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Abstract

This master’s thesis presents a multiphase functional to segment and approximate a given gray
scale image where the resulting image is smooth on the support of each characteristic function.
Therefore, unique existence of the model functions is shown and then existence of a minimum of
the functional with respect to functions in a convex relaxation of a set of characteristic functions
is shown, i.e. BV (Ω,∆l).

This research puts a focus on image denoising and image segmentation simultaneously and
uses both approaches in one functional. Moreover, since it is unsure if the functional is convex,
a semi-gradient descent approach is established in a spatially continuous setting and later on
in a finite dimensional setting. In order to prove certain features, a mollifying operator was
introduced. Furthermore, a mapping that binds the update of the optimization process to have
range in [0, 1] was used.

The segmentation was performed with up to four characteristic functions, whereas segmen-
tation with only two showed the best result, since χ1 + χ2 = 1. The work presented here has
profound implications for future studies of a concurrent algorithm of image segmentation and
denoising.
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Chapter 1

Introduction

Think of your favourite image. It is easy for you to distinguish areas that have different colours
or gray values. Even if it is disturbed by noise, in your head the disconnected pieces form
together and you can still recognize what the colours tell you.

The two processes that were briefly described are image segmentation and image denoising
- two important fields in the scientific world of image processing. Image segmentation is the
process of combining the pixels of connected components. The number of applications consid-
ering this scientific tool is enormous. For instance, it is mainly used in medicine for automatic
segmentation in computer tomography and magnet resonance tomography, but also for segment-
ing geological data such as satellite imagery. In addition, it is also needed in face recognition,
inspection of work pieces and character recognition.

Whereas image denoising describes the procedure of reducing noise in a given image, i.e. the
resulting one appears somewhat blurred – mathematically speaking, it shows signs of a smooth
function that describes the underlying image.

This master thesis aims to combine image segmentation with image denoising. Therefore, a
functional is proposed that depends on the model functions and on the characteristic functions,
which together form the piecewise smooth approximation of the given image. The idea is to
establish an algorithm, where model functions and characteristic functions are simultaneously
obtained. In order to address this problem, in the first part a continuous dependence of the
model functions on the characteristic functions is derived and other important features of the
functional are discussed. The second part of this work consists in designing a proper algorithm.
There are many different approaches, like primal dual methods with various regularizers, see [8].

Alas, for this particular functional with respect to characteristic functions it is not clear if it
is convex, whereas it is with respect to the model functions, hence another optimizing strategy
has to be investigated. However, a convex relaxation on the minimizing set is performed, which
means, that minimization is not performed over the set of characteristic functions, but rather
over a set of vector-valued functions that have range in [0, 1]l with the additional property
that the sum of the function’s components is one, where l denotes the number of segments of
the corresponding characteristic functions. After the optimization process is completed, the
algorithm relies on a heuristic rounding scheme that transforms the calculated relaxed functions
into characteristic functions.

The rest of the thesis is organized as follows: In the second chapter, the basic concepts of
image segmentation and image denoising are further elaborated, to fully grasp the meaning of a
mathematical image. In addition, certain spaces and penalty terms are introduced which play
an important role in image processing and some examples of established methods are presented.

Chapter three introduces a multiphase functional which combines image segmentation and
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6 CHAPTER 1. INTRODUCTION

image denoising of a gray scale image, such that out of the segmentation process the corre-
sponding partitions are deduced. Furthermore, a proper algorithm is proposed to solve the
image denoising and segmentation problem.

Chapter four analyses the proposed functional and gives proof of the existing minimizers
for the relaxed constraint set. Therefore, continuity with respect to the model functions of the
solution of the segmentational problem is proven. Moreover, an optimality system is deduced
and so under certain conditions a simplified gradient of the functional is established. As a result
a semi-implicit gradient descent algorithm is proposed and hence the existence of a fixed point
is proven. All these results are given in a spatially continuous setting.

The fifth chapter deals with the discretization of the proposed method and shows that the
spline approximations of the model functions and characteristic functions are consistent. At the
end of this chapter, the discretized algorithm is presented.

In the sixth chapter, the numerical results are introduced. In addition, advantages and
disadvantages of the method are elaborated and discussed.

Finally, in the Appendix, mathematical facts and important results that are used frequently
throughout the Master Thesis are summarized.



Chapter 2

The Image Segmentation and
Denoising Problem

2.1 Definition of a Mathematical Image
To begin with, to properly understand the term image, one has to comprehend that what is an
easy task for the human brain, needs many difficult calculations for a computer. All objects on
earth reflect light, which is projected onto the retina of the human eye. This data is processed by
our brain immediately and we see an image without knowing the processes in the background.
But what is an image in the mathematical sense? The following definition gives the first outlook
into the world of image processing.

Definition 1. Let Ω ⊂ Rn be a bounded domain. A continuous image u : Ω→ F is a bounded
Lebesgue-measurable mapping in a colour space F . For an image with continuous gray scales
the corresponding colour space F is the interval [0, 1] or the space of real numbers R, whereas
for an image with continuous colours it is either [0, 1]3 or R3.

Note that in this thesis only images in a spatially continuous setting are considered. Al-
though, methods in Digital Image Processing rather deal with discrete images with discrete
colour space. A more sophisticated way in mathematics is to tinker with spatially continuous
images, like Lp-measurable functions.

Lemma 2.1. Let Ω ⊂ Rn be a bounded domain and let 1 ≤ p ≤ ∞ and u : Ω→ R be an image.
Then u ∈ Lp(Ω).

Proof. The image u is a bounded mapping, i.e., there exists a constant M > 0 with |u(x)| ≤M ,
for all x ∈ Ω. So for p =∞ follows immediately ‖u‖L∞(Ω) ≤M and for 1 ≤ p <∞ the following
holds ∫

Ω
|u|p dx ≤ |Ω|max

x∈Ω
|u(x)|p ≤ |Ω|Mp.

Typically, Ω := (0, 1)2 is the domain most often used in Mathematical Image Analysis. It
will be also used in this thesis. An image u ∈ Lp(Ω) can even have more properties like the
following one which will play an important role in this thesis.

Definition 2. Let Ω ⊂ Rn be a bounded domain and let u : Ω→ R be an image. Then the Total
Variation of u is defined as follows:

TV(u) :=
∫

Ω
|∇u| dx = sup

{∫
Ω
u divϕ dx : ‖ϕ‖L∞ ≤ 1, ϕ ∈ D(Ω,Rn)

}
, (2.1)
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8 CHAPTER 2. THE IMAGE SEGMENTATION AND DENOISING PROBLEM

with the space of test functions D(Ω,Rn) mapping from the domain Ω to Rn.

Lemma 2.2. Let Ω ⊂ Rn be a bounded domain. The space containing functions with bounded
Total Variation

BV (Ω) :=
{
u ∈ L1(Ω) : TV(u) <∞

}
.

provided with the norm
‖u‖BV(Ω) := ‖u‖L1(Ω) + TV(u)

is a Banach space.

For the proof the reader is referred to the book of K. Bredies and D. Lorenz [4], Lemma
6.105. Note that the property of Total Variation admits discontinuities of the function u and
that the gradient is understood more like a measure than a function.

2.2 A Brief Summary of Image Segmentation and Denoising

The purpose of segmentation is to decompose objects into certain parts. For example partition
an image into foreground and background. One method to do so is approximating a given raw
image whilst minimizing a functional. The other would be detecting edges appearing in the
image, but this will not be discussed in this thesis. Therefore, the reader is referred to St.
Fürtinger’s Dissertation [3]. The following definition declares the meaning of segmentation in
this thesis.

Definition 3. Let ũ : Ω→ [0, 1] be a gray scale image. The segmentation is the approximation
of ũ with a function u, i.e.,

ũ(x) ≈ u(x) =
l∑

k=1
uk(x)χk(x), x ∈ Ω (2.2)

where l ∈ N defines the number of phases. A segment of the image u is a connected component of
the support of a given χk. Each uk : Ω→ [0, 1] is a model function which smoothly approximates
ũ on the support of the characteristic function χk : Ω → {0, 1}, which describes the segmented
parts Ωk := {x ∈ Ω : χk(x) = 1} of the domain. For all i 6= k it follows Ωk ∩ Ωi = ∅, so the
characteristic functions {χk} have disjoint supports.

Now, a brief explanation of some functionals will give an overview of the segmentation idea
in Mathematical Image Processing. Again, let ũ : Ω → [0, 1] denote the given raw image.
A computationally easy and established approach for segmentation is the K-Means Clustering
Algorithm, which involves minimizing the following

min
pk,χk

{ l∑
k=1

∫
Ω
|pkχk − ũ|2 : {pk} ∈ P0, χk : Ω→ {0, 1}

}
,

where Pm denotes the space of polynomials with degree m. K-Means partitions the given image
into l disjoint phases Ωk, i.e. Ωi ∩Ωj = ∅ for i 6= j. In other words one pixel of the raw image is
assigned to only one intensity cluster. For each cluster the intensity centroid is computed and
the distance between a single pixel and the centroids determines whether the pixel belongs to a
certain cluster or not. This easily leads to unnaturally disconnected segments and is unwanted
at this point.
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Figure 2.1: Segmentation done with the k-means algorithm. The input image is at the top left,
followed by the resulting three characteristic functions.

The functional that serves as Status Quo in edge detection is the Mumford-Shah Functional,
which involves minimizing the following

min
u,Γ

{∫
Ω
|u− ũ|2 + δ−1

∫
Ω\Γ
|∇u|2 + βH(Γ)

}
,

where Γ denotes the one-dimensional contour set and H the one-dimensional Hausdorff measure.
The segmentation is implicitly provided by Γ, which is a set of Lebesgue measure zero, i.e.
|Γ| = 0. Note that in this functional u is already a piecewise smooth approximation of ũ due to
the penalty term δ−1 ∫

Ω\Γ |∇u|2. The contour set Γ is excluded from the domain of integration,
thus singularities of u are possible on Γ and hence u can be discontinuous on the edge set.
Unfortunately, the two variables u and Γ are of a different kind, i.e. u is an element of one
Banach space, whereas for Γ the structure of the other appropriate Banach space is unknown.
Hence, existence of a minimizing pair (u∗,Γ∗) cannot be guaranteed.

A more general approach was done by J. Lellmann, [8], who introduced a variational convex
formulation for multi-class labelling with different relaxations and regularizers like length-based,
isotropic or separable ones, whereas minimizing the following is involved,

inf
u∈BV(Ω,E)

∫
Ω
〈u(x), s(x)〉 dx+ J(u), (2.3)

where s ∈ L∞(Ω)l denotes the data term, J is the regularizer and E := {e1, ..., el} denotes the set
of unit vectors. This constraint set forces the solution u to have only discrete values and hence
the solution attains a proper set of labelling functions. Unfortunately, due to the constraint set
the problem is not convex, hence he proposes a relaxed constraint set, namely BV (Ω,∆l), where
∆l indicates the unit simplex in Rl, which will be used later in this work. Alas, this functional
is not useful for this work because it only accomplishes the multi-class labelling part, whereas
model functions with higher regularity than just constants are desired.

As for image denoising, often the minimization of the Lq-H1,p-Denoising Functional for
1 < p ≤ q <∞ is considered,

min
u∈Lq(Ω)

1
q

∫
Ω
|u− ũ|q dx+ λ

p

∫
Ω
|∇u|p dx. (2.4)

This problem has a unique solution, see [4], Theorem 6.84. If n = 2 and Ω ∈ Rn the solution u is
already continuous in the interior of Ω by the Sobolev Imbedding Theorem, see Appendix (A.10).
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Hence, if the reconstruction of images with discontinuities is desired, the above functional is not
optimal. However, taking the limit p→ 1 the reconstructed images are less blurred. In this case
using the Total Variation as the penalty term seems to be the better choice.

Figure 2.2: Noice reduction of a given image computed with the functional (2.4) for q, p = 2
and λ = 0.5e−4.

Nevertheless, in this thesis the focus lies not on the proper reconstruction of a noisy image,
but rather on the segmentation and therefore generating a piecewise smooth approximation of a
given raw image. Thus, we will further explore the following functional, which has already been
used to some extent and in a slightly different form in my Bachelor’s Thesis [15].

Figure 2.3: A multiphase segmentation of a one dimensional signal, see [15], where f denotes
the input signal, q is the computed characteristic function and u and v are the corresponding
model functions.

J (u, χ) =


∑l
k=1

∫
Ω
[
|uk −Kηũ|2(βKηχk + δ)

+|∇muk|2(αKηχk + ε)
]
dx, (u, χ) ∈ Hm(Ω)l × L∞(Ω)l,
∞, otherwise

(2.5)
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where u := (u1, u2, ..., ul)> ∈ Hm(Ω)l denotes the vector of model functions and χ := (χ1, ..., χl)> ∈
L∞(Ω)l the vector of multiple characteristic functions, with parameters 0 < ε, δ � 1 and α, β > 0
and m = 1, 2 and Kη denotes a mollifying operator, which is only a technical necessity. Details
considering this operator will be presented in the upcoming chapter. Together they build the
smoothed approximation of the raw image, i.e. ũ ≈

∑l
k=1 ukχk.

Because of the parameters ε and δ the model function uk is extended naturally outside of
the support of χk. So these parameters serve to avoid falling into unwanted local minima. The
variable m gives the order of regularity for the model functions uk. Note that in most cases m
will be set to one in this thesis.

In the following, the functional will be reformulated, such that it depends only on the set of
characteristic functions, i.e. a model function uk will also depend on the characteristic function
χk.
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Chapter 3

An Approach to Combine
Multiphase Segmentation with
Image Denoising

After revisiting some established models in the world of image segmentation, this chapter is
devoted to analysing the proposed functional for u ∈ H1(Ω)l and χ ∈ L∞(Ω)l, χ ≤ 0 and give
rise to a proper algorithm,

J (u, χ) =
l∑

k=1

∫
Ω

[
|uk −Kηũ|2(βKηχk + δ) + |∇uk|2(αKηχk + ε)

]
dx. (3.1)

Unfortunately, a minimizer for the combined problem,

min
(u,χ)∈H1(Ω)l×L∞(Ω)l

J (u, χ), (3.2)

cannot be guaranteed with standard mathematical arguments. Hence, the goal in this chapter
is to combine multiphase segmentation with image denoising, i.e. reduce the dependence of the
functional to only one variable,

J (u, χ) = J (u(χ), χ) = J (χ) .

In order to fulfil this task, a unique solution of model functions u = (u1, ..., ul)> with the help
of the Lax-Milgram Lemma, see Appendix (A.4) for an arbitrary fixed vector of characteristic
functions χ ∈ L∞(Ω)l is computed. For the sake of brevity, the following assumption is outlined.

Assumption 3.1. Let Ω = (0, 1)2, 0 < α, β and 0 < δ, ε� 1 and ũ ∈ L∞(Ω). In addition, let
0 ≤ ũ(x) ≤ 1 for almost every x ∈ Ω.

Note that the second condition on the raw image may seem rather bold, but recall that this
thesis is anchored in the space of gray scale images, which can either have the colour space
F = R or F = [0, 1]. At the end of this chapter, we will be ready to propose an algorithm to
compute χ.

3.1 Introduction to the Mollifying Operator
In this subchapter, we take a look at the proposed operator Kη. This technical necessity was
introduced in order to establish a proper algorithm, since in upcoming proofs certain features

13
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DENOISING

are needed, e.g. that the gradient of χ is bounded and together with the mollified data Kηũ, the
model functions uk have more regularity than H1. The parameter η will be chosen very close to
0, such that we are working with an accurate approximation to χ. This is purely theoretical and
will not affect the implementation of the algorithm. Hence, denote the following characterization
of a mollifier. This idea was used in another way in [3] and [11].

Definition 4. Let f ∈ Lp(Ω), 1 ≤ p <∞ and let f(x) = 0 for x /∈ Ω. Define

ϕη(x) := 1
4πηe

− |x|
2

4η (3.3)

with the property ∫
R2
ϕη(x) dx = 1 (3.4)

and let
fη(x) := (f ∗ ϕη)(x) =

∫
R2
ϕη(x− y)f(y) dy.

Lemma 3.2. The function resulting from the convolution fη is real analytic on Ω. In addition,
fη ∈ Lp(Ω) for 1 ≤ p <∞ and fη → f almost everywhere for η → 0. Moreover, if 0 ≤ f(x) ≤ 1
for all x ∈ Ω, then 0 ≤ fη(x) ≤ 1 [3].

For the readers’ interest on other properties, the proof can be found in [6], p. 30.

Proof. The function ϕη(x− y) is infinitely differentiable in x and vanishes if |y − x| ≥ η. Let α
denote the multi-index and so it follows for an integrable function f

Dα(ϕη ∗ f)(x) =
∫
R2
Dα
xϕη(x− y)f(y) dy.

So the first conclusion is valid.
Now let 1/p+ 1/q = 1. Applying Hölder’s Inequality and (3.4) the following is obtained

|ϕη ∗ f(x)| =
∣∣∣∣ ∫

R2
ϕη(x− y)f(y) dy

∣∣∣∣
≤
(∫

R2
ϕη(x− y) dy

)1/q (∫
R2
ϕη(x− y)|f(y)|p dy

)1/p

=
(∫

R2
ϕη(x− y)|f(y)|p dy

)1/p
.

Thus, by Fubini’s Theorem and (3.4) we get f ∗ ϕη ∈ Lp(Ω).∫
Ω
|ϕη ∗ f |p dx ≤

∫
R2

∫
R2
ϕη(x− y)|f(y)|p dy dx

=
∫
R2
|f(y)|p dy

∫
R2
ϕη(x− y) dx = ‖f‖pLp(Ω) .

(3.5)

Hence, we have shown that fη ∈ Lp(Ω). Now let ε > 0, since C0(Ω) is dense in Lp(Ω) for
1 ≤ p <∞, there exists g ∈ C0(Ω) such that ‖f − g‖Lp(Ω) < ε/3 and by the previous calculations
we got ‖ϕη ∗ f − ϕη ∗ g‖Lp(Ω) < ε/3. So

|ϕη ∗ g(x)− g(x)| =
∣∣∣∣ ∫

R2
ϕη(x− y)(g(y)− g(x)) dy

∣∣∣∣ ≤ sup
|y−x|<η

|g(y)− g(x)|.
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The right-hand side tends to 0 for η → 0 since g is uniformly continuous on Ω. The last term
‖ϕη ∗ g − g‖Lp(Ω) < ε/3 follows from compactness of supp g and choosing η sufficiently small.
Hence,

‖ϕη ∗ f − f‖Lp(Ω) ≤ ‖ϕη ∗ f − ϕη ∗ g‖Lp(Ω) + ‖ϕη ∗ g − g‖Lp(Ω) + ‖f − g‖Lp(Ω)

< ε/3 + ε/3 + ε/3 = ε.

Now, assume 0 ≤ f(x) ≤ 1 for all x ∈ Ω. Since ϕη ≥ 0, then also fη ≥ 0 holds. Furthermore,
using (3.4) concludes the proof.

|fη(x)| ≤
∫

Ω
|ϕη(y)f(x− y)| dx ≤

∫
Ω
|ϕη(y)| dx = 1.

