

Daniel Wimmer, BSc

Aufbau einer Simulationsmethodik für Verbrauch und Emissionen von Off-Road Maschinen

MASTERARBEIT

zur Erlangung des akademischen Grades Diplomingenieur Masterstudium Maschinenbau

eingereicht an der

Technischen Universität Graz

Betreuer Dipl.-Ing. Dr. techn. Martin Rexeis Institut für Verbrennungskraftmaschinen und Thermodynamik

Begutachter Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Stefan Hausberger Institut für Verbrennungskraftmaschinen und Thermodynamik

Graz, Mai 2016

Vorwort

Die hier vorliegende Masterarbeit entstand im Zuge meines Maschinenbaustudiums an der Technischen Universität Graz und bildet den Abschluss meines Studiums.

Baumaschinen und Traktoren faszinieren mich schon seit meiner Kindheit, was diese Arbeit besonders interessant für mich machte. Durch meine Kenntnisse aus der Landwirtschaft und der Baumaschinenbranche konnte ich praktische Erfahrung einbringen und mein theoretisches Wissen durch diese Arbeit erweitern.

Für die Ermöglichung der Arbeit am Institut für Verbrennungskraftmaschinen und Thermodynamik möchte ich mich bei Herrn Univ.-Prof. Dipl.-Ing. Dr. techn. Helmut Eichlseder recht herzlich bedanken. Ein besonderer Dank gilt dem Leiter des Fachbereiches Emissionen, Herrn Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Stefan Hausberger, für die Vergabe der Masterarbeit sowie die wertvollen Tipps und Anregungen.

An dieser Stelle möchte ich mich bei meinem Betreuer Dipl.-Ing. Dr. techn. Martin Rexeis für die fachliche Betreuung meiner Masterarbeit sehr herzlich bedanken. Er hatte immer ein offenes Ohr für meine Anliegen und stand mir stets mit Rat und Tat zur Seite.

Bei meinen Kollegen am Institut für Verbrennungskraftmaschinen und Thermodynamik möchte ich mich für die gute Zusammenarbeit ebenfalls bedanken. Besonders hervorheben möchte ich dabei Dipl.-Ing. Dr. techn. Jürgen Blassnegger und Gerald Nöhrer, welche mich bei den messtechnischen Aufgaben tatkräftig unterstützt haben und Frau Dipl.-Ing. Silke Lipp für ihre hochgeschätzten Ratschläge und Tipps.

Zu guter Letzt möchte ich mich bei meinen Eltern und Großeltern sowie meinem Onkel bedanken, welche mir das Studium ermöglicht haben. Ein ganz besonderer Dank gebührt meiner Freundin Manuela und meiner Tochter Julia, die mir während meiner Studienzeit den nötigen Rückhalt gaben und mich in schwierigen Phasen erheitern konnten.

Inhaltsverzeichnis

V	VORWORT	I
F(FORMELZEICHEN, INDIZES UND ABKÜRZUNGEN	IV
EI	EIDESSTATTLICHE ERKLÄRUNG	
K	KURZFASSUNG	
	A RSTD A CT	IV
1		1
T		
	1.1 PROBLEMSTELLUNG	
-	1.2 AUFGABENSTELLUNG UND ZIELE	2
2	2 THEORETISCHE GRUNDLAGEN	
	2.1 NRMM (NON-ROAD MOBILE MACHINERY)	
	2.2 EMISSIONSGESETZGEBUNG	
	2.2.1 Orenzwerte 2.2.2 Priifzyklen	
	2.3 PEMS – PORTABLE EMISSION MEASUREMENT SYSTEM	
	2.3.1 Messgeräte und Messprinzip	
	2.4 PHEM	
	2.4.1 Normierung PHEM	
	2.5 LEISTUNGSANGABEN	
	2.5.1 Verwendete Leistungs- und Drehzahldefinitionen	
3	ANALYSE VORHANDENER MESSDATEN	
	3.1 METHODIK LEISTUNGSBERECHNUNG	
	3.1.1 Korrekturfaktoren	
	3.1.2 Vergleich mit realem Radladerkennfeld	
	3.2 UNTERSUCHUNG DER BETRIEBSBEREICHE REALWORLD VS. NRTC	
	5.2.1 <i>Kaalaaer (ID Nr. 5)</i> 3.2.2 <i>Radlader (ID Nr. 4)</i>	
	3.2.3 Bagger (ID Nr. 8)	
	3.2.4 Bagger (ID Nr. 11)	
4	EIGENE MESSUNGEN	
	4.1 VERGLEICHSMESSUNG MASSENSTROM	
	4.1.1 Referenzmessgerät (Sensyflow P)	
	4.1.2 Messaufbau	
	4.1.3 Messablauf	
	4.1.4 Ergebnisse	
	4.2 EMISSIONSMESSUNG VON ZWEI TRAKTOREN IM REALBETRIEB	
	4.2.2 Messbetrieh	
	4.2.3 Messdatenaufbereitung	
	4.2.4 Ergebnisse	
	4.2.5 Fazit	
	4.3 CHECKLIST	
	4.3.1 Bestimmung aer Emissionsstufe (Motorkategorie)	
5	5 MODELLBILDUNG MIT PHEM	
	5.1 Methode zur Erstellung der Kennfelder	
	5.2 LINGANGSDATEN UND NORMIERUNG	
	5.2.1 NP1 5.2.2 VFH	
	5.2.3 FLD	
	5.3 ERSTELLUNG DER SUMMENKENNFELDER	
	5.4 VALIDIERUNG DES MODELLANSATZES	

6	EMIS	SIONSBERECHNUNG	48
	6.1 LA	STZYKLEN	48
	6.2 MA	SCHINENTYPEN	48
	6.3 Sin	IULATION VON EMISSIONSFAKTOREN MIT PHEM	50
	6.3.1	Eingangsdaten	50
	6.3.2	Ausgabedaten	52
7	ANAI	LYSE DER ERGEBNISSE	53
	7.1 VE	RGLEICH VON STICKOXIDEN JE MASCHINENKATEGORIE UND EMISSIONSSTUFEN	53
	7.1.1	Radlader	53
	7.1.2	Bagger	54
	7.1.3	Traktor	54
	7.1.4	Baggerlader	55
	7.1.5	Planierraupe	56
	7.1.6	Kompaktlader	56
	7.1.7	Generator	57
	7.2 VE	RGLEICH VON RUßEMISSIONEN JE MASCHINENKATEGORIE UND EMISSIONSSTUFE	58
	7.2.1	Radlader	58
	7.2.2	Bagger	59
	7.2.3	Traktor	59
	7.2.4	Baggerlader	60
	7.2.5	Planierraupe	60
	7.2.6	Kompaktlader	61
	7.2.7	Generator	61
	7.3 VE	RGLEICH DER ZYKLEN JE MASCHINENKATEGORIE ANHAND DER STICKOXIDEMISSIONEN UND DER	
	MITTLERI	en Zyklusleistung	62
	7.4 Spi	EZIFISCHE EMISSIONSFAKTOREN AUS EPA- UND NRTC- ZYKLEN	64
8	SCHI	USSFOLGERUNGEN UND AUSBLICK	67
9	VER2	ZEICHNISSE	69
	9.1 Lit	ERATUR	69
	9.2 Ав	BILDUNGEN	72
	9.3 TA	BELLEN	76
1() ANH	ANG	77
	10.1	MASCHINENDATEN	77
	10.2	Beschreibungsbogen Zyklen	
	10.3	Durchschnittskennfel der	79
	10.3.1	Stickoxide – NOx	79
	10.3.2	$Ru\beta - SOOT$	82
	10.4	Maschinenzyklen	85

Formelzeichen, Indizes und Abkürzungen

Lateinische Formelzeichen

Α	m²	Fläche, Oberfläche, Querschnittsfläche
$b_{\rm e}$	g/kWh	effektiver spezifischer Kraftstoffverbrauch
d	m	Durchmesser
f	s^{-1}	Frequenz
<i>f</i> _c	kg C/kg	Kohlenstoffanteil
FC	kg/h, g/s	Kraftstoffverbrauch
g	m/s ²	örtliche Fallbeschleunigung
H _u	kJ/kg	spezifischer Heizwert (früher: unterer Heizwert)
K _{EFM}	-	Korrekturfaktor EFM
K _n	-	Korrekturfaktor Wirkungsgrad
l	m	Länge
'n	kg/s	Massenstrom
m	kg oder mol	Masse
M _d	N·m	Drehmoment
M _{nrtc}	-	Normiertes Drehmoment (NRTC)
n	U/min	Drehzahl
n _{idle}	U/min	Leerlaufdrehzahl (PHEM)
<i>n</i> _{norm}	-	Normierte Drehzahl (PHEM)
<i>n</i> _{nrtc}	-	Normierte Drehzahl (NRTC)
n _{rated}	U/min	Nenndrehzahl (PHEM)
Р	(k)W	Leistung
p	bar, Pa	Druck
Pe	(k)W	effektive Leistung
P _{norm}	-	Normierte Leistung (PHEM)
P _{rated}	kW	Nennleistung (PHEM)
t	S	Zeit
V	m ³	Volumen
ν	m/s	Geschwindigkeit

Griechische Formelzeichen

η	_	Wirkungsgrad
$\eta_{ m e}$; $\eta_{ m i}$	-	effektiver; innerer Wirkungsgrad
ρ	kg/m³	Dichte

Operatoren und Bezeichnungen

Π	Produkt
\sum	Summe
$\overline{\Delta}$	Differenz zweier Größen; Laplace-Operator
•	zeitliche Ableitung

Weitere Indices und Abkürzungen

:=	Definition
abs	absolut
AGR	Abgasrückführung
Ant	Anteil
ATL	Abgasturbolader
Br	Brennstoff
С	Kohlenstoff
cAGR	gekühlte Abgasrückführung
CO	Kohlenmonoxid
CO_2	Kohlendioxid
CVS	Constant Volume Sample
DOC	Diesel Oxidation Catalyst
DPF	Diesel-Partikel-Filter
e	ein, (Behälter-) Eintritt; eingebracht, effektiv
EFM	Exhaust Flow Meter
EG	Europäische Gemeinschaft
EM	Synonym für eine Emissionskomponente (NO, HC, CO,)
EU	Europäische Union
FC	Fuel Consumtion
FID	Flammenionisationsdetektor
FLD	Volllast
ges	gesamt
GPS	Global Positioning System
GW	Grenzwert
HBEFA	Handbuch Emissionsfaktoren
HC	Kohlenwasserstoff
HI	hoch
i	Laufvariable (1, 2,, k), innere
iAGR	interne Abgasrückführung
idle	Leerlauf
ISO	International Organization for Standardization
IVT	Institut für Verbrennungskraftmaschinen und Thermodynamik
k	Kilo (10 ³); Anzahl der Komponenten
Κ	Konstante
KF	Kennfeld
korr	korrigiert
LKW	Lastkraftwagen
LL	Leerlauf
LLK	Ladeluftkühler
LO	niedrig
max	maximal
min	minimal
NDIR	Nicht-Dispersiver Infrarotsensor
NDUV	Nicht-Dispersiver Ultraviolettsensor
i iAGR idle ISO IVT k K K K K K K K L L L K U L L L K L O max min NDIR NDUV	Laufvariable (1, 2,, k), innere interne Abgasrückführung Leerlauf International Organization for Standardization Institut für Verbrennungskraftmaschinen und Thermodynamik Kilo (10 ³); Anzahl der Komponenten Konstante Kennfeld korrigiert Lastkraftwagen Leerlauf Ladeluftkühler niedrig maximal minimal Nicht-Dispersiver Infrarotsensor Nicht-Dispersiver Ultraviolettsensor

neg	negativ
NÖ	Stickstoffmonoxid
NO_2	Stickstoffdioxid
norm	normiert nach PHEM
NO _x	Stickoxide (Summe aus NO und NO ₂)
NRMM	Non-Road Mobile Machinery
NRSC	Non-Road Steady-State Cycle (Stationärer Prüfzyklus)
NRTC	Non-Road Transient Cycle (Transienter Prüfzyklus)
nrtc	normiert nach NRTC
PEMS	Portable Emission Measurement System
PHEM	Passenger Car and Heavy duty Emission Model
PM	Partikelmasse
pos	positiv
PTO	Power Take-Off
Re	Reynolds-Zahl
real	real
ref	Referenz
RW	Real World
SAE	Society of Automotive Engineers
SCR	Selektive katalytische Reduktion
stat	statisch
TU	Technische Universität
VTG	variable Turbinengeometrie
WF	Wichtungsfaktor
WG	Wastegate

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Vorname Nachname

Graz, Datum

Kurzfassung

Mobile Maschinen und Geräte leisten einen wesentlichen Beitrag an den Gesamtemissionen aus dem Verkehrssektor. Die jährlichen Gesamtemissionen werden dabei für die österreichische Luftschadstoffinventur auf Basis von Bestandsdaten, Betriebsstunden, mittlere Motorleistung und Emissionsfaktoren berechnet. Diese Emissionsfaktoren basieren zumeist auf Grenzwerten, Typprüfergebnissen und Vergleichsmessungen. Um eine Aussage über die Realemissionen solcher Fahrzeuge machen zu können, wurden in einem Projekt am Institut für Verbrennungskraftmaschinen und Thermodynamik On-Board Messungen (PEMS) an Baumaschinen und Traktoren durchgeführt. Ziel dieser Arbeit ist es, aus den vorhandenen Messdaten sowie durch weitere Messungen, Emissionskennfelder zu erstellen, um dann in weiterer Folge Emissionen und Verbrauch für verschiedene Lastprofile, die sich auf Grund von unterschiedlichen Anwendungen der Maschinen ergeben, zu berechnen.

In einem ersten Schritt wurden aus den vorhandenen Messdaten Emissionskennfelder (Emissionen als Funktion von Drehzahl und Leistung) erstellt. Da die Leistung nicht direkt gemessen werden kann, wurde diese aus gemessenem CO₂ und Drehzahl sowie einem LKW Verbrauchskennfeld berechnet. Zur Plausibilisierung der Drehzahl- und Leistungswerte wurden die jeweiligen Volllastkurven der Hersteller verwendet. Im Anschluss wurden mit dem Fahrzeug-Emissionsmodell PHEM für die Abgasstufen I, II, IIIA, IIIB Durchschnittskennfelder generiert.

In weiterer Folge wurden typische Lastzyklen für Radlader, Bagger, Traktor, Schubraupe, Baggerlader, Kompaktlader und Generator festgelegt. Diese wurden einerseits aus den internen Messungen abgeleitet und andererseits wurden "Nonregulatory Nonroad Duty Cycles" der EPA und maschinentypische Segmente aus dem NRTC verwendet.

Auf Basis der Summenkennfelder und Lastzyklen wurden die Emissionen (NOx, HC, CO und Ruß) für die verschiedenen Maschinentypen und Anwendungen berechnet.

Abschließend wurden die Simulationsergebnisse gegenübergestellt und dabei die mittlere Leistung der Zyklen, das Emissionsniveau für die verschiedenen Abgasstufen und die Unterschiede zwischen den Zyklen einer Maschinenkategorie verglichen.

Mit der oben gezeigten Methode können somit Emissionen und Verbrauch für maschinentypische Lastprofile ermittelt werden, welche für die Abschätzung der Emissionsbelastung dienen.

Abstract

Mobile machinery and equipment make a significant contribution to the total emissions of the transport sector. Therefor the total annual emissions are calculated for the Austrian air pollutant inventory based on stock data, operating hours, average engine power and emission factors. These emission factors are usually based on limit values, results of type approval and comparative measurements. To make a statement about the real emissions of such vehicles, in a project at the Institute of Internal Combustion Engines and Thermodynamics on-board measurements (PEMS) were performed on construction machinery and tractors. The aim of this work is to create emission maps from the available measurement data as well as from further measurements and subsequently calculate emissions and fuel consumption for various load profiles that arise due to different applications of the machines.

In a first step emission maps (emissions as a function of rotational speed and power) were created from existing measurement data. Since the power can not be measured directly, it was calculated from the measured CO_2 and rotational speed as well as from a truck fuel consumption map. For validation of the rotational speed and power values the respective full load curves of the manufacturer were used. Following mean emission maps for exhaust stages I, II, IIIA, IIIB were generated with the vehicle emission model PHEM.

Further typical duty cycles for wheel loaders, excavators, tractor, bulldozer, backhoe loaders, skid steer loaders and generator have been determined. On the one hand these were derived from internal measurements and on the other hand "Nonregulatory nonroad duty cycles" of the EPA and machine-specific segments of the NRTC were used.

Emissions (NOx, HC, CO and soot) for various machine types and applications were calculated based on sum grid maps and load cycles.

Finally, the simulation results were opposed and thereby the average power of the cycle, the level of emissions for the various emissions standards and the differences between the cycles of the machine category were compared.

With the above mentioned method it is possible to determine emissions and consumption for machine-specific load profiles, which are used for the estimation of emission load.

1 Einleitung

Mobile Maschinen und Geräte (NRMM), welche vor allem in der Land-, Bau-, und Forstwirtschaft, in der Industrie sowie in Haushalten und bei Freizeitaktivitäten eingesetzt werden, tragen einen wesentlichen Anteil zur Schadstoffbelastung bei. [17]

Die zwei folgenden Abbildungen zeigen die in Österreich vom gesamten Verkehrssektor verursachten Stickoxid- und Rußemissionen aus dem Jahr 2014, welche für die Österreichische Luftschadstoffinventur (OLI) mit dem Modell GEORG (Grazer Emissionsmodell für Off-Road Geräte) berechnet wurden [27]. NRMM hat einen Anteil von ca. 20% an NO_x und fast 50% an motorischen PM und ist daher eine nicht vernachlässigbare Quelle an Schadstoffemissionen.

Abbildung 1-1: NOx Emissionen des Off-Road Sektors für das Jahr 2014

NOx Emissionen [1000 t/Jahr]

Abbildung 1-2: PM10 Emissionen des Off-Road Sektors für das Jahr 2014

Die Emissionen aus solchen Maschinen sind durch EU Richtlinien reglementiert. Für solche Luftschadstoffinventuren werden die Emissionen aus dem Sektor der NRMM über eine Berechnungsmethode abgeschätzt, welche sich unter anderem auf Emissionsfaktoren stützt. Als Quelle für Emissionsfaktoren der limitierten Schadstoffe (NOx, HC, CO, Partikel) dienen vor allem (vgl.[24], [18]):

- Emissionsgrenzwerte (Gesetzgebung)
- Messwerte der Typenprüfung (NRSC, NRTC)
- Messungen im Realbetrieb (selten)

1.1 Problemstellung

Die Betriebsweisen (Lastprofile) im Bereich der NRMM sind sehr unterschiedlich und lassen sich durch Typprüfzyklen nur unvollständig abbilden. Somit kann nicht sichergestellt werden, dass die Emissionsgrenzwerte auch im Realbetrieb eingehalten werden. [23]

Da für die Schadstoffinventur die Emissionsfaktoren vorwiegend aus Messungen im Typprüfzyklus abgeleitet werden, bestehen dadurch hohe Unsicherheiten. [16]

Um die tatsächlichen Emissionen quantifizieren zu können, wurden in einem Projekt am IVT Baumaschinen und Traktoren unter realen Bedingungen im Einsatz vermessen.

1.2 Aufgabenstellung und Ziele

In dieser Arbeit sollen die vorhandenen Messdaten analysiert und in weiterer Folge Emissionskennfelder EM = f(n, Pe) erstellt werden. Die Sammlung von typischen Lastprofilen je nach Maschinenkategorie stellt einen weiteren Aufgabenbereich dar. Aus den Emissionskennfeldern und den Lastprofilen sollen dann Emissionen und Verbrauch berechnet bzw. Emissionsfaktoren abgeleitet werden. Um auch Aussagen im Bereich der Landwirtschaft treffen zu können, sollen im Zuge dieser Arbeit Traktoren bei realen Anwendungen untersucht werden.

Dazu werden in Kapitel 2 einige theoretische Grundlagen in Hinsicht auf mobile Maschinen und deren Gesetzgebung, On- Board Messtechnik und Simulationsumgebung betrachtet.

Im dritten Kapitel wird die Berechnung der sekündlichen Leistung aus den Messdaten detailliert beschrieben und erläutert, welche Korrekturen dabei notwendig sind. Die Analyse von ausgewählten Maschinen bezüglich Kennfeldnutzung ist ebenfalls Bestandteil dieses Kapitels.

Das vierte Kapitel ist den Messungen von 2 Traktoren neuerer Generation bei realen Arbeitsprozessen gewidmet. Darin sind der Messbetrieb und die Ergebnisse beschrieben.

In Kapitel 5 wird beschrieben, wie man aus den Messdaten einzelner Maschinen Emissionskennfelder erstellt. Dabei wird erklärt, nach welcher Methodik die einzelnen Maschinen verschiedener Leistungsklassen einer Abgasstufe zu einem Summenkennfeld kombiniert werden können.

Die Berechnung von Emissionen aus typischen Lastprofilen unterschiedlicher Maschinentypen wird in Kapitel 6 gezeigt. Die Herkunft der Zyklen und die verwendeten Maschinen sind ebenso Teil dieses Abschnittes.

Den Abschluss bildet das Kapitel 7. Darin werden die Simulationsergebnisse gegenübergestellt und erläutert.

2 Theoretische Grundlagen

In diesem Kapitel werden die wichtigsten Grundlagen, welche für das Verständnis und den Zusammenhang wichtig sind, kurz erläutert.

2.1 NRMM (Non-Road Mobile Machinery)

Die Begriffe "Offroad-Maschinen", "mobile Maschinen" oder auch "NRMM" sind in der Literatur häufig anzutreffen. Eine genaue Abgrenzung, welche Maschinen damit gemeint sind, hängt häufig davon ab, in welchem Kontext er verwendet wird. Im Sinne der Abgasgesetzgebung wird in der Richtlinie 97/68/EG folgende Definition getroffen:

,, ,mobile Maschinen und Geräte' mobile Maschinen, mobile industrielle Ausrüstungen oder Fahrzeuge mit oder ohne Aufbau, die nicht zur Beförderung von Personen oder Gütern auf der Straße bestimmt sind und in die ein Verbrennungsmotor [...] eingebaut ist;" [11]

Im Modell GEORG (Grazer Emissionsmodel für Off Road Geräte) fallen die in Tabelle 2-1 angeführten Maschinen und Geräte unter den Begriff NRMM.

Tabelle 2-1: Off-Road Maschinen a	aus dem Modell GEORG [16]
-----------------------------------	---------------------------

LANDWIRTSCHAFT
Traktoren, Motorkarren, Mähdrescher, Motormäher, sonstige Erntemaschinen
FORSTWIRTSCHAFT
Traktoren, benzinbetriebene Kettensägen, Hackschnitzelmaschinen
INDUSTRIE
Alle mobilen Maschinen und Geräte aus Bauwirtschaft und sonstiger Industrie. Dies umfasst: Aggregat für Spundwandvibratoren, Asphaltfertiger, Asphaltfräsen, Asphaltmischanlagen (Heizung), Bagger, Bagger, Betonmischfahrzeuge, Betonpumpen und –förderer, Betonsägen, Bitumen-, Asphaltkocher und Spritzmaschinen, Bohrer, Bohrwagen und Wurfschaufellader, Brecheranlagen, Diesellokomotiven auf privaten Gleisen, Dreiseitenkipper, Gabelstapler, Grader, Hydraulikbagger, Kompressoren, Kräne, Laderaupe/Radlader, Mischmaschinen, Mulder, Planierraupen, Radlader, Stampf- und Rüttelgeräte, Stapler, Stromaggregate, Transportmischer, Vibrowalzen, Zugmaschinen (ohne Sattelzugmaschinen), sonstige ⁽¹⁾
HAUSHALT UND GARTENBEREICH
Haushalt und Gartengeräte, Pistengeräte, Loipengeräte, Skidos

In dieser Arbeit werden ausschließlich Baumaschinen (Bagger, Radlader, ...) und Traktoren betrachtet, die mit einem Dieselmotor ausgestattet sind.

