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Abstract

The aim of this thesis is to find congruent number elliptic curves of high rank using an
algorithm implemented in SageMath. First we give an introduction to elliptic curves and
we consider the congruent number problem, which has a very long history in mathematics.
This problem asks if a given number n is the area of a right-angled triangle with rational
sides. Afterwards we discuss the relation between congruent numbers and elliptic curves.
Next we give a general idea of finding elliptic curves of relatively high rank and we present
our approach for finding high rank congruent number elliptic curves, which is based on this
general idea. Furthermore we state rank records of elliptic curves in general and congruent
number elliptic curves found so far. We also present our results which are congruent number
elliptic curves of rank six. Further down the line we describe the functions we implemented
to find these curves. Then we concentrate on applications of elliptic curves of high rank
in cryptography such as cryptosystems that are based on the discrete logarithm problem.
Finally a simplified version of our source code for finding such congruent number elliptic
curves is given in the appendix.

3





Contents

Introduction 7

1. Elliptic curves 11
1.1. Singular curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2. Weierstrass equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3. Group law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1. Explicit formulas for the point addition . . . . . . . . . . . . . . . . 16
1.4. Projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5. Elliptic curves over the rationals . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6. Elliptic curves over the reals . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7. Elliptic curves over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8. Reduction of an elliptic curve . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. Congruent number problem 33
2.1. History of the congruent number problem . . . . . . . . . . . . . . . . . . . 34
2.2. Problems equivalent to the congruent number problem . . . . . . . . . . . 35
2.3. Classes of congruent numbers . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4. From congruent numbers to elliptic curves . . . . . . . . . . . . . . . . . . 37
2.5. Congruent number elliptic curves . . . . . . . . . . . . . . . . . . . . . . . 39

3. Finding elliptic curves of high rank 43
3.1. Rank records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2. General idea for finding elliptic curves with relatively high rank . . . . . . 43
3.3. Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4. Implementation 49
4.1. Precomputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2. Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1. Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2. Sifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3. Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4. Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5. Applications of elliptic curves 65
5.1. Diffie-Hellman key exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1. Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5



Contents

5.1.2. Elliptic curve Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . 66
5.2. Massey-Omura cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1. Massey-Omura on finite fields . . . . . . . . . . . . . . . . . . . . . 67
5.2.2. Elliptic curve Massey-Omura . . . . . . . . . . . . . . . . . . . . . 68

5.3. ElGamal cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1. ElGamal on finite fields . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2. Elliptic curve ElGamal . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4. Digital Signature Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1. Digital Signature Algorithm . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2. Elliptic Curve Digital Signature Algorithm . . . . . . . . . . . . . . 71

A. Source code 73
A.1. Precomputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2. Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6



Introduction

In this thesis we try to find congruent number elliptic curves of relatively high rank by
implementing an algorithm for finding such curves in SageMath. In the case of congruent
number elliptic curves, relatively high rank means already ranks that are greater or equal
to six, in contrast to general elliptic curves where the highest known rank at the moment
is 28 and was found by Noam D. Elkies in 2006. For further details see Section 3.1. A
congruent number elliptic curve is given by the following equation

En : y2 = x3 − n2x,

where n ≥ 0 is a squarefree congruent number and we can see such a curve in Figure 0.1.
All pictures in this work were drawn using Asymptote by modifying the source code of the

Figure 0.1.: The elliptic curve En : y2 = x3 − 32x.

example ’elliptic.asy’ which can be found at [3].
We call a squarefree integer congruent, if it is the area of a right-angled triangle with
rational sides. As you can see in Section 3.4 we were able to find several congruent number
elliptic curves with rank six.
Now we give a brief overview of each chapter in this work. In Chapter 1 we start with some
basic knowledge about elliptic curves defined over a field K given in general Weierstrass
form

E : y2 − a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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which can be transformed to short Weierstrass form if the charK 6= 2, 3

E : y2 = x3 − ax− b,

where a, b ∈ K. The characteristic of a field K is

charK =

{
min{n ∈ N | n · 1 = 0} if such an n exists,

0 otherwise
.

Hence, fields as the field of rational numbers Q or the field of real numbers R have char-
acteristic 0. Whereas finite fields Fq = Fpn have characteristic p. Then we continue with
singular curves, the projective space and the fact that the points on an elliptic curve form
a group. The point at infinity O acts as an identity element for the point addition on
elliptic curves. We also consider elliptic curves over the rational numbers Q and the real
numbers R. Finally we present the reduction of an elliptic curve which is needed in our
implementations see therefore Chapter 4.

Afterwards in Chapter 2 we consider the very old congruent number problem and we give a
brief history on it starting with Diophantus in ancient times through to the 20-th century.
We shall also present some problems which are equivalent to the congruent number problem
and some classes of congruent numbers. Then we give the relation between congruent
numbers and congruent number elliptic curves. This relation can be seen in the following
theorem.

Theorem. The positive integer n is a congruent number if and only if En : y2 = x3 − n2x
defined over Q has rank r > 0.

This theorem is later given as Theorem 2.10 in Chapter 2. Finally we present some facts
about congruent number elliptic curves.

In Chapter 3 we search for congruent number elliptic curves of high rank. We first present
rank records of general elliptic curves and also congruent number elliptic curves found so
far. Then we give a general idea for finding elliptic curves with relatively high rank and
afterwards our approach, due to Andrej Dujella [15], which is used in our implementation.
Finally we present the congruent number elliptic curves of rank six found by our algorithm.

For more details about our implementation we discuss our program for finding high rank
congruent number elliptic curves in Chapter 4. We additionally present some problems we
came across during the implementation phase and some hints which where given by Andrej
Dujella.

Since the 1980s, when elliptic curves were introduced by Neal Koblitz and Victor Miller
for cryptographic reasons, elliptic curves became more and more popular. In cryptography
mainly elliptic curves over finite fields are used. In Chapter 6 we see that we can eas-
ily transform cryptosystems such as the Diffie-Hellman key exchange from finite fields to
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elliptic curves and also other cryptosystems which security is based on the discrete loga-
rithm problem. Since the discrete logarithm in elliptic curves is much harder to solve than
in finite fields we obtain a much more higher security even for smaller keys. We further
present the Massey-Omura and ElGamal cryptosystems which can be used for exchanging
secret messages over insecure channels. In contrast to the previously mentioned cryptosys-
tems, we can use the elliptic curve digital signature algorithm for signing messages. There
are also other applications of elliptic curves as they were used by Andrew Weil to prove
Fermat’s last theorem, which states that the equation

xn + yn = zn

with n > 2 has no integer solutions. Today elliptic curve cryptography has found many
applications in the area around the world wide web.
Finally we state the source code of our algorithm in the appendix.
For further details see [1, 13, 14, 15, 21, 25, 35].
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1. Elliptic curves

In this chapter we will present some basic facts and definitions about elliptic curves which
are based on the lecture notes [14] and the books [4, 10, 16, 19, 20, 21, 32, 33, 35] and [37].

Notation 1.1. For a field K we denote by K its algebraic closure.

Definition 1.2 (Elliptic curve). Let K be any field. An elliptic curve E over K is defined
by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)

where the coefficients a1, a2, a3, a4, a6 ∈ K and the discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 6= 0,

for

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Therefore the elliptic curve E consists of all points (x, y) ∈ K×K satisfying the above equa-
tion together with the point at infinity O. We say that the above equation is in Weierstrass
form.

Definition 1.3. Since the discriminant ∆ 6= 0 we can further define the j-invariant of the
curve E as

j(E) = (b22 − 24b4)
3/∆.

Later we will see that we can give a classification of isomorphic elliptic curves with the
help of the j-invariant.

Remark 1.4. The field K could be for example the field of rational numbers Q, the field
of real numbers R, the field of complex numbers C or any finite field Fq where q = pr with
p prime and r ≥ 1.

Remark 1.5. If E is defined over K, then it is also defined over any extension field L ⊇ K.

Suppose we would like to limit the coordinates x, y to elements of the field K.
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1. Elliptic curves

Definition 1.6. We call a point P = (x, y) ∈ E with x, y ∈ K a K-rational point and the
group

E(K) = {O} ∪ {(x, y) ∈ K ×K | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6}

is called the group of K-rational points.

We can also search for points over larger fields.

Definition 1.7. Let K and L be arbitrary fields with L ⊇ K and let E be an elliptic curve
defined over K. Then we can also consider E over L which is defined as follows:

E(L) = {O} ∪ {(x, y) ∈ L× L | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6}.

The elements of E(L) are called L-rational points.

In the definition of an elliptic curve we have demanded that the discriminant has to be
nonzero, but it is possible that we obtain a singular curve i.e., a curve with ∆ = 0, if we
reduce an elliptic curve modulo a prime p. In the next section we consider such curves.

1.1. Singular curves

This section is based on [19, 21, 32, 33] and [37].

Definition 1.8. A point P = (x, y) ∈ K × K on an elliptic curve E over K is called
singular if both partial derivatives ∂f/∂x and ∂f/∂y vanish at P. We call a point P = (x, y)
non-singular or smooth if at least one partial derivative at P unequals zero.

Definition 1.9. An elliptic curve is called singular if it has a singular point and it is called
non-singular, if all points P ∈ K ×K on the curve are non-singular.

Remark 1.10. The point at infinity O is not singular. For more details about this state-
ment see Remark 1.38.

Remark 1.11. We also know, if there is a singular point on E, then this is the only one,
cf. Proposition 3.10 in [19].

Now let us suppose that we are looking for singular points on an given elliptic curve E
and let us assume that P = (x0, y0) is a singular point on E : f(x, y) = 0. It is sufficient to
consider points P ∈ K ×K in the affine plane since the point at infinity is non-singular.
Therefore both partial derivatives must vanish at P0 = (x0, y0) and hence the following
equations must be satisfied

f(x0, y0) = y0
2 + a1x0y0 + a3y0 − x03 − a2x02 − a4x0 − a6 = 0, (1.2)

∂f

∂x
(x0, y0) = a1y0 − 3x0

2 − 2a2x0 − a4 = 0, (1.3)

∂f

∂y
(x0, y0) = 2y0 + a1x0 + a3 = 0, (1.4)
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1.1. Singular curves

for a singular point.
In the following we present some pictures of singular curves. As already mentioned, the
source code of the example ”elliptic.asy”, cf. [3], were modified by us.
As you can see in Figure 1.1, a singular curve can have a cusp. This happens if the right
hand side of the elliptic curve equation has a triple root as it is the case for E : y2 = x3.
Here the singularity is the point P = (0, 0). In the two other cases the right hand sides
of the equations have double roots. The example in Figure 1.2 shows the singular curve
E : y2 = x3 + x2 which has a node at the singular point P = (0, 0). This point has two
distinct tangent directions. Finally we present a singular curve with an isolated point
P = (0, 0) as it is illustrated in Figure 1.3 for the curve E : y2 = x3 − x2.

Figure 1.1.: A singular curve
E : y2 = x3 with a cusp
at P = (0, 0).

Figure 1.2.: A singular curve
E : y2 = x3 + x2 with a
node at P = (0, 0).

Figure 1.3.: A singular curve E : y2 = x3 − x2 with an isolated point at P = (0, 0).

It is possible to classify singular curves with the help of the following proposition.

Proposition 1.12. Let K be a field of characteristic charK 6= 2. For an elliptic curve E
over K given in Weierstrass form the following statements are equivalent:

(i) The elliptic curve E is non-singular.

(ii) The discriminant ∆ of E is nonzero.
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1. Elliptic curves

(iii) The right hand side of the equation y2 = x3 + ax2 + bx+ c has no multiple roots i.e.
the equation x3 + ax2 + bx+ c has three distinct roots.

Remark 1.13. Since the field K has characteristic charK 6= 2 we can transform the given
long Weierstrass equation into y2 = x3 +ax2 + bx+ c by an admissible change of variables.
For further details see Section 1.2 and Section 1.3 in [33].

Proof. (i)⇐⇒ (ii) See proof of Theorem 3.2 in [19].
(i)⇐⇒ (iii) See proof of Proposition 3.5 in [19].

Remark 1.14. For a generalization of the equivalence (i)⇐⇒ (ii) (without the restriction:
charK 6= 2) see Appendix A in [32].

In the next section we consider elliptic curves defined over fields K which can be trans-
formed to shorter forms such as the short Weierstrass form.

1.2. Weierstrass equations

If we have a field K of special characteristic, then equation (1.1) in long Weierstrass form
can be simplified by admissible changes of variables. As we already saw in the previous
section for the case charK 6= 2. For further details see [10, 16, 32] and [35].
In case of a field K with charK = 2 we can transform the equation in long Weierstrass
form (1.1) depending on a1 to

y2 + cy = x3 + ax+ b (if a1 = 0), (1.5a)

with

∆ = c4

j(E) = 0,

or to

y2 + xy = x3 + ax2 + b (if a1 6= 0), (1.5b)

with

∆ = b

j(E) = 1/b,

where a, b, c ∈ K.
If charK = 3, then equation (1.1) can be written as

y2 = x3 + ax2 + b (if a21 6= −a2), (1.6a)
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1.2. Weierstrass equations

with

∆ = −a3b,
j(E) = −a3/b,

or as

y2 = x3 + ax+ b (if a21 = −a2), (1.6b)

with

∆ = −a3,
j(E) = −0,

depending on a1 and a2 and a, b ∈ K.
For the case charK 6= 2, 3, we can transform equation (1.1) to short Weierstrass form

y2 = x3 + ax+ b. (1.7)

The discriminant of the curve is given by

∆ = −16(4a3 + 27b2),

and the curve E has j-invariant

j(E) = 1728a3/4∆.

As already mentioned, we can use the j-invariant to determine if two elliptic curves are
isomorphic. Since it does not depend on a particular chosen equation, but it is an invariant
of the whole isomorphism class of an elliptic curve.

Proposition 1.15. Let E and E ′ be two elliptic curves defined over K. Then E ' E ′ over
K if and only if the j-invariants of the two curves j(E) and j(E ′) coincide.

Proof. See Proposition 1.4 in [32].

Remark 1.16. There are two special cases for the j-invariant of an elliptic curve E.
Namely j(E) = 0, when the elliptic curve is of the form E : y2 = x3 + b. The second
case is a j-invariant j(E) = 1728, which implies that the corresponding E has the form
E : y2 = x3 + ax.

Remark 1.17. Another interesting fact is, that over a non-algebraically closed field K it
is possible that two elliptic curves, with the same j-invariant, cannot be transformed into
each other by rational functions with coefficients in K.

This is the case for the following curves.

Example 1.18. The curves E : y2 = x3 − 4x and E ′ : y2 = x3 − 25x defined over the
rational numbers Q cannot be transformed into the other by rational functions although the
j-invariants j(E) = j(E ′) = 1728 coincide. The reason for that will be given in Example
2.12.

Before we continue with the group law we present the definition of twists of elliptic curves.

Definition 1.19. Let E and E ′ be two elliptic curves defined over K. If these two curves
have the same j-invariant, then we say that they are twists of each other.
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1. Elliptic curves

1.3. Group law

Next we would like to show that the points of an elliptic curve form an abelian group where
the point at infinity O is the identity element. This group is important for elliptic curve
cryptography. For more information see [14, 21, 32, 33, 35, 37] and [38].
First of all we will define the negative of a given point and the addition of two points on
an elliptic curve. Assume we have an elliptic curve E in short Weierstrass form over a field
K with charK 6= 2, 3.

Definition 1.20 (Negative of a point). The negative of a given point P = (x, y) is the other
point of intersection between a vertical line through P and the elliptic curve E. Suppose we
have an elliptic curve in short Weierstrass form, then the negative of a point P is just the
reflection along the x-axis i.e. −P = (x,−y). The negative of the point at infinity P = O
is the point at infinity itself. So −O = O.