Lemma 3.3. Let f ∈ Lp(Ω) for 1 ≤ p <∞, then

∂α(f ∗ ϕη) = (∂αf) ∗ ϕη (3.6)

for |α| ≤ 1. Moreover, ∂α(f ∗ ϕη)→ ∂αf almost everywhere as η → 0.

Proof. The proof for the first assertion follows easily by applying integration by parts,

∂α(f ∗ ϕη) =∂α
∫
R2
ϕη(x− y)f(y) dy

=
∫
R2
∂αxϕη(x− y)f(y) dy

=(−1)|α|
∫
R2
∂αy ϕη(x− y)f(y) dy

=
∫
R2
ϕη(x− y)∂αf(y) dy

=(∂αf) ∗ ϕη.

The second claim follows from Lemma (3.2).

Lemma 3.4. Suppose 1 ≤ p <∞ and 1 ≤ r ≤ ∞ such that 1
r +1− 1

p ∈ [0, 1]. Then the operator
mapping an element f ∈ Lp(Ω) to Lr(Ω) is defined as follows

Kηf := f ∗ ϕη.

Then Kη is continuous and injective, see [3].

Proof. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. We already know from Lemma (3.2) that ϕη is real
analytic. So as a consequence, it is an element in Lp(Ω). This operator is linear, since the
convolution of two functions is linear and hence, it suffices to show boundedness to guarantee
continuity. Therefore, we use Young’s Inequality for Convolutions, see Appendix (A.1), take
1 ≤ r ≤ ∞ such that 1

r + 1 = 1
p + 1

q and thus for f ∈ Lp(Ω)

‖Kηf‖Lr(Ω) ≤ ‖f‖Lp(Ω) ‖ϕη‖Lq(Ω) .

Finally, from
∫
R2 ϕη(x) dx = 1 it follows that the operator is injective.

Remark 3.5. For the sake of brevity in writing, we denote the mollified data with ũη := Kηũ.
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3.2 The Optimality System for Model Functions
In this section we want to deduce the necessary optimality conditions for minimizing the func-
tional J , recall (3.1), with respect to the model functions u ∈ H1(Ω)l. Thus, consider the
minimization problem for a fixed characteristic function χ ∈ L∞(Ω)l

min
u∈H1(Ω)l

Jχ(u) := min
u∈H1(Ω)l

J (u, χ). (3.7)

Note that we are deriving the necessary optimality condition for each model function uk
separately. As a consequence uk depends only on the k-th characteristic function, i.e. uk(χk).
In other words uk is modelled solely with the help of the k-th phase’s support.

Lemma 3.6. Given Assumption (3.1), let χk ∈ L∞(Ω) be a characteristic function. Then the
necessary optimality system for uk ∈ H2(Ω), k = 1, ..., l reads as follows:

−∇ · [(αKηχk + ε)∇uk] + (βKηχk + δ)uk = (βKηχk + δ) ũη, in Ω,

∂uk
∂n

= 0 on ∂Ω.
(3.8)

Proof. Let v ∈ C∞0 (Ω̄) be an arbitrary perturbation. Due to the following calculations, i.e. the
first variation δJχ(uk;v)

δuk
:= d

dtJχ(uk + tv)
∣∣
t=0 exists for every v ∈ C∞0

(
Ω̄
)
, we observe that Jχ is

everywhere Gâteaux differentiable.

δJχ
δuk

(uk; v) = d

dt

1
2

l∑
k=1

∫
Ω

(βKηχk + δ) |uk + tv − ũη|2 + (αKηχk + ε) |∇ (uk + tv) |2
∣∣∣
t=0

dx

=
∫

Ω
(βKηχk + δ) (uk + tv − ũη) v + (αKηχk + ε) (∇ (uk + tv)) · ∇v

∣∣∣
t=0

dx

=
∫

Ω
(βKηχk + δ) (uk − ũη) v + (αKηχk + ε)∇uk · ∇v dx, ∀k = 1, ..., l.

(3.9)

By using Green’s Formula, see Appendix (A.2), and the assumption uk ∈ H2(Ω) it follows
that

0 =
∫

Ω
(βKηχk + δ) (uk − ũη) v −∇ · [(αKηχk + ε)∇uk] v dx+

∫
∂Ω

∂uk
∂n

v dsx.

Letting v be concentrated on ∂Ω gives the boundary condition ∂uk
∂n = 0, and thus the bound-

ary integral cancels out. Moreover, v was chosen arbitrarily, so after applying the Fundamental
Lemma of Variational Calculus, see Appendix (A.3), the necessary optimality condition for
uk ∈ H1(Ω) is obtained and thus completes the proof.

Hence, we are now able to prove unique existence of a minimizer u of J for an arbitrary fixed
set of characteristic functions and so we are one step closer to gaining our final cost functional.

Theorem 3.7. Given Assumption (3.1), the necessary optimality system (3.8) has a unique
weak solution uk ∈ H1(Ω) for an arbitrary fixed characteristic function χk ∈ L∞(Ω), 0 ≤ χk ≤ 1
almost everywhere for all k = 1, ..., l. Moreover,

‖uk‖H1(Ω) ≤ (β + δ) 1
min(ε, δ) ‖ũη‖L∞(Ω) . (3.10)
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Proof. Multiply (3.8) with v ∈ H1(Ω) and apply Green’s Formula such that the following holds:

ak(uk, v) = lk(v), ∀v ∈ H1(Ω), k = 1, ..., l, (3.11)
where ak : H1 (Ω)×H1 (Ω)→ R is a bilinear form, defined by

ak (uk, v) :=
∫

Ω
(βKηχk + δ)ukv + (αKηχk + ε)∇uk · ∇v dx, for k = 1, ..., l (3.12)

and lk is a linear functional mapping from the Sobolev space H1(Ω) onto R, defined by

lk (v) :=
∫

Ω
(βKηχk + δ) ũηv dx, for k = 1, ..., l (3.13)

Note further, since 0 ≤ (Kηχk)(x) ≤ 1 for x ∈ Ω almost everywhere,

δ ≤ ‖βKηχ+ δ‖L∞(Ω) ≤ β ‖Kηχk‖L∞(Ω) + δ ≤ β + δ,

ε ≤ ‖αKηχ+ ε‖L∞(Ω) ≤ α+ ε.
(3.14)

To guarantee uniqueness Lax-Milgram is applied to the necessary optimality condition (3.11).
Firstly, boundedness of the linear functional lk is shown:

|lk (v) | ≤
∫

Ω
|βKηχk + δ||ũηv| dx ≤ ‖βKηχk + δ‖L∞(Ω)‖ũη‖L2(Ω)‖v‖H1(Ω)

≤ (β + δ) ‖ũη‖L∞(Ω)‖v‖H1(Ω).

Secondly, boundedness of the bilinear form ak is proven:

|ak (uk, v) | ≤ ‖βKηχk + δ‖L∞(Ω)

∫
Ω
|ukv| dx+ ‖αKηχk + ε‖L∞(Ω)

∫
Ω
|∇uk||∇v| dx

≤ (β + δ) ‖uk‖L2(Ω)‖v‖L2(Ω) + (α+ ε) ‖∇uk‖L2(Ω)‖∇v‖L2(Ω)

≤ max{(β + δ) , (α+ ε)}
(
‖uk‖L2(Ω)‖v‖L2(Ω) + ‖∇uk‖L2(Ω)‖∇v‖L2(Ω)

)
≤ 2 max{(β + δ) , (α+ ε)}‖uk‖H1(Ω)‖v‖H1(Ω).

Last but not least, ellipticity of the bilinear form ak is obtained:

ak (uk, uk) =
∫

Ω
(βKηχk + δ) |uk|2 + (αKηχk + ε) |∇uk|2 dx

≥ δ
∫

Ω
|uk|2 dx+ ε

∫
Ω
|∇uk|2 dx

≥ min (δ, ε)
(
‖uk‖2L2(Ω) + ‖∇uk‖2L2(Ω)

)
≥ min (δ, ε) ‖uk‖2H1(Ω).

Thus, the Lax-Milgram guarantees the existence of a unique minimizer u∗k ∈ H1 (Ω) , ∀k =
1, ..., l. Furthermore, Lax-Milgram gives a bound for the solution, i.e.,

‖uk‖H1(Ω) ≤
1

min(ε, δ) ‖lk‖ ≤ (β + δ) 1
min(ε, δ) ‖ũη‖L∞(Ω) , ∀χk ∈ BV (Ω, [0, 1]) .
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Remark 3.8. Since the mollification operator Kη was already used on χ and the data ũ, note
that existence of u ∈ H1(Ω)l is also ensured for χ ∈ L∞(Ω), χ ≥ 0 and ũ ∈ L∞(Ω). But in later
calculations problems arise that demand higher regularity on the model functions uk, k = 1, ..., l,
namely at least uk ∈ H4(Ω), which cannot be guaranteed.

Proposition 3.9. Given Assumption (3.1), then the unique solution u ∈ H1(Ω)l from Theorem
(3.7) is an element in C∞(Ω̄)l.

Proof. Theorem 3, Section 6.3 in [7] states, that if the coefficients and the right-hand side are in
C∞(Ω̄), then so is the solution. In this case βKηχk+δ, αKηχk+ε and (βKηχk+δ)ũη are elements
in C∞(Ω̄) for all k = 1, ..., l due to the mollifying operator Kη and hence u ∈ C∞(Ω̄)l.

3.3 Expressing the Model Functions in terms of a Characteristic
Function

As a consequence of the last section we are able to reveal that the model functions uk depend
implicitly on its corresponding characteristic function χk, k = 1, ..., l. Recall that there exists a
corollary of Lax-Milgram which guarantees the existence of a unique solution operator L (χk) ∈
L
(
H1 (Ω)

)
, for which the following holds:

(L (χk)uk, v)H1(Ω) =ak (uk, v) =
∫

Ω
(βKηχk + δ)ukv + (αKηχk + ε)∇uk · ∇v dx,

for k = 1, ..., l.
(3.15)

Furthermore, the operator is bounded for all χk due to its characterization of Lax-Milgram,

‖L (χk)‖ ≤ 2 max{(α+ ε), (β + δ)} and
∥∥∥L (χk)−1

∥∥∥ ≤ 1
min(ε, δ) . (3.16)

Now let f(χk) ∈ H1(Ω) be the representing element of

(f (χk) , v)H1(Ω) = lk (v) =
∫

Ω
(βKηχk + δ) ũηv dx, for k = 1, ..., l, (3.17)

with
‖f (χk)‖Hm(Ω) = ‖lk‖ , (3.18)

where ‖·‖ denotes the corresponding operator norm. Note that its unique existence is ensured
due to the Riesz’ Representation Theorem, see Appendix (A.6). So, from

(L (χk)uk, v)H1(Ω) = (f (χk) , v)H1(Ω) , (3.19)

the unique solution uk ∈ H1(Ω) of (3.8) has the representation

uk(χk) := L(χk)−1f(χk), (3.20)

So uk is well-defined and the k-th model function depends on the k-th characteristic function,
creating the k-th phase of the image.



19

3.4 The Resulting Cost Functional
Before the final functional is introduced, some further definitions will be investigated, which will
be needed in the later chapter. For brevity in writing the following set is introduced.

Definition 5. Let the space of functions that have range in [0, 1] and bounded variation denoted
by

BV (Ω, [0, 1]) := {χ ∈ BV (Ω) : χ (x) ∈ [0, 1] for almost every x ∈ Ω}. (3.21)

This introduction might seem out of the blue, but to give a sneak peak for upcoming
proofs, we will investigate minimizing the resulting cost functional with respect to functions with
bounded variation and their range in [0, 1]. Concerning the details, they follow in the upcoming
chapter. Note that Theorem (3.7) still holds for χk ∈ BV (Ω, [0, 1]) because 0 ≤ χk(x) ≤ 1 for
almost every x ∈ Ω and thus, χk ∈ L∞(Ω).

Hence, we introduce the following mappings.

Definition 6. The map that assigns an element χ ∈ BV (Ω, [0, 1]) to a linear operator is defined
as follows

L :=
{
BV (Ω, [0, 1])→ L

(
H1 (Ω)

)
,

χ 7→ L (χ) ,

and the map that assigns it to an element in H1(Ω).

f :=
{
BV (Ω, [0, 1])→ H1 (Ω) .
χ 7→ f (χ) .

Later a continuous dependence on χ ∈ BV (Ω, [0, 1]) will be shown for uk for k = 1, ..., l. This
particular result will be needed later on. Nevertheless, for this work minimizing the upcoming
functional is involved:

J (χ) = 1
2

l∑
k=1

∫
Ω
|uk (χk)− ũη|2 (Kηχkβ + δ) + |∇uk (χk) |2 (Kηχkα+ ε) dx. (3.22)

In this case we will not further investigate minimizing over L∞(Ω)l, but rather over the
constraint set

BV (Ω, E) := {χ ∈ BV (Ω)l : χ (x) ∈ E for x ∈ Ω a.e.} ⊂ L1(Ω)l, (3.23)

where E = {e1, ..., el} is the set of unit vectors, which was introduced in J. Lellmann’s Docotoral
Thesis [8]. This set describes the nature of characteristic functions in image segmentation. So for
an arbitrary x ∈ Ω take a vector-valued χ ∈ BV (Ω, E) and thus, χ(x) = (χ1(x), ..., χl(x))> = ek,
for k ∈ {1, ..., l}. In other words, x ∈ Ω belongs to a single phase of the partition resulting from
the segmentation process. But this constraint set is actually too strict to find a minimum or
even a unique one. Thus, J. Lellmann has introduced the relaxed constraint set,

BV (Ω,∆l) := {χ ∈ BV (Ω)l : χ (x) ∈ ∆l for x ∈ Ω a.e.}, (3.24)

where ∆l denotes the unit simplex in Rl. This means, that χk(x) is allowed to attain values
between [0, 1], and that

∑l
k=1 χk(x) = 1 for almost every x ∈ Ω. It is comparable to the soft

clustering methods, where every data point can belong to several clusters by a certain percentage.
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In addition, BV (Ω,∆l) is convex, i.e. for χ, χ̃ ∈ BV (Ω,∆l) and λ ∈ [0, 1]

l∑
k=1

λχk(x) + (1− λ)χ̃k(x) = λ
l∑

k=1
χk(x) + (1− λ)

l∑
k=1

χ̃k(x) = λ+ 1− λ = 1,

and closed. If a sequence
(
χ(n)

)
converges to some χ in BV (Ω,∆l), then it converges in L2(Ω)

since Ω ⊂ Rn and is bounded, see Appendix (A.8). Then there exists subsequence
(
χ(nm)

)
⊂(

χ(n)
)
that converges point-wise almost everywhere to χ. Then it follows that

l∑
k=1

χk(x) = lim
m→∞

l∑
k=1

χ
(nm)
k (x) = 1.

Note that in contrast BV (Ω, [0, 1]) was only introduced for a single-valued characteristic
function and will solely be used for some technical results.

However to obtain a suitable result in a space of bounded variation theoretically and compu-
tationally, a certain penalty term is needed which was already introduced in Chapter 2, namely
the Total Variation. Thus, the functional reads as follows

J (χ) + γTV(χ) =1
2

l∑
k=1

∫
Ω
|uk (χk)− ũη|2 (Kηχkβ + δ)

+ |∇uk (χk) |2 (Kηχkα+ ε) dx+ γTV(χk),

(3.25)

where γ > 0.
So we are able to propose the following algorithm. It is the first version of our actual working

scheme. The parameters are chosen according to Assumption (3.1). The k-th summand of J is
denoted by Jk because χk only depends on this part of the sum. Note further that for now it is
not clear, what the initial χ0 will be.

Algorithm 1 Image Multiclass Labelling and Denoising
1: Input: χ0, ũ, α, β, ε, δ, γ, l
2: Output: χ, u
3: while χ changes do
4: for k = 1, ..., l do
5: if χk(x) ≤ 0 or χk(x) ≥ 1 for some x ∈ Ω then
6: Cut χk such that it has range in [0, 1].
7: Compute uk satisfying

−∇ · [(Kηχkα+ ε)∇uk] + (Kηβχk + δ)uk = (Kηβχk + δ)ũη,

8: Compute χk = arg minJk(χk) + γTV(χk).



Chapter 4

Analysis of the Proposed Method

This chapter focuses fully on analysing the cost functional and refining the algorithmic strategy of
Chapter 3. Thus, existence of a minimum for χ ∈ BV (Ω,∆l) will be proven and then a more in-
depth algorithm will be presented. Convergence of the algorithm will be shown with Schauder’s
Fixed Point Theorem Version II, see Appendix (A.9). Note that the technical necessity of Kη

was cautiously introduced in order to obtain the desired fixed point. At the end of this chapter,
the strategy to map elements from BV (Ω,∆l) to BV (Ω, E) will be elaborated.

4.1 Existence of Minimum

4.1.1 Preliminary Results

Firstly, some precursory results are needed, e.g. continuous dependence of the model function
u on χ or boundedness of J (χ), because in order to be able to prove some important features
of the functional like lower semi-continuity later on one has to know how the solution function
u (χ) ∈ H1 (Ω)l and J behaves in dependence of χ.

Lemma 4.1. Let Assumption (3.1) hold, then uk for all k = 1, ..., l is non-expansive and thus
continuous in BV (Ω, [0, 1]), i.e.,

lim
n→∞

∥∥∥uk (χ(n)
)
− uk(χ)

∥∥∥
H1(Ω)

= 0, (4.1)

for a sequence
(
χ(n)

)
that converges to some χ in BV (Ω, [0, 1]).

