
Dipl. Ing. Roxane Koitz, BSc

Formula Composition and Manipulation in Educational
Programming Languages for Children and Teenagers

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr. techn. Wolfgang Slany

 Institute for Software Technology

 Master of Science

Supervisor

Graz, March 2016

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

Computer science education has emerged as a recurring topic within the last years due to the
growing relevance of skills within the context of information technology. In particular, the
discussions and initiatives focus on primary and secondary education, thereby stressing the
significance of imparting the basic concepts of computer science and programming to children
and adolescents early on. Programming itself is a demanding activity. Therefore, numerous
languages and environments have been devised to facilitate the development of programs for
non professionals. These tools try to stimulate the users’ interests in becoming creators of
digital content, while conveying general ideas such as abstraction, logical thinking, as well as
mathematical theories. In order to simplify programming, many applications for beginners
adopt a visual representation and creation of the software. Visual programming languages
(VPL) use graphical components representing programmatic constructs, which are connected
or placed in relation to each other to form programs. By focusing on semantic aspects of
programming, while reducing the possibility of syntactical errors, visual approaches have been
applied to compute science education at the secondary level. In this regard Scratch poses
the state of the art educational programming environment enabling children and novices to
create their own animations and programs. Scratch features a purely visual language based
on color-coded Lego-like blocks representing operators, functions, or object attributes and
has been intended for the use on traditional computers.

While usually desktop computers and laptops have been employed to develop software for
decades, the smartphone penetration among citizens of industrial countries provides new
opportunities for education proposes in this regard. Owing to their pervasive nature, Internet
capabilities and sensors, portable devices can support learning anytime and anywhere. Mobile
phones have become an essential part of teenagers’ and children’s everyday life, thus expanding
the efforts of novice programming environments to smartphones and tablets represents the
next logical step to foster computer science education.

Pocket Code is a mobile integrated development environment (IDE) and interpreter developed
for the VPL Catrobat targeting teenage users. Inspired by Scratch programs in the Pocket
Code app are constructed via colored bricks while taking full advantage of the device sensors
available. Achieving an appealing programming experience on mobile devices, however,
is impeded by the small screen sizes and error-prone data entry methods. Thus, solely
relying on graphical blocks can be impractical. Especially considering formula composition or
manipulation, employing a visual representation can become cumbersome and confusing with
the size of the formula. Although being a crucial part of programming itself, this issue has

gained little attention in research so far. To avoid this issue, Pocket Code utilizes a hybrid
textual/visual editor for constructing and adapting formulas.

In order to evaluate the mechanics of the hybrid approach we carried out two independent
usability assessments, namely a heuristic evaluation and a usability test. Regarding the
former, a review of the formula editor interface of Pocket Code was conducted considering
specific guidelines for mobile applications. Several reviewers with usability experience were
employed to identify possible issues violating the provided principles. Due to the heuristics
used, the identified problems give a general picture of the usability of the formula editor
besides the pure mechanics of creating or editing a formula. The empirical assessment was
performed as a formal usability study comparing the purely visual formula composition and
manipulation in Scratch to our textual/visual method in regard to efficiency, effectiveness,
and perceived user satisfaction. While the test results indicate that the hybrid approach
is more efficient and effective than a purely visual technique, we still were able to create
an aggregated list of usability concerns based on both evaluations for the formula editor.
These issues have been the basis for our recommendations, which include a revalidation of
the terminology used, the inclusion of an expert mode as well as a redesign of tap target sizes
and the addition of visual clues within the interface.

Keywords: Usability, Pocket Code, Visual Programming Language, Novice Programming
Environment, Computer Science Education, Scratch, Android, Mobile Phone, Heuristic
Evaluation, Empirical Study

Acknowledgements

First, I would like to acknowledge my better half, Krasimir, who encouraged and reassured
me during the entire process of working on this thesis.

I would like to express my gratitude to my supervisor, Wolfgang Slany, for enabling me to
create a thesis I am passionate about, for his expertise as well as guidance, and most of all
for his patience.

I am grateful for my parents and brother, who have always motivated me to challenge myself
and supported me during my entire studies.

My special thanks are extended to the Catrobat team1 as well as the test participants as
without them this thesis would not have been possible.

Graz, March 2016 Roxane Koitz

1 http://catrob.at/credits

Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Smartphone Penetration . 2
1.2 Problem Statement . 3

1.2.1 Pocket Code . 4
1.2.2 Formula Manipulation . 6

1.3 Contribution of the Thesis . 9
1.4 Thesis Outline . 9

2 Related Work 11
2.1 Research on Visual Programming Languages 11

2.1.1 Algebraic Specification . 14
2.1.2 Language Comparison and Evaluation 18

2.2 Programming Education . 19
2.2.1 Teaching Systems . 19
2.2.2 Constructivism . 21
2.2.3 Metaphor . 22
2.2.4 Educational Programming Languages and Environments 23

2.2.4.1 Logo and Its Descendants . 23
2.2.4.2 Rule-based Systems . 28
2.2.4.3 Mobile App Programming Environments 33

3 Theoretical Background 37
3.1 Attributes . 38
3.2 Evaluation Methods . 40
3.3 Heuristic Evaluation . 41

3.3.1 Evaluators . 42
3.3.2 Heuristics . 43
3.3.3 Usability Issues and Ratings . 45
3.3.4 Advantages and Disadvantages . 46

3.4 Usability Testing . 47
3.4.1 Test Plan . 47
3.4.2 Test types . 48
3.4.3 Sampling . 49
3.4.4 Tasks . 50

i

3.4.5 Quality of Testing . 50
3.4.6 Measuring the User Experience . 50

3.4.6.1 Quantitative Data . 51
3.4.6.2 Self-Reported Data . 53
3.4.6.3 Behavioral and Physiological Metrics 56
3.4.6.4 Single Usability Metric . 59

3.5 Method Triangulation . 59
3.6 Children and Teenagers . 60

3.6.1 Designing for Children . 60
3.6.2 Usability Evaluations . 63

3.6.2.1 Age Ranges . 64
3.6.2.2 Guidelines . 65

3.6.3 Teenagers . 66
3.7 Mobile Devices . 67

3.7.1 People At the Centre of Mobile Application Development 68
3.7.2 Interaction Mode . 69
3.7.3 Operating System Guidelines . 70
3.7.4 Children and Mobile Devices . 71
3.7.5 Mobile Usability Testing . 72

4 Usability Evaluation 75
4.1 Heuristic Evaluation of Pocket Code . 75

4.1.1 Evaluators . 75
4.1.2 Heuristics . 76
4.1.3 Results . 78

4.2 Summative Usability Study . 89
4.2.1 Formula Manipulation in Scratch . 89
4.2.2 Procedure and Data Collection . 91

4.2.2.1 Participants . 94
4.2.2.2 Pilot . 97
4.2.2.3 Training Sessions . 97
4.2.2.4 Tasks . 98
4.2.2.5 Questionnaires . 107

4.2.3 Results . 108
4.2.3.1 Effectiveness . 108
4.2.3.2 Efficiency . 109
4.2.3.3 Questionnaires . 111
4.2.3.4 Single Usability Score and Preference Data 111
4.2.3.5 Eye Tracking . 115
4.2.3.6 Issues and Interpretation . 121
4.2.3.7 Validity . 129

4.3 Recommendations . 130

5 Conclusion and Future Work 138

Bibliography 141

ii

Appendix 151
7.1 Pre Test Questionnaire . 152
7.2 Tasks German . 157
7.3 Post Test Questionnaire . 159

iii

List of Tables

3.1 Nielsen’s usability heuristics. 44
3.2 Issue rating according to the problem’s severity and frequency of occurrence. 46
3.3 Statistics for different data types and usability metrics. 52
3.4 Curved grading scale interpretation of SUS scores. 55
3.5 Design recommendations for childrens’ software. 62

4.1 Heuristics for the usability evaluation of mobile interfaces. 77
4.2 Example of a heuristic evaluation report row. 78
4.3 Results of the heuristic evaluation. 86
4.4 Sample size iteration procedure for t-tests. 96
4.5 Geometric mean of time on task (in seconds). 110
4.6 Post-test interview answers. 114

7.1 Pre-test questionnaire answers (1). 154
7.2 Pre-test questionnaire answers (2). 156

iv

List of Figures

1.1 Smartphone and tablet penetration in Germany (2014). 3
1.2 Mobile programming app Pocket Code. 5
1.3 Pocket Code formula editor view. 7
1.4 Error highlighting and computation results in Pocket Code. 8

2.1 Four problem groups for Boolean expressions. 15
2.2 Textual OBJ specification. 16
2.3 Visual OBJ specifications . 17
2.4 Frame cursor depicted by the blue line. 17
2.5 Logo Turtle. 23
2.6 Etoys. 24
2.7 Scratch’s multi-pane view. 25
2.8 Visual differences between brick types in Scratch. 25
2.9 Parts of a Scratch program. 26
2.10 Snap! . 27
2.11 Scratch Jr. 27
2.12 Coding apps for younger children. 28
2.13 AgentSheets. 29
2.14 HANDS. 30
2.15 ToonTalk. 31
2.16 Alice 2. 32
2.17 Kodu Game Lab. 32
2.18 TouchDevelop’s editors. 33
2.19 App Inventor Component Designer. 34
2.20 App Inventor Block Editor. 35
2.21 Stencyl. 35
2.22 Tickle. 36

3.1 Three dimensions of user experience. 38
3.2 Learning curves for two hypothetical systems. 39
3.3 Ratio of usability problems found as more evaluators are added. 43
3.4 Usability test set-up. 48
3.5 Rating scales in surveys. 53
3.6 Single Ease Question . 54
3.7 Visualizations of eye tracking data. 58
3.8 PACMAD . 69
3.9 Summary of how people hold and interact with mobile phones. 70
3.10 Comparison of touch screen interaction between adults and children. 71

v

3.11 Usability testing set-ups for mobile devices. 73

4.1 Issues uncovered in the heuristic evaluation (1). 87
4.2 Issues uncovered in the heuristic evaluation (2). 88
4.3 Nested formula in Scratch. 89
4.4 Operator category in Scratch. 90
4.5 Formula construction in Scratch. 91
4.6 Replacing the and operator in the second nesting level. 92
4.7 Illumination of the drop location of a brick in Scratch. 92
4.8 Test set-up for Pocket Code. 93
4.9 Test set-up for Scratch. 94
4.10 Recordings used for data collection. 95
4.11 Age and gender of participants. 97
4.12 Training session for Pocket Code. 98
4.13 Programs used for performing the tasks. 99
4.14 Task 2 Pocket Code. 100
4.15 Task 2 Scratch. 101
4.16 Task 3 Pocket Code. 103
4.17 Task 3 Scratch. 104
4.18 Task 4 Pocket Code. 105
4.19 Task 4 Scratch. 106
4.20 SEQ . 107
4.21 Task completion rate by application and task. 108
4.22 Efficiency results (Error bars represent the 95% confidence interval). 112
4.23 SEQ Scores and Single Usability Score (Error bars represent the 95% confidence

interval). 113
4.24 AOI for the formula editor for Task 3. 116
4.25 Eye tracking analysis of Task 2. 118
4.26 Heat map of Task 3 in the time frame after inserting × till inserting the random

number generator. 119
4.27 Heat map of Task 4 when users are scanning the screen for >. 119
4.28 Eye tracking analysis of Task 4 when users are scanning the screen for AND. 120
4.29 Adding a minus within a field. 121
4.30 Illumination indicating brick drop location. 123
4.31 Nested formula of Task 4. 125
4.32 Delete/Undo button. 126
4.33 Scratch brick overview. 127
4.34 Pocket Code categories. 128
4.35 Nested formula in Scratch. 129
4.36 Expression choices for Boolean operators. 131
4.37 Scrape user analysis visualization . 132
4.38 Tydlig interface featuring several tabs. 133
4.39 Current formula editor with adapted text highlighting. 136
4.40 Current formula editor. 137

vi

1 Introduction

“Tell me about the programming you and your friends do.”

“We don’t do programming.”

“What about that game you showed me with the running man?”

“Mum, that wasn’t programming, that was simple.” [106]

“Computational Thinking” refers to the thought process of formulating and solving problems
that involve abstraction, algorithmic thinking, the application of mathematical concepts, and
the comprehension of problems of scale. Those fundamental skills are, however, not only
relevant for computer scientists, but should be part of every child’s analytical ability [141].
Within the last years due to the ubiquity of computing a discussion on Science, Technology,
Engineering, and Mathematics1 (STEM) skills acquisition at the K-122 level has taken place
not only in the United States, but also within the European Union. As reported by the
Industriellenvereinigung [42] Austria ranks low in regard to the amount of teenagers choosing
STEM careers in a pan-European comparison [62].

Several initiatives and organizations have been launched such as code.org3 or made with
code4 with the specific goal to expose more children and adolescents to programming. The
idea is to spark interest in computer science early on and make them not only consumers of
digital content, but rather creators. However, on the one hand programming is a challenging
intellectual task, which involves creative thinking and critical analysis. Programming requires
developing applications in little stages, where each new part depends on the source code
written so far. Thus, creating programs is a cycle between reading and understanding the
program and producing new source code. On the other hand to impart computational
knowledge onto children and teenagers, the process of programming should be both accessible
and exciting. As noted by Resnick et al. [114], children face difficulties in understanding the
syntax and semantic of programming [62].

Visual Programming Languages (VPL) have been considered to ease end-user5 programming,
as they hold the potential to empower users with little to no programming experience to write

1 MINT (Mathematik, Informatik, Naturwissenschaft und Technik) is a comparable term within the German
speaking countries [42]

2 K12 describes education delivered to students primarily between the age group of 6 to 18 years.
3 code.org (accessed 2014-01-30)
4 madewithcode.com (accessed 2014-01-30)
5 The term end user has been coined by Nardi [87] during her research on spreadsheets usage in offices and

refers to anybody who is using a computer.

1

https://code.org
www.madewithcode.com

Chapter 1. Introduction 2

source code themselves [105]. VPL use a predefined graphical representation of language
components such as commands, control structures, or variables, instead of a textual one.
Programs are developed by placing and connecting these visual objects in different ways.
Resulting from the encoding of the syntax within the components’ shapes, syntactically
incorrect statements are omitted [137]. However, utilizing visual elements alone does not
yield an easy to learn programming environment as it merely removes some of the frustrations
related to syntactical challenges of textual programming languages [112]. In particular, user
studies have shown that the superiority of visual programming languages subsides on larger
undertakings [36].

Since VPL can reduce the programming burdens for novice programmers they have been used in
the context of computational education at the K-12 level. Scratch is an example of a successful
visual programming language as well as an environment designed for traditional computers.
It is aimed at children and builds on a Lego-style block metaphor [114]. By removing the
syntactical obstacles a focus on semantic solutions and the underlying programming principles
is possible [62].

1.1 Smartphone Penetration

Although desktop computers and laptops have been utilized as a convenient programming
set-up for visual as well as textual programming languages for decades, the advent of
mobile devices, such as smartphones and tablets, has created new possibilities. Increasing
computational power and memory comparable to smaller traditional desktop computers or
laptops make mobile devices compelling pervasive computers. Most mobile devices further
provide some sort of Internet connection, advanced touchscreen, and several sensors offering
auxiliary information, for example, on the device’s inclination or acceleration [135, 62]. As
the cost of the devices decreases, they are becoming available for low-income households as
well.

Children and teenagers adopt new technology rather fast as they are digital natives6. According
to PewInternet [74] 37% of all teenagers in the United States owned smartphones in 2012
and one in four teens had a tablet computer, a number comparable to the general adult
population. Higher numbers of smartphone penetration have been reported in the European
Union, where 53% of children between the ages of nine to sixteen years, who use the Internet,
posses their own smartphone, and 18% own tablets [78].

Due to their ubiquitous computation power, portable devices support learning anytime
and anywhere, creating an increasing interest in the field of mobile education, with mobile
programming environments as one possibility of computer science education within this
context [40]. In 2012 approximately 80,000 educational apps were available for mobile devices
including iOS, Android, BlackBerry and Windows Phone apps [25]. As depicted in Figure
1.1 the smartphone dissemination among teenagers and children in Germany grows with age.

6 Prensky [108] coined the terms digital native and digital immigrant. The former refers to the generation
growing up with technology such as computers and the Internet and thus are “native speakers” of this digital
language. The later are the individuals born before the digital world.

Chapter 1. Introduction 3

Important here is that for children and teenagers over the age of ten years, we can observe
that more than 50 % among this population own a smartphone. The increasing availability
of smartphones and tablets leads to a phenomenon where touch screen interactions are
becoming commonplace while other input methods such as keyboards or mouse interactions
are eclipsing.

Figure 1.1: Smartphone and tablet penetration in Germany (2014).7

1.2 Problem Statement

Even though smartphones and tablets are becoming increasingly popular among children and
teenagers, creating a positive and engaging programming experience on mobile devices is a
challenging task, as screen size impedes interface design. In addition, data entry methods
on touch screens are more prone to errors, hence typing large amounts of source code on
the mobile device’s virtual keyboard is not an appealing option from a user experience point
of view [44]. Microsoft’s TouchDevelop8 demonstrates one solution to this problem. It is
a textual programming language with a specialized structural editor, making each editing
step possible with a tap on a touchscreen [135]. When inserting a statement, a calculator
view is displayed. This calculator view comprises a virtual on-screen keypad, with several
keypad modes containing, for example, operators or literals. Even though the interaction is
in a graphical style, the actual visualization is purely textual [62].

While TouchDevlop’s approach is optimized for mobile devices, creating a purely textual
programming language for children and adolescents is just one approach. Pocket Code is a
mobile programming environment for the visual programming language Catrobat9, which
has been inspired by Scratch and is intended for novice teenage users. Due to the limited
display size of smartphones, a purely visual approach as in Scratch is impractical. Especially
formula composition can become cumbersome on small displays. Therefore, the Catrobat

7 www.emarketer.com (accessed 2014-12-28)
8 https://www.touchdevelop.com/ (accessed 2014-01-30)
9 http://www.catrobat.org/ (accessed 2014-01-30)

www.emarketer.com
https://www.touchdevelop.com/
http://www.catrobat.org/

Chapter 1. Introduction 4

team implemented a hybrid formula manipulation approach, where formulas are created
visually and displayed textually through an electronic pocket calculator metaphor [62].

Harzl et al. [45] present a classification of formula manipulation in the context of end-user
programming. According to the authors, three categories can be distinguished [62]:

• Purely visual: Visual formulas are constructed connecting predefined visual components.
Scratch is an example of a purely visual formula manipulation environment.

• Purely textual: Formulas are displayed and created textually, for example in spreadsheet
applications as Microsoft’s Excel.

• Hybrid textual/visual: In the hybrid approach formulas are created using a mixture of
visual and textual representation.

Additionally, the authors propose a formal experiment design in order to compare the
effectiveness, efficiency, and subjective user satisfaction of the different approaches. Their
design focuses in particular on programming environments available on mobile devices [62].

Despite the rationale behind the hybrid formula manipulation approach, an evaluation is yet
to be conducted. In this thesis, we investigate the advantages and disadvantages of hybrid
formula manipulation in programming environments for teenagers.

1.2.1 Pocket Code

Catrobat is a visual programming language and a set of creativity tools for mobile devices
especially designed for teenagers between the ages thirteen to eighteen. An interpreter for
Catrobat and a mobile integrated development environment (IDE) are combined in the Pocket
Code app (see Figure 1.2). The Pocket Code Android app is available on Google Play and
versions for iOS and Windows Phone are in development currently[62]. Pocket Code enables
teenagers to create animations and develop programs directly on mobile devices in a fun and
engaging way without the need for traditional desktop computers. Pocket Code has been
inspired by Scratch, adopting its block metaphor and community aspect. However, it differs
from Scratch, as it has been designed and developed for multi-touch mobile devices with small
screens starting from three inches. Due to its focus on smartphones and tablets it allows
the usage of the device sensors (e.g., compass, acceleration, and inclination sensors) [127].
Further, there are several sub projects extending the basic functionality, such as a 2D physics
engine, Arduino, or Lego Mindstorms blocks [62].

As in Scratch, programs are developed by composition of color-coded Lego-style blocks, with
a particular functionality embedded such as conditionals, loops, or other statements. These
blocks are organized in categories and can be connected via drag and drop. Figure 1.2b
depicts the scripting area, where blocks can be interlocked to form programs [62].

Chapter 1. Introduction 5

(a) Home screen. (b) Script view.

Figure 1.2: Mobile programming app Pocket Code.

Chapter 1. Introduction 6

1.2.2 Formula Manipulation

Since Pocket Code is a mobile app, the amount of information that can be displayed at once is
limited. Furthermore, the input methods differ from those of desktop computers and are more
error-prone. For example, tap gestures are not as precise as mouse-clicks [145]. Therefore, a
purely visual representation of formulas is not a practical approach, especially as formulas
can become quite complex resulting from nesting and long variable names [62].

Pocket Code uses a visual formula composition by tapping on the appropriate buttons in the
formula editor, but displays them textually within text field and the script view as shown
in Figure 1.3. By exploiting buttons symbolizing attributes or functions, the formula editor
input method is less prone to errors than typing entire formula using a virtual keyboard. The
textual depiction, however, requires less screen space than interlocked visual blocks would.
Therefore, the hybrid approach should combine the ease of VPL with the effectiveness and
clarity of textual representations. The formula editor uses an electronic pocket calculator
metaphor, which was chosen since it maximizes the transfer of knowledge as the target
audience would likely be familiar with calculators from math classes at school or calculator
apps. Further, a textual representation is feasible on narrow screens by using text wrapping.
In addition to the common digits and the arithmetic operators available on standard pocket
calculators, statements are organized in categories within the formula editor, displayed in
Figure 1.3 at the bottom right. Those categories comprise object attributes, mathematical
functions, logic and rational operators, as well as sensors and variables. Figure 2.3a depicts a
nested formula containing a variable (“car position”), an object attribute (position y) as well
as logical and relational operators [62].

Note that it is initially possible to create syntax errors on an expression level, since there is
no automatic type checking done during the creation of the formula. In case the user tries to
save an unfinished or incorrect formula, the formula editor highlights the corresponding sub
formula as depicted in Figure 1.4a and thereby eliminates some of the possible syntax errors
preemptively. Depending on the operator type coercions can occur in case the operands do
not match the operator. For example, relational operators expect operands of type Real,
however, whenever Boolean values are supplied they are automatically converted to Reals.

Additionally, parentheses provide a common visual clue to denote grouping and order of
operation within the calculator metaphor. Indicating grouping can be a crucial point when
creating deeply nested or large formulas. “Undo” and “redo” functionality have been imple-
mented to facilitate the composition of formulas. Moreover, the Compute button depicted in
Figure 1.4b, which evaluates the formula and displays the current result, is present, and also
allows to interactively take into account sensor values [62].

Chapter 1. Introduction 7

Figure 1.3: Pocket Code formula editor view.

Chapter 1. Introduction 8

(a) Syntax error highlighting in Pocket Code. (b) Computation result.

Figure 1.4: Error highlighting and computation results in Pocket Code.

Chapter 1. Introduction 9

1.3 Contribution of the Thesis

Within this thesis, we have on the one hand accumulated a broad overview of the state of the
art research on educational programming languages and environments as well as their inherent
issues and aspects concerning formula composition. On the other hand, we have administered
two evaluations to assess the usability of formula manipulation. Subsequently, we aggregated
the uncovered issues and developed a set of suggested actions to improve the usability of the
formula editor in Pocket Code. This thesis presents the following contributions:

• We give an extensive overview of research in educational programming environments
and in particular on the question whether VPL are superior in this regard to their
textual counterparts.

• We performed a heuristic evaluation of the formula editor in Pocket Code based on
mobile application usability guidelines.

• We conducted a formal experiment, comparing the efficiency, effectiveness, and perceived
satisfaction of formula development in Pocket Code to Scratch.

• Based on the results of the two usability assessments we created a set of recommendations
for the formula editor in Pocket Code.

• Lastly, we provide some notions of possible extensions of the research described in this
thesis as well as additional aspects worth investigating.

1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2 we give an overview of the body of research on
comparing visual to textual programming languages and education programming environments.
In particular, we discuss aspects proven useful in minimizing the burden of learning computer
science concepts. Numerous languages and environments for computer science purposes have
been developed since the 1960s and we list the most important ones in regard to our research
within the last section of this chapter.

Chapter 3 comprises essential theoretical background on usability research, i.e. its attributes
and assessment methods. Subsequently, we focus on heuristic evaluation as an inspection
technique and formative usability testing as an evaluation approach involving participants
from the target user group. As Pocket Code is a mobile application intended for children
and teenagers, we further point out essential usability adaptations necessary for children and
teenage users as well as mobile devices.

In Chapter 4 we present two assessments, which we have conducted on the formula editor
of Pocket Code. In the first section, we describe a heuristic evaluation we performed with
members of the user experience team of the Catrobat project and its results. Subsequently, we
discuss a formative usability study where we empirically compared the hybrid textual/visual
formula composition paradigm implemented in Pocket Code to the purely visual approach of
Scratch. Section 4.2 is based on Koitz and Slany [62]. We further aggregate the results of

Chapter 1. Introduction 10

the heuristic evaluation and the usability test into a set of recommendations for the formula
editor of Pocket Code as well as present ideas for suitable future research.

Finally in Chapter 5, we conclude the thesis and provide additional suggestions for future
work within the context of formula manipulation in Pocket Code and generally in regard to
novice programming environments for teenagers and children.

2 Related Work

“One might say the computer is being used to program the child. In my vision, the child

programs the computer, and in doing so, both acquires a sense of mastery over a piece of the

most modern and powerful technology and establishes an intense contact with some of the

deepest ideas from science, from mathematics, and from the art of intellectual model building.”

[103]

Nowadays, computer users encompass a diverse and significant population, since information
technology has become a ubiquitous part of everyday life. Thus, the term Computer Literacy
has been defined as the skills to use tools such as word processing, spreadsheets, basic
computer operations and Internet tools [72]. Teaching layman, i.e. non-professional software
developers, to create their own programs has been promoted within the last years as the
next logical step to Computer Literacy. The intention to create programming languages and
environments which allow a broader public to be able to access programming has already been
pursuit since the 1960s [58]. End user programming (EUP) can be defined as “programming
to achieve the result of a program primarily for personal, rather [than] public use” [61]. End
users write code in order to achieve their goals within their domain, thus the end product is
not necessarily intended for a large user base with changing needs [58]. It has been shown that
the amount of research on EUP has increased within the last years with the larger number of
lab-based studies [134].

Within the context of computer science education, research on programming languages for
children and teenagers has received attention since the 1980s with Seymour Papert as one of
the key pioneers [103]. Since then various learning environments for desktop computers and
other devices have been promoted. In this chapter, we discuss on the one hand educational
programming languages and environments for various target groups with a focus on children
and teenagers and on the other review literature in the context of VPL.

2.1 Research on Visual Programming Languages

Research on VPL has started as early as the 1970s, when Smith [129] introduced an icon-based
programming language called Pygmalion. Pygmalion establishes the nowadays common drag
and drop functionality, which is prevalent in educational programming environments for
children [68]. In visual languages, graphics replace some or all of the textual program source
code and were thought to facilitate end-user programming and thereby empower novices not

11

Chapter 2. Related Work 12

to merely consume content but to create programs themselves. Contrasting their textual
counterparts they have the “potential to minimize the conceptual distance between the cognitive
and computational model” [105]. Furthermore, VPL make implicit relations and information
explicit which in turn simplifies programming and problem solving.

Boshernitsan and Downes [16] provide a classification for VPL environments:

• Purely visual languages: The programmer only interacts with graphical representations.

• Hybrid text and visual systems: A combination of textual and visual elements is
embedded.

• Programming-by-example systems: The user manipulates or creates visual objects and
thereby instructs the system how to behave.

• Constraint-oriented systems: Primarily utilized in simulation design, the programmer
models objects, which are behaving according to certain restrictions such as natural
laws, in a graphical way.

• Form-based systems: In form-based systems, the users create cells and defines formu-
las for theses cells. Spreadsheet programming environments fall under this category.
Spreadsheets are one of the most successful end-user programming systems as of today,
however, are mostly textual.

These categories are not mutually exclusive, thus a language can fit into several categories
at the same time. In contrast Asamoah [7] classify VPL based on the visuals they are
incorporating:

• Diagram-based : The features are represented visually, often as diagrams.

• Form-based : Forms or templates are used to retrieve all necessary information from the
user.

• Icon-based : These types of VPL require the user to directly manipulate visual represen-
tations of processes with a pointing device (mouse or finger).

There have been several studies to verify the advantages of VPL over their traditional textual
counterparts. Proponents of visual programming languages state that reducing or eliminating
text in programming will improve usability as visual representations are easier to grasp than
textual ones and syntax issues are deemphasized [130, 62]. Comparing visual perception to
reading text, the former is more efficient and natural. Particularly, program structure can
be easier analyzed in visual systems than textual ones. Further, the relationships between
components can be visualized quite easily and the spatial layout of the components allows to
further convey information [37].

Yet, much of the rationale behind the claims of VPL-benefits encountered skepticism [13]. User
studies have shown mixed results on the advantages of visual languages, which are relative to
the particular application task [36]. In general, the superlativist theory [37]—claiming VPL
to be inherently superior to textual representations, in all situations—cannot be supported
[62].

Chapter 2. Related Work 13

Green and Petre [36] examined the comprehensibility of textual and visual programs through
comparison of LabVIEW, a circuit-diagram-like language, to a purely text-based one for
conditional logic. In particular, the authors conducted the study under the match-mismatch
hypothesis. In the context of VPL, this hypothesis states that the ease of retracting informa-
tion or problem solving depends on how well the notation structure matches the problem
structure [89]. The authors concluded that the data flow paradigm was, in fact, harder to
comprehend than the textual one and that the benefits of VPL may lie in the creation of
programs rather than understanding already existing source code [62]. Graphical source
representations inherently involve a greater level of abstraction than traditional text-based
languages. Contrasting the superlativist theory, the authors argued the VPL was more
difficult to comprehend due to the fact that the structure of graphical representations is
more difficult to scan in comparison to textual ones. Moher et al. [84] constructed the same
experiment as Green and Petre [36], but utilized Petri Nets as a visual representation to
examine whether the previous results were dependent on the LabView forms. The authors
concluded the same result as Petre and Green under every condition.

