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Kurzfassung

Störungen der axialen Symmetrie des Magnetfeldes in einem Tokamak führen
zu neoklassischen radialen Plasmaströmen, die wiederum Drehmomente er-
zeugen und damit die Plasmarotation beein�ussen können. Da diese Drehmo-
mente oft in Form einer Viskosität beschrieben werden, wird dieses Phänomen
auch als neoklassische toroidale Viskosität (NTV) bezeichnet. Zur Berech-
nung der NTV Drehmomente werden derzeit analytische, semi-analytische
und numerische Modelle verwendet, die Vereinfachungen bezüglich der Geo-
metrie, Stoÿoperatoren und Transportregime machen, welche eine Verringe-
rung der Dimensionalität des ursprünglichen 4D Problems ermöglichen. In
dieser Arbeit wurde eine numerische Methode entwickelt, die die Dimension
des Standardansatzes zur Lösung des neoklassischen Transportproblems um
eins reduziert und dabei auf die oben genannten Vereinfachungen verzichtet.
Die einzige Annahme dieser Methode ist, dass die Störungen des Magnet-
feldes hinreichend klein sind und damit die Teilchenbewegung innerhalb der
gestörten Fluss�äche kaum durch das Störfeld beein�usst wird (quasilinearer
Ansatz). Dennoch decken quasilineare Transportregime einen groÿen Para-
meterbereich moderner Tokamak-Experimente ab. Basierend auf diesem qua-
silinearen Ansatz wurde eine Version des Codes NEO-2 entwickelt und mit
verschiedenen analytischen und semi-analytischen Modellen, sowie mit dem
nichtlinearen Code DKES verglichen. Für eine reale Tokamak-Geometrie wird
ein Verfahren zur Auswertung der NTV Drehmomente besprochen, das aus
der quasilinearen NEO-2 Version und dem Code NEMEC zur Berechnung der
Magnetfeldgleichgewichte besteht. Mit Hilfe dieser Prozedur wird das NTV
Drehmoment für ein ASDEX Upgrade Gleichgewicht und ein Einteilchen-
Plasma berechnet. Die erhaltenen Resultate werden mit Ergebnissen von
SFINCS, einem nichtlinearen Code zur Lösung der drift-kinetischen Glei-
chung, sowie mit semi-analytischen Modellen verglichen. Weiters wurde das
bisher in NEO-2 implementierte Stoÿmodell (der gesamte linearisierte Stoÿ-
operator) von einem simplen Plasma (Elektronen und eine Ionensorte) auf
ein beliebiges Plasma mit mehreren Ionensorten erweitert. Dies erlaubt in
Zukunft die Berechnung der NTV Drehmomente in Plasmen mit einem si-
gni�kanten Anteil von Verunreinigungen.
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Abstract

Plasma rotation in tokamaks can be signi�cantly in�uenced by the torque
arising from neoclassical radial plasma currents due to 3D magnetic pertur-
bations, e.g., the toroidal �eld (TF) coil ripple, error �elds, coils for edge
localized modes (ELM) mitigation purposes. Since this torque is often ex-
pressed through a viscous force, the phenomenon is termed as neoclassical
toroidal plasma viscosity (NTV). For the evaluation of the NTV torque sev-
eral analytical, semi-analytical and numerical approaches are presently used,
which make simplifying assumptions concerning geometry, collision operators
and transport regimes, which, in particular, help to reduce the dimension of
the original 4D problem. In this thesis a numerical approach has been de-
veloped, which reduces the dimension of the standard neoclassical transport
problem by one without such simpli�cations of the linearized drift kinetic
equation. The only assumption is that the perturbations are small enough
such that the particle motion within the perturbed �ux surface is only weakly
a�ected by the perturbation �eld (quasilinear approach). Nevertheless, these
quasilinear regimes cover a signi�cant range of the parameter domain of mod-
ern tokamak experiments. Based on this quasilinear approach, a version of
the code NEO-2 has been developed and benchmarked against various ana-
lytical and semi-analytical models, as well as the nonlinear code DKES. For
a real tokamak geometry a procedure for the evaluation of the NTV torque,
which consists of the upgraded version of NEO-2 and the code NEMEC for
the computation of the magnetic �eld equilibria, is discussed. Using this
procedure, the NTV torque is evaluated numerically for an ASDEX Upgrade
equilibrium and a single-species plasma. The obtained results are compared
to computations of the nonlinear drift kinetic equation solver SFINCS, as
well as to semi-analytical models. Furthermore, the collision model (full lin-
earized collision operator), which has been implemented so far in NEO-2 for
a simple plasma (electrons and one sort of ions), has been generalized here
for the general case of a multi-species plasma. This would allow computa-
tions of the torque for plasmas with signi�cant impurity contents including
the computations of the additional impurity transport caused in tokamaks
by the violation of the toroidal magnetic �eld symmetry.
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Chapter 1

Introduction

The two most advanced concepts for magnetic con�nement fusion devices

are the tokamak and the stellarator. Examples of a tokamak and a stel-

larator con�guration are shown in Figure 1.1 and Figure 1.2, respectively.

In Figure 1.1 an insight into the cryostat vessel of the tokamak ITER is

given, which is currently being built in Cadarache (France). The advanced

stellarator experiment Wendelstein 7-X, see Figure 1.2, is located in Greif-

swald (Germany) and went into operation in December 2015. Both concepts

have in common that they generate strong magnetic �elds to con�ne the

plasma particles which travel along the magnetic �eld lines belonging to

toroidal magnetic surfaces. Typically, the tokamak is assumed to be a per-

fectly axisymmetric device, whereas the stellarator has a much more complex

magnetic �eld geometry and, therefore, is considered as non-axisymmetric.

In a real tokamak experiment this axial symmetry is often violated due to,

e.g., the toroidal �eld (TF) coil ripple, error �elds and resonant magnetic

perturbation (RMP) coils used for the mitigation of edge localized modes

(ELMs). Thus, a strict separation into axisymmetric and non-axisymmetric

fusion devices is not possible anymore. The perturbations of the axial sym-

metry in a tokamak are of importance since they cause non-ambipolar radial

particle �uxes. These non-ambipolar particle �uxes can modify the toroidal

plasma rotation which, in turn, a�ects the stability and transport in tokamak

plasmas.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: In-cryostat overview of the tokamak ITER. c©ITER Organization
Source: https://www.iter.org/doc/all/content/com/gallery/media/7%20-
%20technical/in-cryostat%20overview%20130116.jpg

The purpose of this thesis has been to provide a contribution to the bet-

ter understanding of the plasma rotation in tokamaks, which in�uences the

plasma con�nement and, thus, the performance of future power plants based

on nuclear fusion. As a result of this endeavor a tool for the numerical

evaluation of the neoclassical toroidal viscosity (NTV), which is produced by

non-resonant magnetic perturbations in a tokamak, has been developed. This

numerical tool, an upgraded version of the code NEO-2 [1, 2], allows for an

e�cient evaluation of non-ambipolar particle �uxes due to non-axisymmetric

electromagnetic �eld perturbations, which in turn produce a toroidal torque

a�ecting the plasma rotation. This is accomplished without making sim-

plifying assumptions for all quasilinear regimes. In this context quasilinear

regimes mean parameter domains where the particle motion within a mag-

netic �ux surface is not in�uenced by the perturbation �eld itself. Since the
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Figure 1.2: Technical drawing of the advanced stellarator Wen-
delstein 7-X. c©Max-Planck-Institut für Plasmaphysik, Source:
http://www.ipp.mpg.de/2498182/zoom.jpg

relative magnitude of electromagnetic �eld perturbations with respect to the

total magnetic �eld is small, quasilinear regimes cover a large domain of pa-

rameters including the reactor scale plasmas. Before this upgraded version of

the code NEO-2 there existed various analytical and semi-analytical models

for the computation of NTV [3, 4, 5], which have in common that they make

simpli�cations such as the restriction to certain transport regimes, simpli-

�ed device geometry or Coulomb collision model. Well-established codes for

the evaluation of particle �uxes in stellarators as the DKES code [6] make

often also use of certain simpli�cations of the underlying drift kinetic equa-

tion. For example, DKES uses a Lorentz collision model and neglects the

contribution from magnetic drifts to the poloidal and toroidal rotation ve-

locity. With respect to Monte-Carlo methods [7, 8, 9], which provide also a

universal approach for the evaluation of NTV, the numerical approach real-

ized within the upgraded version of the code NEO-2 is more e�cient and,
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thus, would allow for the use of NEO-2 within a 1D transport code. The

upgraded version of NEO-2 has been validated and benchmarked against

various analytical and semi-analytical models, as well as the nonlinear codes

DKES [6] and NEO [10]. The derivations of the theoretical framework for

the upgraded code NEO-2 and the results of the extensive benchmarking

phase have been published in Ref. [2]. In Ref. [2], aside from the developed

theoretical formalism, also a re-derivation of the exact toroidal momentum

conservation equation and its approximate form including all leading order

terms in Larmor radius and perturbation amplitude is presented. Further-

more, the �ux-force relation has been generalized there for the case of fast

plasma rotation.

After the benchmarking phase, the quasilinear version of the code NEO-2

has been extended to the case of general tokamak geometry. The proce-

dure for the evaluation of non-ambipolar particle �uxes in a real tokamak

device consists of two steps, the calculation of the equilibrium including the

non-axisymmetric magnetic perturbations using the code NEMEC [11] and

a subsequent computation of the non-ambipolar particle �uxes with NEO-

2. Based on this procedure, a study of the NTV torque for a few ASDEX

Upgrade equilibria has been carried out. These equilibria include pertur-

bations from the TF ripple and from ELM mitigation coils with di�erent

distribution of current values resulting in di�erent perturbation �eld spectra

in the ASDEX Upgrade shot #30835. Since RMPs are strongly shielded by

plasma response currents in ASDEX Upgrade [12], magnetic �elds computed

within ideal MHD theory, where RMPs are shielded perfectly, provide a good

approximation in a major part of the plasma volume except for narrow res-

onant layers around resonant rational �ux surfaces. For this set of equilibria

the NEO-2 results for the ion NTV torque have been compared to results

obtained by the code SFINCS [13], which solves the nonlinear problem per-

tinent to neoclassical stellarator transport and, therefore, is not limited to

small values of the perturbation amplitude. Computationally, this is a much

more demanding task than solving the quasilinear problem. In contrast to

the DKES code, which solves the reduced monoenergetic problem, SFINCS

as NEO-2 uses the full linearized Coulomb collision operator.
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The structure of this thesis is as follows. In Chapter 2 the quasilinear

approach used for the evaluation of the torque produced by non-resonant

non-axisymmetric magnetic perturbations is derived, as well as a discussion

of the toroidal momentum conservation in a plasma is given. The bench-

marking results for a simpli�ed tokamak geometry with circular �ux surfaces

are shown in Chapter 3, and in Chapter 4 an application of the quasilinear

version of the code NEO-2 to an ASDEX Upgrade discharge is presented. In

Chapter 5 the numerical approach implemented in NEO-2 is generalized for

the case of a multi-species plasma, and in Chapter 6 the results of this thesis

are summarized. In Appendices A, B and C analytical approaches for the

evaluation of non-ambipolar particle �uxes in the 1/ν regime, a method for

the transformation from Boozer [14] to Hamada [15] coordinates, and details

regarding the derivation of the quasilinear approach are given, respectively.

Publications associated with this thesis

Peer-reviewed journal articles

• S. V. Kasilov, W. Kernbichler, A. F. Martitsch, H. Maassberg, and

M. F. Heyn. Evaluation of the toroidal torque driven by external non-

resonant non-axisymmetric magnetic �eld perturbations in a tokamak.

Phys. Plasmas, 21(9):092506, 2014.

• W. Kernbichler, S. V. Kasilov, G. Kapper, A. F. Martitsch, V .V. Nemov,

C. G. Albert, and M. F. Heyn. Solution of drift kinetic equation in stel-

larators and tokamaks with broken symmetry using the code NEO-2.

Plasma Phys. Contr. Fusion, submitted, 2016.

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, G. Kapper, C. G. Al-

bert, M. F. Heyn, H. M. Smith, E. Strumberger, S. Fietz, W. Suttrop,

M. Landreman, the ASDEX Upgrade Team and the EUROfusion MST1

Team. E�ect of 3D magnetic perturbations on the plasma rotation in

ASDEX Upgrade. Plasma Phys. Contr. Fusion, 58(7):074007, 2016.
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Conference proceedings

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, and H. Maassberg.

Evaluation of non-ambipolar particle �uxes driven by external non-

resonant magnetic perturbations in a tokamak. In 41st EPS Conference

on Plasma Physics, volume 38F, page P1.049, Berlin, Deutschland,

2014. European Physical Society.

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, M. F. Heyn, E. Strum-

berger, S. Fietz, W. Suttrop, A. Kirk, the ASDEX Upgrade Team

and the EUROfusion MST1 Team. Evaluation of the neoclassical

toroidal viscous torque in ASDEX Upgrade. In 42nd EPS Conference

on Plasma Physics, volume 39E, page P1.146, Lisbon, Portugal, 2015.

European Physical Society.

Poster presentations

• S. V. Kasilov, W. Kernbichler, and A. F. Martitsch. Evaluation of

non-ambipolar particle �uxes driven by non-resonant magnetic per-

turbations in a tokamak. Joint 19th ISHW and 16th RFP workshop,

Padova, Italy, 2013.

• A. F. Martitsch, W. Kernbichler, S. V. Kasilov, M. F. Heyn, and

H. Maassberg. Evaluation of the toroidal torque driven by external

non-resonant non-axisymmetric magnetic �eld perturbations in a toka-

mak. 19th Joint EU-US Transport Task Force Meeting, Culham, UK,

2014.

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, G. Kapper, C. G. Al-

bert, M. F. Heyn, E. Strumberger, S. Fietz, W. Suttrop, the ASDEX

Upgrade Team and the EUROfusion MST1 Team. E�ect of 3D mag-

netic perturbations on the plasma rotation in tokamaks. 20th Interna-

tional Stellarator-Heliotron Workshop, Greifswald, Germany, 2015.



Chapter 2

Methods

In this chapter a method for the evaluation of the torque produced by non-

resonant non-axisymmetric magnetic �eld perturbations is presented, which

has been developed in the course of this thesis together with Sergei V. Kasilov

and my supervisors. It has to be noted that the methods described in Sec-

tions 2.2 and 2.3 have been published in the following journal article [2] and

conference proceeding [16]:

• S. V. Kasilov, W. Kernbichler, A. F. Martitsch, H. Maassberg, and

M. F. Heyn. Evaluation of the toroidal torque driven by external non-

resonant non-axisymmetric magnetic �eld perturbations in a tokamak.

Phys. Plasmas, 21(9):092506, 2014.

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, and H. Maassberg.

Evaluation of non-ambipolar particle �uxes driven by external non-

resonant magnetic perturbations in a tokamak. In 41st EPS Conference

on Plasma Physics, volume 38F, page P1.049, Berlin, Deutschland,

2014. European Physical Society.

The developed numerical approach has been implemented in an upgraded

version of the code NEO-2 [1, 2], which is benchmarked against various an-

alytical [3, 17, 18] and semi-analytical models [19], as well as the DKES

code [6] and SFINCS [13]. The benchmarking results are summarized in

Chapter 3 and an application of the code NEO-2 to ASDEX Upgrade equi-

libria is shown in Chapter 4. The structure of this chapter is as follows.

7
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In Section 2.1 basic de�nitions are given, in particular, a relation between

plasma rotation and radial electric �eld is established and the drift kinetic

equation equation is introduced. The toroidal momentum conservation in a

plasma and the neoclassical toroidal viscous (NTV) torque are discussed in

Section 2.2. The derivation of the quasilinear approach implemented in the

upgraded version of the code NEO-2 is given in Section 2.3, and in Section 2.4

analytical models used for benchmarking are described.

2.1 De�nitions

2.1.1 Coordinates and geometry

Modeling of plasma transport in toroidal con�nement devices requires the

knowledge of the magnetic �eld B in a complex geometry. Thus a proper

choice of the coordinate system can tremendously simplify the algebra perti-

nent to the physical problem. There exists a large variety of so-called toroidal

�ux coordinate systems, which have been extensively studied since the mid-

dle of the last century. In this section basic features of speci�c sets of toroidal

�ux coordinate systems, where the magnetic �eld lines become straight, are

listed and fundamental quantities are de�ned. A more detailed discussion

of straight �eld line �ux coordinate systems can be found in in the book of

W.D.D'haeseleer et al [20].

Let x = (x1, x2, x3) = (r, ϑ, ϕ) denote straight �eld line �ux coordinates,

i.e. Br = 0 and Bϕ = qBϑ, where the toroidal angle ϕ is a symmetry variable

and q = q(r) denotes the safety factor. The magnetic �eld can be presented

either in a co-variant form,

B = Br∇r +Bϑ∇ϑ+Bϕ∇ϕ, (2.1)

or in a contra-variant form,

B = Bϑeϑ +Bϕeϕ = Bϑ√g (∇ϕ×∇r) +Bϕ√g (∇r ×∇ϑ) (2.2)
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where the components of the magnetic �eld are given by [20, p. 77],

Bϑ =
1

2π
√
g

∂Ψr
pol

∂r
, Bϕ =

1

2π
√
g

∂Ψtor

∂r
, (2.3a)

Br = −4π

c
η̃ +

∂Φ̃m

∂r
, Bϑ =

2

c
Itor +

∂Φ̃m

∂ϑ
, Bϕ =

2

c
Id

pol +
∂Φ̃m

∂ϕ
. (2.3b)

In (2.3a) and (2.3b) Ψtor(r), Ψr
pol(r), c, Itor(r), Id

pol(r), η̃(r, ϑ, ϕ) and Φ̃m(r, ϑ, ϕ)

are toroidal magnetic �ux, poloidal-ribbon magnetic �ux, speed of light,

toroidal current, poloidal-disk current, current stream function and scalar

magnetic potential, respectively (see [20, p. 77]), and
√
g denotes the metric

determinant,
√
g =

∂r

∂r
× ∂r

∂ϑ
· ∂r

∂ϕ
. (2.4)

The current stream function and the scalar magnetic potential are periodic

functions in the angles, see [20, pp. 129�142]. For the axisymmetric, unper-

turbed tokamak magnetic �eld the derivative of the scalar magnetic potential

along ϕ is zero and, therefore, the co-variant toroidal B-�eld component is

constant on a �ux surface, i.e. Bϕ = Bϕ(r). Here, the e�ective radius r [10]

is used to label �ux surfaces, which is de�ned by the condition

〈|∇r|〉 = 1, (2.5)

where

〈a〉 ≡ 1

δV

∫

δV

d3r a(r) =




2π∫

0

dϑ

2π∫

0

dϕ
√
g



−1


2π∫

0

dϑ

2π∫

0

dϕ
√
ga(x)




(2.6)

denotes the neoclassical �ux surface average [20, 2]. The neoclassical �ux

surface average of a quantity a means volume averaging of a over an in-

�nitesimally small shell with volume δV lying between two neighboring �ux

surfaces [20, p. 85]. Using this de�nition, the �ux surface area S can be
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expressed through the neoclassical surface average (2.6) as

S(r) =

2π∫

0

dϑ

2π∫

0

dϕ
∂r

∂ϑ
× ∂r

∂ϕ
· ∇r|∇r| =

2π∫

0

dϑ

2π∫

0

dϕ
√
g|∇r| =

2π∫

0

dϑ

2π∫

0

dϕ
√
g.

(2.7)

The �ux surface average of the contra-variant component of the particle �ux

density corresponds to the �ux density averaged over the �ux surface area,

〈nαV r
α 〉 = 〈nαVα · ∇r〉 =

1

S

2π∫

0

dϑ

2π∫

0

dϕ
∂r

∂ϑ
× ∂r

∂ϕ
·Vαnα =

1

S

∮
dS·Vαnα = Γα,

(2.8)

where nα is the density and Vα is the �uid velocity of species α.

The straight �eld line �ux coordinate system introduced above is based on

a particular choice for the angles, which is well-suited for the mathematical

description of axisymmetric devices. This degree of freedom can be used to

design coordinate systems with certain features. One straight �eld line �ux

coordinate system (r,ϑf ,ϕf) is related to another (r,ϑF,ϕF) by following set

of transformation equations,

ϑF = ϑf +
∂Ψr

pol

∂r
GF(r, ϑf , ϕf), (2.9a)

ϕF = ϕf +
∂Ψtor

∂r
GF(r, ϑf , ϕf), (2.9b)

where GF(r, ϑf , ϕf) is an arbitrary periodic function which ful�lls the subse-

quent magnetic di�erential equation,

2πB · ∇GF =
1√
gF

− 1√
gf

. (2.10)

For example, Hamada coordinates (r,ϑH,ϕH) [15] are obtained by deforming

the angles in such a way that aside from magnetic �eld lines also current

density lines appear to be straight. This results in a Jacobian which is
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constant on a �ux surface,

√
gH =

∂V

∂r

(
∂r

∂V
× ∂r

∂ϑH

· ∂r

∂ϕH

)
=
∂V

∂r
(
√
g)H =

∂V

∂r

1

4π2
=
S(r)

4π2
. (2.11)

In Boozer coordinates (r,ϑB,ϕB) [14] this free parameter is used to make the

periodic magnetic scalar potential vanish, which yields very simple expres-

sions for the co-variant poloidal and toroidal B-�eld components,

BϑB
=

2

c
Itor, BϕB

=
2

c
Id

pol. (2.12)

The Jacobian for Boozer coordinates with r as a �ux surface label is given

by

√
gB =

∂Ψtor

∂r

(
∂r

∂Ψtor

× ∂r

∂ϑB

· ∂r

∂ϕB

)
=
∂Ψtor

∂r
(
√
g)B =

∂Ψtor

∂r

ι-Itor + Id
pol

πcB2

=
∂Ψtor

∂r

ι-BϑB
+BϕB

2πB2
=
∂ψtor

∂r

ι-BϑB
+BϕB

B2
=
∂ψr

pol

∂r

BϑB
+ qBϕB

B2
, (2.13)

where ψtor = Ψtor/(2π) and ψr
pol = Ψr

pol/(2π).

2.1.2 Plasma rotation and radial electric �eld

The equilibrium electric �eld E = −∇Φ is linked with the plasma ion �uid

velocity V via the ideal MHD momentum conservation equation neglecting

inertia and viscosity [21, 2],

∇pi = eini

(
E +

1

c
V ×B

)
, (2.14)

where pi, ei and ni are ion pressure, charge and density, respectively. In the

following relations between the radial electric �eld and the contra-variant

poloidal and toroidal components of the plasma rotation velocity are estab-

lished using standard neoclassical theory. At �rst the perpendicular compo-

nent of the �uid velocity V⊥ is obtained from the cross-product of (2.14)



12 CHAPTER 2. METHODS

with B,

V⊥ = V − hh ·V =
c

B
h×

(∇pi
eini
− E

)
, (2.15)

where h = B/B is the unit vector along the magnetic �eld. The contra-

variant components of V⊥ are then,

V r
⊥ = V⊥ · ∇r = 0, (2.16)

V ϑ
⊥ = V⊥ · ∇ϑ =

cBϕ√
gB2

(
p′i
eini
− Er

)
=

cTiBϕ

ei
√
gB2

(
p′i
pi

+
eiΦ

′

Ti

)
, (2.17)

V ϕ
⊥ = V⊥ · ∇ϕ = − cBϑ√

gB2

(
p′i
eini
− Er

)
= − cTiBϑ

ei
√
gB2

(
p′i
pi

+
eiΦ

′

Ti

)
, (2.18)

where Ti = pin
−1
i is the ion temperature and primed quantities denote par-

tial radial derivatives of the respective quantities, e.g., p′i = ∂pi/∂r. Here,

pressure, density, temperature and radial electric �eld are assumed to be �ux

surface functions (constant on a �ux surface), i.e. poloidal and toroidal vari-

ations of these quantities are not considered. The parallel component of the

�uid velocity, V‖ = V‖h, is determined by the condition of divergence free

rotation,

∇ ·V = ∇ ·
(
V⊥ + V‖

)
=

1√
g

∂

∂xi

√
g
(
V i
⊥ + V i

‖
)

=
1√
g

∂

∂ϑ

√
g
(
V ϑ
⊥ + V ϑ

‖
)

= 0, (2.19)

which is valid for subsonic incompressible �ows. This condition immediately

follows from the continuity equation if the quantities considered in the trans-

port ordering have a weak time dependence [21, p. 156]. The term with the

derivative over ϕ in (2.19) vanishes in the unperturbed tokamak �eld be-

cause of axisymmetry. It should be noted that V⊥ itself is not divergence

free, which results in the existence of a parallel �uid velocity that eventually
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balances the divergence. Upon inserting (2.17) into (2.19),

0 =
∂

∂ϑ

√
g

(
cTiBϕ

ei
√
gB2

(
p′i
pi

+
eiΦ

′

Ti

)
+
Bϑ

B
V‖

)

=
√
gBϑ ∂

∂ϑ

(
cTiBϕ

ei
√
gBϑB2

(
p′i
pi

+
eiΦ

′

Ti

)
+
V‖
B

)
, (2.20)

one can solve for V‖ which is determined up to an arbitrary �ux surface

function K(r) times B,

V‖ = − cTiBϕ

ei
√
gBϑB

(
p′i
pi

+
eiΦ

′

Ti

)
+K(r)B. (2.21)

In order to retain the generic form of V‖ given by (5) in [2], K(r) is cast in

terms of Onsager symmetric transport coe�cients Dij (Dij = Dji), which

link the thermodynamic forces Aj de�ned by

A1 =
1

nα

∂nα
∂r
− eαEr

Tα
− 3

2Tα

∂Tα
∂r

, A2 =
1

Tα

∂Tα
∂r

, A3 =
eα
Tα

〈
E‖B

〉

〈B2〉 , (2.22)

where E‖ is the inductive electric �eld, with the thermodynamic �uxes Ii
de�ned as

I1 = Γα, I2 =
Qα

Tα
, I3 = nα

〈
V‖B

〉
, (2.23)

where Qα is the �ux surface averaged heat �ux density, via the relations

Ii = −nα
3∑

j=1

DijAj. (2.24)

After multiplying (2.21) with B and �ux surface averaging, the subsequent

expression for the parallel �ow is obtained,

〈
BV‖

〉
= − cTiBϕ

ei
√
gBϑ

(
p′i
pi

+
eiΦ

′

Ti

)
+K(r)

〈
B2
〉

= −
(
D31

(
p′i
pi

+
eiΦ

′

Ti

)
+

(
D32 −

5

2
D31

)
T ′i
Ti

)
. (2.25)
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The arbitrary integration constant K(r) is �xed by (2.25) as

K(r) =
D31

〈B2〉

(
5

2
− D32

D31

)
T ′i
Ti

=
ckBϕ

ei
√
gBϑ 〈B2〉

∂Ti
∂r

, D31 =
cTiBϕ

ei
√
gBϑ

, (2.26)

where the coe�cient k(r) = 2.5−D32/D31 depending on plasma collisional-

ity changes for a tokamak with in�nite aspect ratio between -2.1 and 1.17,

see [22, 23, 24, 25, 2]. In case of a tokamak with unit aspect ratio the plasma

cannot rotate poloidally and, therefore, k has to vanish because all particles

are trapped in such a con�guration, which in turn results in an in�nite neo-

classical parallel viscosity (see, e.g., Ref. [21, p. 198]). This coe�cient k is

computed by the original version of the code NEO-2 [1], which is used to

evaluate the distribution function and the transport coe�cients for toroidal

con�nement devices in regimes where the e�ect of electric �eld on the trans-

port coe�cients is negligible. Using (2.26), the expression for the parallel

velocity becomes

V‖ = − cTiBϕ

ei
√
gBϑB

(
p′i
pi

+
eiΦ

′

Ti

)
+

ckBBϕ

ei
√
gBϑ 〈B2〉

∂Ti
∂r

. (2.27)

For the divergence free poloidal and toroidal components of the �uid velocity

(angular frequencies) one obtains

V ϑ =
ckBϕ

ei
√
g 〈B2〉

∂Ti
∂r

, V ϕ = qV ϑ − cTi
ei
√
gBϑ

(
p′i
pi

+
eiΦ

′

Ti

)
. (2.28)

2.1.3 Guiding center motion of a charged particle in a

electromagnetic �eld

A description of transport processes within kinetic theory requires the knowl-

edge of the charged particle trajectories in an electromagnetic �eld. The

associated equations of guiding center motion are well-known and have been

extensively discussed in the review of Morozov and Solov'ev [26]. The deriva-

tion of the equations of motion, which is presented in this section, follows the

variational principle introduced by R. G. Littlejohn [27]. In this approach an

adiabatic ordering parameter ε, which physically represents the smallness of
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Larmor radius ρL to the macroscopic scale length L, is naturally included.

The ordering parameter will be kept in the �nal expressions to illustrate

the transport ordering used upon deriving the drift kinetic equation in Sec-

tion 2.1.4. A very detailed re-derivation of the guiding center Lagrangian

and the corresponding set of equations of motion is given in the thesis of

P. Leitner [28] for the case of static electromagnetic �elds. In this section

also slow variations in time, τ = εt, of the electromagnetic �elds are taken

into account.

