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Abstract

Sequentially activated ensembles of neurons, called assemblies, play a key

role in neural computations. However, the principles underlying the emer-

gence are still in question.

In this thesis biological inspired neural network simulations were carried out

to analyze the emergence and self organization of assemblies in different con-

nectivity structures. The network consists of recurrently connected stochas-

tic spiking Sparse Winner-Take-All (SWTA) microcircuit models that learn

through Spike-Timing-Dependent Plasticity (STDP).

We provide here principles and results, how to construct networks that are

capable to emerge clear input-specific assembly activation trajectories, even

in presence of high amount of noise and very little external pattern stimula-

tion. Specific assemblies emerge self organized for various different stimuli

and they are also spatially distributed. Furthermore the same neurons could

be part of different assembly groups. It is also possible to scale up the pre-

sented structures.

These findings suggest that the presented networks could mimic various

salient biological features, which probably could contribute for example to

the modeling of larger neural structures or generating neural assembly codes.



Kurzfassung

Sequentiell aktivierte Neuronengruppen, auch Assemblies genannt, haben

eine wichtige Bedeutung für neuronale Prozesse. Jedoch sind die Prinzipien

wie diese entstehen noch nicht gänzlich geklärt.

Es wurden biologisch inspirierte neuronale Netzwerksimulationen durchge-

führt, um Auftreten und Selbstorganisation von Assemblies in verschiedenen

Strukturen zu untersuchen. Die Netzwerke bestehen aus rekurrent verbun-

denen stochastischen Sparse Winner-Take-All (SWTA) Netzwerkmodellen,

die mithilfe Spike-Timing-Dependent Plasticity (STDP) lernen.

Diese Arbeit liefert Prinzipien und Ergebnisse, wie Netzwerke erstellt wer-

den können, die fähig sind klare eingangsspezifische Aktivierungstrajektorien

von Assemblies entstehen zu lassen. Dies ist auch möglich, wenn ein hoher

Rauschanteil bei sehr wenig externer Stimulation dem Netzwerk zugeführt

wird. Spezifische Assemblies entstehen selbst organisiert für verschiedene

Stimuli. Neuronen einer Assembly sind räumlich verteilt und können auch

Teil mehrerer Assemblies sein. Die präsentierten Strukturen sind zudem ska-

lierbar.

Die Ergebnisse weisen darauf hin, dass diese Netzwerke biologische Eigen-

schaften replizieren können und daher zum Beispiel zur Modellierung von

größeren neuronalen Strukturen beitragen oder das Generieren von neuro-

nalen Assemblycodes genutzt werden können.



Statutory Declaration

I declare that I have authored this thesis independently, that I have not

used other than the declared sources / resources, and that I have explicitly

marked all material which has been quoted either literally or by content

from the used sources.

...................................... ......................................

(Place, Date) (Signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig

verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,

und die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen

als solche kenntlich gemacht habe.

...................................... ......................................

(Ort, Datum) (Unterschrift)



Contents

Contents ii

List of Figures iv

Acknowledgements v

1 Introduction 1

2 Model and network structure 4

2.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Neural parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Recurrent network configuration . . . . . . . . . . . . . . . . 11

3 Determining self organization 14

3.1 Cell assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Stimulus: external spike train . . . . . . . . . . . . . . . . . . 16
3.3 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Determining and evaluating assemblies . . . . . . . . . . . . . 16
3.5 Assembly activation trajectory . . . . . . . . . . . . . . . . . 17

4 Learning behavior of recurrent configurations 20

4.1 General important issues . . . . . . . . . . . . . . . . . . . . . 20
4.2 Single SWTA example . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Specifying the recurrent setup . . . . . . . . . . . . . . . . . . 27
4.4 Initial configuration (setup 0) . . . . . . . . . . . . . . . . . . 33

i



5 Different recurrent connectivity structures 39

5.1 Setup 1: different external input . . . . . . . . . . . . . . . . 40

5.2 Setup 2: Internal activity . . . . . . . . . . . . . . . . . . . . 45

5.3 Setup 3: Different external input with internal activity . . . . 51

5.4 Noise as feature . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Biologically inspired setup 60

6.1 Distance dependent connectivity . . . . . . . . . . . . . . . . 60

6.2 Biologically inspired setup simulation . . . . . . . . . . . . . 61

7 Summary and conclusion 68

ii



List of Figures

2.1 Excitatory postsynaptic potential (EPSP) . . . . . . . . . . . 9

2.2 Inhibitory postsynaptic potential (IPSP) . . . . . . . . . . . . 10

2.3 Dynamic synapse value distributions . . . . . . . . . . . . . . 12

3.1 Stimulus of 160 Poisson spike trains . . . . . . . . . . . . . . 15

4.1 Single SWTA connectivity . . . . . . . . . . . . . . . . . . . . 24

4.2 Single SWTA mean activation and rank correlation . . . . . . 24

4.3 Single SWTA spike trains before and after learning . . . . . . 25

4.4 Number of neurons N performance . . . . . . . . . . . . . . . 28

4.5 Recurrent connectivity pconn performance . . . . . . . . . . . 29

4.6 Excitability K performance . . . . . . . . . . . . . . . . . . . 30

4.7 Inhibition σ2 performance . . . . . . . . . . . . . . . . . . . . 31

4.8 external stimulation rin performance . . . . . . . . . . . . . . 32

4.9 Setup 0 connectivity structure . . . . . . . . . . . . . . . . . . 34

4.10 Setup 0 synaptic weights after 100s learning . . . . . . . . . . 35

4.11 Setup 0 mean activation and rank correlation . . . . . . . . . 36

4.12 Optimized setup 0 mean activation and rank correlation . . . 36

4.13 Setup 0 assembly spike train before and after learning . . . . 37

5.1 Setup 1 connectivity structure . . . . . . . . . . . . . . . . . . 41

5.2 Setup 1 synaptic weights after 100s learning . . . . . . . . . . 42

5.3 Setup 1 mean activation and rank order correlation . . . . . . 43

5.4 Setup 1 spike trains before and after learning . . . . . . . . . 44

iii



5.5 Setup 2 connectivity structure . . . . . . . . . . . . . . . . . . 46

5.6 Setup 2 synaptic weights after 100s learning . . . . . . . . . . 48

5.7 Setup 2 mean activation and rank order correlation . . . . . . 49

5.8 Setup 2 spike trains before and after learning . . . . . . . . . 50

5.9 Performance of different input fractions . . . . . . . . . . . . 51

5.10 Setup 3 connectivity structure . . . . . . . . . . . . . . . . . . 52

5.11 Setup 3 synaptic weights after 100s learning . . . . . . . . . . 54

5.12 Setup 3 mean activation and rank order correlation . . . . . . 55

5.13 Setup 3 spike trains before and after learning . . . . . . . . . 56

5.14 Superimposed noise performance . . . . . . . . . . . . . . . . 58

5.15 Jitter on time axis performance . . . . . . . . . . . . . . . . . 58

6.1 Exponential distance dependent connectivity λ performance . 62

6.2 Connection distances histogram . . . . . . . . . . . . . . . . . 62

6.3 Connectivity structure . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Synaptic weights after 100s learning . . . . . . . . . . . . . . 65

6.5 Mean activation and rank correlation . . . . . . . . . . . . . . 66

6.6 Spike trains before and after learning . . . . . . . . . . . . . . 67

iv



Acknowledgements

I want to thank Zeno Jonke, Prof. Maass and all IGI colleagues for the help,
the countless ideas and valuable discussions that made this thesis possible.

I owe my deepest gratitude to my parents, Herbert and Maria for their
unconditional support and patience. Especially I am thankful to Mona and
my little son Adrian. Thank you for the countless positive distractions and
lessons to remember me what is really important in life.

Gernot Griesbacher
Graz, Austria, Dezember, 2013

v



Chapter 1

Introduction

’Cell assemblies’ are considered as basic building block for neural activity.
According to [Hebb, 1949] strongly connected groups of neurons represents
a cognitive entity, that could be chained by internal processes called ’phase
sequences’ to form a basis for complex cognitive tasks.
But what is the mechanism that let neurons organize themselves to form
this structured spiking behavior?

