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Konstruktion neuer mehrdimensionaler Copulas
mithilfe des CM-Algorithmus

Kurzfassung

Copulas sind ein nützliches und weitverbreitetes Konzept, um
Abhängigkeiten von Zufallsvariablen darzustellen. Die Copulamodelle,
die derzeit in Standardanwendungen benutzt werden, sind im Hinblick
auf Symmetrie und Parameteranzahl einigen Beschränkungen unterworfen.
Deshalb ist die Entwicklung neuer Modelle ein zentrales Anliegen der
Forschung. Bei Aktienkursen beobachtet man, dass sinkende Preise stärker
miteinander korrelieren als steigende Preise. Diese Asymmetrie findet sich
nicht in den viel verwendeten Copulas wieder, die oft symmetrisch sind.
Wir verwenden den CM-Algorithmus, um eine neue Familie von Copulas
zu entwickeln: die Panik-Copulas. Sie werden aus zwei unabhängigen
Verteilungen für den ruhigen Markt und den panikgetriebenen, hoch-
korrelierten Markt konstruiert. Wenn die Panikverteilung eine gewisse
Panikschwelle unterschreitet, wird ihr Wert verwendet, ansonsten der Wert
des ruhigen Marktes. Die Copula dieser Verteilung ist asymmetrisch und
bietet zusätzliche Flexibilität bei der Modellierung des unteren Teils der
Verteilung. Unser Copulamodell kann in kleinen bis mittleren Dimensionen
verwendet werden. Die praktische Anwendung der neuen Modelle zeigen wir
anhand von realen Marktdaten. Die Anpassung des Modells wird numerisch
durch Hill-Climbing-Optimierung einer modifizierten Likelihoodfunktion
vorgenommen; die Ränder werden nichtparametrisch geschätzt. Das so
angepasste Modell wird mit den gängigen Goodness-of-Fit-Statistiken
untersucht und passt signifikant besser zu den Marktdaten als die t-Copula,
obwohl es nur wenige zusätzliche Parameter enthält. Mit dem neuentwickel-
ten Modell berechnen wir den Value-at-Risk und Expected Shortfall von
Aktienportfolios. Die Ergebnisse zeigen die gewünschte höhere Abhängigkeit
im unteren Teil der Verteilung.





Abstract

Copulas are a widespread and convenient concept of modelling dependence
of random variables. Currently, the copula models used in standard appli-
cations have restrictions in terms of symmetry or number of parameters in
the model. Therefore, developing new models of copulas is a central concern
of contemporary research. In market data, it has been observed that price
drops correlate more strongly with each other than increases do. This is
not reflected in the commonly used copulas that are often symmetric. We
use the CM-algorithm to develop a new family of copulas, the panic cop-
ulas. They are constructed by using two independent distributions for the
calm market and the panic-stricken market where the variables are highly
correlated. If the panic distribution reaches below a panic threshold, the
random variable realises this value. If not, the calm market distribution is
used. By extracting the copula of this distribution, we gain an asymmetric
kind of copula with additional flexibility in modelling the lower end of the
distribution. Our copula model can be applied in cases of small to medium
high dimensions. We show a practical application of the new models by
fitting the panic copula models to real market data. The fitting is done nu-
merically with a hill-climbing routine using a modified maximum likelihood
function, while the margins are estimated non-parametrically. The resulting
model is evaluated using common goodness-of-fit statistics and it turns out
to fit the data significantly better than the t-copula in many cases while
involving only few additional parameters. Using the new copula model, the
Value-at-Risk and expected shortfall of stock portfolios can be calculated by
means of Monte Carlo simulation. The results show the desired property of
higher dependence in the lower part of the distribution.
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Introduction

The word copula is originally a Latin noun meaning link or tie. The term has
found its way into the fields of logic and linguistics, describing a word that
links the subject of a clause to the predicate. In a mathematical context,
copulas are multivariate distribution functions on the unit cube. While this
is the most easily understandable definition, the origin of their name becomes
apparent only after we look at them from another point of view. Copulas are
functions joining one-dimensional distribution functions together to form a
multivariate distribution function. They describe the dependence structure
between random variables, linking together the marginal distributions.

While copulas had appeared in numerous contexts of mathematical pub-
lications in the years before, it was only in 1959 that those linking functions
actually received a name, when Abe Sklar used the name in a letter to
Fréchet, apparently drawing inspiration from the usage of the noun as a
grammatical term. The study of copulas started becoming popular begin-
ning in 1981 and experienced growing interest in the 1990s, when the field
underwent significant evolution and copulas were increasingly proposed for
applications in statistics and probability. In 1999, Roger B. Nelsen published
the book “An introduction to copulas” on this subject. It has become the
standard work on copulas and a classical reference in this field. Apart from
their theoretical impact in studying forms of dependence between random
variables that are scale-independent, copulas are very useful in constructing
multivariate probability distributions by specifying the marginal distribu-
tion and their dependence structure separately. When applying copulas to
practical problems, there are several computational difficulties to overcome.
Therefore, the first copula models to find their way into practical application
were the simpler ones, such as the Gaussian copula.

In the aftermath of the global financial crisis 2008-2009, the usage of cop-
ulas was partly blamed for the financial models of that time not accurately
reflecting reality, favouring excessive risk-taking in the financial market and
thus facilitating the emergence of a crisis. In particular, the Gaussian copula
used for correlation of defaults in the ambits of credit risk management had
to take the blame. In the early 2000s, its use surged in popularity following
a paper (see [33]) on default correlation by David X. Li, because it was an
easy and quick approach to depict correlation of different default times in-
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side the model. Li’s model came to be used widely in the credit derivative
market and was one of the forces to enable the rapid growth of this market
in the years before the crisis. The Gaussian copula and its contribution
to the financial crisis were extensively discussed in the media and popular
press, see [41] and [26]. Forbes went as far as to decry it as “formula from
hell” in their column [31]. The criticism on copula models certainly went
too far in some aspects, but it became evident that the models implemented
during the run-up to the financial crisis were faulty and relied on too much
simplification of the reality. In fact, the limitations of the model had been
well-known before the crisis and had even been pointed to by the Wall Street
Journal in [48]. However, these claims that were coming mainly from the
academic world were largely ignored or dismissed as being of exclusively
academic nature.

It has since become clear that while the usage of copulas is not to be
indiscriminately condemned, one needs to pay more attention to the details.
The classical approach in finance relies on the static copula theory, which
does not pay special attention to the dynamic aspect of dependence. Addi-
tionally, the widespread Gaussian copula also underestimates the frequency
of correlated extreme events. Therefore, the field of copula theory is cur-
rently branching out in different aspects: dynamic copulas are being studied
as a way to model dependence of stochastic processes. On the other hand,
the static copula models in use need to be refined to map the real data better
into the mathematical model. The models used need to pay more attention
to outliers in the empirical data. Thus, the search for new copula types has
been recognised as an important task of statistics and probability theory.

In this thesis, we will take a look at copula theory in general, fitting pro-
cedures for copulas and model evaluation. Furthermore, we will specifically
look at the computational approach to copula implementation proposed by
Meucci in [35]. We will then go on and construct a new type of asymmetri-
cal copula, the panic copula, that places importance on the lower tail of the
distribution in order to more accurately reflect the empirical observation of
higher correlation of losses compared to profits. We develop a general model
of the panic copula and propose methods to fit the model to real data, in-
cluding the medium-dimensional case, i.e. up to 17 dimensions. We apply
the developed model to real market data, calculating the Value-at-Risk and
the expected shortfall for portfolios of several stocks. We compare the re-
sults with the currently widespread and well-known models and evaluate
their additional benefits. The implementation is done in Matlab, using the
publicly available implementation of the CM-algorithm by Meucci.
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Chapter 1

Preliminaries

1.1 Elliptical Distributions

The theory for elliptical distributions is based on [13].

Definition 1.1. A random vector X ∈ Rd has a spherical distribution if for
all orthogonal U ∈ Rd×d,

UX
d
= X.

That is, the distribution of X is distributionally indifferent under rotations.
We then write X ∼ Sd(ψ), where ψ is the characteristic generator of the
distribution.

Theorem 1.2. These characterisations are equivalent:

i) X has a spherical distribution

ii) The characteristic function φX of X is given by a function ψ : R→ R
and

φX(t) = ψ(t>t) = ψ(t21 + · · ·+ t2d),

for all t ∈ Rd.

iii) For all a ∈ Rd,
a>X

d
= ‖a‖ ·X1,

where ‖a‖2 = a>a.

Proof. i) ⇒ ii). Because for all orthogonal U , we have

φX(t) = φUX(t) = φX(U>t),

this means that φX can only depend on the length of t, i.e. ‖t‖ =
√
t>t.

ii) ⇒ iii). For t ∈ R,

φa>X(t) = φX(t a) = ψ(t2a>a)

= ψ((t‖a‖e1)>(t‖a‖e1)) = φX1(t‖a‖) = φ‖a‖X1
(t).
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iii) ⇒ i). Let U be an orthogonal matrix and t ∈ Rd, then

φUX(t) = E[exp(i(U>t)>X)] = E[exp(i‖U>t‖X1)]

= E[exp(i‖t‖X1)] = E[exp(it>X)] = φX(t).

Theorem 1.3. X has a spherical distribution if and only if

X
d
= RS, (1.1)

where R ≥ 0 and S are independent random variables and S is uniformly
distributed on the unit sphere {s ∈ Rd : s>s = 1}.

Proof. If X
d
= RS with the given random vector S and scalar random vari-

able R, then we have for all orthogonal U

φUX(t) = E[exp(it>USR)] = E[exp(it>SR)] = φX(t),

therefore X is spherical.
The other direction can be seen in [13].

Definition 1.4. X ∈ Rd has an elliptical distribution if

X
d
= µ+A Y, (1.2)

where µ ∈ Rd and A ∈ Rd×k are constant and Y ∼ Sk(ψ). We write
X ∼ Ed(µ,Σ, ψ), with Σ = A>A. µ is called the location vector, Σ is the
dispersion matrix and ψ is the characteristic generator of the distribution.

Provided that the variances are finite, it is possible to find a representa-
tion X ∼ Ed(µ,Σ, ψ) such that Σ is the covariance matrix of X.

Proposition 1.5. The characteristic function of elliptical X = µ+AY with
Y ∼ Sk(ψ) is

φX(t) = eit
>µψ(t>Σt).

Corollary 1.6. X has an elliptical distribution if and only if

X
d
= µ+RAS, (1.3)

where R ≥ 0 is a random variable and S is independent from R and uni-
formly distributed on the unit sphere {s ∈ Rd : s>s = 1}. A ∈ Rd×k with
A>A = Σ.

Proposition 1.7. For X ∼ Ed(µ1,Σ, ψ1) and Y ∼ Ed(µ2,Σ, ψ2),

X + Y ∼ Ed(µ1 + µ2,Σ, ψ1 · ψ2).
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Proof. For the characteristic function of X + Y , we can see that

φX+Y (t) = φX(t) · φY (t) = eit
>(µ1+µ2) ψ1(t>Σt)ψ2(t>Σt).

From any covariance matrix Σ, we can calculate the correlation matrix
R by the following normalisation:

Rij =
Σij√
Σi · Σj

The entries of this matrix are often also referred to using the notation ρij .

Proposition 1.8. Let the random vector X ∼ E2(0,Σ, ψ) and ρ be the
(linear) correlation between the two components. If P(X = 0) = 0, then

P(X1 > 0, X2 > 0) =
1

4
+

arcsin ρ

2π
.

Proof. By standardisation, we get Y ∼ E2(0, P, ψ) with P =

(
1 ρ
ρ 1

)
and

P(X1 > 0, X2 > 0) = P(Y1 > 0, Y2 > 0) with Y being spheric. For Z ∼
S2(ψ), we have

(Y1, Y2)
d
= (Z1, ρZ1 +

√
1− ρ2Z2)

d
= R (cos Θ, ρ cos Θ +

√
1− ρ2 sin Θ),

with random variable R ≥ 0 and Θ uniformly distributed on [−π, π). If we
write ρ = sinφ, then

P(X1 > 0, X2 > 0) = P(cos Θ > 0, sinφ cos Θ + cosφ sin Θ > 0)

= P(cos Θ > 0, sin(Θ + φ) > 0).

Therefore, Θ must be in the intersection of (−π/2, π/2) and (−φ, π − φ).
We see that

P
(
Θ ∈ (−π/2, π/2) ∩ (−φ, π − φ)

)
=

1
2π + φ

2π
.

1.2 Multivariate t-Distribution

A multivariate t-distributed vector X ∈ Rd is constructed by

X = µ+
Y√
V/ν

, Y ∼ Nd(0,Σ), V ∼ χ2
ν , µ ∈ Rd, Σ ∈ Rd×d, ν > 0,
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where Y and V are independent and Σ is a positive definite covariation
matrix. The density function of X ∼ Std(µ,Σ, ν) is then for x ∈ Rd

f(x|µ,Σ, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

) 1

(νπ)d/2
√

det(Σ)

(
1 +

1

ν
(x− µ)>Σ−1(x− µ)

)− d+ν
2

.

Similar to the one-dimensional case, we have E(X) = µ for ν > 1 and
Var(X) = ν

ν−2Σ for ν > 2.

If we define the random vector Z = AX + b with A ∈ Rk×d and b ∈ Rk,
then Z ∼ Stk(Aµ + b, AΣA>, ν). Thus, if we partition the random vector
into two random variables X> = (X>1 , X

>
2 ) with dimensions d1 and d2, then

the two parts are again t-distributed with Xi ∼ Stdi(µi,Σii, ν), i = 1, 2. The
conditional distribution of X1|X2 is:

X1|X2 ∼ Std1(µ1|2,Σ1|2, ν + d2), (1.4)

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2),

Σ1|2 =
ν + (x2 − µ2)>Σ−1

22 (x2 − µ2)

ν + d2

(
Σ11 − Σ12Σ−1

22 Σ>12

)
.

The proof for this can be seen in [39]. Taking the limit for ν → ∞, we get
the analogous results for the multivariate normal distribution.
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Chapter 2

Copulas

It is intuitive to think of random vectors as having two separate traits.
Firstly, we see how every component behaves on its own. Then, we observe
how they depend on each other. The former finds its mathematical counter-
part in the marginal distribution functions. The latter has long been only
reflected in statistical measures such as the covariance or the correlation.
Copulas are a very useful way to think of the two fundamental properties
of random vectors in a concise way. Copulas permit splitting up the joint
distribution function into its margins and a function that describes exhaus-
tively their dependence, so to speak.

The theory presented in this chapter is based on the books [13] and [37].

2.1 Definition

A d-dimensional copula is a cumulative distribution function C of a random
vector on [0, 1]d with uniform margins. An equivalent definition will follow,
but first we have to make some technical definitions. Cumulative distribu-
tion functions (cdf) will be referred to as distribution functions; probability
density functions (pdf) will be referred to as density functions.

Definition 2.1. Given a function F : S1 × · · · × Sd → R,

1. F is called grounded if for all 1 ≤ k ≤ d, with ak being the least
element in Sk,

F (x1, . . . , xk−1, ak, xk+1, . . . , xd) = 0,

for all x ∈ S1 × · · · × Sd where xk = ak.

2. F is called d-increasing if for ak, bk ∈ Sk with ak ≤ bk, ∀1 ≤ k ≤ d,∑
x∈⊗dk=1{ak,bk}

(−1)s(x)F (x) ≥ 0, with s(x) = #{k : xk = ak}.
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Before we can actually define the concept of a copula, it is advisable to
define the concept of a sub-copula. Sub-copulas already have some properties
a copula must have, but allow for more flexibility in the sense that they do
not have to be defined on the whole unit cube.

Definition 2.2. A d-dimensional subcopula is a function C ′ : S1×· · ·×Sd →
R which fulfils

i) {0, 1} ⊆ S1, S2 ⊆ [0, 1],

ii) C ′ is grounded and d-increasing,

iii) For uk ∈ Sk, 1 ≤ k ≤ d, C ′(1, . . . , 1, uk, 1, . . . , 1) = uk.

In this definition, the property of groundedness can be replaced by mono-
tonicity in every component. From the definition, it is immediately clear that
all subcopulas will have values in [0, 1] only.

Proposition 2.3. Let C ′ have margins C ′(1, . . . , 1, uk, 1, . . . , 1) = uk and
be d-increasing, then the following holds: C ′ is grounded if and only if C ′ is
non-decreasing in every variable.

Proof. “⇒” Let C ′ be grounded. Let u ∈ S, 1 ≤ k ≤ d and 0 ≤ x ≤ y ≤ 1.
We show that C ′ is non-decreasing in the k-th variable. Define

a = (0, . . . , 0, x, 0, . . . , 0)>, b = (u1, . . . , uk−1, y, uk+1, . . . , ud)
>.

Using these points a and b in the inequality of C ′ being d-increasing, we can
see that all but two terms are zero because C ′ is grounded. It follows that

C ′(u1, . . . , uk−1, y, uk+1, . . . , ud)− C ′(u1, . . . , uk−1, x, uk+1, . . . , ud) ≥ 0.

“⇐” Let C ′ be non-decreasing in every variable. Let u ∈ S such that uk = 0.
Because of the monotonicity, we have

C ′(u) ≤ C ′(1, u2, . . . , ud) ≤ · · · ≤ C ′(1, . . . , 1, uk, 1, . . . , 1) = uk = 0

The following lemma will provide us with important results for Sklar’s
theorem in the next section.

Lemma 2.4. For 1 ≤ k ≤ d, let Sk be a non-empty subset of R̄ = R]{±∞}
and S = ⊗dk=1Sk. Let H be a grounded and d-increasing function on S with
margins denoted by Fk(xk) = H(∞, . . . ,∞, xk,∞, . . . ,∞). Then for every
two points x, y ∈ S,

|H(x)−H(y)| ≤
d∑

k=1

|Fk(xk)− Fk(yk)| . (2.1)
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Proof.

|H(x)−H(y)| ≤
d∑

k=1

|H(x1, . . . , xk, yk+1, . . . , yd)−H(x1, . . . , xk−1, yk, . . . , yd)|

≤
d∑

k=1

|Fk(xk)− Fk(yk)| ,

where the first inequality is an application of the triangle inequality over
a telescopic sum. The second line follows from noting that since H is
grounded and d-increasing, H is non-decreasing in every component. As-
suming w.l.o.g. that xk ≥ yk, it follows that

0 ≤ H(x1, . . . , xk, yk+1, . . . , yd)−H(x1, . . . , xk−1, yk, . . . , yd) ≤ Fk(xk)− Fk(yk),

where the right hand side of the inequality stems from iteratively applying
the property of H being d-increasing as follows:

a = (0, . . . , 0, yk, 0, . . . , 0, yd)
>, b = (x1, . . . , xk, yk+1, . . . , yd−1, 1)>

This then leads to

H(x1, . . . , xk, yk+1, . . . , yd)−H(x1, . . . , xk−1, yk, . . . , yd)

≤ H(x1, . . . , xk, yk+1, . . . , yd−1, 1)−H(x1, . . . , xk−1, yk, . . . , yd−1, 1).

This iteration is then continued analogously for the remaining components.

Because all sub-copulas satisfy the assumptions of this lemma, we can
conclude that every sub-copula is a Lipschitz-continuous function satisfying

|C ′(u)− C ′(v)| ≤ ‖u− v‖1.

Finally, we can define the copula as a special case of a sub-copula.

Definition 2.5. A copula is a subcopula which is defined on [0, 1]d. That
is, a copula is a function C : [0, 1]d → [0, 1], such that

(i) C is grounded, i.e. for all u ∈ [0, 1]d and all 1 ≤ k ≤ d

C(u1, . . . , uk−1, 0, uk+1, . . . , ud) = 0, (2.2)

(ii) the one-dimensional margins are the identity function, i.e.

C(1, . . . , 1, uk, 1, . . . , 1) = uk, ∀1 ≤ k ≤ d, (2.3)
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(iii) C is d-increasing, i.e. for all a, b ∈ [0, 1]d such that a ≤ b component-
wise ∑
u∈⊗dk=1{ak,bk}

(−1)s(u)C(u) ≥ 0, with s(u) = #{k : uk = ak}.

(2.4)

The last property (2.4) is also called the rectangle inequality. All dis-
tribution functions on Rd are d-increasing. This property ensures that
for a random vector U ∼ C and over every d-dimensional “rectangle”
R = [a1, b1]×· · ·× [ad, bd], the probability P(U ∈ R) is non-negative, see [7].

Definition 2.6. If C is an n-dimensional copula and we have the subset
{k1, . . . , kd} ⊂ {1, . . . , n}, then the d-dimensional margin along the indices
{k1, . . . , kd} is defined as

Ck1,...,kd(u1, . . . , ud) = C(v), with vj =

{
ui if j = ki,
1 otherwise,

which is again a copula according to its definition.

There are many different families of copula functions. Some of them and
their properties are described in Section 2.5. It is inevitable that some types
of copulas will be used in examples before they are clearly defined in a later
section.

2.2 Properties

Additionally to the properties included in the definition, we already know
from Lemma 2.4 that all copulas are (Lipschitz-) continuous functions. Fur-
thermore, we can establish pointwise upper and lower bounds on the values
of a copula C.

Theorem 2.7 (Fréchet Bounds). Every copula C satisfies

max(u1 + · · ·+ ud − d+ 1, 0) ≤ C(u) ≤ min(u1, . . . , ud), ∀u ∈ [0, 1]d.

While the lower Fréchet bound is no copula for d > 2, the upper bound
is. The bounds are the best possible because for every u ∈ [0, 1]d, there
exists a copula that reaches the lower bound in the point u.

Proposition 2.8. The upper Fréchet bound

C+(u) = min(u1, . . . , ud)

is a copula for all d ∈ N.
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0 1

Figure 2.1: An example of a distribution function (left) and its general inverse
(right). Note that the regular inverse function does not exist in this case.

Proof. This follows easily from the following construction: Let U0 ∈ [0, 1] be
uniformly distributed. Define the mutually completely dependent random
vector U = (U0, U0, . . . , U0)> ∈ [0, 1]d. Since U has uniform margins, its
distribution function C is a copula. Trivially, it follows that P(U ≤ u) =
min(u1, . . . , ud).

In order to get an understanding of how copulas and joint distribution
functions are related, we have to define the generalised inverse of a dis-
tribution function. This is needed because not every distribution function
is strictly increasing, which rules out the existence of the classical inverse
function.

Definition 2.9. The generalised inverse of a non-decreasing function G is
defined by

G←(y) = inf{x : G(x) ≥ y}.

If G is strictly increasing, then the generalised inverse coincides with
the regular inverse function G−1 on the domain of G−1. For continuous G,
G(G←(u)) = u holds. For further properties of the generalised inverse, see
[13].

Proposition 2.10. Let G be a distribution function, X ∼G and U ∼ U(0, 1)
a standard uniform distributed random variable. Then

i) P(G←(G(X)) = X) = 1.

ii) Quantile transformation: P(G←(U) ≤ x) = G(x)

iii) Probability transformation: If G is a continuous distribution function,
then G(X) ∼ U(0, 1).
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Proof. The proof follows from the properties of the generalised inverse:

i) As a distribution function, G is non-decreasing. It is clear that

G←(G(z)) = inf{w : G(w) ≥ G(z)} ≤ z

If G←(G(z)) < z, then G(w) = G(z) holds on the whole interval
[G←(G(z)), z]. The probability that X falls on such an interval of
constant G is zero. Therefore, G←(G(X)) = X almost surely.

ii) Because G(y) ≥ u⇔ y ≥ G←(u), we see that

P(G←(U) ≤ x) = P(U ≤ G(x)) = G(x)

iii) Because G is continuous, G← is strictly increasing. Therefore,

P(G(X) ≤ u) = P(G←(G(X)) ≤ G←(u))
i)
= P(X ≤ G←(u))

= G(G←(u))
G cont.

= u.

We come now to the heart of copula theory. The following theorem by
Abe Sklar explains concisely how joint distribution functions can be decom-
posed into marginal distributions and copula. It also marks the first time
that the word copula was used to describe a function linking one-dimensional
marginal distribution functions together to form a multivariate distribution
function.

Theorem 2.11 (Sklar 1959). Let F be a d-dimensional joint distribution
function with its margins denoted by F1, . . . , Fd. Then there exists a copula
C : [0, 1]d → [0, 1] such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.5)

for all x ∈ [−∞,∞]d. If the margins are continuous, C is unique. In any
case, C is uniquely determined on ⊗dk=1Fk(R̄).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution
functions, equation (2.5) defines a joint distribution function with the given
margins F1, . . . , Fd.