From the geometrical point of view the point addition can be seen as the following way of
proceeding:

Definition 1.21 (Addition of two distinct points). For two points P and Q we draw a line
through these two points. We label the third point of intersection between this line and the
elliptic curve E as R. Since the elliptic curve is given by a cubic equation it intersects the
line at exactly three points. However these points may not be pairwise distinct as it is the
case if the line is tangent at a point. Afterwards we reflect this point R across the x-axis
and get our result P +Q = −R.

Definition 1.22 (Doubling a point). Suppose we want to compute 2P. In that case we
use a tangent line at P and consider the second point of intersection R between this line
and the elliptic curve E. Again we have to reflect this point across the x-axis to obtain our
required point 2P = −R.

The following pictures illustrate these constructions.

1.3.1. Explicit formulas for the point addition

Next we will present some arithmetic formulas for point addition because they will simplify
computing the sum.
Suppose we have two distinct points

P = (x1, y1) 6= O and

Q = (x2, y2) 6= O with x1 6= x2,

and we want to compute the sum

P +Q = (x3, y3).
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1.3. Group law

P
Q

R

−R = P +Q

Figure 1.4.: Addition: P +Q

P

R

−R = 2P

Figure 1.5.: Doubling: 2P

In other words we try to compute from these two given points another point on the curve.
As described above we have to draw a line ` through P and Q. This line has slope

α = (y2 − y1)/(x2 − x1) (1.8)

and hence its equation is of the form y = α(x− x1) + y1. We know that for another point
of intersection the following must hold:

y2 = (α(x− x1) + y1)
2 = x3 + ax+ b,

= (αx)2 − 2α2xx1 + (−αx1)2 − 2αx1y1 + (y1)
2 + 2αxy1

= (α2)x2 − (2α2x1 − 2αy1)x− (2αx1y1 − α2x21 − y21)

and by rearranging we obtain the following equation

0 = x3 − (α2)x2 + (2α2x1 − 2αy1)x+ (2αx1y1 − α2x21 − y21). (1.9)

Since we know that our equation in short Weierstrass form has three distinct roots we get

x3 − (α2)x2 + (2α2x1 − 2αy1)x+ (2αx1y1 − α2x21 − y21)

= (x− x1)(x− x2)(x− x3)
= x3 − (x1 + x2 + x3)x

2 + (x1x2 + x2x3 + x1x3)x− (x1x2x3).

Now we can easily compute the coordinate x3 = α2 − x1 − x2 because two intersection
points P = (x1, y1) and Q = (x2, y2) are already known. For y3 we just have to put x3 in

17



1. Elliptic curves

the equation of ` and so we have the point R. To get the sum we have to reflect this point
along the x-axis i.e. negate the y-coordinate.
Therefore

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2;

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1.

(1.10)

If P and Q have the same x-coordinate but different y-coordinates, then the line ` inter-
secting P and Q is a vertical line and the third intersection point is the point at infinity
O. Since reflecting O also gives O we have P +Q = O.
Suppose that P = (x1, y1) 6= O but Q = O. Then the line through P and Q is again a
vertical line that intersects the elliptic curve E in another point P ′ and reflecting it gives
P again. So P +O = P. Furthermore we know that O +O = O.
If P = Q = (x1, y1) we are in the case of doubling a point P. Here we cannot use our
previous formula for α, but we can compute the slope of ` by using implicit differentiation
of y2 = f(x) and if we proceed as above we get the following coordinates for 2P :

x3 =

(
3x21 + a

2y1

)2

− 2x1;

y3 =

(
3x21 + a

2y1

)
(x1 − x3)− y1.

(1.11)

Here we have to assume that y1 6= 0 because otherwise the tangent line ` at P is a vertical
line, where R = O is the only other point intersection between ` and the curve. So here
we have 2P = O.
The next examples show applications of the above formulas and they are taken from [21].

Example 1.23 (Point addition). Let P = (−3, 9) and Q = (−2, 8) be two distinct points
on the elliptic curve

E : y2 = x3 − 36x.

We use the formulas (1.10) with x1 = −3, y1 = 9, x2 = −2, y2 = 8 and get x3 = 6 and
y3 = 0. See Figure 1.6.

Example 1.24 (Point doubling). Let P = (−3, 9) be a point on the elliptic curve

E : y2 = x3 − 36x.

For 2P we substitute x1 = −3, y1 = 9, a = −36 in the formulas (1.11) which gives x3 = 25
4

and y3 = −35
8
. See Figure 1.7.

Theorem 1.25 (Group law). The set of points on an elliptic curve form an abelian group
together with the point at infinity, since the point addition P +Q as defined above satisfies
the following properties:

18



1.3. Group law

P Q

−R = R

Figure 1.6.: Addition of P = (−3, 9)
and Q = (−2, 8)

P
R

−R = 2P

Figure 1.7.: Doubling of the point
P = (−3, 9)

1. P +O = O + P = P for all points P ∈ E. (identity element)

2. For every P ∈ E there exists a negative element −P such that P − P = O. (inverse
element)

3. Let P,Q,R ∈ E. Then the following holds (P +Q)+R = P +(Q+R). (associativity)

4. P +Q = Q+ P for all points P,Q ∈ E. (commutativity)

Proof. See Section 2.2 in [35].

Remark 1.26. If a line ` intersects the points P,Q and R then

(P +Q) +R = O.

Next we define the order of a point on an elliptic curve.

Definition 1.27. The order N of a point P on an elliptic curve E is the smallest positive
integer such that NP = O. If N <∞ we say the point has order N and we call the point a
N-torsion point or simply just torsion point. These points are called points of finite order.
We denote the set of all points of order N by

E[N ] = {P ∈ E(K)|NP = O},

and the set of finite points is called torsion subgroup, we write E(Q)tors. Thus the following
holds:

E(Q)tors =
∞⋃
N=1

E[N ].

Naturally such a finite N does not need to exist.
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1. Elliptic curves

Remark 1.28. Let E be an elliptic curve in short Weierstrass form. Then a point
P = (x, y) 6= O ∈ E has order two if and only if y = 0. Since

2P = O ⇐⇒
P = −P ⇐⇒

(x, y) = (x,−y).

The coordinates x are the (complex) roots of the right side of the elliptic curve equation.

The following example shows how the order of a point can be computed. It is taken from
[21].

Example 1.29. What is the order of the point P = (2, 3) on the curve y2 = x3 + 1? By
the formulas given in (1.11) we obtain 2P = (0, 1) and 4P = 2(2P ) = (0,−1). Hence
2P = −4P and so 6P = O. Thus the order of P is 2, 3 or 6, but 2P = (0, 1) 6= O. We
now suppose that P has order 3, but then 4P = P must hold which is not true. Therefore
P has order 6.

P

2P

3P

4P

5P

Figure 1.8.: A point of order six.

Remark 1.30. Lagrange’s theorem, see Theorem B.1 in [35], states that the order of an
element g in a finite group G divides the group order. For a proof of this statement see
Section 44 in [38].

In the next section we will consider the projective plane and we will introduce the point
at infinity in a different way.
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1.4. Projective space

At first we start with some definitions as the projective space or a projective point. For
more details see [21, 33] and [35].
Since the projective space is given by a set of equivalence classes we also have to define an
equivalence relation.

Definition 1.31. Two triples (X, Y, Z) and (X ′, Y ′, Z ′) are said to be equivalent if there
is a nonzero scalar λ ∈ K such that

(X, Y, Z) = (λX ′, λY ′, λZ ′)

and we write
(X, Y, Z) ∼ (X ′, Y ′, Z ′).

Definition 1.32. The projective space over a field K is given by the set of equivalence
classes of triples (X, Y, Z) with X, Y, Z ∈ K and at least one component nonzero.

Definition 1.33. We call an equivalence class a projective point and it is denoted (X : Y : Z)
since it only depends on the ratios of X to Y to Z. On the other hand we call a point
(X, Y, Z) a representative of the equivalence class (X : Y : Z).

Remark 1.34. Both triples (X, Y, Z) and (X ′, Y ′, Z ′) are elements of the projective point
(X : Y : Z).

Remark 1.35. We call a projective point (X : Y : Z) with Z 6= 0 finite and the projective
points with Z = 0 form the line at infinity. The point at infinity will be defined in Definition
1.37.

Suppose we have an elliptic curve in Weierstrass form in the affine plane. Then there
exists a corresponding homogenous Weierstrass form in the projective space and it can be
obtained by substituting x by X/Z and y by Y/Z and afterwards multiplying by a suitable
power of Z to eliminate any denominators.

Example 1.36. Let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.12)

be an equation in Weierstrass form of an elliptic curve. Then we get the following projective
equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.13)

by the above procedure.
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1. Elliptic curves

As in the affine version the property that this curve should be non-singular means that the
partial derivatives

∂F/∂X = a1Y Z − 3X2 − 2a2XZ − a4Z2

∂F/∂Y = 2Y Z + a1XZ + a3Z
2

∂F/∂Z = Y 2 + a1XY + 2a3Y Z − a2X2 − 2a4XZ − 3a6Z
2

of F (X, Y, Z) = 0 should not vanish at a point P simultaneously. This projective form is
satisfied by projective points of the form (X : Y : Z) with

X = x · Z
Y = y · Z and

Z = 1,

if and only if (x, y) satisfies the affine equation. Moreover by projective points of the form
(X : Y : 0) which form the line at infinity.
So far we have seen that the point at infinity is the third point of intersection between
every vertical line and a given elliptic curve E and besides that it serves as identity element
in the group of points on an elliptic curve. Now we want to give a further definition with
the help of the projective plane.

Definition 1.37. We use the fact that the point at infinity O is the only point of intersec-
tion between the line at infinity and an elliptic curve E. So if we put Z = 0 in Equation
(1.13), as it is necessary for the line at infinity, we obtain 0 = X3 and hence also X = 0.
Since we need one component to be nonzero, Y = y has to be nonzero. Rescaling by y gives
then (0 : 1 : 0). So the point at infinity O corresponds to the projective point (0 : 1 : 0).
Furthermore the ’top’ and the ’bottom’ of the y-axis are the same because

(0, 1, 0) ∼ (0,−1, 0).

Next we present the reason why the point at infinity O is non-singular.

Remark 1.38. The point at infinity O is not singular since the partial derivative

∂F/∂Y (O) = 1

of the projective equation F (X, Y, Z) never equals zero.

Straightaway we shall consider our given elliptic curve E over special fields for example
the field of rational numbers Q, the field of real numbers R or finite fields Fq. For the rest
of this chapter we consider elliptic curves in short Weierstrass form.
The set of points with rational coordinates form a subgroup of the set of points whose
coordinates are real numbers. Because the sum and difference of rational (real) numbers
are also rational (real) numbers. So the following relations hold:

{O} ⊂ E(Q) ⊂ E(R).

We first consider elliptic curves over the rational numbers.
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1.5. Elliptic curves over the rationals

For the present section let E be an elliptic curve over Q i.e. the constants a and b in the
short Weierstrass form are elements in Q. We look for points (x, y) ∈ E with x, y ∈ Q
satisfying the elliptic curve equation. For elliptic curves over the rationals we can give
further details about the group of rational points E(Q) by the Mordell-Weil Theorem and
we get further information of the torsion subgroup E(Q)tors of E(Q) by Mazur’s Theorem.
For more information see [5, 18, 20, 21, 23, 26, 32, 33] and [35].
We start with the definition of Q-rational points.

Definition 1.39. Points (x, y) with x, y ∈ Q which are satisfying a given equation of an
elliptic curve E are called Q-rational points or even shorter rational points on an elliptic
curve E.

Next we shall present an important theorem called Mordell’s theorem.

Theorem 1.40 (Mordell). Let E be an elliptic curve over Q. Then the group of rational
points E(Q) is finitely generated and abelian.

Proof. See chapter 8 in [35].

Mordell’s theorem has been proved by Louis Mordell in 1922 and in 1928 André Weil
extended this statement to elliptic curves over algebraic number fields in his thesis.

Theorem 1.41 (Mordell-Weil). Let K be a number field and let E be an elliptic curve
defined over K. Then the Mordell-Weil group E(K) is finitely generated.

Proof. For a sketch of the proof see Section 6 in [18].

Mordell’s theorem says that the group of rational points E(Q) is finitely generated and
abelian. Thus by the structure theorem of finitely generated abelian groups, there is a
decomposition of the form

E(Q) ' E(Q)tors ⊕ Zr,

where E(Q)tors is a finite abelian group and r ≥ 0 is a natural number. So the group
E(Q) is given by a finite torsion subgroup (points of finite order) E(Q)tors plus a subgroup
Zr generated by a finite number of points of infinite order. The finite torsion subgroup
E(Q)tors can be easily computed by Theorem 1.44, the Nagell-Lutz Theorem.

Definition 1.42 (Mordell-Weil rank). The number r ≥ 0 above is called Mordell-Weil
rank of E(Q).

The rank r is nonzero if and only if the elliptic curve E has infinitely many Q-rational
points. Hence the rank r = 0 if and only if the group E(Q) is finite. For most cases the
computation of the rank r is very difficult.
Before we state the Nagell-Lutz theorem we have a look at Mazur’s theorem which gives a
characterization of torsion subgroups.
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1. Elliptic curves

Theorem 1.43 (Mazur). Let E be an elliptic curve over Q. Then the subgroup of finite
points is one of the following groups

E(Q)tors = Z/nZ for n = 1, 2, 3, . . . , 10, 12

or

E(Q)tors = Z/nZ⊕ Z/2Z for n = 2, 4, 6 or 8.

Proof. For a proof of this theorem see [23].

Next we will try to find the torsion points of an elliptic curve E.

Theorem 1.44 (Nagell-Lutz). Let E : y2 = x3 + ax + b with a, b ∈ Z be an elliptic curve
in short Weierstrass form. If P = (x, y) ∈ E(Q) has finite order, then x, y ∈ Z.
In the case that y = 0, P has order 2 and otherwise

y2|D = 4a3 + 27b2.

Proof. See Chapter 8 in [35].

With the help of the Nagell-Lutz theorem we know that the points of finite order have
integer coordinates and we can give a list of possible torsion points. For each point P in
this list we try to find the order N. We know that it is sufficient to consider N ≤ 13 by
Mazur’s theorem. Then either NP = O and so P is of order N, or NP has no integer
coordinates and therefore P is no torsion point.
The following examples show how to compute the torsion subgroup E(Q)tors of given elliptic
curves. These examples are taken from the list of exercises in Chapter II in [33].

Example 1.45. Let E : y2 = x3 + 4x be an elliptic curve over Q. Since a = 4 and b = 0
we get the discriminant

∆ = −16(4a3 + 27b2) = −4096

and

D = 4a3 + 27b2 = 256 = (16)2.

Let P = (x, y) be a point in E(Q)tors and assume y = 0. Since the equation 0 = x3 + 4x
has no other rational solution than x = 0 we found the point (0, 0). For the case y 6= 0 we
obtain that y2|D = (16)2 from the Nagell-Lutz theorem. Therefore we have the following
possibilities

y = ±1,±2,±4,±8,±16,

but only x3 + 4x = x(x2 + 4) = (±4)2 = 16 has a rational solution, namely x = 2. So the
only possible torsion points are

E(Q)tors = {O, (0, 0), (2,−4), (2, 4)}.
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Now we have to compute the orders of the given points. We already know that O has order
1 and that the point (0, 0) has order 2, since 2P = O ⇐⇒ P = −P. For the two remaining
points we compute its orders and obtain that N = 4, since

4(2,−4) = O,

and

4(2,+4) = O.

So these two points have order 4 and hence

E(Q)tors ' Z4.

You can see the elements of the torsion subgroup without the point at infinity marked by
dots in Figure 1.9.

