponds to the extent of the spectral function in fig. 13(d). For these parameters the
Su-Schrieffer-Heeger model is reduced to the ordinary tight binding model.
For tA > tB the system is in the trivial phase. As can be seen from fig. 13(f) the spectrum is
gapped again, but no edge states are present. This has also been demonstrated in equilibrium.
For tA = 1.8 the size of the gap is ∆I = 1.64, in agreement with fig. 13(e) showing a threshold
voltage of VT = 1.64. In this phase the threshold voltage increases with tA, because the energy
gap widens away from the transition point, according to fig. 15. The voltage VS also increases
with tA, as the spectrum broadens. The saturation current is now independent of tA, because its
upper bound is determined by min (tA, tB) = tB in this phase. Since tB is fixed, the saturation
current is constant.
As previously mentioned, the spectral functions have been calculated at VB = 1. This yields
electron energies that lie within the bulk gap for the discussed examples, tA = 0.3 and tA = 1.8,
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and is therefore well suited to distinguish between the effects of edge and bulk modes. Further
investigation shows that the spectral function does not change qualitatively with the bias voltage.
The spectral functions have been used to determine the the bulk’s energy gap for different tA.
The result is plotted in fig. 15 and compared with the equilibrium result.
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Figure 15: Bulk gap ∆I in dependence of tA for tB = 1. The equilibrium result that the gap size
equals 4|δ| = 2|tA − tB|, see eq. (47), is nicely fulfilled in the simulation. The values
for ∆I have been achieved from the corresponding spectral functions at VB = 1, as
explained in the running text.

If the number of system sites is raised above 80, the transport properties do not change qualita-
tively anymore. In fact this is already the case for smaller systems, from N & 40.

5.4 Two-dimensional extension of the Su-Schrieffer-Heeger Model

In order to investigate the transport properties of the edge states that arise in the topological phase
of the Su-Schrieffer-Heeger model, it is extended to two dimensions. Therefore N identical wires
are arranged parallel to each other and each site of a wire is coupled to the corresponding sites
in the adjacent wires with the hopping strength tN . The setup is illustrated in fig. 16.

n = 1

l = 1

2

3

L
tN

2

tN

3

tN tN

N

Figure 16: Two-dimensional array of N identical Su-Schrieffer-Heeger wires with length L, cou-
pled to each other by a hopping strength tN . The wire index is called n and the site
index within a wire l. The left lead is connected to the wire n = 1 and the right lead to
the wire N, such that all bath sites in a lead are connected to each site of the respective
wire.
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The leads are modeled by NB = 30 bath sites with a logarithmic energy spacing fitting a constant
hybridization of Γ = 10−2 on [−10, 10]. The reduction of the number of bath sites in comparison
to the one-dimensional case is necessary to limit the computational effort, because the system
of interest itself consists of a larger number of sites. To still allow for a good covering of the
energy band by the bath sites, the band width is reduced, too. The left lead is coupled to the first
wire, the right lead to the last one and all bath sites within a lead are coupled to each site of the
corresponding wire. In the one-dimensional case, in contrast, each lead has been coupled only
to a single site.
The studied array holds N = 40 wires with L = 40 sites per wire. The wire index is denoted as
n = (1, . . . ,N) and the site index along the wire as l = (1, . . . , L). The choice of N and L is the
result of the following considerations. If the horizontal bonds in fig. 16 are cut, this yields N iso-
lated Su-Schrieffer-Heeger wires, whereas a cut of the vertical bonds yields L isolated ordinary
tight-binding wires. The transport properties of both models, when individually studied, do not
change qualitatively, when the number of sites is raised above 40. Of course, this can be differ-
ent, when the additional couplings are turned on and the system is two-dimensional. Therefore
it would be advantageous to study a larger system. In the one-dimensional Su-Schrieffer-Heeger
model L should be large, in order to prevent the wave functions of edge states, which are located
at opposite ends of the wire, from overlapping. Since the current is driven along the ordinary
tight-binding chains, N should not be too small, either. The computational effort, unfortunately,
prevents from calculating much larger systems with the presented method. A comparison with
smaller systems suggests that the quality of the simulation results is not entirely converged in
system size for N = L = 40.
The individual Su-Schrieffer-Heeger wires are in the topological phase with the parameters
tA = 0.3 and tB = 1, since the transport properties of the edge states are of interest. The
inter-wire-coupling is chosen to be weaker than the hopping strengths within a wire, in order not
to alter the properties experienced in the one-dimensional chain too much, tN = 0.2.
Fig. 17(a) presents the current voltage characteristic for these parameters. The overall current
between two wires, resulting from the sum of all currents living on the bonds that connect these
wires, is constant in the system. Furthermore it equals the current from the left lead onto the first
wire and from the last wire into the right lead. This is a manifestation of Kirchhoff’s point rule
in two dimensions. The discussed current is called transmission current and it is plotted in fig.
17(a). The transmission current starts to flow from zero voltage, exhibits a quasi-plateau, where
the slope is smaller, then rises again and finally saturates.
Fig. 17(b) serves to study the current distribution within the wires. It shows the average of all
bond currents that flow between the Su-Schrieffer-Heeger wires at a certain vertical site index l
including the in- and outflow, due to the leads, at this l. From fig. 17(b) it can be learned that the
current at VB = 1 flows nearly exclusively along the edge sites of the connected Su-Schrieffer-
Heeger wires and is zero in the center of the array. This suggests that the current is carried by
edge states of neighboring wires that overlap, due to the coupling tN . At larger voltages a part
of the current flows in the center.
Fig. 17(c) shows the trace (sum over all sites) of the local spectral function of the array at VB = 1.
Its structure is very different from the one-dimensional analogue presented in fig. 13(b). There
is no hint of an energy gap to be recognized from this illustration and no distinct zero energy
peak to be seen. Furthermore the trace of the spectral function is not symmetric in ω anymore.
The reason for the latter is that the same set of bath sites is now coupled to a whole wire, instead
of a single system site, which destroys the particle-hole symmetry.
This kind of representation of the spectral function lacks spatial resolution, but it is still possible
to make a rough distinction between peaks that are localized at the edges of the Su-Schrieffer-
Heeger wires and those that belong to the bulk. To this end the local spectral function is summed
over again, sparing the five outmost tight binding chains at the top and bottom of the array. The

49



5.4 Two-dimensional extension of the Su-Schrieffer-Heeger Model 5 RESULTS

0 2 4 6 8

V
B

0

0.01

0.02

0.03

0.04

0.05

J
T

(a) Transmission current vs. bias voltage.

0 10 20 30 40

l

0

1

2

3

4

5

6

7

J
N

×10
-3

V
B
 = 1

V
B
 = 2

V
B
 = 3

(b) Average current for a given vertical site l.

-3 -2 -1 0 1 2 3

ω

0

50

100

150

200

250

300

tr
 A

(c) Trace (sum over all sites) of the local spectral function.

-3 -2 -1 0 1 2 3

ω

0

50

100

150

200

250

300

tr
 A

(d) Like (c) excl. edge sites l = 1, . . . , 5, l = 36, . . . , 40.

10 20 30 40
wire n

5

10

15

20

25

30

35

40

si
te

 l

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(e) Local spectral function at ω = 0.

10 20 30 40
wire n

5

10

15

20

25

30

35

40

si
te

 l

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(f) Local spectral function at ω = 1.