2.2 Emissionsgesetzgebung

Um die Emissionen aus dem Bereich der NRMM zu begrenzen, wurden seitens der EU Grenzwerte für die relevanten Schadstoffe vorgeschrieben. Die für die Typgenehmigung einzuhaltenden Anforderungen und Prüfbedingungen sind in der Richtlinie 97/68/EG und ihren Folgerichtlinien festgelegt. Die Anforderungen an das Emissionsverhalten von Traktoren werden in der Richtlinie 2000/25/EG bzw. 97/68/EG in ihrer jeweils gültigen Fassung definiert. In Abbildung 2-1 sind die Stickoxid- und Partikelgrenzwerte, für Kompressionszündungsmotoren über 130kW, der entsprechenden Abgas- Emissionsstufen eingetragen.

Abbildung 2-1: Abgas- Emissionsstufen für Motoren über 130 kW

2.2.1 Grenzwerte

Die für Kompressionszündungsmotoren aus NRMM geltenden Grenzwerte, für die unterschiedlichen Stufen bzw. Motorkategorien, sind in Tabelle 2-2 dargestellt. Das Datum für die Typengenehmigung und das Inverkehrbringen von Motoren legt den Zeitpunkt fest, nach dem die Motoren den entsprechenden Grenzwerten genügen müssen. Welcher Prüfzyklus (-zyklen) konkret für die Genehmigung zur Anwendung kommt, sind in [11] und den Folgerichtlinien festgelegt.

Für Binnenschiffe, Lokomotiven und Triebwagen gibt es eigenen Regulierungen, die in Tabelle 2-2 nicht enthalten sind.

Stufe I						-			-
	Motor	Leistung P	Typen	Inverkehr		со	HC	NOx	PM
alle	kategorie	[kW]	genehmigung	bringung	Prüfzyklus	[g/kWh]	[g/kWh]	[g/kWh]	[g/kWh]
Motortypen	А	130 ≤ P ≤ 560	30.06.1998	31.12.1998		5.00	1.30	9.20	0.54
	В	75 ≤ P < 130	30.06.1998	31.12.1998	NRSC	5.00	1.30	9.20	0.70
	С	37 ≤ P < 75	30.06.1998	31.03.1999		6.50	1.30	9.20	0.85
Stufe II	-					r	-	-	
	Motor	Leistung P	Typen	Inverkehr		со	HC	NOx	PM
مالد	kategorie	[kW]	genehmigung	bringung	Prüfzyklus	[g/kWh]	[g/kWh]	[g/kWh]	[g/kWh]
Motortypen	D	18 ≤ P ≤ 37	31.12.1999	31.12.2000		5.50	1.50	8.00	0.80
wotortypen	E	$130 \le P \le 560$	31.12.2000	31.12.2001	NRSC	3.50	1.00	6.00	0.20
	F	75 ≤ P < 130	31.12.2001	31.12.2002	NIGC	5.00	1.00	6.00	0.30
	G	37 ≤ P < 75	31.12.2002	31.12.2003		5.00	1.30	7.00	0.40
Stufe IIIA									
	Motor	Leistung P	Typen	Inverkehr		со	NOx	+ HC	PM
Motoren mit	kategorie	[kW]	genehmigung	bringung	Prüfzyklus	[g/kWh]	[g/k	Wh]	[g/kWh]
variabler	H	130 ≤ P ≤ 560	30.06.2005	31.12.2005	•	3.50	4.	00	0.20
Drehzahl	I	75 ≤ P < 130	31.12.2005	31.12.2006	NRSC	5.00	4.	00	0.30
	J	37 ≤ P < 75	31.12.2006	31.12.2007	(NRTC)	5.00	4.	70	0.40
	К	19 ≤ P ≤ 37	31.12.2005	31.12.2006		5.50	7.50		0.60
	Motor	Leistung P	Typen	Inverkehr		со	NOx	+ HC	РМ
Motoren mit	kategorie	[kW]	genehmigung	bringung	Prüfzyklus	[g/kWh]	[g/k	Wh]	[g/kWh]
konstanter	H	130 ≤ P ≤ 560	31.12.2009	31.12.2010		3.50	4.	00	0.20
Drehzahl	I	75 ≤ P < 130	31.12.2009	31.12.2010	NIDCO	5.00	4.	00	0.30
	J	37 ≤ P < 75	31.12.2010	31.12.2011	NRSC	5.00	4.70		0.40
	K	19 ≤ P ≤ 37	31.12.2009	31.12.2010		5.50	7.	50	0.60
Stufe IIIB									
	Motor	Leistung P	Typen	Inverkehr		со	HC	NOx	PM
Motoren mit	kategorie	[kW]	genehmigung	bringung	Prüfzyklus	[g/kWh]	[g/kWh]	[g/kWh]	[g/kWh]
variabler	L	130 ≤ P ≤ 560	31.12.2009	31.12.2010		3.50	0.19	2.00	0.025
Drehzahl	М	75 ≤ P < 130	31.12.2010	31.12.2011	NRSC	5.00	0.19	3.30	0.025
	N	56 ≤ P < 75	31.12.2010	31.12.2011	NRTC	5.00	0.19	3.30	0.025
	Р	37 ≤ P ≤ 56	31.12.2011	31.12.2012		5.00	4.	70	0.025
Stufe IV					-				
Motoren mit	Motor	Leistung P	Typen	Inverkehr		со	нс	NOx	РМ
variabler	kategorie	[kW]	genehmigung	bringung	Prüfzvklus	[g/kWh]	[g/kWh]	[g/kWh]	[g/kWh]
Drehzahl	0	130 ≤ P < 560	31.12.2012	31.12.2013	NRSC	3.50	0,19	0.40	0.025
	R	56 < P < 130	30.09 2013	30.09 2014	NRTC	5.00	0.19	0.40	0.025
L		30 - 1 1 1 30	50.05.2015	30.03.2014		5.00	0.10	0.40	0.025

Tabelle 2-2: Grenzwerte für NRMM [10], [11]

2.2.2 Prüfzyklen

Die Emissionszertifizierung, für Motoren aus "mobilen Maschinen", findet am Motoren-Prüfstand statt. Als Prüfzyklen kommen dabei der NRSC (Non-Road Steady-State Cycle) und der NRTC (Non-Road Transient Cycle) zum Einsatz, wobei der transiente Zyklus erst ab Stufe IIIB zur Anwendung kommt. Dargestellt werden die Emissionen bezogen auf die abgegebene Arbeit (g/kWh).

NRSC

Der NRSC Test ist ein stationärer Prüfzyklus, bei dem vorgegebene Last-Drehzahlpunkte im Kennfeld angefahren werden. Die einzelnen Punkte fließen mit ihrer jeweiligen Gewichtung (Wichtungsfaktor WF) in die Berechnung der spezifischen Emissionen (g/kWh) ein. In Tabelle 2-3 sind die Prüfphasen für den 8-Stufentest angeführt.

Prüfphase	Motordrehzahl (U/min)	Last (%)	Wichtungs- faktor
1	Nenndrehzahl oder Bezugs- drehzahl (*)	100	0,15
2	Nenndrehzahl oder Bezugs- drehzahl (*)	75	0,15
3	Nenndrehzahl oder Bezugs- drehzahl (*)	50	0,15
4	Nenndrehzahl oder Bezugs- drehzahl (*)	10	0,10
5	Zwischendrehzahl	100	0,10
6	Zwischendrehzahl	75	0,10
7	Zwischendrehzahl	50	0,10
8	Leerlauf		0,15

Tabelle 2-3: Prüfphasen 8 – Stufentest [11]

Die spezifischen Emissionen (g/kWh) für den stationären Testzyklus sind nach Gleichung (2-1) zu berechnen.

$$EM_{NRSC} = \frac{\sum_{i=1}^{n} \dot{m}_{EM_{i}} \cdot WF_{i}}{\sum_{i=1}^{n} P_{i} \cdot WF_{i}}$$

(2-1)

NRTC

Der NRTC Test ist ein transienter Prüfzyklus mit einer Dauer von 1238 Sekunden und wurde von der EPA in Zusammenarbeit mit der EU entwickelt. Dieser Zyklus setzt sich aus typischen Lastprofilen unterschiedlicher Maschinentypen (Traktor, Bagger, Radlader, ...) zusammen und hat somit nur bedingte Aussagekraft über das reale Emissionsverhalten eines Prüfmotors. Bei der Zulassungsprüfung wird der Zyklus einmal mit Kaltstart und nach einer Abkühlphase von 20min einmal mit Warmstart absolviert. Der Kaltstartanteil fließt mit einer Gewichtung von 10% ins Gesamtergebnis ein. [25], [10]

NRTC (Non Road Transient Cycle)								
Application	Nonroad	Application	Application in	Segments from	Segment	Segment	Cumulative	Segment in
Number	Application	Duration	Cycle Position	Application Cycle	Name	Duration	Cycle Time	Cycle Position
		(seconds)	(#seconds)	(#seconds)		(seconds)	(#seconds)	(#seconds)
					Start/Transition	28	28	0-28
1	Backhoe Loader	206	29-234	52-86	Roading	35	63	29-63
	(Baggerlader)			108-141	Trenching	34	97	64-97
				174-218	Loading	45	142	98-142
				351-442	Grade/Level	92	234	143-234
2	Rubber-Tire Loader	184	235-418	746-822	Typical Operation	77	311	235-311
	(Radlader)			531-637	Hi-Spd Transient	107	418	312-418
3	Crawler-Dozer	209	419-627	85-206	Road Bed Prep	122	540	419-540
	(Planierraupe)			376-462	Clearing	87	627	540-627
4	Agricultural Tractor	150	628-777	265-414	AgTractor	150	777	628-777
	(Traktor)							
5	Excavator	35	778-812	319-338	LowerHp (128Hp)	20	797	778-797
	(Bagger)			431-445	HigherHp (208Hp)	15	812	798-812
					Transition	3	815	813-815
6	Arc Welder	204	816-1019	1007-1103	Typical Operation	97	912	816-912
	(Lichtbogenschweißgerät)			544-650	Hi-Spd Transient	107	1019	913-1019
7	Skid Steer Loader	185	1020-1204	264-365	Typical Operation	102	1121	1020-1121
	(Kompaktlader)			150-232	Hi-Trq Transient	83	1204	1122-1204
					Idle/Transition/End	34	1238	1215-1238

Tabelle 2-4: Zeitsegmente der Maschinenanwendungen im NRTC [31]

Im NRTC sind die sekündlichen Werte für Drehmoment und Drehzahl normiert dargestellt. Um die absoluten Werte für einen entsprechenden Motor zu erhalten, müssen Drehmoment und Drehzahl entnormiert werden. Da die Normierung auf Grundlage der Volllastkurve basiert, muss diese für die Ermittlung der tatsächlichen Werte bekannt sein.

Abbildung 2-2: Non Road Transient Cycle (NRTC)

Drehzahl:

Für die Entnormierung der Motordrehzahl muss zuerst die Referenzdrehzahl (n_{ref}) berechnet werden.

$$n_{\rm ref} = n_{\rm LO} + 0.95 \cdot (n_{\rm HI} - n_{\rm LO})$$
 (2-2)

Die Drehzahl wird nach Gleichung (2-3) entnormiert:

$$n = \frac{n_{\rm nrtc} \cdot (n_{\rm ref} - n_{\rm LL})}{100} + n_{\rm LL}$$
(2-3)

Abbildung 2-3: Bestimmung von nLO und nHI aus der Volllastkurve

Drehmoment:

Die Drehmomentwerte sind auf das höchste Drehmoment (Volllast) bei der jeweiligen Drehzahl normiert. Daraus ergibt sich für die Entnormierung folgende Gleichung:

$$M_{\rm d} = \frac{M_{nrtc} \cdot M_{\rm d,max(n)}}{100} \tag{2-4}$$

Dabei bedeuten:

$n_{ m LO}$	[U/min]	(niedrige Drehzahl): die niedrigste Drehzahl, bei der 50% der Nennleistung abgegeben werden.[11]
$n_{ m HI}$	[U/min]	(hohe Drehzahl): die höchste Drehzahl, bei der 70% der Nennleistung abgegeben werden.[11]
$n_{ m LL}$	[U/min]	Leerlaufdrehzahl des Motors
$n_{ m nrtc}$	[%]	Normierte Drehzahl (NRTC)
<i>M</i> _{nrtc}	[%]	Normiertes Drehmoment (NRTC)
M _d	[Nm]	Entnormiertes Drehmoment
$M_{d,\max(n)}$	[Nm]	Drehmoment an der Volllast bei der Drehzahl n

2.3 PEMS – Portable Emission Measurement System

Zur Messung der Schadstoffkomponenten aus Fahrzeugen bei realem Fahrbetrieb werden spezielle Onboard-Messsysteme verwendet. Dabei können mit diesen Systemen die gasförmigen Emissionen CO_2 , CO, HC und NO_x sowie Ruß gemessen werden. [3]

2.3.1 Messgeräte und Messprinzip

Nachfolgend werden die bei den in dieser Arbeit durchgeführten Emissionsmessungen zur Verfügung stehende Messtechnik und deren Funktionsweise überblicksmäßig beschrieben.

Tabelle 2-5: PEMS Messgeräte

	Volume-/Massenstrom	gasförmige Emissionen	Rußemissionen
Hersteller	SENSORS	SENSORS	AVL
Тур	Semtech-EFM	Semtech-DS	Micro Soot

Volumen-/Massenstrom (Semtech-EFM) [29]

Das System arbeitet nach dem Pitot-Rohr-Prinzip. Dabei wird mit einem Pitot-Rohr der dynamische Druck bestimmt und zusätzlich der statische Druck gemessen. Daraus kann dann die Strömungsgeschwindigkeit bestimmt werden.

$$p_{\text{ges}} - p_{\text{stat}} = \frac{\rho}{2} \cdot v^2 \tag{2-5}$$

Der bestimmende Zusammenhang für die Massenstrommessung mit Semtech-EFM basiert auf der Bernoulli-Gleichung und der Kontinuitätsgleichung.

$$\dot{m} = K_{\rm (Re)} \cdot A \cdot \sqrt{\rho \cdot \Delta p} \tag{2-6}$$

Dabei bedeuten:

А	[m ²]	Querschnittsfläche des Messrohres
K _(Re)	[-]	Durchflusskoeffizient des Messrohres, als Funktion der Reynoldszahl
ρ	[kg/m³]	Dichte des Abgases
Δp	[Pa]	Differenzdruck der Druckausgänge in Abbildung 2-4

Die Dichte des Gases wird über die Konzentrationen im Messgas, die Temperatur und den Druck bestimmt.

Abbildung 2-4: Schnittdarstellung Durchflussrohr Semtech EFM [29]

Gasförmige Emissionen (Semtech-DS)

Semtech-DS baut auf einer Anzahl von modularen, stand-alone Messsystemen auf. Folgende Analysatoren werden zur Detektion der unterschiedlichen Schadstoffkomponenten in den Subsystemen verwendet:

- Beheizter Flammenionisationsdetektor (FID) zur Messung der THC- Emissionen
- Nicht-Dispersiver Ultraviolettsensor (NDUV) für die Erfassung der Stickoxide (NO, NO₂)
- Nicht-Dispersiver Infrarotsensor (**NDIR**) zur Messung von Kohlenmonoxid (CO) und Kohlendioxid (CO₂)
- Elektrochemischer Sensor für die Sauerstoffmessung (O₂)

Die Probenentnahme erfolgt dabei über eine beheizte Entnahmeleitung. Für die Erfassung des Abgasvolumenstromes kommt ein eigenes Exhaust Flow Meter (Semtech-EFM) zum Einsatz. Die Ausgabe der Messergebnisse erfolgt als Konzentration (ppm) und als Massenemission (g/h) mit einer Aufzeichnungsrate von f = 1 Hz. [3]

Abbildung 2-5: Semtech DS [13]

Abbildung 2-6: Semtech EFM Messrohr

• **FID** – Flammenionisationsdetektor

Ein Flammenionisationsdetektor wird zur Messung der Kohlenwasserstoffe im Abgas verwendet. Dabei verbrennt ein Gemisch aus Wasserstoff und Helium mit synthetischer Luft (keine Kohlenwasserstoffe in der Flamme). Dieser Flamme wird eine Probe aus dem zu messenden Abgas hinzugefügt. Die im Abgas enthaltenen Kohlenwasserstoffmoleküle werden in der Flamme gecrackt und ionisiert. Die Flamme brennt zwischen zwei Elektroden, an die eine Spannung angelegt ist. Die aus den Kohlenwasserstoffen erzeugten Ionen verursachen einen geringen Stromfluss zwischen Anode und Kathode, der das Messsignal darstellt. [25]

Abbildung 2-7: Prinzipskizze Flammenionisationsdetektor (FID) [25]

• NDIR – Nicht-Dispersiver Infrarotsensor

Die Strahlung einer Infrarotquelle wird geteilt und durch eine Messzelle und eine Referenzzelle geleitet. Die Referenzzelle ist mit einem nicht absorbierenden Gas (z.B. Stickstoff N₂) gefüllt, wodurch es zu keiner Abnahme der Infrarotstrahlung kommt. Die Messgaszelle wird von der Abgasprobe durchströmt. Enthält die Abgasprobe Gasmoleküle, die Infrarotstrahlung absorbieren, wie z.B. CO oder CO₂, werden je nach Gasmolekül gewisse Wellenlängen absorbiert, wodurch bei der Messzelle weniger Infrarotstrahlung auf den Gasdetektor trifft, als bei der Referenzzelle. Der Detektor besteht aus zwei gleich großen Kammern, eine empfängt die Strahlung der Referenzzelle und die andere jene aus der Messzelle. Die beiden Detektorkammern sind mit dem Gas gefüllt, welches vom Analysator gemessen werden soll (z.B. CO, CO₂). Dadurch werden im Detektor die gleichen Wellenlängen absorbiert wie in der Messzelle. Der Detektor ist also selektiv auf das zu messende Gas eingestellt. Durch die Absorption in den abgeschlossenen Kammern erhöhen sich die Energie und damit der Druck. Je höher die Konzentration des zu messenden Gases in der Messzelle ist, desto größer wird der Unterschied der Infrarotstrahlung durch die Messzelle verglichen zur Referenzzelle und damit auch die Druckdifferenz zwischen den beiden Kammern des Detektors. Dieser Druckunterschied (z.B. über die Durchbiegung der Membran gemessen) stellt das Messsignal dar. Durch das Choppern der Infrarotstrahlung erfolgt dieser Vorgang alternierend. [22]

Abbildung 2-8: NDIR Analysator [22]

• NDUV – Nicht-Dispersiver Ultraviolettsensor

"Das Messprinzip entspricht im Wesentlichen jenem des NDIR. Das NDUV-Verfahren bedient sich dabei des Merkmals, dass ein zu analysierendes Gas in einem intrinsischen Wellenlängenbereich ultraviolette Strahlen absorbiert." [3]

Rußemissionen (AVL Micro Soot Sensor)

Im Gegensatz zur filterbasierten Partikelmessung auf stationären Prüfstanden können mit der Onboard-Messtechnik derzeit nur Rußemissionen, mit ausreichender Genauigkeit, dynamisch erfasst werden. Partikel aus der motorischen Verbrennung bestehen prinzipiell aus festen Kohlenstoffkernen – Ruß – und angelagerten festen und flüssigen Stoffen (Kohlenwasserstoffe, Schwefel- und Stickstoffverbindungen, ...).

Der Micro Soot Sensor der Firma AVL basiert auf dem photoakustischen Messprinzip. Dabei wird die Abgasprobe mit einem modulierten Laserstrahl beleuchtet. Die im Messgas enthaltenen "schwarzen" Rußteilchen absorbieren den Laserstrahl in hohem Maß. Aus der periodische Erwärmung und Abkühlung der Partikel resultiert eine Ausdehnung und Kontraktion des Trägergases. Diese Gasschwingungen verursachen Schallwellen, welche über Mikrofone detektiert werden. [2]

b) Aufbau einer photoakustischen Zelle

Um die gemessenen Konzentrationen in Massenemissionen umrechnen zu können, wird der Volumenstrom aus Semtech-EFM verwendet.

2.4 PHEM

Das Emissionsmodell PHEM (Passenger Car and Heavy Duty Emission Model) wird seit 1999 am Institut für Verbrennungskraftmaschinen und Thermodynamik (IVT) der TU Graz in nationalen und internationalen Projekten entwickelt. PHEM wurde in erster Linie zur Simulation von Kraftstoffverbrauch und Schadstoffemissionen von Straßenfahrzeugen entwickelt.

PHEM berechnet in Sekundenschritten die notwendige Antriebsleistung, die zur Erreichung der durch den Fahrzyklus geforderten Geschwindigkeit und Beschleunigung benötigt wird. Berücksichtigt werden dabei sämtliche Fahrwiderstände inklusive Fahrbahnneigung sowie Verluste im Antriebsstrang. Durch ein Schaltmodell wird der jeweilig verwendete Gang womit der Betriebspunkt (Leistung Pe Drehzahl berechnet. / n) der Verbrennungskraftmaschine für jeden Sekundenschritt bestimmt ist. Ein Emissionskennfeld liefert zu jedem Betriebspunkt die Schadstoffemissionen und den Kraftstoffverbrauch. Um die Genauigkeit der Schadstoffemissionssimulation zu erhöhen. werden. ie nach Fahrzeugkategorie, auch Dynamikkorrekturfunktionen verwendet und eine detaillierte Berechnung der Abgasnachbehandlungssysteme durchgeführt. Abbildung 2-10 zeigt schematisch die Funktionsweise.

Abbildung 2-10: Funktionsweise von PHEM [15]

Zur Berechnung mittlerer Emissionen bestimmter Fahrzeugklassen ist eine Datenbasis hinterlegt, die Durchschnittsfahrzeuge aufgeteilt nach Fahrzeugklasse, Kraftstoff und EURO-Klasse beinhaltet, z.B.: PKW EURO 4 Diesel. Somit können Berechnungen für ganze Flotten bestehend aus PKW, leichten und schweren Nutzfahrzeugen durchgeführt werden.

Im "Engine Only" Mode bietet PHEM die Möglichkeit, Emissionen und Kraftstoffverbrauch zu berechnen, wobei die Betriebspunkte (Drehzahl n / Leistung Pe) direkt vorgegeben und nicht über ein Längsdynamiksimulation berechnet werden. Dieser Simulationsmodus wurde in der vorliegenden Arbeit eingesetzt.

2.4.1 Normierung PHEM

Aus Gründen der Skalierbarkeit zwischen verschiedenen Motorgrößen werden Drehzahl, Leistung und Emissionswerte in normierter Form dargestellt. Die Normierung hat zur Folge, dass sich Drehzahl- und Leistungswerte im Bereich zwischen 0 und ca. 1 ergeben.

$$n_{\rm norm} = \frac{n - n_{\rm idle}}{n_{\rm rated} - n_{\rm idle}}$$
(2-7)

$$P_{\rm e,norm} = \frac{P_{\rm e}}{P_{\rm rated}}$$
(2-8)

$$\dot{m}_{\rm EM,norm} = \frac{\dot{m}_{\rm EM}}{P_{\rm rated}}$$
(2-9)

2.5 Leistungsangaben

Wie im vorherigen Punkt ersichtlich, werden für die Normierung die genannten Leistungen benötigt. Leistungsangaben werden, wenn nicht näher bekannt, aus Datenblättern des Herstellers entnommen. In den Herstellerangaben sind Leistungsdaten nach unterschiedlichsten Normen zu finden.

•	ISO 14396	• ISO 9249		•	SAE J1995
•	ECE R24	•	SAE J1349	•	ECE R120

Die Unterschiede beziehen sich meist auf die Berücksichtigung der Nebenaggregate und auf die atmosphärischen Referenzbedingungen. In Tabelle 2-6 sind verschiedene Normen und deren Abweichungen bei der Leistung dargestellt.

Bei den Baumaschinen sind die Leistungen vorwiegend nach ISO 9249/SAE J1349 oder ISO 14396 angegeben. Beide ISO Normen bauen auf ISO 15550 als Basisnorm auf und unterscheiden sich vor allem in der Berücksichtigung der Antriebsleistung des Lüfters.