[Klampfl and Maass, 2013] presented networks that automatically emerge
assemblies through Spike-Timing-Dependent Plasticity (STDP) under 3 ex-
perimentally supported constrains: (1) specific network motif of pyramidal
cells and inhibitory neurons, which was the Winner-Take-All (WTA) micro-
circuit motif from [Nessler et al., 2013] (2) STDP synapses between pyrami-
dal cells and (3) a high "trial-to-trial variability".
But the presented networks needed high amounts of external input stimula-
tion at every WTA and produced disjunct assembly groups.
So the main objective is to find networks that are less input-driven and
emerge biologically plausible assembly codes. The presented approach ful-
fills also the 3 experimentally supported constraints:

1. The recurrent networks are based on a more biologically realistic model
called Sparse Winner-Take-All (SWTA) from [Jonke et al., 2013].
SWTA has no normalization for the membrane potential and explicit
inhibitory synapses, which results in a less stereotypical spiking behav-
ior than WTAs. The lateral inhibition of WTAs is abstract modeled
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(see [Klampfl and Maass, 2013] equation 3), which is basically a nor-
malization of the membrane potential.

2. Each SWTA microcircuit is connected to other SWTAs by excitatory
synapses. Every synapse is subjected to long-term potentiation (LTP)
through Spike-Timing-Dependent Plasticity (STDP) and short-term
plasticity (STP).

3. There is an inherent high "trial-to-trial variability", as the model is
stochastic and the model parameters are drawn randomly within a
range or distributed according to a probability distribution.

Using this approach our goal is to describe how to construct these networks
and analyze their capability to emerge assemblies. Furthermore the following
goals should be addressed:

• Smal external stimulation, to get less input driven networks

• Construct stable configurations, that are eventually scalable to easily
create larger setups.

• More biological plausible assemblies that have a clear stable rank order.

The achieved results are presented in this work within the following 6
chapters:
The second chapter will present the network step by step. This will start by
the theoretical basis, then define the neural parts, afterwards describe the
implementation and finally the recurrent network.
The third chapter will present the used tools and methods. We will describe,
assemblies, stimulus, procedures and the performance criterion to evaluate
the capability to emerge assemblies.
The fourth chapter will show how to construct a stable recurrent network.
At first general considerations and properties will be discussed. Afterwards
a configuration is incrementally build, which will be used by all further sim-
ulations.
In the fifth chapter we will focus on different connectivity structures. We
will present 3 different structures and compare their features. Afterwards
the role of noise in different variation will be analyzed.
In the sixth chapter, features for biological inspired setups will be presented.
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At first we will introduce a distance dependent connectivity pattern. After-
wards we will use that in a scaled up version of 100 sWTAs with more than
2600 neurons, using the previously defined model parameters.
Finally we will summarize and discuss the presented results and give a short
outlook of possible future work.



Chapter 2

Model and network structure

In this chapter we will start from the theoretical model and go step by
step to the recurrent implementation of the corresponding neural parts in a
simulation. The basis is a biological inspired neural network model, which is
called "Sparse Winner-Take-All" (SWTA) from [Jonke et al., 2013], which
will be revised shortly at the first sections.

2.1 Theoretical framework

There are N observed variables y1, y2, ...yN ∈ {0, 1} andM hidden variables
z1, z2, ..., zM ∈ {0, 1} and W = [wi,j ]NxM encode the coupling strength
between them, which could only be non-negative.

2.1.1 Prior

This model should be capable to explain an observation with multiple causes.
Therefore it should be possible that several hidden variables can explain
the visible data. For this reason, we use a Gaussian prior p(z) over the
unobserved variables z (see equation 2.1). The parameter K is the mode,
which prefers K hidden causes for explaining the observations y. A small K
value therefore favors sparse activation (few causes).

p(z) = 1
Z
exp{− 1

2σ2 (
M∑
j=1

zj −K)2} (2.1)

4
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2.1.2 Generative model

The basic generative model is equation 2.2. The observations y should be
explained by the given coupling strength W and hidden variable z.

p(y | z,W) =
N∏
i=1

p(yi| z,W) =
N∏
i=1

p(yi = 1| z,W)yip(yi = 0| z,W)1−yi

(2.2)
Now we define the probability for yi = 0 given z and W. wT

i is the i-th row
of the W matrix which are all coupling strengths from observed variable yi
to all unobserved variables z.

p(yi = 0| z,W) = e
−

∑M

j=1 zjwi,j = e−wT
i z (2.3)

For yi = 1 we approximate p(yi = 1| z), where the constants a and b define
the approximation-quality:

p(yi = 1| z,W) = 1− e−wT
i z ≈ e−1/(awT

i z +b) (2.4)

By plugging 2.3 and 2.4 in equation 2.2 we arrive at the final generative
model 2.5:

p̃(y | z) =
N∏
i=1

e
−wT

i z +yi(wT
i z− 1

a wT
i

z +b
)

(2.5)

2.1.3 Learning

The hidden causes of an input y could be inferred by maximizing the log-
likelihood with respect to wij . So we are using the correctly-approximated-
normalized model (CAN-model) from [Jonke, 2011]. Therefore a = 2 and
the assumption is that the generative model p̃(y | z) is already normalized,
so there is no need to put any normalization into the model. By going to
the negative direction of the gradient, the CAN learning rule is:

∆wij = ηzm(yi − 1 + 2yi
(2 wT

i z +b)2 ) (2.6)
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2.2 Network model

Now the theoretical model from chapter 2.1 should be used as a neural
model. Therefore the observed variables y are input neurons and the hidden
variables z are output neurons. wij is the feed-forward synaptic weight of
presynaptic-neuron yi to the postsynaptic-neuron zj .

2.2.1 Spiking probability

According to the neural sampling theory [Büsing et al., 2011] a network of
recurrently connected stochastic spiking neurons samples automatically from
the posterior distribution p(z |y,W), if the instantaneous spiking probabil-
ity of a neuron j depends on its current membrane potential. So it is defined
for δt→ 0:

p(j spikes in [t, t+ δt]) = δt · 1
τ
exp(γ · uj(t)) (2.7)

Here τ is the refractory period of the neuron, which is the time after one
spike, where no further spike could occur and γ is just an approximation
constant.

2.2.2 Membrane Potential

The membrane potential consists of the intrinsic excitabilities α, feed-
forward weights wij and recurrent inhibitory weights Jij .

α+ JT\ jz\ j +
N∑
i

(yi − 1)wij (2.8)

The rightmost term of equation 2.8 could be approximated by a constant
value

∑N
i (−wij) ≈ −const = −δj . This value could be incorporated into

the prior α, so that αj = α − δj . The intrinsic excitabilities α is defined
in equation 2.9 and the recurrent inhibitory weights Jij in equation 2.10,
which is just a constant β at every off-diagonal value.

α = 2K − 1
2σ2 (2.9)

Jij = Jji = − 1
σ2 = β for i 6= j (2.10)
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The specific αj is a neuron specific excitability which would also influence
the inhibition through σ2 and lead therefore to non symmetric inhibition.
Therefore we use the same excitability α for all neurons. So we arrive at the
membrane potential uj(t).

uj(t) = α+
∑
k 6=j

zk(t)β +
∑
i

yi(t)wij (2.11)

2.2.3 Learning rule

The internal generative model (see 2.1.2) is represented implicitly through
the learned weight values of each synapse. The spiking behavior of the
neurons is therefore the inference step which results from integrating the
synaptic inputs. The competing through lateral inhibition makes sure that
only the most likely cause get’s higher probability by increasing the corre-
sponding synaptic weights. So the theoretical learning rule 2.6 has to be
adapted to fit such a network model in just using local information. We
exclude the non-local terms, which are not biological plausible. Therefore a
local approximation is used, that emulates the optimal theoretical learning
rule reasonably well in simulations:

∆wij = ηzm(yi − 1 + 2yi
(2wim z +b)2 ) (2.12)

2.3 Neural parts

Now we have defined the theoretical basis and transformed that into a
network model, which will now be implemented as neural model with
explicit neurons and synapses. These will be simulated using PC-Sim
[Pecevski et al., 2009], which is a neural simulator written in C++ that
provides a Python interface. All neural components are implemented in
C++ as neural components, calculation and data analysis were performed
in Python using the NumPy and SciPy libraries ([Jones et al., 01 ]) and fig-
ures were created using the Matplotlib library ([Hunter, 2007]). The ZLIB
framework from [Jonke et al., 2013] was used to parallelize the developed
simulation scripts for the performance plots.
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2.3.1 SWTA class

The SWTA-Model is defined in chapter 2.2, which we use in our configu-
ration as basic building block. Therefore one SWTA is implemented as a
Python class. Where each SWTA consist ofM Exponential-Poisson-Neurons
z0, ..., zM−1 (see 2.3.2).
Each neuron is connected to every other neuron within a SWTA through
inhibitory synapses (see 2.3.4), so there are M2 − M inhibitory connec-
tions per SWTA. The excitatory external and recurrent connections could
be set individually via a connector function. In chapter 2.4.2 the different
connectivity structures of the recurrent setup will be further explained.