Proof. “⇒” The proof consists in two parts. First, we show that there exists
a unique subcopula fulfilling the equality, and then we extend the subcopula
to a copula.

F matches the conditions of Lemma 2.4, so for any two points x, y ∈ R̄d,
we see that if Fk(xk) = Fk(yk) for all 1 ≤ k ≤ d, then F (x) = F (y). Thus,
we can uniquely define a function C ′ from the set of ordered pairs{((

F1(x1), . . . , Fd(xd)
)
, F (x1, . . . , xd)

)
|x ∈ R̄d

}
.
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C ′ is defined on⊗dk=1Fk(R̄). It is indeed a subcopula, as the conditions follow
directly from the properties of the distribution function F . Subsequently,
C ′ fulfils by construction

C ′(F1(x1), . . . , Fd(xd)) = F (x1, . . . , xd).

If the margins are continuous, then the range of the marginal distribution
functions is [0, 1] and C ′ is itself a copula.

In the contrary case, the subcopula C ′ can be extended to a copula by
linear interpolation in each component. For two dimensions, this can be
read in [37]. As the extension is not unique, C is not unique in the case of
non-continuous margins.

“⇐” If C is a copula and F1, . . . , Fd are given univariate distribution
functions, it is easy to see that the resulting function F has the margins
Fk. The conditions for F being indeed a multivariate distribution function
follow directly from the properties of C.

The function C defined in Theorem 2.11 will be called the copula of the
distribution F from now on. It is defined uniquely for continuous margins
by

C(u1, . . . , ud) = F (F←1 (u1), . . . , F←d (ud)), (2.6)

which is the distribution function of (F1(X1), . . . , Fd(Xd)) if X ∼ F , as
proven in the probability transformation of Proposition 2.10.

As easy as the statement of Sklar’s theorem looks, the proof shows that
many things are to be considered. In fact, the proof was not provided in
the original publication in 1959. This resulted in years of people working in
this field having to reconstruct the proof on their own. In the case of non-
continuous distributions, the problem of non-uniqueness arises. It is still
possible to give pointwise bounds on the values of C for discrete distribution
cases. But effectively, the problem of the lack of uniqueness runs so deep
that fundamental problems emerge. For example, the independence of the
components of a random vector is no longer equivalent to the independence
copula C⊥ being the copula of the vector. The independence copula (or
product copula) is defined as

C⊥(u1, . . . , ud) =
d∏

k=1

uk.

This absence of equivalence is of course in at its very core a cosmetic problem
that stems from the ambiguity of the values of C in points where it will not
be evaluated because of the discrete margins. Therefore, the copula behind
the distribution of X is essentially not identifiable any more.

Example 1. Let X be two-dimensional and X ∼ F . If F has continuous
margins, the following holds: X1 and X2 are independent if and only if their
copula is C⊥(u1, u2) = u1u2.
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“⇐” is trivial. “⇒”, if X1 and X2 are independent, we have F (x1, x2) =
F1(x1) · F2(x2). Therefore by Sklar’s theorem, C⊥ is a possible copula.
Because the margins of X are continuous, we additionally see that C⊥ is
indeed the unique copula of X.

If the margins of X are not continuous, we may provide a counterexam-
ple: let X1 and X2 be independent Bernoulli variables with P(X1 = 0) =
P(X1 = 0) = 1

2 . Then the copula C(u1, u2) = 1
2(max(u1 + u2 − 1, 0) +

min(u1, u2)) satisfies C(1
2 ,

1
2) = 1

4 , as does the independence copula.

But the complications that discrete margins cause don’t stay on this
superficial level. No property of the continuous case should be blindly taken
to be valid in the case of discrete margins. Further problems of the discrete
case will be discussed later on. An in-depth investigation of this vast field
of problems that arise in conjunction with discrete margins can be found in
[20].

We come now to a basic copula property that is the indifference to
monotonous transformations. Since we see the copula as the sole dependence
part of a joint distribution, it shouldn’t be surprising that transforming each
component via a strictly monotonous function will not alter the copula.

Proposition 2.12. If X ∈ Rd is a random vector with continuous margins
and T1, . . . , Td are strictly increasing functions, then X and its transformed
(T1(X1), . . . , Td(Xd)) have the same copula C.

Proof. Because Xk has a continuous distribution function, Xk has no point
masses. Therefore, the strictly increasing transformation Yk = Tk(Xk) does
not, either. Furthermore, the distribution function of Yk is F̃k = Fk ◦ T−1

k .
Thus,

CX(u1, . . . , ud) = P(F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud)
= P(F1 ◦ T−1

1 (T1(X1)) ≤ u1, . . . , Fd ◦ T−1
d (Td(Xd)) ≤ ud)

= P(F̃1(Y1) ≤ u1, . . . , F̃d(Yd) ≤ ud)
= CY (u1, . . . , ud).

Now that we have seen that strictly increasing transformations of the
margins have no effect on the copula, it is only natural to ask what happens
with strictly decreasing transformations. The concept that arises in this
context is the survival copula.

Definition 2.13. If C is a copula, i.e. it is the distribution function of
(U1, . . . , Ud) with standard uniform margins, its survival copula C̃ is the
distribution function of (1− U1, . . . , 1− Ud). If C̃ = C, we call C (radially)
symmetric.
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Survival copulas C̃ are not to be confused with survival functions of
copulas C̄. The difference lies in

C̄(u1, . . . , ud) = P(U1 > u1, . . . , Ud > ud),

C̃(u1, . . . , ud) = P(1− U1 ≤ u1, . . . , 1− Ud ≤ ud) = C̄(1− u1, . . . , 1− ud).

In contrast to the survival copula C̃, the survival function of a copula C̄
itself is not a copula. Please note that the notation C̃ is different from
the more common way of referring to the survival copula. We are using a
tilde instead of the usual hat to avoid notational conflicts with the empirical
copula estimator defined in Definition 2.41.

Example 2. If C is a three-dimensional copula, then its survival function
C̄ and its survival copula C̃ are given as follows:

C̄(u1, u2, u3) = 1− u1 − u2 − u3

+ C12(u1, u2) + C13(u1, u3) + C23(u2, u3)− C(u1, u2, u3),

C̃(u1, u2, u3) = −2 + u1 + u2 + u3 + C12(1− u1, 1− u2) + C13(1− u1, 1− u3)

+ C23(1− u2, 1− u3)− C(1− u1, 1− u2, 1− u3).

The generalisation in higher dimensions is obvious.

Because of Proposition 2.12, it is clear that if we want to extract the
copula of a multivariate normal distribution Nd(µ,Σ), the parameter µ is
irrelevant and Σ can be taken as a correlation matrix. Furthermore, it
follows from Definition 2.13 that C̃ = C in the case of the Gauss copula.

Proposition 2.14. For the survival copula C̃ of a random vector X with
survival function F̄ , an analogous version of Sklar’s theorem applies:

F̄ (x1, . . . , xd) = C̃(F̄1(x1), . . . , F̄d(xd)) (2.7)

Proof. If the margins are continuous, the equation is easily derived:

F̄ (x1, . . . , xd) = P(X1 > x1, . . . , Xd > xd)

= P(F1(X1) ≥ F1(x1), . . . , Fd(Xd) ≥ Fd(xd))
= P(1− F1(X1) ≤ F̄1(x1), . . . , 1− Fd(Xd) ≤ F̄d(xd))
= C̃(F̄1(x1), . . . , F̄d(xd)).

Proposition 2.15. If a random vector X with continuous margins has a
copula C, then −X has the copula C̃.
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Proof. This can be seen from:

C−X(u1, . . . , ud) = F−X(F←−X1
(u1), . . . , F←−Xd(ud))

= F−X(−F←X1
(1− u1), . . . ,−F←Xd(1− ud))

= F̄X(F←X1
(1− u1), . . . , F←Xd(1− ud))

(2.7)
= C̃X(u1, . . . , ud).

In fact, if Tk are strictly decreasing transformations, then Y obtained by
Yk = Tk(Xk) has the copula C̃. This follows easily from Proposition 2.12.

A property which is important in practical applications of copulas is
exchangeability, i.e. whether or not the copula treats all components the
same. It is also possible that some components have the same dependence
structure within their group and to components outside of it; they then form
an exchangeable group.

Definition 2.16. We call a copula C exchangeable if

C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)), (2.8)

for all permutations π : {1, . . . , d} → {1, . . . , d}. We call I ⊆ {1, . . . , d} an
exchangeable group of copula C if (2.8) holds for all permutations π that
only permutate elements of I and have {1, . . . , d}\I as fixed points.

As is usual with probability distributions, many copulas also have a
density function.

Definition 2.17. The density of a copula C is given by

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
,

under the assumption that C is sufficiently differentiable.

Proposition 2.18. The density of the survival copula C̃ is

c̃(u1, . . . , ud) =
∂dC(1− u1, . . . , 1− ud)

∂u1 . . . ∂ud
= c(1− u1, . . . , 1− ud),

under the assumption that C is sufficiently differentiable.

Proposition 2.19. If X is a d-dimensional random vector with distribution
function F and density function f , Fi and fi > 0 respectively for the margins
1 ≤ i ≤ d, then the density c of its copula C is computed directly by

c(u1, . . . , ud) =
f(F−1

1 (u1), . . . , F−1
d (ud))

f1(F−1
1 (u1)) · · · fd(F−1

d (ud))
. (2.9)
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Proof. By differentiating equation (2.6) and taking the ordinary inverse of
the marginal distribution functions. This can be done because the marginal
densities are strictly positive and therefore all Fi are strictly increasing.

Using this equation, we can theoretically compute the copula density of
every joint distribution we have the densities of.

Example 3. The Gaussian copula is defined as the copula of the multivari-
ate normal distribution. Using (2.9), we see that the copula density of a
two-dimensional Gaussian copula with correlation ρ is

c(u1, u2) =
1√

1− ρ2
exp

(
−ρ2Φ−1(u1)2−2ρΦ−1(u1)Φ−1(u2)+ρ2Φ−1(u2)2

2(1−ρ2)

)
,

where Φ−1 is the inverse distribution function of a standard normal distri-
bution.

2.3 Measures of Dependence

2.3.1 Kendall’s Tau

One of the best known measures of dependence (or more precisely: measures
of concordance) is Kendall’s tau. If (X1, X2) and (Y1, Y2) are independent
and identically distributed with distribution function F , Kendall’s tau is
defined as

τ(X1, X2) = P((X1−Y1)(X2−Y2) > 0)−P((X1−Y1)(X2−Y2) < 0). (2.10)

This is the probability of concordance minus the probability of discordance.
It is obvious that this measure does not depend on the margins of the joint
distribution but only on the copula.

Proposition 2.20. If X1 and X2 have continuous marginal distributions,
τ can also be calculated directly from their copula.

τ(C) = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1 (2.11)

Proof. From the definition and noting that the distribution is continuous,
we can write

τ(X1, X2) = 2P((X1 − Y1)(X2 − Y2) > 0)− 1

= 4P(X1 < Y1, X2 < Y2)− 1

= 4E[P(X1 < Y1, X2 < Y2|Y1, Y2)]− 1

= 4

∫
R2

P(X1 < y1, X2 < y2)dF (y1, y2)− 1

= 4

∫
R2

C(F1(y1), F2(y2))dC(F1(y1), F2(y2))− 1,

and substitute the marginal distribution functions Fi(yi) = ui.
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In the case of an Archimedean copula, τ can be obtained from the gen-
erator φC . To measure pairwise dependence, τ of a d-dimensional random
vector X (with its independent copy Y ) can be written in short form as

τ(X) = Cov(sgn(X − Y )),

which is then a d× d matrix.
The sample version of Kendall’s tau between two sample vectors X and

Y is:

τ̂(X,Y ) =
2

N(N − 1)

N∑
n=1

N∑
m=n+1

sgn((Xn −Xm)(Yn − Ym)) (2.12)

Theorem 2.21. Kendall’s tau of a copula and its survival copula are the
same. τ(C) = τ(C̃).

Proof. This follows trivially from Definition 2.13.

2.3.2 Spearman’s Rho

Another measure of concordance is the rank correlation coefficient Spear-
man’s rho. If (X1, X2), (Y1, Y2) and (Z1, Z2) are independent and identically
distributed with distribution function F , Spearman’s rho is defined as

ρS(X1, X2) = 3 (P((X1 − Y1)(X2 − Z2) > 0)− P((X1 − Y1)(X2 − Z2) < 0)) .
(2.13)

Proposition 2.22. If X1 and X2 have continuous marginal distributions,
ρS can be calculated from the copula C of X1, X2:

ρS(C) = 12

∫
[0,1]2

C(u, v)dudv − 3, (2.14)

which is the linear correlation between U1 and U2 of the copula, i.e.

ρS(X1, X2) = Corr(F1(X1), F2(X2)).

Proof. From the definition and noting that the distribution is continuous,
we can write

ρS(X1, X2) = 3 ·
(

2P((X1 − Y1)(X2 − Z2) > 0)− 1
)

= 12 P(X1 < Y1, X2 < Z2)− 3

= 12 E[P(X1 < Y1, X2 < Z2|Y1, Z2)]− 3

= 12

∫
R2

F (y1, z2)dF1(y1)dF2(z2)− 3

= 12

∫
[0,1]2

C(u, v)dudv − 3,
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which proves (2.14).
For two random variables Z1, Z2 with joint distribution function G and

margins G1, G2, the covariance is given by Höffding’s formula

Cov(Z1, Z2) =

∫
[0,1]2

(G(z1, z2)−G1(z1)G2(z2)) dz1dz2.

A proof of this equation can be found in [13]. Plugging F1(X1) and F2(X2)
into this formula yields

Cov(F1(X1), F2(X2)) =

∫
[0,1]2

(C(u, v)− uv) dudv.

Formula (2.14) follows then by dividing by the variance of the uniformly
distributed margins.

Theorem 2.23. Spearman’s rho of a copula and its survival copula are the
same. ρS(C) = ρS(C̃).

The sample version is obtained by either replacing the marginal distri-
bution function above with the empirical estimate

ρ̂S(X,Y ) =
Ĉov(F̂X(X), F̂Y (Y ))√

V̂ar(F̂X(X)) · V̂ar(F̂Y (Y ))

,

or using the ascending rank statistics of the sample:

Ri = rank(Xi), Si = rank(Yi).

Then we get:

ρ̂S(X,Y ) =
12

N(N2 − 1)

(
N∑
n=1

Rn · Sn −
N(N + 1)2

4

)
(2.15)

= 1− 6

∑N
n=1(Rn − Sn)2

N(N2 − 1)

2.3.3 Relation between Kendall’s Tau and Spearman’s Rho

Since both τ and ρS aim to measure similar things, it is only natural that
they have some connection between them. In fact, the relationship between
them can be summed up by the following bounds:{

3
2τ −

1
2 ≤ ρS ≤ 1

2 + τ − 1
2τ

2, if τ ≥ 0,
−1

2 + τ + 1
2τ

2 ≤ ρS ≤ 3
2τ + 1

2 , if τ < 0.
(2.16)

The region within these bounds is shown in Figure 2.2. The inequalities are
not always sharp, i.e. not all points (τ, ρS) on the bounds can be reached.
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Figure 2.2: The bounds of the τ -ρS-region expressed in inequality (2.16). The
dashed line shows the points attainable by a Gaussian copula.

For positive τ , the lower bound of ρS can always be reached. The upper
bound can only be reached on the points (τ, ρS) = (1 − 2

n , 1 −
2
n2 ), n ≥ 2.

Therefore, we can presume that there exists a function Φ that interpolates
those points and represents the sharp bounds of the region. For each point
on the sharp bounds of the τ -ρS-region, there exist a pair of mutually com-
pletely dependent random variables X and Y that match the exact values
of τ and ρS . The proof of this along with the exact function Φ can be read
in [43]. In essence, Y is completely dependent on X if Y almost surely takes
only one value for every value of X. The formal definition is as follows:

Definition 2.24. Let X and Y be two random variables. Y is completely
dependent on X if there exists a function f such that the set {(x, f(x))| x ∈
Dom(X)} is measurable and has probability 1. That is, Y = f(X) with
probability 1. If X is also completely dependent on Y , then we call X and
Y mutually completely dependent.

This definition is taken from [30], where further insights into this matter
can be found. The copulas on the boundary of the τ -ρS-region represent
mutually completely dependent random variables. Examples of such copulas
can be seen in Figure 2.3.

The limiting cases of this τ -ρS-region are mutually completely dependent
and as such more of theoretical interest since they are not likely to occur
in a setting with real data. Furthermore, the task of reaching an arbitrary
point in the interior is still difficult. In practice, the frequently used copula
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families only attain points in a very small subset of the τ -ρS-region, as noted
by [12].

We have seen how to analytically calculate τ and ρS using the integral
formulas (2.11) and (2.14). In cases where this is not feasible because we
have no closed form of C, it is possible to resort to Monte Carlo simulations
in order to gain approximate values. With some copula families, however,
there is no need for either calculation because the values of τ and ρS can be
expressed as functions of the correlation of the components.

Theorem 2.25. For d-dimensional normal distributed X ∼ Nd(µ,Σ), look-
ing at the components Xi and Xj for 1 ≤ i 6= j ≤ d, we see that

τ(Xi, Xj) =
2

π
arcsin(Rij),

ρS(Xi, Xj) =
6

π
arcsin

(
Rij
2

)
, with Rij =

Σij√
ΣiiΣjj

, (2.17)

where Rij is the linear correlation between Xi and Xj.

Proof. Because we are only looking at two components of the random vector
X, we can assume X is two-dimensional. τ and ρS are only dependent on
the copula. Therefore, w.l.o.g. we also assume that X ∼ N2(0, P ) with

P =

(
1 ρ
ρ 1

)
. For Spearman’s rho, we look at the probability P((X1−Y1) >

0, (X2 − Z2) > 0), where X, Y and Z are independent copies of X. It is
then clear that W = (X1 − Y1, X2 − Z2)> ∼ N2(0, P + I2). Because of
Proposition 1.8, we have that

ρS(X1, X2) = 12 P(W1 > 0,W2 > 0)− 3 = 12

(
1

4
+

arcsin ρ(W )

2π

)
− 3

=
6

π
arcsin

R12

2
.

Using the empirical estimates for ρ and (2.17), estimation of the corre-
lation matrix of a Gaussian copula is possible. Empirically, these values are
close to those obtained by maximum likelihood estimation, according to [3].

Theorem 2.26. For d-dimensional X from an elliptical distribution, looking
at the components Xi and Xj for 1 ≤ i 6= j ≤ d, we see that

τ(Xi, Xj) =
2

π
arcsin(Rij), (2.18)

where Rij is the correlation between Xi and Xj.
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Proof. W.l.o.g. assume that X is two-dimensional. We look at the prob-
ability P((X1 − Y1) > 0, (X2 − Y2) > 0), where X and Y are independent
copies of X. Define W = X − Y . Because of Proposition 1.7, we know that
W ∼ E2(0,Σ, ψ2). From Proposition 1.8, it follows that

τ(X1, X2) = 4 P(W1 > 0,W2 > 0)− 1 = 4 ·
(

1

4
+

arcsin ρ(W )

2π

)
− 1

=
2

π
arcsinR12.

From the proof, it is easily seen why the formula for Kendall’s tau of el-
liptical distributions from Theorem 2.26 has no analogous version for Spear-
man’s rho. In order to apply Proposition 1.7, the two elliptical random
variables need to have the same dispersion parameter Σ. This is not the
case for the calculation of Spearman’s rho.

The restriction to continuous margins of X is not to be taken lightly.
It is crucial to almost all statements and conclusions in this section. In
fact, even fundamental properties are no longer valid in the case of discrete
marginal distributions, as can be seen in [20]. In the ambits of τ and ρS ,
this begins with the difficulty of the definition that assumes the probability
of coinciding values is zero. The consequence is that the equivalence of
the probabilistic definition (2.10) and the analytical integral representation
(2.11) of Kendall’s tau (and respectively (2.13) and (2.14) for Spearman’s
rho) is no longer valid without the assumption of continuous margins. Even
worse than that, the concordance measures may become margin-dependent
in the case of discrete margins.

Example 4. We will show an example of margin-dependence of τ and ρS in
the case of discrete margins of X. Let X1 and X2 be Bernoulli distributed
with P(X1 = 0) = p and P(X2 = 0) = q. The copula of X is C, therefore we
have P(X1 = 0, X2 = 0) = C(p, q) =: r. Then τ(X) = ρS(X) = C(p, q)−pq.
The calculation for Kendall’s tau is straightforward:

τ(X) = P((X1 − Y1)(X2 − Y2) = 1)− P((X1 − Y1)(X2 − Y2) = −1)

= P((X = (1, 1) ∧ Y = (0, 0)) ] (X = (0, 0) ∧ Y = (1, 1)))

− P((X = (1, 0) ∧ Y = (0, 1)) ] (X = (0, 1) ∧ Y = (1, 0)))

= 2 (P(X = (1, 1))P(Y = (0, 0))− P(X = (1, 0))P(Y = (0, 1)))

= 2 ((1− p− q + r)r − (q − r)(p− r)) = r − pq.

The result for ρS can be obtained analogously. Because τ and ρ depend on
the actual choice of p and q, they are not independent from the margins.
Kendall’s tau and Spearman’s rho are in general no copula properties in the
case of discrete margins.
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2.4 Tail Dependence

While Kendall’s tau and Spearman’s rho look at the dependence between a
pair of random variables X1 and X2 along their whole domain, it is also of
interest to see how extreme values play together. That is, how likely is it for
X2 to reach a value in its tail given that X1 realises a tail value. The limit
u → 0 of this very conditional probability P(X2 ≤ F−1

X2
(u)|X1 ≤ F−1

X1
(u))

is the tail dependence. The tail dependence is a measure of asymptotic
dependence. Thus, a tail dependence equal to 0 means that we have asymp-
totic independence of X1 and X2. That is, extreme events in the tails occur
asymptotically independently from each other. Because the property of tail
dependence is invariant under monotonous transformation, it is a copula
property. We define it using the copula. The equivalence to the mentioned
conditional probability can easily be verified.

Definition 2.27. Let C be a two-dimensional copula, then the upper and
lower tail dependence are defined as the limit of the quantile dependence
function of C. That is

λU (C) = lim
u→1−

C̄(u, u)

1− u
, (2.19)

λL(C) = lim
u→0+

C(u, u)

u
, (2.20)

if the limits exist. It is evident that λU (C) = λL(C̃). Formula (2.19) can
easily be evaluated by noting that C̄(u, u) = 1− 2u+ C(u, u).

For many copula families, we have a closed form for the tail dependence.
In particular, the tail dependence of the t-copula and the Gaussian copula
are given in the following theorem.

Theorem 2.28. For the multivariate t-distributed vector X ∼ Std(µ,Σ, ν),
1 ≤ i 6= j ≤ d and linear correlation Rij > −1, the tail dependence is:

λU (Xi, Xj) = λL(Xi, Xj) = 2 t̄ν+1

(
√
ν + 1

√
1−Rij√
1 +Rij

)
(2.21)

The tail dependence of normally distributed random vectors is zero.

Proof. The idea for the proof can be found in [13].

2.5 Copula Families

There are two important branches of copula families. The elliptical copulas
and the Archimedean copulas. We will introduce them both and highlight
their advantages and disadvantages.
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2.5.1 Elliptical Copulas

Elliptical copulas are obtained by Sklar’s theorem from elliptical distribu-
tions. Most notably, we have the Gauss-copula that is the copula of a mul-
tidimensional normal distribution X ∼ Nd(0,Σ). It has the positive definite
correlation matrix Σ ∈ Rd×d as an input, i.e.

(
d
2

)
parameters. The Gauss

copula has no tail dependence. For Σ = Id, the Gaussian copula reaches
C⊥. For Σ being a matrix of ones, the limiting case C+ is reached.

The t-copula is the copula of a multivariate t-distributed random vector
X ∼ Std(0,Σ, ν). In comparison with the Gauss copula, it has one additional
parameter, i.e. the degrees of freedom ν. Its tail dependence is in general
non-zero and given by (2.21). Because the t-distribution converges to the
normal distribution for ν → ∞, the Gauss copula is a limiting case of the
t-copula.

For both the t-copula and the Gauss copula, the parameters can be
easily estimated by applying Theorems 2.25 or 2.26. All elliptical copulas
are radially symmetric with C̃ = C. Therefore, they have the same upper
and lower tail dependence. Their advantages are the abundant number of
parameters and the easy estimation thereof.

