
clemens vayda , bsc

wolfgang hrauda , bsc

WA K E - U P W O R D D E T E C T I O N U S I N G
L S T M N E U R A L N E T W O R K S

Master’s thesis

Graz University of Technology

Institute for Signal Processing and Speech Communication (SPSC)
Head: Univ. Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Supervisor:
Dipl.-Ing. Dr.techn. Martin Hagmüller

Co-Supervisors:
Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf

Dipl.-Ing. BSc Matthias Zöhrer

Graz, May 2016

title of the thesis:
Wake-up Word Detection using LSTM Neural Networks

submitted by:
Clemens Vayda, BSc
Matriculation number: 0931235

Wolfgang Hrauda, BSc
Matriculation number: 0973083

study:
Masterstudium Elektrotechnik-Toningenieur
Identification number: F 033 213

supervisor:
Dipl.-Ing. Dr.techn. Martin Hagmüller

co-supervisors:
Assoc.Prof. Dipl.-Ing. Dr.mont. Franz Pernkopf
Dipl.-Ing. BSc Matthias Zöhrer

A B S T R A C T

Wake-up word (WuW) detection is used to put an intelligent device in a state of
alert so that it expects further spoken commands. It allows for hands-free operation
of devices such as smart phones, multimedia systems in cars or home automation
systems.
Recently, Google researchers were able to outperform standard HMM-based sys-
tems on WuW detection tasks with a template-based method using LSTM net-
works. The network was trained on an enormous amount of speech data (2500h)
and was then used to extract fixed-length representations from speech features.
In the present thesis, we re-implement their approach and evaluate its potential
with extremely limited training resources (1-5 h). We investigate how to best ex-
ploit the available resources and deal with practical problems such as the appropri-
ate preparation of training data. We show that WuW detection can be performed
despite the limited resources, with equal error rates down to 8% and less for cer-
tain speakers. The results provide evidence that for a more robust performance, a
larger training database (> 50h) is necessary.

Z U S A M M E N FA S S U N G

Wake-up-word (WuW)-Erkennung dient dazu, ein intelligentes Gerät in einen
Alarmmodus zu versetzen, in welchem es weitere Sprachbefehle entgegennimmt.
So wird die berührungslose Bedienung von Geräten wie Smartphones, Multimedia-
systemen in Autos oder Heimautomatisierungssystemen möglich.
Kürzlich übertrafen Entwickler von Google konventionelle HMM-basierte Systeme
in der WuW-Erkennung mit einem auf Referenzmustervergleich basierten System,
das LSTM-Netzwerke verwendet. Zum Trainieren des Netzwerks benutzen sie eine
enorme Menge an Trainingsdaten (2500h) und verwenden das so trainierte Netz
um Repräsentationen gleicher Länge aus den Sprachmerkmalen zu gewinnen.
In der vorliegenden Arbeit beschäftigen wir uns mit der Reimplementierung dieser
Idee und evaluieren das Potential dieses Ansatzes für extrem limitierte Trainings-
ressourcen (1-5 Stunden). Wir untersuchen, wie man die zur Verfügung stehenden
Ressourcen am besten nutzen kann und setzen uns mit praktischen Problemen wie
der entsprechenden Aufbereitung der Trainingsdaten auseinander. Dieser Ansatz
ist in der Lage, trotz der beschränkten Ressourcen Gleichfehlerraten von bis zu 8%
zu erreichen, beziehungsweise diesen Wert für ausgewählte Sprecher sogar zu un-
terschreiten. Die Ergebnisse untermauern, dass eine größere Trainingsdatenbank
(> 50 Stunden) notwendig ist, um eine stabilere Erkennung zu gewährleisten.

iii

A C K N O W L E D G M E N T S

First of all, we want to thank Martin Hagmüller for his constant support and valu-
able advice throughout the thesis. Whenever we were in trouble, he took the time
to listen to us. After every meeting, things became more clear and we could con-
tinue our work with renewed focus and energy.

Furthermore, we are grateful to Matthias Zöhrer for the sophisticated technical
help with Python and for providing a start-up framework. Thank you for your
time and for all the fruitful discussions.

We would like to thank Franz Pernkopf as well for providing his profound know-
ledge at the right times.

Our most heartfelt thanks go to Magdalena and Natalia, our precious wives who
both provided us with best support, care and food.

And finally, we really appreciate the numerous tips and the good atmosphere of
the DSP-Lab community.

v

S TAT U T O RY D E C L A R AT I O N

We declare that we have authored this thesis independently, that we have not used
other than the declared sources / resources, and that we have explicitly marked
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
Master’s thesis.

date signature

date signature

E I D E S S TAT T L I C H E E R K L Ä R U N G 1

Wir erklären an Eides statt, dass wird die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den
benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche ken-
ntlich gemacht haben. Das in TUGRAZonline hochgeladene Textdokument ist mit
der vorliegenden Masterarbeit identisch.

Graz, am

Datum Unterschrift

Graz, am

Datum Unterschrift

1 Deutsche Fassung: Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien
vom 10.11.2008; Genehmigung des Senates am 1.12.2008

C O N T E N T S

i theory 1

1 introduction 3

1.1 Motivation 3

1.2 Objective 3

1.3 Remarks for the reader 4

2 recurrent neural networks 5

2.1 RNN 5

2.2 LSTM 7

3 wake-up word detection 11

3.1 Literature review 12

3.1.1 HMM-based systems 12

3.1.2 Template-based systems 13

3.1.3 Neural network based systems 14

3.2 Query-by-example keyword spotting using an LSTM network 15

4 data-preparation 17

4.1 Framework 17

4.2 The data-preparation process 17

4.3 Speech features for neural networks 19

4.3.1 Mel-scale log-filter bank features 19

4.3.2 Normalization of features 20

5 nn-training 23

5.1 LSTM-Model 23

5.2 Stochastic Gradient Descent 24

5.2.1 Stochastic Gradient Descent with Adam 25

5.3 Backpropagation through time 26

5.4 Monitoring of the training process 28

5.4.1 Calculation of monitoring scores 28

5.4.2 Definition of the word error rate 28

5.4.3 Overfitting 29

6 template matching 31

ii training and results 33

7 preliminary experiments 35

7.1 Training on full TIMIT database - with gray encoding 35

7.2 Training on TIMIT SA subset - with redundant encoding 38

7.3 Word-wise vs. sentence-wise training 40

8 training the lstm network on wsj0 43

8.1 Selection of the data 43

8.2 Reference system 43

8.3 Stochasticity of the training process 45

ix

x contents

8.4 Influence of global normalization 47

8.5 Influence of the learning rate parameter 48

8.6 Influence of MFCC features 50

9 results for different output target sizes 53

9.1 Evaluation corpus 53

9.2 Description of trained models 54

9.3 WUW performance of trained models 56

10 results for reduced average word length 61

10.1 Description of trained model 61

10.2 WuW performance 62

11 conclusions and outlook 65

11.1 Conclusions 65

11.2 Outlook 65

bibliography 67

A C R O N Y M S

CC Cross-Correlation

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

DNN Deep Neural Network

DTW Dynamic Time Warping

ED Euclidean Distance

EER Equal Error Rate

FA False Alarm

FFT Fast Fourier Transform

FR False Reject

GMM Gaussian Mixture Model

HMM Hidden Markov Model

KWS KeyWord Spotting

LR Learning Rate

LSTM Long Short-Term Memory

MFCC Mel-Frequency Cepstral Coefficients

NN Neural Network

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SVM Support Vector Machine

VAD Voice Activity Detection

WER Word Error Rate

WuW Wake-up Word

xi

Part I

T H E O RY

1
I N T R O D U C T I O N

1.1 motivation

Hands-free operation of machines based on speech recognition allows for fast, nat-
ural and convenient interaction. Despite all advances in understanding spoken
commands, it is difficult for machines to decide whether an utterance is actually
intended as a command or if it is just conversational speech.
One solution is to have the user push a button before uttering a command. How-
ever, this greatly reduces the aforementioned flexibility and convenience of hands-
free systems. An approach that retains these advantages is to use a pre-defined
word or short phrase to wake up the machine and signal that the following speech
will be a command.
The problem of recognizing this so-called Wake-up Word (WuW) is a sub-field of
automatic speech recognition. The task and its major challenges are precisely put
into words by Këpuska and Klein:

WUW SR [speech recognition] is defined as detection of a single
word or phrase when spoken in the alerting context of requesting atten-
tion, while rejecting all other words, phrases, sounds, noises and other
acoustic events and the same word or phrase spoken in non-alerting
context with virtually 100% accuracy.

[KK09]

WuW recognition thus comprises of the following main components:
Detecting speech, spotting the WuW within speech and, finally, deciding whether
the WuW was addressed to the system or occurred in conversational speech (ad-
dressee detection).

1.2 objective

In the present thesis, we will solely focus on the actual detection of the Wake-up
Word (WuW), as Voice Activity Detection (VAD) and addressee detection are re-
search fields of their own.

The first target of the thesis is to conduct a literature review of existing WuW de-
tection approaches. In section 3.1 Literature review, we show that Hidden Markov
Model (HMM) and Dynamic Time Warping (DTW) based approaches have been used
and developed for speech recognition related tasks since the 1980s. Therefore, the
expectable further performance gain is rather limited. On the other hand, neural
networks have made huge progress in the past 20 years, proving their enormous
potential when used as acoustic models in speech recognition [HDY+

12]. One of

3

4 introduction

the most spectacular results with neural networks in the field of WuW detection is
an approach presented by Chen et al. [CPS15], achieving an Equal Error Rate (EER)
of 0.5%.
Due to its promising potential for the future, we chose to re-implement their
template-based approach and evaluate its potential with extremely limited training
resources (≈ 2h of speech data). The target is to create a system which can easily
be adapted for real-time applications in the future and yields satisfying error rates
provided that enough training material is available.
To this end, a framework to train an LSTM network is built. Various experiments
are conducted to better understand the training process. Furthermore, practical
problems on which no information is given in the corresponding papers, such
as the appropriate preparation of training data, are considered and experiments
are conducted. The question of how to best exploit the available resources is in-
vestigated by training models on different selections of the available speech data.
Theses trained models are evaluated on a custom recorded corpus regarding their
EER.

1.3 remarks for the reader

In the present thesis, the following citation convention is used: A citation before
the end of a sentence refers to the source of this sentence; a citation at the end of a
paragraph refers to the source of that paragraph. Citations on the right-hand side,
below a paragraph, refer to the source of that entire section.

We, the autors of the thesis, worked together very closely. Therefore, we both con-
tributed to all parts of the thesis in form of thoughts, tips and corrections. Neverthe-
less, the responsibility for actually writing certain chapters was divided between
us and this division is briefly presented in the following.

Wolfgang Hrauda (WH) wrote the Introduction and then introduced Recurrent Neu-
ral Networks and Wake-up word recognition. The section about template-based sys-
tems in the Literature review was written by Clemens Vayda (CV).
The theory for using neural networks was covered by CV. He wrote the chapters
Data preparation and Neural network training with the exception of the section about
Backpropagation through time. The Template matching approach was described by WH.

In the practical part, WH wrote about the Preliminary Experiments. CV described
Training the LSTM network on WSJ0 and presented the Results for different output tar-
get sizes, while WH presented the Results for reduced average word length.

Conclusions and Outlook and the Acknowledgments were written together.

2
R E C U R R E N T N E U R A L N E T W O R K S

In speech recognition, the words or phonemes contained in a sequence such as
a spoken sentence should be recognized. One word or phoneme may span tens
or hundreds of time steps in the sequence. Therefore, it is vital to capture and
combine information from that time range.
With a simple feed-forward Deep Neural Network (DNN), the only way to achieve
this is to stack information from multiple time frames and feed it into the network
at once. The potential of this method is limited, though, as the network architecture
is not designed for this kind of task.

2.1 rnn

Recurrent Neural Networks are explicitly designed to capture temporal context:
The information learned from the input sequence is carried in the recurrent layer’s
hidden activations h. As a sequence is processed step-by-step, the hidden activa-
tions are remembered by feeding a weighted version of them back into the layer at
each time step. Therefore, information from the past can be retained throughout
time.

The signal flow through a generic one layer Recurrent Neural Network (RNN) as
depicted in figure 1 (top) is given by

ht = f (Wxh · xt +Whh · ht−1 + bh) (2.1)

where f is a non-linear activation function.
At each time step, the new hidden state ht is computed from two components:
First, the input vector xt, weighted by a weight matrix Wxh; and second, the pre-
vious states ht−1 of the layer, weighted by a recurrent update weight matrix Whh.
The second term contributes information remembered from the past, while the first
term contributes information from the current frame. Together, they (theoretically)
allow exploiting temporal information of the entire sequence seen so far.