Pandey and Burnett [99] argued in favor of VPL and focused on program constructability in
the context of matrix manipulation. The study compared textual languages, namely Pascal
and OSU-APL, to Forms/3 [22], a spreadsheet-based visual programming language. Based on
their results the authors concluded that source construction in VPL is less error-prone. This
has been especially of interest as the participants had all prior experience in Pascal [62].

In contrast, Booth and Stumpf [15] recently reported greater difficulties in the creation of
visual programs than their modification. The study analyzed Modkit1, a visual programming
environment based on Scratch, and text-based programming languages for Arduino2. Their
investigation supported the belief that visual programming environments provide a greater
user experience and perceived success as well as decrease the subjective workload for adult
end-user programmers [62].

A well-known study by Shneiderman [126] tested comprehension, composition, debugging,
and modification of flow chart documentation on novice users. There was no significant
difference between the task times of the flow chart and non-flow chart group. Ramsey et
al. [110] compared flow charts to a program design language and showed that there was a
significant advantage of the latter, due to the compression of information associated with
flow charts, triggering space saving habits which reduced the quality of the designs. Scanlan
et al. [122] investigated comprehension of conditional logic in structured pseudo code and
structured flow charts. The results indicate a significant advantage of the flow chart variant
in regard to time and error rate.

In a recent study, Price and Barnes [109] compared textual programming language to a
brick-based language while isolating the language effects from the programming environment.
In particular, they created two environments, a brick-based and a textual one. They found
that while the perceived effort was independent of the testing language, their results convey
that the VPL lead to a greater number of tasks performed. Price and Barnes [109] further
identified the three characteristics of many block-based programming environments; First,

1 http://www.modkit.com/ (accessed 2014-01-28)
2 Arduino are microcontroller boards.

https://www.arduino.cc/
http://www.modkit.com/

Chapter 2. Related Work 14

novice users are the target group, in particular, children and teenagers. Second, VPLs mimic
the structure as well as syntax of existing languages and third they usually provide the
possibility to include multi-media content.

As can be seen from the literature, there is no consensus on the superiority of VPL to their
textual counterparts. Generally, an effective visual approach can outweigh their counterparts.
VPL have been shown to be more effective and efficient in the cases of rapid-prototyping
tools or shell scripting for novices in comparison to purely textual approaches. However, the
superior position of VPL diminishes with the complexity and magnitude of tasks. In addition,
it has been shown that for program understanding situations visual languages are less suited
than their textual ones [36, 100]. Visual languages have a high viscosity, i.e. implementing
changes requires effort for rearranging components and planning a layout ahead of time [38].
Furthermore, the screen space is not efficiently used in visual languages and a restricting
inherent feature of VPL environments is the necessity of a display large enough to see as
much of the program code as possible in order to be able to reorder the programming blocks
[88].

2.1.1 Algebraic Specification

Accurately specifying Boolean expressions is a common problem among programming lan-
guages as well as among user search queries and database retrieval tasks [100]. Even though
constructs such as AND, OR, and NOT are difficult for novices, there are still no generally bet-
ter replacements. The difficulties of Boolean expressions are amplified when several operators
are to be used in the same conditional. Pane et al. [101] conducted a study with participants
from various age groups, genders, and programming experiences. In their investigation of
Boolean expressions they provided four problem sections (see Figure 2.1):

• Writing text (WT)

• Writing forms (WF)

• Reading text (RT)

• Reading forms (RF)

Their study showed that, for example, users rate the precedence of NOT higher than of AND
and lower than of OR. Often AND is interpreted as the union by users, while it is evaluated
as intersection in most programming languages. Parentheses seem to improve nested Boolean
expressions, however, some studies have shown that beginners still face difficulties with the
usage of parentheses [39]. While other terms from natural language have not proven to be
better suited than AND, OR, and NOT, some graphical representations have been shown
promising results in regard to effectiveness such as truth tables, Venn diagrams, or visual
metaphors [101].

Neary and Woodward [89] investigated the effects of visualization in the domain of algebraic
specifications. In particular, an experiment was conducted on the programming language
OBJ. Figure 2.2 shows a textual OBJ specification. This textual form was compared to
two visual representations with different notations: Nassi-Shneiderman charts and Vertical

Chapter 2. Related Work 15

Figure 2.1: Four problem groups for Boolean expressions as described in the study by Pane
et al. [101].

Chapter 2. Related Work 16

Figure 2.2: Textual OBJ specification [89].

Nested Box. Both graphical forms are depicted in Figure 2.3. To evaluate the approaches, the
authors generated a multiple choice questionnaire to determine basic syntax and semantics
skills, equation comprehension, and term rewriting. Overall there was no statistical difference
in task time and error rate between the notations, even though a slight favoring of the visual
representation was observed. All the participants had previous experience in textual OBJ.

In block-based programming languages the users build programs by arranging blocks of code.
The composition then resembles the structure of the program. Often bricks cannot only
be connected to each other, but several nesting levels can be created. For example, in a
conditional block the condition itself could be an arithmetic operation represented by another
brick. Brown et al. [19] argue in their paper that the lack of keyboard support is restricting
the usage of block-based languages to more proficient use. In particular, they show that
while the development of programs utilizing block-based language is simple, the entry and
manipulation is time-consuming and cumbersome. For example, creating a complex formula
such as

√
x ∗ x+ y ∗ y requires the usage of eight blocks, where the action to position each

brick comprises finding the particular palette, selecting the brick, dragging it to the correct
position and dropping it there. In a textual language this might require around fourteen key
strokes. Thus, the authors propose frame-based programming. Frame-based programming is
a hybrid approach incorporating blocks as well as text-based elements, whereby frames are
components similar to bricks in block-based languages. To support keyboard entries, a frame
cursor indicates where the next frame will be positioned. Frames contain expressions, which
can be inserted textually. In order to diminish the occurrence of syntax errors, frames are
structurally edited.

Chapter 2. Related Work 17

(a) Nassi-Shneiderman represen-
tation of an operation and a
variable.

(b) Vertical Nested Box represen-
tation of an operation and a
variable.

(c) Nassi-Shneiderman representation of
equation 2 from Figure 2.2.

(d) Vertical Nested
Box representa-
tion of equation 2
from Figure 2.2.

Figure 2.3: Visual OBJ specifications [89].

Figure 2.4: Frame cursor depicted by the blue line [19].

Chapter 2. Related Work 18

2.1.2 Language Comparison and Evaluation

Green and Petre [38] proposed the Cognitive Dimensions Framework to evaluate visual
programming environments as well as languages. Their framework encompasses thirteen
items:

• Abstraction gradient : How deep is the maximum and minimum level of abstraction?

• Closeness of mapping : In case there is a mapping between real life entities to parts of
the environment, how much does the user have to learn in order to be able to use this
mapping.

• Consistency : Is the user able to infer the functionality, input types, etc. of new items
from previously seen ones.

• Diffuseness: How many visual objects are necessary to achieve a certain behavior?

• Error-proneness: Does the paradigm prevent “careless mistakes‘”?

• Hard mental operations: Are there scenarios, where the user has to use additional tools
(e.g. pen and paper) to be able to comprehend the execution?

• Hidden dependencies: Are interconnections explicit?

• Premature commitment : Do programmers have to make decisions before acquiring all
information necessary?

• Progressive evaluation: Does the environment allow to execute unfinished programs to
assess their current functionality.

• Role-expressiveness: Is the relation between the entire program and its parts explicit?

• Secondary notation: Do other visual programming decisions, such as program layout or
color, carry additional information.

• Viscosity : Can single changes be incorporated without having to adapt other parts of
the program?

• Visibility : Is it possible to show every part of the program simultaneously?

When designing a language the Cognitive Dimension Framework does provide a good overview
of possible trade-offs. However, the framework does not offer help in high level decisions, for
example, whether a data flow or block metaphor is more suitable.

McIver [79] has investigated approaches for comparing and evaluating programming languages
for novice users. Their proposed approach focuses on removing any bias due to the program-
ming environment, thus the testing environment is a simple text editor with an additional
run-button to execute the program and return any error messages. Based on the results the
number and types of errors can be analyzed and performance, learning, and understanding
measures can be applied.

Chapter 2. Related Work 19

2.2 Programming Education

The motivation to learn to program can have several driving factors, such as the end user
wishes to pursue a career as a programmer, to improve problem solving skills and logical
thinking, to be able to create personalized software, or to explore ideas in other areas by the
means of coding [58]. Learning to program encompasses various activities such as learning
the language’s syntax, designing software and understanding already available program.

In a study Pane et al. [102] gave non-programmers various programming tasks, which included
essential concepts such as control structures or Boolean logic. The participants, including
adults as well as children, were asked to solve these tasks with pen and paper. The recorded
solutions were analyzed and the majority of proposed approaches were event- or rule-based
systems, featuring mostly natural language for arithmetic operations. In their examination
the authors found that the usage of Boolean operations were not in accordance with most
programming languages, which is in line with the previously discussed work on arithmetic
operations [101]. Interesting enough most test users drew sketches to depict the program’s
layout and described it’s behavior with additional text.

The majority of teaching environments focus on the one hand on enabling the students
to express their intentions in a programmatic way and on the other hand teach them to
understand how computers execute instructions [58]. Novice programmers are often expected
to progress from a beginner’s languages to commercially used ones after a while. Therefore,
most systems support languages similar to general-purpose ones, i.e. an if-structure will
behave similar in a teaching systems as it does, for example, in Java [58].

Sheehan [125] recommended for programming environments for children the incorporation of
multimedia content, high level instructions, and an easy switch between viewing the source
and seeing how the program is running. For example, initializing variables seems to be a more
complicated concept than updating or testing them. Further, control structures such as loop
or conditionals are more difficult than simple statements. Even though drag-and -rop has
become the established input method for educational VPL, Inkpen [50] reports that children
between the age of nine and thirteen prefer point-and-click over drag-and-drop.

2.2.1 Teaching Systems

Kelleher and Pausch [58] purpose a taxonomy of programming languages and development
environments with the specific focus on systems enabling novices to program. In particular,
they categorize the tools in teaching systems and systems which aim at empowering the
end-user. In this section, we focus on the former.

Studies on novice programming environments have identified the mechanics of programming
as the main hindering factor in successfully acquiring these skills. The mechanics comprise
the following fragments [58]:

• Language syntax

• Structuring programs

Chapter 2. Related Work 20

• Comprehension of program execution

Language Syntax

Novice programmers face difficulties in expressing themselves in syntactically correct code.
There are two possible remedies to assist in overcoming this barrier: simplifying the input
or creating alternative entry methods. Most commercially used programming languages are
expected to be used for problems from various domains, thus, provide a vast number of
functionalities which in turn leads to being more difficult for novices to master. Applications
aiming at simplifying the entering of code share two common approaches [58]:

• Simplifying the language: General-purpose languages often include syntactical elements
difficult for novices to understand, since the names are uncommon or the terms’ purpose
differs from their meaning in natural language. To ensure clarity the programming
language GRAIL [80], for example, follows three guiding principles:

1. Have consistent syntactical requirements.

2. Use terminology novices understand and refrain from standard programming terms
having a different intention than in natural language.

3. Restrict the language to feature simple programmatic constructs.

For example, in GRAIL the multiplication operator is represented by an ‘×’ rather than
a ‘∗’, since this representation is familiar to novices from mathematic classes. Further,
instead of denoting an assignment by a = b which is ambiguous, an arrow is utilized e.g.
b→ a.

Pane et al. [102] created a programming environment named Human-centered Ad-
vances for the Novice Development of Software (HANDS) taking into account usability
principles. For example the heuristic to “speak the users’ language” known in Human-
computer Interaction (HCI), also applies to programming environments. In particular,
the use of terms differing in their meaning in natural language such as void or static
should be avoided. Users tend to apply knowledge of other areas when they do not know
how to achieve a goal. Thus, when the programming language’s syntax and semantics
are in conflict with natural language or mathematics confusion arises (e.g. x = x+ 10).

• Preventing syntax errors: There are tools focusing on creating an environment which
prevents common syntax errors for already existing languages. By limiting the set of
possible commands to the ones syntactically correct at the current program position,
eliminates the possibility for faults. For example, the programming environment
GNOME [83] relied on displaying programs hierarchically and enforced users to correct
syntactical errors before continuing to program. GNOME environments were available
for Pascal, Fortran, and Lisp.

While simplifying the language is beneficial to novices, this user group still faces difficulties
remembering commands, formal parameters or the right usage of parentheses. Thus, some
systems have removed syntactical burdens altogether. According to Kelleher and Pausch [58]

Chapter 2. Related Work 21

we can categorize these in VPL, programming-by-example systems, and hybrid environments.
In VPL conditionals, commands or operators are represented as graphical entities, where the
syntax is encoded in the shape and/or color of the objects. In Section 2.2.4 we discuss some
well known examples of this type of environment such as LogoBlocks, Alice, or Scratch. Others
environments create programs by using the interaction between the user and the interface, e.g.
by interpreting button presses and their sequence. An instance of programming-by-example
environments is LegoSheets [35], where the user starts by manually controlling a small
computer, called a Brick. The program is then created on basis of this interaction. The third
type provides various input methods, such as Leogo [23]. Leogo generates simple graphics
and provides three methods for generating code: typed syntax, interface manipulation as well
as a language which includes templates for common commands.

Structuring Programs

Instead of focusing on the syntax on statement level, these types of systems attempt to simply
structuring code. Pascal for example was introduced in the early 1970s to provide a language
allowing to teach structured programming. While Pascal was developed for programming
classes, the language Smalltalk was designed for children as a simple programming language
with few commands and little syntax [57].

Comprehension of Program Execution

Even when a program is syntactically correct, it does not necessarily perform as the author
intended. Debugging can be a difficult challenge for novices and requires to understand how
the computer executes the statements provided in the source code. Systems in this category
either provide feedback on how the code is executed, how variables change, or which part
of the source code is executed. In Scratch, for example, the currently executed part of the
program is highlighted. Another type of environment within this category provides metaphors
to assist users in understanding the execution of programs. For example, in Toontalk trained
robots share information by taking to each other to convey communication between objects.

2.2.2 Constructivism

In 1980 Papert [103] proposed constructivsm. Papert’s constructivism, derived from construc-
tivist theories, claims that people in general and children in particular have more enjoyable
learning experiences and a higher effectiveness by creating. In particular, the activities of
designing, personalizing, sharing, and reflecting play an essential role as they enable children
to be innovative and apply knowledge rather then acquiring facts [11]. Based on constructivsm
educational construction kits aim at providing learning through the process of creation [113].
There are several principles [116] and connections [21], which should be considered in order
to create effective construction kits, such as:

Chapter 2. Related Work 22

• providing a “low floor, wide walls and a high ceiling” [116], i.e. the system should be
easy to use for novices, while it allows to explore and is capable of performing advanced
tasks,

• using simple command,s which symbolize sophisticated functionalities, to allow users to
create programs with little code,

• trading off extensive functionality and elegant design for simplicity,

• allowing various ways to reach the same solution, and

• giving the user not the features they want but the functionality they need.

Petre and Blackwell [106] conducted an informal observation of their own children and
determined the following:

• Children do not intentionally learn programming, but use it as a means for playing,
They often are not aware that they are programming.

• They learn by tinkering: analyzing existing artifacts and then adapting them in order
to fit their needs.

• Children learn within a social network and not an educational context.

Independent research by Lye and Koh [71] investigated empirical articles on programming in
K-12 and higher education where students employed VPL. They found that the predominant
strategy is based on constructivsm, i.e. students create a program to strengthen the learned
aspects. In most of the studies they have covered positive results were observed. This is well
in line with the research of Resnick [114] on Scratch. A study by Meerbaum-Salant et al.
[82] has shown that computer science concepts can be conveyed with the help of Scratch in
the context of middle-school classrooms. However, the authors could show that certain ideas
require a more in depth teaching approach than others. In particular, variables, initialization
or concurrency are programming constructs posing difficulties for novices.

2.2.3 Metaphor

A metaphor is a familiar analogy which implicitly describes how the programming environment
or language operates. The quality of the metaphor depends on whether the user can infer
how to use the programming system by relying on already available knowledge [100]. To
achieve a close mapping, the metaphor should be conceptually close to a real entity widely
known by the target users. Metaphors are, however, not a panacea. Users tend to attempt to
extract too much information from metaphors, i.e. confusion arises when the metaphor and
the system behavior do not match entirely.

An example of such a discrepancy of the metaphor and the physical object is the turtle
graphic in the novice programming language Logo. The turtle graphic draws lines according
to the program code. When the turtle is facing south its right side become the user’s left side
and vice versa. Thus, it can be unintuitive for beginners to direct the turtle in a new position
in relation to the turtle.

Chapter 2. Related Work 23

2.2.4 Educational Programming Languages and Environments

In this section we discuss various programming environments and languages utilized for
computer science education. We have divided these into three categories:

• Logo and its descendants

• Rule-based systems

• Mobile application programming environments

These classes are not mutually exclusive, since e.g. some mobile development environments
are inspired by Logo and its successors. Another type of programming environments for
novices, which we will not discuss, are environments supporting traditional programming
languages, which are mainly used in higher education [41] .

2.2.4.1 Logo and Its Descendants

Designed in the 1960’s, the Logo [103] programming language is a re-engineered Lisp, where
much of the punctuation is neglected in order to provide a child-friendly syntax. Besides
numerical and textual computation in the context of mathematics, science, language and
music, Logo is best known for its turtle graphics. Originally derived from a small robot, the
turtle later became a simulation in a two dimensional space drawing line graphics according
to coded movement commands. Figure 2.5 shows the turtle robot as well as the on-screen
cursor turtle. The programs are object-centric, as for example the forward command would
move the turtle in its own forward direction. Logo is generally an interpreted language using
immediate feedback and descriptive error messages allowing users to create procedures and
recursion. There are several derivatives of Logo, as for example LEGO/Logo merged Lego

(a) Turtle robot. (b) Logo turtle graphics output for
repeat 4 [fd 100 rt 90].

Figure 2.5: Logo Turtle.
[Logo Turtle [41].]

construction sets with Logo and enabled the animation of Lego constructions via sensors and
motors [115]. While these systems were still connected to a traditional computer through a

Chapter 2. Related Work 24

wire, the later released Programmable Brick incorporated its own computer [77]. Programs
were developed on a desktop computer and then transfered to the Brick, which would execute
them. LogoBlocks is a VPL designed for the Programmable Brick and a predecessor of Lego
Mindstorms [11].

Etoys

Etoys, previously known as Squeak, is an educational programming environment, which has
been mainly influenced by Logo [56]. It features a variety of objects, which are programmable
via tiles. These tiles can be dragged an dropped into place to compose a program. The
only control structure available are simple if-statements and besides mouse events there is a
predefined set of buttons to stop and start the behavior of objects. Figure 2.6 shows a script
of a car object with a tile to move the car along the x-axis with a given speed.

Figure 2.6: Etoys3.

Scratch

Scratch4 is a graphical programming language and environment developed by the Lifelong
Kindergarten research group of the MIT Media Lab and has been developed especially for
children and novices [114]. The core audience of Scratch ranges from children of eight years
of age to teenagers of sixteen years of age [62]. In November 2015 Scratch ranked 30th on the
TIOBE index5, which measures programming languages according to their popularity based
on search engine results.

Scratch is intended for the use on traditional desktop computers with mouse as well as keyboard
and its main goal is to support creative and systematic thinking using programming. Programs
are composed by piecing together graphical Lego-style blocks that represent operators, data
types, or functions etc. These blocks are organized in different command categories and color
coded to highlight their membership. In addition to the blocks’ color, their form further
distinguishes them, as only synthetically compatible tiles can be connected with each other.
Hence, incorrect statement combinations are impossible and syntactical load is being reduced
[62]. Statements are connected vertically, while expression blocks are interlocked vertically.

In Figure 2.8 the various shape differences between inputs are shown. A visual clue whether
a block can be dropped into a specific field, is done through an illuminating border around

3 http://www.squeakland.org/(accessed 2015-06-26)
4 http://scratch.mit.edu/ (accessed 2014-01-30)
5 http://www.tiobe.com/ (accessed 2015-12-26)

http://www.squeakland.org/
http://scratch.mit.edu/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Chapter 2. Related Work 25

Figure 2.7: Scratch’s multi-pane view.

said field. Figure 2.9 depicts parts of a program written in Scratch consisting of interlocked
bricks of various categories.

Figure 2.8: Visual differences between brick types in Scratch.

For the purpose of a facilitated navigation a single-window multi-pane interface is employed
as detailed in Figure 2.7. In the browser-based version, the left upper pane contains the stage,
where the program code is executed. Underneath that the sprite grid, showing the project’s
available objects, is located. The content of the pane on the right hand side depends on the
tab selection in the middle. If the Scripts tab is selected, the command palette as well as the
scripting area is shown. The command palette is organized in colored categories containing
the programming blocks [62].

Lewis [66] compared teenagers using Scratch and Logo and showed that students perceived
the tasks in both environments equally difficult. In addition, the study uncovered that Logo
is better suited for the comprehension of loops, while Scratch is more useful in teaching
conditionals.

Dwyer et al. [30] studied how student use visual cues when reading block-based programs;
in particular, they utilized a variant of Scratch. They found that users take advantage of
visual block attributes, such as color or shape, to predict the block’s functionality. McKay
and Kölling [81] utilized a prototyping tool to compare the time on task for various problems

Chapter 2. Related Work 26

Figure 2.9: Parts of a Scratch program.

including, for example, Scratch, NetBeans Java Editor, LEGO Mindstorms NXT and Python.
Their study showed that textual languages are better suited for insertion and replacement,
while block languages are better for deletion and movement. Furthermore, the results indicate
that there is a large variance between block languages. In Scratch, for instance, viscosity
stems from how blocks stick together, meaning that when dragging a block from the middle
of a composite brick there are blocks connected to it, which in turn have to be detached
and reassembled within the block structure. Furthermore, their study showed that block
languages handle text and numeric literals differently, i.e. some use individual blocks while
other use text fields. As restriction to their evaluation is the fact that their experiment did
not take into account the time necessary to plan the construction of the solution.

Build Your Own Blocks/Snap!

Snap!, formally knowns as Build Your Own Blocks6, is a Scratch derivate. The JavaScript
browser-based programming environment features graphical bricks to compose animations,
games and other applications (see Figure 2.10). However, while Scratch is intended for a
younger audience, the target user group of Snap! is not limited to children, as they expand
Scratch’s functionality for example with lambdas and recursion.

Applications for younger children

Recently, ScratchJr was released, which is an iOS app based on Scratch to allow young
children (ages five to seven) to learn programming. Other applications for younger children
include Hopscotch or Daisy the dinosaur, which are all drag-and-drop VPL as shown in Figure
2.11 and Figure 2.12.

6 http://snap.berkeley.edu/ (accessed 2014-01-30)
7 https://itunes.apple.com/(accessed 2015-04-23)
8 https://itunes.apple.com/(accessed 2015-04-23)

http://snap.berkeley.edu/
https://itunes.apple.com/
https://itunes.apple.com/

Chapter 2. Related Work 27

Figure 2.10: Snap!

Figure 2.11: Scratch Jr.7

Chapter 2. Related Work 28

(a) Hopscotch. (b) Daisy the Dinosaur.

Figure 2.12: Coding apps for younger children8.

2.2.4.2 Rule-based Systems

Rule-based systems have been inspired by Prolog and do not state how to solve a problem as
imperative languages do, but define states of the world and how objects should change in
case conditions are met.

AgentSheets

AgentSheets9 is a rule-based VPL and environment based on the spreadsheet metaphor with
the purpose to teach programming. Users can create simulations by programming the behavior
of sprites in a 2-dimensional grid-based world. Programs are developed via graphical rewrite
rules which can be seen at the bottom right of Figure 2.13. For each rule the user selects
conditions and determines the action to be taken in case these conditions are met. To define
the consequences of the rule the user moves the agent to the position it should be in if the
rule gets triggered [111].

KidSim

KidSim and its commercial version Stagecast provide a grid-based world, where children can
create simulations and their own actors. Simulations are specified rules where the user defines
the conditions to be fulfilled for a rule to apply and its consequences. Whenever the world
matches the condition the rule is applied [130].

HANDS

In the design of HANDS the authors incorporated HCI knowledge and various principles to
develop a programming environment for children. Besides common HCI heuristics, such as
consistency, simplicity, or speaking the users language, HANDS incorporates further criteria
mentioned in the Cognitive Dimensions Framework by Green and Petre [38]. These criteria

9 http://www.agentsheets.com/(accessed 2014-01-30)
10http://www.agentsheets.com/(accessed 2014-01-30)

http://www.agentsheets.com/
http://www.agentsheets.com/

Chapter 2. Related Work 29

Figure 2.13: AgentSheets10.

Chapter 2. Related Work 30

encompass closeness of mapping, viscosity, or visibility. In particular, the first aspect has been
of rather importance in the design of HANDS. The system provides a close mapping between
the mental model of a problem solution and its programmatic solution. HANDS supports
a hybrid approach, which allows visual as well as textual programming and incorporates
context-sensitive menus showing the user the options available [102]. In HANDS objects are
represented as playing cards, where the back of the card can depict the object’s visual, while
its front contains its properties (see Figure 2.14). To program the user inserts code into the
dogs though bubble in the upper left corner. Whenever the play button in the middle is
clicked and conditions are met, the rules are executed and the board in the middle of the
screen is changed [100].

Figure 2.14: HANDS [100].

ToonTalk

While visual programming languages are an improvement in children’s computer education,
Khan [54] argues that animated programs are better suited for representing dynamic behavior
in programming languages. The programming environment ToonTalk is inspired by video
games as according to the author they are easier to learn and children are likely to be familiar
with them. Abstract computational concepts are mapped to concrete metaphors, e.g. a
computation is a city, an agent or object is represented by a house and birds carry messages
between houses. Methods are depicted as robots trained by the user to perform certain tasks.
ToonTalk uses programming-by-example, with additionally requiring the user to remove
details to achieve generality. Arithmetic operations are performed by a mouse as illustrated

Chapter 2. Related Work 31

Figure 2.15: ToonTalk [54].

in Figure 2.15. If two number pads are put over top of each other, the mouse smashes those
pads together with a big hammer and the result is a single pad containing the sum of the
numbers. By placing x3 on top of a pad, the number underneath is multiplied by 3. Text
concatenation, for example, is performed in a similar manner, as text pads are stacked on top
of each other [54].

Alice

Alice is an object-based programming environment and language utilizing drag-and-drop
to create 3D models. Figure 2.16 shows the programming environment incorporating the
drag-and-drop programming style. The first version of Alice, Alice98 [26], was designed for
non-science mayor college students. Alice provides a scene layout editor and a scripting tab,
where the users can specify the behavior of the world. Generally, the programming language is
Python with a few modifications e.g. it is case insensitive. Additionally, a set of operations for
manipulating the 3D objects is available, such as forward or up to describe directions rather
than XYZ coordinates. In order to speak the users language instead of “scale” for example
“resize” is utilized. Further, commands can have varying levels of details. For instance, a move
command can not only contain the direction, it can also specify the speed and duration of the
operation or even on a very detailed level specify the interpolation style. Thus, novices can
start from a rather simple level and once more proficient can employ more advanced features.
To help users understand the source code, Alice animates the changes of the world [27].

Kodu Game Lab

Kodu Game Lab is a visual programming environment for desktop computers and Xbox 360
and intended to be used by novices shown Figure 2.17. While other visual environments are
executed in a two dimensional world, Kodu uses a 3D simulation environment as Alice does.

11http://programacionyvideojuegos.blogspot.co.at/ (accessed 2015-12-26)
12 research.microsoft.com (accessed 2014-09-30)

http://programacionyvideojuegos.blogspot.co.at/
research.microsoft.com

Chapter 2. Related Work 32

Figure 2.16: Alice 211.

Figure 2.17: Kodu Game Lab12.

Chapter 2. Related Work 33

2.2.4.3 Mobile App Programming Environments

Recently, several projects have launched facilitating the creation of applications for mobile
devices. Some perform the actual programming on traditional desktop computers while others
have been designed to be used on hand held devices themselves.

TouchDevelop

TouchDevelop13 is a programming language and environment designed for mobile devices,
which allows users to develop mobile applications utilizing the device’s sensors, stored photos,
or music [135]. The textual programming languages is built upon imperative and object
oriented features. An application comprises global variables, the user interface elements, and
a set of methods.

(a) Structured editor at statement level. (b) Token editor at expression level.

Figure 2.18: TouchDevelop’s editors [135].

TouchDevelop has two types of editor styles depicted in Figure 2.18, since mobile devices
lack a precise keyboard, which increases the difficulty to code programs with a strict syntax.
First, source code on the statement level is programmed within an editor enforcing a certain
structure and thus eliminating the possibility to create syntactically invalid statements.
Second, on the expression level a token editor with auto completion is used. As can be seen

13https://www.touchdevelop.com/(accessed 2014-01-30)

https://www.touchdevelop.com/

Chapter 2. Related Work 34

in Figure 2.18b in case there is a syntactical error, TouchDevelop provides an error message
at the bottom of the text field and a button to resolve the issue. Furthermore, each editor
button has additional information in a textual form at the bottom.

App Inventor

MIT’s App Inventor14 for Android is a visual programming platform that targets novice
programmers and enables the creation of applications for the Android platform [86]. However,
for program development, App Inventor requires a regular computer with a full Java runtime
environment, i.e. applications are created on a personal computer and deployed to mobile
devices. App Inventor utilizes a VPL like Scratch, where programs are created by snapping
code blocks together. Users generate the user interface with the Component Designer, which
allows to drag interface objects into a view and change their properties as can be seen in
Figure 2.19. The app’s functionality is added with the Block Editor. The Block Editor as
shown in Figure 2.20 offers two palettes, one containing the blocks suitable for the components
already added to the app and the other one comprising of standard blocks (e.g. control flow
statements, logical operators, or lists). More experienced users can even create and share
their own blocks, augment their apps with textual source code and even program custom
classes. Since the destination is a mobile device, App Inventor provides an emulator to test
the applications [143].

Figure 2.19: App Inventor Component Designer.