Example 1.46. Let E : y2 = x3 + 1 be an elliptic curve over the rational numbers. Since
a = 0 and b = 1 we have the discriminant

∆ = −16(4a3 + 27b2) = −432 and

D = 4a3 + 27b2 = 27.

Let P = (x, y) ∈ E(Q) be a point of finite order. Since there is no rational solution for
0 = x3 + 1 we get that there is no rational point with y = 0. So we assume y 6= 0 and by
using the Nagell-Lutz theorem we get that y2|27 = 33. So the only possibilities left are

y = ±1,±3.

By solving the equation y2 = x3 + 1 we get the following possible torsion points:

{O, (0, 1), (0,−1), (2, 3), (2,−3)}.

Computing the orders of the given points gives

3(0, 1) = 3(0,−1) = O,
6(0, 1) = 6(0,−1) = O.

So the torsion subgroup
E(Q)tors ' Z6.

The dots in Figure 1.10 mark the points of finite order without the point at infinity.

At the end of this section we present the definition of an quadratic twist of an elliptic curve
which we will need later.
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Figure 1.9.: E : y2 = x3 + 4x and
E(Q)tors = Z4.

Figure 1.10.: E : y2 = x3 + 1 and
E(Q)tors = Z6.

Definition 1.47. Let E be an elliptic curve

E : y2 = x3 + ax+ b

in short Weierstrass form defined over the rationals Q and with coefficients a, b ∈ Z. For
d 6= 0 a squarefree integer, we define the d-th quadratic twist of E as

Ed : dy2 = x3 + ax+ b,

which can be transformed to

Ed : y′
2

= x′
3

+ ad2x′ + bd3,

multiplying the above equation by d3 and setting y′ := d2y, x′ := dx.

In the next section we consider elliptic curves over the real numbers.

1.6. Elliptic curves over the reals

For most fields K it is impossible to draw useful pictures of elliptic curves over it. However,
in the field of real numbers R we can see an elliptic curve as an ordinary curve in the plane
together with O. For further details see [21] and [33].
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Figure 1.11.: E : y2 = x3 − 2x with
∆ = 512.

Figure 1.12.: E : y2 = x3 + 2x with
∆ = −512.

There are two basic types of elliptic curves defined over R : those with three real roots as
you can see in Figure 1.11 and those with one real root depicted in Figure 1.12.
Since we are just considering non-singular curves we know that they cannot have multiple
roots.
In the next section we consider elliptic curves defined over finite fields and we give a
formula for the number of points on an elliptic curve E defined over Fq. We already know
that Fq ⊃ Fp = Z/pZ and Fq is a vector space over Fp with dimension r if q = pr. Hence,
the finite field Fq has q = pr elements and the characteristic charFq = p. For every q = pr

there is a unique field with q elements and Fq ' (Z/pZ)[x]/(f(x)) where f is an irreducible
polynomial of degree r over Z/pZ. The multiplicative group of the field Fq is denoted by
F×q and it is cyclic, i.e., there is an element g ∈ F×q such that the powers of g run through
all elements of F×q .

1.7. Elliptic curves over finite fields

In this section let K be any finite field Fq and let E be an elliptic curve defined over
Fq. These elliptic curves are important for cryptographic reasons. As in the general case
we can simplify the given elliptic curve equation to (1.5) if the characteristic charFq = 2
and if charFq = 3 then the given equation can be simplified and written as in (1.6). See
[10, 21, 32, 33] and [35] for further details.
We can easily see that the group of points E(Fq) is finite since there are only finitely many
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points P = (x, y) with x, y ∈ Fq. In particular an elliptic curve cannot have more than
2q + 1 points (x, y) with x, y ∈ Fq. Namely 2q pairs (x, y) where for each x there are at
most 2 possible choices for y satisfying the given elliptic curve equation plus the point at
infinity.
For an easier understanding we have a look at the following example.

Example 1.48. Let us consider the elliptic curve E : y2 = x3 +x+ 1 over F3. Hence there
are three possibilities for x ∈ F3 and y ∈ F3 :

x x2 x3 x3 + x+ 1

0 0 0 1

1 1 1 0
2 1 2 2

y y2

0 0

1 1

2 1

So E(F3) = {O, (0, 1), (0, 2), (1, 0)} are the points of E over F3 and #E(F3) = 4.

Now we will give bounds on the order of the group E(Fq) respectively the cardinality of
the elliptic curve E by Hasse’s Theorem.

Theorem 1.49 (Hasse’s Theorem). Let E be an elliptic curve over Fq. Then the following
estimate holds

|q + 1−#E(Fq)| ≤ 2
√
q.

Proof. For a proof see chapter V in [32].

We can give further details about the group of Fq−rational points by the following theorem.

Theorem 1.50. Let E be an elliptic curve defined over Fq. Then either

E(Fq) ' Zn,

or

E(Fq) ' Zn1 ⊕ Zn2 ,

where n, n1, n2 ≥ 1 and n1|n2.

Proof. See Section 4.1 in [35].

We present some examples of this theorem in the following.

Example 1.51. Consider again the elliptic curve E : y2 = x3 + x+ 1 as in Example 1.48.
Since the F3−rational points have the following orders

2(1, 0) = O,
4(0, 1) = O,
4(0, 2) = O,
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we get that
E(F3) ' Z4.

Example 1.52. Now let E : y2 = x3 + 2 be an elliptic curve over F7. Then the group of
F7-rational points is given by

E(F7) = {O, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)}.

Since all of these points except O have order 3 we get that

E(F7) ' Z3 ⊕ Z3.

Now we state the Legendre symbol which will be used later.

Definition 1.53. Let x ∈ Fp and let p be an odd prime. Then the Legendre symbol is
defined as

(
x

p

)
=


0, if x ≡ 0 mod p,

+1, if x ≡ t2 mod p has a solution t 6≡ 0 mod p,

−1, if x ≡ t2 mod p has no solution t.

The second case means nothing else than t is a quadratic residue modulo p and the third
case says that t is a quadratic nonresidue modulo p.
Further we can even count the points in the group E(Fq) by the following theorem.

Theorem 1.54. Let E be an elliptic curve over Fq in short Weierstrass form, then

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 + ax+ b

Fq

)
, (1.14)

where

(
x

Fq

)
=


0, if x = 0,

+1, if x = t2 has a solution t ∈ F×q ,
−1, if x = t2 has no solution t ∈ F×q ,

for x ∈ Fq and q odd. Here
(
x
Fq

)
describes a more general Legendre symbol defined in any

finite field Fq with q an odd prime power.

Proof. See Section 4.3 in [35].

In the next example we can see an application of this theorem.
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Example 1.55. Let E : y2 = x3 + x + 1 be an elliptic curve in short Weierstrass form
defined over F3 as in Example 1.48. Then the only possible nonzero square is 1 mod 3.
Hence the formula in the previous theorem gives

#E(F3) = 3 + 1 +
2∑

x=0

(
x3 + x+ 1

3

)
= 4 +

(
1

3

)
+

(
0

3

)
+

(
2

3

)
= 4 + 1 + 0− 1 = 4.

This matches the order in Example 1.48.

In the following we are going to define the reduction of an elliptic curve modulo a prime.

1.8. Reduction of an elliptic curve

In this section we introduce the reduction of an elliptic curve. For a more detailed infor-
mation see [5, 15, 18, 19, 33] and [35].

Definition 1.56. Let E : y2 = x3 + ax + b with a, b ∈ Z be a non-singular elliptic curve
over Q in short Weierstrass form. Then for any prime p we define the reduction of the
elliptic curve E modulo p as follows:

Ẽ(Fp) : y2 = x3 + ãx+ b̃, (1.15)

where ã ≡ a mod p and b̃ ≡ b mod p. In other words we consider the curve E over the
finite field Fp and the reduction Ẽ(Fp) has discriminant ∆̃ = −16(4ã3 +27b̃2) = ∆ mod p.

Even if E over Q is a non-singular elliptic curve, this does not imply that the reduced
elliptic curve Ẽ(Fp) is non-singular too. This is only the case if p - ∆ as you can see in the
following definition.

Definition 1.57. We say an elliptic curve E has good reduction at p if and only if the
reduced elliptic curve Ẽ(Fp) is non-singular. Which is equivalent to the fact that the reduced
discriminant ∆̃ 6= 0.
We say E has bad reduction at p, if Ẽ(Fp) is singular.

Remark 1.58. If E is an elliptic curve defined over Q with good reduction at p, then the
reduction function rp : E(Q) −→ Ẽ(Fp) is a group homomorphism.

Proof. For a proof of this remark see Section 5 in [18].

Next we try to find points P̃ = (x̃, ỹ) on Ẽ(Fp), therefore we try to reduce points P = (x, y)
modulo p. This method works just fine if the coordinates x, y ∈ Z. However, for points
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with rational coordinates we have to guarantee that the denominators are not divisible by
p for a successful application of this method.
So the set of points on the reduced elliptic curve Ẽ(Fp) is given by

Ẽ(Fp) = {O} ∪ {P = (x̃, ỹ) ∈ Fp × Fp : ỹ2 ≡ x̃3 + ãx̃ mod p}, (1.16)

and the number of points on the curve Ẽ(Fp) is

#Ẽ(Fp) = 1 + #{P = (x̃, ỹ) ∈ Fp × Fp : ỹ2 ≡ x̃3 + ãx̃ mod p}. (1.17)

Now we shall present a very old problem in mathematics, the congruent number problem.
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In this chapter we give a brief history on the congruent number problem and some details
about its relation to elliptic curves of the form En : y2 = x3−n2x. For further information
see references [2, 5, 6, 7, 8, 11, 12, 15, 17, 18, 19, 20, 29, 31, 34, 35] and [36]. But first of
all we state the congruent number problem and the definition of a congruent number.

Definition 2.1. A squarefree integer n ≥ 0 is a congruent number if it is the area of a
right-angled triangle with rational sides.

Example 2.2. For example the number 6 is a congruent number since it is the area
A = XY

2
= 12

2
= 6 of a right-angled triangle with the sides X = 3, Y = 4 and Z = 5,

where X and Y are the catheti and Z is the hypotenuse.

We can have a look at Figure 2.1 to get a better idea of the definition.

X

Y
Z

Figure 2.1.: A right-angled triangle with area n.

Remark 2.3. Without loss of generality we can assume, that congruent numbers are pos-
itive squarefree integers. Suppose we would allow rational numbers to be congruent and
let 0 6= r ∈ Q be a congruent number. Then there is a right-angled triangle with area r
and rational sides X, Y and Z. Then we can always find some s ∈ Q such that s2r is a
squarefree integer and it is the area of a right-angled triangle with rational sides sX, sY
and sZ.
Now let n and n′ be two integers and s ∈ N. The number n′ = s2n is congruent, if and
only if n is congruent. Because if we suppose that sX, sY, sZ, are the rational sides of
a right-angled triangle with area n′, then X, Y, Z are the rational sides of a right-angled
triangle with area n and vice versa. Therefore we check only squarefree integers for being
congruent.
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Next we give the congruent number problem.

Definition 2.4 (Congruent number problem). The congruent number problem is the prob-
lem deciding whether a given integer n is a congruent number.

Suppose we would like to express the above problem in terms of equations. Let X, Y and
Z, describe the sides of a right-angled triangle and let Z be the hypotenuse. Then the
following equations describe the congruent number problem:

X2 + Y 2 = Z2, (2.1)

n =
XY

2
. (2.2)

A given positive integer n is a congruent number if and only if this system of equations
has a solution (X, Y, Z) with X, Y, Z ∈ Q.

2.1. History of the congruent number problem

Now we will continue with some historical details about this problem. For further details
see [2, 7, 8, 12, 17, 20] and [34]. The congruent number problem is one of the oldest
unsolved problems in mathematics and many authors have worked to achieve progress in
this area. Although this problem is very easy to state, cf. Definition 2.4, finding an answer
for a given number n is a challenging task. We start with Diophantus who was already
searching for right-angled triangles, such that their areas are equal to given numbers n, in
ancient times. However, also the Arabs were familiar with the congruent number problem,
but they considered the following form:

Definition 2.5 (Congruent number problem - Arabs). Given an integer n. Is there any
rational number x such that x2 + n and x2 − n are squares of rational numbers?

This definition describes the congruent number problem as finding an arithmetic progres-
sion of three rational squares with a common difference n. This equivalent form had also
been known to the Greeks. Furthermore Dickson mentioned in [12] that a manuscript
which had been written before 972 AD already contained the congruent number problem.
However, the Arabs probably had not known about the work of Diophantus. Instead it is
assumed that the Arabs were introduced to this problem by the Hindus, who had already
been familiar with the work of Diophantus. The following congruent numbers

5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154, 190, 210, 221, 231, 246, 290, 390, 429, 546, . . .

together with ten even larger numbers had already been computed by Arab mathemati-
cians.
Many years later in 1225 Fibonacci took a close look at the congruent number problem
and he found a right-angled triangle with area 5 and conjectured that 1 is not a congruent
number but he was not able to prove this statement. Only Fermat could give a proof on
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that in 1659 more than four centuries later. This proof provides furthermore a solution of
Fermat’s last theorem for exponent 4, cf. [7]. Namely that there are no integer solutions
other than the trivial ones for the equation

x4 + y4 = z4.

Whereas the general statement

xn + yn = zn with n ≥ 3,

has only been proved by Andrew Wiles in 1995.
Now let us return to congruent numbers. Beside Fermat, who additionally showed that 2
and 3 are non-congruent numbers, also Euler was considering congruent numbers and he
was the first who found a right-angled triangle with area 7 in the 18th century.
Even in the 20th century many mathematicians worked on this problem and Géradin listed
another 62 squarefree congruent numbers which are less than 1000 in 1915. In the early
seventies Alter, Curtz and Kubota presented the following conjecture in [2]:

Conjecture 2.6. Let n be a squarefree integer congruent to

5, 6 or 7 mod 8,

then n is a congruent number.

This conjecture was proved by Stephens in 1975 under the assumption of the Birch and
Swinnerton-Dyer conjecture. For further details see Section 2.5 and [34].
Now we show some problems which are equivalent to the congruent number problem.

2.2. Problems equivalent to the congruent number

problem

In the following we will give some problems which are equivalent to the congruent number
problem. The information of this section is based on [5, 7, 8, 15, 17, 20, 29, 31].
We already know that the congruent number problem is equivalent to the fact that (X, Y, Z)
is a Pythagorean triple, i.e. X2 + Y 2 = Z2 where the congruent number corresponds to
the area of the triangle with sides X, Y and Z.

Proposition 2.7. Let X, Y and Z be rational numbers and let u, v ∈ N. Then the following
two statements are equivalent:

1. (X, Y, Z) is a primitive Pythagorean triple, i.e. X, Y, Z satisfy the equation X2 + Y 2 = Z2

and gcd (X, Y, Z) = 1.

2. There are u, v with v > u, gcd (u, v) = 1 and u + v = 1 mod 2, which define a
right-angled triangle with rational sides X, Y, Z and area n = uv(v2 − u2). So n is a
congruent number.

35



2. Congruent number problem

By the following transformations

X = 2uv, Y = v2 − u2 and Z = v2 + u2.

Proof. See Chapter 2 in [5].

Hence we have seen that the congruent number problem is equivalent to the problem of
finding a primitive Pythagorean triple. This method gives us further the opportunity to
produce congruent numbers, as you can see in the following proposition.

Proposition 2.8. Let u, v be two positive relatively prime integers with v > u and let u
and v be of opposite parity, i.e. u+ v = 1 mod 2. Then the squarefree part of

uv(v−u)(v + u)

is a congruent number.

Proof. For a proof of this statement see [29].

This type of congruent numbers is used in our method of finding high rank congruent
number elliptic curves.
Here are some examples of congruent numbers less than 200 of the above type, namely

14, 15, 21, 34, 39, 41, 46, 55, 65, 69, 85, 102, 111, 119, 138, 141, 145, 154, 161, 165, 194.