2.3.2 Exponential-Poisson-Neuron

All neurons in the setup are exponential-poisson-neurons according to
[Jolivet et al., 2006]. As the firing probability has to be proportional to
the membrane potential (see equation 2.7), the firing rate will be defined by
the membrane potential. This results in equation 2.13. We use refractory
period τ = 10ms and the constant γ = 2 for all simulations.

rj(t) = 1
τ
∗ exp(γ ∗ uj(t)) (2.13)

The membrane potential from equation 2.11 is defined by the inflowing cur-
rent from the synapses Isyn and the intrinsic excitabilities α. The excitabil-
ity α (see equation 2.9) is modeled as a constant inflowing current. All
other current arrives from presynaptic neurons via excitatory or inhibitory
synapses. The membrane potential uj is a voltage, so Rm has to be Rm = 1.

uj(t) = Rm(Isyn + α) (2.14)

Isyn(t) =
∑
k 6=j

zk(t)β +
∑
i

yi(t)wij (2.15)

2.3.3 Excitatory SWTA synapses

The excitatory SWTA synapse propagates current according to the alpha
shaped excitatory-postsynaptic-potential (EPSP) in figure 2.1. The poten-
tial is weighted according to the local synaptic weight wij . The synap-
tic delay is drawn according to a Gaussian distribution where µ = 3ms
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Figure 2.1: The excitatory-postsynaptic-potential (EPSP) is the po-
tential on the postsynaptic side when a current is propa-
gated by the excitatatory synapses.

and σ = 1.5ms. The possible weight values are in the range between
wmin = 0.001 and wmax = 2. But the initial weight is randomly drawn
according to a uniform distribution between wmin = 0.001 and 1. This
weight is updated according to the learning rule from equation 2.12, which
is now implemented as follows:

∆wij = η ∗ (wij ∗ f − 1)

f = 1 + a

(awij + b)2

Because we are using the CAN SWTA model, the approximation constants
are a = 2 and b = 0.8. In all presented simulations we are using the learning
constant η = 0.05.

2.3.4 Inhibition-Synapses

The lateral inhibition β = 1
σ2 is implemented by current based static spiking

synapses from each neuron to all other neurons within the SWTA. Therefore
there are M2 −M inhibitory synapses.
When the presynaptic neuron spikes, then there is current propagated



2.3. Neural parts 10

0 10 20 30 40 50 60 70
time [ms]

0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d
e

IPSP Shape

Figure 2.2: The inhibitory postsynaptic potential (IPSP) is the
potential at the postsynaptic side from an inhibitory
synapse. The synaptic delay is drawn according to a
Gaussian distribution where µ = 2ms and σ = 1ms. If
a neuron spikes all other neurons within the SWTA are
inhibited with that potential. The maximum amplitude
is defined by the amount of inhibition, which is β = 1

σ2
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through the M − 1 inhibitory synapses to the postsynaptic neurons. The
postsynaptic potential is the double exponential shaped IPSP curve from
figure 2.2.

2.4 Recurrent network configuration

In the previous section we have defined all elements necessary for a feed-
forward implementation. However for a biological inspired recurrent imple-
mentation, there is the need for some additional parts.

2.4.1 Network class

All SWTAs are placed on a 2D grid, where each grid point is represented
by one SWTA class instance (section 2.3.1) with a random number of hid-
den neurons. The simulation procedures and data handling is implemented
within this class. In chapter 4, we are using a 3x3 grid of 9 SWTAs and in
chapter 6 a 10x10 grid of 100 SWTAs within a range from 24 to 30 neurons.

2.4.2 Connectivity patterns

Excitatory connections are either from an external poisson neuron or from
a neuron of another SWTA. There are 4 different motifs for connecting
external channels, which will be explained further in chapter 5.
The internal recurrent synapses connect one neuron of a SWTA to another
neuron from another SWTA according to a probability. In chapter 4 we
are using a uniform distribution, where for example a neuron connects to
another neuron with probability pconn = 0.6. In chapter 6 we are also using
a distance dependent connectivity pattern, which will be further explained
in chapter 6.1.1.

2.4.3 Dynamic synapse

All excitatory synapses within the recurrent network are subjected to short-
term and long-term plasticity. The long-term plasticity (LTP) is the adap-
tion of the weights by the learning rule 2.3.3.
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Figure 2.3: The UDF-Values of the dynamic synapses are spread ac-
cording to a truncated Gaussian distribution, where all
values below zero are set to zero. left: The available Po-
tential u has a mean of µu = 0.5 and σu = 0.25 middle:
The Gaussian distribution of the depression time constant
d has a µd = 0.22 and σd = 0.11 right: The facilitating
time constant f has a µf = 0.01 and σf = 0.005



2.4. Recurrent network configuration 13

For the short-term plasticity (STP) a model based on [Markram et al., 1998]
is used. The u, d and f values are chosen independently for each synapse
according to a truncated Gaussian distribution (see figure 2.3). These dis-
tributions are based on data from [Markram et al., 1998].



Chapter 3

Determining self organization

In this chapter we will describe the kind of self organization we are looking
for and which procedures, tools and method will be used.
At first we will define the network organization called assembly. Afterwards
we will describe the stimulus and the simulation procedure. At last we will
define the tools for analyzing the trained networks, including a performance
criterion for evaluating the capability to emerge assemblies.

3.1 Cell assemblies

Groups of neurons that are coactive for a stimuli are called cell assemblies
[Hebb, 1949]. They play a key role in neuroscience for neural computations.
We use the definition from [Buzsáki, 2010], where a structured activity of a
specific subset of neurons to a repeated input pattern is an assembly code.
The main part of this work is to analyze the capability of different networks
to emerge such assembly structures and to observe how different structures
influence these capabilities.
As this model is biologically inspired, we expect that the assemblies should
resemble biologically observed data like [Harvey et al., 2012], where for ex-
ample neurons are part of more than one assembly.

14
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Figure 3.1: Stimulus: a typical stimulus of 160 Poisson spike trains
at constant rate rin = 10Hz. Two frozen 150ms spike
patterns (green and red shaded areas) are embedded at
random intervals in the poisson spike trains. After a pat-
tern is shown, there is a probability of 0.5 to show noise.
The noise length is randomly drawn between 50ms and
450ms
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3.2 Stimulus: external spike train

The external input is a frozen spike time pattern of TPattern = 150ms length,
which is embedded in uncorrelated Poisson spike trains (see figure 3.1).
These patterns are shown at random times, where the rate rin of all chan-
nel is constant, regardless if there is noise or the pattern present. After
each frozen pattern sequence, noise is shown with a probability of 0.5. The
Poisson spike train length is randomly drawn between 50ms and 450ms.
The network should respond to each input pattern with a specific temporal
activation of a subset of neurons.

3.3 Simulation procedure

The same procedure is followed for all presented configuration, to be able
to easier compare the result. All presented configurations are learned for
100s. In the learning phase the synaptic weights are adapted to the CAN
learning rule. Afterwards the learned Network is tested for 100s, where the
synaptic weights are fixed. There is a response test for the pattern also before
learning, to show that the assembly structure emerged only while learning.
Both spike trains will be plotted for each structure. Each simulation is
simulated at a time step of dt = 1ms.

3.4 Determining and evaluating assemblies

To search the parameter space there has to be a defined measurement for
the capability of a configuration to emerge assemblies. For doing that we
use the precision measurement to select the most precise neurons and form
a group signal of them. Afterwards the correlation coefficient of this group
signal and a pattern signal is calculated, which is used as a performance
criterion.

