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Abstract

Hard field applications are techniques (like X-ray and magnetic resonance
imaging (MRI)) which utilize source signals that pass the medium in a
predictable manner, independent of the material properties of the medium.
Soft field applications such as bioimpedance analysis (BIA), optical tomog-
raphy (OT), and electrical impedance tomography (EIT), on the other hand,
are methods where the path of the source signals is determined by the
electromagnetic properties of the medium.

Although soft field applications (SFAs) have the potential to be a useful
non-invasive tool in clinical practice, they are not routinely used in hospitals
yet. The two main problems of SFA are their low signal-to-noise ratio and
their higher computational effort as compared to hard field applications.

This thesis presents two specific applications to illustrate approaches to
overcome some of the specific problems in design optimization for SFA. Two
articles in peer-reviewed journals provide the foundation for this work.

The first application deals with design optimization for BIA. It demon-
strates how the estimation of body fats (BFs) and fat free mass (FFM)
using impedance measurements can be improved. Using a realistic three-
dimensional finite element (FE) model of the human thorax combined with
a hierarchical model which directly incorporates all parameters of interest, a
sensitivity analysis was carried out. The analysis revealed a high sensitivity
to the subcutaneous fat layer thickness (SFL) and the fat content of the
mesentery. The presented structural model is a prerequisite for a compre-
hensive investigation of body composition measurements and helps to gain
further insight into BIA methods. Although this is a promising result, the
intrinsic problem with BIA, namely the dependency of the results on the
hydration state, still remains. Furthermore, the influence of changes in the
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model geometry and the effect of models representing different values for
the SFL has not been examined yet.

The second application shows the applicability of a novel mathematical
method for the optimization of both the location as well as the strength
of optical fibers for photodynamic therapy (PDT). This therapy combines
light of a specific wavelength with a photosensitizer to chemically destroy
tissue cells. Most commonly, it is employed for various oncological and
dermatological treatments. PDT requires extremely homogeneous irradia-
tion over the whole applicator to avoid ineffective treatment or even lethal
overdoses. Simple two-dimensional as well as a realistic three-dimensional
model of the human intrathoracic cavity were developed in this work. The
coefficient of variation of the photon density on the surface of the applicator
was used as an indicator for the homogeneity of illumination. The proposed
method produces reasonable optode configurations resulting in homoge-
neous irradiation, although the number of required optodes is relatively
high. Nevertheless, the algorithm is very efficient and does not need initial
configuration. Using the same algorithm for other objectives is straightfor-
ward, and thus it could also be used for other design optimization problems
without much additional effort.
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Kurzfassung

Hartfeld-Anwendungen wie beispielsweise Röntgen und Magnetresonanz-
tomographie (MRT) verwenden Quellsignale, welche ein Medium in vor-
hersehbarer Richtung durchqueren, unabhängig von dessen Materialeigen-
schaften. Im Gegensatz dazu verwenden Weichfeld-Anwendungen (wie
zum Beispiel Bioimpedanzanalyse, optische Tomographie und elektrische
Impedanztomographie) Quellsignale, deren Pfad durch ein Medium durch
dessen elektromagnetische Eigenschaften bestimmt wird.

Obwohl Weichfeld-Anwendungen großes Potential als nicht-invasive Ver-
fahren in der klinischen Praxis haben, werden sie heutzutage noch nicht
routinemäßig in Krankenhäusern eingesetzt. Die zwei größten Probleme
von Weichfeld- im Vergleich zu Hartfeld-Anwendungen sind deren geringes
Signal-Rauschverhältnis sowie ein hoher Rechenaufwand.

Diese Arbeit stellt zwei spezifische Anwendungen vor, welche Möglichkeiten
zur Lösung bestimmter Aspekte der genannten Probleme in der Design-
Optimierung aufzeigen. Zwei in internationalen Fachzeitschriften veröffent-
lichte Artikel bilden die Grundlage für diese Arbeit.

Die erste Anwendung befasst sich mit der Design-Optimierung für die
Bioimpedanzanalyse (BIA). Sie zeigt, wie die Schätzung der Körperfette
sowie der fettfreien Masse mittels Impedanzmessungen verbessert werden
kann. Mit einem realistischen dreidimensionalen Finiten Elemente (FE) Mod-
ell des menschlichen Thorax in Kombination mit einem hierarchischen Mod-
ell, welches alle zu schätzenden Parameter enthält, wurde eine Sensitivitäts-
analyse durchgeführt. Diese Analyse ergab eine hohe Sensitivität sowohl für
die subkutane Fettschicht als auch für das Fettgewebe des Mesenteriums.
Das verwendete strukturelle Modell ist eine notwendige Voraussetzung für
eine umfassende Analyse von Körperzusammensetzungsmessungen und
ermöglicht weitergehende Einsichten in BIA-Methoden. Obwohl dies ein
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vielversprechendes Ergebnis ist, bleibt das intrinsische Problem von BIA,
nämlich die Abhängigkeit der Ergebnisse vom Hydrationszustand, weiter
bestehen. Darüber hinaus wurde der Einfluss von Änderungen der Modell-
geometrie und der Effekt von verschiedenen Modellen für unterschiedliche
subkutane Fettschichtdicken noch nicht untersucht.

Die zweite Anwendung zeigt die Verwendung einer neuen mathematischen
Methode für die Optimierung der Position und der Stärke der optischen
Fasern in der photodynamischen Therapie (PDT). Diese Therapie kombiniert
Licht einer spezifischen Wellenlänge mit einem Photosensitizer, um gezielt
Zellgewebe chemisch zu zerstören. Häufig wird sie in der onkologischen
und dermatologischen Behandlung eingesetzt. PDT benötigt eine extrem
homogene Ausleuchtung über den gesamten Applikator um ineffiziente Be-
handlungen oder sogar tödliche Überdosierungen zu verhindern. Einfache
zweidimensionale sowie ein realistisches dreidimensionales Modell der
menschlichen Brusthöhle wurden im Rahmen dieser Arbeit entwickelt. Der
Variationskoeffizient der Photonendichte auf der Oberfläche des Applika-
tors wurde als Indikator für die Homogenität der Ausleuchtung verwendet.
Die vorgestellte Methode erzeugt vernünftige Optodenkonfigurationen mit
homogener Ausleuchtung, wobei die Anzahl der benötigten Optoden relativ
hoch ist. Nichtsdestotrotz ist der verwendete Algorithmus sehr effizient
und benötigt keine Initialisierung. Die Verwendung des Algorithmus für
andere Methoden ist einfach möglich, und daher könnte er ohne größeren
Aufwand für andere Design-Optimierungsaufgaben eingesetzt werden.
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1 Introduction

Biomedical applications can be classified as soft field and hard field applica-
tions. On the one hand, techniques such as X-ray and magnetic resonance
imaging (MRI) utilize source signal that pass through the medium in a
predictable manner (independent of the material properties of the medium).
These methods are referred to as hard field applications. On the other
hand, methods where the path of the source signals is determined by
the electrical properties of the medium are called soft field applications
(see e. g. Mukhopadhyay, Lay-Ekuakille, and Fuchs, 2011). Soft field appli-
cations (SFAs) commonly use electromagnetic fields to estimate material
properties of (biological) samples. Examples for these methods include elec-
trical impedance tomography (EIT) (Bayford, 2006), bioimpedance analysis
(BIA) (Kyle et al., 2004a), magnetic induction tomography (MIT) (Griffiths,
2001), optical tomography (OT) (Arridge, 1999), and near infrared spec-
troscopy (NIRS) (Ferrari and Quaresima, 2012).

For many years, research in the field of SFAs has focused on exploring new
ways to develop reliable instruments for medical purposes. Although many
problems are not easy to overcome, practical applications are emerging. SFAs
have several compelling advantages: they are inexpensive, non-invasive, and
they can be continuously applied in a straightforward way. In addition, they
can be used 24 hours a day. Therefore, SFAs perfectly complement other
methods like computer tomography (CT) or MRI.

The challenge in SFAs is to extract information about the investigated sample
based on the measurement data. The inverse problem is, by definition, the
inverse to the forward problem. Two problems are inverse to each other
if the formulation of one problem involves all or part of the solution of
the other one (Keller, 1976). The forward problem means the prediction
of data using a physical or mathematical model which incorporates a
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1 Introduction

set of known model parameters (e. g. geometry information, conductivity
distribution). Opposed to that, an inverse problem estimates an unknown
set of model parameters using a physical or mathematical model with a
set of data. An example of a well-studied inverse problem is the so-called
Calderón problem for EIT. It addresses the question of determining the
electrical conductivity distribution inside a body using voltage and current
measurements on the body surface (Calderón, 2006). Further examples of
inverse problems include the identification of physiological parameters
(such as hydration) from measurements made on the body surface, the
identification of boundary shapes and their interfaces with a region of
interest, and the development of a mathematical model using observed
(noisy) data.

The corresponding direct (forward) problems are usually well-posed with
an existing, unique, and stable solution. In contrast, the solutions of the
corresponding inverse problems are usually ill-posed (in the case of contin-
uous systems) or ill-conditioned (in the case of discrete linear systems). In
addition, electromagnetic field problems are often nonlinear.

Although SFA methods are not established in medical use yet, they have
the potential to complement standard medical procedures, guide treatment,
and improve treatment outcome. Some examples for promising applications
are:

• Electromagnetic techniques like EIT, OT, microwave tomograhpy (MT),
and especially a combination of these approaches, have the potential
to improve early non-invasive breast cancer screening (Hassan and
El-Shenawee, 2011; El-Shenawee, 2011). In standard preventive medical
checkups, X-ray mammography is routinely used for breast cancer
detection. However, this technique does not only have a low sensitivity
(4 % to 34 % false negative results) (Huynh, Jarolimek, and Daye, 1998)
as well as a low specificity (8 % to 21 % false positive results) (Hofvind
et al., 2012), but the ionizing radiation in X-ray mammography means
a higher risk for cancer. Alternative methods like MRI and ultrasound
are either very expensive or have low sensitivities.
• EIT systems are already sufficiently developed to monitor lung venti-

lation (Adler et al., 2012). Consequently, EIT could be established as
a reliable, reproducible, and relevant technique in clinics to improve
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1 Introduction

patient treatment, for example for infants with respiratory distress
syndrome (Chatziioannidis et al., 2013).
• Several studies have demonstrated that NIRS is useful for the non-

invasive diagnosis of lung cancer (Huang et al., 2003). Furthermore,
NIRS is a promising technology for general cancer diagnosis, treat-
ment decisions, and the adjustment of therapeutic drug levels (see
e. g. Kondepati, Heise, and Backhaus, 2008 and Xiang et al., 2010).
• BIA for measuring body fluid volumes is widely used to diagnose

adiposity (Houtkooper et al., 1996). It is now increasingly used to
assess hydration in dialysis. However, for a more detailed analysis of
body composition and nutritional status, further improvement and
validation is necessary (Kotanko, Levin, and Zhu, 2008; Kyle et al.,
2004b).

One of the key factors for making SFAs a promising tool for biomedical
applications is an optimal design of the measurement setup. For example,
one relevant component is the reduction of noise to obtain the best possible
signal-to-noise ratio (SNR). Another important consideration is an optimal
selection and placement of measurement sensors. Ideally, recorded signals
should be as independent as possible to maximize information content. Im-
proving the underlying mathematical models (such as using a full nonlinear
formulation instead of simplified linear ones, see E. Haber and Oldenburg,
2000) has also been subject of research. Finally, incorporating realistic mod-
els (i. e. 3D finite element models instead of simple 2D models) into the
design process can also impact modeling outcome.

1.1 Objectives

This work aims to overcome some of the specific problems in SFAs with
design optimization. This in turn could further advance the field of SFAs
towards an established diagnostic and therapeutic tool. Since design opti-
mization is always domain-specific and depends on the problem at hand,
the following two applications analyzed in this work will illustrate this
process.
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1 Introduction

Classically, BIA tries to estimate body fat (BF) and fat free mass (FFM) using
data obtained from whole-body measurements. This procedure typically
relies on impedance measurement from a wrist to an ankle. However, body
fat has a higher impedance than fat free tissue. Since electric current always
takes the path of least resistance, adipose tissue is not the main contributing
factor in this data. Thus, BIA suffers from a low sensitivity (Baumgart-
ner, Ross, and Heymsfield, 1998). Best results are usually obtained with
estimators based mainly on body mass, height, sex, and age. Obviously,
ignoring impedance signals is not a satisfactory solution. Therefore, the first
application in this work optimizes electrode placement close to the region of
interest, incorporates the parameters of interest into the model, and applies
an appropriate finite element model in simulations for the assessment of
body composition with BIA (Scharfetter et al., 2005).

The second application introduces a novel method to optimize sensor place-
ment for the illumination of highly scattering tissue such as encountered
in applications of OT and photodynamic therapy (PDT). The main prob-
lem in OT is to determine the optimal location of the optical fibers, which
maximizes the resolution and contrast in the region of interest (e. g. the
breast or the brain). In PDT, the main challenge is to achieve a homogeneous
irradiation over the whole applicator, because inhomogeneities can lead to
local overdoses with serious consequences. In both of these applications,
design optimization with respect to sensor positioning and magnitudes of
the light sources is needed (Brunner et al., 2012).
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2 Background

2.1 Interaction between matter and fields – a
historical overview

2.1.1 Classical electrodynamics

The history of SFAs started as early as April 21, 1820, when Hans Christian
Ørsted gave a lecture on the similarities between electric and magnetic forces
at the University of Copenhagen. He believed in a fundamental connection
between electric and magnetic forces and planned an experiment to show
their connection. He suspected that since “the luminous and heating effect
of the electrical current goes out in all directions from a conductor”, it was
possible that “the magnetical effect could likewise eradiate”. He was “nev-
ertheless far from expecting a great magnetical effect of the galvanical pile”,
but “still he supposed that a power, sufficient to make the conducting wire
glowing, might be required”. In his experiment, he passed a current through
a very thin wire, which was placed over a compass. Ørsted prepared the
experiment in advance, but an accident prevented him from trying it before
the lecture. He intended to postpone the experiment, but “the probability
of its success appeared stronger”, so “he made the first experiment in the
presence of the audience”. The magnetic needle really moved, but the ef-
fect was very weak. Ørsted stated that “the experiment made no strong
impression on the audience”. However, Ørsted’s discovery was the first step
in the quest to explain the relationship between electricity and magnetism.
Some ten years after his lecture, Ørsted published his findings on one of
the biggest discoveries in physics (Ørsted, 1830).
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2 Background

In September 1820, André-Marie Ampère began to develop a mathematical
and physical theory of the relationship between electricity and magnetism.
In 1826, Ampère demonstrated that there is a relationship between the
integrated magnetic field around a closed loop and the electric current
which passes through this loop – this relationship is now famously known
as Ampère’s law, which he published in a memorandum in 1827 (Ampère,
1827).

The work of Ørsted and Ampère led Michael Faraday to discover electro-
magnetic induction in August 1831. Faraday wrapped an iron ring with two
coils of insulated wire (The Royal Institution of Great Britain, 2015). When
he passed a current through one coil, a corresponding current was induced
in the second coil. Later on, Faraday also discovered that moving either a
loop of wire or a magnet relative to each other induces an electric current
in the wire. His experiments demonstrated that a changing magnetic field
produces an electric field, a phenomenon now known as Faraday’s law.