Figure 17: Simulation results for the two-dimensional array of Su-Schrieffer-Heeger wires in the
topological phase, according to fig. 16 with N = L = 40, tA = 0.3, tB = 1, tN = 0.2.
The spectral functions (c)-(f) are plotted at VB = 1. At low voltages a current is
carried across the system by overlapping edge states of the individual Su-Schrieffer-
Heeger wires, see fig. (b) and (e). At higher voltages also bulk states contribute to this
current, see fig. (b) and (f). A gap is present in the bulk of the Su-Schrieffer-Heeger
wires, as indicated by (d). Therefore the transmission current in (a) runs in the first
quasi-plateau, before rising again.
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result is plotted in fig. 17(d). From this plot the existence of a bulk gap is clearly evident. It
shows that there are no bulk modes for −0.62 < ω < 0.4. The low energy peaks that are present
in fig. 17(c) but missing in 17(d) belong to states at the edges of the Su-Schrieffer-Heeger wires.
These states do not lie at zero energy as before, but they have a distribution in energy.
In fig. 17(e) the local spectral function is plotted at ω = 0. The figure shows edge states that
overlap at the top and bottom of the array, respectively, and decay to zero into the bulk. There are
no further low - energy states present, neither isolated edge states nor bulk states. By examining
this kind of plots for all ω within the gap, it can be learned that these overlapping edge states
survive for |ω| < 0.4. Within this energy interval the local spectral function has always the same
structure as in fig. 17(e).
The fact that not all edge states are peaked at ω = 0 as in the one-dimensional case, but extend
over the gap and further, is due to their overlap. As soon as the wave functions overlap, their
energies split. In the one-dimensional case the edge states are not neighboring but ∼ L = 80
sites apart from each other and therefore there is no overlap. The energy distribution of the over-
lapping edge states explains the monotonic increase of the transmission current for VB < 0.8
in fig. 17(a). If these states lied exactly at ω = 0, the current would rise more sharply and
then end in a plateau, where it would be independent of VB, before potentially rising again. The
just described plateau corresponds to the low-voltage region with the monotonic increase of the
current and does not correspond the quasi-plateau shown in fig. 17(a), which has other reasons,
as highlighted in the following.
By investigating the local spectral function in a small energy interval above ω = 0.4, the way it
has been done for ω = 0, it can be learned that the edge modes have vanished and horizontally
extensive bulk modes follow immediately, see fig. 17(f). This means that the weight of the
local spectral function along a horizontal path from the first to the last wire in the array stays
finite. It can be that the system forms again a nonzero path along the edges, but this can also
happen at some index l in the bulk of the Su-Schrieffer-Heeger wires. Therefore this kind of
modes is able to carry a current from one lead across the system to the other lead. For positive
ω, there is no energy gap between these modes and the edge modes. For negative ω a gap is
present between −0.75 . ω < −0.4. In this region the system exhibits isolated edge modes and
horizontally non-extensive bulk modes. For ω < −0.75 horizontally extensive bulk modes are
present. The one-sided and furthermore sparse availability of appropriate states for electrons at
0.8 < VB < 1.5 is the reason for the weak rise of the transmission current in this interval, see
fig. 17(a). The current increases more strongly for VB > 1.5, because more of these states are
present per energy interval. As a consequence, it is expected that a part of the current flows at
some l in the center of the Su-Schrieffer-Heeger wires. From fig. 17(b) it can be learned that
this is indeed the case, although a large part of the current still flows along the vertical edges.
The transmission current saturates at VB = 3.4 in agreement with the spectral function that is
nonzero for |ω| < 1.7, see fig. 17(c).
Fig. 17(f) displays the local spectral function at VB = 1 and ω = 1. It confirms that the structure
of the spectral function changes for large |ω|. For |ω| < 0.4 it hosts only overlapping edge states,
see fig. 17(e). Beyond this interval bulk states appear, which may overlap at the edges of the
Su-Schrieffer-Heeger wires, but this is obviously not the case at ω = 1.
By investigating systems with N = L < 40, it can be learned that the first plateau in the current
voltage characteristic 17(a) becomes more definite with increasing system size. Therefore an
even more definite plateau is expected for larger systems. Unfortunately it was not possible to
verify this for N = L = 80 and NB = 100 bath sites, which would be best suited for a compari-
son with the one-dimensional models, especially with the Kitaev model, which is treated in the
following, sec. 5.5.
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5.5 Kitaev Model

In this subsection the transport properties of the Kitaev Model, eq. (54), are examined in both
phases and at the phase transition. The results are presented in terms of the parameters ε = −µ,
t → −t and ∆ → −∆. They are furthermore compared to the simulation results of the Su-
Schrieffer-Heeger Model, presented in sec. 5.3.
The leads are modeled by NB = 100 bath sites with a logarithmic energy spacing, representing a
constant hybridization of Γ = 10−2 on [−30, 30]. One lead is coupled to the first site of the wire,
the other lead to the last site and a voltage is applied between the leads symmetrically, according
to eq. (151). The same leads and the same setup have been used to contact the Su-Schrieffer-
Heeger wire previously, see sec. 5.3.
Fig. 19 shows a phase diagram of the system in the steady state, containing the current voltage
characteristics and the local spectral functions at VB = 1. The results have been obtained for a
wire of N = 80 sites with the parameters, t = 0.5, ∆ = 1 and ε > 0. The phase transition is
realized by changing ε.
For ε < 2t the Kitaev wire is in the topological phase. The upper panel in fig. 19 shows the
results for ε = 0.2, representing this case. Fig. 19(a) displays the current flowing from the left
lead onto the first wire site in dependence of the bias voltage. The current rises sharply from zero
voltage, then runs in a first plateau, before rising again and saturating ultimately, as in [27]. Fig.
19(b) presents the trace, the sum over all sites, of the local spectral function in this case. There
is an isolated peak at ω ' 0 that corresponds to the edge states, according to fig. 18. The other

2 4 6 8 10
site

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 18: Local spectral function of the Kitaev wire in the topological phase, for ε = 0.2,
t = 0.5, ∆ = 1 and VB = 1. The value Asite(ω) is represented as a color and can be
obtained with the colormap. The figure shows an edge state peaked at ω = 0. It is
bound to a small energy region and decays rapidly into the bulk. No other states are
present for |ω| < 1

2∆sc. The image corresponds to fig. 14 for the Su-Schrieffer-Heeger
wire in a different way of representation.

states extend over the bulk, which has an energy gap of ∆sc ' 1.8. The spectral function has the
same structure as the one of the Su-Schrieffer-Heeger wire in the topological phase, fig. 13(b).
The current voltage characteristic, in contrast, is similar to the one of the two-dimensional array
of Su-Schrieffer-Heeger wires, fig. 17(a).
As previously explained, only bulk states are able to transfer electrons across the wire. In order
to occupy these states, the electrons have to be supplied with energy by a voltage VB ≥ ∆sc. The
threshold voltage VT = ∆sc is also plotted in fig. 19(a). Obviously it marks the point, where the
current rises from the first plateau and not from zero as in the Su-Schrieffer-Heeger model, fig.
13(a).
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Topological phase: ε = 0.2
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Transition point: ε = 1
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Trivial phase: ε = 2
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Figure 19: Phase diagram of the Kitaev Model in the steady state. The figure shows the current
voltage characteristics, (a), (c), (e), and the trace (sum over all sites) of the local
spectral functions at VB = 1, (b), (d), (f), for different ε across the topological phase
transition. The other parameters are t = 0.5 and ∆ = 1. The peak at ω = 0 in (b)
corresponds to the edge states, as demonstrated in fig. 18. The superconducting gap
∆sc and the threshold voltage, at which electrons manage to overcome the gap, are
marked in red.
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Therefore the question arises, why a current flows onto the Kitaev wire at voltages smaller than
VT , which is not intuitive, whereas this is not possible in the Su-Schrieffer-Heeger wire, which
exhibits an analogous spectral function.
This question can be answered by investigating the currents on the bonds along the wire. Fig. 20
shows the bond currents at VB = 1, which is below the threshold voltage and on the first plateau
in fig. 19(a). The entry for the first bond is the sum of all currents flowing from the left lead onto
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Figure 20: Bond current in the Kitaev wire in the topological phase for ε = 0.2, t = 0.5, ∆ = 1
and VB = 1. The entries for the first and last bond show the currents flowing between
the leads and the wire. The entries in between show the currents between wire sites.
The current in not conserved along the wire.