The time evolution of the processing can be visualized by unfolding the network
in time as shown in figure 1 (bottom). This way, the recurrent (feedback) notation
is written out and becomes a representation of the network without any cyclic con-
nections.
In recurrent networks, the error at each time step depends on the network’s states
of all previous time steps. Therefore, it is necessary to backpropagate the error
through time. The unfolded graph allows for a clearer visualization of this proce-
dure. Backpropagation through time is covered in more detail in section 5.3.

5

6 recurrent neural networks

Figure 1: Top: Generic RNN network with a single recurrent hidden layer. Each block rep-
resents an entire layer with an arbitrary number of neurons. Note the feedback
loop in the recurrent layer that allows to capture and combine information from
past time steps.
Bottom: The same network unfolded; time steps evolve from left to right. At each
time step, one vector from the input sequence x is fed into the network and an
output vector y is obtained. The hidden states h are passed to the hidden layer
for the next time step and to the output layer. Note that the weight matricesW do
not change during one sequence. Bias vectors are omitted for the sake of clarity.

2.2 lstm 7

However, basic recurrent networks are problematic when an error is backpropa-
gated through time during the training stage: The error tends to either explode or
vanish. Learning from sequences is thus slow, exploits a limited temporal context
or is actually impossible. In [HSH+

97], Hochreiter and Schmidhuber proposed a
novel RNN architecture to overcome this problem, called Long Short-Term Mem-
ory (LSTM).

[Gra08, p. 18-21]

2.2 lstm

The core idea of the Long Short-Term Memory (LSTM) architecture is to set the
recurrent update weight to 1. This assures that the error can flow through the
network without modification during backpropagation through time, which elimi-
nates the vanishing gradient problem.
In addition, each cell has an input gate it controlling when the internal memory
can be updated by the cell input xt. This prevents irrelevant information from
being remembered. Output gates are used to control when the memory content
is passed to the next layer and the other LSTM blocks in the same layer (via the
output state ht), which avoids an unwanted perturbation of other cells’ contents.
The gate mechanism enables LSTM units to store information over a longer period
of time and handle long-range dependencies, which is a weakness of the standard
RNN architecture. [HSH+

97]
With continual sequences consisting of several subsequences, it might be necessary
to reset the cell memory state at appropriate times. Therefore, Gers et al. intro-
duced forget gates ft that enable the "LSTM cell to learn to reset itself" . [GC00]

The following set of equations describes the basic signal flow in one LSTM cell,
while figure 2 visualizes it:

it = σ (Wxi · xt +Whi · ht−1 +Wci · ct−1 + bi) (2.2)

ft = σ (Wxf · xt +Whf · ht−1 +Wcf · ct−1 + bf) (2.3)

ot = σ (Wxo · xt +Who · ht−1 +Wco · ct + bo) (2.4)

ct = ft · ct−1 + it · tanh (Wxc · xt +Whc · ht−1 + bc) (2.5)

ht = ot · tanh(ct). (2.6)

[GMH13]

inputs The following variables are used as inputs to compute a new candidate
value for the memory cell (second summand of equation 2.5) and to compute the
activations of the gates (equations 2.2 to 2.4):
The input vector xt typically consists of the activations from the previous layer.
The output states of the previous time-step ht−1 are also used as an input. How-
ever, if the output gate is closed, h is close to zero and the gates have no access to
information about the current state of the cell. Therefore, Gers et al. [GS00] later

8 recurrent neural networks

Figure 2: Structure of a single LSTM memory cell.

proposed to add ”peephole” connections to allow gate states to be influenced by
the actual memory cell value c. For the output gate, the current cell value ct is
used, whereas for all other gates, the previous value ct−1 is used.
These input variables are weighted with weight matrices W, biased and then
squashed with a non-linear function: A sigmoid function in the case of the gates
and a tanh function for the cell state candidate value.
Storing, passing and forgetting information (i. e. the gate states) thus depends on
the current input, previous cell state and previous output state.

cell update The new cell value ct (see equation 2.5) consists of two sum-
mands: Its previous value ct−1 and a new candidate value computed from the
inputs as described above.
The first is the recurrent update with weight 1, allowing to retain the memory con-
tent. Hereby, the forget gate ft controls how much of ct−1 is retained or forgotten
and also allows resetting the memory.
For the new candidate value, the input gate it controls how much of it is allowed
to enter the memory cell.
In this way, the memory cell can either store learned information or acquire new
information, depending on the input variables that influence the gate states.

2.2 lstm 9

output state For computation of the output ht (see equation 2.6), the cell
value ct is squashed by the non-linear tanh function and then multiplied by the
output gate ot to control whether the cell passes its stored information on to the
next layer, depending on the current state of the input variables.

3
WA K E - U P W O R D D E T E C T I O N

The task of WuW detection as a sub-field of speech recognition was already intro-
duced in 1.1 Motivation. Its main goal is to wake up machines and put them into a
state where they expect further commands to be spoken by the user.
Such systems require different components like VAD and optionally addressee de-
tection. However, as explained in 1.2 Objective, we will focus on the core task of
actually spotting the WuW in speech.
Regarding the technical approaches, this task is very similar to the more common
KeyWord Spotting (KWS)1 problem. Therefore, it is important to note that the terms
WuW and keyword are mostly interchangeable for the remainder of this thesis.

In this chapter, we first give a brief introduction on assessing the performance
of WuW recognizers. Then, an overview of different approaches to WuW spotting is
given. Finally, the paper we chose as the conceptual basis of this thesis is presented
in more detail.

The performance of WuW recognizers is often measured by two rates. In conjunc-
tion, they characterize the behavior of the system:

false alarm rate A false positive is defined as the incorrect detection of a
keyword, i. e. the recognizer detects a keyword, even tough none has occurred.
The number of false positives divided by the total number of examples gives the
False Alarm (FA) rate.
For WuW applications, a false alarm means that the system is activated even though
the user did not intend to do so. This can be very disturbing or lead to an execu-
tion of wrong commands. Given that a WuW recognizer is usually active in the
background for a long period of time, the FA rate should be kept as low as possi-
ble.

false rejection rate A false negative is defined by missing the detection of
a keyword, i. e. a keyword occurs, but the recognizer does not detect it. The num-
ber of false negatives divided by the total number of examples gives the False
Reject (FR) rate.
For WuW applications, a false rejection means that the user wants to activate the
system, but the system does not wake up. In such a case, users will tend to repeat
the keyword. Therefore, the FR rate is usually not as critical as the FA rate, but
should still be low enough to ensure a satisfying experience for the user.

1 Keyword spotting: Scanning huge amounts of data for the occurrence of a certain word or phrase
that is of special interest for some reason (e. g. news programs might be scanned for a politician’s
name).

11

12 wake-up word detection

The optimal trade-off between FA and FR rate depends on the type of application
and can usually be tuned for a given system. For a performance measure that is
independent of this trade-off, the system can be evaluated with settings that result
in identical FA and FR rates, which is then called equal error rate.

Instead of FA and FR rates, recall and precision can also be given as performance
assessment figures. A high recall corresponds to a low FR rate, whereas a high
precision corresponds to a low FA rate.

3.1 literature review

The following gives an overview of the three most common approaches to the
actual detection of a given keyword. Some of the most relevant examples of each
approach are discussed and contrasted.

3.1.1 HMM-based systems

The most common approach to keyword spotting and WuW detection is based on
HMM, as they have been successfully applied to speech recognition since the 80s
[Lev83].

Each HMM corresponds to a certain unit of speech, such as a triphone or a single
phone and consists of several states (typically 3-10). One state models a short sta-
tionary part of the speech. Each state uses Gaussian mixtures to represent their
typical features in a so-called acoustic model. Both the means and variances of
the Gaussians and the transition probabilities between the states of the HMM are
learned during the training process. This usually requires a large amount of tran-
scribed speech data, which is not always easily available.
Most methods use a keyword model to describe the desired word, while a garbage
model describes anything else. During system run-time, the acoustic model gen-
erates posterior probabilities for each possible speech unit given the input feature
vector. A Viterbi or similar algorithm then finds the most likely sequence of HMM

states (each state corresponding to one speech unit). The operating point of the
system (i. e. the trade-off false alarm vs. false rejection ratio) can be tuned by the
prior probabilities of the keyword vs. garbage model.

HMM-based WuW implementations were presented for personal communication de-
vices in [BGA00] and with enhanced voice activity detecion for a meeting room
scenario in [CKSK11]. The former report a FA rate of 0.55% and a FR rate of 15%
while the latter report an equal error rate of 3%. In [LCYK09], it was shown that an
HMM-based system similar to [BGA00], achieves an equal error rate of about 10%
and outperforms a DTW-based system by approx. 4%, even when the DTW system
is augmented with codebook-based keyword and garbage models. However, the
computational cost of the HMM system was about four times higher.
In [BFHC03], frame-wise posterior probabilities are averaged to obtain a word-level
confidence measure that an utterance contains the keyword. The results of differ-
ent averaging methods are combined using a Support Vector Machine (SVM), which

3.1 literature review 13

transforms data into a high-dimensional space for easier separation, i. e. classifica-
tion. The idea was to exploit complementarities of the different averaging methods,
but the performance gain was very modest. However, a similar idea is used in one
of the most sophisticated HMM-based WuW detection systems presented in [KK09],
which utilizes multiple feature streams and a triple-scoring method followed by a
nine-dimensional SVM classification. They report an astonishing equal error rate of
0.1%. However, the essential point for performance gain is the proprietary triple-
scoring method which is not publicly available.

In [KGB09], a discriminative approach for keyword spotting was shown to out-
perform a HMM baseline system, similar to the one presented in [BGA00], on two
speech corpora including the TIMIT corpus [GLF+

93]. Instead of determining the
most likely sub-unit sequence, it aims at directly maximizing the area under the
Receiver Operating Characteristic (ROC) curve, which is an important performance
measure for keyword spotters.

3.1.2 Template-based systems

Another approach to keyword spotting are template based methods. One or more
spoken utterances of the keyword represented in feature domain are used as a tem-
plate, which is then compared against any test audio segment to make detection
decisions.
A main difficulty for template based methods is to get a fixed length representation
of the time varying speech input. The most common way to perform this template
comparison in speech recognition is called DTW. This method has been used for
speech recognition since the 80s as proposed in [MR81]. It aligns the sequence of
the parametrized input keyword in time to the spoken test utterance and outputs
a similarity score. Drawbacks are a high computational complexity and often an
insufficient modeling of the word duration.
The simplest way is to use Mel-Frequency Cepstral Coefficients (MFCC)s directly as
input to a DTW-algorithm to output a minimum distance score as it was shown in
[BRS11] but with limited success. In [ZHP14], a quite high precision of almost 100%
was obtained at the cost of a lower recall rate (between 30% and 80% depending
on the background noise) with a DTW-based system for an emergency use-case on
mobile devices. In this paper, they showed as well that the Euclidean Distance (ED)
or the Cross-Correlation (CC) are a suitable approach for WuW detection and that a
combination of those measures improves the performance.
Instead of directly using MFCCs as input to a DTW-algorithm, a 50 component
Gaussian Mixture Model (GMM) is trained in [ZG09]. This is done on all the train-
ing data without any transcription information. The trained GMM then outputs a
posteriorgram vector for each speech frame. These vectors are then compared by
applying a segmental DTW between the keyword samples and the test utterances.
They report that the performance increases if more than one keyword is provided
and that keywords with more syllables tend to have better performances. However,
none of their reported results is below 15% equal error rate.

14 wake-up word detection

3.1.3 Neural network based systems

Due to the advances of neural networks from the 1990s onwards [HDY+
12], the

possibility to replace a GMM based acoustic model by neural networks became at-
tractive. In general, DNN systems can serve as acoustic models due to their ability
to map same/similar words or phonemes into similar parts of the network’s hid-
den activations space.

HMM based systems with a DNN as an acoustic model are often referred to as hybrid
systems. E.g., the baseline system presented in [CPH14] uses a DNN to compute
the state densities for a HMM keyword-filler model with reasonable success.
Other variants of similar combinations have been investigated as well: Phone pos-
terior estimates from an LSTM plus MFCC features serve as a "mutli-stream" input to
a HMM in [WMSS11]. Two years later, Wöllmer et al. [WSR13] used a bidirectional
LSTM network2 with Connectionist Temporal Classification (CTC)3, along with dy-
namic bayesian networks (a generalization of HMM) to outperform a pure HMM

system.

One of the first successful non-hybrid systems was proposed by Fernandez et al.
in [FGS07]. They also used a bidirectional LSTM network with CTC to outperform
an HMM/GMM system on a keyword spotting task.