3.4.1 Precision measure

We define two binary activity signals aj [t] ∈ {0, 1} for the neuron activity
and pk[t] ∈ {0, 1} for the pattern activity, according to the the neural sam-
pling theory [Büsing et al., 2011]. So both signals are one for the period τ
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after one spikes, which is τ = 10ms for all simulations.
Therefore the activity signal for the neuron j at time t is aj [t], which is one
for the period t = [spike, spike + τ ].
The pattern activity pk[t] is defined in the same kind, while the spike time
pattern k is shown pk[t] = 1 for t = [ pattern_start, pattern_end + τ ]. As
Tpattern = 150ms in all simulations, there will be ones for 160ms for each
pattern representation.
We will measure the precision precj,k for each neuron j to pattern k accord-
ing to equation 3.1. So we are actually calculating the fraction of correct
spikes, to the sum of all (correct and false) spikes.

precj,k =
∑T
t=0 aj(t)pk(t)

(
∑T
t=0 aj(t)pk(t) + not(aj(t)) ∗ pk(t))

(3.1)

3.4.2 Assign neurons to an assembly

We are looking for a subset of neurons that respond to a specific input
stimulus. So we assign the most precise neurons j regarding pattern k to
the assembly Ak. Therefore we set a threshold value thresh and find all
neurons with a precision measure of perfj,k > thresh to the assembly group
Ak. We used a precision of thresh = 0.4 for our simulation.

3.4.3 Assembly group correlation measure

Now we are evaluating the performance by how accurate an assembly group
is in regard to the shown pattern. We do that by looking at the correlation of
the found assemblyAk to the pattern activity pk. The activation signals aj [t]
of all neurons in an assembly Ak is then used to form a group signal gk[t] ∈
{0, 1}, by combining all spikes of the activity signals aj [t] of an assembly
Ak. Afterwards we calculate the correlation coefficient perfk of this assembly
group signal gk and the pattern signal pk. This correlation measurement is
used as a performance criterion for evaluating network configurations.

3.5 Assembly activation trajectory

Having determined the assembly, we order the neurons according to their
mean activation during an input pattern representation. This order rep-
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resents the activation sequence of a memory trace regarding the presented
input.

3.5.1 Mean activation

The mean activation is calculated according to the mean spike latency in
[Luczak et al., 2009]. For each neuron j, we considered the temporal activity
during each pattern representation of a particular input pattern. We define
as pattern representation time Trepr = Tpattern + 2τ . In all our simulations
Tpattern = 150ms and τ = 10ms and therefore the representation time will
be Trepr = 170ms.
At first we calculate the corresponding rate rj(t) for t = 1, ..., Trepr. Now we
are taking the mean of all pattern representations at each time point t. The
mean rates are plotted as mean activation, for example in figure 4.2 on the
left side. But in these plots only higher active neurons above a minimum
rate rmin are shown.

3.5.2 Ordering: mean activation time

The neurons within an assembly are ordered by their center of mass t∗j
according to [Luczak et al., 2009]. The center of mass t∗j is calculated ac-
cording to equation 3.2, where time is interpreted as angle in the complex
plane. We compute the mean complex number weighted by the activation
rj(t). So the ordering of the neurons within an assembly is by ordering their
mean t∗j values. Which are the white dots in each plot of the mean activation
(see for example figure 4.2).

t∗j = Trepr
2π · arg

∑Trepr

t=0 rj(t)exp( t
Trepr

2πi)∑Trepr

t=0 rj(t)

 (3.2)

Each plotted spike train is also ordered to this mean activation time.

3.5.3 Rank order correlation

We want to quantify how reliably the order of activations are. This is mea-
sured as Spearman’s rank correlation between two rank variables. The fol-
lowed procedure is according to [Luczak et al., 2009], where we calculated
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histograms of rank correlations between each single trial and the mean ac-
tivation. Rank order correlation indicates the reliability of the learned ac-
tivation trajectory, which ranges from -1 to +1. So positive correlations
indicates a maintained order of activation during different trials.



Chapter 4

Learning behavior of recurrent
configurations

This chapter will describe the main considerations and parameters for build-
ing a stable network configuration. This will be presented by an incremen-
tally build configuration, which we will use for all further simulations.
As there have to be many different properties and parameters considered, we
will start with general dependancies and assumptions. Afterwards we will
incrementally specify parameter ranges for the most important parameters.
At the end of this chapter the model will be simulated and analyzed with
the initial structure (setup 0).

4.1 General important issues

This section will describe the most crucial aspects, which could be the cause
for serious problems in finding a stable setup.

4.1.1 Spontaneous activity

As the learning rule is a form of Spike-Timing-Dependent Plasticity (STDP),
there have to be spikes present to explain the input. If there are no spikes,
there is no possible explanation and nothing is learned. But if there are
too many spikes, the explanation is not very useful; rising all these weights
could even result in bursting. Therefore spontaneous activity is crucial for

20
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learning:

• Using a too low excitability (very negative K) or high inhibition (very
small σ2) results in virtually no spontaneous activity

• Using a higher excitability (low negative K) with too less inhibition
(bigger σ2) does lead to spontaneous activity, but could result in burst-
ing.

Choosing these parameters accordingly is a crucial part. But these parame-
ters change also with the size of the network, for example if there are more
neurons within a SWTA, then more inhibition signals will lower the mem-
brane potential of each single neuron. Therefore a lower inhibition β or
higher excitability α will be needed.

4.1.2 Normalization

As the SWTA model assumes that the generative model p̃(y | z) is already
normalized (see 2.1.2), there is no normalization within the model. So one
cannot inject arbitrary input or use arbitrary input/recurrent-ratio for con-
necting, because the input strength has an immediate effect on the activity
regime of the network. This is particularly challenging because recurrent
learning constantly changes how strong the network will respond to a given
input. Therefore it is essential to examine, how to keep the network in a
working regime. This is influenced by:

• external input: number of input channels NInput,External, external in-
put rate rin

• amount of recurrent connectivity: only number and connectivity-motif
of recurrent connections

• right amount of inhibition β and excitability α to keep the membrane
potential uj in a stable region.

The structural issues directly influence the membrane potential for example
(1) more neurons leads to more inhibition signals which lower the membrane
potential (2) more connectivity rises the possible excitation, which could
push up the membrane potential very fast and result in bursting.
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4.1.3 Possible approaches

For resolving problems with the above mentioned issues one has to chose
one of the following paths:

1. Adapting the excitability αj (see equation 2.11) per neuron zj to con-
trol the membrane potential uj , by using some additional mechanism,
for example Feed-Forward Inhibition [Keck et al., 2012], Homeostasis
[Habenschuss et al., 2013], or similar.

2. Constrain the structure, so that only a specific amount of input stim-
ulation is possible and the structure; how the stimulation gets into the
network is specified.

We have decided to work with the "pure" SWTA model and analyze the
behavior of different structures. So this thesis deals mainly with structures
and the self organization. We will specify one model and analyze the behav-
ior of different structural constraints. Therefore we will consider different
network architectures that allow an excitability that supports spontaneous
activity and does not lead to bursting. We use the same model parameter
ranges for all SWTAs within the network.

4.2 Single SWTA example

Now we will start with a single feed-forward SWTA and analyze the learning
behavior. According to [Zeno, 2012]), a single SWTA is capable to learn
the temporal structure of patterns. The key issue is to control uk, which
could be done by tuning two properties: (1) a right amount of stimulation
(input spikes for a neuron) and the (2) right amount of competition (lateral
inhibition). Because of this competition, neurons are forced to specialize for
a specific time segment.

4.2.1 Input stimulation

In all presented configuration there are approximately 64 external input
channels, where the frozen spike time pattern is presented. Each channel
has a constant rate rin = 10Hz. Therefore there are approximately 6400
spikes per Neuron/s from external sources. The amount of evidence needed
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for learning could be influenced with the excitability α = 2K−1
2σ2 . We will

adapt the excitability by changing the parameter K (number of preferred
causes, see 2.1.1).

4.2.2 Competition

After a neuron emits one spike, it inhibits all other neurons within the
SWTA. This lowers the probability of other neurons to spike in the same
time segment. Too much inhibition (low σ2) damps the dynamic very much,
too little inhibition (high σ2) let’s more neuron spike for the "events with
most evidence", which could result in bursting. We will control the inhibition
β mainly by using the parameter σ2 (β = 1

σ2 ). This has shown to be a good
approach to balance uk, as σ2 is also part of the excitability α.