Stencyl

Stencyl is block-based environment incorporating a similar idea as App Inventor, i.e. games
are developed on a desktop computer but executed on mobile devices. In contrast to App
Inventor, the target system is not limited to the Android operating system. Figure 2.21 shows
a scene layout in Stencyl.

14http://ai2.appinventor.mit.edu/ (accessed 2015-12-28)
15http://www.stencyl.com/ (accessed 2015-12-28)

http://ai2.appinventor.mit.edu/
http://www.stencyl.com/

Chapter 2. Related Work 35

Figure 2.20: App Inventor Block Editor.

Figure 2.21: Stencyl.15

Tickle

Recently16, the mobile programming environment Tickle17 has been released for iOS devices.
As can be seen from Figure 2.22a it features similar colored bricks as Scratch does in addition
to being able to access the device’s sensors. In contrast to Pocket Code, Tickle creates
formulas visually by interconnecting blocks. As can be seen in Figure 2.22b on small devices

16Note that this mobile app has been released after the usability study has conducted.
17https://tickleapp.com/ (accessed 2016-02-26)

https://tickleapp.com/

Chapter 2. Related Work 36

the formulas can quickly exceed the screen, i.e. the user has to scroll in order to see certain
parts of the formula. Depending on the size and complexity of the formula this can become
an issue, in particular, since there is no zoom capability implemented.

(a) Tickle’s scripting view. (b) Large formulas are not entirely shown on the
mobile screen.

Figure 2.22: Tickle.

3 Theoretical Background

“When a product or service is truly usable, the user can do what he or she wants to do the

way he or she expects to be able to do it, without hindrance, hesitation, or questions.” [117]

Usability and User Experience (UX) have emerged as buzz words within the last two decades,
especially within the context of websites and other software products. Even though usability
and UX are essential to the success of any product or system, they differentiate in their
aim. Usability focuses on the individual’s ability to successfully and efficiently perform tasks,
while UX addresses the user’s interaction with the system as a whole and comprises the
user’s perception, beliefs, and feelings [65]. Since UX is interested in the overall picture, the
efficiency and ease of use as defined in usability are an integral part. A last term often used
within the context of creating user-friendly products, is user-centered design (UCD). UCD is
a broad term describing a process which emphasizes the user’s role as the focal point of the
design and evaluation process [97]. There exist various methods ranging from field studies,
to usability inspection and evaluation methods, surveys, iterative and participatory design
within the context of UCD [3].

The usability of any product or system comprises of a set of different characteristics, which all
influence the ease of use. The ISO standard 9241 part 11 [1] defines the concept of usability
as follows:

“Extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use.” [1]

This definition puts emphasis on the user, the goal a user is a trying to achieve with his
actions, and the context the product is used in. The users’ characteristics as well as the task
variations have the greatest influence on usability. Therefore, the identification of the target
audience is a fundamental step towards the creation of an easy to use system. The term user
comprises all different groups of people who are going to install, maintain, or work with the
product. By definition knowing the users is difficult, since the system might aim at a large
and therefore versatile group of people. To maintain the complexity at an appropriate level
the age, education, computer background, and other characteristics of the users are essential
criteria. One way of classifying the target users is the user cube as described by Nielsen [93],
which is depicted in Figure 3.1. According to this, users can be categorized in regard to
their experience with the system, with computers in general and with the task domain. On
the system experience scale the users can range from novices to experienced users. Novices
have their initial encounter with the system, while skilled or expert users already have a high
proficiency concerning the product. Even expert users, however, normally do not acquire

37

Chapter 3. Theoretical Background 38

Figure 3.1: Three dimensions of user experience [93].

mastery in every portion of the system and might be novices in regard to certain aspects. In
contrast, power users or super users have a detailed knowledge of the product, even though
they might only require certain parts of the system. Lastly, we can define casual users as
having experience with the system, yet using it less frequently. In regard to the user cube,
the interface design further depends on the users’ general computer knowledge, e.g. input
entry methods, as well as knowledge of the target domain, e.g. specialized terminology.

The ISO definition explicitly states that the users’ goals are an aspect to consider, i.e. allowing
the user to perform relevant tasks is essential. Specified context of use generally covers the
users, tasks, equipment, and environment the product is used in. Furthermore, the ISO
standard states three attributes–effectiveness, efficiency and satisfaction–determining the
usability, which we discuss in the upcoming subsection.

3.1 Attributes

In order to measure the usability of a product, there are three attributes which tied into the
definition of usability as given by the ISO standard 9241 part 11 [1, 9, 44]:

• Effectiveness: How completely and accurately can a user achieve specified goals.

• Efficiency : How quickly can a user achieve specified goals.

• Satisfaction: The user’s perception of content, absence of discomfort, and positive
attitudes towards the system.

Nielsen [93] identifies five distinct attributes of usability :

Chapter 3. Theoretical Background 39

Figure 3.2: Learning curves for two hypothetical systems. One focuses on novice users, thus
is easy to learn but less efficient to use. In contrast, it is more difficult to reach
proficiency in the seconds system, but once the user has become an expert the
system it is highly efficient [93].

• Learnability : Allowing novices to quickly acquire an expertise in using the system is
an essential part to enable an efficient performance of tasks. The initial learnability of
any product can be easily determined by taking novice users and measuring the time it
takes them to reach a certain proficiency level. The proficiency can hereby be defined
by a certain task the users should be able to complete.

Figure 3.2 shows two hypothetical systems, suggesting that a system is either easy to
learn but in turn less efficient or hard to master, but eventually allowing users to be
more productive with the system. A steep incline for the first part of the learning curve
is an indicator for a highly learnable system. One way to create an easy to learn yet
efficient system is to provide multiple interaction styles, one easy to learn and another
one which is more efficient. In order to restrict the user interface’s complexity novice
users should be able to use the system without being confronted with expert modes
[138]. Another possibility is to include accelerators, which are elements to perform
certain tasks quicker, although there is a more general and possibly slower way to reach
the same goal.

• Efficiency : Once the learning curve has flattened out the user has become experienced.
The efficiency of the system then refers to level of performance of expert users [138].

• Memorability : Memorability refers to the characteristic that casual users do not need
to learn a system from scratch, but remember how to use it based on their previous
learning.

• Errors: Wilson [138] defines an error as any action that does not accomplish the desired
goal. Ideally, the system has a low error rate, no catastrophic errors and in case an
error occurs the user can recover from it quickly.

• Satisfaction: The users should feel subjectively satisfied when using the system. This
is of utter importance in non-work related systems, since the enjoyment of using the

Chapter 3. Theoretical Background 40

system is the main goal users pursue.

While the ISO standard does not regard Learnability, Memorability and Errors as usability
attributes, it can be argued that they are implicitly included within efficiency, effectiveness,
and satisfaction [44].

Rubin, Chisnell and Spool [117] provide another attribute list comprising of Learnability,
Efficiency, Usefulness, Effectiveness, Satisfaction and Accessibility. Four out of the six
attributes have already been discussed. Usefulness focuses on the possibility to achieve a
certain goal with the product. Hence, this ties in with the ISO definition in regard to fulfill
a certain intend. Accessibility refers to the possibility of accessing a product for users with
special needs.

It is not possible to achieve all usability attributes to a full extend simultaneously, hence
trade-offs are inherent; to avoid catastrophic failures the efficiency of the system might drop
or the complexity of the overall design increases in order to ensure Learnability and Efficiency
at the same time. Decisions on trade-offs should be made in regard to the usability goals and
aspects of the project [138].

3.2 Evaluation Methods

In order to determine the usability of a product, one can measure the conformance of the
system with various usability attributes. On the one hand there are inspection methods where
the user interface is evaluated in accordance to a set of guidelines or heuristics. On the other
hand empirical assessments involve actual participants from the target user group examining
the system.

Usability inspection methods involve an evaluator assessing an interface and attempting to
uncover and rate usability issues occurring in a design. The advantages of inspection methods
include the possibility to apply these techniques early in the usability engineering life cycle,
as they do not necessarily require a working prototype. Further, by employing usability
experts as evaluators no actual users have to be acquired. Nielsen [94] lists seven inspection
methods:

• Heuristic evaluation: A small set of usability experts examine each screen element in
compliance to a list of predefined usability heuristics.

• Cognitive walkthrough: In a detailed process the user’s interaction with the interface is
simulated to determine whether it is possible to reach the correct next stage.

• Formal usability inspections: Combines heuristic evaluation and cognitive walkthrough.

• Pluralistic walkthrough: A group of representative users, product developers, and
usability specialists walk through a scenario step by step together.

• Feature inspection: Typical tasks are broken down into sequences in order to find
difficult or long series.

Chapter 3. Theoretical Background 41

• Consistency inspection: Checks consistency among designs, to ensure that the similar
tasks can be performed in similar ways.

• Standards inspection: Inspects whether an interface fulfills a set of predefined standards.

While heuristic evaluation, cognitive walkthrough as well as feature and standard inspection
are performed by a single evaluator at a time, pluralistic walkthroughs and consistency
inspections are performed in a group setting. Formal usability inspections are a combination
of individual and group assessments. In Section 3.3 we focus on a more detailed description of
heuristic evaluation, as for the practical solution a heuristic evaluation of the formula editor
in Pocket Code was conducted.

In contrast to inspection methods, empirical evaluations require participants from the target
audience, which on the one hand makes them more laborious but on the other hand give
insight into how real users might operate the system [93]. There are various usability testing
methods, such as:

• Thinking-Aloud : The participant articulates his thought process while performing tasks
with the system under test.

• Co-discovery : Two users work together with the system to fulfill the tasks.

• Performance Measurement : The user is asked to achieve various goals with the product
and quantitative measurements are taken.

• Wizard-of-Oz Method : Complex functionalities are performed by a person rather than
the system itself without letting the user know.

In particular, we will explain evaluations measuring performance in Section 3.4 as in the
second part of the practical we conducted a formal experiment comparing Pocket Code to
Scratch in regard to formula manipulation.

3.3 Heuristic Evaluation

Heuristic evaluation is an usability inspection method, depending on the judgment of usability
specialists. Each evaluator assesses the system in regard to a set of heuristics, which are
simplified principles or commonsense rules. In order to get the most out of this technique
ideally multiple reviewers examine the interface, as a single person would likely not uncover
all issues. Additionally, by using several evaluators different sets of usability problems can be
obtained and it facilitates finding major issues [91].

An individual expert performs the inspection of the interface alone in order to avoid bias.
During the session the evaluator inspects all screens several times and determines whether
they comply with predefined usability principles. There are several possible foci of a heuristic
evaluation [139]:

• An object-based evaluation concentrates on particular interface objects such as mobile
screens, web pages, menus, controls, or error messages.

Chapter 3. Theoretical Background 42

• In a task-based heuristic evaluation the examiners are equipped with a set of tasks to
perform in order to identify problems.

• The object–task hybrid approach combines the two latter by letting the evaluators work
through a set of tasks first and then have them examine certain user interface (UI)
objects in regard to the heuristics.

While the reviewers are often permitted to decide how they examine the system, it is advised
to have them inspect the entire interface twice; once to become familiar with it and a second
time to inspect the product against the set of heuristics. Once each of the evaluators has
inspected the interface and reported the found issues, an aggregated list of issues is being
created, including all obstacles found. Difficulty arises when evaluators report a problem at
different levels of granularity as both descriptions have to be combined into a single issue. In a
subsequent step each reviewer ranks the aggregated issues according to their severity without
being aware of the ratings of the other evaluators in order to avoid bias. The individual
severity ratings are averaged to obtain the final score for each problem.

3.3.1 Evaluators

As reported by Nielsen [91] there are major differences among distinct evaluators due to their
individual experiences. In his case study the author had a single interface examined by three
evaluator groups:

• Novices with general computer experience but no usability expertise.

• Single specialists, i.e. general usability experts.

• Double specialists with usability expertise in general as well as with the particular
interface type.

Nielsen [91] was able to show that usability specialists perform better than non specialists.
Ideally, evaluators are double specialists, i.e. they are usability as well as specific interface
experts. Wilson [139] for example states that evaluators who have more than ten years of
experience in the usability domain produce similar results in a heuristic evaluation to a
usability test.

Cockton et al. [24] even provide further detail on the recommended evaluator knowledge:

• User knowledge (e.g., knowledge of expertise and skills)

• Task knowledge (e.g., knowledge of the tasks users want to perform)

• Domain knowledge (e.g., knowledge of the target domain)

• Design knowledge (e.g., knowledge on usability and UX)

• Interaction knowledge (e.g., knowledge on how the users work with the system)

• Technical knowledge (e.g., knowledge on hardware or software)

• Product knowledge (e.g., knowledge of the features).

Chapter 3. Theoretical Background 43

In a study on six projects Nielsen and Molich [96] determined that on average single evaluators
found only 35% of the usability problems in the interfaces. Thus, a general recommendation
is to have three to five reviewers in order to identify the majority of issues, i.e. between 60 %
to 75 %. Figure 3.3 depicts the percentage of issues found by various numbers of evaluators.

Figure 3.3: Ratio of usability problems found as more evaluators are added [91].

3.3.2 Heuristics

The usability heuristics do not only provide the basis for evaluating a system, but following
these guidelines during the design phase ensures that the system incorporates proven principles
and features a recurrent interface design which increases recognizability.

There are different kinds of guidelines [93]:

• General guidelines contain essential rules relevant for various domains, user groups, and
tasks, e.g. “Provide feedback to the user”.

• Category-specific principles depend on the system type, i.e. some heuristic guidelines
might be inherent to the application. In the context of mobile usability and Android
applications for example, a guideline to follow would be “Use illumination and dimming
to respond to touches, reinforce the resulting behaviors of gestures, and indicate what
actions are enabled and disabled”1.

• Product-specific guidelines apply to the product itself. For example, e-learning software
for children might include a heuristic “The screen design appears simple, i.e., uncluttered,
readable, and memorable ” [5].

Nielsen and Molich [96] developed the original set of heuristics, which Nielsen revised to
include the following ten guidelines as shown in Table 3.1.

1 http://developer.android.com/design/index.html

http://developer.android.com/design/index.html

Chapter 3. Theoretical Background 44

Heuristic Description

1. “Visibility of sys-
tem status ”

“The system should always keep users informed about what
is going on, through appropriate feedback within reasonable
time.”

2. “Match between
system and the
real world”

“ The system should speak the users’ language, with words,
phrases and concepts familiar to the user, rather than system-
oriented terms. Follow real-world conventions, making infor-
mation appear in a natural and logical order.”

3. “User control and
freedom”

“ Users often choose system functions by mistake and will
need a clearly marked ”emergency exit” to leave the unwanted
state without having to go through an extended dialog. Support
undo and redo.”

4. “Consistency and
standards”

“ Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform
conventions.”

5. “Error preven-
tion”

“ Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.
Either eliminate error-prone conditions or check for them and
present users with a confirmation option before they commit
to the action.”

6. “Recognition
rather than recall”

“Minimize the user’s memory load by making objects, actions,
and options visible. The user should not have to remember in-
formation from one part of the dialog to another. Instructions
for use of the system should be visible or easily retrievable
whenever appropriate.”

7. “Flexibility and ef-
ficiency of use ”

Accelerators—unseen by the novice user—may often speed
up the interaction for the expert user such that the system
can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions. ”

8. “Aesthetic and
minimalist design”

“Dialogs should not contain information which is irrelevant
or rarely needed. Every extra unit of information in a di-
alogue competes with the relevant units of information and
diminishes their relative visibility.”

9. “Help users rec-
ognize, diagnose,
and recover from
errors.”

“ Error messages should be expressed in plain language (no
codes), precisely indicate the problem, and constructively
suggest a solution.”

10. “Help and docu-
mentation”

“ Even though it is better if the system can be used without
documentation, it may be necessary to provide help and doc-
umentation. Any such information should be easy to search,
focused on the user’s task, list concrete steps to be carried
out, and not be too large. ”

Table 3.1: Nielsen’s [92] usability heuristics.

Chapter 3. Theoretical Background 45

In addition, the reviewers can point out issues which do not necessarily relate to the predefined
heuristics but pose threads to the usability of the design. Besides reporting interface issues
the evaluators should point out positive aspects of the interface as well. The findings of an
individual evaluator are either recorded in a report by the evaluators themselves or by an
observer. After all evaluators have conducted the evaluation the findings are aggregated. The
results is a list of usability issues of the interface in respect to the heuristics. Since the issues
are reported as well as the heuristic they violate, it is fairly easy to some point to create
recommendations in order to fulfill the guidelines. Another way is to have a debriefing session
after the last evaluation has been conducted in order to brainstorm on possible solutions
[9].

3.3.3 Usability Issues and Ratings

Whenever a user is unable to perform a task and the interface can be determined as the
hindering factor, then we can categorize this as a user interface issue, i.e. UI issue. Generally,
we distinguish between a usability issue and a problem, where the issue determines the
underlying cause of the problem. Subsequently, the problem is a manifestation of the issue,
which prevents the user to achieve or effectively complete a certain task. A usability issue for
example irritates or confuses the user, causes mental overload, poor user performance, or an
error [138]. An error is an incorrect action, which may lead to task failure [4]. For example,
in case the user cannot register on a website, then the problem is the inability to register,
while the issue might be inexplicit password characteristics. An error occurs, when the user
tries to register with a password not fulfilling all necessary attributes.

Often resolving all found usability issues is not feasible due to time or monetary constraints.
In order to repel severe or even catastrophic design and implementation mistakes, the issues
have to be prioritized by usability experts. Each usability issue is rated by each professional
based on the impact on the performance of the user. To counterbalance any bias it is advisable
to have the experts note their severity ratings separately and then average the score for every
issue over all the evaluator ratings.

In order to create a prioritization of issues, severity codes can be assigned representing their
impact on the user experience. A typical code set might be [9, 93]:

• Catastrophe prevents task completion.

• Major problem has significant potential impact on the usability.

• Minor problem has a low priority, but should be considered.

• Cosmetic problem should be corrected in case there is time.

Another way to rank issues is according to their criticality as described by Rubin and Chisnell
[117]. The criticality of a problem is an aggregated value composed of the problem severity
and the frequency of occurrence. The problem severity is similar to the one introduced before,
while the frequency of occurrence is an estimation of the percentage of total users affected

Chapter 3. Theoretical Background 46

and the probability that a user from that affected group will experience the problem. Table
3.2 depicts the rating of the severity and frequency of occurrence. The critically can then be
computed as a sum over the frequency of occurrence and the severity. For example, an issue
is categorized as a serious problem, thus rated with 3, but only occurs less than 10 % of the
time, i.e. rated 1, the overall criticality of this problem is 4.

Ranking Severity Frequency of Occurrence

4 Task failure – prevents this user go-
ing further

Will occur ≥90% of the time the
product is used

3 Serious problem – may hinder this
user

Will occur 51–89% of the time

2 Minor hindrance – possible issue, but
probably will not hinder this user

Will occur 11–50% of the time

1 No problem – satisfies the bench-
mark

Will occur ≤10% of the time

Table 3.2: Issue rating according to the problem’s severity and frequency of occurrence [117].

A further refinement would involve a third severity dimension besides the frequency of
occurrence and the impact of the problem, namely the user’s experience with the system.
Hence problems, which only occur with novice users, are judged less severe than ones, which
affect also experts [117].

3.3.4 Advantages and Disadvantages

Heuristic evaluations can be a simple and relatively fast way to review an interface in
comparison to a usability study involving extensive prior planning. Due to not relying on
additional resources such as usability labs they are cost effective [139].

As mentioned one of the factors influencing the quality of an heuristic evaluation is the
expertise of the evaluators. In regard to this it might be helpful to train people involved
in a heuristic evaluation before hand. Depending on the experience of the evaluators, the
inspections might focus on surface issues such as misalignment of controls or poor message
texts while disregarding some substantial work flow issues. Further, due to the individual
evaluator’s experience it can occur that every reviewer uncovers a different set of issues, thus,
in a final meeting all the found problems should be discussed to determine their relative
severity [139].

Especially in complex systems, heuristic evaluations alone cannot find the majority of issues.
Furthermore, heuristic evaluations often produce false positives, i.e. identify issues which in
fact are not an issue in actual use. This arises as the evaluators differ from the actual user
group. Heuristic evaluators, even when working with task scenarios, are not immersed in the
task in the same way as end users.

Chapter 3. Theoretical Background 47

3.4 Usability Testing

Even though a variety of inspection methods are available, observing and measuring actual
usage of a system with representatives of the target population provides valuable information
and insights. In traditional lab-based usability evaluations, a facilitator leads the test and
provides the tasks one at a time to the participants. Usually, tests are recorded in some form
and additionally observers take notes to capture the users reaction in its entirety. Nielsen
[93] identifies four stages of a formal usability test:

• Preparation: In order to provide the same starting point for all participants, the system
has to be set back to its initial state. Further, questionnaires and task description
should be prepared.

• Introduction: The facilitator describes the test objective and further explains that the
system is under test and not the participant.

• Test: A usability test can be a stressful situation for participants, with mistakes and
difficulties during the test adding to the discomfort. It is the facilitators responsibility to
reduce the stress as much as possible. One strategy to create a comfortable environment
for the user is to start with an easy task. This way an early success is likely. Ideally,
the user performs the tasks without interaction with the facilitator. Whether or not
the facilitator is allowed to help the participant in case they are having difficulties with
a task, depends on the participants characteristics as well as the facilitators perception
of the situation. On the one hand in order to achieve valuable insight on the real use of
a system, providing help is not ideal as it is interesting to see how users recover from
mistakes. On the other hand when the user is struggling providing a hint is appropriate
in order to avoid the participant getting frustrated [93, 9, 117].

• Debriefing: After the test, the user provides answers to perceived satisfaction question-
naires and additional comments to the system.

3.4.1 Test Plan

The test plan is the main design part of a usability study and reflects on several aspects of
the study [138]:

1. What is the objective of the study, hence what should be tested?

2. Where will the study be conducted? There are different possible locations: usability
studies can be conducted in a usability lab, the field, or remote. Figure 3.4 shows
a possible usability test set-up in a laboratory. Each location has advantages and
disadvantages, for example, in lab tests the parameters are easier to control, however,
they are less natural. Field tests might provide a more genuine setting, yet, distractions
from the environment can influence the study. Recently, moderated and unmoderated
remote usability studies have increased in popularity. In remote studies the test
participants are geographically separated from the study conductor.

Chapter 3. Theoretical Background 48

3. How to test? Depending on resources available and time constraints the overall test
procedure has to be determined.

4. Who to test? In order to have a valid study, selecting the participants in accordance
to the target group is essential. Thus, deciding on a sampling strategy and user
characteristics such as age, gender, education, and experience is essential to conduct
the test with the right participants.

Figure 3.4: Usability test set-up [138].

Before conducting usability studies on a larger scale it is advisable to test the study design.
Pilot tests fulfill exactly this purpose and should identify confusing task descriptions, incorrect
time estimates as well as hardware or software issues. The pilot user is selected from the
target group of the study and completes the entire test scenario. Ideally, the study design is
evaluated well in advance to adapt the test plan if necessary [93].

3.4.2 Test types

Depending on the progress in the product life-cycle different usability studies are being
conducted. Generally two main types of usability tests can be distinguished [93]:

• Formative (or exploratory) studies

• Summative (or assessment) studies

The former relates to smaller experiments which try to detect usability problems and their
solutions. They are used throughout the iterative process of developing a system and results are
used to improve the product. Formative studies examine the effectiveness of high-level aspects
and can be conducted in informal settings. Thinking-Aloud tests are a very common formative
test, where the users are asked to narrate their thought process during the exploration of
the system. This verbalization allows the test conductors to get information on parts of the
system which cause problems or are unclear. Conveniently, this sort of tests do not require a
fully developed system but can be conducted using paper mock-ups or prototypes. However,
since the users are asked to multi task, i.e. explain and actually perform the assignment, task
times can be misleading [138].

While the latter still identifies usability issues the tests are usually conducted later in the life
cycle and use metrics in order to quantitatively measure the usability. Summative studies

Chapter 3. Theoretical Background 49

can be categorized in benchmark and comparison tests. Benchmark usability tests describe a
system in regard to a set of benchmark goals and are often also referred to as validation or
verification tests [117]. In comparison studies more than one application is being evaluated.
This can either be different versions of the same applications or competing products. Within
this section we mainly focus on the theoretical background of comparison studies, since we
conducted a summative study comparing Pocket Code to Scratch in Section 4.2.

3.4.3 Sampling

A crucial aspect within the design of a usability study is the set of test participants, as its
composition determines the prediction value for the target population. In most cases we do
not know every individual user group present in the population, in these cases sampling is
referred to as non-probability sampling. In contrast in probability sampling we know the
number and characteristics of the population and are able to randomly pick participants with
the same probability. The most common non-probability sampling method is convenience
sampling, i.e. the test users are selected due to some factors such as close proximity, affiliation
relations, etc. Note that this type of participant selection introduces bias [121].

Furthermore, variation of the sample can affect the study outcome. Variation in this case
refers to the degree of how different the test users are expected to perform the tasks. In a
homogeneous user group participants are more likely to perform in a similar manner, which
in turn facilitates observing a statistical difference in case one exists.

Determining the right sample size is essential in order to create a successful study. However,
there is no consensus in the literature on a recommended number of participants. Nielsen and
Landauer [95] state that the first five participants will uncover about 80% of the usability
issues. Albert and Tullis [4] restricted these recommendation to studies with a limited
evaluation scope where the target users are well represented within the sample and Molich et
al. [85] showed that six participants reveal far less than 80 %.

Comparison studies allow for two different ways to employ participants:

• Between-subject design: In between-subject studies every test user is assigned to a single
application or version. Due to the individual variability of the participants and the fact
that each user only tests a single system, a larger number of testers is required.

• Within-subject design: Within-subject user studies eliminate the individual variability
as every user examines all systems. These repeated or paired measures provide stronger
evidence to compare designs and thus require a smaller sample size to observe a difference.
In order to reduce the effect of a learning bias between applications, it is recommended
to interchange the application test order. Since every participant evaluates each product
the data of a system is computed relative to the other.

Chapter 3. Theoretical Background 50

3.4.4 Tasks

A task is a small assignment, which can be achieved in a relatively short period of time, since
a test session should last approximately around an hour. It is important to choose tasks
representative for the user group under test in order to achieve study validity. In general,
we can state that the tasks should be reasonable, specific, doable, in a logical sequence, and
moderately long [138]. When designing the test, the goal for every assignment has to be
determined as well as a minimum number of steps necessary to achieve this goal. Ideally,
the user receives each task on a different piece of paper, one at a time. This eliminates
the possibility of having the moderator using a different wording when describing tasks and
allowing the participants to refer to the task description again. When planning the task
sequence it is advisable to select a simple task for the beginning, as completing a task allows
testers to gain confidence in their ability to use the system [93].

3.4.5 Quality of Testing

There are several biases introduced in studies such as participants, tasks, the environment,
facilitators, or the methodology [4]. Reliability and validity determine the quality of a
usability study. Reliability refers to the repeatability of the results. Confidence intervals and
hypotheses testing give us information on the soundness of the study. Validity refers to the
power of the study to find actual usability issues, thus the validity depends on the sample
and the set of tasks [121]. Internal validity focuses on the study design itself and whether the
data has been analyzed correctly, while external validity deals with whether the study can
make claims for the population based on the sample [31]. Generally, utilizing skilled users
reduces the performance variability and it is preferable to have a homogeneous user group,
however, one is not to reduce the external validity if the population is less homogeneous [121].
Confusion among the participants will add measurement variance, thus, providing clear task
description is advisable.

Due to the fact that tests are artificial situations, the results of a study are not necessarily a
guarantee that a system is usable or the opposite of that. Futher, participants are rarely a
representation of the entire population and it is well known that participants rate products
in post-test or post-task questionnaire as easier to use than they have truly experienced it
[117, 9].

Molich et al. [85] published several Comparative Usability Evaluations. These studies showed
that in general only a fragment of issues is uncovered, usability experts do not generate better
results in inspections than participants in usability studies and even professionals make study
design errors.

3.4.6 Measuring the User Experience

Usability is an essential success factor in any product or system. Thus, measuring it reliable
and effectively is critical. In this section, we discuss various metrics, which can be utilized to
assess usability.

Chapter 3. Theoretical Background 51

There are various performance metrics to determine usability as well as issues and their
magnitude. Ideally, we can associate the measurements with the attributes of usability, which
we defined in Section 3.1 [138]. For example, task success measures the Effectiveness to which
users are capable of achieving a given goal. Furthermore, the number of Errors reflects the
mistakes the user made due to confusing or misleading interface parts. Time-on-task is the
most common performance metric, measuring Efficiency as the time elapsed between the
start and end of a specific task. Another Efficiency quantity includes the effort associated
with completing the task, e.g. number of clicks on a website.

In order to determine the user’s perception of the system, a number of standardized tests
have been developed assessing usability at a system as well as task level. Learnability and
Memorability can be investigated by conducting several studies across different points in time
on the same test users. By comparing the results from more recent tests, one can determine
whether the performance changed over time. Evaluating several metrics allows us to obtain
an overall sense of the usability of a system [138].

After a usability test traditionally the following data is available:

• Background information: A pre-test questionnaire provides a way to get additional
relevant information about each participant.

• Notes: The test observers take notes during the test which might already contain
possible usability issues.

• Quantitative data: Collected data on times, task completion, errors, etc.

• Self-reported data: From post-task and post–test questionnaires and interviews.

3.4.6.1 Quantitative Data

Quantitative data is a type of performance measurement and can include the following
variables [93]:

• Time on task.

• Number of tasks completed within a given time span.

• Time to recover from errors.

• Number of user errors.

• Number of functions utilized by the user.

• Frequency of use of the help or manual.

• Frequency of positive and critical statements.

• Preference statements.

• Time the user is not interacting with the system.

Chapter 3. Theoretical Background 52

Statistics provide a way to generalize some of the behaviors observed or measured during a
test and can be categorized into descriptive and inferential statistics. Descriptive statistics
describe the sample data, such as mean, median, or mode. While the latter allows us to draw
conclusions about the population beyond the data obtained during the test, such as statistical
significance [4]. Depending on the data different statistical methods are suitable. Table 3.3
provides an overview of data types and some appropriate statistics.