Chen et al. [CPH14] took it one step further by directly using the output neurons
of a DNN to detect a keyword. Therefore, there is an output neuron for each word
in a keyword phrase (okay google in figure 3) plus one neuron for all non-keywords
(filler). Figure 3 gives an overview of the main components that are typical for
this kind of approach: Log-filterbank energy features are extracted and fed into
the DNN. After training, the network is capable of generating frame posteriors for
each of the keywords and all the other words (filler). This way, simplistic posterior
handling is sufficient to compute a confidence score that the keyword phrase was
detected. The system outperformed the above mentioned hybrid DNN/HMM base-
line system.

Figure 3: Components of the Google Deep KWS system [CPH14].

2 Bidrectional recurrent networks process sequences forward and backward in order to exploit future
and past context.

3 In [GFGS06], Graves et al. introduced CTC, a technique that allows training neural networks even
when transcriptions of the speech data are only available without time alignments.

3.2 query-by-example keyword spotting using an lstm network 15

Sainath and Parada [SP15] even improved this performance by using a
Convolutional Neural Network (CNN) architecture. Compared to DNNs, CNNs are
better at modeling the local correlations in time and frequency found in speech sig-
nals. Furthermore, they are better suited to deal with variances between different
speaking styles.
While the networks in the latter two approaches need to be trained on specific
keywords, the proposal in [CPS15] only requires few templates of the keyword
that can be recorded after training. To this end, an acoustic model is generated by
training an LSTM network to be able to recognize 15K different whole words. The
core idea is to use the hidden states of this acoustic model to represent the keyword
and any live speech data as two fixed-length vectors. The keyword is then detected
by observing the similarity between these vectors. This system outperforms even
the CNN approach in [SP15] and will be presented in more detail in the following
section.

The last three shown approaches only require simple forward-pass computations
of the network at runtime; they do not require any computationally intensive
operations such as Viterbi decoding or time alignment via DTW. Compared to
HMM/DTW methods, the computational complexity of neural network based sys-
tems lies in the training process rather than at runtime.

3.2 query-by-example keyword spotting using an lstm network

As far as we know, the LSTM based system introduced by Chen et al. in [CPS15]
is the best approach in WuW detection with neural networks. It achieves an equal
error rate of 0.5% in clean conditions. As mentioned in chapter 1.2 Objective, the
idea of this thesis is to implement the basic concepts of their work. Hence we will
now briefly explain their key concepts:

building the acoustic model For training, the network consists of two
hidden LSTM layers with 128 cells each and a softmax output layer with one neuron
for each word to be learned, known as one-hot encoding. The network is trained
to be able to recognize 15000 different whole words. It is worth noting that the
modeling of entire words as opposed to phonemes is crucial to the success of this
approach. The authors report performance degradation of more than an order of
magnitude if phonemes are modeled.
When input speech features are fed into a trained acoustic model, the states of the
second hidden layer are representative of the spoken sounds.

template matching The ability of the hidden states to capture the charac-
teristics of spoken words allows using the acoustic model as a feature extractor to
create a keyword model.
As shown in figure 4 (enrollment phase), the log-filterbank energy features of a key-
word are fed into the feature extractor. The hidden states of all time frames are
concatenated to form a vector that is representative of the keyword. This vector is
called a template.

16 wake-up word detection

As LSTM cells can store significant information in their memory, their hidden states
also represent the past. Therefore, these vectors can be resized to a fixed-length,
i. e. truncated (or zero-padded), without losing relevant information. For increased
robustness, the features extracted from several recordings of the same keyword
can be resized to matching lengths and then averaged to form a keyword model.
At runtime, a hidden state vector of the same length is generated from live speech.
The similarity between this vector and the template allows detecting whether the
keyword was uttered or not.

Figure 4: Template matching in the Google LSTM KWS system: Creating a keyword model
during enrollment; comparing live speech to the keyword model at runtime
[CPS15].

results At an operating point of 0.5% False Alarm (FA) rate, the system achieves
0.5% False Reject (FR) rate in clean conditions and 2% FR rate in the presence of
babble noise. When the original enrollment is corrupted by background noise from
a café, performance is degraded significantly, though the proposed system is still
far more robust than the hybrid neural network and DTW baseline systems.

[CPS15]

4
D ATA - P R E PA R AT I O N

In this chapter we shortly describe the used programing framework. Then we will
give an overview of how data has to be prepared in order to serve as input for
the Neural Network (NN)-model. In the end we describe in detail how features are
generated from the speech signal.

4.1 framework

We used the programming language Python for the whole implementation. The
code of the neural network model is based on the library Theano first introduced
in [BBB+

10]. Theano brings some important advantages for training and building
neural networks, amongst other things automatic differentiation as well as efficient
and transparent use of the GPU, which is necessary for fast execution [web16].
We used a Theano-based framework called Blocks and Fuel, which was developed
at the University of Montreal to build neural network models. Blocks simplifies
the prototyping and the training process of neural networks. It provides many
components, called bricks, for building and training neural networks.
Fuel provides data processing routines and a standard data interface for Blocks.
The standard data format utilized is HDF5 (Hierarchical Data Format 5). It was
designed to cope with large amounts of data and allows meta data and annotations
to be added to the datasets. In particular, all the data for training, evaluation and
testing is stored as a single HDF5 file. The annotations are used in a fixed way to
label the data sources, e.g. features, labels and mask.
Fuel also provides several schemes to iterate over the data during the training
processes.

[Uni14a, Uni14b, O’D15]

4.2 the data-preparation process

The data-preparation process consists of several preprocessing steps which have to
be done to prepare the speech data in order to train the NN-model.
In Figure 5, the data-preparation process is illustrated: Features are calculated
from the speech signals, labels are generated from the transcriptions and the word-
alignments ,and a mask is generated for computational purposes. Features, labels
and the mask are called data-sources. In addition, the data-sources are split into
training-, validation- and a test-data.

17

18 data-preparation

Figure 5: The data-preparation process. Features and labels are calculated out of the raw
data and a mask is generated. Then the data can be used to train a Neural Net-
work.

features 40-dimensional Mel-scale log-filter bank features are calculated from
the speech signal for each time-frame and an utterance level mean-variance nor-
malization is performed (see section 4.3).

labels As we do supervised learning, labels have to be provided for each time
step in order to be able to calculate an error between the predicted labels ŷ and
the true labels y. Therefore a dictionary is generated that contains the vocabulary
of the speech corpus and every word of the dictionary is mapped to a binary rep-
resentation. Knowing this binary-representation and the given word-alignments
for each word enables us to assign a label (or target) to each speech-frame of an
utterance.

mask At every time-step of the training process, the LSTM-network is provided
with a feature vector as input and the corresponding label as target. Batch-processing
requires all processed sequences to be equal in length. So all the utterances as well
as the labels are zero-padded to the length of the longest utterance. The mask is
generated to tell the LSTM network for every utterance in which time-step the zero
padding starts. According to the mask, the LSTM network will stop updating its
parameters (it stops learning) from the time-step on where the last frame of real
data was located.

As a last step, the features, the labels and the mask for the training-, evaluation-
and test-set are stored in a single HDF5-file. This has to be done according to
the specifications of Fuel to guarantee a flawless interaction of Fuel and Blocks.
During training, we use the Shuffled Scheme provided by Fuel to iterate over all the
examples in the dataset in shuffled batches.

4.3 speech features for neural networks 19

4.3 speech features for neural networks

The main goal of feature extraction is to get a representation that captures the re-
quired characteristics of the input data.
For conventional GMM based systems, Mel-Frequency Cepstral Coefficients (MFCC)s
are widely used. In NN however, Mel-scale log-filter bank features are commonly
used as they lead to performance improvements compared to the standard MFCC

features [LYHG12].
The generation of this feature type is described in this section.

4.3.1 Mel-scale log-filter bank features

The calculation process of Mel-scale log filter bank features (or simply log-filter
bank energies) is motivated by how humans perceive speech signals: Pitch percep-
tion happens in the cochlea on the basilar membrane. Every area of the membrane
responds to different frequencies resulting in a frequency to place mapping. This
mapping is non-linear in so far as lower pitches have a better spatial resolution on
the basilar membrane than higher ones. [KK14]
To capture this non-linear pitch perception of the human auditory system the Mel-
scale was developed. It is given by

M(f) = 2595 · log10
(
1+

f

700

)
. (4.7)

[FG01]

Experiments showed that loudness is also perceived in a non-linear manner. It
can be approximated on the logarithmic scale. Figure 6 shows the corresponding
processing steps.

Figure 6: Processing steps to obtain log-filter bank energies. Every block mimics a certain
characteristic of the human ear.

frequency to place mapping First, a Fast Fourier Transform (FFT) trans-
forms the speech signal into the frequency domain and the power spectrum is
obtained.

20 data-preparation

non linear-pitch perception Second, the warped power spectrum is fil-
tered by N triangular band-pass filters (figure 7). Each of the filters has a different
bandwidth on the frequency axis but an equal bandwidth on the Mel-scale. The
width of the filters is calculated using equation 4.7. In the end, one value per filter
is obtained corresponding to the energy in that frequency region .

loudness perception The third computation step simply takes the loga-
rithm of each of these energy values.

For speech recognition tasks, 40 Mel-filters is a common number of filters to use
[SKMR13].

[KL14]

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

0

0.5

1

F
ilt

e
r

M
a
g
n
it
u
d
e

Figure 7: filter bank with triangular bandpass filters to compute the filter bank energies.

4.3.2 Normalization of features

"Feature normalization is critical in neural network training to achieve
good convergence in training. As discussed in [Fal13], when features
are not centered around zero, network updates will be biased towards
a particular direction and this will slow down learning. The paper even
discusses an extreme case when all inputs into a layer are positive. This
causes all weights to increase or decrease together for a given input,
and thus the weight vector can only change direction by zigzagging
which is extremely slow."

[SKMR13]

The extreme case mentioned above is the exact problem of our application. We
calculate the log-filter bank energies from the magnitude of the power spectrum,
so that without normalizing all inputs are in the positive range.

4.3 speech features for neural networks 21

In [Fal13] they propose to shift the input in such a way that the average of the
inputs over the training set is close to zero. This can be done by global mean-
variance normalization: Let mi be the logarithmic output of the i-th Mel-filter, µi
the mean and σi the variance over the training set corresponding to this Mel-filter
value. Then the normalized Mel-filter value ni is defined as

ni =
mi − µi
σi

. (4.8)

Normalizing all the input data in that way ensures fast convergence.

5
N N - T R A I N I N G

This chapter explains all the necessary parts to understand how a training process
of a NN is structured.
This is illustrated in figure 8: At first, a NN-model is designed (section 5.1). Then
the data sources are fed batch-wise into the NN. For each time-step, the NN pro-
duces a predicted label ŷ. At the end of each utterance, the predicted labels ŷ are
compared to the true labels y and the cost is calculated. Then the error is back-
propagated through time (section 5.3). Using a training algorithm like Stochastic
Gradient Descent (SGD), the network parameters are updated in the direction of
the negative gradient (section 5.2). Then the next batch of utterances is fed into
the NN and the process is repeated until all the data was seen once. This is called
epoch. To further optimize the network parameters, tens or hundreds of epochs
are done.

Figure 8: NN-Training: Data is fed into the NN-model and a cost is calculated. Then the
error is back-propagated through time. The network parameters are updated in
the direction of the negative gradient via SGD.

5.1 lstm-model

Using Blocks, we built a LSTM-Model with two hidden layers, each with 128 LSTM-
cells as shown in figure 9. The linear input layer maps the 40-dimensional input
features x to x̃, which serves as an input to the 128 hidden cells of the first LSTM
layer. The linear output layer maps the output h2 of the 128 hidden cells of the
second layer to the size of the output target vector ŷ. Then a softmax is applied to
the output layer to represent each output value as a probability.
As we use one-hot encoding, each output neuron corresponds with one word in
the vocabulary. Training the model with a huge vocabulary (e.g. 2 k words) results
in a large output layer. This leads to difficulties in the training process regarding
memory consumption and duration.

23

24 nn-training

Figure 9: LSTM-Model with 2 hidden layers, 128 LSTM-cells, and a Softmax Layer as output
layer. The bent arrows on the left side of the hidden layers illustrate the temporal
recurrence.

We train the network in shuffled mini-batches on the GPU using Adam, a special
version of SGD (see section 5.2) and categorical cross-entropy, the matching cost
function of the softmax output layer. Both algorithms are provided by Blocks.
The categorical cross-entropy is defined as

J(θ) = H(y, ŷ(θ)) = −
∑
i

yi · log(ŷi(θ)) (5.9)

where i covers the range of the number of output targets.

