
Thomas Ulz, BSc.

Human Computation based Recommendation Technologies

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Alexander Felfernig

Institute of Software Technology

 Diplom-Ingenieur

Supervisor

Graz, June 2016

Abstract

Recommender systems nowadays are deployed in nearly every branch of business with
customers relying on the recommendation results to take decisions on possible purchases.
Many systems are built for the respective use case and thus, do not provide the flexibility
to scale to new product types or attributes. In addition to that, many solutions also do
have other drawbacks. For instance, many recommender systems require users to create
a user account and profile to be able to generate recommendations. Also, most systems
do not present any information on the ranking process. Thus, possibly leaving people
wondering about the recommendation quality and therefore losing confidence in the
recommendation. Especially in the context of more complex items, a major drawback is
the need for experts who are responsible for maintaining the information stored in the
recommender’s knowledge base. These people might become a bottleneck when it comes
to adding new data and knowledge to the system.

In this master’s thesis, a constraint-based recommendation approach is presented
which eliminates the mentioned drawbacks. The recommender system is a modular,
fully configurable system which allows people to collaborate in building the knowledge
base for arbitrary recommender domains. The recommendation algorithm’s decisions
are based on information obtained through human computation. Results are easily
explainable to users of the recommender. Rating items and receiving recommendations
is done using subjective and objective facts about items, which users can specify as being
their preferences. Thus, for getting recommendations, no user profile is needed.

In addition to the concept and recommendation algorithm proposed in this master’s
thesis, improvements which can be applied to the algorithms were introduced. Also,
a web-service based server application and an HTML5 web interface were developed.
To evaluate the implemented algorithms, a study was conducted where data from 356
participants was collected. Using this data, the algorithms presented in this master’s thesis
were compared against other baseline approaches which were clearly outperformed by
those two methods.

Kurzfassung

Recommender Systeme werden heutzutage in nahezu jedem Geschäftszweig eingesetzt
und von Kunden verwendet um mögliche Kaufentscheidungen zu treffen. Die meisten
dieser Systeme wurden für einen speziellen Anwendungsfall entwickelt, weshalb sie
meist nicht die Flexibilität besitzen um neue Produkttypen oder Attribute behandeln
zu können. Zusätzlich haben die meisten Lösungen auch noch andere Nachteile. Zum
Beispiel benötigen die Systeme oft einen Benutzeraccount und ein dazugehöriges Profil
um Empfehlungen berechnen zu können. Die meisten Systeme zeigen außerdem keine
Informationen bezüglich der Empfehlungsberechnung an. Das lässt viele Benutzer an
der Qualität der Empfehlungen zweifeln, was auch das Vertrauen in die angezeigten
Ergebnisse senkt. Ein gravierender Nachteil, speziell im Kontext von komplexeren
Produkten, ist die Notwendigkeit von Experten, welche für das Pflegen der vorhandenen
Informationen in der Wissensdatenbank verantwortlich sind. Im Hinblick auf das
Hinzufügen von neuen Daten und Wissen stellen diese Experten einen potentiellen
Engpass dar.

Aus diesen Gründen wird in dieser Masterarbeit ein Empfehlungsansatz basierend auf
Beschränkungen (constraint-based) präsentiert, welcher die zuvor genannten Nachteile
behebt. Das Recommender System ist modular und vollständig konfigurierbar, was
Benutzern erlaubt bei der Erstellung der Wissensdatenbank für beliebige Produkt-
gruppen zusammen zu arbeiten. Der Algorithmus zur Berechnung der Empfehlungen
basiert auf diesen Informationen die mittels Human Computation gesammelt wurden.
Empfehlungsergebnisse können den Benutzern des Recommenders verständlich erklärt
werden. Das Bewerten von Produkten und das Anfordern von Empfehlungen basiert auf
der Spezifikation von subjektiven und objektiven Eigenschaften der Produkte, welche
von Benutzern als Anforderungen definiert werden können. Daher ist es nicht mehr
notwendig ein Profil anzulegen, um Empfehlungen erhalten zu können.

Zusätzlich zum vorgestellten Konzept und Empfehlungsalgorithmus werden auch Er-
weiterungen für den Algorithmus gezeigt. Außerdem wurde eine web-service basierte
Serveranwendung und eine dazugehöriger HTML5 Webseite entwickelt. Um die imple-
mentierten Algorithmen zu evaluieren wurde eine Studie durchgeführt in der Daten von
356 Teilnehmern gesammelt wurden. Anhand dieser Daten wurden die beiden in dieser
Masterarbeit vorgestellten Ansätze mit anderen Basis-Algorithmen verglichen, welche
von den beiden implementierten Ansätzen klar übertroffen wurden.

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded
to TUGRAZonline is identical to the present master’s thesis dissertation.

Date Signature

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Goals . 9
1.3 Structure . 10

2 Related Work 11
2.1 Recommender Systems . 11
2.2 Collaborative Recommendation . 13
2.3 Content-Based Recommendation . 14
2.4 Knowledge-Based Recommendation 16

2.4.1 Constraint-Based Recommendation 16
2.4.2 Critiquing-Based Recommendation 17

2.5 Hybrid Approaches . 18
2.6 Human Computation . 19
2.7 Recommendation Algorithms . 20
2.8 Beta Distribution Based Algorithms 21

3 Basic Recommendation Approach 23
3.1 Terminology . 23
3.2 Averaging Support Values . 31
3.3 Recommendation Approach . 33

4 PEOPLEVIEWS 36
4.1 Architecture . 36

4.1.1 PEOPLEVIEWS Server . 37
4.1.2 Recommender as a Service . 38
4.1.3 PEOPLEVIEWS Client . 39

4.2 Used Software Components . 39
4.3 User Interface . 41

5 Enhanced Approaches 56
5.1 Beta Distribution Based Approach . 56

5.1.1 The Beta Distribution . 56

5.1.2 Calculating and Scaling Aggregated Support using Beta Distribu-
tion . 58

5.2 User Preferences . 65
5.2.1 Genetic Algorithm . 65
5.2.2 Learning of User Preferences 66

5.3 Dataset Quality Assurance . 67
5.4 Additional Features . 69

5.4.1 Obfuscating . 69
5.4.2 Recommendation Explanation 69
5.4.3 Similar Items . 70

6 Evaluation 71
6.1 Dataset . 71

6.1.1 Acquisition . 72
6.1.2 Data . 73

6.2 Baseline Methods and Evaluation Approach 73
6.2.1 Random . 74
6.2.2 Most Frequent . 74
6.2.3 Case-Based . 74
6.2.4 Evaluation Approach . 75
6.2.5 Evaluation Metric . 75

6.3 Evaluation Results . 76
6.3.1 Recommendation Approaches 76
6.3.2 User Preferences . 80
6.3.3 Other Improvements . 83

7 Limitations and Future Work 84
7.1 Limitations . 84
7.2 Future Work . 85

8 Conclusion 88

1
Introduction

The introduction to this master’s thesis, given in this chapter, comprises a motivational
part and goals of this work. In the motivation, reasons for using the selected recommender
technique by listing drawbacks of other approaches are given. The goals then are defined
such that a recommender system can be developed which does not inherit those mentioned
drawbacks. Finally, the structure of the rest of this thesis will be explained.

1.1 Motivation
Recommender systems, although already very popular, are still becoming more and
more used in various domains. Many of these recommenders work very well for the
domain they were intended for, but often some drawbacks can be found as well. The
recommendation approach presented in this master’s thesis is trying to fix the problems
that are going to be discussed in this section.

Today, most users know a recommender in the form of suggestions, where, when an
item is viewed or even purchased, other similar items are suggested. These recommenders
do use the information contained in item descriptions to find similar items. The corre-
sponding recommendation approach, content-based filtering, will be explained in detail
in Section 2.3. Also, by interacting with the system, users provide the recommender with
additional data which also can be used to generate recommendations. Often, these items
are shown as items, other users have bought to the potential buyer. This approach, called
collaborative-filtering, will be discussed in Section 2.2.

7

1 Introduction

Because of the simplicity of the rules used to generate recommendations, the previ-
ously mentioned types of recommenders easily can degenerate for a user. For instance, a
very likely scenario might be multiple family members sharing a shopping account, as
mentioned by Koen Verstrepen and Bart Goethals [VG15]. In this case, the parents might
get recommendations for toys they bough for their child, without the chance to ”repair”
the recommender.

Also, nearly all systems that generate recommendations for users need the user
to create an account. Thus, a user profile is generated which is often used by the
recommendation approach for finding similar users. The items rated, viewed or liked by
those similar users are then recommended to the other user.

End Users

Knowledge
Engineers

Item Knowledge Knowledge Base

Figure 1.1: Knowledge Acquisition Bottleneck: Only a few knowledge engineers are contributing to a
knowledge base. If end users with item knowledge are allowed to contribute as well, more
information can be aggregated in less time.

By using item descriptions to generate recommendations, it is often unclear to a user
why certain items are included in the recommendations. For example, when looking
at the details of any Terminator movie, most recommender systems suggest titles like
Lincoln or Around the World in 80 Days, because Arnold Schwarzenegger was in the cast
of all of those movies. A user who is looking for action movies similar to Terminator,
but is unaware that Arnold Schwarzenegger was in the cast of all of those films, might

8

1 Introduction

doubt the quality of the recommender because no explanations are given.

Other types of recommenders rely on the ratings of users regarding the items contained
in the system. However, in most of those approaches, an overall rating for the item is
given, without the possibility to highlight very good or poor facts of the item in question.
Thus, users need to find a compromise in the rating they are assigning an item. For
instance, a user who might have bought a certain camera could be very satisfied with the
excellent image quality. However, the camera might have very poor battery life. When
rating the equipment with a simple star rating, the user has to decide what rating would
be appropriate. Giving a high rating because of the image quality would ignore and not
warn other users of the poor battery life, while a low rating because of the mentioned
disadvantage would not highlight the excellent image quality. Also giving an in-between
rating can be misleading because other users might think the overall quality of the camera
is just not very satisfying.

Many types of recommenders also have in common that they mostly are designed for
one item domain, e.g., books or movies. However, recommenders that are able to model
any complex item domain and rely on explicit knowledge about the items also exist. For
instance, a camera could be recommended based on the knowledge that it is suitable for
sports photography. For these so called knowledge-based recommenders (see Section 2.4)
it is necessary that the information used in the recommendation process is entered by peo-
ple with knowledge about the recommender domain. We denote these people as Knowl-
edge Engineers. In a system where either the information for multiple recommenders
needs to be maintained or where new items need to be included on a regular basis, this
might lead to long waiting times for this new information. We call this problem the
Knowledge Acquisition Bottleneck, where a small group of Knowledge Engineers main-
tains the information contained in a knowledge base, although there would be a larger
group of people that possess Item Knowledge. The problem of a Knowledge Acquisition
Bottleneck is depicted in Figure 1.1.

1.2 Goals
Goals for this master’s thesis were defined concerning the drawbacks of other recommen-
dation techniques that were discussed in Section 1.1. The goals for the recommender
approach presented in this work, therefore, are given in the following list.

Multi Domain. The recommender system and the algorithm to calculate recommenda-
tions should support multiple recommender domains. Thus, instead of specializing
on a single recommender, it must be possible to define various domains such as
Canon DSLR Cameras, Cities or Skiing Regions.

Descriptive Ratings. Ratings regarding items should not consist of a single value rep-

9

1 Introduction

resenting an overall rating for the respective item. Multiple criteria including sub-
jective as well as objective facts about an item should be evaluable. All information
must be used in the recommendation algorithm.

Many Contributors. To not run into a Knowledge Acquisition Bottleneck, any user
must be able to contribute to the system’s knowledge base. This includes tasks such
as the specification of new recommender domains, adding and maintaining items
as well as rating existing items. It should also be possible to get recommendations
without the need to create an account first.

Recommendation Quality. The quality of recommendations generated for this con-
figurable recommender should be equal or better than currently existing approaches
for such systems. Also, generated recommendations should be explainable to the
user to increase the confidence of users in the provided recommendations.

Inconsistency Management. If a user is specifying requirements which can not be
matched by any item, no recommendation can be given. The system must be able
to identify these inconsistencies and suggest repair actions to the user such that
matching items can be recommended.

1.3 Structure
The remainder of this master’s thesis is organized as follows. In Chapter 2 the terminol-
ogy of recommender systems and different recommendation approaches are introduced.
Related work for those definitions and algorithms is also given in that chapter. Chapter 3
introduces the concepts and terms that are necessary to build and describe the recom-
mender system designed for this master’s thesis. Also, a basic recommendation approach
utilizing those concepts is presented in that chapter. PEOPLEVIEWS1, the recommender
system used to demonstrate and evaluate the concepts that were proposed in this work
is presented in Chapter 4. There, the basic architecture, technical details, and the imple-
mented user interface are discussed. Based on the basic approach shown in Chapter 3, a
more sophisticated approach was developed. This method, as well as additional improve-
ments that can be used for all two proposed recommendation algorithms, are discussed
in Chapter 5. The recommendation approaches as well as the improvements were also
evaluated as part of this master’s thesis. The results can be seen in Chapter 6. Existing
limitations of the proposed approaches as well as limitations of the implementation are
listed in Chapter 7. This chapter also includes suggestions for future work. The master’s
thesis then is wrapped up in Chapter 8, where a conclusion about this work is given.

1 PEOPLEVIEWS is a research project funded by the Austrian Research Promotion Agency under the
Bridge-1 program.

10

2
Related Work

In this chapter, related work is used to explain basic terminology and concepts of rec-
ommender systems. Different categories of recommenders using various algorithms are
discussed. Also, the idea of human computation is explained. Concluding, related work
on recommender systems using Beta Distributions is listed.

2.1 Recommender Systems
The basic definition of a recommender system’s goal is very similar in many publications.
For instance, Prem Melville and Vikas Sindhwani give a definition in the Encyclopedia of
machine learning [MS11].

”The goal of a Recommender System is to generate meaningful recommenda-
tions to a collection of users for items or products that might interest them.”

However, by reading this definition, the question if such systems are necessary arises.
Wouldn’t most people be more confident in the recommendation for a good book or a
restaurant, coming from a good friend? Do we need additional recommender systems?
Paul Resnick and Hal R. Varian [RV97] argue that people often need to make choices
without having sufficient personal experience in the respective topic. Recommendations
from other people by word of mouth, recommendation letters, and movie or book reviews
in newspapers might be used in everyday life. However, in the opinion of the authors, rec-
ommender systems can assist in and augment this natural selection process. The authors
further define the function of a recommender system:

11

2 Related Work

”In a typical recommender system people provide recommendations as in-
puts, which the system then aggregates and directs to appropriate recipients.
In some cases the primary transformation is in the aggregation; in others the
system’s value lies in its ability to make good matches between the recom-
menders and those seeking recommendations.”

Historically, the term recommender system was first coined in 1992 by Goldberg et
al. [GNOT92] when the authors developed Tapestry. The reason for developing the
system was to aid people with filtering mail. In their work, the authors realized that
content-based filtering techniques did not provide satisfactory results when it comes
to filtering unwanted mail. Therefore, they introduced the technique of collaborative-
filtering. In the context of their work, collaborative filtering meant that people recorded
their reactions to documents they read. By collaborating with other individuals who
did the same, powerful filters could be created. The terms collaborative-filtering (see
Section 2.2) and content-based filtering (see Section 2.3) are still relevant in nowadays
recommender systems and thus, are discussed also in this chapter. Even earlier, Elaine
Rich [Ric79] suggested in 1979, that computers might be able to model user behavior
using stereotypes. By using those patterns, a system might be able to suggest books
and novels which users might like. Also in this work, the author proposes the idea
that the stereotypes should be learned by experience the system is gaining about users.
The implemented system, Grundy, is evaluated, and it is shown that a good accuracy
in predicting users preferences based on their categorization into stereotypes can be
achieved.

Although included in many systems, recommenders mostly were unknowingly used
by people when browsing the web. That changed in October 2006 when the Netflix
Prize was announced. Netflix2 released a dataset containing 100 million anonymous
movie ratings and proclaimed a prize of 1 million USD for the first team to improve the
recommendation accuracy of Netflix by at least 10%. The released dataset comprised the
ratings of 480,000 randomly chosen users and nearly 18 thousand movie titles. At that
time, no dataset of that size was publicly available. Benett and Lanning [BL07] analyzed
the dataset and stated that the permission to use the dataset for other non-commercial
research purposes will boost work in that field. The announcement of the Netflix Prize
brought the idea of recommender systems to a wider audience and triggered many related
publications. Bell and Koren [BK07] for instance give an overview of the findings and
improvements made by the winning team of the Netflix Prize. The contributions include
a new method that takes interactions between neighbors into account when calculating
nearest neighbors, which can be used in many machine learning applications.

Traditionally, recommender systems use algorithms to suggest and rank items that can
be categorized into three different categories, as was done for instance by Gediminas
Adomavicius and Alexander Tuzhilin [AT05]:
2 https://www.netflix.com/

12

2 Related Work

• Collaborative Recommendation

• Content-based Recommendation

• Hybrid Approaches

Felfernig et al. [FJN+14] extend this categorization by Knowledge-Based Recommen-
dation, which is the category of recommender system used for this master’s thesis. The
following sections are going to introduce and discuss the above mentioned different rec-
ommendation principles.

2.2 Collaborative Recommendation
As with the general definition of recommender systems, there are also many similar defi-
nitions for collaborative filtering approaches. One is given by Schafer et al. [SFHS]:

”Collaborative Filtering is the process of filtering or evaluating items using
the opinions of other people. ”

The authors also make the case that the concept of collaborative filtering has been
around for centuries - humans sharing opinions with others. However, as the authors
in that paper stated, by using computers and the Internet, the concept of collaborative
filtering can advance beyond the basic word of mouth. Instead of using only the opinions
of a hand full of people, the Internet allows to consider the assessments of thousands or
millions of people.