Messnorm o. EG- Richtlinie	DIN 70020 (zurückgezogen)	SAE J1995	ISO TR 14396	97/68/EWG bis 2005/13/EG	ECE R24	OECD Code 2 ¹⁾
Leistungsabnahme	Schwungscheibe	Schwungscheibe	Schwungscheibe	Schwungscheibe	Schwungscheibe	Zapfwelle
Lüfter	ja	nein	nein	nein	ja	ja
Kühlwasserpumpe	ja	nein	ja	ja	ja	ja
Wasserkühler	ja	nein	nein	ja	ja	ja
Turbolader	ja	ja	ja	ja	ja	ja
Ladeluftkühler	ja	ja	ja	ja	ja	ja
Luftfilter	ja	nein	ja	ja	ja	ja
Auspuff	ja	nein	ja	ja	ja	ja
Einspritzpumpe	ja	ja	ja	ja	ja	ja
Zusatzaggegate 2)	nein	nein	nein	nein	nein	ja
Leistung DIN 100% 3)	100%	ca. 115%	ca. 110%	ca. 110%	ca. 105%	ca. 85% - 90%
¹⁾ Leistungsangabe of	nne Temperatur- ur	nd Luftdruckkorrek	tur (Grenzwerte: 2	3° C +/- 7° und nicl	ht <96,6 kPa)	
²⁾ Hydraulik, Klimaanla	age usw.					
³⁾ nach Ulrich Lossie,	Deula Nienburg					

Tabelle 2-6: Leistungsnormen im Vergleich [21]

Erschwerend kommt hinzu, dass die Definition von Nennleistung und Nenndrehzahl in den Normen und Richtlinien zum Teil nicht konsistent ist.

Beispiel:

• <u>97/68/EG</u>

"Nenndrehzahl" die vom Regler begrenzte Höchstdrehzahl bei Volllast nach den Angaben des Herstellers; [11]

Die Nennleistung ist nicht explizit definiert, wird aber im Kontext verwendet!

• <u>80/1269/EW</u>

"Nennleistung" die größte Nutzleistung des Motors, gemessen unter Vollastbedingungen; [12]

Nenndrehzahl nicht definiert!

Abbildung 2-11: Unterschiedliche Definitionen vom Nennpunkt

2.5.1 Verwendete Leistungs- und Drehzahldefinitionen

Um nachfolgende eine klare Benennung der markanten Punkte einer Volllastkurve (Leistungskurve) sicherzustellen, wurden folgende Definitionen gewählt:

Nenndrehzahl	n _{nenn}	die vom Regler begrenzte Höchstdrehzahl bei Volllast
Nennleistung	P _{nenn}	die Leistung an der Volllastlinie bei Nenndrehzahl
Maximalleistung	P _{max}	größte Leistung an der Volllastlinie, die vom Motor abgegeben wird
Drehzahl bei Maximalleistung	n _{Pmax}	Motordrehzahl, bei der die Maximalleistung erreicht wird
Maximales Drehmoment	M _{max}	Höchstwert des bei voller Motorlast gemessenen Drehmoments
Drehzahl bei maximalem Drehmoment	n _{Mmax}	Motordrehzahl, bei der das maximale Drehmoment zur Verfügung steht

Tabelle 2-7: Leistungs- und Drehzahldefinitionen

Beispiel in PHEM:

3 Analyse vorhandener Messdaten

Bei den vorhandenen Datensätzen (Beispiel siehe Tabelle 3-2) handelt es sich um aufbereitete Messdaten aus PEMS Messreihen, in denen 17 Baumaschinen unterschiedlichster Emissionsstufen, Leistungssegmente und Maschinentypen vermessen wurden. Zusätzlich wurden im Zuge dieser Arbeit weitere Maschinen vermessen, sodass insgesamt die Daten von 20 Maschinen zur Verfügung standen.

Tabelle 3-1: Übersicht gemessener Maschinen

		ader	enzug	er	or	me je orkategorie
Kategorie	Nutzleistung [kW]	Radia	Walz	Bagg	Trakt	Sumi Mote
Stufe I						
A	130 ≤ P ≤ 560					0
В	75 ≤ P < 130			1		1
С	37 ≤ P < 75			1		1
Stufe II						
D	18≤P<37			1		1
E	$130 \le P \le 560$	1				1
F	75 ≤ P < 130			2		2
G	37 ≤ P < 75			1		1
Stufe IIIA						
н	130 ≤ P ≤ 560	1				1
I	75 ≤ P < 130			1	1	2
J	37 ≤ P < 75			1		1
К	18≤P<37			1		1
Stufe IIIB						
L	$130 \le P \le 560$	2		1	1	4
М	75 ≤ P < 130		1	1		2
N	56 ≤ P < 75					0
Р	37 ≤ P < 56			1		1
Stufe IV						
Q	$130 \le P \le 560$			1		1
R	56 ≤ P < 130					0
Summe je	Maschinenklasse	4	1	13	2	

Um aus den Messdaten (Emissionen, Drehzahl) Emissionskennfelder und die spezifischen Emissionen (g/kWh) berechnen zu können, ist die Kenntnis der sekündlich aufgelösten Leistung notwendig. Da die Leistung in den vorliegenden Messserien nicht direkt an der Maschine gemessen werden kann, muss diese indirekt bestimmt werden.

t	n	CO2	CO	NO	NO2	NOx	HC	Soot
[s]	[U/min]	[g/s]						
20	753.2	3.83300	0.32626	0.00975	0.00000	0.00975	0.00478	1.79E-03
21	768.7	4.06000	0.11479	0.02678	0.00000	0.02678	0.00568	1.03E-03
22	767.3	3.98600	0.05754	0.03618	0.00303	0.03921	0.00609	6.79E-04
23	766.2	3.95000	0.03668	0.02543	0.00312	0.02855	0.00632	5.07E-04
24	767.5	3.93800	0.03293	0.02312	0.00313	0.02625	0.00654	4.62E-04
25	767.8	3.94800	0.03301	0.02248	0.00313	0.02561	0.00677	4.33E-04
26	767.2	3.86600	0.03269	0.02193	0.00310	0.02503	0.00684	4.05E-04

Tabelle 3-2: Beispiel für Messdaten

3.1 Methodik Leistungsberechnung

Der Zusammenhang zwischen Drehzahl, Leistung und Verbrauch ist in Kennfeldern abgebildet, welche meist stationär am Motorenprüfstand aufgenommen werden. Aus solchen Kennfeldern kann die Leistung, bei Vorgaben von Drehzahl und Verbrauch, interpoliert werden. Der Kraftstoffverbrauch kann mittels Kohlenstoffbilanz (Gleichung (3-1)) aus den Messwerten gebildet werden, die Drehzahl ist direkt in den Messdatensätzen hinterlegt.

$$\dot{m}_{\rm Br} \cdot f_{\rm C,Br} = \dot{m}_{\rm CO2} \cdot f_{\rm C,CO2} + \dot{m}_{\rm CO} \cdot f_{\rm C,CO} + \dot{m}_{\rm HC} \cdot f_{\rm C,HC}$$
(3-1)

Darin sind:

'n	[kg/s]	Massenstrom
f _C	[-]	Kohlenstoffanteil (Masse)

Für die Berechnung des Kraftstoffverbrauches, aus den Abgasen von Dieselmotoren, ergibt sich folgende Zahlenwertgleichung:

$$\dot{m}_{\text{Diesel}} = \frac{\dot{m}_{\text{CO2}} \cdot 0.273 + \dot{m}_{\text{CO}} \cdot 0.429 + \dot{m}_{\text{HC}} \cdot 0.866}{0.860} \tag{3-2}$$

Wünschenswert wäre natürlich das Verbrauchskennfeld der jeweiligen Maschine, welches aber meist nicht zur Verfügung steht. Um den Aufwand möglichst gering zu halten, wurde für die Leistungsberechnung ein normiertes Basiskennfeld benutzt. Die Normierung ist in Kapitel 2.4.1 beschrieben.

Als Basiskennfeld dient dabei ein durchschnittliches LKW (Euro III) Kennfeld aus dem Handbuch für Emissionsfaktoren (HBEFA). Das verfügbare Kennfeld wurde nach einer ähnlichen Norm wie ISO 14396 bzw. 97/68/EG aufgenommen. Folglich sind daraus interpolierte Leistungswerte auf diese Norm bezogen.

Abbildung 3-1: Durchschnittliches LKW Verbrauchskennfeld

Zur Leistungsinterpolation werden die Absolutwerte für Drehzahl und Verbrauch (aus Datensätzen) normiert. Abweichend zur Definition in PHEM wurde bei der Normierung der Leistung nicht auf die Nennleistung, sondern auf die Maximalleistung bezogen. Mit den normierten Werten und dem Basis – Verbrauchskennfeld wird anschließend mittels einer Excel Funktion (interp3D) die Leistung interpoliert. Zur Validierung der Ergebnisse wurden die Messpunkte in ein Diagramm mit der Volllastkurve eingezeichnet. Erste Auswertungen haben gezeigt, dass auch Leistungswerte deutlich über der Volllastkurve vorhanden waren (siehe Abbildung 3-2). Der Abgleich mit den Volllastkurven zeigte auch Differenzen bei den Drehzahlwerten auf, welche auf die Unsicherheit beim Übersetzungsfaktor (siehe 4.2.3) zurückzuführen sind. Bei großen Abweichungen wurde der Übersetzungsfaktor nachträglich so angepasst, dass eine Übereinstimmung mit der Volllastkurve gegeben war.

Abbildung 3-2: Überprüfung der Messpunkte durch Volllastkurve

Als Einflussfaktoren für mögliche Abweichungen bei der Leistungsbestimmung wurden folgende Quellen identifiziert:

- Massenstrommessung (Semtech)
- Norm der Leistungsmessung (Leistungsangaben)
- Wirkungsgradunterschied zu Basiskennfeld (Motorgröße)
- Serienstreuung (bis zu 5%)

3.1.1 Korrekturfaktoren

Um die Einflussfaktoren bei der Leistungsermittlung berücksichtigen zu können, wurden Korrekturfaktoren festgelegt, welche nachfolgend beschrieben werden.

3.1.1.1 Massenstrommessung

Vergleichsmessungen (PEMS und Prüfstandsmesstechnik) am Institut für Verbrennungskraftmaschinen und Thermodynamik (TU-Graz) haben gezeigt, dass Messwerte bei den PEMS Messungen höher angezeigt werden als die am Prüfstand ermittelten Daten. Als Ursache wurde eine Abweichung bei der Massenstrommessung (EFM) vermutet. Diese konnte durch einen Versuchsaufbau mit zwei verschiedenen Messgeräten bestätigt werden. Der Messaufbau und das Messergebnis werden in Kapitel 4.1 näher beschrieben.

Als Korrektur wurden die sekündlichen PEMS- Messwerte aller Abgaskomponenten durch einen konstanten Korrekturfaktor dividiert. Dieser Faktor ist abhängig vom verwendeten EFM.

$$\dot{m}_{\rm EM,korr} = \frac{\dot{m}_{\rm EM}}{K_{\rm EFM}}$$
(3-3)

Für die EFM- Messrohre wurden folgende Korrekturfaktoren verwendet:

• 5" EFM: $K_{\rm EFM} = 1.10$

• 3" EFM: $K_{\rm EFM} = 1.05$

Von einem Massenstromunterschied, zwischen Labormesstechnik und dem On-Board Messsystem, in der Größenordnung von 10-13%, wird auch in [30] berichtet.

3.1.1.2 Norm der Leistungsmessung

Die von den Herstellern zur Verfügung gestellten Volllastkurven und somit auch die Leistungsangaben (Nennleistung, Maximalleistung) beziehen sich auf unterschiedliche Normen. Da die Nennleistung bzw. Maximalleistung in die Normierung (PHEM) eingeht, sowie zur Plausibilisierung verwendet wird, muss dieser Wert auf die entsprechende Leistungsnorm korrigiert werden. Bei Leistungsangaben nach ISO 14396 wurde keine Korrektur vorgenommen, da diese Norm gleichwertig mit der des Basisverbrauchskennfeldes ist.

Beziehen sich die Leistungsangaben auf ISO 9249 / SAE J1349, dann muss die Leistung des Lüfters hinzuaddiert werden.

Motor					
Motortyp	Cat® C9.3 AC	RT™			
Globale Emissionsvorschriften	Tier 4 Interim MLIT Stufe 4	Tier 4 Interim (USA), Stufe IIIB (EU), MLIT Stufe 4 (Japan)			
Motorleistung (max.)			1		
ISO 14396 (DIN)	198 kW	270 PS	Ł		
Nettoleistung (Nennwert)					
ISO 9249/SAE J1349 (DIN)	175 kW	238 PS			
Nettoleistung (max.)			1		
ISO 9249/SAE J1349 (DIN)	187 kW	254 PS	i.		

Abbildung 3-3: Leistungsangaben auf Basis unterschiedlicher Normen [5]

In Abbildung 3-3 ist zu erkennen, dass sich die Leistungswerte (max.) je nach Norm in einer Größenordnung von ca. 6% unterscheiden. Dieser Unterschied liegt vor allem an der Tatsache, dass bei der <u>ISO 14396 ohne Lüfter</u> gemessen wird und bei der <u>ISO 9249 die Lüfter-Leistung berücksichtigt</u> wird [19]. In Tabelle 2-6 sieht man, dass der Lüfter einen Unterschied von etwa 5% ausmacht (ECE R24 und 97/68/EG).

Um die Antriebsleistung des Lüfters bei der entsprechenden Norm zu berücksichtigen, wurde in dieser Arbeit die Volllastkurve mit einem konstanten Faktor (im Bereich 1.04 - 1.08) multipliziert und somit angehoben.

3.1.1.3 Wirkungsgradunterschied zu Basiskennfeld (Motorgröße):

Der Motorleistungsbereich bei den gemessenen Maschinen liegt zwischen 30 kW (Minibagger) und 300 kW (Radlader). Grundsätzlich haben größere Motoren einen höheren Wirkungsgrad als kleinere (vgl. [14]). Um die Wirkungsgradunterschiede berücksichtigen zu können, wurden aus den vorhandenen Herstellerangaben der geringste spezifische Kraftstoffverbrauch an der Volllastlinie über der maximalen Nutzleistung (ISO 14396) aufgetragen. Dieser Zusammenhang lässt sich in guter Näherung durch eine lineare Regressionsgerade annähern (siehe Abbildung 3-4). Der geringste spezifische Kraftstoffverbrauch an der Volllastlinie im Basiskennfeld ist mit 198 g/kWh ebenfalls bekannt. Damit lässt sich ein Korrekturfaktor bestimmen, welcher das Basiskennfeld auf die jeweilige Leistungskategorie anpasst.

Abbildung 3-4: Zusammenhang zwischen P_{max} und $b_{e,min}$ für unterschiedliche Motoren

$$P_{\rm e} = \dot{m}_{\rm B} \cdot H_{\rm u} \cdot \eta_{\rm e} \tag{3-4}$$

Aus Verbrauch und Drehzahl wird über das Basiskennfeld die Leistung $P_{e,Basis}$ bestimmt.

$$P_{e,Basis} = \dot{m}_{B,Basis} \cdot H_u \cdot \eta_{e,Basis}$$
(3-5)

Für einen Motor (M) mit besserem bzw. schlechterem Wirkungsgrad muss die aus der gleichen Kraftstoffmenge erbrachte Leistung demnach höher bzw. niedriger sein als die aus dem Basiskennfeld (Basis).

$$P_{e,M} = \dot{m}_{B,M} \cdot H_u \cdot \eta_{e,M} \tag{3-6}$$

Durch Gleichsetzen der Kraftstoffmassenströme aus Gleichung (3-5) und (3-6) kann ein Zusammenhang zwischen $P_{e,Basis}$ und $P_{e,M}$ hergestellt werden.

$$P_{e,M} = P_{e,Basis} \cdot \frac{\eta_{e,M}}{\eta_{e,Basis}}$$
(3-7)

Das Wirkungsgradverhältnis wird dabei als konstant angenommen und kann somit über die spezifischen Verbrauchswerte an der Volllast abgeschätzt werden.

$$b_{\rm e,Basis} = 198 \qquad [g/kWh] \tag{3-8}$$

$$b_{e,M} = -0.11 \cdot P_{max} + 222$$
 [g/kWh] (3-9)

$$b_{\rm e} = \frac{1}{\eta_{\rm e} \cdot H_{\rm u}} \tag{3-10}$$

Aus Gleichung (3-10) folgt das Wirkungsgradverhältnis ausgedrückt durch den spezifischen Verbrauch.

$$\frac{b_{\rm e,Basis}}{b_{\rm e,M}} = \frac{\eta_{\rm e,M}}{\eta_{\rm e,Basis}}$$
(3-11)

Dabei wird der Wirkungsgradkorrekturfaktor wie folgt definiert:

$$K_{\eta} := \frac{b_{e,M}}{b_{e,Basis}}$$
(3-12)

Mit diesem Zusammenhang kann die aus dem Basiskennfeld ermittelte Leistung auf die entsprechende Leistungskategorie anpasst werden.

$$P_{\rm e,M} = P_{\rm e,Basis} \cdot \frac{1}{K_{\rm \eta}} \tag{3-13}$$

Dieser einfach angenommene Zusammenhang ist in Wahrheit wesentlich komplexer und von vielen Parametern abhängig. Er erfasst aber die wesentliche Tendenz und vermindert so den Fehler, der sich bei großen Abweichungen von der Leistungskategorie des Basiskennfeldes ergeben würde.

3.1.1.4 Serienstreuung:

Auf Grund von Fertigungstoleranzen und anderen Parametern kann die Leistung von Motoren der gleichen Serie (gleicher Motor) streuen. Solche Abweichungen können bis zu ca. 5% betragen und erlauben somit eine weitere Korrekturmöglichkeit zur Anpassung der Volllastkurve an die Messwerte.

Diese Korrekturmöglichkeit wurde ausgenutzt, wenn die Messwerte nach den vorher genannten Korrekturen noch über der Volllastlinie gelegen sind.
3.1.2 Vergleich mit realem Radladerkennfeld

Um den Einfluss des verwendeten Kennfeldes bei der Leistungsbestimmung festzustellen, wurden die Messdaten eines Radladers (300kW Maximalleistung, Stufe IIIB) mit dem tatsächlichen Verbrauchskennfeld eines Radladers (295 kW Maximalleistung, Stufe IV) ausgewertet und mit den Leistungswerten aus der Basismethode verglichen. Bei der Auswertung mit dem Stufe IV Kennfeld wurde keine Wirkungsgradkorrektur vorgenommen, da die Maximalleistung ähnlich ist. In Abbildung 3-5 ist die gute Übereinstimmung bei den ermittelten Leistungswerten zu sehen. Hinsichtlich des Verhaltens von kleinen Motoren (geringere Leistungsklassen) wäre ein weiterer Vergleich sinnvoll.

Abbildung 3-5: Leistungsermittlung aus zwei unterschiedlichen Verbrauchskennfeldern

3.2 Untersuchung der Betriebsbereiche REALWORLD vs. NRTC

Als Typprüfzyklus für Maschinen ab der Abgasstufe IIIB wird unter anderem der NRTC herangezogen. Um zu vergleichen, inwieweit der NRTC die real gemessenen Betriebsbereiche abdeckt, wurde im Kennfeld ein zusammenhängender Bereich festgelegt, der ca. 90% der Realmesspunkte (% *Zyklus*) beinhaltet. Anschließend wurde in diesem Gebiet die Anzahl der NRTC Messpunkte bezogen auf die Gesamtanzahl (1238) ermittelt (% *NRTC*). Das Verhältnis dieser beiden Kennzahlen stellt einen Anteilsfaktor dar. Je kleiner der Anteilsfaktor, desto weniger wird der genutzte Bereich durch den NRTC abgedeckt.

$$NRTC_{\text{Ant.}} = \frac{\% \, NRTC}{\% \, Zyklus} \tag{3-14}$$

Nachfolgend sind ausgewählte Maschinentypen der Abgasstufe IIIB dargestellt. Die Radlader waren im Abraumbetrieb tätig und die Bagger haben Schotter umgegraben. (siehe [4])

3.2.1 Radlader (ID Nr. 3)

Einsatzgewicht	Einspritztechnologie	Aufladung	Abgastechnologie
31 000 kg	Pumpe-Düse	ATL mit LLK	DOC, DPF

Der Abbildung 3-6 ist zu entnehmen, dass der Radlader weite Bereiche des Kennfeldes ausnutzt. Damit ergibt sich ein NRTC-Anteilsfaktor von 73%, was heißt, dass der Bereich in dem 90% der Messwerte liegen, durch 66% der Messpunkte vom NRTC-Zyklus abgedeckt werden. Bei dieser Maschine lagen alle Schadstoffemissionen unter den erlaubten Grenzwerten.

Abbildung 3-6: Kennfeldnutzung Radlader (ID Nr. 3)

3.2.2 Radlader (ID Nr. 4)

Einsatzgewicht	Einspritztechnologie	Aufladung	Abgastechnologie
28 000 kg	Pumpe-Düse	ATL mit LLK	DOC, DPF

Dieser Radlader nutzt im Realbetrieb vor allem ein Gebiet bei reduzierter Motordrehzahl (optimaler Drehzahlbereich: 800 U/min – 1600 U/min, laut Hersteller) und erreicht somit nur einen NRTC Anteil von 39%. Diese Maschine überschritt den NOx Grenzwert im Realbetrieb um den Faktor 1,5.

Abbildung 3-7: Kennfeldnutzung Radlader (ID Nr. 4)

3.2.3 Bagger (ID Nr. 8)

Einsatzgewicht	Einspritztechnologie	Aufladung	Abgastechnologie
9 000 kg	Common-Rail	ATL	AGR

Der Kompaktbagger (9 to) nutzt ein sehr schmales Drehzahlband (Hydraulikkonzept). Im gekennzeichneten Bereich liegen 96% der Messwerte und 18% der NRTC Messpunkte. Das führt auf einen Anteilsfaktor von ca. 19%. Bei dieser Maschine wurden sowohl der NOx-Grenzwert (Faktor 2), als auch der Partikelgrenzwert (etwa doppelter Grenzwert) überschritten.

Abbildung 3-8: Kennfeldnutzung Bagger (ID Nr. 8)

3.2.4 Bagger (ID Nr. 11)

Einsatzgewicht	Einspritztechnologie	Aufladung	Abgastechnologie
25 000 kg	Common-Rail	ATL mit VTG und LLK	cAGR, DPF

Der Bagger (25 to Klasse) konnte alle Grenzwerte im Realeinsatz einhalten. Wie bei Baggern typisch wird nur ein kleiner Drehzahlbereich genutzt, was zur Folge hat, das der NRTC Anteilswert lediglich 21% erreicht.

Abbildung 3-9: Kennfeldnutzung Bagger (ID Nr. 11)

Für den Hersteller besteht der Zielkonflikt zwischen der Einhaltung von Emissionsgrenzwerten und einem geringen Kraftstoffverbrauch im Sinne des Kunden. Eine elektronische Motorsteuerung (Einspritzung, Ladedruck, AGR, ...) bietet dabei sehr viele Variationsmöglichkeiten, um die oben genannten Größen zu beeinflussen (vgl. [20]). Es ist davon auszugehen, dass diese Maschinen bei der Typengenehmigung die Grenzwerte einhalten konnten. Somit können folgende Aspekte aufgezeigt werden:

- Emissionen im Realeinsatz können deutlich höher sein als Grenzwerte
- NRTC Testzyklus deckt reale Zyklen nur bedingt ab (siehe Bagger)

4 Eigene Messungen

In diesem Kapitel wird die Vergleichsmessung zwischen zwei Messsystemen für die Massenstrommessung beschrieben. Weiters werden der Messaufbau und die Onboard-Messung bei zwei Traktoren erläutert und die Ergebnisse dargestellt.

4.1 Vergleichsmessung Massenstrom

Um eine mögliche Abweichung bei der Onboard Massenstrommessung festzustellen, wurde eine Referenzmessung durchgeführt. Dazu wurde ein mittels Gebläse erzeugter Luftstrom durch die in Serie angeordneten Messsysteme (Semtech-EFM und Sensyflow) geleitet.

