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Abstract

Semidiscrete surfaces, which constitute our object of study, are represented by parametrizations
that possess one discrete and one continuous variable. Building a bridge between smooth
surfaces on the one hand and purely discrete surfaces (meshes) on the other hand, they enjoy
enough geometric properties to deserve separate study.

The first part of our work is concerned with Laplace operators on semidiscrete surfaces.
Laplacians on both smooth and discrete surfaces have been an object of interest for a long time,
also from the viewpoint of applications. As a first approach, we define a semidiscrete Laplace
operator to be the limit of a discrete Laplacian on a quadrilateral mesh which converges
to the semidiscrete surface. In a second paper, we use notions and methods from calculus
of variations to derive an entire family of semidiscrete Laplace operators by variation of
appropriate Dirichlet energy functionals. In both cases we establish several core properties
of the Laplacian, like symmetry, positive semidefiniteness, and linear precision. Moreover,
we discuss its relation to the mean curvature normal and pointwise convergence toward the
Laplace-Beltrami operator on smooth surfaces.

In the second part we investigate semidiscrete surfaces with constant mean curvature along
with their associated families. The notion of mean curvature introduced here is motivated by
a recently developed curvature theory for quadrilateral meshes, and extends previous work on
semidiscrete surfaces. In the situation of vanishing mean curvature, the associated families
are defined via a Weierstraß representation. For the general cmc case, we introduce a Lax pair
representation that directly defines associated families of cmc surfaces, and is connected to a
semidiscrete sinh-Gordon equation.
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Overview

The present dissertation studies differential geometric aspects of semidiscrete surfaces, which
are represented by parametrizations that possess one discrete and one continuous variable.
They can be seen as semidiscretizations of smooth surfaces or as partial limit cases of purely
discrete surfaces (meshes).

Historically, the analysis of smooth curves and surfaces in three-dimensional Euclidean
space formed the basis for the development of differential geometry during the 18th and
19th centuries. Over the last decades, the study of discrete surfaces has gained significant
attention, not only within pure mathematics, but also from the viewpoint of applications, e.g.,
in geometry processing, computer graphics, and architectural design. In particular, the field
of discrete differential geometry has emerged on the border between differential and discrete
geometry. Instead of smooth curves and surfaces, it deals with polygons and meshes, and
aims at the development of a self-contained discrete theory that respects fundamental aspects
of the smooth one. A first systematic approach toward this goal was initiated by Sauer [35],
whose work is summarized in his monograph [36]. From a modern viewpoint, an important
aspect of discrete differential geometry is the study of surface transformations in the sense of
Eisenhart [18]. A sequence of surfaces (obtained, e.g., by iterating Bäcklund-Darboux type
transformations) is seen as the limit of a higher-dimensional discrete net where only some
parameters converge to continuous ones, while others remain discrete. For a comprehensive
overview of this topic, and especially of the important concepts of consistency and integrability,
we refer to the textbook by Bobenko and Suris [10].

As a matter of fact, the low-dimensional case of parametrizations with only one discrete
and one continuous variable, i.e., sequences of curves, has not received much attention within
the aforementioned transformation theory, but nevertheless is rich enough in geometry to
deserve separate study. A more thorough investigation of such parametrizations was initiated
around the year 2008 by Pottmann et al. [31], who discussed the problem of approximating
smooth surfaces by piecewise-developable ones, motivated by applications in architecture and
manufacturing. For that purpose they investigated semidiscrete incarnations of conjugate nets,
in particular conical and circular ones, which enjoy elegant geometric properties. Their results
motivated further research in that direction.

For instance, Müller and Wallner [27] considered semidiscrete isothermic surfaces, con-
formal mappings, and dualizability in the sense of Christoffel. As a matter of course, their
observations lead to the investigation of semidiscrete constant mean curvature surfaces in

vii



viii Overview

three-dimensional Euclidean space (see Müller [26]). Similar to the purely discrete case, the
definition of these special surfaces is actually not based on a notion of mean curvature. Instead,
a semidiscrete isothermic surface is called minimal, if its Christoffel dual is contained in the
unit sphere, and it is termed a cmc surface, if its Christoffel dual is at constant distance. In
accordance with these definitions, Rossman and Yasumoto [34] have established a semidiscrete
version of the Weierstraß representation of isothermic minimal surfaces. In the PhD thesis of
Yasumoto [46] also semidiscrete maximal surfaces in Minkowski three-space and their singu-
larities have been investigated. Taking another point of view, in the recent work of Burstall et
al. [11] semidiscrete isothermic surfaces are described as sequences of Darboux transforms of
curves, and their transformation theory is studied.

Semidiscrete asymptotic parametrizations (A-surfaces) and especially semidiscrete con-
stant negative Gauß curvature surfaces (K-surfaces) have been analyzed by Wallner [40]. It
has been shown that, in contrast to the discrete situation, it is possible to define Gauß curvature
via the Lelieuvre normal vector field of a semidiscrete asymptotic surface. The definition is
meaningful in the sense that an A-surface turns out to be a K-surface if and only if it has the
Chebyshev property.

However, as different kinds of parametrizations have their own way of discretization, the
development of a unifying (semi)discrete curvature theory is still an active topic of research. As
a first approach, Karpenkov andWallner [22] introduced curvatures for semidiscrete conjugate
surfaces based on the concept of offsets (i.e., parallel surfaces at constant distance), in analogy
to the situation of polyhedral meshes considered by Bobenko et al. [8].

As can be seen, there are various different approaches toward the development of semidis-
crete equivalents of notions and methods of smooth surface theory. The present work consti-
tutes a contribution to the ongoing research on a deeper understanding of the relation between
purely discrete, semidiscrete, and smooth objects in (discrete) differential geometry. The first
two chapters are concerned with Laplace operators on semidiscrete surfaces. In Chapter 1 we
utilize the fact that any semidiscrete surface can be seen as a partial limit case of a quadrilateral
mesh to derive a semidiscrete Laplacian from the discrete Laplace operator described by Alexa
and Wardetzky [1]. In the second chapter we use notions and methods from calculus of vari-
ations to derive an entire family of semidiscrete Laplace operators by variation of appropriate
Dirichlet energy functionals. Surprisingly, the operator obtained as limit in the first chapter
is contained in the latter family of variational Laplacians. Last but not least, the third chapter
deals with a completely different topic, namely with semidiscrete constant mean curvature
surfaces and their associated families. The introduced notion of mean curvature is motivated
by a curvature theory for quadrilateral meshes recently developed by Hoffmann et al. [20], and
extends previous work on semidiscrete surfaces. We provide a more detailed overview of the
individual topics below.

At this point we want to highlight the fact that the three chapters which constitute the
present dissertation essentially coincide with the corresponding journal articles itemized in the
following list of publications. Thus, throughout this work the terms “chapter” and “paper” are
used synonymously. To avoid multiply defined references, the respective bibliographies have
been merged into the general list starting on page 77.



Overview ix

List of publications
[i] W. Carl. A Laplace Operator on Semi-Discrete Surfaces. Found. Comput. Math., 2015,

DOI 10.1007/s10208-015-9271-y.

[ii] W. Carl and J. Wallner. Variational Laplacians for semidiscrete surfaces. Submitted:
Dec 2014 / Revised: Oct 2015.

[iii] W. Carl. On semidiscrete constant mean curvature surfaces and their associated families.
Submitted: Nov 2015.

Chapter 1: A Laplace operator on semidiscrete surfaces
The Laplace-Beltrami operator ∆ = −div◦grad on smooth surfaces and Riemannian manifolds
is an extremely well investigated differential operator which plays an essential role in many
fields including applications. A main strength lies in Riemannian geometry, but it is also
relevant to the elementary differential geometry of surfaces in three-dimensional space, e.g.,
via the equation ∆ id = −2Hn that relates the Laplacian to the mean curvature and unit normal
vector field. Its intrinsic nature makes it very useful for computational applications, e.g., in
geometry processing, and it has therefore been extensively discretized.

In this paper, we use the discrete Laplacian described by Alexa and Wardetzky [1] to
derive a Laplace operator on semidiscrete surfaces. Our approach is based on the fact that any
semidiscrete surface can be seen as a limit case of a purely discrete one. More precisely, we
may discretize a semidiscrete surface x : Z×R→ R3 and a real-valued function u : Z×R→ R
near a point of interest (k, t) ∈ Z × R by letting

xεi, j := x(k + i, t + ε j) and uεi, j := u(k + i, t + ε j).

This defines the vertices xεi, j of a quadrilateral mesh with regular combinatorics and function
values uεi, j on these vertices. Denoting the discrete Laplace operator on that mesh by Lε, we
define the semidiscrete Laplacian of u at the point (k, t) to be the limit(

∆limu
)
(k, t) := lim

ε→0

(
Lεuε

) ���0,0.

The main result of this paper is stated in Theorem 1.1, where we show that this limit exists
under very mild regularity assumptions. Along with the proof of this theorem we derive a
closed-form expression for the semidiscrete Laplacian, which we summarize in Corollary 1.1.
Moreover, we reveal a direct relation between the discrete Laplacian fromAlexa andWardetzky
[1] and the discrete scheme described by Liu at al. [24] (see Remark 1.1).

Subsequently, we show that the semidiscrete Laplacian inherits several important properties
from the discrete operator. We define an area element and verify that the semidiscrete Laplacian
is symmetric and positive semidefinite with respect to the corresponding L2 inner product
(see Lemma 1.3). Moreover, we prove that it converges pointwise to the Laplace-Beltrami
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operator, if the semidiscrete surface converges to a smooth one (see Theorem 1.2). This
result particularly implies that the corresponding discrete Laplacian on quadrilateral meshes
is a consistent discretization (see Remark 1.3). Additionally, we show that the semidiscrete
Laplacian inherits the “linear precision” property from its discrete counterpart, meaning that
on planar semidiscrete surfaces the Laplacian of linear functions vanishes.

Chapter 2: Variational Laplacians for semidiscrete surfaces
In the second paper we demonstrate a variational approach toward a semidiscrete Laplace op-
erator. We utilize the well-known fact that the Laplace-Beltrami operator ∆M on a Riemannian
manifoldM can be defined via the Dirichlet energy functional

E(u) =
1
2

∫
M

‖∇u‖2 dV, u ∈ C2(M,R).

Indeed, it is given as the gradient of the Dirichlet energy functional,

∆M = ∇E,

which means that for smooth test functions u and all smooth one-parameter variations uξ of u,
with the property that ∂

∂ξuξ ��ξ=0 is compactly supported, we have

d
dξ

E(uξ )���ξ=0
=

〈
∆Mu,

∂uξ
∂ξ

����ξ=0

〉
L2,

with the usual definition 〈 f , g〉L2 =
∫
M

f (x)g(x) dV (x) (see, e.g., [21, pp. 89–94]). This
relation is basic to the generalization of the Laplace-Beltrami operator to discrete surfaces and
will also be used in this chapter. More precisely, in Section 2.2 we define a Laplace operator
on semidiscrete surfaces as gradient of an appropriate Dirichlet energy functional. We show
that this gradient exists and provide a closed-form expression for the semidiscrete Laplacian
in Theorem 2.1. It turns out that there is quite some freedom in the choice of the particular
L2 space which is basic to the concepts of both gradient and Dirichlet energy. Surprisingly,
using as an area measure a simple numerical integration rule yields precisely the semidiscrete
Laplacian ∆lim from the first chapter (see Section 2.2.2).

Moreover we recall that, on a surface M embedded in R3, the mean curvature normal
H = Hn likewise allows for a variational definition, namely

−2H = ∇area(M), i.e.,
d

dξ
area(pξ (M))���ξ=0

=
〈
− 2H,

∂pξ
∂ξ

����ξ=0

〉
L2(M,R3)

for every smooth one-parameter variation pξ :M → R3 with p0 = idM (see, e.g., [13, p. 7]).
Here, area(M) =

∫
M

1 dV and 〈 f , g〉L2(M,R3) =
∫
M
〈 f (x), g(x)〉 dV (x). Consequently, in Sec-

tion 2.3 we investigate the gradient of the area functional to gain a semidiscrete mean curvature
normal, and establish the relation ∆ id = −2H for the semidiscrete case (see Theorem 2.2). In
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turn, this relation implies that linear functions on flat surfaces are in the kernel of the Lapla-
cian (i.e., the linear precision property). In Section 2.4 we discuss further properties of the
semidiscrete Laplace operator like locality, symmetry, positive semidefiniteness, and lack of
a maximum principle. The last section deals with pointwise convergence of the semidiscrete
Laplacian toward the Laplace-Beltrami operator on smooth surfaces (cf. Theorem 2.3).

Chapter 3: Semidiscrete cmc surfaces and their associated families
As opposed to the first two chapters, this paper investigates semidiscrete constant mean curva-
ture surfaces in three-dimensional Euclidean space within the framework of integrable systems.
Surfaces with constant mean curvature H or constant Gauß curvature K have been of partic-
ular interest in differential geometry for a long time. Typically, the investigation of constant
curvature surfaces is tied to specific parametrizations, like isothermic parametrizations for
constant mean curvature surfaces. An interesting feature of these surfaces is that they possess
one-parameter families of deformations preserving the respective curvature, while changing
the type of parametrization. As different kinds of parametrizations have their own way of
discretization, it has been a challenge to receive similar results in the discrete and semidiscrete
situations. Only recently Hoffmann et al. [20] presented a unifying curvature theory for quadri-
lateral meshes equipped with unit normal vectors at the vertices. Their theory encompasses a
remarkably large class of existing discrete special parametrizations and, in particular, provides
a deeper insight into the associated families of discrete constant curvature surfaces.

Accordingly, at the beginning of this chapter we translate the discrete curvatures introduced
by Hoffmann et al. [20] to the semidiscrete setting (see Section 3.2). We also highlight the in-
tersection with the curvature theory for semidiscrete conjugate parametrizations of Karpenkov
and Wallner [22]. In Section 3.3, we recapitulate the notion of isothermic parametrizations
and show that a semidiscrete surface is isothermic if and only if its quaternionic cross ratio
allows for a specific factorization (cf. Lemma 3.5). Subsequently, in Section 3.4, we investi-
gate semidiscrete isothermic minimal surfaces. Their Weierstraß representation, established
by Rossman and Yasumoto [34], immediately gives rise to their associated families, whose
members are however no longer isothermic. The main result of this section is that all the mem-
bers of these associated families are minimal as well (cf. Theorem 3.1). Moreover, we show
that the conjugate surface of an isothermic minimal surface is asymptotically parametrized.
In Section 3.5, we introduce a Lax pair representation for semidiscrete isothermic cmc sur-
faces, which directly contains the definition of their associated families. We prove that the
members of these associated families, which again are no longer isothermic, all have the same
constant mean curvature (cf. Theorem 3.2). We conclude the paper by investigating the Lax
pair representation of semidiscrete rotational symmetric cmc surfaces (see Section 3.6). We
demonstrate that the discrete version of the classical Delaunay rolling ellipse construction,
obtained by Bobenko et al. [8], also applies to the semidiscrete setting.



xii



Chapter 1

A Laplace operator on semidiscrete
surfaces

Abstract

This paper studies a Laplace operator on semidiscrete surfaces. A semidiscrete surface is
represented by a mapping into three-dimensional Euclidean space possessing one discrete
variable and one continuous variable. It can be seen as a limit case of a quadrilateral mesh,
or as a semidiscretization of a smooth surface. Laplace operators on both smooth and
discrete surfaces have been an object of interest for a long time, also from the viewpoint
of applications. There are a wealth of geometric objects available immediately once a
Laplacian is defined, e.g., the mean curvature normal. We define our semidiscrete Laplace
operator to be the limit of a discrete Laplacian on a quadrilateral mesh, which converges
to the semidiscrete surface. The main result of this paper is that this limit exists under very
mild regularity assumptions. Moreover, we show that the semidiscrete Laplace operator
inherits several important properties from its discrete counterpart, like symmetry, positive
semidefiniteness, and linear precision. We also prove consistency of the semidiscrete
Laplacian, meaning that it converges pointwise to the Laplace-Beltrami operator, when
the semidiscrete surface converges to a smooth one. This result particularly implies
consistency of the corresponding discrete scheme.

Keywords: Semidiscrete surface, Quadrilateral mesh, Laplace operator, Consistency.

Mathematics Subject Classification (2010): Primary 53B20; Secondary 53A05, 41A25.

1.1 Introduction
TheLaplace-Beltrami operator∆ = − div ◦ grad on smooth surfaces andRiemannianmanifolds
is a well-studied differential operator with many applications inside and outside mathematics.
It plays an important role in a variety of areas and applications, such as physical simulation,
parametrization, geometric modeling, shape analysis, and surface optimization. It is also

This chapter comprises the research article [i].
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2 1 A Laplace operator on semidiscrete surfaces

relevant to elementary differential geometry, especially since, on embedded surfaces in R3, the
Laplace operator is connected to the mean curvature normal Hn via the equation∆ id = −2Hn.

Discrete Laplace operators

For practical computations, smooth surfaces are often approximated by discretemeshes. There-
fore, it is necessary to establish discrete Laplace operators that ideally maintain as many of
the core properties of their smooth counterpart as possible. Regarding the applications, it is
also important to analyze the convergence behavior of the discrete schemes under appropriate
mesh refinement.

There is by now a well-developed theory of discrete Laplacians on triangle meshes. A
famous example is the so-called cotangent formula, which has already been explored from
various different viewpoints (see, e.g., MacNeal [25], Duffin [16], Dziuk [17], Pinkall and
Polthier [29], and Desbrun et al. [14]). The convergence behavior of this scheme was analyzed
by Xu [45] and Wardetzky [41] among others. Several variants of the cotangent Laplacian
have also been considered (see Bobenko and Springborn [9] for an example). Another discrete
Laplace operator on triangle meshes was proposed by Belkin et al. [2], who could prove
consistency of their scheme, meaning that it converges pointwise to the smooth Laplacian, as
the mesh converges to a smooth surface.

For the situation of quadrilateral or even general polygonal meshes, there are far fewer
results. The obvious approach of triangulating the given mesh and using one of the above-
mentioned operators is not adequate in this more general case, as different triangulations in
general lead to different results. Nevertheless, this idea motivated Xiong et al. [44] to average
the cotangent formula over all possible triangulations in order to obtain a discrete Laplace
operator on quadrilateral meshes. Earlier, Liu et al. [24] described a Laplacian on quadrilateral
meshes based on a bilinear interpolation of each face. They achieve consistency under some
special, but not too restrictive conditions.

Only recently the cotangent formula has been extended to the case of general polygonal
meshes by Alexa and Wardetzky [1]. Their discretization of the Laplace operator enjoys
several important properties, some of which will be of particular interest within the course of
the present paper. However, the convergence behavior of their scheme has not been analyzed
so far. In this regard, we are contributing a first result (see Remark 1.3).

A semidiscrete Laplace operator

In this paper, we utilize the discrete Laplacian by Alexa and Wardetzky [1] to derive a Laplace
operator on semidiscrete surfaces. A semidiscrete surface is represented by a function

x : Z × R→ R3 : (k, t) 7→ x(k, t)

depending on one discrete variable and one continuous variable.
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The study of semidiscrete objects has been of high relevance in different branches of
mathematics for a long time. A great deal of their attraction lies in the fact that they can lead
us to a deeper understanding of both the discrete and the continuous cases.

A good example of this phenomenon is the modern viewpoint on surface transformation
theory, where sequences of surfaces (obtained, e.g., by iterating Bäcklund-Darboux type
transformations) are seen as semidiscrete objects, preferably at the same time interpreted as
partial limits of a discrete master object, governed by an integrable system (see Bobenko and
Suris [10]).

Semidiscretization also plays an important role in the field of computational mathematics,
e.g., for transforming a partial differential equation into a system of ordinary differential
equations.

The present work on a semidiscrete Laplace operator is a fundamental contribution to the
ongoing research on a deeper understanding of the relation between purely discrete, semidis-
crete, and smooth objects in (discrete) differential geometry. In particular, the Laplacian and
its connection to mean curvature is of interest with respect to topics like semidiscrete minimal
surfaces, or semidiscrete conformal mappings (see Müller and Wallner [27]).

Our approach toward a semidiscrete Laplacian is based on the fact that any semidiscrete
surface can be seen as a limit case of a purely discrete surface. Indeed, for any semidiscrete
surface x and ε > 0 the quadrilateral mesh

Mε : Z × Z→ R3 : (k,m) 7→ x(k, t + εm)

fulfills Mε (k,m) → x(k, t) as ε → 0. Motivated by this observation, we study the discrete
Laplacian and its action on the mesh Mε and carry out the limit ε → 0 to gain a semidiscrete
Laplace operator.

Results
Given a semidiscrete surface x : Z × R → R3 and a function u : Z × R → R we define the
semidiscrete Laplacian of u at a point (k, t) to be the limit(

∆limu
)
(k, t) := lim

ε→0

(
Lεu

)
(x(k, t)),

where Lε denotes the discrete Laplace operator described by Alexa and Wardetzky [1] on the
quadrilateral mesh Mε. The main result of this paper is stated in Theorem 1.1, where we
show that this limit exists at every point of the semidiscrete surface under very mild regularity
assumptions. Along with the proof of this theorem we derive a closed-form expression for the
semidiscrete Laplacian, which we summarize in Corollary 1.1. Moreover, we reveal a direct
relation between the discrete Laplacian described by Alexa and Wardetzky [1] and the discrete
scheme described by Liu at al. [24] (see Remark 1.1).

Subsequently, we show that the semidiscrete Laplacian inherits several important properties
from the discrete operator. We define an area element and verify that the semidiscrete Laplacian
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is symmetric and positive semidefinite with respect to the corresponding L2 inner product
(see Lemma 1.3). Moreover, we prove that it converges pointwise to the Laplace-Beltrami
operator, if the semidiscrete surface converges to a smooth one (see Theorem 1.2). This
result particularly implies that the corresponding discrete Laplacian on quadrilateral meshes
is a consistent discretization (see Remark 1.3). Additionally, we show that the semidiscrete
Laplacian inherits the “linear precision” property from its discrete counterpart, meaning that
on planar semidiscrete surfaces, the Laplacian of linear functions vanishes.

The paper is organized as follows. In Section 1.2 we give an overview of Alexa and
Wardetzky’s Laplacian on general polygonal meshes. In Section 1.3 we specify a semidiscrete
Laplacian and state our main result (Theorem 1.1). Its proof is split into two separate sections.
First, we thoroughly investigate the restriction of the discrete Laplace operator to the special
case of quadrilateral meshes (Section 1.4). Then, we study the discrete Laplacian and its
action on the mesh Mε and analyze its convergence behavior as ε → 0 (Section 1.5). In
Section 1.6 we study the properties of our semidiscrete Laplace operator. As an example
of a possible application, the last section demonstrates the corresponding semidiscrete mean
curvature vector field.

1.2 A discrete Laplace operator
Alexa and Wardetzky [1] investigate discrete Laplace operators on general polygonal meshes.
Their approach is based on the following definition of the Laplace operator on an oriented
two-dimensional Riemannian manifoldM. Denote by Ω` (M) the vector space of differential
`-forms on M and let d : Ω0(M) → Ω1(M) be the exterior derivative. Furthermore, let
d∗ : Ω1(M) → Ω0(M) be the codifferential, which is the formal adjoint of d with respect
to the inner products induced on Ω0(M) and Ω1(M) by the Riemannian metric (see, e.g.,
Rosenberg [33] for details). Then, the Laplacian on 0-forms, i.e., real-valued functions, can
be defined as

∆M := d∗d. (1.1)

In the discrete case, M is an oriented 2-manifold mesh with vertex set V , edge set E, and
face set F. Here, oriented means that all faces carry an orientation such that any two adjacent
faces induce opposite orientations on their common edge. To distinguish between these two
orientations, one has to work with oriented half-edges. As M may possess some boundary,
one further has to distinguish between the set EI of inner edges and the set EB of boundary
edges. Thus, one has a total number of |E | = 2|EI | + |EB | oriented half-edges associated with
M .

Using the same notation as in the smooth case, we denote by Ω` (M) the vector space
of discrete `-forms. Here 0-forms are real values associated with vertices and can therefore
be written as elements of R|V |. Analogously, elements of R|E | can be interpreted as discrete
1-forms on M . The discrete counterpart of the exterior derivative is the so-called coboundary
operator, which we also denote by d : Ω0(M) → Ω1(M). It can be represented by a matrix of
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dimension |E | × |V | and acts via (
du

)
(epq) = u(q) − u(p),

for a function u ∈ Ω0(M) and an oriented half-edge epq from p to q. Inner products on the
spaces Ω0(M) and Ω1(M) can be represented by symmetric positive definite matrices M0 and
M1 of dimensions |V | × |V | and |E | × |E |, respectively. Now, for any choice of inner products
M0 and M1, the adjoint d∗ : Ω1(M) → Ω0(M) of d is given by

d∗ = M−1
0 dT M1.

Motivated by the smooth case, a discrete Laplacian is then defined as

L := d∗d = M−1
0 L, with L := dT M1d.

By choosing particular inner products, Alexa andWardetzky [1] specify discrete Laplacians
that satisfy certain properties analogous to the properties of the smooth operator. The present
paper is especially concerned with the following features:

• Locality: As a differential operator, the smooth Laplacian is a local operator. In the
discrete case, locality corresponds to the desirable property of sparsity.

• Symmetry: The Laplace-Beltrami operator on a manifold without boundary is self-
adjoint with respect to the L2 inner product induced by the Riemannian metric. This
property translates to L being self-adjoint with respect to the inner product induced by
M0, i.e., to LT = L.

• Semidefiniteness: On aRiemannianmanifold without boundary, the Laplacian is positive
semidefinite with one-dimensional kernel consisting of the constants. In the discrete
case, a corresponding property is achieved by requiring that the matrices M0 and M1 are
positive definite, since the kernel of the coboundary operator d is exactly given by the
constant functions.