The core concepts of a collaborative filtering approach are Users, Items and Ratings,
as noted by Ekstrand et al. [ERK11]. In this work, the authors state that the information
domain for a collaborative filtering system consists of users who specify their preferences
for various items. The preference specified by the user for a certain item is then denoted
as a rating. The authors also state that the ratings can be of varying form, depending
on the implementation. For instance, scales of 0-5 stars or binary scales (like/dislike)
can be used. In any case, all (User, Item, Rating) triples can be represented in a matrix
where all users are assigned in one dimension of the matrix, while all items are assigned
in the other dimension. The ratings are then stored in the respective cells of that matrix.
The authors also further distinguish between User-Based and Item-Based collaborative
filtering in their work.

The first User-Based collaborative filtering approach was introduced by Resnick et
al. [RIS+94] in 1994. The intention of their proposed system, GroupLens, was to help
people find articles they like in Usenet. After reading an article, users were presented
with the possibility to rate the article. The ratings then were aggregated on rating servers,
called Better Bit Bureaus. Those rating servers then suggested articles to users based on

13

2 Related Work

the assumption, that users who agreed on ratings in the past, will probably agree again.

In contrast, Item-Based collaborative filtering approaches rely on the similarity between
items, as Sarwar et al. [SKKR01] stated in their work:

”Item-based techniques first analyze the user-item matrix to identify relation-
ships between different items, and then use these relationships to indirectly
compute recommendations for users”

To measure how similar a pair of items is to each other, different techniques are
discussed in that paper, including item-item correlation or cosine similarities between
item vectors. In that approach, item vectors which describe the features of an entity
are stored in an n-dimensional vector, where n is the number of features taken into
account. The cosine similarity metric then measures the angle between two item vectors
to determine their similarity.

Herlocker et al. [HKTR04] give a thorough analysis and comparison of different
collaborative filtering approaches. The authors define tasks and evaluation metrics, as
well as datasets to evaluate collaborative filtering algorithms, such that reproducible
evaluations can be done. They state, that most algorithms work best on a specific problem
(for instance far more items than users) and thus, algorithm performances do not scale to
other datasets. Also, many different evaluation metrics are applied in literature, thus, no
fair comparison can be done.

Finally, the application of collaborative filtering based recommender systems requires
to answer the following questions [JZFF10]:

• How can users similar to the user who is looking for recommendations be found?

• How is similarity measured?

• How to handle new users, for whom no information is available yet?

• How to deal with new items, for which no ratings exist yet?

• What if only a few ratings exist, that can be used to generate recommendations?

2.3 Content-Based Recommendation
In their research paper, Beel et al. [BGLB15] did a literature survey of more than 200 re-
search articles, coming to the conclusion that in 55% of all recommendation approaches
content-based filtering is used, while only 18% of the reviewed approaches applied

14

2 Related Work

collaborative filtering (the authors mainly discussed content-based and collaborative
filtering, therefore no details are given about the remaining 27%).

Content-Based Recommendation can be defined in one single sentence, as for instance
Michael J. Pazzani and Daniel Billsus [PB07b] wrote:

”Content-based recommendation systems analyze item descriptions to iden-
tify items that are of particular interest to the user.”

As the authors also noted in their work, the details available for items differs in
recommender systems. Therefore, the methods used for analyzing item information
are manifold. One of the most popular methods used in such systems is tf-idf which
is a shortcut for term frequency-inverse document frequency. The method is discussed
in many publications, for instance in Mining of massive datasets by Rajaraman et al.
[RUUU12] where the authors define tf-idf as a numerical statistic, which can be used
to reflect the importance of a certain word in a document relative to a collection of
documents or a corpus. After extracting the top n most relevant words describing an item,
the authors suggest to use for instance Jaccard distance or cosine distance measures to
calculate which items might be interesting to users. The user vector utilized in those
comparisons according to the authors could, for instance, be constructed using a history
of entities a user already interacted with, such as items which details where viewed.

Most papers and articles state that content-based filtering also can be reduced to
a binary text classification problem. Items are recommended to users based on their
descriptions, who then either like and agree with the recommendation or dislike the
recommended item. An early work by Lewis et al. [LSCP96] elaborates on training
algorithms for linear text classifiers. The work introduces two algorithms, Widrow-Hoff
and EG which can be used for this tasks.

The application of content-based recommendation systems requires to answer the fol-
lowing questions [JZFF10]:

• How are systems able to continuously improve user profiles by automatically ac-
quiring user information?

• How can the similarity of items to user profiles be calculated?

• What methods could be applied to extract the information contained in item de-
scriptions?

15

2 Related Work

2.4 Knowledge-Based Recommendation
A third recommendation technique, knowledge-based recommendation was described by
Robin Burke [Bur00] as follows:

”A third type of recommender system is one that uses knowledge about users
and products to pursue a knowledge-based approach to generating a recom-
mendation, reasoning about what products meet the user’s requirements.”

As Felfernig et al. [FFJZ06] have stated, by utilizing deep knowledge about the item
domain when generating recommendations, several advantages of a knowledge-based ap-
proach make it possible to:

”[...] (b) to explain solutions to a customer, and (c) to support customers in
situations in which no solution can be found.”

Many approaches, including the one proposed by Robin Burke [Bur99] combine
collaborative aspects with features of knowledge-based recommenders. One drawback
of collaborative filtering approaches is the so-called cold start problem, where no
recommendations can be made for users who newly registered with the system and thus,
no information about the user is available. In his approach, the author suggested to
use a knowledge-based approach while the amount of information is small, and to use
collaborative filtering only as a post-filter for the knowledge-based approach.

The questions that have to be answered when applying knowledge-based recom-
menders are [JZFF10]:

• What types of knowledge regarding the item domain can be represented in the
knowledge base?

• What techniques can be used for item selection and the ranking of the resulting item
set concerning user requirements?

• If no history of a user exists yet, how can a user profile be acquired? Also, how are
user’s explicit preferences taken into account?

2.4.1 Constraint-Based Recommendation
A particular form of knowledge-based recommenders are so-called constraint-based
recommenders, where according to Alexander Felfernig and Robin Burke [FB08], the
recommendation process can be viewed as a process of constraint satisfaction. In their
definition, some constraints are coming from the user, while others are derived from the
product domain. Products that can satisfy those constraints are then viewed as good

16

2 Related Work

recommendations.

In Developing Constraint-based Recommenders by Felfernig et al. [FFJZ11] the
authors define the constraint satisfaction problem constructed in constraint-based
recommender systems. Also in this work, the entities necessary to build the knowledge
base of such a constraint-based recommender are defined. In this master’s thesis, those
definitions were used as a starting point when developing the recommendation algorithm.
The concepts were extended in this work and are discussed in Section 3.1.

While collaborative and content-based filtering techniques are mostly applied to simple
item domains such as books, movies or restaurants, constraint-based recommenders have
been implemented in a wide range of different fields. For instance, Jannach et al. [JZF09]
and also Zanker et al. [ZFH+08] discussed the usage of constraint-based recommenders
in tourism. Felfernig et al. [FJS+15] elaborate on the possibility to use constraint-based
recommenders in the context of financial services. There, as also noted by Felfernig et
al. [FFJZ06], recommenders need to generate recommendations which adhere to legal
regulations.

More recently, Felfernig et al. [FHN+14] introduced the idea of a multi-domain
constraint-based recommender which can be configured to support arbitrary item do-
mains. Also in this paper, a study was done showing that users although willing to use and
contribute to a constraint-based recommender’s knowledge base, they are only prepared to
invest a short period of time. Felfernig et al. [FUH+15] also published a paper discussing
the basic recommendation approach for such a multi-domain recommender system. That
paper includes parts of this work, as it was written in the context of this master’s thesis.

2.4.2 Critiquing-Based Recommendation
A second special case of knowledge-based recommendation is critique-based recommen-
dation. The concept of critiquing was explained, for instance, by Robin Burke [Bur00].
The main idea is that users can specify requirements the currently displayed item is not
satisfying. In other words, they are criticizing the current recommendation. For instance,
for a currently displayed digital camera, a user might state that the highest possible ISO
value is too low and therefore requests a new recommendation.

Li Chen and Pearl Pu [CP12] state that in a critiquing-based recommender system,
users do interact with the system in a kind of conversational style. In contrast to that,
users get recommendations in a single interaction in other approaches. The authors state
that through the use of critiquing feedback systems can easily learn users’ profiles and
therefore are able to make better recommendations in future sessions.

Dynamic critiquing, a particular form of critiquing, is explained by Reilly et al.

17

2 Related Work

[RMMS04]. The authors point out that critiquing, although applicable to a wide range
of domains, is limited to a single feature such as price or camera resolution. Therefore,
they propose to extend critiquing to allow compound critiques, which allows critiques
over multiple features. The authors further state that by using this generalized approach,
explanations for users become possible. One example of a compound explanation would
be ”30% of the remaining cameras have a higher maximum ISO and higher resolution”.

One example application of critiquing-based recommenders are mobile recommenders,
as Francesco Ricci and Quang Nhat Nguyen [RN05] state in their work. They argue that
the conversational style recommendation process might be preferred by on-the-move trav-
elers. In their work, they show that giving critique-based feedback is suited for the com-
paratively small (smart-)phone screens because only 2-3 clicks are necessary to provide
feedback to the system.

2.5 Hybrid Approaches
An overview of the recommendation techniques mentioned above is given by Burke et al.
[BFG11] where the differences between the approaches are highlighted. Also Jannach et
al. [JZFF10] note that both concepts (content-based and collaborative) have advantages.
Collaborative filtering approaches do not need explicit information regarding the items,
such as descriptions, as user ratings are used to recommend items. However, to guarantee
meaningful recommendation results, a significant number of users is required. In contrast
to that, content-based approaches do not need larger user groups to provide reasonable
recommendation accuracy. Because both concepts have their advantages, much research
was put into hybrid approaches that combine collaborative with content-based filtering.

Fab, proposed by Marko Balabanović and Yoav Shoham [BS97] is a Web recommen-
dation system introduced in 1994. The goal of this work was to recommend web pages
to users, much like search engines do nowadays. The authors state that the goal of their
work was to combine the advantages of collaborative and content-based filtering while
inheriting the disadvantages of neither approach. In their approach, user profiles are
used to reflect interests. Then similar user profiles are used for collaborative filtering to
increase the recommendation accuracy.

In the work by Basu et al. [BHC+98], the authors denote collaborative filtering as
social filtering. They claim that by combining social information with item information in
a movie recommender, better recommendation results can be achieved. In their approach,
the authors do not rank the recommended items but just try to predict if users will like or
dislike a suggested movie. To achieve this, users were grouped into users who liked, for
instance, a certain genre, e.g., drama. For this subset of users, traditional collaborative
filtering could then be applied.

18

2 Related Work

In addition to collaborative and content-based filtering, Pazzani et al. [Paz99] also
discuss demographic-based recommendations. There, personal information of users such
as age, gender and education is used to generate restaurant recommendations. In their
approach labeled Collaboration via Content, content-based user profiles are used to find
similar users for which then weighted collaborative filtering techniques are applied. The
weights used are results of the applied term extraction method used to generate the user
profiles.

Robin Burke [Bur02] gives an overview of various other hybrid approaches that com-
bine different recommendation techniques. One of the methods introduced is a hybrid ap-
proach that combines collaborative filtering with critique-based feedback to recommend
restaurants. This approach can significantly increase recommendation quality.

2.6 Human Computation
A definition of human computation is given by Edith Law and Luis von Ahn [LVA09]:

”Human computation is the idea of using human effort to perform tasks that
computers cannot yet perform, usually in an enjoyable manner.”.

Human computation, however, is often confused with crowdsourcing, as Alexander J.
Quinn and Benjamin B. Bederson [QB11] note in their paper. They describe the differ-
ences as follows:

”Whereas human computation replaces computers with humans, crowdsourc-
ing replaces traditional human workers with members of the public”

Two key characteristics of human computation, are given:

• The problems solved by human computation generally fit the paradigm of compu-
tation, and therefore those problems might be solvable by computers someday.

• Human participants are guided by a computer systems user interface or process.

Amazon Mechanical Turk3 (MTurk) provides an easy possibility to crowdsource
tasks, which then can be used for human computation. Because of its simplicity,
MTurk is utilized in many applications. Little et al. [LCGM09], [LCGM10] presented
TurKit, a framework to crowdsource tasks to MTurk. The framework allows for parallel
computation of tasks by humans, but also for iterative tasks. By enabling iterative tasks,
workers can build upon the work done by others. Possible use cases that were discussed

3 https://www.mturk.com/

19

2 Related Work

included iterative text improvements or handwriting recognition.

The concept of human computation is also applicable to recommender systems. In
a study done by Krishnan et al. [KNN+08], the recommendation performance of an
impersonal recommender algorithm compared to the manual recommendations done by
power users of a movie database was evaluated. The authors found out that although
the algorithm on average outperformed the human recommendations, in many cases the
recommendation accuracy of humans was higher than the algorithm’s.

However, most of the time human computation in recommender systems is used to col-
lect information that can be used to generate recommendations. As mentioned previously,
human computation tasks often can be done in an enjoyable fashion. Therefore, most ap-
proaches use games (with a purpose) to collect information from users. For example,
Greg Walsh and Jennifer Golbeck [WG10] introduced Curator, a game used for collec-
tion recommendation. Collection recommender systems suggest items that work together
very well as a group (for instance, steak and mashed potatoes match well as a group,
while chocolate and mashed potatoes would not match). In another approach, Dugan et
al. [DMM+07] introduced Dogear, a game which helps to collect data for bookmark and
website recommendations.

2.7 Recommendation Algorithms
There is a broad range of recommendation algorithms available for the different types of
recommender systems that were discussed in this chapter. Also, as noted by Herlocker et
al. [HKTR04], most papers use adapted datasets or evaluation metrics. Therefore, no fair
comparison between all available algorithms was performed to this date.

The most widely used algorithm for collaborative filtering recommender systems is
matrix factorization as discussed for instance by Koren et al. [KBV09]. In this approach,
the user-item matrix is decomposed into several matrices, which can be used to construct
the original matrix again. One such method, for instance, is the SVD-decomposition that
is used to disclose the latent factors hidden in the user-item matrix.

Other very popular approaches using the user-item matrix to disclose latent factors are
based on Latent Dirichlet Allocation (LDA), first introduced by Blei et al. [BNJ03]. Tech-
nically, LDA is a probabilistic model for collections of data, for instance, text corpora.
The authors describe LDA as follows:

”LDA is a three-level hierarchical Bayesian model, in which each item of
a collection is modeled as a finite mixture over an underlying set of topics.
Each topic is, in turn, modeled as an infinite mixture over an underlying set
of topic probabilities.”

20

2 Related Work

Blei et al. [BNJ03] also show that LDA is applicable for collaborative filtering
approaches. Deepak Agarwal and Bee-Chung Chen [AC10] use latent dirichlet allocation
for matrix factorization. The authors claim their approach works best on recommender
systems, where a representation of items with bags-of-words is possible. This fact
applies, for instance, in web search or ad targeting as the authors noted in their work.

Content-based recommendation algorithms use a broad range of different similar-
ity measures to determine similar items. Spertus et al. [SSB05] give an overview of
possible algorithms and evaluate them based on their performance on a large scale dataset.

The constraint-based recommender introduced in this work builds on the work done by
Felfernig et al. [FUH+15]. Also, to adapt the approach discussed in that paper, a second
alternative approach is introduced in this work, utilizing Beta Distributions to model the
knowledge base.

2.8 Beta Distribution Based Algorithms
The Beta Distribution is a probability distribution used to model the behavior of random
variables and can be used in many disciplines, as Arjun Gupta and Saraless Nadarajah
[GN04] noted.

For instance, Audun Jsang and Roslan Ismail [JI02] use Beta Distributions as a
reputation system. In their paper, reputation denotes the aggregation of user ratings.
Each rating is modeled as an event in the Beta Distribution with a prior probability of
happening and thus has an influence on the shape parameters α and β which define the
form of the Beta Distribution’s probability density function. The authors also introduce
the idea of adaptive weighting and forgetting in their approach, which they show is
superior to other more basic aggregation methods. A similar approach was demonstrated
by Ahmad Abdel-Hafez and Yue Xu [AHX15], who use statistical methods to calculate
reputation models which are utilized to generate recommendations. Reputations are used
to report on the quality of items on the web and are aggregated user ratings, such as
star ratings. Reputation according to the authors should include the rating itself as well
as the time of the rating, trust between users and the reputation of the rating user. If
incorporated correctly into a recommender system, the authors claim that more accurate
recommendations are possible. A Beta Distribution based reputation model is used
amongst others, providing the best recommendation accuracy in the author’s evaluation.

Yin et al. [YSC+13] use the Beta Distribution as part of a recommendation algorithm
specifically developed for a location-content-aware recommender with sparse user-item
matrix data. The approach presented in that paper, LCARS, is used to recommend venues
and events in cities. The algorithm proposed consists of a modeling part which utilizes

21

2 Related Work

LDA, where Beta Distributions are used to model priors for generating user models.
The authors claim that their approach can deal with sparse data such as users looking
for recommendations when visiting a new city. Using classical collaborative filter
algorithms, no satisfactory recommendation would be possible with that constellation.

Chung et al. [CHH13] propose βP, an algorithm to counteract attacks on collaborative
recommender systems by using Beta Distribution to detect malicious user profiles.
So-called shilling attacks try to introduce attacking profiles which then try to manipulate
the user-item matrix by providing biased (either very high or very low) ratings for certain
items. The authors use Beta Distributions to model user ratings and thus can precisely
detect malicious ratings and the associated user profiles.

Condliff et al. [CLMP99] propose a recommender framework that incorporates user
ratings, user features and item features in one single framework. They claim that their
approach can deal with the so-called cold-start problem as well as with sparse user-ratings.
In their algorithm, a Bayesian approach is used where Beta Distributions model a prior
probability for predictions regarding the recommended items. The authors of the paper,
however, note that evaluations have shown mixed results. For some datasets, excellent
recommendation accuracy was achieved while for other data, poor performance resulted.