Assembly after 100s learning

After 100s a feed-forward SWTA with N = 100 neurons has learned a stereo-
typical activation trajectory for a specific input. We see that neurons spe-
cialize for specific time points and that their activation order is positive
correlated in figure 4.2. The formed assembly has a correlation of 0.64 and
consists of 57 neurons. 43 neurons stay free. In figure 4.3, we see the spike
train of the neurons before and after learning. They are ordered by their
mean activation time point within the assembly.
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Figure 4.1: left: The synapses are connecting the external input neu-
rons on the horizontal axis (presynaptic) to the postsy-
naptic SWTA neurons on the vertical axis. right: As this
is just one feed-forward SWTA with 100 neurons there is
no recurrent connectivity.
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Figure 4.3: Single SWTA response to input before and after learning.
All internal neurons are sorted by their order of activation
within the assembly: top: input sequence to test the
untrained network and below the corresponding output
of the untrained network. bottom: input for testing the
trained network and below the spike train of the ordered
assembly neurons: there is a clear activation trajectory
for the frozen spike-time-pattern and very little response
while noise is shown
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4.2.3 Missing capabilites of the single SWTA setup

The number of neurons sets the maximum possible time points in which
neurons could specialize. In order to form bigger assemblies or more differ-
ent activation trajectories, there have to be more neurons. Each neuron is
subjected to the same amount of inhibition β. So the inhibition and has to
be adapted to the size. So using more SWTAs of similar size, overcomes
this need for adaptions. In the later setups, we will use randomly generated
SWTAs with same parameters K and σ2, which dramatically reduces the
need for parameter optimization, then in section 6.2 we will use the same
model parameters for 100 SWTAs.
Furthermore this setup is only input driven, because there is no internal dy-
namic. This will be different for the recurrent networks in the next chapters.
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4.3 Specifying the recurrent setup

In this chapter we will specify the SWTA model parameters, which we will
use in all further simulation to better compare all different structures. All
presented configurations are based on a 3x3 grid of 9 SWTAs with the
parameter ranges, defined in this section. We are using a uniform connection
pattern, because a 3x3 grid is too small for distance dependent connectivity.
The external input channels will be connected according to Setup 1 (see
chapter 5.1), because the initial setup is not very capable to learn more
assemblies (see 4.4.2).

4.3.1 Number of hidden neurons N

Now we are using nine SWTAs in a 3x3 grid, where each resembles that
of chapter 4.2 and has exactly the shown number N of hidden neurons
z. A uniform recurrent connectivity pattern is used, where each neuron is
connected to another one with the probability prec = 0.6.
In figure 4.4 is the mean performance and standard error of 100 trials. We see
that 20 neurons is the minimum for a good performance. Learning 2 patterns
with more than 32 neurons decreases slightly the performance. There are
multiple possible explanations: (1) The assemblies get much bigger and this
decreases the correlation as there are more spikes at wrong times. (2) The
uniform connection is based on the number of neurons, which will increase
the number of recurrent connections by the same amount of external input
connections. (3) The model parameters have to be adapted for this bigger
model, as more neurons emit the same amount of inhibition, the membrane
potentials are lower (see section 4.2.3).
Further experiments have shown, that the performance is further increased
by using different number of neurons. Therefore we will choose a randomly
drawn number of neurons in the range from 24 to 30 neurons, as this is a
good range in figure 4.4.

4.3.2 Recurrent connectivity pconn

In this section we will observe the influence of different recurrent connec-
tion probabilities. We are using the configuration from the previous section
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Figure 4.4: Performance of different neuron numbers N , over 100 tri-
als with standard error. The optimal range is above 20
neurons. Above 32 neurons the performance of learning
2 patterns starts to slightly decrease.

with the specified randomly drawn number of neurons between 24 and 30.
Each configuration is simulated for 100 times and the mean performance
and standard error is plotted in figure 4.5.
We expected that a very high amount of recurrent connectivity will pre-
vent learning, as the huge amount of connections will be a problem for the
membrane potential. But the surprising result was, that the amount of re-
current connections did just slightly influence the performance. For learning
2 patterns it did not make much difference to have 25% (766 recurrent con-
nections) or 95 % (42538 recurrent connections).
The performance drop above 0.7 while learning 10 patterns is probably due
to the lack of capacity, as there are additional internal signals learned. This
could probably overcome by using more SWTAs or just neurons, because we
are using a mean of 243 z-neurons for 10 different 150ms patterns, whereas
each neuron should specialize on one of 1500 possible time points.
Further analysis indicated that if the network was in a working regime with
high connectivity, it decreased a lot of "unneeded connections" within a short
time and came to the same results as in a more sparse initial setting. This
was even possible in a nearly unstable configuration, where the network
starts bursting when injecting uncorrelated noise instead of the pattern.
As there is no clear optimum, we choose prec = 0.6 for all future simulations.
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Figure 4.5: Now a randomly drawn number of z-neurons between 24
and 30 was simulated for 100 trials. The dots are the
mean and the bars resembles the standard error. The
surprising result is, that the amount of initial connections
has not a real influence for less than 5 patterns. Larger
number of patterns decreases the mean performance and
if there are many initial recurrent connections then the
performance is further decreased.

4.3.3 Excitability α by chosing K

Choosing an appropriate K value is important as it directly influences the
amount of spontaneous activity (see section 4.1.1) and how much "evidence"
is necessary to specializate a neuron. We show here the mean performances
and standard error of different excitabilities, using a random configuration
according to the previous defined parameter ranges. The excitability α is
adapted by changing K and leaving σ2 = 0.39 constant.
In Figure 4.8 we see that the performance is mainly influenced by the ex-
citability. We have to use a value between -11 and -7 to achieve good results
with this inhibition value β. We see that this configuration is capable of
learning more assemblies, even with 5 assemblies a mean group correlation
above 0.6 is possible. For all further simulation we chose K = −9



4.3. Specifying the recurrent setup 30

�12 �11 �10 �9 �8 �7 �6
K

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
ss

e
m

b
ly

 g
ro

u
p
 c

o
rr

e
la

ti
o
n

Performance of K

nP=2
nP=5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.6: Performance of different excitabilities by using dif-
ferent K values and same σ2 = 0.39 over 30 runs to learn
2 and 5 patterns, with standard error. Choosing the K
value has high impact on the performance.

4.3.4 Adapting the competition β with σ2

Now we are varying the amount of competition by changing σ2. The compe-
tition is the key for successful learning, as it directly influence the inhibition
to all other neurons within a SWTA and the excitability α. So it controls
the activity of a SWTA and how many neurons could specialize for specific
time points.
In figure 4.7 we see that there is only a small range of σ2-values for achiev-
ing good performance. This region is directly connected with the chosen K
value through α (see equation 2.9). We choose σ2 = 0.384.

4.3.5 External stimulation rin

To compare the different structures we want to have the same external stim-
ulation. We are using the same input stimulus as in 4.2.1. To keep the
number of external channels constant we are using 160 channels and con-
nect each one with a probability of pconn,input = 0.4. Therefore each SWTA
has a completely different external input with similar number of channels.
Each channel provides the same rate rin, which is crucial as it provides the
amount of evidence for learning. Too little stimulation wouldn’t suffice to



4.3. Specifying the recurrent setup 31

0.3 0.4 0.5 0.6
sigma

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ss

e
m

b
ly

 g
ro

u
p
 c

o
rr

e
la

ti
o
n

Performance of sigma

nP=2
nP=5

0.3 0.4 0.5 0.6 0.7 0.8
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Performance of different 2  values

Figure 4.7: Performance of different inhibition values by using
different σ2 over 100 runs with standard error.

trigger successful learning and too much stimulation would trigger too much
activity, which results in a bad performance (see section 4.1.1).

In figure 4.8 we see the performance of different rates by using the pre-
viously defined model parameters. We have now 160 channels with the
specified rate rin, where 40% are connected to each SWTA. To achieve a
performance above 0.5, we have to use at least 9 and at max 10Hz. Which
means that there should be a input stimulation of more than 5120spikes/s
and below 7040spikes/s for that kind of stimulus. To overcome that con-
straint, one has to adapt the excitability α or even the learning rule, which
would be a major model modification (see 4.1.3). Nevertheless we will use
rin = 10Hz for future simulations.
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Figure 4.8: Performance of different external input rates rin to learn
2, 5 and 10 patterns over 100 trials with standard error.
The external input stimulation determines the amount of
"evidence" for the pattern, so it directly influences the
learning performance.
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4.4 Initial configuration (setup 0)

In the previous section we have defined the most important model parame-
ters, which we will use now in a simple structure, where the external channels
are connected to all neurons (see figure 4.9). We will use the defined pro-
cedures and tools from chapter 3 to analyze the stimulus specific assembly
structures.