4.1.1 Referenzmessgerät (Sensyflow P)

Hersteller: ABB

Typ: SensyflowFMT700-P

Dieses Messgerät arbeitet nach dem thermischen Messprinzip eines Heißfilmanemometers. Dabei wird ein beheizter Widerstand auf einer konstanten Übertemperatur gegenüber einem unbeheizten Fühler gehalten. Die zur Aufrechterhaltung der Übertemperatur notwendige Heizleistung ist dabei direkt abhängig von der Strömungsgeschwindigkeit und den Eigenschaften des Gases. [1]

Das Prinzip wird in [1] wie folgt beschrieben:

"Das Gas umströmt zwei temperaturempfindliche Widerstände, R_H und R_{MG} , die Teil einer elektrischen Brückenschaltung sind. Aufgrund des gewählten Widerstandsverhältnisses $R_H < R_{MG}$ wird R_H durch den Strom I_H aufgeheizt. R_{MG} nimmt die Temperatur des Gases an. Der Strom I_H wird durch eine elektronische Regelschaltung so vorgegeben, dass sich eine konstante Temperaturdifferenz zwischen dem beheizten Widerstand R_H und der Temperatur des Gases einstellt. Die im Widerstand R_H erzeugte elektrische Leistung kompensiert exakt dessen Wärmeverlust an die Strömung. Da dieser Wärmeverlust von der Zahl der Teilchen abhängt, die auf die Oberfläche des Widerstandes R_H treffen, stellt I_H ein Ma β für den Massedurchfluss dar."

Abbildung 4-1: Messprinzip Sensyflow [1]

Abbildung 4-2: Symbolbild Senyflow [1]

Der Messbereich für das verwendete DN 100 Rohr (Nennweite) ist mit 0 ... 1200 kg/h angegeben.

4.1.2 Messaufbau

Die Messung wurde am Rollenprüfstand aufgebaut, um die Datenaufzeichnung mit dem Prüfstandssystem durchführen zu können. Der Luftstrom wurde durch ein Gebläse^① aufgebracht, welches einen maximalen Massenstrom von ca. 1000 kg/h erzeugen kann. Um den Massenstrom stufenlos einstellen zu können, wurde der Gebläsemotor mit einem Frequenzumrichter angesteuert. Nach dem Gebläse wurde eine Einlaufstrecke mit einer Länge von 1m und nach dem Messgerät ^② eine Auslaufstrecke von 0,5m installiert. Im Anschluss wurde das EFM ^③ mit einem konischen Silikonschlauch an die Auslaufstrecke angeschlossen und in die freie Umgebung ausgeströmt. Der Massenstrom wurde beim EFM mit Semtech und bei Sensyflow mit der Prüfstandsmesstechnik (analoge Schnittstelle) aufgezeichnet.

Abbildung 4-3: Messaufbau Vergleichsmessung Massenstrom

4.1.3 Messablauf

Der Massenstrom wurde von 0 beginnend in 50kg/h – Schritten bis zum maximal möglichen Massenstrom (Gebläse: ca. 1050 kg/h) gesteigert. In jeder dieser Stufen wurde der Massenstrom etwa 1 min. konstant gehalten.

Für eine erste Abschätzung wurden die Messwerte an den Anzeigen der Messgeräte beobachtet und abgelesen. Da vor allem beim EFM starke Schwankungen aufgetreten sind, wurde für den Beobachtungszeitraum bei jeder Messstufe ein mittlerer Wert gebildet. Dabei wurde für das 5^(*)- Rohr eine Abweichung von etwa 10% und für das 3^(*)- Rohr eine Abweichung von etwa 10^(*)- Rohr eine Abweichung von etwa 10^(*)-

Um eine genaue Analyse durchführen zu können, wurden in einer zweiten Messung, beide Signale über der Zeit (f = 1 Hz EFM bzw. f = 2 Hz Sensyflow) aufgezeichnet. Für die Auswertung wurde bei jeder Messstufe, nach einer kurzen Einschwingzeit, ein 30 Sekunden Mittelwert gebildet. Beim 3"- EFM wurden Abweichungen in der Größenordnung wie bei der ersten Messung festgestellt.

4.1.4 Ergebnisse

Die Massenstromunterschiede der Vergleichsmessungen sind in Abbildung 4-4 grafisch dargestellt. Auffallend dabei ist, dass die Massenstromdifferenzen (zum Referenzwert Sensyflow) der zweiten Messung (5"- EFM) etwa um die Hälfte geringer sind als die der ersten Abschätzung (Messung 1). Obwohl die Ableseungenauigkeiten bei der ersten Abschätzung groß gewesen sind, waren deutliche Differenzen zwischen den beiden Messungen erkennbar. Der Grund dafür ist unklar.

Tabelle 4-1 zeigt die Differenz der gemessenen Massenströme bei den jeweils eingestellten Sollwerten.

 $\Delta \dot{m} = \dot{m}_{\text{Semtech}} - \dot{m}_{\text{Sensyflow}}$

(4-1)

	$\Delta \dot{m}$ [kg/h]									
	5" E	EFM	3" EFM							
Sollwert [kg/h]	Messung 1	Messung 2	Messung 1	Messung 2						
100	-4.3	-5.9	8.2	6.6						
200	18.0	11.0	17.6	16.6						
300	25.0	13.4	18.4	19.1						
400	34.7	18.4	21.1	21.6						
500	45.4	24.4	26.8	27.9						
600	54.0	29.1	26.7	30.6						
700	62.5	34.4								
800	77.7	39.8								
900	88.7	50.1								
1000	104.5	59.2								

Tabelle 4-1: Massenstromdifferenzen der Vergleichsmessung

Abbildung 4-4: Ergebnisse Vergleichsmessung Massenstrom

Welchen Einfluss die heißen Abgase auf die Massenstrommessung haben, konnte auf diesem Wege nicht ermittelt werden.

Die verwendeten Korrekturfaktoren sind in 3.1.1 beschrieben.

4.2 Emissionsmessung von zwei Traktoren im Realbetrieb

Um Aussagen über das tatsächliche Emissionsverhalten von Traktoren machen zu können, wurden zwei Exemplare unterschiedlicher Hersteller vermessen.

4.2.1 Messfahrzeuge

ID-Nummer		18	19
Maschinenkategorie		Traktor	Traktor
Hersteller		Hersteller H	Hersteller I
Emissonskl.		Stage IIIA	Stage IIIB
Motorkategorie		I	L
Datum der Genehmigigung		2007	2012
Einsatz-/Eigengewicht	[to]	5.3	8
Nennleistung	[kW]	87	148
Nenndrehzahl	[U/min]	2300	2100
Maximalleistung	[kW]	90	153
Drehzahl bei Maximalleistung	[U/min]		1800
Norm der Leistungsmessung		97/68/EG	97/68/EG
Zylinder	[#]	4	6
Kraftstoff		Diesel	Diesel
Hubraum	[Liter]	4.53	6.06
Aufladung		ATL mit VTG	ATI mit IIK
		und LLK	
Einspritztechnologie		Common-Rail	Common-Rail
Abgastechnologie		cAGR	SCR

Tabelle 4-2: Technische Daten der Messfahrzeuge

4.2.2 Messbetrieb

Um alle relevanten Messgrößen erfassen zu können, wurden die folgenden Messsysteme eingesetzt:

- Semtech DS (SENSORS) zur Erfassung der gasförmigen Emissionen (CO₂, CO, HC, NO, NO₂, ...)
- Micro Soot Sensor (AVL) zur Detektion der Rußemissionen
- Optische Messeinrichtung für die Motordrehzahl

Detaillierte Informationen zu den Messsystemen sind in Anschnitt 2.3 zu finden.

Die gesamte Messtechnik wird von einem Wechselstromgenerator versorgt und kann somit komplett autark betrieben werden. Das Messequipment befindet sich in einer EURO Gitterbox und wurde bei den Traktoren mittels Paletten-Gabel am Fronthubwerk befestigt. Zur Ermittlung des Abgasvolumenstroms wurde am Auspuff das EFM installiert. Bei den beiden Messfahrzeugen wurde zusätzlich die Drehzahl gemessen sowie Geschwindigkeit und Position mittels GPS aufgezeichnet.

Abbildung 4-5: Messaufbau Traktor

Abbildung 4-6: Güllefass

Um eine reale Belastung darzustellen, wurde an die Messfahrzeuge ein Güllefass (gefüllt) mit einem Fassungsvermögen von ca. 10.000 L und einem Eigengewicht von 3.000 kg angehängt. Als Fahrtroute wurde ein asphaltierter Güterweg, nahe dem landwirtschaftlichen Anwesen, ausgewählt und für das relevante Teilstück eine Fahrgeschwindigkeit von 10 km/h vorgegeben. Durch die Fahrwiderstände ergibt sich dann die Zugleistung, die vom Fahrzeug aufgebracht werden muss. Die Zapfwellenleistung (PTO) welche für den Betrieb der Güllepumpe notwendig ist, konnte bei den Messfahrten auf der Straße nicht berücksichtigt werden! Jede Messfahrt wurde zweimal durchgeführt.

Zum Zweck der Kennfeldbedatung wurde auch die Anfahrt zum Güterwege aufgezeichnet. Die Ausbringung der Gülle auf die Wiese wurde als letzte Messung durchgeführt und mit den Messdaten der anderen Zyklen verglichen.

Die Messungen wurden bei Temperaturen zwischen $+2^{\circ}$ C und $+10^{\circ}$ C Umgebungstemperatur durchgeführt.

- trocken
- nahezu Windstille

Abbildung 4-7: Streckenprofil der Traktormessfahrten [8]

4.2.3 Messdatenaufbereitung

• Zeitverschiebung

Da die gasförmigen Emissionen, Soot und Drehzahl mit verschiedenen Systemen aufgenommen werden, kann durch zeitversetztes Aktivieren der Datenaufzeichnung und durch unterschiedliche örtlichen Anordnungen der Messstellen eine Zeitverschiebung der Signale auftreten. Aus diesem Grund müssen die Zeitreihen dieser Rohmessdaten zueinander verschoben werden. Die Daten aus Semtech DS wurden dabei als Basis gewählt. Für die Anpassung der Drehzahl wurde der Massenstrom (Semtech) herangezogen. Beim Beschleunigen des Motors aus dem Leerlauf treten in beiden Signalen deutliche Anstiege auf, welche dann so zueinander verschoben werden, dass sie deckungsgleich sind. Auch markante Peaks in den Signalen werden zum Abgleich genutzt. Die Verschiebung um einen konstanten Zeitfaktor berücksichtigt allerdings die Variabilität der volumenstromabhängigen Gaslaufzeit nicht.

Abbildung 4-8: zeitkorrigierte Messsignale

Das Soot Messsignal wurde auf die gleiche Weise wie oben beschrieben zeitverschoben, wobei als Referenz jedoch das CO-Signal (Semtech) verwendet wurde. Als Alternative bei der Darstellung kann auch die zeitliche Ableitung der Signale von Vorteil sein, da hier oftmals die Peaks besser erkennbar sind.

• <u>Übersetzungsfaktor Kurbelwellendrehzahl</u>

Durch die beschränkte Zugänglichkeit zur Kurbelwelle wird die Drehzahl oft an Stellen gemessen, welche von außen gut erreichbar sind. Diese Messstellen sind gegenüber der Kurbelwelle meist mit einer Übersetzung behaftet. Um aus den Messwerten auf die korrekte Drehzahl rückrechnen zu können, muss der Übersetzungsfaktor bestimmt werden. Dies kann z.B. durch das gleichzeitige Ablesen, bei stationär laufendem Motor, am Drehzahlmesser des Fahrzeuges und am Display des Drehzahlmessgerätes oder aber durch den geometrischen Zusammenhang ermittelt werden.

4.2.4 Ergebnisse

Nachfolgend sind die Auswertungen aus den Traktormessreihen beschrieben, welche nach der gleichen Methodik wie Baumaschinen ausgewertet wurden.

Traktor (ID Nr. 18)

Die Messungen **M2** und **M3** sind die Messfahrten mit konstanter Geschwindigkeit und der oben beschriebenen Last. Der Unterschied zwischen den beiden Messfahrten ist sehr gering. Die Stickoxidemissionen (NOx) liegen dabei deutlich über dem Grenzwert (NOx + HC = 4 g/kWh), wobei die HC Emissionen wegen eines Defektes am Analysator nicht aufgenommen werden konnten. Üblicherweise liegt der HC Anteil im Bereich von 10% des Summengrenzwertes. Die NO Emissionen bilden den Großteil der NOx Emissionen. Wenn man annimmt, dass die Soot Emissionen in etwa die Hälfte der Partikelemissionen ausmachen, liegen dies somit noch deutlich unter dem Grenzwert von 0,2 g/kWh.

	Mittlere abgegebene Leistung		CO2	со	NO	NO2	NOx	FC	SOOT
		EM [g/h]	31557.0	42.2	466.9	9.0	475.8	10038.6	0.391
IVIZ	47 KVV	EM [g/kWh]	673.8	0.9	10.0	0.2	10.2	214.4	0.008

Tabelle 4-3: Ergebnisse Traktor ID Nr. 18 (Stage IIIA)

M2	47 6/6/	EM [g/h]	31072.7	44.0	459.0	8.3	467.2	9885.7	0.379
1013	47 KVV	EM [g/kWh]	674.2	1.0	10.0	0.2	10.1	214.5	0.008

Grenzwerte: NOx + HC = 4 g/kWh PM = 0.3 g/kWh

Traktor (ID Nr. 19)

Die Messfahrt **M1** beschreibt die Strecke vom Hof des Landwirts bis zur Messstrecke. Auf diesem Streckenabschnitt, mit großem Steigungsanteil, wurde keine Geschwindigkeit vorgegeben. Durch die "freie Fahrt" wurden im Motorkennfeld auch Leistungswerte im Bereich der Maximalleistung erreicht, wodurch die hohe mittlere abgegebene Leistung resultiert. Die NOx Emissionen liegen ca. um den Faktor 3 über dem Grenzwert und auch die Soot Emissionen liegen im Bereich des Partikelgrenzwertes.

Messfahrt M2 und M3 bilden den gleichen Streckenabschnitt und die gleichen Bedingungen wie bei Traktor ID Nr.18 ab, wodurch sie miteinander vergleichbar sind. Die NOx Emissionen sind ähnlich hoch wie bei der "freien Fahrt", wobei M3 etwas geringer ist als M2. Die Soot Emissionen sind verglichen mit dem Wert aus M1 sehr gering und unterschreiten den Partikelgrenzwert (Annahme: Partikel = Soot \cdot 2) deutlich.

Die Messung **M4** stellt die Ausbringung der Gülle im Realbetrieb dar. Dazu wurde die Gülle auf einer etwas abschüssigen Wiese ausgebracht, die abwechseln berg- und talwärts befahren wurde. Die Fahrgeschwindigkeit betrug dabei etwa 6 km/h und zusätzlich war die Zapfwelle (PTO), für den Betrieb der Pumpe, aktiv. Durch die geringe Steigung und die langsame Fahrgeschwindigkeit ergibt sich die niedrige mittlere abgegebene Leistung. Im Vergleich zu den vorigen Messfahrten sind die Stickoxidemissionen (g/kWh) sehr hoch.

	Mittlere abgegebene Leistung		CO2	со	NO	NO2	NOx	FC	SOOT
N/1	103 kW	EM [g/h]	69662.8	99.8	618.6	38.5	657.2	22163.7	2.691
	103 KW	EM [g/kWh]	681.4	1.0	6.1	0.4	6.4	216.8	0.026
M2		EM [g/h]	39199.3	22.2	320.3	27.7	348.0	12454.6	0.282
1012	55 KW	EM [g/kWh]	674.0	0.4	5.5	0.5	6.0	214.1	0.005
N/2		EM [g/h]	39210.8	12.1	281.0	21.0	302.0	12453.2	0.169
1015	59 KVV	EM [g/kWh]	676.3	0.2	4.8	0.4	5.2	214.8	0.003
N44	22 1/14/	EM [g/h]	17355.7	7.4	207.3	17.2	224.5	5513.1	0.090
1714	25 KVV	EM [g/kWh]	739.8	0.3	8.8	0.7	9.6	235.0	0.004

Tabelle 4-4: Ergebnisse Traktor ID Nr. 19 (Stage IIIB)

4.2.5 Fazit

Grenzwerte:

Beide Traktoren haben die NOx Grenzwerte deutlich überschritten. Das Motorenkennfeld wurde nur schlecht ausgefüllt, was auf die geringe Sollgeschwindigkeit und die Getriebestrategie (Automatikgetriebe) zurückzuführen ist. Bis auf die "freie Fahrt" mit Traktor (ID Nr. 19) wurden vor allem Bereiche im Motorenkennfeld bei niedriger Drehzahl genutzt. Die mittlere Leistung bei den Vergleichsmessungen lag im Bereich zwischen 47kW (Traktor ID Nr. 18) und 59 kW (Traktor ID Nr. 19). Die Differenz lässt sich unter anderem durch Unterschiede bei:

PM = 0.025 g/kWh

• Fahrzeugmasse (Steigungswiderstand)

NOx = 2 g/kWh

- Rollwiderstand
- Angetriebene Nebenaggregate

erklären.

4.3 Checklist

Bei den PEMS Messungen müssen neben den Messdaten noch weitere Parameter und Kennwerte der Maschine bestimmt werden, welche für die Messdatenauswertung und den Informationsgewinn aus den Daten relevant sind. Dazu wurde eine Checklist erstellt, die überblicksmäßig die wichtigsten Daten für die Recherche (Herstelleranfragen, Datenblätter), die Auswertung und den Ablauf der Messung enthält.

Ziel einer jeden Messung sollten die folgenden Ergebnisse sein:

- Emissionen bei Realbetrieb
- Typische Lastzyklen einer Maschine
- Messwerte zur Bedatung von Emissionskennfeldern

Für eine gute Kennfeldfüllung ist es wichtig, auch Drehzahl/Drehmoment Punkte anzufahren, die im Normalbetrieb nur selten oder gar nicht genutzt werden. Dies ist vor allem bei Maschinen wie Baggern oder Traktoren oft nicht trivial zu bewerkstelligen.

Mes	sprotokoll PEMS; Offroad	- Fahrzeuge	
Α	Allgemeine Angaben		
A.1	Datum der Messung:		
A.2	Messpersonal:		
A.3	(Firmen-)Name:		
A.4	Ort der Messung:		
A.5	Witterung:		
A.6	Außentemperatur:	□ < 0°C □ 0 - 10°C □ 10 - 20°C □ 20 ·	- 30°C □ > 30°C
В	Angaben zur Maschine		
B.1	Maschinentype:		
B.2	Hersteller:		
B.3	Maschinenbezeichnung:		
B.4	Betriebsstunden:		[h]
С	Angaben aus TYPEN-/ZULASSUN	NGSSCHEIN (bei Straßenzulassung)	FOTO/KOPIE
C.1	FIN [E] :		
C 2	Datum (Typen)-Genehmigung		
0.2	[A6]:		
C.3	Marke [D1]:		
C.4	Handelsbezeichnung [D3]:		
C.5	Eigengewicht [G]:		[kg]
C.6	Motortype [P5]:		
C.7	Antriebsart [P3]:	🗆 Diesel 🗆 Benzin 🗆	
C.8	Hubraum [P1]:		[ccm]
C.9	Nennleistung [P2]:		[kW]
C.10	Nenndrehzahl [P4]:		[U/min]
D	Angaben aus FZG. TYPENSCHILD) (Baumaschinen)	FOTO/KOPIE
D.1	Bezeichnung der Maschine:		
D.2	Seriennummer (FIN / PIN):		
D.3	Baujahr:		
D.4	Motorleistung:		[kW]
D.5	Gewicht der Maschine:		[kg]
E	Angaben aus MOTOR-TYPENS	CHILD (Baumaschinen / Traktoren)	FOTO/KOPIE
E.1	EG- Typengenehmigungs-		
5.2	nummer:		[] \ A /]
E.Z	Niotorieistung:		[KVV]
F	Drenzanien für Obersetzungsve	rnaithis	[]] /
F.1	n_Massenine:		[U/min]
F.Z	n_Messgerat:		[U/min]
G C 1		inonzuklan im Daalbatriah gamassan.	
0.1		hadatung (abdaelung) durchgeführt.	
G.2	Zykien für Kennield		
		Demerkungen	

Tabelle 4-5: Messprotokoll für Off-Road Messungen

Bei Maschinen mit Straßenzulassung dient vor allem der Typen- oder Zulassungsschein als Informationsquelle. Ist keines dieser Dokumente verfügbar, sind die genauen Daten den Typenschildern (Fahrzeug- und Motortypenschild) zu entnehmen. Diese Daten dienen dann der weiteren Recherche (Herstelleranfragen, Datenblätter, ...). Für die Auswertung besonders wichtig sind Angaben zu:

- Leistung (Nennleistung, Maximalleistung, Norm der Leistungsmessung)
- Drehzahl (Übersetzungsverhältnis, Nenndrehzahl, Leerlaufdrehzahl)
- Emissionsstufe bzw. Leistungsklasse (Bestimmung der Grenzwerte)

Für die Beschreibung und Dokumentation von typischen Arbeitsprozessen von Offroad-Maschinen, wurde ebenfalls ein Beschreibungsbogen angelegt. (siehe Anhang Kapitel 10.2)

4.3.1 Bestimmung der Emissionsstufe (Motorkategorie)

Die Emissionsklasse kann aus der Leistung und dem (Typen-) Genehmigungsdatum abgeleitet werden, was aber auf Grund von Ausnahmeregelungen unsicher ist.

Eine weitere Möglichkeit bietet hierbei die EG- Typengenehmigungsnummer. Diese Nummer muss bei Dieselmotoren, welcher der Richtlinie 97/68/EG (in der gültigen Fassung) entsprechen, gut sichtbar am Motor angebracht sein. [11].

Abbildung 4-9: Typengenehmigungsnummer [6]

Wie in [11] beschrieben, setzt sich die Typgenehmigungsnummer aus 5 Abschnitten zusammen, welche jeweils durch das Zeichen "*" getrennt sind.

- 1. <u>Abschnitt</u>: Länderkennzeichen des Mitgliedstaates, welcher die Genehmigung erteilt hat.
- 2. <u>Abschnitt</u>: Nummer der vorliegenden Richtlinie, gefolgt von zwei Kennbuchstaben, wobei der erste die Motorkategorie der Emissionsstufe festlegt und der zweite Auskunft über das Testverfahren gibt.
- 3. <u>Abschnitt</u>: Nummer der letzten Änderungsrichtlinie, nach der die Genehmigung erteilt wurde.
- 4. Abschnitt: vierstellige laufende Nummer der Grundgenehmigung;
- 5. Abschnitt: zweistellige laufende Nummer für den Nachtrag;

Der Buchstabe **G** (in Abbildung 4-9 fett gekennzeichnet) sagt aus, dass der Motor der Stufe II zugeordnet ist und eine Leistung zwischen 37kW und 75kW hat.

5 Modellbildung mit PHEM

In diesem Kapitel wird auf die Erstellung von durchschnittlichen Kennfeldern eingegangen. Dabei wird beschrieben, nach welcher Methodik die einzelnen Maschinen verschiedener Leistungsklassen einer Abgasstufe zu einem Summenkennfeld kombiniert wurden.

5.1 Methode zur Erstellung der Kennfelder

Bei der Kennfelderstellung mit PHEM werden die sekündlichen Messwerte einer Maschine (Drehzahl, Leistung, Emissionen) in ein Kennfeld eingerastert. Die prinzipielle Vorgehensweise für die Kennfelderstellung ist in Abbildung 5-1 aufgezeigt. Ziel dabei ist es, durchschnittliche Kennfelder für die Maschinen zu ermitteln, auf deren Grundlage verschiedene Zyklen simuliert werden können. Der größte Anteil an gemessenen Maschinen sind Bagger, deren Betriebsbereiche das Motorkennfeld nur schlecht abdecken. Für eine gute Kennfeldfüllung mit Messdaten sorgen hingegen Radlader. Derzeit sind pro Motorenkategorie häufig nur die Messdaten einer Maschine vorhanden. Aus den oben genannten Gründen wurde festgelegt, dass nur eine Differenzierung zwischen den Emissionsstufen (I, II, IIIA, IIIB) vorgenommen wird und alle Maschinen einer Emissionsstufe (egal welche Leistungsoder Maschinenkategorie) in das Summenkennfeld aufgenommen werden.