22

3
Basic Recommendation Approach

In this chapter, a basic recommendation approach for a constraint-based recommender
system is discussed. The approach described here is based on the approach described by
Felfernig et al. in [FUH+15].

Before the recommendation algorithm is discussed, the necessary terminology to de-
scribe the approach is defined. The terminology also includes concepts used in the prac-
tical implementation of the proposed recommendation algorithm. For all introduced con-
cepts, examples are given. The recommendation approach can be split into two parts.
The first part can be interchanged with a different methodology and is discussed in Sec-
tion 3.2, while the second part which is introduced in Section 3.3 will also be used for the
alternative algorithm introduced in Section 5.1.

3.1 Terminology
There are a couple of basic entities that need to exist in every recommender system,
namely items, users and a recommender. In the context of a recommender system, the
relationship between those entities is fairly clear. Users interact with a recommender to
get a set of suggested items. For a constraint-based recommender, those entities need to
be supplemented by some constructs which are used to build the knowledge base against
which constraints can be evaluated. In the chapter Constraint-based recommender sys-
tems in Recommender Systems Handbook [FFJZ15], Felfernig et al. give an overview
of what is needed to build a constraint-based recommender system. We further expand
the entities listed there, to enable a constraint-based recommender system which can be
extended with new recommenders by users. The following list gives an overview of the

23

3 Basic Recommendation Approach

entities used in PEOPLEVIEWS. Also, an exemplary recommender that was employed in
the evaluation of this master’s thesis will be defined.

User u ∈ U . It is possible to get recommendations from PEOPLEVIEWS as an anony-
mous user. For all other interactions with the system, a user u needs to register
and thus create a user account in our system. The information required to create
such an account are a username, email, and password. Also, a profile picture can
be uploaded. Registered users are able to contribute fully to the knowledge base
of PEOPLEVIEWS by creating new recommenders, adding items to existing recom-
menders or evaluating existing items. Table 3.1 shows an exemplary list of users.

Username Email Password
u1 Sally sally@email.com *****
u2 Mike mike@email.com *****
u3 Mary mary@email.com *****
u4 Susan susan@email.com *****
u5 Bob bob@email.com *****
u6 Eve eve@email.com *****

Table 3.1: An exemplary list of users. Additional information such as profile picture was omitted in
this table.

Item Attribute ia ∈ IA. To describe objective properties or hard facts about items, item
attributes are used. The attributes can be either a number, text or an enumeration
of possible values. Item attributes should be evident to each user, or they should
be easy to look up. Because of this fact, item attributes need to be specified by a
user when adding new items to PEOPLEVIEWS. To compare and rank items based
on item attributes, an order relation needs to be specified. For numeric attributes,
one of the following similarity measures [McS03] has to be chosen: more is better
(MIB), less is better (LIB), near is better (NIB) or equal is better (EIB). Text and
enumeration attributes can only be compared using the EIB metric. Those order
relations specify whether a certain value is better if higher, lower or nearer to the
compared to value. By defining a similarity measure for item attributes, it is pos-
sible to use them in the recommender algorithm when ranking items. If an item
attribute should only be used as additional information for items but not to filter
and rank items, it is possible to exclude the attribute from being used in the rec-
ommender. For instance, the producer of an item could be relevant information to
display which might not be a necessary attribute for getting recommendations. Pos-
sible examples of item attributes are the maximum resolution of a digital camera or
the population of a city. All item attributes used in the example recommender are
listed in Table 3.2.

Item i ∈ I. The entities recommended in our system are called items. All registered
users are allowed to create new items. Upon creation, information such as the

24

3 Basic Recommendation Approach

Attribute Type Similarity
Measure

Question to User
creating Item Filter

ia1 Megapixel Number MIB
What is the maximum

resolution of this camera
in megapixel?

T

ia2 Max ISO Number MIB
What is the maximum

ISO value this camera can
support?

T

ia3 Price Number LIB
What is the suggested

retail price of this camera?
T

ia4
Sensor
Format

{full,
APS,

APS-C,
APS-H}

EIB
What is the sensor format

of this camera?
T

Table 3.2: Item attributes used for a Canon DSLR recommender.

item’s name, description, tags and image need to be specified. In addition, all item
attributes become mandatory inputs for new items and thus, need to be answered
by the user creating a new item. Table 3.3 lists example items as used in our Canon
DSLR recommender. Because of space limitations, only the name and item attribute
values are shown.

Name Desc. Tags Megapixel Max ISO Price Sensor
Format

i1 EOS 7D [...] [...] 18.0 12800 1699 APS-C
i2 EOS 550D [...] [...] 18.0 6400 350 APS-C
i3 EOS 5D Mark III [...] [...] 22.3 25600 2800 full
i4 EOS 70D [...] [...] 20.2 12800 900 APS-C
i5 EOS 1D X [...] [...] 18.1 51200 3000 full
i6 EOS 5DSR [...] [...] 53.0 102400 3600 full
i7 EOS Rebel T6i [...] [...] 24.7 25600 750 APS-C
i8 EOS 1200D [...] [...] 18.1 6400 399 APS-C
i9 EOS 7D Mark II [...] [...] 20.2 16000 1799 APS-C
i10 EOS 80D [...] [...] 24.2 16000 1199 APS-C

Table 3.3: An example list of items used in a Canon DSLR recommender. Information such as descrip-
tion, tags and item image were omitted in this table because of space limitations.

User Attribute ua ∈ UA. In addition to item attributes or hard facts, we also define

25

3 Basic Recommendation Approach

user attributes. These attributes are needed to describe soft or subjective facts about
items. Thus, the perception of different users regarding the same user attribute
might be completely different. For instance, a user attribute for our Canon DSLR
recommender might be Field of Application which might describe for which use
case a given camera is best suited for. User u1 considers the item i1 (Canon EOS
7D) to be best suited for sports photography, while user u2 thinks it can be best
used to capture macro images. As user attributes are subjective facts about items,
every user u ∈ U can assign user attributes to items. However, because every user
might have a different opinion regarding a user attribute, it is necessary to specify
a set of possible User Attribute Values (uav ∈ dom(ua)) to limit the assigned
attributes to a predefined set. Allowing every user to enter values freely would result
in no usable data. For instance, for the previously mentioned user attribute Field
of Application, the user attribute values might be: Macro, Portrait, Sport, Tele and
Landscape. Along with those user attribute values, also an attribute name has to
be specified. Because users can assign user attribute values, it is also necessary to
specify if for a given user attribute only choosing one user attribute value (Single
Choice) or choosing multiple values (Multiple Choice) is allowed. Finally, to help
users understand the attributes, a question text which will be shown to users needs to
be defined as well. Users can assign user attributes to items by explicitly choosing
an item to evaluate. There, they are asked to assign one or more user attribute values
to the selected item. The user attributes with their corresponding user attribute
values for the Canon DSLR recommender used as an example recommender in this
master’s thesis are shown in Table 3.4.

Recommender r ∈ R. Using the above definitions of item attributes, user attributes
and user attribute values, it is possible for users to specify new recommenders.
When creating a new recommender, information such as name, a description, tags
and a recommender image are needed. In addition, the creator of a recommender
needs to define all item attributes and user attributes (with the corresponding sets
of user attribute values) belonging to the new recommender. As soon as a new
recommender is created, it is possible to add items to it. A recommender, therefore,
contains item attributes, user attributes with user attribute values and added items.
The Canon DSLR recommender used throughout this master’s thesis is shown in
Table 3.5.

Support s. As mentioned, users are able to assign user attribute values to items to de-
scribe their subjective facts. Assigning user attribute values to an item, however,
might not fully express the users opinion about that item. If we, for example, con-
sider the same Canon DSLR recommender as before, user u1 assigned the user
attribute value Sport to item i1 regarding the user attribute Field of Application.
Without specifying any further information, this designation would state that the
user thinks the given item fully (100%) supports the chosen user attribute value.
Therefore, support s is introduced, which needs to be specified by the user for ev-
ery item - user attribute value pair that is specified by her. Thus, we do not force

26

3 Basic Recommendation Approach

Attribute Question to User evaluating
Item

SC /
MC

User Attribute Values
(dom(uai))

ua1
Field of

Application
For which field of application

is this camera suited for?
SC

{Macro (uav11), Portrait
(uav12), Sport (uav13),

Tele (uav14), Landscape
(uav15)}

ua2
Experience

Level

What is the suggested level
of experience a user should

have using this camera?
MC

{Absolut Beginner
(uav21), Amateur (uav22),

Expert (uav23)}

ua3 Durability
What level of durability

would you expect from this
camera?

SC
{Bad (uav31), Moderate
(uav32), Good (uav33)}

ua4
Value for
Money

What do you think is the
value you get for your money

when buying this camera?
SC

{Good Deal (uav41), Price
is OK (uav42), Too
Expensive (uav43)}

ua5
Loss of
Value

How fast do you think will
this camera loose its value if

bought new?
SC

{Stable Value (uav51),
Loses in Value Slowly
(uav52), Loses in Value

Fast (uav53)}

Table 3.4: User Attributes and corresponding User Attribute Values for a Canon DSLR recommender.

Name Desc. Tags Owners Item
Attributes

User
Attributes Items

r1
Canon
DSLR [...] [...] {u1}

{ia1, ia2,
ia3, ia4}

{ua1, ua2,
ua3, ua4,
ua5}

{i1, i2, i3,
i4, i5, i6,
i7, i8, i9,
i10}

Table 3.5: Canon DSLR recommender containing all defined item attributes and user attributes. In-
formation such as description, tags and image are omitted because of space limitations.
Also, all items added to the recommender are listed.

users into yes or no decisions but rather let them specify how well they think a
given item supports the chosen user attribute value. Because support is expressed
as a percentage, it ranges from 0% (item does not support user attribute value at
all - same as not assigning it at all) to 100% (item fully supports the assigned user
attribute value). As a result, two users might think the same item supports the same
user attribute value, but they may assign different supports. For example, user u1

could specify that item i1 supports the user attribute value Sport with 90%, while
user u2 assigns the same item a support of 80% for the user attribute value Sport. A

27

3 Basic Recommendation Approach

complete example of users and their assigned user attribute values including support
can be seen in Table 3.6.

Evaluation e. If a user assigns user attribute values and supports for various user at-
tributes, we denote this action as evaluating the item. Therefore, one row in Ta-
ble 3.6 is referred to as the evaluation of a certain item by the respective user.

Microtask mt. Evaluating an item with respect to all specified user attributes in a rec-
ommender might take some time for users. For instance, if a user wants to specify
supports for all user attributes listed in Table 3.4, at least five support values need
to be entered. Because of this fact, we introduce microtasks, which are simple tasks
that are assigned automatically to users. A microtask always refers to one item and
user attribute. Thus, users can evaluate items but do not need to invest much time.
To assign microtasks to users such that the probability of users solving the micro-
tasks is high, an algorithm discussed in a different master’s thesis is developed. That
algorithm tries to consider many aspects of the system. For users, their experience
in the respective recommender domain and the corresponding expertise in that field
are derived from previous interactions with the system. Also, the potential inter-
est of a user in solving the microtask is estimated by considering the users current
workload and her previous contributions to the domain in question. Finally, also the
importance of a microtask is considered. Using all of those mentioned aspects, the
required number of best matching users will be found. In addition to the microtasks
that ask users to specify support for a given item - user attribute value combination,
also CAPTCHA microtasks are introduced. These tasks should be easily solvable
for human users and therefore can be used to ensure data quality (see Section 5.3).

Aggregated Support supportΣ. As every user can specify supports for item - user
attribute value pairs, we need to aggregate the given supports. Aggregation is done
for each item - user attribute value pair respectively, accumulating the supports of
all users who assigned a user attribute value and the corresponding support for that
pair. Thus, we can provide aggregated supports which then describe items with
respect to the opinion of all users giving feedback for the item. In this master’s
thesis, a basic approach on how to calculate the aggregated support (Section 3.2)
as well as an enhanced approach using Beta Distribution (Section 5.1) are given.
The approaches including examples are discussed in their respective sections of
this work.

Game g. As another alternative form to collect user inputs, a game is introduced. In this
game, users get ten different questions regarding item - user attribute value com-
binations. For those ten combinations, users should guess the current aggregated
support. By doing so, users implicitly specify supports for the given item - user
attribute value combinations. Also, the implementation of the game was done as
part of a different master’s thesis and therefore is not further discussed in this work.

28

3 Basic Recommendation Approach

U I Field of
Application Experience Level Durability Value for

Money
Loss of
Value

u1 i1 Sport(1.00) Exp(0.90) Mod(1.00) Exp(0.95) LiVS(0.85)
u2 i1 Sport(0.90) Exp(0.95) Good(0.95) Pr OK(1.00) LiVS(0.95)
u3 i1 Sport(0.90) Am(0.85),Exp(0.90) Good(0.90) Exp(0.90) SV(0.95)
u4 i1 Sport(0.90) Exp(0.90) Good(1.00) Pr OK(0.90) SV(1.00)

u5 i2 Sport(0.95) AB(0.95) Mod(0.90) GD(1.00) LiVF(0.90)

u1 i3 Macro(1.00) Am(0.60),Exp(0.90) Good(0.90) Exp(0.70) SV(0.85)
u2 i3 Portr(0.80) Exp(1.00) Good(0.95) Pr OK(0.95) SV(0.70)
u3 i3 Portr(0.80) Exp(0.95) Good(0.90) Pr OK(0.95) LiVS(0.80)
u4 i3 Portr(0.80) Exp(1.00) Good(0.95) Pr OK(0.90) SV(1.00)
u5 i3 Portr(0.80) Am(0.80),Exp(0.80) Good(1.00) Exp(0.85) SV(1.00)

u2 i4 Tele(0.85) AB(0.70),Am(0.90) Good(0.90) Pr OK(0.85) LiVS(0.80)
u4 i4 Lands(0.90) AB(0.80),Am(0.90) Mod(0.90) GD(0.90) LiVS(0.85)

u2 i5 Sport(1.00) Exp(0.95) Good(1.00) Exp(0.70) SV(1.00)
u3 i5 Portr(0.95) Exp(1.00) Good(1.00) Exp(0.80) SV(0.70)
u4 i5 Sport(1.00) Exp(0.95) Good(1.00) Exp(1.00) SV(0.80)

u1 i6 Portr(0.95) Exp(1.00) Good(1.00) Exp(1.00) SV(0.95)

u1 i7 Lands(0.80) AB(0.90),Am(0.70) Mod(0.90) GD(0.75) LiVF(0.80)
u2 i7 Macro(0.90) AB(1.00) Good(0.70) GD(0.80) LiVF(0.90)
u3 i7 Sport(0.50) AB(1.00),Am(0.75) Good(0.75) GD(0.90) LiVS(0.70)
u4 i7 Tele(0.95) Am(0.80) Mod(0.80) GD(0.60) LiVF(0.60)
u5 i7 Portr(0.70) AB(0.95) Mod(0.75) GD(1.00) LiVF(0.95)

u3 i8 Tele(0.90) AB(1.00) Mod(0.90) GD(1.00) LiVF(0.60)
u5 i8 Tele(0.80) AB(0.90) Bad(0.80) GD(0.95) LiVF(0.80)

u1 i9 Sport(0.90) Am(0.70),Exp(0.70) Good(1.00) Exp(1.00) LiVS(0.60)
u2 i9 Sport(0.95) Exp(0.80) Good(0.90) Pr OK(1.00) LiVS(0.90)
u4 i9 Sport(1.00) Exp(0.90) Good(0.95) Pr OK(0.90) LiVS(0.80)
u5 i9 Sport(0.90) Am(0.50),Exp(0.90) Good(0.60) Exp(0.60) LiVS(0.70)

u1 i10 Tele(0.70) Exp(0.75) Good(0.75) Pr OK(0.80) LiVS(0.45)
u2 i10 Tele(0.85) Exp(0.95) Mod(0.75) GD(1.00) LiVS(0.90)
u3 i10 Macro(0.90) Am(0.60),Exp(0.80) Good(0.95) Pr OK(0.90) LiVS(0.70)
u4 i10 Tele(0.95) Exp(1.00) Mod(0.55) Pr OK(0.95) LiVS(1.00)
u5 i10 Macro(0.55) Exp(0.80) Good(0.80) Pr OK(0.95) SV(0.55)

Table 3.6: Items with their assigned user attribute values and corresponding supports. The column
I denotes the respective items, while the column U shows the users who specified the sup-
ports. Thus, each row corresponds to one user evaluating an item.

29

3 Basic Recommendation Approach

Recommendation Requirements REQ. Users looking for recommendations need
to specify their requirements regarding the items they are looking for. We denom-
inate those requirements as recommendation requirements in this work. The re-
quirements specified by users are matched against the information describing the
item. Thus, recommendation requirements comprise requirements regarding item
attributes (REQia) and requirements regarding user attribute values (REQuav).
For item attributes, users need to specify a certain value which is then used in com-
bination with the defined similarity measure to match items. For user attribute
values, users only need to specify which properties the recommended items must
have. For instance, User u1 in Table 3.7 specifies that all recommended items must
be suitable for Sport and Tele photography as well as being usable by Amateurs with
respect to photographing skills. The exact recommendation approach based on the
specified requirements REQ = REQia ∪REQuav is discussed in Section 3.3. Ex-
amples of recommendation requirements specified by users are given in Table 3.7.

REQuav REQia

u1 uav13 (Sport), uav14 (Tele), uav22 (Amateur) -
u2 uav13 (Sport) ia4 (APS-C)
u3 - ia1 (15), ia4 (full)

Table 3.7: Table showing recommendation requirement examples from different users.

The relation between all previously discussed entities can be seen in the very basic
UML diagram shown in Figure 3.1. The diagram is not a complete diagram of the whole
system; its purpose is to demonstrate the relations (with cardinalities) between the previ-
ously mentioned entities.

30

3 Basic Recommendation Approach

Figure 3.1: UML diagram showing the relations between the entities defined for a constraint-based
recommender.

3.2 Averaging Support Values
As mentioned in the previous section, we have developed two methods to aggregate the
support values specified by users. In this section, the basic approach is discussed. The
more sophisticated approach using Beta Distributions is presented in Section 5.1.