In 1835, the German mathematician Carl Friedrich Gauss suggested a single
electrodynamic equation to describe the force between moving charges as a
function of the relative velocity of the charges. This relationship is known as
Gauss’s law, which was published after his death in 1867 (Gauss, 1867). In a
letter to his friend Wilhelm Weber, Gauss stated that he was not satisfied
with his own formulation, and therefore he never published his equation:
“Ich würde ohne Zweifel meine Untersuchungen längst bekannt gemacht
haben, hätte nicht zur Zeit, wo ich sie abbrach, das gefehlt; was ich wie
den eigentlichen Schlußstein betrachtet hatte nämlich die Ableitung der
Zusatzkräfte (die zu der gegenseitigen Wirkung ruhender Elektrizitätstheile
noch hinzukommen, wenn sie in gegenseitiger Bewegung sind) aus der
nicht instantanen, sondern (auf ähnliche Weise wie beim Licht) in der Zeit
sich fortpflanzender Wirkung. Mir hatte dies damals nicht gelingen wollen;
ich verliess aber, so viel ich mich erinnere, die Untersuchung damals doch
nicht ganz ohne Hoffnung, dass dies später vielleicht gelingen könnte,
obwohl – erinnere ich mich recht – mit der subjektiven Überzeugung, dass
es vorher nöthig sei, sich von der Art, wie die Fortpflanzung geschieht
eine konstruirbare Vorstellung zu machen.” Since the original quote is in
German, here is a translated version: “Without a doubt, I would already
have published my findings, if not the keystone would have been missing at
the time when I interrupted my studies, namely the derivation of additional
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2 Background

forces (which are added to the mutual effects between stationary electrical
particles when they are in motion), not from a non-instantaneous but (similar
to the effect for light) from a time-propagating effect. At that time, I did
not succeed. However, I stopped my studies (as far as I can remember) not
completely without any hope that maybe I could succeed later, although –
if my memory serves me well – with the subjective conviction that it would
be necessary to derive a constructible concept for the mechanism behind
the propagation.”

At about the same time, in 1834, Heinrich Friedrich Emil Lenz formulated
Lenz’s law (Lenz, 1834). It states that if an electromagnetic field is generated
due to a change in magnetic flux (as discovered by Faraday in 1831), the
induced current produces a magnetic field which opposes the change in
magnetic flux (which itself produces the current). Therefore, Lenz’s law
obeys the law of conservation of energy (energy cannot be created or de-
stroyed, just transformed from one form to another), as well as Newton’s
third law (all forces also exist in the same magnitude and opposite direction,
there are no unidirectional forces). Lenz’s findings were later used by Franz
Neumann, who postulated in 1845 that an electromagnetic field can be
derived from a scalar and a vector potential (Neumann, 1845).

The groundbreaking work of all these researchers was finally summarized
by James Clerk Maxwell in 1865. In his most fundamental work on electric
impedance, Maxwell published his first set of four equations (Maxwell,
1865).

In 1881, Joseph John Thomson (who discovered the electron in 1897) derived
the force for a charge q as it moves with velocity v through a magnetic field B
– the force which we now call the “Lorentz force”. Oliver Heaviside corrected
Thomson’s equation in 1889, because the original equation included a scaling
factor of 1/2, whereas the correct scaling factor equals one (Nahin, 2002).
Furthermore, Heaviside reformulated Maxwell’s complete set of twenty
equations (which included 18 variables) as four equations consisting of
only four variables (B, E, J and ρ). For this purpose, he developed both the
divergence and curl operator. Heaviside was also the first to introduce the
term “impedance” in July 1886 (Heaviside, 1894).

Heinrich Rudolf Hertz worked on the experimental proof of Maxwell’s
theory between 1886 and 1890 (Hertz, 1892). In 1887, he confirmed the
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2 Background

Small spark
gap

Metal plate

Spark
gap

Metal plate

Several meters
distance

Figure 2.1: Schematic of Hertz’s experiment.

existence of electromagnetic waves using an oscillator. This oscillator was
connected to an induction coil and separated by a tiny gap over which a
spark could leap. A receiver was placed several meters from the oscillator.
As electromagnetic waves were spreading from the oscillator sparks, they
induced a current in the receiver ring. This current sent sparks across the
gap of the receiver ring. Hertz also discovered the photoelectric effect (pub-
lished in 1887) while performing several similar experiments using different
substances between the primary and secondary sparks, see Figure 2.1. Al-
though the meaning of this effect was very obscure at that time, Hertz was
still convinced that the effect was substantial for the connection between
light and electricity (Scientific Biography, 2015).

At that time, the theoretical framework as well as the experimental proof of
Maxwell’s equations were completed, and thus the fundamental equations
of EIT (see Section 2.2) – Maxwell’s equations in combination with the
Lorentz force – were established.

2.1.2 Radiation

A detailed history of the radiative transfer theory (RTT) is beyond the scope
of this work. It is described, for example, in Johnston, 2001. The following
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2 Background

paragraphs provide only a brief overview of this topic.

The first publications dealing with light intensity and its measurement can
be attributed to Johannes Kepler. His purely phenomenological approach led
Kepler to discover the inverse square law for radiation (Kepler, 1604). After
Kepler, Pierre Bouguer discovered the law now known as Beer-Lambert
law (Bouguer, 1729). Additionally, he studied the scattering of light on
rough surfaces. Some years later, Johann Lambert (see Lambert, 1760 or the
translated version Lambert and DiLaura, 2001) introduced infinitesimals
to quantitatively describe light intensity (known as radiance). He was the
first to use mathematics for the interpretation of experimental results and
the development of adequate mathematical models. Much later, in 1852,
August Beer discovered that the absorbance of a material is proportional to
the concentration of the attenuating particles in the material (Beer, 1852).

In summary, the intensity relationship known today can be attributed to
Bouguer, Beer, and Lambert. The Beer-Lambert law states that the logarithm
of the quantity of light received is inversely proportional to the thickness
(Bouguer’s contribution) and to the chemical concentration (Beer’s contri-
bution) of an absorbing material. The quantity of light is proportional to
the cosine of the angle of incidence on the illuminated surface (Lambert’s
contribution), see e. g. Johnston, 2001.

In 1887, Eugene Lommel pioneered work on the physical and mathematical
foundations of the theory of radiometry. He extended the Beer-Lambert
law to include scattering (Lommel, 1889). Independently, Orest Danilow-
itsch Chwolson and later Arthur Schuster also developed this heuristically
derived equation (Chwolson, 1889; Schuster, 1905). In 1906, Max Planck pub-
lished his important theoretical definition of specific intensity (Vorlesungen
über die Theorie der Wärmestrahlung 1906), which was later used in virtually all
publications on RTT. Even though the specific intensity is only a theoretical
concept, it was generally assumed that it could be calculated by solving the
radiative transfer equation (RTE) and measured by a directional radiometer.
Therefore, it became the central concept behind the phenomenological RTT
and its applications (Mishchenko, 2013).

Although Lommel and Chwolson wrote the first publications, most authors
attribute the introduction of the RTE to Arthur Schuster (Schuster, 1905)
and Max Planck (Planck, 1914).
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Based on Schuster’s work in 1910, Jackson (Jackson, 1910) and Louis Vessot
King (King, 1913) defined the RTE used in the phenomenological approach
of RTT nowadays (see Lessig, Fiume, and Desbrun, 2012 and Mishchenko,
2013). Although the phenomenological and heuristic formulation of the
RTT is sufficient for all subsequent considerations in this work, Richard
Gans (Gans, 1924) and Subrahmanyan Chandrasekhar (Chandrasekhar,
1950) introduced the more general vector RTE, which also takes polariza-
tion of light into account. Nevertheless, numerous researchers were not
satisfied that the RTT was not linked to the electromagnetic theory (see
e. g. Mishchenko, 2013). The relationship between the fundamental princi-
ples of classical electrodynamics and the radiative transfer equation was
not established until recently, when Michael Mishchenko published a pa-
per which demonstrates the connection between the theories of radiative
transfer and Maxwell’s equations (Mishchenko, 2008).

In optical imaging (OI), a diffusion approximation of the Boltzmann trans-
port equation (BTE) is widely used for the description of light transport in
biological tissue (see e. g. Arridge, 1999). The BTE, formulated by Ludwig
Boltzmann in 1872 (Boltzmann, 1970), is a nonlinear equation describing the
phase space density of molecule systems that are not in equilibrium. The
BTE describes the change in the density of molecules at a six-dimensional
phase space point (depending on the coordinates x, y, and z, and three
momentum components px, py, and pz) at a specific time t. A profound
description and historical overview can be found in Murthy, 2006.

This diffuse approximation is used because the BTE is computationally
expensive. It results in relatively good approximations if the medium of
interest is dominated by scattering, which is the case in most applications
of OI.

2.1.3 Electromagnetic properties of biological tissue

The description of electrical properties of biological tissues goes back to
1870, when Hermann experimented with the effect of galvanic currents
on muscles and nerves (Hermann, 1870). Between 1910 and 1913, Rudolf
Höber proved that red blood cells and muscle cells are composed of a
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conducting electrolytic interior surrounded by an insulating membrane
(see Pethig and Schmueser, 2012). Höber first described the so-called beta
dispersion: at low frequencies, an injected current flows around the cells,
but at high frequencies it penetrates into the conductive interior. This results
in a ten-fold increase in conductivity at high frequencies (around 5 MHz)
as compared to low frequencies (around 150 Hz). Figure 2.2 illustrates
α-dispersion, β-dispersion, and γ-dispersion.

In 1920, Philipsson measured the impedance of a suspension of red cor-
puscles and proposed the now well-known equivalent circuit diagram for
cells (Philippson, 1920). In this model, resistance at high frequencies is much
lower than at low frequencies (see Figure 2.3). Based on his work, Fricke
and Morse (Fricke and Morse, 1925) determined the specific membrane
capacitance of a red blood cell.

In 1928, Cole derived a general equation for the calculation of the electrical
impedance of a suspension of spheres (Cole, 1928). Between 1930 and 1940,
numerous publications analyzed the electrical impedances of several specific
tissues, including Nitella (a type of alga) (Cole and Curtis, 1938), the squid
giant axon (Curtis and Cole, 1938; Cole and Curtis, 1939), and muscle in
rigor (Bozler and Cole, 1935).

In 1957, Herman Paul Schwan, often recognized as the founding father of
biomedical engineering, published a seminal paper where he introduced
three dispersion mechanisms for the characterization of the electric proper-
ties in biological tissue (see Schwan, 1957; Schwan, 1994).

Based on these investigations, BIA was established as a bedside routine for
the determination of body composition and body hydration by the 1970s,
although some problems are still to be resolved (Kyle et al., 2004a).

2.1.4 Optical properties of biological tissue

The first article dealing with the ability of light to penetrate tissue was
written by Richard Bright in 1831. He introduced transillumination as a
diagnostic tool for the detection of hydrocephalus (an increase of cerebro-
spinal fluid in the head) and intraventricular haemorrhage (Bright, 1831).
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Although transillumination of tissue suffered from the diffuse nature of bio-
logical samples, applications where the effect of scattering were minimized
became a useful tool in clinics. This was achieved either by examining only
short path lengths (e. g. oximetry of the finger or earlobe) or by determining
medical conditions which incorporate low scattering of the light source
(e. g. hydrocephalus).

Optical properties of tissue have been investigated since the early 19th
century, when Hasselbalch and others exposed skins to ultraviolet radia-
tion (Duck, 2013). Optical tissue properties like transmission, absorption,
and fluorescence were available by the early 1930s and can be found in
general reference books such as Tuan, 2003.

Optical imaging of breast tissue (diaphanography) was first attempted by
Max Cutler in 1929. He hoped to be able to distinguish between solid tumors
and cysts in the breast, but had difficulties to introduce the necessary light
intensity without producing extreme heat (Cutler, 1931a; Cutler, 1931b). It
was not until 1990 when the diffusion approximation of the RTE (see Sec-
tion 2.2.5) was sufficiently developed to accurately model tissue scattering
and absorption for tomographic image reconstruction.

A significant breakthrough in optical imaging was made by Frans F. Jöbsis
in 1977. He discovered the “near-infrared window”, namely the wavelength
range between 650 and 1350 nm, where light can penetrate tissue to a
maximum depth due to low scattering (Jöbsis, 1977). This technique is
known as near infrared spectroscopy (NIRS) (Gibson and Dehghani, 2009).

In 1995, the combination of multiple NIRS measurements led to the de-
velopment of OT. This technique made it possible to incorporate spatial
information (Gratton et al., 1995).
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Figure 2.2: Frequency dependence of relative permittivity εr (dotted line) and conductivity
σ (solid line) of biological tissues. Classification of α, β, and γ dispersion
according to Schwan, 1957.

2.2 Physical and mathematical framework

2.2.1 Properties of biological tissue

Dielectric properties

The electromagnetic properties of biological tissue are fundamental for the
description of its interactions with electromagnetic fields. These properties
are affected by the structure and composition (histology) of the tissue. Mea-
suring the impedance of biological tissue over frequency yields decreasing
values when the frequency increases (see Figure 2.2). This frequency depen-
dence arises from several mechanisms which occur at different frequency
ranges (see e. g. Foster and Schwan, 1995). The dispersion is the transition
from one level of relative permittivity to another, and its characteristic fre-
quency fc is the frequency at which the mean value between these εr levels
occurs.

The most important frequency domain for BIA is the beta dispersion be-
tween 104 and 108 Hz. There are numerous models for the description of
the frequency dependence within this frequency domain, and arguably the
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R∞

R0 − R∞

C

Figure 2.3: Equivalent circuit for tissues and compacted red blood cells as developed
by Philippson, 1920. R∞ and R0 are the resistances of the tissue at high and low
frequencies, respectively. C is the membrane capacitance.

most popular one for biological tissue is the Cole model (Cole, 1940). This
model describes the frequency dependence of the impedance based on an
equivalent electrical circuit.

The Cole equation is based on the assumption that biological tissue is
composed of extracellular and intracellular liquid volumes (see Figure 2.4).
An electric current mainly passes through the extracellular fluid at low
frequencies, because the lipid cell membrane is an insulator which prevents
the current to enter the cells. At high frequencies, the current can penetrate
the cell membrane and passes through both the extra- and intracellular
fluids. Consequently, the overall impedance drops.

As there are no inductive effects in biological tissue, the magnitude of the

tissue impedance can be formulated as |Z| =
√

R2 + X2
C, and the phase

angle is equal to φ = − arctan(XC
R ). Here, R is the the resistance, and XC is

the reactance caused by the capacitance C of the cell membrane.

In 1940, Kenneth Cole developed an equation which describes the disper-
sion of the impedance Z in biological tissue (Equation 2.1). Here, R∞ is the
resistance of the tissue at high frequencies, R0 is the resistance at low fre-
quencies, and τ = 1

2π fc
is the relaxation time (with fc being the characteristic

frequency). The Cole exponent α is chosen in such a way that the simulated
values approximate the measurement data optimally.
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Figure 2.4: Electric current flow through biological tissue. Solid lines indicate current flow
at low frequencies, and dashed lines at high frequencies.

Z(ω) = R∞ +
R0 − R∞

1 + (jωτ)α
(2.1)

Usually, the electrical properties of biological tissues are described in terms
of the electrical conductivity σ, the permittivity ε = ε0εr, and the magnetic
permeability µ = µ0µr. The first of these properties not only depend on
tissue type, but also on frequency, as can be seen in Figure 2.2. The last
property, µ, is almost the same as in free space for all tissue types and does
not depend on frequency. A detailed description of all these properties can
be found in Section 2.2.3, their units are given in Table 2.1.

Optical properties

The first step towards an optimal design of therapeutic or diagnostic ap-
plications is to specify the optical properties of a tissue. The second step is
to use these optical properties in an appropriate light transport model to
estimate light distribution (Jacques, 2013). When describing photon trans-
port in biological tissue, some parameters are particularly interesting: the
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Table 2.1: Electrical parameters and their description.