Um die Zuverlässigkeit dieser Vorgangsweise zu überprüfen, wurde versucht, identische Motorkennfeldbereiche, gemessen an verschiedenen Maschinen einer Emissionsstufe, zu vergleichen. Falls sich ähnliche Emissionsniveaus zeigen würden, wäre dies ein Indiz dafür, dass der Ansatz gültig ist.

Für die Kennfeldbereiche der Maschinen innerhalb einer Emissionsstufe konnten keine Überlappungen (Schnittmenge der nicht extrapolierten Kennfeldpunkte) gefunden werden. Dass die Annahmen aber grundsätzlich gültig sind, wird anhand der Modellvalidierung in Abschnitt 5.4 gezeigt.

Abbildung 5-1: Methodik für die Erstellung von Emissionskennfelder

Bei der Generierung von Kennfeldern aus mehreren Maschinen waren dafür spezielle Einstellungen und Normierungen notwendig, die in den nachfolgenden Punkten beschrieben werden.

5.2 Eingangsdaten und Normierung

Für die Erstellung der Summenkennfeldern ("Create Emission Map") aus mehreren Maschinen wurde PHEM im "BATCH Mode" verwendet. Folgende Eingangsdaten sind dafür notwendig:

- Vehicle-File (*.veh): Fahrzeug bzw. Motordaten
- Volllast-und Schleppkurve (*.fld)
- Zyklusdaten (*.npi): sekündliche Drehzahl-, Leistungs- und Emissionswerte

5.2.1 NPI

In den NPI-Files werden für die Kennfeldbedatung die Drehzahl-, Leistungs- und Emissionswerte vorgegeben. Um die unterschiedlichen Maschinen vergleichbar darzustellen, wurden in den NPI- Files neben Drehzahl und Leistung auch die Emissionen normiert. Des Weiteren wurden die normierten Emissionen auf den Grenzwert bezogen, um die unterschiedlichen Emissionslimits, innerhalb einer Emissionsstufe, zu berücksichtigen.

$$\dot{m}_{\rm EM,norm} = \frac{\dot{m}_{\rm EM}}{P_{\rm rated} \cdot GW}$$
(5-1)

Zu beachten ist, dass in den NPI-Files die Einheiten bei den Emissionskomponenten, trotz der Normierung und den Bezug auf den Grenzwert, nicht geändert werden dürfen, da es sonst Probleme bei der Berechnung gibt. (Die Normierung auf P_{rated} und den Grenzwert ist derzeit in PHEM nicht standardmäßig hinterlegt.)

Da in der EU Richtlinie für die **Stufe IIIA** (Motorenkategorie: H, I, J, K) und für die Motorenkategorie **P** (Stufe IIIB) nur die Summengrenzwerte für NOx + HC angegeben sind, wurde eine Verteilung wie folgt angenommen (siehe Tabelle 5-1):

- Für die **Motorkategorie P** (37 ≤ P < 56) wurde die Verteilung der Nachtbarklasse N (56 ≤ P < 75) herangezogen.
- Bei der gesamten **Stufe IIIA** wurde der gerundete Mittelwert aus Stufe II und Stufe IIIB für die Aufteilung verwendet. (10% HC, 90% NOx)

Katagoria	Nutzleistung P	Deturn *	со	нс	NOx	Partikel (PT)
Kategorie	[kW]	Datum*	[g/kWh]	[g/kWh]	[g/kWh]	[g/kWh]
Stufe I		•				
А	130 ≤ P ≤ 560	31.12.1998	5.00	1.30	9.20	0.54
В	75 ≤ P < 130	31.12.1998	5.00	1.30	9.20	0.70
С	37 ≤ P < 75	31.03.1999	6.50	1.30	9.20	0.85
Stufe II						
D	18 ≤ P < 37	31.12.2000	5.00	1.50	8.00	0.80
E	130 ≤ P ≤ 560	31.12.2001	3.50	1.00	6.00	0.20
F	75 ≤ P < 130	31.12.2002	5.00	1.00	6.00	0.30
G	37 ≤ P < 75	31.12.2003	5.00	1.30	7.00	0.40
Stufe IIIA						
н	130 ≤ P ≤ 560	31.12.2005	3.50	0.40	3.60	0.20
I	75 ≤ P < 130	31.12.2006	5.00	0.40	3.60	0.30
J	37 ≤ P < 75	31.12.2007	5.00	0.47	4.23	0.40
к	18 ≤ P < 37	31.12.2006	5.50	0.75	6.75	0.60
Stufe IIIB						
L	130 ≤ P ≤ 560	31.12.2010	3.50	0.19	2.00	0.025
Μ	75 ≤ P < 130	31.12.2011	5.00	0.19	3.30	0.025
Ν	56 ≤ P < 75	31.12.2011	5.00	0.19	3.30	0.025
Р	37 ≤ P < 56	31.12.2012	5.00	0.26	4.44	0.025
Stufe IV						
Q	130 ≤ P ≤ 560	31.12.2013	3.50	0.19	0.40	0.025
R	56 ≤ P < 130	30.09.2014	5.00	0.19	0.40	0.025

Tabelle 5-1: Aufteilung NOx/HC Summengrenzwert

5.2.2 VEH

Das Vehicle-File beinhaltet Angaben zum Fahrzeug. Für die Kennfelderstellung im "Engine Only" Mode werden nur die Motordaten benötigt (alle anderen Parameter haben keinen Einfluss). Durch den speziellen Aufbau der NPI-Files (in denen die Emissionsdaten schon durch P_{rated} und den Grenzwert dividiert wurden) muss für die Generierung der Summenkennfelder ein "Standard Vehicle" verwendet werden, bei dem Leistung und Drehzahlen normiert einzusetzen sind (siehe Abbildung 5-2). Die Trägheit (Inertia) wurde null gesetzt, weil die Leistung der Eingangsdaten aus einem stationären Motorenkennfeld berechnet wurde.

normST_II.veh - VEH Editor				_					_	_						×
📄 📔 🔚 🔏 📄 📀									_							
Mass 1	kal	Rolling	resistance facto	s	Engine				Gear sh	ift parame	eters					
Leading 0	Real	Fr O	0	Θ	Rated engine	power	1	[kW]	Heavy	Duty			Ligh	nt Duty /	Passenge	er Car
Loading U	[Kg]	Fr 1	0	[s/m]	Rated engine	speed		[mm]		Fast	Eco			Dowr	i Up	
Red. Mass Wheels 0	[kg]	Fr 2	0	[s/m]^2	Idling engine	eneed (1	[mm]	Up	0	0	[•]	A	0.18	0.3	[-]
Wheel diameter (dyn) 0	[m]	5.0	0	[0/m] 2	i dang origino	apoco e		[[p]	Down	0	0	[·]	В	0.28	0.3	Ð
Drag coefficient 0	Ы	FF 3	U	[s/m] 3	1	inertia (,	[kgm*]	Share	0	0	Ð	с	0.46	0.4	E
Cross sectional area 0	[m²]	Fr 4	0	[s/m]^4	L				i							
Cross Wind Correction						Transm	ission									
No Correction -						1	nertia 0		[kgm ²]	Tract	tion Interr	uption	0	[s]		
						C	Dere	FI (-)								
						Gear	Ratio	ЕПІСК	эпсу мар							
Auxiliaries						01	0									
ID Type	Input Fil	le				02	0									
						03	0									=
						04	0									_
						06	0									
			_			07	0									
			Pau	x normalized	0 [·]	08	0									
Retarder						10	0									_
Type None 🔻			Ratio	1 []	11	0									-
									Loss f	actor 1		нσ	iransmi	ssion Los	s Model o	only)
														ок	Ca	ncel

Abbildung 5-2: "Standard Vehicle" für die Kennfelderstellung

5.2.3 FLD

Im FLD-File ist neben der Volllastkurve (Pe_full) auch eine Schleppkurve (Pe_drag), in normierter Form, anzugeben. Um ein gleichmäßiges Raster zu erhalten und keine Emissionswerte der verschiedenen Maschinen abzuschneiden, wurde die Volllastkurve über den ganzen Drehzahlbereich 1 gesetzt. Bei der Schleppkurve wurde auf eine durchschnittliche LKW- Kurve (HBEFA) zurückgegriffen.

5.3 Erstellung der Summenkennfelder

Wie oben erwähnt erfolgt die Kennfelderstellung im BATCH Mode. Dazu werden die Volllastkurve (FLD) und das VEH-File ("Standard Vehicle") in einem GEN-File definiert und mit den Einstellungen wie in Abbildung 5-3 gekennzeichnet gespeichert. Für jede Maschine die im Summenkennfeld abgebildet werden soll, muss ein NPI-File im Reiter "Driving Cycles" vorhanden sein. Durch ausführen des Job-Files wird das Summenkennfeld gebildet und als *sum.mep abgelegt.

Abbildung 5-3: Einstellungen und Eingangsdaten im GEN Editor

Auf diese Art und Weise wurden für die Stufen II, IIIA, IIIB, IIIB-hyb die Summenkennfelder erzeugt. Da für Stufe I nur 2 Baggerkennfelder mit wenig Kennfeldabdeckung zur Verfügung standen, wurde das Summenkennfeld der Stufe II auf die Maschinen der Stufe I skaliert. Dazu wurde der von den Baggern verwendete Kennfeldbereich mit dem Kennfeld der Stufe II verglichen (Mittelwerte der Emissionen im Vergleichsbereich). Daraus wurden die Skalierungsfaktoren für HC, CO, NOx und Soot abgeleitet. In den nachfolgenden drei Tabellen sind Kenndaten der Maschinen abgebildet, welche für die Kennfelderstellung der jeweiligen Stufen verwendet wurden. Dabei blieben ein Stufe IIIB Traktor (wegen fehlendem SCR Modell) und ein Bagger (keine plausiblen Daten) unberücksichtigt.

ID-Nummer		1	6	9	13	16
Maschinenkategorie		Radlader	Bagger	Bagger	Bagger	Bagger
Hersteller		Hersteller D	Hersteller A	Hersteller D	Hersteller A	Hersteller C
Emissonskl.		Stage II				
Motorkategorie		E	D	F	G	F
Datum der Genehmigigung		2002	2006	2004	2004-2008	2006
Einsatz-/Eigengewicht	[to]	23.5	5	20	8	20
Nennleistung	[kW]	195	27.9	107	43.5	108
Nenndrehzahl	[U/min]	2000	2300	1950	2100	2100
Maximalleistung	[kW]	202				
Drehzahl bei Maximalleistung	[U/min]	1700				
Norm der Leistungsmessung		SAE J1349	k.A.	ISO 9249	k.A.	SAE J1349
Zylinder	[#]	6	4	6	4	6
Kraftstoff		Diesel	Diesel	Diesel	Diesel	Diesel
Hubraum	[Liter]	11.04	2.19	5.88	3.32	6.49
Aufladung		ATL mit LLK	-	ATL mit LLK	-	ATL mit LLK
Einspritztechnologie		Common-Rail	k.A.	k.A.	k.A.	k.A.
Abgastechnologie		cAGR	-	-	-	-

Tabelle 5-2: Maschinen für das Summenkennfeld der Stufe II

Tabelle 5-3: Maschinen	das für	Summenkenn	ifeld der	Stufe IIIA
------------------------	---------	------------	-----------	------------

ID-Nummer		2	7	17	18
Maschinenkategorie		Radlader	Bagger	Bagger	Traktor
Hersteller		Hersteller E	Hersteller A	Hersteller C	Hersteller H
Emissonskl.		Stage IIIA	Stage IIIA	Stage IIIA	Stage IIIA
Motorkategorie		Н	К	I	I
Datum der Genehmigigung		2009	2008	2009	2007
Einsatz-/Eigengewicht	[to]	30	5	20	5.3
Nennleistung	[kW]		29.5	122	87
Nenndrehzahl	[U/min]		2400	2000	2300
Maximalleistung	[kW]	234			90
Drehzahl bei Maximalleistung	[U/min]	1400-1600			
Norm der Leistungsmessung		ISO 9249	ISO 14396	ISO 9249	97/68/EG
Zylinder	[#]	6	4	4	4
Kraftstoff		Diesel	Diesel	Diesel	Diesel
Hubraum	[Liter]	12.13	2.19	5.19	4.53
Aufladung		ATL mit LLK	-	ATL mit LLK	ATL mit VTG und LLK
Einspritztechnologie		Pumpe-Düse	k.A.	Common-Rail	Common-Rail
Abgastechnologie		iAGR	-	cAGR	cAGR

ID-Nummer		3	4	5	8	10	11
Maschinenkategorie		Radlader	Radlader	Walzenzug	Bagger	Bagger	Bagger
Hersteller		Hersteller F	Hersteller E	Hersteller G	Hersteller A	Hersteller D	Hersteller D
Emissonskl.		Stage IIIB					
Motorkategorie		L	L	М	Р	Μ	L
Datum der Genehmigigung		2012	2012	2013	01.03.2012	2012	2012
Einsatz-/Eigengewicht	[to]	31	28	14.6	9	21.5	25
Nennleistung	[kW]			90	51.4	110	141
Nenndrehzahl	[U/min]			2200	2000	2000	2000
Maximalleistung	[kW]	274	245				
Drehzahl bei Maximalleistung	[U/min]	1600	1300-1400				
Norm der Leistungsmessung		ISO 9249	ISO 9249	ISO 14396	k.A.	ISO 14396	ISO 14396
Zylinder	[#]	6	6	4	4	4	6
Kraftstoff		Diesel	Diesel	Diesel	Diesel	Diesel	Diesel
Hubraum	[Liter]	12.00	12.80	3.62	3.00	4.46	6.69
Aufladung				ATL mit WG	٨٣	ATL mit VTG	ATL mit VTG
Aunadung				und LLK	AIL	und LLK	und LLK
Einspritztechnologie		Pumpe-Düse	Pumpe-Düse	Common-Rail	Common-Rail	Common-Rail	Common-Rail
Abgastechnologie		DOC, DPF	DOC, DPF	DOC	AGR	AGR, DOC	cAGR, DPF

Tabelle 5-4: Maschinen für das Summenkennfeld der Stufe IIIB

Für das Summenkennfeld IIIB-hyb wurden bis auf den Hybridbagger (ID Nr. 10) alle Maschinen aus Tabelle 5-4 verwendet.

Nach Generierung der Rohkennfelder wurden in diese noch die sekündlichen Verbrauchswerte aus dem Basiskennfeld eingefügt. Dazu wurden die Verbrauchswerte, für die Drehzahl- und Leistungsstützstellen im MEP-File, aus dem Basiskennfeld interpoliert. Da PHEM die Soot-Emissionen normalerweise nicht normiert, die Normierung aber durch die modifizierten NPI-Files erfolgt ist, wurde in den MEP-Files bei der Einheit die Endung NORM hinzugefügt.

n_norm	Pe_norm	<nox></nox>	<hc></hc>	<co></co>	SOOT	<fc></fc>
NORM	NORM	[g/h]NORM	[g/h]NORM	[g/h]NORM	[g/h] <mark>NORM</mark>	[g/h]NORM

In den folgenden Abbildungen sind für zwei unterschiedlicher Emissionsstufen die Summenkennfelder der Stickoxide dargestellt. Das Stage II Kennfeld ist grundsätzlich homogen über den ganzen Kennfeldbereich (nahe am Grenzwert). Bei der Stufe IIIB sind die Bedatungsbereiche einzelner Maschinen deutlich sichtbar (erhöhte Werte vor allem bei Maschinen mit geringer Kennfeldausnutzung). Das Kennfeld der Stufe IIIB ist wesentlich inhomogener als das der Stufe II.

Abbildung 5-4: Stage IIIB NOx Summenkennfeld

Abbildung 5-5: Stage II NOx Summenkennfeld

5.4 Validierung des Modellansatzes

Um einerseits das Modell und andererseits die Methode der Durchschnittskennfelder zu überprüfen, wurden die Messungen ausgewählter Maschinen mit dem maschinenspezifischen Kennfeld (Sim orig. KF) und dem Durschnittskennfeld (Sim sum. KF) der entsprechenden Emissionsstufe simuliert.

Abbildung 5-6: Valid. Stage II, RL #1

Abbildung 5-8: Valid. Stage IIIA, RL #2

Abbildung 5-7: Valid. Stage II, BA #9

Abbildung 5-9: Valid. Stage IIIB, RL #4

Schlussfolgerung:

- Messung und Simulation mit den maschinenspezifischen Kennfeldern stimmen gut überein.
- Abweichungen bei der Simulation mit den Durchschnittskennfeldern der jeweiligen Abgasstufe sind tolerabel und auch erklärbar.

6 Emissionsberechnung

Die Berechnung der Emissionen bzw. Emissionsfaktoren wurde mit PHEM realisiert. Dazu müssen Emissionskennfelder und Lastzyklen vorgegeben sowie Maschinendaten festgelegt werden. Der prinzipielle Ablauf ist der Abbildung 6-1 zu entnehmen.

Abbildung 6-1: Prinzipieller Ablauf bei der Emissionsberechnung

6.1 Lastzyklen

Da sich der NRTC aus typischen Einsatzprofilen verschiedener Maschinen zusammensetzt, wurden die einzelnen Segmente aus dem Zyklus extrahiert und den Maschinen zugeordnet. Daraus lassen sich 15 Zyklen für 7 verschiedene Maschinen ableiten. Weitere Zyklen stammen von der EPA, welche diese unter dem Titel "Nonregulatory Nonroad Duty Cycles" veröffentlicht hat. Hier stehen weitere 16 Zyklen, für die gleichen Maschinen wie sie im NRTC enthalten sind, zur Verfügung. Aus den eigenen Messungen (IVT) wurden ebenso Zyklen (10) für Bagger, Radlader, Walzenzug und Traktoren abgeleitet und um drei weitere Zyklen aus der Industrie (EXT) ergänzt.

Damit stehen für die Simulation insgesamt 44 Zyklen zur Verfügung, welche im Anhang (10.4) aufgelistet sind.

Um eine einheitliche Basis zu schaffen, wurden die IVT-Zyklen auf gleiche Art und Weise wie die NRTC-Zyklen normiert. Die Normierung der EPA-Daten ist ähnlich wie beim NRTC, sodass diese mit geringen Anpassungen übernommen wurden.

6.2 Maschinentypen

Die in dieser Arbeit simulierten Maschinentypen haben sich aus den vorhandenen Zyklen ergeben und sind in Tabelle 6-1 aufgelistet. Für jede Maschine wurden typische Leistungswerte definiert. Um den NRMM Bereich vollständig darzustellen, wären weitere Maschinentypen und Maschinengrößen zu definieren und abzubilden.

Maschinentyp	Leistung	Symbolbild
Radlader (RL)	 50kW, 100kW, 250kW 	(Quelle: http://www.demco-baumaschinen.de)
Raupenbagger (BA)	 120kW 50kW	(Quelle: http://www.baumaschinen-bagger.com)
Walzenzug (WA)	• 90kW	(Quelle: http://www.bomag.com)
Traktoren LW. (TR)	90kW180kW	(Quelle: http://www.schoenenberger-landmaschinen.ch)
Baggerlader (BL)	• 70kW	(Quelle: http://www.detroittraining.com)
Planierraupe (PLR)	• 140kW	(Quelle: https://www.deere.com)
Kompaktlader (KL)	• 50kW	(Quelle: https://www.deere.com)
Generator (GEN)	• 50kW	(Quelle: http://images.speedyservices.com)

Tabelle 6-1: Maschinentypen für Emissionssimulation

6.3 Simulation von Emissionsfaktoren mit PHEM

Für die in Tabelle 6-1 angeführten Maschinen (auch unterschiedliche Leistungssegmente) wurden die Emissionen, für die jeweils typischen Zyklen, mit den unterschiedlichen Emissionskennfeldern aus Kapitel 5 simuliert.

6.3.1 Eingangsdaten

Die für die Simulation benötigten Eingangsdaten und deren Formate werden in den nachfolgenden Unterpunkten beschrieben. Weiters werden die getroffenen Annahmen erläutert und die Ausführungen dargestellt.

FLD-File

Für die Simulation wird eine normierte Volllastkurve benötigt. Da die Volllastkurve sowohl für die Entnormierung der Zyklen, als auch für die Simulation gebraucht wird, wurde eine mittlere FLD je Abgasstufe (I, II, IIIA, IIIB) gebildet. Dazu wurde zuerst eine mittlere Volllastkurve für jede Maschinenkategorie erstellt und daraus wiederum eine Durchschittskurve berechnet. So wird verhindert. dass eine stark vertretene Maschinenkategorie einen dominierenden Einfluss auf die Volllastlinie hat.

Da in der Abgasstufe I nur 2 Bagger vorhanden waren, wurde hier die mittlere Volllastkurve aus Stufe II verwendet.

Weil die gemittelten Volllastkurven der einzelnen Emissionsstufen nur geringe Abweichungen aufweisen, kann für eine einfachere Modellhandhabung in PHEM eine "Standard Volllastkurve" verwendet werden.

VEH-File

Im "Engine Only" Mode brauchen nur Angaben zum Motor beachtet werden, da die Leistungs-/Drehzahlwerte bereits durch die Zyklen (*.npi) vorgegeben werden. Die restlichen Parameter im Vehicle-File sind für die Berechnung ohne Einfluss.

Im Eingabefeld für "Rated engine power" wurde die Maximalleistung der Maschine in kW eingefügt. Die Nenndrehzahl und die Leerlaufdrehzahl wurden, ungeachtet der Einheiten, in normierter Form, also 0 und 1, gesetzt.

Die Trägheit des Motors (Schwungmasse, Kurbeltrieb) wurde, ähnlich wie bei LKW, mit $0,013 \cdot$ "Rated engine power" abgeschätzt.

100kW.veh - VEH	Editor																x
Mass Loading Red. Mass Wheels Wheel diameter (dyn) Drag coefficient Cross sectional area		(kg) (kg) (kg) (m) (:] (m ²)	Rolling Fr 0 Fr 1 Fr 2 Fr 3 Fr 4	resistance factors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	[·] [s/m] [s/m]^2 [s/m]^3 [s/m]^4	Engine Rated engine p Rated engine s Idling engine s I	ower peed peed nertia	100 1 D 1.3	[kW] [rpm] [rpm] [kgm ²]	Gearsh Heavy Up Down Share	Ift parame Duty Fast 0 0 0	Eco 0 0 0	(-) (-) (-)	Ligh A B C	t Duty / Down 0.18 0.28 0.46	Passenge Up 0.3 0.3 0.4	r Car F F F
Cross Wind Correction	n •						Transn	nission nertia 0 Ratio	Efficie	[kgm ²] ency Map	Trac	ion Interr	uption	0	[5]		*
Auxiliaries ID Type	1	Input File	1				A 01 02 03 04 05 06	0 0 0 0 0 0									E
Retarder Type None	•			Paux Ratio (nomalized	0 (·)	07 08 09 10 11	0 0 0 0 0 0 0 0									
										Loss f	actor 1		(-) (T	ransmis	sion Los	s Model o	nly)

Abbildung 6-2: "Vehicle File" für die Simulation eines 100kW Motors

In den *.MEP-Files sind die Emissionskennfelder als Funktion von Leistung und Drehzahl abgelegt. Für die Simulation wurden die Summenkennfelder der Stufe I, II, IIIA, IIIB und das Summenkennfeld der Stufe IIIB ohne Hybridbagger (IIIB-hyb) herangezogen. Die verschiedenen Kennfelder sind in 5.3 näher beschrieben.

NPI-File

In den*.NPI-Files werden die Zyklen (zeitliche Abfolge von Leistungs- und Drehzahlpaaren) für die "Engine Only" Simulation vorgegeben. Um aus den NRTC normierten Zyklen (% Drehzahl, % Drehmoment) die Eingangsdaten für PHEM zu erhalten, wurden diese mit der Volllastkurve der jeweiligen Abgasstufe umgerechnet. Dazu wurde die Volllastkurve (PHEM normiert) mit den fiktiven Drehzahlwerten $n_{idle} = 1$ und $n_{rated} = 2$ entnormiert und die Drehmomentkurve ermittelt. Mit der Drehmomentkurve konnten so die prozentualen NRTC Werte denormiert werden. Folgend wurde für diese Punkte die Leistung bestimmt und mit den oben genannten Drehzahlen (n_{idle} , n_{rated}) wieder in die PHEM-Normierung rückgerechnet.