Proof. Let
(
χ(n)

)
⊂ BV (Ω, [0, 1]) be sequence converging to some χ ∈ BV (Ω, [0, 1]) (and thus

L1 convergence). Subtracting
(

∂
∂uk
J (uk; v)

)
(χ) from

(
∂
∂uk
J (uk; v)

)
(χ(n)) and linearity of Kη

21
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gives

0 =
(
∂

∂uk
J (uk; v)

)(
χ(n)

)
−
(

∂

∂uk
J (uk; v)

)
(χ)

⇔
∫

Ω

(
βKηχ

(n) + δ
)
uk
(
χ(n)

)
v +

(
αKηχ

(n) + ε
)
∇uk

(
χ(n)

)
· ∇v dx

−
∫

Ω
(βKηχ+ δ)uk (χ) v + (αKηχ+ ε)∇uk (χ) · ∇v dx

=
∫

Ω

(
βKηχ

(n) + δ
)
ũηv dx−

∫
Ω

(βKηχ+ δ) ũηv dx

⇔
∫

Ω
(βKηχ+ δ)

(
uk
(
χ(n)

)
− uk (χ)

)
v + (αKηχ+ ε)

(
∇uk

(
χ(n)

)
−∇uk (χ)

)
· ∇v dx

=
∫

Ω
βKη

(
χ(n) − χ

) (
ũη − uk

(
χ(n)

))
v − αKη

(
χ(n) − χ

)
∇uk

(
χ(n)

)
· ∇v dx

(4.2)

Comparing the last equation of (4.2) to ak, see (3.12), we see that they coincide and so only
boundedness of the right-hand side is left to show. Using Young’s Inequality for Convolutions on∥∥∥Kη

(
χ(n) − χ

)∥∥∥
Lr(Ω)

≤ ‖ϕη‖Lq(Ω)

∥∥∥χ(n) − χ
∥∥∥
Lp(Ω)

for r, q =∞ and p = 1 such that 1
r +1 = 1

p+ 1
q

and (3.10) gives∣∣∣∣ ∫
Ω
βKη

(
χ(n) − χ

) (
ũη − uk

(
χ(n)

))
v − αKη

(
χ(n) − χ

)
∇uk

(
χ(n)

)
· ∇v dx

∣∣∣∣
≤
∥∥∥Kη

(
χ(n) − χ

)∥∥∥
L∞(Ω)

(
β
∥∥∥ũη − uk (χ(n)

)∥∥∥
L2(Ω)

+ α
∥∥∥∇uk (χ(n)

)∥∥∥
L2(Ω)

)
‖v‖H1(Ω)

≤‖ϕη‖L∞(Ω)

∥∥∥(χ(n) − χ
)∥∥∥

L1(Ω)

(
β ‖ũη‖L∞(Ω) + (β + α)

∥∥∥uk (χ(n)
)∥∥∥

H1(Ω)

)
‖v‖H1(Ω)

≤‖ϕη‖L∞(Ω)

∥∥∥(χ(n) − χ
)∥∥∥

L1(Ω)

(
β ‖ũη‖L∞(Ω) + (β + α) β + δ

min(ε, δ) ‖ũη‖L∞(Ω)

)
‖v‖H1(Ω) .

(4.3)

The Corollary of Lax-Milgram implies the estimate∥∥∥uk(χ(n))− uk(χ)
∥∥∥
H1(Ω)

≤ 1
min(ε, δ) ‖ϕη‖L∞(Ω)

∥∥∥χ(n) − χ
∥∥∥
L1(Ω)

·
{
β + (β + α) β + δ

min(ε, δ)

}
‖ũη‖L∞(Ω)

≤ C2
∥∥∥χ(n) − χ

∥∥∥
L1(Ω)

(4.4)

Recall that uk
(
χ(n)

)
∈ H1(Ω) for all n, since Theorem (3.7) also holds for functions in

BV (Ω, [0, 1]). Taking the limit n to ∞ completes the proof.

Next, recall the functional J (3.1), so before the proof of existence of minimum is presented,
some features of the cost functional J have to be ensured, i.e. boundedness from below of the
functional that guarantees existence of a minimizing sequence and continuity, such that together
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with the penalty term lower semi-continuity of the cost is ensured. These are all necessary for
using the direct method, see [4] p. 250, for proving existence of a minimum.

Lemma 4.2. Given Assumption (3.1). Then J is bounded from below and continuous for
χ ∈ BV (Ω,∆l).

Proof. For boundedness from below, by definition J ≥ 0. For continuity, take a sequence(
χ(n)

)
∈ BV (Ω,∆l) that converges to χ in BV and hence in L1. Linearity of Kη gives

∣∣∣J (χ(n)
)
− J (χ)

∣∣∣ =
∣∣∣∣12

l∑
k=1

∫
Ω

(
βKηχ

(n)
k + δ

) ∣∣uk (χ(n)
k

)
− ũη

∣∣2
+
(
αKηχ

(n)
k + ε

) ∣∣∇uk (χ(n)
k

) ∣∣2 − (βKηχk + δ)|uk(χk)− ũη|2

− (αKηχk + ε)|∇uk(χk)|2 dx
∣∣∣∣

(4.5)

By adding the terms ±
(
βKηχ

(n)
k + δ

)
|uk (χk)− ũη|2 and ±

(
αKηχ

(n)
k + ε

)
|∇uk(χk)|2 gives

J1
(
χ(n)

)
− J1(χ) :=1

2

l∑
k=1

∫
Ω
βKη

(
χ

(n)
k − χk

)
|uk(χk)− ũη|2

+ αKη

(
χ

(n)
k − χk

)
|∇uk(χk)|2 dx,

J2
(
χ(n)

)
− J2(χ) :=1

2

l∑
k=1

∫
Ω

(
βKηχ

(n)
k + δ

)(∣∣∣uk (χ(n)
k

)
− ũη

∣∣∣2 − |uk (χk)− ũη|2
)
dx,

J3
(
χ(n)

)
− J3(χ) :=1

2

l∑
k=1

∫
Ω

(
αKηχ

(n)
k + ε

)(∣∣∣∇uk(χ(n)
k )

∣∣∣2 − |∇uk (χk) |2
)
dx.

(4.6)

With the help of the triangle inequality, (3.10) and Young’s Inequality for Convolutions for
r, q =∞ and p = 1
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∣∣J1
(
χ(n)

)
− J1(χ)

∣∣ ≤ 1
2

l∑
k=1

∥∥∥Kη

(
χ

(n)
k − χk

)∥∥∥
L∞(Ω)

·
(
β ‖uk(χk)− ũη‖2L2(Ω) + α ‖∇uk(χk)‖2L2(Ω)

)

≤ 1
2

l∑
k=1
‖ϕη‖L∞(Ω)

∥∥∥χ(n)
k − χk

∥∥∥
L1(Ω)

·
(
(β + α) ‖uk(χk)‖2H1(Ω) + β ‖ũη‖2L2(Ω)

)

≤ 1
2

l∑
k=1
‖ϕη‖L∞(Ω)

∥∥∥χ(n)
k − χk

∥∥∥
L1(Ω)

·
{

(β + α)
(

β + ε

min(ε, δ)

)2
‖ũη‖2L∞(Ω) + β ‖ũη‖2L2(Ω)

}
.

The differences Ji
(
χ(n)

)
−Ji(χ) for i = 2, 3 have the form a2−b2 = (a+b)(a−b) and together

with the Cauchy-Schwarz Inequality, see Appendix (A.17), (3.10) and
∥∥∥Kηχ

(n)
k

∥∥∥
L∞(Ω)

≤ 1 for
k = 1, ..., l and for all n ∈ N and Lemma (4.1) implies

∣∣∣∣J2
(
χ(n)

)
− J2(χ)

∣∣∣∣ ≤ 1
2

l∑
k=1

(β + δ)
∥∥∥uk(χk)− uk (χ(n)

k

)∥∥∥
H1(Ω)

{(
‖uk(χk)‖H1(Ω)

+
∥∥∥uk (χ(n)

k

)∥∥∥
H1(Ω)

+ 2 ‖ũη‖L∞(Ω)

}

≤ 1
2

l∑
k=1

(β + δ)C2
∥∥∥χk − χ(n)

k

∥∥∥
L1(Ω)

· 2
(

β + δ

min(ε, δ) ‖ũη‖L∞(Ω) + ‖ũη‖L∞(Ω)

)

and

∣∣∣∣J3
(
χ(n)

)
− J3(χ)

∣∣∣∣ ≤ 1
2

l∑
k=1

(α+ ε)
∥∥∥uk(χk)− uk (χ(n)

k

)∥∥∥
H1(Ω)

·
(
‖uk(χk)‖H1(Ω) +

∥∥∥uk (χ(n)
k

)∥∥∥
H1(Ω)

)

≤ 1
2

l∑
k=1

C2
∥∥∥χk − χ(n)

k

∥∥∥
L1(Ω)

2 β + δ

min(ε, δ) ‖ũη‖L∞(Ω) .
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Finally, adding these three estimates leads to

∣∣J (χ(n)
)
− J (χ)

∣∣ ≤ 1
2

l∑
k=1

C
∥∥∥χ(n)

k − χk
∥∥∥
L1(Ω)

(4.7)

and thus n→∞ completes the proof.

At the end of Chapter 3 the Total Variation was introduced as the penalty term such that
a minimum in a space of bounded variation can be obtained. But to avoid non-differentiability
of the penalty term at ∇χ = 0, a more general approach is used, i.e.,

Jτ (χ) =
∫

Ω

√
|∇χ|2 + τ dx. (4.8)

where 0 < τ � 1. This term is well-defined for χ ∈ W 1,1(Ω), see [12], where W 1,1(Ω) denotes
the corresponding Sobolev space. In this paper it was also proven, that the effective domain of
Jτ is indeed BV (Ω).

Theorem 4.3. Let Ω be a bounded domain in Rn, n ∈ N. For any 0 < τ � 1 and χ ∈ L1(Ω),
TV(χ) <∞ holds if and only if Jτ (χ) <∞ [12].

Proof. Let χ ∈ L1(Ω) and v ∈ V := {v ∈ C1
0 (Ω;Rn) : |v(x)| ≤ 1 ∀x ∈ Ω}, then it holds∫

Ω
(−χ div v) dx ≤

∫
Ω

(
−χ div v +

√
τ (1− |v|2)

)
dx ≤

∫
Ω

(
−χ div v +

√
τ
)
dx.

By taking the supremum over v ∈ V, it follows that

TV(χ) ≤ Jτ (χ) ≤ TV(χ) +
√
τ |Ω|. (4.9)

The proof completes due to boundedness of Ω.

Theorem 4.4. Let 0 < τ � 1, then Jτ is lower semi-continuous with respect to the Lp-topology
[12].

Proof. Let (un) be a sequence that converges weakly to some ū in Lp(Ω). Taking v ∈ V, where
V is the same space as in the proof of Theorem (4.3), so div v ∈ C(Ω) and thus,∫

Ω

(
(−ū div v) +

√
τ (1− |v|2)

)
dx = lim

n→∞

∫
Ω

(
(−un div v) +

√
τ (1− |v|2)

)
dx

= lim inf
n→∞

∫
Ω

(
(−ū div v) +

√
τ (1− |v|2)

)
dx

≤ lim inf
n→∞

Jτ (un).

(4.10)

Taking the supremum over v ∈ V gives Jτ (ū) ≤ lim infn→∞(un).

4.1.2 Proof of Existence of Minimizer χ

After gathering all the necessary preliminaries, we are now able to prove existence of a minimizer.
Note that uniqueness cannot be guaranteed because of the apparent lack of convexity with
respect to χ. Therefore, considering the algorithmic strategy we will start sufficiently close to a
minimum and then apply the proposed algorithm.



26 CHAPTER 4. ANALYSIS OF THE PROPOSED METHOD

Theorem 4.5. Given Assumption (3.1),γ > 0 and let ũ 6= 0. Then the functional J + γJτ ,
0 < τ � 1 has at least one minimizer in BV (Ω,∆l).

Proof. First of all, Lemma (4.2) implies that J is bounded from below and so is Jτ because of
(4.9)

0 ≤ TV(χ) ≤ Jτ (χ),

and so J +γJτ is bounded from below. Thus, a minimizing sequence
(
χ(n)

)
∈ BV (Ω,∆l) exists.

Furthermore, together with the lower semi-continuity of Jτ the cost functional J (χ) + γJτ (χ)
for χ ∈ BV (Ω,∆l) is lower semi-continuous because J is continuous and Jτ is lower semi-
continuous. The next important step is to show that this sequence lies in a sequentially compact
set. It seems natural to choose the L1-topology but J. Lellmann stated in his thesis [8] that
this is too strong to actually find a minimum. So we choose the weak∗-topology. Coercivity
of J + γJτ with respect to the BV-norm will give the necessary upper uniform bound for the
minimizing sequence: Let

(
χ(n)

)
∈ BV (Ω,∆l) with

∥∥∥χ(n)
∥∥∥

1
+TV

(
χ(n)

)
→∞ for n→∞. Since

χ is bounded, so is ‖χ‖L1(Ω)l <∞ and therefore, it follows that TV
(
χ(n)

)
→∞. Lemma (4.2),

(3.10) and
∥∥∥Kηχ

(n)
∥∥∥
L∞(Ω)

≤ 1 for all n ∈ N show that J is bounded, i.e.,

0 ≤ J (χ) ≤ C ‖ũ‖2L2(Ω) (4.11)

and
Jτ (χ(n)) ≥ TV(χ(n)), (4.12)

so J (χ(n)) + γJτ (χ(n)) → ∞. Thus, it is coercive. Moreover, the minimizing sequence
(
χ(n)

)
is bounded in the BV-norm. Proposition (A.13) implies the existence of a weak∗-convergent
subsequence

(
χ(nm)

)
⊂
(
χ(n)

)
, such that the corresponding limit χ∗ lies in BV (Ω,∆l). Since

J + γJτ is lower semi-continuous and BV (Ω,∆l) is closed with respect to L1-convergence, it
follows that

inf
χ∈BV(Ω,∆l)

J (χ) + γJτ (χ) ≤J (χ∗) + γJτ (χ∗) = lim inf
m→∞

J
(
χ(nm)

)
+ γJτ

(
χ(nm)

)
= inf
χ∈BV(Ω,∆l)

J (χ) + γJτ (χ) .
(4.13)

Thus, χ∗ ∈ BV (Ω,∆l) is a minimizer of the proposed functional.

Observe that the assumption ũ 6= 0 was made because a simple black image is not of practical
significance, as the unwanted global minimizer is χ = 0 and thus J (χ) = 0 and so the iteration
process terminates immediately. We will later see, that the algorithm will strive for the global
minimum if the initial χ0 is not chosen properly.

4.2 The Proposed Algorithm
Finally, having proven existence of a minimum, it is now time to establish an algorithmic strategy
to actually compute it. Thus, a semi-implicit gradient descent procedure will be derived. First
of all, the gradient of the cost functional J with respect of χ will be computed. Therefore,
another result, namely ∂uk

∂χk
(χk; δχ) ∈ H1(Ω), k = 1, ..., l, is needed. Secondly, other important

mappings will be established that form the algorithm.
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Finally, convergence of the iterative scheme will be proven with Schauder’s Fixed Point The-
orem Version II. Therefore, Lemma (4.1) will play an important role, since it showed continuity
of the model functions uk with respect to χ ∈ BV (Ω, [0, 1]).

4.2.1 The Gradient of J with respect to χ

This subchapter is devoted to calculating an explicit formulation for the gradient of J (χ), since
it is essential for the gradient descent step. In the following Theorem it is shown, that luckily
the gradient has a rather simple structure and furthermore is positive.
Theorem 4.6. Let Assumption (3.1) hold. Then the gradient of J with respect to χk for
k = 1, ...l reads as follows

∇J (χk) = 1
2 |uk (χk)− ũη|2β + 1

2 |∇uk (χk) |2α, (4.14)

provided that the directional derivative ∂uk
∂χk

(χk; δχ) ∈ H1(Ω) for all k = 1, ..., l exists and satisfies

∫
Ω

(βKηχk + δ) (uk − ũη)
∂uk
∂χk

(χk; δχ) + (αKηχk + ε)∇uk · ∇
(
∂uk
∂χk

(χk; δχ)
)
dx = 0. (4.15)

Proof. First of all, the first variation of J with respect to χk for all k = 1, ..., l and an arbitrary
perturbation δχ ∈ L∞(Ω), δχ ≥ 0 is computed. Thus, J is everywhere Gâteaux-differentiable.
Note that Kηδχ ∈ C∞(Ω). Linearity of Kη gives

∂

∂χk
J (χk; δχ) = d

dt
J (χk + tδχ)

∣∣
t=0

= d

dt

1
2

l∑
k=1

∫
Ω
|uk (χk + tδχ)− ũη|2 (Kη (χk + tδχ)β + δ)

+|∇uk (χk + tδχ) |2 (Kη (χk + tδχ)α+ ε) dx
∣∣
t=0

=
∫

Ω
(uk (χk + tδχ)− ũη)

∂uk
∂χk

(χk; δχ) (Kη (χk + tδχ)β + δ)

+1
2 |uk (χk)− ũ|2βKηδχ+ 1

2 |∇uk (χk) |2αKηδχ

+ (Kη (χk + tδχ)α+ ε)∇uk (χk + tδχ) · ∇
(
∂uk
∂χk

(χk; δχ)
)
dx
∣∣∣
t=0

=
∫

Ω
(uk (χk)− ũη)

∂uk
∂χk

(χk; δχ) (Kηχkβ + δ) + 1
2 |uk (χk)− ũη|2βKηδχ

+ (Kηχkα+ ε)∇uk (χk) · ∇
(
∂uk
∂χk

(χk; δχ)
)

+ 1
2 |∇uk (χk) |2αKηδχ dx.

This equation can be simplified by using the condition (4.15), which is well-posed, provided
that ∂uk

∂χk
(χk; δχ) ∈ H1(Ω) and so the following holds

∂

∂χk
J (χk; δχ) =

∫
Ω

1
2 |uk (χk)− ũη|2βKηδχ+ 1

2 |∇uk (χk) |2αKηδχ dx.

Finally, applying the Riesz’ Representation Theorem completes the proof.
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Before we continue with other important results, we perform some calculations, that will be
significant in proving some upcoming facts. Here, again we subtract

(
∂
∂uk
J (uk; v)

)
(χk) from(

∂
∂uk
J (uk; v)

)
(χk+tδχ). Notice, that the same procedure was done in Lemma (4.1). Thus, the

calculation below will not be shown in full detail. Note further, that the following proofs will all
advance in the same pattern, namely with the help of Lax-Milgram and the already established
bilinear form ak, see (3.12).

0 =
(

∂

∂uk
J (uk; v)

)
(χk + tδχ)−

(
∂

∂uk
J (uk; v)

)
(χk)

⇔
∫

Ω
(βKηχk + δ) (uk (χk + tδχ)− uk (χk)) v

+ (αKηχk + ε) [∇uk (χk + tδχ)−∇uk (χk)] · ∇v dx

=
∫

Ω
βtKηδχ (ũη − uk (χk + tδχ)) v − αtKηδχ∇uk (χk + tδχ) · ∇v dx

(4.16)

Now we divide (4.16) by t 6= 0 and the equation below holds,∫
Ω

(βKηχk + δ) 1
t

(uk (χk + tδχ)− uk (χk)) v

+ (αKηχk + ε)
[
∇
(1
t

(uk (χk + tδχ)− uk (χk))
)]
· ∇v dx

=
∫

Ω
βKηδχ(ũη − uk(χk + tδχ))v − αKηδχ∇uk (χk + tδχ) · ∇v dx.

(4.17)

We will show, that it actually holds ∃ ∂uk∂χk
(χk; δχ) ∈ H1(Ω) for all k = 1, ..., l. So firstly,

we will derive a suitable candidate for the directional derivative and secondly, show that these
two correspond. Moreover, some preliminary form has to be established, that helps finding the
candidate Duk(χk; δχ).

So we use a new system with the bilinear form ak,

ak (Duk(χk; δχ), v) :=
∫

Ω
(βKηχk + δ)Duk(χk; δχ)v

+ (αKηχk + ε) (∇ (Duk(χk; δχ))) · ∇v dx
(4.18)

and a right-hand side bk, for all k = 1, ..., l,

bk(v) :=
∫

Ω
βKηδχ (ũη − uk (χk)) v − αKηδχ∇uk (χk)∇v dx. (4.19)

Note that ∂uk
∂χk

(χk; δχ) cannot be calculated directly. Hence, its candidate will be determined
in a weak sense. Due to the fact, that the bilinear form is the same as in (3.12), certain features
are already known, i.e., it is a bounded and elliptic bilinear form.What is left to prove, is the
continuity of the right-hand side, which is linear in v.