Data Type Metric Statistical Procedure

Nominal (categories) Task success (binary), errors (bi-
nary)

Frequency, Chi-square

Ordinal (ranks) Severity ratings Frequencies, Chi-square,
Wilcoxon rank sum tests

Interval Likert scale data, SUS scores All descriptive statistics, t-
tests, ANOVAs, correlation,
regression analysis

Ratio Completion time, time (visual at-
tention), average task success (ag-
gregated)

All descriptive statistics (in-
cluding geometric means), t-
tests, ANOVAs, correlation,
regression analysis

Table 3.3: Statistics for different data types and usability metrics [4].

Task completion provides a measure of how effectively the users can complete a given task
with the system. There are two possibilities to categorize completion: either task completion
is measured in a binary way as “success” and “failure”, or on a more granulated scale, where
we define various levels. For example, we can generate three categories “Pass”, “Pass with
assistance” and “Fail”. Of course the granularity is determined by the researcher and may
include a finer differentiate, e.g. [4]:

• Complete success

– With assistance

– Without assistance

• Partial success

– With assistance

– Without assistance

• Failure

– Participant thought the task was complete, but it was not

– Participant gave up

Chapter 3. Theoretical Background 53

(a) Likert Scale.

(b) Semantic Differential.

Figure 3.5: Rating scales in surveys.

A common way to analyze task completion rates is by task, as it gives a general overview of
the system’s effectiveness for each goal represented as a task.

Time-on-task is used to measure the efficiency of a product and is of special interest for
actions which have to be performed repeatedly by the user. Time-on-task is the time elapsed
between the start of a task and its end, usually expressed in minutes and seconds. Typically,
for each task the average amount of time across all users is calculated. Due to the different
abilities of the test users there might be a high variability leading to a skewed distribution and
in turn can drag the average towards outliers. Therefore, reporting the confidence interval
to show the variability in the data or providing the median or geometric mean give a more
accurate representation of the data [4].

3.4.6.2 Self-Reported Data

The recording of self-reported data gives us the possibility to gain information on the user’s
perception of the system and how they evaluate their interaction. Self-reported data can be
collected on a task-based level or at the end of the testing session. Usually, a Likert scale is
used, which records the level of agreement between a statement and the user. Typically, a
five or seven item interval is used, with the neutrality being one important aspect. Likert
scales are often confused with semantic differentials. In the semantic differential technique
the user is presented opposite adjectives and a series of points in between these bipolar pairs.
The difficulties are twofold with semantic differentials: determining opposite terms can be
difficult and it has been shown that the responses from users are more positive when asked in
person than over an anonymous survey for semantic differentials [121]. Figure 3.5 depicts
both methods side by side.

Questionnaires unfold their true potential when the task or test in question is followed
immediately by the questionnaire completion. These user perceived ratings might change
over the course of the study, thus, measuring in between each task, at the end of the test
and averaging those results allow to capture a more wholesome picture. Otherwise, in case
only a single questionnaire is completed at the end of the study, merely the last impression is
recorded. Standardized measurements allow an objective interpretation of results and enable

Chapter 3. Theoretical Background 54

Figure 3.6: Single Ease Question [118]

usability professionals to independently confirm other user studies. Further, the usage of
standardized quantifications permit usability experts to focus on other aspects of the study
rather than to find a suitable source of information. Again, reliability and validity are key
quality attributes of standardized forms [121].

There are various questionnaires that have proven useful in usability studies. We have taken
four relevant ones, namely Single Ease Question, After-scenario Questionnaire as well as
Subjective Mental Effort Question for post-task ratings and the well known System Usability
Scale as an example of a post-test questionnaire.

Single Ease Question (SEQ) is a 7-point post-task question, which assesses the perceived
task difficulty [118]. Ideally, the user is asked immediately after each task, in order to ensure
the maximal recall of their experience. As can be seen in Figure 3.6, the user should evaluate
the general ease of completing the task. Even though some researchers utilize a 5-point scale,
Sauro and Lewis [121] suggests a 7-point scale due to research on the relative reliability of
these types of scales.

After-scenario Questionnaire (ASQ) comprises three questions, each on a 7-point scale
from “Strongly agree” to “Strongly disagree”. The items focus on three important usability
attributes, namely ease of task completion, time necessary to complete the task and quality
of supporting material:

1. Overall, I am satisfied with the ease of completing this task.

2. Overall, I am satisfied with the amount of time it took to complete this task.

3. Overall, I am satisfied with the support information (on-line help, messages, documen-
tation) when completing this task.

The score is determined by the average of the three questions [67].

Subjective Mental Effort Question (SMEQ) is a single item questionnaire with a rating
scale from zero (“Not at all hard to do”) to 150 (“Tremendously hard to do”). In between
there are seven more verbal labels. The questionnaire has been calibrated psycho-metrically
against tasks [146].

System Usability Scale (SUS) is probably the most commonly used standardized question-
naire [18], which provides a composite measure of the overall usability of the system being
studied. The SUS comprises ten statements in regards to the system’s usability on a 5-point
Likert-scale between “Strongly disagree” to “Strongly agree” [18]:

1. I think that I would like to use this system frequently.

Chapter 3. Theoretical Background 55

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The statement results can be easily combined to an overall score ranging from zero to 100
points, thus the SUS score can be utilized to compare products using confidence intervals.
Some adjustments of the original SUS have been suggested. For example, item eight utilizes
the term “cumbersome”, which has been shown to lead to confusion or misinterpretation, thus
it is recommended to replace it with “awkward”. In addition, there exists a positive version of
the SUS, i.e. a variant where all statements are phrased in a positive manner. The results for
the this version are not significantly different to the original one, but lead to less mistakes
among participants [121].

Albert and Tullis [4] suggest that an average SUS score under about 60% as relatively poor,
while one over about 80% could be considered rather good. Sauro and Lewis [121] found that
by analyzing close the 500 studies, the overall mean is 68% with a standard deviation of 12.5.
Based on these results the author developed the grading scheme shown in Table 3.4.

SUS Score Range Grade Percentile Range

84.1-100 A+ 96-100

80.8-84 A 90-95

78.9-80.7 A- 85-89

77.2-78.8 B+ 80-84

74.1-77.1 B 70-79

72.6-74 B- 65-69

71.1-72.5 C+ 60-64

65-71 C 41-59

62.7-64.9 C- 35-40

51.7-62.6 D 15-34

0-51.7 F 0-14

Table 3.4: Curved grading scale interpretation of SUS scores [121].

Another source of qualitative data are open ended responses, which are, however, more difficult
to analyze. In particular, letting the user describe their experiences allows researchers to gain

Chapter 3. Theoretical Background 56

insights in the aspects of usability important to the test user. Further, letting a participant
articulate their opinion when comparing products is helpful to determine preferences [4].

3.4.6.3 Behavioral and Physiological Metrics

There are various metrics beyond task completion or perceived satisfaction. A wide range
of subjective user opinions and preferences can be inferred from verbal (e.g. unpromted
comments), non-verbal (e.g. facial expressions) or physiological measures (e.g. stress via
heart rate or skin conductance) [12].

Verbal Expressions give information of participants’ emotional and mental state, such
as “This is easy” or “I do not know what to do”. In particular, when comparing designs or
products, computing the ratio of positive to negative comments allows to infer preferences,
problem areas, and effective design decisions. Just as with task success, it is possible to
further granulate the categorization, e.g. “questions”, “frustration”, “suggestions”, etc.

Eye Tracking devices allow researchers to detect eye movement and hence determine where
the users are looking at a specific moment, the path their eyes follow, and the time they spend
looking at certain UI elements. It can provide information of where a person’s attention is
being directed to on a user interface and can be attributed to actual cognitive processing
[107]. Many tools nowadays rely on corneal reflection; the eye is illuminated by an infrared
light source and the reflection on the cornea and the pupil caused by this illumination is then
detected by a high-resolution camera. Image processing algorithms compute the gaze point
as the relative location of the reflection of the cornea to the reflection on the pupil [4, 12].
Besides computers equipped with eye trackers or movable constructs, there are also more
lightweight and fully portable solutions like eye tracking glasses. They allow a complete free
head movement, which is not always the case with stationary eye trackers. However, the data
analysis is especially tedious since the eye tracker is mounted on the head of the participant
and his frame of reference is changing constantly. Further, automatically video segmentation
is not possible [12]. Even though eye tracking systems are becoming increasingly better, there
are still participants (between ten % to 20%) where eye-tracking is not possible due to eye
wear which interrupts the path of the reflection such as contact lenses or prescription glasses.
Further, participants with large pupils or lazy eyes can be difficult to track [107].

There are two portions relevant when analyzing eye tracking data [12]:

• Fixations are pauses in eye movement, thus, a fixation denotes a time frame when the
eyes are relatively stationary.

• Saccades are performed continually and are the eye movements between fixations.

Interpretation of eye tracking data can generally be performed in two ways, either top-down
or bottom-up [52]. The top-down approach is based either on a cognitive theory suggesting
that, for example, longer fixations on a control element are due to an unclear control structure
or rely on a design hypothesis, e.g. infer that advertise placement in the center of the page
leads to longer observations by the users. The bottom-up method is solely based on data
observations without a defined theory. For example, the data shows that users take longer in

Chapter 3. Theoretical Background 57

completing a certain step in a task, the question arises where they are looking at during this
step.

There are different metrics usually analyzed in eye tracking studies for example [52]:

• Fixations are measured as their total number or as their average duration.

• Areas of Interest (AOI) is a part of the interface under evaluation containing relevant
UI elements. Ideally, the white spaces between AOI are as small as possible leading to
a limited number fixations between these regions.

• Gaze Duration is a series of successive fixations within an AOI. A fixation outside the
AOI ends the gaze.

• Scan Path describes a complete sequence of a saccade to a fixation to a saccade again.

• Dwell Time comprises the overall time spent looking at an AOI, i.e. all fixations and
saccades over all visits.

• AOI Sequence represents the order in which the AOIs were first fixated.

There are different interpretations of eye tracking data. For example the total number of
fixations could be used to determine the search efficiency within a user interface. An inefficient
search, for example due to a poor UI element placement, can be reflected by a greater total
of fixation points. When evaluating the count of fixations, the task time has to be taken into
account as longer tasks would clearly lead more fixation points. In contrast, more fixations
on a particular part of the interface can reflect importance or notability of that area. Faster
times to the first fixation of an element or AOI can indicate that it draws the users attention.
Hence, if an important area is not fixated enough it might has to be highlighted. A larger
average fixation duration can indicate problems of participants extracting information from an
interface or missing meaningfulness of icons. The proportion of time looking at each AOI can
reflect the importance of an element, however, at the same time this can indicate difficulties
in understanding the elements [52, 107]. Evidently, interpreting eye tracking data cannot be
done separately, but the data has to be analyzed in combination with video material, notes
etc. to be able to grasp the context and in turn understand the meaning of data.

Visualizations are especially helpful in conveying eye tracking results as they usually highlight
the areas of the interface which were examined the most by the participants. Either the visual
depicts the results of single individual or aggregates the data of several participants. In case
of the former a scan path of the interface might give insights into how the user searched for a
particular element. Figure 3.7a illustrates an example of such a scan path. Displaying the scan
paths of numerous users in a single visualization is also possible, however, the most common
eye movement visualization for multiple participants is through a heat map as depicted in
Figure 3.7b. In a heat map usually the brightest areas show the greatest density of fixations
and hence where the most attention was drawn to. Another visualization within this context
would be a focus map, where the more fixations an area has the more transparent the area is.
Areas with less attention are darkened and hence less or not at all visible [4].

Usually, the eye tracking data visualization includes a summary of the statistics of each
AOI, as depicted in Figure 3.7c. This resume comprises for example the number of fixations,

Chapter 3. Theoretical Background 58

(a) Example of a test user’s scan path on the Amazon
Video website [4].

(b) Example of a heat map for all participants. Areas
with more attention are shown in red, orange and
yellow [4].

(c) Example of a summary statistics for each AOI [4].

(d) Example of a binning chart using 1-
second intervals [4].

Figure 3.7: Visualizations of eye tracking data.

Chapter 3. Theoretical Background 59

average fixation time, the sequence of the first visitation of the AOI, or the hit ratio. The
hit ratio is the percentage of users who had at least one fixation in the AOI. Binning charts
illustrate the percentage of dwell time for each AOI in sequence and as can be seen in Figure
3.7d the bins are color coded corresponding to the AOI.

3.4.6.4 Single Usability Metric

Summative usability evaluations provide the researcher with various metrics to asses the
usability of a system. While all of these metrics provide information on certain usability
aspects, i.e. efficiency, effectiveness, or satisfaction, an overall assessment of the system is
needed. Sauro and Kindlund [119] propose a single usability metric (SUM), which attempts to
represent the usability of a system within a single metric. Their quantitative model combines
four integral summative usability measures at a task level: task completion rates, error counts,
task times and, satisfaction results into a single score. Albert and Tullis [4] propose another
possible combined metric with only three measures, namely task times, task completion rates
and the subjective ratings. While a single measure cannot replace all information, it provides
a general overview of the usability, which is especially interesting when comparing different
designs or products.

3.5 Method Triangulation

The most powerful method for determining problems is triangulation [140]. In the context of
HCI triangulation is the approach to utilize multiple data collection and analysis methods to
demonstrate a convergence on issues. On the one hand we can combine different research
methods such as heuristic evaluation, questionnaires, or formal usability tests in order to
obtain various usability indicators. On the other hand qualitative-quantitative triangulation
consolidates quantitative measures such as time on task and qualitative data such as user
comments. Despite the fact that usability metrics correlate, they cannot replace each other,
e.g. even though the user is not able to complete the tasks, the subjective rating might still
be positive.

Recently, Schmettow, Bach and Scapin [123] conducted a study in which the authors tested
different evaluation and testing techniques. In particular, they examined expert inspection,
usability testing, and document inspection. The authors determined that a single method
could not find a substantial subset of usability issues alone, since no inspection method
predicts end-user problems. Vice versa, due to the limited set of test participants a formal
study might not be able to identify all usability concerns.

Barnum [9] suggests to conduct a heuristic evaluation and then use the results in a usability
test. One can eliminate the issues found in the evaluation before testing the product to allow
the participants to find additional usability problems. However, often due to time constraints
the issues cannot be fixed before the tests. Then the result of the evaluation can be used to
identify the goals of the usability tests, since there is already some notion of ways the users
might experience problems. If the issues determined in the evaluation and the test correspond

Chapter 3. Theoretical Background 60

to each other, then the combined results provide a stronger confirmation of the problems. In
case they do not match then the evaluation still gives some valuable insight into usability
problems which do not affect the user.

3.6 Children and Teenagers

When considering children and teenagers as users, special modifications are necessary in the
design process, since guidelines mainly focus on adult users. Children and adolescents have
other cognitive as well as physical capabilities, which should be reflected in the design of
products specifically tailored for this user group [21]. In this section we focus on the one hand
on principles for designing child-friendly software and on the other hand on special issues and
considerations to be taken into account when evaluating the usability of products with young
test participants.

3.6.1 Designing for Children

Within the process of designing and developing new technologies, children and teenagers can
be assigned different roles, such as users, testers, informers, or design partners [29]. In many
cases technologies designed for adults are not suitable for younger users, since children have a
different set of needs and capabilities. For example, Hourcade [48] proposed a mouse which
adapts its speed depending on the individual and the difficulty of the pointing task.

Observation is a powerful technique to gain insights into how users actually interact with
products. Thus, analyzing how children utilize existing technologies, allows developers to
study the effects of technology on the learning process and discover new technology concepts.
Once a prototype has been implemented, evaluating the products with the help of children,
provides information on the usability. Often a simple conversation can yield important
statements on the user experience and usability from a child’s perspective, which can be
during any stage of the design process [29].

Idler [49] defines five key success factors for good UX of digital media for children:

• Entertainment : Digital media should be fun in order to have children motivated to use
them.

• Visual appeal : Attractive designs can activate children’s interest in a system and motive
to use it.

• Usability : Children are impatient and since their motivation is to have fun, their
tolerance for systems not working as they expect is low. Further, the system should
match the cognitive and physical abilities of the target age group, e.g. the language
should be understandable for children, font sizes should be large enough, color contrast
should be high, and the input entry method should be appropriate.

Depending on the application the three main usability attributes Efficiency, Effectiveness
and Satisfaction have to be present in various quantities. For example, in entertainment

Chapter 3. Theoretical Background 61

software the child’s satisfaction is essential as it is the motivation to use the system. In
contrast in educational applications it is more important to have efficient and effective
software to achieve goals [2].

• Age appropriate content : The content should reflect the mental models and interest of
the target age group.

• Encourage learning : An important aspect is to allow children to learn in a fun and
engaging way through play.

Liebal and Exner [2] provide various recommendations for software for children; we have
taken some essential guidelines and listed them in Table 3.5.

Screen Design

Color • Use various colors to create contrast

Font and Text • Use a proper font and font size, e.g. simple and relatively large
• High contrast between text and background
• Avoid text on background images
• Do not animate text

Layout • Use standard layouts
• Central information should be displayed visibly
• Main content area should have an appropriate size

Visual Elements

Images and Graphics • Only provide images useful in assisting comprehension
• Use meaningful graphics

Animation • Create meaningful, short and interesting animations

Interaction

Mouse • All mouse buttons have their usual functionality
• Avoid double click

Touchscreen • Touchable fields should be large enough

Interaction Technique • Consistent interaction technique through application
• Point-and-Click are simpler and more effective
• Use drag-and-drop only on short mouse paths
• Avoid scrolling

Navigation and
Menus

Navigation • Use standardized navigation techniques and stay consistent
• Child should always know where it is
• Simple way to move back
• Choose meaningful names for menu items

Chapter 3. Theoretical Background 62

Interface Metaphors • Use simple and consistent metaphors
• Choose metaphors appropriate for mental model of the child
• Choose metaphors from children’s very day life

Icons • Use standardized icons
• Keep icons colorful

Buttons • Visually highlight buttons

User support

Tutorials • Provide tutorials and training

Feedback • Provide instant feedback

Help • Design interfaces simple enough to avoid help texts

Content

Age appropriate • Provide age appropriate content to motivate use

Text Passages • Short and easy to understand text
• Avoid technical language

Headings • Short and easy to understand
• Larger than text

Table 3.5: Design recommendations for childrens’ software [2].

Although a study found that point-and-click interfaces are more effective, accurate and
motivating than drag-and-drop interfaces, children’s software still often features a drag-
and-drop interaction style [50]. Barendregt and Bekker [8] conducted a study, where they
encountered that children between six to twelve years expect to find a drag-and-drop interface
rather than point-and-click. Children prefer drag-and-drop in cases where they already have
experience with this type of input method. In those cases they appreciate the tactile feedback
of letting the mouse button go and dropping the object [53].

Metaphors are conceptual models similar in certain facets to a physical objects and are
widely used to explain abstract notions in familiar terms. These analogies have been used
in interaction design to make complex computer concepts accessible, such as the desktop
metaphor [76]. The best conceptual models are obvious and intuitive. Since a metaphor is
only loosely coupled to a specific object, the abstract entity can have its own behaviors and
properties not ascribed to the original artifact. Thus, an analogy may lead to unpredicted
user interpretations outside their intended meaning [14]. Further, when working on products
for children, metaphors from the adult world are not necessarily suitable for children [21].

UCD states that when designing software environments three main issues are to be addressed,
namely Tasks, i.e. which goals have to be achieved with this software, Tools, i.e. which tools
are provided to fulfill the tasks, and Interfaces, i.e. how do the tools’ interfaces look like.

Chapter 3. Theoretical Background 63

UCD proposes that the user in the center of those three parts. Learner-centered design (LCD)
is a development of UCD shifting the focus to the learner’s needs [131]. The learners needs
are:

• Understanding is the goal : Helping the learner to understand by coaching them.

• Motivation is the basis: Learners are not necessarily motivated to learn. Low-overhead
and immediate success should help to create and sustain motivation.

• Diversity is the norm: Learners are diverse individuals, with distinct needs, thus
including various learning techniques is necessary to support different learners.

• Growth is the challenge: Software should be adaptable to learners once they have
reached a higher proficiency level.

To accommodate these Soloway, Guzdial, and Hay [131] propose the Tools-Interfaces-Learner’s
Needs-Tasks (TILT) model to guide the design of educational software, where Tasks, Tools and
Interfaces are connected to the Learner’s Needs via scaffolding. Scaffolding in the educational
context, is to provide assistance and support learners while they are becoming familiar with
a new assignment. In order for the learner to acquire skills in the task domain, scaffolding
techniques include for example coaching. Growth of the learner can be achieved by having
adapting tools and in order to have learners express themselves different media and modes of
expression should be integrable through the interface.

3.6.2 Usability Evaluations

Further, when assessing the usability of a product, the evaluation methods involving young
participants have to be tailored to their developmental level [43]. Markopoulos and Bekker
[75] record several characteristics of children affecting the process of usability testing as well
as its outcome:

• Verbalize: Children are still developing their capacity to verbalize thoughts. Thus,
Thinking-Aloud protocols can be problematic, since children might not be able to
verbally express their thoughts depending on their age.

• Extroversion: Some children might have difficulties to speak up to adults and conse-
quently report less issues.

• Capability to concentrate: The ability to concentrate on one activity is still developing in
children. Depending on the age, the session length should be adapted to accommodate
these issues.

• Motivation: Facilitator intervention and the children’s motivation to please adults could
impact the test results.

• Trustworthiness of self-report : Children might be influenced by the need to please
adults and their reports are questionable.

Chapter 3. Theoretical Background 64

• Ability for abstract and logical thinking : Complex reasoning like cause and effect relations
are not entirely evolved and they might not understand abstract task description.
Furthermore, the number of items they can keep in mind at once is limited.

• Progress towards a goal : The ability to monitor goal-directed performance develops
throughout childhood and adolescence.

• Gender differences: Some ages may have more noticeable gender differences than others.

• Motor skills : Especially younger children do not necessarily have the needed motor
skills to use standard input devices like the mouse.

3.6.2.1 Age Ranges

Depending on the age, we can identify different cognitive abilities as well as behaviors in
children [43]. Note that the categorization is somewhat arbitrary as child development
is a continuous process with behaviors overlapping and there exist classifications slightly
differentiating from the one we present [21]. Generally, children below the age of two years are
not suitable for conducting usability studies as their cognitive as well as physical development
is not advanced enough. Children over the age of fourteen years, should be treated as adults
as they will likely behave similar during the test.

Preschool-Aged Children (2 to 5 years)

Usability tests with children under the age of six require several modifications, since the have
a shorter attention span than adults (around 30 minutes). Children cannot image abstraction
or another person’s view and often concentrate on a single aspect of a given task, while
ignoring others. Furthermore, preschoolers are more likely to focus on the current state of
the task and do not keep in mind previous or future events [47].

While the test situation can be stressful for children of all ages, especially, young children
might not adapt as easily to the testing environment and the unknown individuals conducting
the study. Therefore, it is advised to have the parents present during the session. Preschoolers
are often not capable of clearly expressing themselves and their preferences or dislikes, hence,
observing their non-verbal behavior is especially crucial in order to get insights. Generally,
allowing children to freely explore the system, is more suitable than a set of predefined tasks.
Furthermore, we can expect children in this age range to be preliterate and likely to be trying
to please the adult, thus expressions of appeal should be analyzed critically.

Elementary-School-Aged Children (6 to 10 years)

Due to their experience in school, children within this age group can follow instructions and
concentrate for a certain period of time. Further, they are used to being around adults other
than family and are more proficient in expressing their opinion and answering questions.
Elementary school children can anticipate the future and take into account past events when
solving problems [47]. Depending on the age and character of the child, a Thinking-Aloud test
might generate insightful usability data. Donker and Markopoulos [28] for example conducted
a study with children ranging from eight to fourteen years and concluded that Thinking-Aloud

Chapter 3. Theoretical Background 65

produced the most usability issues in comparison to interviews and questionnaires. Even
younger children, aged six to seven, were capable of thinking aloud in a usability study of
an interactive toy [136]. The same study by Donker and Markopoulos [28] pointed out that
due to the limited number of items in the memory of small children, in post test interviews
children might have difficulties recalling actions and decisions taken. Co-discovery produced
the least number of comments from the children within this study, as the children were trying
to individually solve the problems. However, conducting a study within a usability lab, only
connected to the test facilitator via speaker, might be too stressful for children. Depending on
their exposure to technology, they will have experience with computers and other devices.

Middle-School-Aged Children (11 to 14 years)

Nowadays, it is very likely that the children in this age range are proficient with a variety
of devices and input methods, such as smartphones and touch screens. Theses children can
further perform specific tasks, after becoming familiar with the product. However, children
have difficulties concentrating more than an hour, thus the test time should be planned
accordingly.

While these age ranges provide us with some notion of the capabilities to expect from children
within a certain range, research has indicated that a child’s development will only produce a
likelihood that the child will behave in a particular way according to their development stage,
since there is a large individual variation [34].

3.6.2.2 Guidelines

Hanna, Risden and Alexander [43] provide guidelines for usability testing with children,
addressing a wide set of subjects, e.g. the room decoration, utilized equipment, and facilitator
behavior suitable for children based on their experience. Subsequently, we briefly discuss
some of the additionally mentioned aspects to remember when testing with children:

• When conducting the study in a usability lab, it is advantageous to explain the system
to the children in order to gain their trust.

• Further, building a connection to the child via smalltalk is important, to make the child
feel comfortable.

• Decorating the lab in a child-friendly manner, also helps to put children at ease.

• Children should be selected in regards to their level of experience with computers, since
a base proficiency is necessary.

• Before the test session, the facilitator should explain the goal for the study and what
the child is to expect from the test and the product under test. It is of importance to
explain that the product is being tested and not the child itself and that their help is
essential in order to improve the product.

• Preschoolers might require a training phase with the device being used for testing.

Chapter 3. Theoretical Background 66

• Ideally, the task order is interchanged between the child participants, in order to remove
some results being affected by the children getting tired towards the end of the test and
it is advisable to offering a break after 45 minutes of testing.

• Children often are used to asking questions. However, in the test situation it is
important to ask the children to solve the problem themselves and help them once they
get frustrated.

• Providing positive feedback, when they are doing the tasks is important in order to
keep them motivated.

• Depending on the age, a reliable post-test rating might not be expectable. However,
older children can provide insightful information, based on a smiley rating scale, from a
smiley face to a frown.

• Further, when testing minors a consent form signed by the parents is important and
that a little token of appreciation is shared with them at the end of the test, such as a
test certificate.

3.6.3 Teenagers

Teenagers are defined as individuals between the ages of thirteen and nineteen. As digital
natives ubiquitous technology and information has changed their thinking patterns [108].
Therefore, it is beneficial to take advantage of these user group to gain insights in their usage
of new technology. Teenagers are usually still living with their parents, but differentiate
from children, as they are seeking increasing independence and often have a larger variety
of technology at their disposal [32]. It has been shown that teenagers process information
differently from children as well as adults [133]. They are early technology adopters combining
child-like features with a more advanced ability of articulation. Media and technology play
an important role in the of teenagers [32].

Bruckman, Bandlow, and Forte [21] state that adolescents over the age of fourteen can be
treated equally to adults in usability studies. Markopoulos and Bekker [76] propose a similar
view and state that in early adolescence teenagers become more goal-oriented and social.
Further, they are capable of understanding abstraction and solve more complex problems.
They are able to interpret situation from various points of view and can integrate these views,
concepts and ideas into their problem solving. However, teenagers are still emotionally and
cognitively different from adults and still posses childlike tendencies.

Teenagers are not often studied in the context of HCI, mainly due to their categorization
as adult like participants in usability studies [33]. Thus, there is a gap between the Child-
Computer Interaction research community and mainstream HCI. Fitton et al. [33] define
several traits of adolescents differentiating them from children and adults such as the desire
for independence and autonomy from authority figures, the development of an individual
identity, and the search for peer connection and acceptance. Teenagers are likely to have
developed different personas depending on their surroundings, thus, the testing environment
might change their behavior. For instance, conducting studies within the school might be

Chapter 3. Theoretical Background 67

convenient, however, the facilitator might be seen as an authority figure similar to a teacher
[133].

Teenager development can be categorized across three components [32]:

• Fundamental changes: Changes are taking place at the cognitive, biological, and social
level. Memory capabilities as well as processing speed increases. Further, the ability
to abstract reasoning improves. The reproductive functions are transforming a child
gradually into an adult, with changes in physical appearances and increasing sexual
interest. Teenagers are given rights and responsibilities as they slowly change to adults.

• Context : The context corresponds to the environment where the changes happen during
adolescents. Four distinct surroundings can be distinguished, namely family, peer groups,
school, and leisure environments, where peer-related influences have the most impact
on development [128].

• Psychosocial development : Autonomy, achievement, identity, intimacy, and sexuality
are the five key psychosocial challenges during adolescents.

Wodike, Sim, and Horton [142] conducted a study to investigate the possibilities to have
adolescents, aged twelve and thirteen years, facilitate a heuristic evaluation with their peers
acting as the expert evaluators of a game. As heuristics the set proposed by Nielsen and
Molich [96] was used without adaptation. Their results indicated the evaluators struggled
to find problems and got distracted from the evaluation process. In contrast, Pasiali’s [104]
study has shown that teenagers between thirteen to fourteen years where engaged in the
heuristic evaluation technique and overall promising results were obtained. To avoid possible
misunderstanding, Pasiali [104] simplified Nielsen and Molich [96] heuristics.

The Nielsen Norman Group [70] conducted various studies in order to determine web site
usage by teenagers and found out that while their success rate has been improving it is still
well below the adult completion rate due to three key factors, namely insufficient reading
skills, less sophisticated research strategies, and dramatically lower levels of patience.

3.7 Mobile Devices

Smart mobile devices are becoming increasingly widespread and their ubiquitous computation
power constitutes them a suitable platform for interactive engagement. Simultaneously to the
mobile pervasiveness, various interaction modes for touch screens are becoming increasingly
common [6]. Since mobile interfaces in general are limited to small screens as well as a
restricted control space, applications haved to be designed in regard to those characteristics
[44].