GEN-File

Für die Simulation einer Maschine werden die Eingangsdaten in einer *.GEN-Datei (Job-File) abgespeichert. Nach ausführen des Job-Files berechnet PHEM die Emissionen und den Verbrauch aus den Datensätzen. Bei nur einem Zyklus kann dieser im Eingabefeld "Driving Cycle/Measurement Data" definiert werden (STANDARD Mode). Will man aber mit ein und derselben Maschine mehrere Zyklen simulieren muss in den BATCH Mode gewechselt werden, wo dann die Zyklen im Reiter "Driving Cycles" anzugeben sind. Dabei bleibt der im GEN-File angegebene Zyklus unberücksichtigt. Einstellungen und benötigte Eingangsdaten sind in Abbildung 6-3 gekennzeichnet.

GEN GEN Editor	
General General Mode:	: Engine Only Create Emission Map Engine Analysis Heavy Duty Diesel EURO 8
VEH MAP FLD Transient Correction TRS	
Cold Start (not supported in this version) ICE Start / Stop	Transmission Loss Mode: Model
Driving Cycle / Measurement Data	

Abbildung 6-3: Einstellungen im GEN-File für die Emissionssimulation

6.3.2 Ausgabedaten

Die Ausgabe von Emissionen und Verbrauch erfolgt für jeden Zyklus einerseits zeitaufgelöst (*.sta) und andererseits über den Zyklus gemittelt (*.erg). Dabei sind die Emissionen, durch die spezielle Normierung, noch auf die Abgasgrenzwerte normiert und müssen für die korrekte Darstellung noch mit dem Grenzwert der jeweiligen Motorenkategorie multipliziert werden. Ebenso ist es erforderlich die Verbrauchswerte, welche aus dem Basiskennfeld stammen, auf die Leistungskategorie umzurechnen. Dieser Umrechnung erfolgt ebenso wie bei der Leistungsberechnung mit dem Faktor K_n (siehe Seite 24).

$$FC = FC_{\text{Basis}} \cdot K_{\eta} \tag{6-1}$$

In Tabelle 6-2 sind auszugsweise die Daten für einen Stufe II Bagger mit 50 kW dargestellt. Darin sind für die sechs unterschiedlichen Zyklen jeweils die mittlere normierte Drehzahl (n_norm) und Leistung (Pe_norm), die mittlere normierte positive (Pe_pos) und negative (Pe_neg) Leistung und stellvertretend für die Abgase die mittleren NOx-Emissionen abgebildet.

Tabelle 6-2: Auszug aus	der Ergebnisdatei ((*.erg)
-------------------------	---------------------	---------

Nr	Input File	Cycle	time	Prated	n_norm	Pe_norm	Pe_pos	Pe_neg	NOx
[-]	[-]	[-]	[s]	[kW]	[-]	[-]	[-]	[-]	[g/h]
1	BA_50kW_II.gen	BA_EPA_01.npi	1199	50	0.79	0.69	0.69	0	29.61
2	BA_50kW_II.gen	BA_IVT_01.npi	1181	50	0.98	0.63	0.63	0	24.01
3	BA_50kW_II.gen	BA_IVT_02.npi	338	50	0.81	0.77	0.77	0	38.10
4	BA_50kW_II.gen	BA_IVT_03.npi	1051	50	0.76	0.71	0.71	0	35.10
5	BA_50kW_II.gen	BA_NRTC_01.npi	20	50	0.68	0.19	0.19	0	10.36
6	BA_50kW_II.gen	BA_NRTC_02.npi	15	50	0.79	0.40	0.40	0	17.28

Auf den Grenzwert bezogen

Beispiel:

Der NOx Grenzwert beträgt für eine 50 kW Stufe II Maschine 7 g/kWh. Die mittlere positive Zyklusleistung in kW erhält man aus dem Produkt $P_{rated} \cdot P_{e_pos}$, woraus sich dann die spezifischen Emissionen in g/kWh berechnen lassen.

Abbildung 6-4: Beispiel für die Umrechnung der Ausgabedaten

7 Analyse der Ergebnisse

In diesem Abschnitt werden die Simulationsergebnisse dargestellt und besondere Auffälligkeiten kurz erläutert.

7.1 Vergleich von Stickoxiden je Maschinenkategorie und Emissionsstufen

Für den Vergleich wurden je Maschinenkategorie alle verfügbaren Zyklen gerechnet und daraus der Mittelwert gebildet. Die Toleranzbalken in den folgenden Diagrammen stellen den minimalen bzw. den maximalen Zykluswert dar. Die Auswertung erfolgte für jede Emissionsstufe mit den jeweiligen durchschnittlichen Kennfeldern. Die Aussagen bei Stufe I sind mit einer gewissen Unsicherheit behaftet, da diese Stufe, wie in Abschnitt 5.3 beschrieben, aus der Stufe II abgeleitet wurde.

7.1.1 Radlader

Die Real-World (RW) Emissionen gehen, über die einzelnen Emissionsstufen betrachtet, weniger zurück als die Grenzwerte (Abbildung 7-1). Stufe I liegt bei den berechneten Emissionen unter dem Grenzwert, wobei hier die Aussage, wegen der oben beschriebenen Thematik, als unsicher zu betrachten ist.

Die Streuung bei den Zyklen liegt für Radlader im Bereich von $\pm 10\%$ und ist damit (was den arbeitsspezifischen Wert angeht) relativ gering. Eine Ausnahme bildet die Stufe IIIA, wo die obere Abweichung ca. 30% beträgt.

Abbildung 7-1: NOx Emissionen bei unterschiedlichen Emissionsstufen für Radlader

7.1.2 Bagger

Der Emissionsrückgang mit sinkendem Grenzwert ist ähnlich wie bei den Radladern. Bis auf Stufe I liegen alle Emissionswerte im Bereich oder etwas über dem Grenzwert. Auffallend ist, dass vor allem die Streuung bei Stufe IIIB (ca. ±45%) deutlich zugenommen hat. Das hat damit zu tun, dass hier eine Maschine enthalten ist, welche sowohl für die Kennfeldbedatung verwendet wurde als auch einen typischen Baggerzyklus (BA_IVT_01) darstellt und in etwa den doppelten Grenzwert an Stickoxiden ausgestoßen hat.

Abbildung 7-2: NOx Emissionen bei unterschiedlichen Emissionsstufen für Bagger

7.1.3 Traktor

Bei den Traktoren sinken die simulierten RW-Emissionen ebenfalls mit den Grenzwerten und liegen im Bereich von Bagger und Radlader. Auffallend ist, dass bei Stufe IIIA die Zykluswerte sehr stark (+80%) streuen. Die Ursache dafür liegt vor allem am Zusammenwirken von Kennfeldbedatung und Zyklus, wie sie ausführlich bei den Baggern beschrieben wurde.

Die erhöhte Zyklusstreuung bei allen Stufen liegt hauptsächlich daran, dass die Zyklen sehr unterschiedliche Arbeitsprozesse abbilden. Die ungleichen Lastprofile sind durchaus realistisch, da der Traktor als Universalmaschinen sehr vielfältig eingesetzt wird.

Abbildung 7-3: NOx Emissionen bei unterschiedlichen Emissionsstufen für Traktoren

7.1.4 Baggerlader

Bei den Baggerladern geht der Grenzwert von Stufe I nach Stufe IIIA von 9,2 g/kWh auf 4,23 g/kWh zurück und die RW-Emissionen bleiben nahezu bei 7,5 g/kWh konstant. Auch bei der Stufe IIIB liegt der Realwert um den Faktor 1,7 über den erlaubten Grenzwerten. Die Streuung liegt im Bereich von $\pm 15\%$ und damit etwas höher als bei den Radladern. Einen Ausreißer bei der Streuung stellt abermals die Stufe IIIA dar. Hier liegt sie im Bereich von 30%.

Die Ursache für die hohen Emissionswerte bei Stufe IIIA und IIIB ist vor allem damit begründet, dass die Summenkennfelder dieser Stufen sehr inhomogen sind und der Baggerlader sehr differente Zyklen aufweist. Vereinfacht gesagt kann er als Bagger oder als Radlader verwendet werden. Damit bewegt sich der Baggerlader in Kennfeldbereichen, die einerseits für Radlader und andererseits für Bagger typisch sind. Diese Bereiche werden in den Summenkennfeldern durch ebendiese Maschinen abgedeckt und die Emissionen daraus können, wie in 3.2 erläutert, in Teilbereichen des Kennfeldes teils erheblich über den Grenzwerten liegen.

Abbildung 7-4: NOx Emissionen bei unterschiedlichen Emissionsstufen für Baggerlader

7.1.5 Planierraupe

Das Emissionsniveau und der Rückgang mit strenger werdender Gesetzgebung sind ähnlich wie beim Radlader zu beobachten. Wie auch bei den anderen Maschinen zu sehen, liegt die Stufe IIIA über dem Grenzwert. Die größte Streuung zwischen den Zyklen liegt bei ca. 10% und ist damit sehr gering.

Abbildung 7-5: NOx Emissionen bei unterschiedlichen Emissionsstufen für Planierraupen

7.1.6 Kompaktlader

Beim Kompaktlader geht der Grenzwert von 9,2 g/kWh (Stufe I) auf etwa 4,3 g/kWh (Stufe IIIA bzw. IIIB) zurück, wobei RW- Emissionen aus der Simulation im Bereich zwischen 6,5 g/kWh und 7,5 g/kWh eher konstant bleiben. Dieses Verhalten tritt ein, weil der genutzte Kennfeldbereich bei Stufe IIIA und Stufe IIIB erhöhte Emissionen aufweist.

Die Zyklenstreuung ist bei den Stufen I – IIIA in etwa $\pm 15\%$ und bei der Stufe IIIB ca. 35%.

Abbildung 7-6: NOx Emissionen bei unterschiedlichen Emissionsstufen für Kompaktlader

7.1.7 Generator

Bei den Generatoren ist auffallend, dass mit sinkenden Grenzwerten die simulierten Realemissionen ansteigen und die Zyklusschwankungen ebenfalls größer werden. Die Schwankungen liegen bei den Stufen IIIA und IIIB in etwa bei $\pm 50\%$.

Generatoren laufen die meiste Zeit mit annähernd konstanter Drehzahl bei schwankender Last. Die Emissionskennfelder der Stufe IIIA und der Stufe IIIB weisen, im Gegensatz zu den anderen Kennfeldern, in diesen Drehzahlbereichen deutlich erhöhte Werte auf, was die hohen Emissionswerte erklärt.

Abbildung 7-7: NOx Emissionen bei unterschiedlichen Emissionsstufen für Generatoren

7.2 Vergleich von Rußemissionen je Maschinenkategorie und Emissionsstufe

Der Vergleich von Rußemissionen mit den Partikelgrenzwerten ist kritisch zu betrachten, da sich Partikel aus einer Menge von festen und darauf gelösten flüssigen Stoffen zusammensetzen und Soot lediglich eine Teilmenge davon ist.

Bei Motoren ohne DPF ist der Sootanteil 50% bis 75% von PM. Bei Motoren ohne Abgasnachbehandlung ist daher die Partikelmasse um den Faktor 1,5 bis 2 höher. [26]

Grundsätzlich kann gesagt werden, dass die Rußemissionen bei allen Maschinenkategorien mit strenger werdender Gesetzgebung (niedrigere Grenzwerten) auch rückläufig sind.

7.2.1 Radlader

Stufe II und IIIB bewegen sich nahe am Grenzwert, was unter Berücksichtigung vom Partikel/Soot Verhältnis zu einer Überschreitung bei den Partikelemissionen führt. Die Streuung der Zyklen ist bei der Stufe IIIB, mit +200% nach oben, am höchsten. Bei der Stufe IIIB-hyb sind bis auf den Walzenzug (schmales Drehzahlband bei mittlerer Drehzahl) und einen Bagger (Kennfeldeinfluss nur bei einer Drehzahl um 1 herum) alle Maschinen mit einem Partikelfilter ausgerüstet. Dadurch ergeben sich für diese Stufe, in Kombination mit dem Wirkbereich der Radladerzyklen, sehr geringe Rußemissionen und auch Streuungen.

Abbildung 7-8: NOx Emissionen bei unterschiedlichen Emissionsstufen für Radlader

7.2.2 Bagger

Die berechneten Rußemissionen liegen bei den Stufen I – IIIA deutlich unter dem Grenzwert und bei der Stufe IIIB bzw. IIIB-hyb über dem Grenzwert. Das liegt an der Tatsache, dass der Kennfeldbereich, wo die Baggerzyklen hauptsächlich arbeiten, mit Messdaten von Baggern bedatet wurde und diese Maschinen zum Teil sehr hohe Rußemissionen hatten.

Abbildung 7-9: NOx Emissionen bei unterschiedlichen Emissionsstufen für Bagger

7.2.3 Traktor

Das Emissionsniveau ist ähnlich wie bei Radladern, wobei die Streuung der Zyklen der Stufe II (und damit auch für Stufe I) sehr hoch sind. Die große Streuung ist auf das inhomogenen Emissionskennfeld und die unterschiedlichen Zyklusbereiche zurückzuführen.

Abbildung 7-10: NOx Emissionen bei unterschiedlichen Emissionsstufen für Traktoren

7.2.4 Baggerlader

Durch die Variabilität der Zyklen und das inhomogen Rußkennfeld der Stufe I bzw. II sind hier die Schwankungen mit ca. $\pm 50\%$ am größten. Die erhöhten Werte bei Stufe IIIB und IIIB-hyb lassen sich durch die Baggerbereiche (siehe Bagger) im Zyklus erklären.

Abbildung 7-11: NOx Emissionen bei unterschiedlichen Emissionsstufen für Baggerlader

7.2.5 Planierraupe

Auffallend ist die geringe Streuung der Zyklen aller Emissionsstufen. Dieses Verhalten war auch bei den Stickoxidemissionen zu beobachten. Die geringe Zyklusschwankung ergibt sich durch die ähnlichen Zyklen (EPA, NRTC), die für die Simulation verwendet wurden.

Abbildung 7-12: NOx Emissionen bei unterschiedlichen Emissionsstufen für Planierraupe
7.2.6 Kompaktlader

Die Zyklen beim Kompaktlader sind ähnlich wie die beim Baggerlader, wodurch sich ein ähnliches Emissions- und Streuungsverhalten ergibt.

Abbildung 7-13: NOx Emissionen bei unterschiedlichen Emissionsstufen für Kompaktlader

7.2.7 Generator

Da Generatoren prinzipbedingt bei annähernd konstanter Drehzahl betrieben werden – was sich auch in den Zyklen wiederspiegelt – und die Rußkennfelder im Bereich zwischen 80% - 100% normierter Drehzahl (Bereich der simulierten Zyklen) sehr gleichmäßig sind, ist die Streuung gering. Das erhöhte Emissionsniveau der Stufe IIIB und IIIB-hyb ergibt sich durch den ähnlichen Nutzungsbereich wie der Bagger und der damit verbundenen Bedatungsthematik (siehe Bagger).

Abbildung 7-14: NOx Emissionen bei unterschiedlichen Emissionsstufen für Generatoren

7.3 Vergleich der Zyklen je Maschinenkategorie anhand der Stickoxidemissionen und der mittleren Zyklusleistung

In dieser Auswertung werden zum einen die Leistungsunterschiede (mittlere positive Leistung) bei den Zyklen einer Maschinenkategorie betrachtet, zum anderen werden die Stickoxidemissionen je Emissionsstufe und Zyklus gegenübergestellt. An dieser Stelle sei erwähnt, dass die Leistungsunterschiede auch an die "Zyklusdefinition" gekoppelt sind. Betrachtet man beispielsweise für einen Radlader nur einen typischen, sich zyklisch wiederholenden Arbeitsablauf, dann wird die mittlere Leistung sicher höher sein, als wenn sich auch die "Stehzeiten" im Zyklus niederschlagen. Die Zeitanteile für zwei unterschiedliche Zyklen sind in Abbildung 7-15 und Abbildung 7-16 dargestellt.

Abbildung 7-15: Histogramm RL_EPA_02

Abbildung 7-16: Histogramm RL_NRTC_01

Die mittleren positiven Leistungen $P_{e,pos}$ (entspricht der über den Zyklus abgegebenen Arbeit bezogen auf die Zykluszeit) der einzelnen Maschinenkategorien sind in Abbildung 7-17 dargelegt. Dabei kennzeichnen die Säulen den Durchschnittswert der Zyklen und die Fehlerbalken bilden den Grösst- bzw. Kleinstwert dieser ab. Die höchste Durchschnittsleistung haben dabei Bagger und Traktor, die geringste Baggerlader und Generator. Die größte Streuung von $P_{e,pos}$ tritt ebenfalls bei Bagger- und Traktorzyklen auf.

Abbildung 7-17: Mittlere Zyklusleistung für unterschiedlichen Maschinenkategorien

Aus den Tabelle 7-1 und Tabelle 7-3 ist abzulesen, dass die NOx Emissionen aller Zyklen durchwegs mit den Abgasstufen kontinuierlich abnehmen. Bei diesen Maschinentypen (Radlader und Planierraupe) decken die Zyklen einen weiten Kennfeldbereich ab, wodurch sich lokale Einflüsse vom Summenkennfeld weniger stark auf das Zyklusergebnis auswirken.

Tabelle 7-1: NOx absolut Radlader

	Stickoxide ABS 250kW Radlader														
Mittl. Pe_pos	0.30	0.34	0.40	0.43	0.31	0.44	0.60	0.62	0.54	0.38	0.35	0.43	0.41		
Stufo	RL_EPA_01	RL_EPA_02	RL_EPA_03	RL_EPA_04	RL_EXT_01	RL_EXT_02	RL_EXT_03	RL_IVT_01	RL_IVT_02	RL_IVT_03	RL_IVT_04	RL_NRTC_01	RL_NRTC_02		
Stute	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]		
I	517	571	656	686	542	737	905	890	878	673	603	698	680		
11	462	510	586	612	484	659	809	795	784	601	539	623	608		
IIIA	383	412	479	509	488	547	666	636	687	523	492	507	499		
IIIB	176	199	230	247	196	221	288	350	270	207	223	238	236		
IIIB-hyb	174	190	219	239	191	216	284	339	262	195	221	228	228		

Bei den anderen Maschinen (Bagger, Traktor, Baggerlader, Kompaktlader, Generator) ist diese Abnahme mit der strenger werdenden Gesetzgebung nicht mehr so eindeutig zu beobachten. Bei einigen Zyklen dieser Maschinenkategorien bleibt das Emissionsniveau in etwa gleich oder wird in Extremfällen sogar schlechter. Das hat damit zu tun, dass manche Zyklen dieser Maschinen nur in eng begrenzten Kennfeldbereichen arbeiten. Da vor allem bei den Kennfeldern der Stufe IIIA und IIIB das Emissionslevel lokal sehr unterschiedlich ist, ergeben sich diese Unregelmäßigkeiten.

Tabelle 7-2: NOx absolut Bagger

S	م ماديرميام												
Stickoxide ABSOLUT 120kW Bagger													
littl. Pe_pos 0.68 0.62 0.78 0.72 0.20 0													
A_EPA_01	BA_IVT_01	BA_IVT_02	BA_IVT_03	BA_NRTC_01	BA_NRTC_02								
[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]								
477	387	614	566	167	279								
426	346	549	505	149	249								
242	241	462	431	129	189								
301	382	198	211	132	215								
200	430	176	203	136	274								
,	0.68 A_EPA_01 [g/h] 477 426 242 301 200	BALE BALIVT_01 [g/h] [g/h] 426 346 242 241 301 382 200 430	O.68 O.62 O.78 A_EPA_01 BA_IVT_01 BA_IVT_02 [g/h] [g/h] [g/h] 477 387 614 426 346 549 242 241 462 301 382 198 200 430 176	Original Construction Operation of the construction of the constru	O.68 O.62 O.78 O.72 O.20 A EPA 01 BA IVT_01 BA IVT_02 BA IVT_03 BA NRTC_01 [g/h] [g/h] [g/h] [g/h] [g/h] 477 387 614 566 167 426 346 549 505 149 242 241 462 431 129 301 382 198 211 132 200 430 176 203 136								

Tabelle 7-3: NOx absolut Planierraupe

Stickoxide ABSOLUT 140kW Planierraupe												
Mittl. Pe_pos	0.55	0.55	0.44									
	PLR_EPA_01	PLR_NRTC_01	PLR_NRTC_02									
Stufe	[g/h]	[g/h]	[g/h]									
I	510	513	406									
11	456	459	363									
IIIA	366	416	343									
IIIB	148	147	148									
IIIB-hyb	139	134	142									

Auffallend beim Generator ist, dass die Zyklen allesamt sehr niederlastig sind und die Emissionen bei den EPA Zyklen in der Stufe IIIB stark zunehmen (Baggerbedatung).

Tabelle 7-4: NOx absolut Traktor

Tabelle 7-5: NOx absolut Generator

Sti	ckoxide A	BSOLUT 90	kW Trakto	or	Stickoxide ABSOLUT 50kW Generator									
/littl. Pe_pos	0.78	0.79	0.14	0.59	Mittl. Pe_pos	0.18 0.18		0.20	0.24	0.18	0.35			
	TR_EPA_02	TR_IVT_01	TR_IVT_02	TR_NRTC_01		GEN_EPA_01	GEN_EPA_02	GEN_EPA_03	GEN_EPA_04	GEN_NRTC_01	GEN_NRTC_02			
tufe	[g/h]	[g/h]	[g/h]	[g/h]	Stufe	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]			
	414	502	107	299	I	72	72	77	84	76	128			
I	370	448	95	267	11	75	75	81	88	79	133			
IIA	219	268	115	216	IIIA	61	62	62	68	90	133			
IIB	230	193	90	203	IIIB	122	124	124	135	66	92			
IIB-hyb	158	181	90	212	IIIB-hyb	125	127	127	137	64	82			

Beim Baggerlader und Kompaktlader sticht jeweils ein Zyklus heraus, bei dem die Stickoxidemissionen annähernd gleich bleiben.

	Stickoxide ABSOLUT 70kW Baggerlader														
Mittl. Pe_pos 0.20 0.21 0.25 0.30 0.14															
	BL_EPA_01	BL_NRTC_01	BL_NRTC_02	BL_NRTC_03	BL_NRTC_04										
Stufe	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]										
_	113	106	128	132	84										
П	118	111	133	137	87										
IIIA	102	93	149	120	96										
IIIB	75	90	80	126	67										
IIIB-hvh	71	93	72	126	67										

Tabelle 7-7: NOx absolut Kompaktlade

	Stickoxide ABSOLUT 50kW Kompaktlader														
Mittl. Pe_pos 0.29 0.18 0.38 0.31 0.33															
	KL_EPA_01	KL_EPA_02	KL_EPA_03	KL_EPA_04	KL_NRTC_01	KL_NRTC_02									
Stufe	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]	[g/h]									
I	102	71	135	103	115	118									
11	107	74	141	108	120	123									
IIIA	100	70	137	116	107	126									
IIIB	93	83	100	92	122	95									
IIIB-hvh	85	80	91	85	116	89									

7.4 Spezifische Emissionsfaktoren aus EPA- und NRTC- Zyklen

Ziel der Auswertung: Vergleich der spezifischen Emissionsniveaus verschiedener Maschinentypen und Maschinengrößen untereinander.

Für diese Auswertung wurden die EPA und NRTC Zyklen getrennt betrachtet. Wenn bei einer Maschinenkategorie mehrere Zyklen vorhanden waren, wurde ein Mittelwert gebildet. Bei Maschinen mit mehreren Leistungsstufen ist zu erkennen, dass sich die spezifischen Emissionen oft nicht mit der Leistungsstufe ändern. Ursache dafür ist der gleichbleibende Emissionsgrenzwert bei den genannten Leistungsstufen. Die Emissionswerte der Stufe I sind, wie schon erwähnt, mit einer gewissen Unsicherheit behaftet, da die Summenkennfelder aus der Stufe II abgeleitet wurden.