Elliptical distributions and, in consequence, elliptical copulas are typi-
cally easy to be simulated from. Their rank correlation and tail dependence
is easily calculated, see [14]. The drawback is that there is no closed form for
C. They are restricted to radial symmetry and are not able to exhaustively
reproduce the behaviour of real data, as has been noted by [17]. Nonetheless,
they remain very popular in practical applications.

2.5.2 Archimedean Copulas

An Archimedean copula is not derived from an underlying distribution by
means of Sklar’s theorem, but it is itself a probability distribution derived
from a generator function.

Definition 2.29. Let ϕ : [0, 1]→ [0,∞] be a continuous, strictly decreasing
function with ϕ(1) = 0. We define the pseudo-inverse of ϕ by

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞.

From the definition, the pseudo-inverse ϕ[−1] is continuous and decreas-
ing. ϕ[−1](ϕ(t)) = t holds in any case.

ϕ(ϕ[−1](t)) =

{
t, 0 ≤ t ≤ ϕ(0),
ϕ(0), ϕ(0) ≤ t ≤ ∞.

If ϕ(0) =∞, then the pseudo-inverse and the inverse coincide.

24



Theorem 2.30. Let ϕ : [0, 1] → [0,∞] be a continuous, strictly decreasing
function with ϕ(1) = 0. Define C : [0, 1]2 → [0, 1] by

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)).

Then C is a copula if and only if ϕ is convex.

Proof. First, we show that for u1 ≤ u2,

C(u2, v)− C(u1, v) ≤ u2 − u1 (2.22)

holds if and only if ϕ is convex. If we set a = ϕ(u1), b = ϕ(u2) and c = ϕ(v),
then this equation (2.22) is equivalent to

ϕ[−1](a) + ϕ[−1](b+ c) ≤ ϕ[−1](b) + ϕ[−1](a+ c),

which, for a 6= b, is equivalent to

ϕ[−1](a)− ϕ[−1](b)

a− b
≤ ϕ[−1](a+ c)− ϕ[−1](b+ c)

a− b
.

This holds if ϕ (and therefore, ϕ[−1]) is convex. In the other direction: if
(2.22) holds, then for 0 ≤ s < t and a = (s+ t)/2, b = s and c = (t− s)/2,

ϕ[−1]

(
s+ t

2

)
≤ ϕ[−1](s) + ϕ[−1](t)

2
.

Because ϕ[−1] is continuous, it follows that ϕ[−1] is convex.
What is left to show is that (2.22) is equivalent to C being a copula. If

C is a copula, inequality (2.22) is contained in the Lipschitz continuity of C,
i.e. |C(x)−C(y)| ≤ ‖x− y‖1. Showing the other direction is more involved.

It is easy to show the boundary conditions since

C(0, u2) = ϕ[−1](ϕ(0) + ϕ(u2)) = 0

holds because of monotonicity and

C(1, u2) = ϕ[−1](ϕ(1) + ϕ(u2)) = ϕ[−1](ϕ(u2)) = u2.

We still have to show the 2-monotonicity of C.
For u1 < u2 and v1 < v2, we know that because of continuity, there is a

t such that C(t, v2) = v1, i.e. ϕ(t) + ϕ(v2) = ϕ(v1).

C(u2, v1)− C(u1, v1) = ϕ[−1](ϕ(u2) + ϕ(v1))− ϕ[−1](ϕ(u1) + ϕ(v1))

= ϕ[−1](ϕ(u2) + ϕ(v2) + ϕ(t))

− ϕ[−1](ϕ(u1) + ϕ(v2) + ϕ(t))

= C(C(u2, v2), t)− C(C(u1, v2), t)
(2.22)

≤ C(u2, v2)− C(u1, v2).
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ϕ is called the Archimedean copula generator of C. If ϕ(0) = ∞, then
ϕ is a strict Archimedean copula generator.

Proposition 2.31. Let C be an Archimedean copula with generator ϕ, then

i) C is symmetric: C(u, v) = C(v, u).

ii) C is associative: C(C(u, v), w) = C(u,C(v, w)).

iii) C(u, u) < u for all 0 < u < 1.

Proof. i) follows from the definition. As for ii),

C(C(u, v), w) = ϕ[−1](ϕ(ϕ[−1](ϕ(u) + ϕ(v))) + ϕ(w))

= ϕ[−1](ϕ(u) + ϕ(v) + ϕ(w)) = · · · = C(u,C(v, w)).

For iii), we easily see that

C(u, u) = ϕ[−1](2ϕ(u)) < ϕ[−1](ϕ(u)) = u.

Theorem 2.32. If C is an associative copula with C(u, u) < u for all
0 < u < 1, then C is Archimedean

Proof. Can be found in [34].

Proposition 2.33. The Kendall distribution function of a copula C is the
distribution function of C(U, V ) where (U, V )> ∼ C. If C is an Archimedean
copula with generator ϕ, then its Kendall distribution function is calculated
by

KC(t) = t− ϕ(t)

ϕ′(t+)
, 0 ≤ t ≤ 1.

KC can also be used to test distributional hypotheses on a given dataset
in a goodness-of-fit setting, as will be briefly discussed in Section 3.5.

Theorem 2.34. Let C be an Archimedean copula with generator ϕ, then
Kendall’s tau can be calculated by

τ(C) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (2.23)

Proof. For (U, V )> ∼ C, let us denote by KC the distribution function of
C(U, V ). Using the integral formula for τ , we have

τ(C) = 4E[C(U, V )]− 1 = 4

∫ 1

0
tdKC(t)− 1 = 3− 4

∫ 1

0
KC(t)dt

= 3− 4

∫ 1

0

(
t− ϕ(t)

ϕ′(t+)

)
dt

= 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.
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The generalisation of Theorem 2.30 to obtain Archimedean copulas in
higher dimensions is not straightforward, as we need stricter conditions on
the generator ϕ.

Theorem 2.35. If ϕ : [0, 1]→ [0,∞] is a strict Archimedean copula gener-
ator and C is defined by

C(u1, . . . , ud) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)),

then C is a d-dimensional copula if and only if the inverse ϕ−1 is completely
monotonic, i.e. ∀k ∈ N and t > 0

(−1)k
dk

dtk
ϕ−1(t) ≥ 0.

Proof. Can be found in [27].

Proposition 2.36. Let ϕ be a strict Archimedean copula generator that sat-
isfies the requirements of Theorem 2.35 and let C(l) denote an l-dimensional
Archimedean copula with generator ϕ. Then we have that for k ≤ d and
I1 ] · · · ] Ik = {1, . . . , d},

C(d)(u1, . . . , ud) = C(k)(C(|I1|)(uI1), . . . , C(|Ik|)(uIk)).

Proof. This follows easily from using the fact that ϕ(ϕ−1(t)) = t in the
equation

C(d)(u1, . . . , ud) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)).

Archimedean copulas that are constructed via Theorem 2.35 are all ex-
changeable (see (2.8)) by construction. If we want to change this, we need
to generalise them into nested Archimedean copulas. Nested Archimedean
copulas arise when we replace arguments of Archimedean copulas with other
(nested) Archimedean copulas.

Definition 2.37 (Nested Archimedean copulas). Denote by AN the set of
nested Archimedean copulas.

1. If C is an Archimedean copula, then C ∈ AN .

2. Let C be a 2-dimensional Archimedean copula and C1, C2 ∈ AN . We
define the function

C∗ = C ◦
(
C1

C2

)
.

If C∗ is a copula, then C∗ ∈ AN .
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Example 5. Let ϕ1 and ϕ2 be two strict Archimedean generators and define

C(u1, u2, u3) = ϕ−1
2 (ϕ2 ◦ ϕ−1

1 (ϕ1(u1) + ϕ1(u2)) + ϕ2(u3)).

This is equivalent to a construction by taking Ci to be an Archimedean
copula with generator ϕi and setting

C(u1, u2, u3) = C2(C1(u1, u2), u3).

This is an application of 2. in Definition 2.37 with C2(u) = u as a “one-
dimensional copula”, which is included in the definition. If ϕ−1

1 and ϕ−1
2

are completely monotonic decreasing functions and ϕ2 ◦ϕ−1
1 is a completely

monotonic increasing function, then C is indeed a copula. It is not exchange-
able, although u1 and u2 are an exchangeable group for C. The bivariate
margins are again Archimedean copulas. C12 has generator ϕ1, C13 and
C23 have generator ϕ2. This can be generalised for higher dimensions with
according additional conditions on the generators, see [13]. For four dimen-
sions, this construction with three generators ϕ1, ϕ2, ϕ3 is possible:

C(u1, u2, u3) = C3(C1(u1, u2), C2(u3, u4)).

This gives two exchangeable groups. This construction can be found in [25].
Another possibility for arbitrary higher dimensions is the recursive equation

Cd(u1, . . . , ud;ϕ1, . . . , ϕd) = ϕ−1
1 (ϕ1(u1)+ϕ1(Cd−1(u2, . . . , ud;ϕ2, . . . , ϕd))),

which only leaves ud−1 and ud as exchangeable. The conditions for C being a
copula are simple generalisations of the three-dimensional case, i.e. complete
monotonicity of the composition of generators and inverses.

The most popular d-dimensional Archimedean copulas with one param-
eter are Clayton, Gumbel and Frank. They are named after the people
who first described them. i.e. David Clayton (1978), Emil Gumbel (1960)
and David Frank (1979) respectively. The Gumbel family is sometimes also
referred to by the name Gumbel-Hougaard.

Definition 2.38. Clayton, Gumbel and Frank copula family in d dimensions

Copula Generator ϕ(t) Parameter C(u1, . . . , ud)

Clayton t−α − 1 α > 0
(∑d

i=1 u
−α
i − d+ 1

)− 1
α

Gumbel (− log(t))α α > 1 exp

(
−
(∑d

i=1(− log(ui)
α
) 1
α

)
Frank log

(
exp(−αu)−1
exp(−α)−1

)
α > 0 − 1

α log

(
1 +

∏d
i=1(e−αui−1)
(e−α−1)d−1

)
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The range of the parameter is valid for arbitrary dimension. In two di-
mensions larger ranges are possible: the Clayton copula can then also take
α ∈ (−1, 0), while the Frank copula also accepts α < 0.

Those copulas have the limiting case C⊥ for α approaching the respective
lower bounds and the limiting case C+ for α→∞. Furthermore, it is evident
that the k-dimensional margins of these three copulas are themselves copulas
of the same family. We can therefore limit the investigation of pairwise
dependences to the two-dimensional copulas.

Proposition 2.39. In the two-dimensional case, the Archimedean copulas
from Definition 2.38 have the following properties:

Copula Kendall’s tau τ(α) λL(α) λU (α)

Clayton α
α+2 2−

1
α 0

Gumbel 1− 1
α 0 2− 2

1
α

Frank 1− 4
α + 4

α2

∫ α
0

t
et−1dt 0 0

Furthermore, the Frank copula is radially symmetric. That is, C = C̃. This
is only true in the case of d = 2.

Proof. Kendall’s tau is calculated by formula (2.23). Now, we will only look
at the lower tail dependence. The analogous calculation for the upper tail
dependence is left to the reader. For the Clayton case, we have

λL = lim
u→0+

(2u−α − 1)
− 1
α

u
= lim

u→0+
(2− uα)−

1
α = 2−

1
α .

In the case of the Gumbel copula, we have

λL = lim
u→0+

exp
(
− (2(− log u)α)

1
α

)
u

= lim
u→0+

u2
1
α−1 = 0.

The calculations for τ can be found in [37].
For the Frank copula, C̃ is given by

C̃(u, v) = −1 + u+ v − 1

α
log

(
1 +

(
e−α(1−u) − 1

) (
e−α(1−v) − 1

)
e−α − 1

)

= − 1

α
log

(
e−α(u+v) 1 + e−α(1−u−v) − eαu − eαv

e−α − 1

)

= − 1

α
log

(
1 +

e−α(u+v) + 1− e−αv − e−αu

e−α − 1

)
= C(u, v).

Therefore, the Frank copula is radially symmetric in the case of d = 2.
For higher dimensions, a counterexample can be found easily by directly
evaluating C and C̃.

29



We can see that the Frank copula has radially symmetric two-dimensional
margins. This means that if we look at the components of a random vector
X only using pairwise measures (τ , ρS , λL and λU ), we cannot distinguish
between a Frank copula and its survival copula. However, they are ap-
parently distinct in all dimensions d > 2. Because the difference doesn’t
manifest itself in many measures and diagnostics, it is difficult to assess
their properties in comparison. But as it is in the case of the self-evidently
non-symmetric Archimedean copulas (e.g. Clayton and Gumbel), it is worth
noting that by taking the survival copula, we virtually gain new parametric
copula families without much additional effort.

The radial symmetry of the two-dimensional Frank copula is remarkable
from another point of view: it is the only Archimedean copula to satisfy this
property C = C̃, as noted by [37] and proven by Frank in [18].

2.5.3 Construction of New Copulas

The class of Archimedean copulas is very handy because it is rather easy to
compute, but the limitations on the number of parameters is the downside of
this. It is an important field of research to construct new families of copulas
with desirable properties in terms of tractability of both computations and
simulations in conjunction with an adequate number of parameters in the
model. Considering actual data, the need to fit asymmetric tail behaviour
and a wide variety of dependence structures arises. The different kinds of
dependence structure manifest themselves in the dependence measures τ
and ρS . We know of the attainable τ -ρS-region, as we have already seen.
But there still persist big gaps in the set that can be reached by using the
most popular copula families. For the Gaussian copula, the values of τ and
ρS are fixed to one another as seen in Theorem 2.25. Therefore, they form
a curve in the centre of the region. The t-copula expands this line into a
thin stripe. But even the other frequently used copula families seem to fail
reaching the most points in the τ -ρS-region, as can be seen in Figure 5 of
[12]. One way to fix this problem is to apply transformations on copulas we
already know. There are several methods to achieve this. In this section,
we want to take a short look into the following two methods.

1) Copula Transformation

One can use a continuous, concave function γ : [0, 1]→ [0, 1] and construct
a transformed copula Cγ defined by

Cγ(x1, . . . , xd) = γ−1
(
C(γ(x1), . . . , γ(xd))

)
. (2.24)

In arbitrary dimensions d, γ needs to have an inverse γ−1 that is absolutely
monotonic of order d, i.e. ∀k ≤ d and t, dk

dtk
γ−1(t) ≥ 0. This is sufficient for

Cγ to be a copula, see [36].
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Proposition 2.40. If C is a two-dimensional copula and γ : [0, 1] → [0, 1]
is a concave function and twice differentiable on (0, 1) that satisfies γ(0) =
0, γ(1) = 1, then Cγ defined in equation (2.24) is again a copula.

Proof. Because γ(0) = 0, γ(1) = 1, the margins of Cγ satisfy the copula
properties, e.g.

Cγ(u1, 1) = γ−1(C(γ(u1), γ(1))) = γ−1(C(γ(u1), 1)) = γ−1(γ(u1)) = u1.

In every point where C has a density, the density of Cγ is given by

∂2Cγ
∂u1∂u2

(u1, u2) =
γ′(u1)γ′(u2)

γ′(Cγ(u1, u2))
·(

c(v1, v2)− γ′′(Cγ(u1, u2))

(γ′(Cγ(u1, u2)))2

∂C

∂u1
(v1, v2)

∂C

∂u2
(v1, v2)

)
,

where vk = γ(uk).
Because of concavity, we have that γ′′ ≤ 0. Therefore, the expression

in the brackets is non-negative. Thus,
∂2Cγ
∂u1∂u2

(u1, u2) ≥ 0. The rectangle
inequality follows then by integration.

From the proof, it becomes obvious that γ being concave is only sufficient
and not a necessary condition for Cγ being a copula. This makes the set of
possible transforming functions even larger.

This transformation broadens the set of τ -ρS-combinations that we can
reach. It does this by shifting the attainable set of the copula family being
transformed. In fact, bounds for Kendall’s tau of the transformed copula
can be given (see [12]), while the tail dependence remains unchanged by this
transformation. Because of the vast class of possible transforming functions,
this approach is very promising. Further theoretical elaborations on this
transformation can be found in [11] and [46]. Some examples using different
copula families and transforming functions are presented in [12].

2) Convex Combination

As summarized in [5], it is also possible to mix two given copulas C1 and C2

by convex combination

C(·) = µC1(·) + (1− µ)C2(·), µ ∈ [0, 1].

This is equivalent to taking C as distribution function of a random vec-
tor U with the conditional distribution (U |D = i) ∼ Ci, where D − 1 is
Bernoulli distributed with P(D = 1) = µ. The tail dependence of the con-
vex combination C is easily calculated by the convex combination of the tail
dependences

λL(C) = µλL(C1) + (1− µ)λL(C2).
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Figure 2.3: A path (right) of (τ, ρS)-pairs attainable by convex combination of
two copulas (denoted by the two dots) which lie on the boundary of the τ -ρS-
region. Left: the two copulas representing mutually completely dependent random
variables, plotted as functions u2(u1) according to Definition 2.24. The convex
combination for 0 < µ < 1 does not represent mutually complete dependence
anymore, because there are two possible values for U2|U1 = u1 and vice versa.

For Spearman’s rho, we see from (2.14) that

ρS(C) = µρS(C1) + (1− µ)ρS(C2).

For Kendall’s tau, the same calculations and integration by parts yield

τ(C) = µ2τ(C1) + (1− µ)2τ(C2)

+ 2µ(1− µ)

(
4

∫
[0,1]2

C1(u, v)dC2(u, v)− 1

)
.

This analytically very feasible construction can overcome some of the draw-
backs of Archimedean copulas. For example, the upper and lower tail de-
pendence can both be adjusted at the same time by mixing the Clayton and
Gumbel copulas. It can of course be readily generalised into a combination
of an arbitrary number of copulas Ci. As with the copula transformation we
have seen in 1), it is difficult to comprehend how the attainable τ -ρS-region
is changed by the transformation. Only by evaluating the integral do we
know the path of points (τ(µ), ρS(µ)) we can reach for 0 ≤ µ ≤ 1. An
example for this can be seen in Figure 2.3.

The approach is simple with respect to both computation and simulation
and has a very simplistic interpretation. Nonetheless, the wish for a model
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with a larger number of parameters conflicts severely with the desirable
simplicity and ease of interpretation which convex combinations of a bigger
number of copulas cannot provide. Therefore, it is better to stick with
convex combinations of only a small number of copulas. Thus, we remain
relatively restricted in our number of parameters. But the possibility of
combining properties of different families still gives us additional flexibility.

One other way of achieving the construction of new copulas is to nu-
merically extract copulas from multivariate distributions that are already
known, as we will see in a later chapter. This way one can also mix copulas
in a more sophisticated and selective way instead of indiscriminately mixing
by convex combination.

2.6 The Empirical Copula

In practical applications, the starting point of any task is analysing a set
of data. Analogously to the one-dimensional case where we can estimate
a distribution function F by its empirical counterpart F̂ , we can also do
this with copulas. Empirical copulas were introduced by Deheuvels in 1979
under the denomination of empirical dependence functions Dn. He used
them for distribution-free tests of independence.

Definition 2.41. Let xn = (x1n, . . . , xdn)> ∈ Rd, 1 ≤ n ≤ N be an i.i.d.
sample with continuous marginal distributions Fk.

The empirical copula (also called: Deheuvels empirical copula)[7] is de-
fined as

Ĉ
(n1

N
, . . . ,

nd
N

)
=

1

N

N∑
n=1

d∏
k=1

1

(
xkn ≤ x

(nk)
k

)
, (2.25)

where (x
(i)
1 , . . . , x

(i)
d ) is the ascending order statistic obtained from the sam-

ple, i.e. x
(i)
k is the i-th smallest entry of component k in our sample.

This empirical copula Ĉ is only defined on the lattice (n1/N, . . . , nd/N)
with 0 ≤ nk ≤ N ∀k. As such it is not a copula in the narrow sense of
the Definition 2.5, but only a subcopula. However, since it is derived from
the empirical distribution which is naturally a discrete distribution, Sklar’s
Theorem 2.11 implicates that only the values on this exact lattice are fixed.
It further secures the existence of a copula Ĉ∗ that has the same values on
the lattice {0, 1/N, 2/N, . . . , (N − 1)/N, 1}d.

More generally, (2.25) can very conveniently be written using the joint
empirical distribution function F̂ and the marginal empirical quantile func-
tions F̂−1

i . This yields

Ĉ (u1, . . . , ud) = F̂
(
F̂−1

1 (u1), . . . , F̂−1
d (ud)

)
. (2.26)
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Furthermore, Ĉ is not to be confused with the notation for the survival
copula found in other literature. Therefore, the survival copula is denoted
by C̃ in this thesis.

The empirical copula frequency is defined by

ĉ
(n1

N
, . . . ,

nd
N

)
=

1

N
, (2.27)

if there is an index m and a data point xm = (x1m, . . . , xdm)> such that

xm = (x
(n1)
1 , . . . , x

(nd)
d )>. ĉ is zero otherwise. We thus exclude cases of

doubled entries where there exist n and m such that xkn = xkm for all
1 ≤ k ≤ d. With continuous marginal distributions, these cases will almost
surely not arise. The two following equations hold:

Ĉ
(n1

N
, . . . ,

nd
N

)
=

n1∑
i1=1

· · ·
nd∑
id=1

ĉ

(
i1
N
, . . . ,

id
N

)
,

ĉ
(n1

N
, . . . ,

nd
N

)
=

∑
u∈⊗di=1

{
ni−1

N
,
ni
N

}(−1)s(u)Ĉ(u), with s(u)=#{i:ui=
ni−1

K
},

where the first equation represents the usual relationship between a density
function and a distribution function. The sum in the second equation is
defined analogously to the sum in the rectangle inequality (2.4).

The empirical copula can be used to estimate different dependence mea-
sures in a non-parametric way, as done by Deheuvels in [9].

Example 6. One could compute Spearman’s rho by using Deheuvels em-
pirical copula and formula (2.14), which yields

ρ̂S =
12

(N − 1)2

N∑
i=1

N∑
j=1

(
Ĉ

(
i

N
,
j

N

)
− i

N
· j
N

)
. (2.28)

Assuming a Gaussian copula, the correlation matrix Σ can then be calculated
by using formula (2.17) which connects ρS with Σ.

Proposition 2.42. Equation (2.28) is equivalent to the usual sample ver-
sion of Spearman’s rho seen in formula (2.15).

Proof. Looking at the sample version ρ̂S ,

ρ̂S =
12

N(N2 − 1)

(
N∑
n=1

Rn · Sn −
N(N + 1)2

4

)
,

it is obvious that all we have to show is

N∑
i=1

N∑
j=1

Ĉ

(
i

N
,
j

N

)
=

1

N

N∑
n=1

Rn · Sn.
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This follows from

N∑
i=1

N∑
j=1

Ĉ

(
i

N
,
j

N

)
=

N∑
i=1

N∑
j=1

Ĉ

(
Ri
N
,
Sj
N

)

=
1

N

N∑
n=1

 N∑
i=1

1

(
x1n ≤ x(i)

1

) N∑
j=1

1

(
x2n ≤ x(j)

2

)
=

1

N

N∑
n=1

(K −Rn + 1)(K − Sn + 1) =
1

N

N∑
n=1

Rn · Sn.

A similar result holds for Kendall’s tau; the proof can be found in [37].

Theorem 2.43. Let Xn, n ∈ N be an i.i.d. sequence of random variables
on R with the distribution function F . The empirical distribution function
F̂ be defined by

F̂N (x) =
1

N

N∑
n=1

1(Xn ≤ x). (2.29)

Then,

i) (Theorem of Glivenko-Cantelli)

sup
x∈R

∣∣∣F̂N (x)− F (x)
∣∣∣→ 0 a.s. (2.30)

ii) For x ∈ R, we have pointwise

√
N
(
F̂N (x)− F (x)

)
d→ N

(
0, F (x)(1− F (x))

)
. (2.31)

Proof. For i), let ε > 0. There exist −∞ = t0 < t1 < · · · < tk = ∞ such
that for all 0 ≤ i ≤ k − 1,

F (t−i+1)− F (ti) ≤
ε

2
. (2.32)

Take x ∈ R, then x ∈ [ti, ti+1) for some i. Because of the monotonicity of F
and F̂N , we have

F̂N (ti)− F (t−i+1) ≤ F̂N (x)− F (x) ≤ F̂N (t−i+1)− F (ti).

By using (2.32), we get

F̂N (ti)− F (ti)−
ε

2
≤ F̂N (x)− F (x) ≤ F̂N (t−i+1)− F (t−i+1) +

ε

2
.