5.2 stochastic gradient descent

The general goal of learning is to minimize a kind of loss function J(θ) with param-
eter θ. In practical applications, one has to minimize the cost over an entire training
set with many observations x and a probability distribution over the observations
dp(x) resulting in a loss function J(x, θ).
Learning means finding the optimal parameters θ that minimize the expectation
value of the loss function

C(θ) = E(J(x, θ)) =
∫
J(x, θ)dp(x). (5.10)

As the training set is finite, the distribution dP(x) is discrete,

C(θ) =
1

N

N∑
i=1

J(xi, θ) (5.11)

5.2 stochastic gradient descent 25

The simplest approach to minimize the loss function is to update the parameters
by going a small step in the negative direction of the gradient known as gradient
descent,

θt+1 = θt −α · ∇θC(θt) (5.12)

= θt −α ·
1

N

N∑
i=1

∇θJ(xi, θ) (5.13)

where α is the learning rate. This method however has weaknesses in terms of
practical application in neural networks. One of them is that each step requires the
entire training set to be processed in order to evaluate ∇θC(θ).

SGD overcomes this weaknesses by updating to the parameters based on one
datapoint or on the average of more datapoints (called batches) at a time

θt+1 = θt −α · ∇θJ(x, θt). (5.14)

The update is then repeated by going through all datapoints or batches of data-
points in a dataset. This small change in the algorithm leads to several advantages:

• The algorithm converges much faster when the examples are redundant. In
the extreme case of duplicating every data point, the total gradient algorithm
doubles its computational effort, whereas the batch gradient algorithm is
unaffected.

• It is possible to escape local minima because of the random behavior of the
SGD-algorithm

• The loss function can converge even if it is not differentiable everywhere.

[Bis06, Bot91]

5.2.1 Stochastic Gradient Descent with Adam

The name Adam is an abbreviation for adaptive moment estimation. It was first
introduced by Kingma in [KB14] and is one of the best SGD-based-algorithms at
the moment.
In particular it is an algorithm for gradient-based optimization of stochastic ob-
jective functions. Adam is a progression and fusion of AdaGrad and RMSProp.
AdaGrad has the advantage to work well with sparse gradients and RMSProp
can deal with non-stationary objectives. Adam combines both of these properties
resulting in a computationally efficient algorithm with fast convergence. It is de-
signed to work well with large datasets and in high-dimensional parameter spaces.
Also rescaling of the gradient does not influence the magnitudes of parameter up-
dates.

26 nn-training

Let J(θ) be a noisy objective function that is differentiable w.r.t its parameters θ,
and let α be the step-size, then the algorithm works as follows:

• Get gradients w.r.t. stochastic objective at timestep t: Gt = ∇θJt(θt−1)

• Update biased first and second moment estimate of the gradient (mt, vt)

• Compute bias-corrected first and second moment estimate (m̂t, v̂t)

• Update parameters: θt = θt−1 −α · m̂t/
√
v̂t

The goal of the algorithm is to minimize the expectation value of the noisy objec-
tive function E[f(θ)] w.r.t to its parameters. The stochasticity in our case comes
from the evaluation of random subsamples of data-points which we called batches.
The parameters mt, vt are moving averages of the gradient with exponential decay
rates. Thus, they are estimates of the mean and the variance of the gradient and
then used to update the parameters.
As they are initialized with zeros, they get bias-corrected, which is especially nec-
essary in the situation of sparse gradients.
An important part of Adam’s algorithm is its update rule. The effective step taken
in parameter space is ∆t = αt · m̂t/

√
v̂t, i. e. α is multiplied by the ratio of the bias-

corrected first and second moment estimates. Except for the situation of a severe
case of sparsity, this factor is always smaller than one. Therefore, the effective step
in parameter space is approximately bounded by the step-size hyperparameter i.e.,
|∆| / α.
The advantage of this method is that the effective step size in parameter space ∆t
gets smaller when it comes closer to an optimum where the uncertainty of direc-
tion is bigger (because m̂t/

√
v̂t gets smaller). This is a desired property and a form

of automatic annealing (viz."to gradually lower").

[KB14]

5.3 backpropagation through time

The previous section 5.2 showed that Stochastic Gradient Descent requires the
calculation of the gradient of the loss function J(x, θ) w.r.t. its parameters θ. As
explained before, this gradient is used to update the parameters so as to follow the
steepest descent of the loss function.
Simple error backpropagation can be used to obtain this gradient in simple neural
networks [Bis06, p. 241-245]. However, for RNNs, this concept has to be extended
to backpropagation through time due to the recurrence in time [ZW95, Gra08].

In an RNN, the loss or error J(x, θ) comprises of the sum over Jt(x, θ) at all time
steps. Therefore, the gradient ∇θJ over an entire sequence is obtained by summing
over the gradients ∇θJt at each time step. Jt(x, θ) depends on the input observa-
tions of all previous time steps and the parameters θ. Note that the parameters θ
are the same for all time steps.

5.3 backpropagation through time 27

When computing the gradient at time step t with respect to a certain parameter
e. g. Wxh, the influence of this parameter on the current error needs to be taken
into account for all previous time steps. In figure 10, the influence ofWxh at time step
t− 1 on the current error Jt is depicted as a red path. This influence is expressed
as

δJt

δyt

δyt

δht

δht

δht−1

δht−1
δWxh

by "following the path" of the error through the network and applying the chain
rule in Leibniz notation.

Figure 10: Error flow through a generic RNN: The influence ofWxh at time step τ = t−1 on
the current gradient w.r.t. Wxh is shown as a red path. The gradient is obtained
by backpropagating the error through time according to the chain rule.

In order to obtain the entire gradient at the current time step w.r.t. Wxh, the
paths to all previous time steps have to be followed and derived according to the
chain rule. The gradient is then obtained by summing over these paths:

δJt

δWxh
=

t∑
τ=1

δJt

δyt

δyt

δht

δht

δhτ

δhτ

δWxh
= (5.15)

=
δJt

δyt

δyt

δht

δht

δWxh︸ ︷︷ ︸
τ=t

+
δJt

δyt

δyt

δht

δht

δht−1

δht−1
δWxh︸ ︷︷ ︸

τ=t−1

+

+
δJt

δyt

δyt

δht

δht

δht−1

δht−1
δht−2

δht−2
δWxh︸ ︷︷ ︸

τ=t−2

+ . . .

(5.16)

28 nn-training

The derivation of the gradient in a sequence of length S is obtained by summing
over the gradients at each time step. For the gradient w.r.t Wxh, we obtain:

δJ

δWxh
=

S∑
t=1

δJt

δWxh
(5.17)

=

S∑
t=1

t∑
τ=1

δJt

δyt

δyt

δht

δht

δhτ

δhτ

δWxh
.

[dF15]

For updating all the parameters in a network, this gradient has to be calculated
w.r.t. to each parameter.

In the case of LSTM networks, the same principle applies, but the actual deriva-
tion of the signal flow in one LSTM cell is more complex than in a simple RNN.

5.4 monitoring of the training process

So far, we have described how the input data is fed into the NN and how parame-
ters are updated in a process called training. This section explains how monitoring
scores are obtained to supervise the training process and prevent overfitting.

5.4.1 Calculation of monitoring scores

In the training process parameters are updated after every batch. After this has
been completed for all the data, we want to know the progress made during the
epoch. This is achieved by using the network in feed-forward mode only. Again,
all the training data is fed through the network and an error score is computed for
every batch. All these error scores are averaged to obtain a final monitoring score.
In the same way the monitoring scores are calculated for the validation set. For the
next epoch the batches are reshuffled and the process of training and monitoring
is repeated.
Normally, the cost serves as a monitoring score but it is also possible to create user
defined monitoring scores such as the Word Error Rate (WER).

We record the monitoring scores for the training and validation set in a log file
after every epoch. In addition, performance is measured on a test set after the final
epoch.

5.4.2 Definition of the word error rate

As we train on whole word output targets, it is useful to measure performance
in terms of a Word Error Rate (WER). We use a frame-based WER that is obtained
as follows: For each prediction ŷ, the index of the prediction with the highest

5.4 monitoring of the training process 29

probability ŷmax is compared to the "true" word index given by the data labels.
A false guess (FG) means that the index was not predicted correctly, i. e. the word
was not recognized correctly. A true guess (TG) corresponds to a matching index.
The WER for one utterance is obtained by summing up all the frame-wise FG and
dividing this sum by the total number of guesses:

WER =

∑
FG∑

FG +
∑

TG
(5.18)

5.4.3 Overfitting

Our LSTM-Model consists of approximately 150 k parameters which results in an
almost infinite number of possible parameter combinations. In other words, our
model is incredibly flexible. So if we train it long enough, the LSTM-Model has the
ability to learn the training data by heart. This is known as overfitting.
Overfitting is not desired as it leads to performance losses when predicting new,
unseen data, so the generalization performance decreases. Typically, the training
set performance still increases while validation set performance decreases as it can
be seen in figure 11. One solution of this problem is called Early Stopping, that is
to stop training when the network performs best on the validation set.
In practical applications, training is done for many epochs and the network param-
eters are saved if validation set performance increases. In the end, the parameters
of the best epoch are used.

Figure 11: Overfitting: Training set performance still increases while validation set perfor-
mance decreases. Early stopping solves the problem by saving the parameters
of the epoch where the network performed best on the validation set. [Gra08]

6
T E M P L AT E M AT C H I N G

The detection of a Wake-up Word (WuW) is the main goal of this thesis as pointed
out in 1.2 Objectives. In this context, the approach of template matching is to specify
a WuW by a reference recording which is called template. This template recording
of the WuW is then compared to speech utterances in which the WuW should be
found. The underlying principle remains the same, no matter if these speech utter-
ances originate from a database or are live input speech from a user.
The advantage of the template matching approach is that the user can arbitrarily
choose the WuW; still, the model does not need to be retrained for a different WuW

(in contrast to [CPH14, SP15]).

The main challenge is to recognize the WuW again, even if spoken in a different
manner. This requires extracting a fixed-length representation from the template
recording that captures all defining characteristics of the WuW. For this purpose,
Chen et al. [CPS15] use the hidden states of an LSTM layer, because they contain
all significant information about a word from the current and past frames. As
explained in section 3.2, Chen et al. create a template by feeding the reference
recording through the network and stacking the last LSTM layer’s hidden states of
all time steps.

In our work, we adopt the same approach: We use the hidden states of a success-
fully trained acoustic model to extract characteristic information from speech data.
For this purpose, we load the model parameters from the epochs that performed
best on the validation set during training.
As we use the Fuel/Blocks based framework, data for evaluation of the template
matching performance have to be prepared by storing WuW templates and evalua-
tion utterances in separate subsets of an HDF5 file. For the evaluation utterances,
time-aligned labels that indicate the occurrence of the WuW have to be created in
order to provide a ground truth.

In our implementation, we use the hidden states of the 2
nd LSTM layer from the

last k frames as our fixed-length representation of the speech data. According to
[CPS15], we choose k to be the length of the WuW template in frames so as to in-
clude as much information as possible.

31

32 template matching

The hidden state vector h2 at one time step consists of the output activations
from the 128 LSTM cells. Stacking k hidden state vectors yields a matrix with di-
mensions <k, 128>. If the current time step is t and we stack the states of the last k
frames, we obtain

h2t
...
...

h2t−k+1

 .

In practice, we access the hidden activations of the second layer at each time step
and append them to a zero-initialized buffer matrix. At the same time, we drop
the activations of k time steps ago from the matrix.

Before runtime, a reference matrix A representing the template is created by feed-
ing the template recording through the network. For increased robustness, it is
possible to obtain the reference A as an average of e. g. three recordings of the
WuW as proposed in [CPS15]. For this purpose, we truncate the matrix representa-
tions of the recordings to the length of the shortest one and then take the average.
During runtime, the speech data to be evaluated is also fed through the network
frame-by-frame. At each time instance, a representative hidden state matrix B is ob-
tained as explained. Both matrices are flattened into vectors a and b, which contain
representative information about the template and the current speech respectively.
As both vectors have the same length, a simple vector distance score can be used
to measure the similarity of the vectors. In practice, the cosine distance is used and
the vector similarity

csim = 1−
a · b

||a|| · ||b||
(6.19)

is an indicator whether the WuW has been detected or not at the current frame.

Part II

T R A I N I N G A N D R E S U LT S

7
P R E L I M I N A RY E X P E R I M E N T S

After building a framework that allows the NN model to be trained and used for
template matching, the next step was to evaluate the performance of differently
trained models in order to explore how to properly select and prepare training
data. This chapter summarizes the most important findings of this procedure.

At that stage, the WuW detection performance was mainly evaluated on a couple
of informal test recordings: Two speakers were recorded and for each of them,
two instances of the chosen WuW hello genie were captured as templates. For the
recordings, the built-in microphone of a smart-phone was used with a distance of
about 1 m between speaker and microphone.