Parameter Description Unit
σ Electrical conductivity S/m
ε Dielectric constant or permittivity F/m
ε0 Dielectric constant of free space 8.8542 · 10−12 F/m
µ Magnetic permeability H/m
µ Magnetic permeability of free space 4π · 10−7 H/m
κ Complex conductivity S/m

reflection coefficient, the scattering coefficient, the scattering phase function,
and the absorption coefficient (see Table 2.2 for more details).

Table 2.2: Optical parameters and their description.

Parameter Description Unit
R Reflection coefficient 1

µs Scattering coefficient cm−1

p(ŝ, ŝ′) Scattering phase function sr−1

µa Absorption coefficient cm−1

Reflection can be predicted by the Fresnel equations (which can be derived
using Maxwell’s equations). These equations describe how much light
penetrates into biological tissue and how much is reflected back.

Scattering in biological tissue occurs manly due to the presence of cells,
nuclei, mitochondria, and other components. These scatterers are distributed
randomly in biological tissue, and the induced photons usually encounter
multiple scattering events before they are absorbed or transmitted out
of the probe. The scattering coefficient µs is is the average number of
scattering events per distance. Accordingly, the scattering mean free path is
the inverse of the scattering coefficient. Scattering is angle dependent which
is considered using the scattering phase function p(ŝ, ŝ′). This function
describes the angular distribution of light intensity scattered by a particle
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at a given wavelength. In this function, ŝ is the unit vector of the photon’s
original direction and ŝ′ the unit vector of its new direction. In biological
tissue, scattering is the dominating factor as compared to absorption. Thus,
an average parameter g = 〈cos θ〉, the anisotropy factor of scattering, is
used to characterize tissue scattering. This factor gives the mean amount of
forward direction retained after a single scattering event. In this equation, θ
is the angle between the incident and scattered directions. The anisotropy
factor g can be any value between -1 and 1, where -1 characterizes strong
backscattering. If g = 0, the phase function is isotropic, whereas large values
of g indicate anisotropic phase functions. In diffuse media, the reduced
scattering coefficient µ′s = µs(1− g) is often used.

Absorption in biological tissue occurs mainly due to water, melanin, lipids,
and blood. The absorption coefficient µa can be defined in terms of the
probability of a photon being absorbed: the probability that a photon will
be absorbed while traveling a distance of z + f a∂z is µa∂z. The absorption
mean free path is the inverse of the absorption coefficient. After absorption,
a molecule is no longer in its ground state, but in an excited state. There
are four possibilities which may occur next: ionization, chemical reaction,
thermalization or radiative emission. Ionization and chemical reaction usu-
ally occur with ultraviolet or gamma radiation, because they require high
energies. Thermalization occurs when the energy of the excited electron
is dissipated increasing the kinetic energy of the structures involved (non-
radiative transfer). The last possibility is the abrupt emission of energy via
radiation, where two possible forms can occur: fluorescence and phospho-
rescence. Both of these effects can occur in PDT (see Figure 2.5) and are
therefore described in detail in Section 2.2.2.

The sum of the absorption and scattering coefficients is the total attenuation
coefficient µt = µa + µs. In the diffusion approximation, the transport
attenuation coefficient µtr = µa + µ′s or the optical diffusion coefficient
κ = 1

3(µa+µ′s)
are often used instead. Here, µ′s = (1− g)µs is the reduced

scattering coefficient already mentioned above, which incorporates the
anisotropy factor g into the scattering coefficient µs. For biological tissues,
this factor usually has a value of −0.9.
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2.2.2 Photodynamic therapy

PDT is a minimally invasive therapeutic procedure which uses a photosen-
sitizer in combination with light of a specific wavelength. In the presence
of normal oxygen O2, PDT produces singlet oxygen O∗2 , which kills nearby
cells by either causing apoptosis or necrosis. Additionally, PDT can damage
blood vessels in a tumor and thus cut off the nutritional supply for the
cancer cells (Agostinis et al., 2011).

Figure 2.5 illustrates the process of producing singlet oxygen. Normally, the
photosensitizer (PS) is in its ground state with two electrons having opposite
spin in a low energy molecular orbital (most often, this is the singlet state).
Absorbing energy (a photon) from the light source transfers one electron of
the PS to a high-energy orbital, but it keeps its spin from the singlet state.
This excited PS is unstable and has two possible subsequent reactions: it
either emits its excess energy through fluorescence and/or heat (within a
few nanoseconds), or it undergoes intersystem crossing, where the spin of
the excited electron inverts to a more stable triplet state that has electrons
which spin in parallel.

This excited triplet state PS is stable and can lose its energy through phos-
phorescence (within milliseconds, seconds or even hours), or it undergoes
one of two possible reactions – a Type I reaction or a Type II reaction. In
a Type I reaction, the PS transfers an electron to a molecule and forms hy-
droxyl radicals. These radicals may then react with oxygen and produce free
radicals. In a Type II reaction, which is the main process occurring in PDT,
the excited triplet PS transfers its energy to a ground-state triplet oxygen
molecule and yields the non-radical but highly reactive singlet oxygen. Both
reaction types occur simultaneously with a probability ratio depending on
the PS type used, the substrate, and oxygen concentrations.

PDT is designed to be as selective as possible. This is achieved by two facts:
photosensitizers are preferentially absorbed by cancerous tissue, and the
light source is focused directly to the target tissue. Then, the high reactivity
and short half-life of singlet oxygen and reactive oxygen species guarantees
the locally restricted cell destruction. On the one hand, this localization is
necessary, but on the other hand it is also one of the limitations of PDT
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Figure 2.5: Processes involved in photosensitization: Light exposure takes the PS molecule
from the ground singlet state (1PS) to an excited singlet state (1PS∗). This
PS now either emits its excess energy through fluorescence and/or heat or
it undergoes intersystem crossing and becomes an excited PS in triplet state
(3PS∗). This excited triplet state PS can lose its energy through phosphorescence
or it undergoes a Type I or Type II reaction. The Type I reaction produces
hydroxyl radicals, whereas the Type II reaction produces free radicals (1O∗2).
These radicals then result in tumor cell death (necrosis and apoptosis).
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because it is the reason why PDT is inefficient against metastases, which
are the most common causes of death for cancer patients.

PDT is used as a supplement to other therapies like surgery, chemotherapy,
radiotherapy, or immunotherapy and can be utilized either after or before
these therapies.

The requirements for photosensitizers used in PDT are a high absorption
between 600 and 800 nm (photons with wavelengths longer than 800 nm do
not excite oxygen to its singlet state), no dark toxicity, and rapid clearance
from healthy tissue to minimize phytotoxic side effects (see e. g. Allison and
Sibata, 2010).

The optical window of tissue lies between 600 and 1200 nm, but light with
wavelengths greater than 800 nm does not have enough energy to initiate a
photodynamic reaction to produce oxygen in singlet state. Therefore, the
wavelengths used in PDT lie between 600 and 800 nm. This also limits the
possible treatment depth to approximately one centimeter. The optimal
choice of the wavelength depends on the localization, size, and tissue char-
acteristics of the tumor tissue as well as the absorption of the photosensitizer.
Most often, light-emitting diodes or laser diodes are used in PDT, because
they show narrow spectral bandwidths and high fluence rates (Juzeniene
et al., 2004; Brancaleon and Moseley, 2002).

Although PDT is a promising emerging technique, which has been applied
for the treatment of various tumors (including esophagel, skin, lung, liver,
bladder, prostate, head, and neck tumors), there are several technical diffi-
culties in its application. Many publications mention that an improved light
delivery may propel PDT to the forefront of oncological treatment, because
it is an inexpensive solution and might even be able to reduce the necessity
for surgery (Lim et al., 2013).

2.2.3 Maxwell’s equations

A basic understanding of the relations between the passive electrical proper-
ties and the electromagnetic field is essential for the development of BIA, EIT
and MIT. Therefore, the objective of this chapter is to provide an overview

20



2 Background

of Maxwell’s equations and their connection with the electrical properties
of a material, based on the more detailed book (Huray, 2010) . Table 2.3
summarizes the variables and their description used in this work.

Table 2.3: Variables and their description for Maxwell’s equations.

Variable Description Unit
E Electric field strength V/m
D Electric flux density C/m2

H Magnetic field strength A/m
B Magnetic flux density Wb/m2

ρ Electric charge density C/m3

σ Conductivity S/m
ε Permittivity F/m
µ Permeability H/m

The first Maxwell Equation is defined as

∇ ·D = ρ. (2.2)

It describes Gauss’s law at any point in space. For three-dimensional carte-
sian coordinates, the nabla operator ∇ can be rewritten as

∇ :=

 ∂
∂x
∂

∂y
∂
∂z

 . (2.3)

Thus, the left hand-side of the first Maxwell equation can be written as

∇ ·D =

 ∂
∂x
∂

∂y
∂
∂z

 ·
 Dx(x, y, z)

Dy(x, y, z)
Dz(x, y, z)

 =
∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
Dz, (2.4)

which results in a scalar value, the electric charge density ρ. This equation
states that if there exists an electric charge, the divergence of D is not equal
to zero at this point. Therefore, the electric field lines always extend from
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positive charges to negative charges. For single charges, they extend to
infinity.

When relating the electric flux density to the electric field using D = ε · E,
one of the passive material properties comes into play, the permittivity
ε = ε0 · εr (where ε0 = 8.8541 · 10−12 F/m is the vacuum permittivity). When
a material (which possesses a permanent or an induced electric dipole
moment) is placed in between two charged plates, the electric field inside
the plates E decreases. This is because the molecules will be aligned by the
electric field. The alignment will be opposed to the external electric field E,
resulting in a reduction of E. How much a material will reduce the external
electric field is measured by the relative permittivity εr.

The second Maxwell Equation is defined as

∇ · B = 0. (2.5)

Maxwell’s second equation deals with magnetic fields, whereas his first
equation involves electric fields. Both equations are almost symmetrical
except for the quantity on the right-hand side. In analogy to the first equa-
tion, it would be tempting to state that the divergence of the magnetic flux
density B is equal to the (hypothetical) magnetic charge density. However,
nobody has found magnetic charges or magnetic monopoles so far. There-
fore, magnetic fields always form a closed loop. This is what the second
Maxwell equation, often called Gauss’s law for magnetism, states.

Similar to the first equation, we can relate the magnetic field H to the
magnetic flux density B = µ ·H. Here, µ is the permeability of a material,
which measures how easily a magnetic field can pass through the material.
In analogy to the permittivity, it is defined as µ = µ0 · µr, where µ0 is the
vacuum permeability and µr the relative permeability of the material.

Faraday’s law is the third Maxwell equation:

∇× E = −∂B
∂t

(2.6)

This law states that a time-varying magnetic field generates an electric
field.
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Maxwell’s fourth equation is called Ampère’s law:

∇×H = J +
∂D
∂t

(2.7)

Before Maxwell formulated this equation, Ampère’s law was written as
∇×H = J. If that was true, ∇ · (∇×H) = ∇ · J, but since the divergence
of the curl is always zero for any vector field X (i. e. ∇ · (∇× X) = 0), the
divergence of J would be equal to zero. Obviously, this is not true, because
it would imply that the electric current flowing into any region is always
equal to the current flowing out of that region. However, when integrating
over one side of a capacitor, this assumption does not hold. Therefore,
Maxwell added the displacement current density Jd = ∂D

∂t to Ampère’s
law. In summary, Maxwell’s fourth equation shows that an electric current
produces a magnetic field that circles around the current. Additionally, a
time-varying electric flux density also results in a magnetic field. Hereby, J
is the electric current density and can be related to the electric field using
Ohm’s Law J = σ · E. The electrical conductivity σ gives the amount of
current flow for a given electric field and it is the analogy of the inverse of
the resistance in an electric circuit.

Putting together all four equations, we now know that a time-varying
magnetic flux density results in an electric field. A time-varying electric flux
density itself gives rise to an magnetic field and so forth. This is the origin
of electromagnetic waves, which propagate at the speed of light.

2.2.4 Fundamental equation of impedance measurements

Maxwell’s equations (see Section 2.2.3) are the basis of EIT. For BIA and EIT,
electrostatic conditions are assumed. This means that all electric charges
are assumed to be stationary or moving very slowly, and thus there are
no magnetic forces between them. It also implies that the third Maxwell
equation ∇× E = − ∂B

∂t reduces to

∇× E = 0. (2.8)
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We can introduce a magnetic vector potential A, defined by the magnetic
field B, and the electric scalar potential φ. The magnetic vector potential A
can be defined as

B = ∇×A, (2.9)

and because
∇ · B = ∇ · (∇×A), (2.10)

this magnetic vector potential must always exist (the right hand side is
always equal to zero and thus the second Maxwell equation is always
fulfilled).

The electric field E can then be defined using the electric scalar potential φ
and the magnetic vector potential A as

E = −∇φ− ∂A
∂t

. (2.11)

When neglecting the effect of magnetic induction (electrostatic conditions),
this equation simplifies to

E = −∇φ. (2.12)

Using Maxwell’s fourth equation and neglecting current sources within the
object, we get

∇×H = κE. (2.13)

Taking the divergence on both sides, this yields

∇ · (∇×H) = ∇ · (κE) (2.14)
0 = ∇ · (κ(−∇φ)).

Thus we obtain ∇ · (κ∇φ) = 0, the fundamental equation for EIT and BIA
(see e. g. Cheney, Isaacson, and Newell, 1999). This nonlinear (in kappa)
partial differential equation has an infinite number of solutions and therefore
boundary conditions are required to restrict these. Usually, these boundary
conditions are the potential at the surface (Dirichlet conditions), the current
density crossing the boundary (Neumann conditions) or a mixture of these
two. The inverse problem of EIT reconstructs the conductivity distribution
inside the body using multiple measurements of the potential on the body’s
surface.
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2.2.5 Radiative transfer equation

As already alluded to in Chapter 2.1.2, Mishchenko, 2008 recently estab-
lished the link between the originally heuristically derived radiative transfer
equation and Maxwell’s equations. However, for practical use, the heuristi-
cally derived model for the photon transport is sufficient and given by the
RTE in Equation 2.15.

1
c

∂

∂t
φ(r, ŝ, t) + ŝ∇φ(r, ŝ, t) + (µs + µa)φ(r, ŝ, t) = (2.15)

= µs

∫
4π

p(ŝ, ŝ′)φ(r, ŝ′, t)dŝ′ + Q(r, ŝ, t)

In this equation, φ(r, ŝ, t) is the radiance or angular flux of photons, where
r is the spatial position, ŝ the unit direction, and t the time point.

The second term, ŝ∇φ(r, ŝ, t), describes the loss through the boundary, and
(µs + µa)φ(r, ŝ, t) the loss due to scattering and absorption phenomena.
On the right hand side, the two terms describing the involved gains are
given: µs

∫
4π p(ŝ, ŝ′)φ(r, ŝ, t)dŝ′ describes the amount of photons gained

through scattering from any direction ŝ′ into the direction ŝ, and the last
term, Q(r, ŝ, t), describes the injected power. The scattering and absorption
coefficients are given by µs and µa, and p(ŝ, ŝ′) is the scattering phase
function, which describes the angular dependence of light scattering by a
particle at a given wavelength.

For the description of light propagation in biological tissue, the diffusion ap-
proximation of the radiative transfer equation is used, because the complete
model of photon transport can only be solved with Monte Carlo simula-
tions, which is computationally expensive. The assumptions when using
this approximation are summarized below.

The complete RTE incorporates six independent variables: x, y, and z from
the spatial position r, the polar angle θ and the azimuthal angle φ from ŝ,
and the time point t. In a scattering medium (as opposed to media with high
absorption), the number of variables can be reduced to only four variables
by assumptions known as diffusion theory for photon transport.
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Table 2.4: Variables and their description for the radiative transfer equation.