Lemma 4.7. Given Assumption (3.1), there exists Duk(χk; δχ) ∈ H1(Ω) for an arbitrary δχ ∈
BV (Ω, [0, 1]) satisfying

ak (Duk(χk; δχ), v) = bk(v) ∀v ∈ H1(Ω). (4.20)
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Proof. Again, with the help of Lax-Milgram the solution of (4.20) is determined. As mentioned
above, the bilinear form ak(·, ·) is elliptic and bounded, which can be reread in Chapter 3. Thus,
with the help of (3.10), it follows that

|bk(v)| =
∣∣∣∣ ∫

Ω
βKηδχ (ũη − uk (χk)) v − αKηδχ∇uk (χ) · ∇v dx

∣∣∣∣
≤β ‖Kηδχ‖L∞(Ω) ‖ũη − uk (χk)‖L2(Ω) ‖v‖L2(Ω)

+α ‖Kηδχ‖L∞(Ω) ‖∇uk (χk)‖L2(Ω) ‖∇v‖L2(Ω)

≤‖Kηδχ‖L∞(Ω)

(
β ‖ũη‖L∞(Ω) + (β + α) ‖uk(χk)‖H1(Ω)

)
‖v‖H1(Ω)

≤c̃ ‖v‖H1(Ω) ,

with c̃ = ‖Kηδχ‖L∞(Ω)

(
β + (β + α) (β+δ)

min(ε,δ)

)
‖ũη‖L2(Ω).

Hence, Lax-Milgram guarantees existence and uniqueness of Duk(χk; δχ) ∈ H1(Ω).

Thus, we have derived a proper candidate for the directional derivative of uk for all k = 1, ...l.
So we are able to show the following.

Lemma 4.8. Let Assumption (3.1) hold, then for all k = 1, ..., l

lim
t→0

∥∥∥∥uk(χk + tδχ)− uk(χk)
t

−Duk(χk; δχ)
∥∥∥∥
H1(Ω)

= 0, (4.21)

and thus ∂uk
∂χk

(χk; δk) identifies with Duk(χk; δχ) and so ∂uk
∂χk

(χk; δk) ∈ H1(Ω).

Proof. Therefore, we begin by subtracting (4.20) from (4.17). Hence, it follows

∫
Ω

(βKηχk + δ)
(1
t

(uk (χk + tδχ)− uk (χk))−Duk(χk; δχ)
)
v

+ (αKηχk + ε)∇
(1
t

(uk (χk + tδχ)− uk (χk))−Duk(χk; δχ)
)
· ∇v dx

=
∫

Ω
βKηδχ(uk(χk + tδχ)− uk(χk))v

− αKηδχ∇ (uk (χk + tδχ)− uk(χk)) · ∇v dx =: b̃k(v).

(4.22)

The right-hand side can be estimated using the Cauchy-Schwarz Inequality, Young’s Inequal-
ity for Convolutions (again taking r, q =∞ and p = 1) and (4.4) with χk + tδχ instead of χ(n)

and χk instead of χ,

|b̃k(v)| ≤ ‖ϕη‖L∞(Ω) ‖δχ‖L1(Ω) max(β, α) ‖uk (χk + tδχ)− uk(χk)‖H1(Ω) ‖v‖H1(Ω)

≤ tC2 ‖δχ‖2L1(Ω) ‖ϕη‖
2
L∞(Ω) max(β, α) ‖v‖H1(Ω) .

(4.23)

Thus, the final estimate from Lax-Milgram (A.5) implies the following estimate,
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∥∥∥∥uk(χk + tδχ)− uk(χk)
t

−Duk(χk; δχ)
∥∥∥∥
H1(Ω)

≤ tC2 ‖ϕη‖2L∞(Ω) ‖δχ‖
2
L1(Ω) max(β, α)1

c
,

where c denotes the ellipticity constant of the bilinear form ak. Letting t converge to 0 completes
the proof.

4.2.2 Establishing a Proper Algorithmic Strategy

As the title suggests, we will finally merge certain pieces to create the iterative scheme for the
gradient descent approach. It is actually constructed of three mappings, which will be introduced
in the following. Now we take a step back and consider the minimization problem

min
χ∈BV(Ω,∆l)

J (χ) + γJτ (χ). (4.24)

An explicit formulation of ∇J (χ) was already established, so our interest focuses on a
representation for a gradient of the penalty term Jτ .

Theorem 4.9. Given Assumption (3.1). The gradient of Jτ , 0 < τ � 1 with respect to χk for
k = 1, ..., l reads as follows,

∇Jτ (χk) = −∇ ·
(

∇χk√
|∇χk|2 + τ

)
, (4.25)

if the right-hand side of (4.25) is in L2(Ω) and

∂χk
∂n

= 0, on ∂Ω (4.26)

Proof. Let δχ ∈ C∞0 (Ω̄) and integration by parts provides

∂Jτ
∂χk

(χk; δχ) = d

dt

∫
Ω

√
|∇(χk + tδχ)|2 + τ dx

∣∣∣∣
t=0

=
∫

Ω

2∇χk · ∇δχ
2
√
|∇(χk + tδχ)|2 + τ

dx

∣∣∣∣
t=0

= −
∫

Ω
∇ ·

(
∇χk√

|∇(χk)|2 + τ

)
δχ dx+

∫
∂Ω

∂χk
∂n

δχ dsx,

where ∂χk
∂n = 0 on ∂Ω means the second term vanishes and thus, using Riesz’ Representation

Theorem gives the gradient of Jτ .

Remark 4.10. What was not emphasized, was the fact that the gradient of Jτ does not nec-
essarily exist for any χk ∈ BV (Ω, [0, 1]). Since it is not possible to deduce ∇χk ∈ L∞(Ω) with
standard regularity estimates.
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Now to derive a proper iterative scheme, combine Theorem (4.9) and Theorem (4.6)to get the
necessary optimality condition a minimum has to satisfy, multiply it with a parameter ω ∈ (0, 1)
and reformulate it.

0 = ∇J (χ∗) + γ∇Jτ (χ∗)

⇔ −ω∇J (χ∗) = ωγ∇Jτ (χ∗)

⇔ χ∗ − ω∇J (χ∗) = (id + γω∇Jτ ) (χ∗)

⇔ χ∗ = (id + γω∇Jτ )−1 (χ∗ − ω∇J (χ∗)) .

(4.27)

As already mentioned, a semi-implicit gradient descent strategy will be performed. Thus,
the basic iterative scheme reads as follows

χ(n+1) − ωγ∇ ·

 ∇χ(n+1)√
|∇χ(n+1)|2 + τ

 = χ(n) − ω

2
(
β
∣∣u (χ(n)

)
− ũη

∣∣2 + α
∣∣∇u (χ(n)

) ∣∣2) . (4.28)

Since we are interested in deriving an algorithm in a continuous setting and recall Remark
(4.10), we will slightly change the formulation above. Therefore, the mollifier Kη is applied to
χ(n) in the denominator of ∇Jτ . Later on we will see that this even gives solvability in H1(Ω)
for the update. So we have

χ(n+1) − ωγ∇ ·

 ∇χ(n+1)√
|∇Kηχ(n)|2 + τ

 = χ(n) − ω

2
(
β
∣∣u (χ(n)

)
− ũη

∣∣2 + α
∣∣∇u (χ(n)

) ∣∣2) . (4.29)

For the sake of notational brevity, we define the following function

G :=
{
L2(Ω) → L2(Ω),

χ 7→ χ− ω
2

(
β
∣∣u (χ)− ũη

∣∣2 + α
∣∣∇u (χ)

∣∣2) ,
and the operator F (χ) : L2(Ω)→ H1(Ω), which satisfies

a1(F (χ)g, v;χ) = (g, v)L2(Ω), ∀v ∈ H1(Ω), g ∈ L2(Ω), (4.30)

where a1 denotes a bilinear form which will be defined later in (4.42). So the minimum has to
satisfy the condition (4.27). However this does not necessarily mean that χ∗ is an element of
BV (Ω,∆l). In computational reality χ∗(x) ≤ 0 and χ∗(x) ≥ 1 for some x ∈ Ω can hold, since
ω ∈ (0, 1) cannot be chosen small enough, and thus there exists x ∈ Ω such that G(χ∗(x)) < 0.
The actual problem that arises concerns violating ellipticity of (3.12) and thus existence and
uniqueness of the model functions uk for k = 1, ..., l cannot be guaranteed. Therefore, we
introduce the mapping T that cuts G such that it has range in [0, 1]. It is defined as follows

T :=
{
L2(Ω) → L2(Ω),

v 7→ 1−max(1−max(v, 0), 0). (4.31)

Hence, the fixed point mapping that is described by a semi-implicit gradient descent step is
defined as follows

χ(n+1) = Φ
(
χ(n)

)
:=
[
F
(
Kζχ

(n)
)
◦ T ◦G

] (
χ(n)

)
. (4.32)
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So we are able to propose an algorithmic strategy. Choose the input parameters according
to Assumption (3.1), 0 < τ � 1 and ω ∈ (0, 1). Note that this was designed in a more general
way, since the update is not an element of BV (Ω, E), i. e. characteristic functions will not be
computed right away. The final refinement such that the outcome will in fact be in BV (Ω, E)
will be introduced at the end of this chapter, namely the Modified First Max approach.

Algorithm 2 Semi-Implicit Gradient Descent Method for Functions with Range [0, 1]
Input: χ0, ũ, α, β, ε, δ, γ, ρ, nmax, ω, l

2: Output: χ, u
Set n = 1

4: while
∥∥∥χ(n+1)

k − χ(n)
k

∥∥∥
L1(Ω)l

≥ ρ and n ≤ nmax do
for k = 1, ..., l do

6: Calculate uk satisfying

−∇ ·
[(
Kηχ

(n)
k α+ ε

)
∇uk

]
+
(
βKηχ

(n)
k + δ

)
uk =

(
βχ

(n)
k + δ

)
ũη,

Compute χ(n+1)
k =

[
F
(
Kηχ

(n)
k

)
◦ T ◦G

] (
χ

(n)
k

)
.

4.2.3 Existence of a Fixed Point

In the last section, the iterative scheme was presented which describes the update of χ. Therefore
existence of a fixed point of

Φ(χ) = [F (Kηχ) ◦ T ◦G] (χ)

will be shown in this subsection. For that reason continuity of this composition will be proven
at first.

Theorem 4.11. Let Assumption (3.1) hold, ω ∈ (0, 1) and recall

G(χk) = χk − ω
(1

2 |uk (χk)− ũη|2β + 1
2 |∇uk (χk) |2α

)
. (4.33)

Then G is non-expansive and continuous, i.e.,

lim
t→0
‖G(χk + tδχ)−G(χk)‖L2(Ω) = 0. (4.34)

Proof. Denote

G1(χk) := |uk(χk)− ũη|2,

G2(χk) := |∇uk(χk)|2

Let χk, χk + tδχ ∈ BV (Ω, [0, 1]) for t > 0 and some perturbation δχ ∈ L∞(Ω). Denote that
BV (Ω, [0, 1]) is continuously embedded in L2(Ω), see Appendix (A.8). So by the triangle in-
equality, the following is obtained

‖G(χk + tδχ)−G(χk)‖L2(Ω) ≤ t ‖δχ‖L∞Ω) + ωβ

2 ‖G1(χk + tδχ)−G1(χk)‖L2(Ω)

+ αω

2 ‖G2(χk + tδχ)−G2(χk)‖L2(Ω)
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Both Gi(χk + tδχ)−Gi(χk), i = 1, 2 have the form a2 − b2 = (a− b)(a+ b) so we are able
to reformulate them such that

‖G1(χk + tδχ)−G1(χk)‖L2(Ω) ≤‖uk(χk + tδχ) + uk(χk)− 2ũη‖L∞(Ω)

· ‖uk(χk + tδχ)− uk(χk)‖L2(Ω)

≤
(
‖uk(χk + tδχ)‖L∞(Ω) + ‖uk(χk)‖L∞(Ω) + 2 ‖ũη‖L∞(Ω)

)
· ‖uk(χk + tδχ)− uk(χk)‖H1(Ω) ,

and

‖G2(χk + tδχ)−G2(χk)‖L2(Ω) ≤
α

2 ‖∇uk(χk + tδχ) +∇uk(χk)‖L∞(Ω)

· ‖∇ (uk(χk + tδχ)− uk(χk))‖L2(Ω)

≤α2
(
‖∇uk(χk + tδχ)‖L∞(Ω) + ‖∇uk(χk)‖L∞(Ω)

)
· ‖uk(χk + tδχ)− uk(χk)‖H1(Ω) ,

Since uk ∈ C∞(Ω̄) for all k = 1, ..., l and ũη ∈ L∞(Ω) the estimates hold for all χk ∈ BV (Ω)

‖ũη‖L∞(Ω) ≤ 1,

‖uk(χk)‖L∞(Ω) <∞,

‖∇uk(χk)‖L∞(Ω) <∞.

Finally, with the help of (4.4), with χk + tδχ instead of χ(n) and χk instead χ, the assertion
is valid for some c1, c2 > 0 and for the limit t→ 0,

‖G(χk + tδχ)−G(χk)‖L2(Ω) ≤ t ‖δχ‖L∞(Ω) + ω

2 (βc1 + αc2) ‖uk(χk + tδχ)− uk(χk)‖H1(Ω)

≤ t ‖δχ‖L∞(Ω)

(
1 + C1

ω

2 (βc1 + αc2)
)
.

Theorem 4.12. The map T is non-expansive and thus continuous in L2(Ω).

Proof. Consider the map h(v) := max(v, 0) for v ∈ L2(Ω). Firstly, we show

‖h(v1)− h(v2)‖L2(Ω) ≤ ‖v1 − v2‖L2(Ω) , v1, v2 ∈ L2(Ω). (4.35)

This will be achieved for two cases.
1. Case: v1(x)v2(x) < 0 for some x ∈ Ω, i.e., v1(x) < 0 and v2(x) > 0 (or v1(x) > 0 and

v2(x) < 0). Then,

max(v1(x), 0)−max(v2(x), 0) = −v2(x)

(or max(v1(x), 0)−max(v2(x), 0) = v1(x)) .
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Since v1(x) < 0 and v2(x) > 0, the difference |v1(x)− v2(x)| is greater than | − v2(x)|. Also for
v2(x) < 0 and v1(x) > 0, |v1(x)| ≤ |v1(x)− v2(x)| holds and thus,

‖h(v1)− h(v2)‖L2(Ω) ≤ ‖v1 − v2‖L2(Ω) .

2. Case: v1(x)v2(x) > 0 for some x ∈ Ω, i.e., v1(x) > 0 and v2(x) > 0 (or v1(x) < 0 and
v2(x) < 0). Then,

max(v1(x), 0)−max(v2(x), 0) = v1(x)− v2(x)

(or max(v1(x), 0)−max(v2(x), 0) = 0− 0 = 0) ,

and thus,
‖h(v1)− h(v2)‖L2(Ω) ≤ ‖v1 − v2‖L2(Ω) .

Then it follows,

‖T (v1)− T (v2)‖L2(Ω) = ‖1−max(1−max(v1, 0))− (1−max(1−max(v2, 0)))‖L2(Ω)

≤ ‖1−max(v2, 0)− (1−max(v1, 0))‖L2(Ω)

≤ ‖v1 − v2‖L2(Ω) .

(4.36)

Thus, T is non-expansive. Now, take a sequence (vn) which converges to some v in L2(Ω),
since (4.36) holds, continuity follows immediately.

Now, define the following set

K :=
{
χ ∈ L2(Ω) : 0 ≤ χ(x) ≤ 1 for almost every x ∈ Ω

}
. (4.37)

Recall (4.29), it is easy to see that applying F (Kζχ) to T (G(χ)) is equivalent to solving the
upcoming minimizing problem, which will be proven in the following Lemma,

min
θ∈H1(Ω)

1
2

∫
Ω
|θ − T (G(χ))|2 + γω

|∇θ|2√
|∇(Kζχ)|2 + τ

dx (4.38)

with the necessary optimality condition

0 =
∫

Ω
(θ − T (G(χ)))v + γω

∇θ · ∇v√
|∇(Kζχ)|2 + τ

dx, ∀v ∈ H1(Ω). (4.39)

Further note, that in the following proofs the index k will be dropped since the various χk
do not depend on each other and the procedure for computing χk is the same for all k = 1, ..., l.

Lemma 4.13. Given Assumption (3.1) and let 0 < γ � 1, ω ∈ (0, 1) and assume χ ∈ K. Then
(4.38) has a unique solution in H1(Ω) and we write the solution operator as θ = F (Kζχ)T (G(χ)).

Proof. First of all, since Kζχ ∈ C∞(Ω̄), it holds that |∇(Kζχ)| is bounded. So we estimate

√
τ ≤

√
|∇(Kζχ)|2 + τ ≤

√
‖∇(Kζχ)‖2L∞(Ω) + τ =: κ (4.40)
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and thus,
1
κ
≤ 1√

|∇(Kζχ)|2 + τ
≤ 1√

τ
(4.41)

and define a bilinear form a1 and a linear functional b

a1(θ, v;χ) :=
∫

Ω
θv + γω

∇θ · ∇v√
|∇χ|2 + τ

dx,

b(v) :=
∫

Ω
T (G(χ))v dx.

(4.42)

So we apply Lax-Milgram to

a1(θ, v;Kζχ) = b(v), ∀v ∈ H1(Ω). (4.43)

We start with showing boundedness and ellipticity of the bilinear form a1 using (4.41),

|a1(θ, v;Kζχ)| ≤ ‖θ‖L2(Ω) ‖v‖L2(Ω) + ωγ√
τ
‖∇θ‖L2(Ω) ‖∇v‖L2(Ω) ≤

(
1 + ωγ√

τ

)
‖θ‖H1(Ω) ‖v‖H1(Ω)

(4.44)
and

a1(θ, θ;Kζχ) ≥
∫

Ω
|θ|2 + ωγ

κ
|∇θ|2 dx ≥ min

(
1, ωγ

κ

)
‖θ‖2H1(Ω) . (4.45)

Concerning boundedness of the right-hand side of (4.43), recall T (G(χ)) ∈ L2(Ω) for all χ ∈ K,
since uk ∈ C∞(Ω̄) holds and thus T (G(χ)) ∈ L2(Ω)

|b(v)| ≤ ‖T (G(χ))‖L2(Ω) ‖v‖L2(Ω) ≤ ‖T (G(χ))‖L2(Ω) ‖v‖H1(Ω) .

Hence, there exists a unique θ ∈ H1(Ω) with

‖θ‖H1(Ω) ≤
1

min (1, γω/κ) ‖T (G(χ))‖L2(Ω) . (4.46)

So, the corresponding operator is derived as follows. The minimum has to satisfy the neces-
sary optimality condition (4.39)

0 =
∫

Ω
(θ − T (G(χ)))v + γω

∇θ · ∇v√
|∇(Kζχ)|2 + τ

dx, ∀v ∈ H1(Ω).