For every fixed y ∈ R, F̂N (y) − F (y) → 0 a.s. because of the strong law of
large numbers. Therefore, the result (2.30) follows.

ii) follows from the central limit theorem.
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The theorem of Glivenko-Cantelli also holds in higher dimensions. (2.31)
even converges weakly to a Gaussian process. As described in [16], the
empirical copula by Deheuvels also shows weak convergence.

Theorem 2.44. Let C be a copula and Fi continuous marginal distribution
functions. F is defined by

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Let Xn be an i.i.d. sequence of random vectors with distribution function F .
ĈN is the empirical copula of {Xn}1≤n≤N defined in (2.26). If the copula C
has continuous partial derivatives, then the empirical copula process

√
N
(
ĈN − C

)
(u1, . . . , ud) (2.33)

converges weakly to the limiting Gaussian process GC in l∞([0, 1]d).

The proof of this can be seen in [16]. It uses the functional delta method
from [47]. For d = 2, the limiting Gaussian process has the form

GC(u1, u2) = BC(u1, u2)− ∂C(u1, u2)

∂u1
BC(u1, 1)− ∂C(u1, u2)

∂u2
BC(1, u2),

where BC is a Brownian bridge on [0, 1]2 with covariance

E
[
BC(u1, u2) · BC(v1, v2)

]
= C(u1 ∧ v1, u2 ∧ v2)− C(u1, u2)C(v1, v2),

for all u1, u2, v1, v2 ∈ [0, 1]. We can see that the limiting distribution is
decidedly more complex than in the one-dimensional case of the empirical
distribution function.

2.7 The Rosenblatt Transform

The Rosenblatt transform is a transformation of a random vector X into
an independent uniformly distributed vector. As such, it is of high value in
verifying a distribution assumption and testing hypotheses.

Definition 2.45. Let X be a d-dimensional random vector and F be its
distribution function with the margins Xk ∼ Fk, ∀ 1 ≤ k ≤ d. The Rosen-
blatt transform z = R(x) of the d-dimensional vector x = (x1, . . . , xd)

> is
given by

z1 = P(X1 ≤ x1) = F1(x1),

z2 = P(X2 ≤ x2|X1 = x1) = F2|1(x2|x1),

...

zd = P(Xk ≤ xd|Xd−1 = xd−1, . . . , X1 = x1) = Fd|d−1,...,1(xd|xd−1, . . . , x1).

The Rosenblatt transform of X is denoted by Z = R(X).
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As can be seen from the name, the Rosenblatt transform was first pro-
posed by Murray Rosenblatt in 1952, see [38].

Theorem 2.46. The Rosenblatt transform of a d-dimensional random vec-
tor X with continuous distribution function F and margins Xk ∼ Fk, ∀ 1 ≤
k ≤ d, is independent uniformly distributed on [0, 1]d.

Proof. Let Z = R(X) be the transform. The margins Zk are standard
uniformly distributed because Fk|k−1,...,1 is continuous for all k. For k ≥ 1,

the independence follows from induction. Let z ∈ [0, 1]d, then

FZ1...k+1
(z1, . . . , zk+1) = P(Z1 ≤ z1, . . . , Zk+1 ≤ zk+1)

= E[P(Z1 ≤ z1, . . . , Zk+1 ≤ zk+1|Z1, . . . , Zk)]

= E[P(Zk+1 ≤ zk+1|Z1, . . . , Zk) ·1(Z1 ≤ z1, . . . , Zk ≤ zk)]
= zk+1 · FZ1...k

(z1, . . . , zk)

= zk+1 ·
k∏
i=1

zi =
k+1∏
i=1

zi.

For k = d, we then have that Z = R(X) is indeed uniformly distributed on
[0, 1]d.

Corollary 2.47. Let X be a d-dimensional random vector X with continu-
ous distribution function F and density f , then

1. the Rosenblatt transform Z = R(X) can be calculated by

zk = Fk|k−1,...,1(xk|xk−1, . . . , x1)

=
∂k−1F1,...,k(x1, . . . , xk)

∂x1 . . . ∂xk−1

/
∂k−1F1,...,k−1(x1, . . . , xk−1)

∂x1 . . . ∂xk−1

=
∂k−1F1,...,k(x1, . . . , xk)

∂x1 . . . ∂xk−1

/
f1,...,k−1(x1, . . . , xk−1). (2.34)

2. Let C be the copula of X. If the margins of X have a strictly increasing
distribution function, the Rosenblatt transform of an arbitrary vector
u ∈ [0, 1]d with respect to the copula C is given by z = R(u) and can
be easily calculated by (2.34) where we set xi = F−1

i (ui).

Proof. For every d-dimensional distribution function G with density g and
a partition I ] J = {1, . . . , d}, we have

∂G(xI , xJ)

∂xI
= gI(xI) · GJ |I(xJ |xI).
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This follows by induction because w.l.o.g. for h > 0,

∂G(x)

∂x1
= lim

h→0

G(x1 + h, x2, . . . , xd)−G(x1, x2, . . . , xd)

h

= lim
h→0

P(x1 < X1 ≤ x1 + h)

h
· P(X2 ≤ x2, . . . , Xd ≤ xd|x1 < X1 ≤ x1 + h)

= g1(x1) ·G2,...,d|1(x2, . . . , xd|x1).

Therefore, (2.34) holds.

The Rosenblatt transform can be used to test whether a sample u is
distributed according to a given copula C. It is especially suited for this
as testing v = R(u) for independence and uniformity can be easier than
testing u directly for the more complicated hypothesis. We will see this in
Section 3.5.
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Chapter 3

Copula Estimation and
Fitting

The task of delivering a fitted copula model to a certain given dataset is
not an easy one. The procedure consists in three steps. The first part is
the analysis of the data in order to decide roughly on the parametric copula
family to be used. In the second step, we estimate the parameters. This can
be done in a variety of ways. Lastly, we have to review the resulting fitted
model and verify that it does indeed fit the data. In the contrary case, it can
be advisable to go back to step one and try a different parametric copula
family.

3.1 Choosing the Right Copula

When being confronted with multivariate data in a copula setting, the first
and essential step is analysing the data for distinctive properties that suggest
a certain copula family. The most important properties to assess are sym-
metry (C̃

?
= C), exchangeability (C(u, v)

?
= C(v, u)) and tail dependence.

Only if an adequate copula family is chosen, the parameter estimation can
yield a good result. Evidently asymmetric data forbids using an elliptical
copula.

While real data can only be adequately modelled by using a sufficiently
high number of parameters, in practice, it is desirable to find a simplistic
model with parameters that are accessible for interpretation of the model.
This also helps to prevent the problem of overfitting the model. For doing
this, there is also tools like the AIC and the BIC that are designed to
control the numbers of parameters by imposing a penalty on their number.
What they don’t do is make sure that the model has a sound way of being
interpreted. If a model is complex and the reasoning behind the construction
is unclear, then it will be difficult to justify its use. Therefore, we should
always strive for simplicity while preserving as much complexity in the model
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as is necessary. This means that we should always compare the complex
model with a simpler one. If the advantage is negligible, the simple model
should be chosen.

3.2 ML Estimation of the Parameters

Statistical inference on copulas has to deal with two problems: making as-
sumptions for identifying the marginal distributions and choosing the copula
function itself. Let X be a d-dimensional random vector. Assume our para-
metric distribution model for X consists of two parameter vectors θC and
θM . θC are the parameters of the copula while θM are the parameters for
the margins. Therefore, the density of X is f(·|θC , θM ). The marginal dis-
tribution functions are given by Fk(·|θM ); their density is fk(·|θM ). Let
(xkn)1≤k≤d,1≤n≤N denote our sample of X, consisting of N data points.

The log-likelihood function of (xkn)1≤k≤d,1≤n≤N is then given by:

l(θC , θM ) = log

(
N∏
n=1

f(x1n, . . . , xdn|θC , θM )

)
(3.1)

=

N∑
n=1

log c(F1(x1n|θM ), . . . , Fd(xdn|θM )|θC) +

N∑
n=1

d∑
k=1

log fk(xkn|θM ).

Given the marginal distribution functions and an appropriate paramet-
ric copula, maximum likelihood can be applied on the parameters of the
marginal distributions and the copula at the same time.

θ̂MLE = arg max
(θC ,θM )∈ΘC×ΘM

l(θC , θM ) (3.2)

Because the function has to be numerically optimised with respect to all
of the parameters in (θC , θM ) simultaneously, this method of finding the
so-called exact maximum likelihood estimator can be computationally ex-
pensive.

It is known that if we observe X1, . . . , Xn, where Xi
iid∼ f(x|θ), ML

estimators are consistent under suitable regularity conditions, as can be read
in [6]. These conditions are:

(M1) The parameter is identifiable, i.e. θ 6= θ′ ⇒ f(x|θ) 6= f(x|θ′).

(M2) The densities f(x|θ) have common support and f(x|θ) is differentiable
in θ.

(M3) The parameter space contains an open set of which the true parameter
value θ0 is an interior point.

Under further assumptions we can guarantee asymptotic normality of the
maximum likelihood estimator θ̂MLE. The conditions are:
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(M4)
∫
f(x|θ)dx can be differentiated three times under the integral sign.

(M5) For all x, f(x|θ) is three times differentiable with respect to θ, with
a continuous third derivative. For any θ0 ∈ Θ, there exist c > 0 and
M(x) (both possibly depending on θ0) such that∣∣∣∣∂3 log f(x|θ)

∂θ3

∣∣∣∣ ≤M(x), ∀x, θ ∈ (θ0−c, θ0 +c), Eθ0 [M(X)] <∞.

Under the conditions (M1)-(M5), the ML estimator is asymptotically nor-
mal and efficient, i.e. it asymptotically reaches the Cramér-Rao bound of
variance: √

N
(
θ̂MLE − θ0

)
d→ N(0, I−1(θ0)),

where θ0 is the true parameter value and I(θ0) is Fisher’s information matrix
defined by

I(θ) = Eθ

[(
∂ log f(X|θ)

∂θ

)2
]
.

If we take a look at the form of the likelihood function in (3.1), it becomes
clear that the latter part is a term only involving the parameter θM of
the marginals. Therefore, it is possible to approximate the exact MLE
θ̂MLE by first maximising the second term in the parameters of the marginal
distributions θM and then the first term in the copula parameter θC using
θ̂M . This method of inference for the margins is called IFM estimation and
is computationally less involved.[8]

θ̂M = arg max
θM∈ΘM

(
N∑
n=1

d∑
k=1

log fk(xkn|θM )

)
,

θ̂C = arg max
θC∈ΘC

(
N∑
n=1

log c(F1(x1n|θ̂M ), . . . , Fd(xdn|θ̂M )|θC)

)
,

θ̂IFM =
(
θ̂C , θ̂M

)
. (3.3)

Under the usual regularity conditions for asymptotic maximum likelihood
theory on both the joint distribution and the margins, the IFM estimator
is asymptotically normal, see [25]. These conditions are stated below in
(C1)-(C6).

Various comparisons suggest that, although the methods of assessment
can prove difficult, the IFM estimation is highly efficient compared with the
exact ML estimation. Additionally, the IFM estimator (3.3) can not only
be used as it is but it can also be taken as a starting point for obtaining the
MLE (3.2) via numerical optimisation.

Both methods (3.2) and (3.3) have the flaw that choosing the parametric
family for the marginals can be a difficult task. There are many choices for
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marginal distributions. But at its core, letting the choice of the marginals
influence the copula model is conflicting with what copula theory is aiming
to do, i.e. keeping marginal distributions and dependence separate.

It is also possible to estimate the copula parameters without specifying
the marginals. Because the copula is an invariant under strictly increas-
ing transformation of the margins of X, it is only reasonable to resort to
the maximally invariant property, i.e. the ranks of the observation. This
way, the estimation of θC is truly margin-free. We thus avoid a parametric
model of the marginal distribution by instead using the empirical distribu-
tion function F̂k(xkn) to estimate the marginal distribution Fk(xkn) in a
non-parametric way by

F̂k(xkn) =
1

N + 1

N∑
l=1

1(xkl ≤ xkn), (3.4)

which then yields a pseudo-likelihood function to be maximised. This semi-
parametric method of estimating θC is called the Canonical Maximum Likeli-
hood (CML), as can be seen in [7]. It is semiparametric because the margins
are estimated non-parametrically and the copula itself is taken to be in a
parametric family.

θ̂CML = arg max
θC∈ΘC

(
N∑
n=1

log c(F̂1(x1n), . . . , F̂d(xdn)|θC)

)
(3.5)

The three different approaches to maximum likelihood parameter estimation
are compared in [3].

Theorem 3.1. Under the conditions (C1)-(C6), the semiparametric esti-

mator θ̂CML is consistent and
√
N
(
θ̂CML − θ

)
is asymptotically normal.

This result was proven in [19]. In any case, the asymptotic variance of
θ̂CML is obviously larger than in the case where the marginal distributions
are known. The regularity conditions that can be found in [32] or [44] are
as follows:

(C1) The parameter space Θ is an open interval.

(C2) The distributions f(x|θ) have a common support that is independent
of θ.

(C3) For all x, f(x|θ) is three times differentiable with respect to θ, with a
continuous third derivative. For each θ0 ∈ Θ, there exists a bounding
function (that can depend on the true parameter value θ0) such that
for θ in a neighbourhood of θ0 the following inequalities hold:∣∣∣∣∂3 log f(x|θ)

∂θ3

∣∣∣∣ ≤ H(x), Eθ[H(X)] <∞.
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(C4) The integral
∫
f(x|θ)dx can be differentiated three times under the

integral sign.

(C5) For all θ ∈ Θ, the Fisher information satisfies 0 < I(θ) <∞

(C6) For any θ0 ∈ Θ there exist c > 0 and M(x) (both possibly depending
on θ0) such that∣∣∣∣∂2 log f(x|θ)

∂θ2

∣∣∣∣ ≤M(x), ∀x, θ ∈ (θ0−c, θ0 +c), Eθ0 [M(X)] <∞.

The differentiability under the integral sign can be guaranteed by the
existence of bounding functions for each θ0 ∈ Θ, such that for θ in a neigh-
bourhood of θ0 the following inequalities hold:∣∣∣∣∂f(x|θ)

∂θ

∣∣∣∣ ≤ g(x),

∣∣∣∣∂2f(x|θ)
∂θ2

∣∣∣∣ ≤ h(x),∫
g(x)dx <∞,

∫
h(x)dx <∞.

When comparing different models, it is important to choose the model
as simple as possible while fitting the copula to the data as well as possible.
In order to do this, one can look at the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), which impose a penalty on
every parameter in the model:

AIC = −2 logL(θ̂|X) + 2kθ, (3.6)

BIC = −2 logL(θ̂|X) + log(N)kθ, (3.7)

where logL(·|X) is the log-likelihood function, N is the sample size and
kθ is the number of parameters in the model. Small values of AIC and
BIC are preferred. For practical purposes, the BIC penalises the number
of parameters more heavily than the AIC. While they are of course closely
related, it is sometimes suggested that the AIC is better than the BIC from
a theoretical point of view, as argued in [4]. In practice, both of them are
frequently used.

3.3 Using Measures of Dependence

Besides the MLE and the estimation via the generalised method of moments
(GMM), one can also estimate the parameters of a copula by trying to match
most closely certain empirical properties with their theoretical counterparts
of the parametric copula. There are two copula properties that are often
used to fit a parametric copula to empirical data. Firstly, there is measures of
dependence (see [7]) and secondly, there is the measure of tail dependence
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(see [5]). All of these have in common that they only look at the two-
dimensional case and thus can only tell us something about the pairwise
dependence the components of a multidimensional random vector X exhibit.
However, there do exist multidimensional generalisations for some of them,
see [42].

Using known relations between dependence measures and parameters of
copulas can provide us with a convenient way of parameter estimation. Using
Theorem 2.26, Kendall’s tau can be used to obtain estimates for elliptical
copulas. Spearman’s rho has a similar relation to the Gaussian copula, as
seen in Theorem 2.25. In the case of the t-copula, Σ̂ is usually obtained
via Kendall’s tau. ν̂ is then chosen with maximum likelihood estimation.
One problem that can arise in this context is that the estimator Σ̂ is not a
positive definite matrix. In that case, one can use Algorithm 5.55 from [13]
to obtain a positive definite correlation matrix that is close to the original
estimate. The algorithm for adjusting a symmetric matrix R∗ into a positive
definite correlation matrix R consists in four steps:

1. Compute the spectral decomposition TDT> = R∗.

2. Replace all non-positive eigenvalues in D with δ > 0. This yields D′.

3. S = TD′T>. The diagonal elements of S are not necessarily one.

4. R follows by norming the matrix, i.e. Rij =
Sij√
Sii·Sjj

.

With this algorithm, a valid estimation Σ̂ of the correlation matrix is pos-
sible. Most of the time, no correction is necessary in smaller dimensions,
but cases do occur. Especially in higher dimensions this problem is quite
diffused. The approach of the eigenvalue method is of course rather brutal
in that we don’t really know what we did to the underlying matrix and how
similar the result actually is to the original matrix. There are other, more
sophisticated approaches that try to find the nearest correlation matrix as
measured by the Frobenius norm, with the possibility of preventing certain
entries more strongly from being adjusted than others by using a weighted
norm, see [24].

For Archimedean copulas, it is convenient to use Theorem 2.34 and the
relations that follow easily from (2.23) for many Archimedean models. How-
ever, as can be seen in Proposition 2.39, numerical methods can become
necessary to find the parameter in some cases. The known relations for
the tail dependence of Archimedean copulas (as seen in Proposition 2.39)
can be an easy way to fit Archimedean copulas to empirical data. In the
multidimensional case, this method suffers from the mismatch between an
abundance of empirical tail dependences and a lack of free parameters.
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Figure 3.1: Quantile dependence function λL(q) for three copulas (each τ = 0.5).
Gauss-copula, t(3)-copula (dashed), Clayton (dotted). Left: theoretical values.
Right: sample version for a sample of N = 500 and quantiles q ≤ 0.05.

3.4 Estimation of Tail Dependence

The easiest way to estimate tail dependence is to substitute the copula C
in the formulas (2.19) and (2.20) with its empirical estimator Ĉ. This way
we get a non-parametric, “naive” estimator for the tail dependence. As we
have only finitely many data points and the empirical copula is (uniquely)
defined only on a lattice, it is impossible to take the limits of the fractions.
Therefore, we can only take a look at their trajectories for 1 ≤ i ≤ N .

λ̂U

(
i

N

)
=

1− 2 i
N + Ĉ

(
i
N ,

i
N

)
1− i

N

,

λ̂L

(
i

N

)
=
Ĉ
(
i
N ,

i
N

)
i
N

,

where Ĉ is the empirical copula defined in (2.25). These are also called
sample versions of the quantile dependence functions.

The difficulty lies now in choosing an adequate index i0 to evaluate the
expressions above. One can observe the jumps in the trajectory becoming
bigger as the index i approaches the edge, with the denominator approaching
zero. Now one could just look at the plot of those functions and select a part
where there’s a relative stability in the trajectory. As a more rigid approach,
we try a bootstrapping method that computes S different bootstrapped
trajectories and takes their average λ∗U (·) and λ∗L(·). Taking the average
smooths out the bumps in the original functions. We are also given bootstrap
confidence intervals for further investigation. This can be seen in Figure 3.2.

λU (u) and λL(u) are respectively decreasing and increasing functions on
[0, 1] (see Figure 3.1). As their empirical estimates λ̂U (·) and λ̂L(·) should
have the same property, we choose the last i such that the functions λ∗L and
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Figure 3.2: Left: bootstrapped (S = 100) trajectories λ∗L(q) of the sample quan-
tile dependence function for the copulas from Figure 3.1. Right: bootstrapped
trajectory for the t-copula with 90% confidence interval.

λ∗U show this property. Taking λ∗L(·), what we want to find is a period of
relative stability between the unstable low quantiles near the edge and the
monotonically increasing stretch of the higher quantiles. The key lies in the
interpretation of this goal. To ease the criterion of monotonicity, we say
that they should satisfy it up to a tolerance ε1. If λ∗L(·) is approximately
constant over a certain interval, which again is up to a tolerance ε2, we take
the median of λ̂L over this interval. To illustrate this convoluted approach,
we provide Figure 3.3.

Using this approach, we are provided with a clearly defined algorithm to
obtain estimates for the tail dependence. However, as shown in [5] with an
empirical study, the efficiency of the estimators depends on the true value of
λL and λU . With higher tail dependence, standard error and bias decrease.
It is especially difficult to reach converging estimates in cases of copulas
with a tail dependence lower than 0.2. With increasing sample size N , the
estimators converge empirically. In the cases listed in [5], the estimates with
a sample size of N = 5000 show quite good convergence to the real value.

The main limitation of this approach is the fact that the estimation is
entirely dependent on the choice of the index i0. However well we specify
the rules for the choice, it remains somewhat arbitrary. Its strength lies in
the fact that it is non-parametric, i.e. we do not have to choose a copula
family a priori. Because we don’t assume properties of the underlying copula
by choosing a parametric family before estimating the tails, it is the data
and the estimates derived from it that propose us a certain choice of copula
family. If the estimates seem to support a model with symmetric and non-
zero tail dependences, a t-copula might already be the right and easy choice.
If the tails are evidently asymmetric, further investigation can be necessary.

46



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.3: Estimation procedure on a sample (N = 1000) of the t(3)-copula from

Figure 3.2. We set ε1 = ε2 = 0.005. Estimated value λ̂L = 0.4474. The theoretical
value is λL = 0.454. The grey bars indicate the “stable” part of the trajectory of
λ∗L(·) (thick), i.e. indices 33, . . . , 41. The point where λ̂L( 38

1000 ) (dashed) is evaluated
is marked. Note that the bootstrapped 90% pointwise confidence interval explodes
to [0, 1] for small values q.

3.5 Goodness of Fit

In general, one will fit a copula to a given dataset by trying to match rank
correlation measures like Kendall’s tau or by employing maximum likelihood
estimation. After the parameters are estimated, it is only natural to ask how
well the estimated copula reproduces the behaviour observed in the original
dataset. This can be done by comparing empirical and theoretical values of
ρS , τ , λL and λU .

One other useful method to examine how good a copula fits the data is
to take a look at the quantiles, i.e. C itself. Because of Theorem 2.44, we
have the theoretical basis on which to do goodness-of-fit tests. As Ĉ should
approach C with large sample sizes, all that is left to do is measuring the
distance. To obtain this, we can take different approaches. [5] are using a
sort of L2 distance, which measures how far the empirical copula and the
estimated copula Cθ̂ differ from each other. They approximate the following
integral: ∫

[0,1]d

(
Cθ(u1, . . . , ud)− C(u1, . . . , ud)

)2
du1 · · · dud, (3.8)

where we take the distance between a parametric copula and the actual (or
in practice: the observed) copula. By changing the integration measure, we
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get the Cramér-von Mises statistic∫
[0,1]d

(
Cθ(u1, . . . , ud)− C(u1, . . . , ud)

)2
dC(u1, . . . , ud), (3.9)

It is also possible to look at the Kolmogorov-Smirnov statistics, i.e.

sup
u∈[0,1]d

|Cθ(u1, . . . , ud)− C(u1, . . . , ud)| . (3.10)

We can take the sample version of those by plugging in the empirical copula.
As the empirical copula is not uniquely defined in between the lattice points,
the only way to take a sample version of these is by taking the sum or
maximum over the sample points. To account for sample size, the statistics
are normed using

√
N · (Cθ(·)− Ĉ∗(·)).

Because of the different definitions of the empirical distribution function
of the margins with either N or N + 1 as the denominator in equation (3.4),
we once again clearly define the way the grades u are calculated from the
sample x = (xkn)1≤k≤d,1≤n≤N and the empirical copula function used. We
compute the grades u via

ukn = F̂k(xkn) =
1

N + 1

N∑
l=1

1(xkl ≤ xkn),

as done by the CMA separation Algorithm 1. Therefore, the empirical
copula used is Ĉ∗ defined by

Ĉ∗(v1, . . . , vd) =
1

N

N∑
n=1

d∏
k=1

1 (ukn ≤ vk) , (3.11)

which suits the choice of the empirical distribution function. For such u,
the relation to Deheuvels empirical copula (2.25) is given by

Ĉ(u) = Ĉ∗
(

N
N+1 · u

)
.

Due to its nature as a step function, Ĉ∗ cannot be a copula, but it is asymp-
totically the same as Deheuvels empirical copula. In the following definition,
the usage of Ĉ∗ (along with the proposed choice of F̂k) is preferred because it
prevents the copula frequency ĉ∗ from being non-zero at the edges of [0, 1]d,
where both copulas are already fixed to their values by construction, as has
been mentioned by [23].