Variable Description Unit
φ(r, ŝ, t) Radiance or angular flux of photons Wm−2sr−1

r Spatial position 1

ŝ Unit direction of interest 1

ŝ′ Unit scattering direction 1

t Time point 1

µa Absorption coefficient cm−1

µs Scattering coefficient cm−1

p(ŝ, ŝ′) Scattering phase function sr−1

The purpose of the diffusion approximation is to remove any unnecessary
complications to obtain a model which is simple enough to solve. If the
angular dependence of light varies only slowly, i. e., if the difference between
the radiance φ(ŝ) and φ(ŝ + ∆ŝ) is small, the RTE can be simplified. One
way is to express the directional dependence as a sum of N spherical
harmonics which leads to the well known family of PN approximations.
One of this set of approximations, the P1 approximation, is used for the
diffusion approximation of the RTE (see e. g. Arridge, 1999). Therefore, the
RTE (Equation 2.15) is first integrated over all angles, and then multiplied
by ŝ, and integrated over all angles (see Cox, 2014). For the calculation of
the P1 approximation, two quantities are very useful: the fluence rate and
the flux vector.

The fluence rate is the radiance integrated over all directions ŝ:

Φ(r, t) =
∫ 4π

0
φ(r, ŝ, t)dŝ.

The flux vector is the direction-weighted radiance, integrated over all direc-
tions ŝ:

F(r, t) =
∫ 4π

0
ŝφ(r, ŝ, t)dŝ.

When integrating the RTE over all angles, the five terms become:
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∫
4π

∂φ(r, ŝ, t)
∂t

dŝ =
∂Φ(r, t)

∂t∫
4π

ŝ∇ · φ(r, ŝ, t)dŝ = ∇ · F(r, t)∫
4π
(µs + µa)φ(r, ŝ, t)dŝ = (µa + µs)Φ(r, t)∫

4π
µs

∫
4π

p(ŝ, ŝ′)φ(r, ŝ′, t)dŝ′dŝ = µsΦ(r, t)∫
4π

Qdŝ ≡ q0

Summarizing all these terms gives:

1
c

∂Φ(r, t)
∂t

+∇ · F(r, t) + µaΦ(r, t) = q0 (2.16)

When multiplying by ŝ and integrating over all angles, the five terms of the
RTE become: ∫

4π
ŝ

∂φ(r, ŝ, t)
∂t

dŝ =
∂F(r, t)

∂t∫
4π

ŝ(ŝ∇ · φ(r, ŝ, t))dŝ =
1
3
∇Φ(r, t)∫

4π
ŝ(µa + µs)φ(r, ŝ, t)dŝ = (µa + µs)F(r, t)∫

4π
ŝµs

∫
4π

p(ŝ, ŝ′)φ(r, ŝ′, t)dŝ′dŝ = gµsF(r, t)∫
4π

ŝqdŝ = q1

Here, q1 is an anisotropic source. Summarizing all these terms gives:

1
c

∂F(r, t)
∂t

+
1
3
∇ ·Φ(r, t) + (µa + µs)F(r, t) = gµsF(r, t) + q1 (2.17)

The combination of Equations 2.16 and 2.17 is called the P1 approximation.
This approximation assumes that the expansion of the radiance is limited to
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2 Background

the first-order spherical harmonics. This can be interpreted as a radiance
which is almost isotropic. The second approximation is that the change in
photon flux is much lower than the photon collision frequency (i. e. scattering
occurs much more frequently than absorption).

Assuming that ∂F
∂t ≈ 0, neglecting all anisotropic sources (q1 = 0), and

introducing the diffusion coefficient κ = 1
3(µa+µ′s)

, Equation 2.17 can be
rearranged and written as

F = −κ∇Φ. (2.18)

Substituting Equation 2.18 into 2.16 gives the diffusion approximation of
the RTE:

1
c

∂Φ
∂t
−∇ · κ∇Φ + µaΦ = q0. (2.19)

Here, κ is the diffusion coefficient, µa the absorption coefficient, c the speed
of light, µ′s = µs(1 − g) the reduced scattering coefficient, and g is the
anisotropy factor of scattering (see also Section 2.2.1).

The forward problem of diffuse optical tomography (DOT) is the com-
putation of the light fluence on a boundary of a tissue with specific and
known optical properties. There are several approaches for the solution of
the forward problem of DOT. Since analytical solutions only exist for simple
geometries like spheres, they cannot be used in most real world setups.
Monte Carlo simulations stochastically simulate the propagation of individ-
ual photons until they are absorbed in the tissue or exit the boundary (Wang,
Jacques, and Zheng, 1995). As this method is computationally demanding,
in this work the finite element method (FEM) is used instead (see e. g. Dhatt,
Lefrançois, and Touzot, 2012). It solves the transport equation on a dis-
cretized domain. The discretization is usually done by segmenting CT or
MRI images and creating meshes. A mesh is composed of nodes, whereby
four nodes form tetrahedral elements. A connection of numerous elements
with their volumes and surfaces form the individual three-dimensional FEM.
The solution of the diffusion approximation of the RTE is expressed in terms
of piecewise linear basis functions. That way, a smooth solution for the
corresponding photon density distribution inside the mesh is guaranteed.
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3 Fat and hydration monitoring
using bioimpedance analysis

3.1 Introduction

Assessing the human body composition, in particular quantifying the per-
centage of fat free mass (FFM) and body fat (BF) in different compartments,
is important in different disciplines like sports sciences, clinical nutrition,
assessment of the nutritional condition of the aging population, and manage-
ment of obesity. Obesity is an increasing problem not only in the USA and
Europe but also in developing nations such as Asia and Africa (Bhurosy and
Jeewon, 2014). The prevalence of overweight and obesity has also increased
among children (Wang and Lobstein, 2006). It is connected to health risks
like coronary heart disease, high blood pressure, stroke, type 2 diabetes,
and more (DeFronzo et al., 2014). BIA is a cheap, safe, non-invasive, and
painless method to analyze body composition, and thus an improvement of
its reliability would be desirable to transform it into a useful tool in clinical
practice.

Currently, hydrostatic weighing is one of the gold standards for the assess-
ment of BF. When compared to hydrostatic weighing, BIA shows standard
errors between 2 % and 5 % of the total body mass. These errors seem low
at first glance, but considering an average weight of 70 kg, this translates to
an error of 1.4 to 3.5 kg. BF usually ranges from 5 % to 40 % (which is 3.5 to
40 kg for a person weighing 70 kg). This implies that the relative errors can
become quite large especially for slim subjects (Baumgartner, Chumela, and
Roche, 1989; Segal et al., 1988; Lukaski, 1987; McNeill et al., 1991; Organ
et al., 1994; Baumgartner, Ross, and Heymsfield, 1998).
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3 Fat and hydration monitoring using bioimpedance analysis

In BIA, the current mainly passes through highly conducting fat-free re-
gions, so the direct sensitivity of the BF parameter is low. Fat contributes
significantly to the overall conductance only in considerably obese people –
in all other cases, muscle is the main conductor (Baumgartner, Ross, and
Heymsfield, 1998). Therefore, BF is usually directly derived from the esti-
mated FFM, but errors propagate and make BIA sensitive to interferences.
For example, changes in the water content of the FFM or redistribution of
body fluids (e. g. due to orthostatic processes) can result in considerable
errors. Furthermore, since the trunk only contributes 5 % to 10 % to the
total impedance, conventional whole body BIA measurements contain little
information about abdominal fat. Leg to leg and arm to arm measurements
obviously cannot perform better. Therefore, a more direct method with high
sensitivity to adipose tissue in central body compartments is required.

This work tries to overcome one of the current problems in BIA. Usually,
the BF is estimated by subtracting the FFM (which is negatively correlated
with the measured impedance) from the whole body mass. To reduce the
poor correlation between measured impedance and estimated BF, most
estimators include anthropometric data such as body mass, height, sex,
and age in their calculations. As a matter of fact, the best reproducibility is
obtained with estimators which put a relatively low weight on measured
impedance (Kyle et al., 2004a). This is very unsatisfactory, because the
impedance measurements do not add as much diagnostic information as
they theoretically contain.

Intuitive quantities of interest for the assessment of human body compo-
sition are the subcutaneous fat mass and the fraction of adipose tissue
in the muscular and mesenteric compartments. However, these quantities
are not directly measurable using impedance measurements. The only ac-
cessible parameter is the frequency dependence of the impedance, which
itself is created by the frequency dependence of the conductivities (conduc-
tivity spectra) of all involved tissues. These conductivity spectra contain
information about microstructural properties like the hydration state.

The first step toward an improved sensitivity of the measured impedance
on the BF parameter is a redesign of the measurement setup for BIA (see
Figure 3.1). As suggested in Scharfetter et al., 2001, a local measurement of
abdominal transimpedance yields more accurate information about central
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5 577

Electrode belt

Voltage measuring

Current injection

Figure 3.1: Measurement configuration. Location and spacing of the voltage measuring
and current injection electrodes with inter-electrode distances (in cm). Modified
from Scharfetter et al., 2005.

fat compartments, because the electrical field is focused on the region of
interest. This is due to the fact that the current has to pass through both the
FFM and the BF within the abdomen. The potential difference measured
on the surface is then determined by the local geometry and the local
composition of the different tissue layers. This is also a significant advantage
over traditional whole body BIA – the abdominal transimpedance is highly
sensitive to the local fat content and insensitive to fluid shifts far away in
the extremities.

Scharfetter et al., 2001 defined the subcutaneous fat layer thickness (SFL)
as the thickness of the fat below one of the voltage measuring electrodes
(illustrated in Figure 3.2).

It has been shown that the values of the SFL are strongly linearly correlated
with the abdominal electrical impedance (Scharfetter et al., 2001). Figure 3.3
shows published data from (Scharfetter et al., 2001) for a current injection
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SFL

Injection electrodes

Voltage measuring
electrodes

Figure 3.2: Magnetic resonance image showing the positions of current injection and voltage
measuring electrodes as well as the definition of the subcutaneous fat layer
thickness (SFL). Modified from Scharfetter et al., 2005.
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Modeled Subject

z50 = 12.57 + 1.11 · SFL

r2 = 0.984
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Figure 3.3: Regression line and 95 % prediction intervals for the correlation between SFL
and impedance from pooled data at 50 kHz. Modified from Scharfetter et al.,
2001.

with 50 Hz, where the slope of the regression line between the SFL and the
measured impedance z was reported to be 1.11 Ω/mm with a coefficient of
determination r2 = 0.984. This linear correlation between z and the SFL is
far from intuitively evident. Other publications such as Gonzalez, Zuniga,
and Padilla, 1997 report strongly nonlinear relationships, which might be
due to a different electrode spacing.

The purpose of this work is to analyze the influence of different abdominal
compartments as well as the hydration state on the measured impedance.
Furthermore, we aim to quantitatively explain the regression line between
the SFL and z as reported in Scharfetter et al., 2001.

We hypothesize that the following structural factors influence the impedance:

• Visceral fat content,
• geometry of the fat layer below the electrodes, and
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• abdominal muscle mass and adipose structures embedded in the
muscle (“adipose bridges” in Figure 3.2).

To test this hypothesis and to explain the influences on the measured
impedance, we derived a mathematical model which relates the quantities
of interest (i. e. the fat fractions in the different compartments and the
SFL) to the impedance at multiple frequencies. This model also includes
interfering quantities like tissue hydration parameters. We compared our
results to measured data from Scharfetter et al., 2001 for the modeled subject
in Figure 3.3. This subject had a SFL of 25 mm, and the measured impedance
was 38.2 Ω.

3.2 Methods

3.2.1 Hierarchical structural model

A suitable model should ideally link the measured impedance data z to
a parameter vector q. Here, q should represent the parameters of interest,
i. e. physiological parameters which are easily interpretable like the fat
fractions in different compartments. The mapping from the measured data
z to this parameter vector q can be written as

z = Ψ (q, SFL) , (3.1)

where z is the transimpedance vector between the voltage measuring elec-
trodes at n different frequencies. Therefore, z is a row vector of dimension
1× n.

This direct link between z and q cannot be realized in practice. Therefore,
we developed a hierarchical formulation for this mapping instead. This
mapping consists of two steps:

First step: Relates the measured data to the electrical conductivity distri-
bution using a macroscopic electrical volume conductor model of the
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abdomen (macroscopic model). To reduce the complexity of the prob-
lem, we assumed that the different compartments have homogeneous
conductivities. This mapping can be written as

z = Ψ (p, SFL) , (3.2)

where p consists of the different electrical conductivities of all the
compartments included in the model.

Second step: Describes the conductivity of each individual compartment
using an electrical tissue model, which relates the microstructural
properties q of the tissue to the frequency-dependent conductivities p.
All tissue models together are described by

p = χ (q) . (3.3)

This equation is subsequently referred to as the microstructural model.

The macroscopic model contains four internal compartments: subcutaneous
fat, muscle, mesentery, and spine. The quantities of interest are the fat frac-
tion in the muscle compartment, the fat fraction in the mesentery, the SFL as
defined in Figure 3.2, and the indicators for the intra- and extracellular fluid
content in the abdominal muscle and the mesenteric compartment. These
indicators are included because they are the most important interfering
quantities.

When introducing a hierarchy of two modeling layers as shown in Figure 3.4,
the complete model can be written as

z = Ψ (χ (q) , SFL) . (3.4)

Except for the SFL, all quantities of interest are parameters of the microstruc-
tural tissue models used for the different compartments.

The measured data are obtained by measuring the potential distribution ΨE
on the body surface during application of an excitation current I.

The macroscopic mapping Ψ (p, SFL) is done by solving the elliptic partial
differential equation

∇ · (κ∇Φ) = 0 in Ω,

−κ
∂Φ
∂n

= J · n = J0 on ∂Ω.
(3.5)
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I

φE,i

z = Ψ(p, SFL)

p = χ(q)

p1
p2

Macrostructural model with
parameters p

Microstructural model with
parameters q

Figure 3.4: Hierarchical model which maps the quantities of interest to the conductivities of
the different anatomical compartments. Modified from Scharfetter et al., 2005.
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In this equation, J0 is the normal component of the current density on the
boundary, and Φ is the electrical potential. The potential at the outermost
distal face of the current injection electrode was prescribed as a Dirichlet
boundary condition. The homogeneous Neumann boundary conditions on
all remaining surfaces of ∂Ω were fulfilled automatically by the chosen
finite element (FE) approach. The underlying anatomical structure is rather
complicated (see Figure 3.2, which shows the transversal cross-section at the
height of the umbilicus). The gross structures are electrodes, skin, the SFL,
muscles, mesenteric structures (intestine, visceral fat, internal organs) and
vertebrae/bone. We applied the finite element method (FEM) for solving
the above current field problem.

We neglected the skin in our FE model, because modeling the well con-
ducting but very thin corium (which is about 1–2 mm thick) would have
required an enormous number of elements and nodes. Due to its thinness,
the corium contributes only marginally to the overall impedance. There-
fore, neglecting it is not a problem at all, which was demonstrated using a
simple two-dimensional model of two infinitely long coaxial cylinders. A
semi-analytic solution for this model was published by (Cheney, Isaacson,
and Isaacson, 1990). In short, the electrodes were connected directly to the
outermost surface (the subcutaneous fat) in our FE model.

We generated the FE model for subject 7 of the study published in Scharfetter
et al., 2001. This subject has a SFL of 25 mm. Fifteen magnetic resonance (MR)
images were manually segmented using a custom MATLAB1-based program
developed by the Institute of Biomedical Engineering. The electrodes were
placed according to Figure 3.2 and automatically inserted onto the outer
contour of the subcutaneous fat. All node coordinates were extracted and
automatically imported into the commercial meshing tool HYPERMESH2.
Based on these geometries, a non-uniform tetrahedral mesh using second
order tetrahedra with ten nodes each was generated in order to smoothly
approximate the surfaces. The forward solution was carried out with an
existing, in-house solver which employs the incomplete Cholesky conjugate
gradient method (Jacobs, 1980; Kershaw, 1978).