• Linear precision: In the smooth case, ∆Mu ≡ 0, wheneverM is contained in a plane
and u : M → R is linear. Thus, we require that if all vertices of the mesh M lie in a
single plane and the function u : M → R is linear, then Lu(p) = 0 at each interior vertex
p. In applications, this property is important for, e.g., mesh parametrization, where an
already planar mesh should remain unaltered.

In order to receive a Laplace operator with these properties, Alexa and Wardetzky [1] first
introduce the vector area and the maximal projection of a (possibly non-planar) polygon f with
k f vertices. Using their notation, we write
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X f :=
(
x f

1 , . . . , x f
k f

)T
∈ Rk f ×3 for the matrix of cyclically ordered vertices

along the boundary ∂ f ,
E f :=

(
e f

1 , . . . , e
f
k f

)T
∈ Rk f ×3 for the matrix of oriented and cyclically

ordered half-edges along ∂ f ,
B f :=

(
b f

1 , . . . , b
f
k f

)T
∈ Rk f ×3 for the matrix of midpoints of each edge.

Now, the vector area [A f ] of f coincides with the Darboux vector of the skew-symmetric 3× 3
matrix A f := ET

f B f , meaning that [A f ] × x = A f x for all x ∈ R3. The magnitude of the
vector area, denoted by | f |, is the largest area over all orthogonal projections of f to planes
of R3. Thus, a planar polygon f̄ is called a maximal projection of f , if it is an orthogonal
projection of f that has the same vector area as f (cf. Figure 1.4.2). Furthermore, one can
show that the vector area is orthogonal to the plane in which f̄ lies. Therefore, if we define
n f := [A f ]/| f | and require that the mentioned plane contains the origin, the vertices x̄ f

i of the
maximal projection f̄ of f can be calculated as

x̄ f
i := x f

i − 〈x
f
i , n f 〉n f , ∀ i ∈ {1, . . . , k f }.

After these preparations, we proceed with the construction of the inner product matrix M1.
For the sake of locality, Alexa and Wardetzky [1] require that M1 is defined per face. This
means that

αT M1 β =
∑
f ∈F

(α | f )T M f β | f , ∀ α, β ∈ Ω1(M),

where M f ∈ R
k f ×k f are symmetric and positive definite matrices and α | f ∈ Rk f denotes the

restriction of a 1-form α ∈ Ω1(M) to the k f oriented half-edges incident with the face f ∈ F.
In particular, they start with the matrices

M̃ f :=
1
| f |

B f BT
f ,

which are symmetric, but in general only positive semidefinite. In order to obtain positive
definite matrices M f , they define the matrices C f̄ as k f × (k f − 2) matrices consisting of an
orthonormal basis of the null space of ET

f̄
∈ R3×k f , where f̄ is again the maximal projection

of f . Then, an admissible choice of M f is given by

M f := M̃ f + λ C f̄ CT
f̄ ,

for any λ > 0. Furthermore, they define the inner product matrix M0 to be a diagonal matrix
with

(M0)pp :=
∑
f 3p

| f |
k f
, ∀ p ∈ V . (1.2)
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Hence, their Laplacian is the composition of two parts encoded by the matrices M̃ f and
λ C

f̄
CT

f̄
, respectively. In order to analyze these two components separately, we define the

decomposition M1 := M̃1 + M̂1 by

αT M̃1 β :=
∑
f ∈F

(α | f )T M̃ f β | f and αT M̂1 β :=
∑
f ∈F

(α | f )Tλ C f̄ CT
f̄ β | f ,

for all discrete 1-forms α, β ∈ Ω1(M). The discrete Laplace operator that we will use
henceforth can now be written as

L := L̃ + L̂, (1.3)

where
L̃ := M−1

0 L̃, with L̃ := dT M̃1d and L̂ := M−1
0 L̂, with L̂ := dT M̂1d.

1.3 A semidiscrete Laplace operator
In this section, we derive a Laplace operator on semidiscrete surfaces from the discrete
Laplacian described in Section 1.2. A semidiscrete surface is given by a function

x : Z × R ⊇ D → R3 : (k, t) → x(k, t)

possessing one discrete variable and one continuous variable. To illustrate a semidiscrete
surface, we connect corresponding points on successive curves by line segments [x(k, t), x(k +
1, t)] (see Figure 1.5, left). Throughout this paper, we assume that x is sufficiently often
differentiable in the second variable. Moreover, since most of the following considerations
are local, we assume that the domain D of x is the entire space Z × R. In order to make the
upcoming formulas shorter and thus better readable, we use the abbreviations

x1(k, t) := x(k + 1, t) and x1̄(k, t) := x(k − 1, t).

For the partial derivatives of x with respect to the continuous variable we write x′, x′′, and x (n),
n ∈ N. Finite differences with respect to the discrete variable are denoted by

δx := x1 − x.

Note that these derivatives commute, so it is natural to use a notation like

δx′(k, t) =
∂

∂t
x(k + 1, t) −

∂

∂t
x(k, t).

In addition to these definitions we need the following concepts. A semidiscrete surface is
called regular, if the sets

{δx, x′}, {δx, x′1} and {δx, x′1 + x′}
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xx x1

x1(ε)

x1(−ε)

x(ε)x(ε)

x(−ε)x(−ε)

x1̄(ε)

x1̄

x1̄(−ε)

f1(ε)f1(ε)f2(ε)f2(ε)

f3(ε)f3(ε) f4(ε)f4(ε)

Figure 1.1: The quadrilateral mesh Mε around the point x = x(k, t).

are linearly independent for all (k, t) ∈ Z×R. Moreover, a real-valued function u : Z×R→ R
is called smooth if it is sufficiently often differentiable in the second argument. For the partial
derivatives and the finite differences of the mapping u we use the same notation as for the
function x.

Our aim is to deduce a formula for the Laplacian of a function u : Z × R → R at every
point x = x(k, t) of the semidiscrete surface from the discrete Laplace operator (1.3). For this
purpose, we first define a quadrilateral mesh on the semidiscrete surface around the point x,
then we evaluate the discrete scheme at this mesh, and finally we carry out a limit process in
the smooth direction of the semidiscrete surface.

For the above-mentioned quadrilateral mesh around the point x = x(k, t), we define the
functions (cf. Figure 1.1)

x1̄(ε) := x(k − 1, t + ε), x(ε) := x(k, t + ε), and x1(ε) := x(k + 1, t + ε).

Furthermore, for ε > 0, we consider the four quadrilaterals

f2(ε) :=
(
x, x(ε), x1̄(ε), x1̄

)
, f1(ε) :=

(
x, x1, x1(ε), x(ε)

)
,

f3(ε) :=
(
x, x1̄, x1̄(−ε), x(−ε)

)
, f4(ε) :=

(
x, x(−ε), x1(−ε), x1

)
.

A discrete mesh Mε consisting of these quadrilaterals is now well defined. Consequently we
consider the discrete Laplace operator of Section 1.2 on the mesh Mε, which we denote by
Lε. Obviously any mapping u : Z ×R→ R can be interpreted as a real-valued function on the
mesh Mε. Finally we define the semidiscrete Laplacian of a function u at a point (k, t) to be
the limit of

(
Lεu

)
(x(k, t)) as ε tends to zero.

Definition 1.1. Let x : Z × R → R3 be a regular semidiscrete surface, and let u : Z × R → R
be a smooth function. Then the semidiscrete Laplacian of u at a point (k, t) ∈ Z × R is given
by the limit (

∆limu
)
(k, t) := lim

ε↘0

(
Lεu

)
(x(k, t)), (1.4)

where Lε denotes the discrete Laplacian (1.3) on the quadrilateral mesh Mε.
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Under the assumptions of Definition 1.1 the limit limε↘0
(
Lεu

)
(x) exists at every point

x = x(k, t) of the semidiscrete surface. We get the following results regarding the convergence
rates of the two parts L̃ε and L̂ε of the discrete Laplacian (1.3).

Theorem 1.1. Let x : Z × R → R3 be a regular semidiscrete surface, and let the function
u : Z × R→ R be smooth. Then the limit(

∆limu
)
(k, t) = lim

ε↘0

(
Lεu

)
(x(k, t)) ∈ R

exists at every point (k, t) ∈ Z × R. In particular, we have(
L̂εu

)
(x(k, t)) = O(ε), as ε → 0,

and (
L̃εu

)
(x(k, t)) =

(
∆limu

)
(k, t) + O(ε2), as ε → 0,

where Lε = L̃ε + L̂ε denotes the discrete Laplace operator (1.3) on the quadrilateral mesh Mε.

In order to prove Theorem 1.1 we first investigate the discrete Laplacian (1.3) and its action
on quadrilateral meshes (see Section 1.4). After that we study the discrete Laplacian on the
mesh Mε and analyze its convergence behavior as ε → 0 (see Section 1.5).

1.4 The discrete Laplacian on quadrilateral meshes
As a first step toward the proof of Theorem 1.1, we restrict the discrete Laplacian of Section
1.2 to the special case of quadrilateral meshes and analyze its action in detail. Henceforth, let
M = (V, E, F) be a quadrilateral mesh in R3. For a point x ∈ V with valence 4 and its incident
faces f j = (x, x j, y j, x j+1), where the indices are to be understood modulo 4 (cf. Figure 1.2),
we have

E f j =
(
e f j

1 , . . . , e
f j
4

)T
=

(
x j − x, y j − x j, x j+1 − y j, x − x j+1

)T
∈ R4×3, and

B f j =
(
b f j

1 , . . . , b
f j
4

)T
=

1
2
(
x j + x, y j + x j, x j+1 + y j, x + x j+1

)T
∈ R4×3.

The vector area of f j is, in this case, given by

[A f j ] =
1
2

(x j+1 − x j ) × (x − y j ).

Moreover, the coboundary operator for one
quadrilateral f j can be represented by

d | f j =
*....
,

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

+////
-

.

y3 x4 y4

x3 x x1 = x5

y2
x2 y1

f1f2

f3 f4

Figure 1.2: The faces f j = (x, x j, y j, x j+1)
incident with x.
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We are now going to derive a more explicit formula for the discrete Laplacian of a function
u ∈ Ω0(M) at one point x ∈ V . That is, we want to expand(

Lu
)
(x) =

(
L̃u

)
(x) +

(
L̂u

)
(x).

1.4.1 The first part of the discrete Laplace operator

We begin with the first term
(
L̃u

)
(x), and compute

L̃ = dT M̃1d =
∑
f ∈F

(d | f )T M̃ f (d | f ) =
∑
f ∈F

1
| f |

(d | f )T B f BT
f (d | f ).

For a quadrilateral f j = (x, x j, y j, x j+1) incident with x, we have

(
d | f j

)T B f j =
1
2
(
x j+1 − x j, x − y j, x j+1 − x j, y j − x

)T .

Since we are interested in the Laplacian at the point x, we do not need to calculate the entire
matrix 1

| f j |
(d | f j )

T B f j
BT

f j
d | f j , but only the row associated with x. This row is given by

(
(d | f j )

T M̃ f j d | f j
)

x =
1

4| f j |

(
‖x j+1 − x j ‖

2, 〈x j+1 − x j, x − y j〉,

− ‖x j+1 − x j ‖
2, −〈x j+1 − x j, x − y j〉

)
.

Denoting by L̃ | f j ∈ R
4×4 the restriction of L̃ to the quadrilateral f j , we arrive at

(
L̃ | f ju| f j

)
(x) =

1
4| f j |

(
‖x j+1 − x j ‖

2 (u(x) − u(y j )
)
+ 〈x j+1 − x j, x − y j〉

(
u(x j ) − u(x j+1)

))
.

This formula holds true for all four quadrilaterals f j incident with the point x, so

(
L̃u

)
(x) =

4∑
j=1

1
4| f j |

(
‖x j+1 − x j ‖

2 (u(x) − u(y j )
)
+ 〈x j+1 − x j, x − y j〉

(
u(x j ) − u(x j+1)

))
,

(1.5)

for all functions u ∈ Ω0(M). Recalling definition (1.2) of the inner product matrix M0, we get

(
L̃u

)
(x) =

1∑4
j=1 | f j |

4∑
j=1

1
| f j |

(
‖x j+1 − x j ‖

2 (u(x) − u(y j )
)
+

+〈x j+1 − x j, x − y j〉
(
u(x j ) − u(x j+1)

))
.

(1.6)
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Remark 1.1. We would like to point out that this formula agrees exactly with the simplified
scheme for the discrete Laplace operator described by Liu et al. [24]. Their approach is based
on the following formula for the mean curvature normal of a surface. Fix a point p of a
sufficiently smooth surfaceM ⊂ R3 and denote by AR = area(R) the area of a region R of
the surface around p with diameter diam(R). Then the mean curvature normal at p can be
calculated as

H(p) = − lim
diam(R)→0

∫
q∈R ∇area(q)

2AR
, (1.7)

where ∇area is the gradient vector field of the area functional. Furthermore, they use the
identity

∆M id = −2H (1.8)

in order to produce a discrete scheme for the Laplacian. To gain an approximation of the mean
curvature normal in the discrete case, Liu et al. [24] take the four quadrilaterals incident with
the point x ∈ M as an appropriate region around x. As these quadrilaterals are in general
non-planar, they interpolate each quadrilateral with a bilinear function given by

S f j (u, v) = (1 − u)(1 − v)x + v(1 − u)x j + u(1 − v)x j+1 + uvy j, (u, v) ∈ [0, 1]2.

Using a one-point numerical integration formula, the areaA f j of one quadrilateral is approxi-
mated by

A f j =
√
‖Su

f j
‖2‖Sv

f j
‖2 − 〈Su

f j
, Sv

f j
〉2, (1.9)

where
Su

f j =
x j+1 − x j

2
+

y j − x
2

and Sv
f j =

x j − x j+1

2
+

y j − x
2

.

An easy calculation shows that (1.9) is exactly the magnitude of the vector area of f j discussed
above. Via equation (1.7) one gets

H(x) =
−1

2
∑4

j=1A f j

4∑
j=1

1
A f j

(
‖x j+1 − x j ‖

2(x − y j ) + 〈x j+1 − x j, x − y j〉(x j − x j+1)
)
.

Recalling the relation (1.8), Liu et al. [24] end up with the following formula for the Laplacian
of a function u evaluated at one point x of a quadrilateral mesh M:

(
∆Mu

)
(x) =

1∑4
j=1A f j

4∑
j=1

1
A f j

(
‖x j+1 − x j ‖

2 (u(x) − u(y j )
)
+

+ 〈x j+1 − x j, x − y j〉
(
u(x j ) − u(x j+1)

))
.

This scheme agrees with the representation of
(
L̃u

)
(x) given in Equation (1.6).
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1.4.2 The second part of the discrete Laplace operator

Herewe expand the second term
(
L̂u

)
(x) of the discrete Laplacian on M . That is, we investigate

the matrix
L̂ = dT M̂1d =

∑
f ∈F

(d | f )Tλ C f̄ CT
f̄ (d | f ).

For every quadrilateral f j = (x, x j, y j, x j+1) incident with x, the matrix C f̄ j ∈ R
4×2 consists of

an orthonormal basis of the nullspace of

ET
f̄ j
=

(
e f̄ j

1 , . . . , e
f̄ j
4

)
=

(
x̄ j − x̄, ȳ j − x̄ j, x̄ j+1 − ȳ j, x̄ − x̄ j+1

)
∈ R3×4,

where f̄ j = ( x̄, x̄ j, ȳ j, x̄ j+1) is the maximal projection of f j . For the definition of f̄ j we recall
that the vector area [A f j ] of f j is given by

[A f j ] =
1
2

(x j+1 − x j ) × (x − y j ),

and that n j = [A f j ]/| f j | is the unit normal vector of the plane in which f̄ j lies. Thus, the
vertices of f̄ j can be obtained as

x̄ = x − 〈x, n j〉n j, x̄ j = x j − 〈x j, n j〉n j, and ȳ j = y j − 〈y j, n j〉n j .

x x j+1

x j

y j

x̄̄x
x̄ j+1x̄ j+1

f̄ j̄f j

f j

x̄ jx̄ j

ȳ jȳ j

Figure 1.3: A non-planar quadrilateral f j and its maximal projection f̄ j .

Since the edges of f̄ j form a closed loop, the vector v j
1 := (1, 1, 1, 1)T is obviously in the

kernel of ET
f̄ j
. To receive a basis of this kernel, let us assume henceforth that the edges e f̄ j

1 and

e f̄ j
4 are linearly independent, which apparently is not always the case. However, we will see
later that this assumption holds true in the setting of Theorem 1.1 for sufficiently small ε > 0.
Thus, we can uniquely determine real values σ j and ω j , such that

σ je
f̄ j
1 + ω je

f̄ j
4 = −e f̄ j

3 ,
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ȳ3 x̄4 ȳ4

x̄3 x̄1

ȳ2 x̄2 ȳ1

e1

e3
e4e1e3

e4

e1

e3

e4 e1 e3

e4
x̄̄x

Figure 1.4: Scheme of the half-edges involved in the definitions of σ j and ω j .

since these edges lie in the same plane (see Figure 1.4). Using the notation

e
j
k` :=

〈
e f̄ j

k , e
f̄ j
`

〉
, ∀ k, ` ∈ {1, . . . , 4},

we get

σ j :=
e

j
14e

j
34 − e

j
13e

j
44

e
j
11e

j
44 − (e j

14)2
and ω j :=

e
j
13e

j
14 − e

j
11e

j
34

e
j
11e

j
44 − (e j

14)2
.

A second vector in ker
(
ET

f̄ j

)
is now given by v

j
2 := (σ j, 0, 1, ω j )T .

In the next step, we apply Gram-Schmidt orthonormalization to the basis
{
v

j
1, v

j
2
}
of the

nullspace of ET
f̄ j
. Normalizing v

j
1 yields κ j

1 := 1
2 (1, 1, 1, 1)T . The second vector transforms to

κ
j
2 :=

1
2
√

N j

*....
,

3σ j − ω j − 1
−σ j − ω j − 1
−σ j − ω j + 3
−σ j + 3ω j − 1

+////
-

,

where N j := 3(σ2
j +ω

2
j + 1) − 2(σ j +ω j + σ jω j ). Hence, one possible choice for the matrix

C f̄ j is given by
(
κ

j
1, κ

j
2
)
∈ R4×2. Notice that the expression C

f̄ j
CT

f̄ j
remains invariant under

choosing different orthonormal bases of the nullspace of ET
f̄ j
, since it represents the orthogonal

projection onto the latter subspace. Therefore, also the matrix M̂1 remains invariant.
In order to calculate the matrix L̂, we first compute

CT
f̄ j

d | f j =
2√
N j

(
0 0 0 0

ω j − σ j σ j −1 1 − ω j

)
.
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As before, we need only one row of the matrix (d | f j )
Tλ C

f̄ j
CT

f̄ j
d | f j , namely the row associated

with x. This row is given by(
(d | f j )

Tλ C f̄ j
CT

f̄ j
d | f j

)
x =

4λ
N j

(
(ω j − σ j )2, σ j (ω j − σ j ), σ j − ω j, (1 − ω j )(ω j − σ j )

)
.

Writing L̂ | f j ∈ R
4×4 for the restriction of L̂ to the face f j , we get(

L̂ | f ju| f j
)
(x) =

4λ
N j

(ω j − σ j )
(
ω j

[
u(x) − u(x j+1)

]
+ σ j

[
u(x j ) − u(x)

]
+ u(x j+1) − u(y j )

)
.

As this holds for all quadrilaterals f j incident with x, it follows that

(
L̂u

)
(x) =

4∑
j=1

4λ
N j

(ω j − σ j )
(
ω j

[
u(x) − u(x j+1)

]
+ σ j

[
u(x j ) − u(x)

]
+ u(x j+1) − u(y j )

)
.

Bearing in mind definition (1.2) of the inner product matrix M0, we arrive at(
L̂u

)
(x) =

16λ∑4
j=1 | f j |

4∑
j=1

ω j − σ j

N j

(
ω j

[
u(x) − u(x j+1)

]
+

+σ j
[
u(x j ) − u(x)

]
+ u(x j+1) − u(y j )

)
.

(1.10)

As we are going to use this formula in the proof of Theorem 1.1, we now want to study the
values σ j and ω j (cf. Figure 1.4) in detail. First observe that

e f̄ j
k = e f j

k −
〈
e f j

k , n j
〉
n j, ∀ k ∈ {1, . . . , 4}

and thus

e
j
k` =

〈
e f̄ j

k , e
f̄ j
`

〉
=

〈
e f j

k , e
f j
`

〉
−

〈
e f j

k , n j
〉〈

e f j
`
, n j

〉
, ∀ k, ` ∈ {1, . . . , 4}.

By inserting the normal vector

n j =
1

2| f j |
(x j+1 − x j ) × (x − y j )

and using the identity 〈a, b × c〉 = det(a, b, c), we gain〈
e f j

1 , n j
〉
=

1
2| f j |

det
(
x j − x, y j − x, x j+1 − x

)
,
〈
e f j

3 , n j
〉
=

1
2| f j |

det
(
x j − x, y j − x, x j+1 − x

)
,

〈
e f j

2 , n j
〉
=
−1

2| f j |
det

(
x j − x, y j − x, x j+1 − x

)
,
〈
e f j

4 , n j
〉
=
−1

2| f j |
det

(
x j − x, y j − x, x j+1 − x

)
.

Notice that we have to calculate only one determinant per face, which will be very useful later.
By setting

det j :=
1

4| f j |
2 det

(
x j − x, y j − x, x j+1 − x

)2

the values e j
k` can now be written as

e
j
k` =

〈
e f j

k , e
f j
`

〉
+ (−1)k+`+1 det j, ∀ k, ` ∈ {1, . . . , 4}. (1.11)
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1.5 Proofs of the convergence results

This section provides the proof of Theorem 1.1. As it is rather technical and long, we split it
into two Lemmas that deal with the first and the second part of the discrete Laplace operator
(1.3) separately. Since the method of proof is the same in both situations, we begin with some
preparations.

Recall that for a semidiscrete surface x and ε > 0, we use the abbreviations

x1̄(ε) = x(k − 1, t + ε), x(ε) = x(k, t + ε), and x1(ε) = x(k + 1, t + ε).

Correspondingly, we define u1̄(ε), u(ε), and u1(ε) for any function u : Z × R→ R.
We consider the Taylor polynomials of degree 4 of x1̄(±ε), x(±ε), and x1(±ε) at the points

x1̄, x, and x1, respectively. We have

x(±ε) = x ± εx′ +
1
2
ε2x′′ ±

1
6
ε3x (3) +

1
24
ε4x (4) + O(ε5),

x1(±ε) = x1 ± εx′1 +
1
2
ε2x′′1 ±

1
6
ε3x (3)

1 +
1

24
ε4x (4)

1 + O(ε5),
(1.12)

and similar terms for x1̄(±ε). Likewise, we expand u1̄(±ε), u(±ε), and u1(±ε) into Taylor
polynomials around u1̄, u, and u1. In order to prove the desired convergence results, we plug
these Taylor polynomials into the discrete schemes (1.6) and (1.10), and expand the resulting
expressions. Since the areas | f j (ε) | of the four faces

f2(ε) =
(
x, x(ε), x1̄(ε), x1̄

)
, f1(ε) =

(
x, x1, x1(ε), x(ε)

)
,

f3(ε) =
(
x, x1̄, x1̄(−ε), x(−ε)

)
, f4(ε) =

(
x, x(−ε), x1(−ε), x1

)
.

of the quadrilateral mesh Mε (cf. Figure 1.1) occur in both parts of the discrete Laplacian, we
investigate them separately.

Proposition 1.1. Let x : Z ×R→ R3 be a semidiscrete surface and let f j (ε) be the four faces
of the quadrilateral mesh Mε. Then,

| f2(ε) | =
ε

2

√
a1̄ + εb1̄ + ε

2c1̄ + O(ε3), | f1(ε) | =
ε

2

√
a1 + εb1 + ε2c1 + O(ε3),

| f3(ε) | =
ε

2

√
a1̄ − εb1̄ + ε

2c1̄ + O(ε3), | f4(ε) | =
ε

2

√
a1 − εb1 + ε2c1 + O(ε3),
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where

a1 := ‖(δx) × (x′1 + x′)‖2,

b1 := ‖δx‖2〈x′1 + x′, x′′1 + x′′〉 − 〈δx, x′1 + x′〉〈δx, x′′1 + x′′〉−
− 2〈δx, x′〉〈x′1, x′1 + x′〉 + 2〈δx, x′1〉〈x

′, x′1 + x′〉,

c1 := ‖δx‖2
(1
4
‖x′′1 + x′′‖2 +

1
3
〈x′1 + x′, x (3)

1 + x (3)〉
)
+ ‖x′1 × x′‖2+

+ 〈δx, x′1〉
(
〈x′, x′′1 + x′′〉 + 〈x′′, x′1 + x′〉 −

1
3
〈δx, x (3)

1 + x (3)〉
)
−

− 〈δx, x′〉
(
〈x′1, x′′1 + x′′〉 + 〈x′′1, x′1 + x′〉 +

1
3
〈δx, x (3)

1 + x (3)〉
)
+

+ 〈δx, x′′1 〉〈x
′, x′1 + x′〉 − 〈δx, x′′〉〈x′1, x′1 + x′〉 −

1
4
〈δx, x′′1 + x′′〉2.