Due to the advent of smart mobile devices new usability challenges have been introduced
and the traditional usability models are not entirely applicable within this context. Mobile
devices have a unique set of features which have to be taken into account when designing
applications. In particular, the user’s environment is potentially constantly changing and

Chapter 3. Theoretical Background 68

requires the user’s attention while performing tasks on the mobile device. Thus, there is an
additional cognitive load involved [44].

Zhang and Adipat [145] list a number of problems stemming from mobile devices and their
distinctive attributes:

• Mobile Context : Due to the ubiquitous nature of mobile devices, their usage is not limited
to a certain location. Further, the user might be interacting with other individuals or
objects or trying to accomplish other tasks while on the device.

• Data Entry Methods: Input methods on mobile devices differentiate from the traditional
input techniques on traditional computers and require a greater proficiency, are more
error prone, and decrease the data entry rate.

• Connectivity : Depending on the user’s location the network connectivity might be
restricted which can lead to performance issues for applications relying on said features.

• Small Screen Size: Even though the screen sizes are continuing to grow in the recent
years, the screen on mobile devices is still far smaller than on desktop computers,
restricting the amount of information displayable at once.

• Different Display Resolutions: The display resolution on mobile devices is inferior to
desktop computers.

• Limited Processing Capability and Power : In order to have portable devices the pro-
cessing power and memory is limited on mobile devices.

Some of the issues, which were apparent in 2005 when Zhang and Adipat [145] wrote the
paper, are now less evident or have decreased in impact. Mobile screens are getting larger,
especially within the last years, and they feature higher resolutions. The processing power is
improving and network connectivity is increasing. However, depending on the device and the
user’s location all points are still relevant to a certain extend.

Within the next two sections we focus on Mobile Context and present a model for usability of
mobile devices and subsequently, discuss some points in regard to Data Entry Methods.

3.7.1 People At the Centre of Mobile Application Development

Recently, Harrison, Flood, and Duce [44] proposed the People At the Centre of Mobile Appli-
cation Development (PACMAD) usability model, which integrates the usability attributes
developed by Nielsen [93] and the ISO Standard [1] in the context of mobile devices. Figure
3.8 depicts the three critical factors and seven attributes which can affect the overall usability
of a mobile application.

The factors and six of the seven attributes have already been discussed in Section 3.1 as part
of the ISO 9241:11 standard [1] and Nielsen’s usability attributes [93]. The main contribution
of the PACMAD is the acknowledgment of the Cognitive Load in addition to the already
known attributes. In contrast to traditional desktop programs, the user can perform other
tasks while utilizing the device, such as walking. Hence, more cognitive processing is necessary

Chapter 3. Theoretical Background 69

Figure 3.8: PACMAD [44].

to multi task. There have been studies investigating the impact of using mobile devices
while walking, which indicate an accuracy drop to 36% when carrying a bag in the dominant
hand. Accuracy reduced to 34% when holding a box under the dominant arm [90]. When
handling mobile devices, another study found for everyday situations the interaction with
mobile devices was broken into periods of four to eight seconds due to constant interruptions
of the user’s attention [98].

3.7.2 Interaction Mode

Smart mobile devices rely on touch for interaction. The easily touchable and reachable
areas of the smartphone screen, however, vary across users, devices, and holding gestures.
There have been studies examining the usability of touch and surface gesture interaction on
various platforms such as PDAs or mobile devices. Pointing accuracy of a finger is smaller in
comparison to other pointing devices, such as a computer mouse [12]. Therefore, buttons
of smartphone applications have to be larger in size and the space between buttons has
to increase, to reduce the chance of incorrect touch events. In general, a size of seven to
ten millimeters is recommended for touchscreen targets in order for the user’s to accurately
tap them. For example, the Google’s Metrics and keylines Guidelines2 recommend that all
touchable user interface components follow the 48 density-independent pixel rhythm. On
average, 48 density-independent pixels translates to a physical size of about 9 millimeters.

Virtual keyboards are very different across devices. Mode switches are of special interest,
as they can effectively have an unlimited number of modes and thus an unlimited number
of input keys on a key board. When you switch modes labels, for each key, as well as the
position and shape of keys can change.

Recently, Hoober [46] conducted an informal observation on how users naturally hold their
touchscreen mobile phones in case they are not engaged in a passive activity or on a call.
Figure 3.9 depicts the tree three basic ways of holding the phone: one handed (Figure 3.9a),

2 https://www.google.com/design/spec/layout/metrics-keylines.html

https://www.google.com/design/spec/layout/metrics-keylines.html

Chapter 3. Theoretical Background 70

cradled (Figure 3.9b), and two handed (Figure 3.9c). Further, the graphic shows which areas
of the screen can be easily accessed in green, and which are more difficult to reach (orange)
or not accessible at all (red). The observations additionally indicated that this is not static,
i.e. users change the way they hold their phone often.

(a) One-Handed Use (around 49 %): right
thumb on the screen (67%) or left thumb
on the screen (33%) .

(b) Cradling in Two Hands (around 36 %): thumb on
the screen (72%) or finger on the screen (28%).

(c) Two-Handed Use (around 15 %): vertically, i.e. in portrait mode (90%)
or horizontally, i.e. in landscape mode (10%).

Figure 3.9: Summary of how people hold and interact with mobile phones [46].

3.7.3 Operating System Guidelines

In order to ensure continuity among mobile applications for various operating systems, the
providers have developed design guidelines. Google, for instance, has published a set of
interface recommendations for Android devices designated to the components and interaction
modes available. For example, the recommendations describe the ideal icon and button size
as well as location, menu responsiveness, text formats, and notification features3. Some of
these guidelines are very similar to the heuristics we have discussed in Section 3.3.2, e.g.

“If it looks the same, it should act the same” meaning that functional differences should be
visually distinguishable. Apple’s iOS Human Interface Guidelines4 describe the iOS app
characteristics that are necessary in order to publish an application in the AppStore.

3 http://developer.android.com/design/index.html
4 https://developer.apple.com

http://developer.android.com/design/index.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/

Chapter 3. Theoretical Background 71

3.7.4 Children and Mobile Devices

Anthony et al. [6] examined interaction and recognition issues of touch and surface gestures
for adult and child users. Generally, there has been research identifying difficulties of drag-
and-drop interactions for children and consistent evidence that the performance of pointing
tasks increases with the childrens’ age. Anthony et al. [6] identified several recommendations
when developing touch interfaces for children:

• Account for holdover touches5

• Use consistent, platform-recommended target sizes

• Increase active area for interface widgets

• Align targets to edge of screen

Children experience different challenges depending on the interaction mode. Intuitive gestures
for preschool children include tap, draw/move finger, swipe, drag, and slide [124]. However,
children face difficulties with executing a continuous stroke, making draw and drag demanding,
thus partial completion might be useful. When using swipe gestures it is essential not to
have other functionality spots in the swiping area and for sliders it is recommended to have
a strong visual indication. Pinch, tilt/shake, multi-touch or double tap are less intuitive
interaction styles for children.

(a) Differences in gesture generation for adults
(left) and children (right).

(b) Easy, medium, hard, and very hard targets
desplayed on 320x480 pixels interface.

Figure 3.10: Comparison of touch screen interaction between adults and children [20].

Brown and Anthony [20] investigated differences between children (seven to eleven years of
age) and adults in gestures and target hit rates on touch screens. Figure 3.10a depicts a
square gesture by an adult and a child in comparison. While the adult’s gesture is a single
move across the interface, the child utilized several strokes in order to generate a square.
Touch tasks involved a 320x480 pixels interface, where the participants where asked to touch
targets of various sizes and positions. The difficulty is determined by the target size ranging
from 100x100 to 20x20 pixels and its position on the UI as depicted in Figure 3.10b. The
results showed that children missed the target 50 % more often than adults and by a greater
distance. Thus, there is a need to increase the target size which in turn, however, reduces the
amount of on screen information which can be displayed.

5 Holdover touches are intentional touches in a location of a previous target. This phenomenon can occur, when
the user does not notice that the target has been activated already. This is especially the case for children,
who cannot cognitively process information as quickly.

Chapter 3. Theoretical Background 72

3.7.5 Mobile Usability Testing

Usability testing of mobile devices poses challenges and differences in comparison to evaluations
of traditional desktop computer applications. Mainly, since these devices are handheld using
an external video camera to record the screen might be infeasible. Keeping the screen in
focus, dealing with various lighting situations due to changing angles to the light source and
even keeping the device within the range of the camera is demanding. Therefore, specialized
labs have additional equipment to test hand held devices. A possible set-up has a camera
mounted on the ceiling above the participant and the device static on the table or a structure
cradling the mobile device. A document camera as shown in Figure 3.11a can also be utilized
for testing mobile devices [9].

According to Krannich [63] there are three common set-ups for mobile usability studies:

• Mounting the device to a stand (Figure 3.11b).

• Mounting a mini camera to the device (Figure 3.11c).

• Mounting a camera to the participant6 (Figure 3.11d).

For many mobile operating systems screen recording applications are available, which can
be utilized to capture the screen in an unobtrusive way. However, as stated by Lang [64]
screen recorders typically do not capture gestures, have a limited recording time, do not
integrate with common usability test recoding software and do not record facial expressions
or comments. Another factor arguing against screen recorders is that users cannot use their
own device. Note that some testing methods are more difficult to conduct on mobile devices.
For example in co-discovery both participants have to interact with the application, thus
mounting a camera on the device possibly disables at least one of the users to look at the
screen.

Especially the context of mobile devices has been investigated within usability testing. There
have been studies which evaluate the application in the field, e.g. the user performs the task
while walking to a certain destination, in the laboratory simulating a realistic environment or
on a simulator on the desktop computer. A study by Kjeldskov and Graham [60] revealed
that more than 70% of all mobile usability studies are conducted in laboratories rather than
the field, since the data collection is rather laborious in an open setting.

Kallio et al. [55] compared usability testing of mobile applications in the lab to field studies
and found that studies in a natural environment are more than twice as time consuming as lab-
based studies and the number of unplanned events and interruptions increases significantly. To
have a more realistic experience some researchers are using new techniques within laboratory
testings such as Beck et al. [10] who conducted an experiment where participants were asked
to perform tasks on a mobile phone while sitting or while walking on a treadmill with various
speed settings. The authors compared the results to a field test on a pedestrian street as a

6 Note that this a more invasive method and therefore not applicable in every situation.
6 http://www.tobiipro.com/
7 http://www.mrtappy.com/
8 https://gopro.com/

Chapter 3. Theoretical Background 73

(a) Document Camera for mobile de-
vices usability tests [9].

(b) Device mounted to a stand7.

(c) Camera mounted to the device8. (d) GoPro mounted to the head9.

Figure 3.11: Usability testing set-ups for mobile devices.

Chapter 3. Theoretical Background 74

reference. The results show that in the set-up where the participants were sitting the most
usability issues were uncovered.

4 Usability Evaluation

“If you create a long formula and then realize you should put the square root over the entire

thing, then there is not way back; you have to do it all over again. Game over, man! Game

over!” 1

Formula manipulation is an essential part in Pocket Code, as the formula editor itself is
a powerful tool necessary to create meaningful programs. Based on a pocket calculator
metaphor, the editor was designed to have users be able to work instantly by relying on
familiar concepts known from mathematics in school. The objective of this thesis is to
determine whether the formula editor in Pocket Code in fact is usable, i.e. effective, efficient
and yields subjective user satisfaction. In order to achieve a more wholesome picture, we
applied two techniques; first, we performed a heuristic evaluation on the formula editor, where
a team of reviewers examined the interface in accordance to a set of guidelines. Second,
we conducted a formal experiment, comparing Pocket Code to the state of the art novice
programming environment for children, namely Scratch. In the upcoming section we describe
the interface inspection, i.e. the evaluators, the guidelines we utilized as well as the issues we
have uncovered. In Section 4.2, we discuss our summative usability study design in more detail
including the results of the data analysis as well. Subsequently, Section 4.3 comprises a short
summary on the issues of both usability studies and presents a set of recommendations.

4.1 Heuristic Evaluation of Pocket Code

In order to maximize the number of found usability issues of the formula editor, we conducted
a heuristic evaluation prior to a formal experiment. We utilized object-based heuristics
specifically developed for mobile applications.

4.1.1 Evaluators

Recall from Section 3.3 that five evaluators will on average identify 75 % of interface problems.
Thus, we involved five usability reviewers who examined the formula editor at least twice
and recorded all possible usability issues they could identify. Generally, all evaluators were
members of the UX team of the Catrobat project, thus were usability experts with varying

1 Comment by one of the evaluators of the heuristic evaluation.

75

Chapter 4. Usability Evaluation 76

levels of experience and all had been part of the project for some time and thus were familiar
with Pocket Code and mobile app usability. Further, most of them have been part of previous
usability studies conducted with teenagers on Pocket Code, thus already had some notion of
possible problems within the formula editor design.

4.1.2 Heuristics

Since mobile interfaces differ from traditional UIs of desktop applications and websites,
we decided to use a variation of the principles proposed by Nielsen [91]. Machado Neto
and Pimentel [73] derived new heuristics especially designed for the usability evaluation of
mobile user interfaces based on Nielson’s traditional ten guidelines. Table 4.1 contains the
eleven heuristics they have developed, which in fact are similar to the originals but feature a
description specific to the mobile context. To evaluate them they conducted an inspection
of an Android application which was examined by two evaluator groups, one used Nielsen’s
heuristics and the other one the newly developed guidelines. The results show that the experts
identified more usability issues with the specific mobile centered heuristics. We decided to
use these heuristics instead of a child-centered set of heuristics, as the main target group
of Pocket Code are teenagers. In addition most interface guidelines for children focus on a
rather young age group, thus are not suited for teenagers.

Heuristic Description

1. “ Use of screen
space ”

“The interface should be designed so that the items are neither
too distant, nor too stuck. Margin spaces may not be large
in small screens to improve information visibility. The more
related the components are, the closer they must appear on
the screen. Interfaces must not be overwhelmed with a large
number of items.”

2. “ Consistency and
standards”

“The application must maintain the components in the same
place and look throughout the interaction, to facilitate learn-
ing and to stimulate the user’s short-term memory. Sim-
ilar functionalities must be performed by similar interac-
tions.The metaphor of each component or feature must be
unique throughout the application, to avoid misunderstand-
ing.”

3. “ Visibility and
easy access to all
information”

“All information must be visible and legible, both in por-
trait and in landscape. This also applies to media, which
must be fully exhibited, unless the user opts to hide them.
The elements on the screen must be adequately aligned and
contrasted.”

4. “ Adequacy of the
component to its
functionality”

“The user should know exactly which information to input in
a component, without any ambiguities or doubts. Metaphors
of features must be understood without difficulty.”

Chapter 4. Usability Evaluation 77

Heuristic Description

5. “ Adequacy of the
message to the
functionality and
to the user”

“The application must speak the user’s language in a natural
and non-invasive manner, so that the user does not feel under
pressure. Instructions for performing the functionalities must
be clear and objective.”

6. “ Error prevention
and rapid recovery
to the last stable
state”

“The system must be able to anticipate a situation that leads to
an error by the user based on some activity already performed
by the user [8]. When an error occurs, the application should
quickly warn the user and return to the last stable state of
the application. In cases in which a return to the last stable
state is difficult, the system must transfer the control to the
user, so that he decides what to do or where to go.”

7. “ Ease of input” “The way the user provides the data can be based on assistive
technologies, but the application should always display the
input data with readability, so that the user has full control of
the situation. The user should be able to provide the required
data in a practical way.”

8. “ Ease of access to
all functionalities”

“The main features of the application must be easily found by
the user, preferably in a single interaction. Most-frequently-
used functionalities may be performed by using shortcuts or
alternative interactions. No functionality should be hard to
find in the application interface. All input components should
be easily assimilated.”

9. “ Immediate
and observable
feedback”

“Feedback must be easily identified and understood, so that
the user is aware of the system status. Local refreshments on
the screen must be preferred over global ones, because those
ones maintain the status of the interaction. The interface
must give the user the choice to hide messages that appear
repeatedly. Long tasks must provide the user a way to do
other tasks concurrently to the task being processed. The
feedback must have good tone and be positive and may not be
redundant or obvious.”

10. “ Help and docu-
mentation”

“The application must have a help option where common
problems and ways to solve them are specified. The issues
considered in this option should be easy to find.”

11. “ Reduction of the
user’s memory
load”

“The user must not have to remember information from one
screen to another to complete a task. The information of the
interface must be clear and sufficient for the user to complete
the current task. ”

Table 4.1: Heuristics for the usability evaluation of mobile interfaces [73].

Chapter 4. Usability Evaluation 78

4.1.3 Results

The five evaluators were asked to perform a heuristic evaluation with the focus on the formula
editor and the guidelines given in the last section. Each inspection was conducted by each
evaluator alone and they were asked to review the editor at least two times and report their
findings in an on-line spreadsheet in the format as can be seen in 4.2:

Heuristic Name Description

4,3 Error messages If I enter a formula incorrectly, I am not told,
how to correct it.

Table 4.2: Example of a heuristic evaluation report row.

After all evaluations have been completed, we analyzed the issues reported and summarized
similar descriptions into one usability problem. Afterwards, this aggregated list incorporating
all found issues was distributed to all the reviewers who then were asked to individually rate
each issue, i.e. the evaluators could not see the rating of the other reviewers. We utilized a
simple severity code system based on a 5-point scale as described by Nielsen [93]:

5 Catastrophe leads to a task failure.

4 Major problem has significant potential impact on the usability.

3 Minor problem has a low priority, but should be considered.

2 Cosmetic problem should be corrected if there is time.

1 No problem

Subsequently, we averaged the rating results for each usability problem and generated a
prioritization of issues. In a meeting, we then discussed each issue, talked about possible
solutions and re-prioritized the list. Table 4.3 provides all issues found by the evaluators.
The heuristics are ordered according to their average issue rank indicated in the fifth column,
“R.”. The first column indicates the issue’s priority and the second column, “H.”, contains the
heuristics violated .

Chapter 4. Usability Evaluation 79

No. H. Name Description R. Proposed Solution

1 2 Square root When computing the
value of sqrt(−1) us-
ing the Compute but-
ton the result is 1 (see
Figure 4.1a).

4.4 Since, it can happen
that when using a vari-
able in a program, that
it becomes −1 and then
using the square root
would lead to a NaN.
Thus, in order to avoid
a NaN, it is approxi-
mated to 1. During
the program execution
an approximation is use-
ful, however, when uti-
lizing Compute the cor-
rect mathematical solu-
tion should be shown. In
particular, since we have
this calculator metaphor
and an actual calculator
does show NaN or Er-
ror.

2 2 Sinus When computing the
value of sin(180) using
the Compute the result
is not 0 but 1.22E−16,
which is not mathemat-
ically correct.

4.4 During the program exe-
cution an approximation
is useful, however,when
utilizing Compute the
correct mathematical so-
lution should be shown.
In particular, since we
have this calculator
metaphor and an actual
calculator does show
the correct value.

3 2 Division by zero When computing the
value of 0/0 using the
Compute the result is
not NaN but 0, which
is not mathematically
correct.

4.4 During the program exe-
cution an approximation
is useful, however,when
utilizing Compute the
correct mathematical so-
lution should be shown.
In particular, since we
have this calculator
metaphor and an actual
calculator does show
the correct value.

Chapter 4. Usability Evaluation 80

No. H. Name Description R. Proposed Solution

4 2 Infinity divided by
infinity

When comput-
ing the value of
infinity/infinity
using the Compute the
result is 1(1/0)/(1/0),
which is not mathe-
matically correct.

4.4 During the program exe-
cution an approximation
is useful, however,when
utilizing Compute the
correct mathematical so-
lution should be shown.
In particular, since we
have this calculator
metaphor and an actual
calculator does show
the correct value.

5 5 Syntax error When creating a syn-
tactically incorrect for-
mula, e.g. parentheses
mismatch, several oper-
ators without operands,
etc. the error mes-
saged displayed reads
Syntax error (see Fig-
ure 4.1b). There is no
further granularity in
the error message, thus
does not aid the user
in determining how to
edit the formula to cor-
rect it.

4.2 The type of syntax er-
ror should be displayed
in more detail and Syn-
tax error should be re-
named.

6 2 Rounding When comput-
ing the value of
round(1, 4999999)
using the Compute
button the result is 2.

4.2 During the program ex-
ecution an approxima-
tion is useful, however,
when utilizing Compute
the correct mathemati-
cal solution should be
shown.

Chapter 4. Usability Evaluation 81

No. H. Name Description R. Proposed Solution

7 2 Natural Loga-
rithm

When computing the
value of ln(−1) using
the Compute button
the result is 1.

4.2 Since, it can happen
that when using a vari-
able in a program, that
it becomes −1 and then
using the square root
would lead to a NaN.
Thus, in order to avoid
a NaN, it is approxi-
mated to 1. During
the program execution
an approximation is use-
ful, however, when uti-
lizing Compute the cor-
rect mathematical solu-
tion should be shown. In
particular, since we have
this calculator metaphor
and an actual calculator
does show NaN or Er-
ror.

8 5 Representation of
large numbers

When computing the
value of a large num-
ber using the Com-
pute button the result
is shown in exponen-
tial notation (see Fig-
ure 4.1c), which is not
necessarily known to
teenagers.

3.6 Showing the entire num-
ber would be a better so-
lution.

9 9 No feedback dur-
ing large number
computation

When computing the
value of a very large
number using the Com-
pute button the result
is not shown immedi-
ately, but there is also
no feedback that the
computation is taking
place.

3.6 Add feedback, i.e. typ-
ical Android “‘Loading”
circle for this case.

Chapter 4. Usability Evaluation 82

No. H. Name Description R. Proposed Solution

10 6 Two sided inequal-
ities

When computing the
value of 1 < 0 <= 6
using the Compute but-
ton the result is True,
since the formula is
evaluated left to right
and 0 represents False
and everything else rep-
resents True (see Fig-
ure 4.1d).

3.4 No solution yet, but the
discussion of coercions
will probably be neces-
sary.

11 7 Random number
generator

The usage of the two
parameters of the ran-
dom function is diffi-
cult to understand for
people who have never
programmed.

3.4 Adding some type of ad-
ditional help text would
be useful for some math-
ematical functions.

12 4 Meaning of
position x,
position y

The object attributes
position x and
position y are the
center point of the
object, but that is not
necessarily clear when
starting to use Pocket
Code, could also be
the left lower edge.

3.2 Adding some type of ad-
ditional help text would
be useful for some at-
tributes.

13 6 No way to add
something in the
beginning

In case we create a for-
mula and then want
to put the square root
over the entire formula,
there is no way of do-
ing this. The user has
to delete everything, se-
lect the square root
function and type the
formula again.

3.2 Implement the possibil-
ity to add a function
around already existing
parts of a formula or add
some type of copy/paste
capability for sub formu-
las.

14 7 Difficult to set the
position of the cur-
sor

It is difficult to set the
position of the cursor.

3.2 Either reimplement the
cursor or add arrow but-
tons to move the cursor
left and right.

Chapter 4. Usability Evaluation 83

No. H. Name Description R. Proposed Solution

15 7 Wait -1 seconds It is possible to set
the waiting time of the
Wait brick to a nega-
tive value or a logical
value.

3.2 There should be type
checking done. Maybe
in this case the Logic
Category button is inac-
tive.

16 4,5,10 Category/function
names

The category names
and mathematical
names are not nec-
essary intuitive, e.g.
Logic, sqrt, mod,abs.

3.2 Some of them are as on
a calculator thus would
match the metaphor,
however, we argue that
since there is enough
room a more represen-
tative name or an ad-
ditional information on
the function would be
helpful. For example,
using square root or

√
.

For the category names
there is no solution yet.

17 1,7 Button size Buttons are rather
small, thus, it is easy
to miss the target, es-
pecially on the number
pad.

3 Increase the button size.

18 2 No rename/copy
functionality for
variables

Throughout Pocket
Code it is possible
to rename and copy
Objects or Scripts, but
it is not possible for
variables.

2.8 Implement Rename/-
Copy functionality for
variables

19 1 Input fields to
small on big
screens

The bricks text field
does not use the en-
tire width of the screen.
In particular, for larger
devices this is a waste
of space.

2.6 Use a different layout
for bigger screen resolu-
tions.

20 4 Underscores in
sensor values look
“too technical‘”’

position x seems very
close to variable names
in textual program-
ming languages.

2.6 In the list of object
attributes x position
would be teenager
friendly.

Chapter 4. Usability Evaluation 84

No. H. Name Description R. Proposed Solution

21 2 Random number
generator in for-
mula editor view

The random number
generator should not
be outside the mathe-
matical function cate-
gory as there is no rea-
son for it to have a spe-
cial position within the
formula editor.

2.6 Remove it from the for-
mula editor view.

22 2 Delete button To delete a long for-
mula one has to keep
tapping the delete but-
ton, when keeping it
pressed it still only re-
moves a single charac-
ter or function.

2.6 Add continuous delete.

23 2 Cursor design The cursor in the for-
mula editor does not
look like the standard
Android cursor, also
it does not flash and
its position is not cen-
tered.

2.4 The cursor should cen-
tered, Grey and flashing.

24 7 Cursor behavior
on click in text
field

When clicking in the
text field after enter-
ing some text the cur-
sor jumps to the right,
it looks like there is
a space character in-
serted, but their is not.

2.2 The cursor should not
move when selecting the
text field.

25 2 No xn There is no function
for calculating the ex-
ponentiation.

2.2 Introduce function to
calculate the exponenti-
ation.

26 2 Compute dialog
does not close on
tap

Tapping on the com-
pute dialog does not
have any effect. The
user has to tap next to
the dialog which is not
intuitive.

2.2 The compute dialog
should be closed on tap.

27 2 Inconsistent error
messages

Syntax errors can
cause different behav-
iors. For some errors a
toast message is shown,
for others there is not.

2.2 Implement consistent er-
ror handling.

Chapter 4. Usability Evaluation 85

No. H. Name Description R. Proposed Solution

28 1 Unnecessary ‘=’
operator

The ‘=’ operator is not
necessary in the for-
mula editor view, as
it is a logical operator.
Further, its current po-
sition is confusing as it
could be interpreted to
having a similar func-
tionality as Compute
(see Figure 4.2c).

2.2 Remove the ‘=’ operator
from the formula editor
view.

29 2 Inconsistent text
highlighting

When highlighting text
in the formula editor
the text background
changes to yellow (see
Figure 4.2a), which
does not follow the An-
droid standards.

2.2 For text highlighting the
default Android style
should be used, which is
a light blue color.

30 2 Long variable
names

When choosing a (very)
long variable name the
value of the variable
is not visible anymore
within the variable list
view (see Figure 4.2b).

2.2 If the variable name is
too long it should be
shortened by using ‘...’,
but the value should still
be visible, i.e. thisisav-
erylongvar...: 0.0 .

31 8 Function order The functions have no
specific order.

1.6 The functions should be
sorted, e.g. trigonomet-
ric functions one after
the other etc.

32 2 The delete but-
ton is badly posi-
tioned

The button moves
along with the text
field in is somewhat
difficult to find in the
text field.

1.6 Move the delete button
to the top of the number
pad.

33 2 Brick highlighting After inserting a vari-
able in the formula ed-
itor, the light glow on
the brick disappears.

1.6 The part of the brick
should still glow.

34 3 Landscape mode Landscape mode is not
supported in the for-
mula editor.

1.6 -

Chapter 4. Usability Evaluation 86

No. H. Name Description R. Proposed Solution

35 1 Space key It would be helpful to
have a space key to be
able to create some vi-
sual differentiation be-
tween sub formulas.

1.4 -

36 1 OK button The OK Button is re-
dundant, since you can
return to the scripting
view using the Android
back button.

1.6 -

Table 4.3: Results of the heuristic evaluation.

Chapter 4. Usability Evaluation 87

(a) Computation of sqrt(-1). (b) Syntax error.

(c) Representation of large numbers. (d) Result for the inequality 1 ≤ 0 ≤
6.

Figure 4.1: Issues uncovered in the heuristic evaluation (1).

Chapter 4. Usability Evaluation 88

(a) Inconsistent text highlighting. (b) Very long variable name .

(c) Unnecessary ’=’ operator.

Figure 4.2: Issues uncovered in the heuristic evaluation (2).

Chapter 4. Usability Evaluation 89

4.2 Summative Usability Study

The study presented has been designed to compare the usability of the formula composition
method in Scratch to Pocket Code. We chose Scratch as the alternative application since
first, Pocket Code has been inspired by Scratch and second, it is the state of the art
educational programming environment. The controlled experiment was conducted with
teenage participants as a repeated-measures design with a counterbalanced interface order,
and included four tasks per application. As we attempt to measure the usability, we focus on
three measurable attributes according to the ISO 9241-210:2010: (1) effectiveness, measuring
the accuracy and completeness with which users achieved specified goals, (2) efficiency, the
relation between time spend in order to accomplish a particular task, and (3) satisfaction,
the user’s positive attitudes towards the system [62].

Our goal in this study was to test the following null hypothesis:

The electronic pocket calculator metaphor (hybrid textual/visual approach) is more effective,
efficient, and yields a greater perceived user satisfaction than a purely visual approach in the
context of formula manipulation.

It should be noted that we solely investigated the formula manipulation and not the compre-
hension of already existing formulas. Even though it might be argued that a certain level of
understanding of the formula is necessary in order to edit it, we did not put a specific focus
on this within our research [62].

4.2.1 Formula Manipulation in Scratch

Formula manipulation in Scratch is achieved purely visually through the Lego-style-block
metaphor. Operators and variables are predefined blocks, which are interlocked in order
to compose formulas. The Operators category in Scratch contains arithmetic, relational,
and logical operators as well as mathematical and string functions necessary for formula
manipulation. In Figure 4.3 a nested formula is depicted comprising a variable (X Position
Paddle), object attributes (x position and y position), as well as logical, arithmetic, and
relational operators. The sign operator is not part of the Operator category in Scratch,
depicted in Figure 4.4, but is inserted as part of the numeric value [62].

Figure 4.3: Nested formula in Scratch.

Chapter 4. Usability Evaluation 90

When creating such a nested formula in Scratch it is necessary to be aware that groupings
are implicit in the connection of the bricks, e.g. a textual representation of the formula in
Figure 4.3 would be:([

x position > (X Position Paddle − 40)
]
and

[
x position < (X Position Paddle + 100)

])
and(y position < −160)

Figure 4.4: Operator category in Scratch.