4.4.1 Results after 100s learning

In figure 4.10 we see that nearly all neurons have high synaptic weights for
the same external input channels. The histogram below also shows that in-
put weights are spread over the whole weight values, whereas the recurrent
connections are nearly all below 0.5. These high weighted channels are the
cause for bursting, when multiple spikes occur in these channels.
This could be seen at the mean activation plot 4.11, where the whole first
assembly spikes at the same time. The second assembly has a short activa-
tion trajectory after the burst, but has the same problem.
We tried to optimize the model parameters by adapting K, σ2 and the
amount of connectivity. The above mentioned effect is present in all simu-
lated configurations, it was just possible to slightly reduce it.
One of the best simulations is plotted in figure 4.12. This configuration is
only capable to emerge one assembly, because further assemblies only con-
sists of many neurons spiking at nearly the same time (bursts).
This simulation had a mean performance of 0.68. The first assembly is quite
good with a correlation coefficient of 0.76 and 121 neurons, but the second
with a good correlation of 0.6 and 90 neurons is very concentrated at the
end of the presentation time. There are 9 neurons active for both activation
trajectories, but no free neurons.
So we concluded that the bursting behavior is caused by this kind of con-
nectivity structure.

4.4.2 Problems regarding the initial setup

• The weights adapt very fast to the highly correlated input. All recur-
rent weights go down below 0.5 at a very short time-scale. We see that
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Figure 4.9: Initial setup 0: horizontal axis are the presynaptic neu-
rons and vertically are the postsynaptic neurons. Each re-
current and input weight is initialized uniformly between
wmin = 0.001 and 1. The maximum of each weight after
learning is wmax = 2.
input weights: there are 64 external channels, each
channel connects to each neuron. In total there are 15232
input connections (33.4%).
recurrent weights: each neuron connects with each
other neurons with a probability of 0.6, which results
in 30419 connections. This is a mean of 128 (min=110
max=143) connections per neuron
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Figure 4.10: Setup 0 after 100s learning: Some external input
channels are at maximum weight wmax = 2.0 for nearly
all neurons. That leads to very high stimulation when
this channel is on, which could result in bursting. bot-
tom: Histogram of weights on linear- and log scale: The
most recurrent weights go down below 0.5, the input
weights spread over the whole possible range.
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Figure 4.11: Mean activation and rank correlation using parameters
from section 4.3: The high weights for the same input
channels causes bursting. No activation trajectory is
spread to the whole presentation time.
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Figure 4.12: Mean activation and rank correlation using optimized
parameters: one assembly is learned, but both assem-
blies consist mainly of bursts.
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Figure 4.13: Left column simulation with the parameters from sec-
tion 4.3. Both assemblies are mostly a burst at the same
time right column: Optimized parameters for setup 0:
We see that an assembly structure emerge, but only 1
Assembly is learned with a clear activation trajectory,
the second is mostly a burst at the same time.
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very few recurrent connections survive and that specific input channels
have high weight values for all neurons, which facilitates bursting.

• This setup is not capable of learning more than one assembly. At best
only the first assembly has a clear activation trajectory, the second
is mostly a burst at the same time. Also the size of the first shown
assembly is larger than the second one and there are no free neurons
left after a simulation. So the capability of learning more input specific
trajectories is substantially reduced after each presentation.



Chapter 5

Different recurrent connectivity
structures

In the last chapter we have defined parameter ranges for the SWTA model
and simulated the initial structure. The first recurrent setup had some seri-
ous drawbacks. The conclusion from the initial setup simulations was that
providing all neurons with the same input leads to too high correlation for
the input channels, which results in a very input-driven network. We want to
have a recurrent setup, which is capable to emerge assembly structures and
is less input-driven. For achieving that, we propose 2 different approaches,
which results in the following 3 setups:

1. Setup 1: Provide each SWTA with a different external input.

2. Setup 2: Generate internal activity.

3. Setup 3: Combine both approaches, to have internal activity and dif-
ferent external input.

In this chapter a typical example for each configuration is shown and the re-
sulting assemblies are analyzed with the methods from section 3. Afterwards
the role of noise is further examined.

39
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5.1 Setup 1: different external input

With this structure we want to provide each SWTA with a different kind
of external stimulus, but use the same SWTA model from the last chap-
ter. So we have to keep the external stimulation equivalent (compare to
section 4.2.1). Therefore we need a mean of 64 external input channel per
SWTA with the same rate rin = 10Hz.
The solution is, that each SWTA receives a random fraction of 160 external
input channels with a probability of 0.4 drawn for each channel.

5.1.1 Learn 2 patterns using setup 1

We show here a typical example for setup 1. We are using the above men-
tioned external connectivity motif and the defined model from the previous
chapter to learn 2 spike time patterns.

The randomly generated network structure is shown in figure 5.1. We
have a mean number of 191 presynaptic connections per neuron, where at
mean 62 channels (min=44, max=73) are external, which is a fraction of
32%.

The network formed two input specific activation trajectories which have
both very high correlation to the stimulus and are spread over all 9 SWTAs.
The first assembly has a correlation of 0.81 and consists of 63 neurons (26%).
The second assembly has a correlation of 0.76 and consists of 114 neurons
(47%). There are 68 free neurons (28%) and 4 overlapping neurons in 3
different SWTAs. They are plotted twice in figure 5.4, as they have different
rank orders in different assemblies.
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Figure 5.1: Setup 1 initial synaptic weights: horizontal axis are
the presynaptic neurons and vertically are the postsynap-
tic neurons. Each recurrent and input weight is initialized
uniformly between wmin = 0.001 and 1. input weights:
there are 160 external channels, each channel connects to
a SWTA with probability 0.4, this results in a mean of
62 (min=44, max=73) connections per neuron. In total
there are 31177 recurrent connections and 14954 input
connections. So each SWTA receives a mean of 32.3%
external input stimulation. recurrent weights: SWTAs
are all-to-all connected, each neuron connects with each
other neuron with a probability of 0.6, which results in a
mean of 130 (min=110, max=144) connections, which is
67.3% of the stimulation.
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Figure 5.2: Setup 1 synaptic weights after 100s learning: The weight
range is between wmin = 0.001 and wmax = 2
top: There is now more connectivity preserved and there
are more different weight values.
bottom: The input and recurrent weights are similar
distributed and both are mostly below 1.0.
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Figure 5.3: Setup 1 mean activation and rank order correlation for all
assembly neurons with a maximum rate above 30Hz:
Assembly 1 first row: the assigned neurons have spe-
cialized clearly on specific time points within the presen-
tation time of pattern 0. The rank order correlation is
also stable.
Assembly 2 second row: also the second trajectory has
a clear activation sequence and high rank order correla-
tion.
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Figure 5.4: The exact same spike time pattern is shown to the un-
trained network (top) and the trained network (bottom).
The neurons are ordered by their mean activation time
for the corresponding assembly, overlapping neurons are
plotted twice according to their order. top: We see that
there is no structured activity, each response to a pat-
tern is completely different. bottom: Each neuron has
specialized for a specific time point when the stimulus is
shown.
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5.2 Setup 2: Internal activity

The initial setup becomes very input driven because all weights are reduced
to a low value in a very short time. With setup 2 we are trying to force
the network to use more recurrent connections by decoupling some SWTAs
from the external input. To generate internal activity we need some stimu-
lation for these SWTAs. Therefore channels that deliver only Poisson noise
without any pattern instead of the external channels, are connected with a
probability of 0.3.

5.2.1 Learn 2 patterns with setup 2

The randomly drawn structure is plotted in figure 5.5. It almost looks like
setup 0, because the weights are randomly initialized. But only 4 SWTAs
(44.4%) get a real signal, 5 SWTAs (65.6%) receive their channels just Pois-
son spiketrains at the same rate without a pattern. The SWTA 1, 2, 4, 5
and 6, which receive just noise are clearly visible after learning in figure 5.6,
because they have more uniform weight values.