Stickoxidemissionen

In den zwei folgenden Tabellen sind die simulierten Stickoxidemissionen für die EPA bzw. NRTC Zyklen abgebildet.

	Mittelwert EPA-Zyklen NOX [g/kWh]														
		Radlader			Dagger		Iraktor	Baggerlader	Planierraupe	Kompaktlader	Generator				
	50kW	100kW	250kW	50kW	120kW	90kW	180kW	70kW	140kW	50kW	50kW				
Stufe I	6.78	6.78	6.78	5.80	5.80	5.94	5.94	8.03	6.69	7.32	7.64				
Stufe II	7.07	6.06	6.06	6.04	5.18	5.30	5.30	8.36	5.97	7.63	7.96				
Stufe IIIA	5.74	4.89	4.89	1.89 3.49 2.97			3.14	7.06	4.76	7.43	6.43				
Stufe IIIB	5.09	3.78	2.29	4.94	3.67	3.28	1.99	5.21	1.90	6.68	12.69				
Stufe IIIB-hyb	4.92	3.66	2.22	3.29	2.44	2.25	1.36	1.78	6.24	12.96					

Tabelle 7-8: Mittlere Stickoxidemissionen aus den EPA- Zyklen

Tabelle 7-9: Mittlere Stickoxidemissionen aus den NRTC- Zyklen

	Mittelwert NRTC-Zyklen NOX [g/kWh]														
		Radlader			bagger	- -	Iraktor	Baggerlader	Planierraupe	Kompaktlader	Generator				
	50kW	100kW	250kW	50kW	120kW	90kW	180kW	70kW	140kW	50kW	50kW				
Stufe I	6.70	6.70	6.70	6.52	6.52	5.71	5.71	7.42	6.72	6.96	7.89				
Stufe II	6.99	5.99	5.99	6.80	5.83	5.10	5.10	7.73	6.00	7.26	8.23				
Stufe IIIA	5.66 4.81 4.81			5.57 4.74		4.08	4.08	7.47	5.49	6.87	8.77				
Stufe IIIB	4.93	3.66	2.22	6.78	5.04	3.79	2.30	5.69	2.12	6.35	6.22				
Stufe IIIB-hyb	4.74	3.53	2.14	7.74	5.75	3.97	2.40	5.63	1.99	6.00	5.85				

Der Tabelle 7-10 ist zu entnehmen, dass die Unterschiede zwischen den EPA- und NRTC-Zyklen beim Radlader am geringsten sind. Die größten Differenzen treten beim Generator auf. Gut zu erkennen ist auch das Zusammenwirken von Kennfeld und Zyklus. Während beim Radlader der Unterschied zwischen Stufe IIIB und IIIB-hyb keine wesentliche Rolle spielt, wirkt sich dieser bei Bagger und Traktor erheblich auf das Ergebnis aus.

						Delta	a N	OX [g	/k	Wh] (EP.	A-NR1	ΓC)	/NRT(С							
				Radlader				202200	Dagger			Territor	ITAKLUT		Baggerlader Planierraupe Kompaktlader						Generator	
	ш)	50kW	1	00kW	2	50kW	ш)	i0kW	1	20kW	g	90kW	1	80kW	7	'0kW	14	40kW	5	0kW	5	50kW
Stufe I		1%		1%		1%		-11%		-11%		4%		4%		8%		0%		5%		-3%
Stufe II		1%		1%		1%		-11%		-11%		4%		4%		8%		0%		5%		-3%
Stufe IIIA		2%		2%		2%		-37%		-37%		-23%		-23%		-5%		-13%		8%		-27%
Stufe IIIB		3%		3%		3%		-27%		-27%		-13%		-13%		-9%		-11%		5%		104%
Stufe IIIB-hyb		4%		4%		4%		-58%		-58%		-43%		-43%		-13%		-10%		4%		122%

Tabelle 7-10: Abweichungen bei den Stickoxiden zwischen EPA und NRTC

Rußemissionen

Die zwei folgenden Tabellen enthalten die simulierten Rußemissionen für die EPA bzw. NRTC Zyklen. Ähnlich wie bei den Stickoxidemissionen sind die Auswirkungen vom verwendeten Summenkennfeld (Stufe IIIB bzw. IIIB-hyb) zu erkennen. Die Rußemissionen der Stufe IIIB-hyb sind durchwegs niedriger, da der stark emittierende Hybridbagger nicht im Kennfeld enthalten ist.

	Mittelwert EPA-Zyklen SOOT [g/kWh]														
		Radlader		Bagger			ILAKIOL	Baggerlader	Planierraupe	Kompaktlader	Generator				
	50kW	100kW	250kW	50kW	120kW	90kW	180kW	70kW	140kW	50kW	50kW				
Stufe I	0.43	0.36	0.27	0.14	0.11	0.12	0.09	0.47	0.23	0.40	0.30				
Stufe II	0.33	0.25	0.16	0.11	0.08	0.08	0.06	0.36	0.13	0.31	0.23				
Stufe IIIA	0.13	0.10	0.06	0.07	0.06	0.07	0.04	0.10	0.06	0.11	0.11				
Stufe IIIB	0.03	0.03	0.03	0.11	0.11	0.08	0.08	0.08	0.03	0.10	0.09				
Stufe IIIB-hyb	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.03	0.00	0.05	0.08				

Tabelle 7-11: Mittlere Rußemissionen aus den EPA- Zyklen

Mittelwert NRTC-Zyklen SOOT [g/kWh]											
	Radlader				Daggel	T	Iraktor	Baggerlader	Planierraupe	Kompaktlader	Generator
	50kW	100kW	250kW	50kW	120kW	90kW	180kW	70kW	140kW	50kW	50kW
Stufe I	0.40	0.33	0.26	0.18	0.15	0.12	0.10	0.44	0.22	0.42	0.28
Stufe II	0.31	0.23	0.15	0.14	0.10	0.09	0.06	0.34	0.13	0.32	0.21
Stufe IIIA	0.12	0.09	0.06	0.08 0.06		0.06	0.04	0.10	0.05	0.11	0.09
Stufe IIIB	0.03	0.03	0.03	0.15	0.15	0.09	0.09	0.07	0.05	0.07	0.09
Stufe IIIB-hyb	0.01	0.01	0.01	0.08	0.08	0.01	0.01	0.03	0.01	0.04	0.05

Tabelle 7-12: Mittlere Rußemissionen aus den NRTC- Zyklen

Wie in Tabelle 7-13 ersichtlich, treten die größten Abweichungen bei den Baggerzyklen auf. Markant ist auch die große Streuung bei der Stufe IIIB-hyb. Hier waren alle Maschinen bis auf den Walzenzug und einen Bagger (sehr schmales Drehzahlband im Bereich der Nenndrehzahl) mit einem DPF ausgerüstet. Der Bagger weist im Vergleich zu den anderen Maschinen sehr hohe Rußemissionen auf. Entfallen dabei Drehzahlwerte aus dem Zyklus genau auf diesen schmalen Bereich, können die Emissionen erheblich höher sein, als die bei leicht veränderter Drehzahl.

	Tabelle 7-13: Abweichungen	bei den Rußemissionen	zwischen EPA und NRTC
--	----------------------------	-----------------------	-----------------------

Delta SOOT [g/kWh] (EPA-NRTC)/NRTC																						
	Radlader			Bagger		Traktor		Baggerlader		Planierraupe		Kompaktlader		Generator								
	50	kW	100)kW	250	0kW	50	kW	120	0kW	90	kW	180	0kW	70	kW	140	0kW	50	kW	50k	٧W
Stufe I		7%		7%		7%		24%		24%		-2%		-2%		7%		2%		-4%		8%
Stufe II		7%		7%		7%		-24%		24%		-2%		-2%		7%		2%		-4%		8%
Stufe IIIA		9%		9%		9%		-5%		-5%		9%		9%		1%		23%		-5%		14%
Stufe IIIB		24%		24%		24%		27%		27%		-8%		-8%		19%		52%		<mark>2</mark> 9%		-1%
Stufe IIIB-hyb		11%		11%		11%		-80%		80%		54%		-54%		5%		45%		<mark>39</mark> %		80%

Grundsätzlich kann gesagt werden, dass die Erstellung der Summenkennfelder mit PHEM gut funktioniert. Dabei ist zu beachten, dass die Datenaufbereitung im Vorfeld einen deutlichen Aufwand bedeutet und durch die manuelle Bearbeitung der Daten auch ein gewisses Fehlerpotential in sich birgt.

Die Messdaten aus den PEMS Messungen bilden die Grundlage für die Erstellung der Kennfelder. Für die Recherche ist es wichtig, dass möglichst detaillierte Informationen der Maschine zur Verfügung stehen. Hierzu soll die erstellte Checklist einen positiven Beitrag leisten. Für Maschinen, die im Normalfall nur ein schmales Drehzahlband abdecken (z.B. Bagger) sollte bei den zukünftigen Messungen der Versuch unternommen werden, Drehzahlund Lastpunkt im ganzen Kennfeld zu generieren. Dass diese Aufgabe oft nicht trivial zu lösen ist, haben die Traktormessungen gezeigt.

Die Leistungsberechnung aus dem Euro III LKW Verbrauchskennfeld mit den derzeitigen Korrekturen bieten einen guten Ansatz, welcher im Vergleich mit einem realen Verbrauchskennfeld ein gutes Ergebnis geliefert hat. Dieser Vergleich wurde mit einer Maschine aus dem oberen Leistungssegment (300kW) durchgeführt. Für Motoren aus dem unteren Leistungssegment wäre eine weitere Überprüfung durchaus sinnvoll.

Die Datenanalyse von Stufe IIIB Maschinen hat gezeigt, dass die Stickoxid- und Rußemissionen im Realbetrieb bei einigen Maschinen deutlich über dem Grenzwert liegen. Im Gegensatz zu älteren Dieselmotoren können moderne Aggregate durch die große Anzahl an Freiheitsgraden bei den Motorparametern (CR-Einspritzung, AGR, Ladedruck, ...) sehr selektiv optimiert werden. Dadurch ist es möglich, in den realen Betriebsbereichen der Maschine den Fokus auf den Verbrauch zu legen, wobei die Emissionen eine untergeordnete Rolle spielen. In den Kennfeldbereichen, in denen sich eine Maschine nur selten aufhält, stehen dann niedrige Emissionen für die Einhaltung der Typprüfzyklen im Vordergrund. So wird einerseits die Gesetzgebung eingehalten und andererseits ein geringer Verbrauch – im Sinne des Kunden – erreicht. Deshalb können die realen Emissionen oftmals viel höher als die gesetzlich vorgeschriebenen Grenzwerte sein.

In dieser Arbeit wurde bei der Erstellung von Summenkennfeldern (II, IIIA, IIIB) keine Gewichtung nach Maschinentypen vorgenommen, was aber für zukünftige Anwendungen abzuklären wäre. Für die Stufe IV konnte kein Kennfeld erstellt werden, da hier nur eine Baggermessung zur Verfügung stand. Unbefriedigend ist auch die Datenlage der Stufe I, da hier derzeit nur zwei Baggermessungen (geringe Kennfeldausfüllung) vorhanden sind und diese Stufe deshalb von Stufe II abgeleitet werden musste. Natürlich wären weitere Messungen, vor allem für Maschinenkategorien, welche einen großen Anteil an den Gesamtemissionen ausmachen, optimal. Eine Überlegung dabei wäre, die Summenkennfelder nicht nur nach Abgasstufen zu differenzieren, sondern eine weitere Unterteilung (Maschinenkategorien, Abgasnachbehandlung, Leistungsstufen, ...) vorzunehmen.

Bisher wurden Radlader, Bagger, Traktoren und ein Walzenzug gemessen. Diese Maschinen fließen einerseits in die Kennfelderstellung ein und liefern andererseits reale Lastzyklen für die jeweilige Maschinenkategorie. Die Lastzyklen für die anderen Maschinen basieren auf Daten der EPA und aus dem NRTC. Die EPA- und NRTC- Zyklen wurden um die Jahrtausendwende auf Basis von Messungen erstellt. Dabei ist zu hinterfragen, ob diese Lastzyklen auch für moderne Maschinen noch adäquat anwendbar sind. Durch die Entwicklung neuen Hydraulikkonzepten bei Baggern, von den Einbau von leistungsverzweigten Getrieben bei Traktoren, die Hybridisierung in vielen Bereichen des Fahrzeugsektors - um nur einige Beispiele zu nennen - wird es immer schwieriger, typische Lastzyklen für solche Maschinen zu definieren.

Wie auch die Kennfelderstellung ist die Simulation von verschiedenen Lastzyklen mit PHEM gut zu bewerkstelligen. Das Simulationsergebnis ist wegen der speziellen Normierung auf den Grenzwert bezogen und muss (in der derzeitigen Modellversion) für eine endgültige Aussage noch umgerechnet werden.

Die Analyse der Lastzyklen hat gezeigt, dass die Unterschiede bei der mittleren abgegebenen Leistung zwischen den Zyklen teilweise hoch sind. Es sei angemerkt, dass bei den Zyklen zu unterscheiden ist, ob diese einen durchschnittlichen "Tageszyklus" oder einen typischen Arbeitsprozess (graben, planieren, fahren, …) einer Maschine abbilden. Die Emissionsanalyse hat aufgezeigt, dass sich Kennfeldeinflüsse (z.B. lokal hohe/niedrige Emissionen) je nach Maschinenzyklus mehr oder weniger stark auf das Ergebnis auswirken.

Zusammenfassend kann gesagt werden, dass man mit der ausgearbeiteten Methode im Stande ist Emissionen und Verbrauch für unterschiedliche Maschinen, Emissionsstufen und Lastzyklen berechnen zu können. Um die Genauigkeit des Modells zu erhöhen, sind aus meiner Sicht weitere Messungen notwendig. Dadurch könnten neben den Emissionsdaten zur Kennfeldbedatung auch weitere Erkenntnisse über die Lastzyklen einzelner Maschinenkategorien gewonnen werden.

9 Verzeichnisse

9.1 Literatur

- [1] ABB (Hrsg.): Sensyflow FMT700-P Thermischer Massen-Durchflussmesser. ULR https://library.e.abb.com/public/e9317e57573489c7c1257d9c0047d521/10_14_684_ DE_E.pdf - Abrufdatum 11.04.2016
- [2] AVL: Photoacustic measurement principle. URL https://www.avl.com/-/mssplus-avlmicro-soot-sensor - Abrufdatum: 11.04.2016
- [3] Blassnegger J.: PEMS, On-Board Messtechnik. In: Laborübung Motor und Umwelt. Skriptum, Technische Universität Graz, 2015
- [4] Blassnegger J., Hausberger S.: Onboard Emissionsmessung an Baumaschinen unterschiedlicher Emissionsstufen im realen Betrieb - Projektteil II. Erstellt im Auftrag vom Lebensministerium. Bericht Nr.: I-13/14/JBlass EM 2013/24/679 vom 02.10.2014
- [5] Caterpillar: Kettendozer D7E, URL http://s7d2.scene7.com/is/content/Caterpillar/C827440 – Abrufdatum: 11.04.2016
- [6] CECE (Committee for European Construction Equipment): Ein kurzer Leitfaden zur Identifikation nicht konformer Baumaschinen. URL http://www.sigmafederation.be/files/cece/CECE_Konformitat-Radlader.pdf -Abrufdatum: 11.04.2016
- [7] Eilts P.: Optische Partikelmesstechnik. URL https://www.tubraunschweig.de/ivb/forschung/ausstattung/partikelmessgeraete/optische -Abrufdatum: 11.04.2016
- [8] Ernst Basler + Partner AG: Automatische Höhenprofilberechnung Version 2.0. URL http://geo.ebp.ch/gelaendeprofil/ Abrufdatum: 11.04.2016
- [9] Europäische Union: Richtlinie 2000/25/EG des europäischen Parlaments und des Rates über Maßnahmen zur Bekämpfung der Emission gasförmiger Schadstoffe und luftverunreinigender Partikel aus Motoren, die für den Antrieb von land- und forstwirtschaftlichen Zugmaschinen bestimmt sind, und zur Änderung der Richtlinie 74/150/EWG. ABI. L 173 vom 12.07.2000
- [10] Europäische Union: Richtlinie 2004/26/EG des europäischen Parlaments und des Rates zur Änderung der Richtlinie 97/68/EG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maßnahmen zur Bekämpfung der Emission von gasförmigen Schadstoffen und luftverunreinigenden Partikeln aus Verbrennungsmotoren für mobile Maschinen und Geräte. ABl. Nr. L 225 vom 25.06.2004

- [11] Europäische Union: Richtlinie 97/68/EG des europäischen Parlaments und des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maßnahmen zur Bekämpfung der Emission von gasförmigen Schadstoffen und luftverunreinigenden Partikeln aus Verbrennungsmotoren für mobile Maschinen und Geräte. ABl. Nr. L 59 vom 27.02.1998
- [12] Europäische Union: Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten über die Motorleistung von Kraftfahrzeugen (80/1269/EWG). Abl. Nr. L 375/46 vom 31.12.1980
- [13] Expo21xx (Hrsg.): SEMTECH-DS On Board In-Use Emissions Analyzer. URL http://www.expo21xx.com/sensor/16607_st2_sensor_chemical/default.htm Abrufdatum: 11.04.2016
- [14] Grote K. H. (Hrsg.), Feldhusen J.: Dubbel Taschenbuch für den Maschinenbau. 24.
 Auflage, Berlin/Heidelberg: Springer Vieweg, 2014. ISBN 978-3-642-38890-3
- [15] Hausberger S., Rexeis M., Luz R.: PHEM User Guide for Version 11. Technische Universität Graz, 2012
- [16] Hausberger S., Schwingshackl M.: Update der Emissionsprognose Verkehr Österreich bis 2030. Erstellt im Auftrag des Klima- und Energiefonds. Bericht Nr. Inst-03/11/ Haus Em 09/10-679 vom 28.03.2011
- [17] Helms H., Heidt C.: Erarbeitung eines Konzepts zur Minderung der Umweltbelastung aus NRMM (non road mobile machinery) unter Berücksichtigung aktueller Emissionsfaktoren und Emissionsverminderungsoptionen für den Bestand. Umweltbundesamt (Hrsg.): Dessau-Roßlau, 2015 - Texte 24/2014
- [18] Helms H., Lambrecht U., Knörr W.: Aktualisierung des Modells TREMOD Mobile Machinery (TREMOD-MM). Umweltbundesamt (Hrsg.): Dessau-Roßlau, 2010 -Texte 28/2010
- [19] ISO 9249:2007-11: Earth-moving machinery Engine testcode Net power. Berlin: Beuth, 2007
- [20] Kunze G., Göhring H., Jacob K.: Baumaschinen Erdbau und Tagebaumaschinen. Scheffler M. (Hrsg.), Wiesbaden: Vieweg, 2002 - ISBN 3-528-06628-8
- [21] Lampel H.: Was sagen die Leistungsdaten eines Traktormotors aus? In: Landwirtschaftliches Tagebuch 2007, S. 59 - 65, 2007
- [22] Merker G. P., Teichmann R. (Hrsg.): Grundlagen Verbrennungsmotoren -Funktionsweise, Simulation, Messtechnik. 7. Auflage, Wiesbaden, Springer Vieweg, 2014. - ISBN 978-3-658-03195-4
- [23] Mieth, S.: Leistungskollektive zur Bewertung von Antriebslösungen.- 4. Fachtagung Baumaschinentechnik 2009, Dresden, 2009
- [24] Notter B., Schmied M.: Energieverbrauch und Schadstoffemissionen des Non-road-Sektors - Studie f
 ür die Jahre 1980-2050. Bundesamt f
 ür Umwelt (BAFU), Bern, 2015

- [25] Paulweber M., Lebert K.: Mess- und Prüfstandstechnik Antriebstrangentwicklung, Hybridisierung, Elektrifizierung. In der Reihe: List H. (Hrsg.): Der Fahrzeugantrieb, Wiesbaden: Springer Vieweg, 2014 - ISBN 978-3-658-04453-4
- [26] Rexeis M.: Ascertainment of Real World Emissions of Heavy Duty Vehicles. Dissertation, Technische Universität Graz, Institut für Verbrennungskraftmaschinen und Thermodynamik, 2009
- [27] Schwingshackl M., Dippold M., Rexeis M., Hausberger S.: Straßenverkehrsemissionen und Emissionen sonstiger mobiler Quellen Österreichs für die Jahre 1990 bis 2014 (OLI2015). Erstellt im Auftrag der Umweltbundesamt Gmbh. Bericht Nr. Inst 48/15 SchwiEm 13/2015-679 vom 23.12.2015
- [28] Sensors, Inc.: On-Vehicle Diesel Emission Analyzer Semtech-DS, Document 9510-086, Revision 1.14 - User Manual
- [29] Sensors, Inc.: Vehicle Exhaust Flow Meter Semtech EFM. Document 9510-085, Revision 1.4 - User Manual
- [30] Steven H., Kleinebrahm M.: Bestimmung von Nutzfahrzeug-Emissionsfaktoren. In: Bundesanstalt für Straßenwesen (Hrsg.): Berichte der Bundesanstalt für Straßenwesen, Fahrzeugtechnik Heft F 58: Bremerhaven, Wirtschaftsverlage NW, 2006. - ISBN 3-86509-454-6
- [31] U.S. EPA (Environmental Protection Agency): Draft Regulatory Impact Analysis: Control of Emissions from Nonroad Diesel Engines. EPA 420-R-03-008, 2003 -Technical Report

9.2 Abbildungen

Abbildung 1-1: NOx Emissionen des Off-Road Sektors für das Jahr 2014	1
Abbildung 1-2: PM10 Emissionen des Off-Road Sektors für das Jahr 2014	1
Abbildung 2-1: Abgas- Emissionsstufen für Motoren über 130 kW	4
Abbildung 2-2: Non Road Transient Cycle (NRTC)	8
Abbildung 2-3: Bestimmung von n _{LO} und n _{HI} aus der Volllastkurve	9
Abbildung 2-4: Schnittdarstellung Durchflussrohr Semtech EFM [29]	11
Abbildung 2-5: Semtech DS [13]	11
Abbildung 2-6: Semtech EFM Messrohr	11
Abbildung 2-7: Prinzipskizze Flammenionisationsdetektor (FID) [25]	12
Abbildung 2-8: NDIR Analysator [22]	13
Abbildung 2-9: photoakustisches Messprinzip [7]	13
Abbildung 2-10: Funktionsweise von PHEM [15]	. 14
Abbildung 2-11: Unterschiedliche Definitionen vom Nennpunkt	. 16
Abbildung 3-1: Durchschnittliches LKW Verbrauchskennfeld	. 19
Abbildung 3-2: Überprüfung der Messpunkte durch Volllastkurve	20
Abbildung 3-3: Leistungsangaben auf Basis unterschiedlicher Normen [5]	22
Abbildung 3-4: Zusammenhang zwischen Pmax und be, min für unterschiedliche Motoren	ı 23
Abbildung 3-5: Leistungsermittlung aus zwei unterschiedlichen Verbrauchskennfeldern	25
Abbildung 3-6: Kennfeldnutzung Radlader (ID Nr. 3)	26
Abbildung 3-7: Kennfeldnutzung Radlader (ID Nr. 4)	27
Abbildung 3-8: Kennfeldnutzung Bagger (ID Nr. 8)	28
Abbildung 3-9: Kennfeldnutzung Bagger (ID Nr. 11)	28
Abbildung 4-1: Messprinzip Sensyflow [1]	30
Abbildung 4-2: Symbolbild Senyflow [1]	30
Abbildung 4-3: Messaufbau Vergleichsmessung Massenstrom	. 31
Abbildung 4-4: Ergebnisse Vergleichsmessung Massenstrom	32
Abbildung 4-5: Messaufbau Traktor	. 34
Abbildung 4-6: Güllefass	. 34
Abbildung 4-7: Streckenprofil der Traktormessfahrten [8]	. 34
Abbildung 4-8: zeitkorrigierte Messsignale	35
Abbildung 4-9: Typengenehmigungsnummer [6]	. 39
Abbildung 5-1: Methodik für die Erstellung von Emissionskennfelder	40
Abbildung 5-2: "Standard Vehicle" für die Kennfelderstellung	42
Abbildung 5-3: Einstellungen und Eingangsdaten im GEN Editor	43