The guiding center Lagrangian Lgc = Lgc(z, ż) expanded up to the �rst

order in ε for phase space variables z = (rg, J⊥, φ, w) is given by (see also

Eq. (29) in Ref. [27]),

Lgc =
eα
cε

A(rg, τ) · ṙg +mαv‖h(rg, τ) · ṙg − w − εJ⊥φ̇, (2.29)

where mα is species α mass, rg is the position of the guiding center, φ is the

gyrophase,

J⊥ ≈
mαv

2
⊥

2ωc,α

(2.30)

is the perpendicular adiabatic invariant and w is the total energy

w =
mαv

2

2
+ eαΦ(rg, τ). (2.31)

Here, A, ωc,α = eαB(mαc)
−1, v‖ = σ

√
2m−1

α (w − eαΦ(rg, τ)− J⊥ωc,α) and

σ = ±1 are the magnetic vector potential, cyclotron frequency, parallel ve-

locity and velocity sign, respectively. Dotted quantities denote the total time

derivative of the respective quantity. The equations of motion are obtained

from the Euler-Lagrange equations,

d

dt

∂Lgc

∂ż
− ∂Lgc

∂z
= 0. (2.32)

For the velocity space variables J⊥, φ and w subsequent set of relations is
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found,

φ̇ = −ωc,α

ε
, J̇⊥ = 0, v‖ = h · ṙg. (2.33)

From the cross-product of the Euler-Lagrange equation for rg,

0 =
d

dt

∂Lgc

∂ṙg

− ∂Lgc

∂rg

= mαv̇‖h−
eα
cε

ṙg ×B∗ +
eα
c

∂A

∂τ
+ εmαv‖

∂h

∂τ
+

h

v‖
(ṙg · ∇) [eαΦ + J⊥ωc,α] ,

(2.34)

with h, the guiding center velocity vg = ṙg can be determined

vg = ṙg = v‖
B∗

B∗‖
+

ε

B∗‖
h× ∂A

∂τ
= v‖

B

B∗‖
+ vgd

= v‖
B

B∗‖
+

ε

B∗‖

(
v2
‖

ωc,α

∇×B +
v2
⊥ + 2v2

‖
2ωc,α

h×∇B − ch× E

)
, (2.35)

where B∗ = ∇×A∗, B∗‖ = B∗ ·h and A∗ is the modi�ed vector potential [26],

A∗ = A + ε
mαc

eα
v‖h. (2.36)

The scalar product of (2.34) with ṙg gives the relation for the change of

energy with time,

ẇ = eαṙg · E(A), (2.37)

whereby only leading order terms in ε are retained and E(A) denotes here the

inductive electric �eld,

E(A) = −1

c

∂A

∂τ
. (2.38)

The complete set of equations of motion for the phase space variables z =

(rg, J⊥, φ, w) are given by,

ṙg = vg, J̇⊥ = 0, φ̇ = −ωc,α

ε
, ẇ = eαṙg · E(A). (2.39)
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The Jacobian of these variables is

Jinv =
∂ (r,p)

∂ (rg, J⊥, φ, w)
=

eB∗‖
c
∣∣v‖
∣∣ . (2.40)

2.1.4 Drift kinetic equation

The kinetic equation is the basis for all transport studies on a microscopic

level. Due to the very di�erent time and length scales involved in plasma

transport the kinetic equation is a sti� integro-di�erential equation in a six-

dimensional phase space. A numerical solution of the kinetic equation with-

out model simpli�cations is therefore not possible. Here, the linearized drift

kinetic equation (LDKE) is derived using the standard neoclassical transport

ordering, which reduces the problem dimension by two. The four-dimensional

LDKE is the starting point for the evaluation of non-ambipolar �uxes due to

non-axisymmetric magnetic �elds.

The kinetic equation expressed in terms of phase space variables z =

(rg, J⊥, φ, w) is given by

∂f

∂t
+ vg ·

∂f

∂rg

+ ẇ
∂f

∂w
+ φ̇

∂f

∂φ
= L̂cf, (2.41)

where L̂c is the Landau collision integral [29]. Note that the species index α

is omitted here and in the following expressions in order not to overload the

notation. The collision integral can also be presented in a standard Fokker-

Planck form

L̂cf =
∂

∂v
·
[←→

D · ∂f
∂v
− F

m
f,

]
(2.42)

where
←→
D is the velocity space di�usion tensor and F the drag force [30]. The

gyro-motion of the charged particle, which is described by the last term on

the left-hand side of (2.41), represents the shortest time scale of all processes

investigated here and, especially, is much faster than transport processes.

Therefore, it is useful to average (2.41) over the gyrophase, which yields the



18 CHAPTER 2. METHODS

gyrokinetic equation,

∂f

∂t
+ vg ·

∂f

∂rg

+ 〈ẇ〉φ
∂f

∂w
=
〈
L̂cf

〉
φ
, (2.43)

where f is considered to be independent of gyrophase from now on and 〈. . .〉φ
denotes the gyro-average. Formally, the gyro-average of the collision integral

can be obtained when velocity space di�usion coe�cients and drag force

components evaluated at the actual particle position are replaced with the

respective quantities evaluated at the guiding center position.

In the standard neoclassical transport ansatz the Larmor radius ρL is

assumed to be small in comparison to the macroscopic scale length L of

radial gradients (of density, temperature, magnetic �eld,. . . ) [21],

ε ≡ ρL/L� 1, (2.44)

where ρL = vT/ωc and vT =
√

2T/m is the thermal velocity. The radial

transport considered here is purely di�usive which results in time derivatives

of the order of [21]
∂

∂t
∼ D

L2
∼ ε2ν ∼ ε2

vT
L
, (2.45)

where ν is the collision frequency and D ∼ νε2 is the di�usion coe�cient.

Furthermore, plasmas shall be strongly magnetized,

∆ ≡ ν/ωc � 1, (2.46)

and �ow velocities are regarded to be subsonic, i.e. smaller than the thermal

speed,

V ∼ εvT . (2.47)

Using the neoclassical transport ordering (2.44)�(2.47), the drift kinetic equa-

tion in the lowest order with respect to ε is obtained from the gyrokinetic

equation (2.43) as

v‖h · ∇f0 = L̂cf0. (2.48)

In order to show that the solution to the lowest order in ε, f0, corresponds to
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a Maxwellian (see, e.g., Ref. [21] or Ref. [23]), equation (2.48) is multiplied

by ln f0, integrated over velocity space and �ux-surface averaged,

〈∫
d3v (ln f0) v‖h · ∇f0

〉
=

〈∫
d3v (ln f0) L̂cf0

〉
. (2.49)

The left-hand side of (2.49) becomes zero,

0 =
∑

σ=±1

2πeσ

c

〈 ∞∫

eΦ

dw

w−eΦ
ωc∫

0

dJ⊥B · ∇f0 (ln f0 − 1)

〉

=

〈∫
d3v (ln f0) v‖h · ∇f0

〉
, (2.50)

because the �ux-surface average annihilates the operator B · ∇g for any

periodic function g(r, ϑ) (see Eq. (4.9.32) of Ref. [20]). Due to Boltzmann's

H-theorem, ∫
d3v (ln f) L̂cf ≤ 0, (2.51)

where the equality holds if f is a Maxwellian fM, equation (2.49) can be

ful�lled only if f0 = fM. This means that the distribution function to the

lowest order in ε must be a Maxwellian,

f0 = fM(r, w) =
n

π3/2v3
T

e−(w−eΦ)/T . (2.52)

Therefore, one can expand the solution f in powers of ε with respect to a

local Maxwellian,

f = fM + f1 +O(ε2), (2.53)

whereby straight �eld line �ux coordinates are introduced for the guiding

center position rg = (r, ϑ, ϕ). The �rst-order drift kinetic equation (4D

LDKE) is then given by,

L̂f1 ≡ vϑg
∂f1

∂ϑ
+ vϕg

∂f1

∂ϕ
− L̂cLf1 = −vrg

∂fM

∂r
− eE‖v‖

∂fM

∂w
≡ ḟM, (2.54)

where E‖ = h·E(A) and L̂cL is the linearized collision operator. The full time
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derivative of the Maxwellian can be expressed in terms of thermodynamic

forces (2.22),

ḟM = −fM

3∑

k=1

qkAk +
efM

T
v‖h · ∇δΦ, (2.55)

where

q1 = −vrg, q2 = −mv
2

2T
vrg, q3 = v‖B, (2.56)

and δΦ is the solution to the magnetic di�erential equation,

h · ∇δΦ = B

〈
E‖B

〉

〈B2〉 − E‖ (2.57)

which also satis�es 〈δΦ〉 = 0 [6]. Since (2.54) is a linear integro-di�erential

equation, in a simple plasma where the coupling between the perturbed dis-

tributions of di�erent species (electrons and ions) can be ignored, the dis-

tribution function f1 can be written as a superposition of solutions for the

individual thermodynamic forces,

f1 = fM

3∑

k=1

f1,kAk −
eδΦ

T
fM, (2.58)

where f1,k are solutions to

L̂fMf1,k = qkfM. (2.59)

The more general case, where the coupling between di�erent particle species

is treated accurately as required in the presence of a few sorts of ions, is

discussed in Chapter 5.
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2.2 Toroidal momentum conservation in a plasma

and neoclassical toroidal viscous torque

2.2.1 General form of the toroidal momentum conser-

vation equation in a plasma

The �uid momentum conservation equation for species α is obtained from

the �rst moment of the kinetic equation [21],

∂

∂t
mαnαVα +∇ ·←→Π α = eαnα

(
E +

1

c
V ×B

)
+ Rα, (2.60)

where Rα is the Coulomb friction force and
←→
Π α is the stress tensor, which

includes the inertial term, the scalar pressure pα and the viscous stress tensor
←→π α,

←→
Π α = mα

∫
d3vvvfα = mαnαVαVα + pα

←→
I +←→π α. (2.61)

Summation of (2.60) over all species leads to the conservation law for the

total momentum,

∂

∂t

∑

α

mαnαVα +
∑

α

∇ ·←→Π α = ρE +
1

c
j×B, (2.62)

ρ and j are the total plasma charge and current density, respectively. Due

to third Newton's law the friction forces cancel each other and, therefore, no

such term appears in (2.62). Using Maxwell's equations for the closure of ρ

and j,

∇ · E = 4πρ, ∇×B =
4π

c
j +

1

c

∂E

∂t
, (2.63)

the Lorentz force density on the right-hand side of (2.62) can also be evalu-

ated in terms of electromagnetic �eld quantities [31, 32, 33],

ρE +
1

c
j×B = ∇ ·←→σ − 1

c2

∂S

∂t
, (2.64)
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where ←→σ and S are Maxwell stress tensor and Pointing �ux, respectively,

←→σ =
1

4π

(
EE− E2

2

←→
I + BB− B2

2

←→
I

)
, S =

c

4π
E×B. (2.65)

With (2.64) it is possible to express the conservation law for the total mo-

mentum (2.62) in a conservative form [34, 2],

∂P

∂t
+∇ ·←→Π = 0, (2.66)

where the total momentum P and total stress tensor
←→
Π of plasma and elec-

tromagnetic �eld are given by,

P =
∑

α

mαnαVα +
1

c2

∂S

∂t
,

←→
Π =

∑

α

←→
Π α −←→σ (2.67)

The toroidal momentum conservation equation follows from multiplica-

tion of (2.66) with the toroidal co-variant basis vector eϕ,

(
∂Pϕ
∂t

)

x

+

(
∂xi

∂t

)

r

∂Pϕ
∂xi

+
1√
g

∂

∂xi
√
g Πi

ϕ = 0, (2.68)

where the time derivative of Pϕ at a �xed spatial point r is evaluated in the

moving frame x = x(r, t),

(
∂Pϕ
∂t

)

r

=

(
∂Pϕ
∂t

)

x

+

(
∂xi

∂t

)

r

∂Pϕ
∂xi

. (2.69)

Due to the symmetry of the stress tensor, Πij = Πji, and the rotational

symmetry of the metric tensor gij no additional source term occurs in (2.68),

eϕ · ∇ ·
←→
Π =

1√
g

∂

∂xi
√
g Πijej · eϕ − Πijej ·

∂

∂xi
eϕ

=
1√
g

∂

∂xi
√
g Πi

ϕ − Πij ∂r

∂xj
· ∂2r

∂ϕ∂xi

=
1√
g

∂

∂xi
√
g Πi

ϕ − ΠijΓj,ϕi︸ ︷︷ ︸
=0

=
1√
g

∂

∂xi
√
g Πi

ϕ, (2.70)
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where Γj,ϕi denotes the Christo�el symbol of �rst kind,

Γj,ϕi =
∂r

∂xj
· ∂2r

∂ϕ∂xi
=

∂

∂ϕ

(
∂r

∂xj
· ∂r

∂xi

)

︸ ︷︷ ︸
→∂gji/∂ϕ=0

− ∂r

∂xi
· ∂2r

∂ϕ∂xj
= −Γi,ϕj. (2.71)

The change of coordinates in time considered here takes place on a longer time

scale than the viscosity changes. This means also that temporal variations

of the magnetic �eld equilibria have only a negligible small e�ect on the

evaluation of viscosities. Averaging over the toroidal angle leads to the 2D

toroidal momentum conservation equation,

(
∂P̄ϕ
∂t

)

xp

+

(
∂xip
∂t

)

r

∂P̄ϕ
∂xip

+
1√
g

∂

∂xip

√
g Π̄i

ϕ = 0, (2.72)

where bar denotes averaging over the toroidal angle ϕ and xip are the poloidal

coordinates, e.g., R and Z for cylindrical coordinates x = (R,ϕ, Z) or r and

ϑ for �ux coordinates x = (r, ϑ, ϕ). Using

0 =

(
∂

∂t
(
√
g)−1

)

r

−
(
∂

∂t

(
∇x1 · ∇x2 ×∇x3

))

r

= −1

g

(
∂
√
g

∂t

)

r

−
(
∂∇xi
∂t

)

r

1√
g

(
∂r

∂xi

)

t

= −1

g

[(
∂
√
g

∂t

)

r

+
√
g

(
∂r

∂xi

)

t

(
∇xj

)
t

∂

∂xj

(
∂xi

∂t

)

r

]

= −1

g

[(
∂
√
g

∂t

)

x

+

(
∂xi

∂t

)

r

∂
√
g

∂xi
+
√
g
∂

∂xi

(
∂xi

∂t

)

r

]

= −1

g

[(
∂
√
g

∂t

)

x

+
∂

∂xi
√
g

(
∂xi

∂t

)

r

]
, (2.73)

one can re-write (2.72) in the form of a 4D divergence,

1√
g

∂

∂t

√
gP̄ϕ +

1√
g

∂

∂xip

√
g

((
∂xip
∂t

)

r

P̄ϕ + Π̄i
ϕ

)
= 0. (2.74)

After averaging over unperturbed �ux surfaces the term with the time deriva-

tive of coordinates in (2.72) vanishes and the 1D toroidal momentum conser-
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vation equation is obtained,

0 =

〈
1√
g

∂

∂t

√
gP̄ϕ +

1√
g

∂

∂xip

√
g

((
∂xip
∂t

)

r

P̄ϕ + Π̄i
ϕ

)〉

=
1

δV

{
∂

∂t

r2(t)∫

r1(t)

dr

︸ ︷︷ ︸
= δr 6=f(t)

2π∫

0

dϑ

2π∫

0

dϕ
√
gP̄ϕ −

2π∫

0

dϑ

2π∫

0

dϕ

[√
gP̄ϕ

(
∂r

∂t

)

r

]r2(t)

r1(t)

+

+

2π∫

0

dϑ

2π∫

0

dϕ

[√
g

(
∂r

∂t

)

r

P̄ϕ +
√
g Π̄r

ϕ︸ ︷︷ ︸
→ δr ∂

∂r

√
gΠ̄rϕ

]r2(t)

r1(t)

}

=
1

S

∂

∂t
S 〈Pϕ〉+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
, (2.75)

where the Leibniz integral rule has been used in the second step and S denotes

here the surface area (2.7).

2.2.2 Toroidal rotation equation for small amplitude ex-

ternal perturbations

In this section a re-derivation of the toroidal rotation equation [3, 35] ac-

cording to Ref. [2] is given in order to show the underlying approximations

and to introduce a common notation. The approximations made upon the

derivation use only the smallness of perturbation �eld amplitudes and of

the Larmor radius. The toroidal torque density due to non-resonant non-

axisymmetric magnetic perturbations, which enters the toroidal rotation

equation as a source term, is typically cast in terms of a neoclassical toroidal

viscosity [3, 4, 36] (NTV). This viscosity is evaluated via a �ux-force rela-

tion [37] from the non-ambipolar particle �uxes. Such a simple relation holds

only for Hamada coordinates, see Ref. [38], whereas for other �ux coordinates

the whole pressure tensor has to be considered. In Ref. [2] it has been found

that not only the pressure tensor but also the inertial term drives the NTV

torque, whereby the latter becomes important for fast plasma rotation. The

remaining part of this subsection corresponds to the coauthored Section IIIB
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of the publication by Kasilov et al. [2]. Equation and reference numbers have

been modi�ed accordingly.

The exact total momentum conservation equations (2.72) and (2.75) are

rather demonstrative but not very useful for practical evaluation of the ef-

fects of external non-resonant ideal magnetic perturbations. Instead, an ap-

proximate equation retaining the leading order terms in Larmor radius and

perturbation amplitude is used in practice. For a derivation of the approx-

imate rotation equation straight �eld line �ux coordinates (generally time

dependent) associated with the perturbed magnetic �eld [3, 4] with vector

potential in the form

A = Aϑ(t, r)∇ϑ+ Aϕ(t, r)∇ϕ (2.76)

are a convenient choice. Summing up the toroidal co-variant components of

Eq. (2.60) over species and averaging the result over perturbed �ux surfaces

gives

1

S

∂

∂t
S

〈
∂r

∂ϕ
·
∑

α

mαnαVα

〉
+

〈
∂r

∂ϕ
·
∑

α

∇·Πα

〉
+

+
1

c

(
dAϕ
dt
〈ρ〉 − √gBϑ 〈jr〉

)
=

〈
∂2r

∂t∂ϕ
·
∑

α

mαnαVα

〉
+ 〈ρEϕ〉+

1

c

dAϕ
dt
〈ρ〉.

(2.77)

So far this equation is exact. The purpose now is to retain in (2.77) only

the leading order terms in the perturbation amplitude εM and in the Larmor

radius ρL. Thus, �rst of all, one has to ignore the di�erence between the

perturbed and unperturbed �ux coordinates in the �rst term because this

di�erence is a negligible next order correction in εM . For the same reason one

has to ignore all right hand side terms, which result from the time dependence

of the coordinates, because it is assumed that the ramp up of the toroidal

current and of the perturbation �eld are singular events (the axisymmetric

inductive �eld coming from variation of the poloidal �ux ψ = −Aϕ is already
separated to the left hand side while the toroidal �ux Aϑ can contribute only
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due to the time dependence of �ux coordinates).

The �ux-force relation is obtained starting from the stationary kinetic

equation where the dependence of the electromagnetic �eld on time is para-

metric due to di�erent time scales involved, and the plasma is assumed to be

strictly neutral. Thus, one obtains an analog of (2.77) where only the stress

tensor and the term with radial current remain,

〈
∂r

∂ϕ
·
∑

α

∇·ΠNA
α

〉
=

1

c

√
gBϑ

∑

α

eαΓNAα ≡ −TNAϕ . (2.78)

Here TNAϕ denotes the toroidal torque density from non-axisymmetric (NA)

external magnetic perturbations. Particle �ux densities ΓNAα are approxi-

mated in this relation by the leading order in ρL through the solution of

the linearized drift-kinetic equation obtained with the standard neoclassi-

cal ansatz. Thus, one neglects classical transport (since it is ambipolar it

does not a�ect the radial current), polarization drift, and radial transport

of momentum (being of higher order in ρL). Note that at this point it is

assumed that the poloidal rotation is at its equilibrium value and, there-

fore, the non-ambipolar �ux densities in (2.78) can be expressed through the

thermodynamic forces and transport coe�cients DNA
ij using (2.24). (In case

of fast rotations, the poloidal �ow is compressible in contrast to subsonic

�ows discussed in Section 2.1.2, and the toroidal rotation shear should be in-

cluded in the set of thermodynamic forces, see, e.g., Ref. [21].) The product
√
gBϑ = −∂Aϕ/∂r = ∂ψpol/∂r does not depend on the particular choice of

the straight �eld line coordinate system. Within the leading order in εM , it

should be computed for unperturbed coordinates.

Subtracting Eq. (2.78) from what remains of Eq. (2.77) and retaining

only the leading order terms in εM and ρL one obtains an equation for the

axisymmetric radial current,

1

S

∂

∂t
S

〈
∂r

∂ϕ
·
∑

α

mαnαVα

〉
+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
AX

+
1

c

dAϕ
dt
〈ρ〉 =

=
1

c

√
gBϑ 〈jr〉+ TNAϕ ≡ 1

c

√
gBϑ 〈jr〉AX. (2.79)
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Here, the right hand side corresponds to the axisymmetric radial current,

〈jr〉AX = 〈jr〉 −∑α eαΓNAα , which is driven by the axisymmetric momentum

transport and by the time derivative of the toroidal momentum (polariza-

tion current). All terms on the left hand side correspond to unperturbed

�ux coordinates and
〈
Πr
ϕ

〉
AX

is the axisymmetric stress (excluding the scalar

pressure) responsible for the radial momentum transport [22, 39], which ap-

pears in the next order over ρL (i.e., this transport is absent in standard

neoclassical theory). An essential point in obtaining Eq. (2.79) is to ignore

the contribution of the polarization drift to the non-axisymmetric part of the

stress tensor. This contribution would appear in Eq. (2.79) because Eq. (2.78)

does not include this drift and Eq. (2.77) does. It has been ignored because it

is a next order correction in εM to the non-axisymmetric stress tensor (which

is already small in the leading order over εM) because the polarization drift

driven by non-axisymmetric stress is respectively small over εM too.

Note that so far the radial electric �eld and its time derivative are not

determined by Eq. (2.79) rather they are external parameters, which deter-

mine the radial current. The closure of the problem is achieved by expressing

the total radial current in (2.79) via the time derivative of the radial electric

�eld with help of �ux surface averaged contra-variant radial component of

Ampere's law [40, 3, 41],

〈jr〉 = − 1

4π

〈
∂E

∂t
· ∇r

〉
, (2.80)

which leads to the momentum conservation equation in a usual form,

1

S

∂

∂t
S 〈Pϕ〉+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
= TNAϕ . (2.81)

Here only the axisymmetric Pointing �ux Sϕ and the Maxwell stress tensor

component σrϕ,

Sϕ =
c

4π

√
gErBϑ, σrϕ =

1

4π
ErEϕ, (2.82)

appear in the total quantities Pϕ and Πr
ϕ, respectively. To complete the set,
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the contributions from turbulent �uctuations are included a-posteriori, thus

re-de�ning the total axisymmetric toroidal momentum and its radial �ux

density in Eq. (2.81) as

〈Pϕ〉 =

〈
∂r

∂ϕ
·
∑

α

mαnαVα

〉
+

1

4πc

√
g〈grr〉ErBϑ +

〈
∆Pϕ

〉
,

〈
Πr
ϕ

〉
=

〈
Πr
ϕ

〉
AX
− 1

4π
〈grr〉ErEϕ +

〈
∆Πr

ϕ

〉
, (2.83)

where grr = |∇r|2 is the contra-variant radial component of the metric tensor.
For computing

〈
∆Pϕ

〉
and

〈
∆Πr

ϕ

〉
one should take their values from the

Eq. (2.75) in presence of turbulent �uctuations but in absence of the external

perturbation magnetic �eld, subtract their axisymmetric values given by the

terms shown explicitly in (2.83) and ensemble average the result (compare to

Refs. [42, 43, 35]). Another, rather demonstrative form of the conservation

law for the canonical angular momentum of the plasma (see also Ref. [34])

is obtained expressing in 〈Pϕ〉 the poloidal �eld as
√
gBϑ = −∂Aϕ/∂r and

using ∇ · E = 4πρ and Eq. (2.80),

〈Pϕ〉 =
∑

α

〈
nα

(
mαVα ·

∂r

∂ϕ
+
eα
c
Aϕ

)〉
+
〈
∆Pϕ

〉
,

〈
Πr
ϕ

〉
=

〈
Πr
ϕ

〉
AX

+
1

c
〈jr〉Aϕ +

〈
∆Πr

ϕ

〉
. (2.84)

It can be seen from (2.78) that non-ambipolar �uxes are driven not only

by toroidal viscosity and the pressure gradients within the �ux surface but

also by inertia. This part of stress can be ignored for subsonic rotations

where the role of inertia is negligible. Actually, this is the case in stellarators

where the violation of axial symmetry is strong. This is not necessarily

the case in tokamaks. The original �ux-force relation [37] has been derived

for general type devices ignoring the case of fast toroidal rotation, which is

not important if the non-axisymmetric �eld is strong. The omission of the

inertial term, obviously, has no consequences for the evaluation of the toroidal

torque via non-ambipolar particle �uxes, if these �uxes are directly computed

from the solution of linearized drift-kinetic equation [3, 4, 5] (the standard
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way). Moreover, In Refs. [44, 12] the torque in the form of non-ambipolar

�uxes is computed also for the resonant small-amplitude perturbations in

the framework of quasilinear theory (evaluation of the �uxes in this case

is performed then in unperturbed �ux coordinates). Note that the various

parts of the non-axisymmetric plasma stress tensor appearing in the �ux-force

relation do not enter the toroidal rotation equation (2.81). They have only

been used for terming the phenomenon as �neoclassical toroidal viscosity�.

The presence of the inertial term in the torque does not contradict the

result of Ref. [38] where the guiding center expression for the non-ambipolar

�ux has been directly related to the pressure tensor. Partly the inertial

term can be recovered there by setting the parallel guiding center velocity

to v‖ = V‖ + v′‖ where V‖ is the (small) parallel �ow velocity and v′‖ is

the relative velocity contributing to the pressure tensor. Contributions of

the perpendicular �ow velocity (essentially the E × B velocity because the

gradient drift velocity is always negligible in the guiding center ordering) is

recovered if instead of the guiding center velocity for the usual (weak) electric

�eld ordering used in Ref. [38] one uses the expression for the strong electric

�eld.

Note that equation (2.81) is almost the same as Eq. (6) of Ref. [40]. If one

ignores the anomalous terms or moves them to the external non-axisymmetric

torque and expresses their sum in the form of the �non-Coulombic friction

force�, and then represents the second term in the expression (2.83) for Pϕ
as E · ∇ψ (4πc)−1, the only di�erence would be the second term in the mo-

mentum �ux density
〈
Πr
ϕ

〉
, which has been ignored in Ref. [40] by assuming

strict plasma neutrality when computing radial �uxes driven by the inductive

�eld. The axisymmetric electromagnetic momentum retained in Ref. [40] is

usually ignored [3, 41] because it is small compared to the plasma momen-

tum as v2
Ac
−2B2

polB
−2 where vA is the Alfven speed and Bpol is the poloidal

magnetic �eld (this estimate follows immediately if one assumes the toroidal

rotation (2.28) being purely due to the electric �eld). The axisymmetric elec-

tromagnetic momentum �ux scales to the axisymmetric neoclassical momen-

tum �ux by the same parameter times (me/mi)
1/2β−1

i B2
polB

−2A1/2, where βi
is the normalized pressure and A is aspect ratio. Therefore, it is also ignored.
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Ignoring also the electromagnetic momentum of the turbulent �uctuations,

the evolution of the toroidal velocity (essentially of the radial electric �eld)

is described by a simpli�ed toroidal rotation equation in symmetry �ux vari-

ables [20] (compare to Ref. [41]) neglecting contributions from NBI and other

external sources except for the non-resonant magnetic perturbations,

1

S

∂

∂t
S
∑

α

mα 〈gϕϕnαV ϕ
α 〉+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
= TNAϕ , (2.85)

where gϕϕ = R2 is the co-variant toroidal component of the metric tensor.

Rather demonstrative is the �generic� form of the torque density [41],

TNAϕ = −νtmini 〈gϕϕ (V ϕ − V ϕ
in )〉 , (2.86)

which is obtained expressing the non-ambipolar �ux densities in (2.78) through

the thermodynamic forces and the transport coe�cients DNA
ij using (2.24)

and replacing in forces A1 the radial electric �eld with the ion toroidal rota-

tion velocity V ϕ via (2.28). The rotation relaxation rate νt (toroidal viscosity

frequency) and the �intrinsic� (�o�set�) rotation velocity V ϕ
in take a particular

simple form if the electron particle �ux is negligible. Then they are fully

determined by ion transport coe�cients as follows,

νt =
e2
i g
(
Bϑ
)2
DNA

11

c2miTi 〈gϕϕ〉
=
DNA

11

ρ2
ϑ

, V ϕ
in =

c kNA
ei
√
gBϑ

dTi
dr

, (2.87)

where

kNA =
DNA

12

DNA
11

− 5

2
+

B2
ϕ k

〈B2〉 〈gϕϕ〉
, (2.88)

and ρϑ is the poloidal ion gyroradius. The generic form of the torque, which

is valid for the bounce averaged drift kinetic equation, has been indicated in

Ref. [36].

It should be noted that the assumption of negligible electron transport

is generally not valid [36, 45] and is made here to allow for a simple expres-

sion for the o�set rotation velocity. It is needed below for an illustration

of numerical results for single component transport coe�cients. In a general
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case, this o�set velocity contains additional contributions proportional to the

density gradient and electron temperature gradient.

2.3 Quasilinear approach for the evaluation of

non-ambipolar particle �uxes

Due to violations of the axial symmetry in a tokamak, the linearized drift

kinetic equation (2.54) becomes a four-dimensional integro-di�erential equa-

tion, which is a rather di�cult task for a direct numerical evaluation. This

problem is well-known in stellarator theory because the magnetic �elds are

there 3D by construction. Therefore, it seems to be natural to adapt methods

developed for stellarators to tokamaks with small amplitude magnetic �eld

perturbations. A possibility to reduce the problem dimension by one is to

use a mono-energetic approach [6, 46], which provides a rather good approx-

imation for transport coe�cients in most transport regimes of importance.