Integration by parts leads to∫
Ω
T (G(χ))v dx =

∫
Ω
θv − γω∇ ·

 ∇θ√
|∇(Kζχ)|2 + τ

 v dx, ∀v ∈ H1(Ω).

Recall (4.30) and thus we have

(T (G(χ)), v)L2(Ω) =
(
F (Kζχ)−1θ, v

)
L2(Ω)

.

Now, using Fundamental Lemma of Variational Calculus (A.3) gives

θ = F (Kζχ)T (G(χ)).

Due to a Corollary of Lax-Milgram this operator on the left-hand side is unique and F (Kζχ)
maps onto the unique solution.
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Theorem 4.14. Given Assumption (3.1), then Φ is continuous, i.e.,

lim
n→∞

∥∥∥Φ (χ(n)
)
− Φ(χ)

∥∥∥
L2(Ω)

= 0, (4.47)

where χ(n), χ ∈ K for all n ∈ N and χ(n) → χ in L2 for n→∞.

Proof. Recall that Φ(χ) = F (Kζχ)T (G(χ)) and thus, it is a solution of (4.39). Therefore,
define θn := F

(
Kζχ

(n)
)
T
(
G
(
χ(n)

))
and θ := F (Kζχ)T (G(χ)). The proof will follow the

same pattern as Theorem (4.1), so we will show that ‖θn − θ‖L2(Ω) → 0. Considering (4.42), we
simplify the following

0 =
∫

Ω
v(θn − θ)− v

(
T
(
G
(
χ(n)

))
− T (G (χ))

)
dx

+γω
∫

Ω

 ∇θn√
|∇Kζχ(n)|2 + τ

− ∇θ√
|∇Kζχ|2 + τ

 · ∇v dx
By adding zero, we get

∫
Ω
v(θn − θ) + γω

∫
Ω

(∇θn −∇θ) · ∇v√
|∇Kζχ(n)|2 + τ

dx

=
∫

Ω
v
(
T
(
G
(
χ(n)

))
− T (G (χ))

)
+ ωγAn∇θ · ∇v dx =: b̃(v),

(4.48)

where
An(x) := 1√

|∇ (Kζχ) |2 + τ
− 1√

|∇
(
Kζχ(n)) |2 + τ

.

To determine, if An converges, (4.40) gives

An(x) ≤

∣∣∣∇ (Kζχ
(n)
) ∣∣∣2 − |∇ (Kζχ) |2(√

|∇
(
Kζχ(n)) |2 + τ +

√
|∇ (Kζχ) |2 + τ

)√
|∇
(
Kζχ(n)) |2 + τ

√
|∇ (Kζχ) |2 + τ

≤ 1
2
√
ττ

(∣∣∣∇ (Kζχ
(n)
) ∣∣∣− |∇ (Kζχ) |

) (∣∣∣∇ (Kζχ
(n)
) ∣∣∣+ |∇ (Kζχ) |

)
.

Now applying Young’s Inequality for Convolutions for r = ∞ and p, q = 2 and χ, χ(n) ≤ 1
almost everywhere leads to

‖An‖L∞(Ω) ≤
1√
ττ
|Ω|1/2 ‖∇ϕζ‖2L2(Ω)

∥∥∥χ(n) − χ
∥∥∥
L2(Ω)

. (4.49)

Since
∥∥∥χ(n) − χ

∥∥∥
L2(Ω)

→ 0 for n→∞, it holds

lim
n→∞

‖An‖L∞(Ω) = 0. (4.50)
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The left-hand side of (4.48) resembles the bilinear form a1(θn − θ, v;χ(n)), see (4.42), and
thus it is continuous. Concerning ellipticity, the constant should be independent of n. Therefore,
we take a look at the following

1√
|∇Kζχ(n)|2 + τ

= 1√
|∇Kζχ|2 + τ

−An(x)

≥ 1
κ
− ‖An‖L∞(Ω) .

We already know that An converges to 0 in the L∞-norm and thus for a sufficiently big
n ∈ N it holds for κ̃ ≥ κ.

1√
|∇Kζχ(n)|2 + τ

≥ 1
κ̃

and hence, uniform bound holds, i.e.,

a1
(
v, v;χ(n)

)
≥ min

(
1, γω

κ̃

)
‖v‖H1(Ω) .

What is left to prove, is uniform boundedness of the right-hand side, together with ‖T (G(χ))‖L2(Ω) ≤
|Ω|1/2 leads to

|b̃(v)| ≤ ‖v‖H1(Ω)

{∥∥∥T (G (χ(n)
))
− T (G (χ))

∥∥∥
L2(Ω)

+ ωγ ‖An‖L∞(Ω) ‖θ‖H1(Ω)

}

≤ ‖v‖H1(Ω)

{∥∥∥T (G (χ(n)
))
− T (G (χ))

∥∥∥
L2(Ω)

+ ωγ ‖An‖L∞(Ω)
1

min (1, γω/κ) ‖T (G(χ))‖L2(Ω)

}
≤ ‖v‖H1(Ω)

{∥∥∥T (G (χ(n)
))
− T (G (χ))

∥∥∥
L2(Ω)

+ ωγ ‖An‖L∞(Ω)
1

min (1, γω/κ) |Ω
1/2|

}
,

where (4.46) was used. From the estimates above it follows that

‖θn − θ‖2H1(Ω) ≤
1

min (1, γω/κ̃) sup
v∈H1(Ω)

a1
(
θn − θ, θn − θ;χ(n)

)

≤ 1
min (1, γω/κ̃)

{∥∥∥T (G (χ(n)
))
− T (G (χ))

∥∥∥
L2(Ω)

‖θn − θ‖H1(Ω)

+ ωγ ‖An‖L∞(Ω)
1

min (1, γω/κ) |Ω|
1/26

}
‖θn − θ‖H1(Ω) .

(4.51)

Now we divide by ‖θn − θ‖H1(Ω) and since ‖θn − θ‖L2(Ω) ≤ ‖θn − θ‖H1(Ω), (4.50) holds and
T ◦G is continuous in L2(Ω) the right-hand side of (4.51) converges to 0 and thus, the proof is
complete.



38 CHAPTER 4. ANALYSIS OF THE PROPOSED METHOD

Now we are able to give a full proof concerning convergence of our fixed point operator Φ in
the following Theorem.

Theorem 4.15. Given Assumption (3.1) and let 0 < τ � 1, ω ∈ (0, 1) and

K :=
{
χ ∈ L2(Ω) : 0 ≤ χ ≤ 1 a.e. in Ω

}
.

Then Φ has a fixed point in K.

Proof. This proof will be done with Schauder’s Fixed Point Theorem Version II. Therefore, it
is necessary that Φ is continuous, which was already proven in Theorem (4.14). Furthermore,
the set K is indeed convex, since for λ ∈ [0, 1] and χ1, χ2 ∈ K

0 ≤ λχ1(x) + (1− λ)χ2(x) ≤ λ+ (1− λ) = 1

holds almost everywhere in Ω. In addition, K is closed. Take a sequence
(
χ(n)

)
⊂ K that

converges to some χ in L2(Ω). Convergence in L2 implies existence of a point-wise almost
everywhere converging subsequence (χnl) ⊂ (χ(n)). Hence, it follows that

|χ(x)| ≤ |χ(x)− χnl(x)|+ |χnl(x)| ≤ |χ(x)− χnl(x)|+ 1,

taking the limit l→∞ gives |χ(x)| ≤ 1 and of course, if χnl(x) ≥ 0 for all l ∈ N then χ(x) ≥ 0.
Moreover, we have to show that Φ satisfies Φ(K) ⊂ K. We already know that the problem

(4.38) has a unique solution in H1(Ω) and thus, Φ(K) ⊂ L2(Ω) holds. Take χ ∈ K, then
θ = Φ(χ) is a minimizer of problem (4.38). Since for T (G(χ)) it holds 0 ≤ T (G(χ)) ≤ 1 almost
everywhere, it is shown that also θ satisfies 0 ≤ θ ≤ 1 and thus θ ∈ K. For a similar result, see
Theorem 6.95 in [4].

Define θ∗ := min(1,max(0, θ)). Let x ∈ Ω, then for θ(x) ≥ 1 it follows that

|θ∗(x)− T (G(χ))(x)| = 1− T (G(χ))(x) ≤ |θ(x)− T (G(χ))(x)|.

Also for θ(x) ≤ 0 we get |θ∗(x)−T (G(χ))(x)| ≤ |θ(x)−T (G(χ))(x)| and hence, these estimates
imply

1
2

∫
Ω
|θ∗(x)− T (G(χ))(x)|2 dx ≤ 1

2

∫
Ω
|θ(x)− T (G(χ))(x)|2 dx. (4.52)

Furthermore, since θ ∈ H1(Ω) it also gives ∇θ∗ = ∇θ almost everywhere in {0 ≤ θ∗ ≤ 1}
and ∇θ∗ = 0 almost everywhere outside of {0 ≤ θ∗ ≤ 1}. Hence, the following holds

1
2

∫
Ω

|∇θ∗|2√
|∇(Kζχ)|2 + τ

dx ≤ 1
2

∫
Ω

|∇θ|2√
|∇(Kζχ)|2 + τ

dx (4.53)

and thus we get

1
2

∫
Ω
|θ∗(x)− T (G(χ))(x)|2 + γω

|∇θ∗|2√
|∇(Kζχ)|2 + τ

dx

≤1
2

∫
Ω
|θ(x)− T (G(χ))(x)|2 + γω

|∇θ|2√
|∇(Kζχ)|2 + τ

dx.

(4.54)
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Because θ was proven to be the unique minimizer in H1(Ω), it follows that θ∗ = θ almost
everywhere. The statement follows from the definition of θ∗ and hence θ = Φ(χ) is an element
of K.

Last but not least, the following condition has to be satisfied, i.e. Φ(K) has to be rela-
tively compact. Therefore, for χ ∈ K and θ = Φ(χ) we already know the following, since
‖T (G(χ))‖L2(Ω) ≤ |Ω|1/2,

‖θ‖H1(Ω) ≤
1

min (1, ωγ/κ) ‖T (G(χ))‖L2(Ω) ≤
1

min (1, ωγ/κ) .

The above result implies boundedness in H1(Ω) of the sequence
{

Φ
(
χ(n)

)}∞
n=1

. Since

Ω ⊂ R2 is bounded, H1(Ω) is compactly embedded in L2(Ω) and thus,
{

Φ
(
χ(n)

)}∞
n=1

has
a convergent subsequence. So Φ(K) is compact in K and hence, there exists a unique χ∗ ∈ K
such that Φ(χ∗) = χ∗.

Concerning, if the fixed point is actually a minimizer. We consider it the other way round
in a heuristical way. Assume χ∗k ∈ BV (Ω, [0, 1]) is a minimizer that satisfies the optimality
condition

∇J (χ∗k) + γ∇Jτ (χ∗k) = 0,
which leads to

F (χ∗k)−1χ∗k = G(χ∗k)
and that G(χ∗k) has range in [0, 1] such that the mapping T can be omitted. Plugging this
equation into the fixed point mapping Φ for T (G(χ∗k)) gives

Φ(χ∗k) = F (Kζχ
∗
k)F (χ∗k)−1(χ∗k).

For ζ → 0 it holds ‖Kζχ
∗
k − χ∗k‖L2(Ω) converges to 0, see [6] p. 30, and thus χ∗k satisfies

Φ(χ∗k) = χ∗k, i.e. the minimizer is a fixed point.

4.2.4 Modified First-Max

Unfortunately, the computed minimizer χ∗ cannot likely be considered a set of suitable charac-
teristic functions. A minimum was proven in the relaxed set BV (Ω,∆l), where χk was allowed
to have range in [0, 1] for all k = 1, ..., l with

∑l
k=1 χk(x) = 1 for all x ∈ Ω. But how do we

transform χ∗ to a set of proper characteristic functions?
Therefore, J. Lellmann proposed a method called Modified First-Max to map the minimizer

from BV (Ω,∆l) to BV (Ω, E). This heuristic rounding scheme selects the label k at the point
x ∈ Ω corresponding to the nearest unit vector with respect to the chosen norm,

k(x) = min
{
arg min

k′∈{1,...,l}

∥∥∥χ(x)− ek′
∥∥∥

2

}
. (4.55)

Moreover, this formula can be generalized by using non-uniform distances or choosing any
normalized vector instead of ek. It performs better in practice than the First-Max rounding
scheme, see [8] p.117.

So for the algorithm we will start sufficiently close to a minimum and after it has finished,
the Modified First-Max strategy (4.55) is applied to get a suitable set of characteristic functions
and then recalculate the various model function of u to get the approximation of the raw image
ũ.
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Algorithm 3 Semi-Implicit Gradient Descent Method to Compute Characteristic Functions
Input: χ0, ũ, α, β, ε, δ, γ, ρ, nmax, ω, l
Output: χ, u

3: Set n = 1
while

∥∥∥χ(n+1)
k − χ(n)

k

∥∥∥
L1(Ω)l

≥ ρ and n ≤ nmax do
for k = 1, ..., l do

6: Calculate uk satisfying

−∇ ·
[(
Kηχ

(n)
k α+ ε

)
∇uk

]
+
(
βKηχ

(n)
k + δ

)
uk =

(
βχ

(n)
k + δ

)
ũη,

Compute χ(n+1)
k =

[
F
(
Kηχ

(n)
k

)
◦ T ◦G

] (
χ

(n)
k

)
.

Compute k(x) = min
{
argmink∈{1,...,l}

∥∥∥χ(x)− ek
∥∥∥

2

}
.



Chapter 5

Numerical Approximation

This chapter focuses on the numerical consistency of the proposed method. Therefore, the
discretization of Algorithm (3) is developed relying on the Finite Element Method. However, a
suitable approximation space has to be defined first. Secondly, we establish a unique discretized
solution for the model function uk and the update of χk, namely θ for k = 1, ..., l. Thirdly,
we prove that these numerical approximations are consistent. To give a sneak peak the most
important tool to achieve this will be the First Strang Lemma. For the sake of simplicity only
quadratic images with N × N , where N = 256, are considered. Also as Chapter 2 already
pointed out, only grey scale images will be of interest.

To begin with, we use the space of splines as our approximation space. Thus, it is initially
defined in one dimension and extended to two dimensions using the tensor product. Let I be an
interval, for our sake I := (0, 1), and partition it into equidistant intervals, called Ii := (xi−1, xi)
with nodes xi := ih for i = 0, ..., N and stepsize h = 1/N , which also form the grid for the finite
element method. Hence, the space of splines of order q reads as follows

Sqh(I) :=
{
s ∈ Pq([xi−1, xi]) : s ∈ Cq−1(I), i = 1, 2, ..., N

}
, q = 0, 1, ..., (5.1)

where Pq([xi−1, xi]) denotes the space of polynomials with degree at most q defined on
[xi−1, xi]. Now denote the canonical splines of degree q, which are defined by the convolution,
i.e.

πq(x) = (πq−1 ∗ π0)(x),

where

π0(x) :=
{

1, 0 ≤ x ≤ 1,
0, otherwise

Thus, the splines that form the basis of Sqh(I) read as follows, see also [3],

s̄
(q)
1+n+i(x) := πq

(
x− xi
h

)
,

for i = −q,−q + 1, ..., N − 1. Regarding the two dimensional setting, note that our domain
Ω = (0, 1)2 can be rewritten as a tensor product, i.e. Ω = (0, 1)⊗ (0, 1). Therefore, the same is
done concerning the space Sqh(Ω) with its base splines

{
s

(q)
ij

}N−1

i,j=−n
=
{
πq

(
x− xi
h

)
πq

(
y − yj
h

)}N−1

i,j=−q
.

41
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Note that dim
(
Sqh(I)

)
= N + q and thus, dim

(
Sqh(Ω)

)
= (N + q)2. We rearrange the basis

splines such that they have lexicographic ordering, i.e. the base of Sqh(Ω) reads
{
s

(q)
ij

}(N+q)2

i,j=1
.

Now we are finally able to define the spline representation of any real-valued function f . Denote
by {fij}(N+q)2

i,j=1 the values of the function f on the various nodes, then

fh :=
N+q∑
i,j=1

fijs
(q)
ij .

To approximate the model functions uk the space of linear splines is chosen, i.e., S1
h(Ω). As

a side note, the canonical linear splines have the following form

π1(x) :=


x, 0 ≤ x ≤ 1,
2− x, 1 < x ≤ 2,
0, else,

.

Furthermore, the space of constant splines S0
h(Ω) is used to approximate the characteristic

functions χk and the data ũ. Thus, the spline representations and their coefficients read as
follows,

ukh =
N+1∑
i,j=1

uk,hij s
(1)
ij , uk = {uk,hij }

N+1
i,j=1,

χkh =
N∑

i,j=1
χk,hij s

(0)
ij , qk = {χk,hij }

N
i,j=1,

ũh =
N∑

i,j=1
ũhijs

(0)
ij , ũ = {ũhij}Ni,j=1.

(5.2)

The following Lemma will accompany us throughout this chapter, compare [11]. The results
are presented without proof, but for the readers interest these can be found in [17] and [18].

Lemma 5.1. 1. Let i, j ∈ {1, ..., N + q}, then s
(q)
ij (x) > 0 for all x ∈ (xi−1, xi) ⊗ (yj−1, yj)

and s
(q)
ij (x) = 0 outside of (xi−1, xi) ⊗ (yj−1, yj). Moreover,

∑N+q
i,j=1 s

(q)
ij (x) = 1 for all

x ∈ (xi−1, xi)⊗ (yj−1, yj).

2. Let u ∈ Hm(Ω) and uh be its spline interpolation. Then there exists a constant C > 0,
that only depends on m, such that the following estimate holds

‖u− uh‖L∞(Ω) ≤ Ch
m−1

 2∑
i=1

∥∥∥∥∥∂mu∂xmi

∥∥∥∥∥
2

L2(Ω)

 1
2

. (5.3)

3. Let q ∈ {0, 1, ...}, then the splines
{
Sqh(Ω)

}
h are dense in Hq(Ω). The space H0(Ω) is

associated with L2(Ω).

Observe that 0 ≤ χkh ≤ 1 almost everywhere in Ω still holds by Lemma (5.1) since χkh(x) =∑N
i,j=1 χ

k,h
ij s

(0)
ij (x) ≤

∑N
i,j=1 s

(0)
ij (x) = 1 for all x ∈ (xi−1, xi) ⊗ (yj−1, yj) for i, j = 1, ..., N and

χkh(x) ≥ 0 since χk(x), s(0)
ij (x) ≥ 0 for all x ∈ Ω. In addition, |Ω\

⋃N
i,j=1(xi−1, xi)⊗(yj−1, yj)| = 0,

i.e. its measure is zero, holds and thus, 0 ≤ χkh ≤ 1 almost everywhere in Ω.
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Lemma 5.2. Let Assumption (3.1) hold, then

lim
h→0

∥∥∥χkh − χk∥∥∥
L2(Ω)

= 0, (5.4)

lim
h→0

∥∥ũηh − ũη∥∥L∞(Ω) = 0, (5.5)

lim
h→0

∥∥∥ukh − uk∥∥∥
L∞(Ω)

= 0. (5.6)

Proof. Applying Lemma (5.1) gives the desired results. Note that we used it on the mollified
data ũηh instead of ũh.