the first site of the wire. It is the quantity displayed in the current voltage characteristic 19(a).
Obviously the bond currents arise symmetrically with respect to the center of the wire and the
inflow equals the outflow, but they are not conserved along the wire. In fact, the amplitude of
the current is nearly zero in the bulk. The bond current reminds of the current distribution in the
two-dimensional array of Su-Schrieffer-Heeger wires, fig. 17(b).
Since the hamiltonian of the Kitaev Model (54) contains anomalous constant couplings ∆, it does
not conserve the number of particles in the system, see eq. (71) or (153). Even without leads an
exchange of electrons between the Kitaev wire and its environment takes place. Therefore the
model does not describe an isolated wire, but a wire connected to a substrate. This is also the
way the model is engineered in practice, see sec. 3.2.2.
With this knowledge the bond current in fig. 20 can be explained. Below the threshold voltage
a current flows from the left lead onto the first site of the wire, where an edge state is localized.
The electrons cannot move further along the wire, because within the bulk there are no states to
occupy. Therefore they vanish into the substrate and reappear at the opposite edge of the wire,
before flowing into the right lead. This is the reason for the small bond current at the interior of
the wire. There are even bonds, where the current flows in the opposite direction.
The substrate also explains the double-plateau structure of the current voltage characteristic in
fig. 19(a). Since the edge state is peaked at zero energy, the current onto the first site rises from
VB = 0. It runs in the first plateau, because this state is isolated in energy and no additional
states are available for VB < VT . Once the threshold voltage is crossed, the electrons can occupy
bulk states and therefore the current rises again. It saturates ultimately, when no more states can
be made available at all, VS ' 4.
This behavior does not arise in the Su-Schrieffer-Heeger wire, as the current is conserved in this
model. In the sub-gap regime the electrons moving onto the first site cannot go further along the
wire and they cannot escape into a substrate; they have to take the same way back. Therefore
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there is no net current for VB < VT , see fig. 13(a). A similar behavior is exhibited by the bond
currents in the interior of the Kitaev wire, because the interior sites are supplied with electrons
not until VT . Above VT the current rises with the voltage until there are no further states.
The current voltage characteristic 19(a) has more in common with the the current voltage char-
acteristic of the two-dimensional array of Su-Schrieffer-Heeger wires, fig. 17(a). Both exhibit a
double-plateau structure instead of a single plateau, and the sub-gap current is carried by edge
states. In case of the array the current is conserved. The edge states of adjacent wires overlap
and are therefore able to carry the current. In case of the Kitaev Model the edge sites (and the
rest of the wire) are connected to a substrate. Therefore the current flowing onto the edge sites
can vanish into the substrate.
The bond currents in fig. 20 are symmetric with respect to the center of the wire, because the
bias voltage is applied symmetrically, eq. (151). If the chemical potential is fixed in one of the
leads, this symmetry is lost. Fig. 21 shows the currents in the Kitaev wire, when µR is kept
constant and the voltage is applied by varying µL, according to eq. (152). From the plots and the
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(b) Bond current at VB = 1.

Figure 21: Currents in the Kitaev wire in the topological phase for ε = 0.2, t = 0.5, ∆ = 1, when
the chemical potential in the right lead is fixed and the voltage is applied according
to eq. (152).

equation it can be learned that distinctive events occur at half the voltages as before. The gap is
overcome by electrons for VB > 0.9 = 1

2 VT and all states are used up for VB > 2 = 1
2 VS . The

inflowing current exhibits a double plateau structure, as before in fig. 19(a), and the the height of
the plateaus is the same. The inflow and outflow are different now. Since µR is kept constant, the
right lead does not draw additional electrons from the substrate when the voltage is increased.
The outflow starts to rise, as soon as electrons from the left lead arrive, at 1

2 VT . Thus the gap is
experienced by the outflowing current. Furthermore the amplitude of the current is smaller, as
electrons vanish into the substrate on their way across the wire.
The oscillations that can be observed in the currents in fig. 19(a) and 21(a) are due to the bath
sites. By increasing the number of bath sites or pursuing a better fit strategy, their amplitude can
be reduced.
At ε = 2t a phase transition takes place. The superconducting gap is closed in this case and the
current rises from VB = 0. The simulation results are displayed in the medium panel of fig. 19.
For ε > 2t the system is in the trivial phase. The spectrum is gapped again, but no edge states
arise. The results for ε = 2 are shown in the lower panel of fig. 19. Since no edge states are
present in these cases, the results have the same structure as the corresponding results for the
Su-Schrieffer-Heeger wire, fig. 13(c)-(f). Since the figures do not hold any surprises, refer to
sec. 5.3 for details.
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Analogue to the study of the Su-Schrieffer-Heeger wire the gap size has been determined from
the spectral function for different values of ε at a constant t. The result is plotted in fig. 22.
Obviously the gap scales linearly in |ε − 2t|.
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Figure 22: Closing and reopening of the gap ∆sc in dependence of ε for t = 0.5 and ∆ = 1.
Apparently the gap size is 2|ε − 2t|. The values for ∆sc have been achieved from the
corresponding spectral functions at VB = 1.

If the same calculations are performed for a larger system, the results are qualitatively the same.
In fact, this is already fulfilled for a system with N & 40.

5.6 Time dependent extension of the Kitaev Model

As stated in the previous subsection, the current along the wire is not conserved in the Kitaev
Model, because this model describes a wire connected to a substrate and electrons can tunnel
from the wire into the substrate and vice versa. This is expressed by a hamiltonian that does not
conserve the total number of particles in the wire. Writing eq. (71) and (72) explicitly for the
Kitaev hamiltonian (54) yields

[Ŝ , Ĥ] = 2∆

N−1∑
n=1

(
cncn+1 + c†nc†n+1

)
,

i
d
dt
〈Ŝ 〉 = 〈[Ŝ , Ĥ]〉 , 0 for ∆ = const. , 0 .

(153)

Thus the average number of particles changes as a function of time, if ∆ is nonzero. This is
supposed in the Kitaev Model, which confirms the previous statement. The idea treated in this
subsection is to extend the model in a way that the average number of particles in the wire
remains constant. A model that accomplishes this can be used to describe an isolated wire
without substrate.
As a first extension of the Kitaev Model the pairing amplitudes are allowed to vary along the
wire. Each of them is equipped with a dependence on the sites it couples, ∆ → ∆n,n+1. This
results in a new hamiltonian,

Ĥ = −µ

N∑
n=1

c†ncn −

N−1∑
n=1

(
tc†ncn+1 + ∆n,n+1cncn+1 + h.c.

)
. (154)
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The hamiltonian (154) is also inserted in eq. (72), yielding eq. (155):

[Ŝ , Ĥ] = 2
N−1∑
n=1

(
∆n,n+1cncn+1 + ∆∗n,n+1c†nc†n+1

)
i

d
dt
〈Ŝ 〉 = 〈[Ŝ , Ĥ]〉 = 0 for ∆n,n+1 = V 〈c†nc†n+1〉

implying ∆∗n,n+1 = −V 〈cncn+1〉

(155)

Thus the average number of particles is conserved, if the pairing amplitudes are chosen pro-
portional to the expectation values ∆n,n+1 ∝ 〈c

†

nc†n+1〉. Through this relation they depend on the
density operator of the system and therefore, in general, also on time. This is a particular case
of a general theorem by Baym and Kadanoff, according to which an approximation must be
self-consistent, in order to be conserving, see [28]. The hamiltonian (154) with the amplitudes
(155) can be used to describe an isolated wire.
These equations also show, where the origin of the Kitaev Model is rooted. It can be derived from
an interacting hamiltonian with interaction V by applying a mean field approximation. Due to the
coupling of the wire to a substrate, particle exchanges take place that allow to fix ∆n,n+1(t) = ∆

to a constant value. The particular value of ∆ depends on the choice of the substrate. By varying
the substrate’s parameters it can, in principle, be tuned to any desired value.
In order to describe a wire without substrate, the pairing amplitudes have to be determined ac-
cording to eq. (155) and cannot be kept fixed. Inserting the hamiltonian with these amplitudes,
(154) and (155), into the Lindblad equation yields a differential equation which is nonlinear. As
a consequence the time evolution of expectation values cannot be obtained by diagonalizing the
Liouvillian, eq. (96), and using eq. (128), which is not valid in this case. Neither valid is eq.
(138) to determine a steady state without explicitly calculating the time evolution. In order to
determine the dynamics of the system and eventually a steady state, the set of equations (129)
has to be integrated. ∆n,n+1 are contained in the matrixA, see eq. (130) and (69), and they de-
pend on the solution η, see eq. (119) and (155), which makes the equations (129) also nonlinear.
They have to be solved selfconsistently, e.g. with an appropriate Runge-Kutta scheme.
Fig. 23 shows the solution for a system of N = 5 sites with V = −1, t = −0.5 and µ = −0.2.
These parameters drive an ordinary Kitaev wire in the topological phase. The leads have been
modeled using NB = 10 bath sites with a logarithmic energy spacing representing a constant
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Figure 23: Average current vs. voltage after transient for N = 5, V = −1, t = −0.5 and µ = −0.2.
Collection of solutions to different initial conditions, classified, according to their
type, in different colors. The average current along the wire is now conserved.
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hybridization Γ = 10−2 on [−10, 10].
It turns out that after a transient a quasi-stationary state is reached, where the observables are
either constant or periodic in time. The solutions can be divided into three types, marked by
different colors corresponding to the colors in fig. 23:

• Type I: ∆n,n+1(t) = 0, J = const.