In the mono-energetic approach Eq. (2.54) is solved using a Lorentz collision

model. Based on this mono-energetic result, a solution to the full kinetic

equation can be approximated using a truncated momentum preserving col-

lision operator [47]. The standard version of NEO-2 [1] solves Eq. (2.54) with

the full linearized collision operator but only in regimes where the e�ect of

the cross-�eld rotation frequency on the transport is negligible small. In case

of su�ciently small magnetic perturbation �eld amplitudes this limitation

can be removed using a quasilinear approach. Based on this quasilinear ap-

proach, a modi�ed version of the code NEO-2 [2] has been developed for the

treatment of quasilinear transport regimes where the e�ect of the perturba-

tion �eld on the particle motion within �ux surfaces is small. The perturbed

distribution function is then linear in the perturbation �eld and, thus, the

problem dimension can be reduced by one using a Fourier analysis with re-

spect to the toroidal angle. The quasilinear approach requires small enough

perturbation amplitudes εM (relative amplitude of the non-axisymmetric per-

turbation of the magnetic �eld module) such that, in particular, the e�ect of

locally trapped (blocked by the perturbation �eld) particles can be ignored.
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This can be done if at least one of the two conditions (see Eq. (41) of Ref. [2])

εM <
εt(

k‖qR
)2 ∼

εt
q2n2

, εM <

(
ν

k‖vT

)2/3

∼
(
νR

nvT

)2/3

(2.89)

is satis�ed, i.e., blocked particles are either completely absent or rapidly

detrapped by collisions. Here εt = 1/A is the toroidicity parameter (inverse

aspect ratio), ν is the collision (de�ection) frequency, vT =
√

2Tα/mα is the

thermal velocity, k‖ is a characteristic parallel wave number estimated for the

toroidal �eld ripple as n/R where n is the toroidal harmonic index (number

of ripples) and R is the major radius. The retrapping-detrapping and the

superbanana regime, which are described by the bounce averaged drift kinetic

equation, are not covered by the quasilinear approximation. These bounce

averaged transport regimes can be ignored if (see Eq. (42) of Ref. [2])

εM <

(
εtν

ωE

)1/2

, εM <
εt

(nq)1/6

(
νε2

tR
2

DB

)2/3

, (2.90)

where ωE = nΩtE is the electric drift frequency and DB is the Bohm di�usion

coe�cient. The �rst condition in (2.90) means that the relative change of

the trapping parameter by collisions during an electric drift period ∼ ω−1
E

is larger than the perturbation �eld amplitude so that trapping of transient

particles by the perturbations is impossible. The second condition means

that the collisional decorrelation time of the resonance between electric and

magnetic drifts is smaller than the period of the banana orbit oscillation

within the superbanana. In case n ∼ q ∼ 1 these conditions are the same

with the respective conditions of Ref. [3].

2.3.1 Neoclassical transport ansatz

The linearized drift kinetic equation, see Eq. (2.54), is given by

vϑg
∂f1

∂ϑ
+ vϕg

∂f1

∂ϕ
− L̂cLf1 = −vrgd

∂fM
∂r

. (2.91)
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The term with the parallel electric �eld responsible for the Ware pinch

in (2.54) has been omitted here for simplicity. In typical experimental condi-

tions, the Ware pinch has a small e�ect as compared to the gradient driven

terms retained here. This term will be recovered in the �nal expressions

without derivation since the account of this term is similar to the account of

gradient drive. The derivative of a Maxwellian should be expressed through

the thermodynamic forces (2.22),

∂fM
∂r

=

(
A1 +

mv2

2T
A2

)
fM . (2.92)

Although in the following a di�erent set of variables will be used in the veloc-

ity space, expression (2.92) is assumed everywhere below for this derivative.

The particle �ux is determined then solely by the �rst order distribution

function f1,

Γ =




2π∫

0

dϑ

2π∫

0

dϕ
√
g|∇r|



−1

2π
∑

σ=±1

2π∫

0

dϑ

2π∫

0

dϕ×

×
∞∫

eΦ

dw

(w−eΦ)/ωc∫

0

dJ⊥
√
gJinvv

r
gdf1, (2.93)

because the contribution of the Maxwellian is zero. It should be noted that

polarization e�ects connected with the time derivative of the electrostatic

potential have been ignored here setting Φ to be a constant of time. These

e�ects are of higher order in Larmor radius and de�nitely should be ignored

in the computation of f1. In contrast to the drifts retained here, the con-

tribution of polarization e�ects to the �ux of the bulk Maxwellian particles

is non-zero and of the same order as the non-ambipolar �ux computed be-

low. Polarization �ux, however, is only weakly in�uenced by the small non-

axisymmetric �eld which can therefore be ignored in computations of this

�ux.

For the subsequent computations �ux coordinates are �xed to Boozer

coordinates. In Boozer coordinates co-variant angular components of the
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magnetic �eld are constant on the �ux surface, Bϑ = Bϑ(r), Bϕ = Bϕ(r).

Respectively, the dependence on angles of the contra-variant components is

determined by the square of the magnetic �eld module, i.e. quantities BϑB−2

and BϕB−2 are constant on a �ux surface. This holds for any coordinate

system with straight �eld lines where the following relations are valid,

Bϕ = qBϑ, Bϑ =
B2

Bϑ + qBϕ

, (2.94)

The dependence of the metric determinant on angles is also fully determined

by the magnetic �eld module,

√
g =

Cg
B2

(2.95)

where Cg = Cg(r) is constant on a �ux surface. In a more explicit form,

components of the guiding center velocity in Boozer coordinates are given by

vrgd =
v2
⊥ + 2v2

‖
2
√
gB∗‖ωc

(
Bϑ

B

∂B

∂ϕ
− Bϕ

B

∂B

∂ϑ

)
,

vϑgd =
v2
⊥ + 2v2

‖
2
√
gB∗‖ωc

(
Bϕ

B

∂B

∂r
− Br

B

∂B

∂ϕ

)
+

+
v2
‖√

gB∗‖ωc

(
∂Br

∂ϕ
− ∂Bϕ

∂r

)
+

cBϕ√
gB∗‖B

∂Φ

∂r
,

vϕgd =
v2
⊥ + 2v2

‖
2
√
gB∗‖ωc

(
Br

B

∂B

∂ϑ
− Bϑ

B

∂B

∂r

)
+

+
v2
‖√

gB∗‖ωc

(
∂Bϑ

∂r
− ∂Br

∂ϑ

)
− cBϑ√

gB∗‖B

∂Φ

∂r
, (2.96)

where the perpendicular and parallel velocity components have been intro-

duced according to

v⊥ =

√
2J⊥ωc

m
, v‖ = σ

√
2

m
(ω − eΦ− J⊥ωc). (2.97)

Equation (2.91) still contains Larmor radius corrections which can be
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ignored for simplicity. In order to do this one can switch from coordinates

θ, ϕ on the �ux surface to coordinates θ, ϕ0 where

ϕ0 = ϕ− qϑ (2.98)

labels the �eld lines. Due to Bϕ = qBϑ, this variable is not changed by

parallel motion,

vϕ0
g = vϑg

∂ϕ0

∂ϑ
+ vϕg

∂ϕ0

∂ϕ
= vϕgd − qvϑgd. (2.99)

Parallel motion is contained solely in ϑ variable. Since this is the leading order

term one can ignore the cross �eld drift over ϑ. In addition the Larmor radius

correction in guiding center velocity (2.35) and (2.96) and in the Jacobian

of the guiding center variables (2.40) are ignored by replacing B∗‖ with B. If

this is done simultaneously, the property that a Maxwellian gives zero �ux

is retained. Thus, equation (2.91) takes the form

v‖
Bϑ

B

∂f1

∂ϑ
+ vϕ0

g

∂f1

∂ϕ0

− L̂cLf1 = −vrgd
∂fM
∂r

. (2.100)

In the following it is convenient to change velocity space variables from

invariants of motion w and J⊥ to perpendicular and parallel velocities de-

�ned by (2.97). Equations of motion for these quantities are obtained by

di�erentiating them along the zero order orbits with constant w and J⊥,

v̇⊥ = v‖
Bϑ

B

∂v⊥
∂ϑ

+ vϕ0
g

∂v⊥
∂ϕ0

=
v⊥v‖
2B

(
Bϑ

B

∂B

∂ϑ
+
vϕ0
g

v‖

∂B

∂ϕ0

)
,

v̇‖ = v‖
Bϑ

B

∂v‖
∂ϑ

+ vϕ0
g

∂v‖
∂ϕ0

= − v
2
⊥

2B

(
Bϑ

B

∂B

∂ϑ
+
vϕ0
g

v‖

∂B

∂ϕ0

)
. (2.101)

Actually these equations of motion are correct only up to the leading order

because second order terms (linear corrections over the Larmor radius) do not

include radial drift. These correction terms, which additionally are singular

due to such a truncation, are kept here only for estimates. Below it will be

shown that they provide a next order correction which is of the same order
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as the term vrgd∂f1/∂r ignored during the linearization. Thus, the linearized

kinetic equation (2.100) is transformed to

−vrgd
∂fM
∂r

= v‖
Bϑ

B

∂f1

∂ϑ
+ vϕ0

g

∂f1

∂ϕ0

+
v⊥
2B

(
Bϑ

B

∂B

∂ϑ
+
vϕ0
g

v‖

∂B

∂ϕ0

)
×

×
(
v‖
∂f1

∂v⊥
− v⊥

∂f1

∂v‖

)
− L̂cLf1, (2.102)

and the particle �ux (2.93) is transformed to

Γ =




2π∫

0

dϑ

2π∫

0

dϕ0
|∇r|
B2



−1

2π

2π∫

0

dϑ

2π∫

0

dϕ0

∞∫

0

dv⊥

∞∫

−∞

dv‖
v⊥
B2

vrgdf1. (2.103)

2.3.2 Perturbation theory

In the following a slightly perturbed axisymmetric magnetic �eld is consid-

ered. In Boozer coordinates the only quantities which contain an angular

dependence are the magnetic �eld module B and the co-variant radial com-

ponent of the magnetic �eld Br. Thus, only these quantities contain the non-

axisymmetric magnetic perturbation. At �rst it is checked that the transport

for the axisymmetric �eld is ambipolar. In this case nothing depends on ϕ0

and equation (2.102) is of the form

v‖
Bϑ

B

∂f1

∂ϑ
+
v⊥Bϑ

2B2

∂B

∂ϑ

(
v‖
∂f1

∂v⊥
− v⊥

∂f1

∂v‖

)
− L̂cLf1 =

v2
⊥ + 2v2

‖
2Cgωc

Bϕ
∂B

∂ϑ

∂fM
∂r

,

(2.104)

while (2.103) takes the form

Γ =




2π∫

0

dϑ
|∇r|
B2



−1

πBBϕ

2Cgωc

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥
(
v2
⊥ + 2v2

‖
)
f1
∂

∂ϑ

1

B2
.

(2.105)

One can multiply now (2.104) with v⊥v‖B−3 and integrate it over velocity

space components and poloidal angle. The right hand side gives zero for two

reasons: �rstly because it is symmetric over v‖ and, secondly, because it is a
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full derivative over ϑ. From the left hand side one gets

0 =
Bϑ

4B2

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥
(
v2
⊥ + 2v2

‖
)
f1
∂

∂ϑ

1

B2
+

+

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖
v⊥v‖
B3

L̂cLf1, (2.106)

where derivatives of the distribution function have been removed using inte-

gration by parts. Substituting (2.105) in the �rst term of Eq. (2.106) yields

a force-�ux relation for the axisymmetric tokamak,

e

c
ΓBϑ√g +

1

〈|∇r|〉

〈
Bϕ

B

∫
d3vmv‖L̂cLf1

〉
= 0. (2.107)

Namely, particle �ux is produced by the �ux surface averaged toroidal mo-

ment of the parallel friction force between ions and electrons. Due to third

Newton's law �uxes of electrons and ions are ambipolar, eiΓi + eeΓe = 0.

For the perturbed system the solution is looked in the form of a series

expansion over the perturbation amplitude,

f1 = f10 + f11 + f12 +O(δB3). (2.108)

Coe�cients of the kinetic equation (2.102) are split into a (quasi-) axisym-

metric part and a non-axisymmetric perturbation by multiplying it with B−3

and separating the averages of the coe�cients over the toroidal angle ϕ0,

L̂f1 + δL̂f1 = −
((

vrgd
B3

)
+ δ

(
vrgd
B3

))
∂fM
∂r

, (2.109)

whereby it is convenient to split the averaged operator into two parts as

follows,

L̂ = L̂QA + L̂NQ, (2.110)
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with

L̂QA =
Bϑ

B2

[
v‖

(
1

B2

)
∂

∂ϑ
+
v⊥
4

(
∂

∂ϑ

1

B2

)(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)]
−

−
(

1

B3

)
L̂cL +

(
vϕ0
g

B3

)
∂

∂ϕ0

, (2.111)

L̂NQ =
v⊥
2v‖

(
vϕ0
g

B4

∂B

∂ϕ0

)(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)
. (2.112)

Similarly one can split the perturbation operator,

δL̂ = δL̂‖ + δL̂⊥, (2.113)

where

δL̂‖ =
Bϑ

B2

[
v‖δ

(
1

B2

)
∂

∂ϑ
+
v⊥
4
δ

(
∂

∂ϑ

1

B2

)
×

×
(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)]
− δ
(

1

B3

)
L̂cL, (2.114)

δL̂⊥ = δ

(
vϕ0
g

B3

)
∂

∂ϕ0

+
v⊥
2v‖

δ

(
vϕ0
g

B4

∂B

∂ϕ0

)(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)
. (2.115)

Here the notation is as follows,

(a) =
1

2π

2π∫

0

dϕ0 a, δ(a) = a− (a). (2.116)

The operators are splitted in order to estimate the roles of principal, �rst

parts and correction, second parts which are assumed to be negligible small.

In the �uxes terms up to the second order in perturbation amplitude and in

Larmor radius are retained. All δ-quantities are at least of the �rst order in

perturbation amplitude and can also contain second or higher order terms.

Using the smallness of the δL̂ operator and substituting f1 in the series



2.3. QUASILINEAR APPROACH 39

form (2.108) into (2.109) a chain of equations is obtained,

L̂f10 = −
(
vrgd
B3

)
∂fM
∂r

, (2.117)

L̂f11 = −δ
(
vrgd
B3

)
∂fM
∂r
− δL̂f10, (2.118)

L̂f12 = −δL̂f11. (2.119)

Firstly the role of the operator L̂NQ is estimated. This operator is of

second order in perturbation amplitude. Therefore it can be immediately

ignored in (2.118) and (2.119) because it provides there corrections of third

and fourth order to f11 and f12, respectively. This operator is also of �rst

order in Larmor radius. Therefore it provides a second order in Larmor radius

correction to f10 which respectively corrects the particle �ux by a term of

third order in Larmor radius. Thus, the operator L̂NQ can be completely

ignored everywhere.

It should be noted that the operator δL⊥ is of �rst order in Larmor

radius. Since f10 is of �rst order in Larmor radius too, this operator gives

a quadratic in Larmor radius contribution in the right hand side of (2.118).

This contribution is one order higher than the linear order term with the

Maxwellian. Similarly, it provides a quadratic correction in Larmor radius to

the right hand side of (2.119) which would result in a negligible, third order

correction to the �ux. Thus, the operator δL⊥ can be ignored everywhere

too.

Moreover, one can see that f12 is of second order in perturbation am-

plitude. The non-axisymmetric part of this function gives a third order in

perturbation amplitude correction to the �ux because the zero order term

in the product of radial drift velocity and metric determinant (factor 1/B2)

in (2.103) is axisymmetric. With these approximations, the chain of equa-



40 CHAPTER 2. METHODS

tions takes the �nal form

L̂QAf10 = −
(
vrgd
B3

)
∂fM
∂r

, (2.120)

L̂QAf11 = −δ
(
vrgd
B3

)
∂fM
∂r
− δL̂‖f10, (2.121)

L̂QAf12 = −δL̂‖f11. (2.122)

In fact, one can notice that the non-axisymmetric part of the covariant radial

component of the magnetic �eld, Br, is not needed in this approach because

Br enters only the toroidal rotation velocity vϕ0
g which is evaluated in the

lowest (zero) order over the perturbation amplitude.

It should be mentioned that the operator L̂QA, which is termed below

quasi-axisymmetric operator, has a property similar to the kinetic operator

in a real axisymmetric magnetic �eld. Namely, the particle �ux (2.103) com-

puted for the quasi-axisymmetric distribution function f10 given by (2.120)

is ambipolar. This can be seen if one multiplies (2.120) with v‖ and inte-

grates it over velocity space and poloidal angle. However, it is more useful

to compute the �ux driven by the axisymmetric function f12. Substituting

this function in (2.103) one obtains

Γ12 =
4π2

2π∫
0

dϑ
2π∫
0

dϕ0
|∇r|
B2

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥f12

(
vrgd
B2

)

=




2π∫

0

dϑ

2π∫

0

dϕ0
|∇r|
B2



−1

π2mcBϕ

eCg

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖ ×

× v⊥
(
v2
⊥ + 2v2

‖
)
f12

∂

∂ϑ

(
1

B2

)
, (2.123)
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where following expression has been used

(
vrgd
B2

)
=

v2
⊥ + 2v2

‖
2CgB2ωc

(
(Bϑ + qBϕ)

∂B

∂ϕ0

−Bϕ
∂B

∂ϑ

)

=
mcBϕ

4eCg

(
v2
⊥ + 2v2

‖
) ∂

∂ϑ

(
1

B2

)
. (2.124)

In a further step equation (2.122) is multiplied with v⊥v‖ and integrated over

velocity components and over the poloidal angle,

0 =

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥v‖
(
L̂QAf12 + δL̂‖f11

)

= − Bϑ

4B2

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖

(
∂

∂ϑ

1

B2

)
v⊥
(
v2
⊥ + 2v2

‖
)
f12 −

−
2π∫

0

dϑ

(
1

B3

) ∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥v‖L̂cLf12 +

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖v⊥v‖δL̂‖f11.

(2.125)

As for the axisymmetric case, the �ux driven by f12 is obtained by compar-

ing (2.125) to (2.123)

Γ12 = − c

e
√
gBϑ

1

〈|∇r|〉

〈
Bϕ

B

∫
d3vmv‖L̂cLf12

〉
+

+
mcBϕ

e
√
gBϑ

1

〈|∇r|〉

〈
B2

∫
d3vv‖δL̂‖f11

〉
. (2.126)

It is very easy now to evaluate �ux from f10

Γ10 = − c

e
√
gBϑ

1

〈|∇r|〉

〈
Bϕ

B

∫
d3vmv‖L̂cLf10

〉
, (2.127)

where the source term does not contribute because it is symmetric over v‖.

One can see that this �ux is completely ambipolar. The �rst term in (2.126)

is also of no interest here because it is ambipolar too. Substituting now
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into the second term the explicit form of the operator δL̂‖, Eq. (2.114), and

removing the derivatives with help of integration by parts one gets

Γ12 =−
(〈

Bϕ

B

∫
d3vmv‖L̂cLf12 +BϕB

2δ

(
1

B3

)∫
d3vmv‖L̂cLf11

〉
+

+
m

4

〈
BϕB

ϑδ

(
∂

∂ϑ

1

B2

)∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

〉)
c

e
√
gBϑ

1

〈|∇r|〉 .

(2.128)

There appears an additional ambipolar term in (2.128) whereas the non-

ambipolar contribution is described by the last term. Thus, the non-ambipolar

�ux is a sum of the last term in (2.128) and of the contribution from f11 which

is evaluated by substituting this function into the expression for the particle

�ux (2.103),

Γ11 =
1

〈|∇r|〉

〈∫
d3vvrgdf11

〉

=
mc

2e
√
gBϑ

1

〈|∇r|〉

〈
Bϑ

B3

(
(Bϑ + qBϕ)

∂B

∂ϕ0

−Bϕ
∂B

∂ϑ

)∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

〉

=
mc

2e
√
gBϑ

1

〈|∇r|〉

〈(
1

B

∂B

∂ϕ0

− BϑBϕ

B3

∂B

∂ϑ

)∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

〉

=
mc

4e
√
gBϑ

1

〈|∇r|〉

〈
B2

∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

(
BϑBϕ

B2

∂

∂ϑ

1

B2
− ∂

∂ϕ0

1

B2

)〉
.

(2.129)

The sum of both �uxes gives

Γ11 + ΓNA12 =
mc

4e
√
gBϑ

1

〈|∇r|〉

〈
B2

∫
d3v

(
v2
⊥ + 2v2

‖
)
f11 ×

×
(
BϑBϕ

B2

(
∂

∂ϑ

1

B2

)
− ∂

∂ϕ0

1

B2

)〉
. (2.130)

Next the contribution of the �rst term within the round brackets to the the

total non-ambipolar particle �ux is checked. Multiplication of Eq. (2.121)

with v‖ and subsequent integration over velocity space and over both angles
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yields

1

4

〈
Bϑ

(
∂

∂ϑ

1

B2

)∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

〉
=

=

〈
B2

∫
d3vv‖

∂fM
∂r

δ

(
vrgd
B3

)〉
+

〈
B2

∫
d3vv‖δL̂‖f10

〉
−

−
〈
B2

(
1

B3

)∫
d3vv‖L̂cLf11

〉
+

〈
B2

∫
d3vv‖

(
vϕ0

gd

B3

)
∂f11

∂ϕ0

〉
. (2.131)

The �rst term on the right hand side of (2.131) is zero because the inte-

grand is an odd function of v‖. The second term gives only an ambipolar

contribution to the particle �ux. Third and fourth terms are zero because

of averaging over the toroidal angle ϕ0. Thus, the �rst term in the paren-

theses in (2.130) provides no contribution to the non-ambipolar �ux which

is obtained as follows

ΓNA = − mc

4e
√
gBϑ

1

〈|∇r|〉

〈
B2

∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

∂

∂ϕ0

1

B2

〉
. (2.132)

The expression for the non-ambipolar particle �ux can be further simpli�ed

because it contains not only leading order terms but also terms of higher

order which should be ignored. It should be noted that f11 and the derivative

over ϕ0 are of �rst order in perturbation amplitude. Therefore, it makes no

sense to take into account the non-axisymmetric magnetic �eld elsewhere.

Splitting the magnetic �eld module into an unperturbed, axisymmetric part

and a non-axisymmetric perturbation,

B = B0 + δB, (2.133)

the expression for the �ux (2.132) simpli�es to

ΓNA =
mc

2e
√
g0Bϑ

0




2π∫

0

dϑ
|∇r0|
B2

0



−1 2π∫

0

dϑ

B3
0

∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

∂δB

∂ϕ0

,

(2.134)

where r0, g0 and Bϑ
0 are the respective axisymmetric quantities. For the same
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reason the operators L̂QA, Eq. (2.111), and δL̂‖, Eq. (2.114), are replaced with

L̂AX ≈ B3
0L̂QA, δL̂A ≈ B3

0δL̂‖, (2.135)

so that

L̂AX =
Bϑ

0

B0

[
v‖
∂

∂ϑ
+

v⊥
2B0

∂B0

∂ϑ

(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)]
−

− L̂cL + vϕ0

g0

∂

∂ϕ0

, (2.136)

δL̂A =
Bϑ

0

B0

[
−2v‖

δB

B0

∂

∂ϑ
+

v⊥
2B0

(
∂δB

∂ϑ
− 3δB

B0

∂B0

∂ϑ

)
×

×
(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)]
+

3δB

B0

L̂cL. (2.137)

Then the simpli�ed equation (2.120) takes a more explicit form,

L̂AXf10 =
mcBϕ

2e
√
g0B3

0

(
v2
⊥ + 2v2

‖
) ∂B0

∂ϑ

∂fM
∂r

. (2.138)

Respectively, Eq. (2.121) becomes

L̂AXf11 =
mcBϕ

2e
√
g0B3

0

(
v2
⊥ + 2v2

‖
)(∂δB

∂ϑ
− B2

0

Bϑ
0Bϕ

∂δB

∂ϕ0

−

− 4δB

B0

∂B0

∂ϑ

)
∂fM
∂r
− δL̂Af10. (2.139)

The operator (2.137) appearing in the last term on the right hand side of

Eq. (2.139) leads to a derivative of f10 over ϑ, which can be eliminated with

help of (2.136) and (2.138),

δL̂Af10 = − mcBϕ

2e
√
g0B3

0

(
v2
⊥ + 2v2

‖
) 2δB

B0

∂B0

∂ϑ

∂fM
∂r
− v⊥Bϑ

0

2B2
0

×

×
(
δB

B0

∂B0

∂ϑ
− ∂δB

∂ϑ

)(
v‖
∂f10

∂v⊥
− v⊥

∂f10

∂v‖

)
+
δB

B0

L̂cLf10. (2.140)
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Substituting (2.140) into equation (2.139) yields

L̂AXf11 =
mcBϕ

2e
√
g0B3

0

(
v2
⊥ + 2v2

‖
)(∂δB

∂ϑ
− B2

0

Bϑ
0Bϕ

∂δB

∂ϕ0

− 2δB

B0

∂B0

∂ϑ

)
∂fM
∂r

+

+
v⊥Bϑ

0

2B2
0

(
δB

B0

∂B0

∂ϑ
− ∂δB

∂ϑ

)(
v‖
∂f10

∂v⊥
− v⊥

∂f10

∂v‖

)
− δB

B0

L̂cLf10.

(2.141)

Thus, the computation of non-axisymmetric particle �uxes is reduced to the

solution of two problems: an axisymmetric and a non-axisymmetric problem

described by Eq. (2.138) and Eq. (2.141), respectively. It is possible and

desirable to transform the obtained expressions back to invariants of motion

but now of the unperturbed motion. Since the potential is constant on a

�ux surface it is convenient to use the velocity module v as one such invari-

ant (instead of the total energy (2.31)) and the normalized perpendicular

invariant

η =
v2
⊥Bref

v2B0

, (2.142)

where Bref is some reference magnetic �eld value. For the moment Bref is set

to 1 and the actual value is restored in the numerical section. As a result of

this change of variables, the mirroring term disappears in (2.136) which is

then of the form

L̂AX = v‖
Bϑ

0

B0

∂

∂ϑ
− L̂cL + vϕ0

g0

∂

∂ϕ0

. (2.143)

The equation for the non-axisymmetric perturbation (2.141) changes to

L̂AXf11 =
mcBϕv

2 (2− ηB0)

2e
√
g0B3

0

(
∂δB

∂ϑ
− B2

0

Bϑ
0Bϕ

∂δB

∂ϕ0

− 2δB

B0

∂B0

∂ϑ

)
∂fM
∂r

+ v‖
Bϑ

0

B2
0

(
δB

B0

∂B0

∂ϑ
− ∂δB

∂ϑ

)
η
∂f10

∂η
− δB

B0

L̂cLf10. (2.144)

Note that in both equations the parallel velocity is given by

v‖ = σv
√

1− ηB0. (2.145)

It is convenient to split the toroidal rotation velocity appearing in (2.143)
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into an electric and a magnetic rotation velocity,

vϕ0

g0 = ΩtE + ΩtB, (2.146)

which are obtained by substituting (2.96) into (2.99)

ΩtE = − c√
g0Bϑ

0

∂Φ

∂r
, (2.147)

ΩtB =
v2
⊥ + 2v2

‖
2
√
g0B0ωc0

(
Br

B0

∂B0

∂ϑ
− B0

Bϑ
0

∂B0

∂r

)
+

v2
‖√

g0B0ωc0

(
∂Bϑ

∂r
+ q

∂Bϕ

∂r
− ∂Br

∂ϑ

)

=
v2 (2− ηB0)

2
√
g0B0ωc0

(
Br

B0

∂B0

∂ϑ
− B0

Bϑ
0

∂B0

∂r

)
+
v2 (1− ηB0)√

g0B0ωc0

(
∂Bϑ

∂r
+ q

∂Bϕ

∂r
− ∂Br

∂ϑ

)
.

(2.148)

Finally, the expression for the non-ambipolar �ux (2.134) in terms of invari-

ants of motion is

ΓNA =
πmc

2e
√
g0Bϑ

0




2π∫

0

dϑ

B2
0

|∇r0|



−1 2π∫

0

dϑ

B2
0

∞∫

0

dvv4

1/B0∫

0

dη
2− ηB0√
1− ηB0

×

×
∑

σ=±1

f11
∂δB

∂ϕ0

. (2.149)

An obvious advantage of the quasilinear limit is that the dimension of the

problem (2.144) can be reduced by one. Presenting the perturbation �eld δB

and the linear perturbation of the distribution function f11 in the form of a

Fourier series,

δB(ϑ, ϕ0) = Re
∞∑

n=1

Bn(ϑ)einϕ0 , f11(ϑ, ϕ0) = Re
∞∑

n=1

fn(ϑ)einϕ0 , (2.150)

the kinetic equation (2.144) is reduced to an equation for the Fourier ampli-
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tudes,

v‖
Bϑ

0

B0

∂fn
∂ϑ
− L̂cLfn + invϕ0

g0 fn =
mcBϕv

2 (2− ηB0)

2e
√
g0B3

0

(
∂Bn

∂ϑ
− inB2

0Bn

Bϑ
0Bϕ

−

− 2Bn

B0

∂B0

∂ϑ

)
∂fM
∂r

+ v‖
Bϑ

0

B2
0

(
Bn

B0

∂B0

∂ϑ
− ∂Bn

∂ϑ

)
η
∂f10

∂η
− Bn

B0

L̂cLf10, (2.151)

where fn (as well as Bn) satis�es the periodicity condition

fn(ϑ+ 2π) = fn(ϑ)e2πinq. (2.152)

In addition, toroidal harmonics of the perturbation �eld contribute indepen-

dently to the �ux (2.149),

ΓNA =
∞∑

n=1

πmc

4e
√
g0Bϑ

0




2π∫

0

dϑ

B2
0

|∇r0|



−1 2π∫

0

dϑ

B2
0

∞∫

0

dvv4

1/B0∫

0

dη
2− ηB0√
1− ηB0

×

×
∑

σ=±1

n ImfnB
∗
n. (2.153)

Account of the parallel electric �eld leads to additional terms in the right

hand side of (2.138) and (2.151), which are given by

+σv
√

1− ηB0B0fMA3, −2σv
√

1− ηB0BnfMA3, (2.154)

respectively.