The terms a1̄, b1̄, and c1̄ are obtained form a1, b1, and c1, respectively, by replacing x1 with x1̄
and x (n)

1 with x (n)
1̄

for all n ∈ {1, 2, 3}. In particular, we have

4∑
j=1
| f j (ε) | = ε

(
(a1)

1
2 + (a1̄)

1
2
)
+ O(ε3). (1.13)

Proof. The area of the first quadrilateral f1(ε) =
(
x, x1, x1(ε), x(ε)

)
is given by

| f1(ε) | =
1
2

(x(ε) − x1) × (x − x1(ε)) =

=
1
2

√
‖x(ε) − x1‖2‖x − x1(ε)‖2 − 〈x(ε) − x1, x − x1(ε)〉2.

We insert the Taylor polynomials (1.12) of x(ε) and x1(ε) into this equation, and expand the
occurring inner products to receive

| f1(ε) | =
1
2
ε

√
a1 + εb1 + ε2c1 + O(ε3) =

=
1
2
ε(a1)1/2 +

1
4
ε2b1(a1)−1/2 +

1
16
ε3(4a1c1 − b1b1)(a1)−3/2 + O(ε4),

with the stated coefficients a1, b1, and c1.
Analogously, the area of the second face f2(ε) =

(
x, x(ε), x1̄(ε), x1̄

)
is given by

| f2(ε) | =
1
2
ε

√
a1̄ + εb1̄ + ε

2c1̄ + O(ε3) =

=
1
2
ε(a1̄)1/2 +

1
4
ε2b1̄(a1̄)−1/2 +

1
16
ε3(4a1̄c1̄ − b1̄b1̄)(a1̄)−3/2 + O(ε4),

where a1̄, b1̄, and c1̄ are obtained form a1, b1, and c1 by replacing x1 with x1̄ and x (n)
1 with x (n)

1̄
for all n ∈ {1, 2, 3}.
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By inserting the Taylor polynomials of x1̄(−ε), x(−ε), and x1(−ε), the areas of the faces
f3(ε) and f4(ε) expand to

| f3(ε) | =
1
2
ε

√
a1̄ − εb1̄ + ε

2c1̄ + O(ε3) =

=
1
2
ε(a1̄)1/2 −

1
4
ε2b1̄(a1̄)−1/2 +

1
16
ε3(4a1̄c1̄ − b1̄b1̄)(a1̄)−3/2 + O(ε4),

| f4(ε) | =
1
2
ε

√
a1 − εb1 + ε2c1 + O(ε3) =

=
1
2
ε(a1)1/2 −

1
4
ε2b1(a1)−1/2 +

1
16
ε3(4a1c1 − b1b1)(a1)−3/2 + O(ε4).

These computations immediately yield equation (1.13). �

Remark 1.2. Note that the term 1
2 (a1)1/2 = 1

2 ‖(δx) × (x′1 + x′)‖ also appears in the work
of Karpenkov and Wallner [22], where the authors refer to it as the area of an infinitesimal
quadrilateral. On regular semidiscrete surfaces, this expression does not vanish.

After all these preparations, we are ready prove the convergence results of Theorem 1.1.

1.5.1 Convergence of the second part

In this subsection, we show that the second part L̂ε of the discrete Laplacian (1.3) on the
quadrilateral mesh Mε vanishes as ε → 0.

Lemma 1.1. Let x : Z ×R→ R3 be regular, and let u : Z ×R→ R be smooth. Then, at every
point x = x(k, t), we have (

L̂εu
)
(x) = O(ε), as ε → 0,

where L̂ε denotes the second part of the discrete Laplacian (1.3) on the mesh Mε.

Proof. We insert the Taylor polynomials (1.12) and the corresponding polynomials for the
function u into the discrete scheme (1.10) and expand the resulting terms.

First of all we use Equation (1.11) to analyze

σ j =
e

j
14e

j
34 − e

j
13e

j
44

e
j
11e

j
44 − (e j

14)2
and ω j =

e
j
13e

j
14 − e

j
11e

j
34

e
j
11e

j
44 − (e j

14)2
.

Then, we investigate the denominators

N j = 3
(
σ2

j + ω
2
j + 1

)
− 2

(
σ j + ω j + σ jω j

)
,

as well as the terms

Tj := (ω j − σ j )
(
ω j

[
u(x) − u(x j+1)

]
+ σ j

[
u(x j ) − u(x)

]
+ u(x j+1) − u(y j )

)
,
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where we interpret u as a mapping defined on the vertices of the mesh Mε.
For j = 1, i.e., for the first quadrilateral f1(ε) =

(
x, x1, x1(ε), x(ε)

)
, we start by expanding

det1(ε) =
1

4| f1(ε) |2
det

(
x1 − x, x1(ε) − x, x(ε) − x

)2.

Using the same notation as in Proposition 1.1, we have

4| f1(ε) |2 = ε2a1 + ε
3b1 + ε

4c1 + O(ε5).

Expanding the determinant yields

det
(
x1 − x, x1(ε) − x, x(ε) − x

)
= ε2d1 + ε

3d2 + ε
4d3 + O(ε5),

where

d1 := det(x1 − x, x′1, x′), d2 :=
1
2
(

det(x1 − x, x′′1, x′) + det(x1 − x, x′1, x′′)
)
,

d3 :=
1
4

det(x1 − x, x′′1, x′′) +
1
6
(

det(x1 − x, x′1, x (3)) + det(x1 − x, x (3)
1 , x′)

)
.

With these expressions at hand, an easy calculation shows that

det1(ε) = ε2D1 + ε
3D2 + ε

4D3 + O(ε5),

with

D1 :=
d2

1
a1
, D2 :=

2d1d2 − b1D1
a1

, D3 :=
2d1d3 + d2

2 − b1D2 − c1D1

a1
.

Next, we investigate the values e1
k` =

〈
e f̄1

k , e
f̄1
`

〉
for k, ` ∈ {1, . . . , 4}. By inserting the Taylor

polynomials (1.12), we obtain

e
1
11(ε) = ‖δx‖2 − det1(ε) + O(ε5),

e
1
13(ε) = −‖δx‖2 − ε〈δx, δx′〉 −

ε2

2
〈δx, δx′′〉 −

ε3

6
〈δx, δx (3)〉 − det1(ε) + O(ε4),

e
1
14(ε) = −ε〈δx, x′〉 −

ε2

2
〈δx, x′′〉 −

ε3

6
〈δx, x (3)〉 −

ε4

24
〈δx, x (4)〉 + det1(ε) + O(ε5),

e
1
34(ε) = ε〈δx, x′〉 + ε2

(
〈δx′, x′〉 +

1
2
〈δx, x′′〉

)
+
ε3

2
(
〈δx′, x′′〉 + 〈x′, δx′′〉

)
+ det1(ε) + O(ε4),

e
1
44(ε) = ε2‖x′‖2 + ε3〈x′, x′′〉 + ε4

(1
3
〈x′, x (3)〉 +

1
4
‖x′′‖2

)
− det1(ε) + O(ε5).

We are now ready to expand σ1 and ω1. Their common denominator expands to

cd1(ε) := e1
11(ε)e1

44(ε) −
(
e

1
44(ε)

)2
= ε2%1 + ε

3%2 + O(ε4),
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where

%1 := ‖δx‖2
(
‖x′‖2 − D1

)
− 〈δx, x′〉2, %2 := ‖δx‖2

(
〈x′, x′′〉 − D2

)
+ 〈δx, x′〉

(
2D1 − 〈δx, x′′〉

)
.

For the nominator of σ1 we compute

σ̃1(ε) := e1
14(ε)e1

34(ε) − e1
13(ε)e1

44(ε) = ε2λ1 + ε
3λ2 + O(ε4),

with

λ1 := ‖δx‖2
(
‖x′‖2 − D1

)
− 〈δx, x′〉2,

λ2 := ‖δx‖2
(
〈x′, x′′〉 − D2

)
− 〈δx, δx′〉D1 − 〈δx, x′〉

(
〈δx, x′′〉 + 〈x′, x′1〉

)
+ ‖x′‖2〈δx, x′1〉.

Notice that λ1 = %1, which we will use later. Moreover, the nominator of ω1 expands to

ω̃1(ε) := e1
13(ε)e1

14(ε) − e1
11(ε)e1

34(ε) = ε2µ1 + ε
3µ2 + O(ε4),

where

µ1 := −‖δx‖2
(
〈δx′, x′〉 + 2D1

)
+ 〈δx, x′〉〈δx, δx′〉,

µ2 := −‖δx‖2
(
〈δx′, x′′〉 + 〈x′, δx′′〉

2
+ 2D2

)
− 〈δx, δx′〉D1 +

+
1
2
(
〈δx, x′〉〈δx, δx′′〉 + 〈δx, x′′〉〈δx, δx′〉

)
.

We can now investigate the first summand of the discrete scheme (1.10). For this purpose,
we extract the common denominator cd1(ε) of σ1(ε) and ω1(ε), and write

N1(ε) = 3
(
σ1(ε)2 + ω1(ε)2 + 1

)
− 2

(
σ1(ε) + ω1(ε) + σ1(ε)ω1(ε)

)
=

1
cd1(ε)2 Ñ1(ε),

with

Ñ1(ε) := 3
(
σ̃1(ε)2 + ω̃1(ε)2 + cd1(ε)2

)
− 2

(
cd1(ε)σ̃1(ε) + cd1(ε)ω̃1(ε) + σ̃1(ε)ω̃1(ε)

)
.

Likewise, we write

T1(ε) =
(
ω1(ε) − σ1(ε)

) (
ω1(ε)

[
u − u(ε)

]
+ σ1(ε)

[
u1 − u

]
+ u(ε) − u1(ε)

)
=

1
cd1(ε)2 T̃1(ε),

with

T̃1(ε) :=
(
ω̃1(ε) − σ̃1(ε)

) (
ω̃1(ε)

[
u − u(ε)

]
+ σ̃1(ε)

[
u1 − u

]
+ cd1(ε)

[
u(ε) − u1(ε)

] )
.

Therefore, we have
1

N1(ε)
T1(ε) =

1
Ñ1(ε)

T̃1(ε).
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Expanding Ñ1(ε) yields Ñ1(ε) = ε4η1 + ε
5η2 + O(ε6), where

η1 := 3
(
λ2

1 + µ
2
1 + %

2
1
)
− 2

(
%1λ1 + %1µ1 + λ1µ1

)
,

η2 := 6
(
λ1λ2 + µ1µ2 + %1%2

)
− 2

(
%1λ2 + %2λ1 + %1µ2 + %2µ1 + λ1µ2 + λ2µ1

)
.

For T̃1(ε) we additionally have to insert the corresponding Taylor polynomials for u to gain
T̃1(ε) = ε4θ1 + ε

5θ2 + O(ε6), with

θ1 :=
(
(µ1 − λ1)(λ1 − %1)

)
δu = 0,

θ2 :=
(
(µ1 − λ1)(λ2 − %2)

)
δu +

(
λ2

1 − λ1µ1
)
u′1 −

(
λ1 − µ1

)2u′,

where we have used the fact that λ1 = %1. This finally leads us to
1

N1(ε)
T1(ε) = ε

θ2
η1
+ O(ε2).

Analogous computations have to be done for the three remaining quadrilaterals. As the
method is exactly the same, we are going to omit the details and write down the results only.

For the second quadrilateral, f2(ε) =
(
x, x(ε), x1̄(ε), x1̄

)
, we expand

N2(ε) = 3
(
σ2(ε)2 + ω2(ε)2 + 1

)
− 2

(
σ2(ε) + ω2(ε) + σ2(ε)ω2(ε)

)
and

T2(ε) =
(
ω2(ε) −σ2(ε)

) (
ω2(ε)

[
u(x) − u(x1̄)

]
+σ2(ε)

[
u(x(ε)) − u(x)

]
+ u(x1̄) − u(x1̄(ε))

)
to obtain

1
N2(ε)

T2(ε) = ε
θ2̄
η1̄
+ O(ε2),

where θ2̄ and η1̄ are obtained from θ2 and η1, respectively, by replacing x (n)
1 with x (n)

1̄
, as well

as u(n)
1 with u(n)

1̄
for all n ∈ {0, 1, 2}. Here, we have to remark that the individual coefficients of

the terms σ2(ε) and ω2(ε) cannot be obtained from the corresponding coefficients of σ1(ε)
andω1(ε) by the aforementioned substitutions. The reason for this is that the half-edges used in
the definitions of σ j (ε) andω j (ε) are not placed symmetrically (cf. Figure 1.4). Nevertheless,
the coefficients of the terms N2(ε) and T2(ε) can indeed be obtained in this manner.

Likewise, for the third face f3(ε) and the fourth face f4(ε), we gain
1

N3(ε)
T3(ε) = −ε

θ2̄
η1̄
+ O(ε2) and

1
N4(ε)

T4(ε) = −ε
θ2
η1
+ O(ε2).

Combining all these results, we finally conclude that
4∑

j=1

1
N j (ε)

Tj (ε) = O(ε2).

Together with equation (1.13) this yields

(
L̂εu

)
(x) =

16λ∑4
j=1 | f j (ε) |

4∑
j=1

1
N j (ε)

Tj (ε) = O(ε). �



1.5 Proofs of the convergence results 21

1.5.2 Convergence of the first part
Here, we analyze the convergence behavior of the first part L̃ε of the discrete Laplace operator
(1.3) on the quadrilateral mesh Mε. By inserting the Taylor polynomials (1.12) into the discrete
scheme (1.6) we gain the proposed convergence result and simultaneously derive a closed-form
expression for our semidiscrete Laplace operator (see Corollary 1.1).

Lemma 1.2. Let x : Z×R→ R3 be regular, and let u : Z×R→ R be smooth. Then, the limit(
∆limu

)
(k, t) = lim

ε↘0

(
Lεu

)
(x(k, t)) = lim

ε↘0

(
L̃εu

)
(x(k, t)) ∈ R

exists at every point (k, t) ∈ Z × R. In particular, we have(
L̃εu

)
(x(k, t)) =

(
∆limu

)
(k, t) + O(ε2), as ε → 0,

where L̃ε is the first part of the discrete Laplace operator (1.3) on the mesh Mε.

Proof. Recall that the discrete Laplace operator (1.3) on the mesh Mε is given by the decom-
position Lε = L̃ε + L̂ε. According to Lemma 1.1 we have

lim
ε↘0

(
L̂εu

)
(x(k, t)) = 0

at every point x = x(k, t). Hence(
∆limu

)
(k, t) = lim

ε↘0

(
Lεu

)
(x(k, t)) = lim

ε↘0

(
L̃εu

)
(x(k, t)),

if the latter limit exists. In order to show the stated convergence behavior, we first investigate
the four summands of the discrete scheme (1.6) separately.

For j = 1, i.e., for the face f1(ε) =
(
x, x1, x1(ε), x(ε)

)
, we expand

S1(ε) := ‖x(ε) − x1‖
2 (u − u1(ε)

)
+ 〈x(ε) − x1, x − x1(ε)〉

(
u1 − u(ε)

)
.

Using the Taylor polynomials (1.12) and the corresponding polynomials for u, we get

S1(ε) = εα1 + ε
2 β1 + ε

3γ1 + O(ε4),

where

α1 := 〈δx, x′1 + x′〉δu − ‖δx‖2(u′1 + u′
)
,

β1 :=
(1
2
〈δx, x′′1 + x′′〉 − 〈x′, x′1 + x′〉

)
δu+

+ 2〈δx, x′〉u′1 − 〈δx, x′1 − x′〉u′ −
1
2
‖δx‖2(u′′1 + u′′

)
,

γ1 :=
(1
6
〈δx, x (3)

1 + x (3)〉 −
1
2
〈x′1 + x′, x′′〉 −

1
2
〈x′, x′′1 + x′′〉

)
δu+

+
(
〈δx, x′′〉 − ‖x′‖2

)
u′1 +

(
〈x′, x′1〉 −

1
2
〈δx, x′′1 − x′′〉

)
u′+

+ 〈δx, x′〉u′′1 −
1
2
〈δx, x′1 − x′〉u′′ −

1
6
‖δx‖2(u(3)

1 + u(3)).
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For the second quadrilateral, f2(ε) =
(
x, x(ε), x1̄(ε), x1̄

)
, we expand

S2(ε) := ‖x1̄ − x(ε)‖2
(
u − u1̄(ε)

)
+ 〈x1̄ − x(ε), x − x1̄(ε)〉

(
u(ε) − u1̄

)
and receive

S2(ε) = εα1̄ + ε
2 β1̄ + ε

3γ1̄ + O(ε4),

where α1̄, β1̄, γ1̄ are obtained form α1, β1, γ1 by replacing x (n)
1 with x (n)

1̄
, as well as u(n)

1 with
u(n)

1̄
for all n ∈ {0, 1, 2, 3}. For the third and fourth face we define

S3(ε) := ‖x(−ε) − x1̄‖
2(u − u1̄(−ε)) + 〈x(−ε) − x1̄, x − x1̄(−ε)〉(u1̄ − u(−ε))

S4(ε) := ‖x1 − x(−ε)‖2(u − u1(−ε)) + 〈x1 − x(−ε), x − x1(−ε)〉(u(−ε) − u1)

and get

S3(ε) = −εα1̄ + ε
2 β1̄ − ε

3γ1̄ + O(ε4),

S4(ε) = −εα1 + ε
2 β1 − ε

3γ1 + O(ε4).

The first part of the discrete Laplacian (1.3) on the mesh Mε now reads

(
L̃εu

)
(x) =

1∑4
j=1 | f j (ε) |

4∑
j=1

1
| f j (ε) |

Sj (ε).

To show the desired convergence result, we write

4∑
j=1

1
| f j (ε) |

Sj (ε) =
1

| f1(ε) | | f4(ε) |

(
| f4(ε) |S1(ε) + | f1(ε) |S4(ε)

)
+

+
1

| f2(ε) | | f3(ε) |

(
| f3(ε) |S2(ε) + | f2(ε) |S3(ε)

)
and compute

| f1(ε) | | f4(ε) | =
1
4
ε2a1 + O(ε4), | f2(ε) | | f3(ε) | =

1
4
ε2a1̄ + O(ε4),

and

| f4(ε) |S1(ε) + | f1(ε) |S4(ε) = ε3
(
(a1)1/2 β1 −

b1α1

2(a1)1/2

)
+ O(ε5),

| f3(ε) |S2(ε) + | f2(ε) |S3(ε) = ε3
(
(a1̄)1/2 β1̄ −

b1̄α1̄
2(a1̄)1/2

)
+ O(ε5).

Thus, we have
4∑

j=1

1
| f j (ε) |

Sj (ε) = 4ε
(

β1

(a1)1/2
+

β1̄
(a1̄)1/2

−
1
2

(
b1α1

(a1)3/2
+

b1̄α1̄
(a1̄)3/2

))
+ O(ε3). (1.14)
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Together with Equation (1.13) we finally gain

(
L̃εu

)
(x) =

4
(a1)1/2 + (a1̄)1/2

(
β1

(a1)1/2
+

β1̄
(a1̄)1/2

−
1
2

(
b1α1

(a1)3/2
+

b1̄α1̄
(a1̄)3/2

))
+ O(ε2). �

The proof of Lemma 1.2 immediately yields the following closed-form expression for the
semidiscrete Laplacian.

Corollary 1.1. Let x : Z × R → R3 be a regular semidiscrete surface, and let the function
u : Z × R→ R be smooth. Then, the semidiscrete Laplacian of u at the point (k, t) ∈ Z × R is
given by (

∆limu
)
(k, t) =

4
A1 + A1̄

(
β1
A1
+
β1̄
A1̄
−

1
2

(
α1 · B1

(A1)3 +
α1̄ · B1̄
(A1̄)3

))
, (1.15)

where

A1 := ‖(δx) × (x′1 + x′)‖,

B1 := ‖δx‖2〈x′1 + x′, x′′1 + x′′〉 − 〈δx, x′1 + x′〉〈δx, x′′1 + x′′〉−
− 2〈δx, x′〉〈x′1, x′1 + x′〉 + 2〈δx, x′1〉〈x

′, x′1 + x′〉

and

α1 := 〈δx, x′1 + x′〉δu − ‖δx‖2(u′1 + u′),

β1 :=
(

1
2
〈δx, x′′1 + x′′〉 − 〈x′, x′1 + x′〉

)
δu −

1
2
‖δx‖2(u′′1 + u′′) − 〈δx, x′1 − x′〉u′ + 2〈δx, x′〉u′1.

The terms A1̄ and B1̄ are obtained from A1 and B1 by replacing x1, x′1, and x′′1 with x1̄, x′1̄, and
x′′1̄ , respectively. To obtain α1̄ and β1̄ from α1 and β1 one further has to replace u1, u′1, and u′′1
with u1̄, u

′

1̄, and u′′1̄ .

Example 1.1. As an example, we want to demonstrate the convergence behavior of the discrete
Laplacian Lε on the semidiscrete surface

x(k, t) :=
(
k/5, t, sin(πk/5) sin(πt)e−(k/5)2−t2)T

(see Figure 1.5, left). For ε ∈ {2−9, 2−10, . . .} we compute the maximal error between the
discrete Laplacian Lε and the semidiscrete Laplacian ∆lim of the function

u := p1(x)3 + p2(x)3 + p3(x)3,

where pn(x) denotes the n-th coordinate function of x. We evaluate the error at the points
(ki, t j ) with ki ∈ {−4, . . . , 4} and t j ∈

{
− 19

20,−
18
20, . . . ,

18
20,

19
20

}
. For the computation of the

discrete Laplace operator Lε we use the quadrilateral meshes Mε as defined at the beginning
of Section 1.3 (cf. Figure 1.1) around the points x(ki, t j ) . Besides Lε we also compute L̃ε
in order to observe the different convergence rates. As one can see in Figure 1.5, we achieve
exactly the expected behavior.
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Figure 1.5: Left: The semidiscrete surface x(k, t) for k ∈ {−5, . . . , 5} and t ∈ [−1, 1].
Center: The maximal error ��

(
Lεu

)
(x(ki, t j )) −

(
∆limu

)
(ki, t j )�� for ε ∈ {2−12, . . . , 2−18}, where

u = p1(x)3 + p2(x)3 + p3(x)3. Right: The maximal error ��
(
L̃εu

)
(x(ki, t j )) −

(
∆limu

)
(ki, t j )��

for ε ∈ {2−9, . . . , 2−15}.

1.6 Properties of the semidiscrete Laplacian
There are quite a few important properties which the classical Laplacian enjoys. It is a very
interesting question which of these carry over to discrete or semidiscrete Laplace operators.
For instance, Wardetzky et al. [42] show that certain of these properties are incompatible for
Laplacians on triangle meshes. In the following, we discuss corresponding properties of the
semidiscrete Laplace operator.

1.6.1 Locality
The smooth Laplace operator on a Riemannian manifoldM is local in the sense that the value(
∆Mu

)
(p) is independent of both the values of u and the properties ofM outside an arbitrarily

small open neighborhood of p. The semidiscrete Laplacian fulfills an analogous property:
For any (k, t) the term

(
∆limu

)
(k, t) only depends on the values of x and u at arbitrarily small

pieces of the consecutive lines {(k − 1, s) : s ∈ R}, {(k, s) : s ∈ R}, and {(k + 1, s) : s ∈ R}.

1.6.2 Linear precision
If the manifoldM is contained in a plane and the function u :M → R is linear, then ∆Mu ≡ 0.
The discrete Laplace operator has the same property, i.e., if all vertices of the mesh M lie in
a single plane and the function u : M → R is linear, then

(
Lu

)
(x) = 0 at each interior point

x ∈ M .
This property immediately carries over to the semidiscrete case. Indeed, let x : Z×R→ R3

be a planar regular semidiscrete surface and let u : Z × R→ R be linear. Then, at every point
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x(k, t) and for every ε > 0 the quadrilateral mesh Mε (cf. Figure 1.1) is contained in the same
plane. Since x is an interior point of the mesh Mε and the restriction of u to Mε is linear as
well, we have

(
Lεu

)
(x(k, t)) = 0. Hence,(

∆limu
)
(k, t) = lim

ε↘0

(
Lεu

)
(x(k, t)) = 0.

Moreover, the kernel of the Laplace operator on an arbitrary Riemannian manifold always
contains the constant functions. It is straightforward to see that this property is maintained by
the semidiscrete Laplacian, i.e., ∆limu ≡ 0, whenever u is constant.

1.6.3 Symmetry and positive semidefiniteness
On a Riemannian manifold M without boundary, the Laplacian is symmetric and positive
semidefinite with respect to the L2 inner product induced onΩ0(M) by the Riemannian metric
(see, e.g., Rosenberg [33]). In this subsection, we show that the semidiscrete Laplace operator
has an equivalent property.

Recalling the definitions

A1 = ‖(x1 − x) × (x′1 + x′)‖ and A1̄ = ‖(x1̄ − x) × (x′1̄ + x′)‖

form Corollary 1.1, we define the area element (cf. Remark 1.2)

dA :=
A1 + A1̄

4
d(µ ⊗ λ),

where µ denotes the counting measure on Z and λ denotes the Lebesgue measure on R. Next,
we consider the corresponding L2 inner product

〈u, v〉L2(x) :=
∫
Z×R

u(k, t)v(k, t) dA(k, t).

This scalar product is intrinsic, because it is easy to verify that for all functions u, v and all
parameter transformations ϕ(k, t) = (k0 ± k, φ(t)) we have

〈u ◦ ϕ, v ◦ ϕ〉L2(x◦ϕ) = 〈u, v〉L2(x) .

The following Lemma tells us that the semidiscrete Laplace operator is symmetric and positive
semidefinite with respect to this inner product.

Lemma 1.3. Let x : Z×R→ R3 be regular and let u, v : Z×R→ R be smooth and compactly
supported. Then,

〈∆limu, v〉L2(x) = 〈u,∆limv〉L2(x) and 〈∆limu, u〉L2(x) ≥ 0,

i.e., the semidiscrete Laplace operator is symmetric and positive semidefinite.
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Proof. Since u and v are compactly supported, there exist K ∈ N and T ∈ R+ such that
supp(u), supp(v) ⊂ {−K, . . . , K } × [−T,T]. Hence, by Fubini’s theorem, we have

〈∆limu, v〉L2(x) =

K∑
k=−K

∫ T

−T

(
∆limu

)
(k, t)v(k, t)

A1(k, t) + A1̄(k, t)
4

dt.