Another equivalent problem to the congruent number problem is the problem of finding
an arithmetic progression of rational squares with common difference n as you can see in
the following proposition.

Proposition 2.9. Let n > 0 be a squarefree congruent natural number and let X, Y, Z and
x with X < Y < Z denote rational numbers. Then the following statements are equivalent:

1. The number n is a congruent number i.e. n is the area of a right-angled triangle with
sides X, Y and Z where Z is the hypotenuse.

2. There is a rational number x such that x, x+n and x−n are squares of rationals i.e.
we have an arithmetic progression of three rational squares with common difference
n.

By the following transformations

X, Y, Z → x = (Z/2)2

x→ X =
√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n, Z = 2

√
x.

Proof. See Chapter 1 in [20].

There are also more straight forward classes of congruent numbers as we state in the
following section.
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2.3. Classes of congruent numbers

We will present some examples for congruent numbers less than 200. For further information
see [2, 7] and [31]. As seen above Conjecture 2.6 tells us that primes p which satisfy

p ≡ 5, 6, 7 mod 8,

are congruent numbers under the assumption of the Birch and Swinnerton-Dyer Conjecture.
For example the following congruent numbers are congruent 5 mod 8,

5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197.

Furthermore these congruent numbers

7, 23, 31, 47, 71, 79, 127, 151, 167, 191, 199,

are congruent 7 mod 8. Both classes were introduced by Stevens in 1975.
There are also other classes of congruent numbers as you can see in the following.
If p ≡ 3 mod 8, then

n = 2p,

is a congruent number. Therefore the following positive integers are congruent numbers

6, 22, 38, 86, 118, 134, 166.

This type was discovered by Heegner in 1952 and by Birch in 1968.
Let p ≡ 3 mod 8 and q ≡ 5 mod 8, then

n = 2pq,

is a congruent number. Examples for this type of congruent numbers are

30, 78, 110, 174, 190.

Let p ≡ 5 mod 8 and q ≡ 7 mod 8, then

n = 2pq,

is a congruent number. Here 70 and 182 are examples for this type of congruent numbers.

2.4. From congruent numbers to elliptic curves

In this section we present a relation between congruent numbers and congruent number
elliptic curves En. We can start with a Pythagorean triple and transform it into an elliptic
curve equation as you can see in [5, 7, 17, 18] and [20].
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2. Congruent number problem

As we already know, a squarefree natural number n is a congruent number if and only if
there are some rationals X, Y and Z such that the equations (2.1) and (2.2) are satisfied
simultaneously.
We use this system of equations as our starting point and try to get to an equation of an
elliptic curve.
First of all we multiply Equation (2.2) by 4. Then we obtain

(X + Y )2 = X2 + Y 2 + 2XY = Z2 + 4n, (2.3)

by adding the previous result to Equation (2.1). Furthermore we get

(X − Y )2 = X2 + Y 2 − 2XY = Z2 − 4n, (2.4)

by subtracting the multiple of (2.2) from (2.1). Now we divide these equations by 4 which
gives (

X + Y

2

)2

=

(
Z

2

)2

+ n, (2.5)

and (
X − Y

2

)2

=

(
Z

2

)2

− n. (2.6)

Multiplication of the above equations yields to(
X2 − Y 2

4

)2

=

(
Z

2

)4

− n2. (2.7)

Now substituting v := (X2 − Y 2/4) and u := (Z/2) gives

(v)2 = (u)4 − n2. (2.8)

By multiplication with u2 we obtain

(uv)2 = (u)6 − n2u2. (2.9)

Now replacing x := u2 and y := (uv) delivers our required equation of an elliptic curve

En : y2 = x3 − n2x. (2.10)

We call such an elliptic curve a congruent number elliptic curve or shorter CN-elliptic
curve.
So this shows the relation between congruent numbers and elliptic curves.

Theorem 2.10. The positive integer n is a congruent number if and only if En(Q) has a
rank r > 0, i.e., the elliptic curve En has infinitely many Q-rational points.

Proof. See Proposition 18 in [20].
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2.5. Congruent number elliptic curves

In this section we will give some basic facts about congruent number elliptic curves

En : y2 = x3 − n2x.

In Figure 2.2 such a curve is illustrated. As we have already seen in Theorem 2.10 in the
previous section there is a equivalence between congruent numbers and congruent number
elliptic curves. For further information see the references [5, 6, 7, 11, 15, 17, 20, 35, 36].

−20

−10

0

10

20

30y

−5 0 5 10
x

Figure 2.2.: The elliptic curve En : y2 = x3 − 52x.

As in the general case we can transform the above affine equation into an equation in the
projective plane

Y 2Z = X3 − n2XZ2.

Before we describe the torsion subgroup En(Q)tors we define the quadratic twist and the
reduction of a congruent number elliptic curve modulo p.

Definition 2.11. Let En be a congruent number elliptic curve. Then we define the d-th
quadratic twist of En as

En
d : dy2 = x3 − n2x.

We already presented the following example, but now we are able to give a reason for the
statement in Example 1.18.

Example 2.12. The curves E : y2 = x3 − 4x and E ′ : y2 = x3 − 25x defined over the
rational numbers Q cannot be transformed into the other although they have the same j-
invariant j(E) = j(E ′) = 1728. The reason for that is that E ′ has infinitely many rational
points e.g. all integer multiples of the point (−4, 6), whereas E has only the following four
rational points O, (2, 0), (−2, 0) and (0, 0). Therefore we cannot transform neither E nor
E ′ into the other by functions defined over Q, but it is possible in Q(

√
10) as you can see

in Section 2.6 in [35].
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2. Congruent number problem

Furthermore we need the definition of the reduction of an congruent number elliptic curve.

Definition 2.13. Let p be a prime number with p - ∆ and let En be a congruent number
elliptic curve over Q. Then we denote the reduction of En modulo p by

Ẽn : y2 = x3 − ñ2x.

The set of points on Ẽn is then given by

Ẽn(Fp) = {O} ∪ {(x, y) ∈ Fp × Fp : y2 ≡ x3 − n2x mod p}.

Now we present an example of this method.

Example 2.14. Let E5 : y2 = x3 − 52x be an elliptic curve and suppose we consider it
over the finite field F3. Then

Ẽ5(F3) = {(x, y) ∈ F3 × F3 : y2 ≡ x3 − 52x mod 3}
= {O, (0, 0), (1, 0), (2, 0)},

and hence Ẽ5(F3) ' Z2 ⊕ Z2.

Straightaway we describe the points of finite order which are the elements of the torsion
subgroup En(Q)tors.

Proposition 2.15. The torsion subgroup En(Q)tors of En contains only the following four
rational points of finite order

En(Q)tors = {O, (0, 0), (−n, 0), (n, 0)}.

Hence En(Q)tors ' Z2 ⊕ Z2.

Proof. See Section I.9 in [20].

Example 2.16. Let us consider the elliptic curve En : y2 = x3 − 52x. Then the points of
finite order are

E5(Q)tors = {O, (0, 0), (−5, 0), (+5, 0)}.

Before we state the famous Birch and Swinnerton-Dyer conjecture we first define the trace
of Frobenius ap and the L-function of a CN-elliptic curve. The same definition holds true
for any other elliptic curve but we only need the case of a congruent number elliptic curve.
We define ap in the following way.

Definition 2.17. Let Ẽ(Fp) be the reduction of E modulo p. Where E has good reduction
at p. Then we define the trace of Frobenius as

ap = p+ 1−#Ẽ(Fp).
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2.5. Congruent number elliptic curves

Definition 2.18. Let En be a CN-elliptic curve defined over Q. Then we define the Hasse-
Weil L-function of En as

L(s, En) =
∏
p-2n

(1− ap p−s + p1−2s)
−1
,

where s is a complex number with a sufficiently large real part.

The Birch and Swinnerton-Dyer conjecture is one of the famous Millenium Prize Prob-
lems, which had been announced in 2000 by the Clay Mathematics Institute of Cambrige,
Massachusetts. Anyone who is able to solve one of these problems, receives a price which
is worth one million dollars. This list of still unsolved problems else contains the Riemann
Hypothesis and the P versus NP problem. The aim of this list is to support mathemati-
cians to solve deep problems. The problems on this list had already been known before
this announcement, by contrast to the 23 problems proposed by Hilbert in 1900. This
information is taken from [5] and [6].
Now we present the Weak Birch and Swinnerton-Dyer conjecture which is enough for our
purposes.

Conjecture 2.19 (Weak Birch and Swinnerton-Dyer conjecture (BSD)). Let En be a
congruent number elliptic curve defined over Q. Then En has rank > 0 if and only if
L(1, En) = 0.

Remark 2.20. The Birch and Swinnerton-Dyer conjecture is much more general than
stated here but this version is sufficient for our purposes.

Proposition 2.21. Suppose the weak Birch and Swinnerton-Dyer Conjecture holds true,
then n is a congruent number if and only if L(1, En) = 0.

Proof. See the proof of Proposition 8.2 in [5].

Another big improvement in the twentieth century concerning a classification of congruent
numbers is due to Jerrold B. Tunnell. See [7] and [17] for further details.

Theorem 2.22 (Tunnell). Let n be a positive number. If we define the following sets

An = {(x, y, z) ∈ Z3 | n = x2 + 2y2 + 8z2},
Bn = {(x, y, z) ∈ Z3 | n = x2 + 2y2 + 32z2},
Cn = {(x, y, z) ∈ Z3 | n/2 = x2 + 4y2 + 8z2},
Dn = {(x, y, z) ∈ Z3 | n/2 = x2 + 4y2 + 32z2},

then the following statements hold:

(i) Suppose n is odd. If n is a congruent number then #An = 2#Bn.

41



2. Congruent number problem

(ii) Suppose n is even. Then the property that n is a congruent number implies #Cn = 2#Dn.

Remark 2.23. If the weak Birch and Swinnerton-Dyer conjecture is true, then

#An = 2#Bn

implies that an odd number n is congruent. In the case where n is even the fulfilled equation

#Cn = 2#Dn

implies that n is congruent.

So if the weak Birch and Swinnerton-Dyer conjecture is true, we can reduce the congruent
number problem to determining the cardinality of finite sets, where the sets depend on the
parity of the given number.
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3. Finding elliptic curves of high
rank

The goal of this thesis is finding congruent number elliptic curves

En : y2 = x3 − n2x

of high rank. Before we give a general approach of finding CN-elliptic curves of high rank
we present high ranks of elliptic curves found so far. This chapter is based on [1, 13, 14,
15, 18, 25] and [35].

3.1. Rank records

Computing the rank of a given elliptic curve is a very tough job but the following table
contains high ranks of elliptic curves found so far. The largest currently known rank of an
elliptic curve over the rational numbers is 28 and was found by Noam D. Elkies in 2006.
Notice, that the given ranks in Table 3.1 present only lower bounds for suspected ranks.
By contrast, the record for the largest exactly known rank of an elliptic curve over Q is 19
and this curve was also given by Elkies in 2009. The information of this section is based
on [1, 13, 14] and [25].
Since we are searching for high ranks of CN-elliptic curves, we present in Table 3.2 the
largest ranks of CN-elliptic curves found so far.
Column ’Number n’ states the first found integer n such that the corresponding elliptic
curve En : y2 = x3 − n2x had the rank given in column ’Rank’.
Now we continue with a general approach of finding high rank elliptic curves.

3.2. General idea for finding elliptic curves with

relatively high rank

This section is based on [13] and [14].

1. Construction: We first produce a family of elliptic curves defined over Q, which
we believe (or know) to contain curves of high rank. A possible method for finding
a family of elliptic curves which contains relatively high rank curves is using elliptic
curves which are induced by Diophantine triples.
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3. Finding elliptic curves of high rank

Rank ≥ Year Authors
3 1938 Billing
4 1945 Wiman
6 1974 Pommerance
7 1975 Pommerance
8 1977 Grunewald - Zimmert
9 1977 Brumer-Kramer
12 1982 Mestre
14 1986 Mestre
15 1991 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao-Kouya
22 1996 Fermigier
23 1998 Martin - McMillen
24 2000 Martin - McMillen
28 2006 Elkies

Table 3.1.: Rank records of elliptic curves

Rank Year Author Number n
5 2000 Rogers 4 132 814 070
6 2000 Rogers 61 471 349 610
7 2004 Rogers 797 507 543 735

Table 3.2.: Rank records of CN-elliptic curve

2. Sifting: Then we compute some data which gives us information about the rank
(upper, lower bounds) for each curve in the above family. Based on this information
we choose good candidates for the next step. It is more likely that elliptic curves with
relatively high Mestre-Nagao sums have larger ranks. Elliptic curves with relatively
high 2-Selmer-ranks s(n) are also assumed to be good candidates for high rank curves.

3. Computing: For each curve in this small list of best candidates we try to compute
the rank (or at least a lower bound for the rank).

Almost all methods for phases 1 and 2 were introduced by Jean-Francois Mestre.

3.3. Our approach

We are searching for congruent number elliptic curves En : y2 = x3 − n2x of high rank
and therefore we are working with positive squarefree numbers n corresponding to En.
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3.3. Our approach

Before we state our approach in detail we have to define Monsky’s formula for s(n) and
Mestre-Nagao’s sum. See Section 3 in [15].

Definition 3.1 (Monsky’s formula). Suppose n is a positive squarefree integer, where
p1, . . . , pt describe the odd prime factors of n. Then we define the four t × t-matrices
A, D−2, D−1 and D2 as follows

A = (aij)

D−2 = D−1 = D2 = (dii),

where A is a square matrix and D−2, D−1 and D2 are diagonal matrices. If i 6= j we define

aij =

{
0, if (

pj
pi

) = 1,

1, if (
pj
pi

) = −1,

where (
pj
pi

) describes the Legendre symbol as in Definition 1.53.
For i = j we define

aii =
∑
j:j 6=i

aij.

This means, that the diagonal element is the sum of the other elements in this column.
For the diagonal matrices D` with ` ∈ {−2,−1, 2} we have the following condition

dii =

{
0, if ( `

pi
) = 1;

1, if ( `
pi

) = −1.

Furthermore we need the two 2t× 2t-matrices Modd and Meven depending on n

Modd =

[
A+D2 D2

D2 A+D−2

]
and Meven =

[
D2 A+D2

AT +D2 D−1

]
.

Now we can compute s(n) as

s(n) =

{
2t− rankF2(Modd), if n is odd;

2t− rankF2(Meven), if n is even.

A further definition we need in our approach of finding congruent number elliptic curves
of high rank is the Mestre-Nagao sum. For further information have a look at Section 4 in
[15].
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3. Finding elliptic curves of high rank

Definition 3.2. Mestre-Nagao’s sum is defined as

S(N,E) = S(N,En) = S(N, n)

=
∑
p∈PN

(
1− p+ 1

#E(Fp)

)
log p

=
∑
p∈PN

#E(Fp)− p− 1

#E(Fp)
log p

=
∑
p∈PN

−ap + 2

p+ 1− ap
log p,

where PN describes the set of all primes which are less than N.

Now we come to our approach.

1. Construction: First of all we choose a parameter s which is used to ensure that all
elliptic curves in our family have s(n) ≥ s. We produce a set T of elliptic curves En
defined over Q, by searching for squarefree congruent numbers n with s(n) ≥ s.

2. Sifting: Then we try to sieve through our family of elliptic curves to find the best
candidates. This is done by using the set

Ms = {(Ni,Mi) : 0 < N1 < · · · < Nk, 0 < Mi, 1 ≤ i ≤ k},

where k is a positive integer, as bound. Then we eliminate all possible candidates
which have a Mestre-Nagao-Sum

S(Ni, n) < Mi,

for all 1 ≤ i ≤ k. The set T js , which is the last set that contains any candidates, is
used in the next step.