The very basic idea behind this method is to average the support values for any item
- user attribute value pair over all users who evaluated that specific pair. When looking
at Equation (3.1), the numerator of the equation shows the sum over all support values
entered for the selected item - user attribute value pair. Different to a normal average,
where this sum would be divided by the number of supports entered for that selected
pair, we count all users who specified a support for any user attribute value of the chosen
user attribute (uav ∈ dom(ua), the reason for this will be explained by a simple example

31

3 Basic Recommendation Approach

following the equations). The counting is depicted in Equation (3.2), where the brackets
[...] denote a condition in Iverson brackets, meaning 1 is added to the sum if the condition
inside the brackets is fulfilled, otherwise 0 is added (see [Knu92] for further information).

supportΣ(i, ua, uav) =

∑
u∈U

s(i, u, uav)

NU(i, ua)
(3.1)

NU(i, ua) =
∑
u∈U

[∃uav ∈ dom(ua) ∧ s(u, i, uav) 6= NULL] (3.2)

The reason for not using simple averaging can be shown best with an example. Using
a single choice user attribute, for instance ua1 (Field of Application, see Table 3.4) and
the supports depicted in Table 3.6, only user u1 might select Macro as the best fitting
user attribute value for item i3, assigning a support of 100%. In contrast to that, users u2,
u3, u4 and u5 all selected Portrait as the best fitting Field of Application for i3, all users
assigning a support of 80%. If we simply would average the entered support values, item
i3 would have supports of 100% for Macro and 80% for Portrait although 4 out of 5 users
deemed Portrait to be the better use case for camera i3. By using the formalism stated in
Equations (3.1) and (3.2), we obtain the results shown in Equation (3.3).

supportΣ(i3, ua1,Macro) =
1.00

5
= 0.20

supportΣ(i3, ua1, Portrait) =
0.80 + 0.80 + 0.80 + 0.80

5
= 0.64

(3.3)

By considering all users who assigned any user attribute value for the user attribute
ua1, the more popular user attribute value (Portrait) now has a higher support value,
although the entered supports where smaller than the one entered for Macro. All
aggregated supports for the supports listed in Table 3.6 are shown in Table 3.8 using the
calculations shown in this section.

The aggregated support values can then be used to select and rank items based on
requirements specified by users who are looking for recommendations. The approach is
discussed in Section 3.3.

32

3 Basic Recommendation Approach

Field of
Application

Experience
Level Durability Value for

Money
Loss of
Value

i1 Sport(0.925)
Am(0.213),
Exp(0.913)

Mod(0.25),
Good(0.713)

Pr OK(0.475),
Exp(0.463)

SV(0.488),
LiVS(0.45)

i2 Sport(0.95) AB(0.95) Mod(0.90) GD(1.00) LiVF(0.90)

i3
Macro(0.20),
Portrait(0.64)

Am(0.28),
Exp(0.93)

Good(0.94)
Pr OK(0.56),

Exp(0.31)
SV(0.71),

LiVS(0.16)

i4
Tele(0.425),

Landscape(0.45)
AB(0.75),
Am(0.90)

Mod(0.45),
Good(0.45)

GD(0.45), Pr
OK(0.425)

LiVS(0.825)

i5
Sport(0.667),

Portrait(0.316)
Exp(0.967) Good(1.00) Exp(0.834) SV(0.834)

i6 Portrait(0.95) Exp(1.00) Good(1.00) Exp(1.00) SV(0.95)

i7

Landscape(0.16),
Macro(0.18),
Sport(0.1),
Tele(0.19),

Portrait(0.14)

AB(0.77),
Am(0.45)

Moderate(0.49),
Good(0.44)

GD(0.81)
LiVS(0.14),
LiVF(0.65)

i8 Tele(0.85) AB(0.95)
Bad(0.40),
Mod(0.45)

GD(0.975) LiVF(0.70)

i9 Sport(0.938)
Am(0.30),
Exp(0.825)

Good(0.863)
Pr OK(0.475),

Exp(0.40)
LiVS(0.75)

i10
Tele(0.50),

Macro(0.29)
Am(0.12),
Exp(0.86)

Mod(0.26),
Good(0.50)

Pr OK(0.72),
GD(0.25)

SV(0.11),
LiVS(0.61)

Table 3.8: Aggregated supports calculated based on the values in Table 3.6

3.3 Recommendation Approach
The recommendation approach discussed in this section is used to filter and rank
items according to the recommendation requirements specified by a user looking for
recommendations. As mentioned in Section 3.1, we introduce two different approaches
to aggregate support values. The equations shown in this section are valid using both
methods for averaging support values. The aggregated support here is simply denoted
as supportΣ(i, ua, uav) and can be calculated with the simple approach discussed in
Section 3.2 as well as with the method using Beta Distributions, which is proposed in
Section 5.1. Thus, the utility function and item attribute support discussed in this section
can be applied to both recommendation methods (basic and beta distribution based)
implemented for this master’s thesis.

The recommendation process can be divided into two phases. First, all considered
items are selected into a recommended set (RS). Second, the items contained in RS are

33

3 Basic Recommendation Approach

ranked based on a utility function which we will define in this section.

To select all items RS that are relevant concerning the requirements specified by the
user (REQ = REQia ∪ REQuav) all items that have aggregated supports larger than 0
for all user attribute values defined by the user (uav ∈ REQuav) have to be determined.
Also, for all item attributes with their corresponding value specified (ia ∈ REQia), the
support needs to be larger than 0. If the user only specifies one type of attributes (either
REQuav = ∅ or REQia = ∅), items are selected based on that attribute type alone. A
formal definition of the item selection is given in Equation 3.4.

RS ={i | ∀uav ∈ REQuav : supportΣ(i, uav) > 0 ∨REQuav = ∅} ∩
{i | ∀ia ∈ REQia : supportΣ(i, ia) > 0 ∨REQia = ∅}

(3.4)

The necessary definition for supports regarding item attributes can be seen in Equa-
tion (3.5) where the similarity measures Nearer is Better (NIB), More is Better (MIB) and
Less is Better (LIB) as defined by McSherry [McS03] are used. The similarity measure
Equal is Better (EIB) is a special case of NIB. Here, iav denotes the reference value spec-
ified by the user looking for recommendations, val(i, ia) is the value defined for item i
and item attribute ia. The functions min(I, ia) and max(I, ia) denote the minimum and
maximum respectively for a given item attribute considering all items I .

supportΣ(i, ia, iav) =

[iav = val(i, ia)] EIB

1− |iav−val(i,ia)|
max(I,ia)−min(I,ia)

NIB

val(i,ia)−min(I,ia)
max(I,ia)−min(I,ia)

MIB

max(I,ia)−val(i,ia)
max(I,ia)−min(I,ia)

LIB

(3.5)

As an example, the supports for the recommendation requirement of user u3 from Ta-
ble 3.7 are calculated for item i3. The requirements (REQia) specified by the user state
that she is looking for cameras having the sensor format full and more than 15 megapixels.
Applying the MIB formula from Equation (3.5), an example can be calculated as follows
for item i3:

supportΣ(i3, ia1, 15) =
22.3− 18.0

53.0− 18.0
= 0.123

supportΣ(i3, ia4, full) = [ia4 = full] = 1
(3.6)

An example list of selected items when using the recommendation requirements from
user u2 (see Table 3.7), who specified requirements with respect to user attribute values
(REQuav) and item attributes (REQia) can be seen in Table 3.9.

34

3 Basic Recommendation Approach

After all relevant items are selected, the items contained inRS need to be ranked before
being presented as recommendation result to the user. Thus, we define a utility function
for items with respect to the recommendation requirements REQ specified by the user.
The utility function depicted in Equation (3.7) sums the aggregated supports of all item
attributes and user attribute values inREQ (ia ∈ REQia, uav ∈ REQuav). Additionally,
Equation (3.7) contains weights which are multiplied with the summed supports. The
weights w(uav) and w(ia) refer to item attributes and user attributes respectively. In the
basic approach, no weighting is used, thus, w(uav) = 1,∀uav ∈ UAV and w(ia) =
1,∀ia ∈ IA. The enhanced approach discussed in Section 5.2 optimizes this weights to
enable better recommendation results.

utility(i, REQ) =
∑

uav∈REQ

supportΣ(i, uav)× w(uav)

+
∑

ia∈REQ

supportΣ(i, ia)× w(ia)
(3.7)

By applying Equation (3.7) to the recommendation requirements specified by user u2

in Table 3.7, we calculate the utility values for all items listed in Table 3.9. Not listed
items where not included in the set based on Equation (3.4) because some support was
not larger than 0. As an example, the utility for item i1 is calculated:

utility(i1, REQ) = supportΣ(ia, uav13)× 1 + supportΣ(i1, ia4)× 1

= 0.925× 1 + 1× 1 = 1.925
(3.8)

Rank Item Utility
1 i2 1.950
2 i9 1.938
3 i1 1.925
4 i7 1.100

Table 3.9: Recommended items, sorted based on their respective utility. Selection of items was done
using Equation (3.4). Utility was calculated using Equation (3.7)

35

4
PEOPLEVIEWS

The recommendation approach discussed in Chapter 3 was implemented as part of this
master’s thesis in an application called PEOPLEVIEWS. In this chapter, the requirements
regarding the application and the chosen basic architecture that was implemented are
discussed. Also, an overview of used frameworks and libraries is given. The chapter is
concluded with a presentation of the web application’s user interface, where several use
cases of a recommender system are demonstrated, and the corresponding user interface is
explained.

4.1 Architecture
When designing PEOPLEVIEWS, a list of requirements was specified.

• Scalability: To be able to serve a large number of users as well as offer a large
number of recommenders and respective items, the application should be highly
scalable.

• Responsiveness: The application should be very responsive to ensure a good user
experience.

• Clients: There should at least be a web version as well as a version for mobile
devices. Both versions should contribute to the same knowledge base.

• State of the art: The application should be developed using a state of the art archi-
tecture as well as components such that it can be supported in the future.

36

4 PEOPLEVIEWS

• Openness: No proprietary software or library should be used to develop PEOPLE-
VIEWS. The application should be deployable on any given hardware that meets its
resource demand.

Because of the requirements listed, the basic architecture of PEOPLEVIEWS as
depicted in Figure 4.1 was used. The system can be divided into a client and server part,
which will be discussed separately.

4.1.1 PEOPLEVIEWS Server
To fulfill the requirements listed above, the PEOPLEVIEWS server application was real-
ized as a server comprising RESTful webservices that provide methods for all operations
possible in the system.

Figure 4.1: Basic architecture of PEOPLEVIEWS including all major components.

RESTful web service: A RESTful web service is based on the REST (Representa-
tional State Transfer) architecture. Rather than putting the focus on implementation
details, the focus of a REST architecture is on component’s roles and their inter-
actions with each other. Moreover, in a REST architecture, everything is a resource.

A characteristic of RESTful web services is the fact, that no state is held on
the server. Each web service call must identify its purpose and contain the
necessary data to fulfill the request. Thus, making RESTful web services very
light weight and highly scalable because load balancing can be done relatively easy.

37

4 PEOPLEVIEWS

All services are identified by their URI and an HTTP method. For instance, the
URI http://peopleviews.com/recommender/list called with a GET
request would return a list of all recommenders.

By defining the complete functionality as RESTful web services, the application can
run on any arbitrary server or even cluster. Thus, fulfilling the requirements scalability
and responsiveness. Also, any client that is capable of sending HTTP requests can
communicate with the application server, therefore fulfilling the requirement of multiple
clients. Also, the application was developed using a state of the art and open web
development framework, which, among others, is discussed in Section 4.2.

A typical bottleneck of web applications - accessing the database - is prevented by ab-
stracting the database access, using database connection pools and enabling an additional
database cache. Also, to ensure responsiveness, heavy calculations (such as calculating
aggregated supports) are done as background jobs on a dedicated cluster. Thus, those
tasks can be moved from the main webserver if necessary. Because of the implemented
web services stateless nature, sessions are kept in an in-memory storage which is used to
handle authentication and session requests. The libraries used for this purpose are listed
in Section 4.2.

4.1.2 Recommender as a Service
In addition to the functionality provided by RESTful web services, PEOPLEVIEWS also
offers an SQL-like query language for getting recommendations. Also implemented as a
RESTful web service, the syntax to get recommendations is defined as follows:

SELECT * FROM <RecommenderName>
WHERE <ATTRIBUTE>=<VALUE> [AND <ATTRIBUTE2>=<VALUE2> ...]
[LIMIT [<OFFSET>,]<ITEMS>]

Where <RecommenderName> defines the desired recommender. Recommendation
requirements can be specified as a list of <ATTRIBUTE> and <VALUE> pairs. Optional
parameters used for pagination can be specified with LIMIT. The resulting ranked list of
recommended items will be returned as a JSON object.

By using this query language, recommenders can be embedded into any software or
service. When implementing the interface to the recommender, no knowledge of the
structure and relationships of entities used in PEOPLEVIEWS needs to be known. In
combination with the possibility to define any recommender using the web interface and
to collect knowledge about the contained items using human computation, a recommender
can be provided for any type of recommender domain. Thus, we denote this feature as
providing a Recommender as a Service (RaaS).

38

4 PEOPLEVIEWS

4.1.3 PEOPLEVIEWS Client
The client implemented for this master’s thesis was written using HTML5 and JavaScript.
All requests to the PEOPLEVIEWS server are sent via JavaScript as asynchronous HTTP
requests using the previously discussed RESTful web service interface. The implemented
user interface is shown in Section 4.3. The HTML5 and JavaScript libraries used to
develop the web client are listed and discussed in Section 4.2.

There is also a mobile client developed for iOS devices which is being implemented as
part of a bachelor thesis. This client also uses the same RESTful web service interface as
the web interface. However, as this client was not part of this master’s thesis, no further
details about it are given in this work.

4.2 Used Software Components
To implement PEOPLEVIEWS in the previously described architecture, a couple of freely
available frameworks and libraries were used. The following list provides an overview of
the libraries which are essential for the developed functionality in PEOPLEVIEWS. The
list includes libraries and frameworks used to develop the server side components as well
as libraries and templates used in the user interface creation process.

Spring Framework4 is a framework for building web applications using Java EE fea-
tures. The additional plugin spring boot allows for rapid web development. Spring
supports a wide range of features which are needed for web development such as
a Model-View-Controller (MVC) framework for building RESTful web services,
transaction management, easy configuration management and so on. Arthur and
Azadegan [AA05] discuss Springs features for rapid web development.

Hibernate5 is used as object-relational mapping (ORM) tool. Thus, Java objects are
automatically mapped into database classes by Hibernate. Also, by using the spring
data JPA plugin in combination with Hibernate, database queries can be constructed
very easily in Java. Elizabeth O’Neil [O’N08] discusses the advantages of Hiber-
nate as an ORM tool.

Redis6 in principle is a data structure server, basically like a database. However, in
contrast to a database, Redis holds its whole dataset in memory. Thus, querying
Redis is very fast, with the drawback of no provided data durability. Because of the
mentioned characteristics, Redis is used to store sessions of logged in users where
for a RESTful service fast response times are of utmost importance. Azat Mardan

4 http://projects.spring.io/spring-framework/
5 http://hibernate.org/
6 http://redis.io/

39

4 PEOPLEVIEWS

[Mar14] gives an overview of possible use cases of Redis for authentication and
session management.

Jenetics7 is a Java implementation of the genetic algorithm which is discussed in Sec-
tion 5.2.1 of this work. The library is written in a very modular way such that key
concepts of the genetic algorithm can be configured and even exchanged with own
implementations very easily. As Jenetics uses the Java Stream API, calculations
can be executed in parallel quite easily.

Apache Spark8 is a cluster computing framework which is used in PEOPLEVIEWS for
various computational expensive machine learning tasks like finding outliers (see
Section 5.3). To execute machine learning algorithms with spark, the extension
Apache Spark MLib exists which provides almost all state of the art machine learn-
ing algorithms.

Google/Facebook APIs9 are used to login into PEOPLEVIEWS without creating a
user account first. When logging in using an existing Google account, users are
authenticated using their Google login data. Additionally, the user’s email address
is passed to PEOPLEVIEWS. When logging in using an existing Facebook account,
the restfb library is used which authenticates the user using her Facebook creden-
tials. After login, the email and profile picture stored at Facebook are provided via
restfb.

Java Mail API10 is used for sending account activation emails as well as invitation
emails for not yet registered users of PEOPLEVIEWS.

jQuery11 is used for client-side scripting in the HTML5 client. All dynamic compo-
nents of PEOPLEVIEWS web client rely on this library. JQuery is claimed to be the
most used JavaScript library in use to date and provides a lot of additional plugins
which were utilized in the development of PEOPLEVIEWS (most of them provide
sophisticated UI components).

Bootstrap12 is the front-end framework used to develop PEOPLEVIEWS’ user interface.
The framework contains HTML, CSS as well as JavaScript templates to develop
dynamic web pages. The developers (initially developed by Twitter) claim that
bootstrap is the most starred project on GitHub.

7 http://jenetics.io/
8 http://spark.apache.org/
9 https://developers.google.com/api-client-library/java/, http://restfb.com/
10 http://www.oracle.com/technetwork/java/javamail/index.html
11 https://jquery.com/
12 http://getbootstrap.com/

40

4 PEOPLEVIEWS

4.3 User Interface
The user interface developed for the PEOPLEVIEWS web interface is going to be shown
in this section. Different scenarios, including the creation of the example recommender
used throughout this work, will be described and accompanied by screenshots of the cor-
responding user interface. The landing page (main screen) for users not logged in is
shown in Figure 4.2.

Figure 4.2: Landing page when requesting the PEOPLEVIEWS web interface. This site is also the
home screen for all not logged in users.