Using the same notation as in Corollary 1.1 we define

(
Λlimu

)
(k, t) :=

(
β1
A1
+
β1̄
A1̄
−

1
2

(
α1 · B1

(A1)3 +
α1̄ · B1̄
(A1̄)3

))
,

so that ∫ T

−T

(
∆limu

)
(k, t)v(k, t)

A1(k, t) + A1̄(k, t)
4

dt =
∫ T

−T

(
Λlimu

)
(k, t)v(k, t) dt.

From the boundedness of the considered functions, it follows that for every h > 0 there exists
an ε > 0 such that for every k ∈ {−K, . . . , K }∫ T

−T

(
Λlimu

)
(k, t)v(k, t) dt =

Nε∑
n=−Nε

ε
(
Λsdu

)
(k, εn)v(k, εn) + O(h),

with Nε :=
⌈

T
ε

⌉
. Let us now consider the quadrilateral mesh

Mε : {−K, . . . , K } × {−Nε, . . . , Nε} → R
3 : (k, n) 7→ x(k, εn),

which is a global version of the mesh Mε of Section 1.3.
From the proof of Lemma 1.2 we know that

(
L̃εu

)
(x(k, εn)) =

4∑
j=1

1
4| f j (ε) |

Sj (ε) = ε
(
Λlimu

)
(k, εn) + O(ε3),

where L̃ε = M−1
0,ε L̃ε is the first part of the discrete Laplace operator (1.3) on the meshMε (cf.

Equations (1.5) and (1.14)).
Putting it all together, we get

〈∆limu, v〉L2(x) =

K∑
k=−K

Nε∑
n=−Nε

(
L̃εu

)
(x(k, εn))v(k, εn) + O(h) = vT L̃εu + O(h),

where we identify the functions u and v with elements of Ω0(Mε), i.e., with vectors of length
(2K + 1) · (2Nε + 1). Analogously, we receive

〈u,∆limv〉L2(x) = uT L̃εv + O(h) and 〈u,∆limu〉L2(x) = uT L̃εu + O(h).

Since the matrix L̃ε is symmetric and positive semidefinite this concludes the proof. �
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1.6.4 Consistency
Here, we prove that the semidiscrete Laplacian (1.4) is consistent, meaning that it converges
pointwise to the smooth Laplace operator (1.1) if the semidiscrete surface converges to a
smooth one. This result particularly implies consistency of Alexa and Wardetzky’s Laplacian
on quadrilateral meshes (see Remark 1.3).

First of all, we set up some notation. For now, let us assume that the curves {x(k, t) :
t ∈ R}, k ∈ Z, of the semidiscrete surface x : Z × R → R3 lie on a surfaceM ⊂ R3 with a
sufficiently smooth (local) parametrization ψ : R2 → M : (ξ1, ξ2) 7→ ψ(ξ1, ξ2). We denote
the partial derivatives of the parametrization ψ by ∂iψ, ∂i jψ and so forth. For the coefficient
matrix of the first fundamental form, we write

G :=
(
g11 g12
g21 g22

)
, with gi j := 〈∂iψ, ∂jψ〉.

We denote the entries of G−1 by gi j , i.e., G−1 =
(
gi j )2

i, j=1. Furthermore, for i, j, k, ` ∈ {1, 2},
we set

gi j k := 〈∂iψ, ∂j kψ〉, gi j k` := 〈∂i jψ, ∂k`ψ〉, and ei j k` := 〈∂iψ, ∂j k`ψ〉.

Using local coordinates, the formula for the Laplace operator ∆M , acting on a scalar
function u :M → R, reads (see, e.g., Rosenberg [33, p. 18])

∆Mu = −
1

√
det(G)

2∑
i, j=1

∂

∂ξi

(
gi j

√
det(G)

∂

∂ξ j
(u ◦ ψ)

)
.

By applying the appropriate rules of differentiation, this formula expands to

∆Mu =
1

det(G)2
[
τ1∂1(u ◦ ψ) + τ2∂2(u ◦ ψ)+

+τ11∂11(u ◦ ψ) + τ12∂12(u ◦ ψ) + τ22∂22(u ◦ ψ)
]
,

(1.16)

with

τ1 = g11(g22g122 − g12g222) − 2g12(g22g112 − g12g212) + g22(g22g111 − g12g211),
τ2 = g11(g11g222 − g12g122) − 2g12(g11g212 − g12g112) + g22(g11g211 − g12g111),
τ11 = −g22 det(G), τ12 = 2g12 det(G), and τ22 = −g11 det(G).

After these preparations, we can prove the following convergence result.

Theorem 1.2. Let p be a point of a surfaceM ⊂ R3 with a sufficiently smooth parametrization
ψ : R2 →M, such that p = ψ(0, 0). Then, for every u ∈ C2(M), we have(

∆
ε
lim(u ◦ ψ)

)
(0, 0) =

(
∆Mu

)
(p) + O(ε2), as ε → 0,

where ∆εlim is the semidiscrete Laplacian (1.4) on the semidiscrete surface

xε : Z × R→M : (k, t) 7→ ψ(εk, t).
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Proof. We begin by expanding xε
1̄
= ψ(−ε, 0) and xε1 = ψ(ε, 0) into Taylor polynomials around

p = ψ(0, 0), that is,

ψ(±ε, 0) = ψ ± ε∂1ψ +
1
2
ε2∂11ψ ±

1
6
ε3∂111ψ + O(ε4).

Moreover, we expand the partial derivatives (xε
1̄
)′ = ∂2ψ(−ε, 0) and (xε1)′ = ∂2ψ(ε, 0) into

Taylor polynomials around ∂2ψ(0, 0), i.e.,

∂2ψ(±ε, 0) = ∂2ψ ± ε∂12ψ +
1
2
ε2∂112ψ +

1
6
ε3∂1112ψ + O(ε4).

Likewise, for the second-order partial derivatives (xε
1̄
)′′ = ∂22ψ(−ε, 0) and (xε1)′′ = ∂22ψ(ε, 0),

we have
∂22ψ(±ε, 0) = ∂22ψ ± ε∂122ψ +

1
2
ε2∂1122ψ +

1
6
ε3∂11122ψ + O(ε4).

Analogously, we expand u(xε
1̄
) = (u ◦ψ)(−ε, 0) and u(xε1) = (u ◦ψ)(ε, 0) and the correspond-

ing partial derivatives into the following Taylor polynomials

(u ◦ψ)(±ε, 0) = (u ◦ψ) ± ε∂1(u ◦ψ) +
1
2
ε2∂11(u ◦ψ) ±

1
6
ε3∂111(u ◦ψ) + O(ε4),

∂2(u ◦ψ)(±ε, 0) = ∂2(u ◦ψ) ± ε∂12(u ◦ψ) +
1
2
ε2∂112(u ◦ψ) ±

1
6
ε3∂1112(u ◦ψ) + O(ε4),

∂22(u ◦ψ)(±ε, 0) = ∂22(u ◦ψ) ± ε∂122(u ◦ψ) +
1
2
ε2∂1122(u ◦ψ) ±

1
6
ε3∂11122(u ◦ψ) + O(ε4).

(1.17)

To show the desired convergence results, we insert these Taylor polynomials into the semidis-
crete scheme (1.15) and expand the resulting terms.

First of all, we expand the expressions A1 and A1̄ (see Corollary 1.1). In our current
notation, we have

A1 = [δxε] × [(xε1)′ + (xε)′] = ‖[ψ(ε, 0) − ψ(0, 0)] × [∂2ψ(ε, 0) + ∂2ψ(0, 0)]‖.

Inserting the corresponding Taylor polynomials and expanding yield

A1 = ε

√
λ1 + ελ2 + ε2λ3 + O(ε3) =

= ε(λ1)1/2 +
1
2
ε2λ2(λ1)−1/2 +

1
8
ε3(4λ1λ3 − λ2λ2)(λ1)−3/2 + O(ε4),

where

λ1 := 4 det(G), λ2 := 4(g11g212 + g22g111 − g12[g112 + g211]),
λ3 := g11g1212 + g22g1111 − g

2
112 − g

2
211 + 4g111g212+

+ 2(g11e2112 − g12e1112 − g12g1112 − g112g211) +
4
3

(g22e1111 − g12e2111).



1.6 Properties of the semidiscrete Laplacian 29

Analogously, we get

A1̄ = ε

√
λ1 − ελ2 + ε2λ3 + O(ε3) =

= ε(λ1)1/2 −
1
2
ε2λ2(λ1)−1/2 +

1
8
ε3(4λ1λ3 − λ2λ2)(λ1)−3/2 + O(ε4).

By inserting the Taylor polynomials of xε1, (xε1)′, and (xε1)′′ into B1 we receive

B1 = ε
2µ1 + ε

3µ2 + O(ε4),

where

µ1 := 4(g11g222 + g22g112 − g12[g122 + g212]),
µ2 := 2(g11[e2122 + g1222] − g12[e1122 + g1122 + e2112 + g1212]+

+ g22[e1112 + g1112] − [g122 + g212][g112 + g211] + 2g111g222).

In the same way, we get
B1̄ = ε

2µ1 − ε
3µ2 + O(ε4).

Next, we expand the expressions α1, β1 and α1̄, β1̄ of Corollary 1.1. Here, we additionally
need the Taylor polynomials (1.17) to receive

α1 = ε
2η1 + ε

3η2 + O(ε4),

where

η1 := 2(g12∂1(u ◦ ψ) + g11∂2(u ◦ ψ)),
η2 := (g112 + g211)∂1(u ◦ ψ) − 2g111∂2(u ◦ ψ) + g12∂11(u ◦ ψ) − g11∂12(u ◦ ψ).

Similarly, we have
α1̄ = ε

2η1 − ε
3η2 + O(ε4).

For the terms β1 and β1̄ we get

β1 = εθ1 + ε
2θ2 + ε

3θ3 + O(ε4)

with

θ1 := 2(g12∂2(u ◦ ψ) − g22∂1(u ◦ ψ)),
θ2 := (g122 − g212)∂1(u ◦ ψ) + (g211 − g112)∂2(u ◦ ψ)−

− g22∂11(u ◦ ψ) + 2g12∂12(u ◦ ψ) − g11∂22(u ◦ ψ),

θ3 :=
1
2

(g1122 + e1122 − e2112)∂1(u ◦ ψ) + g211∂12(u ◦ ψ) − g111∂22(u ◦ ψ)+

+
(1
3

e2111 −
1
2

(e1112 + g1112)
)
∂2(u ◦ ψ) +

1
2

(g122 − g212)∂11(u ◦ ψ),
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and
β1̄ = −εθ1 + ε

2θ2 − ε
3θ3 + O(ε4).

To complete the proof, we substitute all these expressions into the formula for the semidis-
crete Laplacian

(
∆
ε
lim(u ◦ ψ)

)
(0, 0) =

4
A1 + A1̄

(
β1
A1
+
β1̄
A1̄
−

1
2

(
α1B1

(A1)3 +
α1̄B1̄
(A1̄)3

))
.

We start by noticing that
A1 + A1̄ = 2ε(λ1)1/2 + O(ε3).

Next, we compute

β1
A1
+
β1̄
A1̄
=

1
A1 A1̄

(
β1 A1̄ + β1̄ A1

)
=

1
ε2λ1 + O(ε4)

(
ε3 (θ1λ2(λ1)−1/2 + θ2(λ1)1/2) + O(ε5)

)
and obtain

4
A1 + A1̄

(
β1
A1
+
β1̄
A1̄

)
=

2
(λ1)2

(
θ1λ2 + θ2λ1

)
+ O(ε2).

For the remaining part, we compute

α1B1

(A1)3 +
α1̄B1̄
(A1̄)3 =

1
(A1 A1̄)3

(
α1B1(A1̄)3 + α1̄B1̄(A1)3) =

=
1

ε6(λ1)3 + O(ε8)

(
2ε7η1µ1(λ1)

3
2 + O(ε9)

)
and receive

−
2

A1 + A1̄

(
α1B1

(A1)3 +
α1̄B1̄
(A1̄)3

)
= −

2
(λ1)2

(
η1µ1

)
+ O(ε2).

Putting it all together, we have(
∆
ε
lim(u ◦ ψ)

)
(0, 0) =

2
(λ1)2

(
θ1λ2 + θ2λ1 − η1µ1

)
+ O(ε2).

Finally, we insert the above-defined terms λ1, λ2, θ1, θ2, µ1, and η1 into this equation to gain(
∆
ε
lim(u ◦ ψ)

)
(0, 0) =

(
∆Mu

)
(p) + O(ε2),

where
(
∆Mu

)
(p) is given in the form (1.16). �

Remark 1.3. Theorems 1.1 and 1.2 when combined yield consistency of the discrete Lapla-
cian described by Alexa and Wardetzky [1] on quadrilateral meshes in the following sense:
Firstly, their discrete construction is consistent with our semidiscrete one, and secondly, the
semidiscrete construction is consistent with the smooth Laplacian. In other words, the discrete
scheme (1.6) converges pointwise to the Laplace-Beltrami operator, when the quadrilateral
mesh converges to a smooth surface in the two stages just mentioned.
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1.7 Mean curvature
Now that we have a semidiscrete Laplace operator, we can define a semidiscrete mean curvature
vector field on semidiscrete surfaces. We again mimic the smooth case of a two-dimensional
submanifoldM ⊂ R3.

At a point p ∈ M the mean curvature vector is defined as

H(p) := H (p)n(p),

where H (p) is the mean curvature and n(p) is the corresponding locally defined unit normal
vector of the surfaceM at p. It is a well-known fact that the mean curvature vector is related
to the Laplace-Beltrami operator via

H(p) = −
1
2
(
∆M id

)
(p),

where id : M → R3 is the identity to which we apply the Laplacian component-wise (see
Colding and Minicozzi [13, p. 22]). This motivates the following definition.

Definition 1.2. For a regular semidiscrete surface x : Z × R→ R3 the expression

Hlim(k, t) := −
1
2
(
∆limx

)
(k, t) ∈ R3

is called semidiscrete mean curvature vector.

With this definition at hand, we also have an unsigned semidiscrete mean curvature
Hlim(k, t) given by

Hlim(k, t) := ‖Hlim(k, t)‖.

Moreover, at points with non-vanishing mean curvature, we can define a unit normal vector via

nlim(k, t) :=
1

Hlim(k, t)
Hlim(k, t).

Notice that the convergence results of Subsection 1.6.4 can directly be applied to our current
setting. Therefore, in the situation of Theorem 1.2, the semidiscrete mean curvature vector
field converges pointwise to the smooth one at a quadratic rate.

Analogous to the smooth case, we also consider the mean curvature flow. A family
of smooth surfaces {Ms}s∈R with corresponding parametrizations {ϕs}s∈R evolves under the
mean curvature flow, if each point of a surfaceMσ moves with speed and direction given by
the mean curvature vector at that point, i.e., if

∂

∂s
ϕs (ξ1, ξ2)��s=σ = H

(
ϕσ (ξ1, ξ2)

)
, ∀ ξ1, ξ2.
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Note that, except in special cases, themean curvature flow develops singularities. An analogous
notion can be defined in the semidiscrete case, namely by evolution of surfaces xs (k, t) via

∂

∂s
xs (k, t)��s=σ = Hxσ

lim(k, t), ∀ (k, t) ∈ Z × R.

We conclude this paper with a numerical example.

Example 1.2. We examine the action of the mean curvature flow on the semidiscrete cylinder

x0(k, t) :=
(
r cos(πk/5), r sin(πk/5), t

)
, k ∈ Z10, t ∈ [−1, 1].

For its numerical solution, we discretize the mean curvature flow equation as

xn+1(k, t) = xn(k, t) + hHxn
lim(k, t),

for small h > 0. Since this recursion would merely produce cylinders with decreasing radii,
we additionally fix the boundary of x0 to make the outcome more interesting.

For our experiments, we approximate each curve {xn(k, t) : t ∈ [−1, 1]} by a cubic spline
through some equidistant sample points and calculate the mean curvature vector at those
points according to Definition 1.2. To obtain the results of Figure 1.6 we fix h = 1

100 and set
r = cosh(1).

x0

x400

x100

x800

x200

x1200

Figure 1.6: The action of the mean curvature flow on a semidiscretized cylinder.
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Chapter 2

Variational Laplacians for semidiscrete
surfaces
Joint work with J. Wallner

Abstract

We study a Laplace operator on semidiscrete surfaces that is defined by variation of the
Dirichlet energy functional. We show existence and its relation to the mean curvature
normal, which is itself defined via variation of area. We establish several core properties
like linear precision (closely related to the mean curvature of flat surfaces), and pointwise
convergence. It is interesting to observe how a certain freedom in choosing area mea-
sures yields different kinds of Laplacians: it turns out that using as a measure a simple
numerical integration rule yields a Laplacian previously studied as the pointwise limit of
geometrically meaningful Laplacians on polygonal meshes.

Keywords: Semidiscrete surface, Variational Laplace operator, Mean curvature normal,
Consistency.

Mathematics Subject Classification (2010): 53A05, 58E30, 49Q20, 41A25.

2.1 Introduction and Preliminaries

2.1.1 Introduction
TheLaplace-Beltrami operator∆ = − div ◦ grad on smooth surfaces andRiemannianmanifolds
is an extremely well investigated differential operator, which plays an essential role in many
fields including applications. A main strength lies in Riemannian geometry, but it is also
relevant to the elementary differential geometry of surfaces in three-dimensional space, e.g.,
via the equation ∆ id = −2Hn that relates the Laplacian to the mean curvature and unit
normal vector field. Its intrinsic nature makes it very useful for computational applications in

This chapter comprises the research article [ii].
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34 2 Variational Laplacians for semidiscrete surfaces

geometry processing, see, e.g., [37], and it has therefore been extensively discretized. Discrete
Laplace operators defined on triangulations share characteristics with graph Laplacians, but
ideally maintain as many of the core properties of the original Laplace-Beltrami operator as
possible. For contributions to this topic see, e.g., [29, 9, 2, 24, 1]. Another important aspect
of discretizations is a suitable convergence behavior, see, e.g., [45, 41, 43].

A powerful tool to derive Laplace operators on more general surfaces arises from the
calculus of variations. The Laplacian of Riemannian geometry can be seen as gradient of
the Dirichlet energy, which leads to the famous “cotangent formula” Laplacian on triangle
meshes, see, e.g., [17, 29]. The variational approach is also particularly suited to study the
mean curvature normal H = Hn, which has an interpretation as the gradient vector field of the
area functional.

In this paper we follow the variational approach. Our aim is to define meaningful Lapla-
cians on semidiscrete parametric surfaces, which are represented by a point depending on one
continuous and one discrete variable. The reader is reminded that semidiscrete objects occur
in the classical theory of transformations of surfaces. For a systematic and unified treatment
of continuous and semidiscrete surfaces as limits of a discrete master theory we refer to the
textbook [10]. The lowest-dimensional case, i.e., two-dimensional surfaces, has been investi-
gated from various viewpoints. The semidiscrete incarnation of conjugate surfaces is studied
by [31] where piecewise-developable surfaces (including circular and conical semidiscrete sur-
faces) are considered from the computational viewpoint. Curvatures, in analogy to polyhedral
surfaces, are the topic of [22]. Asymptotic surfaces and especially K-surfaces are investigated
by [40]. The present paper however, is not concerned with any special class of semidiscrete
surfaces.

Outline and results

In Section 2.2 we define a Laplace operator on semidiscrete surfaces by a variational principle,
namely as gradient of an appropriate Dirichlet energy functional. We show that this gradient
exists and provide a closed-form expression for the semidiscrete Laplacian in Theorem 2.1. It
turns out that there is quite some freedom in the choice of the particular L2 space which is basic
to the concepts of both gradient and Dirichlet energy. Section 2.3 investigates the gradient of
the area functional to gain a semidiscrete mean curvature normal, and establishes the relation
∆ id = −2H for the semidiscrete case (Theorem 2.2), which in turn implies that linear functions
on flat surfaces are in the kernel of the Laplacian (i.e., the linear precision property). Section
2.4 discusses further properties like locality, symmetry, positive semidefiniteness, and lack of
a maximum principle. The last section deals with pointwise convergence of the semidiscrete
Laplacian toward the Laplace-Beltrami operator on smooth surfaces (Theorem 2.3).
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2.1.2 Variational properties of the Laplacian
The Laplace-Beltrami operator ∆M on a Riemannian manifold M can be defined via the
Dirichlet energy functional

E(u) =
1
2

∫
M

‖∇u‖2 dV, u ∈ C2(M,R).

It is then given as the gradient of the Dirichlet energy,

∆M = ∇E,

which means that for smooth test functions u, and all smooth one-parameter variations uξ of
u, with the property that ∂

∂ξuξ ��ξ=0 is compactly supported, we have

d
dξ

E(uξ )���ξ=0
=

〈
∆Mu,

∂uξ
∂ξ

���ξ=0

〉
L2

(with the usual definition 〈 f , g〉L2 =
∫
M

f (x)g(x) dV (x); see [21, pp. 89–94]). This relation
is basic to the generalization of the Laplace-Beltrami operator to discrete surfaces and will
also be used in the present paper. Recall that for a surfaceM embedded in R3, the Laplace
operator has a remarkable connection to the mean curvature normal. Applying the Laplacian
component-wise to the identity mapping idM , we get

∆M idM = −2H

(see [13, p. 22]), where the mean curvature normal H = Hn is a unit normal vector n onM
scaled by the corresponding mean curvature H . Observe thatH is independent of the particular
choice of n, as the sign of H depends on the direction of n. This vector field likewise has a
variational definition, namely

−2H = ∇area(M), i.e.,
d

dξ
area(pξ (M))���ξ=0

=
〈
− 2H,

∂pξ
∂ξ

���ξ=0

〉
L2(M,R3)

for every smooth one-parameter variation pξ :M → R3 with p0 = idM (see [13, p. 7]). Here,
area(M) =

∫
M

1 dV and 〈 f , g〉L2(M,R3) =
∫
M
〈 f (x), g(x)〉 dV (x).

2.1.3 Semidiscrete surfaces
The semidiscrete surfaces which constitute our object of study are mappings of the form

x : D → V : (k, t) → x(k, t), with D ⊂ Z × R open,

and where V is a vector space equipped with a positive definite scalar product 〈·, ·〉V . Through-
out this paper we assume that x is at least twice continuously differentiable in the second
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argument, and denote the corresponding set of mappings by C2
sd(D,V ). Accordingly, the set

of semidiscrete functions that are merely continuous in the second argument is denoted by
Csd(D,V ). With the help of the canonical hat function

ϕ(s) := max{1 − |s |, 0},

we extend x to a mapping, again called x,

x : D̂ → V : (s, t) 7→
∑

k: (k,t)∈D

ϕ(s − k)x(k, t), (2.1)

where the domain D̂ is constructed as a disjoint union of strips Dk ⊂ R
2, each strip being

defined as
Dk :=

⋃
t: (k,t)∈D ∧ (k+1,t)∈D

[k, k + 1] × {t}. (2.2)

In the non-degenerate case, this procedure converts a sequence of curves into a piece-wise ruled
surface, connecting corresponding points x(k, t) and x(k + 1, t) by straight line segments. For
each pair of successive curves x(k, ·) and x(k + 1, ·) there is a ruled surface strip, which
is treated separately from the others as far as the domain of definition is concerned. This
procedure does not alter the values x(s, t) where s happens to equal an integer k ∈ Z; x(s, t)
has the same value regardless of the question if s is considered as an element of [k − 1, k] or
as an element of [k, k + 1]. We call the procedure of converting a semidiscrete surface x(k, t)
to a piecewise-ruled surface x(s, t) an “extension”, even if D is not a subset of D̂.

In order to make the upcoming formulas shorter and thus better readable, we set up the
following notation. For the derivatives of x(k, t) with respect to the variable t, we write x′, x′′,
and so forth. Finite differences in the discrete direction are denoted by

δx(s, t) := x(k + 1, t) − x(k, t), for s ∈ [k, k + 1].

Note that in contrast to x itself, the discrete derivative δx does have different values for
s = k ∈ Z, depending on whether s is thought to be contained in [k − 1, k] or in [k, k + 1]. We
resolve this ambiguity by always making it clear which of the two corresponding surface strips
we are considering.

We call a semidiscrete surface regular, if all its surface strips are regular in the usual sense,
i.e., if the set

{δx(s, t), x′(s, t)}, s ∈ [k, k + 1],

is linearly independent throughout. Moreover, we call (k, t) ∈ D an inner point, if

{k − 1, k, k + 1} × (t − ε, t + ε) ⊂ D,

for some ε > 0. Otherwise it is called a boundary point. The set of inner points of D will be
denoted by Dinn.

Note that we do not make any assumptions on the embeddedness of the surfaces we study.
Later, when considering a real-valued function u on a semidiscrete surface x, we regard it as
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defined in D rather than in x(D). Such a function u therefore formally is a semidiscrete surface
in its own right and we use the same notation as for the surface x. We call u smooth, if it is at
least twice continuously differentiable in the second argument, i.e., if u ∈ C2

sd(D,R).

Remark 2.1. It is easy to see that a semidiscrete surface x(s, t) is regular for all s ∈ [k, k + 1] if
x′(k, t), x′(k + 1, t) and δx(k, t) are linearly independent (in which case the ruled surface strip
corresponding to s ∈ [k, k+1] is a regular skew ruled surface). In case those vectors are linearly
dependent, regularity in that interval is equivalent to |δx(k, t), x′(k, t) | · |δx(k, t), x′(k+1, t) | >
0, for any determinant form |·, ·| on a plane containing these three vectors (the strip then has a
torsal generator whose singular point x(s∗, t) obeys s∗ < [k, k + 1]; cf. [32, §5.1.1]).