Both assemblies are spread over all 9 SWTAs and there is a overlap of
11 neurons between them. So each non-input SWTAs takes part by both
assembly activation trajectories. This indicates that the recurrent connec-
tions are used for learning the activation trajectories.
The assembly of figure 5.7 has some similarity to figure 4.11 from setup 0.
But in this configuration the assembly size with 44 and 45 neurons is more
equal than the one in setup 121 to 90. The rank order correlation is also
much higher, maybe because only neurons that highly correlate with the
stimulus stay within the assembly.
A possible interpretation is, that the noise let the network forget weak ties
of neurons to an assembly. This is helpful to preserve learning capability,
so that the network is able to learn more at a later time. The presented
simulation has 111 (49.6%) free neurons. The initial setup had none (0%)
and setup 1 had 68 (28.2%).
There are just 4 SWTAs (44.4%) receiving the patterns and they get 64
channels which is a mean of 34.7% of their stimulation. So effectively, we
have reduced the external stimulation by the pattern to around 15.4%. Sur-
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Figure 5.5: Setup 2: horizontal axis are the presynaptic neurons and
vertically are the postsynaptic neurons: input weights:
there are 64 external channels, each channel connects to
all SWTA like in setup 0, which are 14336 input connec-
tions in total. So each SWTA receives a mean of 34.7%
external input stimulation. But only 4 SWTAs (44.4%)
get a real signal, 5 SWTAs (65.6%) receive their channels
just noise at the same rate without a pattern. recurrent
weights: SWTAs are all-to-all connected, each neuron
connects with each other neuron with a probability of 0.6.
This results in 26966 recurrent connections. The mean is
120.4 (min=102, max=139) connections, which is 65.3%
of the stimulation. Each recurrent and input weight is
initialized uniformly between 0.001 and 1.
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prisingly this is enough to produce the same drawbacks as setup 0 (see
section 4.4.2). So this structure inherits the problems from setup 0 even
with this little input fraction. But the tendency to burst is not that strong,
because the weights are smaller and the connectivity becomes very different.
Nevertheless this setup offers some useful features.
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Figure 5.6: Synaptic weights of setup 2 after 100s learning. exter-
nal weights: SWTA 1, 2, 4, 5 and 6 have no external
connectivity, their weights are more uniform as they just
receive random Poisson spike trains. SWTA 0, 3, 7 and
8 have a similar connectivity than in setup 0, but now
the most input weights are below 1, which prevents the
bursting tendency. internal weights: all SWTAs are
part of the both assemblies, this indicates that the recur-
rent structure is used for learning. The most recurrent
weight values are below 0.6.



5.2. Setup 2: Internal activity 49

0 20 40 60 80 100 120 140 160170time [ms]
0

10

20

30

40

49

n
e
u
ro

n
 i
d
x

mean activation during 178 pattern# 0 (0.0/50.0)

0

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
rank correlation

0

19

38

59

#
 t

ri
a
ls

similarity of assembly activations during 178 pattern #0 representations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160170time [ms]
0

10

20

30

40

50
52

n
e
u
ro

n
 i
d
x

mean activation during 179 pattern# 1 (0.0/60.0)

0

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
rank correlation

0

19

38

59

#
 t

ri
a
ls

similarity of assembly activations during 179 pattern #1 representations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.7: Mean activation and rank order correlation of neurons
with a maximum rate above 20Hz: The first assembly is
spread over the whole presentation time and the second
has a big gap at the beginning. Many neurons are special-
ized for a similar specific time point, but fewer as in setup
0, so bursting is not a problem in this setup. The activa-
tion trajectory is quite stable, as the rank correlation is
positive.
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Figure 5.8: The exact same spike time pattern is shown to the un-
trained network (top) and the trained network (bottom).
The neurons are ordered by their mean activation time
for the corresponding assembly, overlapping neurons are
plotted twice according to their order. top: There is the
tendency that the neurons fire together at random times,
but there is no structured activity before learning. bot-
tom: A stable activation trajectory for both patterns is
visible, but there is a gab in the middle of the first train
and at the beginning of the second.
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Figure 5.9: Performance of different input fractions to learn 2, 5 and
10 patterns over 50 trials with standard error.

5.3 Setup 3: Different external input with internal
activity

The previous setup had some useful features, but the same drawback as the
initial setup. So we combine these features with the good learning capability
of setup 1.
At first the new parameter for the input fraction of external input receiving
SWTAs is further analyzed. According to figure 5.9, even with an input
fraction of 0.35 emergence of good input specific assemblies is possible and
above 0.60 a good performance is always achieved. We will present now an
example with an input fraction of 0.5.

5.3.1 Learn 2 patterns with setup 3

The structure in figure 5.10 is now a combination of setup 1 and 2. SWTA
3, 4, 7 and 8 are connected to the external channels which receive input.
All other receive just Poisson spike trains without patterns. The synap-
tic weights after 100s learning in figure 5.11 show a stronger connectivity
than all previous analyzed structures. We have very few weights (1.7%) at
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Figure 5.10: Setup 3: horizontal axis are the presynaptic neurons
and vertically are the postsynaptic neurons: input
weights: there are 160 external channels, each chan-
nel connects to a SWTA with probability 0.4, this re-
sults in a mean of 62 (min=44, max=73) connections per
neuron. In total there are 31177 recurrent connections
and 14954 input connections. So each SWTA receives
a mean of 32.3% external input stimulation. But only
4 SWTAs (44.4%) get a real signal, 5 SWTAs (65.6%)
receive their channels just noise at the same rate with-
out a pattern. So only 14.3% of the channels receive
the embedded pattern. recurrent weights: SWTAs
are all-to-all connected, each neuron connects with each
other neuron with a probability of 0.6, which results in
a mean of 129 (min=110, max=144) connections, which
is 67.3% of the stimulation. Each recurrent and input
weight is initialized uniformly between 0.001 and 1.
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maximum wmax = 2 and fewer (28%) at minimum wmin = 0.001. Now the
input and recurrent weights are similar distributed, it has a similarity to a
log-normal Distribution.

The first assembly has a correlation of 0.84 with 26 neurons (10.8%),
the second has a correlation of 0.73 and 35 neurons (14.5%). But both
assemblies have only neurons in the input receiving SWTAs 3, 4, 7 and 8.
Nevertheless there are 3 overlapping neurons. This setup is capable to create
an efficient input specific assembly trajectory for an input and preserve also
capabilities for feature stimuli.
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Figure 5.11: Setup 3 synaptic weights after 100s learning: There is a
strong connectivity with nearly no weights at maximum
and fewer at minimum. The distribution for input and
recurrent weights is quite similar and resembles a log
normal distribution.
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Figure 5.12: Setup 3 mean activation and rank order correlation for
neurons with maximum rate above 30Hz: The assem-
blies are smaller, but there are neurons specialized to all
time points. The rank order is very stable, as the rank
correlation is very high and the neurons fire at specific
time points with high rate.
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Figure 5.13: The exact same spike time pattern is shown to the un-
trained network (top) and the trained network (bottom).
The neurons are ordered by their mean activation time
for the corresponding assembly, overlapping neurons are
plotted twice according to their order. top: There is no
structured activity. bottom: There is a stable activa-
tion trajectory for both patterns visible, which resemble
each other. Between the representation times there are
nearly no spikes.
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5.4 Noise as feature

One side effect of these structures is that they induce some amount of noise,
which has some functions in matter of varying the stimuli and making the
learning more robust. In this section we analyze how much additional noise
could be handled by setup 1.

5.4.1 Superimposed noise

There is already some significant amount of noise within the signal. We
embed the pattern within the stimulus, so we are switching between 100%
noise and pure signal. In this section we put some additional noise on top
of the pattern. Therefore there will be noise in all channels all the time.
In figure 5.14 on the left side we are putting Poisson spike trains as noise on
top of a rin = 8Hz signal. Therefore a noise rate of rNoise = 4Hz, means
that there is a constant rate of rtotal = 12Hz.
Surprisingly using additional noise on top improves the learning perfor-
mance. A total rate of rtotal = 10Hz worked best. This could indicate
that the presented stimulation rtotal is more important then the pattern
rate rin.
To test this assumption we let the total stimulation rtotal constant and re-
duce the rate of the signal exactly by the rate of the noise. The result is
plotted in figure 5.14 on the right side.
We see that 10 patterns could be learned even with 30% noise. Using even
50% noise works for 2 signals, but 60% seems to be the borderline.

This setup is capable to successfully build self organized assemblies of
neurons even when the pattern is embedded in huge amount of noise.

5.4.2 Jitter

Another possible noise source is random time delays of transmission, which
result in slightly different spike times. This could be modeled by using
a noise on the time scale while presenting the spike time pattern. This
noise was a Gaussian on the spike times, which mean is the time point
of a spike and a variance of the jitter-value in ms. In figure 5.15 a small
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Figure 5.14: Performance of superimposed noise on the frozen pattern
with mean performance and standard error of 50 trials.
left: Superimposed noise on top of rin = 8Hz signal.
Adding rNoise = 2Hz on top has even a better perfor-
mance. right: The total rate is constant rtotal = 10Hz.
The performance is also slightly better with 2 Hz Noise,
drops at rNoise = 5Hz which is 50% noise during pattern
representation times.
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Figure 5.15: Performance of different jitter values from 100 trials with
standard error. A jitter value of 0.8ms works best for
1 and 2 patterns. By using 5 pattern the performance
is best with 0.15ms. This could be due to a limited
network capacity, as jittering could be seen as showing
more patterns to the network.
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jitter on the time axis has a positive influence on the learning performance.
Slight jittering could have improve the learning performance in showing more
variations of the pattern to the network, which could makes the learned
representation more robust. But this reduces the performance for learning
more patterns, as jittered patterns could need more network capacity as it
could be seen as more different patterns.