A tree representation of this formula is given in Figure 4.5. As can be seen Scratch has a
prefix notation, thus, in order to achieve a correct formula one has to apply the operator
before the operands and construct the formula starting from the most outer operator to the
most inner one. Looking at the tree formula construction would translate to traversing the
tree top-down, i.e. from the root node to the leaves.

Therefore, when replacing an operator within the deeper levels of a formula it is necessary to
remove any statement placed within the operator. For example, in case we want to change
the and operator in the second nesting level, we would need to execute the following steps:

Chapter 4. Usability Evaluation 91

Figure 4.5: Formula construction in Scratch.

1. Extract the and from the whole formula.

2. Remove each inner formula from the and, i.e. the > and < formulas.

3. Remove the empty and operator and add the or operator.

4. Place the > and < formulas as operands to the or operator.

5. Add the or operator to the entire formula.

Figure 4.6 shows graphically the steps necessary. In order to visually signal at which position
a block will be entered, Scratch provides an illumination of the field in which the current
brick will be dropped (see Figure 4.7).

4.2.2 Procedure and Data Collection

In order to compare subjective preferences, we intended for every participant to test both
applications. Therefore, within each test session, a single participant consecutively evaluated
both programming environments after completing a training session. Using a within-subject
design reduces some of the variation within the sample, facilitating the detection of a difference
between the products if one exists. To counterbalance any learning bias we alternated the
sequence of the applications [59, 62]. Each study session lasted between 45 minutes to one
and a half hours in total and included:

• an introduction of the facilitator on the test objective, the used equipment and the role
the participants play within this setting,

Chapter 4. Usability Evaluation 92

Figure 4.6: Replacing the and operator in the second nesting level.

Figure 4.7: Illumination of the drop location of a brick in Scratch.

• a pre-test questionnaire on basic demographic information as well as prior experiences
with computers and smartphones (see Appendix 7.1),

• a tutorial for each application,

• a post-task question on the ease of the task,

• a post-application questionnaire on the application in general,

• a post-test questionnaire (see Appendix 7.3).

As both applications are specialized for different environments, we devised a test where
each program is investigated in its intended set-up. Pocket Code was examined on a second
generation Nexus 7, a seven inch tablet. In the case of Scratch we tested the browser-based
version on a fifteen inch laptop computer with an attached optical mouse. Morae2 screen
capture software recorded the laptop screen as well as the participants’ facial expressions
via the integrated web cam. Further, the post-test questionnaires was taped with Morae. A
screen recorder app was used to record the Pocket Code test sessions on the device itself.

2 http://www.techsmith.com/morae.html

Chapter 4. Usability Evaluation 93

Therefore, the visual touch feedback of the Nexus’ was enabled. Moreover, eye-tracking
glasses3 were utilized in both set-ups [62]. When conducting an eye tracking study, the first
step within each test session is to calibrate the system by asking the participant to look at
predefined points [12]. Further, it is necessary to have an observer continuously examining
whether the device is recoding and the entire screen is clearly visible from the eye tracking
glasses. In order to analyze the data, we eventually had to sync the recordings from Morae,
the eye-tracking glasses, and the screen recordings from the device.

Figure 4.8 depicts the test set-up, where a participant wears the eye tracking glasses and
performs a task in Pocket Code using a tablet with a screen recorder application running.
The integrated camera of the laptop records the facial expressions with Morae. The test-set
up for Scratch, shown in Figure 4.9 is similar, except that Morae is not only used to capture
the participant’s facial expressions but also to record the laptop screen. Figure 4.10 depicts
a screen shot of a recording of the eye tracking glasses during an evaluation of Scratch as
well as a screen shot of the video the integrated web cam records of the participants face.
In addition to the automatic data collection, for every test session there was at least one
observer taking notes.

Figure 4.8: Test set-up for Pocket Code.

Some of the test sessions were conducted in schools, while others took place at the university.
No matter the location, the set-up was identical, as the set-up only requires a desk, chairs, an
Internet connection as well as the tablet, laptop and the eye tracking glasses.

3 http://www.smivision.com/en.html

Chapter 4. Usability Evaluation 94

Figure 4.9: Test set-up for Scratch.

4.2.2.1 Participants

For our usability study our target users were teenagers between the age of twelve and eighteen
years4, with basic computer skills. In the context of the mobile device proficiency we required
the test users to have some experience with Android smart phones or tablets. Moreover, we
demanded that the participants were novices or at most very inexperienced users of Scratch as
well as Pocket Code and additionally, our test users should have little to no prior programming
experience in general. To recruit the users, we utilized convenience sampling, i.e. mobilizing
teenagers from schools close to the university. Appendix ?? comprises the demographic and
technology experience information of the test users [62].

Sample Size Computation

To estimate a suitable sample size Sauro and Lewis [121] propose to use the following
equation

n = (t2s2)
d2 (4.1)

4 Since most of our test participants were under aged, we required a consent form from their parent or legal
guardian prior to the test.

Chapter 4. Usability Evaluation 95

(a) Eye Tracking recording of the laptop screen.

(b) Facial expression recording using the integrated laptop camera.

Figure 4.10: Recordings used for data collection.

Chapter 4. Usability Evaluation 96

where t is the critical value, d is an observed difference (i.e. smallest difference we should
be able to detect) and s2 is an estimate of the variance (ideally of a similar study). Since t
depends on the degrees of freedom and therefore on the sample size, there is an iterative way
to compute n, which removes this issue. The iterative steps are [121]:

1. Initially use the z-score instead of the t-score for the desired confidence level.

2. Compute the initial sample size n = (z2s2)
d2 . Round up to the next whole integer.

3. Compute the t-score with the computed sample size estimate, i.e. the degrees of freedom
are n− 1.

4. Recalculate n with the computed t value.

5. Repeat Step 3 and 4 until the sample estimation does not change for two iterations.

If there is no previous estimate of the variance available, it is possible to handle this by
defining d as an effect size. The effect size measures the magnitude of a results:

e = d

s
(4.2)

According to Sauro and Lewis [121] as a rule of thumb the value of e should be set to 0.33
to uncover small effects, 0.5 to find medium effects and a value of 0.8 for large effects. The
equation for n then changes to:

n = t2s2

d2 = t2s2

(es)2 = t2s2

e2s2 = t2

e2 (4.3)

Since there is no estimate for the variances available for our experiment as no comparable
study has been conducted within the project, we utilized Sauro and Lewis’ method to estimate
a sample size. We decided on a 90% confidence interval and an effect size e = 0.33 which
should enable us to detect a rather small effect. Table 4.4 shows the iterative sample size
computation as described by Sauro and Lewis [121].

Initial 1 2 3

t 1.6455 1.318 1.341 1.337

e 0.33 0.33 0.33 0.33

df - 24 15 16

Unrounded 24.84 15.95 16.51 16.4147

Rounded
up

25 16 17 17

Table 4.4: Sample size iteration procedure for t-tests [121].

5 In the initial iteration we use the z value instead of the t value.

Chapter 4. Usability Evaluation 97

Test users

We have recruited 23 participants. Of these individuals three participants already had object-
oriented programming experience and one was younger than the Pocket Code target age and
was not familiar with the use of electronic pocket calculators. Another participant was the
designated pilot test user. Therefore, their data have been subsequently removed from the
quantitative analysis. The remaining 19 participants’ ages covered a range from twelve to
eighteen years of age, with an average age of fifteen years (SD=1.89), with ten male and nine
female participants. All participants were established users of traditional desktop computers
as well as mobile devices, such as smartphones, tablets, or both [62].

Figure 4.11: Age and gender of participants.

4.2.2.2 Pilot

We conducted a pilot study with a fifteen year old male participant in order to discover initial
design flaws. In consideration of the feedback from the pilot session, the tasks’ descriptions
were rephrased and the overall test was shortened [62].

4.2.2.3 Training Sessions

Due to the requirement of having novice Scratch and Pocket Code users, we presented a
tutorial video on Scratch and Pocket Code respectively to each participant before testing
the applications. The users were asked to participate in the tutorials and simultaneously
follow the steps on the devices. In Figure 4.12 a male participant is shown following the video
training on the laptop while at the same time creating the program on the tablet device.
In case of Scratch, a second laptop was utilized to present the instructions. The training

Chapter 4. Usability Evaluation 98

sessions for each application focused on the same exercises and introduced some of the features
evaluated in the test. This measure was introduced to allow participants to acquire the skills
necessary for formula composition. Further, it introduces some of the terminology utilized
within the usability test, such as “brick” [62].

Figure 4.12: Training session for Pocket Code.

4.2.2.4 Tasks

Each test covered four tasks per application, testing identical features in each programming
environment. The tasks were sorted according to their difficulty, making the last task the
most challenging one. The participants were asked in written language to compose formulas
as well as change already existing formulas, ranging from simple insertions of object attributes
to more complicated nested formulas containing logical operators, mathematical functions,
and numerical constants. In order to make the test more engaging, we incorporated our tasks
within the setting of an already created game. Each task was presented to the participant
one at a time. In Sections 7.2 of the Appendix the German tasks are illustrated as presented
to the participants. The initial task, Task 1, does not concern formula manipulation but has
been listed to describe the complete experiment [62].

Chapter 4. Usability Evaluation 99

Task 1

As mentioned before Task 1 was an introductory task aiming at acquainting the participants
with the test situation and the games they have to adapt during the sessions.

Pocket Code: Try out the game Kitty Cross.

We programmed a simple game “Kitty Cross”, inspired by Frogger, where the goal is to get
the cat across the street to the top of the screen. The car drives continuously on the road
from one side of the screen to the other. In Figure 4.13a the starting situation is shown.
When tapping the cat, it moves forward towards the top of the display. However, in this
initial program, we have not programmed collision detection between the cat and the car, for
example.

(a) Kitty Cross. (b) Ball Pong.

Figure 4.13: Programs used for performing the tasks.

Scratch: Try out the game Ball Pong.

The idea of the remixed game “Ball Pong” is to use the paddle to keep the ball from touching
the ground. The black paddle can be move with the mouse. However, instead of setting the
paddles location to the x position of the mouse it uses the y position in the initial set-up. In
Figure 4.13b we see the start situation. The game is over when the ball touches the bottom
of the screen.

Chapter 4. Usability Evaluation 100

Task 2

In this task we had the participants replace an object’s attribute with another one for a
specified brick.

Pocket Code: We want the game to be over when the cat gets hit by the car. But there is
an error in the Car scripts.

• Go to the Car scripts.

• Look for the brick Set variable ’car position’.

• Replace the position_y with position_x.

Once the user has located the correct brick and entered the formula editor view, the task
consists of removing position_y via the delete button, selecting the Object category, tapping
the attribute position_x, which returns the user to the formula editor view. Lastly, confirming
the formula with the OK button completes the task. Figures 4.14a and 4.14b show the start
state as well as the goal formula. A minimum of four taps are necessary to manipulate the
formula as intended.

(a) Start screen. (b) Goal screen.

Figure 4.14: Task 2 Pocket Code.

Chapter 4. Usability Evaluation 101

Scratch: The paddle does not seem to work correctly, since it does not follow the mouse.
Please repair it:

• Go to the scripts of the Paddle.

• Look for the set x to brick.

• Replace the mouse_y with the mouse_x brick.

In order to complete this task, the user has to find the correct brick within the program code
of the Paddle. Figure 4.15a shows the corresponding bricks before the user attempts to solve
the task. To complete this task, the user has to remove the light blue mouse_y brick, go to
the Sensing category, select the mouse_x brick and drag it from the category to the set x to

brick and drop it. It would require a minimum of three clicks once the script view of the
Paddle has been located to achieve the goal state as depicted in Figure 4.15b.

(a) Start screen. (b) Goal screen.

Figure 4.15: Task 2 Scratch.

Task 3

In this task we had the users find a specific brick of an object and enter a formula anew. In
particular, the formulas contain numerical values and the random number generator function.
We assume common operator precedence. As we wanted the participants to be made aware
of the planning necessary involved in constructing a formula, i.e. especially in Scratch it is
essential to place the blocks with lower precedence first. Therefore, we did not provide a
formula grouping via parenthesis. The last instruction then requires the users to change one
operator and two numeric values.

Pocket Code: Our cat is too slow, help it go faster! Do the following:

• Go to the Cat scripts.

• Look for the brick Change Y by .

• Enter the following formula into that brick: 3 * random(5,10) + 4 / 0.5 .

• Change the formula to: 3 * random(6,12) + 4 * 0.5 .

Chapter 4. Usability Evaluation 102

In Pocket Code the user can create the formula easily from left to right, by adding the
numerical values as well as random number generator. Note that within this task, it is
possible to complete this without entering a category, since the random number generator as
well as arithmetic operators are all located within the formula editor view. To construct the
formula from the start screen (see Figure 4.16a) to the first goal screen (see Figure 4.16b)
requires at least 16 taps. Changing the formula then is merely exchanging the parameter
values of the random number generator, removing the division operator and adding the
multiplication operator. Of course in this task it is necessary to position the cursor at the
correct location within the formula to be able to replace the numeric values and operators.
Completing the formula as represented in Figure 4.16c takes an additional nine taps.

Scratch: The game is too easy like that, we want the ball to go faster.

• Go to the scripts of the Ball .

• Look at the first block of bricks, there is a move steps brick.

• Enter the following formula into that brick: pick random(0 to 8) / 0.5 - 3 * 2.

• Change the formula to: pick random(0 to 8) / 0.5 + 1 * 1.

Once the user has found the correct scripting view, the next step is to pick the division
operator from the Operator category to the start screen (see Figure 4.17a). Note that all
bricks necessary to solve this task are located within the Operator category. Only then the
random number generator pick random(to) should be entered. Afterwards
the multiplication and then the subtraction operators should be added. Additionally, the
numerical values can be inserted at the end or during the formula composition. In order to
reach step three of the task (see Figure 4.17b) at least four clicks plus adding the numerical
values through the keyboard are necessary. To exchange the subtraction with an addition
within the second half of the formula, the user has to remove the minus operator, select and
add the plus operator as well as the multiplication. The last step is to add the numeric values.
This adaption of the formula requires ideally three clicks as well as typing the operands. The
goal state of this task is depicted in Figure 4.17c.

Task 4

In this task we asked the participants to add a more difficult and nested sub formula to an
existing formula.

Pocket Code: We still have to program the collision. Perform the following steps:

• Go to the Cat scripts.

• Look for the If brick.

• Change the formula

From: ((position_y > -180) AND (position_y < 180)) OR 0

Chapter 4. Usability Evaluation 103

(a) Start screen. (b) After entering the first part of
the formula (i.e. without step
4).

(c) Goal screen.

Figure 4.16: Task 3 Pocket Code.

Chapter 4. Usability Evaluation 104

(a) Start screen. (b) After entering the first part of the formula (i.e. without step
4).

(c) Goal screen.

Figure 4.17: Task 3 Scratch.

Chapter 4. Usability Evaluation 105

To: ((position_y > -180) AND (position_y < 180)) OR (("car position" > -

150) AND ("car position" < 150))

Hint: car position is a variable.

The first step in creating the desired formula depicted in 4.18b from the formula in Figure
4.18b, is to remove the right part of the disjunction, i.e. the zero. To obtain the variable
"car position" the user has to choose the Variable category. The logical and relational
operators are located within the category named Logic. To construct the formula at least 25
taps are necessary.

(a) Start screen. (b) Goal screen.

Figure 4.18: Task 4 Pocket Code.

Scratch: We want the game to end when the ball hits the floor. Perform the following
steps:

• Go to the scripts of the Ball.

• In the 2nd brick block look for the second if then brick.

• Change the formula

From: (1=1)

Chapter 4. Usability Evaluation 106

To: x position > (X Position Paddle - 25)

Hint: X Position Paddle is a variable.

To create the required formula, the user has to delete the comparison operator brick. Then the
relational > has to be added from the Operator category. x position is the Ball’s position
on the x axis and the corresponding brick is located within the Motion category. To complete
the right side of the formula, first the subtraction has to be entered and then the variable
X Position Paddle has to be dragged from the Data category to the position. Lastly, the
numeric operand has to be added. To reach from the start state, depicted in Figure 4.19a,
the goal state, shown in Figure 4.19b, at least five clicks and adding the numeric values are
necessary.

(a) Start screen.

(b) Goal screen.

Figure 4.19: Task 4 Scratch.

Chapter 4. Usability Evaluation 107

4.2.2.5 Questionnaires

After each task, the participants were asked to judge its overall difficulty. The goal was to
evaluate each task according to the users’ attitudes, in addition to quantitative measurements.
We used a derivation of the SEQ [118], allowing an answer on a five-point Likert scale from
very easy to very difficult. Sauro and Dumas [118] compared three one-question rating types
and determined that SEQ was easy and the users’ responses on the SEQ correlate to task-time
and task-completion rates [120]. We decided to adapt the SEQ, to from seven to five points
in order to be consistent with our other questionnaires. Note that we used in addition to the
terms smiley faces on the Likert scales, ranging from a smile to a frown, as can be seen in
Figure 4.20 for the SEQ [62].

Figure 4.20: SEQ

Each application test concluded with an adapted SUS [18]. First, we decided to use an all
positive-version of the SUS, as the scores are similar to the standard SUS and the participants
are less likely to confuse the points on the scale by mistake. Second, we switched the position
of the terms, i.e. usually Strongly disagree is located at the left side of the scale, yet, we
decided to move it to the end of the scale on the right side in order to comply to our other
questionnaires [62]. Third, we again added smiley and frown faces to the point in addition to
the labels. Fourth, since we conducted the usability tests in German we utilized a German
version [69]:

1. Ich denke, dass ich dieses System gerne regelmäßig nutzen würde.

2. Ich fand das System unnötig komplex.

3. Ich denke, das System war leicht zu benutzen.

4. Ich denke, ich würde die Unterstützung einer fachkundigen Person benötigen, um das
System benutzen zu können.

5. Ich fand, die verschiedenen Funktionen des Systems waren gut integriert.

6. Ich halte das System für zu inkonsistent.

7. Ich glaube, dass die meisten Menschen sehr schnell lernen würden, mit dem System
umzugehen.

8. Ich fand das System sehr umständlich zu benutzen.

Chapter 4. Usability Evaluation 108

9. Ich fühlte mich bei der Nutzung des Systems sehr sicher.

10. Ich musste viele Dinge lernen, bevor ich mit dem System arbeiten konnte.

At the end of the test session the participants were further interviewed on difficulties faced
during the entire usability test as well as subjective preferences.

4.2.3 Results

The evaluation is based on the quantitative and qualitative data collected during the experi-
ment. As we examined Pocket Code and Scratch in the context of usability, we focused on
three main attributes, namely effectiveness, efficiency, and user satisfaction [62].

(a) Pocket Code task completion

(b) Scratch task completion

Figure 4.21: Task completion rate by application and task.

4.2.3.1 Effectiveness

When evaluating the results we categorized three levels of task completion [62]:

Chapter 4. Usability Evaluation 109

• Pass: The correct and complete solution was produced by the participant.

• Pass with help: The solution was obtained with additional comments from the facilitator
towards the solution.

• Fail : The participant was not able to complete the task in a timely manner or was not
making any progress.

When participants asked about the task description itself, e.g., the block nesting or grouping
was unclear, this would not be considered as help. Further, if the participant initially produced
an incorrect formula, but then was able to correct it, the task was still reported as passed
without help [62].

In Figure 4.21 the task completion rate for both applications is presented. As can be seen
Pocket Code (M =73.68%, SD=27.52%) has a higher overall task completion without help
rate than Scratch (M =46.05%, SD=39.94%). The results from the introductory Task 1 are
plotted solely for reasons of completion, as the task did not address formula manipulation.
In Task 2, participants were asked to interchange a single not nested attribute. As can be
seen from Figure 4.21 Pocket Code (47.37%) and Scratch (52.63%) feature around the same
task completion rate, since the attribute to be changed has not been nested. The difficulties
stem from the users having problems in finding the corresponding blocks in both applications
[62].

As illustrated in Figure 4.21, Task 3 and 4 respectively have been especially problematic in
Scratch, as less than 1/6 of the users were able to complete these tasks on their own. In the
third task the users were asked to create a formula and then edit it by changing a single
operator. In Pocket Code, replacing an operator can be done efficiently as only the single
operator has to be deleted and the new one introduced. In Scratch—due to the nesting of
the blocks—there are dependencies between the statements. By removing bricks, which have
other blocks nested within, the deeper levels are deleted as well. Consequently, participants
accidentally removed necessary formula parts and had difficulties recovering from those errors
[62].

The last task was especially challenging as on the one hand it required the participants to find
the according category of the variables and on the other hand create a nested formula and
embed it into an already complicated nested structure. Even though variables are color coded
in Scratch, and occurrences of the same variable were visible in other parts of the script, the
participants were frequently unable to find the suitable category containing the variable. One
of the test users could not complete the task in Scratch, hence the facilitator stopped the test
[62]. On average each test participant completed 2.95 (SD=0.7) tasks successfully in Pocket
Code and 1.84 tasks (SD=0.83) in Scratch.

4.2.3.2 Efficiency

Due to the dependencies of nesting levels in Scratch, participants were forced to reenter some
of the blocks they accidentally removed previously. The effects are observable in the time
spent on Task 3 and 4 according to Figure 4.22a showing the average task times and 95%

Chapter 4. Usability Evaluation 110

confidence interval6. In the case of Pocket Code participants faced obstacles in positioning
the cursor [62].

Usability task times, are often skewed distributions, meaning that the population mean will
be larger than the population median. In general there is a factor between four to ten between
the performance of the best and the worst user. In programming this number rises to 20,
which means that the best programmer is about 20 times more productive than the worst
programmer [93]. Therefore, to estimate the center of the distribution, the geometric mean
has proven useful as it is less vulnerable to outliers and in particular useful for sample sizes
under 25. To compute the geometric mean, the raw task times are converted using a log
transformation. Then we determine the mean of the transformed values and convert it back
its original scale, which then is the geometric mean [121]. We computed the geometric mean
of the time on task for each application as depicted in Table 4.5.

Scratch Pocket Code

Task 1 88.8 25.6

Task 2 126.59 95.89

Task 3 162.25 305.21

Task 4 433.36 228.65

Table 4.5: Geometric mean of time on task (in seconds).

To identify whether there is a significant difference between the task completion times in the
two applications we test the following hypotheses:

• H0 : There is no significant difference in task times between the formula manipulation
in Pocket Code and Scratch.

• HA : There is a significant difference in task times between the formula manipulation
in Pocket Code and Scratch.

To compute whether the null hypothesis H0 is true or formulated differently there is a
difference between means of continuous or rating scales in within-subject studies, we can
utilize a paired t-test:

t = Ď
sD√

n

(4.4)

where Ď is the mean of the difference scores, sD is the standard deviation of the difference
scores, n is the sample size, i.e. total number of pairs and t is the test statistic using the
t-distribution on the sample size for the two-sided area.

6 A confidence interval is a measure for location and precision and the common confidence level of 95 % express
that when replicating the study 100 times, 95 times the interval will contain the true value, for example the
actual mean. The more variation is present in the population, the larger the confidence interval will be, thus
to decrease the confidence interval, one has to increase the sample size.

Chapter 4. Usability Evaluation 111

Once we have obtained the test statistic t, we check whether this is significant by looking
up the p-value for the significance α = 0.057 using the t-table. Since task time data is not
normally distributed, applying a two-sided t-test is advised as it is more robust and generate
accurate p-value with smaller sample sizes with less than 30 participants [121]. Generally, a
p-value ≤ α indicates evidence that we should reject H0.

Generally Pocket Code seems to be more efficient than Scratch with a smaller time on task. A
paired t-test indicates a statistically significant difference (t=4.86, p=.0000032) between the
task times recorded for Pocket Code (M =113.3, SD=71.05) compared to Scratch (M =182.80,
SD=159.0).

In order to compare the efficiency of both approaches, we combined task success and time on
task for each application and calculated the average number of tasks successfully completed
(without help) per minute. Figure 4.22b illustrates this average efficiency. Our data reveals
strong evidence (t=5.91, p=.0000134) that the formula manipulation is more efficient in
Pocket Code (M =0.44, SD=0.21) than Scratch (M =0.18, SD=0.11) [62].

4.2.3.3 Questionnaires

In addition to the performance metrics, we collected self-reported data. Figure 4.23a gives an
overview of the average results from the SEQ asked at the end of each task. These results
correlate with the collected task completion rates (Pearson correlation coefficient=-0.968,
p=.0001). Generally, the tasks in Pocket Code(M =2.05, SD=0.88) were perceived as easier
in comparison to Scratch (M =2.56, SD=1.15) [62].

The SUS score of both applications has been below average; we recorded a score of 68.16
for Pocket Code (M =68.2, SD=9.99) and 60.66 for Scratch (M =59.3, SD=11.56). The
significance test (t=3.02, p=.007) provides a strong evidence that Pocket Code receives a
higher SUS Score. Interestingly, during the post-test questionnaire only a few participants
were able to recall specific difficulties they had during the test itself [62].

4.2.3.4 Single Usability Score and Preference Data

We computed a single usability score [4] for both applications, based on every participant’s
average time on task, average task completion rate and SUS score. Averaging over all test users
we arrived a score of 68.13 % for Pocket Code and 54.62% for Scratch (t=5.24,p=.00006).
When combining the overall results of the collected data into a single score, significant
evidence of a higher usability in Pocket Code formula manipulation is apparent in Figure
4.23b. After each test session we conducted a short interview asking the participants about
their subjective preferences and about the applications. Table 4.6 lists some of the questions

7 Indicates the probability we reject H0 even though it is true.
8 Note that we observe a negative correlation since task completion is a ratio of completed tasks to all tasks, i.e.

making 1.0 the optimal and every value smaller worse, while in the rating for SEQ a higher value denotes
more difficulty, i.e. 1.0 again is the optimum, however every value higher is a worse score.

Chapter 4. Usability Evaluation 112

(a) Mean time on task.

(b) Average efficiency.

Figure 4.22: Efficiency results
(Error bars represent the 95% confidence interval).

Chapter 4. Usability Evaluation 113

(a) Average SEQ rating (1-very easy to 5-very difficult).

(b) Single Usability Score as an average percentage of time on task, task completion, and
SUS-rating .

Figure 4.23: SEQ Scores and Single Usability Score (Error bars represent the 95% confidence
interval).

Chapter 4. Usability Evaluation 114

and the percentage ratio of answers. As can be seen Pocket Code was preferred, however, in
the context of the formula manipulation lost several percent.

Pocket
Code

Scratch Undecided

Which application do you prefer? 73.68% 15.79 % 10.52 %

Which application is easier to use? 78.95% 15.79 % 5.26 %

With which application is it easier to work with
formulas?

57.89% 26.31 % 15.79 %

If you could choose, which application would you
want to learn in school?

63.158% 26.31 % 10.52 %

Table 4.6: Post-test interview answers.

Further, we have collected some of the comments the users made while answering the questions
9:

• Which task did you perceive as the most difficult one in Pocket Code?

– Formula manipulation in general (1)

– Where to find the needed operators (3)

– To know which variables are available and variables in general (1)

– Task 4, where to find y Position (1)

• Which task did you perceive as the most easy one in Pocket Code?

– Inserting formulas in case you know where to find the correct category (1)

– Task 1 (i.e. Executing a program) (1)

• Which task did you perceive as the most difficult one in Scratch?

– Where to find the needed operators and this takes time (3)

– Creating and editing formulas (6)

– To know which variables are available and variables in general (1)

– Bricks are to small (1)

– Positioning of the bricks (3)

– Changing between objects (1)

• Which task did you perceive as the most easy one in Scratch?

9 Note we only provide key phrases, as many comments where of similar content. Further, some participants
were not able to recall particularly difficult or easy portions of the test.

Chapter 4. Usability Evaluation 115

– Task 1 (i.e. Executing a program) (2)

• What do you prefer about Pocket Code over Scratch?

– Easier to use (11)

– Better design, less childish (2)

– Well arranged (1)

– Prefer using a tablet/smart phone (2)

– Can add formula without bricks (3)

• What do you prefer about Scratch over Pocket Code?

– Prefer using a desktop computer (2)

– Easier to use blocks (3)

– Is more logical (1)

– Less prone to mistyping (1)

– Better layout (2)

– Formulas easier since bricks are colored and easier to find (1)

– Can do more with Scratch (2)

4.2.3.5 Eye Tracking

We experienced difficulties in calibrating the eye-tracking glasses for some test participants
and overall a decreased quality of calibration during most test sessions. On the one hand,
we could not reach an optimal calibration for contact lens users and for female participants
wearing mascara. On the other hand, we believe that especially for our younger participants
the glasses were too large, i.e. when they were moving the glasses would slide on their nose,
thus requiring a new calibration. However, since this would happen various times throughout
the test, it would not have been possible to recalibrate every time. Further, we have to note
that spectacle wearers are problematic as well. First, it is impossible or rather uncomfortable
to wear optical eye wear underneath the eye tracking glasses. Second, not every user is
capable of performing tasks without their prescription glasses. Even though, we believe our
set-up is a rather portable alternative to various common usability kits, we definitely see
possibilities to improve in respect to the eye-tracking recordings.

Note that in this section the graphics showing the visual summary of the eye tracking data
are mapped onto the screens of Pocket Code in German. In this section, we only discuss eye
tracking data from the test sessions with Pocket Code, as we have a particular interest in
evaluating its formula editor. Further, we did not analyze the data for Task 1 since it did not
involve the formula editor.

Chapter 4. Usability Evaluation 116

We identified four AOI for the formula editor screen, namely (1) the brick itself on top of the
screen, (2) the text field where the user enters the formula, (2) the numbers at the bottom
left side and (4) the column containing the categories (see Figure 4.24). For each task a
corresponding formula editor screens reference image was used to map the fixations to. On
basis of this the heat maps were created aggregated over all participants. Whenever a user
navigated into a category, we also mapped those fixations to the category button, since we
were not particularly interested in how the user scans the category content itself but rather
how the user examines the formula editor screen. This however, also lets us infer from the
heat map categories in which the user spend a long time searching for the various formula
elements.

Figure 4.24: AOI for the formula editor for Task 3.