Having gathered the essential results from spline theory, we continue analyzing Algorithm
(3). Recall that we are interested in solving the optimality systems (3.8) and (4.39). Therefore,
we show well-posedness and convergence of the FEM-models.

Figure 5.1: The canonical B-splines: The constant (q = 0, blue), linear (q = 1, green), quadratic
(q = 2, red) and the cubic splines (q = 3, pink) are presented.

5.1 Analysis of the Finite Element Method for the Proposed
Algorithm

Starting with the discretized version of the model functions uk for k = 1, ..., l, we prove that there
exists a unique solution ukh ∈ S1

h(Ω) and then show that the spline approximation is consistent.
Therefore, we use the First Strang Lemma. Also numerical consistency of the gradient descent
mapping G will be proven as well as for the mapping T . Finally, in this section we will also
show that there exists a unique discretized solution θh ∈ S1

h(Ω) of (4.39) and also that the
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approximation is consistent. Once more, this will be achieved by using the First Strang Lemma.
Then the numerical updating process of χ will be completed.

Theorem 5.3. Given Assumption (3.1) and let k = 1, ..., l. Then there exists a unique solution
ukh ∈ S1

h(Ω) satisfying
akh(uh, vh) = lkh(vh), ∀vh ∈ S1

h(Ω), (5.7)

with the bilinear form

akh(uh, vh) :=
∫

Ω
(αKηχ

k
h + δ)∇uh · ∇vh + (βKηχ

k
h + δ)uhvh dx (5.8)

and the right-hand side
lkh(vh) :=

∫
Ω

(βKηχ
k
h + δ)ũηhvh dx. (5.9)

Proof. This proof will be concluded with Lax-Milgram and proceeds analogously to Theorem
(3.7). Therefore, boundedness follows from

akh(uh, vh) ≤ max {(β + δ), (α+ ε)}
∥∥∥ukh∥∥∥

H1(Ω)
‖vh‖H1(Ω)

and ellipticity from
akh(vh, vh) ≥ min (δ, ε) ‖vh‖H1(Ω) .

Now boundedness for the right-hand side holds since

|lkh(vh)| ≤ (β + δ)
∥∥ũηh∥∥H1(Ω) ‖vh‖H1(Ω) .

Thus, Lax-Milgram guarantees existence and uniqueness of the solution ukh ∈ S1
h(Ω).

Before we proceed with the other discretized variational models, we present the Lemma
that will play the most important role in two of the upcoming proofs. Since our finite element
approach is non-consistent, i.e. ah 6= a, this result is the best we can get.

Lemma 5.4 (First Strang Lemma [19]). Let u ∈ H1(Ω) be the solution of a(u, v) = b(v) for all
v ∈ H1(Ω) and uh the solution of ah(uh, vh) = bh(vh) for all vh ∈ S1

h(Ω). Let wh ∈ S1
h(Ω) be

arbitrary and suppose there exist constants C1, C2 > 0 that are independent of h such that

C1 ‖uh − wh‖H1(Ω) ≤ sup
vh∈S1

h
(Ω)

ah(uh − wh, vh)
‖vh‖H1(Ω)

(5.10)

and
a(u, vh) ≤ C2 ‖u‖H1(Ω) ‖vh‖H1(Ω) (5.11)

for all u ∈ H1(Ω) and vh ∈ S1
h(Ω). Then u and vh satisfy

‖u− uh‖H1(Ω) ≤
1
C1

sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

+ inf
wh∈S1

h
(Ω)

{(
1 + C2

C1

)
‖u− wh‖H1(Ω)

+ 1
C1

sup
vh∈S1

h
(Ω)

|a(wh, vh)− ah(wh, vh)|
‖vh‖H1(Ω)

}
.

(5.12)
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Proof. Let wh ∈ S1
h(Ω). Since S1

h(Ω) ⊂ H1(Ω), the equation a(u, vh) = b(vh) holds for all
vh ∈ S1

h(Ω). Furthermore, ah(uh, vh) = bh(vh) for all vh ∈ S1
h(Ω). Thus,

ah(uh − wh, vh) = a(u− wh, vh) + a(wh, vh)− ah(wh, vh) + bh(vh)− b(vh).

Now by dividing by ‖vh‖H1(Ω) and taking the supremum over all vh ∈ S1
h(Ω) leads to

sup
vh∈S1

h
(Ω)

ah(uh − wh, vh)
‖vh‖H1(Ω)

≤ sup
vh∈S1

h
(Ω)

ah(u− wh, vh)
‖vh‖H1(Ω)

+ sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

+ sup
vh∈S1

h
(Ω)

|a(wh, vh)− ah(wh, vh)|
‖vh‖H1(Ω)

.

Then the assumptions (5.10) and (5.11) give

C1 ‖uh − wh‖H1(Ω) ≤C2 ‖u− wh‖H1(Ω)

+ sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

+ sup
vh∈S1

h
(Ω)

|a(wh, vh)− ah(wh, vh)|
‖vh‖H1(Ω)

.
(5.13)

Combining the above estimate (5.13) with the following which is obtained with the help of the
triangle inequality

‖u− uh‖H1(Ω) ≤ ‖u− wh‖H1(Ω) + ‖uh − wh‖H1(Ω)

leads to

‖u− uh‖H1(Ω) ≤‖u− wh‖H1(Ω) + C2
C1
‖u− wh‖H1(Ω)

+ 1
C1

sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

+ 1
C1

sup
vh∈S1

h
(Ω)

|a(wh, vh)− ah(wh, vh)|
‖vh‖H1(Ω)

So, taking the infimum over all wh ∈ S1
h(Ω) proves the assertion.

Theorem 5.5. Given Assumption (3.1) and let k = 1, ..., l, then

lim
h→0

∥∥∥ukh − uk∥∥∥
H1(Ω)

= 0. (5.14)

Proof. Let ukh ∈ S1
h(Ω) be the solution of the variational equation akh(uh, vh) = lkh(vh) for all

vh ∈ S1
h(Ω), recall (5.7), and uk the solution of ak(uk, v) = lk(v) for all v ∈ H1(Ω). So to begin

with, the two requirements of the First Strang Lemma will be proven. The first one is already
valid considering that the bilinear form ak is elliptic, i.e.,

C ‖uh − wh‖H1(Ω) ≤
ah(ukh − wh, ukh − wh)∥∥ukh − wh∥∥H1(Ω)

≤ sup
vh∈S1

h
(Ω)

ah(ukh − wh, vh)
‖vh‖H1(Ω)

where C > 0 is the ellipticity constant of (3.12). The second condition follows from

ak(uk, vh) ≤ |ak(uk, vh)| ≤ max {(β + δ), (α+ ε)} ‖uk‖H1(Ω) ‖vh‖H1(Ω) ,
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since max {(β + δ), (α+ ε)} is clearly a constant independent of h. Thus, the Strang Lemma
holds, i.e. there exist constants C1, C2 > 0 that are independent of h such that

∥∥∥ukh − uk∥∥∥
H1(Ω)

≤ 1
C1

sup
vh∈S1

h
(Ω)

|lkh(vh)− lk(vh)|
‖vh‖H1(Ω)

+ inf
wh∈S1

h
(Ω)

{(
1 + C2

C1

)
‖uk − wh‖H1(Ω)

+ 1
C1

sup
vh∈S1

h
(Ω)

|ak(wh, vh)− akh(wh, vh)|
‖vh‖H1(Ω)

 .
(5.15)

Now we continue by estimating the following by adding zero

|lkh(vh)− lk(vh)| =
∣∣∣∣ ∫

Ω

[
(βKηχ

k
h + δ)ũηh − (βKηχk + δ)ũη

]
vh dx

∣∣∣∣
≤
∫

Ω
|(βKηχ

k
h + δ)(ũηh − ũη)vh|+ |ũηvhβ(Kηχ

k
h −Kηχk)| dx

≤ (β + δ)
∥∥ũη − ũηh∥∥L∞(Ω) ‖vh‖H1(Ω)

+ ‖ũη‖L∞(Ω) β
∥∥∥Kηχ

k
h −Kηχk

∥∥∥
L∞(Ω)

‖vh‖H1(Ω) .

We divide by ‖vh‖H1(Ω) and taking the supremum over all vh leads to the estimate

sup
vh∈S1

h
(Ω)

|lkh(vh)− lk(vh)|
‖vh‖H1(Ω)

≤ (β+δ)
∥∥ũη − ũηh∥∥L∞(Ω)+‖ũη‖L∞(Ω) β

∥∥∥Kηχ
k
h −Kηχk

∥∥∥
L∞(Ω)

. (5.16)

Considering the third term, it holds

|ak(wh, vh)− akh(wh, vh)| ≤
∫

Ω

∣∣∣β (Kηχ
k
h −Kηχk

)
whvh

∣∣∣
+
∣∣∣α (Kηχ

k
h −Kηχk

)
∇wh · ∇vh

∣∣∣ dx
≤ max(β, α)

∥∥∥Kηχ
k
h −Kηχk

∥∥∥
L∞(Ω)

‖wh‖H1(Ω) ‖vh‖H1(Ω) .

Analogously to the above result by dividing and taking the supremum over all vh we get

sup
vh∈S1

h
(Ω)

|ak(wh, vh)− akh(wh, vh)|
‖vh‖H1(Ω)

≤ max(β, α)
∥∥∥Kηχ

k
h −Kηχk

∥∥∥
L∞(Ω)

‖wh‖H1(Ω) . (5.17)

So (5.15) can be expressed as∥∥∥ukh − uk∥∥∥
H1(Ω)

≤ 1
C1

{
(β + δ)

∥∥ũη − ũηh∥∥L∞(Ω)

+ ‖ũη‖L∞(Ω) β
∥∥∥Kηχ

k
h −Kηχk

∥∥∥
L∞(Ω)

}
+ F(h),

(5.18)
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where

F(h) := inf
wh∈S1

h
(Ω)

{(
1 + C2

C1

)
‖uk − wh‖H1(Ω)

+ 1
C1

max(β, α)
∥∥∥Kηχ

k
h −Kηχk

∥∥∥
L∞(Ω)

‖wh‖H1(Ω)

}
.

(5.19)

Since uk ∈ H1(Ω), there exists an interpolation Ihuk ∈ S1
h(Ω). Note that Ihuk differs from

ukh, since ukh is the solution of the discretized variational formulation akh(ukh, vh) = lkh(vh) whereas
Ihuk is the spline interpolation of uk. Hence,

F(h) ≤
{(

1 + C2
C1

)
‖uk − Ihuk‖H1(Ω) + 1

C1
max(β, α)

∥∥∥Kηχ
k
h −Kηχk

∥∥∥
L∞(Ω)

‖Ihuk‖H1(Ω)

}
(5.20)

holds and with the use of the triangle inequality

‖Ihuk‖H1(Ω) ≤ ‖Ihuk − uk‖H1(Ω) + ‖uk‖H1(Ω) (5.21)

and applying the second assertion of Lemma (5.1) gives

F(h) ≤
(

1 + C2
C1

)
C3h

 2∑
i=1

∥∥∥∥∥∂2uk
∂x2

i

∥∥∥∥∥
2

L2(Ω)

 1
2

+ 1
C1

max(β, α)
∥∥∥Kηχ

k
h −Kηχk

∥∥∥
L∞(Ω)

C3h

 2∑
i=1

∥∥∥∥∥∂2uk
∂x2

i

∥∥∥∥∥
2

L2(Ω)

 1
2

+ ‖uk‖H1(Ω)

 .
(5.22)

Then Young’s Inequality for Convolution for r =∞ and p, q = 2 gives∥∥∥Kηχ
k
h −Kηχk

∥∥∥
L∞(Ω)

≤ ‖ϕη‖L2(Ω)

∥∥∥χkh − χk∥∥∥
L2(Ω)

.

Thus, (5.18) is estimated∥∥∥ukh − uk∥∥∥
H1(Ω)

≤ 1
C1

{
(β + δ)

∥∥ũη − ũηh∥∥L∞(Ω) + ‖ũη‖L∞(Ω) β ‖ϕη‖L2(Ω)

∥∥∥χkh − χk∥∥∥
L2(Ω)

}

+
(

1 + C2
C1

)
C3h

 2∑
i=1

∥∥∥∥∥∂2uk
∂x2

i

∥∥∥∥∥
2

L2(Ω)

 1
2

+ 1
C1

max(β, α) ‖ϕη‖L2(Ω)

∥∥∥χkh − χk∥∥∥
L2(Ω)

·

C3h

 2∑
i=1

∥∥∥∥∥∂2uk
∂x2

i

∥∥∥∥∥
2

L2(Ω)

 1
2

+ ‖uk‖H1(Ω)

 .
(5.23)

By letting h go to 0 the propositions of Lemma (5.2) complete the proof.
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Now, we consider the update of χkh. Therefore, we start with proving the following Lemma
which will be needed for G(χh) and thus, for the finite element approach of θh.
Lemma 5.6. Given Assumption (3.1), then

lim
h→0

∥∥∥∇ukh (χkh)∥∥∥
L∞(Ω)

<∞. (5.24)

Proof. This proof will be done by contradiction. Assume limh→0
∥∥∥∇ukh(χkh)

∥∥∥
L∞(Ω)

= ∞, i.e.
there exists R > 0 such that for h small enough∥∥∥∇ukh (χkh)∥∥∥

L∞(Ω)
> R. (5.25)

Again, the optimality system for uk, recall (3.8) will be used, i.e. for all vh ∈ S1
h(Ω) holds∫

Ω

(
αKηχ

k
h + ε

)
∇ukh

(
χkh

)
· ∇vh +

(
βKηχ

k
h + δ

)
ukh

(
χkh

)
vh dx =

∫
Ω
ũηhvh

(
βKηχ

k
h + δ

)
.

Inserting ukh
(
χkh

)
for vh gives∫

Ω

(
αKηχ

k
h + ε

) ∣∣∣∇ukh (χkh) ∣∣∣2 dx =
∫

Ω

(
ũηh − u

k
h

(
χkh

))
ukh

(
χkh

) (
βKηχ

k
h + δ

)
.

The left-hand side can be estimated using (5.25), such that

ε|Ω|R2 <

∫
Ω

(
ũηh − u

k
h

(
χkh

))
ukh

(
χkh

) (
βKηχ

k
h + δ

)
.

Now adding zero and using (3.10), the right-hand side leads to the following∫
Ω

(
ũηh − u

k
h

(
χkh

))
ukh

(
χkh

) (
βKηχ

k
h + δ

)
≤ (β + δ)

( ∥∥ũηh − ũη∥∥L2(Ω) + ‖ũη − uk(χk)‖L2(Ω)

+
∥∥∥uk(χk)− ukh (χkh)∥∥∥

L2(Ω)

)(∥∥∥uk(χk)− ukh (χkh)∥∥∥
L2(Ω)

+ ‖uk(χk)‖L2(Ω)

)

≤ (β + δ)
[ ∥∥ũηh − ũη∥∥L∞(Ω) + ‖ũη − uk(χk)‖L2(Ω)

+
∥∥∥uk(χk)− ukh (χkh)∥∥∥

H1(Ω)

] [∥∥∥uk(χk)− ukh (χkh)∥∥∥
H1(Ω)

+ ‖uk(χk)‖L2(Ω)

]
.

≤ (β + δ)
[∥∥ũηh − ũη∥∥L∞(Ω) +

(
1 + β + δ

min(ε, δ)

)
‖ũη‖L2(Ω)

+
∥∥∥uk(χk)− ukh (χkh)∥∥∥

H1(Ω)

] [∥∥∥uk(χk)− ukh (χkh)∥∥∥
H1(Ω)

+ β + δ

min(ε, δ) ‖ũη‖L2(Ω)

]
.

Letting h tend to 0, implies that the right-hand side is bounded, since ũη − uk(χk), uk(χk) ∈
L2(Ω) and Theorem (5.5) and Lemma (5.1) hold. However this contradicts our assumption
limh→0

∥∥∥∇ukh(χkh)
∥∥∥
L∞(Ω)

=∞ at the beginning of the proof. Therefore, we get

lim
h→0

∥∥∥∇ukh(χkh)
∥∥∥
L∞(Ω)

<∞

which proves the assertion.
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Theorem 5.7. Given Assumption (3.1), then

lim
h→0

∥∥∥G(χkh)−G(χk)
∥∥∥
L2(Ω)

= 0. (5.26)

Proof. We will proceed in a similar way than in Theorem (4.11), so again we denote the following
for G

G1(χk) := |uk(χk)− ũη|2,

G2(χk) := |∇uk(χk)|2,

as well as

G1(χkh) := |ukh(χkh)− ũηh|
2,

G2(χkh) := |∇ukh(χkh)|2.

So by the triangle inequality, the following is obtained

∥∥∥G(χkh)−G(χk)
∥∥∥
L2(Ω)

≤
∥∥∥χkh − χk∥∥∥

L2(Ω)
+ ωβ

2

∥∥∥G1(χkh)−G1(χk)
∥∥∥
L2(Ω)

+ αω

2

∥∥∥G2(χkh)−G2(χk)
∥∥∥
L2(Ω)

As in Theorem (4.11), both Gi(χkh)−Gi(χk), i = 1, 2 have the form a2− b2 = (a− b)(a+ b)
which again leads to

∥∥∥G1(χkh)−G1(χk)
∥∥∥
L2(Ω)

≤
∥∥∥ukh(χkh) + uk(χk)− 2ũη

∥∥∥
L∞(Ω)

∥∥∥ukh(χkh)− uk(χk)
∥∥∥
L2(Ω)

≤
(∥∥∥ukh(χkh)

∥∥∥
L∞(Ω)

+ ‖uk(χk)‖L∞(Ω) + 2 ‖ũ‖L∞(Ω)

)

·
∥∥∥ukh(χkh)− uk(χk)

∥∥∥
H1(Ω)

,

and ∥∥∥G2(χkh)−G2(χk)
∥∥∥
L2(Ω)

≤α2

∥∥∥∇ukh(χkh) +∇uk(χk)
∥∥∥
L∞(Ω)

·
∥∥∥∇ (ukh(χkh)− uk(χk)

)∥∥∥
L2(Ω)

≤α2

(∥∥∥∇ukh(χkh)
∥∥∥
L∞(Ω)

+ ‖∇uk(χk)‖L∞(Ω)

)

·
∥∥∥ukh(χkh)− uk(χk)

∥∥∥
H1(Ω)

,

We know limh→0
∥∥∥ukh(χkh)

∥∥∥
L∞(Ω)

<∞ holds since Lemma (5.1), uk ∈ C∞(Ω) for all k = 1, ..., l
and ∥∥∥ukh∥∥∥

L∞(Ω)
≤
∥∥∥ukh − uk∥∥∥

L∞(Ω)
+ ‖uk‖L∞(Ω) (5.27)
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give an upper bound. Also Lemma (5.6) guarantees limh→0
∥∥∥∇ukh(χkh)

∥∥∥
L∞(Ω)

< ∞. Also the
discretized data term is bounded for h→ 0, i.e. limh→0

∥∥ũηh∥∥L∞(Ω) <∞, which follows from the
same argument as (5.27). For some c̃1, c̃2 > 0 holds

∥∥∥G(χkh)−G(χk)
∥∥∥
L2(Ω)

≤
∥∥∥χkh − χk∥∥∥

L2(Ω)
+ ω

2 (βc̃1 + αc̃2)
∥∥∥ukh(χkh)− uk(χk)

∥∥∥
H1(Ω)

.