For both speakers, we captured three longer recordings with four WuW occurrences
each and two short utterances, where a single WuW was part of the utterance. As
shown in table 1, the longer recordings either contained silence, short non-WuW

phrases or entire sentences between the WuW occurrences. The short recordings
consisted of a sentence followed by the WuW and vice versa. This design allows to
quickly acquire a dependable impression which aspects of the WuW detection work
for a trained model.

Table 1: Design of the informal test recordings for evaluation during the pre-experimental
phase. In the long recordings, there is either silence, a short non-WuW phrase or a
sentence between the WuW occurrences.

0:15 m 0:30 m 0:45 m 1:00 m 1:15 m . . . 2:00 m

Long file 1 silence WuW silence WuW silence . . . WuW

Long file 2 phrase WuW phrase WuW phrase . . . WuW

Long file 3 sentence WuW sentence WuW sentence . . . WuW

Short file 1 sentence + WuW

Short file 2 WuW + sentence

7.1 training on full timit database - with gray encoding

The first set of experiments was conducted with models trained on the TIMIT
speech database [GLF+

93], which consists of 4.5 hours of speech data. For a start,
we trained the LSTM network on the whole TIMIT database. The sentences were
cut into separate words using the provided word-level aligned transcriptions.
For the output target labels, the identification number of each word in the dictio-
nary was binary encoded using gray codes. The output neurons of the network
were thus trained to predict the correct combination of zeros and ones for each
word. In this way, we wanted to prevent huge output layer sizes leading to exces-

35

36 preliminary experiments

sive memory consumption.
The evolution of the WER during training on the full TIMIT database is depicted in
figure 12a and shows that although the model converges, the WER stays above 50%
even for the training set. The best performance on the validation set is achieved in
epoch 87 with a WER of 66.9%, so only a third of previously unseen examples of
trained words are recognized correctly.
In this chapter, a word is counted as correctly recognized if the network predicts
the correct word label at the last frame. The WER is then obtained as the number
of incorrectly predicted words divided by the total number of words (unlike the
frame-based WER used elsewhere in the thesis).

We found the resulting WuW detection performance of that model to be very
poor in spite of the fact that the entire TIMIT database was used for training. Fig-
ure 12b shows an example of the performance on a recording consisting of four
WuW occurrences with short non-WuW phrases in between. The cosine similarity
score exhibits no difference between WuWs and non-WuWs; it would not even allow
to distinguish between the presence of speech and silence by means of a simple
threshold.

We reckoned that two main factors contribute to the poor performance:

Firstly, too few occurrences per word in the training data do not allow the network
to learn to recognize that word, which is also reflected by the high WER. Thus,
the network did not sufficiently learn to capture the characteristics of a variety of
words in the activations of the last hidden layer. However, our template matching
approach fully relies on this ability of the network.

Secondly, we rethought the binary encoding of the word labels and discovered that
it might severely degrade the ability of our model to discriminate between different
words: As mentioned, our general goal is to learn abstract representations of words
in the second hidden layer. These hidden activations span a vector space in which
similar sounding words should be close together, whereas dissimilar words should
be clearly separated. As the transformation from the activations of the last hidden
layer to the output layer is a simple linear transformation, there is a strong inter-
dependency between the last hidden layer and the output layer.
We now consider the following two examples with binary encoding of the output
layer using gray codes: The labels of two completely different sounding words
might differ by just a single bit, but their abstract representations are expected
to reside in different parts of the vector space. On the other hand, the labels of
two very similar sounding words might be completely different although their
abstract representations are expected to be very similar. Therefore, gray encoding
in the output layer prevents learning clearly separable representations of words as
it corrupts these representations in the last hidden layer.

7.1 training on full timit database - with gray encoding 37

(a) Evolution of the Word Error Rate during training on the full TIMIT database. The lowest WER on
the validation set is 66.9%, indicating that the provided data was not sufficient to properly learn
all words.

(b) Testing the model reveals that WuW detection does not work at all with this setup. The figure
shows the cosine similarity between speech in the evaluation recording and the template. The
4 occurrences of the WuW are indicated by green labels. In between the WuWs, short non-WuW
phrases were uttered.

Figure 12: Performance of the LSTM model when training it on the full TIMIT database.

38 preliminary experiments

7.2 training on timit sa subset - with redundant encoding

The next experiment was conducted on a subset of the TIMIT corpus. We wanted
to explore the effect of training a model on few different words with many occur-
rences, therefore we selected the SA sentences which are available for all speakers
in the database. These two sentences contain 21 different words:

(sa1) She had your dark suite in greasy wash water all year.
(sa2) Don’t ask me to carry an oily rag like that.

After we had already finished the experiment, we discovered that we had coinci-
dentally encoded the word labels with random 10 bit sequences, although 5 bits
would have been sufficient for 21 words. I. e. redundant information was added to
the labels, similar to the concept of error correcting codes. The resulting labels are
a compromise between the previously used binary encoding with gray encoding
and sparse one-hot encoding. In this way, the separation between labels of differ-
ent words is much better, also allowing for the representation in the last hidden
layer to be more clearly separable for different words.

For training, we chose to use approx. 50 of the SA sentences, resulting in 50 differ-
ent occurrences of each word in the training set. We refer to this as the SA small set.
For comparison, we also trained on all available SA sentences, resulting in almost
400 occurrences per word.
The evolution of the training with the small set is depicted in figure 13a with a
best validation set performance of 5.8% WER in epoch 37. The error rate on the
training set even descends to 0%. The provided data of 50 occurrences per word
appear to be sufficient to learn the 21 words almost perfectly. For the entire set of
SA sentences, the best error rate on the validation set is reduced by a factor of 2 to
2.8% WER due to the higher number of occurrences per word.

However, despite the flawless validation set performance, the WuW detection
evaluation revealed that learning to recognize 21 different words is not enough to
allow the model to separate previously unseen WuWs from non-WuWs. As shown
in figure 13b, the similarity score spikes in the presence of speech, but the peaks
of WuWs and non-WuWs are not separable. In fact, the model behaved similar to a
voice activity detector. Interestingly, the performance difference between the small
SA set and the full SA set was negligible in the context of these considerations.
We concluded that the words in the SA sentences were too short and the diversity
of their phonetic content not significant enough to ensure that the model learns to
extract meaningful abstract representations from words.
For the sake of completeness, other subsets of TIMIT, such as only SI or only SX
sentences and a combination of the two, were also investigated but did not bring
new insights.

7.2 training on timit sa subset - with redundant encoding 39

(a) Evolution of the WER during training with the small SA subset. The lowest WER on the validation
set is 5.8%, indicating that the network learned to recognize the 21 different words almost perfectly.

(b) The model trained on the small SA subset also does not perform WuW detection but behaves like
a voice activity detector. The evaluation file is the same as in figure 12b.

Figure 13: Performance of the LSTM model when training it on approx. 50 instances of SA
sentences from the TIMIT database.

40 preliminary experiments

7.3 word-wise vs . sentence-wise training

As it had become clear that many occurrences per word are required for sufficient
training of a model, we switched to the Wall Street Journal database [PB92] as a
source of training material. It consists of selected sentences from the Wall Street
Journal, a newspaper mainly dealing with business matters. The material is pro-
vided in predefined training, validation and test sets. We used the pilot database
commonly referred to as WSJ0 with approx. 15 hours of training data duration.

Note that for the very first tests with WSJ0, we still used binary encoded word
labels using gray codes, because at that point we had not yet discovered that the
SA experiments described in 7.2 used labels with redundant information added.
Our first investigation comprised two variants of preparing the training data: One
variant is to treat entire sentences as one sequence, while the other is to cut sen-
tences into separate words and treat single words as one sequence.
The evaluation of WuW detection as depicted in figure 14a clearly shows that word-
wise training does not work with WSJ0. The obscure score evolution indicates that
the states do not seem to capture any significant information at all. In addition, the
hidden states of the last hidden layer seem to remain in a similar space most of the
time, resulting in little changes of the cosine similarity score. A natural explanation
would be that as one sequence evolves, the states are never really reset when the
forget gates are not properly learned. With word-wise training, this could easily
happen as the network is never exposed to a succession of words during the train-
ing process.
On the other hand, the sentence-wise trained model exhibits some promising be-
havior as shown in figure 14b. The evolution of the similarity score follows the
recorded events with spikes whenever speech is present. However, WuWs and non-
WuWs still cannot be separated, probably due to the binary encoding of labels and
the presence of many seldom and insignificant words in the training data despite
the larger database.

The comparison shows that it seems to be vital for the network to learn how to deal
with a succession of multiple different words during training as opposed to only
learning to recognize a single word. Therefore, we chose to proceed with sentence-
wise training for the remainder of our work.

The bottom line of the preliminary experiments were two main findings:

The results of the TIMIT SA experiments indicated that a sufficient number of
occurrences should be available for all words in the training set and that wise
selection of the words might be important. For this reason, it was clear that we
had to stick to the WSJ0 database at least. Note that according to results from our
later experiments even more than 50 occurrences per word are required, probably
because when training on more different output targets, more occurrences per
word are required to learn to separate all of them.

As none of the pre-experiments brought promising results, we decided to use one-
hot encoding, which is common practice.

7.3 word-wise vs . sentence-wise training 41

(a) Testing a model trained on single words from the entire WSJ0 database. The evolution of the
similarity score indicates that the model has not learned to deal with the succession of multiple
spoken events.

(b) Testing a model trained on whole sentences from the entire WSJ0 database. In this case, the
temporal evolution of the similarity score follows the occurring spoken events, even though there
is still no separation between WuWs and non-WuWs.

Figure 14: Comparison of word-wise and sentence-wise trained models. In both cases, the
evaluation file was the same as in figures 12b and 13b.

8
T R A I N I N G T H E L S T M N E T W O R K O N W S J 0

A core part of this master thesis was to find the right way to train the NN-model.
In chapter 7 we describe how we gained knowledge regarding the right network
and data structure.
In this chapter, we describe how we carefully selected the training data from the
WSJ0 corpus to ensure that only meaningful information was provided to the net-
work (8.1). Then we train several systems with different hyperparameter settings
to explore the influence of each parameter. We start by explaining our reference
system to which we compare all other trained models. In all the experiments the
goal is to achieve a low WER.

8.1 selection of the data

In the pre-experiments it was evident that it is not beneficial to provide as many
data as possible to the network. On the contrary, providing all available speech
data seems to degrade performance.
As we saw in section 7.2, it is beneficial to use only a few words with many oc-
currences. So we decided to take the most frequently occurring N words from the
WSJ0 corpus. Spoken punctuation marks such as "double quote" or "comma" as
well as noise and silence-tags were excluded from these words because of their
disproportionate number of instances.
We additionally restricted the most common N words to words that have at least 5

characters in order to ensure that we train on meaningful and significant data.
As described in 7.3 Word-wise vs. sentence-wise training, sentence-wise training en-
sures to learn the forget gates in a proper manner. So we cut out the desired words
from the given sentences and compose with them new sentences of random length
between six and ten words.

8.2 reference system

We wanted to design a system that downscales the problem and is able to learn the
provided data properly. In [SKMR13], a CNN-based system trained on a 50-hour
English Broadcast News database and 512 output targets is described. It achieves
a WER of 22.3%.
If we assume that they also trained on the most frequently occurring 512 words, we
can estimate that the corpus is reduced to about 14 of the original data. Assuming
an average word length of about 0.35 s, we can calculate that they used about 250

occurrences per word on average for training.
Taking this into account, we decided to set the output-layer size to 64 output tar-
gets, which results in 180 occurrences per word on average and in 1.21 hours of

43

44 training the lstm network on wsj0

training data. According to section 8.1, each of the 64 words has at least 5 charac-
ters.
Normalization is performed as described in section 4.3.2, except that we do not use
global but utterance based normalization. That means that µ and σ are estimated
for every utterance separately. This is closer to real-time applications where µ and
σ have to be estimated from a window of past frames of the current input signal.
The learning rate is set to a factor of 0.002 as proposed for the Adam-algorithm
by Blocks and log-filter bank features are used. These settings are summarized in
table 2.

Table 2: Settings of Reference System wsj_64_reference

Parameter Setting

Output-Targets 64

Avg. num. of instances/word 181

Hours of data for training 1.21

Min. Chars 5

Words per training sentence 6-10

Normalization utterance based
Feature type log-filter bank
Learning Rate 0.002

In figure 15, the training- and validation set performance of the reference system
(subsequently marked in figures as wsj_64) is shown. The training curve shows
convergence and a minimum WER of 4.26% at epoch 158. This shows that the pro-
vided data can be learned almost perfectly. Unlike the previous chapter, the WER

is now frame-based (see section 5.4.2). A WER of about 5% means that on average
a learned word is detected after 1/20 of its frames.
The validation set performs best in epoch 55 and yields a WER of
23.97%. As mentioned above in [SKMR13], a similar WER of 22.3% is reported.
This suggests that the training data selection was done in a meaningful way.
For the training process of the reference system, the necessity of early stopping can
be observed in practice. Due to overfitting, the training set performance improves
up to epoch 158 but validation set performance already degrades after epoch 55.
Therefore it is crucial to save the network parameters of the best epoch.