Task 2

In this task the users were asked to replace the object attribute position y with position x in
the script of the Car object. Thus, we wanted to evaluate how the test users scan the editor
containing the Set variable brick, in order to change the assignment to another variable.

Chapter 4. Usability Evaluation 117

In this context the user first sees the formula editor within the test scenario, with exception
of the tutorial. Figure 4.25a shows the heat map of this task, i.e. the average number of
fixations for all participants mapped to a reference image. The red spots indicate a high
number of fixations. As can be seen the text field itself received a majority of fixations as well
as the Object category. However, we can observe that, further the other categories receive
attention, which can be interpreted that the users were not sure where to find position x.
The binning chart in Figure 4.25b shows that the attention on the text field decreases with
time.

Task 3

Task 3 was concerned with creating a formula using numerical operators as well as a random
number generator. In this context we analyzed the eye tracking data to determine how the
users examine the interface when asked to insert a random number generator. The task was
to insert 3 × random(5,10), thus we analyzed the data from the time the user has entered
the multiplication operator to the time the user has actually found the random function. The
random number generator has been positioned within the interface as a special function on
the formula editor screen, but furthermore is represented within the Math category.

As Figure 4.26 shows the main fixation at the random number generator button in the middle
of the bottom of the screen. As can be seen the second area with a large number of fixations
is the Variable category. We believe that this is due to the fact that the users were not able
to distinguish the random function from a variable.

Task 4

In the forth task, we asked the users to change parts of a formula by inserting a new sub
formula consisting of a variable, numeric values as well as relational and logical operators. In
particular, one step is to add a variable and afterwards the relational operator >, which is
located within the Logic category. From Figure 4.27 we can see that the two main fixation
points are on the one hand the text field and on the other hand the button for the Logic
category.

We also examined how the users scan the screen for the logical AND operator. Interestingly,
we can see from Figure 4.28a that even though AND is located in the same category as >
there was no learning effect, as we can see that the heat map is more dispersed than for the
>. From the binning chart in Figure 4.28b it is apparent that the participants spend most of
the time within the categories searching for the logical operator.

Chapter 4. Usability Evaluation 118

(a) Heat map.

(b) Binning chart (1 second interval).

Figure 4.25: Eye tracking analysis of Task 2.

Chapter 4. Usability Evaluation 119

Figure 4.26: Heat map of Task 3 in the time frame after inserting × till inserting the random
number generator.

Figure 4.27: Heat map of Task 4 when users are scanning the screen for >.

Chapter 4. Usability Evaluation 120

(a) Heat map

(b) Binning chart (1 second interval)

Figure 4.28: Eye tracking analysis of Task 4 when users are scanning the screen for AND.

Chapter 4. Usability Evaluation 121

4.2.3.6 Issues and Interpretation

Overall, our results show strong evidence towards a greater usability in the context of formula
manipulation of the hybrid approach as implemented in Pocket Code in comparison to a purely
visual one used in Scratch. Figure 4.23b depicts the average single usability score (considering
task completion, time on task and perceived satisfaction ratings) as a percentage value of
both applications (Pocket Code M =68.13%, SD=11.37%; Scratch M =54.62%, SD=11.05%;
t=5.24,p=.00006). Nevertheless, we observed several issues within either programming
environment [62].

Scratch

1. Input Error Minus/Random Number:

Description: Test users try to type the minus operator or “pick random(0 to 8)” using
the keyboard rather than the subtraction brick or the random number operator brick
(see Figure 4.29). Since it is possible to enter text within the fields in which bricks can
be interconnected, the test users tried to enter the formulas this way.

No. Occurrences/No. Test Users: 26/14

Severity: 4

Proposed Solution: Staying consistent within the usage of operators would be useful.
Thus, we propose to have the binary sign operator be a brick within the Operators
category such as the logical not. Further, we think it would be better to have some sort
syntax check there to see whether a textual input would make sense in this particular
brick. Then it could be avoided to have users type entire formulas or operators.

Figure 4.29: Adding a minus within a field.

Chapter 4. Usability Evaluation 122

2. Operator Search:

Description: Test users cannot find a specific operator or other brick. The usual strategy
of the test users then is to go through all categories (even several times) until they
locate the brick. The entire brick collection is rather large (see Figure 4.33).

No. Occurrences/No. Test Users: 22/18

Severity: 3

Proposed Solution: The coloring of the bricks should already provide a visual clue
to where to find a particular type of brick. However, it seems to be not enough for
beginners. A solution, which might increase the efficiency, would be to have bricks,
which have been already used within the program several times, at a type of recent
bricks category to have an easy access to frequently used bricks. Another possibility
would be to hide some of the more advanced bricks in an expert mode to diminish the
total number of bricks visible.

3. Operator Position:

Description: Test users place bricks at the wrong position within a formula by accident.
This happens when the brick is dropped not at the right location above the brick. As
can be seen in Figure 4.30 moving the brick slightly triggers different drop locations as
indicated by the illumination.

No. Occurrences/No. Test Users: 12/10

Severity: 3

Proposed Solution: Even though there is an illumination of the field a brick will be
dropped into, some of these areas are so close together that by moving the brick slightly
an unintended drop location is selected.

3. Automatic Formula Decomposition:

Description: Test users place bricks at the wrong position within a formula by accident.
In this case it can happen that another part of the formula is replaced, i.e. the new brick
is placed at the position of the original brick, which in turn is positioned somewhere
within the scripting area outside any brick block. The user then is not able to recreate
the state before since the user forgot the formula and there is no undo.

No. Occurrences/No. Test Users: 7/6

Severity: 3

Proposed Solution: Adding a simple undo/redo would be sufficient.

4. Deleting formulas by accident:

Description: Test users by accident delete a subformula or formula and are not able to
recreate it from memory and there is no undo.

No. Occurrences/No. Test Users: 3/3

Chapter 4. Usability Evaluation 123

(a) Illumination of the outer formula field.

(b) Illumination of the middle formula field.

(c) Illumination of the most inner formula field.

Figure 4.30: Illumination indicating brick drop location.

Chapter 4. Usability Evaluation 124

Severity: 2

Proposed Solution: Adding a simple undo/redo would be sufficient.

5. Misinterpretation Attribute:

Description: Test users interprets the object attribute x-position as a formula x−position
and types it into the brick field.

No. Occurrences/No. Test Users: 1/1

Severity: 0

Proposed Solution: -

Pocket Code

1. Operator Search:

Description: Test users cannot find a specific operator/function/attribute. The usual
strategy of the test users then is to go through all categories (even several times) until
they locate the brick. The entire brick collection is rather larger (see Figure 4.34).

No. Occurrences/No. Test Users: 22/14

Severity: 4

Proposed Solution: Since there is no visual aid in where to find a certain type of
function it would be helpful to maybe add a color scheme as featured in Scratch. Even
though, we can see from the issues list of Scratch this is not necessarily the entire
solution, we think that for the small screen it would be helpful to have some type visual
distinction. Further, more appropriate category names could aid the user to locate the
right category.

2. Cursor Positioning:

Description: Test users had difficulties positioning the cursor at a specific location
within the formula.

No. Occurrences/No. Test Users: 8/7

Severity: 4

Proposed Solution: Reimplementing a more precise cursor or adding arrow buttons to
navigate through the formula would be sufficient.

3. Button Size:

Description: Test users typed erroneous formula due to button size and closeness of the
buttons.

No. Occurrences/No. Test Users: 3/3

Severity: 3

Chapter 4. Usability Evaluation 125

Proposed Solution: It will probably be necessary to redesign the formula editor button
field at the bottom to feature larger buttons.

4. Formula representation:

Description: Test users edited incorrect formula parts, as they were confused by the
nested formula in Task 4. Due to the many parentheses and no visual indication of
which parts form sub formulas, it can be difficult to distinguish depended formula
fragments (see Figure 4.31).

No. Occurrences/No. Test Users: 3/3

Severity: 3

Proposed Solution: In many programming environments there is the possibility to select
a parenthesis and the environment visually emphasizes the corresponding opening or
closing bracket. In an additional step to have a more structured view of the inserted
formula would allow the users to have a better overview of the formula.

Figure 4.31: Nested formula of Task 4.

5. Editing formulas outside formula editor:

Description: Test user tries to insert the formula within the brick inside the script view.

No. Occurrences/No. Test Users: 5/5

Severity: 1

Proposed Solution: -

6. Delete/Undo button:

Description: Test user confuses the Delete button with the Undo button (see Figure
4.32).

No. Occurrences/No. Test Users: 1/1

Severity: 1

Proposed Solution: -

Chapter 4. Usability Evaluation 126

Interpretation

In both applications the participants encountered obstacles locating operators necessary for
composing the given formulas. In the case of Scratch, even though the blocks are color coded,
many users did not know in which category to look for certain blocks. The participants
tended to search through every category—even several times—until they discovered the block
they were looking for. In Pocket Code a similar problem could be observed. We believe that
the naming of categories in Pocket Code is not suitable, as adolescent users often seem not to
be familiar with terms such as Logic. We believe that a revised naming in terms suitable for
the target audience is required. However, due to the fact that in Pocket Code the categories
of the formula editor are separated from the general block categories, the search space is
diminished in comparison to Scratch. It may be reasonable to assume that some of the time
on task differences originate from this. In Figure 4.34 we show the various operators of the
formula editor and the collection of bricks available in Scratch (Figure 4.33) to depict the
search space the participants had to cover [62].

(a) Delete (b) Undo

Figure 4.32: Delete/Undo button.

However, Scratch’s most prominent weakness within this study, has been the block construction
of formulas. Building nested formulas in Scratch is especially difficult, as it requires the
user to plan the composition steps a-priori, since the nesting level implies the groupings of
operators. Most of the teenagers we tested tended to not read through the entire formula
before working on the solution. Hence, they tried to compose the formula from left to right
and eventually had to edit, rearrange, delete, and add blocks to create a formula with the
required grouping. Generally, the participants faced obstacles with the blocks in Scratch, as
they frequently dropped them at the incorrect position, destroying already existing formulas.
The viscosity of Scratch accounts for considerable correction as well as manipulation time
and frustrated the participants. Further, in order to pick up a brick nested within a structure
it is necessary to exactly click the operators name. Often the test participants were imprecise
in targeting the brick and by accident picked up an incorrect part of the formula. An easily
accessible “Undo/Redo” feature could diminish the time used for corrections [62].

Some participants found that it is possible to textually add the minus symbol into certain
fields, which however is not interpreted as the arithmetic operator but instead as the binary
operator to denote the sign. This created confusion as the participants did not seem to
understand its purpose. These might be some of the reasons why Scratch was perceived as
more difficult by the participants. A solution would be to create a block for the sign, which
would be more in line with the general methodology used within Scratch [62].

Due to the fact that Pocket Code uses parentheses to denoted grouping, the participants
were able to construct the formulas from left to right. It seemed that using a virtual pad was
easier as the teenage participants were more familiar with this way of editing and creating

Chapter 4. Usability Evaluation 127

Figure 4.33: Scratch brick overview.

Chapter 4. Usability Evaluation 128

Figure 4.34: Pocket Code categories.

Chapter 4. Usability Evaluation 129

formulas. In Pocket Code participants had difficulties using the cursor in the formula editor,
resulting from its imprecise positioning. A reimplementation of the cursor is essential, as
its impreciseness impedes its general purpose, which is to be able to easily edit any position
within the formula. Additionally, it appears that the general interface layout should be
improved upon, since button sizes and proximity yielded typing errors [62].

Regarding the pocket calculator metaphor, we would also like to mention the participant who
has been disregarded from our results due to not being familiar with pocket calculators. She
had several difficulties in working with the formula editor, especially as she was not familiar
with the vocabulary used (e.g., Variables). We cannot generalize on this; however, we assume
that our metaphor would not necessarily facilitate formula composition among younger users
who have not used pocket calculators before [62].

In addition, the perceived satisfaction reported by the users should be viewed with skepticism.
It is well known that test participants tend to describe their experiences more pleasant and
products more usable than the recorded data actually implies. In particular, this effect is
increased with younger participants such as children and teenagers.

4.2.3.7 Validity

The validity of this study can be questioned based on the relatively small sample size [51].
Moreover, the way we presented the tasks to the users most likely influenced their performance
in favor of Pocket Code. Due to the nesting of formulas we were in need of a representation
which shows the grouping of the statements. While it would have been possible to change the
formula representation for Scratch by displaying the formulas in their block representations,
we believe that the blocks are difficult to visually separate from each another (see Figure
4.35). Hence, we chose a textual formula representation to convey the tasks to the test
users, which likely primed them for a textual representation of formulas. A possible solution
could be, instead of specifying explicit formulas, to indicate a general problem statement in
natural language, and to let the test users come up with the needed mathematical expression
on their own. However, due to the way mathematics and natural sciences are taught in
middle and high schools, it seems plausible that users would nevertheless have formulated the
mathematical expression in textual form [62]. Further, we have disregarded the attribute of
Cognitive Load as suggested by the PACMAD [44] usability model, which however is common
in mobile usability testing [55].

Figure 4.35: Nested formula in Scratch.

Chapter 4. Usability Evaluation 130

4.3 Recommendations

We have conducted a heuristic evaluation of the formula editor in Pocket Code as well as
a summative usability study comparing formula manipulation in Pocket Code to Scratch.
While the former yielded a greater number of issues, we could only confirm some of them
in our empirical experiment. There are several reasons for this mismatch; first, within the
heuristic evaluation reviewers are asked to examine the entire interface several times, whereas
the tasks of the test covered only parts of the formula editor. Second, the usability study
focused on the mechanics of formula manipulation and composition, i.e. did not incorporate
tasks to evaluate the comprehensibility. An inspection on the other hand takes into account
general guidelines and a broader view of usability, therefore, the evaluators reported issues
they would anticipate in various aspects of using the formula editor.

Naming Conventions

Both methods agreed that identifying the corresponding category to a single operator or
function is difficult in the current interface design. In the heuristic evaluation we refereed
to this in an issue stating that the nomenclature is problematic as it does not truly reflect
the language used by children or teenagers. For example, Logic has a different meaning
in natural language in comparison to the programmatic concept, thus, we assume that the
target audience has difficulties in understanding these terms. Recalling the usability test,
the main issue causing both applications to be inefficient is the fact that the participants
spent considered amounts of time searching for operators or functions. Even though the
participants were asked to perform several tasks, we could not observe an improvement in
their ability to locate expression parts efficiently over the course of the test. Thus, as Pocket
Code’s category naming conventions are inspired by Scratch, it seems that the heuristic of
speaking the users language is violated in both.

Pocket Code’s formula editor has been devised with common pocket calculators in mind. Yet,
Markopoulos and Bekker [76] utilize the example of a virtual calculator as inspired by an
already badly designed physical artifact. Pocket calculators often feature an excessive amount
of modes, functions and inappropriate labels. Function names such as sqrt, mod or abs are
in line with the calculator metaphor, yet, are not ideal within the context of Pocket Code as
a programming environment for children and teenagers. Thus, strictly enforcing the pocket
calculator metaphor might not be the correct approach for usable formula manipulation.

Due to disregarding formula comprehension within our study design, but rather evaluating
the mechanics, we could not observe a problem with Boolean expressions. However, studies
have shown that they do pose a difficult programming construct, as AND and OR are used
differently in linguistic usage than in programming languages [101]. There might be the need
to find more suitable expressions to describe logical operators in terms familiar to the target
audience. Stefik and Siebert [132] investigated how intuitive terminology in general purpose
programming languages is by providing descriptions of concepts to users and asking them
to rate how well common terms relate to these descriptions. For example for the relational
operator the description states:“Suppose you wanted to check whether something named x
had the same value as something named y. Rate each expression according to how well you

Chapter 4. Usability Evaluation 131

think it represents checking whether x and y have the same value.” Figure 4.36 shows the
results for various concepts.

Figure 4.36: Expression choices for Boolean operators [132].

Conducting a similar study within the context of the Catrobat project, asking teenagers and
children to rate operators and even category names, might give a better understanding of
possibilities to rename certain parts of the formula editor.

Expert Mode

Furthermore, we believe that an expert mode would be beneficial in order to hide some of the
functionality from novice users in order to have an easy to learn yet highly efficient system
[138]. This would allow experts to still be able to incorporate advanced calculation in their
programs, while at the same time beginners are not overwhelmed.

Brennan and Resnick [17] exploited Scrape [144], a tool analyzing programming blocks in
Scratch, to asses computational thinking among Scratch users. For example, in Figure 4.37
the projects of an experienced and a novice Scratch user are visualized by projects (columns)
and bricks (rows). The darker the color of the cell, the more frequently the brick has been
used within the particular program, while the last column represents unused blocks. From
the illustration it is apparent that the novice user only takes advantage of a small subset of
bricks.

In a similar manner the functions or operators essential for novices in Pocket Code could be
determined by analyzing uploaded projects. Based on the experience level of the user and
their usage of formula elements a suitable subset for a novice user mode could be computed.

Another question in this regard would be whether the provided bricks in Pocket Code should
be extended to contain more blocks from Scratch. In Scratch, for example, collisions can be

Chapter 4. Usability Evaluation 132

(a) For an experienced Scratcher. (b) For a novice Scratcher.

Figure 4.37: Scrape user analysis visualization [17].

Chapter 4. Usability Evaluation 133

detected using a designated brick. This brick is not available in Pocket Code, however, it
would facilitate programming for beginners.

Button Size

The pointing accuracy of a finger cannot compete with the precision of a computer mouse,
thus targets need to have at least a certain width and height. Increasing the button sizes is
probably impossible since smaller devices from up to three inches should be supported. In
those cases the entire formula editor would not fit on the screen. However, for larger devices
such as tablets the number pad and category buttons can be increased as there is enough blank
space to the text field at the top. In particular, when analyzing the footage we can observe
that the buttons height is the main issue on the seven inch devices rather than its width. For
smaller devices, we would suggest to provide an editor similar to TouchDevelop, i.e. have
more nesting levels to reach an operator or operand. Instead of having all categories on the
initial formula editor screen, a button Categories could be added leading to an intermediate
screen listing all category buttons, e.g. Logic, Object, etc. Another possibility would be
to have designated tabs for the number pad and categories, such as in the the calculator
application Tydlig10 (see Figure 4.38).

(a) Number pad tab. (b) Function tab. (c) Trigonometry tab.

Figure 4.38: Tydlig interface featuring several tabs.

Cursor

The cursor implementation of the formula editor unfortunately does not meet its objective,
which is to provide an effortless way to pinpoint an exact formula position to facilitate

10http://tydligapp.com/

Chapter 4. Usability Evaluation 134

manipulation and thus reduce viscosity. Viscosity in this context refers to the ease of changing
parts of a formula while maintaining the rest of it. There are generally two possibilities;
ideally the cursor is reimplemented to be more accurate. Otherwise designated buttons to
move the cursor left and right could be integrated.

Copy Sub Formulas

Another issue in regard to viscosity, is the absence of a copy function for sub formulas,
which would ease the creation of formulas with similar parts, such as collision detection.
Furthermore, the implementation of the editor requires premature commitment in the sense
that it is not possible to span, for example, a mathematical function over an entire already
existing formula. However, this is necessary, as formula development is often an interleaved
process of creation and debugging. Thus, allowing to adapt formulas at various positions is
essential.

Visual Clues

There is no visual separation between various building blocks of a formula, i.e the text field
does not provide an additional indication besides spaces of which Strings form an expression
or a formula element, e.g. Object attribute or Sensor value. Even though a grouping through
parentheses is available, there is no visual automatic matching to allow the user to determine
missing open and close parentheses or highlight the sub formula encompassed by a pair of
bracket. This is, however, very common in programming environments for textual languages.
Since the formula editor provides a textual representation, adding well proven techniques of
textual programming environments would be useful.

Another common procedure in programming environments of textual languages is to have
parts of the code, e.g. keywords, identifiers, constants etc., highlighted in various colors to
allow to determine functionality quickly. Thus, similar visual clues might be practical for
the text field. Further, we believe that Pocket Code in general might be missing a more
structured UI, where the use of addition color might function as a visual separator and
connector of functionality, i.e. the number pad features a different color than the Compute
and Ok button.

Basic Usability Issues

As mentioned the heuristic evaluation covers a vaster range of usability concerns, thus we
aggregated the results not discussed yet:

• Provide feedback for large number computation

• Consistent error handling

• Basic functionality in accordance to the Android guidelines (e.g. cursor design and text
selection).

• Computing meaningful values using the Compute button, i.e. Compute of 0.54 should
not lead to 0.5400000214576721. hile an approximation is useful for internal represen-
tation, the user should not be made aware of this.

Chapter 4. Usability Evaluation 135

• Discussion of useful coercions (e.g. inequalities or Wait ___ seconds brick) and possible
type checking warnings.

• Remove “=” from the formula editor view, as it is not an assignment, but a logical
operator. Within the context it is presented, it rather suggests to provide the same
functionality as Compute.

New Formula Editor

Since the usability study, the formula editor has been redesigned, considering a few of the
findings, e.g. Android guideline conform text highlighting. As can be seen in Figure 4.39 the
ordering of the buttons at the bottom of the screen has changed and it is possible to create
Strings (Abc) as well as Lists (contained in the Data category).

While some of the issues have been solved so far, e.g. error messages have improved, i.e.
Syntax error has changed to Formula is not valid (see Figure 4.40a), there are still issues
needing attendance, such as the internal and external representation of numbers. In case
of the error handling, there are some inconsistencies. For example, if the user creates a
formula using as operands reals as well as Strings, when pressing compute an error is shown
as depicted in Figure 4.40b. However, by leaving the editor and saving the formula, the
user can continue programming (see Figure 4.40c). In case we assign this value to a variable
which we display during the execution of the game, we can observe that during execution
the variable has the value NaN . Ideally, the user cannot save such an expression in the first
place but receives a type checking error. Further, if the internal representation should be
hidden from the user in the formula editor as for example in Figure 4.40d, the same holds for
the execution area.

Chapter 4. Usability Evaluation 136

Figure 4.39: Current formula editor with adapted text highlighting.

Chapter 4. Usability Evaluation 137

(a) Syntax error. (b) Type checking error: multiplication of
integer and String using Compute.

(c) Type checking error: script view. (d) Error for Not a Number

Figure 4.40: Current formula editor.

5 Conclusion and Future Work

“Learning to code is the single best thing anyone can do to get the most out of the amazing

future in front of us.” 1

In this thesis, we have studied formula composition and manipulation methods in programming
languages of educational environments. In particular, we have investigated Pocket Code,
a mobile programming applications for children and teenagers, which has been inspired by
the visual block-based programming environment Scratch. Due to the restricted screen size
of hand held devices, it is infeasible to represent formulas, particularly nested ones, in a
brick structure. Thus, the designers and usability experts of Pocket Code have developed a
formula editor inspired by traditional pocket calculators familiar to the target audience from
mathematic classes. Comprising object attributes, arithmetic, relational and logical operators
as well as variables and sensor measurements, the formula editor represents a powerful tool
within Pocket Code and an essential part in order to develop meaningful programs. The
editor uses a hybrid formula composition scheme, i.e. formulas are created visually by tapping
buttons, while they are represented in a textual manner. This approach has several advantages;
on the one hand, it facilitates formula input by not relying entirely on a virtual keyboard and
at the same time diminishes the possibility to create syntactically incorrect formulas. On the
other hand, displaying the formulas textually is a space saving option necessary for mobile
devices.

To assess its usability we exploited method triangulation in two ways; first, we utilized
several evaluation techniques, i.e. heuristic inspection and an empirical usability study;
second, within the summative test we collected quantitative as well as qualitative data to
create a holistic overview of usability by examining various attributes. For the heuristic
evaluation we employed five evaluators to review the formula editor interface in regard to a
set of heuristics designed for mobile UIs. Subsequently, our empirical experiment compared
formula composition in Pocket Code to Scratch, as Scratch is the state of the art educational
programming environment for a younger audience. We collected a set of usability issues
from both assessments and besides some easy to fix issues, such as consistent error handling,
we found that even though in comparison to Scratch the formula manipulation in Pocket
Code seems easier, there are still some problems inherent to the user interface. Particularly,
participants had difficulties knowing where to locate functions, operators, or operands. It
seems that the terminology within the editor is not ideal and visual clues are missing. Thus,
we see the main area to focus on in the future is to explore remedies for this specific concern.

1 https://code.org/quotes

138

Chapter 5. Conclusion and Future Work 139

Whether the recommendations we proposed in the previous section should be followed,
generally boils down to the decision whether Pocket Code should be a novice programming
language—empowering the user to create animations and games, or an education system,
teaching beginners programming concepts and preparing them for more advanced textual
languages. The aim of the former suggests to create an easy to use interface and a small set of
operators and functions which are essential to develop programs. Further, this might include
the introduction of additional bricks, e.g. a collision brick, to trade off the formula editor’s
power for more easily accessible functionality in the form of blocks. The latter, however,
implies that many programming concepts, such as Boolean expressions, should remain in
Pocket Code as in other general purpose programming languages. Which in turn entails that
certain difficult aspects have to be simplified by supplying additional support in the form of
tutorials or help texts.

This thesis concentrates on the mechanics of formula development, which constitutes the basis
for efficient and effective programming within Pocket Code. The aspect of formula under-
standing has only been raise to a limited extend within the heuristic evaluation. Nevertheless,
the comprehension of formulas and the process of formulating a goal and achieving it in a
programmatic way via the formula editor has yet to be investigated, constituting an obvious
continuation of the research we have presented. We believe that the research in this area
has to incorporate empirical results to truly uncover usability concerns. To examine whether
users understand formulas we would propose two parts. First, a set of tasks in which the test
participant is asked to extend parts of a program, i.e. there are already existing formulas
which have to be interpreted and adapted as well as the need to compose new formulas. The
description of these assignments, in contrast to the presented study, would only describe the
goal to reach and not how to accomplish it. For example, the user could program a simple
collision between two objects without any additional help on how to perform this task. In
the second part of the test, the users would be asked to solve, for example, a mathematical
problem within the context of a Pocket Code program, where they are allowed to use the
Internet to search for suitable formulas. This type of study could be conducted as a formal
experiment with more experienced Pocket Code users, or even within a more informal setting
organized as workshop collecting observations.

An additional validation concern of the summative study is the rather small sample size and
the study design incorporating a textual formula within the task description. A possible
solution would be to give a general task description and ask the users to develop the necessary
formulas on their own. This type of task requires a certain level of programming experience to
be able to construct a solution, hence it is not entirely applicable to studies involving novices.
Furthermore, we compared a desktop application to a mobile programming environment,
meaning that depending on the experiences the participants had so far they could be biased
towards a device. Developing a testing environment along the lines of McIver [79], hiding
the environments completely and solely providing the basic functionality to compose and
edit formulas, would increase the internal validity. Otherwise a comparison of Pocket Code
to the iOS application Tickle2 would be an interesting experiment, since both are mobile
programming applications and Tickle is uses a purely visual formula manipulation.

2 https://tickleapp.com/ (accessed 2016-02-26)

https://tickleapp.com/

Chapter 5. Conclusion and Future Work 140

AOI Area of Interest
ASQ After-scenario Questionnaire
EUP End user programming
HANDS Human-centered Advances for the Novice Development of Software
HCI Human-computer Interaction
IDE Integrated Development Environment
LCD Learner-centered Design
PACMAD People At the Centre of Mobile Application Development
SEQ Single Ease Question
SMEQ Subjective Mental Effort Question
STEM Science, Technology, Engineering, and Mathematics
SUM Single Usability Metric
SUS System Usability Scale
TILT Tools-Interfaces-Learner’s Needs-Tasks Model
UCD User-centered Design
UI User Interface
UX User Experience
VPL Visual Programming Languages

Bibliography

[1] ISO 9241-210:2010 ergonomics of human-system interaction – part 210: Human-centred
design for interactive systems.

[2] Usability für Kids: Ein Handbuch zur ergonomischen Gestaltung von Software und
Websites für Kinder, author=Liebal, J and Exner, M, journal=Wiesbaden: Vieweg+
Teubner Verlag, year=2011.

[3] C. Abras, D. Maloney-Krichmar, and J. Preece. User-centered design. Bainbridge,
W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications,
37(4):445–456, 2004.

[4] W. Albert and T. Tullis. Measuring the user experience: collecting, analyzing, and
presenting usability metrics. Newnes, 2013.

[5] A. Alsumait and A. Al-Osaimi. Usability heuristics evaluation for child e-learning
applications. In Proceedings of the 11th International Conference on Information
Integration and Web-based Applications & Services, pages 425–430. ACM, 2009.

[6] L. Anthony, Q. Brown, J. Nias, B. Tate, and S. Mohan. Interaction and recognition
challenges in interpreting children’s touch and gesture input on mobile devices. In
Proceedings of the 2012 ACM international conference on Interactive tabletops and
surfaces, pages 225–234. ACM, 2012.

[7] A. Asamoah. Should we be using visual programming languages like Alice to teach
programming? 2006.

[8] W. Barendregt and M. M. Bekker. Children may expect drag-and-drop instead of point-
and-click. In CHI’11 Extended Abstracts on Human Factors in Computing Systems,
pages 1297–1302. ACM, 2011.

[9] C. M. Barnum. Usability testing essentials: ready, set... test! Elsevier, 2010.

[10] E. Beck, M. Christiansen, J. Kjeldskov, N. Kolbe, and J. Stage. Experimental evaluation
of techniques for usability testing of mobile systems in a laboratory setting. 2003.

[11] A. Begel. Logoblocks: A graphical programming language for interacting with the
world. Electrical Engineering and Computer Science Department, MIT, Boston, MA,
1996.

[12] J. R. Bergstrom and A. Schall. Eye tracking in user experience design. Elsevier, 2014.

[13] A. F. Blackwell. Metacognitive theories of visual programming: What do we think
we are doing? In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
240–246. IEEE, 1996.

141

Bibliography 142

[14] A. F. Blackwell. The reification of metaphor as a design tool. ACM Transactions on
Computer-Human Interaction (TOCHI), 13(4):490–530, 2006.

[15] T. Booth and S. Stumpf. End-user experiences of visual and textual programming
environments for Arduino. In End-User Development, pages 25–39. Springer, 2013.

[16] M. Boshernitsan and M. S. Downes. Visual programming languages: A survey. Citeseer,
2004.