Register and Login

To contribute to the knowledge base of PEOPLEVIEWS, users need to register with the
system first. To register for a new account, users need to choose a username and password
as well as specify their email address as can be seen in Figure 4.3. If the account is
successfully created, users receive an activation mail containing a link to activate the

41

4 PEOPLEVIEWS

newly created account. When logging in, users also have the option to use either their
Google or Facebook account, which automatically creates a new account if users log into
PEOPLEVIEWS for the first time. By doing so, the email and profile picture used at the
mentioned platforms is transferred to PEOPLEVIEWS. The login screen is depicted in
Figure 4.4.

Figure 4.3: Inputs presented to a user who is registering for a new account.

Figure 4.4: Login screen as shown to users.

42

4 PEOPLEVIEWS

Home Screen and User Profile

After successfully logging in, users are presented with the home screen illustrated in
Figure 4.5. There, users are presented with a list of popular recommenders (globally
most used recommenders), the users top recommenders (most used by the user),
PEOPLEVIEWS points (obtained for contributing to the knowledge base) and saved
recommendation requirements, denoted as saved filters. All further actions can be started
using the menu on the left.

Figure 4.5: Home screen for logged in users. Information such as popular and top recommenders as
well as PEOPLEVIEWS points and resulting rank are shown.

By clicking on the username shown in the top right corner and choosing My profile
users get to their user profile where they can change their username and see a detailed list
of PEOPLEVIEWS points they obtained. The user profile is shown in Figure 4.6.

Creating a New Recommender

After choosing Create - Recommender in the menu shown in Figure 4.5, a new recom-
mender can be created. To do so, information such as a recommender image, name,
description and tags need to be specified, as shown in Figure 4.7.

43

4 PEOPLEVIEWS

Figure 4.6: User profile with options to change profile picture and username. Also a detailed list of
PEOPLEVIEWS points if given.

Also, item attributes are defined when creating a new recommender. Figure 4.8 depicts
the item attribute creation section of the add recommender view.

To conclude the creation of a new recommender, also user attributes and their cor-
responding user attribute values need to be specified. The associated view is shown in
Figure 4.9.

Adding Items to a Recommender

To add a new item to an existing recommender, first, the desired recommender needs
to be selected. If no recommender was chosen in the current session, users are asked
to specify a recommender when clicking Create - Item as can be seen in Figure 4.10.
Alternatively, users always can select their preferred recommender by specifying it in the
box positioned at the top right corner of every screen, as shown in Figure 4.11.

44

4 PEOPLEVIEWS

Figure 4.7: Basic information such as recommender name, image, description and tags entered when
creating a new recommender.

Figure 4.8: Definition of item attributes for the Canon DSLR recommender. Attribute name, type,
similarity measure and a question which is aked to users who add a new item are defined
here.

.

After a recommender is selected, items can be added to this recommender. When
creating a new item, basic data such as item name, picture, description, tags, and a link
need to be specified. Also, all item attributes specified in the corresponding recommender
are mandatory input fields when adding a new item. The screen illustrating the creation
of a new item for the Canon DSLR recommender can be seen in Figure 4.12.

45

4 PEOPLEVIEWS

Figure 4.9: User attribute definitions. Users need to specify an attribute name and a question which
is asked to users who evaluate the item. Also, the corresponding user attribute values are
specified here.

Figure 4.10: If no recommender was specified before clicking Create - Item, a pop up asks the user to
specify to which recommender the new item should be added to.

Figure 4.11: At the top right corner of every screen, a preferred recommender can be specified by the
user.

Editing existing Recommenders or Items

Existing recommenders and items also can be edited after they were created. The
interface to edit an existing item does not differ from the one shown in Figure 4.12 where
a new item is added. The only difference is that existing values are displayed to the user
to be probably changed.

46

4 PEOPLEVIEWS

Figure 4.12: When a new item is added, basic information such as item name, image, description, tags
and a link need to be specified. Also all item attributes become mandatory input fields.

47

4 PEOPLEVIEWS

When editing an existing recommender, the interface for entering the recommender
information including item attribute and user attribute definitions does not differ from the
interfaces shown in Figures 4.7, 4.8, and 4.9. However, the creator of a recommender also
has the possibility to add additional owners and experts to the recommender. Owners do
have the same privileges as the creator. Thus, they can edit the recommender and also
add owners and experts to it. Experts also are allowed to edit the recommender, but are
not allowed to add or remove other owners or experts. The interface for managing owners
and experts is shown in Figure 4.13.

Figure 4.13: Managing owners and experts for an existing recommender. To edit the recommender
data, users need to click on the Edit Recommender button at the bottom left corner of the
page.

Evaluation of existing Items

To evaluate an existing item in PEOPLEVIEWS, users need to view the item’s details
as shown in Figure 4.15 and click the evaluate button. A list of items can be obtained
by either searching for an item using the search box in the upper left corner of every
screen as shown in Figure 4.14 or by getting a list of recommended items, which will be
discussed later.

The interface used to evaluate items depicted in Figure 4.16 displays the item’s infor-
mation and all user attributes specified in the corresponding recommender. Here, users

48

4 PEOPLEVIEWS

Figure 4.14: Full-text search for items. The search string will be looked for in the item’s name, de-
scription and tags.

can assign supports to one or more user attribute values. If a user wishes to edit a pre-
viously done evaluation, the same steps as for evaluating the item for the first time need
to be taken. All existing supports previously assigned by the user are then displayed for
editing.

Microtasks

Microtasks are also used to collect evaluations from users. As mentioned in Section 3.1,
microtasks are automatically assigned to users. The menu visible to users displays the
number of microtasks that are assigned but not yet solved, as can be seen for instance in
Figure 4.5.

A microtask regarding the user attribute Field of Application is shown in Figure 4.17.
There, the best matching user attribute value needs to be chosen, and a support is assigned
for the selected value.

Figure 4.18 depicts a CAPTCHA microtask, which should be easily solvable for all
users. The reason for such microtasks is discussed in Section 5.3.

49

4 PEOPLEVIEWS

Figure 4.15: Viewing item details. Here, a user can choose to evaluate the item by clicking the evaluate
button. At the bottom of this interface, items similar to the currently displayed item are
shown.

Game

It is also possible for users to play a game where the current aggregated support of items
concerning certain user attribute values needs to be guessed. The game can be invoked on
the recommendation screen by clicking the Play against the community button, as shown
in Figure 4.20. After starting the game, users are presented with an interface like the one

50

4 PEOPLEVIEWS

Figure 4.16: Interface for evaluating existing items. Users can assign supports for all specified user
attribute values in the respective recommender.

Figure 4.17: Microtask regarding the user attribute Field of Application for the item EOS 7D MarkII.

depicted in Figure 4.19.

51

4 PEOPLEVIEWS

Figure 4.18: CAPTCHA microtask which should be easily solvable by all users.

Figure 4.19: Playing a game where the current aggregated support of a given item with respect to a
certain user attribute value needs to be guessed.

Getting Recommendations

Getting recommendations in PEOPLEVIEWS is possible for logged in as well as for
anonymous users. The menu entry Get Recommendations is accessible for all users.
The user can get recommendations by specifying their recommendation requirements in
the list on the left-hand side of the screen. The list of recommended items is updated
immediately after each change to the specified requirements. An example recom-
mendation session can be seen in Figure 4.20. Users can save the currently specified
recommendation requirements as a filter with the button in the bottom left corner of the
page.

52

4 PEOPLEVIEWS

Figure 4.20: List of recommended items for the requirements specified by user u1 in Table 3.7.

If no recommendation is possible, an empty list and suggestions on which requirements
to remove is shown, as is depicted in Figure 4.21.

Compare Items

From the list of recommended items, two items can be selected for comparison, as can
be seen in Figure 4.20. After selecting the two items and clicking the Compare items
button, users are presented with a comparison of items regarding the user attributes as
well as the item attributes. User attributes and their user attribute values are compared
using the aggregated support, which is displayed in a spider chart. The item attributes are
marked based on the defined similarity measures. A comparison of two items can be seen
in Figure 4.22.

53

4 PEOPLEVIEWS

Figure 4.21: If no items can be recommended, PEOPLEVIEWS suggests which constraints to remove
to get items recommended again.

54

4 PEOPLEVIEWS

Figure 4.22: Comparing two items based on the aggregated supports for user attribute values and the
values specified for the item attributes.

55

5
Enhanced Approaches

The method of calculating the aggregated support in the basic recommendation approach
as illustrated in Chapter 3 has one major drawback. It only calculates the average but
does not weight the average in any way. As an extreme example, a new item could only
have one evaluating user who assigned a support of 90% for user attribute value Sport.
On the other hand, item i2 could have a vast number of evaluating users, say for instance
3,000 and an aggregated support of 85% for the same user attribute value Sport.

Considering this information, humans might see item i2 as the better option concerning
user attribute value Sport, as a large number of ratings would mean a higher confidence
in the aggregated support value. However, using the approach discussed in Section 3.2,
the recommendation algorithm would rank i1 higher than i2 based on the high rating of
one user. This fact has to be seen as a drawback of the basic approach. Therefore, we
introduce a more sophisticated method which utilizes Beta Distributions.

5.1 Beta Distribution Based Approach
Before we are going to discuss the approach itself, some basic attributes of the Beta
Distribution need to be discussed. The examined characteristics will then be required to
derive the Beta Distribution based approach of calculating the aggregated supports.

5.1.1 The Beta Distribution
The Beta Distribution is a statistical model that can be used to describe the behavior
of a random variable and was used to do so in a wide variety of disciplines. As other

56

5 Enhanced Approaches

continuous probability distributions, the Beta Distribution is defined on the interval
[0, 1]. It is parametrized by two (strictly positive) values, α and β which are called shape
parameters. In this section, only the distribution’s characteristics that are later used are
discussed. A detailed explanation of the Beta Distribution is provided by Gupta [Gup11].

The Probability Density Function (PDF) of a Beta Distribution can be defined in vari-
ous ways. For the calculations later shown, only the second definitions in Equation (5.1)
will be needed.

fX(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 =

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (5.1)

For those PDFs, 0 ≤ x ≤ 1 and α > 0, β > 0 need to be fulfilled. In addition, the Beta
Function B(α, β) and the Gamma Function Γ(n) are defined as shown in Equation (5.2).

B(α, β) =

∫ 1

0

uα−1(1− u)β−1du

Γ(n) = (n− 1)!

(5.2)

The shape parameters α and β are used to model the Probability Density Function of a
Beta Distribution. As their name suggests, those parameters have an impact on the shape
or silhouette of a Beta Distribution’s PDF. One property of a probability distribution we
are going to use in our approach is the so-called mode which corresponds to the maximum
of the PDF. It, therefore, can be obtained by calculating the derivative of a given PDF and
by setting the resulting derivative to zero. The maximum in a Beta Distribution, which
models a random variable X gives us the most likely value for the distribution of X. The
mode of a Beta Distribution can be derived as follows:

x∗ = mode(α, β)⇒ dfX(x)

dx
= 0 (5.3)

dfX(x)

dx
= d

(
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

)
/dx = 0 (5.4)

By applying the chain rule for derivations, we get the derivative of fX(x).

dfX(x)

dx
=
���

���Γ(α + β)

Γ(α)Γ(β)
(α− 1)xα−2(1− x)β−1

+
���

���Γ(α + β)

Γ(α)Γ(β)
(β − 1)(−1)(1− x)β−2xα−1 = 0

(5.5)

57

5 Enhanced Approaches

If we then simplify the resulting equation, we obtain x∗, which equals the Beta Distri-
bution’s mode.

dfX(x)

dx
= (α− 1)(1− x)− (β − 1)x = 0

= x(−α− β + 2) + α− 1 = 0

⇒ x∗ =
α− 1

α + β − 2

(5.6)

mode(α, β) =
α− 1

α + β − 2
, for α > 1, β > 1 (5.7)

As mentioned, the mode of a Beta Distribution changes depending on the values of α
and β. Three different PDFs are shown in Figure 5.1, demonstrating the cases α > β, α =
β and α < β. As can be seen there, α > β shifts the mode towards 1, meaning the most
likely value described by this distribution will be closer to 1. In contrast, for α < β the
mode is shifted towards 0. The third case, α = β demonstrates two facts. First, the mode
will be in or near the middle of our interval [0, 1] and second, the peak height at the mode
will be lower than in the first two cases. Although the sum α + β is equal in all three
instances, the peak will be higher while the distribution will be narrower for α 6= β. This
peak height can be interpreted as confidence in the calculated most likely value. For clear
tendencies towards either 0 (α < β) or towards 1 (α > β) the confidence will be higher
as for the case where no clear tendency can be observed (α = β). The peak height can be
calculated by evaluating the PDF at the calculated mode, as shown in Equation (5.8).

peak = fX(mode(α, β);α, β) (5.8)

5.1.2 Calculating and Scaling Aggregated Support using Beta
Distribution

The two characteristics of a Beta Distribution that were discussed in Section 5.1.1 will
be used to aggregate the supports in more sophisticated way than in the Basic Approach
discussed in Section 3.3.

As mentioned, the mode can be seen as the most likely value of the distribution. In our
case, we want the most likely value to be equal to the average of our support values. At
first, it might seem counter-intuitive to use the average of the support values again as it
was mentioned earlier, that simply averaging the supports has drawbacks. However, by

58

5 Enhanced Approaches

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
D

F

0

0.5

1

1.5

2

2.5

3

3.5

α = 3, β = 9, mode = 0.2

α = 6, β = 6, mode = 0.5

α = 9, β = 3, mode = 0.8

Figure 5.1: Probability Density Functions of three different Beta Distributions, demonstrating the re-
sulting different modes and their corresponding peak heights.

using the peak height of the distribution as an additional property, those disadvantages
can be overcome. By defining the equations for the shape parameters α and β as shown in
Equation (5.9), we can shift the mode of the Beta Distributions as previously discussed.
Additionally, by using those definitions, the mode will simplify to be equal to the average
of support values.

To calculate the aggregated supports, a Beta Distribution for each item - user attribute
value combination needs to be derived. Therefore, we will denote the needed parameters
as α(i, uav) and β(i, uav).

α(i, uav) : = 1 +
∑
u∈U

s(i, u, uav)

β(i, uav) : = 1 +NU(i, ua)−
∑
u∈U

s(i, u, uav)
(5.9)

The total number of users evaluating a specific user attribute (NU(i, ua)) needs to be
calculated as in the Basic Approach.

NU(i, ua) =
∑
u∈U

[∃uav ∈ dom(ua) ∧ s(u, i, uav) 6= NULL] (5.10)

59

5 Enhanced Approaches

By adding one to α and β, we ensure that the prerequisites α > 1, β > 1 hold, even
if there is no support for a given item - user attribute value combination at all. Also, by
using the definitions of the parameters α and β, the mode simplifies to be equal to the
average of supports as used in our Basic Approach. The simplification can be seen in
Equation (5.11).

mode(i, uav) =
α(i, uav)− 1

α(i, uav) + β(i, uav)− 2

=

1 +
∑
u∈U

s(i, u, uav)− 1

1 +
∑
u∈U

s(i, u, uav) + 1 +NU(i, ua)−
∑
u∈U

s(i, u, uav)− 2

=

∑
u∈U

s(i, u, uav)

NU(i, ua)

(5.11)

The peak height is used to scale the averaged support values. As discussed earlier, the
peak height of a PDF is given by peak = fX(mode(α, β);α, β). The scaling can be seen
as confidence in the support value. To show this by means of an example, we draw 100
and 300 samples (Φ100,Φ300) from a normal distribution with µ = 0.35 and σ = 0.1 to
simulate our support values. Both sets of samples have the same average and variance.
For both sets we calculate α and β. This gives us

α100 = 1 +
∑

ϕi∈Φ100

ϕi︸ ︷︷ ︸
≈100×0.35

≈ 36 β100 = 1 + 100−
∑

ϕi∈Φ100

ϕi︸ ︷︷ ︸
≈100×0.35

≈ 66 (5.12)

for the smaller set. The larger set is described by

α300 = 1 +
∑

ϕi∈Φ300

ϕi︸ ︷︷ ︸
≈300×0.35

≈ 106 β300 = 1 + 300−
∑

ϕi∈Φ300

ϕi︸ ︷︷ ︸
≈300×0.35

≈ 196 (5.13)

If we plot the PDF of two Beta Distributions according to these values, we get the result
shown in Figure 5.2 including the additional information about the peak height.

In this example, the peak height of the Beta Distribution used for the smaller set is

fX(mode(α100, β100);α100, β100) =
1

B(36, 66)
x36−1(1− x)66−1 = 8.3947 (5.14)

60

5 Enhanced Approaches

x

0 0.2 0.4 0.6 0.8 1

P
D

F

0

5

10

15

100 samples

300 samples

Figure 5.2: Plot showing Beta Distributions for 2 sets of samples, drawn from a normal distribution
with µ = 0.35 and σ = 0.1. Calculated statistical properties of both sets are µ100 =
µ300 = 0.344, σ2

100 = σ2
300 = 0.009 in this plot.

and the peak height for the larger set is

fX(mode(α300, β300);α300, β300) =
1

B(106, 196)
x106−1(1−x)196−1 = 14.2213. (5.15)

Hence, the larger set has a peak height of ≈ 1.75 times the peak height of the smaller
set. We can then use this factor to scale the calculated average and counteract the problem
described in Section 5.1. Note that by using this approach we always need to know the
parameters for all items involved to be able to scale to the smallest or largest peak value.
The formal description for the scaling is given by Equations (5.16) and (5.17).

supportΣ(i, ua, uav) =mode(α(i, uav), β(i, uav))× wm(i, uav) (5.16)

Where wm(i, uav) is the previously mentioned scaling factor which is defined as fol-
lows.

wm(i, uav) =
fX(mode(α(i, uav), β(i, uav));α(i, uav), β(i, uav))

max
ĩ∈I

fX(mode(α(̃i, uav), β(̃i, uav));α(̃i, uav), β(̃i, uav))
(5.17)

61

5 Enhanced Approaches

In this equation, ĩ denotes the item with the highest peak in its PDF for the given user
attribute value uav. Using these definitions and the supports specified in Table 3.6, the
aggregated supports in Tables 5.1 and 5.2 are calculated. As an example, all parameters
for item i1 and user attribute value uav13 are calculated:

α(i1, Sport) = 1 + 1.00 + 0.90 + 0.90 + 0.90 = 4.70

β(i1, Sport) = 1 + 5− 4.70 = 1.30

mode(i1, Sport) =
3.70

4
= 0.925

(5.18)

Using those values, the peak height can be calculated.

fX(mode(i1, Sport);α(i1, Sport), β(i1, Sport))

= fX(0.925; 4.70, 1.30) = 2.9854
(5.19)

The resulting Beta Distribution using the parameters calculated in Equation (5.18) are
depicted in Figure 5.3. The mode is equal to the aggregated support calculated in Sec-
tion 3.2, 0.925. The PDF at the position of the mode is 2.9854.

x

0 0.2 0.4 0.6 0.8 1

P
D

F

0

0.5

1

1.5

2

2.5

3

Figure 5.3: Resulting Beta Distribution for item i1 and uav uav13.