Figure 3.5 shows the geometry and discretization of the FE model. This

1Natick, MA, USA
2Altair Engineering, Troy, Michigan
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Figure 3.5: FE model with segmentation of different compartments (different colors) and
discretization (triangular mesh). Electrodes 4 and 20 were used for current
injection, whereas electrodes 2 and 22 were used for voltage measurement. The
spacing of the electrodes is equivalent to the measurement setup shown in
Figure 3.2. Modified from Scharfetter et al., 2005.

model consists of 24 electrodes, but for the analysis of the problems stated
here, only electrodes 4/20 and 2/22 were used as current injection electrodes
and voltage measuring electrodes, respectively.

The transimpedances zi were calculated from the potential on the volt-
age sensing electrode and the current through the surface of the injection
electrode at different frequencies fi according to

z = col (zi) = col
(

Φi|∂ΩE

I

)
, (3.6)

where ∂ΩE denotes the metallic face of the electrode boundary.

3.2.2 Microscopic models

Subcutaneous fat

We modeled the subcutaneous fat (SF) as a homogeneous isotropic conduc-
tor. The conductivity spectrum is not very well defined and only few in
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vivo data are available (Gabriel, Gabriel, and Corthout, 1996; Gabriel, Lau,
and Corthout, 1996; Jossinet, 1998; Jossinet, 1996). Since good microstruc-
tural models for the SF are not available, the mean spectrum from Jossinet,
1996 was approximated by a polynomial with four complex parameters
ϑi and four tuning parameters qi given in Equation 3.7 (where ω is the
angular frequency of the excitation current). The parameter q4 controls the
absolute value of the conductivity without changing the morphology of its
spectrum.

κf (ω) = q0

(
ϑ0 +

3

∑
i=1

qiϑi (log ω)i

)
(3.7)

Abdominal muscles

In reality, abdominal muscles show anisotropic conductivities. For the mus-
culus rectus abdominis, the musculus psoas major, the musculus psoas mi-
nor, and the musculus erector spinae, the fiber orientation can be assumed to
be parallel to the longitudinal body axis. This assumption certainly does not
hold for the musculus transversus abdominis and the musculus obliquus
abdominis.

The effective conductivity of the musculus transversus abdominis can be
estimated according to the analytical equation for the resistivity of an
anisotropic medium published in Rush, Abildskov, and McFee, 1963. If
the electrodes are placed in a plane perpendicular to the fiber orientation,√

ρtr · ρlong gives the overall resistivity. In this equation, ρtr is the resistivity
of the transversal muscle, and ρlong is the resistivity of the longitudinal
muscle.

Published conductivity values for muscular tissues at low frequencies are
highly divergent (see e. g. Gabriel, Lau, and Gabriel, 1996; Geddes and Baker,
1967; Gielen, Jonge, and Boon, 1984; McRae and Esrick, 1993). The absolute
values range from 0.11 to 0.34 S/m, and the transversal to longitudinal ratios
range from 1.8 to 15.3. Calculating the theoretical range for the conductivity
at low frequencies for anisotropic muscular tissue thus yields values between
0.15 to 1.32 S/m. Due to this high degree of uncertainty, the microscopic
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model for muscular tissue was kept as simple as possible, assuming one
single homogeneous and isotropic muscle compartment with a conductivity
spectrum described by a Cole model (Rigaud et al., 1994; Rigaud et al.,
1995):

κm = σ∞,m +
σ0,m − σ∞,m

1 +
(

j ω
2π fc,m

)αm
(3.8)

The Cole parameters σ0,m and σ∞,m are the conductivities of the muscular
compartment at low and high frequencies, respectively. These parameters
are indicators for the hydration state of the tissue, where σ0,m is correlated
with the extracellular volume (ECV) and σ∞,m is correlated with both the
ECV and the intracellular volume (ICV).

We selected the conductivity values in such a way that the model optimally
approximates the measured impedance. The choice of these values is not
critical, because these values have a comparatively small influence on the
slope dz

dSFL . Table 3.1 lists the values used for the microscopic model.

When inspecting the MRI images used for creating the FE model, it can
be observed that the muscle compartment also contains adipose structures
which depend on the degree of obesity (see Figure 3.2). These “adipose
bridges” increase the impedance of the muscle in the direction of the current
flow. This fact was taken into account by using Equation 3.9, which models
the effective impeditivity as the weighted sum of the impeditivities of pure
muscle and adipose tissue. In this equation, wm is the fat fraction in the
muscle compartment.

ρma (ω) = [(1− wm) · ρm (ω) + wm · ρf (ω)] (3.9)

Physically, this model is not correct, because in reality there is a non-
linear relationship between the muscular fat fraction and the measured
impeditivity (see e. g. Fricke, 1924). However, since the exact geometry of the
fatty substructures is not clearly defined, it is impossible to formulate a valid
mathematical description. Therefore, a very simple linear superposition
model is chosen.

For complex conductivities, which are the reciprocals of impeditivities,
Equation 3.9 can be written as

κma =
[
(1− wm) · κ−1

m + wm · κ−1
f

]−1
, (3.10)
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Table 3.1: Microscopic parameter vector q.

Variable Description Value

q1 q1 First coefficient of fat polynomial 7.3447 · 10−4

q2 q2 Second coefficient of fat polynomial −0.0121

q3 q3 Third coefficient of fat polynomial 0.0685

q4 q0 Scaling factor of fat polynomial −0.0679

q5 σ0,m σ0 of the muscular Cole model 0.25 S/m

q6 σ∞,m σ∞ of the muscular Cole model 0.6 S/m

q7 fc,m Characteristic frequency of the muscle 273 kHz

q8 αm Cole exponent of the muscle tissue 0.8

q9 σ0,l σ0 of the mesenteric Cole model 0.5 S/m

q10 σ∞,l σ∞ of the mesenteric Cole model 1 S/m

q11 fc,l Characteristic frequency of the mesentery 2700 kHz

q12 αl Cole exponent of the mesenteric tissue 0.5

q13 wm Fat fraction in the muscle compartment 0.01

q14 wa Visceral fat fraction 0.6

q15 SFL Thickness of the subcutaneous fat layer 25 · 10−3 m

where κm is the complex conductivity of the pure muscle tissue (defined
using a Cole model like the one stated in Equation 3.8), and κf is the complex
conductivity of the adipose tissue (see Equation 3.7).

Mesenteric compartment

The real geometry of the mesentery is very complex and the location of
fine internal structures remains uncertain due to peristaltic movements.
Furthermore, impedance methods are known to have a poor sensitivity for
structures far away from the electrode positions. Therefore, we decided to
model the mesentery as a single homogeneous conductor, which is enclosed
by the muscle compartment and the SF compartment.
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Similar to previously employed hydration models (Hanai, 1960), we assumed
the visceral fat to be suspended in the form of small adipose spheres in a
surrounding medium (which represents the colon and other lean structures
from the mesenterium). This surrounding medium exhibits a dispersion
described by a Cole model. The conductivity κa of such a suspension is
modeled by a Fricke model (Fricke, 1924) described in Equation 3.11. Here,
βF is a shape factor for spherical particles, and wa is the fat fraction in the
mesenteric compartment.

(
κa − κl

κf − κa

)
·
(

κf

κl
− 1
)

=
βF · wa

1− wa

βF =
3 (κf − κl)

2κl + κf
(3.11)

The conductivity of the fat globules κf is again described using Equation 3.7,
and the conductivity of the lean surrounding medium is described by a
Cole model:

κl = σ∞,l +
σ0,l − σ∞,l

1 +
(

j ω
2π fc,l

)αl
. (3.12)

According to Rigaud et al., 1994, the specific impedance κ−1
l of intestine

exhibits two superimposed dispersions, one with a very low characteristic
frequency of 520 Hz, and a second one with a high characteristic frequency
of about 2.7 MHz. The measurement data from Scharfetter et al., 2001 are
only given for frequencies ≥ 5 kHz. Thus, only the second dispersion was
considered. Table 3.1 lists the corresponding Cole parameters σ0,m, σ∞,m,
fc,m, and αm.

Spine and bones

The conductivities of the vertebrae and bones are very low (significantly
lower than 0.05 S/m at frequencies < 500 kHz, see Geddes and Baker, 1967).
Therefore, these structures were modeled as insulators.
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Electrodes

Each electrode was modeled as a cylinder representing the electrode gel.
The diameter of a cylinder was 1 cm, the conductivity was 10 S/m, and
the relative permittivity was set to 80, all of which are typical values for
ECG electrodes. The base surface was fitted to the irregular body surface
to realistically simulate the tight fit. The distal face of the cylinder (∂ΩE,i in
Equation 3.6) was assumed as an equipotential surface with a potential of
10 V. The current was calculated by integrating the gradient of the potential
over the contact surface between the gel layer and the subcutaneous fat
compartment.

The macroscopic parameter vector can now be written as the conductivities
of the following three different compartments: the SF, the muscle, and the
mesenterium:

p = [κf, κma, κa] .

The microscopic parameter vector consists of all the parameters of inter-
est (except for the geometric parameter SFL) which were included in the
microstructural tissue models:

q = [ϑ1 . . . ϑ4, σ0,m, σ∞,m, fm, αm, σ0,l, σ∞,l, fl, αl, wm, wa] .

3.2.3 Sensitivity analysis

To answer questions like how much the different abdominal compartments
or the hydration state contribute to the overall measured impedance, it is
necessary to calculate the differential sensitivity of z with respect to all the
parameters q and the geometrical parameter SFL. These calculations are
summarized in the sensitivity matrix

G =

[
dΨ
dq

,
dΨ

dSFL

]
. (3.13)

The calculation of Ψ(q, SFL) entails computing the solution of a FE prob-
lem. Therefore, the direct differentiation of Ψ with respect to the fifteen
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parameters would be computationally expensive. Fortunately, this effort
can be reduced because of the hierarchical model structure Ψ(q, SFL) =
Ψ (χ (q) , SFL) by applying the chain rule to Equation 3.13:

G =

[
∂Ψ
∂p
· ∂χ

∂q
,

dΨ
dSFL

]
(3.14)

Thus, the function Ψ only needs to be differentiated with respect to the
three components of p (the three different conductivities in the three com-
partments) and the SFL. The differentiation of the microscopic models χ
with respect to q can be carried out efficiently using the symbolic toolbox
of MATLAB. Since the model is non-linear in the parameters, the sensitivity
matrix depends on the actual values of the parameter vector q. Therefore,
the crucial point is the adequate choice of the model parameters, many of
which are not known with high accuracy. Some parameters (like the Cole
parameters for muscle tissue or the Cole parameters for the fat spectra)
can be obtained from the literature, but for example the fat fractions are
in general unknown. These parameter values were chosen in such a way
that both the simulated impedance as well as the slope of the regression
line dz

dSFL approximate the experimental data in Scharfetter et al., 2001 to a
maximum extent.

To obtain changes of the impedance zi per percent change of the parameter
qk (Ω/%) which are straightforward to analyze, the sensitivity vector G
was normalized. Only for the SFL, the unnormalized sensitivity Ω/m was
used:

ḡik =

[
0.01

dzi

dqk/qk
,

dzi

dSFL

]
. (3.15)

Since it is not possible to compute the sensitivity for the SFL analytically,
this value was computed using a differential inflation of the outermost
boundary of the FE model, thereby reducing the SFL marginally. Therefore,
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every node of the surface was moved along its outward normal vector

dzi

dSFL
= ∑

l

dzi

dxl

dxl
dSFL

, (3.16)

dxl
dSFL

= lim
δ→0

xl + δnl − xl
δ

= nl.

Here, dSFL denotes the differential shift of the nodes of the shifted surface,
nl is the unit outward normal vector in the node l with the coordinate
vector xl. The differential quotient was calculated numerically by using
finite differences. The partial derivative of the coordinate vector with respect
to dSFL is equal to nl.

3.3 Results

The calculated impedance for the simulated subject was close to the one
measured in Scharfetter et al., 2001 (37.2 Ω simulated as opposed to 38.2 Ω
measured).

The sensitivity for the SFL was calculated with 0.52 Ω/mm. Expressed as a
percentage, this means a contribution of about 47 % of the SFL’s sensitivity
to the total slope of the experimental regression line (which was about
1.1 Ω/mm).

The normalized sensitivity of the impedance with respect to the muscular
fat content was calculated to be 0.006 Ω per percent change of wm. The
sensitivity to the mesenteric fat was calculated to be 0.174 Ω per percent
change of wa and is thus significantly higher.

The sensitivity to the muscular Cole parameter σ0,m (q5) is quite high at
low frequencies, namely 0.104 Ω per percent change at 50 kHz. On the other
hand, the sensitivity of σ∞,m (q6) is low at low frequencies, the calculated
value was 0.058 Ω per percent change.
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3.4 Discussion

The presented structural model in combination with the proposed sensitivity
analysis is the most comprehensive approach for the investigation of body
composition measurements using BIA. Nevertheless, this model has not
been validated yet, although it helps to gain further insight into and might
help to improve BIA methods.

With the model introduced in this chapter, only about 42 % of the experi-
mentally observed regression line slope can be attributed to the SFL. The
remaining 58 % may be explained by a change of the mesenteric and the
muscular fat content.

An increase of the SFL by 1 mm yields an increase of the impedance by about
0.52 Ω. Using the modeled SFL of 25 mm, this corresponds to a four percent
change. Assuming a strict one-to-one coupling of the percent changes in all
three fat fractions and thus proposing this 4 % change to both the muscular
and the mesenteric fat content would yield a change in the impedance of
about 0.024 Ω and 0.696 Ω, respectively. Summing up these three impedance
gains yields an increase of 1.2 Ω, which is very close to the experimentally
observed value of 1.1 Ω. The fat content of the visceral compartments is
therefore clearly reflected in the measured impedance.

This result, although highly promising, only holds if all the other parame-
ters remain constant. However, the sensitivity analysis also showed a high
sensitivity of the measured impedance to the electrical properties of the
muscular compartment (0.104 Ω change per percent change of σ0,m). Assum-
ing a linear relationship between the muscular ECV and σ0,m thus means
that an increase of the ECV by 4 % would produce an impedance change of
about 0.5 Ω and thus mimicking a decrease of the SFL by about 0.5 mm. A
separation of these effects is not possible with the tetrapolar arrangement
chosen in this work. Therefore, one has to bare in mind that it is only possi-
ble to monitor the fat content if the subject has a constant hydration state
and if the ratio between muscle mass and SFL corresponds to a “normal”
collective.

The model also suffers from the usual modeling restrictions since it in-
corporates great simplifications when compared to the complex human
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anatomical and physiological system. Important limitations are:

• The FE model includes the anatomical structures up to 8 cm below
and above the electrode plane. Any currents which in reality may
flow outside of this modeled volume are neglected. However, as these
currents do not contribute more than 10 % to the overall current, the
resulting error should be negligible.
• Any dynamic changes in the model like respiratory movements or

the filling state of the bladder were neglected. However, because the
subjects from the published measurements in Scharfetter et al., 2001

held their breath during the measurements, the respiratory effects
were eliminated. The filling state of the bladder should be randomly
distributed among all subjects and thus should not significantly affect
the mean slope of the regression line dz

dSFL for a large number of
subjects.
• The microscopic tissue models contain physically invalid assumptions.