Abbildung 5-4: Stage IIIB NOx Summenkennfeld	46
Abbildung 5-5: Stage II NOx Summenkennfeld	46
Abbildung 5-6: Valid. Stage II, RL #1	47
Abbildung 5-7: Valid. Stage II, BA #9	47
Abbildung 5-8: Valid. Stage IIIA, RL #2	47
Abbildung 5-9: Valid. Stage IIIB, RL #4	47
Abbildung 6-1: Prinzipieller Ablauf bei der Emissionsberechnung	48
Abbildung 6-2: "Vehicle File" für die Simulation eines 100kW Motors	50
Abbildung 6-3: Einstellungen im GEN-File für die Emissionssimulation	51
Abbildung 6-4: Beispiel für die Umrechnung der Ausgabedaten	52
Abbildung 7-1: NOx Emissionen bei unterschiedlichen Emissionsstufen für Radlader	53
Abbildung 7-2: NOx Emissionen bei unterschiedlichen Emissionsstufen für Bagger	54
Abbildung 7-3: NOx Emissionen bei unterschiedlichen Emissionsstufen für Traktoren	54
Abbildung 7-4: NOx Emissionen bei unterschiedlichen Emissionsstufen für Baggerlader	55
Abbildung 7-5: NOx Emissionen bei unterschiedlichen Emissionsstufen für Planierraupen.	56
Abbildung 7-6: NOx Emissionen bei unterschiedlichen Emissionsstufen für Kompaktlader	. 56
Abbildung 7-7: NOx Emissionen bei unterschiedlichen Emissionsstufen für Generatoren	57
Abbildung 7-8: NOx Emissionen bei unterschiedlichen Emissionsstufen für Radlader	58
Abbildung 7-9: NOx Emissionen bei unterschiedlichen Emissionsstufen für Bagger	59
Abbildung 7-10: NOx Emissionen bei unterschiedlichen Emissionsstufen für Traktoren	59
Abbildung 7-11: NOx Emissionen bei unterschiedlichen Emissionsstufen für Baggerlader .	60
Abbildung 7-12: NOx Emissionen bei unterschiedlichen Emissionsstufen für Planierraupe.	60
Abbildung 7-13: NOx Emissionen bei unterschiedlichen Emissionsstufen für Kompaktlade	er61
Abbildung 7-14: NOx Emissionen bei unterschiedlichen Emissionsstufen für Generatoren .	61
Abbildung 7-15: Histogramm RL_EPA_02	62
Abbildung 7-16: Histogramm RL_NRTC_01	62
Abbildung 7-17: Mittlere Zyklusleistung für unterschiedlichen Maschinenkategorien	62
Abbildung 10-1: NOx Durchschnittskennfeld Stufe I	79
Abbildung 10-2: NOx Durchschnittskennfeld Stufe II	80
Abbildung 10-3: NOx Durchschnittskennfeld Stufe IIIA	80
Abbildung 10-4: NOx Durchschnittskennfeld Stufe IIIB	81
Abbildung 10-5: NOx Durchschnittskennfeld Stufe IIIB-hyb	81
Abbildung 10-6: SOOT Durchschnittskennfeld Stufe I	82
Abbildung 10-7: SOOT Durchschnittskennfeld Stufe II	82
Abbildung 10-8: SOOT Durchschnittskennfeld Stufe IIIA	83
Abbildung 10-9: SOOT Durchschnittskennfeld Stufe IIIB	83

Abbildung 10-10: SOOT Durchschnittskennfeld Stufe IIIB-hyb	. 84
Abbildung 10-11: Normierter Zyklus RL_NRTC_01	. 85
Abbildung 10-12: Normierter Zyklus RL_NRTC_02	. 85
Abbildung 10-13: Normierter Zyklus RL_EPA_01	. 86
Abbildung 10-14: Normierter Zyklus RL_EPA_02	. 86
Abbildung 10-15: Normierter Zyklus RL_EPA_03	. 86
Abbildung 10-16: Normierter Zyklus RL_EPA_04	. 87
Abbildung 10-17: Normierter Zyklus RL_IVT_01	. 87
Abbildung 10-18: Normierter Zyklus RL_IVT_02	. 87
Abbildung 10-19: Normierter Zyklus RL_IVT_03	. 88
Abbildung 10-20: Normierter Zyklus RL_IVT_04	. 88
Abbildung 10-21: Normierter Zyklus RL_EXT_01	. 88
Abbildung 10-22: Normierter Zyklus RL_EXT_02	. 89
Abbildung 10-23: Normierter Zyklus RL_EXT_03	. 89
Abbildung 10-24: Normierter Zyklus BA_NRTC_01	. 90
Abbildung 10-25: Normierter Zyklus BA_NRTC_02	. 90
Abbildung 10-26: Normierter Zyklus BA_EPA_01	. 91
Abbildung 10-27: Normierter Zyklus BA_IVT_01	.91
Abbildung 10-28: Normierter Zyklus BA_IVT_02	.91
Abbildung 10-29: Normierter Zyklus BA_IVT_03	. 92
Abbildung 10-30: Normierter Zyklus WA_IVT_01	. 92
Abbildung 10-31: Normierter Zyklus TR_NRTC_01	. 93
Abbildung 10-32: Normierter Zyklus TR_EPA_01	. 93
Abbildung 10-33: Normierter Zyklus TR_IVT_01	. 94
Abbildung 10-34: Normierter Zyklus TR_IVT_02	. 94
Abbildung 10-35: Normierter Zyklus BL_NRTC_01	. 95
Abbildung 10-36: Normierter Zyklus BL_NRTC_02	. 95
Abbildung 10-37: Normierter Zyklus BL_NRTC_03	. 96
Abbildung 10-38: Normierter Zyklus BL_NRTC_04	. 96
Abbildung 10-39: Normierter Zyklus BL_EPA_01	.96
Abbildung 10-40: Normierter Zyklus PLR_NRTC_01	. 97
Abbildung 10-41: Normierter Zyklus PLR_NRTC_02	. 97
Abbildung 10-42: Normierter Zyklus PLR_EPA_01	. 98
Abbildung 10-43: Normierter Zyklus KL_NRTC_01	. 98
Abbildung 10-44: Normierter Zyklus KL_NRTC_02	. 99
Abbildung 10-45: Normierter Zyklus KL_EPA_01	. 99

Abbildung 10-46: Normierter Zyklus KL_EPA_02	
Abbildung 10-47: Normierter Zyklus KL_EPA_03	
Abbildung 10-48: Normierter Zyklus KL_EPA_04	100
Abbildung 10-49: Normierter Zyklus GEN_NRTC_01	
Abbildung 10-50: Normierter Zyklus GEN_NRTC_02	
Abbildung 10-51: Normierter Zyklus GEN_EPA_01	
Abbildung 10-52: Normierter Zyklus GEN_EPA_02	
Abbildung 10-53: Normierter Zyklus GEN_EPA_03	
Abbildung 10-54: Normierter Zyklus GEN_EPA_04	

9.3 Tabellen

Tabelle 2-1: Off-Road Maschinen aus dem Modell GEORG [16]	3
Tabelle 2-2: Grenzwerte f f ü r NRMM [10], [11]	5
Tabelle 2-3: Prüfphasen 8 – Stufentest [11]	6
Tabelle 2-4: Zeitsegmente der Maschinenanwendungen im NRTC [31]	7
Tabelle 2-5: PEMS Messgeräte	10
Tabelle 2-6: Leistungsnormen im Vergleich [21]	16
Tabelle 2-7: Leistungs- und Drehzahldefinitionen	17
Tabelle 3-1: Übersicht gemessener Maschinen	
Tabelle 3-2: Beispiel für Messdaten	
Tabelle 4-1: Massenstromdifferenzen der Vergleichsmessung	
Tabelle 4-2: Technische Daten der Messfahrzeuge	
Tabelle 4-3: Ergebnisse Traktor ID Nr. 18 (Stage IIIA)	
Tabelle 4-4: Ergebnisse Traktor ID Nr. 19 (Stage IIIB)	
Tabelle 4-5: Messprotokoll für Off-Road Messungen	38
Tabelle 5-1: Aufteilung NOx/HC Summengrenzwert	
Tabelle 5-2: Maschinen für das Summenkennfeld der Stufe II	44
Tabelle 5-3: Maschinen das für Summenkennfeld der Stufe IIIA	44
Tabelle 5-4: Maschinen für das Summenkennfeld der Stufe IIIB	45
Tabelle 6-1: Maschinentypen für Emissionssimulation	49
Tabelle 6-2: Auszug aus der Ergebnisdatei (*.erg)	52
Tabelle 7-1: NOx absolut Radlader	63
Tabelle 7-2: NOx absolut Bagger	63
Tabelle 7-3: NOx absolut Planierraupe	63
Tabelle 7-4: NOx absolut Traktor	63
Tabelle 7-5: NOx absolut Generator	63
Tabelle 7-6: NOx absolut Baggerlader	63
Tabelle 7-7: NOx absolut Kompaktlader	63
Tabelle 7-8: Mittlere Stickoxidemissionen aus den EPA- Zyklen	64
Tabelle 7-9: Mittlere Stickoxidemissionen aus den NRTC- Zyklen	64
Tabelle 7-10: Abweichungen bei den Stickoxiden zwischen EPA und NRTC	65
Tabelle 7-11: Mittlere Rußemissionen aus den EPA- Zyklen	65
Tabelle 7-12: Mittlere Rußemissionen aus den NRTC- Zyklen	66
Tabelle 7-13: Abweichungen bei den Rußemissionen zwischen EPA und NRTC	66
Tabelle 10-1: Übersicht Maschinendaten	77

Tabelle 10-2: Übersicht Maschinendaten Fortsetzung	77
Tabelle 10-3: Beschreibungsbogen Arbeitszyklen	78
Tabelle 10-4: Zyklusbeschreibung Radlader	85
Tabelle 10-5: Zyklusbeschreibung Bagger	90
Tabelle 10-6: Zyklusbeschreibung Walzenzug	
Tabelle 10-7: Zyklusbeschreibung Traktoren	93
Tabelle 10-8: Zyklusbeschreibung Baggerlader	95
Tabelle 10-9: Zyklusbeschreibung Planierraupe	97
Tabelle 10-10: Zyklusbeschreibung Kompaktlader	
Tabelle 10-11: Zyklusbeschreibung Generator	101

10 Anhang

10.1 Maschinendaten

ID-Nummer		1	2	3	4	5	6	7	8	9	10
Maschinenkategorie		Radlader	Radlader	Radlader	Radlader	Walzenzug	Bagger	Bagger	Bagger	Bagger	Bagger
Hersteller		Hersteller D	Hersteller E	Hersteller F	Hersteller E	Hersteller G	Hersteller A	Hersteller A	Hersteller A	Hersteller D	Hersteller D
Emissonskl.		Stage II	Stage IIIA	Stage IIIB	Stage IIIB	Stage IIIB	Stage II	Stage IIIA	Stage IIIB	Stage II	Stage IIIB
Motorkategorie		E	Н	L	L	М	D	К	Р	F	М
Datum der Genehmigigung		2002	2009	2012	2012	2013	2006	2008	01.03.2012	2004	2012
Einsatz-/Eigengewicht	[to]	23.5	30	31	28	14.6	5	5	9	20	21.5
Nennleistung	[kW]	195				90	27.9	29.5	51.4	107	110
Nenndrehzahl	[U/min]	2000				2200	2300	2400	2000	1950	2000
Maximalleistung	[kW]	202	234	274	245						
Drehzahl bei Maximalleistung	[U/min]	1700	1400-1600	1600	1300-1400						
Norm der Leistungsmessung		SAE J1349	ISO 9249	ISO 9249	ISO 9249	ISO 14396	k.A.	ISO 14396	k.A.	ISO 9249	ISO 14396
Zylinder	[#]	6	6	6	6	4	4	4	4	6	4
Kraftstoff		Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel
Hubraum	[Liter]	11.04	12.13	12.00	12.80	3.62	2.19	2.19	3.00	5.88	4.46
Aufladung		ATL mit LLK	ATL mit LLK	ATL mit LLK	ATL mit LLK	ATL mit WG und LLK	-	-	ATL	ATL mit LLK	ATL mit VTG und LLK
Einspritztechnologie		Common-Rail	Pumpe-Düse	Pumpe-Düse	Pumpe-Düse	Common-Rail	k.A.	k.A.	Common-Rail	k.A.	Common-Rail
Abgastechnologie		cAGR	iAGR	DOC, DPF	DOC, DPF	DOC	-	-	AGR	-	AGR, DOC

Tabelle 10-1: Übersicht Maschinendaten

Tabelle 10-2: Übersicht Maschinendaten Fortsetzung

ID-Nummer		11	12	13	14	15	16	17	18	19	20
Maschinenkategorie		Bagger	Bagger	Bagger	Bagger	Bagger	Bagger	Bagger	Traktor	Traktor	Bagger
Hersteller		Hersteller D	Hersteller A	Hersteller A	Hersteller A	Hersteller B	Hersteller C	Hersteller C	Hersteller H	Hersteller I	Hersteller J
Emissonskl.		Stage IIIB	Stage I	Stage II	Stage IIIA	Stage I	Stage II	Stage IIIA	Stage IIIA	Stage IIIB	Stage IV
Motorkategorie		L	С	G	J	В	F	I	I	L	Q
Datum der Genehmigigung		2012	09.08.2002	2004-2008	10.02.2009	2001	2006	2009	2007	2012	2013 - dato
Einsatz-/Eigengewicht	[to]	25	8	8	8	20	20	20	5.3	8	48
Nennleistung	[kW]	141	49.3	43.5	53.6	99	108	122	87	148	271
Nenndrehzahl	[U/min]	2000	2300	2100	2200	2000	2100	2000	2300	2100	1850
Maximalleistung	[kW]								90	153	
Drehzahl bei Maximalleistung	[U/min]									1800	
Norm der Leistungsmessung		ISO 14396	k.A.	k.A.	k.A.	ISO 9249	SAE J1349	ISO 9249	97/68/EG	97/68/EG	ISO 14396
Zylinder	[#]	6	4	4	4	4	6	4	4	6	6
Kraftstoff		Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel
Hubraum	[Liter]	6.69	3.32	3.32	3.32	6.60	6.49	5.19	4.53	6.06	10.52
Aufladung		ATL mit VTG und LLK	-	-	ATL	ATL mit LLK	ATL mit LLK	ATL mit LLK	ATL mit VTG und LLK	ATL mit LLK	ATL mit VTG und LLK
Einspritztechnologie		Common-Rail	k.A.	k.A.	k.A.	k.A.	k.A.	Common-Rail	Common-Rail	Common-Rail	Common-Rail
Abgastechnologie		cAGR, DPF	-	-	cAGR	-	-	cAGR	cAGR	SCR	cAGR, DPF

10.2 Beschreibungsbogen Zyklen

	Tabelle	10-3:	Beschreib	ungsbogen	Arbeitszyklen
--	---------	-------	-----------	-----------	---------------

Z.1	Messung Nr./Maschinenkürzel:		z.B. 01/Traktor ID. Nr. 1	
Z.2	Messfile Name:	Angabe des S Zuord	Semtech Messf nung der Mess	ilenamen> daten
Z.3	Startzeit:	Startzeit der Messung	Endzeit:	Endzeit der Messung
Z.4	Art der Tätigkeit: Beschreibung der Tätigkeit in Stichworten; z.B. Bagger: Aushub lehmiger Erde und verladen auf LKW; gewachsener Boden			
Z.5	Beschreibung Zyklus: Ablaufbeschreibung in Stichworten; z.B. Bagger: Bagger schwenkt von LKW-Position 90° in Richtung Grabstelle und senkt dabei den Löffel; Aufnahme des Erdmaterials; Rückschwenken Richtung LKW und anheben der Schaufel;			
Z.6	Skizze: Skizze, welche der	n Ablauf grafiscl	h darlegt (Z.5)	
Z.7	Kennwerte Anbaugerät: Typische Kennwerte von Anbaugeräten (Löffelbreite bei Baggern, Schaufelvolumen bei Radladern, Anhängelast bei Traktoren,)			
Z.8	Bemerkungen:			

10.3 Durchschnittskennfelder

In diesem Abschnitt sind die durchschnittlichen Emissionskennfelder (Summenkennfelder) für Stickoxide und Ruß (Soot) dargestellt. Dabei sind diese auf den Abgasgrenzwert der Schadstoffkomponente bezogen. Im Fall von Soot ist es der Partikelgrenzwert.

10.3.1 Stickoxide – NOx

Abbildung 10-1: NOx Durchschnittskennfeld Stufe I

Abbildung 10-2: NOx Durchschnittskennfeld Stufe II

Abbildung 10-3: NOx Durchschnittskennfeld Stufe IIIA

Abbildung 10-4: NOx Durchschnittskennfeld Stufe IIIB

Abbildung 10-5: NOx Durchschnittskennfeld Stufe IIIB-hyb

10.3.2 Ruß – SOOT

Abbildung 10-6: SOOT Durchschnittskennfeld Stufe I

Abbildung 10-7: SOOT Durchschnittskennfeld Stufe II

SOOT - Kennfeld Stufe IIIB

Abbildung 10-9: SOOT Durchschnittskennfeld Stufe IIIB

Abbildung 10-10: SOOT Durchschnittskennfeld Stufe IIIB-hyb

10.4 Maschinenzyklen

Radlader			
RL_NRTC_01	Rubber-TireLoader/Typical Operation		
RL_NRTC_02	Rubber-TireLoader/Hi-Speed Transient		
RL_EPA_01	Wheel LoaderTypical Operation 1 Duty Cycle		
RL_EPA_02	Wheel LoaderTypical Operation 2 Duty Cycle		
RL_EPA_03	Wheel Loader High Speed Transient Operation Duty Cycle		
RL_EPA_04	Wheel Loader High Torque Transient Operation Duty Cycle		
RL_IVT_01	Abraumbetrieb Stage II #1		
RL_IVT_02	Abraumbetrieb Stage IIIA #2		
RL_IVT_03	Abraumbetrieb Stage IIIB #3		
RL_IVT_04	Abraumbetrieb Stage IIIB #4		
RL_EXT_01	Y-Zyklus kurz		
RL_EXT_02	Y-Zyklus lang		
RL_EXT_03	Aufhalden		

Tabelle 10-4: Zyklusbeschreibung Radlader

Abbildung 10-11: Normierter Zyklus RL_NRTC_01

Abbildung 10-12: Normierter Zyklus RL_NRTC_02

Abbildung 10-13: Normierter Zyklus RL_EPA_01

Abbildung 10-14: Normierter Zyklus RL_EPA_02

Abbildung 10-15: Normierter Zyklus RL_EPA_03

Abbildung 10-16: Normierter Zyklus RL_EPA_04

Abbildung 10-17: Normierter Zyklus RL_IVT_01

Abbildung 10-18: Normierter Zyklus RL_IVT_02

Abbildung 10-19: Normierter Zyklus RL_IVT_03

Abbildung 10-20: Normierter Zyklus RL_IVT_04

Abbildung 10-21: Normierter Zyklus RL_EXT_01

Abbildung 10-22: Normierter Zyklus RL_EXT_02

Abbildung 10-23: Normierter Zyklus RL_EXT_03

Raupenbagger				
BA_NRTC_01	Excavator/LowerHp (128Hp)			
BA_NRTC_02	Excavator/Higher Hp (208Hp)			
BA_EPA_01	Excavator Cycle			
BA_IVT_01	Schotter umbaggern; 9to Bagger Stage IIIB; Nenndrehzahl #08			
BA_IVT_02	Schotter umbaggern; 20to Bagger Stage IIIA; reduzierte Drehzahl #17			
BA_IVT_03	Schotter umbaggern; 25to Bagger Stage IIIB; #11			

Tabelle 10-5: Zyklusbeschreibung Bagger

Abbildung 10-24: Normierter Zyklus BA_NRTC_01

Abbildung 10-25: Normierter Zyklus BA_NRTC_02

Abbildung 10-26: Normierter Zyklus BA_EPA_01

Abbildung 10-27: Normierter Zyklus BA_IVT_01

Abbildung 10-28: Normierter Zyklus BA_IVT_02

Abbildung 10-29: Normierter Zyklus BA_IVT_03

Abbildung 10-30: Normierter Zyklus WA_IVT_01

Traktoren LW.				
TR_NRTC_01	Agricultural Tractor/AgTractor			
TR_EPA_02	Agricultural Tractor Cycle			
TR_IVT_01	Transportfahrt auf Straße, vorw. Steigung, Anhägelast ca. 2.5 * EG Zugfahrzeug			
TR_IVT_02	Gülle ausbringen nahezu eben (FAHREN 6 km/h + PTO)			

Abbildung 10-31: Normierter Zyklus TR_NRTC_01

Abbildung 10-32: Normierter Zyklus TR_EPA_01

Abbildung 10-33: Normierter Zyklus TR_IVT_01

Abbildung 10-34: Normierter Zyklus TR_IVT_02

Baggerlader		
BL_NRTC_01	Backhoe Loader/Roading	
BL_NRTC_02	Backhoe Loader/Trenching	
BL_NRTC_03	Backhoe Loader/Loading	
BL_NRTC_04	Backhoe Loader/Grade/Level	
BL_EPA_01	Backhoe Loader Cycle	

Tabelle 10-8: Zyklusbeschreibung Baggerlader

Abbildung 10-35: Normierter Zyklus BL_NRTC_01

Abbildung 10-36: Normierter Zyklus BL_NRTC_02

Abbildung 10-37: Normierter Zyklus BL_NRTC_03

Abbildung 10-38: Normierter Zyklus BL_NRTC_04

Abbildung 10-39: Normierter Zyklus BL_EPA_01
Planierraupe	
PLR_NRTC_01	Crawler-Dozer/Road BedPrep.
PLR_NRTC_02	Crawler-Dozer/Clearing
PLR_EPA_01	Crawler Tractor Cycle

Abbildung 10-40: Normierter Zyklus PLR_NRTC_01

Abbildung 10-41: Normierter Zyklus PLR_NRTC_02

Abbildung 10-42: Normierter Zyklus PLR_EPA_01

Tabelle 10-10: Zyklusbeschreibung Kompaktlader

Kompaktlader		
KL_NRTC_01	SkidSteerLoader/Typical Operation	
KL_NRTC_02	SkidSteerLoader/Hi-Torque Transient	
KL_EPA_01	SkidSteerLoaderTypical Operation 1 Cycle	
KL_EPA_02	SkidSteerLoaderTypical Operation 2 Cycle	
KL_EPA_03	SkidSteerLoader High Speed Transient Operation Duty Cycle	
KL_EPA_04	SkidSteerLoader High Torque Transient Operation Duty Cycle	

Abbildung 10-43: Normierter Zyklus KL_NRTC_01

Abbildung 10-44: Normierter Zyklus KL_NRTC_02

Abbildung 10-45: Normierter Zyklus KL_EPA_01

Abbildung 10-46: Normierter Zyklus KL_EPA_02

Abbildung 10-47: Normierter Zyklus KL_EPA_03

Abbildung 10-48: Normierter Zyklus KL_EPA_04

Generator		
GEN_NRTC_01	Arc Welder/Typical Operation	
GEN_NRTC_02	Arc Welder/Hi-Speed Transient	
GEN_EPA_01	Arc Welder Typical Operation 1 Duty Cycle	
GEN_EPA_02	Arc Welder Typical Operation 2 Duty Cycle	
GEN_EPA_03	Arc Welder High Speed Transient Operation Duty Cycle	
GEN_EPA_04	Arc Welder High Torque Transient Operation Duty Cycle	

Tabelle 10-11: Zyklusbeschreibung Generator

Abbildung 10-49: Normierter Zyklus GEN_NRTC_01

Abbildung 10-50: Normierter Zyklus GEN_NRTC_02

Abbildung 10-51: Normierter Zyklus GEN_EPA_01

Abbildung 10-52: Normierter Zyklus GEN_EPA_02

Abbildung 10-53: Normierter Zyklus GEN_EPA_03

Abbildung 10-54: Normierter Zyklus GEN_EPA_04