2.3.3 Simpli�ed cases for the long mean free path limit

In this section cases are investigated where a numerical solution of the ax-

isymmetric problem can be avoided. In absence of a density gradient the

axisymmetric equation for ions is satis�ed in all collisionality regimes by the

following distribution function [21]

fM + f10 = fM(rϕ, w), (2.155)



48 CHAPTER 2. METHODS

where fM is a local Maxwellian distribution function and rϕ is a function of

the generalized toroidal momentum Pϕ, Eq (2.67). This function is implicitly

de�ned by
e

c
Aϕ(rϕ) = Pϕ, (2.156)

where the co-variant toroidal component of the vector potential Aϕ is the

same in all �ux coordinate systems (and in cylindrical too) if the axisym-

metric �eld is independent of the toroidal angle in these variables. The

solution (2.155) includes also the gyro-motion (classical transport), but for

the following considerations it is su�cient to use the guiding center approx-

imation described in Ref. [21] where within the linear order one can write

e

c
Aϕ(rϕ) = mv‖

Bϕ

B0

+
e

c
Aϕ(r) ≈ Pϕ. (2.157)

In linear order over the Larmor radius Eq. (2.157) can be solved,

rϕ = r − mcv‖Bϕ

e
√
g0Bϑ

0B0

, (2.158)

so that the �rst correction to the distribution function is

f10 = − mcv‖Bϕ

e
√
g0Bϑ

0B0

∂fM
∂r

. (2.159)

One can see that the function (2.155) is a shifted Maxwellian up to linear

order in Larmor radius. Therefore, the linearized collision operator in the

right hand side of (2.141) gives zero for this function. Substituting the solu-

tion (2.159) in (2.141) one gets

L̂AXf11 = − mc

2e
√
g0Bϑ

0

(
v2
⊥ + 2v2

‖
) 1

B0

∂δB

∂ϕ0

∂fM
∂r

+

+
mcBϕ

2e
√
g0B3

0

(
2v2
‖
∂δB

∂ϑ
−
(
v2
⊥ + 4v2

‖
) δB
B0

∂B0

∂ϑ

)
∂fM
∂r

. (2.160)

The solution (2.159) is valid for ions in absence of a temperature gradient

in all collisionality regimes. However, it is not valid for electrons and for

ions with radially varying temperature. Nevertheless, in the long mean free
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path regime deviations from the solution (2.159) are small in the trapped

particle domain, as the ratio of the poloidal connection length to the mean

free path (see, e.g. Ref. [21]). Since in most low collisionality regimes the

non-axisymmetric �uxes are produced by trapped particles, equation (2.160)

is su�cient for those regimes. Due to the small collisionality it can be further

simpli�ed by bounce averaging. Using integrals of motion v and η the bounce

average is de�ned for trapped particles as

〈a〉b =




ϑmax∫

ϑmin

dϑB0

v‖Bϑ
0



−1 ϑmax∫

ϑmin

dϑB0

v‖Bϑ
0

a =
1

τb

ϑmax∫

ϑmin

dϑ a

B0

√
1− ηB0

, (2.161)

where ϑmin and ϑmax are the re�ection points and

τb =

ϑmax∫

ϑmin

dϑ

B0

√
1− ηB0

(2.162)

is the normalized bounce time. By applying this procedure to Eq. (2.160)

and using (2.143), the bounce averaged equation is obtained

〈
vϕ0

g0

〉
b

∂f11

∂ϕ0

−
〈
L̂cL

〉
b
f11 = − mcv2

2e
√
g0Bϑ

0

〈
2− ηB0

B0

∂δB

∂ϕ0

〉

b

∂fM
∂r

. (2.163)

The last term on the right hand side of (2.160) does not contribute to bounce

average because the factor depending on ϑ in this term can be presented as

follows,

1

B0

(
2v2
‖
∂δB

∂ϑ
−
(
v2
⊥ + 4v2

‖
) δB
B0

∂B0

∂ϑ

)
= 2v‖B0

∂

∂ϑ

v‖δB

B2
0

, (2.164)

where the derivative of v‖ in the right hand side is taken keeping η and v

constant. Since in the long mean free path regime f11 is independent of the

parallel coordinate ϑ and on the parallel velocity sign σ, one can simplify the
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expression for the �ux (2.149) to

ΓNA =
πmc

e
√
g0Bϑ

0




2π∫

0

dϑ

B2
0

|∇r0|



−1 ∞∫

0

dvv4

1/Bmin
0∫

1/Bmax
0

dη τbf11

〈
2− ηB0

B0

∂δB

∂ϕ0

〉

b

.

(2.165)

where Bmin
0 and Bmax

0 are minimum and maximum values of the magnetic

�eld on the �ux surface. The collisionless limit of the equation for the Fourier

amplitudes (2.151) and of the �ux density (2.153) are obtained as

in
〈
vϕ0

g0

〉
b
fn −

〈
L̂cL

〉
b
fn = −in mcv2

2e
√
g0Bϑ

0

〈
2− ηB0

B0

Bn

〉

b

∂fM
∂r

, (2.166)

and

ΓNA =
∞∑

n=1

πmc

2e
√
g0Bϑ

0




2π∫

0

dϑ

B2
0

|∇r0|



−1 ∞∫

0

dvv4

1/Bmin
0∫

1/Bmax
0

dη τbn Imfn

〈
2− ηB0

B0

B∗n

〉

b

,

(2.167)

respectively.

A useful limiting case is the 1/ν-regime where for the Lorentz collision

model,

L̂cL =
4νd
B0

√
1− ηB0

∂

∂η
η
√

1− ηB0
∂

∂η
, (2.168)

the particle �ux density can be expressed in terms of an e�ective ripple [10],

ΓNA = −
√

8

9π3/2

nαv
2
Tρ

2
L

R2
ε

3/2
eff

∫ ∞

0

dze−zz5/2

νd
(A1 + A2z) . (2.169)

Here, νd denotes the de�ection frequency [48] (νD is the de�nition given in

the book of Helander and Sigmar [21]),

νd,α =
νD,α

2
=
∑

β

ν̂αβ
φ(
√
zβ)−G(

√
zβ)

2z
3/2
α

, ν̂αβ =
4πnβe

2
αe

2
β log Λ

m2
αv

3
T,α

, (2.170)

α and β are species indices, log Λ is the Coulomb logarithm, φ(x) is the error

function, G ≡ (φ(x)− xφ′(x))/(2x2) is the Chandrasekhar function [21], the
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integration variable

z =
mv2

2T
(2.171)

is the normalized kinetic energy, thermodynamic forces A1 and A2 are given

by (2.22), ρL = vTω
−1
cr , and R and ωcr denote the reference radius and the

cyclotron frequency for the reference magnetic �eld Bref introduced above,

respectively. The e�ective ripple is obtained in Appendix A.1 as

ε
3/2
eff =

πq2R2B2
ref

16
√

2

2π∫

0

dϑ

B2
0




2π∫

0

dϑ

B2
0

|∇ψtor|



−2

∞∑

n=1

1/Bmin
0∫

1/Bmax
0

dη
n2|Hn|2
ηI

, (2.172)

where quantities I andHn are de�ned in Appendix A.1 by Eqs. (A.2) and (A.3),

and ψtor is the toroidal magnetic �ux normalized by 2π, see Eq. (2.13). This

analytical limit is a useful check for the numerical procedure since f11 is

evaluated there from the numerically computed f10.

2.3.4 Numerical evaluation with the code NEO-2

The general problem described by equation (2.91) is four-dimensional and,

therefore, rather di�cult for a numerical evaluation. Aside from Monte Carlo

methods (see, e.g., Ref. [8]) which are rather slow, a commonly used tool

for the evaluation of transport coe�cients in general type toroidal devices

is the DKES code [6]. In this code, however, the problem dimensionality is

reduced by using a model collision operator which allows for the computation

of mono-energetic distribution functions. In turn, the code NEO-2 [1] uses

the exact linearized collision operator but in its standard version is limited to

the case of slow cross-�eld rotation. In this case it is also possible to reduce

the dimensionality of the problem to 3D (two variables in velocity space and

the coordinate along the �eld line). With help of the quasilinear approach

described in the previous section this restriction is removed for small enough

perturbation �eld amplitudes such that the e�ect on the particle motion

within the �ux surface is negligible small. The quasilinear approach reduces

the general problem (2.91) to 3D and, thus, equation (2.138) is already in the
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form solved by NEO-2. If the source term in this equation is replaced by the

toroidal electric �eld (such a form is not considered here), it describes the

generalized Spitzer function which has been studied for �nite collisionalities

in Ref. [49].

Here, a modi�cation of the code NEO-2 is described which is based on the

original velocity space discretization scheme [1]. The discretization scheme

introduced in Ref. [1] uses an adaptive grid over the normalized perpendicular

adiabatic invariant η while the dependence of the distribution function on v

is discretized by an expansion over Sonine polynomials. Such a discretization

scheme is su�cient for regimes without �collisionless� particle resonances such

as the 1/ν regime and the ν−√ν regime. For a proper treatment of regimes
with collisionless resonances such as the superbanana plateau regime or drift-

orbit resonances, localized basis functions, e.g., hat functions, are used in-

stead of Sonine polynomials for resolving the dependence of the distribution

function on v. Due to the generalization of the original expansion method

to arbitrary, non-orthogonal basis functions the analytically pre-computed

matrix elements [1, 50] of the collision operator have been replaced by a fully

numerical implementation in the present version of NEO-2.

Equations to be solved are the axisymmetric (2.138) and non-axisymmetric

problem (2.151). Since the di�erent Fourier modes are computed indepen-

dently, the toroidal mode number is assumed to be a �xed parameter of the

problem. In order not to overload the notation, it will be omitted in the fol-

lowing when indexing newly appearing quantities. For the same reason also

the �ux surface label r will be skipped as an argument of the distribution

function.

The �ux surface label is now speci�ed as the normalized (divided by 2π)

toroidal �ux divided by its value at the edge,

r = s ≡ ψtor

ψator

, (2.173)

where ψator is the normalized toroidal �ux at the edge (separatrix). Using this
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de�nition of the �ux surface label one gets

√
g0B

ϑ
0 =

dψpol

dr
= ι

dψtor

dr
= ιψator, (2.174)

where ψpol is the normalized poloidal �ux and ι = 1/q is the rotational

transform angle divided by 2π. Another useful formula is

√
g0B

2
0 = (ιBϑ +Bϕ)ψator. (2.175)

Historically, the variable measuring the distance along the �eld line in NEO-

2 is not the poloidal angle ϑ but the toroidal angle which will be denoted

below ϕs in order to distinguish it from ϕ and ϕ0. It is linked with ϑ via the

relation

ϕs = qϑ (2.176)

and changes in the limits 0 < ϕs < 2πq. Thus, the derivative along the �eld

line in Eqs. (2.138) and (2.151) is transformed to

Bϑ
0

B0

∂

∂ϑ
= hϕ

∂

∂ϕs
, (2.177)

where

hϕ =
qBϑ

0

B0

=
Bϕ

0

B0

. (2.178)

The left hand side operator (2.143) in Eqs. (2.138) and (2.151) is transformed

to

L̂AX = σv
√

1− ηB0h
ϕ ∂

∂ϕs
− L̂cL + invϕ0

g0 , (2.179)

where n = 0 for the axisymmetric solution.

With help of formulas (2.174) and (2.175) one can transform the electric

rotation frequency (2.147) as follows,

ΩtE = −c
ι

dΦ

dψtor

= − c

ιψator

dΦ

ds
. (2.180)
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In a similar way the magnetic rotation frequency (2.148) is transformed to

ΩtB = Ωref
tBz

(
2− ηB0

ιBϑ +Bϕ

(
Bs

B0

∂B0

∂ϑ
− ιBϑ +Bϕ

ιB0

∂B0

∂s

)
+

+
2− 2ηB0

ιBϑ +Bϕ

(
∂Bϑ

∂s
+

1

ι

∂Bϕ

∂s
− ∂Bs

∂ϑ

))
, (2.181)

where z is the normalized energy (2.171) and the reference magnetic rotation

frequency is

Ωref
tB =

cT

eψator

. (2.182)

The derivative of the Maxwellian in Eqs. (2.138) and (2.151) is expressed

through thermodynamic forces (2.22) whereby the de�nition of these forces

in terms of the e�ective radius �xed by the condition (2.5) is kept. Thus

Eq. (2.138) takes the form

L̂AXf10 = − ρLvT
〈|∇s|〉z(A1 + zA2)fM

√
1− ηB0

Bϕ

ιBϑ +Bϕ

∂B0

∂ϑ

Bref

ψator

×

× ∂

∂η

√
1− ηB0

B0

(
4

3B0

− η

3

)
, (2.183)

where vT and ρL are the thermal velocity and Larmor radius, respectively,

and B0 is now a normalized magnetic �eld (divided by Bref). Introducing the

geodesic curvature kG0 de�ned by

|∇s|kG0 = − Bϕ

ιBϑ +Bϕ

∂B0

∂ϑ

Bref

ψator

, (2.184)

one can bring this equation to the standard form implemented in NEO-2,

L̂AXf10 =
ρLvT
〈|∇s|〉z(A1 + zA2)fM

√
1− ηB0

∂

∂η

√
1− ηB0

B0

V̂G0, (2.185)

where VG0 (and other similar functions, which di�er just by the de�nition of

kG) is linked to kG0 by

V̂G =
1

3

(
4

B0

− η
)
|∇s|kG. (2.186)
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Note that Gaussian units are used in NEO-2 which results in a conversion

factor, Bref/ψ
a
tor = 10−4B00/ψ

′, where B00 and ψ′ are the (0,0)-harmonic of

Boozer �eld and the derivative of the toroidal �ux over s, both in SI units,

respectively.

The equation for the Fourier amplitudes of the perturbation of distribu-

tion function (2.151) is expressed then as follows,

L̂AXfn =
ρLvT
〈|∇s|〉z(A1 + zA2)fM

√
1− ηB0

∂

∂η

√
1− ηB0

B0

V̂
(f)
Gn −

− vT z1/2σ
√

1− ηB0h
ϕ

(
ι
∂

∂ϑ

Bn

B0

+ in
Bn

B0

)
einϕsη

∂f10

∂η
− Bn

B0

einϕsL̂cLf10,

(2.187)

where Fourier amplitudes Bn correspond now to a series over the toroidal

angle ϕ of periodic Boozer coordinates, but not over ϕ0 as in the previous

section. It should be noted that all functions of ϑ are evaluated here at

ϑ = ιϕs. The quantity V̂
(f)
Gn is de�ned again by (2.186) when kG is replaced

there with k(f)
Gn,

|∇s|k(f)
Gn =

(
inBn −

Bϕ

ιBϑ +Bϕ

(
ι
∂Bn

∂ϑ
+ inBn −

2ιBn

B0

∂B0

∂ϑ

))
Bref

ιψator

einϕs

=

(
in
Bn

B0

− Bϕ

ιBϑ +Bϕ

(
ι
∂

∂ϑ

Bn

B0

+ in
Bn

B0

− ιBn

B2
0

∂B0

∂ϑ

))
B0Bref

ιψator

einϕs .

(2.188)

The quantity k(f)
Gn has not the meaning of a geodesic curvature anymore be-

cause it includes also terms connected with the mirroring force. In the fol-

lowing also the quantity k(b)
Gn de�ned by

|∇s|k(b)
Gn = inBn

Bref

ιψator

einϕs = in
Bn

B0

B0Bref

ιψator

einϕs , (2.189)

which is a linear perturbation of the geodesic curvature by the non-axisymmetric

�eld, will be needed for the evaluation of particle �uxes. In (2.188) and (2.189)

the ratio Bn/B0 is introduced explicitly because the perturbation �eld Bn

enters all equations through this combination only, which minimizes the in-
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put.

Solutions to Eqs. (2.185) and (2.187) are looked for in the form of a series

expansion over test functions φm(z),

f10 ≈
ρL
〈|∇s|〉fM

M∑

m=0

f̄σm(ϕs, η)φm(z), fn ≈
ρL
〈|∇s|〉fM

M∑

m=0

f̃σm(ϕs, η)φm(z),

(2.190)

where z is the normalized kinetic energy (2.171) and σ is the parallel velocity

sign. For the following considerations normalized associated Laguerre poly-

nomials of the order 3/2 (Sonine polynomials) are chosen as test functions,

but with minor corrections it is possible to extend the resulting formulas to

general basis functions. If nothing else is mentioned, this can be done by

replacing Sm(z) with φm(z). Corrections necessary for the generalization of

the formulas are indicated below explicitly at the relevant places. Here, z is

the normalized kinetic energy (2.171) and σ is the parallel velocity sign,

Sm(z) = π3/4

√
2Γ(m+ 1)

Γ(m+ 5/2)
L(3/2)
m (z), (2.191)

and L(3/2)
m (z) and Γ(x) denote the associated Laguerre polynomials and the

Gamma function, respectively. Functions fσm satisfy the periodicity condition

resulting from (2.152),

fσm(ϕs + 2πq, η) = fσm(ϕs, η)e2πinq, (2.192)

where fσm is used as a common notation for f̄m and f̃m, and n = 0 for the

axisymmetric solution f̄m. The set of coupled 2D equations solved by NEO-2,

M∑

m′=0

L̂mm′f
σ
m′ ≡ σ

∂fσm
∂ϕs
− 1

hϕ

M∑

m′=0

L̂cmm′f
σ
m′ +

M∑

m′=0

iωmm′f
σ
m′ = Qm, (2.193)

is obtained by substituting the unknowns in the form (2.190) into Eqs. (2.138)

and (2.151) (note that the summation index is changed from m to m′ there)

and a subsequent integration of the resulting equations multiplied with the
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factor zSm(z)v2
T 〈|∇s|〉

(
2nαρLh

ϕ
√

1− ηB0

)−1
over z from 0 to in�nity. In

case of Sonine polynomials the term with the derivative along the �eld line

is diagonal due to the orthogonality of basis functions Sm,

1

2π3/2

∞∫

0

dz e−zz3/2Sm(z)Sm′(z) = Amm′ = δmm′ , (2.194)

where δmm′ is the Kronecker symbol. For arbitrary basis functions the left

hand side of equation (2.194) does not reduce to the unit tensor. Neverthe-

less, one can present the set (2.193) in the same form by multiplying the

source term Qm and the matrix elements of the collision operator L̂cmm′ and

of the dimensionless frequency matrix ωmm′ with the inverse A−1
mm′ . Up to

the de�nition of the source term the set (2.193) describes both, axisymmet-

ric and non-axisymmetric distribution functions. Note that the dimensionless

frequency matrix is zero for the axisymmetric problem. Details regarding the

computation of the matrix elements of the collision operator are presented

in [1, 50]. New are the rotation frequency and the more general source term.

Using (2.146) and (2.181) one obtains

ωmm′ =
nΩtE

vThϕ
√

1− ηB0

x
(1)
mm′ +

nΩref
tB

vThϕ
√

1− ηB0

x
(2)
mm′

(
2− ηB0

ιBϑ +Bϕ

×

×
(
Bs

B0

∂B0

∂ϑ
− ιBϑ +Bϕ

ιB0

∂B0

∂s

)
+

2− 2ηB0

ιBϑ +Bϕ

(
∂Bϑ

∂s
+

1

ι

∂Bϕ

∂s
− ∂Bs

∂ϑ

))
,

(2.195)

where

x
(k)
mm′ =

1

2π3/2

∞∫

0

dz e−zzkSm(z)Sm′(z). (2.196)

For coding it is more convenient to re-write (2.195) in the form

ωmm′ =
nκΩ̄tE

hϕ
√

1− ηB0

x
(1)
mm′ +

nκΩ̄ref
tB

hϕ
√

1− ηB0

(
a

(1)
B + (1− ηB0) a

(2)
B

)
x

(2)
mm′

(2.197)
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where

a
(1)
B =

1

ιBϑ +Bϕ

(
Bs

B0

∂B0

∂ϑ
− ιBϑ +Bϕ

ιB0

∂B0

∂s

)
, (2.198)

a
(2)
B = a

(1)
B +

2

ιBϑ +Bϕ

(
∂Bϑ

∂s
+

1

ι

∂Bϕ

∂s
− ∂Bs

∂ϑ

)
. (2.199)

The parameter κ is the inverse mean free path times 2,

κ =
2

lc
=

2

vT τα
, (2.200)

where

τα =
3m2

αv
3
T

16
√
πnαe4

αΛα

. (2.201)

According to the de�nition of κ (2.200) dimensionless rotation frequencies

are introduced as

Ω̄tE =
1

2
ΩtEτα, Ω̄ref

tB =
1

2
Ωref
tBτα. (2.202)

Since the problem (2.193) is linear,

fσm = A1f̃
σ(1)
m + A2f̃

σ(2)
m , (2.203)

solutions driven by di�erent thermodynamic forces are computed separately.

Thus, one can specify the sources Qm for the axisymmetric problem,

M∑

m′=0

L̂mm′ f̄
σ(k)
m′ = a(k)

m

∂

∂η

√
1− ηB0

B0hϕ
V̂G0, (2.204)

and for the perturbed problem,

M∑

m′=0

L̂mm′ f̃
σ(k)
m′ = a(k)

m

∂

∂η

√
1− ηB0

B0hϕ
V̂

(f)
Gn − σ

(
ι
∂

∂ϑ

Bn

B0

+ in
Bn

B0

)
einϕsη

∂f̄
σ(k)
m

∂η

− Bn

B0

einϕs
1

hϕ

M∑

m′=0

L̂cmm′ f̄
σ(k)
m′ , (2.205)
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where

a(k)
m =

1

2π3/2

∞∫

0

dz e−zzk+1Sm(z), k = 1, 2. (2.206)

Finally, the particle �ux (2.153) is expressed as

Γ = − vTnα
(

ρL
〈|∇s|〉

)2∑

m

b(1)
m

2∑

k=1

Ak

〈
B0

2
Re
∑

σ=±1

∞∑

n=0

f̃σ(k)
m ×

× ∂

∂η

√
1− ηB0

B0

(
V̂

(b)
Gn

)∗〉
, (2.207)

where the quantity V̂ (b)
Gn is de�ned by (2.186) and (2.189), and the constant

b
(1)
m is

b(1)
m =

1

2
√
π

∞∫

0

dz e−zz3/2Sm(z) =

√
6π

4
δm0. (2.208)

With help of de�nitions (2.23) and (2.24) the particle �ux density can be

presented in terms of di�usion coe�cients given in the form of Ref. [49],

D1k =
ρ2
L

τα
γ1k, k = 1, 2, (2.209)

where

γ1k =
lc

〈|∇s|〉2
∑

m

∑

σ=±1

∞∑

n=0

b(1)
m

〈
B0

2
Ref̃σ(k)

m

∂

∂η

√
1− ηB0

B0

(
V̂

(b)
Gn

)∗〉
. (2.210)

Note that the �ux surface average in (2.207) and (2.210) is performed over

unperturbed �ux surfaces, i.e.

〈a〉 =




2πq∫

0

dϕs
B2

0



−1 2πq∫

0

dϕs
B2

0

a. (2.211)

It can be seen that expressions for the coe�cients γ1k are the same as in

Ref. [49] except for the re-de�nition of geodesic curvature and generalization

to complex numbers.
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2.4 Analytical models for the evaluation of non-

ambipolar particle �uxes

2.4.1 Ripple plateau formula

For non-axisymmetric magnetic perturbations with a high toroidal mode

number, such as the toroidal �eld ripple produced by the �nite number of

toroidal �eld coils in a tokamak, the non-ambipolar particle �uxes can be

evaluated analytically [17]. In Ref. [17] the resulting formulas for the radial

particle �ux density and the ripple plateau di�usion coe�cient have been

evaluated for a model B-�eld with circular �ux surfaces, see Eqs. (47) and

(46) of Ref. [17]. In order to benchmark the quasilinear version of NEO-2 for

a realistic tokamak geometry, the result of Boozer [17] is generalized to mag-

netic �eld spectra with a more complex poloidal mode number dependence

in this section.

It is assumed that the magnetic �eld module B consists of an axisymmet-

ric part B0 and a non-axisymmetric perturbation δB with a single toroidal

harmonic N ,

B = B0 + δB,

B0 =
m0b∑

m=0

(bcm0 cos (mϑ) + bsm0 sin (mϑ)) ,

δB =
m0b∑

m=−m0b

(bcmN cos (mϑ+Nϕ) + bsmN sin (mϑ+Nϕ)) . (2.212)

The total particle �ux across a magnetic surface is given by,

Γtot =

∫

ψ

dS ·
∫

d3v vrf =

∫

ψ

dϑdϕ

B · ∇ϑ

∫
dvdλ 2πv2vψr fE, (2.213)

where in the notation of Boozer ψ denotes the poloidal magnetic �ux. The

generalized form of the radial drift velocity vψr and of the solution of the
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ripple kinetic equation, Eq. (36) of Ref. [17], fE are given by,

vψr =
mαcv

2

2eαB0

∂B

∂ϕ

=
mαcv

2

2eαB0

m0b∑

m=−m0b

(−bcmNN sin (mϑ+Nϕ) + bsmNN cos (mϑ+Nϕ))

=
mαcv

2

2eαB0

N (AN(ϑ) cos (Nϕ) +BN(ϑ) sin (Nϕ)) , (2.214)

fE = − mαc

2eα

v

q

B

B · ∇ϑ
∂fM
∂ψ

G(λ/λc)

λc

(
1

B0N

∂B

∂ϕ

)
, (2.215)

where G(λ/λc) is given by Eq. (40) of Ref. [17]. Inserting (2.214) and (2.215)

into (2.213) yields the total particle �ux,

Γtot = −
(
mαc

eα

)2
π

2

N

q

dr

dψ

∫

ψ

dϑdϕ

(B · ∇ϑ)2B

[
1

B0N

∂B

∂ϕ

]2

×

×
∫ ∞

0

dvv5∂fM
∂r︸ ︷︷ ︸

=nα( 2Tα
mαπ

)
3/2

(A1+3A2)

∫ 1

−1

dλ
G(λ/λc)

λc︸ ︷︷ ︸
≈π

≈ −
√

2π

(
mαc

eα

)2
N

q

dr

dψ

(
Tα
mα

)3/2
{∫

ψ

dϑdϕ

(B · ∇ϑ)2B0

[
1

B0N

∂B

∂ϕ

]2
}
×

× [nαA1 + 3nαA2] . (2.216)

Next the expression in the curly brackets is evaluated as follows,

∫

ψ

dϑdϕ

(B · ∇ϑ)2B0

[
1

B0N

∂B

∂ϕ

]2

=

∫ 2π

0

dϑ
π (Bϑ + qBϕ)2

B3
0

[(
AN
B0

)2

+

(
BN

B0

)2
]
.

(2.217)

In order to obtain a particle �ux density Γ, one has to divide the total particle
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�ux (2.216) by the �ux surface area S,

Γ = −
√
π

2
nα

(
mαc

eα

)2
N

q

(
Tα
mα

)3/2
Bϑ + qBϕ(

dψ
dr

)2 ×

×
∫ 2π

0

dϑ

B3
0

[(
AN
B0

)2

+

(
BN

B0

)2
](∫ 2π

0

dϑ

B2
0

)−1

[A1 + 3A2] , (2.218)

where the surface area has been substituted as

S = 2π
dψ

dr
(Bϑ + qBϕ)

∫ 2π

0

dϑ

B2
0

. (2.219)

2.4.2 Universal formula for quasilinear bounce-averaged

transport regimes

For small and moderate values of the cross-�eld rotation frequency the non-

ambipolar particle �ux can be described by the bounce-averaged drift ki-

netic equation [3], since in this case contributions from drift-orbit reso-

nances [51, 18] are small. The bounce-averaged approach [3] comprises the

1/ν, ν − √ν and retrapping-detrapping regime for su�ciently small values

of the magnetic rotation frequency, and the superbanana-plateau and super-

banana regime for magnetic rotation frequencies comparable to or large than

the E × B rotation frequency. Expressions for the particle �uxes presented

in Ref. [3] have been derived for a model B-�eld with circular �ux surfaces

and large aspect ratio. These restrictions can be removed in case of the

ν −√ν [52] and of the superbanana-plateau regime [53]. In this section only

bounce-averaged transport regimes described by the quasilinear approach are

considered, which is the case if the conditions given by (2.90) are ful�lled, i.e.

the retrapping-detrapping regime and the superbanana regime are absent.

The di�erent quasilinear bounce-averaged transport regimes can be con-

nected smoothly using the joining procedure given in Appendix B of Ref. [3].

Here, a modi�cation of the formula for the non-resonant particle �ux (Eq. (B5)

of Ref. [3]) is presented using the more general result of Ref. [54]. Neglecting

the possibility of a superbanana-plateau regime, i.e. xmin =∞, the universal
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formula is given by Eq. (B7) of Ref. [3],

Γnon = −nα
ε1/2

4
√

2π3/2

(
mαc

eαψ′pol

)2

v4
T,α

[
λ1

(
p′α
pα

+
eαΦ′

Tα

)
+ λ2

T ′α
Tα

]
, (2.220)

where magnetic �eld quantities are speci�ed in Hamada coordinates, Γnon =

〈nαV · ∇V 〉 (see Eq. (A.15)), the �ux surface label V is here the volume

enclosed by the �ux surface divided by 4π2, ε is the amplitude of cosϑ com-

ponent of the axisymmetric magnetic �eld normalized by the magnetic �eld

strength on the magnetic axis, and λj for j = 1, 2 is

λj =
1

2

∞∫

0

dxx5/2e−x
(
x− 5

2

)j−1∑

n

1
1

k1/ν,n
+ 1

k√ν,n

. (2.221)

The kernel for the 1/ν regime k1/ν,n is given by Eq. (B1) of Ref. [3],

k1/ν,n =
ε

νD
I1/ν,n. (2.222)

The kernel k√ν is determined by comparing the expression for the ν − √ν
particle �ux given by Eq. (29) of Ref. [54],

Γ√ν = −nα
ε−1/2

4
√

2π3/2

(
mαc

eαψ′pol

)2

v4
T,α

(
c

dΦ

dψpol

)−2

νt



(
p′α
pα

+
eαΦ′

Tα

)


1

2

∞∫

0

dx ×

× x5/2e−x
νD
νt

1∫

0

dκ2
(
E(κ)− (1− κ2)K(κ)

)∑

n

(
α2
n + β2

n

)


+

(
T ′α
Tα

)


1

2

∞∫

0

dx ×

× x5/2e−x
(
x− 5

2

)
νD
νt

1∫

0

dκ2
(
E(κ)− (1− κ2)K(κ)

)∑

n

(
α2
n + β2

n

)





 ,

(2.223)
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to the ν −√ν limit of the universal formula, i.e. (k√ν,n)−1 � (k1/ν,n)−1,

Γnon,
√
ν = −nα

ε1/2

4
√

2π3/2

(
mαc

eαψ′pol

)2

v4
T,α







1

2

∞∫

0

dxx5/2e−x
∑

n

k√ν,n



 ×

×
(
p′α
pα

+
eαΦ′

Tα

)
+





1

2

∞∫

0

dxx5/2e−x
(
x− 5

2

)∑

n

k√ν,n




T ′α
Tα


 , (2.224)

which yields

k√ν,n =
νt

ε

(
c

dΦ

dψpol

)2

︸ ︷︷ ︸
=Ω2

tE

νD
νt

1∫

0

dκ2
(
E(κ)− (1− κ2)K(κ)

) (
α2
n + β2

n

)
. (2.225)

Here, E(κ) and K(κ) denote the complete elliptic integrals of the second and

the �rst kinds, respectively, and the coe�cients αn and βn are speci�ed by

Eqs. (25) and (26) of Ref. [54]

In order to compare the results from the bounce-averaged approach to

the NEO-2 results, the particle �ux (2.220) is cast in terms of di�usion co-

e�cients (2.24) and thermodynamic forces (2.22), and the �ux surface label

is changed from V to r,

Γnon = 〈nαV · ∇V 〉 = ΓNA dV

dr
=

dV

dr

(
−nα

∑

j

D1jAj

)

= − nα
ε1/2

4
√

2π3/2

(
mαc

eα
dψpol

dr

)2
dV

dr
v4
T,α

[
λ1A1 +

(
λ2 +

5

2
λ1

)
A2

]
.