3. Computing: Now for each curve En in this small list of best candidates we try to
compute the rank with the help of Cremona’s MWRANK function.
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3.4. Results

The following tables give high rank CN-elliptic curves En : y2 = x3 − n2x found by
implementing the previously given algorithm during my master’s thesis. Furthermore these
tables contain u and v such that n = sqrfr prt(uv(v − u)(v + u)), the rank of En and the
Mestre-Nagao sum Ms of each curve.

n u v rank Ms

6 611 719 866 2976 7633 6 39.55
61 471 349 610 134 779 6 36.84
94 823 967 361 74752 82249 6 37.82

129 448 648 329 269 25900 6 40.18
179 483 163 699 9717 9764 6 32.19
208 645 752 554 1751 4018 6 36.49
213 691 672 290 245 3502 6 39.56
227 011 077 345 1936 6305 6 35.66
248 767 798 521 13328 13369 6 33.34
344 731 563 386 10406 13275 6 37.80
531 670 544 130 3424 5739 6 33.60
797 804 045 274 2450 7633 6 42.78
898 811 499 201 12716 21627 6 33.62

1 351 528 542 210 8232 80645 6 34.90
1 440 993 982 946 28543 40064 6 32.62
1 544 991 154 746 3991 9538 6 35.62
1 663 586 838 899 3708 12869 6 35.63
2 280 190 889 130 1682 10537 6 49.09
2 993 601 315 705 9152 55447 6 35.98
4 707 197 976 210 15337 28920 6 35.80
5 190 465 353 874 809 33638 6 31.83
6 128 804 829 210 7442 15793 6 32.26
8 231 905 771 386 3827 9416 6 30.43
9 033 322 597 530 762 2365 6 32.46

16 051 126 378 931 39917 42500 6 33.70
17 434 310 103 210 9112 18487 6 31.36
18 361 479 032 130 27590 29887 6 33.62

Table 3.3.: CN-elliptic curves of high rank part 1
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3. Finding elliptic curves of high rank

n u v rank Ms

20 873 924 653 090 827 22338 6 31.26
21 193 369 120 770 71680 76219 6 36.92
23 148 215 699 289 25488 29449 6 35.15
46 485 304 142 530 6274 23005 6 40.27
87 390 970 562 434 23713 60896 6 31.68
90 181 020 280 890 3970 6777 6 40.34

121 110 989 796 834 86 32775 6 41.90
165 130 972 136 130 4914 7901 6 36.56
170 078 314 006 986 33374 36423 6 34.56
197 385 243 713 034 44914 66833 6 30.34
205 873 902 867 745 31744 85455 6 34.70
257 306 357 070 354 216 35003 6 39.04
339 507 119 347 242 791 22066 6 39.09
405 941 588 462 586 19097 22846 6 31.92
420 824 792 637 249 9100 82739 6 35.09
444 724 421 083 665 14912 18105 6 30.06
455 089 600 428 474 22 27451 6 37.48
674 928 351 312 369 45424 53103 6 39.65
701 641 549 951 530 37195 37994 6 35.66
846 249 312 638 730 3131 6970 6 36.74
896 740 623 261 329 7029 17612 6 45.32

1 056 710 141 801 930 769 23134 6 38.52
1 071 795 744 409 866 13664 33511 6 36.99
1 799 308 052 046 681 18204 30943 6 31.66
1 902 736 244 939 034 50279 89954 6 40.41
4 132 282 640 911 035 51701 69904 6 32.23
4 194 267 377 608 770 7537 24838 6 35.67
5 262 441 841 603 947 14300 35309 6 42.20
9 294 013 431 797 010 3066 14689 6 31.06

27 401 430 048 260 114 17656 40943 6 34.82
75 136 867 709 572 130 25470 36971 6 40.08

Table 3.4.: CN-elliptic curves of high rank part 2
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In this chapter we will present some details about our implementation. During the im-
plementation of this algorithm, we were confronted with several problems which we will
describe in the following.
At the very beginning we had a big problem concerning the time consumption for creating
congruent numbers. To recognize where this enormous time-related overhead comes from
we used cProfile, which gives information how often a function is called and how long it is
executed. See [28] for further information. With the help of this profiler we were able to
detect that the time consumption is mainly produced by the following line, which adds a
single element to a given set T :

T = T.union(Set([n]));.

By testing several possibilities for improvement we observed, that it is the best way to
use a list instead of a set for adding elements. Before we return the computed list, we
transform it into a set. So we need much less time and we also have the advantage that a
congruent number in the set T can not occur more than once. This fact is important to
minimize the effort in the next steps.
After solving this problem another time problem occurred. We already knew the time
intensive parts from cProfile. The next idea was to parallelize these parts to further re-
duce the amount of time. Independent computations which are done in a for-loop can
easily be parallelized. This is the reason why we were able to parallelize the functions
precompute squarefree parts from to(. . .), get congruent numbers(. . .), get set Ts(. . .),
parallel step2(. . .) and compute rank(. . .).
Therefore we consider parallel computing in SageMath which will be used in the precom-
putation as well as in the computation phase. So we have a look at the usage in SageMath
by considering an easy example. For more information see [30].
Let us suppose, that the following function, which sums all integers between a and b, needs
too much time.

def sum(a,b):

sum = 0;

for i in xrange(a,b+1):

sum = sum + i;

return sum;

For example this function needs for the function call
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4. Implementation

sum(1,10^8)

5000000050000000

about 9.9 seconds. So we want to use parallelization to improve the needed amount of
time. Therefore we have to write ’@parallel’ before the definition of the function.

@parallel

def sum_parallel(a,b):

sum = 0;

for i in xrange(a,b+1):

sum = sum + i;

return sum;

Now, if we would like to call the function in parallel, we have to modify the input. This
means, we have to divide the input into parts of nearly the same size. Because otherwise
parallelization would not cause such a big improvement. Suppose we would like to sum
again the numbers from 1 to 108 and we would like to use four CPU cores. Then we have
to divide the input into four parts

input=[(1,25000000),(25000001,50000000),(50000001,75000000),(75000001,10^8)].

The input argument of a ’@parallel’-labeled function, is a list containing the input argu-
ments for each single function call.
Then we can call the function in parallel and obtain the following results.

sorted(list(sum_parallel(input)))

(((25000001, 50000000), {}), 937500012500000) -> 2.41 s

(((50000001, 75000000), {}), 1562500012500000) -> 2.41 s

((( 1, 25000000), {}), 312500012500000) -> 2.41 s

(((75000001, 100000000), {}), 2187500012500000) -> 2.41 s.

To get the same result, namely 5000000050000000, we have to sum the last entries in each
row. So it is important not to forget to combine the output of each parallel computation
to avoid any data loss. However, here we have a total time of 2.41 seconds which is four
times faster as above.
Now let us continue with more detailed descriptions and problems regarding the precom-
putations and computations.

4.1. Precomputations

Before we give a description of the computations we start with some precomputations which
are needed. A very helpful hint given by Andrej Dujella, was to do the computations needed
for the squarefree part of numbers at the beginning and save them in a global list. We do
the same for ap such that these computations has to be done only once.
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4.1. Precomputations

By the fundamental theorem of arithmetic we know that every integer n > 1 can be written
uniquely as the product of prime numbers

n =
k∏
i=1

paii ,

where pi are the prime factors of n and ai are the corresponding exponents.
Now we can define the squarefree part of an integer easily.

Definition 4.1. The squarefree part of a positive integer n is

sqrfr prt(n) :=
k∏
i=1

pai mod 2
i ,

i.e., the squarefree part of an integer is the product of primes which have an odd exponent
in the prime factorization.

Proposition 4.2. Every positive integer u can be written uniquely in the form

u = sqrfr prt(u)(u′)
2
,

where sqrfr prt(u) is the squarefree part of u and (u′)2 is the largest perfect square dividing
n.

Proof. We consider the prime factorization of u =
∏k

i=1 p
ai
i . Then we define

bi =

{
ai if ai is even

ai − 1 if ai is odd,

and
ci = ai − bi

for all i ∈ {1, . . . , k}.
So every bi is even and every ci is either 1 or 0. We set

b =
k∏
i=1

pbii

c =
k∏
i=1

pcii .

Hence we have

bc =
k∏
i=1

pbi+cii =
k∏
i=1

paii = u.
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Since in the prime factorization of b all exponents are even, we know, that b is a perfect
square. Now we have to show that c is squarefree. Therefore we assume that there is an
a > 1 with a2 | c and let p be a prime dividing a. Then p2 | a2 and hence p2 | c, but then
the prime p in the prime factorization of c must have an exponent greater or equal to 2,
which is impossible, since all exponents in the prime factorization of c are at most 1. So c
is squarefree.

Proposition 4.3. The squarefree part sqrfr prt(n) is a multiplicative function i.e., if n =
u · v and u and v are coprime then

sqrfr prt(n) = sqrfr prt(u) · sqrfr prt(v).

Proof. Since u and v are coprime we know that gcd (u, v) = 1 and let u′′ = sqrfr prt(u) and
v′′ = sqrfr prt(v) be the squarefree parts of u and v. By the above proposition we know
that we can write

u = u′′ · (u′)2,

and

v = v′′ · (v′)2,

where (u′)2 and (v′)2 are perfect squares. Then

sqrfr prt(u) sqrfr prt(v) = u′′v′′,

with gcd (u′′, v′′) = 1. Furthermore

uv = u′′v′′(u′v′)2,

with u′′v′′ squarefree. Hence sqrfr prt(n) = sqrfr prt(uv) = sqrfr prt(u) sqrfr prt(v).

Corollary 4.4. Let u and v satisfy the conditions of Proposition 2.8 and let

n = uv(v − u)(v + u).

Then u, v, (v − u) and (v + u) are relatively prime and hence

sqrfr prt(n) = sqrfr prt(u) · sqrfr prt(v) · sqrfr prt(v − u) · sqrfr prt(v + u).

As Watkins stated in [36].

The advantage that Corollary 4.4 provides is that it is sufficient to compute the square-
free pars of u and v where 1 ≤ u, v ≤ 106 and save them in a global list, since n =
sqrfr prt(uv(v − u)(v + u)). Then we can easily compute the squarefree part of n, by mul-
tiplying the squarefree parts of the terms u, v, (v − u), (v + u). We use this fact in the
function precompute ap(. . .).
In the following we will describe the functions of our program.
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Function 1: divide input(l bound, u bound, ncpus)

input : l bound . . . a lower bound for dividing the input,
u bound . . . an upper bound for dividing the input,
ncpus . . . the number of CPUs.

output: An input needed for the parallel function
precompute squarefree parts from to(. . .).

This function divides the range of numbers into ncpus equal parts for computing
the squarefree parts by the parallel function
precompute squarefree parts from to(. . .).

Function 2: @parallel precompute squarefree parts from to(l bound, u bound)

input : l bound . . . a lower bound for computing the squarefree parts,
u bound . . . an upper bound for computing the squarefree parts.

output: The squarefree parts of the numbers in the given range.

This function computes and returns the squarefree parts of the numbers in the
given range [l bound, u bound].

Function 3: precompute squarefree parts(l bound, u bound, ncpus)

input : l bound . . . a lower bound for computing the squarefree parts,
u bound . . . an upper bound for computing the squarefree parts,
ncpus . . . the number of CPUs.

output: A list of squarefree parts of the numbers given in [l bound, u bound].

This function divides the given input by calling divide input(. . .) for the parallel
function precompute squarefree parts from to(. . .). This function computes the
squarefree parts and returns the results in a list afterwards.
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Function 4: precompute ap()

output: The aps for p in PN for the CN-elliptic curve E1.

Returns the ap for all primes p in the global set PN for the elliptic curve E1.

Function 5: precompute(bound primes, ncpus)

input : bound primes . . . a bound for the prime numbers used in computing ap,
ncpus . . . the number of CPUs.

This function computes the ap for the elliptic curve E1 for all primes which are less
than bound primes and it computes the squarefree parts of all numbers which are
less than 106.

The results of the function precompute(. . .) are stored in global variables such that we can
access this data at any time.
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4.2. Computations

4.2.1. Construction

Our function step1(. . .) corresponds to the construction step in the idea of finding elliptic
curves with relatively high rank in Chapter 3. Here we try to produce a family of elliptic
curves defined over Q which is assumed to contain high rank curves. In our case we suppose
that CN-elliptic curves En : y2 = x3 − n2x, with n a squarefree congruent number and
s(n) ≥ s = 6 have large ranks. Hence the following functions are needed for this step.

Function 6: @parallel get congruent numbers(u low, u upp, v low, v upp)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v.

output: A list of congruent numbers T and a list uv map temp of the
corresponding values for u and v of the numbers in list T.

This function computes all congruent numbers of the form
n = sqrfr prt(uv(v − u)(v + u)) where u ∈ [u low, u upp] and v ∈ [v low, v upp]. See
Proposition 2.8 for the reason why n is a congruent number and see Corollary 4.4
for the reason why the squarefree part is multiplicative, if u < v, u and v are of
opposite parity and u and v are coprime. This algorithm returns a list T of
congruent numbers and a list uv map temp which contains the corresponding u and
v values, which will be needed for the output.

Function 7: divide input get sqfree numbers(u low, u upp, v low, v upp, ncpus)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v,
ncpus . . . number of used CPUs.

output: A list input new of input for the parallel function
get congruent numbers(. . .).

This function tries to divide the input for the parallel function
get congruent numbers(. . .) into npus parts of nearly the same size to optimize the
parallelization step.

In choose set T of congruent numbers(. . .) we use the improvement of using a list T
instead of a set T. Because the union of new elements with the already given set is very
time consuming. So calling Set(T ) only once provides an enormous time reduction.
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Function 8: choose set T of congruent numbers(u low, u upp, v low, v upp, ncpus)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v,
ncpus . . . number of used CPUs.

output: A set T of congruent numbers

This function calls divide input get sqfree numbers(. . .) to get the input, needed
for the parallel function get congruent numbers(. . .) and assembles the single
outputs of each parallel function call to a common list T afterwards. Before
returning we transform the list into a set to eliminate any repeated congruent
numbers.

Function 9: divide set T (T, ncpus, s)

input : T . . . a set of squarefree congruent numbers,
ncpus . . . number of used CPUs,
s . . . a bound needed in the function get set Ts(. . .).

output: A list input new of input for the parallel function get set Ts(. . .).

This function tries to divide the input for the parallel function get set Ts(. . .) into
npus parts of nearly the same size to optimize the parallelization step.

Function 10: @parallel get set Ts(from number, to number, T, s)

input : from number . . . first congruent number for computing s(n) in set T,
to number . . . last congruent number for computing s(n) in set T,
T . . . a set of congruent numbers,
s . . . a lower bound for s(n).

output: A set Ts of congruent numbers with s(n) ≥ s.

This function computes for each congruent number n in set T, the value of s(n) by
Monsky’s formula cf. Definition 3.1. If s(n) >= s we put the number n into the set
Ts, which will be returned afterwards.
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Function 11: step1(u low, u upp, v low, v upp, ncpus)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v,
ncpus . . . number of used CPUs.

output: A set Ts of congruent numbers such that each n ∈ Ts has s(n) greater or
equal to a defined bound.

This function computes for u and v in a given range u ∈ [u low, u upp] respectively
v ∈ [v low, v upp] congruent numbers of the type n = sqrfr prt(uv(v− u)(v + u)) by
calling the function choose set T of congruent numbers(. . .) and stores the output
in a set T. Afterwards it removes all numbers n ∈ T with s(n) < s = 6 and stores
the other numbers in the set Ts. Since the function get set Ts(. . .) is a parallel
function we have to assemble the outputs of each parallel execution to one common
set Ts, which is returned at the end of this function.
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4.2.2. Sifting

Now we consider step two, which is the sifting step. Therefore we need the following
functions. This subsection is based on [9].