Definition 3.2. Given a copula Cθ and the empirical copula Ĉ∗ of a set of
points with grades u = (ukn)1≤k≤d,1≤n≤N
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i) the L2-distance is defined as

D2(Cθ,u) =
1

Nd−1

N∑
n1=1

· · ·
N∑

nd=1

(
Cθ(u1n1 , . . . , udnd)− Ĉ∗(u1n1 , . . . , udnd)

)2
,

(3.12)

ii) the Cramér-von Mises statistic is defined by

M(Cθ,u) =

N∑
n=1

(
Cθ(u1n, . . . , udn)− Ĉ∗(u1n, . . . , udn)

)2
, (3.13)

iii) the Kolmogorov-Smirnov statistic is defined by

K(Cθ,u) =
√
N · max

1≤n≤N

∣∣∣Cθ(u1n, . . . , udn)− Ĉ∗(u1n, . . . , udn)
∣∣∣ .
(3.14)

The formula for the L2-distance (3.12) indicates that the number of
terms in the sum is Nd, which is exponential in the dimension of the sample
points. Therefore, direct evaluation is only viable for small dimensions,
namely d = 2.

In all three cases, small values indicate a better fit of the model. Our
null hypothesis is

H0 : C ∈ {Cθ : θ ∈ Θ} ,

Large values of M or K support the rejection of the model Cθ of the cop-
ula. In one dimension, the limiting distribution of the Cramér-von Mises
statistic of estimated distribution functions is known and can be tabulated.
The same holds for the Kolmogorov-Smirnov statistic where we have an
explicit formula to compute p-values in the one dimensional case. In the
multi-dimensional case we have in the context of copulas, things get more
complicated. It is theoretically possible to obtain approximate p-values of
both the Cramér-von Mises statistic (3.13) and the Kolmogorov-Smirnov
statistic (3.14). However, the limiting distribution depends on both the
copula family that is assumed and the unknown parameters. Approxima-
tive tests using assumed limiting distributions are not advisable. In practice,
one can compute approximate p-values using a parametric bootstrap proce-
dure. Algorithm 3 has exactly this purpose. Because the distributions are
approximated by parametric bootstrapping, the tests based on any statistic
mentioned in this section are expected to hold their nominal level, which
they empirically do in most cases. This has been analysed in [23], [21] and
[22]. Of course it is also possible to simply compare the values of the statis-
tics for different models and choose the model with the smallest value, as
can be seen in [5] for the distance measure D2. This approach does, how-
ever, not guarantee that the chosen model will be the most likely one (from
a strictly statistical point of view).
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The same statistics can be applied to the Rosenblatt transformed Rθ(u).
According to Theorem 2.46, the Rosenblatt transformed sample should be
approximately independent with uniform margins under the hypothesis that
u has copula Cθ. If we use the real copula C for the transformation, Rθ(u)
is exactly uniformly distributed. But because we can only use the estimated
copula Cθ̂, the uniform distribution on the hypercube is just a heuristic
and can be compared to the idea of a simple t-statistic being approximately
normally distributed although the variance has been estimated. So it is not
exactly true, but will suffice for large enough samples.

If we apply the statistics already seen to the transformed sample Rθ(u),
the assumed copula function Cθ in (3.12), (3.13) and (3.14) is then the
independence copula C⊥. Setting v = Rθ(u), we get the following statistics:

DR2 (Cθ,u) =
1

Nd−1

N∑
n1=1

· · ·
N∑

nd=1

(
Ĉ∗Rθ(v1n1 , . . . , vdnd)− v1n1 · · · vdnd

)2
,

MR(Cθ,u) =
N∑
n=1

(
Ĉ∗Rθ(v1n, . . . , vdn)− v1n · · · vdn

)2
, (3.15)

KR(Cθ,u) =
√
N · max

1≤n≤N

∣∣∣Ĉ∗Rθ(v1n, . . . , vdn)− v1n · · · vdn
∣∣∣ , (3.16)

where Ĉ∗Rθ is the empirical copula of v defined as in (3.11).

As before, small values of DR2 , MR and KR lead to the non-rejection
of the hypothesis U ∼ Cθ. In that case, we are led to have little reason
for doubting our model. Approximate p-values can only be calculated by
parametric bootstrapping since they, again, depend on the model and the
unknown parameter θ. Tests based on the Rosenblatt transform of bivariate
data have also been investigated in [10]. They empirically showed that
a parametric bootstrap procedure is necessary to obtain useful tests in a
semiparametric setting.

Another way of testing the goodness of fit is looking at the distribution
of Kendall’s distribution function KC (as seen in Proposition 2.33). This
can be especially useful in cases of Archimedean copulas where there is a
closed form for KC . But one needs to be careful that in general, there can
be two different copulas with the same Kendall distribution function KC .
Therefore, tests using KC are about a different null hypothesis H ′0 ⊇ H0

with
H ′0 : KC ∈ {Kθ : θ ∈ Θ} .

Consequently, an inconspicuous test statistic on KC with acceptance of H ′0
does not imply acceptance of the null hypothesis H0. Thus, tests based on
KC are not generally consistent. Nonetheless, a Cramér-von Mises statistic
of KC can be advisable in the Archimedean case because of its sheer conve-
nience. Empirically, there are no advantages to a corresponding Kolmogorov-
Smirnov statistic of KC , as can be seen in [23].
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Chapter 4

Algorithms

In this chapter, we will first gain a short overview on how copula compu-
tations can be implemented using the traditional approach. Afterwards, we
introduce the CM-algorithm that improves the runtime significantly by con-
fining the calculations to approximations and rank statistics. Lastly, we will
see a simple algorithm on how to simulate test statistics that we have no
known satisfactory analytical approximation for. In this lack of analytical
feasibility, we resort to Monte Carlo simulation. It can be used to calculate
the p-value of a given statistic. The first part of this chapter is largely taken
from [35], while the second part follows the reasoning in [23].

4.1 Traditional Copula Computations

Consider a random vector X = (X1, . . . , Xd)
> with a joint distribution

function FX and marginal distribution functions FX1 , . . . , FXd . The vector

U =

U1
...
Ud

 , Uk = FXk(Xk), 1 ≤ k ≤ d (4.1)

has then the joint distribution C, i.e. the copula of X. Reversely, by taking
different marginal distribution functions FY1 , . . . , FYd , one obtains

Y =

Y1
...
Yd

 , Yk = F−1
Yk

(Uk), 1 ≤ k ≤ d. (4.2)

Then, Y has the marginal distributions Yk and the same copula C as X, as
follows from Sklar’s Theorem 2.11.

Because most of the time, it is not possible to perform those steps an-
alytically and obtain the distribution function FY in closed form, one has
to use Monte Carlo scenarios. We start from a parametric N -dimensional
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distribution F θX with analytically feasible marginals F θXk . We draw J Monte
Carlo scenarios {x1j , . . . , xdj}, 1 ≤ j ≤ J . Using the marginal distribution
functions F θXk , we map the scenarios into copula scenarios.

To do the reverse, we again need parametric marginal distributions whose
inverse distribution functions can be computed analytically or numerically.
The step that restricts the variety of possible copulas the most is the sep-
aration step which requires the analytical form of the marginals. If we
substitute those for the empirical distribution function of the margins, the
computations become easy. In fact, the CMA here uses the same idea as the
Canonical Maximum Likelihood (CML) estimation.

4.2 CM-Algorithm

The Copula Marginal Algorithm proposed in 2011 by Meucci [35] consists in
two separate procedures, i.e. the separation step and the combination step.
With the CM-algorithm, it is possible to use weighted scenarios to extract
the copula from a joint distribution.

4.2.1 The Separation Step

The separation step in Algorithm 1 takes (probability-weighted) scenarios of
a joint distribution as an input and returns the grade scenarios along with
the empirical margins of the scenarios. It avoids the costly inversion of the
marginal distribution functions using linear inter-/extrapolation.

Algorithm 1: CMA-Separation Step

Input: Scenario vectors (x1n, . . . , xdn) ∈ Rd with probabilities pn.
(1 ≤ n ≤ N)

Output: Scenario grades (u1n, . . . , udn) ∈ [0, 1]d, 1 ≤ n ≤ N ,
interpolation points of marginal distribution functions
{(x̄kj , ūkj)}1≤j≤N , 1 ≤ k ≤ d.

1 for k = 1, . . . , d do
2 (x̄kj)1≤j≤N = (xkaj )j = Sort({xkn}1≤n≤N );

3 Compute bn such that x̄kbn = xkn;

4 Take the cumulative sum ūkj =
∑j

t=1 pat ;
5 Set ukn = ūkbn ;

6 end
7 return grades {ukn} and margins {(x̄kj , ūkj)}1≤j≤N .

To avoid the separated grades becoming 1 at the upper end, a scaling pa-
rameter α < 1 is applied. Both {ukn} and {ūkj} are multiplied with α, which
is chosen as N

N+1 . In the case of an unweighted sample with pn = 1/N ∀n,

52



this choice yields values of the grades that coincide with the empirical dis-
tribution function (3.4).

4.2.2 The Combination Step

The combination step in Algorithm 2 takes grade scenarios and marginal
distribution (in the form of interpolation points) as an input and returns
scenarios with the given marginals.

Algorithm 2: CMA-Combination Step

Input: Scenario grades (u1n, . . . , udn) ∈ [0, 1]d and interpolation
points of marginal distribution functions
{(ȳkj , ūkj)}1≤j≤N , 1 ≤ k ≤ d.

Output: Scenario vectors (y1n, . . . , ydn) ∈ Rd.
1 for k = 1, . . . , d do
2 ykn = Interpolation

(
ukn
∣∣{(ūkj , ȳkj)}1≤j≤N);

3 end
4 return (y1n, . . . , ydn).

4.2.3 Explanatory Example

In order to understand the algorithms more clearly, let us illustrate a small
example. We have the two-dimensional data x with 4 data points.

x =

(
19 28 25 24
26 23 29 20

)
, p =

(
0.1 0.2 0.4 0.3

)
.

We want to separate the copula from the margins and then combine it with
Pareto margins that satisfy

P(Xi > x) =
1

x
, ∀x ≥ 1.

For the separation step, we sort each column and keep track of the akn and
bkn such that x̄kj = xkakj and x̄kbkn = xkn.

x̄ =

(
19 24 25 28
20 23 26 29

)
, a =

(
1 4 3 2
4 2 1 3

)
, b =

(
1 4 3 2
3 2 4 1

)
.

We sort p according to a, put it into two rows and take the cumulative sum
to get ū. We sort ū according to b to get u.

p̄ =

(
0.1 0.3 0.4 0.2
0.3 0.2 0.1 0.4

)
, ū =

(
0.1 0.4 0.8 1
0.3 0.5 0.6 1

)
,

u =

(
0.1 1 0.8 0.4
0.6 0.5 1 0.3

)
.
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Figure 4.1: Explanatory separation example of the CM-algorithm in two dimen-
sions with N = 4. Top left: original data. Top right: separated copula. Bottom:
empirical marginal distribution functions obtained by interpolation.

As has mentioned before, a scaling factor of N
N+1 = 4

5 is applied to avoid
reaching 1 at the upper end of the distribution function. This yields the
output

ū =

(
0.08 0.32 0.64 0.8
0.24 0.40 0.48 0.8

)
, u =

(
0.08 0.8 0.64 0.32
0.48 0.4 0.8 0.24

)
.

This separation step is illustrated in Figure 4.1
Now for the combination step, we need interpolation points {ūkj , ȳkj}.

We choose
ȳ1 = ȳ2 =

(
1 2 3 5 10

)
.

Then we can easily compute ū by 1− ūkj = 1
ȳkj

.

ū1 = ū2 =
(
0 1

2
2
3

4
5

9
10

)
.
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Figure 4.2: Explanatory combination example of the CM-algorithm in two dimen-
sions with the data from Figure 4.1. Left: the interpolation process for dimension
k = 1. Right: the recombined data.

We obtain the recombinated scenarios ykn by interpolation. This yields

y =

(
1.16 5 2.84 1.64
1.96 1.8 5 1.48

)
.

This combination step is illustrated in Figure 4.2.

4.2.4 Application

There are several possibilities to apply this algorithm in order to gain inter-
esting new results. The strength of the algorithm lies in the fact that it is
parameter-free. It can extract the copula from every multidimensional dis-
tribution and can glue together every margin, parametric or empiric, with
every copula. Therefore, what is lost in accuracy is gained in the broadest
possible range of copulas that can be achieved, within the range of numerical
scenario computation. One application is to generate panic distributions to
gain a so called panic copula, which we will see in the next chapter.

Another application is arbitrary copula transformations that are possible
using this algorithm. By definition, a copula C = FU represents a random
vector U that lives on the unit cube [0, 1]d, with the margins Uk being uni-
formly distributed. Applying a transformation T on this random variable U
will alter the dependence between the components of the vector. In general,
however, it will also change both the marginal distribution and the domain
of the random vector. To regain the copula of T (U), another separation step
is necessary, with possibly unpleasant marginal distribution functions to in-
vert. As this does not pose a problem for the CMA, this procedure is easily
done. In [35], Meucci proposes the following transformation: by the means
of the combination algorithm, the vector U is first brought into the form
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Figure 4.3: Top Left: N = 6578 daily log-returns of the stocks of Apple and
Microsoft. Top Right: the separated copula. Bottom: histograms of the marginal
distributions.
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Figure 4.4: The empirical copula of Figure 4.3 recombined with standard normal
margins.
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Figure 4.5: The two-dimensional Clayton(7) copula is transformed by a rotation
of ϕ = π

4 . From left to right: copula scenarios, scenarios after combination with
standard normal margins, rotated scenarios, transformed copula after the separa-
tion step.

of standard normally distributed margins. Then a linear transformation is
applied. The copula of the transformed vector is harvested by applying the
separation algorithm.

Empirically, the rotation in two dimensions put forth by Meucci in [35]
leads to a convergence to the independence copula C⊥ if applied repeatedly
with an angle ϕ 6= kπ

2 , k ∈ Z. For the Gaussian copula, this can easily be
proven analytically.

While these kinds of computations are highly feasible even in higher di-
mensions, the question that remains to be answered is how to interpret said
transformations. In fact, one might use the scheme mentioned above and fix
the margins to arbitrary marginal distributions, apply any Rd-valued func-
tion and extract the copula. But the explanation of what is happening dur-
ing this reshuffling is unclear. Nonetheless, a rotation in the two-dimensional
case is illustrated in Figure 4.5 in order to clarify the approach.

The strength of the algorithm lies also in the possibility of weighted
scenarios. Therefore, we can especially target the tails with an increased
number of Monte Carlo scenarios.

4.3 Parametric Bootstrapping

When looking at statistics to evaluate the goodness of fit (see Section 3.5),
we are confronted with the task of approximating p-values for them. If the
distribution of the test statistic is unknown to us or unpractical to calculate,
we can resort to a parametric bootstrapping procedure. As with the CM-
algorithm before, we gain universal applicability. Theoretical inspection of
this algorithm can be found in [22].

We are interested in verifying the fit of a parametric copula to the pseudo-
sample u = (u1, . . . , uN ) that it was obtained via the empirical distribution
function of the margins in Algorithm 1. We assume that un are independent
realisations of the multidimensional random variable U ∼ C, where C is
a copula. This is approximately true because of the asymptotic results
regarding the empirical copula.
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Assume a parametric copula Cθ is given. We estimate the parameter
using a given estimator θ0 = θ̂ = T (u). The hypothesis is now that for the
true copula C of the sample, the following holds:

H0 : C ∈ {Cθ : θ ∈ Θ} , (4.3)

which we test one-tailed using the statistic S(·). Small values of S indicate
a good fit. In Algorithm 3, the procedure for obtaining an approximate
p-value

p = P (S(U, T (U)) > S(u, θ0)) (4.4)

for this hypothesis is explained, where U = (U1, . . . , UN )> is a random

matrix with Ui
iid∼ Cθ0 . This p-value will in general not only depend on the

parametric copula family Cθ but also on the true value of the parameter θ,
see [23].

Algorithm 3: Parametric Bootstrapping

Input: Sample u of size N . Parametric copula Cθ, estimator T (·),
test statistic function S(·) and a large integer K.

Output: Approximate p-value (4.4) for the hypothesis H0 from (4.3).
1 θ0 = T (u);
2 S0 = S(u, θ0);
3 for k = 1, . . . ,K do
4 Simulate N data points vk = (vkl)1≤l≤N from Cθ0 ;

5 Estimate θ̂k = T (vk);

6 Calculate Sk = S(vk, θ̂k);

7 end

8 p = 1
K

∑K
k=1 1(Sk > S0);

9 return p.

This algorithm lets us approximate the p-value in an unproblematic way.
That is, if we have copulas that we can easily simulate from. Using the
CM-algorithm, this includes all copulas of multivariate distributions that
are easily simulated. What the writing of the algorithm conceals is that
the computation of S and T might be difficult. The test statistic S in
particular can prove to be very time-consuming. In the case of test statistics
that involve calculations of computationally difficult Cθ(·), a Monte Carlo
approach can alleviate those difficulties. The copula function can again be
approximated by simulation of a sample and taking the empirical copula
thereof.
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Chapter 5

Panic Copula

5.1 Motivation

With the CMA, we have a tool to generate copulas out of every joint dis-
tribution without large computational effort. For stress-testing, we want to
create an asymmetric panic copula that especially targets the down-side. In
this model, panic is triggered endogenously by the quantiles of a panic distri-
bution. The panic copula is going to be extracted from a jointly distributed
d-dimensional random variable X that is constructed using the approach
mentioned by Meucci in [35]. The market is assumed to be in one of the
two following states. First, there’s the calm market X(C) which is normally
distributed with mean 0 and some correlation matrix ρC . Then there is the
panic stricken market X(P ) which is again normally distributed with mean
0 but higher correlation ρP . The two states of the market are realised as
two sets of independent random variables. If X(P ) reaches under a certain
threshold quantile q ∈ (0, 1), panic is triggered. So X is defined as follows:

X
d
= (1d −B) ◦X(C) +B ◦X(P ),

Bk =

{
1 if Φ(X

(P )
k ) < q,

0 otherwise,
∀1 ≤ k ≤ d,

X(C) ∼ Nd (0, ρC) , X(P ) ∼ Nd (0, ρP ) .

From this construction, it can be seen that there are three parameters to be
chosen in this setting. The two correlation matrices and the panic threshold
q. For dimensions higher than two, in order to keep the number of param-
eters one has to estimate low, it might be a good option to choose a panic
correlation matrix ρP with high positive and homogeneous correlation r:

ρP =


1 r . . . r
r 1 . . . r
...

...
. . .

...
r r . . . 1

 (5.1)
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5.2 Generalised Construction of a Panic Copula

For further examination, we define the panic copula in the most general way
possible.

Definition 5.1 (Generalised panic copula). Let FY and FZ be two contin-
uous distributions on Rd and q ∈ (0, 1)d. We define bk = F−1

Zk
(qk) for all

1 ≤ k ≤ d. Define X by

X
d
= (1d −B) ◦ Y +B ◦ Z, (5.2)

Bk =

{
1 if FZk(Zk) < qk,
0 otherwise,

∀1 ≤ k ≤ d, (5.3)

Y ∼ FY , Z ∼ FZ ,

where Y and Z are independent from each other.

The copula of X is called a panic copula with panic threshold q. If Y
and Z are Gaussian distributions, then we call the copula of X a Gaussian
panic copula. If they are Student-t distributions, we call it a t-panic copula.

It can be seen easily that the mean of X will be smaller than the weighted
means of Y and Z, since Z is selectively taken only on its downside. That is,
E[Xk] < qkE[Zk] + (1− qk)E[Yk]. In the case of the Gaussian panic copula,
the distribution Xk has a strictly negative mean of −(2π)1/2 exp(−b2k/2).
Obviously, the mean has no direct influence on the copula of X.

As two special cases of panic copulas in Definition 5.1, we have the
Gaussian panic copula (mentioned in the first section of this chapter) and
the t-panic copula, where Y and Z are Student-t distributed. Compared to
the Gaussian panic copula, the t-panic copula has two new parameters for
the respective degrees of freedom νC and νP . Thus, the t-panic copula we
obtain has a positive tail dependence, as shown in Corollary 5.6.

Proposition 5.2. If X is a random vector defined by (5.2) and C is its
copula, then all l-dimensional margins Ck1,...,kl of C are panic copulas. Fur-
thermore, if C is a t-panic copula, then Ck1,...,kl is again a t-panic copula.

Proof. Let 1 ≤ l < d and {k1, . . . , kl} ⊆ {1, . . . , d}. If C is the copula of
(X1, . . . , Xd)

>, then Ck1,...,kl is the copula of (Xk1 , . . . , Xkl)
>. The random

vector B in equation (5.2) is defined component-wise, as can be seen in (5.3).
Therefore, plugging (Yk1 , . . . , Ykl)

>, (Zk1 , . . . , Zkl)
> and (qk1 , . . . , qkl)

> into
(5.2) yields exactly (Xk1 , . . . , Xkl). Thus, Ck1,...,kl is a panic copula con-
structed by the components of Y and Z. This proves both statements.
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Theorem 5.3. If Z has continuous margins and we define X as in (5.2),
the distribution functions of X and its marginals Xk are given by:

FX(x) =
∑

I]J=(1,...,d)

FYI (xI) P((ZJ ≤ min(xJ , bJ)) ∧ (ZI ≥ bI)),

=
∑

I]J=(1,...,d)

FYI (xI)
∑
∅⊆K⊆I

(−1)|K| F(ZJ ,ZK)(min(xJ , bJ), bK), (5.4)

FXk(xk) = FZk(min(xk, bk)) + (1− qk)FYk(xk). (5.5)

Proof. This is easily seen by the law of total probability. We take the sum
over all partitions of (1, . . . , d) and condition on the events that exactly the
components ZJ fall under the panic threshold.

FX(x) =
∑

I]J=(1,...,d)

P(X ≤ x|(ZI ≥ bI) ∧ (ZJ < bJ)) P((ZI ≥ bI) ∧ (ZJ < bJ))

=
∑

I]J=(1,...,d)

P(YI ≤ xI) P(ZJ ≤ xJ |(ZI ≥ bI) ∧ (ZJ < bJ)) P((ZI ≥ bI) ∧ (ZJ < bJ))

=
∑

I]J=(1,...,d)

P(YI ≤ xI) P((ZJ ≤ min(xJ , bJ)) ∧ (ZI ≥ bI))

It is easily seen by applying the inclusion-exclusion principle that

P(ZJ ≤ min(xJ , bJ) ∧ ZI > bI) =
∑
∅⊆K⊆I

(−1)|K|F(ZJ ,ZK)(min(xJ , bJ), bK)

The marginal distribution is the one-dimensional special case of this formula.

The marginal distribution function seen above is not to be easily inverted,
with the notable exception of the normally distributed case or other cases
with FYk = FZk that are tabulated or can be analytically inverted. But with
the CMA, exact inversion is not necessary in any case.

Corollary 5.4. In the special case of d = 2 we have the distribution func-
tion:

FX(x1, x2) = FZ(min(x1, b1),min(x2, b2))

+ FY1(x1) (FZ2(min(x2, b2))− FZ(b1,min(x2, b2)))

+ FY2(x2) (FZ1(min(x1, b1))− FZ(min(x1, b1), b2))

+ FY (x1, x2)F̄Z(b1, b2).

The density function is then:

fX(x1, x2) = fZ(x1, x2)1(x < b)

+ fY1(x1)1(x2 < b2)fZ2(x2)P(Z1 ≥ b1|Z2 = x2)

+ fY2(x2)1(x1 < b1)fZ1(x1)P(Z2 ≥ b2|Z1 = x1)

+ fY (x1, x2)F̄Z(b1, b2).
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In many cases, formula (5.4) can be written more conveniently using
survival functions. Let’s take the case of d = 3 as an example. With x ∈ R3

and b ∈ R3, we have the distribution function

FX(x) = FZ(min(x, b))

+ FY1(x1)
(
FZ2,3(min(x2,3, b2,3))− FZ(b1,min(x2,3, b2,3))

)
+ · · ·+ · · ·
+ FY1,2(x1,2)

(
F̄Z1,2(b1,2)− F̄Z(b1,2,min(x3, b3))

)
+ · · ·+ · · ·
+ FY (x)F̄Z(b),

where the minimum is taken componentwise and the subindices vi,j denote
the corresponding entries of the vector, i.e. (vi, vj).