(2.226)

Then, the normalized di�usion coe�cients are given by

D11

Dp

=
4
√

2

π5/2

q

Rε3/2

λ1

τα
κ−1
α , (2.227)

D12

Dp

=
4
√

2

π5/2

q

Rε3/2

(
λ2

τα
+ 2.5

λ1

τα

)
κ−1
α , (2.228)
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where Dp = πqvT,αρ
2
L,α(16R)−1, ρL,α = vT,αω

−1
cr , ωcr = eαBref(mαc)

−1, κα =

2/(vT,ατα) is the collisionality parameter and τα is given by (2.201).
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Chapter 3

Benchmarking results

In this chapter results from benchmarking the quasilinear version of the code

NEO-2 [2] (see Section 2.3) against various analytical [3, 17, 18] and semi-

analytical models [19], as well as the DKES code [6] and NEO [10], are shown.

It should be noted that the numerical results described in Sections 3.2 and

3.3 have been published in the following journal articles [2, 55] and conference

proceeding [16]:

• S. V. Kasilov, W. Kernbichler, A. F. Martitsch, H. Maassberg, and

M. F. Heyn. Evaluation of the toroidal torque driven by external non-

resonant non-axisymmetric magnetic �eld perturbations in a tokamak.

Phys. Plasmas, 21(9):092506, 2014.

• W. Kernbichler, S. V. Kasilov, G. Kapper, A. F. Martitsch, V .V. Nemov,

C. G. Albert, and M. F. Heyn. Solution of drift kinetic equation in stel-

larators and tokamaks with broken symmetry using the code NEO-2.

Plasma Phys. Control. Fusion, submitted, 2016.

• A. F. Martitsch, S. V. Kasilov, W. Kernbichler, and H. Maassberg.

Evaluation of non-ambipolar particle �uxes driven by external non-

resonant magnetic perturbations in a tokamak. In 41st EPS Conference

on Plasma Physics, volume 38F, page P1.049, Berlin, Deutschland,

2014. European Physical Society.
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For the 1/ν regime it is possible to compare analytically the formula obtained

by the quasilinear approach to the result of Nemov et al [10] and to the

result of Shaing [3], see Section 3.1. In Section 3.2 results of the code NEO-

2 are benchmarked against the DKES code [6] for a Lorentz collision model

and against the universal formula connecting all quasilinear bounce-averaged

transport regimes [3] in case of the full collision model. A summary of the

numerical results shown in Section 3.2 including a comparison to results from

the semi-analytical model [19] is given in Section 3.3.

3.1 Analytical comparison for the 1/ν regime

In this section the expression for the non-ambipolar particle �ux in the 1/ν

regime obtained from the quasilinear approach (2.169), i.e.

ΓNA = −
∞∑

n=1

πm2c2

36e2 g0(Bϑ
0 )2

︸ ︷︷ ︸
=a




2π∫

0

dϑ

B2
0

|∇r0|



−1

︸ ︷︷ ︸
=b

∞∫

0

dv
fMv

6

νd

(
A1 +

mv2

2T
A2

)

︸ ︷︷ ︸
=c

×

×
1/Bmin

0∫

1/Bmax
0

dη
n2|H2

n|
ηI

︸ ︷︷ ︸
=d

, (3.1)

is compared to the result of Shaing given by Eq. (7) of Ref. [3]. Equation (3.1)

is identically the same as the result of Ref. [10] (see this reference for the no-

tation) if one retains in the result of [10] only the contribution of toroidally

trapped particles, the only class of trapped particles remaining in a toka-

mak with perturbations which are small enough to avoid particle blocking

by the perturbation �eld, see �rst condition in (2.89). A re-derivation of

Shaing's formula is presented in Appendix A.2. In order to facilitate the

comparison, the expression (3.1) is split into four factors which are inspected
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independently. Factor a can be transferred to Shaing's notation as follows,

a =

(
dψpol

dr

)2

=

(
dV̂

dr
χ′
)2

=

(
Sχ′

4π2

)2

, (3.2)

where the prime denotes d/dV̂ , the �ux surface label V̂ = V/4π2 is the

normalized volume enclosed by the �ux surface, ψpol = χ is the poloidal �ux

normalized by 2π and S = dV/dr is the �ux surface area (see, e.g., Eq. (28)

of Ref. [10]). Using the de�nition of the e�ective radius, i.e. 〈|∇r0|〉 = 1, the

large aspect ratio limit of factor b is given by

b =




2π∫

0

dϑ

B2
0

|∇r0|



−1

=




2π∫

0

dϑ

B2
0



−1

=
B̂2

0

2π
, (3.3)

where B0 = B̂0(1− εt cosϑ) and εt is the inverse aspect ratio. The quantity

c is transformed to

c =
N

2π3/2

v4
T

νt

∞∫

0

dze−zz5/2 νt
νd

S

4π2

[(
p′

p
+
eΦ′

T

)
+

(
z − 5

2

)
T ′

T

]

=
2N

π3/2

v4
T

νt

S

4π2

[
η1

(
p′

p
+
eΦ′

T

)
+ η2

T ′

T

]
, (3.4)

where ηj = (1/2)
∫∞

0
dze−zz5/2(z − 5/2)j−1(νt/νD) .

For the transformation of factor d to the form used by Shaing, the adiabatic

invariant η is replaced by the pitch-angle parameter κ2 (see, e.g., Eq. (7.25)

of Ref. [21]),

κ2 =
1− η̃(1− ε)

2εη̃
, η̃ = ηB̂0, (3.5)

which can be used to rewrite the absolute value of the parallel velocity as

|v‖| = v
√

1− ηB0 = v
√

2η̃ε

√
κ2 − sin2 ϑ

2
. (3.6)

Using the integral substitution κ sinx = sin(ϑ/2) and the relation κmax =

sin(ϑmax/2), the quantities I and Hn are evaluated in the large aspect ratio
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limit as,

I =

ϑmax∫

ϑmin

dϑ

B2
0

√
1− ηB0 =

4
√

2ε

B̂2
0

[
E(κ)− (1− κ2)K(κ)

]
(3.7)

and

Hn =

ϑmax∫

ϑmin

dϑ

B3
0

√
1− ηB0 (4− ηB0) B̃n(ϑ) =

3
√

2ε

B̂3
0

ϑmax∫

ϑmin

√
κ2 − sin2 ϑ

2
B̃n(ϑ),

(3.8)

respectively, where B̃n(ϑ) = −B̂0(An(ϑ)−iBn(ϑ)). The square of its absolute

value |Hn|2 = HnH
∗
n is given by

|Hn|2 =
18ε

B̂4
0

ϑmax∫

ϑmin

dϑ

ϑmax∫

ϑmin

dϑ′
√
κ2 − sin2 ϑ

2

√
κ2 − sin2 ϑ

′

2
×

× (An(ϑ)− iBn(ϑ)) (An(ϑ′) + iBn(ϑ′))︸ ︷︷ ︸
=An(ϑ)An(ϑ′)+Bn(ϑ)Bn(ϑ′)+iBn(ϑ′)An(ϑ)−iBn(ϑ)An(ϑ′)

=
18ε

B̂4
0







ϑmax∫

ϑmin

dϑAn(ϑ)

√
κ2 − sin2 ϑ

2




2

+




ϑmax∫

ϑmin

dϑBn(ϑ)

√
κ2 − sin2 ϑ

2




2

 ,

(3.9)

where the complex part cancels after the integration over ϑ, ϑ′. The quantity

d is eventually given by

d = n2 9ε3/2

√
2B̂2

0

1∫

0

dκ2
[
E(κ)− (1− κ2)K(κ)

]−1 ×

×







ϑmax∫

ϑmin

dϑAn(ϑ)

√
κ2 − sin2 ϑ

2




2

+




ϑmax∫

ϑmin

dϑBn(ϑ)

√
κ2 − sin2 ϑ

2




2

 .

(3.10)
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The large aspect ratio limit of the particle �ux in the 1/ν regime is then

ΓNA = −N ε3/2

4
√

2π3/2

(
mc

eχ′

)2
4π2

S

v4
T

νt

1∫

0

dκ2

[E(κ)− (1− κ2)K(κ)]

∞∑

n=0

n2 ×

×







ϑmax∫

ϑmin

dϑAn(ϑ)

√
κ2 − sin2 ϑ

2




2

+




ϑmax∫

ϑmin

dϑBn(ϑ)

√
κ2 − sin2 ϑ

2




2

×

×
[
η1

(
p′

p
+
eΦ′

T

)
+ η2

T ′

T

]
. (3.11)

If one considers that the de�nition of ΓNA di�ers from ΓShaing by

ΓShaing = 〈nV · ∇V̂ 〉 = 〈nV · ∇r〉dV̂
dr

= ΓNA S

4π2
, (3.12)

one �nds that Eq. (3.11) agrees with Eq. (7) of Ref. [3].

3.2 Numerical benchmarking results

For benchmarking, a tokamak con�guration with circular cross-section and

aspect ratio A = 3.8 is used. The results for the full linearized collision

model correspond here to the ion component if not otherwise stated. The

perturbation �eld is taken in the form of a single harmonic,

δB = εMB0(r, ϑ) cos(mϑ+ nϕ). (3.13)

Since transport coe�cients have a simple, quadratic dependence on εM , this

quantity has been set to 1 in all plots below. In cases where non-linear

models are involved such as NEO [10] and DKES [6], results are obtained for

εM = 10−3 and are then rescaled.

In Fig. 3.1 the dependence of the e�ective �eld ripple ε3/2
eff on the normal-

ized toroidal �ux s = ψtor/ψ
a
tor is shown, where ψ

a
tor is the toroidal �ux at

the outermost �ux surface. The e�ective �eld ripple determines the particle
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Figure 3.1: E�ective ripple dependence on the normalized toroidal �ux s
for mode numbers (m,n) = (0, 3) (left) and (m,n) = (0, 18) (right) from
the analytical par-axial approximation (♦), NEO [10] (×) and NEO-2 with
Lorentz model (◦) and full collision model (+).

�ux density in the 1/ν regime for the Lorentz collision model as follows [10],

ΓNA = −
√

8

9π3/2

nαv
2
Tρ

2
L

R2
ε

3/2
eff

∫ ∞

0

dze−zz5/2

ν
(A1 + A2z) , (3.14)

where ν = νD/2 and νD is the de�ection frequency de�ned in (3.45) of

Ref. [21]. The comparison of the quasilinear model (NEO-2) to the non-

linear model (NEO [10]), which serves here as a benchmark, shows that even

for large values of s, i.e., small aspect ratios (A=3.8 at the outer surface), the

Lorentz model provides a good approximation for the transport. As one can

expect, due to the assumption of small aspect ratio, the analytical results of

Ref. [36] agree well with numerical results only in the par-axial region.

Results of benchmarking with the DKES code [6] are presented in Fig. 3.2.

There scans over the collisionality parameter ν∗ = 2νqRv−1
T of the di�usion

coe�cient D11 normalized to the mono-energetic plateau di�usion coe�cient,

Dp =
πqvTρ

2
L

16R
, (3.15)
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are shown for various perturbation modes and for various radial electric �elds

given in terms of toroidal Mach numbers (normalized toroidal rotation ve-

locity values) Mt = ΩtERv
−1
T . For large scale perturbations (n = 1) and

relatively slow toroidal rotation, the sequence of transport regimes realized

with decreasing plasma collisionality ν∗ consists of the P�rsch-Schlüter, the

plateau, the 1/ν and the ν−√ν regimes. The last two (long mean free path)
regimes are well described by the bounce-averaged kinetic equation. This se-

quence is nearly the same as in stellarators [46] except for the absence of the

retrapping-detrapping regime (ν-regime) which replaces the ν − √ν regime

at very low collisionality where the �rst one of conditions (2.90) is violated.

Since the quasilinear approach assumes an in�nitesimal perturbation ampli-

tude εM , this transition is never realized here. In addition, those regimes,

which are not described by the bounce-averaged theory (ripple-plateau and

resonant di�usion), are clearly reproduced by both codes. The ripple-plateau

regime is seen at intermediate collisionalities for the short scale perturba-

tion �eld (n = 18) and the resonant di�usion limits the value of the trans-

port coe�cient from below at low collisionalities for fast enough rotation

(Mt = 2.8 · 10−2) for all perturbations considered here. Finally, a signi�cant

increase in the non-ambipolar transport can be seen for the (m,n) = (−3, 3)

perturbation mode, which is nearly resonant for the actual safety factor value

q = 1.124. The phase of such a perturbation stays almost unchanged along

trapped particle orbits in contrast to non-resonant perturbations, which oscil-

late along these orbits and contribute to the bounce-averaged radial velocity

of the trapped particles mainly near their banana tips. It should be noted

that the discrepancies seen at high collisionality originate from the di�erent

treatment of the ambipolar transport in the two codes. Since DKES solves a

general nonlinear problem, the contribution of the non-axisymmetric pertur-

bation magnetic �eld to the transport coe�cient D11 has been computed as

a di�erence between these coe�cients for the perturbed and for the unper-

turbed �elds. This di�erence includes also the modi�cation of the ambipolar

transport, which would vanish if the collision model would conserve the mo-

mentum. In turn, such a modi�cation is excluded from the NEO-2 result.

Some minor discrepancies can also be seen for the lowest collisionality values
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computed by DKES where the convergence of the code is at its limit (such

low collisionalities are usually of no practical interest).

Results of the computation with the full linearized collision operator and

the comparison to the universal formula of Shaing et al [3] are shown in

Fig. 3.3. The collision frequency is from now on set to ν = 32
√
πne4Λ(3m2v3

T )−1.

For this purpose a variant of the universal formula of Ref. [3] excluding the

possibility of a collisionless retrapping-detrapping regime or a superbanana

regime, as de�ned in Appendix B of Ref. [3], has been modi�ed by using a

more accurate expression for the kernel in the ν−√ν regime. This kernel has
been extracted analogously from the expression for the particle �ux given by

Eq. (29) of Ref. [54], which includes the complete pitch-angle dependence.

Furthermore, the expression for the estimate of the collisional boundary layer

width, Eq. (14) of Ref. [3], has been replaced everywhere by

(
∆κ2

)
new

=

[
ν∗d/(1 + ν∗d)

ln(16/
√
ν∗d/(1 + ν∗d))

]1/2

. (3.16)

This guarantees that the universal formula of Ref. [3] is well de�ned over the

whole collisionality range and has a smooth transition from the 1/ν to the

ν−√ν regime. As shown in Fig. 3.3, the universal formula approximates the
results from the full collision model unless the electric �eld or the collisionality

exceeds a certain value. At relatively high collisionality NEO-2 results agree

with the value of the ripple plateau coe�cient [17],

Drp =

√
πnq2A2vTρ

2
Lε

2
M

4R
. (3.17)

At low collisionality and high electric �elds, the resonant di�usion regime [56]

is seen. For n = 18 and the highest electric �eld few multiple bounce res-

onances contribute to the resonant di�usion simultaneously, and the result

formally agrees with the stochastic di�usion coe�cient [57] (it coincides with

the ripple plateau coe�cient). It can be seen that the �o�-set� velocity co-

e�cient kNA tends to zero in the collisional case and has a rather peculiar

behavior in the resonant di�usion regime. It should be noted that in the res-
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onant di�usion regime not only trapped, but also passing particles contribute

to the non-ambipolar transport (via �transit and drift� resonance [18]). The

evaluation of this contribution requires the knowledge of the axisymmetric

distribution function f10 (non-trivial in the passing region and the trapped-

passing boundary layer) which enters Eq. (2.151) via the mirroring force.

Furthermore, the normalized ion and electron di�usion coe�cients are

shown for Er = 0 in Fig. 3.4. The principal di�erence here is the absence

of an approximate momentum conservation within a given species for elec-

trons. The extension of the ripple plateau regime into the P�rsch-Schlüter

regime for ions (see also Ref. [18]) agrees with the MHD expression for the

non-ambipolar di�usion coe�cient due to TF ripples. For comparison, the

�ux surface averaged particle �ux in the P�rsch-Schlüter regime has been

evaluated from the expression for the neoclassical toroidal plasma viscosity,

Eq. (50) of Ref. [18], using the �ux-force relation [37]. For this, the poloidal

and toroidal components of the �uid velocity V and the heat �ux q are

rewritten in terms of thermodynamic forces. The �uid velocity and heat �ux

perpendicular to the magnetic �ux surface are given by (2.15) and

q⊥ =
5pic

2eiB
h×∇Ti, (3.18)

respectively. Furthermore, it is utilized that the �rst order (in Larmor radius

expansion) �uid velocity and heat �ux are divergence free, i.e., ∇ · V = 0

and ∇ · q = 0 (see, e.g., Ref. [21]). The resulting relation can be further

simpli�ed in case of ions in a pure plasma, where the �ux surface averaged

parallel heat �ux 〈qi‖B〉 is vanishingly small [21], and the di�usion coe�cient
corresponding to A1 for the model magnetic �eld is obtained as follows,

DNA
PS =

3µi1
8

n2q2A2v2
Tρ

2
Lτiiε

2
M

R2
∼ nvT τi

R
Drp, (3.19)

where µi1 = 1.365 (see Ref. [37]) and τii = 3m2
i v

3
T (16
√
πnie

2
iΛ)−1 is the

ion collision time. This result is identically the same as the result, which

follows from the expression for the rotation slowing down rate in the generic
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equation (85) of Ref. [58]. This expression becomes valid if the mean free

path length, vT τi is smaller than the toroidal ripple length Rn−1 what means

higher collisionalities than needed for the onset of the axisymmetric P�rsch-

Schlüter transport regime. Note that in this plot, the normalizing mono-

energetic plateau coe�cient (3.15) for electrons is by square root of mass

ratio smaller than for ions.

Finally, the comparison of NEO-2 results with the full collision opera-

tor in the superbanana plateau regime to the respective asymptotic formula

of Shaing et al [59, 3] is shown in Fig. 3.5. At low collisionalities NEO-2

approaches the asymptotical value of the di�usion coe�cient for the super-

banana plateau for both signs of the radial electric �eld. The actual magni-

tude of the superbanana plateau coe�cient is di�erent for di�erent signs of

the radial electric �eld because the shape of the velocity space resonant curve

(which is responsible for the formation of the superbanana plateau) depends

on this sign [59].

3.3 Summary

The NEO-2 results shown in Section 3.2 are summarized in Figure 3.6 where

the numerically evaluated non-axisymmetric ion transport coe�cient DNA
11

is compared to asymptotical models for a tokamak with small amplitude

magnetic perturbations. Non-ambipolar radial particle �uxes determined

by DNA
11 and DNA

12 are responsible in tokamaks for the neoclassical toroidal

viscous torque which is directly related to these �uxes via the �ux-force re-

lation [37, 3, 2]. This example corresponds again to a tokamak with circular

concentric �ux surfaces and perturbation in the form of a single toroidal

harmonic, B(ϑ, ϕ) = B0(ϑ)(1 + εM cos(nϕ)) where εM = 10−3. The dif-

fusion coe�cient is shown in the normalized form, D̂∗11 = DNA
11 D

−1
p where

Dp = πqvTρ
2
L/(16R) is the plateau di�usion coe�cient and ρL = vT/ωc is

the Larmor radius for the reference magnetic �eld, as function of the plasma

collisionality parameter ν∗f = 2qR0l
−1
c for a few distinct values of the radial

electric �eld speci�ed via the toroidal Mach number Mt = R0ΩtE/vT where

ΩtE is the toroidal E × B rotation frequency determined by the �rst term
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in Eq. (2.147). Here, lc = vT τα denotes the mean free path and τα is given

by (2.201). Results correspond to a �ux surface with aspect ratio A = 10 and

toroidal harmonic number n = 3. The toroidal rotation due to the magnetic

drift has been set to zero in (2.147) for all Mach numbers except Mt = 10−5

while for Mt = 10−5 this drift has been included for the ion temperature

Ti = 6.5eiψtor |ΩtE| /c, where ψtor is the toroidal �ux. Asymptotical models

used for the comparison are indicated in the caption. It can be seen that

NEO-2 accurately reproduces all asymptotical regimes in their validity do-

mains. In particular, collisionless plateau di�usion, which corresponds at low

collisionalities to the resonant di�usion regime at Mt ≥ 2.8 · 10−2 and to the

superbanana-plateau regime at Mt = 10−5, is well resolved. The perturbed

distribution in these regimes is highly localized around resonant curves in

velocity space what presents a signi�cant numerical di�culty in case of non-

adaptive velocity space discretization.
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Figure 3.2: Normalized coe�cient D11D
−1
p from NEO-2 (Lorentz collision

model) and DKES [6] as a function of collisionality ν∗ for various perturbation
modes and toroidal Mach numbers Mt = 0 (♦), 2.8 · 10−7 (M), 2.8 · 10−6 (�),
2.8 · 10−5 (◦), 2.8 · 10−4 (×), 2.8 · 10−3 (+) and 2.8 · 10−2 (?). The toroidal
rotation frequency due to magnetic drift is set to zero for the four cases shown
above. Aspect ratio and mode numbers are indicated in the titles.
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Figure 3.3: Normalized coe�cient D11D
−1
p from NEO-2 (full collision model)

and bounce-averaged model of Shaing [3] (upper panel) and �o�set� rotation
coe�cient kNA (2.88) from NEO-2 (lower panel) as functions of collisionality
ν∗ for various perturbation modes and toroidal Mach numbers Mt = 0 (♦),
2.8 · 10−7 (M), 2.8 · 10−6 (�), 2.8 · 10−5 (◦), 2.8 · 10−4 (×), 2.8 · 10−3 (+)
and 2.8 · 10−2 (?). The toroidal rotation frequency due to magnetic drift is
set to zero for the four cases shown above. Curves for the bounce-averaged
model are shown up to the boundary with a usual plateau regime, ν∗TOK =
ν∗A3/2 = 1. Aspect ratio and mode numbers are indicated in the titles. The
ripple-plateau di�usion coe�cient (3.17) is shown with a dashed line at the
upper panel.
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Figure 3.4: Normalized di�usion coe�cients, D11D
−1
p , for electrons (♦) and

ions (�). Dashed line shows the ripple plateau coe�cient, dash-dotted line
shows the asymptotical coe�cient for the P�rsch-Schlüter regime[58, 18] and
solid line shows the axisymmetric plateau boundary.
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Figure 3.5: Normalized coe�cient D11D
−1
p from NEO-2 (full collision model)

and asymptotical formula of Shaing [3] as a function of collisionality ν∗ for
various toroidal Mach numbers. The reference toroidal rotation frequency
due to magnetic drift, Ωref

tB = cTα (eαψ
a
tor)
−1, is set for all curves to Ωref

tB =
|ΩtE|. Curves for the asymptotical formula are shown up to the boundary
speci�ed by the condition given in the paragraph before Eq. (28) of Ref. [3].
Aspect ratio and mode number are indicated in the title.
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Figure 3.6: Normalized di�usion coe�cient D̂NA
11 from NEO-2 (solid line)

and bounce-averaged model of Shaing [3] (loosely dotted line) as functions
of collisionality ν∗ for various toroidal Mach numbers Mt = 2.8 · 10−7 (◦),
10−5 (♦), 2.8 ·10−4 (M), 2.8 ·10−2 (•) and 6 ·10−2 (?). The collisionless limits
for the 1/ν regime (loosely dashed line) and the resonant di�usion regime
(densely dotted line) are computed by NEO [10] and a semi-analytical model
based on a Hamiltonian approach [19], respectively. The di�usion coe�cients
for the ripple-plateau regime [17] and the P�rsch-Schlüter regime [58, 18] are
shown with a densely dashed line and a dash-dotted line, respectively.



Chapter 4

E�ect of 3D magnetic

perturbations on the plasma

rotation in ASDEX Upgrade

In this chapter the neoclassical toroidal viscous torque is evaluated numer-

ically for an ASDEX Upgrade discharge using the codes NEO-2 [2] and

SFINCS [13], as well as a discussion of the torque balance in this discharge

is given. The results presented in this chapter have been published in the

following journal article [60] and conference proceeding [61]:
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4.1 Introduction

Stability and transport of tokamak plasmas are strongly in�uenced by toroidal

plasma rotation. The knowledge of various mechanisms and corresponding

torques driving the toroidal plasma rotation is therefore crucial for opera-

tion control of these fusion experiments. Dedicated experimental studies at

NSTX [62], DIII-D [63] and JET [64, 65] have shown a strong dependence

of the plasma rotation on non-axisymmetric magnetic perturbations (e.g.,

from coils for mitigation of edge localized modes (ELMs), from toroidal �eld

(TF) coil ripple and from error �elds). The observed changes in plasma rota-

tion were in agreement with theoretical predictions for the torque produced

by non-resonant non-axisymmetric magnetic perturbations, which are based

on analytical and semi-analytical approaches [3, 4, 5]. The non-resonant

torque produced by such perturbations is often expressed through a vis-

cous force, terming the phenomenon also as neoclassical toroidal plasma vis-

cosity (NTV). In this thesis the NTV torque is evaluated numerically for

ASDEX Upgrade equilibria using the drift kinetic equation (DKE) solver

NEO-2 [2, 1] and the results are compared to analytical models [3, 17] and

a semi-analytical approach based on Hamiltonian theory [19], as well as to

results from the DKE solver SFINCS [13].

Analytical and semi-analytical approaches presently used for the evalu-

ation of the NTV torque [3, 4, 5] make simplifying assumptions concerning

geometry and collision operators. A numerical approach without such sim-

pli�cations is provided by the quasilinear version of the code NEO-2 [2]. In

this code, the only assumption simplifying the general neoclassical ansatz for

non-axisymmetric tori is that perturbations of the magnetic �eld are small

enough such that the particle motion within perturbed �ux surfaces is only

weakly a�ected by the perturbation �eld. This reduces the �nonlinear� 4D

problem, where all relevant toroidal Fourier modes of the perturbation �eld

simultaneously a�ect the particle motion, to a set of uncoupled 3D problems.

Those are solved for each toroidal Fourier mode separately and �nally result

in independent contributions to the torque. Such a quasilinear approach is

well justi�ed in many circumstances but might be only marginally justi�ed for
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high toroidal mode numbers of the perturbation. In a previous study [2], the

quasilinear version of the code NEO-2 has been benchmarked for a simpli�ed

tokamak geometry against various analytical models [3, 36, 54, 59, 18, 17],

as well as the nonlinear codes DKES [6] and NEO [10]. Here, also the DKE

solver SFINCS [13] is used for benchmarking of the ion contribution to the

torque. The code SFINCS is not limited to small values of the perturbation

amplitude because it solves the nonlinear problem pertinent to neoclassical

stellarator transport. Computationally, this is a much more demanding task

than solving the quasilinear problem. In contrast to the DKES code, which

solves the reduced monoenergetic problem, SFINCS as NEO-2 uses the full

linearized Coulomb collision operator.

A set of perturbed ASDEX Upgrade equilibria studied here has been

computed by the ideal MHD equilibrium solver NEMEC [11, 66]. These

equilibria include both, perturbations from the TF ripple and from ELM

mitigation coils with di�erent distribution of current values resulting in dif-

ferent perturbation �eld spectra in the ASDEX Upgrade shot #30835. Due

to the strong shielding of resonant magnetic perturbations (RMPs) by plasma

response currents in AUG [12], magnetic �elds computed within ideal MHD

theory, where RMPs are shielded perfectly, provide a good approximation in

a major part of the plasma volume except for narrow resonant layers around

resonant rational �ux surfaces.

Here, in order to identify various NTV regimes of importance for AS-

DEX Upgrade, comparisons of numerical results from NEO-2 and SFINCS

with several analytical models and additional parameter scans have been un-

dertaken. In addition, results for the integral torque are compared to the

torque resulting from neutral beam injection (NBI) computed by the code

NUBEAM [67] and the overall torque balance is discussed.

The structure of this chapter is as follows. In Section 4.2 the toroidal mo-

ment conservation equation and its simpli�ed forms are introduced and basic

de�nitions are given, e.g., expressions for the rotation velocity components

and toroidal torque density in terms of plasma parameters and neoclassi-

cal transport coe�cients. In Section 4.3 the NTV torque pro�les computed

by NEO-2 and SFINCS are shown for ASDEX Upgrade equilibria, as well
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as a comparison to analytical and semi-analytical models is presented. In

Section 4.4 additional momentum sources, which are not taken into account

here, are discussed in order to stimulate further experiments and simulations,

and �nally in Section 4.5 the results are summarized.