Function 12: get S(n, bound primes)

input : n . . . a congruent number,
bound primes . . . a prime bound for computing Mestre-Nagao’s sum.

output: Mestre-Nagao’s sum for the congruent number n.

This function computes Mestre-Nagao’s sum for the congruent number n for all
prime numbers in the global set PN with an index less than bound primes. This
means, we use all prime numbers up to the bound primes-th prime number. For
further information see Definition 3.2.

The function get S(. . .) computes the Mestre-Nagao sum

S(n,N) =
∑
p∈PN

(
1− p+ 1

#E(Fp)

)
log p,

where PN describes the set of all prime numbers which are less than N. This computation
was speeded up incredibly by the following hint of Andrej Dujella. He advised me to
use the fact that the number of points #En on the elliptic curve En : y2 = x3 − n2x in
Mestre-Nagao’s sum equals

#En(Fp) = p+ 1− ap,
where the trace of Frobenius ap, is already computed during the precomputations. Hence
we could remove the call

E_count = E.count_points(1);

and use

E_count = p + 1 - a_p[PN.index(p)];

instead. In the above code line

PN.index(p)

describes the p-th prime number. The new version is much faster since we need the number
of points on an elliptic curve in each summand of the Mestre-Nagao sum.
Another hint makes use of the following proposition where we use Definition 2.11.

Remark 4.5. Let E1 : y2 = x3 − x be the congruent number elliptic curve with n = 1.
Then

E1
d : y2 = x3 − d2x,

is the d-th quadratic twist of E1.
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Proposition 4.6. Let E be an elliptic curve defined over the finite field Fp with p > 2 a
prime and d ∈ F×p . Furthermore let Ed be the d-th quadratic twist of E. Then

ap(E
d) = ap(E)

(
d

p

)
,

where ap(E) = p+ 1−#E(Fp) and ap(E
d) = p+ 1−#Ed(Fp).

Proof. For a proof of this proposition see Section 7.3 in [9].

So it suffices to compute ap for the congruent number elliptic curve E1 : x3 − x, since

ap(En) = ap(E1)

(
n

p

)
,

where En is the n-th quadratic twist of E1 and (n
p
) is the Legendre symbol.

With the help of these two facts we could reduce the time consumption of the function
get S(. . .) incredibly. Now we continue with the description of the other functions in this
step.

Function 13: divide numbers(set of numbers, bound primes, bound, ncpus)

input : set of numbers . . . a set of squarefree congruent numbers,
bound primes . . . a list of lists which contains prime numbers up to a

given bound,
bound . . . a lower bound for the Mestre-Nagao sum,
ncpus . . . number of used CPUs.

output: A list of inputs for the parallel function parallel step2(. . .).

This function tries to divide the input for the parallel function parallel step2(. . .)
into npus parts of nearly the same size to optimize the parallelization step. Each
element in the returned list consists of a number from, a number to, the
previously computed list of lists of prime numbers bound primes, a lower bound for
the Mestre-Nagao sum bound and the whole list of possible congruent numbers
list of numbers.
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Function 14: @parallel parallel step2(nr from, nr to, bound primes, bound, list of nrs)

input : nr from . . . the congruent number with the smallest index in our list,
nr to . . . the congruent number with the largest index in our list,
bound primes . . . a list containing lists of prime numbers for

Mestre-Nagao’s sum,
bound . . . a lower bound for Mestre-Nagao’s sum,
list of nrs . . . list of all congruent numbers returned by step1(. . .)

output: A list of congruent numbers which have Mestre-Nagao sums S ≥ bound.

This function computes Mestre-Nagao’s sum for a list of congruent numbers
n ∈ [nr from, nr to] in parallel and removes those candidates which have a
Mestre-Nagao sum < bound.

Function 15: compute prime bounds(Ms)

input : Ms . . . a list of elements [Ni,Mi].
output: A list bounds where each element is a list of primes.

Returns a list where each element bounds[i] is a list of primes that are less than Ni.

Function 16: step2(Ts, npus)

input : Ts . . . a list of congruent numbers,
ncpus . . . number of used CPUs.

output: An array Ts array of best candidates for CN-elliptic curves of high rank.

First of all this function computes a list of lists of prime numbers for bounds given
in Ms. Then it calls the function divide numbers(. . .) to obtain the needed input
format for the parallel function parallel step2(. . .). This function sieves through the
given congruent numbers and returns the elements which are suspected to be good
congruent numbers i.e., those n with CN-elliptic curves En, that are believed to
have relatively high ranks. We think that a curve En has relatively high rank, if the
Mestre-Nagao sum of n is greater than a lower bound Mi ∈Ms = [[Ni,Mi]].
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4.2.3. Computing

Now we try to compute the rank for the good candidates.

Function 17: divide candidates for computing rank(Ts array, ncpus)

input : Ts array . . . a list of good squarefree congruent numbers,
ncpus . . . number of used CPUs.

output: A list of inputs for the parallel function compute rank(. . .).

This function tries to divide the given list of good congruent numbers for the
parallel function compute rank(. . .) into npus parts of nearly the same size to
optimize parallelization.

In the function compute rank for one curve(. . .) we use the decorator class fork which
allows us to define a timeout such that this function is terminated after timeout = 1800
seconds. See [30] for further information. We sometimes had the problem that computing
the rank took more than several hours but no rank was returned. On the other hand for
most of the candidates computation finishes before this defined timeout. Another problem
was that a ’Division by zero’-exception has been raised from time to time, therefore we
implemented the exception handling and print any details about a raised exception now.

Function 18: @fork(timeout = 1800) compute rank for one curve(n)

input : n . . . a good congruent number.
output: The rank of En if computing was successfull.

This function tries to compute the rank of the CN-elliptic curve En : y2 = x3 − n2x
by Cremona’s MWRANK function in 1800 seconds. If the function is not able to do
it, computing is aborted to reduce time for difficult curves. If any exception arises,
we print the details of this exception.

Computing the rank is another very time consuming part in our implementation. Here, we
use again parallelization to reduce the time consumption. If any problem such as a timeout
or an exception occurs in the function compute rank(. . .), we save the corresponding n in
a list of numbers where no rank has been computed.
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Function 19: @parallel compute rank(Ts array)

input : Ts array . . . a list of good congruent numbers.
output: The number of candidates counter candidates for which we have tried to

compute the rank of En, an indicator variable curve found if a computed
rank was ≥ 6, a list of numbers numbers found which corresponds to
CN-elliptic curves of rank ≥ 6, and a list of numbers for those the rank
computation was not successfull no rank curves and the number of such
curves counter no rank computed.

This function tries to compute the rank of En for each element n in the list
Ts array by calling the function compute rank for one curve(. . .).

Function 20: step3(Ts array, npus)

input : Ts array . . . a list of good candidates computed by step2(. . .),
ncpus . . . number of used CPUs.

output: An array of congruent numbers with an elliptic curve En of rank ≥ 6 and
a list of congruent numbers where we were not able to compute the rank
of En.

First of all this function finds the last list element of Ts array which contains any
elements. These elements n are used to compute the rank for the corresponding
CN-elliptic curves En with the help of the parallel function compute rank(. . .).
Again we have to create correct inputs for this function by
divide candidates for computing rank(. . .). Finally this function returns the
numbers of high rank elliptic curves and curves where computing the rank was not
possible.
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4.2.4. Main

Now we have to combine the functions given so far, therefore we have the following functions
which provides furthermore the possibility to split the given input for faster results.

Function 21: find numbers((u low, u upp, v low, v upp, ncpus)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v,
ncpus . . . number of used CPUs.

output: An array of congruent numbers with an elliptic curve En of rank ≥ 6 and
a list of congruent numbers where no rank was computed for En.

This function combines all functions defined so far. First of all it calls step1(. . .) to
get a list Ts of squarefree congruent numbers. Afterwards if Ts is not empty it
calls step2(. . .) to get a list Ts array of good candidates for high rank CN-elliptic
curves and finally it calls the function step3(. . .) for trying to compute the rank of
En where n ∈ Ts array.

Function 22: get split input(u low, u upp, v low, v upp)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v.

output: A split input for the function find numbers(. . .).

This function splits the input into smaller parts such that the computation of each
part does not take so much time. Especially for the case u upp = 105 this is
important for a better usability. In this range we get an enormous amount of
candidates u and v for computing congruent numbers. So this trick enables us to
see that the program is still running. In any other cases we use a much larger
ranges. With the help of this function we can call find numbers(. . .) for much
smaller parts implicitly.
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Function 23: main(u low, u upp, v low, v upp, ncpus, split)

input : u low . . . a lower bound for u,
u upp . . . an upper bound for u,
v low . . . a lower bound for v,
v upp . . . an upper bound for v,
ncpus . . . number of used CPUs,
split . . . an indicator if the given input should be split into smaller pieces.

This function calls the function get split input(. . .) for the given input if needed
i.e., if split == 1, and calls afterwards the function find numbers(. . .) for each
part of the split input and combines afterwards the returned results. If the given
input should not be split then this function just calls find numbers(. . .) with the
whole input. In both cases this function prints all results on the screen and writes
each print(. . .) statement also into a produced file.
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In this chapter we compare ordinary cryptosystems to their corresponding elliptic curve
versions. The security of these ordinary cryptosystems is based on the discrete logarithm
problem (DLP) in finite fields. That is the reason why we can easily transfer those cryp-
tosystems to elliptic curves. However, in practice sub-exponential methods for solving
DLP in F×q such as the baby-step giant-step algorithm, the Pohlig-Hellman algorithm, the
Pollard’s rho algorithm or the number field sieve are known. These algorithms are often
inspired by integer factorization algorithms. The security of these analogous elliptic curve
versions is based on the discrete logarithm problem on elliptic curves (ECDLP). Since that
is much harder to solve, the necessary key sizes in elliptic curve cryptography are consid-
erably smaller. Nevertheless we obtain a comparable security. This chapter is based on
[16, 21, 22, 24] and [27].

5.1. Diffie-Hellman key exchange

We first consider the Diffie-Hellman key exchange in finite fields and on elliptic curves. It is
used if two parties want to agree upon a shared secret key, which can be used in symmetric
encryption schemes.

5.1.1. Diffie-Hellman

The Diffie-Hellman key exchange was developed by Martin Hellman, Whitfield Diffie and
Ralph Merkle and was published in 1976. Let us suppose that Alice and Bob want to agree
upon a key on an insecure channel. The key should be a random element of F×q which can
be used in a symmetric cipher. The Diffie-Hellman key exchange is based on the discrete
logarithm problem. As long as the Diffie-Hellman assumption holds, a third party is not
able to compute the key gab with ga and gb.

Definition 5.1 (Discrete logarithm problem (DLP)). Let Z×p be a finite cyclic group of
order p − 1. Let α ∈ Z×p be a primitive element and β ∈ Z×p any element. We search for
an x ∈ Z×p with 1 ≤ x ≤ p− 1, such that

αx ≡ β mod p.

Hence x = logα β mod p.

Definition 5.2 (Diffie-Hellman problem). Given a finite cyclic group G of order n, a
primitive element α ∈ G and two elements A = αa and B = αb in G. Then the Diffie-
Hellman problem is the problem searching the element αab.
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The Diffie-Hellman problem could be solved by the discrete logarithm problem.

Definition 5.3 (Diffie-Hellman assumption). It is computationally infeasible to compute
gab, if we only know ga and gb. The Diffie-Hellman Assumption holds as long as the discrete
logarithm cannot be computed efficiently.

The key exchange works in the following way.

Protocol:

1. First Alice and Bob agree on a public finite field Fq and an element g ∈ Fq such that
g is a generator of the multiplicative group F×q .

2. Alice chooses a random integer a ∈ {1 . . . q−1} which she keeps secret. Furthermore
she computes A = ga ∈ Fq and sends A to Bob.

3. Bob chooses a random integer b ∈ {1 . . . q− 1} which he keeps secret. Afterwards he
computes B = gb ∈ Fq and sends B to Alice.

4. Each of them computes their shared secret key K. Alice uses the information of Bob
K = Ba and Bob uses the information of Alice K = Ab in Fq.

In the following we consider the elliptic curve Diffie-Hellman key exchange.

5.1.2. Elliptic curve Diffie-Hellman

Here Alice and Bob want to agree on a shared secret key again, which could be used for a
symmetric encryption scheme. As long as the Diffie-Hellman assumption (Definition 5.3)
holds, a third party is not able to compute the key abB knowing aB and bB.

Definition 5.4 (Elliptic curve discrete logarithm problem (ECDLP)). Let E be an elliptic
curve over Fq and let B and P be points on E. We search for an integer x ∈ Z, such
that xB = P, but such an integer x does not need to exist. This problem is called discrete
logarithm problem on E (to the base B).

Next we give the protocol of the elliptic curve Diffie-Hellman key exchange (ECDH).

Protocol:

1. First Alice and Bob agree on a public finite field Fq, an elliptic curve E over Fq and
a point B ∈ E to serve as their base.

2. To create a shared key Alice chooses a random integer a and keeps it secret.

3. Then Alice computes aB ∈ E and makes it public.

4. Bob does the same: he chooses a random integer b and makes bB ∈ E public.
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5. The shared secret key is P = abB ∈ E. Both users can compute this key and it can
be used for en- and decryption.

For example Alice knows bB, which is public and her secret key a. However a third party
only knows aB and bB. Without solving the discrete logarithm problem it seems to be
impossible to compute abB.
B plays the role of a generator g in the finite field version of the Diffie-Hellman system.
We do not require, that B is a generator of the group of points on E. In fact this group
does not need to be cyclic. Even if this group is cyclic we do not want to check if B is a
generator of it, but the subgroup generated by B should be large. We prefer subgroups of
the same order as E. We assume that B is a fixed public point on E of huge order (either
N or a large divisor of N).
Suppose we want to use the Diffie-Hellman key exchange for message transmitting, then
we get the following cryptosystem.

5.2. Massey-Omura cryptosystem

5.2.1. Massey-Omura on finite fields

This method was developed by James Massey and Jim Omura in 1983. With the help of
this protocol users have the possibility to exchange messages secretely over an insecure
channel. In this protocol neither a public key nor a shared secret key is necessary.
Suppose Alice wants to send the message Pm to Bob. Then the following procedure results.

Protocol:

1. First both parties agree on a public finite field Fq.

2. Alice chooses secretly a random integer eA ∈ {1, . . . , q − 1} such that

gcd (eA, q − 1) = 1

and she computes the inverse dA of eA with the help of the Euclidean algorithm
dA = e−1A mod q − 1. Hence dAeA ≡ 1 mod q − 1.

3. Bob chooses secretly a random integer eB ∈ {1, . . . , q − 1} such that

gcd (eB, q − 1) = 1

and he computes dB = e−1B mod q − 1. Therefore dBeB ≡ 1 mod q − 1.

4. Alice sends the element Pm
eA to Bob.

5. Bob is not able to compute Pm since he does neither know eA nor dA. That is why,
Bob computes Pm

eAeB and sends it back to Alice.
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6. Now Alice decrypts her encryption by computing Pm
eAeBdA and afterwards she sends

Pm
eB back to Bob.

7. Now Bob is able to read the message Pm by computing Pm
eBdB .

Here, it is important that a good signature scheme is used. Otherwise a third party C,
which should not know the message, could impersonate Bob and send the message Pm

eAeC

to Alice. Alice would not even notice, that there is a third party. Therefore she would
raise the message to dA and hence C would be able to decrypt the message. That is the
reason why the message should contain any kind of authentification of Bob. For example
a signature which could only belong to Bob.
Furthermore it is important that neither user B nor user C would be able to compute eA
after decrypting some messages and hence knowing some pairs (Pm, Pm

eA). The security of
this cryptosystem is again based on the discrete logarithm problem. Suppose Bob would
be able to solve the discrete logarithm problem in F×q then he would be able to compute

eA with Pm and Pm
eA . Hence he would also be able to compute dA = e−1A mod q − 1 easily

and he would be able to decrypt every message from Alice sent to him or anyone else.
Instead of computing the power, also other operations can be used in this system and it
has an analogous version on elliptic curves.