2.2 Variational definition of a semidiscrete Laplace operator
This section aims at a meaningful definition of a Laplace operator on semidiscrete surfaces.
Mimicking the smooth case, we define a semidiscrete Laplacian as gradient of an appropriate
Dirichlet energy functional. For this purpose we first discuss area measures.

2.2.1 Integration and Laplacian on semidiscrete surfaces.
Consider a semidiscrete surface x with open domain D ⊂ Z × R, which has been extended to
a piecewise-ruled surface defined in the domain D̂, as described above (cf. Equation (2.1)).

A reasonable definition of its area obviously is given by the sum of the areas of individual
ruled surface strips, which in terms of the matrix I of the first fundamental form is expressed
as

area(x) =
"

D̂

√
det I(s, t) ds dt, with I =

(
‖δx‖2 〈δx, x′〉
〈δx, x′〉 ‖x′‖2

)
(2.3)

(see [15, p. 98]). Note that, in order to resolve the ambiguity in the definition of δx, the double
integral over D̂ has to be interpreted as the sum of double integrals over the individual strips
Dk stated in Equation (2.2).

It makes sense to generalize this definition by replacing Lebesgue measure ds dt by other
measures. We start with a Borel measure µ0 supported on the unit interval [0, 1], whose zeroth
and first moments have the following values:

m0 =

∫
[0,1]

1 dµ0(s) = 1 and m1 =

∫
[0,1]

s dµ0(s) =
1
2
. (2.4)

That is, we require integration of polynomials up to degree 1 to coincide with integration w.r.t.
Lebesgue measure. A stronger property is symmetry of the measure, meaning that∫

[0,1]
f (s) dµ0(s) =

∫
[0,1]

f (1 − s) dµ0(s), for all f ∈ L1([0, 1], µ0). (2.5)
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Together with m0 = 1, symmetry implies m1 =
1
2 . This symmetry property is not required

except in Theorem 2.3, where it is explicitly mentioned.
We will see that these assumptions are crucial for some important properties of the Lapla-

cian, and also for convergence. We actually construct an entire family of semidiscrete Laplace
operators, depending on the type of integration we employ. Note that in particular the measure
µ0 might be a numerical integration rule, like the midpoint rule or the trapezoidal rule. As it
turns out, a particular choice of measure leads to the semidiscrete Laplacian introduced in the
first paper (Chapter 1) as a pointwise limit of the discrete construction of Alexa andWardetzky
[1]. We discuss this connection in §2.2.2.

Now, by translation, µ0 acts as a measure on each interval [k, k +1], and we denote the sum
of measures on the disjoint union of intervals [k, k + 1] by µ. With the Lebesgue measure λ on
the reals, we consider the product measure µ ⊗ λ on the disjoint union of strips [k, k + 1] × R.
It is precisely this measure which we use for integration in the domain D̂:
Definition 2.1. Consider a semidiscrete surface x : D → V , extended to a piecewise-ruled
surface x : D̂ → V . We use its first fundamental form I and the measure µ ⊗ λ on D̂ to define
the surface integral of a function u : D̂ → R:∫

x
u dA :=

∫
D̂

u(s, t)
√

det I(s, t) d(µ ⊗ λ)(s, t).

The surface area is given by areaµ(x) :=
∫

x 1 dA.

Again, by the integral over D̂ we mean the sum of integrals over the individual strips Dk
given by Equation (2.2).
Example 2.1. This definition in particular applies to a semidiscrete function u : D → R, which
has been extended to a piecewise-linear function u : D̂ → R by linear interpolation:

u(s, t) =
∑

k: (k,t)∈D

ϕ(s − k)u(k, t).

If u vanishes at the boundary of D, we can write its surface integral as∫
x

u dA =
∫

D
u(k, t) a(k, t) dt,

where
∫

D dt means integration with respect to Lebesgue measure on each straight line segment
contained in D, and the semidiscrete function a is defined by

a(k, t) :=
∫

[k−1,k]t [k,k+1]
ϕ(s − k)

√
det I(s, t) dµ(s).

Here, the integral over [k − 1, k] t [k, k + 1] represents the sum of the integrals over the
intervals [k − 1, k] and [k, k + 1]. This formula follows from computing the left hand side by
the iterated integral

∫
D

( ∫
[k,k+1] u ·

√
det I dµ(s)

)
dt, and using u(s, t) =

∑
j ϕ(s − j)u( j, t) to

express the interior integral as u(k, t)
∫

[k,k+1] ϕ(s − k)
√

det I dµ(s) + u(k + 1, t)
∫

[k,k+1] ϕ(s −

k − 1)
√

det I dµ(s). An index shift yields the formula given above.



2.2 Variational definition of a semidiscrete Laplace operator 39

Definition 2.2. Given a semidiscrete surface x with domain D, we define L2 inner products
for semidiscrete real-valued (resp. V -valued) functions u, v with the same domain by letting

〈u, v〉L2(x) :=
∫

x
uv dA, resp. 〈u, v〉L2(x,V ) :=

∫
x
〈u, v〉V dA.

The integrals in the previous formulas mean that the semidiscrete functions u, v are
multiplied to create a semidiscrete product function (u · v)(k, t) (resp. 〈u, v〉V (k, t)), which for
the purpose of integration undergoes linear interpolation. The inner products are, for instance,
well defined for semidiscrete functions that are continuous in the second argument and have
finite L2 norm.

For the Dirichlet energy of a semidiscrete function we use the following definition:

Definition 2.3. Let x be a regular semidiscrete surface defined on D. Then, the Dirichlet
energy Eµ(u) of a smooth semidiscrete function u : D → R, considered as a function on x, is
the Dirichlet energy, in the smooth sense, of the extended function u(s, t) over the extended
surface x(s, t). Since Eµ is a quadratic form, we also use the corresponding symmetric bilinear
form Eµ which is uniquely characterized by Eµ(u, u) = Eµ(u):

Eµ(u) =
1
2

∫
x
‖∇u‖2 dA, Eµ(u, v) =

1
2

∫
x
〈∇u,∇v〉 dA.

It is tempting to employ L2 notation for the definition of the Dirichlet energy. We will not
do that, since the integrand is not generated by extending a semidiscrete function, and therefore
does not fit Definition 2.2.

As to the gradient of a real-valued function u(s, t) on a parametric surface x(s, t), recall
that ‖∇u‖2 =

(
∂su
∂tu

)
T · I−1 ·

(
∂su
∂tu

)
, where I(s, t) is the matrix of the first fundamental form. This

leads to the following explicit expression for the Dirichlet energy in case I is regular:

Eµ(u) =
1
2

∫
D̂

det I−1/2
(
‖x′‖2(δu)2 − 2〈δx, x′〉(δu)(u′) + ‖δx‖2(u′)2

)
d(µ ⊗ λ).

Next, we generalize the notion of the gradient of an energy functional to the semidiscrete case.
For that we consider “admissible” variations of semidiscrete functions:

Definition 2.4. An admissible variation xξ (k, t) of a smooth semidiscrete mapping x : D → V
is a V -valued function of arguments (ξ, k, t) ∈ (−ε, ε) × D, which depends smoothly on ξ
and t, coincides with x(k, t) for ξ = 0, and such that xξ (k, t) does not depend on ξ outside a
compact subset of Dinn. We use the notation

ẋ(k, t) :=
∂xξ
∂ξ

(k, t)���ξ=0
.

This definition in particular applies to the admissible variations uξ (k, t) of smooth semidis-
crete functions u : D → R. Now the definition of the gradient of an energy functional reads as
follows.
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Definition 2.5. Let x : D → V be a regular semidiscrete surface and let E be a functional
on C2

sd(D,R), with the property that there exists an operator ∇E : C2
sd(D,R) → Csd(Dinn,R),

such that for every u ∈ C2
sd(D,R) and all admissible one-parameter variations uξ of u, we have

d
dξ

E(uξ )���ξ=0
= 〈∇E(u), u̇〉L2(x) .

Then ∇E is called the gradient of E. In particular, we define the semidiscrete Laplace operator
∆sd on x as the gradient of the Dirichlet energy functional Eµ, i.e., ∆sd := ∇Eµ.

Theorem 2.1. If x : D → V is a regular semidiscrete surface, then the semidiscrete Laplacian
∆sdu exists for all smooth semidiscrete functions u defined in the same domain:(

∆sdu
)
(k, t) =

1
a(k, t)

(
δb(k, t) + c′(k, t)

)
, (2.6)

with a as in Example 2.1, and with semidiscrete functions b, c defined by

b(k, ·) :=
∫

[k−1,k]
det I−1/2 (

〈δx, x′〉u′ − ‖x′‖2δu
)

dµ,

c(k, ·) :=
∫

[k−1,k]t [k,k+1]
det I−1/2 ϕ(s − k)

(
〈δx, x′〉δu − ‖δx‖2u′

)
dµ.

Proof. Let uξ be an admissible variation of u with derivative u̇. We compute the derivative of
the Dirichlet energy by using the Leibniz rule (which applies because all occurring functions
are smooth in the variables ξ and t, and u̇ has compact support):

d
dξ

Eµ(uξ )
�����ξ=0
=

∫
D̂

det I−1/2
(
‖x′‖2δuδu̇ − 〈δx, x′〉

(
δuu̇′ + u′δu̇

)
+ ‖δx‖2u′u̇′

)
d(µ ⊗ λ) =

=

∫
D̂

(
− b(s, t)δu̇(s, t) − c(s, t)u̇′(s, t)

)
d(µ ⊗ λ)(s, t), where

b := det I−1/2 (
〈δx, x′〉u′ − ‖x′‖2δu

)
, c := det I−1/2 (

〈δx, x′〉δu − ‖δx‖2u′
)
. (2.7)

Next we apply integration by parts w.r.t. t to the second summand:

d
dξ

Eµ(uξ )
����ξ=0
=

∫
D̂

(
− b(s, t)δu̇(s, t) + c′(s, t)u̇(s, t)

)
d(µ ⊗ λ)(s, t)

=

∫
(k,t)∈D

∫
s∈[k,k+1]

b(s, t)
(
u̇(k, t) − u̇(k + 1, t)

)
+

+ c′(s, t)
(
ϕ(s − k)u̇(k, t) + ϕ(s − k − 1)u̇(k + 1, t)

)
dµ(s) dλ(t).

Observe that the boundary terms vanish, since the support of u̇ is contained in Dinn. Finally,
an index shift yields

d
dξ

Eµ(uξ )
����ξ=0
=

∫
(k,t)∈D

(
δb(k, t) + c′(k, t)

)
u̇(k, t) dλ(t) = 〈∆sdu, u̇〉L2(x),

with b, c, and ∆sdu as stated above (cf. also Example 2.1). �
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2.2.2 Example: SemidiscreteLaplacians arising as limits of discrete ones.

As demonstrated in Chapter 1, the discrete Laplace operator L constructed by Alexa and
Wardetzky [1] for functions defined on the vertices of a polygonal mesh gives rise to a
Laplace operator on semidiscrete surfaces via pointwise limits. We may discretize a regular
semidiscrete surface x : D → R3 and a smooth function u : D → R near a point of interest
(k, t) ∈ Dinn by letting

xεi j := x(k + i, t + ε j), uε (xεi j ) := u(k + i, t + ε j).

This defines the vertices xεi j of a quad mesh with regular combinatorics, and function values
on these vertices. The discrete Lapace operator on that mesh is denoted by Lε, and we let

(
∆limu

)
(k, t) := lim

ε↘0
(Lεuε)���0,0.

Existence and properties of this limit were investigated in Chapter 1, in particular independence
of the limit from the still remaining degrees of freedom in the construction of L. There is a
remarkable connection between the semidiscrete Laplacian ∆sd and the semidiscrete Laplacian
∆lim which arises by pointwise limits. In fact, if the measure µ0 used to construct ∆sd is taken
as the midpoint rule for numerical integration (i.e.,

∫
[0,1] f (s) dµ0(s) = f ( 1

2 )), then they are
equal:

µ0
({

1
2

})
= 1 =⇒ ∆sdu = ∆limu, ∀ u ∈ C2

sd(U,R).

This claim is easily verified by comparing the formulae for ∆limu given in Corollary 1.1 with
the explicit expressions stated in Theorem 2.1 of the present chapter: If µ0({ 12 }) = 1,

a(k, t) =
∫

[k−1,k]t [k,k+1]
ϕ(s − k)‖δx(s, t) × x′(s, t)‖ dµ(s) =

=
1
4
(
‖(x1 − x) × (x′1 + x′)‖ + ‖(x1̄ − x) × (x′1̄ + x′)‖

)
=

A1 + A1̄
4

,

where we adopt the notation from Corollary 1.1. In particular, x1(k, t) = x(k + 1, t) and
x1̄(k, t) = x(k − 1, t). Likewise, we get

b(k, t) =
1

2A1

(
〈x1 − x, x′1 + x′〉(u′1 + u′) − ‖x′1 + x′‖2(u1 − u)

)
, and

c(k, t) =
1

2A1

(
‖x1 − x‖2(u′1 + u′) − 〈x1 − x, x′1 + x′〉(u1 − u)

)
= −

α1
2A1

.

By inserting these functions into Equation (2.6) and comparing the resulting expression with
the formula stated in Corollary 1.1, we see that, for this particular choice of µ0, we have
∆sdu = ∆limu.
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2.3 Semidiscrete mean curvature normals
Before we analyze further properties of the semidiscrete Laplace operator, we discuss its
connection to the mean curvature normal. Recall from the introductory section the relations
between the Laplacian and the mean curvature normal, which hold for smooth surfaces em-
bedded in R3: On the one hand, ∆M idM = −2H, on the other hand the mean curvature normal
itself has the variational definition −2H = ∇area(M). Here we consider the semidiscrete
version of these objects and the relations between them. Our notation is not entirely the same
as in §2.1.2, because we deal with parametric surfaces.

2.3.1 Variational properties of mean curvature
Definition 2.6. Let F be a functional on C2

sd(D,V ) and let x : D → V be a semidiscrete
surface with the property that there exists a function ∇F (x) ∈ Csd(Dinn,V ), such that for all
admissible one-parameter variations xξ of x, we have

d
dξ

F (xξ )
�����ξ=0
= 〈∇F (x), ẋ〉L2(x,V ) .

Then ∇F (x) is called the gradient of F at x. In particular, the semidiscrete mean curvature
normal Hsd of a regular semidiscrete surface x is defined as

Hsd := −
1
2
∇ area(x).

Theorem 2.2. For regular semidiscrete surfaces x, the mean curvature normal vector field
exists and can be computed by applying the Laplacian componentwise to the identity mapping
on x:

∆sdx = −2Hsd.

Proof. Let xξ (k, t) be an admissible variation of x. Each semidiscrete surface xξ (k, t) is
extended to a piecewise-ruled surface xξ (s, t), having first fundamental form Iξ (s, t) (cf.
Equation (2.3)). By definition, xξ (k, t) is independent of ξ outside a compact subset of Dinn.
Thus, by a standard argument, the piecewise-ruled surfaces xξ (s, t) are regular for all ξ in
some interval (−h, h), because

√
det Iξ , i.e., the area spanned by the partial derivatives of xξ ,

is positive in a compact set {0} × K ⊂ R × D̂, thus positive in a neighborhood of this set, and
consequently positive in a product set (−h, h) × K .

Thus, we may compute
∂

∂ξ

√
det Iξ =

1
2
√

det Iξ
∂

∂ξ

[
‖δxξ ‖2‖x′ξ ‖

2 − 〈δxξ, x′ξ〉
2

]
.

For ξ = 0, this expression is simplified by computing the individual derivatives ∂
∂ξ ‖δxξ ‖2 =

2〈δx, δ ẋ〉, ∂
∂ξ ‖x

′
ξ ‖

2 = 2〈x′, ẋ′〉, and ∂
∂ξ 〈δxξ, x′ξ〉

2 = 2
(
〈x′, δ ẋ〉 + 〈δx, ẋ′〉

)
〈δx, x′〉. We get

d
dξ

areaµ(xξ )
����ξ=0
=

∫
D̂

(
− 〈b(s, t), δ ẋ(s, t)〉 − 〈c(s, t), ẋ′(s, t)〉

)
d(µ ⊗ λ)(s, t),
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where the functions b(s, t) and c(s, t) are the same as in Equation (2.7), and the previous
formula is the same as the expression for the derivative of the Dirichlet energy in the proof of
Theorem 2.1, only with x instead of u, and scalar products of V -valued functions instead of
products of real-valued ones. It follows that the gradient of areaµ evaluated at x indeed equals
∆sdx. �

2.3.2 Mean curvature of extrinsically flat surfaces.

We show that the mean curvature normal of a semidiscrete surface vanishes, if that surface is
contained in a two-dimensional plane. Besides constituting a sanity check on our definitions,
this fact is of importance later whenwe show the “linear precision” property of the semidiscrete
Laplacian.

Lemma 2.1. If the regular semidiscrete surface x : D → V is contained in a two-dimensional
plane Π, then its mean curvature normal Hsd vanishes.

Proof. The general idea of the proof is to show that ‖Hsd‖L2(x,V ) = 0 by constructing a variation
whose derivative equalsHsd. This can be done in the following way. Choose a smooth function
v : D → R with compact support contained in Dinn. Then

xξ (k, t) := x(k, t) + ξv(k, t)2Hsd(k, t)

is a well-defined one-parameter variation of x with velocity ẋ = v2Hsd.
Moreover, without loss of generality 0 ∈ Π, so Π is a linear subspace and therefore

δx, x′ ∈ Π. It follows fromTheorem 2.1 and Theorem 2.2 thatHsd(k, t) ∈ Π, and consequently,
xξ (k, t) ∈ Π. Since dimΠ = 2, we can express the above-mentioned area in terms of an
appropriate determinant form |·, ·|:√

det Iξ (s, t) = ��δxξ (s, t), x′ξ (s, t)�� = (1 − s + k)��δxξ (k, t), x′ξ (k, t)��+
+ (s − k)��δxξ (k, t), x′ξ (k + 1, t)��, for s ∈ [k, k + 1], t fixed.

By Equation (2.4), integrating
√

det Iξ over [k, k+1] w.r.t. dµ(s) is the same as integrating w.r.t.
Lebesgue measure. Thus, areaµ(xξ ) equals the unsigned Euclidean area. Since the variation
xξ leaves the boundary of the surface unchanged, areaµ(xξ ) does not depend on ξ, and we get

‖vHsd‖
2
L2(x,V ) =

〈
Hsd, v

2Hsd
〉

L2(x,V )
= −

1
2
〈∇ area(x), ẋ〉L2(x,V )

= −
1
2

d
dξ

area(xξ )���ξ=0
= 0.

We conclude that vHsd vanishes for all v, i.e., Hsd = const. = 0. �
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2.4 Properties of the semidiscrete Laplacian
The classical Laplace operator enjoys several properties like linear precision, symmetry, pos-
itive semidefiniteness, and an associated maximum principle for harmonic functions. It is
natural to ask if they carry over to the purely discrete or semidiscrete cases (for triangle
meshes, these core properties turn out to be incompatible for Laplacians whose definition
involves the one-ring neighborhood of individual vertices; see [42]). We start by investigating
the kernel of the Laplacian. Surely it contains the constant functions. As to linear functions,
we have the following result:

Lemma 2.2. For a regular semidiscrete surface x and its corresponding Laplacian ∆sd and
mean curvature normal field Hsd, the following statements are equivalent:

(a) All functions u(k, t) = L(x(k, t)) with L : V → R linear are contained in the kernel of
∆sd.

(b) x is harmonic, i.e., ∆sdx = const. = 0.

(c) x is a minimal surface, i.e., Hsd = const. = 0.

Proof. The equivalence of (b) and (c) is Theorem 2.2. Since the coordinate components of x
are linear functions of x, (a) implies (b). Conversely, any linear function is a linear combination
of coordinate functions and a constant, so (b) implies (a). �

Corollary 2.1. The semidiscrete Laplacian enjoys the linear precision property, i.e., for a reg-
ular semidiscrete surface lying in a two-dimensional plane, all linear functions are contained
in the kernel of the Laplacian.

Proof. Combine Lemmas 2.1 and 2.2. �

We show that our semidiscrete Laplacian is symmetric and positive semidefinite in the L2

sense, in a way analogous to the well known Laplace-Beltrami operator (see, e.g., [33]). This
follows directly from the variational definition of the Laplacian.

Lemma 2.3. The semidiscrete Laplace operator ∆sd is symmetric and positive semidefinite.
More precisely, for semidiscrete functions u and v, with compact support contained in Dinn,
we have

〈∆sdu, v〉L2(x) = 〈u,∆sdv〉L2(x) and 〈∆sdu, u〉L2(x) = 2Eµ(u) ≥ 0.

Proof. We use the quadratic form Eµ corresponding to the Dirichlet energy (see Definition 2.3)
and compute 〈∆sdu, v〉L2(x) = 〈∇Eµ(u), v〉L2(x) =

d
dξ Eµ(u+ξv) |ξ=0 =

d
dξ (Eµ(u, u)+2ξEµ(u, v)+

ξ2Eµ(v, v)) |ξ=0 = 2Eµ(u, v), where we have used the relations given in Definition 2.5. This
implies symmetry and, for u = v, semidefiniteness. �
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Unfortunately, the maximum principle is not valid for the semidiscrete Laplacian, even for
functions on very simple surfaces. This is in contrast to the smooth case, where the maximum
principle holds in general; and it is also in contrast to the cotan-Laplacian on triangle meshes
(likewise found as gradient of the Dirichlet energy), where a maximum principle holds, e.g., if
all angles are acute. A counterexample is as follows.

Example 2.2. Here we construct a semidiscrete harmonic function u with a maximum at the
inner point (0, 0) of the semidiscrete surface x(k, t) := (k, t). For this purpose we first derive a
more explicit expression for the Laplacian ∆sdu of a semidiscrete function u on x. We extend
x to x(s, t) = (s, t) and u to the piecewise-linear function u(s, t) =

∑
(k,t)∈Z×R ϕ(s − k)u(k, t).

Then I = diag(1, 1), so by the assumptions (2.4), we get

a(k, t) =
∫

[k−1,k]t [k,k+1]
ϕ(s − k) dµ(s) = 1,

b(k, t) = −
∫

[k−1,k]
δu(s, t) dµ(s) = −δu(k − 1, t) = u(k, t) − u(k − 1, t),

c(k, t) = −
∫

[k−1,k]t [k,k+1]
ϕ(s − k)u′(s, t) dµ(s) =

= −2m2u′(k, t) −
( 1

2 − m2
) (

u′(k − 1, t) + u′(k + 1, t)
)
,

where m2 =
∫

[0,1] s2 dµ0 is the second moment of the measure µ0. Hence, in this situation, the
Laplacian of u is given by

∆sdu(k, t) = 2u(k, t) − u(k − 1, t) − u(k + 1, t)−
− 2m2u′′(k, t) −

( 1
2 − m2

) (
u′′(k − 1, t) + u′′(k + 1, t)

)
.

The harmonicity condition ∆sdu = 0 thus becomes a system of linear ODEs for the
functions t 7→ u(k, t), where k runs through the integers. Observe that the assumptions (2.4)
imply 1

4 ≤ m2 ≤
1
2 . The maximum principle obviously holds if m2 =

1
2 , which applies,

e.g., to the trapezoidal rule. Otherwise, for m2 <
1
2 , we can construct a harmonic function u

on x with a maximum at (0, 0) as follows. Choosing u(0, t) := −t2 and assuming symmetry
u(±1, t) := φ(t), wefind φ(t) easily as φ(t) = 1−t2+γ1 cos

(
( 1

2−m2)−1/2t
)
+γ2 sin

(
( 1

2−m2)−1/2t
)
.

An appropriate choice of constants, e.g., γ1 = −2, γ2 = 0, yields a function u(k, t), which
undoubtedly has a local maximum in u(0, 0) = 1. We have thus created a locally defined
counterexample to the maximum principle. It can be turned into a globally defined example
by constructing u(±2, t), u(±3, t), . . . such that overall ∆sdu = 0: one has to iteratively solve
linear ODEs.

2.5 Pointwise convergence / consistency
In this section we show that the semidiscrete Laplace operator converges pointwise to its
smooth counterpart, as the semidiscrete surface converges to a smooth one. In the Finite
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Elements literature this kind of convergence is called consistency, while convergencewould be
reserved for the situation where the solutions of equations involving the semidiscrete Laplacian
converge to solutions of equations which involve the continuous Laplacian.

More precisely, the situation in the following theorem is as follows. We fix a point p on
a regular surface M, which is assumed to have a local parametrization f . Without loss of
generality, p = f (0, 0). Next, we consider the semidiscrete surface

xε : (k, t) 7→ f (εk, t), ε > 0,

which obviously contains the point p = xε (0, 0) and is inscribed in the surfaceM. Then we
analyze the semidiscrete Laplace operator associated with xε and its action on functions uε,
and let ε → 0.

Theorem 2.3. Consider a smooth regular surfaceM with parametrization f and a real-valued
function u(s, t) which represents a function defined on the surfaceM. Let p = f (0, 0).

Semidiscretize these objects by defining a semidiscrete surface xε (k, t) := f (εk, t) and
a semidiscrete function uε (k, t) := u(εk, t). Then the corresponding semidiscrete Laplace
operator ∆εsd converges to the Laplace-Beltrami operator ∆M defined onM:

f , u ∈ C2 =⇒ (∆εsduε)(0, 0) = (∆Mu)(p) + o(1), as ε → 0.