Looking at equation (5.4), it is quite clear that evaluation of the dis-
tribution function in high dimensions becomes challenging, as we have an
exponential number of summands. The measures of dependence of a panic
copula can be calculated by the integral formulas (2.11) and (2.14) for τ
and ρS . However, if there is no closed form for the distribution function
of Y and especially Z, or if the marginals aren’t easily inverted, it will be
more convenient to approximate τ and ρS by Monte Carlo simulation and
formulas (2.12) and (2.15). In dimensions higher than 2, it is also compu-
tationally faster to compute the value of C using the empirical copula of a
Monte Carlo simulation, if a lot of evaluations need to be done, as is the
case when calculating M and K in (3.13) and (3.14).

It is noteworthy that the parameter qi of the panic threshold represents
a quantile of the distribution Zi but not of Xi. Therefore, it is no quantile of
the panic copula. Although it is related to the quantiles ofXi, the connection
is more intricate, as can be observed in equation (5.5). If Yi and Zi have
the same distribution, the panic threshold bi = F−1

Zi
(qi) corresponds to the

quantile 2qi − q2
i of Xi. If the distributions of Yi and Zi are different, this

quantile may vary. This means that in fact, the influence of the panic
distribution Z reaches over a significantly larger share of the copula than
the parameter q might lead us to think. Therefore, we need to pay attention
not to confuse q with an actual quantile of the dataset during the fitting of
a panic copula to real data.

5.3 Tail Dependence of the Panic Copula

Let us take a look at the two-dimensional, general case of a panic copula.

There, the calm market distribution Y has tail dependences λ
(C)
L and λ

(C)
U ,

and the panic market distribution Z respectively λ
(P )
L and λ

(P )
U . What can

we say about the tail dependence of the panic copula λL and λU?
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Theorem 5.5. In the two-dimensional case, let q1 = q2 = q and Y and
Z such that their marginals are the same in both dimensions. Denote b =
FZ1(q). If the domain of the margins for both Y and Z are the same (let’s
say [a, c], a < c), then the tail dependences of the general panic copula are
calculated by:

λU =
F̄Z(b, b)

1− q
λ

(C)
U , (5.6)

λL = λ
(P )
L · lim

x→a+
FZ1(x)

FX1(x)
+ F̄Z(b, b) λ

(C)
L · lim

x→a+
FY1(x)

FX1(x)
, (5.7)

given that the limits do exist.

Proof. Because q ∈ (0, 1) and the domains of Yi and Zi are the same, we
have that a < b < c. For the upper tail dependence, we then have

λU = λU (X1, X2) = lim
u→1−

P(X2 > F−1
X2

(u)|X1 > F−1
X1

(u))

= lim
u→1−

P(X2 > F−1
X1

(u)|X1 > F−1
X1

(u)) = lim
x→c−

P(X2 > x|X1 > x)

= lim
x→c−

F̄X(x, x)

F̄X1(x)
= lim

x→c−
F̄Z(b, b)F̄Y (x, x))

1− (FZ1(b) + (1− q)FY1(x))

= lim
x→c−

F̄Z(b, b)F̄Y (x, x))

(1− q)F̄Y1(x)
=
F̄Z(b, b)

1− q
λ

(C)
U .

For the lower tail dependence, we can see that

λL = lim
x→a+

FZ(x, x) + 2FY1(x)(FZ1(x)− FZ(b, x)) + F̄Z(b, b)FY (x, x)

FX1(x)

= lim
x→a+

FZ(x, x)

FX1(x)
+ 2 lim

x→a+
FY1 (x)(FZ1

(x)−FZ(b,x))

FX1
(x) + F̄Z(b, b) lim

x→a+
FY (x, x)

FX1(x)

= lim
x→a+

FZ(x, x)

FZ1(x)

FZ1(x)

FX1(x)
+ 0 + F̄Z(b, b) lim

x→a+
FY (x, x)

FY1(x)

FY1(x)

FX1(x)

= λ
(P )
L · lim

x→a+
FZ1(x)

FX1(x)
+ F̄Z(b, b)λ

(C)
L · lim

x→a+
FY1(x)

FX1(x)
.

The condition that the margins of Y and Z have the same domain is

crucial, as without it we would get λL = λ
(P )
L if Zi reaches lower than

Yi. Furthermore, degenerate cases where b lies outside the domain of Yi
only yield impractical results. This is not the aim of this construction and
therefore we exclude such cases.

For the two cases of panic copulas we have seen, we can now state the
following corollary.

Corollary 5.6. In the two-dimensional case,
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1. the Gaussian panic copula introduced at the beginning of this chapter
has no tail dependence if ρC , ρP < 1.

2. the t-panic copula with Y ∼ St2(0, ρC , νC) and Z ∼ St2(0, ρP , νP ) has
a lower and upper tail dependence λL, λU > 0 if ρC , ρP 6= −1.

And these results are obviously applicable in the multidimensional case when
looking at pairwise tail dependence.

Proof. If Y and Z have the same marginal distributions, then the limits in
(5.7) are trivially 0 < 1

2−q <∞. Because the normal distribution has no tail
dependence, the first part follows from (5.6) and (5.7).

For the second part, we have to check that one of the two limits in (5.7)
is not zero. Suppose νP < νC , then

lim
x→−∞

FY1(x)

FZ1(x)

de l’H.
= lim

x→−∞

fY1(x)

fZ1(x)
= 0,

⇒ FZ1(x)

FX1(x)
=

1

1 + (1− q)FY1 (x)

FZ1
(x)

x→−∞−→ 1. (5.8)

The case νP > νC yields the same result for the other limit. Because λ
(C)
L

and λ
(P )
L are not zero, we then see that λL > 0.

Furthermore, we have seen that the limits in (5.7) only depend on the

expression L = limx→−∞
fY1 (x)

fZ1
(x) , which can be computed easily for many

parametric distributions as long as the marginal distribution is known. For-
mula (5.7) then takes the form

λL = λ
(P )
L · 1

1 + (1− q)L
+ λ

(C)
L · F̄Z(b, b)

1
L + (1− q)

.

The limit cases with L ∈ {0,∞} are easily deduced from this formula by
noting that L ≥ 0.

5.4 The Parameters and their Estimation

The parameters to be chosen for the general panic copula defined in (5.2)
consist of the parameters of Y and Z respectively, and the panic thresh-
old q. Since all of the distribution functions are explicitly known, it is in
theory possible to use the method of maximum-likelihood estimation for
the parameters. Given the grades ukn = FXk(xkn) that are computed non-
parametrically as in the CML estimation, we have the pseudo-log-likelihood
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function

l(q, θ(C), θ(P )|u) =
N∑
n=1

log fX(F−1
X1

(u1n), . . . , F−1
Xd

(udn)) (5.9)

−
N∑
n=1

d∑
k=1

log fXk(F−1
Xk

(ukn)),

depending on the panic threshold q as well as the parameters θ(C) of the
calm market distribution Y and θ(P ) of the panic market distribution Z.

However, the fact that the likelihood function is in general not continu-
ous along the planes of xk = bk poses a problem in maximising it. Its plot
looks very jagged (see Figure 6.5) because of the many small jumps that
occur in every point qk where a point u of the pseudo-sample corresponds
to a point x that lies on said plane. Moreover, Theorem 3.1 is not applica-
ble in this case because the log-likelihood function is not continuous in all
parameters. Therefore, we have no guaranteed consistency or asymptotical
normality for the parameter estimators of the panic copula. What weighs
even more are the problems that the discontinuities cause for the maximisa-
tion. In practice, we would consider a hill-climbing procedure that separates
the optimisation in q from the other parameters that don’t cause discontinu-
ities. For the optimisation in q, a pattern search method is applied. Lastly,
we will restrict the panic copula model to equal panic thresholds qk = q for
all components k. This will spare us the messy task of multidimensional op-
timisation of a non-continuous function. However, it has to be said that this
is a very restrictive assumption and we only make it because it is necessary
to render the estimation of q even practicable.

The function l is smooth with respect to all parameters but the panic
threshold q, which makes the optimisation steps in finding the maximum for
fixed q unproblematic. The disadvantage of the hill-climbing optimisation
is that we will only find a local optimum. This can be problematic, given
the jagged nature with the large number of discontinuities of the function to
be maximised. Furthermore, different starting values can lead to different
outcomes of the hill-climbing process. If we start with a value of q that is
too small or a correlation Σ(P ) of the panic distribution that is excessively
high, the optimisation usually converges to a model with q̂ ≈ 0 and unstable
estimates of the panic distribution parameters θ̂(P ) stemming from the fact
that the data used for the estimation of the panic correlation includes very
few points. If not enough data points fall under the panic threshold q,
the estimation of θ(P ) becomes practically infeasible. Therefore, the case of
q̂ ≈ 0 can be taken as a convergence to the simpler model which is contained
in the panic setting as a nested model. If this happens, new attempts using
other starting points with lower correlation in the panic distribution and/or
higher panic threshold should be made.
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Figure 5.1: A t-panic copula is constructed. ρC = 0.5, ρP = 0.98, νC = 5, νP =
3, q = 0.05. Left: scenarios of X. Right: separated copula. Bottom: note the
discontinuity in the density function of the margins of X. Because we have no
point masses, the distribution function (bold) is continuous.

5.5 The t-Panic Copula

We are taking a look at the case where Y and Z are both from the multi-
dimensional Student-t distribution. We want to apply maximum likelihood
estimation for the parameters q,Σ(C),Σ(P ), νC , νP . In this case, FX and fX
depend on all of the parameters while FXk and fXk don’t depend on the
correlation matrices. In Figure 5.1, you can see a two-dimensional example
of such a t-panic copula.

Because the Gaussian copula, the t-copula and the t-panic copula are
nested models, we can expect to have more flexibility in our model, letting
us achieve better results than the other models. From a practical point
of view, it makes sense to restrict the model to positive correlation only.
To examine the pairwise properties of the model, let us look at the two-
dimensional case. Now clearly, the t-panic copula can handle asymmetric
cases and asymmetric tail dependence. We know that the attainable τ -ρS-
points of the t-panic copula have to be a superset of the attainable points
of the t-copula. In lack of closed formulas to calculate the correlation mea-
sures exactly, we resort to numerical simulation of copulas with a number of
different parameters. Somewhat surprisingly, the size of the attainable set
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is significantly larger than before, as can be seen in Figure 5.2. This is of
course a very desirable property. As mentioned in [12], the points that can
be obtained by established copula models form a rather thin stripe along
the line that is reachable using the Gaussian copula. In comparison, the at-
tainable set of the t-panic copula accomplishes an enormous improvement.
The limiting cases on the upper edge of the attainable set are the Gaussian
copula, which fits into the more general model by setting νC =∞ and q = 0.
Looking at the cases near the lower edge of the set (as shown in Figure 5.2),
we can conclude that they are of little use in a practical setting. They have
correlations ρC and ρP that are either 1 or 0 respectively. Intuitively, this
was to be expected as it conforms with the already mentioned fact that
the boundary of the τ -ρS-region (the dashed line in the plot) comprises
only mutually completely dependent random variables. The closer we get
to the edges, the more the copula starts to resemble a deterministic relation
between the components, so to speak.

5.5.1 Estimation of the Parameters

If X is d-dimensional, we have d(d−1)+3 parameters that need estimating.
While the likelihood function is smooth in the other parameters, the esti-
mation of q introduces discontinuities and thus poses some difficulty for the
optimisation process. Therefore, we propose a two-step procedure: assum-
ing the panic threshold is somewhat low, we first estimate the parameters of
the upper, calm market distribution using only the upper half of the dataset,
which we assume to stem back largely to realisations of the regular market
Y and not the panic driven market Z. We take the so found estimators Σ̂(C)

and ν̂C as starting points for the optimisation procedure.

In order to maximise the likelihood function (5.9), we have to invert the
marginal distribution functions, which is difficult if Y and Z have different
marginal distributions. This is avoided by applying the CMA combination
step with appropriate margins to the grades (ukn)k=1,2, 1≤n≤N and then
evaluating (5.9). Perhaps the biggest difficulty lies in the estimation of q.
Because of the numerous discontinuities of the likelihood function, we can
only try to reach a maximum with no telling if it is global or merely local.

Because of the difficult task of optimising a function that is not con-
tinuous in the variable q, we apply hill-climbing optimisation. That is, we
optimise with respect to q either by using a pattern search algorithm or by
evaluating the function on a mesh of different points and searching the op-
timum there. The important thing is to use a method that does not use the
gradient and can cope with discontinuities. Then, we optimise with respect
to the other parameters (with no discontinuities) and repeat the process.
We have fairly good starting values for Σ̂(C) and ν̂C . The starting values
for Σ(P ) and νP need to be chosen somewhat arbitrarily because there is no
way of estimating them without specifying the panic threshold q. For q, we
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Figure 5.2: The attainable set within the τ -ρS-region (dashed bounds) for the
t-copula (dark grey) and the t-panic copula with positive correlations (dark and
light grey area). Below, simulated limit cases of t-panic copulas near and on the
lower edge of the set are shown.
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do not need a starting value per se if we evaluate the likelihood function on
a mesh of points. We avoid making this delicate choice arbitrarily by start-
ing the optimisation procedure with the maximisation in q on this mesh.
Therefore, we only need an interval to search the maximum in.

Let us illustrate this on the example of a two-dimensional case. Here,
the correlation matrices reduce to two single parameters ρC and ρP . We
have a dataset of N random vectors given, i.e. (xkn)k=1,2, 1≤n≤N .

1. We apply the separation step of the CM-algorithm, which then returns
the grades (ukn)k=1,2, 1≤n≤N of the empirical copula.

2. To estimate the parameters of the calm market ρC and νC , we only
look at indexes ni, 1 ≤ i ≤ I for which u1ni + u2ni > 1. This means
they lie in the upper half of the distribution. We mirror them along
the axis u1 + u2 = 1 and get a new dataset

(
v1i

v2i

)
=

{
(u1ni , u2ni)

> if 1 ≤ i ≤ I,
(1− u1ni−I , 1− u2ni−I )

> if I + 1 ≤ i ≤ 2I.

ρ̂C and ν̂C are then easily obtained from (v1i, v2i)
>
1≤i≤I by the means

of the usual parameter estimation of the bivariate t-distribution. That
is, compute Kendall’s tau to obtain ρ̂C and estimate νC with its MLE.

3. Choose reasonable starting values for ρ̂P and ν̂P , e.g. ρ̂P = 3
√
ρ̂C and

ν̂P = ν̂C . In any case, ρ̂P > ρ̂C should hold.

4. The pseudo-log-likelihood function l(q, ρC , ρP , νC , νP |u) is then max-
imised using a hill-climbing approach. This means we maximise l(·|u)
in alternation with respect to q and (ρC , ρP , νC , νP ).

For higher dimensions, the second step is performed on every pair (i, j) of
dimension indices. The obtained matrix needs to be checked on positive def-
initeness. In case it is not positive definite, we adjust it using the eigenvalue
method, see [40]. Because we are confident in the accuracy of our starting
value for ρC , we can delay maximising l(·|u) with respect to ρC for the first
steps, saving some runtime. Convergence usually occurs within the first few
hill-climbing steps.

Alternatively to this pseudo-ML approach, it would also be possible to
try to match the estimated tail dependence best. This means shifting the
focus of fitting the copula to its tails. While this approach is well-known
from two-dimensional Archimedean copulas, it is more involved here. We
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have the following equations:

λ̂U (Xi, Xj) =
F̄(Zi,Zj)(b, b)

1− q
2 t̄νC+1 (sC) , (5.10)

λ̂L(Xi, Xj) =


2 t̄νP+1 (sP ) if νP < νC ,

F̄(Zi,Zj)(b, b) 2 t̄νC+1 (sC) if νP > νC ,

2
2−q t̄νP+1(sP ) + 2

2−q F̄(Zi,Zj)(b, b) t̄νC+1(sC) if νP = νC ,

(5.11)

where sC =
√
νC + 1

√
1−Σ

(C)
ij√

1+Σ
(C)
ij

and sP =
√
νP + 1

√
1−Σ

(P )
ij√

1+Σ
(P )
ij

.

Now while this is a system of 2 ·
(
d
2

)
equations in d(d−1)+3 variables, we

have to remark that there is no justification for altering the estimate Σ̂(C)

greatly just to fit the tails of the empirical copula. We can take different
approaches of introducing the equations (5.10) and (5.11) into the estimation
procedure. During the hill-climbing process above, we can choose to estimate
Σ(P ) either by maximising the likelihood function or by matching the tail
dependences (5.11). Depending on the dimension d, some of these methods
can be worth trying.

When handling said equations, one needs to be very careful. In the
case that νP > νC , the parameter νP appears only in F̄(Zi,Zj)(b, b) and can
therefore be difficult to get a reasonable estimate of. In general, taking the
tail dependence into consideration during the estimation procedure can be
messy in its execution and the results will be mostly inferior to MLE. This
is why we did not further pursue this scheme.

It is also an important thing to notice that in the case of the t-panic
copula, all k-dimensional margins of the copula are again t-panic copu-
las. This offers us a way to avoid a problem that arises in higher dimen-
sions. In practice, the likelihood function is difficult to evaluate if we have
high-dimensional t-distributions in our model. Large numbers of (d − 1)-
dimensional distribution functions of the multivariate t-distibution need to
be calculated with every evaluation of (5.9). This makes fitting a t-panic
copula in dimensions d > 3 runtime-intensive and difficult, which is unsat-
isfactory. To circumvent this, it is possible to only look at the pairwise
marginal copulas. They are, as we already know, also t-panic copulas and
can be estimated rather quickly. What this yields is the matrices Σ̂(C),
Σ̂(P ) as well as matrices with the estimations of ν̂C , ν̂P and q̂ for each pair
Xi, Xj , 1 ≤ i, j ≤ d. The estimated values of the panic threshold q can
be alarmingly scattered with values reaching from 0 up to 0.5. Because we
need to find one single value, different methods can be tried to approximate
a good result. We take the widely scattered values of q̂ as a sign that blindly
taking the mean is not a good option. Instead, we obtain q̂, ν̂C and ν̂P by
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maximising

l∗(q,Σ(C),Σ(P ), νC , νP |u) =
d∑
i=1

i−1∑
j=1

lij
(
q,Σ

(C)
ij ,Σ

(P )
ij , νC , νP

∣∣ui, uj), (5.12)

where lij(·) is the pseudo-log-likelihood function of the pair (ui, uj). If we
want to restrict Σ(P ) to homogeneous correlation matrices, we can use (5.12)
to estimate Σ(P ) as well.

5.6 Mixing of Two Copulas

If we have two copulas C(C) and C(P ) that are easy to get simulated data
from, we can use our usual method from formula (5.2) for Y ∼ C(C) and
Z ∼ C(P ) to obtain a mixed panic copula. Because the margins are uniform,
the formulas from Theorem 5.5 then simplify to

λU =
C̄(P )(q, q)

1− q
λ

(C)
U , (5.13)

λL =
1

2− q

(
λ

(P )
L + C̄(P )(q, q) λ

(C)
L

)
, (5.14)

where q is the panic threshold from (5.3). In two dimensions, an example for
such a panic copula might be using a Clayton copula as C(C) and a Gumbel
copula as C(P ). The parameter θC of the Gumbel copula can be estimated
from Kendall’s tau of the upper half of the distribution (as described above).
q is estimated by maximum likelihood, while θ̂P for the Clayton copula can
be set such that the tail dependence in equation (5.14) is matched best. If
we want to take the equations (5.13) and (5.14) for both tail dependences
into consideration, an iterative procedure will be necessary. CML estimation
like in the t-panic copula case is also possible.

We might call the resulting construction an Archimedean panic copula,
although this term is slightly misleading as the resulting copula is in fact
not Archimedean any more. This approach is easily scaled up to higher
dimensions. Neither the calculation of the likelihood function nor the max-
imisation poses a big problem in this setting. The computation of the esti-
mates is highly feasible. The only drawback is the small number of merely
3 parameters. Moreover, the mixing of exchangeable copulas again yields
an exchangeable copula. In contrast to the t-panic copula, higher dimen-
sions don’t pose an insurmountable problem to the computations and our
estimation procedure. The distribution function of Y , Z and all its lower-
dimensional margins are known and given in closed form. Therefore, no
computational problems will occur. Still, the small number of only 3 pa-
rameters forbids using this model in high dimensions when fitting models to
real data. In lower dimensions, they are an interesting model because of the
easy implementation and straight-forward fitting procedure.
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Chapter 6

Empirical Explorations and
Application

In order to gain an understanding of how effectively the panic copula models
are able to describe real data, we will take a look at stock data of German
companies that we have harvested using Yahoo Finance. We will look at
daily returns of sets of 3 stocks. In three dimensions, the t-panic copula
is still relatively easy to compute. Therefore, we will concentrate on the
three-dimensional case first. We will compare different models and different
ways of estimation. We will also check the t-panic copula model against
the simpler t-copula model to make sure the more complicated model does
bring something new to the table and fits real data sufficiently better than
the known models. Furthermore, we will try to extend our approach to
arbitrary higher dimensions by using only the two-dimensional margins and
the corresponding pairwise likelihood functions in the estimation process.
In practice, the t-panic copula model will suffer from runtime constraints in
high dimensions and the mentioned approach can mitigate this problem.

In a first step, we will empirically approach the problem of finding suf-
ficiently good quantiles for testing the goodness of fit of the model. As
we know, we can obtain approximate p-values using the parametric boot-
strapping Algorithm 3. However, we might want to examine how large the
dependence between the test statistic’s distribution and both the parame-
ters of the model and the size of the sample N is. If possible, our goal is
to find a one-size-fits-all table of approximate quantiles for all sample sizes
and any form of the three-dimensional t-panic copula.

Subsequently, we will ask the question of how different the t-panic copula
is from the usual t-copula. We will use simulated data from both models
and investigate how accurately the goodness-of-fit measures can distinguish
between the two models. That is, we want to know whether the t-panic
copula model is sufficiently different from the established model in order to
justify the added inconvenience its implementation brings.
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Lastly, we will not only concentrate on the t-panic copula but also take a
look at the Archimedean panic copula models. With the Archimedean cop-
ulas we introduced, we can already use them for a panic copula construction
in 36 different combinations. We will compare the results with the other
models.

6.1 Finding Quantiles for Goodness-of-Fit Tests

In the one-dimensional case, the limiting distributions of the Cramér-von
Mises statistic and the Kolmogorov-Smirnov statistic can be tabulated. This
is a very handy feature. But as we have already come to know, the property
does not hold for the multidimensional copula case. We have seen in Sec-
tion 3.5 that the distributions of the Cramér-von Mises statistic M(Cθ̂,u)
and the Kolmogorov-Smirnov statistic K(Cθ̂,u) are dependent on the chosen

model, the estimator θ̂ and the specifically estimated parameters. Further-
more, they also depend on the sample size N . Because we don’t have an
analytic form of the distribution to compute the p-value of the statistic, we
have to do simulations. This means that we have to find approximations by
parametric bootstrapping, as described in Algorithm 3, i.e. we repeatedly
simulate data from the copula Cθ̂, conduct an estimation of the parameters
on the simulated data and compute the statistics M and K thereof. And for
every sample size and every set of estimated parameters, we have to start
a new bootstrapping procedure. This can prove computationally expensive.
However, because of Theorem 2.44, we can expect the distribution of M and
K to converge for big sample sizes N . Working with smaller sample sizes
would of course speed up the parametric bootstrapping procedure.

If our goal is not to conduct a precise statistical test on the sample, it is
also possible to just compare the values of the test statistics directly. As the
values stem from different distributions for different models or parameters,
they are not comparable per se. A smaller value for one model can be more
improbable than a larger value for another model. Therefore, we are not
comparing the likelihood of the sample being from one model or another. By
comparing the values of the statistics directly, we just assume that smaller
values will be better in any case. And especially when we are looking at the
same model with different parameters, the distributions of the test statistics
can be expected to be somewhat similar. While this cannot tell us on an
absolute scale whether or not a model is a good fit for the sample, it can
suggest which models fit better among a set of given models.

In this section, we want to try to evaluate if it is possible to find ap-
proximate quantiles for the statistics M and K which would be very useful
in assessing the goodness of fit of a copula model. Because of the limita-
tions explained above, we can expect our attempt to fail. We don’t use any
real market data in this section, we just simulate scenarios from the t-panic
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Figure 6.1: The bootstrapped distribution of the Cramér-von Mises statistic M
and the Kolmogorov-Smirnov statistic K, based on 7500 samples from the t-panic
copula with sample size N = 1000 (and varying parameters). This is for illustration
purposes only, as the distributions vary depending on the sample size N and the
parameters chosen.

copula.