4.2 Toroidal momentum conservation and neo-

classical toroidal viscosity

In a tokamak plasma, charged particles and neutrals together with the elec-

tromagnetic �eld are represented by a coupled system, which can be char-

acterized by the exact conservation law of the total toroidal momentum of

particles and of the electromagnetic �eld. In a covariant notation this con-

servation law is given as (see, e.g., [2] for its toroidally averaged form),

∂

∂t
Pϕ +

(
∂xi

∂t

)

r

∂

∂xi
Pϕ +

1√
g

∂

∂xi
√
g Πi

ϕ = 0, (4.1)

where
√
g is the metric determinant and xi are some (generally time de-

pendent) coordinates with rotational symmetry over the toroidal angle ϕ,

such as cylindrical coordinates (R,ϕ, Z) or �ux coordinates (r, ϑ, ϕ) asso-

ciated with the unperturbed axisymmetric �eld, and Pϕ = P · ∂r/∂ϕ and

Πi
ϕ = (∂r/∂ϕ) ·Π · ∇xi, are the toroidal co-variant components of the mo-

mentum density vector and the total stress tensor of particles and electro-

magnetic �eld respectively given by

P =
∑

α

P(α) +
1

c2
S, Π =

∑

α

Π(α) − σ. (4.2)

Here,

P(α) = mαnαVα, Π(α) = mαnαVαVα + pαI + πα (4.3)

are the momentum density vector and the total stress tensor of particle

species α, respectively, with pertinent mass mα, density nα, scalar pressure

pα, and viscous stress tensor πα. Pointing �ux S and Maxwell stress tensor
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σ are respectively de�ned as

S =
c

4π
E×B, σ =

1

4π

(
E E− E2

2
I + B B− B2

2
I

)
. (4.4)

In the main plasma volume neoclassical ��ux surface� averaging of (4.1) over

unperturbed �ux surfaces results in a one dimensional conservation law,

1

S

∂

∂t
S 〈Pϕ〉+

1

S

∂

∂r
S
〈
Πr
ϕ

〉
= 0, (4.5)

where 〈. . . 〉 denotes the average, r is a �ux surface label (e�ective radius)

�xed by the condition 〈|∇r|〉 = 1, and S is the (generally time dependent)

�ux surface area.

The exact equations (4.1) and (4.5) contain no volume source density.

This means that the integral total momentum within the vacuum vessel can

only be driven by sources located at the walls or outside the vessel. Since the

Pointing �ux is usually negligibly small, the toroidal momentum is approx-

imately the same as the kinematic toroidal momentum of plasma particles

and neutrals. However, the contribution of the electromagnetic �eld, σ, to

the total momentum �ux density
〈
Πr
ϕ

〉
is as important as the contributions

by charged particles and neutrals, Π(α). In order to make equation (4.5) of

practical use within a local 1D balance description, the nonlocal �uxes, which

are not fully determined by local plasma parameters and a limited number

of their derivatives, should be excluded from the total momentum �ux
〈
Πr
ϕ

〉

and turned into momentum sources (torque densities), which are described

outside the closed set of balance equations. E.g., excluding the contribution

of neutral particles, α = n, produced by NBI from the l.h.s. of (4.5), the

pertinent torque density is obtained as

TNBI
ϕ = − 1

S

∂

∂t
SP(n)ϕ −

1

S

∂

∂r
S
〈
Πr

(n)ϕ

〉
. (4.6)

Formally the contributions from all external non-axisymmetric electromag-

netic perturbations, including besides the static or slowly varying magnetic

perturbations also the contribution from RF heating and current drive, can
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be separated into the source term TNA
ϕ . Generally, this separation is not so

straightforward as (4.6), see, e.g., [2] for the case of non-resonant magnetic

perturbations, and may even not always be meaningful in a general case (see

discussion in Section 4.4). Thus, equation (4.5) turns into

1

S

∂

∂t
S
∑

α

mα 〈gϕϕnαV ϕ
α 〉+

1

S

∂

∂r
S
〈
Πr

[in]ϕ

〉
= TNBI

ϕ + TNA
ϕ , (4.7)

where α denotes only plasma particles. The radial component of the to-

tal stress
〈

Πr
[in]ϕ

〉
(�ux surface averaged radial �ux density of the toroidal

momentum) is the sum of the total stress from intrinsic turbulent modes

(anomalous momentum �ux density) and total axisymmetric stress including

the contribution from the polarization current and a small contribution of

axisymmetric neoclassical shear viscosity. In case of non-resonant external

magnetic perturbations, TNA
ϕ is directly linked through the �ux-force relation

to the non-ambipolar neoclassical particle �ux densities ΓNA
α driven by these

perturbations in a stationary radial electric �eld (see, e.g. [3, 2]),

TNA
ϕ = −1

c

√
gBϑ

∑

α

eαΓNA
α . (4.8)

Here, c is the speed of light, eα is the charge of species α, and Bϑ is the

contra-variant magnetic �eld component linked to the poloidal �ux ψpol by√
gBϑ = ∂ψpol/∂r. Torque produced by these thermal particle �uxes is

called NTV torque. In presence of supra-thermal particle losses, the torque

density (4.8) should include also the �ux of these fast particles (see, e.g., [68,

69]). However, this type of �ux cannot be described by the local neoclassical

ansatz.

The non-ambipolar neoclassical particle �ux densities are expressed through

transport coe�cients DNA
ij and thermodynamic forces Aj,

ΓNA
α = −nα

(
DNA

11 A1 +DNA
12 A2

)
, (4.9)
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where the thermodynamic forces are speci�ed by

A1 =
1

nα

∂nα
∂r
− eαEr

Tα
− 3

2Tα

∂Tα
∂r

,

A2 =
1

Tα

∂Tα
∂r

, (4.10)

with Tα and Er being α species temperature and radial electric �eld, respec-

tively. Thus, equations (4.8) and (4.9) reduce the problem to the evalua-

tion of di�usion coe�cients DNA
ij , which are computed here numerically by

NEO-2, SFINCS, and the Hamiltonian approach [19] using the perturbed

equilibrium magnetic �elds from the NEMEC code represented in Boozer co-

ordinates (r, ϑ, ϕ). For the perturbed equilibria, these variables correspond

to the perturbed magnetic �eld and are di�erent from �ux variables used

in equations (4.1)-(4.7). In particular, ϕ is not an exact symmetry variable

anymore. This di�erence, however, is small for weakly perturbed equilib-

ria and can be ignored in (4.7) (see [2]). For evaluation of the analytical

expressions of Shaing [3] magnetic �elds have been converted from Boozer

coordinates to Hamada coordinates. The radial electric �eld pro�le required

for the forces (4.10) is calculated here from the toroidal rotation frequency

of ions via the relation

V ϕ =
c√
gBϑ

(
Er −

1

eini

∂(niTi)

∂r

)
+ qV ϑ,

V ϑ =
c k Bϕ

ei
√
g〈B2〉

∂Ti

∂r
, (4.11)

where q is the safety factor. The coe�cient k = 5/2 − D32/D31 is deter-

mined by the parallel ion �ow obtained from the NEO-2 solution for the

unperturbed, axisymmetric problem,

〈V‖iB〉 = Bϕ

(
V ϕ − qV ϑ

)
+

ckBϕ

ei
√
gBϑ

∂Ti

∂r

= − (D31A1 +D32A2) . (4.12)
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4.3 NTV torque in ASDEX-Upgrade

Evaluation of the NTV torque is performed here for a set of ASDEX Up-

grade equilibria based on the shot #30835 (Bt = −1.794 T, Ip = 0.8 MA,

Pheat = 9.753 MW, ν? = 0.03, κ = 1.753, δo = 0.151, δu = 0.511, H-mode).

ASDEX Upgrade is equipped with 16 ELM mitigation coils, which form an

upper and a lower ring each consisting of eight coils [70]. This setup allows

for some control of the poloidal mode spectrum by varying the toroidal phase

shift between the upper and lower coils ∆φul, which is also termed as varying

the coil polarity. The NTV torque is computed here for the experimentally

realized ELM mitigation coil polarity ∆φul = 90◦ where good ELM mitiga-

tion has been achieved, as well as for a few simulated equilibria with other

coil polarities. A simple (pure deuterium) plasma is assumed in this anal-

ysis. This assumption only weakly overestimates the ion density in case of

high Z impurities and Zeff ∼ 1.7. In Figure 4.1 the experimentally measured

pro�les of density ne, temperatures Ti and Te, toroidal ion rotation frequency

V ϕ, collisionality parameter ν? = 2νqR0v
−1
T , and the resulting toroidal Mach

number of the E×B rotation Mt = cR0Er(vT
√
gBϑ)−1 as well as the safety

factor for the corresponding shot are shown as functions of the normalized

poloidal radius ρpol = (ψpol/ψ
a
pol)

1/2. The de�nition of the collisionality pa-

rameter di�ers from the standard de�nition ν?TOK = 2νqR0ε
−3/2
t v−1

T by a fac-

tor 2−1ε
−3/2
t . Here, ν = 16

√
πnαe

4
αΛ(3m2

αv
3
T )−1, Λ is the Coulomb logarithm,

vT = (2Tα/mα)1/2, εt is the inverse aspect ratio, R0 is the mean major radius

value at a given �ux surface, ψpol = 0 on the magnetic axis and ψapol is the

poloidal �ux value at the separatrix. The radial electric �elds obtained from

NEO-2 agree perfectly with those from SFINCS computations (not shown in

this �gure). Within this modeling e�ort of the NTV torque, magnetic per-

turbations due to both TF ripple (toroidal mode number n = 16) and ELM

mitigation coils with various coil polarities in this shot (n = 2 with a minor

contribution from n = 6), are studied (see Figure 4.2).

In Figure 4.3 radial pro�les and scans over the normalized perpendic-

ular adiabatic invariant η = v2
⊥(v2B)−1 of the ion E × B drift frequency

ΩtE = MtvTR
−1
0 , bounce-averaged magnetic drift frequency 〈ΩtB〉b (see def-
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Figure 4.1: Radial pro�les of density, temperatures, toroidal rotation fre-
quency, collisionalities (left), toroidal Mach number and safety factor (right)
for ASDEX Upgrade shot #30835 (with ELM mitigation coils switched on).

inition in (4.16)) and bounce frequency ωb are shown for various η-values

and radial positions, respectively. Resonances between the di�erent frequen-

cies lead to the formation of resonant transport regimes, which are described

by asymptotical formulas in the collisionless limit [17, 3, 18, 4]. The reso-

nance condition for the superbanana-plateau (sb-p) regime [53, 19] is given

by ΩtE + 〈ΩtB〉b = 0, whereas for drift-orbit resonances [17, 18, 4, 19] the

condition mϑωb +n(ΩtE + 〈ΩtB〉b) = 0 must be ful�lled for trapped particles.

Here, the bounce frequency mode number mϑ can take any positive or nega-

tive integer value. It can be seen that the sb-p resonance condition is ful�lled

in the inner part of the plasma and in the vicinity of zero of the electric �eld

where the contribution from the sb-p regime to the non-ambipolar particle

�uxes is expected to be largest. Drift-orbit resonances can contribute to the

non-ambipolar particle �uxes nearly over whole the radial domain, except for

a certain region in the vicinity of the zero of the electric �eld. For su�ciently

large values of mϑ drift-orbit resonances occur not only in the deeply trapped

region but also in the vicinity of the trapped-passing boundary. This em-

phasizes the importance of a proper numerical discretization of the velocity
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space in order to resolve the di�erent resonant transport regimes.
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Figure 4.2: Left - radial pro�les of the maximum value of the normalized
perturbation �eld for the TF ripple and for RMP with 90◦ coil phase (see
de�nition in Eq. (4.14)); right - Variation of the absolute value and real part
of the normalized perturbation �eld along the �eld line for ρpol = 0.5.

For the TF ripple a comparison of NEO-2 results with analytical estimates

of the torque density and of the integral torque,

(
TNA
ϕ

)
int

=

∫

V (ρpol)

d3r TNA
ϕ , (4.13)

where V (ρpol) is the volume limited by the �ux surface with a given ρpol, is

shown in Figure 4.4. In order to quantify the impact of nonlinear e�ects and

to validate the quasilinear approach, the NTV torque density is also com-

puted with the code SFINCS. It can be seen that the NTV torque acts in the

direction opposite to the experimentally measured plasma rotation velocity

and the integral torque computed by NEO-2 is about -0.6 Nm, whereas the

SFINCS calculation predicts a value of -0.4 Nm. The NTV torque produced

by TF ripples is mainly applied to ions and, in case of the quasilinear model,

corresponds to the ripple-plateau regime [17] in a major part of the plasma

volume. The di�erence between the NEO-2 result and the SFINCS result

is about 30% for ρpol ≤ 0.9 and a rather large discrepancy is observed at
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Figure 4.3: Left - radial pro�les of the ion E×B drift frequency ΩtE, bounce-
averaged magnetic drift frequency 〈ΩtB〉b and bounce frequency ωb in the
deeply trapped (�), trapped-passing boundary (+) and an intermediate (◦)
region. Right - drift and bounce frequencies as functions of the normalized
perpendicular adiabatic invariant η at ρpol = 0.57 (4) and ρpol = 0.95 (�)
for the trapped particle domain. The trapped-passing and deeply trapped
boundaries are indicated by dashed and solid vertical lines, respectively.

outermost points with ρpol > 0.9. This correlates with the deviation from

the quasilinear scaling of the NTV torque density, see Figure 4.5, and can be

attributed to the onset of nonlinear transport due to locally trapped parti-

cles, which are blocked by the perturbation �eld. The respective quasilinear

theory validity conditions (41) of Ref. [2] are clearly violated at outermost

points and are marginally violated in the rest of the plasma volume. For

the SFINCS calculation shown here, only the E×B drift of particles within

�ux surfaces has been taken into account. Therefore a strong increase of the

torque is seen near the zero of radial electric �eld at ρpol ≈ 0.9, where a

contribution of 1/ν transport appears. This increase is absent in the NEO-2

result where also the magnetic drift is taken into account (see a more detailed

discussion of the RMP case below). Due to these di�erences, the value of

the integral torque computed by NEO-2 is about 33% larger than the value

predicted from SFINCS computations. The analytical estimate, used here for
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Figure 4.4: Radial pro�les of the NTV torque density (left) and the integral
torque (right) produced by the TF ripple.

comparison, is obtained from a general expression for the particle �ux in the

ripple-plateau regime (Eq. (45) of Ref. [17]) by replacing in this derivation

the simpli�ed magnetic �eld with the more general form,

B(r, ϑ, ϕ) = B0(r, ϑ) + Re {Bn(r, ϑ) exp(inϕ)} , (4.14)

where B0 is the unperturbed magnetic �eld and Bn is a complex perturbation

�eld amplitude. The non-ambipolar di�usion coe�cients valid for a general

tokamak geometry are then

DNA
11 =

√
π

4

nm2
i c

2v3
TB

2
0

e2
i g(Bϑ

0 )2Bϕ
0




2π∫

0

dϑ

B2
0



−1 2π∫

0

dϑ

B3
0

∣∣∣∣
Bn

B0

∣∣∣∣
2

,

DNA
12 = 3DNA

11 , (4.15)

where the notation is the same as in Ref. [2]. The di�erence in the integral

torque between the NEO-2 result and the analytical estimate is less than 5%.

In Figure 4.6, the NEO-2 result for the ion NTV torque density produced

by the ELM mitigation coils with ∆φul = 90◦ is compared to the bounce-
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averaged model of Shaing [3, 2] and, with the toroidal rotation due to the

magnetic drift set to zero, also to a semi-analytical model based on a Hamil-

tonian approach [19] and to the code SFINCS. If only the E × B drift is

considered, the agreement with SFINCS is nearly perfect (blocked particles

are absent for medium scale perturbations), and there is a qualitatively good

agreement between NEO-2 and the bounce-averaged model [3] in the vicinity

of the zero of the electric �eld around ρpol = 0.9. Apart from this radial do-

main NEO-2 results exceed the results of the bounce-averaged model [3] sig-

ni�cantly. The discrepancies can be �xed by adding the NTV torque density

from resonant (not bounce-averaged) transport regimes, which is computed

by the semi-analytical model [19] in the collisionless limit, to the bounce-

averaged model [3]. In radial domains with su�ciently large Er, where the

contribution from drift-orbit resonances to the NTV torque is dominating,

a very good agreement between the NEO-2 result and the semi-analytical

model is found. For the NEO-2 result including both, E×B drift and mag-

netic drift, a modi�cation of the NTV torque density is observed in the core

of the plasma and in the vicinity of the zero of the electric �eld. This em-
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phasizes the necessity to include the magnetic drift into the computations. It

should be noted that the contribution of the magnetic drift to the canonical

toroidal banana precession frequency obtained within the Hamiltonian ap-

proach of Ref. [19] di�ers from the result of bounce averaging of the rotation

frequency ΩtB given by Eq. (67) of Ref. [2] by the presence of an additional

term proportional to q′, i.e. to the magnetic shear. This is the result of

using the standard neoclassical ansatz as a starting point for the derivation

of quasilinear equations in Ref. [2]. In the standard neoclassical ansatz orbits

used for the computation of a linear perturbation of the distribution function

are local, bounded to a particular �ux surface (see also Refs. [13, 6]). The

semi-analytical model [19] taking into account drift-orbit and sb-p resonances

agrees very well with the local NEO-2 result over the whole radial domain,

if the magnetic shear is neglected in that model. For ρpol > 0.7 the sb-p

resonance makes a dominant contribution to the NTV torque. A good agree-

ment between the semi-analytical model considering only sb-p resonance and

the bounce-averaged model [3] is found for ρpol < 0.2. The discrepancies in

the vicinity of the zero of the electric �eld are due to �nite aspect ratio and

deviations from the circular �ux surface approximation.

The numerical approach implemented in the quasilinear version of the

code NEO-2, which is based on a standard local neoclassical ansatz, can be

extended to a non-local quasilinear NTV model. Here, the term 'non-local'

is used to stress the di�erence to a standard approach where unperturbed

orbits are truncated in order to stay within �ux surfaces. This does not

necessarily mean that the orbit width is comparable to the gradient length.

However, even for large gradient lengths the e�ect of orbit displacement from

the �ux surface introduces a signi�cant modi�cation in the magnetic rota-

tion frequency. Being rather di�erent in derivation, the nonlocal quasilinear

equation set and expressions for the non-ambipolar particle �ux density are

formally the same with results of Ref. [2]. Only the toroidal rotation fre-

quency due to the magnetic drift ΩtB is modi�ed which, instead of local
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Eq. (67) of Ref. [2], is now given by the following nonlocal expression,

ΩtB =
v2 (2− ηB0)

2
√
g0B0ωc0

(
Br

B0

∂B0

∂ϑ
− B0

Bϑ
0

∂B0

∂r

)
+

+
v2 (1− ηB0)√

g0B0ωc0

(
∂

∂r
(Bϑ + qBϕ)− ∂Br

∂ϑ

)
, (4.16)

where the only di�erence from the local expression is the presence of the

safety factor under radial derivative sign. The extended formalism pertinent

to the non-local NEO-2 version will be presented in a separate publication.

The additional magnetic shear term leads to a signi�cant modi�cation of

the torque density pro�le, see Figure 4.7. Again a very good agreement

between the non-local version of NEO-2 and the semi-analytical model [19]

can be observed, which indicates the importance of contributions from various

resonant transport regimes to the ion NTV torque density. In comparison

to the results obtained by the local approach the sb-p regime covers only a

narrow radial domain located at the zero of the electric �eld. Furthermore,

a distinctive peak of the torque density is observed at ρpol = 0.4. It should

be noted that the expression for the NTV torque density in the sb-p regime

derived from the Hamiltonian approach agrees analytically with Shaing's

generalized formula [53] published recently.

As can be seen from Figure 4.8, not only ions but also electrons make a

signi�cant contribution to the NTV torque, which is in the direction of (pos-

itive) plasma rotation and which partly balances the negative ion torque.

In the case where only the E × B drift is taken into account, the electron

torque agrees up to a factor 3 with the result of the asymptotical model [3].

The observed discrepancies can be explained by uncertainties in the joining

procedure of the di�erent asymptotical regimes and by the rather small as-

pect ratio where the analytical model of Shaing [3] can signi�cantly deviate

from accurate computations with NEO-2 [2]. It can be observed that the

agreement becomes better for larger aspect ratios closer to the center of the

plasma and for small values of the radial electric �eld where the contribution

from pure 1/ν transport is dominant.

Including the magnetic drift term in the NEO-2 computation modi�es
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signi�cantly the electron NTV torque density pro�le in the core of the plasma.

In the inner part of the plasma only the trend seen from NEO-2 results is

captured by the universal formula [3] connecting the 1/ν, ν − √ν and sb-p

transport regimes. The observed di�erences in the inner part of the plasma

are due to the circular �ux surface approximation used for the evaluation of

the sb-p resonance condition, which can deviate signi�cantly from accurate

computations for a real tokamak geometry. It should also be noted that

the torque density pro�le exhibits distinctive substructures in the vicinity of

resonant surfaces, which are indicated by vertical lines. A rather peculiar

point in this pro�le is the resonant surface (m,n) = (6, 2) which almost

coincides with the zero of the electric �eld. The increased electron torque

density around this point is due to the fact that for small values of the

electric �eld 1/ν transport is dominant. The electron NTV torque density

evaluated by the non-local version of NEO-2 di�ers considerably from local

computations for ρpol > 0.3. The additional magnetic shear term yields not

only a modi�cation of the sb-p transport at intermediate radii, but a�ects

also the 1/ν and ν −√ν transport at the edge.

The NTV torque densities shown in Figure 4.7 and Figure 4.8 can be

also expressed in terms of slowing down frequencies ναs and o�set rotation

frequencies V ϕ
eq,α via the generic form (see, e.g., (5) of Ref. [2]),

TNA
ϕ = −nimi

∑

α

ναs 〈gϕϕ(V ϕ − V ϕ
eq,α)〉 = −nimiν

i+e
s 〈gϕϕ(V ϕ − V ϕ

eq,i+e)〉,

(4.17)

which provides a rather demonstrative representation. Here, gϕϕ = R2
0 de-

notes the toroidal covariant metric tensor component. In Figure 4.9 the

respective radial pro�les of the species o�set rotation frequencies evaluated

by the non-local version of NEO-2 are shown. It can be seen that ions tend to

rotate in the negative toroidal direction, whereas the o�set rotation frequency

of electrons is positive. The di�erent sign of the o�set rotation frequency of

ions and electrons correlates with the sign of the torque density. The total

o�set rotation frequency exhibits a rather remarkable behavior at intermedi-

ate radial positions where it oscillates around the measured toroidal rotation

frequency. At the edge the computed total o�set rotation frequency deviates
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signi�cantly from the measured value.
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Figure 4.6: Ion contribution to the NTV torque density produced by the ELM
mitigation coils with a phase of 90 degrees as a function of the normalized
poloidal radius. Neglecting the e�ect of magnetic drift (left), the NEO-2
result (solid line) is compared to SFINCS (dashed line), to a semi-analytical
Hamiltonian model [19] (dash-dotted line) and to the bounce-averaged model
by Shaing [3, 2] (dotted line). The NEO-2 result including both, E × B
drift and magnetic drift, is compared to the semi-analytical Hamiltonian
model taking into account drift-orbit (do) and superbanana-plateau (sbp)
resonances, as well as to the universal formula [3] connecting 1/ν, ν − √ν
and superbanana-plateau transport regimes (right). Vertical lines indicate
the positions of resonant surfaces with q(ρpol) = m/n, where m and n are
the poloidal and toroidal mode numbers, respectively.

In order to determine relevant transport regimes, a scan of the di�usion

coe�cient DNA
11 normalized by the plateau di�usion coe�cient Dp over colli-

sionality parameter and otherwise the same parameters as in the experimen-

tal pro�le has been performed at di�erent radial positions, see Figure 4.10.

Here, Dp = πqvTρ
2
L(16R0)−1, ρL = vT/ωc0, ωc0 is the mean cyclotron fre-

quency value at a given �ux surface, and only the dominant n = 2 perturba-

tion toroidal mode has been taken into account. For electrons all quasilinear

transport regimes described by the bounce-averaged drift kinetic equation

can be seen. At ρpol = 0.30 electrons are clearly in a transition regime be-
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Figure 4.7: Ion contribution to the NTV torque density produced by the ELM
mitigation coils with a phase of 90 degrees as a function of the normalized
poloidal radius. The non-local NEO-2 result including both, E×B drift and
magnetic drift, is compared to the NEO-2 result using a local approximation
and to the semi-analytical Hamiltonian model taking into account drift-orbit
(do) and superbanana-plateau (sbp) resonances. Vertical lines indicate the
positions of resonant surfaces with q(ρpol) = m/n, where m and n are the
poloidal and toroidal mode numbers, respectively.

tween the 1/ν and the superbanana-plateau regime. At ρpol = 0.50 the onset

of the ν−√ν regime is observed, whereas at ρpol = 0.91 electrons are still in

the 1/ν regime and only at lower collisionalities the transition to the super-

banana plateau is observed. When the magnetic shear is taken into account

in the non-local computations, the sb-p regime seen at ρpol = 0.91 is replaced

by a ν−√ν regime. For other radii the computations with and without mag-
netic shear di�er only slightly. It should be noted that the di�erence in the

torque density seen in Figure 4.8 at ρpol = 0.50 is due to the contribution

from the n = 6 perturbation, which is not considered here. The plateau like

behavior of the ion di�usion coe�cient indicates resonant �collisionless� dif-

fusion regimes because the ion collisionality for n = 2 perturbations stays

outside the lower boundary of the ripple plateau regime [17], which requires

ν∗ > (nq)−2A−3/2 with A being the aspect ratio. The non-local results qual-
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Figure 4.8: Electron contribution to the NTV torque density produced by
the ELM mitigation coils with a phase of 90 degrees as a function of the
normalized poloidal radius. Left - the NEO-2 results (solid lines) including
magnetic drift (without markers) and neglecting magnetic drift (with mark-
ers) are compared to the bounce-averaged model by Shaing [3] (dashed lines)
for the same cases. Right - the non-local NEO-2 result including both, E×B
drift and magnetic drift, is compared to the NEO-2 result using a local ap-
proximation. Vertical lines indicate the positions of resonant surfaces with
q(ρpol) = m/n, where m and n are the poloidal and toroidal mode numbers,
respectively.

itatively show the same dependence on collisionality, although the absolute

value of the resonant regime can deviate signi�cantly. These regimes are of

di�erent nature for di�erent radii. For ρpol = 0.3 and ρpol = 0.5 where Mach

numbers are rather large, the resonant regime corresponds to the regime of

bounce resonances [56, 18]. It can be seen from Figure 4.6 that toroidal rota-

tion due to the magnetic drift starts to be important for bounce resonances

at smaller ρpol, in particular at ρpol = 0.3, since the frequency of this rotation

scales inversely with ρpol. In contrast to the two inner points in Figure 4.10,

the ion di�usion coe�cient at ρpol = 0.91, which is close to Er = 0 point, cor-

responds to the superbanana plateau regime. Its value there is much higher

than the ripple plateau value, which is roughly the maximum value achiev-

able in the regime of bounce resonances (see [19]). This can also be seen
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and sum over species (dotted). For comparison the radial pro�le of the
measured toroidal rotation frequency (solid line) is shown.

from Figure 4.6, where at Er = 0 a spike of the torque appears in case of a

pure E × B rotation because of a strong 1/ν contribution. This is changed

to a saturated value when the complete rotation model is used.

As seen in Figure 4.11 the integral NTV torque
(
TNA
ϕ

)
int
, Eq. (4.13), is

dominated by the ion contribution and is produced mainly at the plasma

edge. The maximum value of the total integral NTV torque as computed

by NEO-2 is -1 Nm, which is less than the NBI torque value of +4.1 Nm.

As can be seen from the gradients of the integral torque, the NTV torque

density is larger than the one from NBI at ρpol > 0.9 where NTV dominates

above NBI in the formation of the toroidal rotation pro�le.

In the torque from RMP coils electrons play an equally important role

as ions and may even dominate in the plasma core for some coil polarities

making the torque in the core positive (see Figure 4.12). In turn, for ρpol >

0.8 ions are always dominant, and �nally the ions determine the sign of the

total torque from RMP coils in all cases. The magnitude of NTV torque

produced by the RMP coils depends strongly on the poloidal �eld spectrum.
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The largest values of the integral NTV torque can be seen for ∆φul = +90◦

and ∆φul = −150◦. In case of ∆φul = +30◦ and ∆φul = +52◦ the smallest

electron contribution to the NTV torque is observed, whereas for negative

values of the phase shift the electron NTV torque is considerably increased.

The e�ect of magnetic shear, which is taken into account by the non-local

computations, is largest for negative coil polarities and for ∆φul = +90◦,

whereas ∆φul = +30◦ and ∆φul = +52◦ are una�ected to a large extent.

Here, ions dominate the integral NTV torque for ρpol > 0.4, which is due to

the additional peak in the ion torque density seen in Figure 4.7. A positive

value of the torque in the core is only observed for negative coil polarities.

As seen in Figure 4.13, the magnitude of the RMP torque for various coil

polarities correlates with the maximum value of the normalized perturbation

�eld and with the maximum corrugation of �ux surfaces (see Figure 4 in

Ref. [66]) for the respective phases (roughly |Bn/B0|max ∼ |δN|maxR
−1
0 ). This

means that the main reason for the non-axisymmetric perturbation of the

magnetic �eld magnitude B on perturbed �ux surfaces is the meandering

of these surfaces caused by the perturbation �eld component normal to the

unperturbed �ux surfaces, but not the direct change of B by the component

which is parallel to the unperturbed �eld [3, 5, 4].
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coe�cients DNA
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4.4 Integral momentum balance and other mo-

mentum sources

It should be mentioned that plasma parameter pro�les used in this modeling,

in particular the toroidal rotation frequency, correspond to a (quasi-)steady

state observed in shot #30835 at 3.2 s. In contrast to Ref. [62] where a

modi�cation of a steady state rotation pro�le by turning on perturbation coils

has been shown to be in agreement with NTV induced by these coils, this

can be hardly expected in the pertinent AUG shot. In this shot a signi�cant

density reduction and modi�cation of temperature pro�les has been observed

after turning on the RMP coils, what leads also to a modi�cation of turbulent

transport. Therefore, a single steady state has been chosen for a study of the

static torque balance. Since the integral rotational moment is a conserved

quantity, the missing balance between the NTV torque and the NBI torque,

which exceeds the NTV torque roughly by a factor four, clearly suggests

the importance of other momentum sources. The complete integral torque

balance follows from the integration of the steady state equation (4.7) over

the main plasma volume,

(
TNBI
ϕ

)
int

+
(
TNA
ϕ

)
int

+
(
T tot
ϕ

)
w

= 0, (4.18)

where
(
T tot
ϕ

)
w
is the momentum �ux through the main plasma boundary

(separatrix) via
〈

Πr
[in]ϕ

〉
, the only momentum source where the anomalous

and axisymmetric neoclassical transport provide a contribution. Note that

at least formally, all three torques in this balance can be determined inde-

pendently outside the main plasma volume [71]. Since each of the last two

torques in (4.18) consists of a few contributions, they are discussed below in

more detail.