Especially the modeling of the impeditivity of the muscle compartment
as a serial connection of the impeditivities of pure muscle tissue and
of adipose tissue may be criticized. However, more complex tissue
models would increase the uncertainty of the reconstructed parameters
and thus the suggested approach is a good compromise.
• Although the applied model appears to explain the slope of the ex-

perimental regression line, it should be kept in mind that both the
body shape and the real fat distribution affect the sensitivity signifi-
cantly. Therefore, this analysis is only valid for values of SFL around
25 mm because this is the SFL value of the modeled subject. It would
be interesting to find out whether the sensitivity to the mesenteric
adipose tissue is also different at different SFLs. This question could
be investigated first qualitatively by simple two- or three-layer models
(see Elia and Ward, 1999; Robinson and Coruh, 1988) and in a second
step quantitatively by anatomically more realistic models.
• The implemented sensitivity analysis provides only local sensitivity

information, because the calculated sensitivity values depend on the
exact value of the parameters. The calculated sensitivities are therefore
only valid for parameter values which do not differ too much from
the ones used in this work.
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3.5 Conclusion

The results clearly show that impedance measurements for the chosen
electrode configuration is sensitive not only to the SFL but also to the fat
content in deep structures such as the mesentery.

Hierarchical structural models like the one developed in this work provide
a valuable tool for the a-priori assessment of BIA. For the problem stated
above, the hierarchical structural model helped to achieve a better under-
standing of the experimental results and clarify the origin of the slope of
the regression line between the SFL and the measured impedances. This
understanding is a prerequisite for a sound data interpretation.

Future work should concentrate on the following problems. First, the influ-
ence of changes in the geometry of the FE models on the parameters should
be investigated. Second, a collection of FE models for subjects with differ-
ent SFLs should be created and compared with simple two- or three-layer
models. Finally, fitting algorithms for the reconstruction of the parame-
ters using multi-electrode and multi-frequency measurements should be
implemented.
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4 Optimization approach for
illuminating highly scattering
tissue

4.1 Introduction

The use of optical imaging (OI) is of special interest in biological and medical
sciences. Diagnostic and therapeutic instruments which are based on visible,
near-infrared, or near-ultraviolet light have many advantages as compared
to e. g. MRI. The equipment is affordable, and data acquisition is usually
fast. However, some inherent problems still remain to be solved. These
problems are mainly due to the highly scattering nature of biological tissue
in the frequency spectrum used in optical tomography (OT). High scattering
coefficients cause the photons to propagate non-deterministically. Therefore,
the measurement of superficial structures as well as a selective illumination
of deeper regions are complicated tasks. As a result, the determination of
the optimal placement of optodes is not trivial except for simple regular
geometries like cylinders or spheres.

Several numerical methods for the optimization of the hardware setup in
strongly scattering tissues were developed recently. Culver et al., 2001 used
a singular value analysis (SVA) of the sensitivity matrix to compare measure-
ment setups with different optode spacings or different measurement types
(reflectance vs. transmittance setup). Xu et al., 2003 compared two different
optode configurations for a hydrid MRI/DOT system, using the number
of singular values above a certain threshold as a quality criterion. Graves
et al., 2004 also used SVA for the evaluation of several 2D fluorescence
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tomography setups, and Lasser and Ntziachristos, 2007 applied the same
procedure for 3D setups.

A similar problem of determining the optimal locations and magnitudes
for all optodes occurs in PDT (see e. g. Dolmans, Fukumura, and Jain,
2003). PDT is used for oncological treatments (e. g. for esophageal cancers,
especially at a stage where surgical intervention is not indicated), as well
as for dermatological treatments (e. g. for the treatment of actinic keratosis,
acne vulgaris or granuloma annulare, among others, see e. g. Babilas and
Szeimies, 2010). It appears attractive to extend PDT to other carcinomas on
epi- or endothelial surfaces, and clinical trials are carried out for example
for cervix carcinomas.

Other potential candidates, mesotheliomas of the thoracic cavity, represent a
special challenge. They are difficult to treat and the design of an appropriate
light applicator is especially difficult. In contrast to applications with simple
geometries like the esophageal cavity, the geometry of the intrathoracic cav-
ity is very complex. Therefore, standard cylindrical scattering devices which
are used in the esophageal cavity are not suitable due to their small and
curved area of treatment. Using these standard devices for the illumination
of the intrathoracic cavity would lead to significant inhomogeneities. These
can lead to locally ineffective treatment or, even more seriously, to lethal
overdoses (Schouwink and Baas, 2004).

In the past, several designs for flexible light diffusers have been proposed.
A typical solution is to use cylindrical or spherical diffusers in a bag filled
with a scattering medium. Although these light diffusers are applicable after
pneumonectomia, they have to be rinsed continuously to prevent blood
accumulations at the surface of the bags (Dwyer et al., 2000; Friedberg
et al., 2003; Krueger et al., 2003; Baas et al., 1997). Some regions like the
sinus diaphragmaticus are difficult to access and have to be illuminated
separately. This can be achieved with wedge-shaped illuminators (van Veen
et al., 2001). However, the positioning of these illuminators and achieving a
homogeneous illumination using these illuminators is challenging. Another
approach is to fill the thorax with a biologically non-hazardous scattering
medium (e. g. with intralipid), which can simultaneously be used for rinsing
to avoid blood accumulation. Typically, a spherical diffuser is used for
illumination, but controlling the dose rate is difficult using this approach.
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This method has also been applied to cases where lung tissue was not
resected (Friedberg et al., 2003).

In general, both methods try to achieve homogeneous fluence using real-
time dosimetry and manual repositioning of the light diffuser. An interesting
alternative is the use of textile-based diffusers with integrated optical fibers.
These diffusers are extremely flexible but suffer from inhomogeneous illumi-
nation and a low transmission rate Selm et al., 2007; Rothmaier et al., 2008.
Recently, so-called “light blankets” with arrays of cylindrical diffusers Hu,
Wang, and Zhu, 2009, as well as a spirally-wound side-glowing fibers Hu,
Wang, and Zhu, 2010 embedded in a bag filled with intralipid were pre-
sented. They are easy to fabricate, but still show inhomogeneities, especially
at the corners. Due to the need for a homogeneous fluence rate, it is of great
interest to optimize the placement of these fibers, which results in improved
illumination using minimal energy.

The purpose of this work is to implement a general approach for the de-
termination of adapted optode locations for different geometries, tissue
types, and applications. The method is based on considering this task as an
optimal control problem for a partial differential equation describing the
diffusion of photons in a strongly scattering medium, where the locations
of optodes are modeled as a continuous “source field”. The crucial step is to
include a penalty term that favors point-wise solutions. This approach was
first published in Stadler, 2009. That way, the locations as well as the magni-
tudes of the light sources are obtained in a single step. The main advantages
of this approach over previously published discrete methods are that no
initial maximal or minimal configuration needs to be specified (although
an allowable region can be enforced), and that a combinatorial problem
with exponential complexity is avoided. In addition, the algorithm is not
based on stochastic methods (like e. g. Monte Carlo methods), but is fully
deterministic, which facilitates the verification of the outcome significantly.
Finally, the approach is flexible and can incorporate a wide variety of objec-
tive criteria (e. g. photon flux over a given boundary section) by changing
the target functional. The proposed approach is demonstrated in the context
of optimizing the illumination pattern for the PDT of intrathoracic cancer.
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4.2 Theory

During PDT, a photosensitizer, for example Photofrin, is injected intra-
venously. Afterwards, the cancerous tissue is illuminated using red to
near-infrared light from diffuse sources. The light is directly applied to
the region of interest, in the case of intrathoric cancer to the intrathoracic
cavity. The absorption of energy by the photodynamic drug leads to the
formation of cytotoxic singlet oxygen and hydroxyl radicals, which destroy
cancer cells selectively (see Section 2.2.2). The challenge is to homogenize
the light intensity as both under- and overexposure can lead to ineffective
treatment (Henderson et al., 2000).

4.2.1 Mathematical model

The diffusion approximation of the RTE was used for modeling the steady
state of light propagation in scattering medium (Arridge, 1999). This leads to
a stationary elliptic partial differential equation which describes the photon
distribution ϕ ∈ H1(Ω){

−∇ · (κ(x)∇ϕ(x)) + µa(x)ϕ(x) = q(x) in Ω,
κ(x)~n(x) · ∇ϕ(x) + ρϕ(x) = 0 on Γ.

(4.1)

The geometry of the object is given by the domain Ω ⊂ Rd, d ∈ {2, 3} being
the number of spatial dimensions, with boundary Γ whose outward normal
vector is denoted by ~n. The medium is characterized by the absorption coef-
ficient µa, the reduced scattering coefficient µ′s, and the diffusion coefficient

κ =
[

1
d (µa + µ′s)

]−1
. The coefficient ρ models the reflection of a part of the

photons at the boundary due to a mismatch in the index of refraction. Fi-
nally, the source term q models the light emission of the embedded optodes
(see also Section 2.2.5).

For the optimal control approach, the solution p ∈ H1(Ω) of the adjoint
equation is also required:{

−∇ · (κ(x)∇p(x)) + µa(x)p(x) = f (x) in Ω,
κ(x)~n(x) · ∇p(x) + ρp(x) = 0 on Γ

(4.2)
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for given f ∈ L2(Ω). Both equations should be understood in the weak
sense.

4.2.2 Optode placement optimization

Since optodes act as discrete light sources, the source term can be modeled
as

q(x) =
N

∑
j=1

qjδ(x− xj) for qj ∈ R+, xj ∈ Ω, 1 ≤ j ≤ N, (4.3)

where δ denotes the Dirac distribution with
∫

f (x) δ {dx} = f (0) for all
continuous functions f .

A straightforward approach for optimizing the placement of the optodes
would identify a set of M � N possible optode locations x1, . . . , xM and
chose the best N locations such that a certain performance criterion J(q) is
minimized. The corresponding optimal source magnitudes qj would then
be computed in a second step. This was, for example, done in Freiberger,
Clason, and Scharfetter, 2010.

To avoid the combinatorial complexity of this discrete approach, instead
of specifying the optode locations beforehand, the (distributed) source
term q was optimized directly. A penalty term that promotes sparsity of q,
i. e. smallness of its support {x ∈ Ω : q(x) 6= 0}, was added. This also has
the advantage that the number N of optodes does not need to be specified
in advance. For the problem of PDT, point sources are needed. Thus, the
source term q was searched for in the space of regular Borel measures
(which includes the Dirac distribution). Following Clason and Kunisch,
2011, the optimization problem to be solved can be written as:

min
q∈M(Ω)

J(q) + α‖q‖M, (4.4)

where M(Ω) is the space of regular Borel measures, i. e. the dual of the
space C0(Ω) of continuous functions with compact support on Ω, with
norm

‖q‖M = sup
f∈C0(Ω)
‖ f ‖C≤1

∫
Ω

f dq, (4.5)
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which reduces to
‖q‖M =

∫
Ω
|q(x)| dx = ‖q‖L1 (4.6)

for q ∈ L1(Ω). This is related to the well-known fact that L1 norms promote
sparsity in optimization. The penalty parameter α controls the sparsity of
the solution: the larger α, the smaller the support of q.

For PDT, where a homogeneous illumination should be achieved, the perfor-
mance criterion can be formulated as the deviation from a constant illumina-
tion z in an observation region ωo ⊂ Ω such that J(q) := 1

2‖ϕ|ωo − z‖2
L2(ωo)

,
where ϕ|ωo denotes the restriction of ϕ to ωo.

Due to the linearity of the forward problem, it is possible to choose z =
1 (Wm−2) without loss of generality. After optimization, the magnitude of
the resultant sources can be linearly scaled to achieve the required illumina-
tion z. In addition, the possible light source locations were restricted to a
control region ωq ⊂ Ω, which does not overlap with the observation region
ωo (i. e., ω̄q ∩ ω̄o = ∅). A non-negative source term q (which represents the
optodes) was also enforced.

This leads to the following optimization problem:

min
ϕ∈H1(Ω),q∈M(ωq)

1
2
‖ϕ|ωo − z‖2

L2(ωo)
+ α‖q‖M(ωq) subject to (4.1) and q ≥ 0.

(4.7)

It was shown in Clason and Kunisch, 2012 that this problem has a solution
q∗ ∈ M(ωq), which can be approximated by a sequence of functions qγ ∈
L2(ωq) for γ→ ∞ satisfying

qγ + γ min(0, pγ + α) = 0, (4.8)

where pγ is the solution of (4.2) with right hand side f := ϕγ − z and ϕγ

is the solution of (4.1) with right hand side qγ. Equation 4.8 can be solved
using a semismooth Newton method which is superlinearly convergent (see
Clason and Kunisch, 2012). To globalize the Newton method and closely
approximate the solution q∗ of (4.7), we use a continuation scheme in γ
where we iteratively solve the problem for an increasing sequence γn using
the previous solution as initial guess.
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4.2.3 Finite element discretization

The discretization needs to account for the fact that the functions qγ con-
verge to measures as γ increases. We therefore employ the finite element
discretization proposed in Casas, Clason, and Kunisch, 2012, where the
photon density ϕγ and the adjoint variable pγ are discretized using piece-
wise linear elements on a given triangulation T, while the source term qγ is
discretized using linear combinations of Dirac distributions centered at the
interior nodes xi, 1 ≤ i ≤ N(T), of T:

qγ =
N(T)

∑
i=1

qiδ(x− xi). (4.9)

In practice, the number of nodes N(T) will be determined by the need to re-
solve the geometry of the domain and the required accuracy of the solution
of the forward model (4.1). Although further refinement of the triangulation
increases the number of possible optode locations, the sparsity-promoting
property of the minimized functional discourages placing additional op-
todes. In fact, it was shown in Casas, Clason, and Kunisch, 2012 that for
a given discretization of the forward model, the computed sources (for
γ→ ∞) are optimal among all (non-discretized) measures.

Since the linear finite element basis functions form a nodal basis, the right
hand side in the weak formulation of (4.1) for a piecewise linear basis
function ej becomes

〈qγ, ej〉 =
N(T)

∑
i=1

qi〈δ(x− xi), ej〉 = qj, (4.10)

i. e. the mass matrix is the identity. Introducing the stiffness matrix A
corresponding to (4.1) and the observation mass matrix Mo with entries
Mij =

∫
ωo

eiej dx, we obtain the discrete optimality system
Aϕγ − qγ = 0,

−Mo ϕγ + AT pγ = −Moz,
qγ + γ min(0, pγ|ωq + α) = 0.

(4.11)
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Eliminating qγ using the last equation and applying a semismooth Newton
method (Clason and Kunisch, 2012), we have to solve for (ϕk+1, pk+1) the
block system (

A Dk
−Mo A

)(
ϕk+1

pk+1

)
=

(
−αdk

−Moz

)
, (4.12)

where Dk is a diagonal matrix with the entries of the vector dk,

dk
j =

{
γ if (pk|ωq)j < −α,
0 else,

(4.13)

on the diagonal. It can be shown that the semismooth Newton method has
converged once dk+1 = dk holds. After the final pk has been computed, the
corresponding control can be obtained from (4.8). The complete procedure
is given in Algorithm 1.

Algorithm 1 Semismooth Newton method with continuation.

1: for m = 1, . . . , m∗ do
2: set γ = 2(m−1), ϕ0 = p0 = d0 = 0
3: for k = 0, . . . , k∗ do
4: solve (4.12) for ϕk+1, pk+1

5: compute dk+1 from (4.13)
6: if dk+1 = dk then
7: set q(m) = γ min(0, pk+1|ωq + α)
8: break
9: end if

10: end for
11: end for

4.3 Methods

The optimization algorithm described in section 4.2.2 is implemented in
Python using the open source finite element library FEniCS (Logg, Mardal,
and Wells, 2012). The parameters in Algorithm 1 are set to m∗ = 34 (such
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5 10 20 40 60

(a) Single-curved models.