When again considering the recommendation requirements specified by user u2

in Table 3.7, the items can be selected and ranked based on the Beta Distribution
based approach. Table 5.3 displays the resulting utility values (Equation (3.7)) and the
corresponding ranks, as well as the resulting ranks when using the basic approach. As an
example, the utility for item i1 is calculated.

62

5 Enhanced Approaches

Field of
Application

Experience
Level Durability Value for

Money Loss of Value

i1
Sport(4.70, 1.30,

0.925, 2.985)

Am(1.85, 4.15,
0.213, 2.206),

Exp(3.75,
2.25, 0.913,

1.997)

Mod(2.00,
4.00, 0.25,

2.109),
Good(3.85,
2.15, 0.713,

2.036)

Pr OK(2.90,
3.10, 0.475,

1.8770),
Exp(2.85,

3.15, 0.463,
1.879)

SV(2.95, 3.05,
0.488, 1.876),

LiVS(2.80,
3.20, 0.45,

1.883)

i2
Sport(1.95, 1.05,

0.95, 1.719)
AB(1.95, 1.05,

0.95, 1.719)

Mod(1.90,
1.10, 0.90,

1.579)

GD(2.00, 1.00,
1.00, 2.000)

LiVF(1.90,
1.10, 0.90,

1.579)

i3

Macro(2.00,
5.00, 0.20,
2.4576),

Portrait(4.20,
2.80, 0.64,

2.1105)

Am(2.40, 4.60,
0.28, 2.234),

Exp(5.65,
1.35, 0.93,

3.403)

Good(5.70,
1.30, 0.94,

3.556)

Pr OK(3.8,
3.20, 0.56,

2.050),
Exp(2.55,
4.45, 0.31,

2.179)

SV(4.55, 2.45,
0.71, 2.214),
LiVS(1.80,
5.20, 0.16,

2.634)

i4

Tele(1.85, 2.15,
0.425, 1.512),

Landscape(1.90,
2.10, 0.45, 1.505)

AB(2.50, 1.50,
0.75, 1.654),

Am(2.80, 1.20,
0.90, 2.035)

Mod(1.90,
2.10, 0.45,

1.505),
Good(1.90,
2.10, 0.45,

1.505)

GD(1.90, 2.10,
0.45, 1.505),
Pr OK(1.85,
2.15, 0.425,

1.512)

LiVS(2.65,
1.35, 0.825,

1.793)

i5

Sport(3.00, 2.00,
0.667, 1.778),
Portrait(1.95,
3.05, 0.316,

1.796)

Exp(2.90,
1.10, 0.967,

3.071)

Good(4.00,
1.00, 1.00,

4.00)

Exp(3.50,
1.50, 0.834,

2.109)

SV(3.50, 1.50,
0.834, 2.109)

Table 5.1: Relevant parameters for Beta Distribution calculated based on supports in Table 3.6 for
items i1 to i5. The values listed in brackets are in correct order: α, β, mode, fX(mode)

First, all items need to be selected to determine the maximum peak value for scal-
ing. The items i1, i2, i7 and i9 fullfill supportΣ(i, uav13) > 0 and supportΣ(i, ia4) >
0. The supports regarding item attributes are not scaled. The maximum peak for
supportΣ(i, uav13) is 3.133. Knowing this, the utility for i1 can be calculated:

utility(i1, REQ) = supportΣ(i1, uav13)× 1 + supportΣ(i, ia4)× 1

= 0.925× 2.985

3.133
+ 1 = 1.881

(5.20)

63

5 Enhanced Approaches

Field of
Application

Experience
Level Durability Value for

Money Loss of Value

i6
Portrait(1.95,

1.05, 0.95, 1.719)

Exp(2.00,
1.00, 1.00,

2.00)

Good(2.00,
1.00, 1.00,

2.00)

Exp(2.00,
1.00, 1.00,

2.00)

SV(1.95, 1.05,
0.95, 1.719)

i7

Landscape(1.80,
5.20, 0.16,

2.634),
Macro(1.90,
5.10, 0.18,

2.538),
Sport(1.50, 5.50,

0.1, 3.055),
Tele(1.95, 5.05,

0.19, 2.496),
Portrait(1.70,

5.30, 0.14, 2.747)

AB(4.85, 2.15,
0.77, 2.358),

Am(3.25, 3.75,
0.45, 2.046)

Moderate(3.45,
3.55, 0.49,

2.038),
Good(3.20,
3.80, 0.44,

2.050)

GD(5.05, 1.95,
0.81, 2.496)

LiVS(1.70,
5.30, 0.14,

2.747),
LiVF(4.25,
2.75, 0.65,

2.122)

i8
Tele(2.70, 1.30,

0.85, 1.858)
AB(1.90, 1.10,

0.95, 2.320)

Bad(1.80,
2.20, 0.40,

1.522),
Mod(1.90,
2.10, 0.45,

1.505)

GD(2.95, 1.05,
0.975, 2.553)

LiVF(2.40,
1.60, 0.70,

1.593)

i9
Sport(4.75, 1.25,

0.938, 3.133)

Am(2.20, 3.80,
0.30, 2.015),

Exp(4.30,
1.70, 0.825,

2.334)

Good(4.45,
1.55, 0.863,

2.507)

Pr OK(2.90,
3.10, 0.475,

1.877),
Exp(2.60,
3.40, 0.40,

1.907)

LiVS(4.00,
2.00, 0.75,

2.109)

i10

Tele(3.50, 3.50,
0.50, 2.037),
Macro(2.45,

4.55, 0.29, 2.214)

Am(1.60, 5.40,
0.12, 2.885),

Exp(5.30,
1.70, 0.86,

2.747)

Mod(2.30,
4.70, 0.26,

2.278),
Good(3.50,
3.50, 0.50,

2.037)

GD(2.00, 5.00,
0.25, 2.458),
Pr OK(4.60,
2.40, 0.72,

2.234)

SV(1.55, 5.45,
0.11, 2.965),
LiVS(4.05,
2.95, 0.61,

2.082)

Table 5.2: Relevant parameters for Beta Distribution calculated based on supports in Table 3.6 for
items i6 to i10. The values listed in brackets are in correct order: α, β, mode, fX(mode)

64

5 Enhanced Approaches

Rank Item Utility Rank Basic Utility Basic
1 i9 1.938 2 1.938
2 i1 1.881 3 1.925
3 i2 1.521 1 1.95
4 i7 1.097 4 1.10

Table 5.3: Items ranked using aggregated supports calculated using the Beta Distribution based ap-
proach as well as the utility obtained using the basic approach.

As can be seen in Table 5.3, the selected items are now ranked differently than when
using the basic approach. Because the confidence in supports for items with fewer
evaluations is lower, the utility for these items will be scaled down, and thus, the items
are not ranked as high as without using this scaling.

The advantage of using this method to scale the supports is the non-linear nature of
the probability density function’s peak height. If, for instance, the ratio of the number of
ratings would be used, the scaling would be too extreme. An item having three times as
many ratings as another item, already would be scaled by a factor of three. In the example
shown in Figure 5.2, the factor between 100 and 300 ratings however is only 1.75. Having
10 times as many ratings as another item would then result in a scaling factor of roughly
three, instead of 10 when using the ratio of number of ratings.

5.2 User Preferences
When defining the utility function used in both proposed recommendation approaches
(Equation (3.7)), a weight regarding user attribute values (w(uav)) and a weight regard-
ing item attributes (w(ia)) was introduced but set to 1 for both approaches. However, by
changing these weights according to user preferences, an improvement in recommenda-
tion accuracy can be achieved. To learn the weights, the genetic algorithm is used.

5.2.1 Genetic Algorithm
Genetic algorithm is a method used in machine learning or artificial intelligence to solve
optimization or search problems. The basic idea of the algorithm is to use the process of
natural selection. The main parts of the algorithm can be categorized into the following
parts:

1. Initialization: An initial population size is specified which depends on the nature
of the problem. Then, the initial population is created randomly in most cases.

65

5 Enhanced Approaches

2. Evaluation and Selection: Based on a fitness or utility function which measures
the quality of the current generation, parts of the existing population are selected
for breeding.

3. Crossover and Mutation: Using the previously selected sub-population, a new
generation is generated using genetic crossover and mutation operations. A simple
example is depicted in Figure 5.4.

4. Termination: Steps 2 and 3 are repeated until a specified stopping criterion is met
or the defined maximum number of generations is reached, the algorithm is stopped,
and the fittest population is given as result.

Figure 5.4: Basic principle of genetic algorithm’s crossover and mutation step. Figure from wikime-
dia.org, released under CC license.

After initialization, steps 2 and 3 are repeated until the termination criterion specified
is met. A detailed explanation of the genetic algorithm is given for instance by Mitchell
in [Mit98].

5.2.2 Learning of User Preferences
To learn the weights associated with user attribute values and item attributes a fitness
function needs to be specified. Because the goal of this optimization task is to increase
the recommendation quality as perceived by the users, the same metric as used for
evaluating the algorithms (Chapter 6) is used.

By using this approach, two different types of user preferences can be learned.

1. Global User Preferences are calculated considering all users who already assigned
a user attribute value to any item. Using this information it is possible to learn for
example that users value the attribute Sport of user attribute Field of Application
higher than Macro, although both user attribute values were selected. Thus, when
calculating the utility of items for a query containing both user attribute values,

66

5 Enhanced Approaches

w(Sport) > w(Macro) will ensure that the global user preferences are honored.

Also, because global user preferences are not bound to a certain user, the learned
preferences can also be used for newly registered users and users who only use the
system to get recommendations without ever evaluating any item.

2. Personalized User Preferences can be calculated using the same approach as was
used for the global user preferences. However, instead of considering all users
only the respective user’s contributions to the system are taken into account when
calculating the personal user preferences.

To calculate personal user preferences, a user needs to have a large number of in-
teractions with the system before something meaningful can be learned about the
user’s preferences. Therefore, it is reasonable to specify a threshold of evaluations
a user needs to reach for a given recommender before calculating his personal user
preferences. However, because personal user preferences are considered to be more
accurate for a given user, they overwrite the global user preferences for a user if
personal user preferences exist. Clearly by definition, personal user preferences
can not be used for newly registered users or users who only use the system to get
recommendations without ever evaluating any item.

As the evaluation in Section 6.3.2 is showing, a major improvement in recommendation
accuracy can be obtained if user preferences are calculated and used to weight aggregated
supports when calculating the item rankings.

5.3 Dataset Quality Assurance
As the recommendation accuracy and therefore quality relies on the information pro-
vided by users, bad data quality is a problem. Bad data quality is mostly caused by
input of users which are either uninformed about the item they are evaluating or by
malicious users. Both cases are considered as being outliers in our knowledge base.
A definition of outliers and their identification was given by Hawkins [Haw80]. In his
work, Hawkins notes that to detect outliers, models of normal behavior need to be defined.

One approach for such models is to measure the time users take to evaluate items.
These models are created based on already existing user interactions with the system.
New interactions are then compared against the models and users are rated based on
their behavior in the system. Also, CAPTCHA microtasks are used to find uninformed
or malicious users. The so-called human score denotes the probability of a user being
human and is calculated mostly based on the obtained models and the answers given to
CAPTCHA microtasks. The lower this score gets, the more probable it is that the user

67

5 Enhanced Approaches

interacting with the system might just be a malicious bot. If a user’s behavior deviates too
much from the calculated models, she is classified as a bot (human score = 0) and every
input is completely ignored. Each user’s human score is then used to weight the user’s
input when calculating the aggregated supports. Therefore, Equation (3.1) for the basic
support needs to be adapted:

supportΣ(i, ua, uav) =

∑
u∈U

s(i, u, uav)× hs(u)

NU(i, ua)
(5.21)

Where hs(u) is the human score of the respective user. This score considers all human
score points a user got in the QA when using PEOPLEVIEWS. Points are awarded for
correct answering CAPTCHAs and for confirming to timing and behaviour models when
interacting with the system. The sum of points is weighted with the human scores of the
top users, such that it will be in the range [0, 1]. The formal definition can be seen in
Equation (5.22).

hs(u) = min

1,

(∑
p∈points

p

)
·

∑
u∈topuser

hs(u)

|topuser|

 (5.22)

To correctly account for the human score, also the calculation of the shape parameters
for the Beta Distribution based approach from Equation 5.9 needs to be changed accord-
ingly:

α(i, uav) : = 1 +
∑
u∈U

s(i, u, uav)× hs(u)

β(i, uav) : = 1 +NU(i, ua)−
∑
u∈U

s(i, u, uav)× hs(u)
(5.23)

The total number of users evaluating which is used in both approaches is also scaled
down using the human score:

NU(i, ua) =
∑
u∈U

[∃uav ∈ ua ∧ s(u, i, uav) 6= NULL]× hs(u) (5.24)

For an evaluation of the impact of quality assurance on the recommendation quality,
the reader of this work is referred to the master’s thesis of Michael Schwarz. The focus
of his thesis is on quality assurance, therefore a detailed evaluation will be done as part of
his work.

68

5 Enhanced Approaches

5.4 Additional Features
In addition to the approaches discussed in detail in this section, there are also features
which will be shortly discussed here. These features do not improve the recommenda-
tion accuracy but add additional features to the recommender system which are useful
concerning security or user convenience.

5.4.1 Obfuscating
As users contribute to the knowledge base of a constraint-based recommender, they
enter information which reflects their personal opinions and tastes. Thus, exposing this
possibly sensitive information needs to be prevented. Also, when being able to infer
internal information, users can sabotage the recommender by manipulating the supports
of certain items.

Imagine the evil user u6 knows that user u5 surely has evaluated item i2. If user u6

now evaluates the same item and knows the recommendation approach, she can - based
on the change in aggregated supports - a) guess how many people already rated the item
and b) in the case of item i2 also calculate the supports user u5 specified.

As an example, user u6 assigns a support of 0 to all user attribute values for the user
attribute Field of Application. By observing that the aggregated support changes from
0.95 to 0.475 she now knows that only one user has rated that item and that the specified
support for Sport by that user was 0.95. Thus, we obfuscate the supports specified by
users as suggested for example by Kandappu et al. [KFBS14] and Parameswaran et al.
[PB07a]. Both papers state that obfuscating the user input in a correct way does not
influence the recommendation accuracy. To not affect the accuracy of our recommender,
a random value (between -5 and 5 is) added to the supports specified by users, which
results in a mean of 0 when only considering the added values. Thus, the aggregated
supports are not changed by obfuscating the user inputs. Of course, the resulting support
value is bounded to stay in the range [0.0, 1.0].

For simplicity and understandability reasons, this enhancement is not considered in the
examples computed in this work.

5.4.2 Recommendation Explanation
As mentioned in Chapter 1, one advantage of constraint-based recommenders is the
possibility to explain the recommendations shown to a user.

When considering the recommendation requirements (REQ) specified by a user, items
are filtered based on those requirements as discussed in Section 3.3. For all requirements

69

5 Enhanced Approaches

req ∈ REQ, the remaining items are marked accordingly as being the highest rated or
lowest rated item for the particular requirement req. One example for the requirements
specified by user u2 in Table 3.7 can be seen in Figure 4.20.

Also, if a user specifies requirements which lead to an empty result set because no
item can satisfy all specified criteria, a suggestion is given on which requirement to re-
move to get results again. Do generate the suggestions a diagnosis algorithm proposed by
Felfernig and Schubert [FSZ12] in a modified form is used. In our implementation a set
of constraints is considered as inconsistent if the resulting set of recommended items is
empty. An example of a generated diagnosis can be seen in Figure 4.21.

5.4.3 Similar Items
When viewing the details of an item, users are presented with a list of items similar
to the one they are currently viewing. The list of similar items is generated using the
so-called cosine-based similarity, which is a concept of item-item collaborative filtering,
as discussed by Sarwar et al. [SKKR01].

To calculate similarities between items, they are represented as vectors in an n-
dimensional space, where n in our case is the number of user attribute values in a rec-
ommender. The similarity between two item vectors~i and ~j is then calculated as shown
in Equation (5.25) where · denotes the dot product between the two vectors.

sim(~i,~j) = cos(~i,~j) =
~i ·~j

||~i||2 × ||~j||2
(5.25)

To get a vector representation of an item, the supports for all user attribute values are
stored in a vector. The ordering of supports is determined by the ID of user attribute val-
ues. Using the example defined in Table 3.4, an item vector would comprise the supports
in the order as illustrated in Equation (5.26). If a certain aggregated support value does
not exist because the respective user attribute value was never assigned to the item, an
aggregated support of 0 is assumed in the item vector.

vi1 =

supportΣ(i1, ua1, uav11)
...

supportΣ(i1, ua1, uav15)
...

supportΣ(i1, ua5, uav51)
...

supportΣ(i1, ua5, uav53)

(5.26)

70

6
Evaluation

In this chapter, the implemented approaches of this thesis are evaluated and compared
against other baseline methods. Since most well known recommendation approaches
are not directly compatible with constraint-based recommenders, we use random,
most-frequent and case-based as baseline methods. The reason most algorithms are not
compatible with the constraint-based recommendation process is that most approaches
either use a single (star) rating assigned to items (collaborative-filtering) or the items
information (content-based) to calculate recommendations. In a constraint-based
recommender system, however, more data is available which can be used in the rec-
ommendation process. Also, as mentioned in Section 1.1, other approaches do not
include any inconsistency management. If no recommendation can be found, most other
algorithms (including the baseline approaches) are not able to find and suggest a possible
solution on what requirements to change to get recommendations again.