This is the trivial case. ∆n,n+1 = 0 is always a solution, since it reduces the model to
the ordinary tight binding model without superconductivity. The current is constant and
identical for all bonds in this case, obeying Kirchhoff’s point rule. Its value matches the
steady state current determined from eq. (138).

• Type II: ∆n,n+1(t) oscillate with one single frequency, J = const.

All ∆n,n+1 oscillate with the same frequency, but different amplitudes, according to ∆n,n+1(t)
= |∆n,n+1| eiνt. They are zero on average and their absolute value is constant in time. They
yield a current which is also constant in time and identical for all bonds. Thus Kirchhoff’s
point rule is also fulfilled in this case. This type of solution is displayed in fig. 24.

• Type III: ∆n,n+1(t) oscillate with multiple frequencies, J oscillates
The ∆n,n+1 oscillate with multiple frequencies, different amplitudes and are zero on av-
erage. The bond currents also oscillate with one ore more frequencies and different am-
plitudes. Their average value is the same for all bonds. Due to the time dependence of
charge, Kirchhoff’s point rule does not apply at a particular time, but it applies on average.
However, at any time the continuity equation is valid, as it should be. Fig. 25 shows an
example for this type of solution.
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Figure 24: Type II solution at VB = 3.1. The parameters are the same as in fig. 23. Fig. 24(a)
shows the bond current in dependence of time after the transient and (b) the absolute
values of the corresponding pairing amplitudes. Since they are oscillating with a
single frequency, the absolute values are constant in time.
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Figure 25: Type III solution at VB = 2.6. The parameters are the same as in fig. 23. Fig. 25(a)
shows the bond currents in dependence of time after the transient and (b) the absolute
values of the corresponding pairing amplitudes. Both are oscillating with multiple
frequencies. L and R denote the left and right lead and n = 1 . . . 5 the wire sites.
Integrating the current over a number of periods yields the same result for all bonds.
Thus the charge and the number of particles are conserved on average, as required.
The bond currents fulfill the continuity equation, as it should be.

An analogous appearance of three types of solutions has also been obsered in the superconduct-
ing system studied in [29].
In fig. 23 the average current after the transient is plotted for different bias voltages. The results
have been obtained from different initial conditions. The solutions of type II and III seem to be
assigned to certain voltage regions. I did not manage to get a solution of type II for a voltage,
where a type III solution has been found previously, and vice versa. Generally, all nontrivial
results in the quasi-stationary state have been identical, except for one case, where I managed
to get two type III solutions at the same voltage. For 2.2 < VB < 2.4 and VB = 1.1 it was not
possible to get nontrivial solutions at all. The type III solutions at VB < 2.2 do not seem to have
overcome the transient, they are not stable.
Due to the necessity of a selfconsistent solution and the time dependence, the studied system
is chosen much smaller than the systems treated before. The simulation time until the quasi-
stationary state is reached increases with increasing system size, compare sec. 5.1. Therefore
the time dependence is a problem. This problem did not arise in case of a linear Liouvillian,
because the steady state could be calculated directly, using eq. (138).
A further investigation of this model is necessary, in order to clarify its behavior definitely. Fur-
thermore a larger system should be investigated to limit finite size effects. This has not been
done in the framework of this thesis.

59



6 CONCLUSIONS AND OUTLOOK

6 Conclusions and outlook

Conclusions: There has been recently a widespread interest in topological states of matter
and in Majorana fermions. The Su-Schrieffer-Heeger Model, eq. (41), and the Kitaev Model,
eq. (54), are the simplest models, where a topological phase is realized. In this phase zero-
energy edge states arise. In the case of the Kitaev Model, these states are described by Majo-
rana fermions. Within this thesis I was primarily interested in the Kitaev Model and used the
Su-Schrieffer-Heeger Model as a reference. The latter does not contain any anomalous BCS
couplings and is therefore easier to understand.
The results for the Kitaev wire in the trivial, i.e. non-topological, phase and at the critical point
are as expected. The current-voltage curves are consistent with the spectral functions, see fig.
19(c)-(f), and the results have the same structure as the ones for the Su-Schrieffer-Heeger wire,
fig. 13(c)-(f). The current starts to flow from a threshold voltage corresponding to the size of the
bulk gap, which is finite in the trivial phase and zero at the critical point.
In the topological phase, in contrast, the current flowing onto the Kitaev wire, fig. 19(a), at first
glance does not seem to match with the spectral function, fig. 19(b). Despite the presence of a
bulk gap, see fig. 19(b) and 18, it rises from zero voltage. It appears, as if the edge states would
carry a current along the wire, which is not plausible, because these states are highly localized at
the boundaries. This behavior is not exhibited by the Su-Schrieffer-Heeger wire, whose results
are consistent, see fig. 13(a), (b) and 14.
The key to this peculiar behavior is that the Kitaev hamiltonian does not conserve the total num-
ber of particles in the wire, see eq. (153). Therefore, in contrast to the Su-Schrieffer-Heeger
hamiltonian, it does not describe an isolated wire, but a wire connected to a substrate, and elec-
trons can tunnel between the two systems. As a consequence, the current along the wire leaks,
when it is driven out of equilibrium. With this knowledge the simulation results in the topolog-
ical phase can be arranged in a consistent picture: The sub-gap current in fig. 19(a) is indeed
carried by edge states, but it does not flow along the wire, as previously assumed, but tunnels
into the substrate at one edge and reappears in the wire at the other edge, see fig. 20, in accor-
dance with the bulk gap, see fig. 18.
The property of the Kitaev hamiltonian, not to conserve the particle number in the wire, is
generic to BCS-like hamiltonians and is related to the presence of anomalous pairing ampli-
tudes, see eq. (153). Pairing BCS terms, which generically break particle conservation, originate
from a mean-field approximation of an interacting model. While this original model conserves
particle number, it is the approximation that breaks this conservation. However, it has been
shown in a pioneering work by L.P. Kadanoff and G. Baym [28] that conserving approximations
can be achieved, provided they are self-consistent. Also the Kitaev hamiltonian can be self-
consistently derived from an interacting hamiltonian, namely by a mean-field approximation,
but only if a substrate is taken into account. This substrate allows to fix the resulting pairing
amplitudes to a time-independent value. As a consequence the particle number in the overall
system wire + substrate is conserved, but not the particle number in the wire alone. In order
to describe an isolated wire with a Kitaev-like hamiltonian, the pairing amplitudes resulting
from the mean-field approximation cannot be assumed time-independent anymore. In general,
the self-consistent calculation will produce time-dependent pairing terms in the nonequilibrium
case. This time dependence is crucial, if one wants to have superconductivity and conservation
laws in the derived model.
Such a time-dependent extension of the Kitaev Model is investigated in this thesis in sec. 5.6.
After the transient a quasi-stationary state is reached, where all observables are either constant
or periodic in time. In the quasi-steady state three types of solutions can be distinguished. They
all have in common that the total number of particles in the wire is conserved and that the bond
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currents obey the continuity equation, as it should be. The results for the time-dependent model
cannot be compared directly to the presented results for the Kitaev Model, because the system
is too small. The main issue in the calculation is the time dependence associated with the self-
consistent solution. If it were possible to determine the quasi-stationary state directly, larger
systems could be studied. Since no strategy has been found to do this yet, the self-consistence
problem has to be solved at each time step. The time until a quasi-steady state is reached in-
creases with increasing system size.
In order to study the transport properties of edge states also with the Su-Schrieffer-Heeger
Model, a two-dimensional array of weakly coupled wires has been constructed, see fig. 16.
The voltage has been applied perpendicular to the wire axis, in a direction, where the edge states
of adjacent wires overlap, see fig. 17(e). Due to their spatial extension, these states contribute
to the current across the system, see fig. 17(a) and (b). In the topological phase this current, fig.
17(a), has the same structure as the current flowing onto the Kitaev wire, fig. 19(a), confirming
the result that the sub-gap current in the latter is carried by edge states.