In the case of the three-dimensional t-panic copula model, we conducted
the following study: setting the sample size N = 1000 and drawing 750
samples from the t-panic copula for ten different parameter sets (amounting
to a total of 7500 samples), we can see that the 95% bootstrap quantiles
range from 0.053 to 0.065 for the Cramér-von Mises statistic M and from
0.81 to 0.87 for the Kolmogorov-Smirnov statistic K. The bounds of the
confidence interval for the 95% quantile q0.95 are then approximately given
by the estimated quantiles of the levels 0.95±1.96

√
K · 0.95 · 0.05. For K =

1000, this amounts to confidence intervals of typically ±0.004 for M and
±0.02 for K. This means that the quantiles are clearly not contained in the
confidence interval of one single distribution. Therefore, the distributions of
M and K will differ significantly for changing parameters. The distribution
of the statistics are shown in Figures 6.1 and 6.2. The distribution of M
somewhat resembles a scaled χ2-distribution. However, it has a significantly
higher skewness.

We have observed that the Cramér-von Mises statistic M shows a rather
quick convergence, i.e. the quantiles don’t change greatly with the sample
size N . The Kolmogorov-Smirnov statistic K on the other hand seems to
converge slowly with the quantiles rising quite strongly with growing N .
For practical application, this means that regardless of the sample size and
the specific parameters, a value M that is far beyond 0.065 should make us

75



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Histograms of M for sample size n = 1000

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Histograms of K for sample size n = 1000

Figure 6.2: The bootstrapped distribution of M and K for two different sets
of parameters, based on 750 samples from the t-panic copula with sample size

N = 1000. In blue: a model with higher correlations Σ
(C)
ij in the range of 0.5− 0.7

and νC = 5, νP = 6. In red: a model with lower correlations Σ
(C)
ij in the range of

0.1− 0.3 and νC = 2, νP = 3.

suspicious.

Further investigation shows that the influence of the chosen estimator is
not as large as expected. In fact, when the parameter Σ(P ) is a homogeneous
correlation matrix, the quantiles show only negligible variation depending
on whether the homogeneous or the inhomogeneous estimator is used. Gen-
eralising this, the difference to using the more readily available estimation
of the t-copula model is only marginally larger than the differences within
the t-panic copula model. While they are of course nested models, it still
surprises us to an extent that the restricted estimator in the t-copula model
doesn’t alter the quantiles more. One of the biggest influences on the distri-
bution of M seems to be the degrees of freedom νC and νP . The lower those
two parameters are, the more flattened the distribution of M becomes and
therefore, the higher the 95% quantile of M is. The influence on K isn’t as
clearly evident. The quantiles for models with different parameters can be
seen in Table 6.3.

On the possibility of finding easily available quantiles to compare the
statistics M and K to, our conclusion has to be that it is not possible to
tabulate values that can even remotely deliver reliable tests when applied to
t-panic copula models of different sample sizes or parameters. This result
was to be expected and is not a specific fault of the panic model. The
t-copula yields similar results.
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Figure 6.3: The 95% quantiles of M and K for twenty different sets of parameters,
based on 750-1000 samples from the t-panic copula with sample size N = 1000.
Models with the same parameters Σ(C) and Σ(P ) are grouped together.

6.2 Differentiating between the t-Copula and the
t-Panic Copula

Up to this point, all we did was to point out all the advantages a t-panic cop-
ula supposedly has in comparison to the decidedly simpler t-copula model.
It is only reasonable to ask: can these promises be kept? How large exactly is
the gap between the models? Can we distinguish between them even in the
case of smaller sample sizes? In order to examine this important question,
we simulate a range of different data from t-panic copulas and t-copulas and
fit both models to the simulated data. Using the already discussed measures
for the goodness of fit, we decide which models fits the data better. We then
take a look at the hit rate, i.e. how often our decision was the right one.

We will test the three-dimensional case. The parameters for the simu-
lated data will be randomly chosen. The decision on which model is to be
considered better will be based on one of the measures we have already seen,
i.e. AIC, BIC, M , K, MR and KR. We decide on the model strictly by
choosing the model with the smaller value of these statistics.

We fixed K = 500 sets of parameters, half of them with q = 0, corre-
sponding to a plain t-copula model. The correlations in the matrix Σ(C) are
uniformly distributed on (0, 0.75), the correlations in the matrix Σ(P ) are
uniformly distributed on (0.45, 1). In particular, it is noteworthy that Σ(P ) is
chosen as inhomogeneous. Σ(P ) is inhomogeneous, as always. The matrices
are then adjusted using the eigenvalue method, if necessary. The degrees of
freedom are uniformly distributed integers satisfying 1 ≤ νC , νP ≤ 15. q is
uniformly distributed on (0.005, 0.4). Our course of action was the following:
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AIC BIC M K MR KR

N = 100 Panic 21.2 64.0 43.2 50.0 32.4 41.2
Non-Panic 30.4 8.0 43.6 38.8 48.0 50.0

N = 200 Panic 10.8 50.4 33.2 39.6 23.6 34.4
Non-Panic 27.6 3.2 36.4 34.0 40.0 40.0

N = 300 Panic 7.2 36.0 32.4 40.0 19.6 33.6
Non-Panic 16.0 2.0 23.2 27.6 35.2 33.2

N = 400 Panic 2.4 20.8 28.8 38.4 14.4 28.8
Non-Panic 12.8 1.2 24.0 24.0 28.8 27.2

N = 500 Panic 2.8 21.6 24.8 26.8 15.6 26.4
Non-Panic 10.8 0 25.2 24.4 25.2 24.4

N = 600 Panic 2.0 15.6 23.6 28.8 8.8 20.0
Non-Panic 10.0 0.4 24.0 23.6 27.2 25.2

N = 800 Panic 1.2 12.4 24.0 26.0 5.2 16.0
Non-Panic 7.6 0.4 18.0 19.6 17.6 16.8

N = 1000 Panic 1.2 8.4 18.4 20.4 4.8 7.6
Non-Panic 6.4 0 16.0 14.8 13.2 13.6

N = 1500 Panic 0.8 4.0 14.0 16.0 5.6 10.0
Non-Panic 2.0 0 13.2 11.6 9.2 11.2

Table 6.1: K = 500 different parameter sets have been used to simulate sample
data of different sizes from the t-panic copula (“Panic”) and the t-copula (“Non-
Panic”). In the table, we see the rejection percentages of the actual copula model
being rejected in favour of the other model. Ideally, this should be 0%. It can be
seen that the numbers improve significantly for higher sample sizes.
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1. We simulated samples of different sizes for every set of parameters.

2. We then performed both an ML estimation of a t-panic copula model
and a standard estimation of a t-copula model.

3. Afterwards, we calculated the different measures mentioned above and
decided on which model fits the data better by taking the smaller value.
If the estimated q̂ in the t-panic copula model was smaller than 0.005,
we took it as a convergence to the non-panic model regardless of the
values of the statistics.

The results can be seen in Table 6.1 where all the type I errors are shown.
Each percentage in the table stems from 250 simulated samples.

The results state clearly that the accuracy of the decisions for a model
is increasing with the growing sample size. In fact, it was to be expected
that for small sample sizes, telling the models apart should be difficult. In
a sample size of N = 200 and with a parameter q = 0.15, we can roughly
expect a mere 15 sample points to fall under the panic threshold (in more
than one dimension). This number of course depends on Σ(P ), but we cannot
expect more than q ·N = 30 points to stem back from the panic distribution
in all dimensions. This makes the estimation of the 5 parameters intertwined
with the panic distribution near impossible. Distinguishing between the
models is therefore not practically feasible. The AIC seems to be biased
towards the more complex model, whereas the BIC hardly ever chooses the
more complex model when the underlying data is from the simpler model.
M and K are of no use when we have smaller sample sizes. With small
sample sizes, MR and KR consistently prefer the complex model more than
their counterparts M and K do. They are more accurate in recognising the
t-panic copula but also more likely to falsely prefer the complex model.

We can summarise:

• For samples smaller than N = 300, there is no reliable way of distin-
guishing between the models.

• For medium-sized samples, the AIC is very good at detecting the com-
plex model and good at detecting the simple model.

• For medium-sized samples, MR and KR are more accurate than their
counterparts M and K.

• In general, AIC and BIC perform best.

6.3 Fitting the Panic Copula to Real 3-Dimensional
Data

In this section, we want to apply the new model to real stock data of three
assets. We will fit several versions of the panic copula model along with the
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regular t-copula model for comparison. They are compared using the already
discussed measures. We will use the copula models to compute the Value-at-
Risk for portfolios of three assets. Our model assumes all vectors of the daily
stock returns to stem from the same distribution F . An assumption that is
ubiquitous in the theoretical results on ML estimation is the independence
of the random vectors, which in our case means that the logarithmic returns
of the stocks are i.i.d. random vectors,S

(1)
n
...

S
(d)
n

 = Sn
iid∼ F,

for a distribution F that we want to model using estimated marginal dis-
tributions and an estimated copula function. In this section, we set d = 3.
The assumption about the distribution F is crucial from a theoretical point
of view and can be seen as a minimum requirement on the historic data as
the likelihood function we employ is only valid with a sample of independent
random vectors. Note that this is not compatible with the somewhat pop-
ular GARCH models and other models that assume the log returns to be a
heteroscedastic time series. For such approaches to the modelling of stock
returns, see [1] and [15]. Of course, it is dubious whether this assumption
actually holds, which has been noted by [5], who also suggests methods to
avoid this strong assumption.

In order to calculate the Value-at-Risk of a portfolio, we need to model
the joint distribution of the assets. After fitting their copula, we fit the mar-
gins using two different approaches. That is, we use a scaled t-distribution
and a normal mixture model, as has been suggested in [2] and [28]. The con-
clusions on which approach is better vary. The scaled t-distribution includes
fat tails but fails to address potential asymmetry. The mixture of normal dis-
tributions accounts for skewness, but has light tails. The marginal distribu-
tion hypotheses are evaluated using the Cramér-von Mises and Kolmogorov-
Smirnov statistics, comparing them with the tabulated quantiles.

The Value-at-Risk (VaR) is a widely used risk measure in finance. In
simple terms, it is the α-quantile of a loss distribution, given α ∈ (0, 1).

Definition 6.1. For α ∈ (0, 1), the Value-at-Risk at confidence level α of a
portfolio with loss distribution L is given by

V aRα(L) = inf{l ∈ R : P(L > l) ≤ 1− α} = inf{l ∈ R : FL(l) ≥ α}
= F←L (α).

If E[|L|] <∞, then the expected shortfall at confidence level α is defined as

ESα(L) =
1

1− α

∫ 1

α
F←L (u)du,

80



where F←L is the generalised inverse of FL and thus the quantile function of
L. The expected shortfall ESα is also known as the Conditional Value-at-
Risk CV aRα.

The Value-at-Risk does not give any information on how severe the in-
curred loss will be if it exceeds the quantile V aRα. This flaw is mended
by the expected shortfall. In the case of a continuous distribution L, the
expected shortfall ESα can be seen as the expected loss to occur in the case
that the V aRα is surpassed. That is, ESα = E[L|L ≥ V aRα(L)]. Typical
values for the confidence level are α = 0.95 or α = 0.99. Depending on the
field where the VaR is used, the time frame that the distribution L is looking
at will encompass periods from 1 to 10 days in market risk management or
one year in credit risk management. Because the VaR has found its way
into the Basel II legislation, it is a very important tool of risk assessment.
Further insights into it can be found in [13].

For an ordered sample x1 > · · · > xN of i.i.d. random variables from the
distribution L, the sample version of the VaR is simply

V̂ aRα = xbN(1−α)c+1,

while the sample version of the expected shortfall is

ÊSα =
1

bN(1− α)c+ 1

bN(1−α)c+1∑
k=1

xk.

Using these formulas, we can not only calculate the empirical estimates
for given data but also use Monte Carlo simulation to compute approximate
values for random variables L where the distribution function FL is not easily
available. It should be noted that the empirical estimator ÊSα is rather
unstable if N is not large enough because it relies on only bN(1−α)c+1 data
points, which can easily become a small number for large quantiles α. This
is not a substantial problem in the ambit of Monte Carlo simulation since
it is always possible to simulate more data. But the empirical estimation of
the expected shortfall from a sample can be troublesome.

The first example we look at is the daily returns of the stocks of the
German companies Daimler, Lufthansa and Merck. Using Yahoo Finance,
we take the data from the period 1/2000 to 5/2016. We start from the

daily adjusted closing prices S
(k)
n of each stock and compute the logarithmic

returns
xkn = log(S

(k)
n+1)− log(S(k)

n ), 1 ≤ k ≤ 3, ∀n.

This makes for a sample of the size N = 4105. We examine the sample
using the methods we already discussed. Because we use the CM-algorithm,
we do not need to estimate the margins before estimating the copula. This
semiparametric approach makes the copula estimator independent from the
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Figure 6.4: Empirical estimation of the tail dependences for daily stock returns
from Daimler, Lufthansa and Merck with a sample size N = 4105. We see the
trajectories λ̂ with pointwise bootstrap confidence intervals. The vertical grey bars
show the “stable” stretch of the trajectory, the horizontal dotted bar denotes the
estimated values. Note that q represents the quantile used as an argument in the
empirical quantile dependence function.

margin distribution model we choose. Because we will later want to compare
our results using different kinds of margin distributions, this is a convenient
and reasonable way of estimating the models. Otherwise we would have
to estimate the copula separately for every set of marginal distributions we
choose. The first data analysis gives us the following result:

τ̂ =

1.0000 0.3573 0.2185
0.3573 1.0000 0.1809
0.2185 0.1809 1.0000

 , ρ̂S =

1.0000 0.5024 0.3135
0.5024 1.0000 0.2613
0.3135 0.2613 1.0000

 ,

λ̂L =

1.0000 0.2500 0.1463
0.2500 1.0000 0.0948
0.1463 0.0948 1.0000

 , λ̂U =

1.0000 0.1132 0.1395
0.1132 1.0000 0
0.1395 0 1.0000

 .

The lower tail dependence is higher that the upper tail dependence. An-
other sign for the stronger dependence in the lower half can be found in the
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Figure 6.5: Estimation of t-panic copula models for daily stock returns from
Daimler, Lufthansa and Merck with a sample size N = 4105. Top: a section
of the pseudo-log-likelihood depending on q for the fitted model “ML-inhom.”.
Middle: the same section for “PW-inhom.”. Please note that the q in these plots
is the parameter of the panic copula and not a quantile per se, as explained in

Section 5.2. Bottom: a section of the pseudo-log-likelihood depending on Σ
(P )
23 for

the fitted model “ML-hom.”
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Figure 6.6: Left: Empirical copula of daily stock returns from Daimler, Lufthansa
and Merck with a sample size N = 4105. Right: Rosenblatt transform of the of
t-panic copula model “ML-inhom.” fitted to the data. The Rosenblatt transform
should be approximately uniformly distributed on [0, 1]3.

correlation. If we only use the “upper half” of the distribution and mirror it
to compute Kendall’s tau as we did in the estimation procedure (see p.69),
we obtain correlation coefficients that are higher (by about 0.04) than when
using the “lower half”. This discrepancy in the dependence on the upper
and the lower half of the distribution justifies the use of a panic copula.
Fitting a t-copula, we obtain the estimates ν̂ = 6 and

Σ̂ =

1.0000 0.5322 0.3366
0.5322 1.0000 0.2804
0.3366 0.2804 1.0000

 .

We then fit two different t-panic copula models, i.e. with homogeneous
and inhomogeneous Σ(P ). We estimate them in two different ways. First, we
do ML estimation, then we also try to maximise the sum of the pairwise like-
lihood functions l∗ from equation (5.12), which leads to the models denoted
by “PW-...”. The results are shown in Table 6.2. Note that the p-values for
the t-copula are zero, i.e. the hypothesis of a t-copula can be discarded at
every confidence levels α. A small uncertainty remains because of the boot-
strapping process needed to obtain the p-values, but on a confidence level
of 95%, we can say that the distribution does not follow a t-copula. The
ML estimates for the t-panic copula with inhomogeneous panic correlation
(“ML-inhom.”) are: ν̂C = 6, ν̂P = 8, q̂ = 0.2454,

Σ̂(C) =

1.0000 0.4860 0.2344
0.4860 1.0000 0.1688
0.2344 0.1688 1.0000

 , Σ̂(P ) =

1.0000 0.7840 0.6898
0.7840 1.0000 0.6343
0.6898 0.6343 1.0000

 .

We see that the estimate Σ̂(C) in the t-panic copula is significantly lower than
Σ̂ is in the t-copula. This stems from the fact that the t-copula is symmetric,
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ML-inhom. ML-hom. PW-inhom. PW-hom. t-copula

q̂ 0.2454 0.1797 0.2776 0.1878 -

ν̂C 6 6 5 5 6

ν̂P 8 13 6 8 -

AIC -2190.9 -2171.2 -2179.4 -2152.9 -2142.8

BIC -2134.0 -2127.0 -2122.5 -2108.7 -2117.5

M 0.0491 0.0459 0.0578 0.0330 0.1930
p(M) 0.091· 0.135 0.030∗ 0.472 0∗∗∗

K 0.8350 0.7336 1.0262 0.6360 1.2096
p(K) 0.117 0.324 0.010∗∗ 0.695 0∗∗∗

MR 0.0508 0.0481 0.0588 0.0476 0.1654

KR 0.8355 0.8535 0.9706 0.8921 1.2566

Table 6.2: Fitted 3-dimensional t-panic copulas in comparison with the t-copula
model, using the daily stock returns from Daimler, Lufthansa and Merck with a
sample size N = 4105. “ML” means maximum likelihood estimation, “PW” means
the maximisation of l∗ in equation (5.12). The p-values are computed by parametric
bootstrapping with K = 1000 iterations. Significance levels in the p-values are
marked with stars. The best value in each line is printed bold.

while the t-panic copula can single out the higher correlated lower part of
the distribution. In combination, we found τ and ρS of the t-panic copula
and the t-copula to be virtually the same. They fit the empirical estimates
equally well.

In Table 6.3, the same investigation is done using Archimedean panic
copulas. We did not use all 36 possible combinations, instead we only used
Clayton and Gumbel copulas in positions where their tail dependences seem
reasonable in our setting. The Archimedean panic copulas do not provide a
good fit for the data, as the statistics M and K are far beyond the quan-
tiles we established to be approximately accurate in the first section of this
chapter. Every measure of fit is worse than the values in Table 6.2. There-
fore, we conclude that in general, Archimedean panic copulas do not fit
3-dimensional data well.

We compute the Value-at-Risk and the expected shortfall of a portfolio
by using Monte Carlo simulation. That is, we simulate a high number of
scenarios for the assets in our portfolio, calculate the value of the portfolio
for each scenario and use the empirical estimates V̂ aRα and ÊSα to com-
pute approximate values for V aRα and ESα. In order to simulate scenarios
for the assets, we need to fit the margins of their distribution. If we have
the marginal distributions and the copula model, we can then use the CMA
combination step to obtain scenarios for the assets. If we want to fit the
marginal distributions, we need to decide on a model. The model of lognor-
mal distributed returns has been proven to be inadequate in the past. Hence,
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Figure 6.7: The marginal distributions of daily stock returns from Daimler,
Lufthansa and Merck (N = 4105) plotted against the quantiles of location scaled
t-distributions.
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(G,C) (G,sG) (sC,C) (sC,sG) (F,C) (F,sG) (sF,C) (sF,sG)

q 0.258 0.258 0.341 0.246 0.441 0.263 0.263 0.184
θC 1.223 1.260 0.428 0.407 1.914 2.441 2.099 2.113
θP 0.994 1.584 0.982 1.599 0.972 1.480 0.893 1.514

AIC -1837 -1814 -1848 -1755 -1742 -1744 -1754 -1678
BIC -1818 -1795 -1829 -1736 -1723 -1725 -1735 -1659
M 0.302 0.239 0.430 0.361 0.249 0.215 0.218 0.237
K 2.002 1.951 2.287 2.376 1.974 1.623 1.720 1.834

MR 0.275 0.243 0.265 0.255 0.241 0.275 0.227 0.296
KR 2.300 2.279 2.446 2.528 2.219 2.289 2.096 2.092

Table 6.3: Fitted 3-dimensional Archimedean panic copulas in comparison, using
the data from Table 6.2. The best value in each line is printed bold. The notation
for the model is (calm distribution, panic distribution) with “C” for Clayton, “G”
for Gumbel, “F” for Frank and “s” for the respective survival copula. Compared
to the copula models from Table 6.2, they provide a very poor fit.

we will use two different models that have been mentioned as good models.
We will then choose the model that matches the empirical distribution bet-
ter. Fitting a location scaled Student-t distribution (with 3 parameters for
each margin), we obtain good p-values for the Kolmogorov-Smirnov statistic
in all components. Fitting a mixture of three normal distributions (with 8
parameters for each margin) using EM (see [45]), we get a better fit for the
first two components, and a significantly worse fit for the third component.
But the distribution hypotheses are still both contained in a 95% confidence
interval. We choose the best fitting copula model to be “ML-inhom.”, being
the model with the best BIC. As for the marginal distributions, we choose
the better fit according to the BIC as well. Therefore, the location scaled
t-distribution is the distribution we choose, as it surpasses the mixed nor-
mal distribution in every component. We now take a look at a portfolio
of −2 · S(1) + 5 · S(2) + S(3) with the stock prices of 29/4/2016, when the
portfolio is worth D27.44. Looking at a time frame of 1 day, the VaR and
ES of the loss are shown in Table 6.4 for the various models.