In case the measure dµ0 is symmetric in the sense of Equ. (2.5), convergence is improved:

f , u ∈ C3 =⇒ (∆εsduε)(0, 0) = (∆Mu)(p) + o(ε), as ε → 0,
f , u ∈ C4 =⇒ (∆εsduε)(0, 0) = (∆Mu)(p) + O(ε2), as ε → 0.

Theorem 2.2 immediately implies a convergence statement concerning mean curvature:

Corollary 2.2. In the situation of Theorem 2.3, the semidiscrete mean curvature normal Hε
sd

on xε converges pointwise to its smooth counterpart (with the rate of convergence depending
on the smoothness of x).

Proof of Theorem 2.3. We first set up some notation. For differentiation with respect to s and
t we use the notation ∂1 and ∂2, respectively. The coefficients of the first fundamental form are
denoted by gi j := 〈∂i f , ∂j f 〉. Their determinant is denoted by det I = g11g22 − g2

12. We also
use the symbols ρi j k := 〈∂i f , ∂j k f 〉.

• Step 1: Overview of the proof. In local coordinates, the Laplacian is expressed as

∆Mu =
1

acont (∂1bcont + ∂2ccont), where

acont =
√

det I, bcont =
g12∂2u − g22∂1u

√
det I

, ccont =
g12∂1u − g11∂2u

√
det I
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(see, e.g., [33, p. 18]). On the other hand, the semidiscrete Laplacian ∆εsd associated with xε is
computed, using notation aε, bε, cε analogous to Theorem 2.1, as

∆
ε
sduε (0, 0) =

1
aε

(
δbε + c′ε

) ���(0,0)
.

We compute Taylor polynomials around (0, 0) for xε (±1, 0) = f (±ε, 0) and uε (±1, 0) =
u(±ε, 0), and insert them into this formula. Long computations yield

aε (0, 0)
ε

≈ acont(0, 0),
δbε (0, 0)

ε
≈ ∂1bcont(0, 0),

c′ε (0, 0)
ε

≈ ∂2ccont(0, 0),

where the ≈ symbol means equality up to O(ε2) in the C4 case, resp. o(ε) in the C3 case,
resp. o(1) in the C2 case. Having obtained these convergence rates, the proof is complete. It
remains to perform the above-mentioned long computations.

• Step 2: Taylor expansion of xε, uε and their derivatives. Note that

xε (s, 0) =
∑

k

ϕ(s − k)xε (k, 0) =



(1 + s) f (0, 0) − s f (−ε, 0), if s ∈ [−1, 0],
(1 − s) f (0, 0) + s f (ε, 0), if s ∈ [0, 1].

(2.8)

The expression for uε in terms of u(±ε, 0) is analogous. The Taylor polynomials of f (±ε, 0)
and its derivatives around ε = 0 are in the C4 case given by

f (±ε, 0) = f (0, 0) ± ε∂1 f (0, 0) + ε2

2 ∂11 f (0, 0) ± ε3

6 ∂111 f (0, 0) + O(ε4),

∂2 f (±ε, 0) = ∂2 f (0, 0) ± ε∂12 f (0, 0) + ε2

2 ∂112 f (0, 0) + O(ε3).

∂22 f (±ε, 0) = ∂22 f (0, 0) ± ε∂122 f (0, 0) + O(ε2).

The remainder terms O(ε j ) in the individual formulas have to be replaced by o(ε j−1) in the
C3 case. In the C2 case, the terms containing third order partial derivatives of f have to be
replaced by o(ε j−2). There are analogous expressions for u(±ε, 0) and its derivatives.

• Step 3: Taylor expansion of the area element. For sufficiently small ε > 0, we consider
the first fundamental form Iε associated with the piecewise-ruled surface xε and look at the
quantity

α(ε, s) =
√

det Iε (s, 0), s ∈ [−1, 1].
Note that, for s ∈ [0, 1], det Iε (s, 0) is the Gram determinant of vectors

δxε (s, 0) = f (ε, 0) − f (0, 0), x′ε (s, 0) = (1 − s)∂2 f (0, 0) + s∂2 f (ε, 0).

In the C4 case, a simple computation and taking square roots by means of the binomial series
yields

det Iε (s, 0) = ε2
(
α1 + ε(α2 + sα3) + ε2α4 + O(ε3)

)
, as ε → 0, with

α1 = det I ��(0,0), α2 = (g22ρ111 − g12ρ211)��(0,0), α3 = 2(g11ρ212 − g12ρ112)��(0,0),

α(ε, s) = |ε |
(
α

1/2
1 +

ε

2
α2 + sα3

α
1/2
1

+
ε2

8
4α1α4 − (α2 + sα3)2

α
3/2
1

+ O(ε3)
)
.
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In the C3 case, the remainder term is o(ε2), while in the C2 case, the terms involving ε2 have
to be replaced by o(ε). For s ∈ [−1, 0], the situation is analogous.

• Step 4: The relation between aε and acont. Our aim is to give a proof of 1
εaε (0, 0) ≈

acont(0, 0), where the meaning of “≈” is equality up to an error term depending on the differ-
entiability class of the objects involved. The relation α(ε,−s) = α(−ε, s) yields

aε (0, 0) =
∫

[−1,0]
(1 + s)α(ε, s) dµ(s) +

∫
[0,1]

(1 − s)α(ε, s) dµ(s) =

=

∫
[0,1]

sα(−ε, 1 − s) + (1 − s)α(ε, s) dµ(s) =

= |ε |

∫
[0,1]

α
1/2
1 +

ε

2
(1 − 2s)α2α

−1/2
1 +O(ε2) dµ(s)

in the C3 and C4 cases, and the same formula with remainder term o(ε) in the C2 case. Now
Equation (2.4) yields

∫
[0,1](1 − 2s) dµ(s) = 0, so the result follows.

• Step 5: Relation between bε and bcont. With computations similar to those of the previous
Step 4, it is not difficult to see that

δbε (0, 0) = bε (1, 0) − bε (0, 0) =
∫

[0,1]

β(−ε, 1 − s)
α(−ε, 1 − s)

+
β(ε, s)
α(ε, s)

dµ0(s), (2.9)

where β(ε, s) := 〈δxε, x′ε〉u
′
ε − ‖x

′
ε‖

2δuε��(0,0) is expressed as

β(ε, s) =
〈

f (ε, 0) − f (0, 0), (1− s)∂2 f (0, 0) + s∂2 f (ε, 0)
〉(

(1− s)∂2u(0, 0) + s∂2u(ε, 0)
)
−

− (1 − s)∂2 f (0, 0) + s∂2 f (ε, 0)2 (u(ε, 0) − u(0, 0)
)
, for s ∈ [0, 1].

Note that, for s ∈ [0, 1], β(ε,−s) = −β(−ε, s) and α(ε,−s) = α(−ε, s). Assuming symmetry
of the measure µ0, this simplifies to

δbε (0, 0) =
∫

[0,1]

β(−ε, s)
α(−ε, s)

+
β(ε, s)
α(ε, s)

dµ0(s).

Inserting Taylor polynomials yields the expansion (for the C3 case)

β(ε, s) = ε β1 + ε
2(β2 + sβ3) + ε3 β4 + o(ε3), where

β1 = g12∂2u − g22∂1u��0,0, β2 =
1
2
(
ρ211∂2u − g22∂11u

) ��0,0,

β3 = (ρ112∂2u − 2ρ212∂1u + g12∂12u)��0,0.

This leads to

β(−ε, s)
α(−ε, s)

+
β(ε, s)
α(ε, s)

=
ε3 (2(β2 + sβ3)α1/2

1 − β1(α2 + sα3)α−1/2
1

)
+ o(ε4)

ε2α1 + o(ε3)
.



2.5 Pointwise convergence / consistency 49

Integration with respect to dµ(s) and substituting the definitions of α j, β j eventually yields

δbε (0, 0)
ε

=
2β2 + β3

α
1/2
1

−
β1(α2 +

1
2α3)

α
3/2
1

+ o(ε) = ∂1bcont(0, 0) + o(ε).

In the C4 case the remainder term is O(ε2), whereas in the C2 case, where symmetry of the
measure is not required, the integral on the right hand side of Equation (2.9) does not simplify
as shown above, and we only get a remainder term of o(1).

• Step 6: Computing the derivative of c(k, t). The following explicit formula, which is found
by differentiating the definition of c(k, t), is needed later:

dc(k, t)
dt

=

∫
[k−1,k]t [k,k+1]

ϕ(s − k)
∂

∂t

(
〈δx, x′〉δu − ‖δx‖2u′

det I1/2

)
dµ(s)

=

∫
[k−1,k]t [k,k+1]

ϕ(s − k)
(

c∗(s, t)
det I1/2

−
c∗∗(s, t)
det I3/2

)
dµ(s), where

c∗ :=
(
〈δx′, x′〉 + 〈δx, x′′〉

)
δu + 〈δx, x′〉δu′ − 2〈δx, δx′〉u′ − ‖δx‖2u′′,

c∗∗ :=
(
〈δx, x′〉δu− ‖δx‖2u′

) [
〈x′, x′′〉‖δx‖2 −

(
〈δx′, x′〉 + 〈δx, x′′〉

)
〈δx, x′〉 + 〈δx, δx′〉‖x′‖2

]
.

• Step 7: Relation between cε and ccont. We use the notation of Step 6 to introduce the sym-
bols γ∗(ε, s), γ∗∗(ε, s), which arise from the functions c∗, c∗∗, resp., by substituting xε for
x and uε for u, and letting t = 0. Note that γ∗(ε,−s) = γ∗(−ε, s) and the same for γ∗∗, for
s ∈ [0, 1]. With a computation similar to Step 4, it is easy to see that c′ε (0, 0) is expressed as∫

[0,1]

s
γ∗(−ε, 1 − s)
α(−ε, 1 − s)

+ (1 − s)
γ∗(ε, s)
α(ε, s)

− s
γ∗∗(−ε, 1 − s)
α(−ε, 1 − s)3 − (1 − s)

γ∗∗(ε, s)
α(ε, s)3 dµ0(s).

Assuming symmetry of the measure µ0, this expression simplifies to∫
[0,1]

(1 − s)
(
γ∗(−ε, s)
α(−ε, s)

+
γ∗(ε, s)
α(ε, s)

)
− (1 − s)

(
γ∗∗(−ε, s)
α(−ε, s)3 +

γ∗∗(ε, s)
α(ε, s)3

)
dµ0(s).

In the same manner as before we get the expansions

γ∗(ε, s) = ε2γ∗1 + ε
3(γ∗2 + sγ∗3) + o(ε3), γ∗∗(ε, s) = ε4γ∗∗1 + ε

5(γ∗∗2 + sγ∗∗3 ) + o(ε5),

where

γ∗1 =
(
(ρ122 + ρ212)∂1u + g12∂12u − 2ρ112∂2u − g11∂22u

) ��(0,0),

γ∗∗1 =
(
g12∂1u − g11∂2u

) (
ρ112g22 + ρ222g11 − (ρ212 + ρ122)g12

) ��(0,0) .
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This leads to

γ∗(−ε, s)
α(−ε, s)

+
γ∗(ε, s)
α(ε, s)

=
1

ε2α1 + o(ε3)

(
ε32γ∗1α

1/2
1 + o(ε4)

)
= ε

2γ∗1
α

1/2
1

+ o(ε2),

γ∗∗(−ε, s)
α(−ε, s)3 +

γ∗∗(ε, s)
α(ε, s)3 =

1
ε6α3

1 + o(ε7)

(
ε72γ∗∗1 α

3/2
1 + o(ε8)

)
= ε

2γ∗∗1
α

3/2
1

+ o(ε2).

Using property (2.4) of the measure µ0 for integration, and substituting the definitions of
α1, γ

∗
1, γ

∗∗
1 , one eventually gets

c′ε (0, 0)
ε

=
γ∗1

α
1/2
1

−
γ∗∗1

α
3/2
1

+ o(ε) = ∂2ccont(0, 0) + o(ε).

This result applies to the C3 case. In the C4 case, one more term in the Taylor polynomials
becomes available, and the remainder term in the formula above becomes O(ε2) instead of
o(ε). In the C2 case, where symmetry of the measure µ0 is not required, we only get o(1) (the
details are omitted). The estimates of Steps 4, 5, and 7 together conclude the proof. �
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Chapter 3

Semidiscrete constant mean curvature
surfaces and their associated families

Abstract
The present paper studies semidiscrete surfaces in three-dimensional Euclidean space
within the framework of integrable systems. In particular, we investigate semidiscrete
surfaces with constant mean curvature along with their associated families. The notion of
mean curvature introduced in this paper is motivated by a recently developed curvature
theory for quadrilateral meshes equipped with unit normal vectors, and extends previous
work on semidiscrete surfaces. In the situation of vanishingmean curvature, the associated
families are defined via aWeierstraß representation. For the general cmc case, we introduce
a Lax pair representation that directly defines associated families of cmc surfaces, and is
connected to a semidiscrete sinh-Gordon equation. Utilizing this theory we investigate
semidiscrete Delaunay surfaces and their connection to elliptic billiards.

Keywords: Semidiscrete surface, Constantmean curvature, Associated family,Weierstraß
representation, Lax pair representation.

Mathematics Subject Classification (2010): 53A05, 53A10, 39A12.

3.1 Introduction
Surfaces with constant mean curvature H or constant Gauß curvature K have been of particular
interest in differential geometry for a long time. In amodern viewpoint, these special geometries
are associated with the theory of integrable systems, not least due to rather recent developments
in discrete differential geometry (cf. Bobenko and Suris [10]). Typically the investigation of
constant curvature surfaces is tied to specific parametrizations, like isothermic parametrizations
for constant mean curvature surfaces.

Over the last decades, various discrete versions of these special parametrizations have been
established. For a comprehensive overview see Bobenko and Pinkall [7] or Bobenko and Suris

This chapter comprises the research article [iii].
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52 3 Semidiscrete constant mean curvature surfaces and their associated families

[10]. Generally, different kinds of parametrizations (conjugate, asymptotic, . . . ) have their
own way of discretization. For this reason, discretizing entire families of smooth surfaces is a
challenge, if the type of parametrization changes. Accordingly, a unifying discrete curvature
theory is still an active topic of research. As a first step toward this direction, Bobenko et
al. [8] introduced a general curvature theory for polyhedral meshes with planar faces based
on mesh parallelity. Their theory is capable of unifying notable previously defined classes
of surfaces, such as discrete isothermic minimal or constant mean curvature surfaces. More
recently, Hoffmann et al. [20] presented a discrete parametrized surface theory for quadrilateral
meshes equipped with unit normal vectors at the vertices, permitting non-planar faces. Their
theory encompasses a remarkably large class of existing discrete special parametrizations. In
addition it provides a deeper insight into the associated families of discrete constant curvature
surfaces.

For semidiscrete surfaces, represented by parametrizations possessing one discrete variable
and one continuous variable, the situation is quite similar to the discrete case. The analysis
of semidiscrete surfaces with H = const. respectively K = const. is bound to isothermic resp.
asymptotic parametrizations (cf. Müller [26] resp. Wallner [40]). However, to the author’s
knowledge, results concerning their associated families have been missing so far.

3.1.1 Outline and results
In the present paper we investigate two distinct situations: (i) semidiscrete surfaces with van-
ishing mean curvature (minimal surfaces), and (ii) semidiscrete surfaces with constant but
non-vanishing mean curvature (cmc surfaces). Since we are especially interested in the asso-
ciated families of these surfaces, we do not restrict ourselves to isothermic parametrizations.
Thus, at the beginning (see Section 3.2), we translate the discrete curvature theory introduced
by Hoffmann et al. [20] to the semidiscrete setting. We also highlight the intersection with
the curvature theory for semidiscrete conjugate parametrizations previously considered by
Karpenkov and Wallner [22].

In Section 3.3, we recapitulate the notion of isothermic parametrizations. In particular, we
show that a semidiscrete surface is isothermic if and only if its quaternionic cross ratio allows
for a specific factorization (cf. Lemma 3.5).

Subsequently, in Section 3.4, we investigate semidiscrete isothermic minimal surfaces.
Their Weierstraß representation, established by Rossman and Yasumoto [34], immediately
gives rise to their associated families, whose members are however no longer isothermic. The
main result of this section is that all the members of these associated families are minimal
as well (cf. Theorem 3.1). Moreover, we show that the conjugate surface of an isothermic
minimal surface is asymptotically parametrized.

In Section 3.5, we introduce a Lax pair representation for semidiscrete isothermic cmc
surfaces, which directly contains the definition of their associated families. We prove that the
members of these associated families, which again are no longer isothermic, all have the same
constant mean curvature (cf. Theorem 3.2).

We conclude the paper by investigating theLax pair representation of semidiscrete rotational



3.2 A curvature theory for semidiscrete surfaces 53

symmetric cmc surfaces (see Section 3.6). It turns out that the discrete version of the classical
Delaunay rolling ellipse construction, obtained by Bobenko et al. [8], also applies to the
semidiscrete setting.

3.2 A curvature theory for semidiscrete surfaces
Our main object of study are two-dimensional semidiscrete surfaces in three-dimensional
Euclidean space represented by parametrizations

x : Z × R ⊇ D → R3 : (k, t) 7→ x(k, t)

possessing one discrete variable and one continuous variable. Throughout this paperwe assume
that x is at least once continuously differentiable w.r.t. the second argument. We abbreviate
the corresponding derivative by ∂x. The forward difference w.r.t. the discrete parameter is
denoted by

δx := x1 − x,

where the notation x1 indicates an index shift: x1(k, t) := x(k+1, t). We only consider regular
semidiscrete surfaces having the property that the sets {δx, ∂x}, {δx, ∂x1}, and {δx, ∂x + ∂x1}
are linearly independent throughout.

Just like a smooth parametrized surface can be viewed as built of its contact elements
(consisting of a point together with the surface normal at this point), we henceforth con-
sider a semidiscrete surface to be represented by a pair of weakly coupled parametrizations.
Translating the relation between a surface and its Gauß map to the semidiscrete setting, we
define:

Definition 3.1. A pair of semidiscrete surfaces (x, n) : Z×R ⊇ D → R3×S2 is called coupled,
if

δx ⊥ (n + n1) and ∂x ⊥ n (3.1)

throughout the parameter domain.

The following definition contains a limit version of the “midpoint connectors” of a quadri-
lateral considered by Hoffmann et al. [20] as replacements of the first order partial derivatives
of a smooth parametrization.

Definition 3.2. For a semidiscrete surface (x, n) we define the partial derivatives

∂1x := δx = x1 − x, ∂2x :=
∂x + ∂x1

2
,

as well as the strip normal

N :=
∂1n × ∂2n
‖∂1n × ∂2n‖

=
δn × (∂n + ∂n1)
‖δn × (∂n + ∂n1)‖

.
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In classical surface theory the principal curvatures of a surface at a point are defined as the
eigenvalues of the shape operator that lives on the tangent plane at this point. In the semidiscrete
case the fundamental forms and the shape operator live on the plane perpendicular to the strip
normal N .

Definition 3.3. Let (x, n) be a semidiscrete surface with strip normal N and let π denote the
orthogonal projection onto the plane perpendicular to N , i.e., π(x) := x−〈x, N〉N . Mimicking
the smooth case, we define the fundamental forms I, II, III, and the shape operator S by

I :=
(
‖π(∂1x)‖2 〈π(∂1x), π(∂2x)〉
symm. ‖π(∂2x)‖2

)
, III :=

(
‖∂1n‖2 〈∂1n, ∂2n〉
symm. ‖∂2n‖2

)
,

II := −
(
〈∂1x, ∂1n〉 〈∂1x, ∂2n〉
〈∂2x, ∂1n〉 〈∂2x, ∂2n〉

)
, S := I−1 II .

The following observation is crucial for the definition of the mean and Gauß curvatures via
the shape operator.

Lemma 3.1. If the pair (x, n) is coupled, the second fundamental form II is symmetric.

Proof. Differentiating the equation 〈δx, n + n1〉 = 0 yields 〈δx, ∂n + ∂n1〉 = −〈∂δx, n + n1〉.
Using the assumptions ∂x ⊥ n and ∂x1 ⊥ n1 completes the proof. �

Symmetry of the second fundamental form is equivalent to the selfadjointness of the shape
operator S w.r.t. the inner product induced by the first fundamental form. In case of symmetry,
the eigenvalues of S are real.

Definition 3.4. Let (x, n) be a coupled semidiscrete surface and let κ1, κ2 ∈ R be the eigenvalues
of the shape operator S. Then the mean curvature H and the Gauß curvature K are defined as

H :=
1
2

tr(S) =
κ1 + κ2

2
and K := det(S) =

det II
det I

= κ1κ2.

Another approach toward a meaningful curvature theory for discrete or semidiscrete sur-
faces uses the concept of offsets and their connection to the mean and Gauß curvatures via the
Steiner formula. This viewpoint has already been examined, e.g., by Bobenko et al. [8] in the
purely discrete setting, and by Karpenkov and Wallner [22] in the semidiscrete case. We are
going to demonstrate that the curvatures given in Definition 3.4 can just as well be gained via
the Steiner formula. First we note that coupled semidiscrete surfaces naturally feature offsets.

Lemma 3.2. A pair of semidiscrete surfaces (x, n) is coupled if and only if for some (and
hence for all) r ∈ R the offset (xr, n) := (x + r n, n) is coupled.

Proof. Since n ∈ S2, we have 〈∂xr, n〉 = 〈∂x, n〉 and 〈δxr, n + n1〉 = 〈δx, n + n1〉, for all
r ∈ R. �
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The relation between offsets and curvatures is established by the so-called mixed area
form. The following definition is motivated by the work of Hoffmann et al. [20]. Also note
the similarities to the mixed area form for parallel conjugate semidiscrete surfaces previously
investigated by Karpenkov and Wallner [22].

Definition 3.5. For two semidiscrete surfaces (x, n), (y, n) with the same Gauß map n and
strip normal N , the mixed area form is given by

A(x, y) :=
1
2
(

det(∂1x, ∂2y, N ) + det(∂1y, ∂2x, N )
)
=

=
1
4
(

det(δx, ∂y + ∂y1, N ) + det(δy, ∂x + ∂x1, N )
)
.

It turns out that, for a coupled semidiscrete surface (x, n), the mean and Gauß curvatures
from Definition 3.4 can be expressed in terms of the mixed area forms of the parametrization
x and its Gauß map n in a way completely analogous to the smooth setting. In particular, this
observation shows that the curvatures given in Definition 3.4 coincide with those discussed by
Karpenkov and Wallner [22] in the case of circular surfaces (see Definition 3.6).

Lemma 3.3. Let (x, n) be a coupled semidiscrete surface, then

(i) det I = A(x, x)2, (ii) K =
A(n, n)
A(x, x)

, (iii) H = −
A(x, n)
A(x, x)

, (iv) III−2H II+K I = 0.

Proof. (i) We have

det I = ‖π(∂1x) × π(∂2x)‖2 = det(π(∂1x), π(∂2x), N )2 = det(∂1x, ∂2x, N )2 = A(x, x)2.

(ii) Using the Binet-Cauchy identity, we compute

det II = 〈π(∂1x) × π(∂2x), ∂1n× ∂2n〉 = det(π(∂1x), π(∂2x), N )‖∂1n× ∂2n‖ = A(x, x)A(n, n).

(iii) Likewise, we obtain

A(x, n) =
1
2
(

det(π(∂1x), ∂2n, N ) + det(∂1n, π(∂2x), N )
)
=

=
1

2A(x, x)

(
‖π(∂1x)‖2〈π(∂2x), ∂2n〉−〈π(∂1x), π(∂2x)〉〈π(∂1x), ∂2n〉+

+‖π(∂2x)‖2〈π(∂1x), ∂1n〉−〈π(∂1x), π(∂2x)〉〈π(∂2x), ∂1n〉
)
= −

A(x, x)
2

tr(S).

(iv) By the Cayley-Hamilton theorem S2 − tr(S)S + det(S)E = 0, which yields the last
equation. �

Corollary 3.1 (Semidiscrete Steiner formula). Let (x, n) be a coupled semidiscrete surface
with offset (xr, n) = (x + r n, n), r ∈ R. Then,

A(xr, xr ) = (1 − 2Hr + Kr2)A(x, x).

Next, we recapitulate the notion of semidiscrete isothermic parametrizations.
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3.3 Semidiscrete isothermic surfaces
A smooth parametrization is called isothermic, if it is a conformal curvature line parametriza-
tion, possibly upon a reparametrization of independent variables.

A discrete analog of curvature line parametrizations is given, for example, by circular nets,
i.e., quadrilateral meshes with the property that each face possesses a circumcircle. They have
been the topic of various contributions from the perspective of discrete differential geometry
and integrable systems (see, e.g., [6, 12, 23, 5, 10]). Among all quadrilateral meshes, circular
nets are the only ones which posses nontrivial vertex offsets, i.e., parallel meshes at constant
vertexwise distance (cf. Pottmann et al. [30]). In particular, choosing an arbitrary offset
direction resp. normal vector at one vertex determines the normal vectors at all other vertices.

The following semidiscrete version of circular nets was first investigated by Pottmann et
al. [31]. They can be understood as semidiscrete curvature line parametrizations in exactly the
same manner as their purely discrete counterparts.

Definition 3.6. A semidiscrete surface (x, n) is called circular, if

(a) for each corresponding pair of points x, x1 there is a circle C passing through these
points and being tangent to ∂x, ∂x1 there, and

(b) the Gauß map n is parallel to x, i.e., δn ‖ δx and ∂n ‖ ∂x throughout.

Remark 3.1. Similar to the discrete case, a parallel Gaußmap n of a semidiscrete surface x with
the property (a) is completely determined by choosing one normal vector n(k0, t0) arbitrarily
in S2 ∩ ∂x(k0, t0)⊥ (see Karpenkov and Wallner [22, Theorem 1.12]). Due to the parallelity
(b), the Gauß map n also enjoys the property (a), and the pair (x, n) is coupled.
Remark 3.2. For planar semidiscrete surfaces x : D → R2 � C, circularity is equivalent to the
existence of a function s : D → R∗, with

δx = is
(
∂x
‖∂x‖

+
∂x1
‖∂x1‖

)
.