Outlook: For further calculations a better fitting scheme should be developed, such that the
number of bath sites in the leads can be reduced without compromising accuracy. This would
allow to calculate larger systems. A procedure to do this has been introduced in [30, 10].
For the time dependent extension of the Kitaev Model a more efficient calculation scheme is
desirable. In order to compare the results to the ordinary Kitaev Model, the number of sites has
to be increased significantly. Furthermore the spectral function in the quasi-steady state has to
be calculated and it should be investigated, whether edge states arise in this model. It has to be
clarified, which types of solutions and how many of them can arise in dependence of the bias
voltage.
In addition to the presented systems, a two-dimensional array of Kitaev wires should be studied,
analog to the one in fig. 16. A step in this direction has already been made and current voltage
characteristics have been obtained. Below a certain threshold voltage the current flowing into
the system rises weakly with a nearly constant slope and it does not exhibit a double-plateau
structure as fig. 17(a). Due to numerical problems with the spectral function, the reason for this
behavior has not yet been identified.
In the future also the effect of electron-electron interactions shall be investigated, as it is currently
done for other systems in our working group, see e.g. [10, 31].
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7 Appendix

7.1 Symmetry relations

A generalized noninteracting system, which is a system including superconducting anomalous
couplings, exhibits for all indices k, j ∈ [1,N] the following symmetry relations:

β = i
(

Ω 2Υ(+)

2Υ(−) −Ωᵀ

)
−βᵀ = i

(
−Ωᵀ 2Υ(−)

2Υ(+) Ω

) ⇒

βk, j = −β j+N,k+N

βk, j+N = −β j,k+N

βk+N, j = −β j+N,k

βk+N, j+N = −β j,k

α† =

( 1
2 (h + i Λ) a†

a −1
2 (h − i Λ)ᵀ

)
−αᵀ =

(
− 1

2 (h − i Λ)ᵀ a
a† 1

2 (h + i Λ)

) ⇒

(
α†

)
k, j = −α j+N,k+N(

α†
)
k, j+N = −α j,k+N(

α†
)
k+N, j = −α j+N,k(

α†
)
k+N, j+N = −α j,k

(156)

This follows from a comparison of (96) with the general structure (102). The skew symmetry of
a, Υ(+) and Υ(−) and the hermiticity of h and Λ have been used to obtain this result.

7.2 K - relations

In order to determine the time evolution and the steady state of a system through diagonalization,
the commutators of the Liouvillian with the quasiparticle creation and annihilation operators, f̄n
and fm, have to be calculated. For a generalized noninteracting system the following sums arise
thereby,

S :=
4N∑
i=1

Kniλi fi ,

S :=
4N∑
i=1

Kmiλi f̄i .

Kni and Kmi denote the anticommutators defined in eq. (117). The evaluation of these sums
yields a very useful set of equations, which I called K - relations,

4N∑
i=1

Kniλi fi = −λn f̄n

4N∑
i=1

Kmiλi f̄i = −λm fm

or

K D f = −Df̄ ,

K Df̄ = −D f .

(157)

As a little side note, they show immediately that K = K−1. Furthermore K , K†, since f and f̄
are not linked to each other by hermitian conjugation, which results of the Liouvillian not being
hermitian.
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The validity of the K - relations is demonstrated in the following. It is a long calculation using the
eigenvalue equations (106), (107) and (110) and the symmetry relations (156) of the Liouvillian.
Due to the block structure of K and K the cases i/n/m ∈ [1, 2N] and i/n/m ∈ [2N + 1, 4N] are
treated separately.

Calculation for K

First of all, the sum S is split into two contributions with respect to the summation index i,

S =

=: S 1︷       ︸︸       ︷
2N∑
i=1

Kniλi fi +

=: S 2︷         ︸︸         ︷
4N∑

i=2N+1

Kniλi fi . (158)

A further distinction of cases is made concerning the second index n. Then the definitions of K
and f , eq. (117) and (115), can be filled in to evaluate S 1 and S 2.

1.) n ∈ [1, 2N]

Since K = 0 in the upper left sector, the first summand vanishes,

S 1 = 0 . (159)

The second summand is determined by

S 2 =

N∑
j,k=1

4N∑
i=2N+1

{ (
u−1†

)
k+N, i−2N λi

(
u†

)
i−2N, j+N uk,n A†j

+
(
u−1†

)
k, i−2N λi

(
u†

)
i−2N, j+N uk+N, n A†j

+
(
u−1†

)
k+N, i−2N λi

(
u†

)
i−2N, j uk,n B†j

+
(
u−1†

)
k, i−2N λi

(
u†

)
i−2N, j uk+N, n B†j

}
.

Executing the sum over i and thereby using the eigenvalue equation (107) yields

S 2 =

N∑
j,k=1

{ [ (
α†

)
k+N, j+N uk,n +

(
α†

)
k, j+N uk+N, n

]
A†j

+

[ (
α†

)
k+N, j uk,n +

(
α†

)
k, j uk+N, n

]
B†j

}
.

Now the symmetries of α are used to express sectors of α† through sectors of −αᵀ, eq. (156),

S 2 = −

N∑
j=1

2N∑
k=1

[
αj,k uk,n A†j + αj+N, k uk,n B†j

]
,

where the sum over k now runs up to 2N. Filling in the other eigenvalue equation (106) yields
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S 2 = −λn

N∑
j=1

[
u j,n A†j + u j+N, n B†j

]
= −λn f̄n .

(160)

The result for the case n ∈ [1, 2N] is obtained by combining eq. (159) and (160) to (158) and it
is identical to eq. (157),

S = S 1 + S 2

= −λn f̄n .

2.) n ∈ [2N + 1, 4N]

In this case the first summand yields

S 1 =

N∑
j,k=1

2N∑
i=1

{
uk+N, i λi

(
u−1

)
i, j

(
u−1†

)
k, n−2N A j

+ uk,i λi

(
u−1

)
i, j

(
u−1†

)
k+N, n−2N A j

+ uk+N, i λi

(
u−1

)
i, j+N

(
u−1†

)
k, n−2N B j

+ uk,i λi

(
u−1

)
i, j+N

(
u−1†

)
k+N, n−2N B j

− uk+N, i λi

(
u−1u(c)u†

)
i, j+N

(
u−1†

)
k, n−2N A†j

− uk,i λi

(
u−1u(c)u†

)
i, j+N

(
u−1†

)
k+N, n−2N A†j

− uk+N, i λi

(
u−1u(c)u†

)
i, j

(
u−1†

)
k, n−2N B†j

− uk,i λi

(
u−1u(c)u†

)
i, j

(
u−1†

)
k+N, n−2N B†j

}
.