5.2.2. Elliptic curve Massey-Omura

As in the finite field version we can use this public key cryptosystem to transmit messages
m. We assume that this message is embedded as point Pm on an elliptic curve E ∈ Fq.
(Where E is public and q is large.) We further assume that the number of points N on the
curve E has been computed and N is public. We consider the single steps of this protocol
in the case that Alice wants to send the message Pm to Bob.

Protocol:

1. Alice secretly chooses a random integer eA between 1 and N , such that gcd (eA, N) =
1. Furthermore she computes the inverse of eA with the help of the euclidean algo-
rithm dA = e−1A mod N. Hence dAeA ≡ 1 mod N.

2. Bob also secretly chooses an random integer eB between 1 andN , such that gcd (eB, N) = 1.
Then he computes dB = e−1B mod N using the Euclidean algorithm. Thus dBeB ≡
1 mod N.

3. Alice sends the point eAPm to Bob.

4. Bob cannot reconstruct the message Pm because he does neither know dA nor eA.
Therefore he multiplies the message by eB and sends eBeAPm back to Alice.

5. Now Alice removes her encryption of the message by multiplying eBeAPm by dA.
Since NPm = 0 and dAeA ≡ 1 mod N the point eBPm results and Alice sends this
point to Bob.
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6. Bob can read the message by multiplying the point eBPm by dB.

Unfortunately, a third party which knows eAPm, eBeAPm, eBPm and is able to solve the
discrete logarithm problem on E could determine eB with the help of the first two points.
Furthermore dB = e−1B mod N and Pm = dB(eBPm) could be computed afterwards.
In the next section we consider the ElGamal cryptosystem.

5.3. ElGamal cryptosystem

5.3.1. ElGamal on finite fields

This is another public key cryptosystem for transmitting messages and is again based on
the idea of the Diffie-Hellman key exchange. We assume that we want to send plaintext
messages as a numeric value Pm ∈ Fq.
If Alice wants to send the message Pm to Bob then she proceeds as follows. The public
key for encryption is the element gaB ∈ Fq.

Protocol:

1. At first Alice and Bob agree on a public finite field Fq and an element g ∈ F×q .
(Preferably g should be a generator.)

2. Alice randomly chooses an integer aA in 0 < aA < q − 1 and keeps it secret. The
public key is the element gaA ∈ Fq.

3. Bob randomly chooses an integer aB in 0 < aB < q − 1 and keeps it secret too. His
public key is the element gaB ∈ Fq.

4. Then Alice randomly chooses an integer k and sends the pair (gk, Pmg
aBk) to Bob.

Alice can compute gaBk without knowing aB by raising gaB to the power k.

5. Bob knows aB. Now Bob can reconstruct Pm from this pair by raising gk to the power
aB and then dividing the second element by the previous result.

So to speak Alice sends a message to Bob which consists of a masked Pm (mask = gaBk)
and an advice gk. This advice helps Bob to remove the mask from Pm, but this advice is
only helpful if aB is known.

If somebody can solve the discrete logarithm problem in Fq then he can also break this
cryptosystem by computing the secret key aB from the public key gaB . However, it is
suspected that it is not possible to compute gaBk with gaB and gk without solving the
discrete logarithm problem.
Now we consider the elliptic curve version of this cryptosystem.
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5.3.2. Elliptic curve ElGamal

This public key cryptosystem is also used to transmit secret messages. Suppose Alice wants
to send the message Pm to Bob, then this system works as follows.

Protocol:

1. At first Alice and Bob agree on a public finite field Fq, an elliptic curve E over the
finite field Fq and a point B ∈ E. The number of points N is not necessarily needed
in this protocol.

2. Alice randomly chooses an integer aA and keeps it secret. Further she computes the
point aAB and publishes it.

3. Bob randomly chooses an integer aB and keeps it secret. He computes the point aBB
and also publishes it.

4. Then Alice randomly chooses an integer k and sends the pair (kB, Pm + k(aBB)) to
Bob. (aB is the private key of Bob)

5. If Bob would like to read the message he has to multiply the first point of the pair
by his private key aB and he has to subtract the result from the second point of the
pair

Pm + k(aBB)− aB(kB) = Pm.

Again, Alice sends a message to Bob which consists of a masked Pm (mask = kaBB) and
an advice kB. This advice helps to remove the mask as long as the secret integer aB is
known. A third party which can solve the discrete logarithm problem on E can compute
aB with the help of the published information B and aBB.

5.4. Digital Signature Algorithm

Finally we present a digital signature scheme which is a variant of the ElGamal scheme.
The Digital Signature Algorithm was proposed by the U.S. National Institute of Standards
and Technology (NIST) in 1991. Usually we do not sign a message m itself but a shorter
’digest’ i.e., the hash value of the message h(m) is used. Therefore this scheme requires a
hash function h (e.g. SHA-2).

5.4.1. Digital Signature Algorithm

Suppose Bob wants to sign a message m ∈ Fq. He can use the same public and private key
pair gaB = y and aB as in ElGamal cipher. This subsection is based on [24].
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I. DSA Key generation Users of this algorithm should decide on two very large prime
numbers p and q such that q divides p − 1, and on a generator g of the unique cyclic
group of order q in F×p . This generator can be found by selecting an element α ∈ F×p and

computing g = α(p−1)/q mod p. If g 6= 1 a generator was found. Otherwise try another
element α ∈ F×p . For generating public and private keys, each user should do the following:

1. Select a random integer a ∈ {1, . . . , q − 1}.

2. Compute y = ga mod p.

3. Then (p, q, g, y) is the public key and a is the corresponding private key.

II. DSA Signature generation If Bob wants to send a signed message m to Alice he
does the following:

1. Bob selects a random secret integer k ∈ {1, . . . , q − 1}.

2. He computes r = (gk mod p) mod q. If r = 0 then goto 1.

3. He computes k−1 mod q.

4. Furthermore Bob computes s = k−1(h(m) + aBr) mod q. If s = 0 then goto 1.

5. Then Bob’s signature for the message m is the pair (r, s).

III. DSA Signature verification To verify Bob’s signature, Alice proceeds as follows:

1. Alice obtains Bob’s public key (p, q, g, y).

2. She verifies that r and s are integers in {1, . . . , q − 1}. Otherwise she would reject
the signature.

3. She computes w = s−1 mod q and h(m).

4. Further Alice computes u1 = h(m)w mod q and u2 = rw mod q.

5. Then she computes v = (gu1yu2 mod p) mod q and verifies the signature by checking
v = gu1yu2 = gu1(gaB)u2 = gh(m)wgaBrw = gw(h(m)+aBr) = gwsk = gs

−1sk = gk = r.

6. She accepts the signature only if v = r.

5.4.2. Elliptic Curve Digital Signature Algorithm

The elliptic curve version ECDSA has been adopted as an official ANSI standard in 1999.
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I. ECDSA Key generation Let E be an elliptic curve over Fp (where p is prime) and
let P be a point of prime order n in E(Fp). Then each user of this scheme has to do the
following:

1. Select a random a ∈ {1, . . . , n− 1}.

2. Compute Q = aP.

3. Then Q is the public key and a is the private key.

II. ECDSA Signature generation If Bob wants to send a signed message m to Alice
he does the following:

1. Bob selects a random k ∈ {1, . . . , n− 1}.

2. He computes kP = (x1, y1) and r = x1 mod n. If r = 0 then goto 1.

3. He computes k−1 mod n.

4. Furthermore Bob computes s = k−1(h(m) + aAr) mod n. If s = 0 then goto 1.

5. Then the signature of Bob is (r, s).

III. ECDSA Signature verification To verify Bob’s signature, Alice proceeds as fol-
lows:

1. Alice obtains Bob’s public key QB.

2. She verifies that r and s are integers in {1, . . . , n − 1}, otherwise she rejects the
signature.

3. She computes w = s−1 mod n and h(m).

4. Alice further computes u1 = h(m)w mod n and u2 = rw mod n.

5. Then she computes u1P + u2QB = (x0, y0) and r = x0 mod n.

6. She accepts the signature only if v = r.

In this chapter we saw some applications of elliptic curves in cryptography. Notice, that
elliptic curve cryptography has found many applications in the security sector today.
Finally in the appendix you can find the source code of our implemented algorithm.
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The ideas of Section 3.3 have been implemented in the following form. We used therefore
the computer algebra system SageMath.

A.1. Precomputations

1 def divide_input(l_bound,u_bound,ncpus):

2 part = ceil((u_bound-l_bound+1)/ncpus);

3 input_new = []

4 for i in xrange(ncpus-1):

5 input_new.append((l_bound+i*part,(l_bound+(i+1)*part)-1));

6 input_new.append((l_bound+(ncpus-1)*part,u_bound));

7 return input_new;

8

9

10 @parallel

11 def precompute_squarefree_parts_from_to(l_bound, u_bound):

12 parts = []

13 for i in xrange (l_bound,u_bound+1):

14 parts.append(squarefree_part(i));

15 return parts;

16

17

18 def precompute_squarefree_parts(l_bound,u_bound,ncpus):

19 input_sqfp = divide_input(l_bound,u_bound,ncpus);

20 big_list = sorted(list(precompute_squarefree_parts_from_to(input_sqfp)));

21 sqfree_parts = [];

22 for i in xrange(ncpus):

23 sqfree_parts = sqfree_parts + big_list[i][1];

24 return sqfree_parts;

25

26

27 def precompute_ap():

28 a_p = [];

29 E = EllipticCurve([0,0,0,-1,0]);

30 for p in PN:
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31 a_p.append(E.ap(p));

32 return a_p;

33

34

35 def precompute(bound_primes,ncpus):

36 w = walltime();

37 global PN;

38 PN = list(primes(1,bound_primes-1));

39 global a_p;

40 a_p = precompute_ap_up_to(bound_primes);

41 global sqfree_parts;

42 sqfree_parts = precompute_squarefree_parts(1,10^6,ncpus)

43 print_time(...);

A.2. Computations

To reduce the number of code lines in the following we removed and simplified many print
statements.

1 import socket

2 import gc

3

4 @parallel

5 def get_congruent_numbers(u_low,u_upp,v_low,v_upp):

6 uv_map_temp = {}

7 T = [];

8

9 for u in xrange(u_low,u_upp+1):

10 v_bound = v_low;

11 if (u > v_low):

12 v_bound = u+1;

13 for v in xrange(v_bound,v_upp+1):

14 if ((u < v) and (mod(u+v,2)==1) and (gcd(u,v)==1)):

15 n =

16 sqfree_parts[u-1]*sqfree_parts[v-1]*sqfree_parts[(v-u)-1]

17 *sqfree_parts[(v+u)-1];

18 T.append(n);

19 uv_map_temp[n] = (u,v);

20

21 return [T,uv_map_temp];

22

23
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24 def divide_input_get_sqfree_numbers(u_low,u_upp,v_low,v_upp,ncpus):

25 part = floor((u_upp-u_low+1)/ncpus);

26 if(u_upp > v_upp):

27 part = floor((v_upp-u_low+1)/ncpus);

28 input_new = []

29 if (part < 1):

30 input_new.append((u_low,u_upp,v_low,v_upp));

31 else:

32 rest = u_upp - u_low + 1 - (part * ncpus);

33 rest_curr = rest;

34 for i in xrange(ncpus-1):

35 if (rest_curr > 0):

36 input_new.append((u_low+i*part + i, (u_low+(i+1)*part)-1+(i+1),

37 v_low, v_upp));

38 elif (rest_curr <= 0 and i >= rest):

39 input_new.append((u_low+i*part + rest, (u_low+(i+1)*part)-1+rest,

40 v_low,

41 v_upp));

42 else:

43 input_new.append((u_low+i*part, (u_low+(i+1)*part)-1, v_low, v_upp));

44 rest_curr = rest_curr - 1;

45 if(u_upp > v_upp):

46 input_new.append((u_low+(ncpus-1)*(part+1), v_upp, v_low, v_upp));

47 else:

48 if (rest > 0):

49 input_new.append((u_low+(ncpus-1)*part+rest, u_upp, v_low, v_upp));

50 else:

51 input_new.append((u_low+(ncpus-1)*part, u_upp, v_low, v_upp));

52 return input_new;

53

54

55 def choose_set_T_of_congruent_numbers(u_low,u_upp,v_low,v_upp,ncpus):

56 divided_input = divide_input_get_sqfree_numbers(u_low, u_upp, v_low, v_upp,

57 ncpus);

58

59 T_list= sorted(list(get_congruent_numbers(divided_input)));

60 T = []

61

62 for i in xrange(len(T_list)):

63 if(len(T_list[i][1][0])==1):

64 print(" computed list T part has length 1");

65 if(T_list[i][1][0] == ’N’):

66 print(" computed list T equals ’N’");
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67 print(" list[i][1][1]: "+str(T_list[i][1][1]));

68 else:

69 T = T + T_list[i][1][0];

70 uv_map.update(T_list[i][1][1]);

71 else:

72 T = T + T_list[i][1][0];

73 uv_map.update(T_list[i][1][1]);

74

75 T = Set(T).list();

76 return T;

77

78

79 def divide_set_T(T,ncpus,s):

80 list_of_numbers = list(T);

81 length_list = len(list_of_numbers);

82 input_new = []

83 if (length_list < ncpus):

84 input_new.append((list_of_numbers[0],list_of_numbers[length_list-1],T,s));

85 return input_new;

86 else:

87 part = ceil(length_list/ncpus);

88 for i in xrange(ncpus-1):

89 input_new.append((list_of_numbers[i*part],

90 list_of_numbers[((i+1)*part)-1], T, s));

91

92 input_new.append((list_of_numbers[(ncpus-1)*part],

93 list_of_numbers[length_list-1], T, s));

94

95 return input_new;

96

97

98 @parallel

99 def get_set_Ts(from_number,to_number,T,s):

100 Ts = [];

101

102 #compute s(n) by Monsky’s formula

103 for counter in xrange(T.index(from_number),T.index(to_number)+1):

104 primes = T[counter].factor();

105 t = len(primes);

106 t_start = 0;

107 t_end =t;

108 if (primes[0][0] == 2):

109 t_start=1;
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110 t = t-1;

111

112 #create matrices

113 D_1 = matrix(t,t);

114 D_2 = matrix(t,t);

115 D2 = matrix(t,t);

116 A = matrix(t,t);

117

118 for i_counter in xrange(t_start,t_end):

119 # modify indices

120 if (t_start <> 0):

121 i = i_counter-1;

122 if (t_start == 0):

123 i = i_counter;

124

125 # l = -1

126 if (legendre_symbol(-1,primes[i_counter][0]) == 1):

127 D_1[i,i] = 0;

128 if (legendre_symbol(-1,primes[i_counter][0]) == -1):

129 D_1[i,i] = 1;

130

131 # l = -2

132 if (legendre_symbol(-2,primes[i_counter][0]) == 1):

133 D_2[i,i] = 0;

134 if (legendre_symbol(-2,primes[i_counter][0]) == -1):

135 D_2[i,i] = 1;

136

137 # l = 2

138 if (legendre_symbol(2,primes[i_counter][0]) == 1):

139 D2[i,i] = 0;

140 if (legendre_symbol(2,primes[i_counter][0]) == -1):

141 D2[i,i] = 1;

142

143 # create A

144 for j_counter in xrange(t_start,t_end):

145 # modify indices

146 if (t_start <> 0):

147 j = j_counter-1;

148

149 if (t_start == 0):

150 j = j_counter;