The contributions entering
(
TNA
ϕ

)
int

besides the NTV torque are listed

here roughly in the order of their importance. The �rst of these sources

is related to losses of NBI generated fast particles [72, 73]. This torque

would be negative (as the NTV torque of ions) and its value can be high

enough to balance the NBI torque, as shown in Ref. [73] for JET. Estimations
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of fast particle losses induced by violations of AUG axial symmetry using

3D Monte Carlo modeling in Boozer coordinates with help of the NEO-

MC code [74] version for fast particles [75] have shown that the toroidal

torque due to such losses cannot match the discrepancy because it is smaller

than the NTV torque (about 5% of the NBI torque). Another important

unaccounted momentum source is the resonant torque produced by RMPs in

resonant layers around rational �ux surfaces where the ideal MHD theory is

not valid. Normally, RMPs are shielded by plasma response currents in the

core, which results in a small torque. However, the situation might change

at the plasma edge, where the RMP amplitudes can be large enough to

modify the electron temperature pro�le in the resonant layer around some of

the dominating resonances. This might signi�cantly reduce the shielding by

electrons [12]. An accurate quantitative description of this interaction is still

missing. Besides the magnetic perturbations from the TF ripple and ELM

mitigation coils there are two more possible magnetic perturbations, which

can produce NTV and resonant torque and which are not taken into account

here. These are the error �elds and the �elds from eddy currents induced in

the wall and other external conductors by intrinsic MHD modes.

It should be noted that a description of the resonant torque in terms of a

local torque density TNA
ϕ is limited to cases where the non-axisymmetric part

of gradients of plasma parameters is small everywhere including the islands

produced by RMPs. This is the case where the quasilinear theory is valid

(see, e.g., [12]). Otherwise, this description is only formally valid, but not

useful, because plasma parameters become essentially 3D within and in some

vicinity of islands, and only the integral torque is meaningful.

The last contributor to
(
TNA
ϕ

)
int
, the torque due to ECRH/ECCD, con-

sists of two parts. First, the direct toroidal momentum input by microwave

radiation is related to the coupled ECRH power as PECRHR0/c, and for

PECRH ∼ 0.5 MW is around 0.01 Nm. Second, losses of supra-thermal elec-

trons, which are possible in presence of non-axisymmetric magnetic �eld

perturbations, can produce only positive torque in the direction of the NBI

torque. Therefore, the last contributor to
(
TNA
ϕ

)
int
, the torque due to ECRH/ECCD,

can be safely removed from the list.
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Various contributions to the torque
(
TNA
ϕ

)
int

can be measured exter-

nally in a direct way because the integral torque due to electromagnetic

perturbations is equal to the momentum �ux carried by these perturba-

tions through the plasma boundary in the form of Maxwell stress, essentially

via its magnetic part. (Finally, this Maxwell stress is balanced by Lorentz

forces onto the external currents that create the perturbations.) Therefore,

it would be su�cient to determine the magnetic Maxwell stress by measuring

the non-axisymmetric magnetic �eld outside the plasma [76, 71]. Alterna-

tively,
(
TNA
ϕ

)
int

can be determined from the torque balance (4.18) using the

measured
(
TNBI
ϕ

)
int

and
(
T tot
ϕ

)
w
. In absence of signi�cant NBI and non-

axisymmetric torque outside the main plasma boundary, the momentum �ux(
T tot
ϕ

)
w
carried through the separatrix is �nally recovered at the wall, as

follows from the integration of equation (4.1) over the vacuum chamber vol-

ume. Flux
(
T tot
ϕ

)
w
consists of three contributions, which require di�erent

measurements. Presenting it as a sum of particle and electromagnetic �eld

contributions,
(
T tot
ϕ

)
w

=
(
T part
ϕ

)
w

+
(
TEM
ϕ

)
w
and averaging this expression

over the time scale of turbulent �uctuations, the toroidal reactive torque onto

the main plasma due to charged and neutral particle �uxes to the wall is

(
T part
ϕ

)
w

= 2π
∑

α

mα

∮
dlR

∫
d3v fα v · n v · ∂r

∂ϕ
, (4.19)

where fα is the averaged distribution function, which is then axisymmetric.

The poloidal integration contour here is along the wall surface, and the unit

vector normal to the wall n points to the inside of the vessel. In contrast to

the momentum �ux of neutral particles (α = n), which appears due to charge

exchange with the surrounding neutral gas, and which is spread over the wall,

the momentum �ux of charged particles (ions) is localized at the divertor

target plates. Before the sheath this latter �ux is determined mainly by

parallel transport, v ·n v ·∂r/∂ϕ→ (v‖/B)2B ·n B ·∂r/∂ϕ. This means that

the toroidal reactive torque on the plasma from the vicinity of a particular

strike point scales with B · n. Since B · n has opposite signs for inner and

outer strike points, the integral torque onto the main plasma manifests itself

as an imbalance between the toroidal momentum �uxes carried by particles
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to the inner and outer divertor targets (see, e.g., Section 6.3 of Ref. [77] and

Ref. [71]).

A simple expression for the intrinsic electromagnetic torque
(
TEM
ϕ

)
w
,

which has been omitted in Ref. [71], is obtained when the currents and charges

induced by edge instabilities in the wall are negligible. In this case, only the

axisymmetric part of the electromagnetic �eld resulting from averaging of

this �eld over the �uctuation time scale contributes to the electromagnetic

momentum �ux, because only the axisymmetric �eld leads to a Lorentz force

onto the axisymmetric currents in the wall. In a (quasi) steady state, the

pertinent part of the Maxwell stress tensor σ is essentially determined by

the magnetic �eld,

1√
g

∂

∂xi
√
gσiϕ =

1

4π
∇ ·BϕB =

1

c
∇ · ψpol j. (4.20)

The integral intrinsic electromagnetic torque is then

(
TEM
ϕ

)
w

=
2π

c

∮
dl R

(
ψapol − ψpol

)
j · n

≈ 2π

c

∑

s

R2
s (n ·B)s

ls+∆l∫

ls−∆l

dl (l − ls) j · n, (4.21)

where the �nal expression corresponds to the current localized around diver-

tor strike points numbered here with subscript s. The term with ψapol in the

�rst expression in (4.21) provides a zero contribution to the integral due to

∇·j = 0. It should be noted that due to (4.20) and ∇·j = 0, currents �owing

along ψpol contours (in particular, parallel currents) produce no steady state

toroidal torque since they produce no toroidal j × B force. Only currents

which are closed across ψpol contours produce toroidal torque. This relates

to both the currents in the plasma and to the poloidal currents in the wall,

which close the plasma currents to the wall. The former produces the torque

onto the plasma and the latter the torque onto the wall, thus balancing the

force onto the plasma by third Newton's law. In the equilibria studied here,

ψpol increases from the private �ux region towards the scrape-o� layer. Thus,
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currents in the wall (target plates), which balance the positive NBI torque,

�ow in direction of increasing ψpol.

4.5 Summary

Computations of the NTV torque produced in ASDEX Upgrade by the TF

ripple and magnetic perturbations from ELM mitigation coils show an agree-

ment between di�erent numerical (NEO-2, SFINCS) and semi-analytical

models within their validity domains. Speci�c di�erences are also observed

and discussed. It is clearly seen that ions as well as electrons contribute to

the overall torque. It is remarkable that practically all quasilinear transport

regimes except for the highly collisional P�rsch-Schlüter regime are realized

within the single discharge #30835, which is studied here. Various bounce av-

eraged transport regimes as well as resonant regimes are important in speci�c

radial positions. Those regimes have been identi�ed by scans over collision-

ality and comparison with analytical and semi analytical computations. The

quasilinear approach used in NEO-2 is well justi�ed for computations of the

torque driven by RMPs but slightly overestimates the torque from the TF

ripple. The amplitude of the perturbations corresponding to the TF ripple

is already marginally outside the validity range for the quasilinear approach,

mainly because of the high toroidal mode number.

The NTV torque is produced mainly at the plasma edge where its density

is comparable with the NBI torque density. However, the integral NTV

torque balances only a quarter of the integral NBI torque. This emphasizes

the importance of other momentum sources unaccounted here. Some of these

sources (e.g. the torque due to fast particle losses) can be computed with

present day models. An accurate description of the other sources connected

with resonant interaction of magnetic perturbations at rational �ux surfaces

is still an open problem. Thus, measurements of discharges where the role of

resonant interactions is minimized are of future interest.

The integral torque balance [71], which can be used to verify the mod-

eling by measurements outside the plasma, is discussed here in some more

detail. For this balance, in addition to measurements of the asymmetry of
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the momentum �ux carried by divertor �uxes [71], measurements of charge-

exchange neutral spectra and of the currents between the plasma and the

wall (divertor target plates) are shown to be of importance.

Besides the integral torque balance, an accurate description of the torque

density pro�le resulting from non-axisymmetric magnetic �eld perturbations

would be an important part of turbulent momentum transport studies, where

the e�ect of turbulent momentum �ux dominating in
〈

Πr
[in]ϕ

〉
in equation (4.7)

on the rotation velocity pro�le is required in its pure form, i.e. the second

term in l.h.s. of (4.7). The state of art of existing models discussed here does

already allow for such a description for the NTV torque.
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Multi-species version of the code

NEO-2

For the multi-species problem the collision integral St(fα, fβ), where fα and

fβ are test and �eld particle distribution functions, respectively, is linearized

as follows,

St(fα, fβ) ≈ L̂
D(α,β)
C δfα + L̂

I(α,β)
C δfβ, (5.1)

where δfα = fα − fα0 is the perturbation of the α-species Maxwellian −fα0,

and L̂D(α,β)
C and L̂I(α,β)

C are linear di�erential and integral operators, respec-

tively, de�ned as follows

L̂
D(α,β)
C δfα = St(δfα, fβ0), L̂

I(α,β)
C δfβ = St(fα0, δfβ). (5.2)

The linearized drift kinetic equation for the multi-species problem is then

presented in the discretized form (2.193) solved by NEO-2 [2],

σ
∂fσm,α
∂ϕs

− 1

hϕ

M∑

m′=0

∑

β

(
L̂
D(α,β)
mm′ fσm′,α + L̂

I(α,β)
mm′ f

σ
m′,β

)
+

M∑

m′=0

iω
(α)
mm′f

σ
m′,α = Qm,α,

(5.3)

where the operators L̂D(α,β)
m,m′ and L̂

I(α,β)
m,m′ denote the matrix elements of the

di�erential and integral operator de�ned above, and otherwise the same no-

tation as in Section 2.3.4 is used. It can be seen that the interaction with

other species in (5.3) is solely contained in the integral part of the collision
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integral L̂I(α,β)
mm′ f

σ
m′,β. The integral part of the collision integral is taken into

account by means of direct or pre-conditioned iterations in NEO-2,

∑

β

L̂
I,(α,β)
m,m′ f

σ
m,β =

L∑

l=0

∑

β

Pl(λ)I
αβ,(l)
mm′

1∫

−1

dλ′Pl(λ
′)fσm,β(λ′), (5.4)

where λ is the pitch angle parameter and Pl(λ) are Legendre polynomials.

The direct or pre-conditioned iterations are based on the solution of the

di�erential part of the integro-di�erential equation (5.3), which contains no

interaction with the perturbed distribution function of other species. For

the numerical solution of the di�erential part of (5.3) a conservative �nite

di�erence (�nite volume) scheme on an adaptive grid over the �eld line pa-

rameter ϕs and the normalized perpendicular adiabatic invariant η is used.

The resulting linear system of equations is solved with help of a sparse solver

based on direct L-U decomposition.

In NEO-2 the multi-species problem is thus cast in a form which is well-

suited for parallelization with help of MPI [78]. A very e�cient MPI in-

terface [79] is already used for the computation of the generalized Spitzer

function in stellarators [55] and has been adapted for the multi-species ver-

sion of NEO-2. For each species the di�erential part of the drift kinetic

equation can be computed on a separate processor since the di�erent species

interact only via the �eld particle part of the collision operator. Only within

the iterations of the integral part of the collision operator, the processes cor-

responding to di�erent species have to be synchronized. The communication

between the processes is minimized because only the scalar product of the

perturbed distribution function with Legendre polynomials is shared between

the processors and not the perturbed distribution function itself. It should

be also noted that the factorization of the di�erential part of (5.3) on di�er-

ent processors allows for a distribution of the memory to di�erent computer

nodes and, therefore, relieves the memory constraints.

Since (5.3) is linear, the solution can be looked in form of a superposition
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of thermodynamic forces Aαj ,

fσm,α =
∑

β

(
f
σ,(1)
m,αβA

β
1 + f

σ,(2)
m,αβA

β
2 +f

σ,(3)
m,αβA

β
3

)
. (5.5)

Analogously, the right hand side of (5.3) is presented as a superposition of

thermodynamic forces,

Qm,α = Q(1)
m,αA

α
1 +Q(2)

m,αA
α
2 +Q(3)

m,αA
α
3 . (5.6)

Upon inserting (5.5) and (5.6) into the drift kinetic equation (5.3), it becomes

clear that the contribution of Aβj to f
σ
m,α is only non-vanishing (for α 6= β) if

the integral part of the collision operator is considered. The expression for

the particle �ux in terms of di�usion coe�cients Dαβ
ij and thermodynamic

forces is generalized according to (5.5),

Γα = −nα
∑

β

(
Dαβ

11 A
β
1 +Dαβ

12 A
β
2 +Dαβ

13 A
β
3

)
. (5.7)

Since this further upgrade of the quasilinear version of NEO-2 [2] a�ects

only the �eld particle part of the collision operator responsible for momentum

conservation, reliable benchmarks of the computed transport coe�cients can

be performed for axisymmetric tokamak equilibria, see Figure 5.1. In Fig-

ure 5.1 a scan of the normalized di�usion coe�cient Dαα′
11 (Dαα′

p )−1 over the

collisionality parameter is shown for a two-species plasma consisting of deu-

terium d and carbon C with charge number ZC = 3. Due to momentum

conservation, the radial currents must balance in an axisymmetric tokamak

equilibrium, i.e.,
∑

α eαΓα = 0. Considering a two species plasma where only

one of the thermodynamic forces is non-zero, this leads to a simple relation

for the normalized transport coe�cients,

Dαα
1j

Dα′α
1j

Dα′α
p

Dαα
p

=
Dαα′

1j

Dα′α′
1j

Dα′α′
p

Dαα′
p

= −Tα′nα′
Tαnα

= rα,α′ , (5.8)
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where

Dαα′

p =
πqvT,αρL,αρL,α′

16R
, (5.9)

R, vT,α and ρL,α are the plateau di�usion coe�cient, major radius, α species

thermal velocity and Larmor radius, respectively. Relations (5.8) and (5.9)

for the case shown in Figure 5.1 are ful�lled with an accuracy of less than

1% what is in a good agreement with the exact result. Since the only part

of the kinetic equation modi�ed for the treatment of multiple species is the

collision operator, which is the same for both, the axisymmetric (2.138) and

the non-axisymmetric case (2.144), the test presented in Figure 5.1 is also

su�cient for the non-axisymmetric multi-species problem.
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Figure 5.1: Normalized di�usion coe�cient for a two-species plasma (deu-
terium d and carbon C with charge number ZC = 3) as a function of the
collisionality parameter ν? with respect to species deuterium (see de�nitions
in Ref. [2]) at aspect ratio A = 10.



Chapter 6

Synopsis

Plasma rotation velocity in tokamaks is known to be an important quantity,

which has an e�ect on plasma con�nement and direct in�uence on measure-

ments of plasma and turbulence parameters. Although anomalous e�ects

play a role in radial transport of momentum, they do not provide a volume

momentum source (toroidal torque density). Therefore, the computation

of plasma rotation is done using the volume sources computed within the

framework of neoclassical theory. In its standard form, neoclassical theory

uses lowest order expansion in Larmor radius. Typically, plasma rotation in

a tokamak is separated into two parts, namely poloidal and toroidal rota-

tion. In contrast to the poloidal velocity, which is strictly determined by the

gradient of the ion temperature (see, e.g., Ref [21]), the toroidal velocity is

a quantity, which in standard neoclassical theory is linked through a linear

relation to the radial electric �eld and to the ion pressure gradient. Thus,

either the radial electric �eld or the toroidal velocity can be considered as

a free parameter, while the other one is determined by a linear relation.

Whenever the poloidal velocity di�ers from its equilibrium value, which is

determined by the standard neoclassical theory, it is quickly returned to

this value by relaxation processes within the �ux surface. In the collisional

P�rsch-Schlüter regime this relaxation process is poloidal (parallel) viscosity.

In the long mean free path regime relaxation of poloidal rotation is caused

by collisional exchange between trapped and passing particles resulting in
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a relaxation time of the order of the ion collision time. Relaxation of the

toroidal velocity, however, is due to radial momentum transport, which has a

time scale of the order of the pro�le relaxation time scale. Therefore, toroidal

velocity relaxes on a much longer time scale than poloidal velocity. Thus,

even a weak source of toroidal momentum can produce a signi�cant change

of toroidal velocity, whereas poloidal velocity can hardly be deviated from

its equilibrium value.

The general equation governing the toroidal rotation in tokamaks has

been analyzed in various papers (e.g., Refs. [35, 41, 3, 80, 71]). This equa-

tion includes momentum sources and transport terms, which are responsible

for redistribution of toroidal angular momentum over the plasma radius. Al-

though the momentum transport is believed to be dominated by anomalous

e�ects [41], the most important momentum sources can be calculated us-

ing existing knowledge. Besides neutral beam injection (NBI), the violation

of axial symmetry of the tokamak magnetic �eld by external magnetic �eld

perturbations is causing an important source term. In particular, such per-

turbations result from the toroidal �eld ripple (TF ripple), which is caused

by the discreteness of the toroidal �eld coils. Perturbations can also be

produced either unintentionally by errors in the main magnetic �eld (error

�eld) or deliberately by special coils for mitigation of edge localized modes

(ELMs) [81, 82]. External magnetic perturbations can be non-resonant or

resonant. Resonant are those perturbations, where the Fourier series expan-

sion of the perturbation vector potential over poloidal ϑ and toroidal ϕ angles

contains those harmonics, which satisfy the resonance condition m+nq = 0.

Here, m and n are poloidal and toroidal wave numbers, respectively, and q

is the safety factor. Resonant harmonics modify the magnetic �eld topol-

ogy through creation of islands at resonant surfaces and produce a strongly

localized toroidal torque around these surfaces. Non-resonant harmonics do

not modify the magnetic �eld topology and produce a torque, which usually

has a much lower radial density but is distributed over the whole plasma

volume. In both cases, the generation of toroidal rotation by perturbation

�elds is due to creation of non-ambipolar particle �uxes, which lead to plasma

polarization and, therefore, to changes in the radial electric �eld.
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The torque resulting from non-resonant magnetic perturbations is usually

described in terms of neoclassical toroidal viscosity (NTV) [36, 83, 54, 84,

59, 85, 3, 86, 4, 5]. This follows the terminology, which has been introduced

for general non-axisymmetric magnetic �eld con�gurations in Ref. [37]. In

this approach, the electromagnetic �eld of the perturbation is assumed to

satisfy the condition of ideal MHD theory that the total electrostatic poten-

tial stays constant on perturbed magnetic �ux surfaces. For such perturbed

�ux surfaces, an associated �ux coordinate system with straight �eld lines is

chosen and usually these are Hamada coordinates. With this, the problem

of calculation of NTV in a tokamak is reduced to a particular application

of neoclassical transport theory for general non-axisymmetric toroidal de-

vices. This general theory has been developed earlier for transport studies

in stellarators.

It should be noted that in contrast to stellarators, non-axisymmetric mag-

netic �eld perturbations in tokamaks are rather small. Therefore, there exists

a variety of regimes where these perturbations can be treated within pertur-

bation theory with respect to their amplitude. The resulting expressions for

the NTV torque are then obtained as sums over contributions from sepa-

rate harmonics of the toroidal perturbation �eld. Those contributions are

quadratic in amplitudes of the harmonics [36, 83, 54, 59, 3, 4, 5]. Such

regimes will be called below quasilinear regimes. These quasilinear regimes

occur if the mechanism of particle decorrelation from the perturbation �eld

is independent from the perturbation �eld itself. Namely, this is the case

when the phase of the perturbation �eld is fully determined by parallel and

perpendicular (E × B drift and magnetic drift) particle motion within the

�ux surface and when the perturbation �eld itself has only a negligible e�ect

on this motion.

Note that for su�ciently small perturbation �eld amplitudes, besides the

non-resonant torque, also the resonant torque can be described within quasi-

linear theory. In this case, however, the assumption that the perturbed

equipotential surfaces coincide with the perturbed magnetic �ux surfaces

does not hold because ideal MHD theory is not valid in the resonant layer

where the plasma response current to the perturbation �eld and, respec-
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tively, the main contribution to the toroidal torque is localized (see, e.g.

Refs [87, 88, 44, 89]).

It should be mentioned that the results discussed above basically cover

the non-resonant NTV in the whole parameter range of interest. However,

all these results have been obtained analytically. This has required certain

simplifying assumptions pertinent to particular transport regimes, simpli�ed

device geometry, and Coulomb collision models. The overall purpose of the

present thesis is to treat quasilinear regimes numerically within a general ap-

proach without using any simplifying assumptions on collisionality, geometry,

and collision models.

As a result of this work a tool for the numerical evaluation of the NTV

torque due to non-resonant magnetic perturbations in a real tokamak device

has been developed. This numerical tool, an upgraded version of the code

NEO-2 [1, 2], allows for an e�cient evaluation of non-ambipolar particle

�uxes due to non-axisymmetric electromagnetic �eld perturbations, which in

turn produce a toroidal torque a�ecting the plasma rotation. This is accom-

plished without making simplifying assumptions for all quasilinear regimes.

Well-established codes for the evaluation of particle �uxes in stellarators as

the code DKES [6] make often also use of certain simpli�cations of the un-

derlying drift kinetic equation. For example, DKES uses a Lorentz collision

model and neglects the contribution from magnetic drifts to the poloidal and

toroidal rotation velocity. With respect to Monte-Carlo methods [7, 8, 9],

which provide also a universal approach for the evaluation of NTV, the nu-

merical approach realized within the upgraded version of NEO-2 is more e�-

cient and thus would allow for the use of NEO-2 within a 1D transport code.

The upgraded version of NEO-2 has also been validated and benchmarked

against various analytical and semi-analytical models, as well as against the

nonlinear codes DKES and SFINCS (see below). The derivations of the

theoretical framework for the upgraded code NEO-2 and the results of the

extensive benchmarking phase are discussed in Chapter 2 and Chapter 3,

respectively. In Chapter 2 aside from the developed theoretical formalism

also a re-derivation of the exact toroidal momentum conservation equation

and its approximate form including all leading order terms in Larmor radius
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and perturbation amplitude is presented.

Furthermore, a procedure for the evaluation of the NTV torque for AS-

DEX Upgrade discharges has been developed. For the evaluation of the

non-ambipolar particle �uxes and of the associated torque density the non-

axisymmetric magnetic perturbations have to be known. At the present stage

the magnetic �eld spectrum including the non-axisymmetric magnetic per-

turbations is computed by the code NEMEC [11] and then transformed to

Boozer coordinates using the code COTRANS [66]. Within NEO-2 the mag-

netic �eld spectrum of the non-axisymmetric perturbations is transformed

to the requested representation, which is given by (2.150). Since the contri-

butions from di�erent toroidal mode numbers to the non-ambipolar particle

�uxes are independent of each other within quasilinear theory, the NEO-2

computations can be easily parallelized. For the �nal evaluation of the non-

ambipolar particle �uxes only the individual contributions of the toroidal

mode numbers have to be summed up.

Computations of the NTV torque produced in ASDEX Upgrade by the

TF ripple and magnetic perturbations from ELM mitigation coils show an

agreement between di�erent numerical (NEO-2, SFINCS [13]) and semi-

analytical models within their validity domains, see Chapter 4. Speci�c

di�erences are also observed and discussed here. It is clearly seen that

ions as well as electrons contribute to the overall torque. It is remark-

able that practically all quasilinear transport regimes except for the highly

collisional P�rsch-Schlüter regime are realized within the single discharge

#30835, which is studied here. Various bounce averaged transport regimes

as well as resonant regimes are important in speci�c radial positions. Those

regimes have been identi�ed by scans over collisionality and comparison with

analytical and semi-analytical computations. The quasilinear approach used

in NEO-2 is well justi�ed for computations of the torque driven by RMPs but

slightly overestimates the torque from the TF ripple. The amplitude of the

perturbations corresponding to the TF ripple is already marginally outside

the validity range for the quasilinear approach, mainly because of the high

toroidal mode number. The NTV torque is produced mainly at the plasma

edge where its density is comparable with the NBI torque density. However,
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the integral NTV torque balances only a quarter of the integral NBI torque.

This emphasizes the importance of other momentum sources unaccounted

here. Some of these sources (e.g. the torque due to fast particle losses)

can be computed with present day models. An accurate description of the

other sources connected with resonant interaction of magnetic perturbations

at rational �ux surfaces is still an open problem. Thus, measurements of

discharges where the role of resonant interactions is minimized are of future

interest. The integral torque balance [71], which can be used to verify the

modeling by measurements outside the plasma, is discussed here in some

more detail. For this balance, in addition to measurements of the asymme-

try of the momentum �ux carried by divertor �uxes [71], measurements of

charge-exchange neutral spectra and of the currents between the plasma and

the wall (divertor target plates) are shown to be of importance. Besides the

integral torque balance, an accurate description of the torque density pro�le

resulting from non-axisymmetric magnetic �eld perturbations would be an

important part of turbulent momentum transport studies, where the e�ect

of turbulent momentum �ux dominating in
〈

Πr
[in]ϕ

〉
in equation (4.7) on the

rotation velocity pro�le is required in its pure form, i.e. the second term in

l.h.s. of (4.7). The state of art of existing models discussed here does already

allow for such a description for the NTV torque.

The code NEO-2 has also been upgraded for the computation of the NTV

torque in a multi-species plasma, i.e. a plasma with signi�cant impurity con-

tent, see Chapter 5. For this further upgrade of the quasilinear version of

NEO-2 [2], reliable benchmarks of the computed transport coe�cients can be

performed for axisymmetric tokamak equilibria because only the �eld parti-

cle part of the collision operator responsible for momentum conservation is

a�ected. Relations (5.8) and (5.9), which result from the balance of radial

currents in an axisymmetric tokamak equilibrium, are ful�lled with an accu-

racy of less than 1% what is in a good agreement with the exact result. Since

the only part of the kinetic equation modi�ed for the treatment of multiple

species is the collision operator, which is the same for both, the axisymmet-

ric (2.138) and the non-axisymmetric case (2.144), the test presented here is

also su�cient for the non-axisymmetric multi-species problem.
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The quasilinear version of the code NEO-2 is an evolving tool which has

a large capacity for upgrades. An important upgrade would be to allow

for the treatment of nonlinear e�ects (such as observed for the TF ripple

in ASDEX Upgrade in comparison with the nonlinear code SFINCS). Since

these e�ects are either small or of the order one, they can be taken into

account iteratively using the pre-conditioned iteration procedure, which is

already used in NEO-2 for the account of the integral part of the collision

operator (this procedure does not generally require the perturbing part of the

equation to be small). Another upgrade would be to generalize the approach

for the case of Mach numbers of the order one (near-sonic rotations), which

might be the case in some experiments. With these upgrades, a universal

solution for the NTV problem in tokamaks will be achieved.



124 CHAPTER 6. SYNOPSIS



Appendices

125





Appendix A

Non-ambipolar �uxes in the

1/ν-regime

A.1 Quasilinear approach

In the 1/ν-regime the rotation frequency can be ignored in the kinetic equa-

tion (2.166). After inserting the Lorentz collision operator (2.168) into (2.166)

and a subsequent multiplication of the result with the normalized bounce

time (2.162), following equation is obtained

−4νd
∂

∂η
ηI
∂fn
∂η

= in
mcv2

3e
√
g0Bϑ

0

∂Hn

∂η

∂fM
∂r

, (A.1)

where the notation is as follows

I =

ϑmax∫

ϑmin

dϑ

B2
0

√
1− ηB0, (A.2)

Hn =

ϑmax∫

ϑmin

dϑ

B3
0

√
1− ηB0 (4− ηB0)Bn. (A.3)

A boundary condition of (A.1) is that the collisional �ux at the deeply

trapped boundary η = 1/Bmax
0 becomes zero (�nite derivative of fn there).
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Using this boundary condition, Eq. (A.1) can be integrated once,

∂fn
∂η

= −in mcv2

12e
√
g0Bϑ

0

Hn

νdηI

∂fM
∂r

. (A.4)

After integration over η by parts the �ux (2.167) can be expressed through

the derivative of the distribution function,

ΓNA =
∞∑

n=1

πmc

3e
√
g0Bϑ

0




2π∫

0

dϑ

B2
0

|∇r0|



−1 ∞∫

0

dvv4

1/Bmin
0∫

1/Bmax
0

dη n Im
∂fn
∂η

H∗n. (A.5)

Substituting (A.4) and the derivative of the Maxwellian (2.92) into (A.5),

the �ux density becomes

ΓNA = −
∞∑

n=1

πm2c2

36e2g0

(
Bϑ

0

)2




2π∫

0

dϑ

B2
0

|∇r0|



−1 ∞∫

0

dv
fMv

6

νd

(
A1 +

mv2

2T
A2

)
×

×
1/Bmin

0∫

1/Bmax
0

dη
n2|Hn|2
ηI

. (A.6)

The �ux density (A.6) is transformed to the form (2.169) by changing the

integration variable from v to the normalized kinetic energy (2.171), whereby

the e�ective ripple is de�ned as

ε
3/2
eff =

π

16
√

2

R2B2
ref

g0(Bϑ
0 )2




2π∫

0

dϑ

B2
0

|∇r0|



−1

∞∑

n=1

1/Bmin
0∫

1/Bmax
0

dη
n2|Hn|2
ηI

. (A.7)

Note that in the version of Boozer coordinates used here the �ux surface

label r0 is an arbitrary �ux function. The de�nition of the e�ective ripple of

Ref. [10] speci�es it as an e�ective radius �xed by the condition (2.5), which



A.1. QUASILINEAR APPROACH 129

in Boozer coordinates is

2π∫

0

dϑ

B2
0

|∇r0| =
2π∫

0

dϑ

B2
0

. (A.8)

Original Boozer coordinates use the normalized toroidal �ux ψ as a �ux

surface label where

ψ(r) =
1

2π

r∫

0

dr′
2π∫

0

dϑ
√
gBϕ =

r∫

0

dr′
√
gBϕ. (A.9)

From this expression above it follows that

dψ

dr
= q
√
g0B

ϑ
0 . (A.10)

Using this relation and condition (A.8) in (A.7), one obtains the e�ective

ripple in the form (2.172).