We adopt the following definition of semidiscrete isothermic surfaces from Müller and
Wallner [27].

Definition 3.7. A circular semidiscrete surface (x, n) is called isothermic, if there exist positive
semidiscrete functions ν, σ, and τ, such that

‖δx‖2 = σνν1, ‖∂x‖2 = τν2, and ∂σ = δτ = 0.

An isothermic function g : D → C is called holomorphic.

In analogy to the smooth and purely discrete settings, for circular semidiscrete surfaces
x, isothermicity is equivalent to the existence of a Christoffel dual (see Müller and Wallner
[27, Theorem 11]). Recall that a semidiscrete surface x is called conjugate, if {δx, ∂x, ∂x1} is
linearly dependent throughout.
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Definition 3.8. Two conjugate semidiscrete surfaces x, x∗ are dual to each other, if there exists
a positive semidiscrete function ν, such that

δx∗ =
1
νν1

δx and ∂x∗ = −
1
ν2 ∂x.

In this case, x∗ is called the Christoffel dual of x.

Remark 3.3. Using the notation of Definition 3.7, dual semidiscrete surfaces x, x∗ fulfill

δx∗ =
σ

‖δx‖2
δx, ∂x∗ = −

τ

‖∂x‖2
∂x, and A(x, x∗) = 0.

3.3.1 Quaternionic description of semidiscrete isothermic surfaces
Here we provide a characterization of semidiscrete isothermic surfaces in terms of quaternions,
which we will use for the study of cmc surfaces. In particular, we demonstrate that, similar to
the discrete situation, a semidiscrete surface is isothermic if and only if its cross ratio allows
for a specific factorization.

Consider the algebra of quaternions H equipped with the basis {1, i, j, k}, where ij = k,
jk = i, ki = j. Using the standard matrix representation of H, this basis is related to the Pauli
matrices σ1, σ2, σ3 via

1 =
(
1 0
0 1

)
, i = −iσ1 =

(
0 −i
−i 0

)
, j = −iσ2 =

(
0 −1
1 0

)
, k = −iσ3 =

(
−i 0
0 i

)
,

where i =
√
−1 ∈ C. We embed R3 into H by

p = (p1, p2, p3)T ∈ R3 ←→ p = p1 i+ p2 j+ p3 k =
(
−ip3 −ip1 − p2

−ip1 + p2 ip3

)
∈ ImH. (3.2)

Then, the scalar product is expressed as 〈p, q〉 = −1
2 tr(pq).

The identification (3.2) can be used to define a cross ratio of four possibly non-coplanar
points in three-dimensional space up to inner automorphisms. It is known that discrete
isothermic surfaces can be defined by the property that the cross ratio of each face allows for a
special factorization (cf. Bobenko and Pinkall [6]). We are going to analyze how this property
translates to the semidiscrete case.

Definition 3.9. For a semidiscrete surface x in R3 � ImH, we define the function Q[x] : D →
H via

Q[x] := (∂x)(δx)−1(∂x1)(δx)−1,

and call the unordered pair {
q[x], q̄[x]

}
:= Re Q[x] ± i ‖Im Q[x]‖

the cross ratio of x.
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The cross ratio of four points in R3 is known to be Möbius invariant (see, e.g., Bobenko
and Pinkall [6, Lemma 1]). By a limit argument this property immediately carries over to q[x],
q̄[x]. Another important feature is that the cross ratio of four points is real if and only if they
lie on a circle. An analogous property holds in the semidiscrete case.

Lemma 3.4. A semidiscrete surface x is circular if and only if its cross ratio is real. In this
case, the vectors ∂x, ∂x1 lie to the same side of the line spanned by δx if and only if Q[x] < 0.

Proof. At each point (k, t) ∈ D there is a Möbius transformation µ, such that x
µ
7−→ (0, 0, 0)T ,

x1
µ
7−→ (1, 0, 0)T = i, and ∂x

dµ
7−−→ (0, 1, 0)T = j. Thus, by the Möbius invariance of the cross

ratio, we have

Re Q[x] = Re
(
ji−1∂(µ ◦ x)1i−1

)
= Re

(
ij∂(µ ◦ x)1i−1

)
=

= Re
(
j∂(µ ◦ x)1

)
= − 〈∂(µ ◦ x), ∂(µ ◦ x)1〉 ,

‖ Im Q[x]‖ = Im
(
j∂(µ ◦ x)1

) = ‖∂(µ ◦ x) × ∂(µ ◦ x)1‖ .

Hence, the cross ratio is real iff ∂(µ◦ x) ‖ ∂(µ◦ x)1, which means that the the vector ∂(µ◦ x)1
anchored at µ(x1) is tangent to the circle defined by µ(x), µ(x1), and ∂(µ ◦ x). Moreover, the
cross ratio is negative iff the vectors ∂(µ ◦ x) and ∂(µ ◦ x)1 point to the same direction. By
applying the inverse Möbius transformation µ−1, the statement follows immediately. �

The following lemma provides us with a characterization of semidiscrete isothermic sur-
faces in terms of their cross ratios.

Lemma 3.5. A semidiscrete surface x is isothemic if and only if there exist positive semidiscrete
functions σ and τ, such that

Q[x] = −
τ

σ
and ∂σ = δτ = 0.

In this case, Q[x] = − ‖∂x‖‖∂x1‖
‖δx‖2 .

Proof. Let x be an isothermic semidiscrete surface with ν, σ, and τ as in Definition 3.7.
Moreover, for each fixed (k, t) ∈ D, let the Möbius transformation µ be defined by x

µ
7−→

(0, 0, 0)T , x1
µ
7−→ (1, 0, 0)T , and ∂x

dµ
7−−→ (0, 1, 0)T . Then, for each µ, there exists ρ > 0, such that

‖µ(x) − µ(y)‖2 = ρ(x)ρ(y)‖x − y‖2, for all x, y ∈ R3. This also implies that ‖dxµ(v)‖2 =
ρ(x)2‖v‖2, for a tangent vector v attached to x. Thus, 1 = ‖µ(x)−µ(x1)‖2 = ρ(x)ρ(x1)‖δx‖2,
and by the previous lemma we get

Q[x] = −〈∂(µ ◦ x), ∂(µ ◦ x)1〉 = −‖∂(µ ◦ x)‖‖∂(µ ◦ x)1‖ = −
‖∂x‖‖∂x1‖

‖δx‖2
= −

τ

σ
.

Conversely, assume that Q[x] = − τ
σ , with ∂σ = δτ = 0. By the previous lemma x is

circular and the vectors ∂x, ∂x1 lie to the same side of the line spanned by δx. Hence, by
the observations above, we have ‖∂x‖‖∂x1‖

‖δx‖2 = −Q[x] = τ
σ . Setting ν := 1√

τ
‖∂x‖ completes the

proof. �
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3.4 Semidiscrete minimal surfaces
Smooth minimal surfaces in R3 can be defined in several equivalent ways, e.g., by locally
minimizing the surface area or by having vanishing mean curvature. An isothermic mimimal
surface is determined by the property of being Christoffel dual to its Gauß map, giving
rise to their well known Weierstraß-Enneper representation. This section is concerned with
semidiscrete minimal surfaces, which do not fully enjoy these properties.

Definition 3.10. A coupled semidiscrete surface (x, n) is called minimal, if its mean curvature
H vanishes identically.

It has already been noted byMüllner andWallner [27] that semidiscrete isothermicminimal
surfaces are Christoffel dual to their Gauß map. Similar to the smooth case, this observation
leads to a Weierstraß type representation, as demonstrated by Rossman and Yasumoto [34]. In
turn, this representation gives rise to a one-parameter family of associated surfaces. These are
however no longer isothermic, which has made it difficult to understand their minimality in the
discrete and semidiscrete settings so far.

Let us recall the Weierstraß representation. Let g : Z × R ⊇ D → C be a semidiscrete
holomorphic function with νg, σg, and τg as in Definition 3.7. It is straightforward to show
that the composition of g with the inverse of the stereographic projection, given by

n :=
1

|g |2 + 1
(
2 Re(g), 2 Im(g), |g |2 − 1

)T,

is isothermic with ν = 2νg
|g |2+1 , τ = τg, and σ = σg. Now, the Christoffel dual x of n is uniquely

determined, up to translation, as solution of the system

δx =
σ

‖δn‖2
δn and ∂x = −

τ

‖∂n‖2
∂n.

We see immediately that A(x, n) = 0, so the semidiscrete surface (x, n) is minimal.
Moreover, it has been verified by Rossman and Yasumoto [34] that any semidiscrete isothermic
minimal surface can be described in this way by some semidiscrete holomorphic function g.

As already mentioned before, the Weierstraß representation immediately gives rise to the
associated family of an isothermic minimal surface.

Definition 3.11. Let (x, n) be a semidiscrete isothermicminimal surface arising froma semidis-
crete holomorphic function g with σ and τ as in Definition 3.7. Then, the associated family
(xα, n), α ∈ R, of (x, n) is defined, up to translation, as solution of the system

δxα =
σ

2
Re(λφ), with φ :=

1
δg

(
1 − gg1, i(1 + gg1), g + g1

)T, and

∂xα = −
τ

2
Re(λψ), with ψ :=

1
∂g

(
1 − g2, i(1 + g2), 2g

)T, where λ := eiα .
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Lemma 3.6. For every semidiscrete isothermic minimal surface (x, n) the members of its
associated family (xα, n) are well defined and coupled.

Proof. To show the existence of xα, we check the compatibility condition ∂(δxα) = δ(∂xα).
Using the abbreviation

ω :=
(
g2∂g1 − g

2
1∂g − ∂δg, i(g2

1∂g − g
2∂g1 − ∂δg), 2(g1∂g − g∂g1)

)T
,

and the fact that ∂σ = δτ = 0, one can compute

∂
(
δxα

)
=
σ

2
Re

(
λ

(δg)2 ω

)
=

τ |δg |2

2|∂g | |∂g1 |
Re

(
λ

(δg)2 ω

)
=

=
τ

2
Re

(
λδḡ

|∂g | |∂g1 |δg
ω

)
(∗)
= −

τ

2
Re

(
λ

∂g∂g1
ω

)
= δ

(
∂xα

)
.

Note that the equality (∗) follows from the circularity of the mapping g (cf. Remark 3.2):

δḡ

|∂g | |∂g1 |δg
=

−is
(
∂ḡ
|∂g | +

∂ḡ1
|∂g1 |

)
|∂g | |∂g1 |is

(
∂g
|∂g | +

∂g1
|∂g1 |

) = − ∂ḡ
|∂g | +

∂ḡ1
|∂g1 |

∂g |∂g1 | + ∂g1 |∂g |
·
∂g∂g1
∂g∂g1

= −
1

∂g∂g1
.

Finally, direct computations show 〈∂xα, n〉 = 0 and 〈δxα, n〉 = −〈δxα, n1〉 = −
σ
2 Re(λ). This

concludes the proof. �

In order to show that the members of the associated family are indeed minimal, we
follow Hoffmann et al. [20]. The key observation is as follows: Consider an (infinitesimal)
quadrilateral of any member of such a family and orthogonally project it in direction of the face
normal N . Then the resulting (infinitesimal) quadrilateral is a rotated and scaled version of the
corresponding (infinitesimal) quadrilateral of the original isothermic surface (cf. Figure 3.1).
As a first step toward this result we provide a semidiscrete version of [20, Lemma 24].

Lemma 3.7. Let (xα, n) denote the associated family of a semidiscrete isothermic minimal
surface (x, n). Then, for each α ∈ R, we have

δxα =
‖δx‖2

σ

(
cos α δn − sin α δn × n

)
, and

∂xα = −
‖∂x‖2

τ

(
cos α ∂n − sin α ∂n × n

)
.

Proof. Lemma 3.6 implies δxα ⊥ (n + n1) and ∂xα ⊥ n. Hence, δxα is a linear combination
of δn and δn × n, whereas ∂xα is a linear combination of ∂n and ∂n × n. Moreover,

δxα =
σ

2
Re(λφ) =

σ

2
(

cos α Re(φ) − sin α Im(φ)
)
, and

∂xα = −
τ

2
Re(λψ) = −

τ

2
(

cos α Re(ψ) − sin α Im(ψ)
)
.
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x

∂x∂x

x1

∂x1

π(xα)π(xα)

π(∂xα)π(∂xα)

π(xα1 )π(xα1 )

π(∂xα1 )π(∂xα1 )

Figure 3.1: An infinitesimal quadrilateral {x, x1, ∂x, ∂x1} (black) of a semidiscrete isothermic
minimal surface and the corresponding projected infinitesimal quadrilateral {π(xα), π(xα1 ),
π(∂xα), π(∂xα1 )} (gray) of a member of the associated family.

Since by construction the surfaces (x, n) and (n, n) are dual to each other, we know that
Re(φ) = 2

σνν1
δn = 2

‖δn‖2 δn = 2‖δx‖2

σ2 δn and Re(ψ) = 2
τν2 ∂n = 2

‖∂n‖2 ∂n = 2‖∂x‖2

τ2 ∂n.

It remains to show that Im(φ) = 2‖δx‖2

σ2 (δn × n) and Im(ψ) = 2‖∂x‖2

τ2 (∂n × n). Firstly, it
is easy to verify that 〈φ, φ̄〉C3 = 1 and 〈ψ, ψ̄〉C3 = 0, which implies that Im(φ) and Im(ψ) are
perpendicular to Re(φ) and Re(ψ), respectively. Furthermore, we check that 〈Im(φ), n〉 = 0
and 〈Im(ψ), n〉 = 0, so Im(φ) ‖ δn × n and Im(ψ) ‖ ∂n × n. Finally, we compute

〈Im(φ), δn × n〉 = det(Im(φ), δn, n) = Im
(

det(φ, n1, n)
)
=

=
2( |g |2 |g1 |

2 + g1ḡ + gḡ1 + 1)
(1 + |g |2)(1 + |g1 |2)

= 2 −
2|δg |2

(1 + |g |2)(1 + |g1 |2)
=

= 2 −
‖δn‖2

2
=
‖n1 + n‖2

2
=

2‖δn × n‖2

‖δn‖2
=

2‖δx‖2

σ2 ‖δn × n‖2,

〈Im(ψ), ∂n × n〉 = det(Im(ψ), ∂n, n) =
2|∂g |2

(1 + |g |2)2 det(Im(ψ),Re(ψ), n) =

=
|∂g |2

(1 + |g |2)2 Im
(

det(ψ, ψ̄, n)
)
= 2,

where we have used the fact that n maps to S2. Thus, we have Im(φ) = 2‖δx‖2

σ2 (δn × n) and
Im(ψ) = 2

‖∂n×n‖2 (∂n × n) = 2
‖∂n‖2 (∂n × n) = 2‖∂x‖2

τ2 (∂n × n). This concludes the proof. �

The rotation property mentioned above is stated as follows:

Lemma 3.8. Let (xα, n) be the associated family of a semidiscrete isothermic minimal surface
(x, n) and let π denote the orthogonal projection in direction of the strip normal N . Then, for
all α, the infinitesimal quadrilateral {π(xα), π(xα1 ), π(∂xα), π(∂xα1 )} is a rotated and scaled
version of the infinitesimal quadrilateral {x, x1, ∂x, ∂x1} (cf. Figure 3.1).
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Proof. By the previous lemma,

π(δxα) =
‖δx‖2

σ

(
cos α δn − sin α π(δn × n)

)
, and

π(∂xα) = −
‖∂x‖2

τ

(
cos α ∂n − sin α π(∂n × n)

)
.

The orthogonality π(δn × n) ⊥ δn implies

‖π(δxα)‖2 =
‖δx‖4

σ2
(

cos(α)2‖δn‖2 − sin(α)2‖π(δn × n)‖2
)
=

=
‖δx‖4

σ2
(

cos(α)2‖δn‖2 − sin(α)2 cos(µ)2‖(δn × n)‖2
)
=

= ‖δx‖2
(

cos(α)2 − sin(α)2 cos(µ)2
n + n1

2


2)
= ‖δx‖2

(
cos(α)2 − sin(α)2d2),

where µ := ∠(δn × n, π(δn,×n)) = ∠( n+n1
2 , N ), and d denotes the distance between the

origin and the center of the circle C determined by {n, n1, ∂n, ∂n1} in the same manner as in
Definition 3.6 (a). Likewise, π(∂n × n) ⊥ ∂n implies

‖π(∂xα)‖2 =
‖∂x‖4

τ2
(

cos(α)2‖∂n‖2 − sin(α)2‖π(∂n × n)‖
)
=

=
‖∂x‖4

τ2
(

cos(α)2‖∂n‖2 − sin(α)2 cos(ξ)2‖∂n × n‖2
)
=

= ‖∂x‖2
(

cos(α)2 − sin(α)2 cos(ξ)2‖n‖2
)
= ‖∂x‖2

(
cos(α)2 − sin(α)2d2),

where ξ := ∠(∂n × n, π(∂n × n)) = ∠(n, N ). Analogously, we obtain

‖π(∂xα1 )‖2 = ‖∂x1‖
2 ( cos(α)2 − sin(α)2d2) .

Finally, we observe that

〈π(δxα), δx〉
‖π(δxα)‖‖δx‖

=
〈π(∂xα), ∂x〉
‖π(∂xα)‖‖∂x‖

=
〈π(∂xα1 ), ∂x1〉

‖π(∂xα1 )‖‖∂x1‖
=

cos(α)√
cos(α)2− sin(α)2d2

.

Thus, the infinitesimal quadrilateral {π(xα), π(xα1 ), π(∂xα), π(∂xα1 )} arises from the infinites-
imal quadrilateral {x, x1, ∂x, ∂x1} by scaling with factor ρα and rotating by the angle θα, with

ρα =

√
cos(α)2 − sin(α)2d2 and cos θα =

cos α
ρα

. �

We are now able to prove the main result of the present section.

Theorem 3.1. Every member (xα, n) of the associated family of a semidiscrete isothermic
minimal surface (x, n) is minimal, i.e., has vanishing mean curvature.
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Proof. Recall that the rotation by an angle θ about the axis in direction of N can be written as

RN,θ (x) = 〈N, x〉N + cos θ (N × x) × N + sin θ N × x.

According to Lemma 3.8, we thus have

π(δxα) = ραRN,θα (δx) = ρα
(

cos θα δx + sin θα N × δx
)
, and

π(∂xα + ∂xα1 ) = ραRN,θα (∂x + ∂x1) = ρα
(

cos θα (∂x + ∂x1) + sin θα N × (∂x + ∂x1)
)
.

Since

N × δx =
1

‖δn× (∂n+ ∂n1)‖

(
〈δx, δn〉(∂n + ∂n1) − 〈δx, ∂n + ∂n1〉δn

)
,

N × (∂x + ∂x1) =
1

‖δn× (∂n+ ∂n1)‖

(
〈δn, ∂x + ∂x1〉(∂n + ∂n1) − 〈∂n + ∂n1, ∂x + ∂x1〉δn

)
,

the term 4A(xα, n) = det
(
π(δxα), ∂n + ∂n1, N

)
+ det

(
δn, π(∂xα + ∂xα1 ), N

)
vanishes for all

α ∈ R if and only if A(x, n) = 0 and 〈δx, ∂n + ∂n1〉 = 〈δn, ∂x + ∂x1〉. Both equations hold
since (x, n) is an isothermic minimal surface (cf. Remark 3.3 and Lemma 3.1). �

In the smooth setting, the Gauß curvature of the members of the associated family of a
minimal surface is independent of the parameter α as well. This is no longer the case in the
discrete and semidiscrete situations.

Lemma 3.9. Under the assumptions of Theorem 3.1, the Gauß curvature Kα of (xα, n) obeys

Kα =
K0

cos(α)2 + sin(α)2d2 ,

where d is the distance between the origin and the center of the circle C determined by
{n, n1, ∂n, ∂n1}.

Proof. From the proof of Lemma 3.8 it follows that A(xα, xα) = ρ2
αA(x, x), with ρ2

α =

cos(α)2 + sin(α)2d2. �

We conclude this section by proving that the conjugate surface (xπ/2, n) of a semidiscrete
isothermic minimal surface (x, n) is an asymptotic parametrization, in analogy to the smooth
and discrete cases. Semidiscrete asymptotic parametrizations have been studied, e.g., by
Wallner [40]. Here, the notation x1̄ indicates an index shift in the opposite direction: x1̄(k, t) :=
x(k − 1, t).

Lemma 3.10. Let (x, n) be a semidiscrete isothermic minimal surface with associated family
(xα, n). Then, the conjugate surface (xπ/2, n) is an asymptotic parametrization, i.e., the vectors

∂xπ/2, ∂2xπ/2, δxπ/2 = xπ/21 − xπ/2, and δxπ/2
1̄
= xπ/2 − xπ/2

1̄

lie in a plane with unit normal vector n.
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α = 0
α = π

4

α = π
2

Figure 3.2: A semidiscrete helicoid (left) and two members of its associated family. The
corresponding semidiscrete holomorphic function g described in Example 3.1 takes r =

√
2,

β = π/4, and ϕ = π/8 as parameters. For α = π/2 we obtain a semidiscrete asymptotic
parametrization of a catenoid (right).

Proof. From Lemma 3.7, we have

δxπ/2 = −
‖δx‖2

σ
δn × n and ∂xπ/2 =

‖∂x‖2

τ
∂n × n.

The computation ∂2xπ/2 = ∂
(
‖∂x‖2
τ

)
∂n × n + ‖∂x‖2

τ (∂2n) × n concludes the proof. �

Example 3.1. As an example we investigate the associated family of a semidiscrete helicoid
(cf. Figure 3.2). In classical differential geometry, an isothermic parametrization of the helicoid
is gained from the Weierstraß data f (z) = 1/(1 + i) and g(z) = exp((1 + i)z). Its conjugate
surface is an asymtotically parametrized catenoid. A semidiscrete analog of the holomorphic
map z 7→ exp(az), a ∈ C, has been proposed by Müller [26, Theorem 7] and is given by

g(k, t) = exp
(
r exp(i β)t + (iϕ + log µ)k

)
,

with r ∈ R+, β ∈ R, and ϕ ∈ R∗, such that µ := cos(β+ϕ/2)
cos(β−ϕ/2) > 0. It is straightforward to check

that g is holomorphic with

νg = µ
k exp(r cos(β)t), σg =

2 sin(ϕ)2

cos(2β) + cos(ϕ)
, and τg = r2.
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3.5 Semidiscrete cmc surfaces
This section focuses on semidiscrete cmc surfaces, which enjoy non-zero constant mean
curvature. In contrast to minimal surfaces, isothermic cmc surfaces are characterized by
having a Christoffel dual at constant distance. This observation immediately follows from the
fact that, in agreement with the smooth case, cmc surfaces are linear Weingarten surfaces.

Lemma 3.11. Let (x, n) be coupled. Then, the mean and Gauß curvatures of the offsets
(xr, n) = (x + r n, n), r ∈ R, are given by

Hr =
H − Kr

1 − 2Hr + Kr2 and Kr =
K

1 − 2Hr + Kr2 .

If H = const. , 0, (xr, n) is a linear Weingarten surface, i.e., there exist a, b ∈ R only
depending on r and H , such that aHr + bKr = 1. An analogous result applies to constant
Gauß curvature surfaces.

Proof. In case H = const. , 0, we set a := 1
H − 2r and b := r

H − r2. If K = const. , 0, we set
a := −2r and b := 1

K − r2. �

Corollary 3.2. If the surface (x, n) has constant mean curvature H = 1
h , then the offset

(xh, n) = (x+h n, n) has constant mean curvature Hh = −H , and the central surface (xh/2, n) =
(x + h

2 n, n) has constant positive Gauß curvature Kh/2 = 4H2.

Corollary 3.3. For a coupled semidiscrete surface (x, n) and its offset ( x̂, n) := (x + n, n), we
have the equivalence

A(x, x̂) = 0 ⇐⇒ H = −
A(x, n)
A(x, x)

= 1 ⇐⇒ Ĥ = −
A( x̂, n)
A( x̂, x̂)

= −1.

We dedicate the rest of this paper to the description of semidiscrete isothermic cmc surfaces
in terms of a pair of linear first-order matrix partial differential equations called a Lax pair.
Similar to the case of minimal surfaces, this representation directly includes the definition of a
one-parameter family of associated surfaces. We consider only the case H = ±1, since it can
always be achieved by scaling.

3.5.1 The Lax pair representation of smooth cmc surfaces
We briefly recapitulate the smooth situation. For details see Bobenko [4] or Fujimori et al.
[19]. Consider a smooth conformal immersion

x : C ⊇ D → R3 : z → x(z),

with complex coordinate z = s + it. Conformality means that

〈∂z x, ∂z x〉 = 〈∂z̄ x, ∂z̄ x〉 = 0
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throughout the parameter domain, where 〈·, ·〉 denotes the bilinear complex extension of the
standard Euclidean inner product and ∂z, ∂z̄ are the Wirtinger derivatives ∂z =

1
2 (∂s − i∂t ) and

∂z̄ =
1
2 (∂s + i∂t ).

As initiated in Section 3.3.1, we identify R3 with the set of purely imaginary quaternions
ImH. Thereby, rotating a point x ∈ R3 translates to the conjugation of x ∈ ImH by a unit
quaternion q. In the matrix representation of H, the set of unit quaternions {q ∈ H : ‖q‖ = 1}
coincides with the Lie group SU2 = {A ∈ C2×2 : AH = A−1, det(A) = 1}. The corresponding
Lie algebra is su2 = {A ∈ C2×2 : AH = −A, tr(A) = 0}. In this manner, SU2 is a double
covering of SO3, which we identify with the set of positively oriented orthonormal frames.