151

152 if (i <> j):
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153 if (legendre_symbol(primes[j_counter][0],primes[i_counter][0]) == 1):

154 A[i,j] = 0;

155 if (legendre_symbol(primes[j_counter][0],primes[i_counter][0]) == -1):

156 A[i,j] = 1;

157

158 for i in xrange(t):

159 for k in xrange(t):

160 if (i <> k):

161 A[i,i] = mod(A[i,i] + A[i,k],2);

162

163 #compute matrices Mo and Me

164 s_n = 0;

165

166 if t_start == 0:

167 Mo = block_matrix(GF(2),2, 2, [ A+D2, D2, D2, A+D_2 ])

168 s_n = 2*t -Mo.rank();

169 else:

170 Me = block_matrix(GF(2),2, 2, [ D2, A+D2, transpose(A)+D2, D_1 ])

171 s_n = 2*t-Me.rank();

172

173 if (s_n >= s):

174 Ts.append(T[counter]);

175 return Ts;

176

177

178 # Step 1

179 def step1(u_low,u_upp,v_low,v_upp,ncpus):

180 print_info(...);

181

182 s = 6;

183 T = choose_set_T_of_congruent_numbers(u_low,u_upp,v_low,v_upp,ncpus);

184

185 print("len T: "+str(len(T)));

186 print_time(...);

187

188 Ts_output = sorted(list(get_set_Ts(divide_set_T(T,ncpus,s))))

189 Ts = []

190

191 for i in xrange(len(Ts_output)):

192 if(len(Ts_output[i][1])==1):

193 print(" computed list Ts_output part has length 1");

194 if(Ts_output[i][1] == ’N’):

195 print(" computed list Ts_output equals ’N’");
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196 else:

197 Ts = Ts + Ts_output[i][1];

198 else:

199 Ts = Ts + Ts_output[i][1];

200

201 print("len Ts: "+str(len(Ts)));

202 print_time(...);

203

204 print_time(...);

205 return Ts;

206

207

208 # Mestre-Nagao’s sum

209 def get_S(n,bound_primes):

210 sum = 0;

211 for i in xrange(bound_primes):

212 p = PN[i]

213 disc = (-16)*(4*(-(n^2))^3);

214

215 if (mod(disc,p) <> 0):

216 ap = a_p[PN.index(p)]*kronecker(n,p);

217 sum = sum + RR(((-ap+2)/(p+1-ap))*log(p))

218 return sum;

219

220

221 def divide_numbers(set_of_numbers, bound_primes, bound, ncpus):

222 list_of_numbers = list(set_of_numbers);

223 length_list = len(list_of_numbers);

224 input_new = []

225 if (length_list < ncpus):

226 input_new.append((list_of_numbers[0],

227 list_of_numbers[length_list-1], bound_primes , bound, list_of_numbers));

228 return input_new;

229 else:

230 part = floor(length_list/ncpus);

231 for i in xrange(ncpus-1):

232 input_new.append((list_of_numbers[i*part],list_of_numbers[((i+1)*part)-1],

233 bound_primes,bound,list_of_numbers));

234

235 input_new.append((list_of_numbers[(ncpus-1)*part],

236 list_of_numbers[length_list-1] , bound_primes, bound, list_of_numbers));

237 return input_new;

238
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239

240 @parallel

241 def parallel_step2(nr\_from, nr\_to, bound\_primes, bound, list\_of\_nrs):

242 list_tmp = [];

243 mns_tmp = {};

244 uv_map_tmp = {};

245 for i in xrange(list\_of\_nrs.index(nr\_from), list\_of\_nrs.index(nr\_to)+1):

246 n = list\_of\_nrs[i];

247 S = get_S(n, bound_primes);

248 if S >= bound:

249 list_tmp.append(n);

250 mns_tmp[n] = numerical_approx(S);

251 uv_map_tmp[n] = (uv_map[n][0],uv_map[n][1]);

252

253 return [list_tmp, mns_tmp, uv_map_tmp];

254

255

256 def compute_prime_bounds(Ms):

257 bounds = [];

258 for i in xrange(len(Ms)):

259 bounds.append(len(list(primes(1,Ms[i][0]-1))));

260 return bounds;

261

262

263 #Step 2

264 def step2(Ts,ncpus):

265 print_info(...);

266

267 Ms =

268 [[500,10],[1000,12],[5000,15],[10000,20],[15000,25],[20000,30],[30000,45]];

269

270 prime_bounds = compute_prime_bounds(Ms);

271 k = len(Ms);

272 Ts_array = [];

273 Ts_array.append(Ts);

274

275 for i in xrange(1,k+1):

276 list_tmp = [];

277 if len(Ts_array[i-1]) > 0:

278 list_tmp =

279 get_sieved_numbers(sorted(list(parallel_step2(divide_numbers(Ts_array[i-1],

280 prime_bounds[i-1], Ms[i-1][1], ncpus)))));

281 Ts_array.append(list_tmp);
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282

283 print_sieving_info(...);

284 print_time(...);

285

286 return Ts_array;

287

288

289 def divide_candidates_for_computing_rank(Ts_array, ncpus):

290 length_list = len(Ts_array);

291 part = floor((length_list)/ncpus);

292 input = []

293 if (part < 1):

294 for i in xrange(length_list):

295 input.append(Ts_array[i:i+1]);

296 return input;

297 else:

298 rest = length_list - (part * ncpus);

299 rest_curr = rest;

300 for i in xrange(ncpus-1):

301 if (rest_curr > 0):

302 input.append(Ts_array[i*part+i:((i+1)*part)+(i+1)]);

303 elif (rest_curr <= 0 and i >= rest):

304 input.append(Ts_array[i*part+rest:((i+1)*part)+rest]);

305 else:

306 input.append(Ts_array[i*part:((i+1)*part)]);

307 rest_curr = rest_curr - 1;

308 if (rest > 0):

309 input.append(Ts_array[(ncpus-1)*part+rest:length_list]);

310 else:

311 input.append(Ts_array[(ncpus-1)*part:length_list]);

312

313 return input;

314

315

316 @fork(timeout=1800)

317 def compute_rank_for_one_curve(n):

318 try:

319 En = mwrank_EllipticCurve([0, 0, 0, -(n^2), 0])

320 rank = En.rank();

321 return rank;

322 except Exception as detail:

323 print_exception(...);

324
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325

326

327 @parallel

328 def compute_rank(Ts_array):

329 cntr_cand = 0;

330 cntr_no_rank_crvs = 0;

331 curve_found = false;

332 numbers_found = [];

333 no_rank_crvs = [];

334 En = 0;

335

336 for n in Ts_array:

337 rank = 0;

338 rank = compute_rank_for_one_curve(n);

339

340 if (rank == ’NO DATA’ or rank == None):

341 cntr_no_rank_crvs = cntr_no_rank_crvs + 1;

342 no_rank_crvs.append(get_no_rank_curve(n));

343 elif(rank == ’NO DATA (timed out)’):

344 print_exception(...);

345 cntr_no_rank_crvs = cntr_no_rank_crvs + 1;

346 no_rank_crvs.append(get_no_rank_curve(n));

347 elif(rank >= 6):

348 numbers_found.append([n,rank]);

349 curve_found = true;

350

351 cntr_cand = cntr_cand + 1;

352

353 print_time(...);

354 return [cntr_cand, curve_found, numbers_found, cntr_no_rank_crvs,

355 no_rank_crvs];

356

357

358 # Step 3

359 def step3(Ts_array, ncpus):

360 print_info(...);

361

362 numbers_found = [];

363 no_rank_crvs = [];

364 cntr_no_rank_crvs = 0;

365 k = len(Ts_array);

366 j = 0;

367
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368 #find j

369 for i in xrange (1,k):

370 if (len(Ts_array[i]) <> 0):

371 j = i;

372 #check sets

373 setsOK = true;

374 if j == 0:

375 setsOK = false;

376

377 curve_found = false;

378

379 #compute MWRANK

380 cntr_cand = 0;

381 if (setsOK):

382 input = divide_candidates_for_computing_rank(Ts_array[j],ncpus);

383 output = sorted(list(compute_rank(input)));

384

385 [cntr_cand, curve_found, numbers_found, cntr_no_rank_crvs,

386 no_rank_crvs] = get_found_numbers(output);

387

388 print_summary(...);

389

390 return [numbers_found, cntr_cand, cntr_no_rank_crvs, no_rank_crvs];

391

392

393 def find_numbers(u_low,u_upp,v_low,v_upp,ncpus):

394 no_set_Ts_found = true;

395

396 Ts = [];

397 Ts_array = [];

398

399 Ts = step1(u_low, u_upp, v_low, v_upp, ncpus);

400

401 if (len(Ts) == 0):

402 print("No set Ts found.");

403 return [[],0,0,[]]

404 else:

405 no_set_Ts_found = false;

406 Ts_array = step2(Ts,ncpus);

407 gc.collect();

408

409 return step3(Ts_array,ncpus);

410
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411

412 def get_split_input(u_low,u_upp,v_low,v_upp):

413 if (u_upp == 10^5):

414 new_range = 250;

415 number_of_parts = ceil((v_upp-v_low) / new_range);

416 else:

417 bound_of_numbers = 7000000;

418 range_of_numbers = (u_upp-u_low)*(v_upp-v_low);

419 number_of_parts = ceil(range_of_numbers / bound_of_numbers);

420 new_range = ceil((v_upp-v_low) / number_of_parts);

421

422 input = []

423 v_bound = 0;

424

425 for i in xrange(number_of_parts-1):

426 v_bound = v_low + i * new_range;

427 input.append((u_low,u_upp,v_bound,v_bound+new_range));

428 input.append((u_low,u_upp,v_low + (number_of_parts-1)*new_range, v_upp));

429

430 return input;

431

432

433 def main(u_low,u_upp,v_low,v_upp,ncpus,split):

434 if ’sqfree_parts’ in globals():

435 openFile(u_low,u_upp,v_low,v_upp);

436 found = 0;

437 total_numbers_found = 0;

438 ctr_cand = 0;

439 bound_split_up = 20 * 10^6;

440

441 global uv_map;

442 uv_map = {}

443

444 global mestre_nagao_sums;

445 mestre_nagao_sums = {}

446

447 numbers_found = []

448

449 if (u_upp < u_low or v_upp < v_low):

450 print("Bounds are wrong. Please check given bounds.");

451 else:

452 bound = (u_upp-u_low)*(v_upp-v_low);

453 split_cond_small = (bound >= bound_split_up and u_upp == 10^4);
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454 split_cond_large = (u_upp == 10^5);

455

456 if ((split_cond_small or split_cond_large) and split):

457 split_input = get_split_input(u_low, u_upp, v_low, v_upp);

458 numbers_found_all = []

459 numbers_found_part = []

460 numbers_no_rank = []

461 ctr_no_rank = 0;

462

463 for inp in split_input:

464 print_bounds(...);

465

466 output = find_numbers(inp[0],inp[1],inp[2],inp[3],ncpus);

467 [numbers_fnd, new_ctr_cand, ctr_no_rnk_crvs, no_rnk_crvs] = output;

468

469 numbers_no_rank = numbers_no_rank + no_rnk_crvs;

470 ctr_no_rank = ctr_no_rank + ctr_no_rnk_crvs;

471

472 if (numbers_fnd <> None):

473 found = len(numbers_fnd);

474 numbers_found_part = createFoundNumbers(...);

475 numbers_found_all = numbers_found_all + numbers_found_part;

476

477 total_numbers_found = total_numbers_found + found;

478 ctr_cand = ctr_cand + new_ctr_cand;

479

480 if (new_ctr_cand > 0):

481 print_no_rank_computed_curves(...);

482 print_found_numbers(...);

483

484 print_summary_part(...);

485

486 print_summary(...);

487

488 else:

489 output = find_numbers(u_low, u_upp, v_low, v_upp, ncpus);

490 [numbers_fnd, ctr_cand, ctr_no_rnk_crvs, no_rnk_crvs] = output;

491

492 numbers_found_list = []

493

494 if (numbers_fnd <> None):

495 found = len(numbers_fnd);

496 numbers_found_list = createFoundNumbers(numbers_fnd, found);
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497

498 if (ctr_cand > 0):

499 print_no_rank_computed_curves(...);

500

501 print_summary(...);

502 else:

503 print("Please perform ’precompute(bound_primes, number_of_cpus)’.")

Now we present a very easy example for an easier understanding of this quite long source
code for finding CN-elliptic curves of high rank.

Example A.1. A typical usage of the above source code is.

sage: load(’\local\home\klopf\scripts\precomputations.sage’);

sage: precompute(30000,4);

sage: load(’\local\home\klopf\scripts\findCongruentNumbers.sage’);

sage: main(21,87,27450,32780,4,1)

Here you can see the corresponding output.

sage: main(21,87,27450,32780,4,1)

2015-10-07 13:19:51: Bounds:

u: 21 - 87

v: 27450 - 32780

2015-10-07 13:19:51: step1

------------------------------------------------------------------------------

2015-10-07 13:19:53: len T: 144306

2015-10-07 13:21:31: len Ts: 976

2015-10-07 13:21:31: step 1: 99.58 sec, 1.66 min, 0.03 h

2015-10-07 13:21:31: step2

------------------------------------------------------------------------------

Ms:[[500,10],[1000,12],[5000,15],[10000,20],[15000,25],[20000,30],[30000,45]]

2015-10-07 13:21:31: sieving:

2015-10-07 13:21:34: i: 1 len(Ts_array[i]): 297

2015-10-07 13:21:37: i: 2 len(Ts_array[i]): 192

2015-10-07 13:21:42: i: 3 len(Ts_array[i]): 138

2015-10-07 13:21:51: i: 4 len(Ts_array[i]): 71

2015-10-07 13:21:58: i: 5 len(Ts_array[i]): 32

2015-10-07 13:22:03: i: 6 len(Ts_array[i]): 10

2015-10-07 13:22:08: i: 7 len(Ts_array[i]): 0

2015-10-07 13:22:08: step 2: 36.97 sec, 0.62 min, 0.01 h
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2015-10-07 13:22:08: step3

------------------------------------------------------------------------------

2015-10-07 13:22:38: computing rank: 30.26 sec, 0.50 min, 0.01 h

2015-10-07 13:22:50: computing rank: 42.68 sec, 0.71 min, 0.01 h

2015-10-07 13:22:53: computing rank: 44.86 sec, 0.75 min, 0.01 h

2015-10-07 13:23:00: computing rank: 52.43 sec, 0.87 min, 0.01 h

2015-10-07 13:23:00: step 3: 52.45 sec, 0.87 min, 0.01 h

2015-10-07 13:23:00: good candidates: 10

2015-10-07 13:23:00: numbers no rank computed: 0

2015-10-07 13:23:00: FOUND: 2

1. n = 121 110 989 796 834, rank = 6, u = 86, v = 32 775, MS = 41.90

2. n = 455 089 600 428 474, rank = 6, u = 22, v = 27 451, MS = 37.48

2015-10-07 13:23:00: total time: 189.12 sec, 3.15 min, 0.05 h
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[18] D. Husemöller. Elliptic curves, volume 111 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 2004. With appendices by Otto Forster,
Ruth Lawrence and Stefan Theisen.

[19] A. W. Knapp. Elliptic curves, volume 40 of Mathematical Notes. Princeton University
Press, Princeton, NJ, 1992.

[20] N. Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

[21] N. Koblitz. A course in number theory and cryptography, volume 114 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.

[22] M. Madritsch. Mathematische grundlagen der kryptographie. Lecture notes.

[23] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld).
Invent. Math., 44(2):129–162, 1978.

[24] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied cryptog-
raphy. CRC Press Series on Discrete Mathematics and its Applications. CRC Press,
Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest.

[25] F. Najman. Some rank records for elliptic curves with prescribed torsion over quadratic
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