Apart from the fact that the training curve converges, huge spikes are visible in
figure 15. This will be discussed in more detail in section 8.5.

To maintain clarity, only the validation set performance is shown in the figures
for all subsequent systems.

8.3 stochasticity of the training process 45

Figure 15: Performance of training-set (blue) and validation-set (green) of the reference
system. Overfitting of the training data occurs after epoch 55.

8.3 stochasticity of the training process

Batch shuffling randomly reorders the training examples in the batches after every
epoch. This causes the SGD-algorithm to descend on different paths on the error
surface in every epoch. Therefore every training process reaches different (local)
minima resulting in a different overall performance.
These variations in valid performance of the training process are shown in figure
16. The first two repetitions of the reference-system (WH1 and WH2) share the
same data file as the reference system. For each of the last two repetitions (WH3

and WH4), a new data file was written. This introduces an additional element of
chance to the training process because the training sentences are generated with
random length between 6-10 words. This means that every time a data file is writ-
ten, sentences contain words in different orders and have a different length. In
table 3, this additional element of chance is observable as well. The WER of the
first three systems differs only slightly (0.4% in WER absolute), whereas the latter
two systems differ by more than 2% in WER absolute if compared with the average
performance of the first three systems.
Clearly the random composition of the data file of the last system (WH4) is favor-
able and leads to the best obtained WER of 22.14%.

46 training the lstm network on wsj0

Altogether these experiments show that there is a large variation of more than
2% in WER absolute depending on the composition of the sentences in the data
file and on the order of the batches used to perform SGD. This has to be taken
into account when comparing the training processes of systems with changes in
hyperparameter settings.

Figure 16: Training performance for different repetitions: Due to batch shuffling the SGD-
algorithm descends on different paths on the error surface reaching different
minima which leads to a slightly different best WER for each repetition.

Table 3: Large variation of more than 2% in WER absolute for repetitions of the training pro-
cess due to the changing composition of sentences for different data files and the
random order of batches for the SGD-algorithm. The first two repetitions show less
variation because they share the same data file as the reference system. For both
of the last repetitions, a new data file was written. This leads to bigger deviations
in WER.

System best WER in % @ epoch

wsj_64_reference_WH0 23.97 55

wsj_64_reference_WH1 24.17 79

wsj_64_reference_WH2 24.37 52

wsj_64_reference_WH3 23.08 52

wsj_64_reference_WH4 22.14 50

Average 23.54 57

8.4 influence of global normalization 47

8.4 influence of global normalization

In 4.3.2 Normalization of features we discussed in theory that it is important to ap-
ply feature normalization when training NNs. For a CNN based system, [SKMR13]
show that global normalization is favorable over utterance based normalization.
So far, utterance based normalization was applied in our thesis and we wanted to
show the performance impact of global normalization for our LSTM-based system.
Figure 17 shows a severe performance degradation for global normalization. Not
only is convergence much slower but the minimum WER on the valid set is also 46%
in epoch 170, which is almost twice as high as the WER of the reference system.
It is out of scope for this thesis to investigate the reasons for this severe perfor-
mance degradation when applying global normalization. Nevertheless, we choose
utterance based normalization for all further applications, which has the additional
advantage of being applicable in real-time scenarios.

Figure 17: Global normalization causes severe performance degradation and slows down
convergence. The best WER drops from 23.97% in epoch 55 to 46% in epoch 170.

48 training the lstm network on wsj0

8.5 influence of the learning rate parameter

One hyperparameter, which influences convergence significantly, is the Learning
Rate (LR). As explained in 5.2.1 Stochastic Gradient Descent with Adam, the effective
step taken in parameter space is always bounded by the step-size hyperparameter
α or LR, as it is generally called. This means that the algorithm is able to reduce
the LR when it comes closer to an optimum. Nevertheless, the predefined LR heav-
ily influences convergence behavior. We conducted experiments on the reference
system by varying the LR in the scope of two magnitudes.
In figure 18, the convergence behavior of four selected systems is shown. Table 4

gives an overview of the chosen LRs and associated WERs for each system in figure.
It can be observed that the lower the learning rate is, the slower is the convergence.
For the system with the smallest LR (blue curve) convergence is already too slow to
reach a good minimum in reasonable time. It needs 177 epochs to achieve its best
WER of 26.96%, which is 2% worse than the system with the default LR of 0.002.
The red curve with a LR of 0.02 shows that if the LR is too large the algorithm does
not converge at all because the steps taken in parameter space are so big that they
"overshoot the aim".
For our dataset, a learning rate of 0.001 (green curve) shows an absolute improve-
ment of 0.9% in WER compared to the reference system WH2. However, this behav-
ior is not significant when taking into account the observations from 8.3 Stochastic-
ity of the training process.

Figure 18: Varying the LR: The smaller the learning rate, the slower the convergence (or-
ange, green and blue curve). If the LR is too large, the system does not converge
at all (red curve).

8.5 influence of the learning rate parameter 49

Table 4: Chosen LRs and associated minimum WERs for each system in figure 18.

LR WER in % epoch

0.0002 26.96 177

0.001 23.30 40

0.002 24.37 52

0.02 74.83 75

In 8.2 Reference System, spikes were observed especially in the training curve.
These spikes are closely related to the LR parameter. To observe this in more detail,
the training curves of the converging systems shown in figure 18 are plotted in
figure 19.
It is observable that the spikes get bigger the lower the WER of the training curve
gets and that the spikes are bigger for a larger LR. The blue curve shows the small-
est spikes. The orange curve shows much larger spikes than the green curve, even
though the LR is only a little bit smaller. Overall it is visible that the spikes slow
down convergence significantly and also prevent from fully reaching a minimum.

ADAM evaluates the gradient at subsamples of data called batches. It uses mov-
ing averages of the first and second order moments of the gradient to anneal the
LR. Towards an optimum, there is more uncertainty whether the direction of the
estimated gradient corresponds to the true direction of the gradient over the entire
set. The algorithm automatically decreases the learning rate when it comes closer
to an optimum (annealing) but obviously for LSTM networks this does not always
work in practice.
So when the estimated direction of the gradient does not correspond to the true di-
rection of the gradient, the parameters are updated in the wrong direction. When
the LR parameter is smaller, this happens as well but the steps taken in the wrong
direction are smaller and therefore the spikes in the cost and consequently in the
WER are also smaller, leading to smoother (but slower) convergence.

An other explanation for this phenomenon was found in [Gra13]. Graves reports
that

"one difficulty when training LSTM with the full gradient is that the
derivatives sometimes become excessively large, leading to numerical
problems."

This seems to happen especially late on in training, after the process has started
overfitting on the training data. This would be an explanation for the huge spike
at epoch 150 of the orange curve in figure 19. According to Graves, one solution to
this problem is to clip the derivatives of the cost if they exceed a certain threshold.

We assume that maybe a combination of the two mentioned phenomena takes
place. To prove this, a detailed investigation of the derivatives during the training
process would be necessary, which is beyond the scope of this thesis.

50 training the lstm network on wsj0

Figure 19: Spikes in the training curves of the converging systems shown in figure 18.
Automatic annealing does not always work in practice. A smaller LR reduces
the phenomenon but also increases convergence times significantly.

8.6 influence of mfcc features

For reasons described in 4.3.1 Mel-scale log-filter bank features, log-filter bank fea-
tures are the better choice for NNs. For a context-dependent-DNN-HMM system
presented by [LYHG12], a relative improvement of 5.6% in WER could be achieved
using 40 dimensional log-filter bank features instead of MFCC features.
During our experiment, we could not observe a significant difference. The systems
trained on MFCC features achieve a WER of 24.37% which is similar to all the all
repetitions of the reference system for this data file (reference, WH1 and WH2, see
table 3). Also the convergence behavior is very similar, as can be seen in figure 20.
We believe that the effect of the two different types of features is not observable
for these systems. On the one hand because there is too little training data at all
and on the other hand because the stochasticity of the runs is too high. Averaging
over multiple runs would certainly help to point out a difference but anyway it is
sufficient for us to know that there is no significant difference.

8.6 influence of mfcc features 51

Figure 20: MFCC and log-filter bank features: no significant difference can be observed for
our setup.

9
R E S U LT S F O R D I F F E R E N T O U T P U T TA R G E T S I Z E S

In this chapter, the main findings are presented. In the first section, we describe
the recorded evaluation corpus. Then we introduce several systems that are trained
with different amounts of words (output targets) and evaluate their WuW perfor-
mance.

9.1 evaluation corpus

The evaluation corpus was recorded in a conference room with a size of 6 x 4

meter. The chosen WuW was "Hallo Computer" with German pronunciation and it
was excluded from training. The speakers were sitting in the center of the room
at a table. The recording microphone was placed at a height of about 2 meters on
the wall opposite to the speaker. This was done to simulate a home-automation
environment. All files were sampled with 16 kHz to match the sample-rate of the
WSJ0 corpus.
One file has a duration of about two minutes and the WuW is uttered four times, as
shown in table 5. In between, informal conversations in German between the main
speaker and a conversation partner are recorded to imitate a real-world scenario.
Before and after the WuW was uttered, there are at least two seconds of silence.
The database consists of 3 male and 3 female speakers and for each of them 5

files and 6 WuW-templates were recorded. As we average over three templates, this
results in two different templates for each speaker. Altogether the WuW was uttered
120 times and about 40 min of conversational speech were recorded. This data was
evaluated for both templates to statistically double the amount of the recorded
material.
Note that the templates as well as the evaluation files were recorded in the far field
with a speaker to microphone distance of about 2.5 m.
The WuW detection performance is measured in terms of EERs. The EER is defined
as a special kind of operating point where the FA and FR rate are equal. All EERs are
obtained in the following way: For every speaker, we constantly increase the value
of a threshold. All the peaks of the cosine similarity, which are above the threshold,
are counted as a WuW occurrence. FRs are missing peaks above the threshold within
the labeled range, FAs are all peaks above the threshold, which do not lie within
the labeled range.
So per speaker a threshold is swept through the similarity scores and for every
threshold the FA and FR rates are recorded. Then the threshold containing the EER

is determined per speaker. The results of all speakers are then averaged to obtain
the total EER.

53

54 results for different output target sizes

Table 5: Structure of the recorded files for the evaluation corpus.

0:00-0:28 m 0:30 m 0:34-0:58 m . . . 2:00 m

File 1-5 conversation WuW conversation . . . WuW

9.2 description of trained models

In this section we trained several models with the same hyperparameter settings
as shown in table 2. The main idea was to find a system that exploits best the data
of the WSJ0 corpus for WuW detection. As described in section 8.1, for each system
the most common N words containing at least 5 characters were selected. If the
overall number of words trained on is increased (bigger output layer), the average
occurrences per word decrease.
Therefore we decided to train 6 systems with successively increased output layer
sizes and evaluate the WuW performance for each system. In that way we wanted
to find an optimal trade-off between the average occurrences per word and the out-
put layer size. In table 6, the corresponding systems are shown. The output layer
sizes of the systems were 32, 64, 128, 256, 512 and 2048 words, respectively. The
amount of training data used starts with 0.8 hours for the smallest system to 5.7
hours for the largest system. The average number of occurrences per word varies
from 256 to 22. Note that the values of wsj_64 and wsj_128 are averaged over five
training repetitions (in italics).

The achieved WERs indicate that the more occurrences are available per word, the
better the system learns to recognize the words. We would like to remind the reader
that we use a frame based WER. So given a certain WER, we can’t discriminate if a
system recognizes a few words correctly very early in time or if it recognizes many
words correctly but only in the last frames. A higher WER only tells that the system
recognizes less frames on average. So if we add new words (with less occurrences)
to the training data, it might be that the system learns the old words equally well
and the new ones worse but it might also be that it recognizes all the words worse.

In table 6 it is also observable that convergence times (column "@ epoch") increase
for increased output layer sizes with less average occurrences per word. For a small
output layer size and many occurrences per word, the training algorithm is pro-
vided with similar constellations of data during one epoch and within consecutive
epochs. In addition, frequent words are seen more often within one epoch, which
both leads to fast convergence. For a huge output layer size with many rare words,
there are many unique constellations of data within one epoch and in every new
epoch there are new unseen constellations of the data which leads to slow conver-
gence.
System wsj_2048 already shows its best WER at epoch 22 which is not consistent
with the previous tendency. This is because the training process did not converge
anymore. Here it is obvious that the output layer size was too large compared to
the number of occurrences per word to learn a meaningful parameter setting.