The sum over i can again be executed with the help of eq. (106),

S 1 =

N∑
j,k=1

{ [
αk+N, j

(
u−1†

)
k, n−2N + αk, j

(
u−1†

)
k+N, n−2N

]
A j

+

[
αk+N, j+N

(
u−1†

)
k, n−2N + αk, j+N

(
u−1†

)
k+N, n−2N

]
B j

−

[ (
αu(c)u†

)
k+N, j+N

(
u−1†

)
k, n−2N +

(
αu(c)u†

)
k, j+N

(
u−1†

)
k+N, n−2N

]
A†j

−

[ (
αu(c)u†

)
k+N, j

(
u−1†

)
k, n−2N +

(
αu(c)u†

)
k, j

(
u−1†

)
k+N, n−2N

]
B†j

}

 =: S 11

 =: S 12

(161)
Applying the symmetry relations of α, eq. (156), to the first part results in

S 11 = −

N∑
j=1

2N∑
k=1

[ (
α†

)
j+N, k

(
u−1†

)
k, n−2N A j +

(
α†

)
j, k

(
u−1†

)
k, n−2N B j

]
.
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Then the other eigenvalue equation, eq. (107), is plugged in, yielding

S 11 = −λn

N∑
j=1

[ (
u−1†

)
j+N, n−2N A j +

(
u−1†

)
j, n−2N B j

]
. (162)

The summand S 2 is also made up of two parts,

S 2 =

N∑
j,k=1

4N∑
i=2N+1

{
u(c)

k+N, i−2N λi

(
u†

)
i−2N, j+N

(
u−1†

)
k, n−2N A†j

+ u(c)
k, i−2N λi

(
u†

)
i−2N, j+N

(
u−1†

)
k+N, n−2N A†j

+ u(c)
k+N, i−2N λi

(
u†

)
i−2N, j

(
u−1†

)
k, n−2N B†j

+ u(c)
k, i−2N λi

(
u†

)
i−2N, j

(
u−1†

)
k+N, n−2N B†j

+
(
u−1†

)
k+N, i−2N λi

(
u†

)
i−2N, j+N u(c)

k, n−2N A†j

+
(
u−1†

)
k, i−2N λi

(
u†

)
i−2N, j+N u(c)

k+N, n−2N A†j

+
(
u−1†

)
k+N, i−2N λi

(
u†

)
i−2N, j u(c)

k, n−2N B†j

+
(
u−1†

)
k, i−2N λi

(
u†

)
i−2N, j u(c)

k+N, n−2N B†j

}


=: S 21


=: S 22

(163)

Eq. (107) is applied to the second part,

S 22 =

N∑
j,k=1

{ [ (
α†

)
k+N, j+N u(c)

k, n−2N +
(
α†

)
k, j+N u(c)

k+N, n−2N

]
A†j

+

[ (
α†

)
k+N, j u(c)

k, n−2N +
(
α†

)
k, j u(c)

k+N, n−2N

]
B†j

}
,

and then the symmetry relations (156),

S 22 = −

N∑
j=1

2N∑
k=1

[
α j,k u(c)

k, n−2N A†j + α j+N, k u(c)
k, n−2N B†j

]

= −

N∑
j=1

[ (
αu(c)

)
j, n−2N A†j +

(
αu(c)

)
j+N, n−2N B†j

]
.

(164)

Combining the so far unconsidered parts in eq. (161) and (163) yields

S 12 + S 21 =

N∑
j,k=1

{ (
u(c) D†u† − αu(c)u†

)
k+N, j+N

(
u−1†

)
k, n−2N A†j

+
(
u(c) D†u† − αu(c)u†

)
k, j+N

(
u−1†

)
k+N, n−2N A†j

+
(
u(c) D†u† − αu(c)u†

)
k+N, j

(
u−1†

)
k, n−2N B†j

+
(
u(c) D†u† − αu(c)u†

)
k, j

(
u−1†

)
k+N, n−2N B†j

}
.
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Now eq. (110) can be inserted,

S 12 + S 21 =

N∑
j,k=1

{ [
βk+N, j+N

(
u−1†

)
k, n−2N + βk, j+N

(
u−1†

)
k+N, n−2N

]
A†j

+

[
βk+N, j

(
u−1†

)
k, n−2N + βk, j

(
u−1†

)
k+N, n−2N

]
B†j

}
.

The symmetry of β is used to replace sectors of β with sectors of −βᵀ, eq. (156),

S 12 + S 21 = −

N∑
j=1

[ (
βu−1†

)
j, n−2N A†j +

(
βu−1†

)
j+N, n−2N B†j

]
. (165)

The summation of eq. (164) and (165) yields

S 12 + S 21 + S 22 = −

N∑
j=1

[ (
βu−1† + αu(c)

)
j, n−2N A†j +

(
βu−1† + αu(c)

)
j+N, n−2N B†j

]
.

Making use of eq. (110) again, results in

S 12 + S 21 + S 22 = −λn

N∑
j=1

[
u(c)

j, n−2N A†j + u(c)
j+N, n−2N B†j

]
. (166)

The combination of eq. (162) and (166) to (158) yields

S = S 11 + S 12 + S 21 + S 22

= −λn

N∑
j=1

[ (
u−1†

)
j+N, n−2N A j +

(
u−1†

)
j, n−2N B j + u(c)

j, n−2N A†j + u(c)
j+N, n−2N B†j

]
= −λn f̄n ,

which is also identical to eq. (157). Thus it has been shown that the first K - relation is valid for
any possible index n.

Calculation for K

Analog to the previous calculations for K, the sum S is split with respect to i,

S =

=: S 1︷       ︸︸       ︷
2N∑
i=1

Kmiλi f̄i +

=: S 2︷         ︸︸         ︷
4N∑

i=2N+1

Kmiλi f̄i . (167)

and then with respect to m, in order to allow for the insertion of the definitions of K and f̄ , eq.
(117) and (116). Then S 1 and S 2 can be evaluated.
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1.) m ∈ [1, 2N]

The first summand S 1 yields

S 1 = −

N∑
j,k=1

2N∑
i=1

{ (
u−1u(c)u†

)
m,k u j,i λi

(
u−1

)
i, k+N A†j

+
(
u−1u(c)u†

)
m, k+N u j,i λi

(
u−1

)
i,k A†j

+
(
u−1u(c)u†

)
m,k u j+N, i λi

(
u−1

)
i, k+N B†j

+
(
u−1u(c)u†

)
m, k+N u j+N, i λi

(
u−1

)
i,k B†j

+
(
u−1

)
m,k u j,i λi

(
u−1u(c)u†

)
i, k+N A†j

+
(
u−1

)
m, k+N u j,i λi

(
u−1u(c)u†

)
i,k A†j

+
(
u−1

)
m,k u j+N, i λi

(
u−1u(c)u†

)
i, k+N B†j

+
(
u−1

)
m, k+N u j+N, i λi

(
u−1u(c)u†

)
i,k B†j

}
.

Applying the eigenvalue equation (106) to S 1 results in

S 1 = −

N∑
j,k=1

{ [ (
u−1u(c)u†

)
m,k α j, k+N +

(
u−1u(c)u†

)
m, k+N α j,k

]
A†j

+

[ (
u−1u(c)u†

)
m,k α j+N, k+N +

(
u−1u(c)u†

)
m, k+N α j+N, k

]
B†j

+

[ (
u−1

)
m,k

(
αu(c)u†

)
j, k+N +

(
u−1

)
m, k+N

(
αu(c)u†

)
j,k

]
A†j

+

[ (
u−1

)
m,k

(
αu(c)u†

)
j+N, k+N +

(
u−1

)
m, k+N

(
αu(c)u†

)
j+N, k

]
B†j

}

 =: S 11

 =: S 12

(168)
Then the symmetries of α, eq. (156), are exploited to rewrite the first part,

S 11 =

N∑
j=1

2N∑
k=1

[ (
u−1u(c)u†

)
m,k

(
α†

)
k, j+N A†j +

(
u−1u(c)u†

)
m,k

(
α†

)
k, j B†j

]

=

N∑
j=1

[ (
u−1u(c)u†α†

)
m, j+N A†j +

(
u−1u(c)u†α†

)
m, j B†j

]
.

With the help of the eigenvalue eq. (107), followed by (110) and then (106) the coefficient matrix
u−1u(c)u†α† is rewritten as

u−1u(c)u†α† = u−1u(c) D†u†

= u−1
(
αu(c)u† + β

)
= u−1αu(c)u† + u−1β

= Du−1u(c)u† + u−1β .
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Inserting this result in the expression for S 11 yields

S 11 = λm

N∑
j=1

[ (
u−1u(c)u†

)
m, j+N A†j +

(
u−1u(c)u†

)
m, j B†j

+
(
u−1β

)
m, j+N A†j +

(
u−1β

)
m, j B†j

]
.