5 10 15 20

(b) Double-curved models.

Figure 4.1: Various two-dimensional model geometries (numbers indicate the different
curvature κ). From Brunner et al., 2012.

that γ∗ ≈ 1010) and k∗ = 20. To model a textile-based diffuser, the material
parameters in (4.1) are taken as µa = 10−4 mm−1, µ′s = 10−1 mm−1, and
ρ = 0.1992. The influence of the parameter α is illustrated by comparing the
results for different values of α, which are specified below.

The meshes for the light diffusers containing the optodes are created with
the commercial mesh generator HYPERMESH. To demonstrate the behavior
of the optimization algorithm for different geometries, we first consider
simple two-dimensional spline models which represent the cross-section of
an infinitely long pad. This geometry mimics that of an array of parallel
cylindrical diffusers embedded in a scattering substrate. Five single-curved
models and four double-curved models with increasing curvature κ were
created as shown in Figure 4.1. The single-curved models mimick the
anatomical situation which occurs at intrathoracic PDT. The double-curved
models were chosen to show the applicability of the proposed method in
situations where intuitive optode placement is not possible anymore. The
dimensions correspond approximately to a width of 10 mm and a height of
120 mm.

In all cases, the region ωo in which the illumination should be homogenized
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are the left and right outer lines (indicated in orange in Figure 4.1). The
region ωq (where the optodes are allowed to be placed) is a single line
equidistant from both outer lines (indicated by a dashed line in Figure 4.1).
The meshes for the single-curved models of curvature κ = 5, 10, 20, 40,
and 60 consist of 61038, 61789, 67160, 80664, and 105322 finite elements,
respectively. The curvatures correspond to the transverse reflection of the
pad’s center in millimeters, with a reflection of 60 mm forming a perfect
semicircle as the pad’s height is 120 mm. The double-curved models of
curvature κ = 5, 10, 15, and 20 are composed of 62349, 70735, 82119, and
104220 finite elements, respectively.

The photodynamic treatment is simulated by embedding the light diffuser
model in the intrapleural space of a realistic three-dimensional human
thorax model that is constructed from a stack of CT images. The approximate
dimensions of this pad are: height 100 mm, width 150 mm, thickness 10 mm.
The observation region ωo is defined as the outer and inner surface of the
model, and ωq is an interior manifold equidistant from both (see Figure 4.2;
ωq is indicated in purple). The generated mesh consists of 81770 elements.

The results are evaluated quantitatively for different values of the sparsity-
controlling parameter α. The coefficient of variation cv of the resulting
photon density ϕγ over the observation region ωo, as well as the number
N of sources after the optimization procedure serve as quality measures.
For the latter, all the nodes in the control region ωq which have a value of
qγ > 10−16 are counted. We compare the results for α ∈ {0.1, 0.01, 0.001}
for the two-dimensional models and α ∈ {0.2, 0.4, . . . , 1.8} for the three-
dimensional model.

4.4 Results

The quantitative results for the two-dimensional geometries are given in
Table 4.1 for the single-curved models and in Table 4.2 for the double-curved
models, respectively. As can be seen by comparing the number of active
nodes N with the total number of nodes for each model, the algorithm
indeed produces discrete sources that can be used as optode positions. The
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(a) Top oblique view

(b) Front oblique view (c) Side oblique view

Figure 4.2: Three-dimensional model. The admissible manifold ωq for the optodes is indi-
cated in purple. From Brunner et al., 2012.
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Table 4.1: Results for single-curved models. Shown are the number N of active nodes and
the coefficient of variation cv of the photon density in the observation domain
for different curvatures κ and values of α.

κ 5 10 20 40 60

α 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

N 22 49 59 18 51 83 15 56 66 20 51 62 22 68 147

cv 0.252 0.0182 0.00540 0.296 0.0207 0.00617 0.178 0.0196 0.00795 0.168 0.0253 0.0109 0.121 0.0202 0.0157

Table 4.2: Results for double-curved models. N indicates the number of active nodes, cv
the coefficient of variation obtained for the photon density in the observation
domain for different combinations of curvature κ and penalty parameters α.

κ 5 10 15 20

α 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

N 12 50 134 19 40 148 26 49 60 33 77 130

cv 0.165 0.0248 0.0151 0.203 0.0288 0.0245 0.224 0.0327 0.0294 0.492 0.0347 0.0309

obtained coefficients of variation cv indicate that a homogeneous illumina-
tion of the desired region is possible at least for α < 0.1, demonstrating the
feasibility of the proposed approach. The robustness of the algorithm with
respect to geometry is illustrated by the fact that the achieved variations do
not depend very much on the curvature.

It can also be observed how the penalty parameter α determines the tradeoff
between the number of active optodes and the homogeneity of the illumina-
tion in the region of interest: larger values of α yield fewer optodes but less
homogeneous illumination. This applies to all the models, independent of
their curvature. The qualitative behavior of the computed sources for each

Table 4.3: Results for three-dimensional model. N indicates the number of active nodes, cv
the coefficient of variation obtained for the photon density in the observation
domain for all the different values of α.

α 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2

N 0 12 150 250 333 409 498 637 884

cv — 1.85 0.564 0.359 0.265 0.204 0.156 0.113 0.0672
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Weak active node Strong active node

Figure 4.3: Detailed view showing a neighboring set of two active nodes appearing as one
single optode in Figure 4.4. Single-curved model (κ = 20, α = 0.1).

value of α is shown in Figure 4.4(a) and Figure 4.4(b) for a representative
single-curved (κ = 20) and a double-curved model (κ = 15), respectively.
The relative strength of the sources is coded by height. When comparing
Tables 4.1 and 4.2 with Figure 4.4, it is obvious that fewer than the stated
15 optode positions are visible in Figure 4.4. This is due to the fact that
quite often a weak active node is placed nearby a strong one (see Figure 4.3).
These neighboring active nodes appear as a single peak and thus can be
taken as a single optode.

While for the single-curved model and α = 0.1 the distribution of optodes
agrees well with the intuitive choice of equally spaced optodes of approxi-
mately equal magnitude, the other values indicate that a better illumination
can be achieved with stronger sources towards the tips of the model. It
should be pointed out that even in the former case, the number of optodes
to be distributed is not obvious. For the double-curved models, the results
indicate that optodes should be placed preferentially in regions where the
curvature changes.

For reference, Figure 4.5 shows the corresponding photon densities ϕγ

(in Wm−2, normalized to unit mean) plotted along a part of the observation
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region (for the left line in Figure 4.1). This illustrates how the parameter
α and the model geometry influence the homogeneity of the illumination
in this region. As expected, photon fluence shows the most pronounced
inhomogeneities close to the borders. In the case of the single curved model,
a nearly sinusoidal ripple pattern arises in more than 80 % of the target
region, while in the double curved model the ripple is superimposed on
a step-profile with the steps located approximately at the zero-crossing
points of the curvature. With α = 0.1, the peak–peak fluctuations are still
around 40 % of the mean value even far away from the borders, which may
be considered as unsatisfactory. However, when decreasing α to 0.01 or
less, the ripple remains within a few percent, which is sufficient, especially
when comparing this value to other sources of fluctuations of the irradiation
such as local absorption changes by tissue inhomogeneities, bleeding, or
inhomogeneities of the distribution of the photosensitizer.

The quantitative results for the three-dimensional model are shown in
Table 4.3. For α = 1.8, no controls are placed and thus the photon density
is zero. This is consistent with the theory, which predicts that there is
a threshold value for α above which the optimal control is identically
zero (Casas, Clason, and Kunisch, 2012).

Figure 4.6 shows location and magnitude (color coded) of the computed
optodes and the corresponding photon densities (in Wm−2, normalized
to unit mean) for α = 1.2, α = 0.8, and α = 0.4. Due to the nonuniform
curvature of the model, a homogeneous illumination is harder to achieve
than in the two-dimensional case, especially at the borders of the target
region. However, for α < 1.2, the inhomogeneities in the interior are usually
within 10 %, and the few hot spots of 30 % would probably still be acceptable
because usually the pads are wrapped by additional stray layers (very strong
scattering blood and fluids). Although of course the specific placement may
be difficult to realize in practice, the qualitative distribution can be a very
useful information during the initial design process.
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(a) Single-curved model (κ = 20).

(b) Double-curved model (κ = 15).

Figure 4.4: Optode positions and relative magnitudes (height-coded) for representative
single-curved and double-curved models for three different values of alpha
(from top to bottom: α = 0.1, α = 0.01, α = 0.001). From Brunner et al., 2012.
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Figure 4.5: Photon densities ϕγ (in Wm−2, normalized to unit mean) plotted along part of
the observation region (left line in Fig. 4.1) for representative single-curved and
double-curved models for three different values of alpha (from top to bottom:
α = 0.1, α = 0.01, α = 0.001). From Brunner et al., 2012.

4.5 Discussion

The proposed approach is able to generate reasonable optode configurations
adapted to specific geometries, even in situations where optimal setups are
not intuitively obvious (such as in complex three-dimensional models). Our
method also yields relative strengths of the optodes to be placed, which
would otherwise have to be computed in a separate step. Furthermore, the
algorithm is deterministic and does not require a-priori knowledge such
as an initial set of candidate locations or the number of optodes required,
which on the contrary is provided by our approach. The method can be
used as a tool during the initial design process to estimate the number of
sources required as well as their location and relative strengths.

By formulating the optode placement problem as a continuous optimization
problem, the combinatorial complexity inherent in discrete approaches is
avoided. This is critical for achieving an efficient optimization technique
and has not been presented before in the context of diffuse optical imaging.
As an example, our Python implementation required about three minutes
on a MacBook Pro (2.16 GHz Intel Core2 Duo with 2 GByte RAM) for the
single-curved model with κ = 5. Our approach could therefore also be used
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(a) Optodes, α = 1.2. (b) Photon density, α = 1.2.

(c) Optodes, α = 0.8. (d) Photon density, α = 0.8.

(e) Optodes, α = 0.4. (f) Photon density, α = 0.4.

Figure 4.6: Optode positions and magnitudes (left) and photon densities (right) (in Wm−2,
normalized to unit mean) for the three-dimensional model and three different
values of α. From Brunner et al., 2012.
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in an interactive setting, where the engineer will adapt design parameters,
such as the optical coefficients of the diffuser, based on the outcome of an
optimization run.

While the number of desired optodes is correlated with the penalty pa-
rameter α, it is not directly controllable. This drawback is analogous to the
problem of finding the “best” regularization parameter in image reconstruc-
tion (e. g. for DOT), where typically the determination of the parameter is
left to the user or is based on heuristics. Certainly, one could think about
finding a good parameter through successive optimization runs, for example
with decreasing values of α if the user specified the maximum number of
optodes.

The achieved results are satisfactory from a mathematical point of view;
but of course they should also be discussed in an engineering context. In
particular, it may be difficult to place many sources in a more or less irreg-
ular pattern. The number of optodes depends on the required uniformity
of the surface fluence. A reasonable value in practice would be a CV of
0.05. Table 4.1 shows CVs (for single-curved pads) below 0.03 for around
50 optodes, but up to 0.25 for less than 25 optodes. The numbers for the
double-curved pad are only slightly greater. This means that a value of 40
to 50 required sources can be expected. In practice, such a design can be
approximated relatively easily with parallel arranged cylindrical polymer
diffusers of sufficiently small radii, which are fed by individual optical
fibers. Instead of a fixed grid of diffusers, one can imagine dense bundles
of uniformly spaced diffusers where only those close to the optimal posi-
tions are connected to the laser source. This would allow a very flexible
use and adaptive homogenization of the fluence dependent on the individ-
ual anatomical situation (like, for example, different curvatures), which is
certainly desirable in the context of a personalized optimization. Such a
concept can be realized by using fiberoptic switches with many channels. In
three dimensions, the sources may be fiber-coupled spherical diffusers or
simply open-ended fibers. Due to the higher number of potential positions
(637 for a CV of 0.11, see Table 4.3), the construction of a flexible structure
may be difficult here, and pre-fabricated pads that are adapted to a certain
anatomical target geometry appear more realistic than a truly adaptive
system.
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Although a rigorous sensitivity analysis has not yet been carried out, our
experience indicates that the computed photon density distributions are
relatively robust to small perturbations of the optode locations and mag-
nitudes. Similarly, we did not observe significant changes in the results
due to small random perturbations of the optical parameters. This can be
attributed to the linearity and the strong diffusivity of the model (4.1). Such
robustness is very important for practical implementations because it means
that the result is not sensitive to manufacturing tolerances.

One of the main advantages of the optimal control approach is its flexi-
bility. For example, it is straightforward to extend the underlying model
to include inhomogeneous material properties or to replace the diffusion
approximation by a more complicated model such as the radiative transfer
equation. It is also possible to consider different objective criteria such as
the photon flux through a given (boundary or internal) surface by changing
the functional J(q).

In principle, the approach can be applied to the problem of optimal ex-
periment design for optical tomography if the objective J(q) is based on a
suitable sensitivity term. However, this extension of our method is subject
to future work.
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The aim of this work was to show the use of design optimization for
improving soft field applications (SFAs) so they might become an important
clinical tool. We demonstrate this using two specific examples.

The first tackled problem is an enhanced sensor and modeling system for
BIA, which estimates the composition of body fat (BF) and fat free mass
(FFM) inside the body.

Usually, simple cylinder models, which relate the measured impedance
to the geometry of the human body, are used (see e. g. Kyle et al., 2004a).
Here, measurement and injection electrodes are placed on hand/foot and
wrist/ankle, respectively. Importantly, these models suffer from low sensi-
tivities (Baumgartner, Ross, and Heymsfield, 1998).

In this work, a realistic three-dimensional model of the human thorax
(truncated about 8 cm above and below the umbilicus) was developed.
The electrode placement was chosen in a way that the penetrating electric
current can pass the region of interest, namely the abdominal region. All
parameters of interest, like the fat fraction in the muscle compartment, the
visceral fat fraction, and the thickness of the subcutaneous fat layer, were
directly incorporated using a hierarchical model. This model maps these
properties to the conductivities of the different compartments (subcutaneous
fat layer, abdominal muscle, mesenteric compartment, spine and bone). Such
a structural model facilitates the detailed analysis of body composition
measurements using BIA. The sensitivity analysis can be used to analyze
important questions regarding the design of BIA systems such as which
parameters of interest incorporated in the abdominal model can be measured
using the suggested setup. A detailed analysis of the obtained sensitivity
values revealed a high sensitivity to the SFL and the fat content of the
mesentery. The usual drawback of BIA is the dependence of the results on
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the hydration state of the tissue. This problem still remains, and the analysis
predicts a high sensitivity to the muscular extracellular volume (represented
by the conductivity at low frequencies of the muscular compartment in
the model). Therefore, comparable hydration states are a prerequisite for a
reliable BIA analysis.

Although the proposed method provides a valuable tool for the assessment
of BIA methods, some questions still remain unanswered. For example,
the influence of changes in the model geometry, as well as the effect of
models which show different values for the SFL on the partitioning of the
overall sensitivity are not clarified yet. An extension of the model setup
to a multi-electrode and multi-frequency measurement system including a
fitting algorithm for the reconstruction of the parameters would be desirable
in this context.

The second design optimization problem shows the applicability of a novel
method for the deterministic optimization of sensor positions (Clason and
Kunisch, 2011) for the specific application of PDT of intrathoracic cancer.

This therapy is a challenge, because the geometry of the intrathoracic cavity
is very complex. Thus, the optimization of cylindrical diffusers (their posi-
tions as well as their individual magnitude), integrated in a bag of intralipid,
is not trivial. To show the applicability of the method mentioned above, we
developed simple two-dimensional FE models as well as a realistic three-
dimensional FE model of the human intrathoracic cavity. The homogeneity
of the irradiation was assessed using the coefficient of variation of the
photon density in the observation domain. Acceptable results would yield
values equal to or below 0.05.