9.2 description of trained models 55

Table 6: WER results for systems with increasing output layer size and decreasing average
occurrences per word in the training data. The more occurrences are available per
word, the better the system learns to recognize the words (lower WER). Conver-
gence times increase for bigger output layer sizes. Wsj_2048 does not converge
anymore, due to the disproportion of output layer size and average occurrences
per word. Values of systems in italics are averaged over 5 repetitions.

System WER training Avg. occur.
(# words) [%] @ epoch hours [h] per word

wsj_32 18.78 27 0.81 256.0
wsj_64 23.54 58 1.21 181.0
wsj_128 30.39 85 1.71 124.7
wsj_256 38.13 108 2.45 84.7
wsj_512 44.52 110 3.36 56.0
wsj_2048 80.89 22 5.65 22.0

56 results for different output target sizes

9.3 wuw performance of trained models

In this section, we analyze and present the achieved results. First we analyze the
achieved EER per speaker in detail. Then we present a method to improve the re-
sults and finally we evaluate the overall performance of the systems presented in
the previous section.

In table 7, a detailed overview of the results for the best system, wsj_128, is given.
For every repetition (WH0-WH4), the EER per speaker is given. The average or to-
tal EER of every repetition is shown in the last row. The average performance per
speaker over all repetitions for the wsj_128 and the wsj_64 system is shown in the
last two columns, respectively.
Except for the first repetition (WH0) the results vary highly between the speakers
within a certain repetition. For the repetition WH4 with the worst total EER of 0.43,
the best speaker achieves an EER of 0.02 and the worst has an EER of 0.85. So the
system can work almost perfectly for one certain speaker and not at all for an-
other one. The better the total EER, the weaker this trend. So for the best repetition
(WH0), the performance between speaker differs only slightly.
The average performance per speaker over all repetitions is quite different, which
is not a desirable property. Here, too, it can be shown that the lower the average
EER per speaker is, the lower the variations are from repetition to repetition.
As a comparison, the average EER per speaker of the wsj_64 system is shown in
the last column. The same speaker performs equally well on both systems and for
every speaker the wsj_128 outperforms the wsj_64 system.
This leads to two important findings: First, this shows that the two models with
different output layer sizes are comparable because results are consistent. Second,
and more importantly, the wsj_128 outperforms the wsj_64 system for every sin-
gle speaker. This shows that the ratio of output target size and average number
of occurrences is favorable for the wsj_128 system. A bigger output layer, where
all representations of the words were learned well, leads to better generalization,
which itself leads to a more robust representation of the WuW.
We assume that one answer for the huge differences in WuW performance for repe-
titions of the same model can be found in the SGD algorithm. For every repetition,
it takes another downward path on the error surface. This results in different pa-
rameter settings of the model from repetition to repetition but leads to similar
WERs, because there are many possible parameter combinations to fit the training
data equally well and to achieve good performance on the validation set.
In other words, our network is far too flexible for the amount of training data pro-
vided. We assume that results become more consistent if the amount of training
data is increased.

9.3 wuw performance of trained models 57

In figure 21, the similarity scores of one file from system wsj_128 are shown.
This is an example of speaker w58 with an EER of 0.85, so hardly any WuW occur-
rence is detected correctly. By looking at a couple of files in this way, we observed
that the slope of a WuW occurrence is steeper than any other peak. So we tried to
take advantage of this by differentiating the similarity scores and obtained huge
improvements in terms of EERs. For this selected speaker, for example, the EER

improves from 0.85 without differentiation to 0.13 with differentiation of the simi-
larity scores.

Table 7: Detailed overview of the EERs per speaker for the system wsj_128. Wsj_128 out-
performs wsj_64 on average and for every single speaker due to a better ratio of
output target size and average number of occurrences per word.

EER for wsj_128 EER for wsj_64
Speaker WH0 WH1 WH2 WH3 WH4 ∅ /speaker ∅ /speaker

m24 0.12 0.34 0.12 0.26 0.79 0.33 0.45

m26 0.05 0.20 0.05 0.35 0.02 0.13 0.14

w22 0.04 0.12 0.12 0.10 0.05 0.09 0.12

w31 0.07 0.41 0.09 0.17 0.22 0.19 0.32

w58 0.12 0.56 0.51 0.56 0.85 0.52 0.64

m25 0.19 0.09 0.15 0.57 0.67 0.33 0.40

total EER 0.10 0.29 0.17 0.34 0.43 0.27 0.34

Figure 21: Similarity scores of speaker w58 with an EER of 0.85. The slope of a WuW occur-
rence is steeper than any other peak. Differentiating the similarity scores leads
to an improved EER of 0.14 for this speaker.

58 results for different output target sizes

In table 8, the total EER for both the plain and the differentiated similarity scores
are shown for the system wsj_128. By differentiating the similarity scores, the av-
erage performance improves from an EER of 0.27 to 0.14. We differentiated the
similarity scores for the system wsj_64 as well and observed a similar behavior.
For the best repetition of wsj_128, differentiation did not improve the results any-
more, as can be seen in the first row of table 8. This is an overall trend, the better
the EER, the less effect differentiation of the similarity scores has.

By differentiating the similarity scores, we exploit the fact that the WuWs were
recorded with a few seconds silence before them. This leads to a particularly large
and steep increase of the similarity scores. So we assume that without this preced-
ing silence, results would not improve that much.

Table 8: Under the condition of a preceding silence before the WuW, differentiation of the
similarity scores helps to improve the results dramatically. The better the EER, the
less effect differentiation of the similarity scores has.

System WER [%] EER diff. EER

wsj_128_WH0 30.69 0.10 0.14
wsj_128_WH1 29.32 0.29 0.12

wsj_128_WH2 28.92 0.17 0.14

wsj_128_WH3 31.86 0.34 0.18

wsj_128_WH4 31.17 0.43 0.12

avg. 30.39 0.27 0.14

Now we will discuss the overall results of the systems described in 9.2 Descrip-
tion of trained models. In figure 22, the performances of the systems with increased
output layer size are shown in terms of EER with (light green) and without (blue)
differentiation. Note that for the systems wsj_64 and wsj_128, EERs are averaged
over 5 repetitions, while for the other systems only one repetition was done. Nev-
ertheless, the performance of the system wsj_128 is the best regarding both the
EER with and without differentiation. Systems with less and more output targets
have rising error rates. The worst performing system is wsj_2048, which did not
converge in training anymore.
In table 9, these results are connected with achieved WERs and the average oc-
currences per word. We conclude that it is not possible to perform well on WuW

detection tasks if the training set has too many words that only have few occur-
rences per word and that it is beneficial to exclude very short words from training.
The bigger the output layer and the more occurrences are available per word, the
better and the more robust the WuW detection performance.

9.3 wuw performance of trained models 59

Figure 22: Performance of the systems with increased output layer size in terms of EER with
(light green) and without (blue) differentiation. The system wsj_128 performs
best. Systems with less and more output targets have rising error rates.

Table 9: Connection of EER with average occurrences per word and achieved WER. The
bigger the output layer and the more occurrences are available per word, the better
and the more robust the WuW detection performance. Letters in italics indicate
averaged performances

System WER Avg. occur.
EER

diff.
(# words) [%] per word EER

wsj_32 18.78 256.0 0.38 0.19

wsj_64 23.54 181.0 0.34 0.23
wsj_128 30.39 124.7 0.27 0.14
wsj_256 38.13 84.7 0.35 0.16

wsj_512 44.52 56.0 0.37 0.20

wsj_2048 80.89 22.0 0.41 0.46

10
R E S U LT S F O R R E D U C E D AV E R A G E W O R D L E N G T H

In 8.1 Data Selection, we decided to restrict the training data to the most common
N words and a minimum word length of 5 characters. In the previous chapter,
we examined the influence of varying the number N, whereas in this chapter we
included shorter words in the training data by setting the minimum word length to
3 characters. This has two important consequences: First, the network also learns
to recognize shorter words, which might influence the WuW detection performance.
Second, the number of average occurrences per word rises, because there are many
short words that occur frequently.

10.1 description of trained model

For this experiment, we chose to use the 128 most common words for training
as this model had previously performed best. However, we excluded some of the
most occurring short words in order to obtain a similar range of average occur-
rences per word as in the wsj_64 system (approx. 80 - 500 occurrences). The result-
ing amount of training data is summarized and compared to wsj_64 and wsj_128

(with min. 5 characters) in table 10. Compared to wsj_128, it has the same number
of different words, but more occurrences per word. The average word duration in
wsj_128_3chars drops as expected due to the inclusion of shorter words.

Table 10 also shows the average WER over 4-5 training repetitions. Wsj_128_3chars
performs slightly worse than wsj_128 which is surprising at first glance as more
training data per word is available. However, the WER is defined per frame. The
system might thus recognize the words at the same time frame or even earlier, but
on average there are less correctly classified frames left due to the shorter words.
This results in a lower WER. In light of these considerations, it is likely that for a
word-based WER, wsj_128_3chars would outperform wsj_128.

Table 10: Training data overview and WER averaged over 4-5 training repetitions for the fol-
lowing systems: Two of them were trained on 64 and 128 longer words, whereas
one was trained on 128 shorter words (wsj_128_3chars). The latter has a simi-
lar number of occurrences per word as wsj_64. Despite more training data, the
achieved WER drops slightly due to its frame-wise definition.

System WER training Avg. occur. Avg. word
(# words) [%] @ epoch hours [h] per word duration [s]

wsj_64 23.97 55 1.21 181.0 0.38

wsj_128 30.69 85 1.71 124.7 0.38

wsj_128_3chars 31.88 67 2.06 184.0 0.31

61

62 results for reduced average word length

10.2 wuw performance

In the WuW performance evaluation, wsj_128_3chars outperforms all previously
reported systems with an averaged EER of 17%. Table 11 shows the achieved EERs
per speaker for 4 repetitions of the training process as well as averages over the
repetitions and for individual speakers. Regarding the training performance, the
4 repetitions lie within 1.2% WER (absolute), but like in the previous chapter, the
WuW performance varies a lot between the repetitions: The corresponding EERs
range from 8% for the best system to 30%.
For a given speaker, some systems still work better than others, but there is only
one significant outlier with an EER above 32%. Figure 23 shows an example of the
cosine similarity output for the best performing speaker m24 of the best system.
The WuWs are clearly separated from the conversational speech in between.

Table 11: WuW performance per speaker for 4 repetitions of the training process. Averages
for each speaker and each system are also given. Like before, the average results
vary a lot between different speakers and systems. The best system achieves an
EER of 8% which is better than all of the previously reported systems.

EER for wsj_128_3chars
Speaker WH0 WH1 WH2 WH3 ∅ /speaker

m24 0.00 0.24 0.26 0.22 0.18

m26 0.05 0.05 0.22 0.01 0.08
w22 0.02 0.11 0.19 0.05 0.09

w31 0.07 0.22 0.16 0.02 0.12

w58 0.10 0.22 0.64 0.12 0.27

m25 0.25 0.29 0.32 0.18 0.26

total EER 0.08 0.19 0.30 0.10 0.17

Table 12 compares the WuW detection results of wsj_64, wsj_128 and
wsj_128_3chars averaged over 4-5 repetitions of the training process.
wsj_128_3chars clearly outperforms the other two systems with 17% absolute and
50% relative improvement for wsj_64 and 10% absolute and 37% relative improve-
ment for wsj_128. The huge performance gain compared to wsj_64 confirms our
assumption that training a model on more different words that can be learned
equally well results in a more powerful acoustic model. The performance gain
compared to wsj_128 underlines the importance of sufficient training data as an in-
crease from 125 to 185 occurrences per word yields a significantly superior result.
It would be necessary to further examine the influence of the shorter words in
the training data of wsj_128_3chars on these improvements. Unfortunately, such
experiments could not be conducted due to time constraints. However, we expect
its impact to be less significant than the increased amount of training data.

10.2 wuw performance 63

Figure 23: WuW detection with the best performing system wsj_128_3chars. This example
from the evaluation corpus shows that the WuWs are clearly separable from the
conversational speech in between.

Table 12: WuW performance comparison of the systems already shown in table 10.
wsj_128_3chars outperforms both wsj_64 and wsj_128 with 17% absolute and 50%
relative improvement for wsj_64 and 10% absolute and 37% relative improvement
for wsj_128.