(169)

The second summand has the following structure:

S 2 =

N∑
j,k=1

4N∑
i=2N+1

{ (
u−1

)
m,k

(
u−1†

)
j+N, i−2N λi

(
u†

)
i−2N, k+N A j

+
(
u−1

)
m, k+N

(
u−1†

)
j+N, i−2N λi

(
u†

)
i−2N, k A j

+
(
u−1

)
m,k

(
u−1†

)
j, i−2N λi

(
u†

)
i−2N, k+N B j

+
(
u−1

)
m,k+N

(
u−1†

)
j, i−2N λi

(
u†

)
i−2N, k B j

+
(
u−1

)
m,k u(c)

j, i−2N λi

(
u†

)
i−2N, k+N A†j

+
(
u−1

)
m, k+N u(c)

j, i−2N λi

(
u†

)
i−2N, k A†j

+
(
u−1

)
m,k u(c)

j+N, i−2N λi

(
u†

)
i−2N, k+N B†j

+
(
u−1

)
m, k+N u(c)

j+N, i−2N λi

(
u†

)
i−2N, k B†j

}


=: S 21


=: S 22

(170)

In the first part eq. (107) is exploited,

S 21 =

N∑
j,k=1

{ [ (
u−1

)
m,k

(
α†

)
j+N, k+N +

(
u−1

)
m, k+N

(
α†

)
j+N, k

]
A j

+

[ (
u−1

)
m,k

(
α†

)
j, k+N +

(
u−1

)
m,k+N

(
α†

)
j,k

]
B j

}
,

followed by the symmetries of α, eq. (156),

S 21 = −

N∑
j=1

2N∑
k=1

[ (
u−1

)
m,k αk, j A j +

(
u−1

)
m,k αk, j+N B j

]
.

Using eq. (106) yields

S 21 = −λm

N∑
j=1

[ (
u−1

)
m, j A j +

(
u−1

)
m, j+N B j

]
. (171)
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Combining the so far unconsidered parts in eq. (168) and (170) yields

S 12 + S 22 =

N∑
j,k=1

{ (
u−1

)
m,k

(
u(c) D†u† − αu(c)u†

)
j, k+N A†j

+
(
u−1

)
m, k+N

(
u(c) D†u† − αu(c)u†

)
j,k A†j

+
(
u−1

)
m,k

(
u(c) D†u† − αu(c)u†

)
j+N, k+N B†j

+
(
u−1

)
m, k+N

(
u(c) D†u† − αu(c)u†

)
j+N, k B†j

}
.

Then eq. (110) is used again,

S 12 + S 22 =

N∑
j,k=1

{ [ (
u−1

)
m,k β j, k+N +

(
u−1

)
m, k+N β j,k

]
A†j

+

[ (
u−1

)
m,k β j+N, k+N +

(
u−1

)
m, k+N β j+N, k

]
B†j

}
.

followed by the symmetries of β, eq. (156),

S 12 + S 22 = −

N∑
j=1

2N∑
k=1

[ (
u−1

)
m,k βk, j+N A†j +

(
u−1

)
m,k βk, j B†j

]

= −

N∑
j=1

[ (
u−1β

)
m, j+N A†j +

(
u−1β

)
m, j B†j

]
.

(172)

The sum of eq. (169) and (172) yields

S 11 + S 12 + S 22 = λm

N∑
j=1

[ (
u−1u(c)u†

)
m, j+N A†j +

(
u−1u(c)u†

)
m, j B†j

]
. (173)

The result is obtained by adding together eq. (171) and (173) to (167) and yields eq. (157),

S = S 11 + S 12 + S 21 + S 22

= −λm

N∑
j=1

[ (
u−1

)
m, j A j +

(
u−1

)
m, j+N B j −

(
u−1u(c)u†

)
m, j+N A†j −

(
u−1u(c)u†

)
m, j B†j

]
= −λm fm .
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2.) m ∈ [2N + 1, 4N]

The first summand S 1 is given by

S 1 =

N∑
j,k=1

2N∑
i=1

{ (
u†

)
m−2N, k u j,i λi

(
u−1

)
i, k+N A†j

+
(
u†

)
m−2N, k+N u j,i λi

(
u−1

)
i,k A†j

+
(
u†

)
m−2N, k u j+N, i λi

(
u−1

)
i, k+N B†j

+
(
u†

)
m−2N, k+N u j+N, i λi

(
u−1

)
i,k B†j

}
.

The sum over i is again executed by inserting the eigenvalue equation (106),

S 1 =

N∑
j,k=1

{ [ (
u†

)
m−2N, k α j, k+N +

(
u†

)
m−2N, k+N α j,k

]
A†j

+

[ (
u†

)
m−2N, k α j+N, k+N +

(
u†

)
m−2N, k+N α j+N, k

]
B†j

}
.

Now, the symmetries of α are exploited again, eq. (156),

S 1 = −

N∑
j=1

2N∑
k=1

[ (
u†

)
m−2N, k

(
α†

)
k, j+N A†j +

(
u†

)
m−2N, k

(
α†

)
k, j B†j

]

= −

N∑
j=1

[ (
u†α†

)
m−2N, j+N A†j +

(
u†α†

)
m−2N, j B†j

]
Using eq. (107) yields,

S 1 = −λm

N∑
j=1

[ (
u†

)
m−2N, j+N A†j +

(
u†

)
m−2N, j B†j

]
= −λm fm

(174)

The second summand is zero, since K = 0 in the lower right sector,

S 2 = 0 . (175)

The result for m ∈ [2N + 1, 4N] is obtained by combining eq. (174) with (175) to (167) and
confirms eq. (157), as does the result for m ∈ [1, 2N],

S = S 1 + S 2

= −λm fm .
(176)

Thus the validity of both K - relations has been demonstrated.
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7.3 Commutator of f and f ′ - operators with the Liouvillian

In this subsection the commutators of the quasiparticle operators fn, f̄n, f ′n and f̄ ′n with the
Liouvillian are calculated for the normal and the generalized noninteracting system. The result
is used to determine the dynamics and the steady state, sec. 4.2.1 and 4.3.
First, the Liouvillian is expressed through the f - operators, eq. (101). In the second and third
row their anticommutation relations (114) or (117) are inserted and for the generalized system
also the K - relations (157) are used. This yields:

(
L̂ −C1

)
f̄n =

2κN∑
i=1

λi f̄i fi f̄n

= λn f̄n −
2κN∑
i=1

λi f̄i f̄n fi

= κλn f̄n + f̄n
(
L̂ −C1

)
⇒

[
L̂, f̄n

]
= κλn f̄n

(
L̂ −C1

)
fn =

2κN∑
i=1

λi f̄i fi fn

= − (κ − 1) λn fn −
2κN∑
i=1

λi f̄i fn fi

= −κλn fn + fn
(
L̂ −C1

)
⇒

[
L̂, fn

]
= −κλn fn

(177)

As before, κ = 1 for the normal system and κ = 2 for the generalized one. The commutators
with the f ′ - operators can be directly derived from this result, by inserting their definition, see
eq. (132).

[
L̂, f̄ ′n

]
=


[
L̂, f̄n

]
= κλn f̄n , for =λn < 0[

L̂, fn
]

= −κλn fn , for =λn > 0

= κλ′n f̄ ′n

[
L̂, f ′n

]
=


[
L̂, fn

]
= −κλn fn , for =λn < 0[

L̂, f̄n
]

= κλn f̄n , for =λn > 0

= −κλ′n f ′n
(178)

Products of f̄ ′ - operators

Now the result from eq. (178) will be generalized for products of f̄ ′ - operators. This can be
achieved by mathematical induction. The induction hypothesis is

L̂
P∏

i=1

f̄ ′ni
= κ

 P∑
i=1

λ′ni

 P∏
i=1

f̄ ′ni
+

P∏
i=1

f̄ ′ni
L̂ , (179)

where n = {n1, . . . , nP} is a sequence of different indices from {1, . . . , 2κN}. From eq. (178)
follows that the hypothesis is fulfilled for P = 1,

L̂ f̄ ′n1
= κλ′n1

f̄ ′n1
+ f̄ ′n1

L̂ , (180)

which makes P = 1 the induction basis.
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The inductive step can be performed as follows,

L̂
P+1∏
i=1

f̄ ′ni
= L̂

P∏
i=1

f̄ ′ni
f̄ ′nP+1

= κ

 P∑
i=1

λ′ni

 P∏
i=1

f̄ ′ni
f̄ ′nP+1

+

P∏
i=1

f̄ ′ni
L̂ f̄ ′nP+1

= κ

 P∑
i=1

λ′ni

 P∏
i=1

f̄ ′ni
f̄ ′nP+1

+

P∏
i=1

f̄ ′ni

(
κλ′nP+1

f̄ ′nP+1
+ f̄ ′nP+1

L̂
)

= κ

 P∑
i=1

λ′ni

 P+1∏
i=1

f̄ ′ni
+ κλ′nP+1

P+1∏
i=1

f̄ ′ni
+

P+1∏
i=1

f̄ ′ni
L̂

= κ

P+1∑
i=1

λ′ni

 P+1∏
i=1

f̄ ′ni
+

P+1∏
i=1

f̄ ′ni
L̂ .