Next it is checked that the quasilinear limit (2.172) agrees with the general

expression for the e�ective ripple, Eq. (43) of Ref. [10]. It should be noted

that a change of the �eld line integration variable, from the toroidal angle

ζ to the poloidal angle θ, reduces to the simultaneous replacement of the

di�erential dζ with dθ in Eqs. (43), (44) and (45) of Ref. [10] because the

safety factor cancels out. The integration limits, of course, should also be

changed. Due to the �rst condition in Eq. (2.89), which is required for the

applicability of the quasilinear limit, blocked particles are absent while the

amount of particles trapped in more than one toroidal well scales with the

amplitude of the perturbation �eld, i.e. it is negligibly small compared to the

amount of single trapped particles. Thus, various classes mean just single

trapped particles in di�erent toroidal �eld periods on the �eld line and the

summation index j in Eq. (44) of Ref. [10] just enumerates these periods.

Since one has to label now the �eld line with ϕ0 = ζ − qθ, last parentheses
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in Eq. (44) of Ref. [10] are rewritten as

I
∂B

∂ζ
− J ∂B

∂θ
= q(J + ιI)

∂B

∂ϕ0

− J ∂B
∂θ

, (A.11)

and the last term here does not contribute to the integral because it is a

derivative along the �eld line. Since the axisymmetric �eld does not con-

tribute to the �rst term, one can see that this term provides the leading

order contribution. The perturbation �eld should be ignored elsewhere be-

cause it gives just a next order correction. Thus, Eq. (44) of Ref. [10] is

simpli�ed to

Hfj => H(j) =
q

b′

∫
dθ

B2
0

√
b′ − B0

Bref

(
4
Bref

B0

− 1

b′

)
∂

∂ϕ0

δB(θ, ϕ0 + 2πqj),

(A.12)

where the periodicity has been used to transform the θ values to the �rst

toroidal period on the �eld line. Note that B0 in Ref. [10] is used for the

reference magnetic �eld value, whereas the notation in (A.12) follows the no-

tation of Ref. [2]. Since only leading order contributions of the perturbation

�eld are considered, explicit �eld line integrals in Eq. (44) of Ref. [10] can be

replaced by integrals over one poloidal period times the number of periods on

the �eld line, jmax. Quantity Ifj, Eq. (45) of Ref. [10], is then the same for all

periods and, after the replacement of di�erentials, is the same with quantity

I, Eq. (A.2), if one considers Brefb
′ = 1/η. Thus, Eq. (44) of Ref. [10] is

transformed to

ε
3/2
eff =

πR2

8
√

2

2π∫

0

dϑ

B2
0




2π∫

0

dϑ

B2
0

|∇ψ|



−2 ∫

db′
1

I
lim

jmax→∞
1

jmax

jmax∑

j=1

H2
(j), (A.13)

where |∇ψ| =
√
g11. In order to obtain equation (2.172), the integration

variable is changed from b′ to η = 1/(Brefb
′), as well as the Fourier series

representation of δB (2.150) and the following identity valid for a periodic
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function F (ϕ0) and irrational q,

lim
jmax→∞

1

jmax

jmax∑

j=1

F (ϕ0 + 2πqj) = F , (A.14)

are used.

A.2 Shaing's approach

In this section the result for the non-ambipolar particle �ux given by Eq. (16)

of Ref. [36] is re-derived. The �ux surface averaged particle �ux across the

�ux surface is de�ned in Ref. [36] as

ΓShaing = 〈nαV · ∇V 〉 with nαV =

∫
d3v vf, (A.15)

where f denotes the �rst order perturbed distribution function and the �ux

surface label V is here the volume enclosed by the �ux surface divided by

4π2. Introducing the drift velocity vd and Hamada coordinates (V, ϑH, ϕH),

one can express the particle �ux through

ΓShaing =

〈∫
d3v f (vd · ∇V )

〉
=

1

4π2

2π∫

0

2π∫

0

dϑHdϕH

∫
d3v f (vd · ∇V ) .

(A.16)

In order to evaluate the expression for the particle �ux, the contra-variant

radial component of the drift velocity vd · ∇V is expressed in terms of

(∂f10/∂η)2. Using the linearized drift kinetic equation

v‖h · ∇f + vd · ∇V
∂fM
∂V

= C(f) with h =
B

B
, (A.17)

the following relation for the drift velocity is obtained

vd · ∇V =

(
∂fM
∂V

)−1 [
C(f)− v‖h · ∇f

]
. (A.18)
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Equation (A.18) can be simpli�ed, if one makes use of the Clebsch form of

the B-�eld by introducing a new set of Hamada coordinates (V, ϑH, ϕH,0),

B = ψ′ ∇V ×∇ϑH − χ′ ∇V ×∇ϕH = ∇χ×∇ϕH,0, (A.19)

where ϕH,0 = qϑH − ϕH and q = ψ′/χ′ has been used. From this B-�eld

representation one can immediately see that B · ∇V = B · ∇ϕH,0 = 0 and

the only non-vanishing component is B · ∇ϑH = χ′/(
√
g)H. Now, the second

term in the square brackets of Eq. (A.18) is inspected,

v‖h · ∇f =
v‖
B

χ′

(
√
g)H

∂f

∂ϑH

= 0. (A.20)

Since the lowest order distribution function from bounce averaged theory is

of main interest here, i.e. f = f10, the last identity in Eq. (A.20) follows

from Eq. (11) of Ref. [36]. Finally, one obtains for the drift velocity

vd · ∇V =

(
∂fM
∂V

)−1

C(f10), (A.21)

whereby the Lorentz collision operator C(f) is given by

C(f) = νD
σv
√

1− ηB0

B0

2

mv2

∂

∂η
m

mv2η

2
σv
√

1− ηB0
2

mv2

∂f

∂η

=
2νD
B0

√
1− ηB0

∂

∂η
η
√

1− ηB0
∂f

∂η
. (A.22)

The derivative of f10 over η appearing in Eq. (A.22) can be obtained by

bounce-averaging the equation for the next order correction f11, see Eq. (12)

of Ref. [36], and a subsequent integration over the normalized perpendicular

adiabatic invariant,

∂f10

∂η
=

cmv2

2eχ′νD

∂fM
∂V

∮
dϑH

√
1− ηB0

∂B
∂ϕH,0∮

dϑH

√
1− ηB0

. (A.23)
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In terms of the new angular coordinates (ϑH,ϕH,0),

(
dϑH

dϕH,0

)
=

(
1 0

q −1

)
·
(

dϑH

dϕH

)
and (

√
g)H,0 = −(

√
g)H, (A.24)

the �ux surface average becomes

1

4π2

2π∫

0

2π∫

0

dϑHdϕH = − 1

4π2

2π∫

0

dϑH

qϑH−2π∫

qϑH

dϕH,0. (A.25)

Using these intermediate steps and the expression for the velocity space ja-

cobian, see Eq. (7.21) of Ref. [21], the particle �ux becomes

ΓShaing = − 1

4π2

2π∫

0

dϑH

qϑH−2π∫

qϑH

dϕH,0

∞∫

0

dv

1/B0(ϑH)∫

0

dη
∑

σ=±1

πv2B0√
1− ηB0

f10 ×

×
(
∂fM
∂V

)−1
2νD
B0

√
1− ηB0

∂

∂η
η
√

1− ηB0
∂f10

∂η

= −
∑

σ=±1

1

2π

2π∫

0

dϑH

qϑH−2π∫

qϑH

dϕH,0

∞∫

0

dv v2νD

(
∂fM
∂V

)−1
1/B0(ϑH)∫

0

dη ×

× f10
∂

∂η
η
√

1− ηB0
∂f10

∂η

= −
∑

σ=±1

1

2π

2π∫

0

dϑH

qϑH−2π∫

qϑH

dϕH,0

∞∫

0

dv v2νD

(
∂fM
∂V

)−1
1/B0(ϑH)∫

0

dη ×

×
{
∂

∂η
f10 η

√
1− ηB0

∂f10

∂η
− η
√

1− ηB0
∂f10

∂η

∂f10

∂η

}
. (A.26)

The �rst term in the curly brackets of Eq. (A.26) vanishes upon integration

over η at the upper and lower boundary. By substituting the result for the

�rst order distribution function from bounce averaged theory (A.23) into
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Eq. (A.26), following expression for the particle �ux is obtained

ΓShaing =
∑

σ=±1

1

2π

2π∫

0

dϑH

qϑH−2π∫

qϑH

dϕH,0

∞∫

0

dvv2νD

(
∂fM
∂V

) 1/B0(ϑH)∫

0

dη η ×

×
√

1− ηB0(ϑH)

(
cmv2

2eχ′νD

)2

(∮
dϑ̃H

√
1− ηB0(ϑ̃H)

∂B(ϑ̃H,ϕH,0)

∂ϕH,0

)2

(∮
dϑ̃H

√
1− ηB0(ϑ̃H)

)2 .

(A.27)

In order to obtain the result in the desired form, one has to interchange the

integration over η with ϑH and to evaluate the integral over ϕH,0.

Since there is zero collisional �ux at the deeply trapped boundary, η =

1/Bmax
0 , only the integral over the trapped particle domain remains,

2π∫

0

dϑH

1/B0(ϑH)∫

0

dη =

2π∫

0

dϑH

1/B0(ϑH)∫

1/Bmax
0

dη . (A.28)

The permutation of the integrals over ϑH and η involves a non-injective func-

tion and, therefore, one has to split the integral into two parts. Furthermore,

the axisymmetric magnetic �eld is assumed to be circular, B0 ≈ B̂0(1 −
ε cosϑH), and the border of the integral given by ηb(ϑH) = 1/(B̂0(1−ε cosϑH)

is expressed in terms of ϑH,

ϑH = arccos

(
1

ε

(
1− 1

ηB̂0

))
. (A.29)



A.2. SHAING'S APPROACH 135

Now one can permute the order of the integrals in Eq. (A.28),

2π∫

0

dϑH

1/B0(ϑH)∫

0

dη =

1/Bmin
0∫

1/Bmax
0

dη




0∫

− arccos
ηB̂0−1

ηB̂0ε

dϑH +

arccos
ηB̂0−1

ηB̂0ε∫

0

dϑH




=

1/Bmin
0∫

1/Bmax
0

dη

arccos
ηB̂0−1

ηB̂0ε∫

− arccos
ηB̂0−1

ηB̂0ε

dϑH . (A.30)

It is convenient to write the boundaries of the integral over ϑH in terms of

turning points of the banana motion, ϑmax
H = −ϑmin

H . The turning points

are related to the trapping parameter κ by the relation κb = sinϑmax
H and, in

turn, the trapping parameter is related to η via κ2 = (1−ηB̂0(1−ε))/(2εηB̂0).

Using these relations, one obtains for the upper boundary,

ϑmax
H = arccos

(
ηB̂0 − 1

ηB̂0ε

)
. (A.31)

Finally, the subsequent expression is obtained for the interchanged integrals,

2π∫

0

dϑH

1/B0(ϑH)∫

0

dη =

1/Bmin
0∫

1/Bmax
0

dη

ϑmax
H∫

ϑmin
H

dϑH =

1/Bmin
0∫

1/Bmax
0

dη

∮
dϑH . (A.32)

Next the integral over ϕH,0 is evaluated. Since the nominator of Eq. (A.27)

is the only term that depends on ϕH,0, the integral over ϕH,0 reduces to

IϕH,0
=

qϑH−2π∫

qϑH

dϕH,0

(∮
dϑ̃H

√
1− ηB0(ϑ̃H)

∂B(ϑ̃H, ϕH,0)

∂ϕH,0

)2

, (A.33)

where the derivative of the module of the magnetic �eld over ϕH,0 is expressed
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in terms of a Fourier series,

∂B(ϑ̃H, ϕH,0)

∂ϕH,0

= B̂0

∞∑

n=1

n
{
An

(
ϑ̃H

)
sin (nϕH,0)−Bn

(
ϑ̃H

)
cos (nϕH,0)

}
.

(A.34)

Then integrals over ϑ̃H and ϕH,0 are interchanged,

IϕH,0
= B̂2

0

∞∑

n,n′=1

nn′
∮

dϑ̃H

√
1− ηB0(ϑ̃H)

∮
dϑ̂H

√
1− ηB0(ϑ̂H)

qϑH−2π∫

qϑH

dϕH,0 ×

×
{
An

(
ϑ̃H

)
An′

(
ϑ̂H

)
sin (nϕH,0) sin (n′ϕH,0) +Bn

(
ϑ̃H

)
Bn′

(
ϑ̂H

)

cos (nϕH,0) cos (n′ϕH,0)− An
(
ϑ̃H

)
Bn′

(
ϑ̂H

)
sin (nϕH,0) cos (n′ϕH,0) −

−Bn

(
ϑ̃H

)
An′

(
ϑ̂H

)
cos (nϕH,0) sin (n′ϕH,0)

}
. (A.35)

Only the �rst two terms provide non-vanishing contributions to the integral

IϕH,0
in case of n = n′, e.g., the �rst term in Eq. (A.35) evaluates to

qϑH−2π∫

qϑH

dϕH,0 sin (nϕH,0) sin (n′ϕH,0) = −πδn,n′ . (A.36)

Thus, the integral over ϕH,0 is reduced to

IϕH,0
=

(
−πB̂2

0

) ∞∑

n=1

n2

{(∮
dϑ̃H

√
1− ηB0(ϑ̃H)An

(
ϑ̃H

))2

+

+

(∮
dϑ̃H

√
1− ηB0(ϑ̃H)Bn

(
ϑ̃H

))2
}
. (A.37)

In order to get the particle �ux given by Eq. (A.27) in its desired form, one

has to express the derivative of the Maxwellian in terms of thermodynamic

forces,

∂fM
∂V

= fM

[(
p′

p
+
eΦ′

T

)
+

(
mv2

2T
− 5

2

)
T ′

T

]
with fM =

nα
π3/2v3

T

e−v
2/v2

T ,

(A.38)
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and to exchange the integration variable v by z = v2/v2
T . Then, the integral

over the velocity module v becomes

∞∫

0

dvv6

νD

∂fM
∂V

=
v4
T nα

νt π3/2

[
λ1

(
p′

p
+
eΦ′

T

)
+ λ2

(
mv2

2T
− 5

2

)
T ′

T

]

with λj =
1

2

∞∫

0

dz e−z z5/2

(
z − 5

2

)j−1
νt
νD

. (A.39)

Inserting Eq. (A.32), Eq. (A.37) and Eq. (A.39) into Eq. (A.27), one obtains

for the particle �ux the expression,

ΓShaing = − nα
4π3/2

(
cm

eχ′

)2 [
λ1

(
p′

p
+
eΦ′

T

)
+ λ2

T ′

T

] 1/Bmin
0∫

1/Bmax
0

dηηB̂2
0 ×

×
(∮

dϑ̃H

√
1− ηB0

)−1 ∞∑

n=1

n2

{(∮
dϑ̃H

√
1− ηB0An

(
ϑ̃H

))2

+

+

(∮
dϑ̃H

√
1− ηB0Bn

(
ϑ̃H

))2
}
, (A.40)

which agrees with the results given by Eq. (16) of Ref. [36] and Eq. (7) of

Ref. [3], respectively.
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Appendix B

Relation between Boozer and

Hamada coordinates

B.1 Coordinate Transformation

Let (s,ϑB,ϕB) denote the Boozer coordinates of a given point in space, where

s = ψtor/ψ
a
tor is the normalized toroidal �ux, and let (V̂ ,ϑH,ϕH) denote the

Hamada coordinates of the respective point in space, where V̂ = V/(4π2)

is the normalized volume. Then, the Jacobians of Boozer coordinates and

Hamada coordinates are

√
gB = ψator

ιBϑB
+BϕB

B2
and

√
gH = 1, (B.1)

respectively. The equations of transformations between the angles are given

by the following relations

ϑH = ϑB +
dΨpol

ds
GH(s, ϑB, ϕB) with

dΨpol

ds
= 2πιψator

ϕH = ϕB +
dΨtor

ds
GH(s, ϑB, ϕB) with

dΨtor

ds
= 2πψator. (B.2)
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Using this set of transformation equations, the Jacobian of Hamada coordi-

nates can be expressed through Boozer coordinates,

(
√
gH)−1 = (

√
gB)−1 dV̂

ds

[
1 + 2πψator

(
ι
∂

∂ϑB

+
∂

∂ϕB

)
GH

]

=
dV̂

ds

[
(
√
gB)−1 + 2π (B · ∇)GH

]
. (B.3)

Equation (B.3) is of the form of a magnetic di�erential equation,

(B · ∇)GH =
1

2π



(

dV̂

ds

)−1

− (
√
gB)−1


 ≡ S, (B.4)

which has to ful�ll certain solubility conditions. A magnetic di�erential equa-

tion can be solved by expanding the transformation function GH and the

source term S in a Fourier series,

√
gBS = <

{∑

m,n

a(B)
mn (s) ei(mϑB+nϕB)

}

GH = <
{∑

m,n

G
(B)
H,mn (s) ei(mϑB+nϕB)

}
, (B.5)

whereby the Fourier coe�cients a(B)
mn are given by the relation

a(B)
mn (s) =

1

(2π)2

2π∫

0

dϑB

2π∫

0

dϕB (
√
gBS) e−i(mϑB+nϕB)

=
ψator (ιBϑB

+BϕB
)

2π (dV/ds)




2π∫

0

dϑB

2π∫

0

dϕB
e−i(mϑB+nϕB)

B2


− δm,0δn,0

2π
.

(B.6)



B.2. SOLUBILITY CONDITIONS 141

Inserting Eq. (B.5) into Eq. (B.4) gives the relation for the unknown Fourier

coe�cients of the transformation function G(B)
H,mn,

G
(B)
H,mn = −i a

(B)
mn

ψator (ιm+ n)
. (B.7)

Using the transformation function, the Fourier spectrum of the magnetic �eld

in Hamada coordinates can be evaluated in terms of Boozer coordinates,

B(H)
mn =

1

(2π)2

2π∫

0

dϑH

2π∫

0

dϕH B e−i(mϑH+nϕH)

=
1

(2π)2

2π∫

0

dϑB

2π∫

0

dϕB

∣∣∣∣
∂ (ϑH, ϕH)

∂ (ϑB, ϕB)

∣∣∣∣ B e−i(mϑH(ϑB,ϕB)+nϕH(ϑB,ϕB)),

(B.8)

where the Jacobian
∣∣∣∂(ϑH,ϕH)
∂(ϑB,ϕB)

∣∣∣ is expressed through
√
gB and

√
gH,

∣∣∣∣
∂ (ϑH, ϕH)

∂ (ϑB, ϕB)

∣∣∣∣ =

∣∣∣∣∣
∂
(
V̂ , ϑH, ϕH

)

∂
(
s, ϑB, ϕB

)
∣∣∣∣∣

∣∣∣∣
ds

dV̂

∣∣∣∣ =

∣∣∣∣
ds

dV̂

∣∣∣∣
√
gB√
gH

. (B.9)

For the numerical evaluation the expression for magnetic �eld spectrum in

Hamada coordinates is rewritten so that only angle-dependent quantities

appear inside the integral,

B(H)
mn =

ψator (ιBϑB
+BϕB

)

dV/ds

2π∫

0

dϑB

2π∫

0

dϕB
e−i(mϑH(ϑB,ϕB)+nϕH(ϑB,ϕB))

B
. (B.10)

B.2 Solubility conditions

Using the equation of a �eld line

dϑ

dl
=
Bϑ

B
or

dl

B
=

dϑ

Bϑ
, (B.11)
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the integral along the �eld line parameter l can be expressed through an

integration along the angle ϑ,

∮
dl
S

B
=

1

ιψator

∮
dϑ
√
gBS = 0. (B.12)

On a rational �ux surface, ι = N/M , the �eld line is closed after 2πιM

poloidal turns (∆ϑ = 2πιM),

ϕB = ϕ0 + qϑ ⇒ ∆ϕB = ϕ0 + q∆ϑ = ϕ0 + 2πM,

ϑB = ϑ ⇒ ∆ϑB = 2πN. (B.13)

Since
√
gBS is expanded in double periodic Fourier series, the solubility con-

dition given by Eq. (B.12) restricts the values of the coe�cients a(B)
mn(s),

∮
dl
S

B
=

q

ψator

<




∑

m,n

a(B)
mn(s) einϕ0

2πιM∫

0

dϑ ei(m+nq)ϑ





=
q

ψator

<
{∑

m,n

a(B)
mn(sMN)einϕ02πιM

∑

k

(δm,−kMδn,kN + δm,kMδn,−kN)

}

=
2πM

ψator

<
{∑

k

(
a

(B)
−kM,kN(sMN) eikNϕ0 + c.c.

)}
!

= 0, (B.14)

where k means that the resonances can occur at every integer multiple of M

and N (k = 1, 2, 3, ...). Since Eq. (B.14) must hold for any ϕ0, the coe�cients

a
(B)
mn have to vanish at rational �ux surfaces,

a
(B)
−kM,kN(sMN) = 0. (B.15)

The second solubility condition states that the volume integral over the

source term has to vanish, ∫
dτS

!
= 0, (B.16)

where dτ =
√
gB ds dϑBdϕB speci�es an in�nitesimal volume element. This
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solubility condition implies another restriction on the Fourier coe�cients,

∫
dτS =

1∫

0

ds

2π∫

0

dϑB

2π∫

0

dϕB
√
gBS =

1∫

0

ds
∑

m,n

a(B)
mn(s)

2π∫

0

dϑB

2π∫

0

dϕB ei(mϑB+nϕB)

= (2π)2

1∫

0

ds a
(B)
00 (s)

!
= 0. (B.17)
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Appendix C

Derivation of the quasilinear

approach

In this appendix details and intermediate steps related to the derivation of

the quasilinear approach presented in Section 2.3.2 are discussed.

Equation (2.107)

The �ux-force relation for the axisymmetric tokamak is obtained by multi-

plying Eq. (2.104) with v⊥v‖B−3 and a subsequent integration over velocity

space components and poloidal angle,

0 =

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖
v⊥v‖
B3




v‖
Bϑ

B

∂f1

∂ϑ︸ ︷︷ ︸
=I1

+
v⊥Bϑ

2B2

∂B

∂ϑ

(
v‖
∂f1

∂v⊥
− v⊥

∂f1

∂v‖

)

︸ ︷︷ ︸
=I2

−

− L̂cLf1︸ ︷︷ ︸
I3

−
v2
⊥ + 2v2

‖
2Cgωc

Bϕ
∂B

∂ϑ

∂fM
∂r︸ ︷︷ ︸

=I4




. (C.1)

In order to facilitate the further discussion, the expression is split into four

terms which are inspected separately. With help of partial integration over

145
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ϑ the �rst term in Eq. (C.1) is transformed to

I1 = − Bϑ

4B2

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖4v⊥v
2
‖f1

∂B−2

∂ϑ
, (C.2)

where BϑB−2 = f(r) is constant on a �ux surface. The derivatives of the

distribution function with respect to v⊥ and v‖ in I2 can be removed using

partial integration,

I2 =

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖
Bϑ

2B5

∂B

∂ϑ

[
∂

∂v⊥

(
v2
⊥v

2
‖f1

)
− 2v⊥v

2
‖f1 −

− ∂

∂v‖

(
v‖v⊥f1

)
+ v3

⊥f1

]
, (C.3)

where the �rst and third term are zero since the distribution function decays

su�ciently fast at the integral boundaries v⊥ = ∞ and v‖ = ±∞, respec-

tively. Analogue to (C.2), the derivative of the magnetic �eld module over ϑ

in (C.3) is expressed via ∂B−2/∂ϑ,

I2 =

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖
Bϑ

4B2

∂B−2

∂ϑ

[
2v⊥v

2
‖f1 − v3

⊥f1

]
. (C.4)

The fourth term I4 vanishes because it can be written in terms of a full

derivative over ϑ. Equation (C.1) is thus transformed to

0 =

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖

{
v⊥

Bϑ

4B2

∂B−2

∂ϑ
f1

[
v2
⊥ + 2v2

‖
]

+
v⊥v‖
B3

L̂cLf1

}
. (C.5)
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Substituting the expression for the particle �ux (2.105) in the �rst term

within the curly brackets in (C.5), gives equation (2.107),

0 = Γ
CgωcB

ϑ

2πB3Bϕ




2π∫

0

dϑ
|∇r|
B2


+

2π∫

0

dϑ

∞∫

0

dv⊥

∞∫

−∞

dv‖
v⊥v‖
B3

L̂cLf1

= Γ
eα
√
gBϑ

2πmαcBϕ

+

2π∫
0

dϑB−2

2π∫
0

dϑ|∇r|B−2

〈
1

2πB

∫
d3vv‖L̂cLf1

〉

= Γ
eα
√
gBϑ

c
+

1

〈|∇r|〉

〈
Bϕ

B

∫
d3vmαv‖L̂cLf1

〉
. (C.6)

Similar operations are performed to extract the non-ambipolar contribution

to the particle �ux Γ12 (2.128).

Equation (2.131)

In order to determine the contribution from the �rst term within the round

brackets in (2.130) to the non-ambipolar particle �ux, equation (2.121) is

multiplied with v‖ and integrated over velocity space and both angles,

〈
B2

∫
d3v v‖L̂QAf11

〉

︸ ︷︷ ︸
=a




2π∫

0

dϑB−2


 =

2π∫

0

dϑ

2π∫

0

dϕ

∫
d3v v‖L̂QAf11 =

=

2π∫

0

dϑ

2π∫

0

dϕ

∫
d3v v‖

(
−δ
(
vrgd
B3

)
∂fM
∂r
− δL̂‖f10

)
=

=

〈
−δ
(
vrgd
B3

)
∂fM
∂r
− δL̂‖f10

〉


2π∫

0

dϑB−2


 . (C.7)
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Using the de�nition of the operator L̂QA (2.111), the �ux surface average on

the left hand side of (C.7) evaluates to

a =

〈
B2

∫
d3v v‖

Bϑ

B2

[
v‖

(
1

B2

)
∂f11

∂ϑ
+
v⊥
4

(
∂

∂ϑ

1

B2

)(
v⊥
∂f11

∂v‖
− v‖

∂f11

∂v⊥

)]〉
−

−
〈
B2

∫
d3v v‖

(
1

B3

)
L̂cLf11

〉
+

〈
B2

∫
d3v v‖

(
vϕ0
g

B3

)
∂f11

∂ϕ0

〉
. (C.8)

Analogue to the previous section, the derivatives of the distribution function

can be removed using partial integration with respect to ϑ and velocity space

components,

a = − 1

4

〈
Bϑ

(
∂

∂ϑ

1

B2

)∫
d3v f11

(
v2
⊥ + 2v2

‖
)
〉
−
〈
B2

(
1

B3

)∫
d3v v‖L̂cLf11

〉
+

+

〈
B2

∫
d3v v‖

(
vϕ0
g

B3

)
∂f11

∂ϕ0

〉
. (C.9)

Substituting (C.9) into(C.7) gives equation (2.131),

1

4

〈
Bϑ

(
∂

∂ϑ

1

B2

)∫
d3v

(
v2
⊥ + 2v2

‖
)
f11

〉
=

=

〈
B2

∫
d3vv‖

∂fM
∂r

δ

(
vrgd
B3

)〉
+

〈
B2

∫
d3vv‖δL̂‖f10

〉
−

−
〈
B2

(
1

B3

)∫
d3vv‖L̂cLf11

〉
+

〈
B2

∫
d3vv‖

(
vϕ0

gd

B3

)
∂f11

∂ϕ0

〉
. (C.10)

Equation (2.137)

The perturbation operator δL̂‖ (2.114),

δL̂‖ =
Bϑ

B2

[
v‖δ

(
1

B2

)
∂

∂ϑ
+
v⊥
4
δ

(
∂

∂ϑ

1

B2

)
×

×
(
v⊥

∂

∂v‖
− v‖

∂

∂v⊥

)]
− δ
(

1

B3

)
L̂cL, (C.11)
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can be linearized with respect to the perturbation �eld δB using

δ
(
B−2

)
= B−2 − (B−2) ≈ B−2

0 −
2

B3
0

(B −B0)−B−2
0 = −2δB

B3
0

,

(C.12a)

δ
(
B−3

)
≈ − 3δB

B4
0

, (C.12b)

δ

(
− 2

B3
0

∂B

∂ϑ

)
≈ − 2δ

(
B−3

) ∂B0

∂ϑ
− 2

B3
0

∂δB

∂ϑ
≈ 6δB

B4
0

∂B0

∂ϑ
− 2

B3
0

∂δB

∂ϑ
.

(C.12c)

Substituting (C.12a), (C.12b) and (C.12c) into (C.11) and multiplying the

result with B3
0 , yields the simpli�ed operator δL̂A (2.137),

δL̂A =
Bϑ

0

B0

[
−2v‖

δB

B0

∂

∂ϑ
+

v⊥
2B0

(
∂δB

∂ϑ
− 3δB

B0

∂B0

∂ϑ

)
×

×
(
v‖

∂

∂v⊥
− v⊥

∂

∂v‖

)]
+

3δB

B0

L̂cL. (C.13)
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