Together with (5.5) and letting h tend to 0, the assertion holds true.

Theorem 5.8. Given Assumption (3.1), then

lim
h→0
‖T (χh)− T (χ)‖L2(Ω) = 0. (5.28)

Proof. Let χh the spline approximation of χ ∈ L2(Ω). Since
{
S0
h(Ω)

}
h is dense in L2(Ω), χh is

an element in L2(Ω) as well. Hence, we apply Theorem (4.12)

‖T (χh)− T (χ)‖L2(Ω) ≤ ‖χh − χ‖L2(Ω) .

Letting h tend to 0 implies the desired since
{
S0
h(Ω)

}
h is dense in L2(Ω).

Finally, we can prove existence of the discretized solution of (4.39) and that the numerical
approximation is convergent.

Theorem 5.9. Given Assumption (3.1) and χh ∈ K, then there exists a unique solution θh ∈
S1
h(Ω) which satisfies∫

Ω
θhvh + γω

∇θh · ∇vh√
|∇(Kηχh)|2 + τ

dx =
∫

Ω
T (G(χh))vh dx, ∀vh ∈ S1

h(Ω). (5.29)

Proof. The conditions of Lax-Milgram will be verified to obtain existence and uniqueness of a
solution that suffices (5.29). Therefore, we use the following estimate

1
κh
≤ 1√

|∇(Kηχh)|2 + τ
≤ 1√

τ
,

where √
|∇(Kηχh)|2 + τ ≤

√
‖∇(Kηχh)‖2L∞(Ω) + τ =: κh

Letting vh ∈ S1
h(Ω), starting with boundedness of the bilinear form gives

|a1(θh, vh;Kζχh)| :=
∣∣∣∣ ∫

Ω
θhvh + γω

∇θh · ∇vh√
|∇(Kηχh)|2 + τ

dx

∣∣∣∣
≤ max

(
1, ωγ√

τ

)
‖θh‖H1(Ω) ‖vh‖H1(Ω)

Ellipticity is achieved by

a1(vh, vh;Kζχh) ≥ min
(

1, ωγ
κh

)
‖vh‖2H1(Ω) .

Last but not least, boundedness of the right-hand side is guaranteed since T (G(χh)) ∈ L2(Ω),

|bh(vh)| :=
∣∣∣∣ ∫

Ω
T (G(χh))vh dx

∣∣∣∣ ≤ ‖T (G(χh))‖L2(Ω) ‖vh‖H1(Ω) .

Thus, Lax-Milgram guarantees existence and uniqueness of θh ∈ S1
h(Ω).
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Theorem 5.10. Given Assumption (3.1), then

lim
h→0
‖θh − θ‖H1(Ω) = 0, (5.30)

where θ solves (4.39).

Proof. Let θh ∈ S1
h(Ω) be the solution of (5.29). First of all, the two conditions of the First

Strang Lemma will be proven. To verify the first one, consider

1√
|∇ (Kζχh) |2 + τ

= 1√
|∇ (Kζχ) |2 + τ

+B(h)

with
B(h) := 1√

|∇ (Kηχh) |2 + τ
− 1√

|∇ (Kηχ) |2 + τ
.

As in (4.49), we get the following estimate

‖B(h)‖L∞(Ω) ≤
1√
ττ
|Ω|1/2 ‖∇ϕζ‖2L2(Ω) ‖χh − χ‖L2(Ω)

and so Lemma (5.2) leads to

lim
h→0
‖B(h)‖L∞(Ω) = 0. (5.31)

Considering (5.31), h can be chosen sufficiently small such that for a κ̄ ≥ κ

1√
|∇ (Kζχh) |2 + τ

≥ 1
κ
− ‖B(h)‖L∞(Ω) ≥

1
κ̄
,

compare Theorem (4.14). Then it follows from ellipticity of the bilinear form that

min
(

1, γω
κ̄

)
‖θh − wh‖H1(Ω) ≤

a1(θh − wh, θh − wh;Kζχh)
‖θh − wh‖H1(Ω)

≤ sup
vh∈S1

h
(Ω)

a1(θh − wh, vh;Kζχh)
‖vh‖H1(Ω)

.

The second condition follows from

a1(θ, vh;Kζχ) ≤ |a1(θ, vh;Kζχ)| ≤ max
(

1, ωγ√
τ

)
‖θ‖H1(Ω) ‖vh‖H1(Ω) ,

where the constant max
(
1, ωγ√

τ

)
is clearly independent of h. Thus, the Strang Lemma holds, i.e.

there exist constants C1, C2 > 0 that are independent of h such that

‖θh − θ‖H1(Ω) ≤
1
C1

sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

+ inf
wh∈S1

h
(Ω)

{(
1 + C2

C1

)
‖θ − wh‖H1(Ω)

+ 1
C1

sup
vh∈S1

h
(Ω)

|a1(wh, vh;Kζχ)− a1(wh, vh;Kζχh)|
‖vh‖H1(Ω)

 .
(5.32)
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The first term can be estimated with (5.8)

sup
vh∈S1

h
(Ω)

|bh(vh)− b(vh)|
‖vh‖H1(Ω)

≤ ‖T (G(χh))− T (G(χ))‖L2(Ω) ≤ ‖G(χh)−G(χ)‖L2(Ω) . (5.33)

Considering the third term, it holds

sup
vh∈S1

h
(Ω)

|a1(wh, vh;Kζχ)− a1(wh, vh;Kζχh)|
‖vh‖H1(Ω)

≤ ωγ ‖B(h)‖L∞(Ω) ‖wh‖H1(Ω) . (5.34)

So (5.32) can be expressed as

‖θh − θ‖H1(Ω) ≤
1
C1
‖G(χh)−G(χ)‖L2(Ω) +W(h), (5.35)

where

W(h) := inf
wh∈S1

h
(Ω)

{(
1 + C2

C1

)
‖θ − wh‖H1(Ω) + 1

C1
ωγ ‖B(h)‖L∞(Ω) ‖wh‖H1(Ω)

}
. (5.36)

Since θ ∈ H1(Ω) there exists an interpolation Ihθ ∈ S1
h(Ω). Hence,

W(h) ≤
{(

1 + C2
C1

)
‖θ − Ihθ‖H1(Ω) + 1

C1
ωγ ‖B(h)‖L∞(Ω) ‖Ihθ‖H1(Ω)

}
(5.37)

holds and again with the use of the triangle inequality
‖Ihθ‖H1(Ω) ≤ ‖Ihθ − θ‖H1(Ω) + ‖θ‖H1(Ω) . (5.38)

Inserting the above estimates to (5.35) implies

‖θh − θ‖H1(Ω) ≤
1
C1
‖G(χh)−G(χ)‖L2(Ω) +

(
1 + C2

C1

)
‖θ − Ihθ‖H1(Ω)

+ 1
C1
ωγ ‖B(h)‖L∞(Ω)

(
‖Ihθ − θ‖H1(Ω) + ‖θ‖H1(Ω)

)
.

(5.39)

Finally, (5.31), Lemma (5.1) and Theorem (5.7) ensures that (5.39) converges to 0 for the
limit h→ 0.

5.2 Discretization of the Proposed Method
This subchapter is devoted to the discretization of the finite element approach. We have al-
ready shown, that the numerical approximations are consistent and thus, we proceed to rewrite
Algorithm (3) such that it can be implemented numerically. Remark, since we stated that our
mollifying operator is just a technical necessity, it will not emerge in this subchapter. Now recall
that gray scale images with resolution N ×N , where N = 256, are considered and thus, the step
size is h = 1/N . So, further recall our initial approximations and their coefficients in (5.2),

ukh =
N+1∑
i,j=1

uk,hij s
(1)
ij , uk = {uk,hij }

N+1
i,j=1 ∈ R(N+1)2

,

χkh =
N∑

i,j=1
χk,hij s

(0)
ij , qk = {χk,hij }

N
i,j=1 ∈ RN

2
,

ũh =
N∑

i,j=1
ũhijs

(0)
ij , ũ = {ũhij}Ni,j=1 ∈ RN

2
.
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Since {s(q)
ij }

N+q
i,j=1 is the basis of Sqh(Ω), it suffices to calculate the various coefficients of the

discrete model functions ukh and the discrete characteristic functions χkh for k = 1, ..., l. Note
further that due to this representation, a two dimensional discrete image can be identified with
a matrix.

To begin with, ukh satisfies∫
Ω

(αKηχ
k
h + δ)∇uh · ∇vh + (βKηχ

k
h + δ)uhvh dx =

∫
Ω

(βKηχ
k
h + δ)ũηhvh dx,

by using the spline representations of ukh and substituting vh = s
(1)
νµ ∈ S1

h(Ω), the following
holds

N+1∑
i,j,ν,µ=1

uk,hij

∫
Ω

(αχkh + δ)∇(1)
ij · ∇s

(1)
νµ + (βKηχ

k
h + δ)s(1)

ij s
(1)
νµ dx =

∫
Ω

(βχkh + δ)ũhs(1)
νµ dx. (5.40)

Hence, we introduce the following matrix for the two dimensional linear splines,

G(qk) =
{1
h

∫
Ω
χkhs

(1)
ij s

(1)
νµ

}N+1

i,j,ν,µ=1
= 1

36{Gmn}
(N+1)2

m,n=1 , (5.41)

where m,n = 1, ..., (N +1)2 are calculated by m = (j−1)(N +1)+ i and n = (µ−1)(N +1)+ν.
Thus, denote the non-zero coefficients of G

Gm,m−N−2 = χk,hi−1,j−1,

Gm,m−N−1 = 2
(
χk,hi−1,j−1 + χk,hi,j−1

)
,

Gm,m−N = χk,hi,j−1,

Gm,m−1 = 2
(
χk,hi−1,j−1 + χk,hi−1,j

)
,

Gm,m = 4
(
χk,hi−1,j−1 + χk,hi−1,j + χk,hi,j−1 + χk,hi,j

)
,

Gm,m+1 = 2
(
χk,hi,j−1 + χk,hi,j

)
,

Gm,m+N = χk,hi−1,j ,

Gm,m+N+1 = 2
(
χk,hi−1,j + χk,hi,j

)
,

Gm,m+N+2 = χk,hi,j .

Also the stiffness matrix reads as follows

A (qk) =
{1
h

∫
Ω
χkh∇s

(1)
ij · ∇s

(1)
νµ

}N+1

i,j,ν,µ=1
= 1

6h2 {Amn}
(N+1)2

m,n=1 , (5.42)
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and thus only the following entries are non-trivial,

Am,m−N−2 = −2χk,hi−1,j−1

Am,m−N−1 = −
(
χk,hi−1,j−1 + χk,hi,j−1

)
Am,m−N = −2χk,hi,j−1

Am,m−1 = −
(
χk,hi−1,j−1 + χk,hi−1,j

)
Am,m = 4

(
χk,hi−1,j−1 + χk,hi−1,j + χk,hi,j−1 + χk,hi,j

)
Am,m+1 = −

(
χk,hi,j−1 + χk,hi,j

)

Am,m+N = −2χk,hi−1,j

Am,m+N+1 = −
(
χk,hi−1,j + χk,hi,j

)
Am,m+N+2 = −2χk,hi,j

For both matrices if the indices i, j of χk,hij are not in the range 1, ..., N , we take χk,hij = 0.
Note further that G(1) is the Gram matrix for linear splines and A(1) is the finite difference
approximation to the Laplacian with natural boundary conditions. Moreover, we define a pro-
jection matrix P from the linear spline coefficients to piecewise constants{1

h

∫
Ω
χkhs

(1)
ij

}N+1

i,j=1
= P>qk, (5.43)

where

P =

P1 P1
. . . . . .

P1 P1

 ∈ RN
2×(N+1)2

, P1 =

1 1
. . . . . .

1 1

 ∈ RN×(N+1).

In addition, the diagonal matrix is defined in terms of the lexicographic ordering of qk,

D(qk) = diag{χk,hij }
N
i,j=1. (5.44)

The combination of the matrices (5.41), (5.42), (5.43) and (5.44) leads back to the discretized
optimality system for ukh (5.40) and thus, they give the system

K(qk)uk = [G(βqk + δ1) +A(αqk + ε1)] uk = P>D (βqk + δ1) ũ =: L(qk). (5.45)

In order to compute the various model functions ukh for k = 1, ..., l, the pixels are rearranged
into a (N + 1)2 × 1-vector, in the lexicographic ordering, i.e., complete increments in the index
i along the x-axis are carried out after every step in the index j along the y-axis. Now that we
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have established a way of calculating the model functions ukh, we deploy a discretized version of
the semi-implicit gradient descent step. Therefore, recall the mapping

G(χ) = χ− ω∇J (χ).

First of all, we deduce a discretized version of the gradient of J . The cost functional J itself
reads as follows

h−1J (qk) = 1
2

l∑
k=1

uk(qk)>G(βqk + δ1)uk(qk)− 2uk(qk)>P>D(βqk + δ1)ũ

+ ũ>D(βqk + δ1)ũ + uk(qk)>A(αqk + ε1)uk(qk)

= 1
2

l∑
k=1

uk(qk)>K(qk)uk(qk)− 2uk(qk)>L(qk) + ũ>D(βqk + δ1)ũ.

Since K(qk)uk(qk)− L(qk) = 0 and thus

h−1J (qk) = 1
2

l∑
k=1

ũ>D(βqk + δ1)ũ− uk(qk)>L(qk). (5.46)

The discrete gradient of J with respect to χk is determined by adding −uk
>(qk)L(qk) +

uk(qk)>K(qk)uk(qk), so that we can insert the operator K(qk),

DqkJ (qk) = 1
2h

l∑
k=1

[
ũ>DqkD(βqk + δ1)ũ− 2uk(qk)>DqkL(qk)

+uk(qk)>DqkK(qk)uk(qk)
]
.

(5.47)

Denote with ei ∈ RN the ith unit vector, such that

ũ>DqkD(βqk + δ1)ũ = β
{

ũ>D(ei)ũ
}N
i=1

= βũ>ũ,

−2uk(qk)>DqkL(qk) = −2β
{

uk(qk)>P>D(ei)ũ
}N
i=1

= −2βuk(qk)>P>D(ũ),

uk(qk)>DqkK(qk)uk(qk) =
{

uk(qk)>[αA(ei) + βG(ei)]uk(qk)
}N
i=1

.

Thus,
G(qk) = qk − ωDqkJ (qk). (5.48)

Note that the mapping T will not be discussed in this section since its representation can
be easily implemented. Finally, we build the disrete version of the operator F (χk). Therefore,
denote that the discrete version of Jτ (χk) =

∫
Ω
√
|∇χk|2 + τ dx reads as follows

hD(qk) :=
N∑
j=1

N∑
i=2
|χk,hi,j − χ

k,h
i−1,j |τ +

N∑
i=1

N∑
j=2
|χk,hi,j − χ

k,h
i,j−1|τ , (5.49)
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where |x|τ =
√
x2 + τ2.

DqkD(qk) = H(qk)qk, H(qk) = D>x D(δx)Dx +D>y D(δy)Dy,

δx =
{

h

|χk,hi,j − χ
k,h
i−1,j |τ

}N
i=2,j=1

, δy =
{

h

|χk,hi,j − q
k,h
i,j−1|τ

}N
i=1,j=2

,

Dx =


D̃x

. . .
D̃x

 ∈ RN(N−1)×N2
, Dx = 1

h

−1 1
. . . . . .

−1 1

 ∈ R(N−1)×N

Dy = 1
h


−D̃y D̃y

. . . . . .
−D̃y D̃y

 ∈ RN(N−1)×N2
, D̃y =

1
. . .

1

 ∈ RN×N .

(5.50)

So the operator F (χk) has the following discrete form F(qk) := [I + ωγH(qk)]−1. Thus,
denote the coefficients of the update of qk with q̃k, and so it is determined by the following
system

q̃k = F(qk)T (qk − ωDqkJ (qk)) , (5.51)

where I ∈ RN2 Now, we are able to denote the final algorithm that will be implemented.
Again, choose the parameters according to Assumption (3.1). Also the number of model func-
tions or characteristic functions have to chosen by hand. Note further, that q contains all qk in
vector form, i.e. the matrices qk rearranged to vectors in lexicographic ordering, q(j, :) denotes
the j-th row vector of the matrix q and ek denotes the k-th unit row vector.

Algorithm 4 Discrete Semi-Implicit Gradient Descent Method to Compute Characteristic
Functions

Input: q0, ũ, α, β, ε, δ, γ, ρ, nmax, ω, l
Output: q̃,u
Set n = 1

4: while
∥∥∥qk

(n+1) − qk
(n)
∥∥∥

2
≥ ρ and n ≤ nmax do

for k = 1, ..., l do
Calculate uk satisfying

K(qk)uk = L(qk),

Compute qk
(n+1) = F

(
qk

(n)
)
T
(
qk

(n) − ωDqkJ
(
qk

(n)
))
.

8: for j = 1, ..., N2 do
Compute q̃(j, :) = min

{
argmink∈{1,...,l}

∥∥∥q(j, :)− ek
∥∥∥

2

}
To plot the results, particularly the model functions uk, and calculating the approximated

raw image, the model functions uk have to have the same size as the characteristic functions qk.
Therefore, we make use of the projection matrix P, which projects the linear spline coefficients
to piecewise constant ones, i.e. we use Puk.



Chapter 6

Numerical Results

Finally, this chapter is devoted to present the numerical results obtained with Algorithm (4).
Computations were performed on a Samsung R540 PC with the operating system Microsoft
Windows 7. All codes were written in Matlab R2012b (MathWorks, Natick, MA). Recall the
bounded image domain Ω := [0, 1]2. All images considered in this thesis are digital gray scale
images of N ×N arrays of pixels with N = 256. First of all, an artificial image is observed, then
we regard a drawing and a photograph. Finally, two medical images are considered.

For the sake of notational brevity, the h indicating the discrete form of the functions is
omitted, e.g. the resulting discrete characteristic function will be denoted with χ instead of χh.
Concerning choosing the parameters from Assumption (3.1), it was stated earlier that ε and δ
are safeguards for computing the model functions uk for k = 1, ..., l if the function χk does not
behave properly. But the farther away they are chosen from 0 the more blurred the resulting χ
becomes and ultimately converges to χ = 0, which is not desired in this work. Concerning the
parameters α and β, whereas β is mostly chosen equal to 1, the dimensionless quantity α serves
as the smoothing parameter and thus, a large value of α penalizes the gradient of the model
function, i.e. |∇uk|2 for all k = 1, ..., l. So for noisy images it is necessary to choose α relatively
large. However, also for raw data with less noise it can be helpful to use a comparably large
value of α at the beginning and then reduce it gradually [15]. In addition, γ determines the
smoothness of the function χ, but also it accelerates convergence to χ = 0 if it is selected too
high. Unfortunately, there is another factor which encourages convergence to χ = 0, namely if
the optimization process takes too long, e.g. the number of iterations is not fixed, then at some
point χ = 0 is reached. One reason for this seems to be that the χk are calculated separately
from χj for j 6= k and thus, have no connection with each other during the optimization process.
This can be considered the greatest disadvantage of the method. Therefore, it gives better
results to terminate the optimization by hand, than wait till it has completed. Nevertheless, we
will later see that the functional J is still being minimized in the optimization process.