5.4.3 Synaptic delays

Different transmission times of synapses are modeled as delays. We used
3ms for the excitatory synapses and 2ms for the inhibitory synapses. This
times are randomly drawn for each synapse according to a Gaussian Distri-
bution with mean of the delay time and variance of half the delay time.
This was necessary to make bursting less probable, as there was a problem
that closely spiking neurons of different SWTAs started to synchronize their
firing behavior and so facilitated bursting. Using different delay times im-
proved the learning performance.
A possible explanation is, that the same external channel produces different
internal activity. Somehow this could be compared to the jittering effect, as
different forms of the pattern get in the network. But the main difference
is, that the amount of pattern variation is fixed through the structure and
therefore there is no capacity problem. Therefore all simulations use random
synaptic delays at each synapse.



Chapter 6

Biologically inspired setup

In this chapter we will show that the determined setup could be scaled up
to much bigger configurations and is also able to learn efficiently by incor-
porating various different biologically inspired features.
At first we will introduce distance dependent connectivity. Afterwards we
will add parts from the previous chapters to the setup. The final configura-
tion will be setup 3 with superimposed noise on top of the pattern and also
noise on the time axis on a much bigger 10x10 grid of 100 SWTAs with an
exponentially distributed distance dependent connectivity pattern.

6.1 Distance dependent connectivity

6.1.1 Definition

To build a biologically more realistic setup like [Markov et al., 2011] we use
a distance dependent connectivity pattern according to an exponential dis-
tribution. So the probability that two neurons are connected drops exponen-
tially with the distance. Now we calculate all distances between the SWTAs
on the 2D grid and draw for each neuron according to the exponential dis-
tribution from equation 6.1.

p(d) = λexp(−λd) (6.1)

60
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6.1.2 Periodic boundary conditions

Because we wanted to exclude border effects of small setups, we added a
periodic boundary condition. By calculating the distance the whole grid
is repeated 9 times (like a 3x3 grid) and the starting point is the location
in the center grid and the end point is the location on the closed grid.
Therefore the resulting distances are a little shorter, but each point get a
similar amount of distant neurons, which emulates a much bigger grid. The
synaptic distribution histogram using λ = 0.455 is plotted in figure 6.2.

6.1.3 Performance

To show how the exponentially distributed connectivity influences the per-
formance, we use 50 SWTAs on a 5x10 grid, with the same configuration as
in the previous chapters and evaluate the performance by learning 2, 5 and
10 input patterns.
The results are in figure 6.1. For 2 patterns a higher λ does not drop the
performance. Surprisingly very few connections with λ = 0.1 and many
λ = 1.1 works best for 5 and 10 patterns. The performance of 5 patterns is
mainly constant between 0.2 and 1 at 0.59.

6.2 Biologically inspired setup simulation

We are using now setup 3 with a 10x10 grid of 100 SWTAs of 2692 neu-
rons. The hidden neurons are randomly drawn within a range of [24, 30].
The neurons are connected according to an exponential distance distribu-
tion with λ = 0.455, which results in 1422294 recurrent connections. The
histogram of distances is plotted in figure 6.2. The input rate rin = 8Hz
with superimposed 2Hz Poisson spike train as noise.
The external input fraction is only 10.7% of the connection per neuron.
There are only 48 SWTAs connected to the real input and 52 receive just
noise. Only a fraction of 5.14 % of the input channels carry the spike time
pattern. There is much activity within the network, as the neurons are
spiking because of the Poisson spike train.
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Figure 6.1: Performance of different λ of the exponential distance
distribution connectivity probability over 60 trials using
setup 3 with 0.5 input fraction.
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Figure 6.2: Histogram of distances with λ = 0.455: left: The be-
low presented setup with 504353 recurrent connections,
which is used for the performance test. The gap by 2.5
is due to the periodic boundary conditions, as the lower
border is just 5. This vanish in the right setup. right:
The histogram of the 100 SWTAs on a 10x10 grid with
1422294 recurrent connections, which is simulated in the
next chapter.
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Figure 6.3: Distance dependent connectivity initial synaptic
weights: horizontal axis are the presynaptic neurons
and vertically are the postsynaptic neurons. Each re-
current and input weight is initialized uniformly between
wmin = 0.001 and 1. input weights: there are 160 ex-
ternal channels, each channel connects to a SWTA with
probability 0.4, this results in a mean of 64 (min=46,
max=77) connections per neuron. In total there are
171681 input connections. So each SWTA receives a mean
of 10.7% external input channels, whereas only 48 (48%)
of them receive the pattern. Therefore only 5.14% of the
channels receive input. recurrent weights: the recur-
rent connection is drawn for each neuron according to the
exponential distance distribution, this results in 1422294
recurrent connection, which is a mean of 528 connections
per neuron (min=446, max=592)
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Result after 100s learning

The first assembly has a correlation of 0.74 with 195 neurons which is 7.2%
of the network, which spreads over 54 SWTAs. The second assembly has a
correlation of 0.76 with 299 neurons which is 11.1%, which spreads over 85
SWTAs. There are only 2 Neurons that are part of both assemblies.
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Figure 6.4: Synaptic weights after 100s learning:
top: The connections are mainly preserved, the diagonals
of higher connectivity are still visible.
bottom: The histogram shows a similar distribution for
recurrent and input weights. There are very few weights
at maximum (0.02% recurrent and 0.66% input) and only
26.9% recurrent and 37.2% input weights go down to
wmin.
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Figure 6.5: Mean activation and rank correlation for neurons with
maximum rate above 30Hz: There is a clear activation
trajectory and the rank order correlation is positive
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Figure 6.6: The exact same spike time pattern is shown to the un-
trained network (top) and the trained network (bottom).
The neurons are ordered by their mean activation time for
the corresponding assembly, overlapping neurons are plot-
ted twice according to their order: top: There is again
no structured activity before learning. bottom: There is
clear activation trajectory for each pattern.



Chapter 7

Summary and conclusion

In this thesis we studied the self organization of neurons in different network
structures. Our goal was to find and describe networks that are capable to
emerge stimulus specific assemblies and have various biological properties.

In order to do that, a simulation environment was developed and used to
simulate various different configurations. We have presented the basic micro-
circuit motif, how these models are implemented and recurrently connected.
Afterwards we have defined a performance criterion, that was applied to
quantify the ability of networks to emerge assemblies. This criterion was
used to evaluate different configurations and describe how variations of dif-
ferent parameters influence the self organization capability of the network.
We have described and solved several difficult issues in constructing a stable
configuration. In chapter 5 we have analyzed different structures with its
specific features and learning capabilities. Afterwards different kinds of noise
were examined. It was shown that the networks could handle big amount of
noise, if the network stimulation is within a working regime.
The final simulation uses 100 sWTAs in a distance dependent connectivity
pattern with the previously defined model parameters. In this simulation
only 5% of the channels receive an external pattern with additional super-
imposed noise at random times.

This thesis has shown how to construct a scalable recurrent SWTA cir-
cuit that is capable to emerge input specific assemblies, even with very little
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input stimulation and high amount of noise. Furthermore neurons are part
of different assembly groups and spike less stereotypical, which resembles
some data of [Harvey et al., 2012]. So maybe the presented results could
contribute to the understanding and modeling of biological data.

Future research could go in various different directions:

• As the presented networks could mimic various biological features and
is scalable, it could maybe be used to model larger neural structures.
One approach would be to use different SWTA configurations within
one recurrent setup. Then different SWTAs would respond to different
input complexities, which could enhance the network to work for var-
ious different amount of input stimulation and so extend the working
regime.

• Another approach is to enhance the model itself. This was mentioned
in section 4.1.3. Then each SWTA would be capable to adapt it’s
excitability α and specialize on a specific input complexity.

• Another possibility is to go one step further and start chaining different
learned assemblies. The input patterns could for example be different
syllables. The network could be trained to construct different assem-
blies to each one. Afterwards the chaining of this assemblies and there
behavior could be further analyzed and compared to biological data.
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