(181)

The hypothesis has been inserted in the second line for P particles and again in the third line for
a single particle. The calculation gives exactly the hypothesis for P + 1 instead of P. Therefore
the validity of eq. (179) has been demonstrated.

7.4 Proof of C′ = 0

In order to proof that the steady state is the f ′ - vacuum, it has to be shown that the constant
associated with the Liouvillian in the f ′ - basis satisfies C′ = 0, sec. 4.3.
C′ is calculated from the constant C in the f - basis, which is modified by the eigenvalues of the
Liouvillian, according to

C′ = C +
∑

n|=λn>0

λn = 0 , (182)

see eq. (133). The eigenvalues can be determined by diagonalizing the coefficient matrix of the
Liouvillian L′′. For both, the normal and the generalized system, L′′ has the following structure,

L′′ =

(
α β
0 α†

)
. (183)

The condition for determining its eigenvalues reads

det
(
L′′ − λ1

)
= det

(
α − λ1 β

0 α† − λ1

)
= det (α − λ1) det

(
α† − λ1

)
= 0 .

(184)

The second row follows for a block upper (or lower) triangular matrix by using the Laplace
formula for determinants. The eigenvalues of L′′ are thus given by the union of the eigenvalues
of α and those of α†, which are complex conjugated to each other, λ(α) and λ(α)∗. To determine
the eigenvalues of the whole matrix, it is sufficient to calculate those of α only. Therefore α is
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rewritten as the sum of two hermitian matrices, α1 and α2, according to

α = α1 + iα2 ,

α1 = 1
2

(
α + α†

)
,

α2 = 1
2i

(
α − α†

)
.

(185)

If α is given in this form, a theorem by A. Hirsch [32, 33] says that the real and imaginary part
of its eigenvalues are bounded by the real eigenvalues of α1 and α2, respectively,

< ev (α) ∈ [min ev (α1) ,max ev (α1)] ,

= ev (α) ∈ [min ev (α2) ,max ev (α2)] ,
(186)

where ev (·) denotes the eigenvalues of (·). This theorem can also be looked up in [34].

Normal system

The discussed quantities for the normal system follow by comparison of eq. (93) with (183),

α = h − i Λ , α1 = h , α2 = −Λ ,

α† = h + i Λ .
(187)

Λ is positive semidefinite, υ†Λυ = υ†Γ(+)υ+υ†Γ(−)ᵀυ ≥ 0 ∀υ, because Γ(+) and Γ(−) are positive
semidefinite, eq. (74), (75) and (80). This means that all ev (Λ) ≥ 0 and all ev (α2) ≤ 0. From the
theorem by A. Hirsch, expressed in eq. (186), follows = ev (α) ≤ 0. Thus, all eigenvalues of L′′

with negative imaginary part belong to α and all with positive imaginary part to α†. Therefore,∑
n|=λn>0

λn = tr
{
α†

}
= tr

{
h + i Λ

}
. (188)

The constant C was given by eq. (85),

C = − tr
{
h + i Λ

}
, (189)

Now C′ can be determined from (182),

C′ = − tr
{
h + i Λ

}
+ tr

{
h + i Λ

}
= 0 . (190)

Generalized system

In this case the discussed quantities are achieved by comparison of eq. (96) with (183),

α =

(1
2 (h − i Λ) a†

a − 1
2 (h + i Λ)ᵀ

)
, α1 = 1

2

(
h 2a†

2a −hᵀ

)
, α2 = − 1

2

(
Λ 0
0 Λᵀ

)
,

α† =

( 1
2 (h + i Λ) a†

a − 1
2 (h − i Λ)ᵀ

)
.

(191)

Since α2 is block diagonal, its eigenvalues are equivalent to the union of the eigenvalues of the
two diagonal blocks. As discussed above, Λ has positive eigenvalues only. Due to the minus
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sign, all ev (α2) ≤ 0. From the theorem by A. Hirsch again follows with eq. (186) that all
= ev (α) ≤ 0. Therefore one gets the same result as above, that α is exclusively responsible for
the eigenvalues in L′′ with negative imaginary part.∑

n|=λn>0

λn = tr
{
α†

}
= 1

2 tr
{
h + i Λ

}
− 1

2 tr
{
h − i Λ

}
= i tr

{
Λ
}

(192)

The linearity of the trace has been used and that tr
{
Mᵀ

}
= tr

{
M

}
for a matrix M. The former

constant C was given by eq. (88),
C = −i tr

{
Λ
}
, (193)

Inserting this in eq. (182) yields the new constant,

C′ = −i tr
{
Λ
}
+ i tr

{
Λ
}

= 0 . (194)

If, in addition to C′ = 0, states with one or more f ′ particles decay to zero with increasing time,
the steady state is equivalent to the f ′ vacuum, |0 f ′〉. This is shown in sec. 4.3 and 7.5.

7.5 Decay of states with one or more f ′ particles

In order to proof that the steady state is the f ′ vacuum, it is essential to show that no state with
one or more f ′ particles survives in the long time limit t → ∞. This is done in the following.
A state that results from the application of an operator to the f ′ vacuum evolves in time as

i
d
dt

Ô |0 f ′〉 = L̂Ô |0 f ′〉

=
[
L̂ , Ô

]
|0 f ′〉 .

(195)

The second row is valid, because L̂ |0 f ′〉 = 0. This follows from the f ′ representation of L̂, eq.
(133), with C′ = 0, see subsec. 7.4. For a state hosting one or more f ′ particles eq. (195)
becomes

i
d
dt
|ψ〉 = λψ |ψ〉 ,

|ψ〉 =

P∏
i=1

f̄ ′ni
|0 f ′〉 ,

λψ = κ

P∑
i=1

λ′ni
,

(196)

where n = {n1, . . . , nP} is a sequence of different indices from {1, . . . , 2κN}. P is the number
of f ′ particles in |ψ〉. This result is obtained from eq. (195), using the previously evaluated
commutator, eq. (179). Eq. (196) is easily integrated,

|ψ〉t = exp
[
−iλψt

]
|ψ〉0

= exp
[
−i<λψt

]
exp

[
=λψt

]
|ψ〉0

→
t→∞

0 .

(197)

The amplitude goes exponentially to zero for t → ∞, because =λψ < 0, since per definition
=λ′ni

< 0. This exponential decay also holds for linear combinations of states |ψ〉, since the dif-
ferential equation is linear and homogeneous. (In sec 7.5 it has been assumed that the Liouville
matrix has constant coefficients.)
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[34] M. Deuring and G. Köthe, Enzyklopädie der Mathematischen Wissenschaften mit
Einschluss Ihrer Anwendungen: Band I: Algebra und Zahlentheorie. Vieweg+Teubner
Verlag, 2013.

77

http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevLett.110.086403
http://dx.doi.org/10.1103/PhysRevB.92.125145

	Introduction
	Open quantum systems
	Review on closed systems
	Open systems
	The Lindblad quantum master equation

	Superfermion representation

	Models
	Su-Schrieffer-Heeger Model
	Kitaev Model
	Majorana fermions and applications
	Physical realization of the Kitaev model


	Solution of the Lindblad equation
	The Liouvillian
	Superfermion representation
	Matrix representation I
	Matrix representation II
	Diagonalization

	Time evolution
	Solution by diagonalization
	Direct solution

	Steady state

	Results
	A first simulation and the impact of the dissipation parameters 
	Buffer model for the leads
	Su-Schrieffer-Heeger Model
	Two-dimensional extension of the Su-Schrieffer-Heeger Model
	Kitaev Model
	Time dependent extension of the Kitaev Model

	Conclusions and outlook
	Appendix
	Symmetry relations
	K - relations
	Commutator of f and f - operators with the Liouvillian
	Proof of C= 0
	Decay of states with one or more f particles