Considering χ0 := 0, computations indicate that χ0 is the global minimizer. To prove this
theoretically, recall that u(χ) are the corresponding model functions of the phase functions χ
and that u(χ) minimizes J in (2.5) with respect to the model functions for fixed χ. Hence,
J(u(χ), χ) ≤ J(u, χ) for arbitrary u. On the other hand, J(u, χ) = Jε,δ(u) + Jα,β(u, χ), where
Jε,δ(u) ≥ 0 depends only upon u, ε, δ but not upon χ, α, β and Jα,β(u, χ) ≥ 0 depends only
upon u, χ, α, β but not upon ε, δ. Hence, J(u(χ), χ) ≥ Jε,δ(u(χ)) = J(u(χ), χ0). With these
inequalities, it follows that for any χ ∈ K,

J(u(χ), χ) ≥ J(u(χ), χ0) ≥ J(u(χ0), χ0) (6.1)

and hence χ0 is the global unconstrained minimizer in K of (4.37). Yet, χ0 is not the minimizer in

57
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the constrained set BV(Ω,∆l) of Theorem (4.5). This fact will be seen among the computations
below in which the constraint is implemented. Other computations appearing below demonstrate
positive results obtained by seeking a local minimum in K obtained by avoiding the global
minimizer χ0.

Concerning the parameter ω ∈ (0, 1), it was chosen rather close to 1 since changes in χ would
appear too slow otherwise. Recall the function T which guarantees the gradient is always in the
constraint [0, 1]. Note further that the number of phases which also corresponds to the number
of characteristic functions and model functions has to be chosen by hand. However, the Four
Color Theorem assures that choosing l = 4 as the number of phases suffices to partition the
given image properly. For further details see [20].

Figure 6.1: Applying the Algorithm to an artificial image. The optimization process was ter-
minated after 300 iterations. Parameters: α = 10−7, γ = 10−4, ε = δ = 10−10, β = 1, τ =
10−3, ω = 0.9.

Starting off with an artificial image. The segmentation shows an intuitively good result.
Figure (6.1) shows the result before Modified First-Max approach was used. The final set of
characteristic functions seems rather clear here. We will later see a before-after example of the
Modified First-Max. Note further that the objective functional is indeed minimized, which can
be seen in the down right window of Figure (6.1), where the graph of the relative values of J
are mapped.

Concerning a realistic image, i.e. a photograph, the optimization process in Figure (6.2)
was terminated by hand after 150 iterations. All χk for k = 1, 2, 3 have values in [0, 1], so
the Modified First-Max needs to be applied to receive a suitable set of characteristic functions.
The difference between before and after using the Modified First-Max is clearly visible, see
Figure (6.3). Note further that the objective function J was minimized although the difference
between the updates is still significantly high such that the optimization will not complete by
its own. Concerning the resulting phases in Figure (6.3), intuitively one would think that parts
of the blouse, teeth and the white spot at the right upper corner would be captured in one
phase, whereas the dark parts described by χ2 seem correctly combined in one phase. However,
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Figure 6.2: Parameters: α = 10−6, γ = 10−5, ε = δ = 10−10, β = 1, τ = 10−3, ω = 0.9.

Figure 6.3: Here the Modified First-Max approach was used on the results of Figure (6.2)
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considering Figure (6.2) one can see that the blouse belongs to the phase function χ3 with a
lower percentage than the pixels describing the wall in the background, which is also part of
the third characteristic function. An idea would be to choose four phases such that the brighter
shades of gray are again divided into two phases.

Comparing the performance for this input image to other raw data it appears that the
difference between the updates remains at a certain value. As mentioned earlier, sooner or later
the algorithm proceeds to strive for χ = 0 and thus, the algorithm terminates on its own. The
results imply that terminating early in the optimization process and then applying the Modified
First-Max approach to be an effective strategy to find a multiphase segmentation and thus, an
appropriate piecewise smooth approximation of the given image.

Now, we briefly put our focus on the initial χ0. As explained in previous chapters, in order
to get a segmentation that is considered good, we have to start relatively close to a minimum
since the segmentation mostly strives for χ = 0. Considering the example below, Figure (6.4), a
segmentation was performed for χ0

1 = 1·0.75 and only two model functions, such that χ0
2 = 1−χ0

1.
Immediately, the algorithm calculates for both k = 1, 2 the same characteristic function, which
eventually converges to 0. Again, the reason for this seems to be the lack of connection between
χ1 and χ2.

Figure 6.4: Here, the initial χ0 was not chosen sufficiently close to a local minimum. The
optimization process was terminated after 300 iterations. Parameters: α = 10−5, γ = 10−4, ε =
δ = 10−10, β = 1, τ = 10−3, ω = 0.9.

In Figure (6.4) the segmentation immediately arrived at what looked like an edge map and
then gradually blurred and darkened. However, if a certain connection between χ1 and χ2 is
established, i.e. introduce a new dimensionless variable µ ∈ (0, 1] such that

χ
(n+1)
1 = F

(
χ

(n)
1

)
T
[
χ

(n+1)
1 − ω

(
∇J

(
χ

(n)
1

)
− µ∇J

(
χ

(n)
2

))]
,

where ∇J
(
χ

(n)
2

)
is indeed associated with the model function u2. However, χ2 = 1− χ1 holds

always, i.e. there is no separate optimization process for χ2, see Figure (6.5).
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Figure 6.5: Here, χ1 and χ2 share the connection χ1 + χ2 = 1. Parameters: α = 10−5, γ =
10−4, ε = δ = 10−10, β = 1, τ = 10−3, ω = 0.9.

Figure 6.6: Parameters: α = 10−7, γ = 10−5, ε = δ = 10−10, β = 1, τ = 10−3, ω = 0.9.

Finally, we consider the application of the algorithm to some medical images, such as ones
resulting from MRT. In the following images, it is important to know where the fat of the body
is stored, it is divided into the fat around the muscles directly under the skin, visceral fat which
lies in between the organs in the abdomen, essential and intramuscular fat. Concerning the
upcoming images the first two types are of interest in this segmentation. Of course, for the
segmentation to become accurate, it is important that the pixels that represent fat have roughly
the same intensity values. Starting sufficiently close to a minimum, the algorithm captures the
the visceral fat, the subcutaneous fat and the organs separately. However, in Figure (6.6) and
(6.7) some organs do not display a significant difference in shades of gray to the surrounding fat
and thus, the algorithm captures the organ together with the visceral fat. Again, the updates
show no reduction in relative difference, see in Figure (6.6) top right panel. As mentioned earlier,
the optimization process gives better results if it is stopped at a certain point. Note further that
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the functional is still relatively minimized. Here, the optimization process was terminated after
80 iterations.

Figure 6.7: Parameters: α = 10−7, γ = 10−5, ε = δ = 10−10, β = 1, τ = 10−3, ω = 0.9

In the end, let us reconsider what one actually gets from the algorithm. Therefore, we briefly
summarize what it does in practice. So starting sufficiently close to a local minimum with respect
to phase functions, the optimization process extends the support of the current phase functions
and refines it. Recall that the phase functions have range in [0, 1] at this point. Then, after a
fixed number of iterations, the process is stopped and the Modified First-Max strategy is applied
such that the result is a set of phase functions which satisfies

∑l
k=1 χk = 1 and each χk has

range in {0, 1}, i.e. each one is transformed into a characteristic function. Simultaneously, it
also calculates the corresponding model functions uk for all k = 1, ..., l. So a piecewise smooth
reconstruction of the input image is obtained.
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Conclusion

In the preceding chapters we proposed a hybrid model to combine image segmentation with
image denoising with the goal to compute model functions in dependence of their corresponding
characteristic functions and the segmentation of the raw image simultaneously. Existence and
uniqueness of model functions uk ∈ H1(Ω) for k = 1, ..., l that minimize the cost functional J
were proven, and also certain features were established which provide existence of a minimum
of J + γJτ with respect to relaxed characteristic functions χ ∈ BV (Ω,∆l). Then a procedure
to calculate the minimizer χ∗ was proposed, analysed and eventually existence of a fixed point
of the iterative scheme was proposed. Finally, to obtain a suitable set of characteristic functions
the heuristic rounding scheme Modified First-Max was presented. Concerning the numerical
approximations the finite element method is the procedure of choice and thus, in the last chapter
the results were presented.

Problems arose since the functional J is convex with respect to the model functions but
evidently not with respect to the characteristic functions. Therefore, we could not rely on
primal-dual methods, but instead used a semi-implicit gradient descent procedure. However,
since our gradient is always positive, the resulting function from the gradient descent step can
have values outside [0, 1] and the same can be the case for the final update. Therefore, we
introduced the mapping T that puts the constraint of having range in [0, 1] on the update.

The results show that the procedure converges to an effective local minimum. Thus, the
optimization was terminated by hand. The reason for this, as mentioned in the previous chapter,
is the lack of connection between the χk in the updating process. Nevertheless, following this
idea gives good results when starting close to a local minimum.

However, the method is far from perfect. First of all, one can investigate convexity for J
with respect to characteristic functions. However, the conjecture is that convexity does not
holds. Furthermore, creating more efficiency since evaluating the discrete gradient of J is
computationally very expensive, is another aspect that deserves more consideration. Moreover,
whereas the procedure enhances massively if the image should only be partitioned into two
segments since a connection between χ1 and χ2 is established, this link is still missing for
more than two characteristic functions concerning the optimization process. Unfortunately,∑l
k=1 χk = 1 is not enough to establish this link, since it only states that the last characteristic

function can be calculated in terms of the others, i.e. χl = 1−
∑l−1
k=1 χk, so one segment is always

neglected. In addition, as in my bachelor’s thesis, the focus here was only on gray scale images.
Hence, one’s research can be expanded to include color images with range [0, 1]3.

Finally, although there are some aspects that haven’t been considered in this thesis, it gives
an idea on how to overcome optimization of a functional with respect to characteristic functions.
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Appendix A

Cited Analysis Results

Theorem A.1 (Young’s Inequality for Convolution [6]). Let 1 ≤ p, q, r ≤ ∞ such that 1/p +
1/q = 1 + 1/r and let f ∈ Lp(Ω) and g ∈ Lq(Ω), then

‖f ∗ g‖Lr(Ω) ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) . (A.1)

Theorem A.2 (Green’s Formula [7]). Let Ω ⊂ Rn be an open, bounded, non-empty set and
u, v ∈ H2(Ω). This implies ∫

Ω
v∆u+∇u · ∇v dx =

∫
∂Ω
v
∂u

∂n
dsx

Lemma A.3 (Fundamental Lemma of Calculus of Variation [5]). Let Ω ⊂ Rn be an open,
bounded, non-empty set, u ∈ L2(Ω) and let the following hold∫

Ω
uϕ dx = 0 ∀ϕ ∈ C∞0 (Ω).

Then u(x) = 0 holds for almost every x ∈ Ω.

Theorem A.4 (Theorem of Lax-Milgram [5]). Let X be a Hilbert space over K, let a : X×X →
K be sesquilinear and there exist constants c1 and c2 with 0 < c1 ≤ c2 < ∞, such that for all
x, y ∈ X it follows

• |a(x, y)| ≤ c2 ‖x‖X ‖y‖X

• Re a(x, x) ≥ c1 ‖x‖2X .

Then there exists a unique mapping A : X → X with

a(x, y) = (y,Ax)X for all x, y ∈ X

Furthermore, it follows that A ∈ L(X) is an invertible operator with

‖A‖ ≤ c2 and
∥∥∥A−1

∥∥∥ ≤ 1
c1

Lemma A.5 (Lemma of Lax-Milgram [7]). Let H be a Hilbert space over R, let B : H×H → R
be a bilinear mapping and there exist constants α, β > 0, such that for all u, v ∈ H

|B(u, v)| ≤ α ‖u‖ ‖v‖ (A.2)
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and
β ‖u‖2 ≤ B(u, v). (A.3)

Finally, let f : H → R be a bounded linear functional on H. Then there exists a unique element
u ∈ H such that

B(u, v) = f(v), ∀v ∈ H. (A.4)
In addition, the following estimate holds

‖u‖ ≤ 1
β
‖f‖ . (A.5)

Theorem A.6 (Riesz Representation Theorem [7]). Let X be a Hilbert space over K. A linear
functional x′ of X belongs to X ′ if and only if there exists a unique x ∈ X such that for every
y ∈ X follows

x′(y) = (y, x)X ,
and so ∥∥x′∥∥X′ = ‖x‖X .

Theorem A.7 (Young’s Inequality [5]). Let α, β ∈ R. If α, β ≥ 0, then for any ε > 0 follows
2αβ ≤ εα2 + β2/ε.

Lemma A.8. See [4], let Ω ⊂ Rn be a bounded Lipschitz-Domain and 1 ≤ q ≤ n/(n − 1) with
n/(n− 1) =∞ for n = 1. Then it holds:

1. There exists a continuous embedding BV (Ω) ↪→ Lq(Ω). If q < n/(n − 1) holds, it is
compact.

2. There exists a constant C > 0, such that for all u ∈ BV (Ω) the following Poincaré-
Wirtinger inequality is true:

‖P1u‖q =
∥∥∥∥u− 1

|Ω|

∫
Ω
u dx

∥∥∥∥
q

≤ CTV(u).

Theorem A.9 (Schauder’s Fixed Point Theorem [16]). Let M be a convex and closed subset
of a Banachspace, let f be a continuous mapping of M into itself, and suppose that f(M) is
compact in M . Then f has at least one fixed point.

Theorem A.10 (General Sobolev Imbedding Theorem [7]). Let u ∈W k,p(Ω).

1. If k < n
p and 1

q = 1
p −

k
n , then u ∈ L

q(Ω). Moreover, there exists a constant C > 0, which
depends on Ω, k, p and n, such that

‖u‖Lq(Ω) ≤ C ‖u‖Wk,p(Ω) .

2. If k > n
p and

γ =


[
n
p

]
+ 1− n

p , if n
p is not an integer,

any positive number < 1, otherwise,

then u ∈ Ck−
[
n
p

]
−1,γ(Ω̄). In addition, there exists a constant C > 0, which only depends

on Ω, k, p, γ and n, such that

‖u‖
C
k−[np ]−1,γ(Ω̄)

≤ C ‖u‖Wk,p(Ω) .
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Proposition A.11. See [8], the total variation has the following properties:

1. TV is convex, i.e.

TV(λu+ λv) ≤ λTV(u) + (1− λ)TV(v), ∀u, v ∈ L1(Ω), ∀λ ∈ [0, 1].

2. TV is positively homogeneous:

TV(αu) = αTV(u), ∀u ∈ L1(Ω), ∀λ ∈ R.

3. TV is lower semi-continuous in BV(Ω)l with respect to the L1(Ω)l topology, i.e. for all
sequences (u(k)) ⊂ BV(Ω)l converging (in the L1-sense) to some u ∈ BV(Ω)l,

lim inf
k→∞

TV(u(k)) ≥ TV(u).

Theorem A.12. See [4], the space BV(Ω)l with the corresponding norm

‖u‖BV :=
( l∑
k=1

∫
Ω
|uk(x)|2 dx

)1/2
+ TV(u)

is a Banach space.

Definition 7. See [8], the sequence (χ(n)) converges weakly∗ to an element χ in BV(Ω)l if and
only if

• χ ∈ BV(Ω)l, χ(n) ∈ BV(Ω)l ∀n ∈ N,

• χ(n) → χ in L1(Ω)l, and

• (Dχ(n))→ Dχ weakly∗ in measure, i.e.,

∀v ∈ C0(Ω) : lim
n→∞

∫
Ω
v dDχ(n) =

∫
Ω
v dDχ. (A.6)

Proposition A.13. See [8], the sequence (χ(n)) ⊂ BV(Ω)l weakly∗ converges to some χ ∈
BV(Ω)l if and only if

1. χ(n) → χ in L1(Ω)l and

2. the sequence (χ(n)) is uniformly bounded in BV(Ω)l, i.e.,

∃C <∞ ∀n ∈ N :
∥∥∥χ(n)

∥∥∥
BV
≤ C.

Theorem A.14. See [8], let (χ(n)) ⊂ BV(Ω)l be uniformly bounded in BV(Ω)l. Then (χ(n))
contains a subsequence weakly∗ converging to u ∈ BV(Ω)l.

Theorem A.15 (Minkowski’s inequality [2]). Let 1 ≤ p <∞ and u, v ∈ Lp(Ω). Then,

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω) . (A.7)

Theorem A.16 (Hölder’s Inequality [6]). Let 1 ≤ p, q ≤ ∞ sucht that 1/p+ 1/q = 1. Then for
any f ∈ Lp(Ω) and g ∈ Lq(Ω),

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) . (A.8)
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Theorem A.17 (Cauchy-Schwarz Inequality [6]). Let H be a Hilbert space and f, g ∈ H. Then

|(f, g)H | ≤ ‖f‖H ‖g‖H (A.9)

Theorem A.18 (Fubini’s Theorem [2]). Let f : Rn → K be a measurable function. Then,∫
Rn
f(x) dx =

∫
R
...

∫
R
f(x1, x2, ..., xn) dx1 dx2 ... dxn. (A.10)

Definition 8 (Directional Derivative [14]). Let F : X → Y and u, δu ∈ X, then

∂F

∂u
(u; δu) := lim

t→0

F (u+ tδu)− F (u)
t

(A.11)

is called Directional Derivative of F in direction δu. Moreover, if ∂F∂u (u; δu) exists for all δu ∈ X
and is bounded linear operator from X to Y . Then F is Gâteaux differentiable with its Gâteaux
derivative ∂F

∂u .

Definition 9 (Gâteaux Differentiability [4]). Let X,Y be two normed spaces and U ⊂ X
non-empty. A mapping F : U → Y is called Gâteaux differentiable in x ∈ U if there exists
DF (x) ∈ L(X,Y ) such that for all y ∈ X the mapping Fx,y : λ 7→ F (x + λy) defined on an
open neighbourhood around 0 is differentiable at λ = 0 and DFx,y = DF (x)y. Analogously F is
Gâteaux differentiable if it is for all x ∈ U .

Theorem A.19. See [4], let F : U → R be a functional defined on an open subset U of a convex
set K in a real normed space X and let it be Gâteaux differentiable. Then F is convex in K if
and only if

F (u) + (DF (u), v − u) ≤ F (v) ∀u, v ∈ K. (A.12)

In addition, if u lies in the interior of K, then w = DF (u) is the unique element in X∗ such
that

F (u) + (w, v − u) ≤ F (v) ∀v ∈ K. (A.13)
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