We are going to shortly introduce the three used baseline methods in this chapter. Ad-
ditionally the possible improvements when learning user preferences will be evaluated in
this chapter as well. Some parts of this evaluation were already published in [FUH+15].
Also in this chapter, the dataset used for the evaluation and its acquisition process are
discussed.

6.1 Dataset
To evaluate the proposed algorithms for constraint-based recommenders, a suitable
dataset is needed. As mentioned, standard recommendation approaches can not be di-
rectly applied to constraint-based recommendation settings. For this reason, no suitable

71

6 Evaluation

dataset exists which can be used unmodified to evaluate our algorithms. The used dataset
was collected as part of the work done for this master’s thesis.

6.1.1 Acquisition
The data collection to gather the dataset used to evaluate the algorithms was done using
the wiki-based platform WEEVIS13. The wiki-based style allows for fast creation of
knowledge-based recommenders. In addition to that, the defined recommenders can be
used without the need for user accounts. WEEVIS was chosen to collect the dataset
because the recommendation approaches were developed and evaluated in a phase when
the PEOPLEVIEWS user interface was not finished. Therefore, PEOPLEVIEWS could
not be used. Also, the simple user interface of WEEVIS is well known by participants
because of the wiki style and no account is needed to participate in the data acquisition
process.

To collect data, a Canon DSLR recommender was created in WEEVIS. Users par-
ticipating in the study were asked to first specify requirements regarding cameras and
after that select the item that they think matches those requirements best, irrespective of
the item’s position in the list of recommended items. The data sample of specified re-
quirements plus the selected best matching item where stored as one data sample for the
dataset. Figure 6.1 is showing WEEVIS as used for the data acquisition process.

Figure 6.1: Data acquisition process using WEEVIS. Users specified their requirements and selected
the best matching camera.

13 http://www.weevis.org/

72

6 Evaluation

6.1.2 Data
The collected dataset comprises the contributions of 356 distinct user sessions. The dis-
tribution of evaluations over the existing items, as done by the users, can be seen in
Figure 6.2. WEEVIS offers the possibility to export all collected user interactions, there-
fore the dataset could then be used to evaluate the different recommendation approaches.
However, one assumption needs to be made with respect to support values. As can be
seen in Figure 6.1, WEEVIS offers no possibility to specify supports regarding the se-
lected user attribute values. Therefore, a support of 1 is assumed for every value chosen
by the user (0 for not chosen values).

item

5
D
 M

a
rk

 I
II 6

D
7
0
D

5
0
D 7

D
6
0
D

1
1
0
0
D

5
D
S

1
2
0
0
D

7
D
 M

a
rk

 I
I

7
0
0
D

5
0
0
D

6
5
0
D

e
v
a

lu
a

ti
o

n
s
 f

o
r

it
e

m
 i
n

 %

0

5

10

15

20

25

Figure 6.2: Distribution of evaluations over existing items in collected dataset.

6.2 Baseline Methods and Evaluation Approach
The three baseline methods used to compare our approaches against are random, most fre-
quent, and case-based (user similarity). These rather simple recommendation approaches
are applied in this evaluation because other, more sophisticated approaches can not be
used directly with the data contained in a constraint-based recommender.

73

6 Evaluation

6.2.1 Random
The most trivial recommender algorithm utilized in this section, the random recommender
does not consider the recommendation requirements (REQ) specified by the user at all.
Instead, all available items are returned in random order for each request to the recom-
mender.

6.2.2 Most Frequent
The second baseline algorithm, most frequent also does not consider the recommendation
requirements (REQ) specified by users looking for recommendations. Instead, the list of
all items is sorted by the total number of distinct users who assigned any user attribute
value to that item (see Equation (3.2)). For example, considering the values entered in
Table 3.6, all items would be ranked as shown in Table 6.1.

Rank Item NU

1 i3 5
2 i7 5
3 i10 5
4 i1 4
5 i9 4
6 i5 3
7 i4 2
8 i8 2
9 i2 1

10 i6 1

Table 6.1: Items ranked using the most frequent approach, based on data from Table 3.6

6.2.3 Case-Based
The last baseline algorithm used for comparison, case-based recommendation, is based
on previous user interactions. The items recommended to a user are then based on the
items selected by other, similar users. For our dataset where users specified user attribute
values and the best matching item, user similarity is determined based on the specified
values. Consider the subset shown in Table 6.2 and the requirements uav13(Sport),
uav23(Expert), uav42(Price is OK) for a camera specified by user u4. If the similarity
metric EIB is applied for the attributes, the items would be ranked as stated in the
table. Based on that metric, user u1 specified the most similar requirements to the ones
specified by user u4, therefore the item selected by u1 is ranked first when calculating
recommendations. Because similar user profiles are used to rank the items, this approach

74

6 Evaluation

will be denoted as User Similarity in all evaluation plots.

User Specified User Attributes Selected Item Rank
u1 uav13(Sport), uav23(Expert), uav42(Price is OK) i1 1
u2 uav11(Macro), uav23(Expert), uav42(Price is OK) i3 2
u3 uav13(Sport), uav22(Amateur), uav41(Good Deal) i4 3

Table 6.2: Example data as collected for this evaluation using WEEVIS.

6.2.4 Evaluation Approach
To evaluate the implemented approaches, the recommenders need to be trained first.
Therefore, the used datasets are randomly split into train and testsets. After training the
recommender using the train set, the performance is evaluated using the evaluation metric
illustrated in Section 6.2.5.

To test if the algorithms generalize to a dataset, cross-validation is done when evalu-
ating the different algorithms. Because of the dataset’s size and the assumption that the
recommender will always be in a state where all available data is used for training, a
leave-one-out cross-validation was performed. In that approach, in each round one of the
data samples is kept out of the training set and used as single test-case. The process is
repeated for all entries in the dataset, such that every data sample is used for testing once.
The results are then averaged over all performed evaluation runs.

6.2.5 Evaluation Metric
To evaluate the performance of the implemented approaches, an evaluation metric needs
to be defined. In [SG10] Shani et al. define Prediction Accuracy and state that systems
that provide a higher prediction accuracy will be preferred by users. Therefore, a measure
for prediction accuracy that can be applied to our recommender system needs to be found.

In our evaluation, prediction accuracy will be discussed by analysing the recall of all
algorithms. Cremonesi et al. [CKT10] in their work describe how to evaluate top N rec-
ommenders. Top N in this context means that in the evaluation process it is checked if the
item contained in the testset is recommended in the first N positions of all recommended
items. One single run of the leave-one-out cross-validation process would therefore con-
tain the following steps:

1. Select one data sample as testset.

2. Train the recommender algorithms with the remaining items from the dataset.

75

6 Evaluation

3. Use requirements specified in the testset’s data sample to get recommendations.

4. Check if item of the testset’s data sample is contained in the first N recommended
items. If so, a hit is recorded, otherwise no hit will be counted.

Therefore, for one run, we can either have 0 or 1 hit for the respective testset. To
calculate the overall (average) recall and precision, the formulae from Cremonesi et al.
[CKT10] are used. In Equations (6.1), (6.2), and (6.3), N denotes the number of items
considered when checking if the testset’s data sample resulted in a hit. For instance, if the
first three items are considered, N would be set to three.

recall(N) =
#hits(N)

|D|
(6.1)

precision(N) =
recall(N)

N
(6.2)

f-measure(N) = 2× precision(N)× recall(N)

precision(N) + recall(N)
(6.3)

Here, #hits(N) is the overall count of hits recorded when doing leave-one-out cross-
validation while |D| is the overall size of the dataset used for the evaluation process.

6.3 Evaluation Results
The evaluation results for the two proposed recommendation approaches will be discussed
in this section. Additional means of improving the recommendation quality such as user
preferences are discussed separately.

6.3.1 Recommendation Approaches
The recommendation approaches are compared against the three baseline methods ran-
dom, most frequent, and case-based. The used evaluation metrics and the evaluation
approach are explained in Section 6.2. In addition to comparing recall for different N as
discussed in Section 6.2.4, also the relative improvement compared to a chosen baseline
method is shown in these evaluations. The relative improvement with respect to recom-
mendation accuracy is defining how much more likely it is to find the desired item in the
top N recommended items, compared to the chosen baseline method.

76

6 Evaluation

Results

The evaluation results in terms of recall for N in the range [1, 10] are shown in Figure 6.3.
In this figure it can be seen that both implemented methods, the basic approach and the
Beta Distribution based approach, outperform all three baseline algorithms. The Beta
Distribution based approach achieves a recall of nearly 100% already when considering
the first five recommended items, whereas the basic approach also has a recall of 100%
when checking the first seven items.

top N items considered

1 2 3 4 5 6 7 8 9 10

re
c
a

ll
in

 %

0

10

20

30

40

50

60

70

80

90

100

Basic

Beta Distribution Based

User Similarity

Most Frequent

Random

Figure 6.3: Recall for N in the range [1, 10] for all four considered algorithms. The two implemented
algorithms outperform all three baseline algorithms for every N.

To highlight the results achieved by the two algorithms implemented as part of this
master’s thesis, the relative improvements of those two algorithms over the baseline
method most frequent are plotted in Figure 6.4. The basic approach achieves an
improvement of at least 25% over most frequent when considering the cases top 1 to
top 5. The Beta Distribution based approach achieved an even better result, showing an
improvement of at least 40% for the cases top 1 to top 5.

When looking at the improvement for the special case top 1, the relative improvement
of both algorithms is over 100% compared to most frequent. This means, that for both
algorithms it is twice as likely that the desired item is ranked first, as for the most frequent
algorithm.

In Figure 6.5, the precision according to Equation (6.2) is plotted for N in [1, 10].
Also for this measure, the basic and Beta Distribution based approaches outperform the

77

6 Evaluation

top N items considered

1 2 3 4 5 6 7 8 9 10

im
p

ro
v
e

m
e

n
t

o
v
e

r
m

o
s
t

fr
e

q
u

e
n

t
in

 %

0

20

40

60

80

100

120

140

160

Basic

Beta Distribution Based

Figure 6.4: Relative improvement of both implemented approaches compared to most frequent. For
the cases top 1 to top 5 very high improvements can be seen.

considered baseline methods. Because the recall shown in Figure 6.3 converged to 100%
for all methods except random and user-similarity, also the precision converges to the
same value for the other three algorithms. The results depicted in Figure 6.5 show a
constant precision for the random approach, because only for that algorithm the increase
in recall, as can be seen in Figure 6.3, is linear. The precision of the other four approaches
is decreasing, because the increase in recall flattens at some point.

Concluding, the f-measure or F1-score for N in [1, 10] is plotted for all five consid-
ered algorithms in Figure 6.6. As can be seen in Equation (6.3), the f-measure can be
interpreted as being an average of recall and precision. As with the other two discussed
measures, recall and precision, also when evaluating the algorithms with respect to the
f-measure the two algorithms implemented in this master’s thesis achieve better results
than the three baseline methods.

78

6 Evaluation

top N items considered

1 2 3 4 5 6 7 8 9 10

p
re

c
is

io
n

 i
n

 %

5

10

15

20

25

30

35

40

45

50

55

Basic

Beta Distribution Based

User Similarity

Most Frequent

Random

Figure 6.5: Precision for N in the range [1, 10] for all five considered algorithms. The two imple-
mented algorithms outperform all three baseline algorithms for every N.

top N items considered

1 2 3 4 5 6 7 8 9 10

f-
m

e
a

s
u

re

5

10

15

20

25

30

35

40

45

50

55

Basic

Beta Distribution Based

User Similarity

Most Frequent

Random

Figure 6.6: F-measure or F1-score for N in the range [1, 10] for all five considered algorithms. The
two implemented algorithms outperform all three baseline algorithms for every N.

79

6 Evaluation

6.3.2 User Preferences
In Section 5.2 the learning of user preferences was discussed. Learning those preferences
has a massive impact on the recommendation quality and therefore the achieved results
will be discussed in this section.

As explained in Section 5.2, user preferences can be learned on a per-user basis or
globally for all users in the system. Although it is obvious that learning the weights
for each individual user will result in a higher improvement than learning system wide
weights, the second approach was chosen for this evaluation. The reason for this is
that a lot of user interaction in the system is needed to learn individual preferences,
however, when collecting the data most users just used the recommender for one or two
recommendation sessions.

top N items considered

1 2 3 4 5 6 7 8 9 10

re
c
a

ll
in

 %

40

50

60

70

80

90

100

w/o learned weights

w/ learned weights

Figure 6.7: Recall for N in the range [1, 10] for both considered approaches. The approache where
user preferences are learnd outperforms the basic approach without learning any weight
for every N.

The evaluation was done using the basic recommendation approach, discussed in
Section 3.2 as the adaptive weighting can be seen more easily in the formulae discussed
in that section. Also the impact of learning weights can be seen more easily for that
algorithm.

In the evaluation, the fitness function for the genetic algorithm was set to the respective
recall function, recall(N). This results in optimal weights for each evaluated case top
1 to top 10. The results depicted in Figure 6.7 show the recall for the approach using

80

6 Evaluation

top N items considered

1 2 3 4 5 6 7 8 9 10

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

o
v
e

r
n

o
 l
e

a
rn

in
g

 i
n

 %

0

5

10

15

20

25

30

35

w/ learned weights

Figure 6.8: Relative improvement when learning weights compared to not learning user preferences
at all. An improvement of up to 35% was achieved for this approach.

learned weights as well as for the method without learning any user preferences. It can
be seen that the approach with optimal weights for each case (w/ learned weights) clearly
outperforms the case where no learning was applied (w/o learned weights).

The relative improvement of the approaches where user preferences are learned
compared to not learning weights at all is depicted in Figure 6.8. There, an improvement
of up to 35% for learning weights can be seen.

The precision plotted for N in [1, 10] for the two considered approaches is shown
in Figure 6.9. Also for this metric, the approach where user preferences are learned
outperforms the basic approach where no weights are learned.

Concluding, also the f-measure or F1-score is plotted for N in [1, 10] for the two
previously discussed approaches. As can be seen in Figure 6.10, the approach where
weight learning is applied, also achieves a higher f-measure than the approach where no
user preferences are learned.

81

6 Evaluation

top N items considered

1 2 3 4 5 6 7 8 9 10

p
re

c
is

io
n

 i
n

 %

10

15

20

25

30

35

40

45

50

55

60

w/o learned weights

w/ learned weights

Figure 6.9: Precision for N in the range [1, 10] for both considered approaches. The approache where
user preferences are learnd outperforms the basic approach without learning any weight
for every N.

top N items considered

1 2 3 4 5 6 7 8 9 10

f-
m

e
a

s
u

re

15

20

25

30

35

40

45

50

55

60

w/o learned weights

w/ learned weights

Figure 6.10: F-measure or F1-score for N in the range [1, 10] for both considered approaches. The
approache where user preferences are learned outperforms the basic approach without
learning any weight for every N.

82

6 Evaluation

6.3.3 Other Improvements
The improvements discussed in Section 5.4 do not have any impact on the recommenda-
tion quality. Their purpose is to either complicate attacks aimed at the recommendation
results or to improve user experience when using the recommender. Therefore, no evalu-
ation regarding the recommendation accuracy will be done for those improvements.

83

7
Limitations and Future Work

In this chapter, the limitations of the work done within the context of this master’s thesis
are discussed. Also, future work, which might deal with some of the mentioned limita-
tions, as well as future enhancements are is listed.

7.1 Limitations
The limitations of this work are going to be split into different categories. For each cat-
egory, the restrictions are then discussed. The mentioned limitations are of technical and
algorithmic nature, as well as limitations in the evaluation of our approaches.

Technical

Technical limitations of the system that result from the chosen programming language,
frameworks and technologies are listed here.

1. Java: PEOPLEVIEWS (as mentioned in Section 4.1) is implemented using Java and
the Spring framework. Thus, the need to install the Java runtime before deploy-
ing PEOPLEVIEWS arises. Also, case studies by Peter Sestoft [Ses10] show that
Java might be slower than other comparable languages for numeric computations
although the difference is not very large.

2. HTML5: Because many of PEOPLEVIEWS’ UI components use HTML5, not all
browsers are capable of displaying the UI correctly. Microsoft’s IE, for instance,
does not support HTML5 very well. Browsers with no problems include Chrome,
Firefox, Edge, and Safari.

84

7 Limitations and Future Work

Algorithmic

For the algorithms discussed in this master’s thesis, limitations are listed in this section.

1. Recommendation speed: When calculating recommendations, aggregated supports
are used to rank the items. For the recommender to be responsive, those values
need to be calculated before a recommendation is requested. The need for back-
ground tasks which update all aggregated supports whenever a user interacts with
the system arises. In a resource constraint system, this could lead to performance
problems.

2. Genetic algorithm: By learning user preferences by using genetic algorithm, the
recommendation approach becomes even more computationally expensive. On re-
source constraint hardware, this could lead to poor performance of the system.

Evaluation

There are also limitations with respect to the evaluations done in Chapter 6.

1. Baseline methods: As well known and sophisticated recommendation algorithms
are not directly applicable for a constraint-based recommender, we used random,
most frequent and case-based as baseline methods in our evaluations. Those algo-
rithms, however, are not very sophisticated, and a more complex recommendation
approach adapted for constraint-based recommenders might produce better results
than the three methods that were used.

2. Size of dataset: The dataset used for evaluating the algorithms comprises contribu-
tions from 356 participants. The average number of evaluations per item, therefore,
is around 30. For machine learning algorithms like genetic algorithm as used to cal-
culate user preferences, such small data samples might lead to overfitting. Hawkins
[Haw04] gives a good overview of the problem of overfitting.