For comparison, the values calculated assuming a multivariate Gaussian
distribution of the logarithmic stock returns are also shown in the table. As
expected, it becomes apparent that assuming X to be multivariate Gaus-
sian is not an adequate assumption. This was already known, as the tail
dependence of the empirical data is not modelled in an assumed Gaussian
distribution. The group of fitted t-panic copulas and the t-copula don’t
show much variation among themselves. As can be seen in Table 6.4, the
model that we chose as the best one, “ML-inhom.” with location scaled t-
distributed margins, fits the empirical VaR quite well. It is marked by a
star on the left side. The larger differences in the very high quantiles might
stem from few data points actually realising beyond this quantile. The same
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V aRα 0.95 0.98 0.99 0.995 0.999 0.9995 0.9999
Empiric 4.1491 5.8229 7.6031 8.8634 13.7349 17.8384 38.2686

Gaussian 4.5981 5.7558 6.4963 7.2245 8.7290 9.4074 10.6049

t-margins
∗ ML-inhom. 4.1371 5.9275 7.4572 9.6046 15.7677 18.8761 33.3190

ML-hom. 4.2055 6.0510 7.6914 9.6176 15.9619 19.6826 30.7414
PW-inhom. 4.0737 5.8808 7.4728 9.4595 15.8099 20.0573 30.5614

PW-hom. 4.1982 6.0498 7.6346 9.5082 14.9763 17.9812 26.4161
t-copula 4.0314 5.7857 7.2609 8.9393 14.6477 17.8036 34.9361

(sC,C) 4.4478 6.1230 7.5077 9.1892 14.4637 16.8472 26.2728
(F,sG) 4.5954 6.5002 8.0743 9.9603 16.9376 20.6442 34.4824

Mixed n.
ML-inhom. 4.1297 5.7704 7.3641 9.2617 15.8352 19.8899 34.9253

ML-hom. 4.2321 6.0070 7.5501 9.4552 15.5133 19.8079 37.7194
PW-inhom. 4.1140 5.8660 7.3346 9.1374 15.6143 20.3083 32.4279

PW-hom. 4.1883 5.9355 7.4830 9.1739 15.7804 21.0979 34.9133
t-copula 4.0866 5.7406 7.1537 8.8813 14.1476 18.7571 32.8964

(sC,C) 4.4911 6.0592 7.3314 8.7405 13.8472 18.3718 34.0645
(F,sG) 4.5706 6.3827 7.9735 9.9230 16.7628 20.6833 35.6060

ESα 0.95 0.98 0.99 0.995 0.999 0.9995 0.9999
Empiric 6.3573 8.4962 10.4702 12.7985 22.2100 30.3390 -

Gaussian 5.7786 6.7816 7.4832 8.1514 9.5446 10.0802 11.0321

t-margins
∗ ML-inhom. 6.4543 8.8570 11.1196 13.8656 22.8783 28.5797 48.5438

ML-hom. 6.5632 8.9618 11.1667 13.8560 22.4701 27.3782 43.5599
PW-inhom. 6.4074 8.7811 10.9994 13.6518 22.5541 27.6539 43.6252

PW-hom. 6.4852 8.7560 10.7900 13.1661 20.4314 24.6473 38.4472
t-copula 6.2181 8.4169 10.4132 12.8551 21.1526 26.0178 40.0929

(sC,C) 6.5253 8.5826 10.4311 12.6317 19.1228 22.6874 35.6810
(F,sG) 7.0061 9.4511 11.7133 14.5425 24.0126 29.2575 46.8836

Mixed n.
ML-inhom. 6.3551 8.6698 10.8789 13.5990 23.0888 28.7235 43.4935

ML-hom. 6.5262 8.8770 11.0890 13.8435 23.4350 29.5465 42.2528
PW-inhom. 6.3625 8.6496 10.8090 13.5090 22.6615 27.9550 39.3457

PW-hom. 6.4515 8.7721 10.9386 13.6752 23.4931 28.8952 41.6581
t-copula 6.1978 8.3537 10.3643 12.8501 21.7761 27.4933 40.9945

(sC,C) 6.4652 8.4284 10.2524 12.5545 21.3092 27.1075 38.7166
(F,sG) 6.9274 9.3255 11.5957 14.3904 23.5435 28.5541 40.8189

Table 6.4: VaR and ES of a portfolio on different confidence levels for the copula
models from Tables 6.2 and 6.3 and different margins. For comparison, the empirical
values and the corresponding values assuming a multivariate Gaussian distribution
of X are shown. The values are calculated by simulating 100, 000 cases.
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ML-inhom. ML-hom. PW-inhom. PW-hom. t-copula

q̂ 0.1137 0.1103 0.1017 0.1017 -

ν̂C 4 4 4 4 4

ν̂P 6 8 7 7 -

AIC -4696.8 -4696.2 -4692.0 -4692.6 -4679.6

BIC -4639.9 -4652.0 -4635.2 -4648.4 -4654.4

M 0.1494 0.1092 0.0917 0.0687 0.1439
p(M) 0∗∗∗ 0.004∗∗ 0.005∗∗ 0.028∗ 0∗∗∗

K 1.0106 0.8857 0.9326 0.8389 1.4164
p(K) 0.012∗ 0.050· 0.031∗ 0.103 0∗∗∗

MR 0.1114 0.1275 0.0973 0.1165 0.2122

KR 1.1012 1.4132 1.1719 1.2832 1.6877

Table 6.5: Fitted 3-dimensional t-panic copulas in comparison with the t-copula
model, using the daily stock returns from Deutsche Bank, Deutsche Telekom and
Siemens with a sample size N = 4105. The p-values are computed by parametric
bootstrapping with K = 1000 iterations. Significance levels in the p-values are
marked with stars. The best value in each line is printed bold.

reason might cause the differences in the ES to be larger. In fact, no rea-
sonable estimate is possible for the empirical ES0.9995 because the base of
data for it is only 2 data points. The empirical estimates which are based on
too few data points are printed in cursive. Interestingly, the Archimedean
panic copula model (sC,C) fits the empirical estimates of VaR and ES quite
well in spite of the low number of 3 parameters in that model. However, the
goodness-of-fit measures of the Archimedean panic copula do not compare
to those of the t-panic copula, which makes their use unjustifiable.

In Table 6.5, we apply the same copula fitting scheme to the stocks
of Deutsche Bank, Deutsche Telekom and Siemens. In this case, the BIC
favours the t-copula. Nonetheless, the p-values for the t-copula are zero.
Since all of the t-panic copulas also have very low p-values, we can not
confidently choose one model and discard the others. The picture is not
clear, as the single values contradict each other.

In Table 6.6, the copula models for the stocks of Continental, Fresenius
and Adidas are compared. We see that even the hypothesis of a t-copula
holds on a confidence level of 95%. The BIC also favours this distribution.
Interestingly, the estimates for the panic threshold q in the t-panic copula
models is very low, which makes the estimates for the correlation matrix Σ(P )

rather unstable, with Σ̂
(P )
12 being even lower than Σ̂

(C)
12 . This goes against

our initial assumption that the correlation in the panic distribution should
be higher than the correlation in the calm market distribution. However,
this is more a cosmetic problem that does not cause any trouble. The very
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ML-inhom. ML-hom. PW-inhom. PW-hom. t-copula

q̂ 0.0059 0.0031 0.0059 0.0059 -

ν̂C 5 5 5 5 5

ν̂P 5 7 5 5 -

AIC -1404.7 -1407.5 -1404.3 -1404.0 -1401.6

BIC -1347.8 -1363.2 -1347.4 -1359.8 -1376.4

M 0.0911 0.0517 0.0441 0.0686 0.0503
p(M) 0.001∗∗∗ 0.091· 0.139 0.010∗∗ 0.060·

K 0.9795 0.7727 0.7883 0.9327 0.8312
p(K) 0.016∗ 0.249 0.176 0.037∗ 0.104

MR 0.0426 0.0424 0.0404 0.0392 0.0429

KR 0.7803 0.7634 0.7704 0.7262 0.7940

Table 6.6: Fitted 3-dimensional t-panic copulas in comparison with the t-copula
model, using the daily stock returns from Continental, Fresenius and Adidas with
a sample size N = 4104. The p-values are computed by parametric bootstrapping
with K = 1000 iterations. Significance levels in the p-values are marked with stars.
The best value in each line is printed bold.

low estimates for q can be seen as evidence for the fit of the t-copula. That
is, the panic copula does not provide any significant advantages against the
simpler model in this case.

It is also worth noting that if νP > νC in the t-panic copula model,
then the model will have λL < λU by construction, as can be seen from
formula (5.11) and (5.10). This is exactly the opposite of what we want to
achieve and poses a significant flaw in the model. It is worth considering
the addition of the restriction νP ≤ νC in the estimation process to prevent
this from happening. Without it, the maximum likelihood estimates ν̂P
tend to be larger than ν̂C . Adding the restriction would force the lower tail
dependence of the model to be larger than the upper tail dependence. We
have implemented this in the next section with mixed results. The fit of the
model decreased significantly and the lower tail dependence was, generally
speaking, too high compared to the empirical estimates. This can be seen
in the following section.

What is important to notice in these examples is that the difference be-
tween fitting the three-dimensional model using the pseudo-log-likelihood
function and fitting it using the function l∗ from equation (5.12) is not very
large. This leads us the the conclusion that in the higher-dimensional cases
where the likelihood function of a panic copula is not that easily computed
anymore, the approach of using the sum l∗ of the pairwise likelihood func-
tions is a good way of fitting the model.
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PW-inhom. PW-hom. t-copula

# Parameters 33 19 16

q̂ 0.1066 0.1040 -

ν̂C 5 4 5

ν̂P 7 7 -

l∗ 10126.6 10042.4 10004.1

M 0.1592 0.2450 0.2449

K 1.1854 1.4010 1.4315

Table 6.7: Fitted 6-dimensional t-panic copulas in comparison with the t-copula
model, using the same daily stock returns from Tables 6.2 and 6.5 with a sample
size N = 4105. The best value in each line is printed bold.

6.4 Fitting the Panic Copula to Higher-Dimensional
Data

We have seen fitting the panic copula models to three-dimensional data.
In the case of three dimensions, the likelihood function can still be dealt
with. While Theorem 5.3 gives us the explicit formula (5.4) for the dis-
tribution function of the panic copula model in any dimension, it becomes
nearly impossible to compute it because of the high-dimensional multivari-
ate t-distributions involved. We resort to looking only at the pairwise two-
dimensional margins of the data. This is essentially a generalisation of what
we do with a t-copula. When fitting a t-copula to data, we compute the
correlation matrix using Kendall’s tau. This only takes into account the
pairwise dependence. Then we estimate the degrees of freedom ν using ML
estimation.

The process of fitting a t-panic copula to higher-dimensional data is
straight-forward. We just use l∗ in all cases where we would use the log-
likelihood function. But during the evaluation of the fitted model, we lose
important key figures like AIC, BIC and everything that relies on the Rosen-
blatt transform, because we want to avoid computing distribution functions
of multivariate t-distributions in high dimensions. Parametric bootstrapping
is still possible, but becomes more runtime-intensive. The general behaviour
of the statistics M and K varies from dimension to dimension. Therefore,
we cannot even give any rough assessment regarding the p-value of a certain
statistic without parametric bootstrapping. But then again, the procedure
of parametric bootstrapping becomes impractical for the t-panic copula in
high dimensions, as the fitting of the model becomes more time-intensive
with every added dimension. So we are left to compare the raw values of M
and K among the different models and choose the best one.

In Tables 6.7 and 6.8, the data used in the section before is used again
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PW-inhom. PW-hom. t-copula

# Parameters 33 19 16

q̂ 0.1169 0.1163 -

ν̂C 6 6 6

ν̂P 11 12 -

l∗ 5799.5 5738.0 5667.0

M 0.0804 0.0880 0.2291

K 1.0151 1.0562 1.6760

Table 6.8: Fitted 6-dimensional t-panic copulas in comparison with the t-copula
model, using the same daily stock returns from Tables 6.2 and 6.6 with a sample
size N = 4105. The best value in each line is printed bold.

to fit 6-dimensional t-panic copulas. In general, the only three additional
parameters in the model “PW-hom.” can already make a big difference com-
pared to the t-copula. It is apparent that in high dimensions, it is not rea-
sonable to employ the t-panic copula with inhomogeneous panic correlation,
as the amount of parameters basically doubles without a large increase in
l∗. Therefore, a homogeneous matrix Σ(P ) is advisable. But we might think
that assets of different industry sectors should not have the same panic cor-
relation that closely related assets have. The stock price of a bank will react
rather strongly in case of an extreme drop in the stock price of another bank
company. A loss of an industrial company, on the other hand, will have less
influence on the stock price of the bank. Therefore, we can propose the
following approach.

We can group the assets into business sectors and restricting the corre-
lation matrix in the following way: each group Gk has homogeneous corre-
lation ρGkk among their members, each two assets in different groups Gk, Gl
have a correlation ρGkl depending only on their group. That is,

Σ
(P )
ij = ρGkl, if i ∈ Gk, j ∈ Gl,

where ρG is a symmetric matrix containing the correlations of the group
members. This reduces the number of additional parameters stemming from
the panic correlation to a quadratic function in the number of groups. If
there are k groups, the number of parameters in this model is then

(
n
2

)
+(

k+1
2

)
+ 3. This is just one possibility to restrict the model into having less

parameters while preserving the inherent structure of the empirical data.
This borrows the basic idea from the factor copula models. Further details
on factor copula models can be found in [29].

This construction brings us to a new model fitting scheme that we call
“PW-grouped”, that comprises both the inhomogeneous and the homoge-
neous model as special cases. In fact, they are nested models with the
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PW-inhom. PW-hom. PW-grouped t-copula

# Parameters 45 25 30 22

q̂ 0.2039 0.0006 0.2039 -

ν̂C 5 4 5 5

ν̂P 5 5 5 -

l∗ 12377.7 12315.8 12334.6 12212.8

M 0.0490 0.3418 0.0631 0.2419

K 1.1442 2.6844 1.0883 1.9574

Table 6.9: Fitted 7-dimensional t-panic copulas in comparison with the t-copula
model, using the daily stock returns from 7 German companies with a sample size
N = 4166. The best value in each line is printed bold.

inhomogeneous one being the most general and the homogeneous one being
the most restrictive.

Let us look at daily stock return data from 7 German companies: Volk-
swagen, BMW, Daimler, Commerzbank, Deutsche Bank, Merck and Fre-
senius. We make 3 groups: car companies, banks and medical companies.
We then compare the fitted models. The results can be seen in Table 6.9.
It is apparent that the small number of additional parameters makes a big
difference to the model. The model “‘PW-hom.” does not seem to be an
adequate model since the panic threshold virtually converges to 0. In the
grouped model, we have a correlation of 0.8440 in the car sector, 0.7655
between car companies and banks and 0.8759 in the bank sector, and so on.
This can be seen in the matrix ρ̂G:

ρ̂G =

0.8440 0.7655 0.5151
0.7655 0.8759 0.4889
0.5151 0.4889 0.4780


From the statistics M and K we can conclude that the model “PW-group.”
is indeed a reasonably good fit, with 15 parameters less than the “full”
t-panic copula model.

For an example on what can be done in a reasonable time frame with
the t-panic copula model, we take N = 3896 daily returns from 17 German
companies listed in the DAX stock market index. As before, the data is
harvested using Yahoo Finance.

The assets are partitioned into 10 groups. As can be seen in Table 6.10,
the 135 additional parameters of the inhomogeneous t-panic copula model
in comparison to the homogeneous one yield an improvement of the func-
tion l∗ that is comparable to the improvement obtained by the 3 additional
parameters of homogeneous t-panic copula model in comparison to the t-
copula. The model “‘PW-group.” provides a good fit and the increase in
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PW-inhom. PW-hom. PW-group.∗ PW-group. t-copula

# Param. 275 140 194 194 137

q̂ 0.1321 0.1056 0.1286 0.1254 -

ν̂C 5 5 5 5 7

ν̂P 7 9 5 7 -

l∗ 74054.3 73330.6 73695.0 73884.1 72318.8

M 0.0763 0.0908 0.1263 0.0815 0.2796

K 2.4857 2.1237 2.3921 2.1424 3.1695

Table 6.10: Fitted 17-dimensional t-panic copulas in comparison with the t-copula
model, using the daily stock returns from 17 German companies with a sample size
N = 3896. The best value in each line is printed bold.

l∗ is moderate. Judging from the statistics M and K, the grouped model
has no significant advantages over the homogeneous model, in spite of the
large number of groups. “PW-group∗” has the additional constraint that
ν̂P ≤ ν̂C . It has the worst fit of the four t-panic copulas, but it preserves the
wanted property that the lower tail dependence be higher than the upper
tail dependence, even though the values tend to be too high when compared
to the empirical estimates.

We conclude that all of the four t-panic copula models provide a signif-
icantly better fit than the t-copula. The homogeneous model is very min-
imalistic in the number of additional parameters, the grouped model has
more parameters and a comparable fit. The model “PW-inhom.” does not
provide a good enough fit considering the very high number of parameters.
In this scope, “PW-hom.” provides a good enough fit.

Using the Kolmogorov-Smirnov statistic, we have seen that the hypoth-
esis of a location scaled t-distribution for the margins holds, with p-values
typically over 0.5 and the lowest one being 0.22. We compute the VaR and
ES for an approximately equally weighted portfolio of the 17 stocks with ini-
tial worth of D3089.8. The results can be seen in Table 6.11. We can see that
the model “PW-hom.” matches the empirical VaR rather well for confidence
levels smaller than 0.995. While the results for the VaR are comparable with
those of the t-copula model, the t-copula doesn’t match the empirical esti-
mates of the VaR quite as good. The ES estimated by the t-panic copula
models is significantly larger than the empirical one even on the level 0.99.
The t-copula provides slightly closer values. The Gaussian distribution that
is on the list for comparison completely fails to fit the empirical estimates.
Note that the model “PW-group.∗” has significantly higher values for both
the VaR and ES because of the higher lower tail dependence. We have seen
that the theoretical values of λL in this restricted model match the empirical
ones worse than in the other models, though. They overestimate the lower
tail dependence.
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V aRα 0.95 0.98 0.99 0.995 0.999 0.9995 0.9999
Empiric 76.01 102.39 135.97 163.22 223.70 235.09 238.25

Gaussian 80.01 100.00 112.62 123.58 146.94 156.81 178.21

PW-inhom. 72.29 104.42 134.08 169.81 274.25 341.20 486.14
PW-hom. 72.50 105.87 134.01 166.04 263.60 316.60 466.80

PW-group.∗ 71.48 105.87 136.75 174.01 302.89 360.33 571.16
PW-group. 72.49 105.47 135.75 172.23 278.04 335.34 504.86

t-copula 70.59 101.18 129.04 159.57 246.50 302.20 510.96

ESα 0.95 0.98 0.99 0.995 0.999 0.9995 0.9999
Empiric 109.07 142.68 169.35 194.00 234.38 237.11 -

Gaussian 99.78 116.63 127.63 137.80 159.97 168.76 187.38

PW-inhom. 113.65 155.51 193.82 238.30 373.09 443.39 637.05
PW-hom. 113.32 153.78 189.56 231.75 364.29 441.76 685.17

PW-group.∗ 115.69 161.32 203.34 254.03 416.77 504.95 782.49
PW-group. 114.63 157.16 196.10 241.15 375.90 448.47 667.32

t-copula 109.35 148.50 183.47 224.71 357.93 441.07 780.15

Table 6.11: VaR and ES of a portfolio with initial value of D3089.8 on differ-
ent confidence levels for the copula models from Table 6.10 and location scaled
t-distributed margins. For comparison, the empirical values and the corresponding
values assuming a multivariate Gaussian distribution of X are shown. The values
are calculated by simulating 100, 000 cases.

It is also worth noting that the VaR and ES of the panic copula models
can be higher or lower than the empirical estimates. But as has already
been said, the data on which the estimated ES is grounded is very scarce.
Therefore, the empirical values are not reliable for very high quantiles.

In theory, there is no limit to the number of assets that can be used
in this t-panic copula model. In practice, the runtime is Ω(d2) and fitting
the model on the discussed 17-dimensional data is already a matter of min-
utes. Therefore, the applicability of the fitting procedure is questionable in
dimensions larger than 25.

6.5 Conclusion

In this chapter, we explored the practical ramifications of the panic copulas
introduced before. We mainly concentrated on the most promising model,
the t-panic copula. It addresses the issue of specifically modelling the down-
side of the copula.

The construction of the t-panic copula is based on a simple principle.
We constructed the random vector X using two independent Student-t dis-
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tributed random vectors Y and Z. If a component of Z reaches below a panic
threshold, its value is used. Otherwise, we use the corresponding value of Y .
This random vector X is very simple to simulate. We then use the separa-
tion step (Algorithm 1) of the CM-algorithm introduced by Meucci in [35] to
extract the copula of X. This copula is called the t-panic copula. Its main
advantage over the t-copula is the possibility of modelling the lower part
of the copula differently than the upper part. The panic correlation matrix
Σ(P ) plays a central role among the additional parameters. It represents
the correlation of the components near the lower tail. Archimedean panic
copulas are constructed similarly by using Archimedean copulas instead of
the Student-t distribution in the process.

The panic copula models we have developed provide a good alternative to
the widespread static copula models. In small dimensions, the Archimedean
panic copula can provide additional flexibility compared to the Archimedean
copulas while still being very easy to compute. In medium-sized dimen-
sions, the t-panic copula can improve the results attainable by the t-copula
with a small number of additional parameters. The panic copulas are non-
symmetric, which is a big advantage over the t-copula. The panic copulas
are easily simulated from by using the CM-algorithm.

While the simulation is very straightforward, the major difficulty lies in
the fitting procedure. We apply the semiparametric CML estimation for the
parameters of the copula, i.e. the margins are estimated non-parametrically.
The likelihood function of the panic copulas exhibits discontinuities with
respect to one parameter, i.e. the panic threshold. Therefore, the maximi-
sation of the likelihood function during the CML estimation is cumbersome.
We use a hill-climbing routine, which by its nature only finds local optima.
It is tedious to verify whether the local optimum is a global one. After
the estimation, most computations on the fitted panic copula can easily be
done using Monte Carlo simulation. The evaluation of the goodness of fit
for any model can be carried out using approximate p-values for the dis-
tribution hypothesis of a certain copula model if we employ the parametric
bootstrapping algorithm (Algorithm 3).

After evaluating the newly developed models on real market data by us-
ing various goodness-of-fit measures, we come to the following conclusions:
Archimedean panic copulas provide an interesting alternative to other cop-
ulas in low dimensions. Because of their low number of parameters, they do
not fit real market data as well as the t-panic copula does. In dimensions
d > 3 they completely fail to keep up with other models. Their fitting pro-
cedure is unproblematic, albeit a lot more runtime-intensive than fitting a
plain Archimedean copula.

The t-panic copula fits real data significantly better than the t-copula
in many cases. This is to be expected because the t-copula is a special case
of the t-panic copula model. We can model asymmetrical dependence well
and achieve different values for the upper and the lower tail dependence.
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Compared to the t-copula, we can also reach a significantly larger part of
the τ -ρS-region. However, the difference between the models only becomes
really apparent with larger sample sizes of at least N > 600. Fitting a panic
copula to samples that are smaller than that is not advisable, as can be seen
from Table 6.1. For such cases the t-copula suffices as it is the simpler model
which should be preferred when the advantages of the more complex model
are not evident.

The t-panic copula model can be applied to medium sized dimensions
by employing a modified likelihood function that only incorporates pairwise
dependence between the components. In practice, we applied it to up to 17
assets. The number of parameters for models of such data can become ex-
cessively high, including up to twice the number of parameters of a t-copula.
To counteract this, we can make use of the idea of factor copula models. By
partitioning the assets into groups with the same panic correlation, we limit
the amount of additional parameters compared to the t-copula. With only
few additional parameters, the goodness of fit is improved considerably with
respect to the t-copula.

When fitting the panic copula to real data, it becomes apparent that we
actually fail to implement the very idea of finding a “panic” distribution to
model only the lower tail of the copula. Strictly speaking, what we achieve
in our fitted models is something slightly different. The estimated values
of the panic threshold quantile q̂ are often higher than 0.1. As mentioned
in Section 5.2, this means that not only the lower tail is influenced by the
panic distribution Z, but basically the whole lowest fifth of the copula is
modelled by it. This is of course contrary to the very name of the panic
copulas because an event at quantile 0.19 cannot be described as panic in any
sense. This makes the name misleading in general applications. However,
the copula models can still be used for the specific task of stress testing by
restricting the panic threshold q to be a lower quantile. But this restriction
cannot be justified during the estimation process. Furthermore, because the
estimation of the model relies on observing rare lower tail events, estimation
of the panic correlation Σ(P ) becomes less reliable if q̂ is very small, as we
have already discussed in the previous chapter.

After fitting a parametric model to the marginal distributions, we can
use the copula models to calculate the Value-at-Risk and expected shortfall
of a portfolio. To do so, we apply Monte Carlo simulation. We found the
values we calculated by using the t-panic copula models to be comparable
with the empirical estimates. Compared with the t-copula, the estimated
values for the VaR and ES in the t-panic copula models tend to be slightly
higher, which conforms with the idea we had for the construction. We
wanted the high correlation in the lower part of the distribution to be more
accurately reflected in the copula model. We cannot say the values obtained
with the t-panic copula model fit the empirical estimates better in all cases.
Depending on the data, they might also be farther away than the t-copula
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values.
This result puts us into a dilemma because the resulting similarly well-

fitting VaR and ES figures conflict with the significantly better fit of the cop-
ula model as evaluated by established measures like the Cramér-von Mises
and Kolmogorov-Smirnov statistics. In the three-dimensional case, the hy-
pothesis of a t-copula can be discarded on virtually any confidence level α
for most asset sets. But the hypothesis of a t-panic copula often holds on a
confidence level of α = 0.95. Yet, the improved fit of the copula itself does
not translate into better approximations of the empirical estimates of VaR
and ES. We do know, however, that the empirical estimates of VaR and ES
should be taken with a grain of salt, as especially the empirical ES is known
to be unstable in the ambit of insufficient sample sizes.

The central idea of this thesis is applying the very flexible CM-algorithm
to construct new copulas in an unconventional way. This thought can be
continued further. With the means provided by the CM-algorithm, the
development of new copulas with interesting and different structures has
become possible. The copula of compound distributions becomes readily
available. It is thinkable to construct a compound distribution where the
variance of a multivariate normal distribution is determined by another pos-
itive random variable, say an exponential distribution. The copula of this
distribution can then be easily separated by employing the CM-algorithm.
Other mixed or compound distributions that might carry valuable properties
immediately come to mind. The only problem with these kinds of construc-
tions is that there is no straightforward way of estimating the parameters
and every model has to be looked at separately. The copula transformation
mentioned in Section 4.2.4 is also a promising approach that could be ex-
amined further. Given suitable transformation functions, the results should
be very useful in modifying existing copula models. Finding such functions
is difficult, though. With the tools presented in this thesis, that is the CM-
algorithm and the parametric bootstrapping algorithm, new copula models
can easily be developed and evaluated.

98



Bibliography

[1] Carol Alexander. Principal component models for generating large
garch covariance matrices. Economic Notes, 31(2):337–359, 2002.

[2] Felipe M. Aparicio and Javier Estrada. Empirical distributions of stock
returns: scandinavian securities markets, 1990-95. 1996.
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