The results show that our method produces reasonable optode configu-
rations for all models. A drawback might be the fact that the number of
desired optodes cannot be set directly, but it is correlated with the penalty
parameter α. However, using successive optimization runs with decreasing
values of α until an upper level for the desired optodes is reached would be
a straightforward solution. Obviously, the more homogeneous the surface
fluence should be, the more optodes are necessary. For the two-dimensional
models in this work, around 40 to 50 optodes were required to obtain a
CV below 0.05. Although this number sounds rather high, such an applica-
tor can be produced relatively easily using parallelly arranged cylindrical
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polymer diffusers with a small radius, fed by optical fibers. The optimal
optode positions could be found individually for every single patient. Using
fiberoptic switches with many channels and a dense bundle of uniformly
spaced diffusers connected to the laser source, only those optimal optode
positions could be used. For the three-dimensional model, a number of 637

optodes would be needed to yield a CV of 0.11. Here, pre-fabricated pads
are a solution, as individually adaptive systems would be quite difficult to
implement.

The greatest advantages of using this optimization procedure for PDT is its
efficiency (the locations and magnitudes of the optode positions are found
in one single step and exponential complexity is avoided). In addition,
it does not require an initial configuration. In this work, the underlying
objective was the minimization of the photon density over the outer surface
of the FE pads. Using other objectives is straightforward and thus the
proposed procedure can be extended to a wide variety of problems of
design optimization for OT.
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Chwolson, O. (1889). “Grundzüge einer mathematischen Theorie der inneren
Diffusion des Lichtes.” In: Bull. Acad. Imp. Sci., St. Petersbourg 33, pp. 221–
256 (cit. on p. 9).

Clason, C. and Kunisch, K. (2011). “A duality-based approach to elliptic
control problems in non-reflexive Banach spaces.” In: ESAIM Contr.
Optim. Ca. 17.1, pp. 243–266. doi: 10.1051/cocv/2010003 (cit. on pp. 53,
69).

Clason, C. and Kunisch, K. (2012). “A measure space approach to optimal
source placement.” In: Computational Optimization and Applications 53.1,
pp. 155–171 (cit. on pp. 54, 56).

Cole, K. S. (1928). “Electric impedance of suspensions of spheres.” In: The
Journal of General Physiology 12.1, pp. 29–36 (cit. on p. 11).

Cole, K. S. (1940). “Permeability and Impermeability of Cell Membranes
for Ions.” In: Cold Spring Harb Symp Quant Biol 8, pp. 110–122. doi:
10.1101/SQB.1940.008.01.013 (cit. on p. 14).

Cole, K. S. and Curtis, H. J. (1938). “Electric impedance of Nitella during
activity.” In: The Journal of General Physiology 22.1, pp. 37–64 (cit. on
p. 11).

Cole, K. S. and Curtis, H. J. (1939). “Electric impedance of the squid giant
axon during activity.” In: The Journal of General Physiology 22.5, pp. 649–
670 (cit. on p. 11).

Cox, B. (2014). Introduction to Tissue Optics. url: http://www.ucl.ac.uk/
medphys/staff/people/bcox/BenCox_TissueOptics.pdf (cit. on p. 26).

73

http://dx.doi.org/10.1051/cocv/2010003
http://dx.doi.org/10.1101/SQB.1940.008.01.013
http://www.ucl.ac.uk/medphys/staff/people/bcox/BenCox_TissueOptics.pdf
http://www.ucl.ac.uk/medphys/staff/people/bcox/BenCox_TissueOptics.pdf


Bibliography

Culver, J. P., Ntziachristos, V., Holboke, M. J., and Yodh, A. G. (2001).
“Optimization of optode arrangements for diffuse optical tomography:
a singular-value analysis.” In: Opt. Lett. 26, pp. 701–703 (cit. on p. 49).

Curtis, H. J. and Cole, K. S. (1938). “Transverse electric impedance of the
squid giant axon.” In: The Journal of General Physiology 21.6, pp. 757–765

(cit. on p. 11).
Cutler, M. (1931a). “Transillumination as an Aid in the Diagnosis of Breast

Lesions.” In: Surg. Gynec. and Obst. 48, p. 721 (cit. on p. 12).
Cutler, M. (1931b). “Transillumination of the breast.” In: Annals of Surgery

93.1, pp. 223–234. issn: 0003-4932 (cit. on p. 12).
DeFronzo, R. A., Bergenstal, R. M., Bode, B., Kushner, R., Lewin, A. J., Skjøth,

T. V., Jensen, C. B., and Davies, M. (2014). “Effects of Liraglutide 3.0
Mg and 1.8 Mg on Body Weight and Cardiometabolic Risk Factors in
Overweight and Obese Adults with Type 2 Diabetes Mellitus (T2DM):
The Scale Diabetes Randomized, Double-Blind, Placebo-Controlled, 56-
Week Trial.” In: (cit. on p. 29).

Dhatt, G., Lefrançois, E., and Touzot, G. (2012). Finite Element Method. John
Wiley & Sons. isbn: 9781118569702 (cit. on p. 28).

Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003). “Photodynamic
therapy for cancer.” In: Nat. Rev. Cancer 3.5, pp. 380–387 (cit. on p. 50).

Duck, F. A. (2013). Physical properties of tissues: a comprehensive reference book.
Academic Press (cit. on p. 12).

Dwyer, P. J., White, W. M., Fabian, R. L., and Anderson, R. R. (2000). “Optical
integrating balloon device for photodynamic therapy.” In: Lasers Surg.
Med. 26.1, pp. 58–66 (cit. on p. 50).

E. Haber, U. M. Ascher and Oldenburg, D. (2000). “On optimization tech-
niques for solving nonlinear inverse problems.” In: Inverse Problems 16,
pp. 1263–1280 (cit. on p. 3).

Elia, M. and Ward, L. C. (1999). “New techniques in nutritional assessment:
body composition methods.” In: Proceedings of the Nutrition Society 58,
pp. 33–38 (cit. on p. 47).

Ferrari, M. and Quaresima, V. (2012). “A brief review on the history of
human functional near-infrared spectroscopy (fNIRS) development and
fields of application.” In: NeuroImage 63.2, pp. 921–935. issn: 1053-8119.
doi: 10.1016/j.neuroimage.2012.03.049 (cit. on p. 1).

74

http://dx.doi.org/10.1016/j.neuroimage.2012.03.049


Bibliography

Foster, K. R. and Schwan, H. P. (1995). “Dielectric properties of tissues.” In:
Handbook of biological effects of electromagnetic fields 2, pp. 25–102 (cit. on
p. 13).

Freiberger, M., Clason, C., and Scharfetter, H. (2010). “Total Variation Regu-
larization for Nonlinear Fluorescence Tomography with an Augmented
Lagrangian Splitting Approach.” In: Appl. Optics 49.19, pp. 3741–3747.
doi: 10.1364/AO.49.003741 (cit. on p. 53).

Fricke, H. (1924). “A Mathematical Treatment of the Electric Conductivity
and Capacity of Disperse Systems I. The Electric Conductivity of a
Suspension of Homogeneous Spheroids.” In: Phys. Rev. 24 (5), pp. 575–
587. doi: 10.1103/PhysRev.24.575 (cit. on pp. 40, 42).

Fricke, H. and Morse, S. (1925). “The electric resistance and capacity of
blood for frequencies between 800 and 41/2 million cycles.” In: The
Journal of General Physiology 9.2, p. 153 (cit. on p. 11).

Friedberg, J. S., Mick, R., Stevenson, J., Metz, J., Zhu, T., Buyske, J., Sterman,
D. H., Pass, H. I., Glatstein, E., and Hahn, S. M. (2003). “A phase I study
of Foscan-mediated photodynamic therapy and surgery in patients with
mesothelioma.” In: Ann. Thorac. Surg. 75.3, pp. 952–959 (cit. on pp. 50,
51).

Gabriel, C., Gabriel, S., and Corthout, E. (1996). “The dielectric properties
of biological tissues: 1. Literature survey.” In: Physics in Medicine and
Biology 41, pp. 2231–2249 (cit. on p. 39).

Gabriel, S., Lau, R. W., and Corthout, E. (1996). “The dielectric properties
of biological tissues: 2. Measurements in the frequency range 10 Hz to
20 GHz.” In: Physics in Medicine and Biology 41, pp. 2251–2269 (cit. on
p. 39).

Gabriel, S., Lau, R. W., and Gabriel, C. (1996). “The dielectric properties
of biological tissues: 3. Parametric models for the dielectric spectrum
of tissues.” In: Physics in Medicine and Biology 41, pp. 2271–2293 (cit. on
p. 39).

Gans, R. (1924). “Die Farbe des Meeres.” In: Annalen der Physik 380.17, pp. 1–
22. issn: 1521-3889. doi: 10.1002/andp.19243801702 (cit. on p. 10).

Gauss, C. F. (1867). Werke. Vol. 5, p. 602 (cit. on p. 6).
Geddes, L. A. and Baker, L. E. (1967). “The specific resistance of biological

material – a compendium of data for the biomedical engineer and
physiologist.” In: Medical and Biological Engineering 5, pp. 271–293 (cit. on
pp. 39, 42).

75

http://dx.doi.org/10.1364/AO.49.003741
http://dx.doi.org/10.1103/PhysRev.24.575
http://dx.doi.org/10.1002/andp.19243801702


Bibliography

Gibson, A. and Dehghani, H. (2009). “Diffuse optical imaging.” In: Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 367.1900, pp. 3055–3072 (cit. on p. 12).

Gielen, F. L. H., Jonge, W. Wallinga-de, and Boon, K. L. (1984). “Electrical
conductivity of skeletal muscle tissue: experimental results from differ-
ent muscles in vivo.” In: Medical and Biological Engineering and Computing
22, pp. 569–577 (cit. on p. 39).

Gonzalez, C. A., Zuniga, O., and Padilla, L. E. (1997). “Detection of ani-
mal tissue thickness using simple vertical electric sounding (VES).” In:
Physiological Measurements 18, pp. 85–91 (cit. on p. 33).

Gratton, G., Corballis, P. M., Cho, E., Fabiani, M., and Hood, D. C. (1995).
“Shades of gray matter: Noninvasive optical images of human brain
reponses during visual stimulation.” In: Psychophysiology 32.5, pp. 505–
509 (cit. on p. 12).

Graves, E. E., Culver, J. P., Ripoll, J., Weissleder, R., and Ntziachristos,
V. (2004). “Singular-value analysis and optimization of experimental
parameters in fluorescence molecular tomography.” In: J. Opt. Soc. Am.
A 21, pp. 231–241 (cit. on p. 49).

Griffiths, H. (2001). “Magnetic induction tomography.” In: Measurement
Science and Technology 12.8, p. 1126 (cit. on p. 1).

Hanai, T. (1960). “Theory of the dielectric dispersion due to the interfacial
polarization and its application to emulsions.” In: Colloid Journal 171,
pp. 23–31 (cit. on p. 42).

Hassan, A. M. and El-Shenawee, M. (2011). “Review of electromagnetic
techniques for breast cancer detection.” In: IEEE Reviews in Biomedical
Engineering 4, pp. 103–118 (cit. on p. 2).

Heaviside, O. (1894). Electrical Papers. Vol. 2. MacMillan (cit. on p. 7).
Henderson, B. W., Busch, T. M., Vaughan, L. A., Frawley, N. P., Babich, D.,

Sosa, T. A., Zollo, J. D., Dee, A. S., Cooper, M. T., Bellnier, D. A., Greco,
W. R., and Oseroff, A. R. (2000). “Photofrin Photodynamic Therapy Can
Significantly Deplete or Preserve Oxygenation in Human Basal Cell
Carcinomas during Treatment, Depending on Fluence Rate.” In: Canc.
Treat. 60, pp. 525–529 (cit. on p. 52).

Hermann, L. (1870). “Weitere Untersuchungen über die Ursache der elec-
tromotorischen Erscheinungen an Muskeln und Nerven.” In: Archiv für
die gesamte Physiologie des Menschen und der Tiere 3.1, pp. 15–39. issn:
0365-267x. doi: 10.1007/BF01855744 (cit. on p. 10).

76

http://dx.doi.org/10.1007/BF01855744


Bibliography

Hertz, H. R. (1892). Untersuchungen über die Ausbreitung der elektrischen Kraft.
Leibzig (cit. on p. 7).

Hofvind, S., Ponti, A., Patnick, J., Ascunce, N., Njor, S., Broeders, M., Gior-
dano, L., Frigerio, A., and Törnberg, S. (2012). “False-positive results in
mammographic screening for breast cancer in Europe: a literature review
and survey of service screening programmes.” In: J Med Screen 19 (suppl
1), pp. 57–66. issn: 0969-1413, 1475-5793. doi: 10.1258/jms.2012.012083
(cit. on p. 2).

Houtkooper, L. B., Lohman, T. G., Going, S. B., and Howell, W. H. (1996).
“Why bioelectrical impedance analysis should be used for estimating
adiposity.” In: The American journal of clinical nutrition 64.3, 436S–448S
(cit. on p. 3).

Hu, Y., Wang, K., and Zhu, T. C. (2009). “A light blanket for intraoperative
photodynamic therapy.” In: Proceedings of SPIE 7380. Ed. by D. H. Kessel,
73801W. doi: 10.1117/12.823064 (cit. on p. 51).

Hu, Y., Wang, K., and Zhu, T. C. (2010). “Pre-clinic study of uniformity of
light blanket for intraoperative photodynamic therapy.” In: Proceedings
of SPIE 7551. Ed. by D. H. Kessel, p. 755112. doi: 10.1117/12.842809
(cit. on p. 51).

Huang, Z., McWilliams, A., Lui, H., McLean, D. I., Lam, S., and Zeng, H.
(2003). “Near-infrared Raman spectroscopy for optical diagnosis of lung
cancer.” In: International Journal of Cancer 107.6, pp. 1047–1052. issn:
1097-0215. doi: 10.1002/ijc.11500 (cit. on p. 3).

Huray, P. G. (2010). “Foundations of Maxwell’s Equations.” In: Maxwell’s
Equations. John Wiley and Sons, Inc. isbn: 9780470549919 (cit. on p. 21).

Huynh, P. T., Jarolimek, A. M., and Daye, S. (1998). “The false-negative
mammogram.” In: RadioGraphics 18.5, pp. 1137–1154. issn: 271-5333. doi:
10.1148/radiographics.18.5.9747612 (cit. on p. 2).

Jackson, W. H. (1910). “The solution of an integral equation occurring in
the theory of radiation.” In: Bull. Amer. Math. Soc. 16.9, pp. 473–475. url:
http://projecteuclid.org/euclid.bams/1183420786 (cit. on p. 10).

Jacobs, D. A. H. (1980). “Preconditioned conjugate gradient methods for
solving systems of algebraic equations.” In: Central Electricity Lab Lab
Note 199/80 (cit. on p. 37).

Jacques, S. L. (2013). “Optical properties of biological tissues: a review.” In:
Physics in medicine and biology 58.11, R37 (cit. on p. 15).

77

http://dx.doi.org/10.1258/jms.2012.012083
http://dx.doi.org/10.1117/12.823064
http://dx.doi.org/10.1117/12.842809
http://dx.doi.org/10.1002/ijc.11500
http://dx.doi.org/10.1148/radiographics.18.5.9747612
http://projecteuclid.org/euclid.bams/1183420786


Bibliography
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Vorlesungen über die Theorie der Wärmestrahlung (1906). Vorlesungen über die
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