System
WER EER

Avg. occur.
(# words) per word

wsj_64 23.55 0.34 181.0
wsj_128 30.39 0.27 124.7
wsj_128_3chars 31.88 0.17 184.0

11
C O N C L U S I O N S A N D O U T L O O K

11.1 conclusions

We successfully re-implemented the approach presented by Chen et al. [CPS15]
and recorded a corpus to evaluate the trained models regarding their WuW detec-
tion performance. The evaluation confirmed that WuW detection is possible even
with extremely limited training resources of about 2 hours. Even though we trained
on an English corpus, it appeared to be no problem to use a German WuW and eval-
uation corpus. For some systems, surprisingly good results with EERs as low as 8%
could be achieved despite far-field conditions.
Our results indicate that training the models on 128 different words with about 180

occurrences per word is optimal for our setup. We found that using more different
words with few occurrences is not beneficial. This is particularly important when
working with small and medium-size databases.
Due to the extremely small training sets, the performance variations between in-
dividual speakers and repetitions of the training process were considerably high.
However, a tendency that these variations vanish for well-performing systems was
observed.
Further performance gains and increased robustness in real-world applications are
expected if the network is trained on more different words with a sufficient num-
ber of occurrences.

11.2 outlook

The work presented in this thesis provides a solid basis for future improvements
and further investigations. In the following points, we summarize the most impor-
tant suggestions:

• For improved error rates and more robust real-world performance, the model
needs to be trained on a larger speech database. Assuming that we want to
train on 5000 words with 180 occurrences each and assuming an average
word duration of 0.4 s, about 100 hours of appropriate speech data are re-
quired. Note that depending on the database, only parts of it can be used, if
some words do not occur often enough or are too short.

• For increased robustness, it could be beneficial to also train with noisy or
reverberated speech data. E.g., the parameters of a model, trained on a clean
speech corpus, could be used to continue training with noisy or reverberated
versions of the same data.

• The training process of LSTMs still requires some further investigations:
The optimal training data preparation should be re-verified. In particular,

65

66 conclusions and outlook

more detailed investigation of word-wise vs. sentence-wise training and the
optimal minimum word length are necessary.
The spikes in the training process curves need to be examined and possible
solutions such as proper gradient clipping should be found and evaluated.

• For more meaningful WuW performance results, the evaluation corpus should
be expanded with more test persons and different WuWs. Additional investi-
gations regarding performance degradation in near-field vs. far-field and in
the presence of white and bubble noise could be performed.

B I B L I O G R A P H Y

[BBB+
10] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-

van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. Theano: a CPU and GPU Math Expression Compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy), jun
2010.

[BFHC03] Yassine Benayed, Dominique Fohr, Jean-Paul Haton, and Gérard Chol-
let. Confidence measures for keyword spotting using support vec-
tor machines. Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on, 1:I–588, 2003.

[BGA00] S E Bou-Ghazale and A O Asadi. Hands-free voice activation of personal
communication devices. In Acoustics, Speech, and Signal Processing, 2000.
ICASSP ’00. Proceedings. 2000 IEEE International Conference on, volume 3,
pages 1735–1738 vol.3, 2000.

[Bis06] Christopher M Bishop. Pattern Recognition. 2006.

[Bot91] L Bottou. Stochastic Gradient Learning in Neural Networks. Proceedings
of Neuro-Nımes, 91(8), 1991.

[BRS11] M S Barakat, C H Ritz, and D a Stirling. Keyword spotting based on the
analysis of template matching distances. Conference on Signal Processing
and Communication Systems, pages 1–6, 2011.

[CKSK11] Namgook Cho, Taeyoon Kim, Sangwook Shin, and Eun-Kyoung Kim.
Voice activation system using acoustic event detection and keyword/s-
peaker recognition. Consumer Electronics (ICCE), 2011 IEEE International
Conference on, pages 21–22, 2011.

[CPH14] G Chen, C Parada, and G Heigold. Small-footprint keyword spotting
using deep neural networks. Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference, (i):1–5, 2014.

[CPS15] G. Chen, C. Parada, and T.N. Sainath. Query-by-example keyword spot-
ting using Long Short Term Memory Networks. International Conference
on Acoustics, Speech, and Signal Processing, pages 1–5, 2015.

[dF15] Nando de Freitas. Machine Learning: 2014-2015, 2015. URL:
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/,
[online; accessed 2016-04-07].

[Fal13] A.G Fallis. Efficient BackProp. Journal of Chemical Information and Model-
ing, 53; 9:1689–1699, 2013.

67

68 bibliography

[FG01] Zheng Fang and Zhang Guoliang. Comparison of Different Implementa-
tions of MFCC. Journal of Computer Science and Technology, 16(6):582–589,
2001.

[FGS07] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. An appli-
cation of recurrent neural networks to discriminative keyword spotting.
The 17th international conference on Artificial neural networks, pages 220–229,
2007.

[GC00] Felix a Gers and Fred Cummins. Learning to forget: Continual prediction
with LSTM. Neural computation, 12(10):2451–2471, 2000.

[GFGS06] Alex Graves, Santiago Fernandez, Faustino Gomez, and Jurgen Schmid-
huber. Connectionist Temporal Classification : Labelling Unsegmented
Sequence Data with Recurrent Neural Networks. Proceedings of the 23rd
international conference on Machine Learning, pages 369–376, 2006.

[GLF+
93] John S Garofalo, Lori F Lamel, William M Fisher, Johnathan G Fiscus,

David S Pallett, and Nancy L Dahlgren. The DARPA TIMIT acoustic-
phonetic continuous speech corpus CD-rom. NIST speech disc 1-1.1.
NASA STI/Recon Technical Report N 93, 93, 1993.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
Recognition With Deep Recurrent Neural Networks. ICASSP, 3:6645–
6649, 2013.

[Gra08] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Net-
works. Image Rochester NY, page 124, 2008.

[Gra13] Alex Graves. Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850, pages 1–43, 2013.

[GS00] F.A. Gers and J. Schmidhuber. Recurrent nets that time and count. Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, 1:189–194 vol.3, 2000.

[HDY+
12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman

Mohamed, Navdeep Jaitly, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

[HSH+
97] Sepp Hochreiter, Jürgen Schmidhuber, Sepp Hochreiter, Jürgen Schmid-

huber, and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–80, 1997.

[KB14] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. arXiv:1412.6980 [cs], pages 1–15, 2014.

bibliography 69

[KGB09] Joseph Keshet, David Grangier, and Samy Bengio. Discriminative key-
word spotting. Speech Communication, 51(4):317–329, 2009.

[KK09] V. Z. Këpuska and T. B. Klein. A novel Wake-Up-Word speech recogni-
tion system, Wake-Up-Word recognition task, technology and evaluation.
Nonlinear Analysis, Theory, Methods and Applications, 71(12):e2772–e2789,
2009.

[KK14] Martin Kleinsteuber and Stefan Krüger. Sense of Hearing, 2014.
URL: http://recognize-speech.com/speech/sense-of-hearing, [online;
accessed 2016-04-04].

[KL14] Martin Kleinsteuber and Michael Lutter. Mel-Frequency Cep-
stral Coefficients, 2014. URL: http://recognize-speech.com/feature-
extraction/mfcc, [online; accessed 2016-04-04].

[LCYK09] Hyeopwoo Lee, Sukmoon Chang, Dongsuk Yook, and Yongserk Kim. A
voice trigger system using keyword and speaker recognition for mobile
devices. IEEE Transactions on Consumer Electronics, 55(4):2377–2384, 2009.

[Lev83] Man Mohan Levinson, Stephen E and Rabiner, Lawrence R and Sondhi.
An introduction to the application of the theory of probabilistic functions
of a Markov process to automatic speech recognition. The Bell System
Technical Journal, 62(4):1035–1074, 1983.

[LYHG12] Jinyu Li, Dong Yu, Jui Ting Huang, and Yifan Gong. Improving wide-
band speech recognition using mixed-bandwidth training data in CD-
DNN-HMM. 2012 IEEE Workshop on Spoken Language Technology, SLT
2012 - Proceedings, pages 131–136, 2012.

[MR81] C. Myers and L. Rabiner. Connected word recognition using a level build-
ing dynamic time warping algorithm. In ICASSP ’81. IEEE International
Conference on Acoustics, Speech, and Signal Processing, volume 6; 2, pages
951–955. Institute of Electrical and Electronics Engineers, 1981.

[O’D15] Jim O’Donoghue. Introducing: Blocks and Fuel – Frame-
works for Deep Learning in Python, 2015. URL:
http://www.kdnuggets.com/2015/10/blocks-fuel-deep-learning-
frameworks.html, [online; accessed 2016-03-29].

[PB92] Douglas B Paul and Janet M Baker. The Design for the Wall Street Journal
- based CSR Corpus. 1992.

[SKMR13] Tara N. Sainath, Brian Kingsbury, Abdel-rahman Mohamed, and Bhu-
vana Ramabhadran. Learning filter banks within a deep neural network
framework. Proceedings of the IEEE Workshop on Automatic Speech Recogni-
tion and Understanding, ASRU 2013, pages 297–302, 2013.

[SP15] Tara N Sainath and Carolina Parada. Convolutional Neural Networks
for Small-Footprint Keyword Spotting. In Sixteenth Annual Conference of
the International Speech Communication Association, 2015.

70 bibliography

[Uni14a] Université de Montréal. Welcome to Blocks’ documentation, 2014.
URL: https://blocks.readthedocs.org/en/latest/, [online; accessed 2016-
03-29].

[Uni14b] Université de Montréal. Welcome to Fuel’s documentation, 2014. URL:
https://fuel.readthedocs.org/en/latest/, [online; accessed 2016-03-29].

[web16] Theano 0.8.0 documentation, 2016. URL:
http://deeplearning.net/software/theano, [online; accessed 2016-
03-29].

[WMSS11] Martin Wöllmer, Erik Marchi, Stefano Squartini, and Björn Schuller.
Multi-stream LSTM-HMM decoding and histogram equalization for
noise robust keyword spotting. Cognitive Neurodynamics, 5(3):253–264,
2011.

[WSR13] Martin Wöllmer, Björn Schuller, and Gerhard Rigoll. Keyword spotting
exploiting Long Short-Term Memory. Speech Communication, 55(2):252–
265, 2013.

[ZG09] Yaodong Zhang and James R. Glass. Unsupervised spoken keyword
spotting via segmental DTW on Gaussian posteriorgrams. Proceedings of
the 2009 IEEE Workshop on Automatic Speech Recognition and Understanding,
ASRU 2009, pages 398–403, 2009.

[ZHP14] A Zehetner, M Hagmüller, and F Pernkopf. Wake-Up-Word Spotting for
Mobile Systems. In Signal Processing Conference (EUSIPCO), 2014 Proceed-
ings of the 22nd European, pages 1472–1476. IEEE, 2014.

[ZW95] David Zipser and Ronald J Williams. Gradient-Based Learning Al-
gorithms for Recurrent Networks and Their Computational Complex-
ity. Back-propagation: Theory, Architectures and Applications, pages 433–486,
1995.

	Abstract
	Acknowledgments
	Eidesstattliche Erklaerung
	Contents
	Acronyms
	Theory
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Remarks for the reader

	2 Recurrent neural networks
	2.1 RNN
	2.2 LSTM

	3 Wake-up word detection
	3.1 Literature review
	3.1.1 HMM-based systems
	3.1.2 Template-based systems
	3.1.3 Neural network based systems

	3.2 Query-by-example keyword spotting using an LSTM network

	4 Data-preparation
	4.1 Framework
	4.2 The data-preparation process
	4.3 Speech features for neural networks
	4.3.1 Mel-scale log-filter bank features
	4.3.2 Normalization of features

	5 NN-Training
	5.1 LSTM-Model
	5.2 Stochastic Gradient Descent
	5.2.1 Stochastic Gradient Descent with Adam

	5.3 Backpropagation through time
	5.4 Monitoring of the training process
	5.4.1 Calculation of monitoring scores
	5.4.2 Definition of the word error rate
	5.4.3 Overfitting

	6 Template Matching

	Training and Results
	7 Preliminary Experiments
	7.1 Training on full TIMIT database - with gray encoding
	7.2 Training on TIMIT SA subset - with redundant encoding
	7.3 Word-wise vs. sentence-wise training

	8 Training the LSTM Network on WSJ0
	8.1 Selection of the data
	8.2 Reference system
	8.3 Stochasticity of the training process
	8.4 Influence of global normalization
	8.5 Influence of the learning rate parameter
	8.6 Influence of MFCC features

	9 Results for different output target sizes
	9.1 Evaluation corpus
	9.2 Description of trained models
	9.3 WUW performance of trained models

	10 Results for reduced average word length
	10.1 Description of trained model
	10.2 WuW performance

	11 Conclusions and Outlook
	11.1 Conclusions
	11.2 Outlook

	Bibliography