Now, let Ψ = Ψ(z) ∈ SU2 represent the frame
( ∂s x
‖∂s x‖ ,

∂t x
‖∂t x‖ , n

)T
∈ SO3, where n =

∂s x×∂t x
‖∂s x×∂t x‖ . Then,

∂s x = eu/2
Ψ
−1iΨ, ∂t x = eu/2

Ψ
−1jΨ, and n = Ψ−1kΨ, (3.3)

with eu = 2〈∂z x, ∂z̄ x〉. It turns out that the frame Ψ moves according to

∂zΨ = *
,

∂zu
4 −Qe−u/2

1
2 Heu/2 −

∂zu
4

+
-
Ψ, ∂z̄Ψ = *

,
−
∂z̄u
4 −1

2 Heu/2

Q̄e−u/2 ∂z̄u
4

+
-
Ψ, (3.4)

where the so-called Hopf differential Q and the mean curvature H satisfy Q = 〈∂z∂z x, n〉 and
1
2 Heu = 〈∂z∂z̄ x, n〉. The integrability condition of this system, i.e., ∂z (∂z̄Ψ) = ∂z̄ (∂zΨ), is
equivalent to

∂z∂z̄u = 2QQ̄e−u −
1
2

H2eu and ∂z̄Q =
1
2

eu∂z H . (3.5)

Thus, if we assume constant mean curvature, the Hopf differential is holomorphic. If in
addition the surface has no umbilic points, then Q , 0 and we can achieve that Q = const. , 0
by a holomorphic change of coordinates. Moreover, Equations (3.5) then are invariant with
respect to the transformation Q 7→ ΛQ, with Λ = e2iα, α ∈ R. In particular, we may assume
that the Hopf differential is real, in which case x is isothermic. By integrating Equations (3.4)
and (3.3) with Q replaced by ΛQ, we obtain a one-parameter family of surfaces xα with the
same constant mean curvature.

Remarkably, the solution xα of the system (3.3) can be obtained without integration, by a
formula first suggested by Sym [38] for K-surfaces and later translated by Bobenko [3, 4] to
numerous other cases, including cmc surfaces in various space forms. Indeed, for any solution
Ψ = Ψ(z, α) of the system (3.4) with Q replaced by ΛQ, the parametrization

xα := −
1
H
Ψ
−1 ∂

∂α
Ψ + Ψ−1kΨ,

describes a cmc surface with metric eu, mean curvature H , and Hopf differential ΛQ (see [4,
Theorem 5]).
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For the sake of simplicity, we henceforth assume without loss of generality that H = 1 and
Q = 1/2. Furthermore, we introduce the gauge equivalent frame

Ψ̃ :=
(
e−iα/2 0

0 eiα/2

)
Ψ = *

,

1√
λ

0
0
√
λ

+
-
Ψ, with λ :=

√
Λ = eiα .

Using the relations ∂s = ∂z + ∂z̄ and ∂t = i(∂z − ∂z̄), the frame equations (3.4) with H = 1 and
Q = Λ/2 translate to

∂sΨ̃ = U Ψ̃, withU =
1
2

*
,
−i ∂tu2 − eu/2

λ −
λ

eu/2

λeu/2 + 1
λeu/2 i ∂tu2

+
-
, and

∂tΨ̃ = VΨ̃, withV =
1
2

*
,

i ∂su2 − iλ
eu/2 +

ieu/2
λ

iλeu/2 − i
λeu/2 −i ∂su2

+
-
.

Here, the integrability condition ∂s (∂tΨ̃) = ∂t (∂sΨ̃) ⇐⇒ ∂sV + VU = ∂tU + UV is
equivalent to the elliptic sinh-Gordon equation:

−∂ssu − ∂ttu = 4 sinh(u).

Finally, we note that the matricesU andV belong to the loop algebra

Λsu2 := {A : S1 → su2 : A(−λ) = σ3 A(λ)σ3},

and accordingly Ψ̃ lies in the corresponding loop group

ΛSU2 := {A : S1 → SU2 : A(−λ) = σ3 A(λ)σ3}.

The condition A(−λ) = σ3 A(λ)σ3 states that the elements of ΛSU2 and Λsu2 have even
functions of λ on their diagonals and odd functions of λ on their off-diagonals.

3.5.2 A Lax pair representation of semidiscrete cmc surfaces
As demonstrated by Bobenko and Pinkall [7], the observations above can be utilized to derive
a Lax pair representation of discrete isothermic cmc surfaces along with their associated
families. However, only recently it has been verified by Hoffmann et al. [20] that the members
of these associated families, which are no longer isothermic, indeed have the same constant
mean curvature. In this subsection we explore similar results for semidiscrete surfaces.

Mimicking the smooth and discrete cases, we seek a solution Φ(k, t, α) ∈ ΛSU2 of the
system

Φ1 = UΦ, ∂Φ = VΦ, Φ(0, 0, α) = 1, (3.6)

with the Lax matrices

U :=
1
η

(
a i

uλ − iuλ
iλ
u −

iu
λ ā

)
∈ ΛSU2, V :=

1
ϑ

(
ib 1

vλ + vλ

− λv −
v
λ −ib

)
∈ Λsu2, (3.7)



68 3 Semidiscrete constant mean curvature surfaces and their associated families

where λ := eiα, α ∈ R, a : Z × R → C, b, ϑ : Z × R → R, u, v : Z × R → R+, and
η2 := |a |2 + u2 + u−2 − λ2 − λ−2, such that det(U) = 1.

The compatibility condition ∂(δΦ) = δ(∂Φ) of the system (3.6) is equivalent to

∂U +UV = V1U, (3.8)

which expands to

∂η = δϑ = 0, u2 = vv1,

iϑ∂u + (b1 + b)u = av − āv1, and

iϑ∂a + (b1 − b)a = uv + uv1 −
1

uv
−

1
uv1

.

(3.9)

To resolve the relation u2 = vv1, we introduce a function w : Z × R → R and set v = e2w

and u = ew+w1 . Then, taking the real resp. imaginary parts of the Equations (3.9) leads to
Im(a) = ϑ(∂w+∂w1)

2 cosh(w−w1) , b1 = 2 Re(a) sinh(w − w1) − b, ∂ Re(a) = − Im(a)
ϑ (b1 − b), and

−ϑ∂ Im(a) + (b1 − b) Re(a) = 2 sinh(3w + w1) + 2 sinh(w + 3w1),

which is a semidiscrete version of the elliptic sinh-Gordon equation. The analogy to the smooth
case is not obvious at first glance. For a purely discrete version of this equation we refer to
Pedit and Wu [28, Theorem 4.1].

As in the smooth and discrete cases, we use the Sym-Bobenko formula to gain a parametriza-
tion of the semidiscrete surface related to the frameΦ. In particular, we are going to investigate
the following three parallel surfaces.

Definition 3.12. Let Φ(k, t, α) ∈ ΛSU2, α ∈ R, be a solution of the system Φ1 = UΦ,
∂Φ = VΦ, Φ(0, 0, α) = 1, where U ∈ ΛSU2 and V ∈ Λsu2 are Lax matrices of the form (3.7)
satisfying the compatibility condition (3.8). Then, we define the following families of parallel
surfaces

x̌α := −Φ−1 ∂

∂α
Φ −

1
2

nα, xα := −Φ−1 ∂

∂α
Φ, x̂α := −Φ−1 ∂

∂α
Φ +

1
2

nα,

together with their common Gauß map nα := Φ−1kΦ.

We will see later (cf. Corollary 3.6) that, for α = 0, the surfaces ( x̌0, n0) and ( x̂0, n0)
constructed as in Definition 3.12 are Christoffel dual isothermic cmc surfaces. Consequently,
the families ( x̌α, nα) and ( x̂α, nα) represent their associated families.

At first we show that the pairs ( x̌α, nα), (xα, nα), and ( x̂α, nα) from Definition 3.12 are
coupled. In fact, we prove the following slightly more general result.

Lemma 3.12. Let Φ(k, t, α) ∈ SU2 be a moving frame defined by Φ1 = UΦ, ∂Φ = VΦ,
Φ(0, 0, α) = 1, whereU ∈ SU2 andV ∈ su2 satisfy the compatibility condition (3.8). Moreover,
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let p, q ∈ R be arbitrary coefficients. Then the semidiscrete surface (xα, nα) defined by the
Sym-Bobenko formula

xα := pΦ−1 ∂

∂α
Φ + qnα, nα := Φ−1kΦ,

fulfills the constraint (3.1) if and only if U satisfies U22
∂
∂αU11 = U11

∂
∂αU22, and V satisfies

tr( ∂
∂αVk) = 0, i.e., ∂

∂αV11 =
∂
∂αV22.

Proof. The condition δxα ⊥ (nα1 +nα) holds iff tr
(
(xα1 − xα)(nα+nα1 )

)
= 0. Thus, we compute

(xα1 − xα)nα = Φ−1
(
pU−1 ∂

∂α
U + qU−1kU − qk

)
ΦΦ

−1kΦ =

= Φ−1U−1
(
p
∂

∂α
U + qkU − qUk

)
kΦ, and

nα1 (xα1 − xα) = Φ−1
1 kΦ1Φ

−1
(
pU−1 ∂

∂α
U + qU−1kU − qk

)
Φ =

= Φ−1U−1k
(
p
∂

∂α
U + qkU − qUk

)
Φ.

Therefore, tr
(
(xα1−xα)(nα+nα1 )

)
= 0 ⇐⇒ tr

(
U−1( ∂

∂αUk + k ∂
∂αU)

)
= 0, which is equivalent

to U22
∂
∂αU11 = U11

∂
∂αU22.

To complete the proof, we show that tr(∂xα nα) = p tr
(
∂
∂αVk

)
. Since ‖nα‖2 =−1

2 tr(nα nα)
= 1, we have tr(∂nαnα) = 0. Moreover,

∂

(
Φ
−1 ∂

∂α
Φ

)
= ∂

(
Φ
−1

) ∂

∂α
Φ + Φ−1 ∂2

∂t∂α
Φ = (VΦ)H ∂

∂α
Φ + Φ−1 ∂

∂α
(VΦ) =

= Φ−1V H ∂

∂α
Φ + Φ−1 ∂

∂α
(V )Φ + Φ−1V

∂

∂α
Φ = Φ−1 ∂

∂α
(V )Φ,

where we have used that Φ−1 = ΦH and V H +V = 0. Hence, ∂xα ⊥ nα ⇐⇒ tr
(
∂
∂αVk

)
= 0.
�

Corollary 3.4. The semidiscrete surfaces from Definition 3.12 are coupled.

Proof. We have U22
∂
∂αU11 = U11

∂
∂αU22 = |a |2 ∂

∂α

(
1
η

)
, and ∂

∂αV11 =
∂
∂αV22 = 0. �

Themain result of the present section is that the surfaces ( x̌α, nα) and ( x̂α, nα) have constant
mean curvature in the sense of Definition 3.4.

Theorem 3.2. Let ( x̌α, nα) and ( x̂α, nα) be given as in Definition 3.12. Then, for every α ∈ R,
we have A( x̌α, x̂α) = 0 throughout the parameter domain.

Proof. The statement can be verified by direct computations. However, since the involved
expressions are rather lengthy, we defer the proof to the appendix (see Section 3.A). �
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Corollary 3.5. The semidiscrete surfaces ( x̌α, nα) and ( x̂α, nα) from Definition 3.12 have
constant mean curvatures Ȟ = 1 and Ĥ = −1, respectively. The central surface (xα, nα) has
constant Gauß curvature K = 4.

Just like in the smooth case, the surfaces ( x̌0, n0) and ( x̂0, n0) turn out to be isothermic and
dual to each other.

Lemma 3.13. Consider the families ( x̌α, nα), (xα, nα), and ( x̂α, nα) from Definition 3.12.
Then, for j ∈ Z, we have

Q
[
x̌ jπ/2] = Q

[
x̂ jπ/2] = −η2

ϑ2 ,

Q
[
x jπ/2] = −η2

ϑ2

(
v − (−1) jv−1

) (
v1 − (−1) jv−1

1

)
(
u + (−1) ju−1)2 ,

Q
[
n jπ/2] = −η2

ϑ2

(
v + (−1) jv−1

) (
v1 + (−1) jv−1

1

)
(
u − (−1) ju−1)2 .

Proof. Inserting the respective expressions derived in the proof of Theorem3.2 into the formula
for the cross ratio (cf. Definition 3.9) immediately yields the stated results. �

Corollary 3.6. For every fixed j ∈ Z, the semidiscrete surfaces ( x̌ jπ/2, n jπ/2) and ( x̂ jπ/2, n jπ/2)
are isothermic and dual to each other.

Proof. Isothermicity immediately follows from the previous lemma (cf. also Lemma 3.5).
Duality is a consequence of Theorem 3.2. �

3.6 Semidiscrete Delaunay surfaces and elliptic billiards
In this section we construct semidiscrete cmc surfaces of rotational symmetry with discrete
profile curves. For this purpose, we assume that the Lax matrices U and V of the form (3.7)
are independent of the continuous parameter t. In this case, the compatibility condition (3.8)
resp. the Equations (3.9) are given by

ϑ = const., u2 = vv1, Im(a) = 0,

(b1 − b) Re(a) = uv + uv1 −
1

uv
−

1
uv1

, and (b1 + b)u = Re(a)(v − v1).

To resolve the relation u2 = vv1, we introduce a function w : Z → R+ and set v = w2 and
u = ww1. Next we try to solve the resulting equations

(b1 − b) Re(a) = w3w1 + ww
3
1 −

1
w3w1

−
1

ww3
1
, (b1 + b)ww1 = Re(a)(w2 − w2

1)
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α = 0

α = π
6

α = π
3

α = π
2

Figure 3.3: A semidiscrete cylinder with radius r = 1/2 and three members of its associated
family. The parameters a = const. = 2

√
1 + 2/

√
5, w(0) = 1, b(0) = 0, and ϑ = 4 have been

chosen such that we get a periodic surface for α = π/2.

for the successors b1 and w1 of b and w, respectively. From the equation on the right hand side
we get b1 = Re(a)

w2−w2
1

ww1
− b. Inserting this expression into the left hand equation yields the

following condition for w1:

w4w6
1 +

(
w6 + Re(a)2w2)w4

1 + 2 Re(a)bw3w3
1 −

(
Re(a)2w4 + 1

)
w2

1 − w2 = 0.

Due to Descartes’ rule of signs there exists a unique positive solution w1 of the latter equation.
Hence, for any given sequence a : Z → R and initial values w(0) ∈ R+, b(0) ∈ R, the

values w(k) and b(k) can be determined recursively for all k ∈ Z+. In this way we obtain
Lax matricesU (k, α) and V (k, α) of the form (3.7) fulfilling the compatibility condition (3.8).
Consequently, there exists a solution Φ = Φ(k, t, α) of the corresponding system (3.6). Given
that Φ1 = UΦ and Φ(0, 0, α) = 1, we have

Φ(k, 0, α) = U (k − 1, α)U (k − 2, α) · · ·U (1, α)U (0, α).

Solving ∂Φ = VΦ finally yields

Φ(k, t, α) = exp
(
V (k, α)t

)
Φ(k, 0, α).

By inserting this frame into the Sym-Bobenko formula (see Definition 3.12), we obtain
semidiscrete Delaunay surfaces together with their associated families. For example, the initial
values w(0) = 1 and b(0) = 0 yield w(k) = 1 and b(k) = 0 for all k ∈ Z+. The corresponding
surfaces are semidiscrete cylinders with radius r = 1/2 (see Figure 3.3). By choosing b(0) , 0,
we obtain more general semidiscrete Delaunay surfaces (see Figure 3.4).
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α = 0

α = π
6

α = π
3 α = π

2

Figure 3.4: A semidiscrete unduloid (top left) and three members of its associated family. The
corresponding parameters are a = const. ≈ 6.29, w(0) = 1, b(0) = 2, and ϑ = 4

√
5. For

α = π/2 we obtain a semidiscrete nodoid (right).

0

1

1 b(0) = 0

0

1

1 b(0) = 1

0

1

1 b(0) = 2

0

1

1 b(0) = 8

Figure 3.5: Profile curves of semidiscrete rotational symmetric cmc surfaces for different
choices of the initial value b(0), which controls the oscillation of the meridean polygon. Here,
α = 0, a = const. = 10, and w(0) = 1.

0

1

1
b(0) = 8

0

1

1
b(0) = 4

0

1

1
b(0) = 2

0

1

1
b(0) = 1

Figure 3.6: Profile curves of semidiscrete rotational symmetric cmc surfaces for different
choices of the initial value b(0). Here, α = π/2, a = const. = 10, and w(0) = 1.
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0

1

1
a = (2, 2, 10, 10, 10, 10, 10, 10, 2, 2)

0

1

1
a = (2, 2, 2, 2, 10, 10, 20, 20, 10, 10, 2)

Figure 3.7: Profile curves of semidiscrete rotational symmetric cmc surfaces for different
values of the sequence a, which controls the step size of the polygon. Here, α = 0, w(0) = 1,
and b(0) = 2.

x̌0 x̌1

x̌2 x̌3
x̌4

x̂0 x̂1
x̂2

x̂3

x̂4

p0p0
p1p1

p2p2 p3p3 p4p4 p5p5θ η

F1 F2

x̌0

x̌1

x̌2

x̌3

x̌4
p0

p1

p2

p3p3

p4p4

p5

θ
η

Figure 3.8: Left: Profile curves of semidiscrete rotational symmetric cmc surfaces x̌ and x̂.
Right: An external elliptic billiard {pk }k∈Z. Each dotted triangle { x̌k, pk, pk+1} on the left is
mapped isometrically to the corresponding triangle on the right. However, for illustrational
reasons, the figure on the right hand side has been scaled up uniformly.

Observe that the initial value b(0) regulates the shape of the profile curve of the isothermic
rotational symmetric cmc surface gained for α = 0. Setting b(0) = 0 yields a straight line and
in the limit b(0) → ∞ we end up with consecutive half circles (cf. Figure 3.5). The resulting
surfaces are semidiscrete unduloids. Simultaneously, for α = π/2, we obtain the profile curves
of semidiscrete nodoids (cf. Figure 3.6).

Similarly, the sequence a : Z→ R can be used to regulate the spacing between the vertices
of the profile polygons. More precisely, the value a(k) is inversely proportional to the length
of the edge [x̌0(k, t), x̌0(k + 1, t)]. For an illustration see Figure 3.7.

It turns out that there exists a nice geometric construction of the profile curves of semidis-
crete rotational symmetric cmc surfaces. In fact, the discrete version of the classical Delaunay
rolling ellipse construction for cmc surfaces of revolution, described byBobenko et al. [8, §7.3],
also applies to the semidiscrete setting (cf. Figure 3.8). This has to be so, since for discrete
surfaces of rotational symmetry the mean curvature is independent of the angle of rotation
(see Bobenko et al. [8, §7.2]). For this reason the notions of discrete and semidiscrete mean
curvatures coincide in this particular case. For a comprehensive overview of mathematical
billiards we refer to Tabachnikov [39].
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3.A Appendix: Proof of Theorem 3.2

Here we provide the proof of Theorem 3.2. We show that the coupled semidiscrete surfaces
( x̌α, nα) and ( x̂α, nα) from Definition 3.12 satisfy A( x̌α, x̂α) = 0. Applying the Binet-Cauchy
identity to the determinants occurring in the mixed area form yields

A( x̌α, x̂α) = 0 ⇐⇒ 〈δ x̌α, δnα〉〈∂ x̂α + ∂ x̂α1 , ∂nα + ∂nα1 〉 −
− 〈δ x̌α, ∂nα + ∂nα1 〉〈∂ x̂α + ∂ x̂α1 , δnα〉 +
+ 〈δ x̂α, δnα〉〈∂ x̌α + ∂ x̌α1 , ∂nα + ∂nα1 〉 −
− 〈δ x̂α, ∂nα + ∂nα1 〉〈∂ x̌α + ∂ x̌α1 , δnα〉 = 0.

(3.10)

Moreover, we observe that, for every coupled semidiscrete surface (x, n), we have

〈δx, ∂n + ∂n1〉 = 〈∂x, n1〉 − 〈∂x1, n〉 = 〈∂x + ∂x1, δn〉.

Now, direct computations yield

δ x̌α =
1
η2Φ

−1
(
−i(2u−2 − λ2 − λ−2) −2ā 1

uλ
2a λ

u i(2u−2 − λ2 − λ−2)

)
Φ,

∂ x̌α =
2
vϑ
Φ
−1

(
0 iλ−1

iλ 0

)
Φ, ∂ x̌α1 =

2
v1ϑ1

Φ
−1U−1

(
0 iλ−1

iλ 0

)
UΦ,

and

δ x̂α =
1
η2Φ

−1
(
i(2u2 − λ2 − λ−2) −2āuλ

2a u
λ −i(2u2 − λ2 − λ−2)

)
Φ,

∂ x̂α = −
2v
ϑ
Φ
−1

(
0 iλ

iλ−1 0

)
Φ, ∂ x̂α1 = −

2v1
ϑ1
Φ
−1U−1

(
0 iλ

iλ−1 0

)
UΦ.

Further, for the Gauß map nα, we obtain

nα = Φ−1kΦ = Φ−1
(
−i 0
0 i

)
Φ,

nα1 = Φ
−1U−1kUΦ =

1
η2Φ

−1 *
,

−i |a |2 − i
(
uλ − 1

uλ

) (
λ
u −

u
λ

)
−2ā

(
uλ − 1

uλ

)
2a

(
u
λ −

λ
u

)
i |a |2 + i

(
λ
u −

u
λ

) (
uλ − 1

uλ

)+
-
Φ,

δnα =
2
η2Φ

−1 *
,

i
(
u2 + u−2 − λ2 − λ−2

)
ā

(
1

uλ − uλ
)

a
(

u
λ −

λ
u

)
−i

(
u2 + u−2 − λ2 − λ−2

)+
-
Φ,

∂nα1 = −
2i
ϑ1
Φ
−1U−1

(
0 v1λ +

1
v1λ

λ
v1
+

v1
λ 0

)
UΦ, ∂nα = −

2i
ϑ
Φ
−1

(
0 vλ + 1

vλ
λ
v +

v
λ 0

)
Φ.
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Next, we compute

U−1
(

0 iλ−1

iλ 0

)
U =

1
η2

*.
,

a
(

1
u − uλ2

)
− ā

(
1
u −

u
λ2

)
i ā2

λ + iλ
(

1
uλ − uλ

)2

ia2λ + i
λ

(
λ
u −

u
λ

)2
ā

(
1
u −

u
λ2

)
− a

(
1
u − uλ2

)+/
-
,

U−1
(

0 iλ
iλ−1 0

)
U =

1
η2

*.
,

a
(

1
uλ2 − u

)
− ā

(
λ2

u − u
)

iā2λ + i
λ

(
1

uλ − uλ
)2

i a2

λ + iλ
(
λ
u −

u
λ

)2
ā

(
λ2

u − u
)
− a

(
1

uλ2 − u
)+/

-
,

and observe that

iU−1
(

0 v1λ +
1
v1λ

λ
v1
+

v1
λ 0

)
U = U−1

[
v1

(
0 iλ

iλ−1 0

)
+

1
v1

(
0 iλ−1

iλ 0

)]
U .

Finally, we get

〈δ x̌α, δnα〉 = −
2
η2

(
2u−2 − λ2 − λ−2

)
, 〈δ x̂α, δnα〉 =

2
η2

(
2u2 − λ2 − λ−2

)
,

〈∂ x̌α1 , n
α〉 = −

4
v1ϑ1η2 Im

(
a

(
u−1 − uλ2

))
, 〈∂ x̌α, ∂nα〉 = −

2
ϑ2

(
2v−2 + λ2 + λ−2

)
,

〈∂ x̌α, nα1 〉 = −
4

vϑη2 Im
(
a

(
u−1 − uλ−2

))
, 〈∂ x̌α1 , ∂nα1 〉 = −

2
ϑ2

1

(
2v−2

1 + λ
2 + λ−2

)
,

〈∂ x̂α1 , n
α〉 = −

4v1

ϑ1η2 Im
(
a

(
u − u−1λ−2

))
, 〈∂ x̂α, ∂nα〉 =

2
ϑ2

(
2v2 + λ2 + λ−2

)
,

〈∂ x̂α, nα1 〉 = −
4v
ϑη2 Im

(
a

(
u − u−1λ2

))
, 〈∂ x̂α1 , ∂nα1 〉 =

2
ϑ2

1

(
2v2

1 + λ
2 + λ−2

)
,

as well as

〈∂ x̌α, ∂nα1 〉 = −
4

vϑϑ1η2 Re
(
a2

(
v−1

1 + v1λ
−2

)
+

(
v1 + v

−1
1 λ−2

) (
u−1λ − uλ−1

)2)
,

〈∂ x̂α, ∂nα1 〉 =
4v

ϑϑ1η2 Re
(
a2

(
v1 + v

−1
1 λ2

)
+

(
v−1

1 + v1λ
2
) (

u−1λ − uλ−1
)2)

,

〈∂ x̌α1 , ∂nα〉 = −
4

v1ϑϑ1η2 Re
(
a2

(
v−1 + vλ2

)
+

(
v + v−1λ−2

) (
u−1λ − uλ−1

)2)
,

〈∂ x̂α1 , ∂nα〉 =
4v1

ϑϑ1η2 Re
(
a2

(
v + v−1λ−2

)
+

(
v−1 + vλ2

) (
u−1λ − uλ−1

)2)
.

We complete the proof by substituting these expressions into Equation (3.10) and using the
fact that ϑ1 = ϑ and u2 = vv1. �
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