[17] K. Brennan and M. Resnick. New frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012 annual meeting of the American
Educational Research Association, Vancouver, Canada, 2012.

[18] J. Brooke. SUS-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[19] N. C. Brown, M. Kölling, and A. Altadmri. Position paper: Lack of keyboard support
cripples block-based programming. To appear in Blocks and Beyond, 100, 2015.

[20] Q. Brown and L. Anthony. Toward comparing the touchscreen interaction patterns of
kids and adults. In ACM SIGCHI EIST Workshop 2012, 2012.

[21] A. Bruckman, A. Bandlow, and A. Forte. HCI for kids, 2002.

[22] M. Burnett, J. Atwood, R. Walpole Djang, J. Reichwein, H. Gottfried, and S. Yang.
Forms/3: A first-order visual language to explore the boundaries of the spreadsheet
paradigm. Journal of functional programming, 11(02):155–206, 2001.

[23] A. Cockburn and A. Bryant. Leogo: An equal opportunity user interface for program-
ming. Journal of Visual Languages & Computing, 8(5):601–619, 1997.

[24] G. Cockton, A. Woolrych, D. Lavery, A. Sears, J. Jacko, I. Tsuchiya, and G. Grandy.
Inspection based evaluations. 2008.

[25] M. . Company. Transforming learning through meducation, 2012.

[26] M. J. Conway. Alice: easy-to-learn 3D scripting for novices. 1997.

[27] S. Cooper, W. Dann, and R. Pausch. Alice: a 3-D tool for introductory programming
concepts. In Journal of Computing Sciences in Colleges, volume 15, pages 107–116.
Consortium for Computing Sciences in Colleges, 2000.

[28] A. Donker and P. Markopoulos. A comparison of think-aloud, questionnaires and
interviews for testing usability with children. In People and Computers XVI-Memorable
Yet Invisible, pages 305–316. Springer, 2002.

[29] A. Druin. The role of children in the design of new technology. Behaviour and
information technology, 21(1):1–25, 2002.

[30] H. Dwyer, C. Hill, A. Hansen, A. Iveland, D. Franklin, and D. Harlow. Fourth grade
students reading block-based programs: Predictions, visual cues, and affordances. In
Proceedings of the eleventh annual International Conference on International Computing
Education Research, pages 111–119. ACM, 2015.

Bibliography 143

[31] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical methods
for software engineering research. In Guide to advanced empirical software engineering,
pages 285–311. Springer, 2008.

[32] D. Fitton and B. Bell. Working with teenagers within HCI research: Understanding teen-
computer interaction. In Proceedings of the 28th International BCS Human Computer
Interaction Conference on HCI 2014-Sand, Sea and Sky-Holiday HCI, pages 201–206.
BCS, 2014.

[33] D. Fitton, J. C. C. Read, and M. Horton. The challenge of working with teens as
participants in interaction design. In CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pages 205–210. ACM, 2013.

[34] J. H. Flavell, P. H. Miller, and S. A. Miller. Cognitive development. Prentice-Hall
Englewood Cliffs, NJ, 1985.

[35] J. Gindling, A. Ioannidou, J. Loh, O. Lokkebo, and A. Repenning. LEGOsheets: a
rule-based programming, simulation and manipulation environment for the LEGO
programmable brick. In Visual Languages, Proceedings., 11th IEEE International
Symposium on, pages 172–179. IEEE, 1995.

[36] T. R. Green and M. Petre. When visual programs are harder to read than textual
programs. In Human-Computer Interaction: Tasks and Organisation, Proceedings of
ECCE-6 (6th European Conference on Cognitive Ergonomics). GC van der Veer, MJ
Tauber, S. Bagnarola and M. Antavolits. Rome, CUD. Citeseer, 1992.

[37] T. R. Green, M. Petre, and R. Bellamy. Comprehensibility of visual and textual programs:
A test of superlativism against the’match-mismatch’conjecture. ESP, 91(743):121–146,
1991.

[38] T. R. G. Green and M. Petre. Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2):131–
174, 1996.

[39] S. L. Greene, S. J. Devlin, P. E. Cannata, and L. M. Gomez. No IFs, ANDs, or
ORs: A study of database querying. International Journal of Man-Machine Studies,
32(3):303–326, 1990.

[40] GSMA. Mobile education in the united states, 2012.

[41] M. Guzdial. Programming environments for novices. Computer science education
research, 2004:127–154, 2004.

[42] W. Haidinger. MINT2020 zahlen, daten und fakten, 2013.

[43] L. Hanna, K. Risden, and K. Alexander. Guidelines for usability testing with children.
interactions, 4(5):9–14, 1997.

[44] R. Harrison, D. Flood, and D. Duce. Usability of mobile applications: literature review
and rationale for a new usability model. Journal of Interaction Science, 1(1):1–16, 2013.

Bibliography 144

[45] A. Harzl, V. Krnjic, F. Schreiner, and W. Slany. Comparing purely visual with hybrid
visual/textual manipulation of complex formula on smartphones. In DMS, pages
198–201, 2013.

[46] S. Hoober. How do users really hold mobile devices, 2013.

[47] J. P. Hourcade. Interaction design and children. Foundations and Trends in Human-
Computer Interaction, 1(4):277–392, 2008.

[48] J. P. Hourcade, K. B. Perry, and A. Sharma. Pointassist: helping four year olds point
with ease. In Proceedings of the 7th international conference on Interaction design and
children, pages 202–209. ACM, 2008.

[49] S. Idler. 5 key criteria of a good user experience for children, 2013.

[50] K. M. Inkpen. Drag-and-drop versus point-and-click mouse interaction styles for children.
ACM Transactions on Computer-Human Interaction (TOCHI), 8(1):1–33, 2001.

[51] J. P. Ioannidis. Why most published research findings are false. Chance, 18(4):40–47,
2005.

[52] R. Jacob and K. S. Karn. Eye tracking in human-computer interaction and usability
research: Ready to deliver the promises. Mind, 2(3):4, 2003.

[53] R. Joiner, D. Messer, P. Light, and K. Littleton. It is best to point for young children:
a comparison of children’s pointing and dragging. Computers in Human Behavior,
14(3):513–529, 1998.

[54] K. Kahn. Toontalk TM—an animated programming environment for children. Journal
of Visual Languages & Computing, 7(2):197–217, 1996.

[55] T. Kallio, A. Kaikkonen, et al. Usability testing of mobile applications: A comparison
between laboratory and field testing. Journal of Usability studies, 1(4-16):23–28, 2005.

[56] A. Kay. Squeak etoys, children & learning. online article, 2006, 2005.

[57] A. C. Kay. The early history of smalltalk. In History of programming languages—II,
pages 511–598. ACM, 1996.

[58] C. Kelleher and R. Pausch. Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2):83–137, 2005.

[59] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam,
and J. Rosenberg. Preliminary guidelines for empirical research in software engineering.
Software Engineering, IEEE Transactions on, 28(8):721–734, 2002.

[60] J. Kjeldskov and C. Graham. A review of mobile HCI research methods. In Human-
computer interaction with mobile devices and services, pages 317–335. Springer, 2003.

[61] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrance, H. Lieberman, B. Myers, et al. The state of the art in end-user software
engineering. ACM Computing Surveys (CSUR), 43(3):21, 2011.

Bibliography 145

[62] R. Koitz and W. Slany. Empirical comparison of visual to hybrid formula manipulation
in educational programming languages for teenagers. In Proceedings of the 5th Workshop
on Evaluation and Usability of Programming Languages and Tools, pages 21–30. ACM,
2014.

[63] D. Krannich and J. Friedrich. Mobile usability-testing, 2010.

[64] T. Lang. Eight lessons in mobile usability testing.

[65] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. Vermeeren, and J. Kort. Understanding,
scoping and defining user experience: a survey approach. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 719–728. ACM, 2009.

[66] C. M. Lewis. How programming environment shapes perception, learning and goals:
logo vs. scratch. In Proceedings of the 41st ACM technical symposium on Computer
science education, pages 346–350. ACM, 2010.

[67] J. R. Lewis. Ibm computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction, 7(1):57–
78, 1995.

[68] H. Lieberman. Your wish is my command: Programming by example. Morgan Kaufmann,
2001.

[69] Lohmann and Schaeffer. System Usability Scale (SUS) – an improved german translation
of the questionnaire, 2013.

[70] H. LORANGER and J. NIELSEN. Teenage usability: Designing teen-targeted websites.
2013.

[71] S. Y. Lye and J. H. L. Koh. Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior,
41:51–61, 2014.

[72] C. Lynch. Information literacy and information technology literacy: new components
in the curriculum for a digital culture. Committee on Information Technology Literacy.
Retrieved October, 8:2004, 1998.

[73] O. Machado Neto and M. d. G. Pimentel. Heuristics for the assessment of interfaces of
mobile devices. In Proceedings of the 19th Brazilian symposium on Multimedia and the
web, pages 93–96. ACM, 2013.

[74] M. Madden, A. Lenhart, M. Duggan, S. Cortesi, and U. Gasser. Teens and technology
2013, 2013.

[75] P. Markopoulos and M. Bekker. How to compare usability testing methods with children
participants. In Interaction Design and Children, volume 2. Citeseer, 2002.

[76] P. Markopoulos and M. Bekker. Interaction design and children. Interacting with
computers, 15(2):141–149, 2003.

Bibliography 146

[77] F. Martin. Kids learning engineering science using LEGO and the programmable brick.
Proc of AERA, 96, 1996.

[78] G. Mascheroni and A. Cuman. Net children go mobile - final report. 2014.

[79] L. McIver. Evaluating languages and environments for novice programmers. In Four-
teenth Annual Workshop of the Psychology of Programming Interest Group (PPIG
2002), Brunel University, Middlesex, UK, 2002.

[80] L. McIver, L. M, and D. Conway. GRAIL: A zeroth programming language, 1999.

[81] F. McKay and M. Kölling. Predictive modelling for HCI problems in novice program
editors. In Proceedings of the 27th International BCS Human Computer Interaction
Conference, page 35. British Computer Society, 2013.

[82] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari. Learning computer science concepts
with Scratch. Computer Science Education, 23(3):239–264, 2013.

[83] G. Meter and P. Miller. Engaging students and teaching modern concepts: Literate,
situated, object-oriented programming. In ACM SIGCSE Bulletin, volume 26, pages
329–333. ACM, 1994.

[84] T. G. Moher, D. Mak, B. Blumenthal, and L. Levanthal. Comparing the comprehensi-
bility of textual and graphical programs. In Empirical Studies of Programmers: Fifth
Workshop, pages 137–161. Ablex, Norwood, NJ, 1993.

[85] R. Molich, M. R. Ede, K. Kaasgaard, and B. Karyukin. Comparative usability evaluation.
Behaviour & Information Technology, 23(1):65–74, 2004.

[86] R. Morelli, T. de Lanerolle, P. Lake, N. Limardo, E. Tamotsu, and C. Uche. Can android
app inventor bring computational thinking to K-12. In Proc. 42nd ACM technical
symposium on Computer science education (SIGCSE’11), 2011.

[87] B. A. Nardi. A small matter of programming: perspectives on end user computing. MIT
press, 1993.

[88] B. A. Nardi. A small matter of programming: perspectives on end user computing. MIT
press, 1993.

[89] D. Neary and M. Woodward. An experiment to compare the comprehensibility of
textual and visual forms of algebraic specifications. Journal of Visual Languages &
Computing, 13(2):149–175, 2002.

[90] A. Ng, S. A. Brewster, and J. H. Williamson. Investigating the effects of encumbrance
on one-and two-handed interactions with mobile devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1981–1990. ACM, 2014.

[91] J. Nielsen. Finding usability problems through heuristic evaluation. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 373–380. ACM,
1992.

Bibliography 147

[92] J. Nielsen. Enhancing the explanatory power of usability heuristics. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems, pages 152–158.
ACM, 1994.

[93] J. Nielsen. Usability engineering. Elsevier, 1994.

[94] J. Nielsen. Usability inspection methods. In Conference companion on Human factors
in computing systems, pages 413–414. ACM, 1994.

[95] J. Nielsen and T. K. Landauer. A mathematical model of the finding of usability
problems. In Proceedings of the INTERACT’93 and CHI’93 conference on Human
factors in computing systems, pages 206–213. ACM, 1993.

[96] J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 249–256. ACM,
1990.

[97] D. A. Norman and S. W. Draper. User centered system design. Hillsdale, NJ, 1986.

[98] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti. Interaction in 4-second bursts:
the fragmented nature of attentional resources in mobile HCI. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 919–928. ACM,
2005.

[99] R. K. Pandey and M. M. Burnett. Is it easier to write matrix manipulation programs
visually or textually? an empirical study. In Visual Languages, 1993., Proceedings 1993
IEEE Symposium on, pages 344–351. IEEE, 1993.

[100] J. Pane and B. Myers. Usability issues in the design of novice programming systems.
1996.

[101] J. F. Pane, B. Myers, et al. Tabular and textual methods for selecting objects from a
group. In Visual Languages, 2000. Proceedings. 2000 IEEE International Symposium
on, pages 157–164. IEEE, 2000.

[102] J. F. Pane, B. Myers, L. B. Miller, et al. Using HCI techniques to design a more usable
programming system. In Human Centric Computing Languages and Environments,
2002. Proceedings. IEEE 2002 Symposia on, pages 198–206. IEEE, 2002.

[103] S. Papert. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.,
1980.

[104] S. Pasiali and A. MacFarlane. Adapting the heuristic evaluation method for use with
children. In Proceedings of the Workshop on child computer interaction: methodological
research, 2005.

[105] M. Petre. Why looking isn’t always seeing: readership skills and graphical programming.
Communications of the ACM, 38(6):33–44, 1995.

[106] M. Petre and A. F. Blackwell. Children as unwitting end-user programmers. In Visual
Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on,
pages 239–242. IEEE, 2007.

Bibliography 148

[107] A. Poole and L. J. Ball. Eye tracking in HCI and usability research. Encyclopedia of
human computer interaction, 1:211–219, 2006.

[108] M. Prensky. Digital natives, digital immigrants part 1. On the horizon, 9(5):1–6, 2001.

[109] T. W. Price and T. Barnes. Comparing textual and block interfaces in a novice pro-
gramming environment. In Proceedings of the eleventh annual International Conference
on International Computing Education Research, pages 91–99. ACM, 2015.

[110] H. R. Ramsey, M. E. Atwood, and J. R. Van Doren. Flowcharts versus program design
languages: an experimental comparison. Communications of the ACM, 26(6):445–449,
1983.

[111] A. Repenning. Agentsheets: a tool for building domain-oriented visual programming
environments. In Proceedings of the INTERACT’93 and CHI’93 conference on Human
factors in computing systems, pages 142–143. ACM, 1993.

[112] A. Repenning. Making programming accessible and exciting. Computer, 46(6):78–81,
2013.

[113] M. Resnick, A. Bruckman, and F. Martin. Pianos not stereos: Creating computational
construction kits. interactions, 3(5):40–50, 1996.

[114] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

[115] M. Resnick, S. Ocko, et al. LEGO/logo–learning through and about design. Epistemology
and Learning Group, MIT Media Laboratory, 1990.

[116] M. Resnick and B. Silverman. Some reflections on designing construction kits for kids.
In Proceedings of the 2005 conference on Interaction design and children, pages 117–122.
ACM, 2005.

[117] J. Rubin and D. Chisnell. Handbook of usability testing: how to plan, design and conduct
effective tests. John Wiley & Sons, 2008.

[118] J. Sauro and J. S. Dumas. Comparison of three one-question, post-task usability ques-
tionnaires. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1599–1608. ACM, 2009.

[119] J. Sauro and E. Kindlund. A method to standardize usability metrics into a single
score. In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 401–409. ACM, 2005.

[120] J. Sauro and J. R. Lewis. Correlations among prototypical usability metrics: evidence
for the construct of usability. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1609–1618. ACM, 2009.

[121] J. Sauro and J. R. Lewis. Quantifying the user experience: Practical statistics for user
research. Elsevier, 2012.

Bibliography 149

[122] D. Scanlan et al. Structured flowcharts outperform pseudocode: An experimental
comparison. Software, IEEE, 6(5):28–36, 1989.

[123] M. Schmettow, C. Bach, and D. Scapin. Optimizing usability studies by complementary
evaluation methods. In Proceedings of the 28th International BCS Human Computer
Interaction Conference on HCI 2014-Sand, Sea and Sky-Holiday HCI, pages 110–119.
BCS, 2014.

[124] sesameworkshop. Best practices: Designing touch tablet experiences for preschoolers,
2013.

[125] R. Sheehan. Children’s perception of computer programming as an aid to designing
programming environments. In Proceedings of the 2003 conference on Interaction design
and children, pages 75–83. ACM, 2003.

[126] B. Shneiderman, R. Mayer, D. McKay, and P. Heller. Experimental investigations
of the utility of detailed flowcharts in programming. Communications of the ACM,
20(6):373–381, 1977.

[127] W. Slany. A mobile visual programming system for Android smartphones and tablets. In
Visual Languages and Human-Centric Computing (VL/HCC), 2012 IEEE Symposium
on, pages 265–266. IEEE, 2012.

[128] J. G. Smetana, N. Campione-Barr, and A. Metzger. Adolescent development in
interpersonal and societal contexts. Annu. Rev. Psychol., 57:255–284, 2006.

[129] D. C. Smith. Pygmalion: a creative programming environment. Technical report, DTIC
Document, 1975.

[130] D. C. Smith, A. Cypher, and J. Spohrer. KidSim: programming agents without a
programming language. Communications of the ACM, 37(7):54–67, 1994.

[131] E. Soloway, M. Guzdial, and K. E. Hay. Learner-centered design: The challenge for
HCI in the 21st century. interactions, 1(2):36–48, 1994.

[132] A. Stefik and S. Siebert. An empirical investigation into programming language syntax.
ACM Transactions on Computing Education (TOCE), 13(4):19, 2013.

[133] L. Steinberg. Cognitive and affective development in adolescence. Trends in cognitive
sciences, 9(2):69–74, 2005.

[134] D. Tetteroo and P. Markopoulos. A review of research methods in end user development.
In End-User Development, pages 58–75. Springer, 2015.

[135] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. TouchDevelop: programming
cloud-connected mobile devices via touchscreen. In Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and reflections on programming and software,
pages 49–60. ACM, 2011.

Bibliography 150

[136] I. E. van Kesteren, M. M. Bekker, A. P. Vermeeren, and P. A. Lloyd. Assessing
usability evaluation methods on their effectiveness to elicit verbal comments from
children subjects. In Proceedings of the 2003 conference on Interaction design and
children, pages 41–49. ACM, 2003.

[137] K. N. Whitley. Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages & Computing, 8(1):109–142, 1997.

[138] C. Wilson. User Experience Re-Mastered: your guide to getting the right design. Morgan
Kaufmann, 2009.

[139] C. Wilson. User Interface Inspection Methods: A User-Centered Design Method. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2014.

[140] C. E. Wilson. Triangulation: the explicit use of multiple methods, measures, and
approaches for determining core issues in product development. interactions, 13(6):46–ff,
2006.

[141] J. M. Wing. Computational thinking. Communications of the ACM, 49(3):33–35, 2006.

[142] O. A. Wodike, G. Sim, and M. Horton. Empowering teenagers to perform a heuristic
evaluation of a game. In Proceedings of the 28th International BCS Human Computer
Interaction Conference on HCI 2014-Sand, Sea and Sky-Holiday HCI, pages 353–358.
BCS, 2014.

[143] D. Wolber, H. Abelson, E. Spertus, and L. Looney. App Inventor. ” O’Reilly Media,
Inc.”, 2011.

[144] U. Wolz, C. Hallberg, and B. Taylor. Scrape: A tool for visualizing the code of Scratch
programs. In Poster presented at the 42nd ACM Technical Symposium on Computer
Science Education, Dallas, TX, 2011.

[145] D. Zhang and B. Adipat. Challenges, methodologies, and issues in the usability
testing of mobile applications. International Journal of Human-Computer Interaction,
18(3):293–308, 2005.

[146] F. Zijlstra and L. Van Doorn. The construction of a scale to measure perceived effort.
University of Technology, 1985.

Appendix

151

Appendix 152

7.1 Pre Test Questionnaire

Before the test we asked the participants demographic as well as questions on their computer
experience. ”-” denotes that the participant was not able to answer the question.

• General

Q1 Are you allowed to use a calculator in school?

Q2 Do you have experience with using a calculator?

Q3 What are the brand and model name of the calculator you are using?

• Computer Experience

Q4 Do you own a computer?

Q5 Do you daily use the computer?

Q6 Do you have Internet access at home?

Q7 Are you allowed to go on the Internet by yourself?

Q8 What do you usually use the computer for?

• Smart Phone Experience

Q9 Do you own a smart phone?

Q10 For how long have you had the smart phone?

Q11 Do you know the brand and model name of the smart phone?

Q12 Do you own a tablet?

Q13 For how long have you had the tablet?

Q14 Do you know the brand and model name of the tablet?

Q15 What is the name of your favorite app?

Q16 What do you usually use the smart phone for?

Q17 What do you usually use the tablet for?

A
p
p
en
d
ix

153

Participant Gender Age Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1 female 16 yes yes - yes no yes yes YouTube

2 male 16 yes yes with graphical display yes no yes yes Games, Study/ Home-
work, YouTube, Face-
book, Internet, Emails

3 male 17 yes yes - yes yes yes yes Games, Study/ Home-
work, YouTube, Face-
book, Internet, Emails

4 male 17 yes yes Ti Nspire Cx yes yes yes yes Games, Study/ Home-
work, Youtube, Face-
book, Internet, Emails

5 male 13 yes yes - yes no yes yes Internet

6 male 13 yes yes - no (sharing with
siblings)

no yes yes YouTube

7 male 13 yes yes - no (sharing with
siblings)

no yes yes Games, Facebook

8 female 14 yes yes - yes no yes yes YouTube,Email

9 female 16 yes yes - yes yes yes yes Internet

10 female 16 yes yes - yes no yes yes Games

11 female 16 yes yes - yes yes yes yes YouTube

12 female 17 yes no TI Inspire XT yes yes yes yes Games, YouTube,
Study/ Homework

13 female 17 yes yes TI Inspire XT yes yes yes yes YouTube, Study/ Home-
work

14 female 17 yes yes - no (shared with
parents)

no yes yes Study/ Homework

15 female 17 yes yes TI Inspire TX yes yes yes yes Facebook, YouTube

A
p
p
en
d
ix

154

16 male 12 no - - no (shared with
siblings/parents)

yes yes yes Games, Study/ Home-
work, Internet, Face-
book, YouTube

17 male 13 no - - no (shared with
parents)

no yes no Games, Study/ Home-
work

18 male 13 no - - yes no yes yes Games, Study/ Home-
work, YouTube

19 male 12 no - - yes no yes yes Games, Study/ Home-
work, YouTube, Face-
book, Internet

Table 7.1: Pre-test questionnaire answers (1).

A
p
p
en
d
ix

155

Participant Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

1 yes 3 yrs iPhone yes 1.5yrs CMX Instagram Drawing, Texting, Call-
ing, WhatsApp

Internet

2 yes 3-4 yrs Galaxy S4 yes 1 yrs iPad Facebook, What-
sApp, Internet

Facebook, WhatsApp,
Internet

Games, Internet

3 yes 4 yrs iPhone 5s yes 1 yrs mini iPad Snapchat Taking pictures, Tex-
ting, Calling, Internet,
Facebook, Games

Taking pic-
tures, Texting,
Calling, Inter-
net, Facebook,
Study/Homework

4 yes 6 yrs iPhone 5s yes 2-3 yrs iPad Facebook Internet, Facebook,
Study/ Homework

Looking at Pic-
tures, Internet

5 yes 2 yrs iPhone no - - Clash of Clans Games, Internet -

6 yes 1 yrs iPhone 4 no - - YoutTube Taking pictures, Face-
book, Internet

-

7 yes 1.5 yrs Sony Xperia
T

no - - Fifa14 Facebook, WhatsApp -

8 yes 0.5 yrs Samsung
Galaxy
Core Plus

no - - WhatsApp Texting, Calling -

9 yes 3 yrs iPhone 4 no - - WhatsApp Internet -

10 yes 1 yrs Sony no - - Chrome Texting -

11 yes 3 yrs Galaxy S2 yes 0.5 yrs - YouTube Texting YouTube

12 yes 4 yrs iPhone 5C no - - WhatsApp,
Snapchat

Texting, Calling -

13 yes 5 yrs Motorola no - - Twitter, Emails,
Facebook

Emails, Twitter -

14 yes 2 yrs HTC One
mini

yes 2 yrs iPad Facebook Texting, Calling, Face-
book

Games, Facebook

15 no - - no - - - - -

A
p
p
en
d
ix

156

Participant Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

16 yes 1.5 yrs LG Opti-
mus L5

no - - Playstore Games Texting, Calling -

17 no - - - - - - - -

18 yes 1.5 Galaxy S3 no - - Facebook Facebook, Calling,
WhatsApp

-

19 yes 2 Note 2 no - - Games Games, Taking Pictures,
Internet, Facebook

-

Table 7.2: Pre-test questionnaire answers (2).

Aufgabe 1
Probiere das Spiel Kitty Cross aus.

Aufgabe 2
Wir möchten, dass das Spiel beendet wird sobald die Katze vom Auto
erwischt wird. Aber leider ist ein Fehler im Skript vom Auto.

• Gehe zu den Skripts vom Auto.
• Suche das Skript „Setze Variable ’car position:’ auf“
• Ersetze „position_y“ mit „position_x“

Aufgabe 3
 Unsere Katze ist zu langsam, hilf ihr schneller zu laufen! Dazu mach folgendes:

• Gehe zu den Skripts von der Katze.
• Suche das Skript „Ändere Y um“.
• Gib die folgende Formel ein: 3 * Zufall (5,10) + 4 / 0.5

• Bitte ändere nun die, gerade eingegebene, Formel in:

3 * Zufall(6,12) + 4 * 0.5

Aufgabe 4
Wir brauchen noch immer ein Skript für die Kollision. Führe dazu die folgenden Schritte
durch:

• Gehe zu den Skripts der Katze
• Suche nach dem „Falls“ Skript
• Ändere die Formel

von: ((position_y > -180) UND (position_y < 180)) ODER 0

zu: ((position_y > -180) UND (position_y < 180)) ODER
(("car position" > -150) UND ("car position" < 150))

Tipp: "car position" ist eine Variable.

Appendix 157

7.2 Tasks German

Aufgabe 1
Probiere das Spiel Ball Pong aus.

 Aufgabe 2
Der Balken (Paddle) scheint nicht richtig zu funktionieren, da er nicht der
Mausbewegung folgt. Bitte stelle dies richtig:

• Gehe zu den Skripts vom Balken (Paddle)
• Suche nach dem „setze x auf“ Skript
• Ersetze „Maus y-Position“ mit dem „Maus x-Position“ Skript.

Aufgabe 3
 Das Spiel ist so zu einfach, wir wollen, dass der Ball sich schneller bewegt.

• Gehe zu den Skripts vom Ball.
• Im ersten Block der Skripts ist ein „gehe _er-Schritte“ Skript.
• Füge die folgenden Formel in dieses Skript ein:

Zufallszahl von (0 bis 8) / 0.5 – 3 * 2

• Ändere die Formel zu: Zufallszahl von (0 bis 8) /0.5 + 1 * 1

 Aufgabe 4
Wir möchten, dass das Spiel beendet wird sobald der Ball den Boden berührt.
Mache dazu folgendes:

• Gehe zu den Skripts vom Ball.
• Im 2. Skript Block suche nach dem zweiten „Falls _ dann“ Skript.
•

Ersetzte: (1 = 1)

durch: x-Position > (X Position Paddle – 25)

Tipp: "X Position Paddle" ist eine Variable.

Appendix 158

Appendix 159

7.3 Post Test Questionnaire

• General Questions

1. How was it?

2. Which task do you think was especially easy/difficult using Pocket Code?

3. Which task do you think was especially easy/difficult using Scratch?

• Preference Questions

1. Which system did you like better? Why?

2. Which system do you think is easier to use?

3. Was it easier to work with the formulas in Pocket Code or Scratch? (Explain your
answer)

4. Would you prefer to learn Scratch or Pocket Code in school?

5. Could you imagine using Pocket Code or Scratch by yourself in your free time?

	Contents
	List of Tables
	List of Figures
	Introduction
	Smartphone Penetration
	Problem Statement
	Pocket Code
	Formula Manipulation

	Contribution of the Thesis
	Thesis Outline

	Related Work
	Research on Visual Programming Languages
	Algebraic Specification
	Language Comparison and Evaluation

	Programming Education
	Teaching Systems
	Constructivism
	Metaphor
	Educational Programming Languages and Environments
	Logo and Its Descendants
	Rule-based Systems
	Mobile App Programming Environments

	Theoretical Background
	Attributes
	Evaluation Methods
	Heuristic Evaluation
	Evaluators
	Heuristics
	Usability Issues and Ratings
	Advantages and Disadvantages

	Usability Testing
	Test Plan
	Test types
	Sampling
	Tasks
	Quality of Testing
	Measuring the User Experience
	Quantitative Data
	Self-Reported Data
	Behavioral and Physiological Metrics
	Single Usability Metric

	Method Triangulation
	Children and Teenagers
	Designing for Children
	Usability Evaluations
	Age Ranges
	Guidelines

	Teenagers

	Mobile Devices
	People At the Centre of Mobile Application Development
	Interaction Mode
	Operating System Guidelines
	Children and Mobile Devices
	Mobile Usability Testing

	Usability Evaluation
	Heuristic Evaluation of Pocket Code
	Evaluators
	Heuristics
	Results

	Summative Usability Study
	Formula Manipulation in Scratch
	Procedure and Data Collection
	Participants
	Pilot
	Training Sessions
	Tasks
	Questionnaires

	Results
	Effectiveness
	Efficiency
	Questionnaires
	Single Usability Score and Preference Data
	Eye Tracking
	Issues and Interpretation
	Validity

	Recommendations

	Conclusion and Future Work
	Bibliography
	Appendix
	Pre Test Questionnaire
	Tasks German
	Post Test Questionnaire