3. Assumption of Supports: Because the platform used for the data acquisition process
(WEEVIS) did not allow to input supports, a support of 1 for every chosen user
attribute value and 0 for every not chosen value was assumed in the evaluation
process, as already mentioned in Section 6.1.2.

7.2 Future Work
Some of the limitations listed in Section 7.1 could be solved by further improving the
current state of PEOPLEVIEWS or by doing additional work in the context of this project.
This section lists both, future work which aims to improve the limitations listed in Sec-
tion 7.1 as well as possible enhancements.

85

7 Limitations and Future Work

Recommendation Algorithm

The two approaches introduced in this master’s thesis basically rely on the same principle:
Aggregating the specified supports of users calculating a recommendation based on those
values. Future work in the context of recommendation algorithms includes the adoption
of existing, more sophisticated recommendation approaches which can not be directly
applied to a constraint-based recommender system.

For instance, matrix factorization, as discussed by Koren et al. [KBV09], is known
to produce good results in collaborative filtering recommender systems. In its simplest
form, matrix factorization is applied to a sparse, 2-dimensional rating matrix containing
the ratings specified by users for certain items. If adopted for a constraint-based
recommender system, the matrix needs to have more dimensions, as there possibly are
more than one rating per item (in our case as many supports as user attributes are possible).

Machine learning approaches are used to learn user preferences and thus, improve the
recommendation accuracy. Also, outliers are found using machine learning techniques.
In [AT05] Adomavicius and Tuzhilin state that artificial neural networks or decision
trees can be used to generate recommendations in a content-based recommender system.
The point the authors make is that machine learning algorithms do not use a heuristic to
calculate the recommendations. Instead, a model based on the underlying data is built.
Therefore, for instance applying neural networks to a constraint-based recommender
should be examined as future work.

Also, meta information such as names, descriptions, and tags that are entered for
items are not used in the recommendation process. Pazzani and Billsus in their work
[PB07b] discuss aspects of content-based recommendation systems, which use the items’
descriptions and a user profile to generate recommendations. In PEOPLEVIEWS, a user
profile is generated but only used to assign microtasks to users. The already existing user
profile in combination with the mandatory item descriptions could be used to at least
improve the recommendation accuracy of the approaches introduced in this work.

As was discussed in Section 2.5, hybrid approaches might mitigate drawbacks of
recommendation algorithms while combining their advantages. Therefore, hybrid ap-
proaches which combine two or more recommendation algorithms should be evaluated.

Dataset

For a dataset to be usable with more sophisticated machine learning approaches, large
amounts of data need to be collected. Therefore, a long-term data collection process
needs to be initiated, where a large dataset can be collected. It is also necessary to use
PEOPLEVIEWS for that data acquisition process to also collect information such as sup-
ports.

86

7 Limitations and Future Work

Clients

As part of this master’s thesis, an HTML5 web interface which also can be used on mobile
devices was developed. Also, a native iOS client was implemented in the context of a
bachelor thesis. To support more platforms, at least a native Android version needs to be
developed as well.

87

8
Conclusion

In this work, the terminology and entities for a constraint-based recommender system
which relies on human computation were defined. Using those two concepts, a web-based
system capable of handling the configuration of an arbitrary number of new recommender
domains was implemented. Thus, human computation can be used for the creation and
maintenance of recommenders and the items included in those recommenders, as well as
for the collection process of information needed to generate recommendations. By using
the ”wisdom of the crowd”, new recommenders can be built up faster and more easily.
Also, information aggregated from a large number of user inputs will likely better match
new users preferences.

To calculate recommendations, two approaches are presented in this master’s thesis.
Both algorithms use recommendation requirements specified by users looking for
recommendations to match against a knowledge base. Those requirements, seen as
constraints, lead to the selection of recommended items. For ranking the items, two
different approaches were proposed. The performance of those two algorithms was
evaluated in comparison to three baseline methods. The evaluation results clearly show
that both algorithms produce far superior results than the baseline algorithms. In addition
to the two recommendation approaches further enhancements which can be applied
to both methods were discussed. These additional components further improve the
recommendation quality as shown in the evaluation.

The implemented user interface PEOPLEVIEWS features a client-server architecture
with an interface realized as RESTful web services. Therefore, it is easy to extend for
future requirements. Also, any client that can send HTTP requests is able to communicate
with the recommender systems backend. Thus, the implemented system can be viewed

88

8 Conclusion

as a Recommender as a Service (RaaS), which is a novel concept. As a proof of concept,
an iOS client was developed by a student as her bachelor thesis.

Concluding, PEOPLEVIEWS and the included algorithms is a highly configurable rec-
ommender system that is capable of providing users the ability to define their own rec-
ommenders. The proposed algorithms were shown to deliver exceptional performance
improvements of up to 100% in certain cases when compared with the considered base-
line methods. To improve user experience, the implemented algorithms also allow to find
inconsistencies in user input and assist the users in finding a solution for which recom-
mendations can be calculated.

89

Bibliography

[AA05] John Arthur and Shiva Azadegan. Spring framework for rapid open source
j2ee web application development: a case study. In Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Distributed Computing,
2005 and First ACIS International Workshop on Self-Assembling Wireless
Networks. SNPD/SAWN 2005. Sixth International Conference on, pages 90–
95. IEEE, 2005.

[AC10] Deepak Agarwal and Bee-Chung Chen. flda: matrix factorization through
latent dirichlet allocation. In Proceedings of the third ACM international
conference on Web search and data mining, pages 91–100. ACM, 2010.

[AHX15] Ahmad Abdel-Hafez and Yue Xu. Exploiting the beta distribution-based
reputation model in recommender system. In AI 2015: Advances in Artificial
Intelligence, pages 1–13. Springer Science + Business Media, 2015.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gener-
ation of recommender systems: A survey of the state-of-the-art and possi-
ble extensions. Knowledge and Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[BFG11] Robin Burke, Alexander Felfernig, and Mehmet H Göker. Recommender
systems: An overview. AI Magazine, 32(3):13–18, 2011.

[BGLB15] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-
paper recommender systems: a literature survey. Int J Digit Libr, jul 2015.

[BHC+98] Chumki Basu, Haym Hirsh, William Cohen, et al. Recommendation as clas-
sification: Using social and content-based information in recommendation.
In AAAI/IAAI, pages 714–720, 1998.

[BK07] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge.
ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[BL07] James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35, 2007.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-
tion. the Journal of machine Learning research, 3:993–1022, 2003.

90

Bibliography

[BS97] Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3):66–72, 1997.

[Bur99] Robin Burke. Integrating knowledge-based and collaborative-filtering rec-
ommender systems. In Proceedings of the Workshop on AI and Electronic
Commerce, pages 69–72, 1999.

[Bur00] Robin Burke. Knowledge-based recommender systems. Encyclopedia of
library and information science, 69(Supplement 32):180–200, 2000.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User
modeling and user-adapted interaction, 12(4):331–370, 2002.

[CHH13] Chen-Yao Chung, Ping-Yu Hsu, and Shih-Hsiang Huang. βp: A novel ap-
proach to filter out malicious rating profiles from recommender systems.
Decision Support Systems, 55(1):314–325, apr 2013.

[CKT10] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of rec-
ommender algorithms on top-n recommendation tasks. In Proceedings of
the fourth ACM conference on Recommender systems, pages 39–46. ACM,
2010.

[CLMP99] Michelle Keim Condliff, David D Lewis, David Madigan, and Christian
Posse. Bayesian mixed-effects models for recommender systems. In ACM
SIGIR’99 Workshop on Recommender Systems: Algorithms and Evaluation,
volume 15. Citeseer, 1999.

[CP12] Li Chen and Pearl Pu. Critiquing-based recommenders: survey and emerg-
ing trends. User Modeling and User-Adapted Interaction, 22(1-2):125–150,
2012.

[DMM+07] Casey Dugan, Michael Muller, David R Millen, Werner Geyer, Beth Brown-
holtz, and Marty Moore. The dogear game: a social bookmark recommender
system. In Proceedings of the 2007 international ACM conference on Sup-
porting group work, pages 387–390. ACM, 2007.

[ERK11] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative fil-
tering recommender systems. Foundations and Trends in Human-Computer
Interaction, 4(2):81–173, 2011.

[FB08] Alexander Felfernig and Robin Burke. Constraint-based recommender sys-
tems: technologies and research issues. In Proceedings of the 10th interna-
tional conference on Electronic commerce, page 3. ACM, 2008.

[FFJZ06] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Zanker. An integrated environment for the development of knowledge-based

91

Bibliography

recommender applications. International Journal of Electronic Commerce,
11(2):11–34, 2006.

[FFJZ11] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Zanker. Developing constraint-based recommenders. Recommender systems
handbook, 1:187, 2011.

[FFJZ15] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Zanker. Constraint-based recommender systems. In Recommender Systems
Handbook, pages 161–190. Springer Science+Business Media, 2015.

[FHN+14] Alexander Felfernig, Sarah Haas, Gerald Ninaus, Michael Schwarz, Thomas
Ulz, Martin Stettinger, Klaus Isak, Michael Jeran, and Stefan Reiterer. Rec-
turk: Constraint-based recommendation based on human computation. In
RecSys 2014 CrowdRec Workshop, pages 1–6, 2014.

[FJN+14] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank, Ste-
fan Reiterer, and Martin Stettinger. Basic approaches in recommendation
systems. In Recommendation Systems in Software Engineering, pages 15–
37. Springer, 2014.

[FJS+15] Alexander Felfernig, Michael Jeran, Martin Stettinger, Thomas Absen-
ger, Thomas Gruber, Sarah Haas, Emanuel Kirchengast, Michael Schwarz,
Lukas Skofitsch, and Thomas Ulz. Human computation based acquisition of
financial service advisory practices. Organizational Support, page 27, 2015.

[FSZ12] Alexander Felfernig, Monika Schubert, and Christoph Zehentner. An effi-
cient diagnosis algorithm for inconsistent constraint sets. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing, 26(01):53–62,
2012.

[FUH+15] Alexander Felfernig, Thomas Ulz, Sarah Haas, Michael Schwarz, Stefan
Reiterer, and Martin Stettinger. Peopleviews: Human computation for
constraint-based recommendation. In ACM RecSys 2015 CrowdRec Work-
shop, 2015.

[GN04] Arjun K Gupta and Saralees Nadarajah. Handbook of beta distribution and
its applications. CRC Press, 2004.

[GNOT92] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Communications of
the ACM, 35(12):61–70, 1992.

[Gup11] Arjun K. Gupta. Beta distribution. In International Encyclopedia of Statis-
tical Science, pages 144–145. Springer Science + Business Media, 2011.

92

Bibliography

[Haw80] D. M. Hawkins. Identification of Outliers. Springer Science + Business
Media, 1980.

[Haw04] Douglas M. Hawkins. The problem of overfitting. Journal of chemical in-
formation and computer sciences, 44(1):1–12, Jan 2004.

[HKTR04] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T
Riedl. Evaluating collaborative filtering recommender systems. ACM Trans-
actions on Information Systems (TOIS), 22(1):5–53, 2004.

[JI02] Audun Jsang and Roslan Ismail. The beta reputation system. In Proceedings
of the 15th bled electronic commerce conference, volume 5, pages 2502–
2511, 2002.

[JZF09] Dietmar Jannach, Markus Zanker, and Matthias Fuchs. Constraint-based
recommendation in tourism: A multiperspective case study. Information
Technology & Tourism, 11(2):139–155, 2009.

[JZFF10] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. Recommender Systems. Cambridge University Press (CUP), 2010.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-
niques for recommender systems. Computer, (8):30–37, 2009.

[KFBS14] Thivya Kandappu, Arik Friedman, Roksana Boreli, and Vijay Sivaraman.
Privacycanary: Privacy-aware recommenders with adaptive input obfusca-
tion. In Modelling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), 2014 IEEE 22nd International Symposium on,
pages 453–462. IEEE, 2014.

[KNN+08] Vinod Krishnan, Pradeep Kumar Narayanashetty, Mukesh Nathan,
Richard T Davies, and Joseph A Konstan. Who predicts better?: Results
from an online study comparing humans and an online recommender sys-
tem. In Proceedings of the 2008 ACM conference on Recommender systems,
pages 211–218. ACM, 2008.

[Knu92] Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–
422, May 1992.

[LCGM09] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit:
tools for iterative tasks on mechanical turk. In Proceedings of the ACM
SIGKDD workshop on human computation, pages 29–30. ACM, 2009.

[LCGM10] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit:
human computation algorithms on mechanical turk. In Proceedings of the
23nd annual ACM symposium on User interface software and technology,
pages 57–66. ACM, 2010.

93

Bibliography

[LSCP96] David D Lewis, Robert E Schapire, James P Callan, and Ron Papka. Train-
ing algorithms for linear text classifiers. In Proceedings of the 19th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 298–306. ACM, 1996.

[LVA09] Edith Law and Luis Von Ahn. Input-agreement: a new mechanism for col-
lecting data using human computation games. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1197–1206.
ACM, 2009.

[Mar14] Azat Mardan. Redis and authentication patterns. In Pro Express.js, pages
171–176. Springer Science + Business Media, 2014.

[McS03] David McSherry. Similarity and compromise. In Proceedings of the 5th
International Conference on Case-based Reasoning: Research and Devel-
opment, ICCBR’03, pages 291–305, Berlin, Heidelberg, 2003. Springer-
Verlag.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[MS11] Prem Melville and Vikas Sindhwani. Recommender systems. In Encyclope-
dia of machine learning, pages 829–838. Springer, 2011.

[O’N08] Elizabeth J O’Neil. Object/relational mapping 2008: hibernate and the entity
data model (edm). In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1351–1356. ACM, 2008.

[Paz99] Michael J Pazzani. A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[PB07a] Rupa Parameswaran and Douglas M Blough. Privacy preserving collabo-
rative filtering using data obfuscation. In Granular Computing, 2007. GRC
2007. IEEE International Conference on, pages 380–380. IEEE, 2007.

[PB07b] Michael J Pazzani and Daniel Billsus. Content-based recommendation sys-
tems. In The adaptive web, pages 325–341. Springer, 2007.

[QB11] Alexander J Quinn and Benjamin B Bederson. Human computation: a sur-
vey and taxonomy of a growing field. In Proceedings of the SIGCHI con-
ference on human factors in computing systems, pages 1403–1412. ACM,
2011.

[Ric79] Elaine Rich. User modeling via stereotypes*. Cognitive science, 3(4):329–
354, 1979.

94

Bibliography

[RIS+94] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and
John Riedl. Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer sup-
ported cooperative work, pages 175–186. ACM, 1994.

[RMMS04] James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth. Dy-
namic critiquing. In European Conference on Case-Based Reasoning, pages
763–777. Springer, 2004.

[RN05] Francesco Ricci and Quang Nhat Nguyen. Critique-based mobile recom-
mender systems. OEGAI Journal, 24(4):1–7, 2005.

[RUUU12] Anand Rajaraman, Jeffrey D Ullman, Jeffrey David Ullman, and Jef-
frey David Ullman. Mining of massive datasets, volume 1. Cambridge
University Press Cambridge, 2012.

[RV97] Paul Resnick and Hal R Varian. Recommender systems. Communications
of the ACM, 40(3):56–58, 1997.

[Ses10] Peter Sestoft. Numeric performance in c, c# and java. IT University of
CopenhagenDenmark, Version 0.9, 1, 2010.

[SFHS] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collabora-
tive filtering recommender systems. In The Adaptive Web, pages 291–324.
Springer Science + Business Media.

[SG10] Guy Shani and Asela Gunawardana. Evaluating recommendation systems.
In Recommender Systems Handbook, pages 257–297. Springer Science +
Business Media, oct 2010.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings
of the 10th international conference on World Wide Web, pages 285–295.
ACM, 2001.

[SSB05] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. Evaluating similar-
ity measures: a large-scale study in the orkut social network. In Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge dis-
covery in data mining, pages 678–684. ACM, 2005.

[VG15] Koen Verstrepen and Bart Goethals. Top-n recommendation for shared ac-
counts. In Proceedings of the 9th ACM Conference on Recommender Sys-
tems, pages 59–66. ACM, 2015.

[WG10] Greg Walsh and Jennifer Golbeck. Curator: a game with a purpose for col-
lection recommendation. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pages 2079–2082. ACM, 2010.

95

Bibliography

[YSC+13] Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen. Lcars:
A location-content-aware recommender system. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’13, pages 221–229, New York, NY, USA, 2013. ACM.

[ZFH+08] Markus Zanker, Matthias Fuchs, Wolfram Höpken, Mario Tuta, and Nina
Müller. Evaluating recommender systems in tourism—a case study from
austria. Information and communication technologies in tourism 2008,
pages 24–34, 2008.

96

	Introduction
	Motivation
	Goals
	Structure

	Related Work
	Recommender Systems
	Collaborative Recommendation
	Content-Based Recommendation
	Knowledge-Based Recommendation
	Constraint-Based Recommendation
	Critiquing-Based Recommendation

	Hybrid Approaches
	Human Computation
	Recommendation Algorithms
	Beta Distribution Based Algorithms

	Basic Recommendation Approach
	Terminology
	Averaging Support Values
	Recommendation Approach

	PeopleViews
	Architecture
	PeopleViews Server
	Recommender as a Service
	PeopleViews Client

	Used Software Components
	User Interface

	Enhanced Approaches
	Beta Distribution Based Approach
	The Beta Distribution
	Calculating and Scaling Aggregated Support using Beta Distribution

	User Preferences
	Genetic Algorithm
	Learning of User Preferences

	Dataset Quality Assurance
	Additional Features
	Obfuscating
	Recommendation Explanation
	Similar Items

	Evaluation
	Dataset
	Acquisition
	Data

	Baseline Methods and Evaluation Approach
	Random
	Most Frequent
	Case-Based
	Evaluation Approach
	Evaluation Metric

	Evaluation Results
	Recommendation Approaches
	User Preferences
	Other Improvements

	Limitations and Future Work
	Limitations
	Future Work

	Conclusion

