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Abstract

Electrical Capacitance Tomography (ECT) is a reliable toolifeaging industrial pro-
cesses. Basically, it reveals information on the interigtribution of the material in a
pipe or vessel. Due to its soft-field modality and due to thpaked nature of the involved
inverse problem, only a limited spatial resolution is ob¢al. Especially the reconstruc-
tion of sharp phase boundaries is challenging. In many egipdns, however, an accurate
determination of these boundaries is necessary, for iostre identification of mixing
zones in stirred reactors, interface measurements in @ngglparation processes, mea-
surements of two or more phase boundaries in pipes withagians to multi-phase flow
measurements, and non-invasive testing of materials teefmdnclusions. Additionally,
the identification of phase sizes and boundaries withinelessd pipelines provides in-
formation on fundamental reaction kinetics and it can beldsemodel validations and
for finding out an optimal geometry of the equipment.

Commonly used imaging techniques yield blurred images w#h Epatial resolution.
In this work a shape reconstruction technique is suggestguiécewise constant permit-
tivities. The level set method, which is utilized to deserémd evolve non-trivial contours,
is combined with the boundary element method, which solhedd firoblems with high
accuracy. The Gauss-Newton method is applied to obtaintadmsergence and yields
an imaging technique, which reconstructs the involved resesimultaneously to their
boundaries in an iterative optimization process. Due tottéatment of physical con-
straints for the material value and for the geometry, a staptimization can be achieved
under all kinds of potential conditions. The measuremergenis considered as well and
improves the reconstruction of real world measurement ciataiderably. Experimental
results validate the good performance and accuracy of tygoged imaging technique.
As far as the author knows it is the first treatment of the isggaroblem in ECT by the
combination of boundary elements and the level set method.

The application of a single type of sensor is not the only oty for a tomography
system. In this work a dual-mode system is considered as icatndn of ECT and ul-
trasonic reflection tomography (URT). The information abedges from URT provides
a physically meaningful regularization (a priori infornwat) for reconstruction of ECT
data. This new technique for data fusion performs, baseteletel set method, an edge
detection of an URT image simultaneously to the ECT recoaostm. This yields closed
contours for the URT and improved accuracy of boundarie<dm.E

Keywords: Boundary Element Method, Capacitance Tomography, Level Sehddl,
Inverse Problems






Kurzfassung

Elektrische Kapazitatstomografie (ECT) ist ein zuverlgssidpildgebendes Verfahren fur
industrielle Prozesse. Grundsatzlich erhalt man Schicigtbder Materialverteilung in
Rohren oder Behéltern. Aufgrund der so genannten ,soft-fi€lidlenschaft und der
~Schlechtgestelltheit” des Problems ist nur eine besdttgdAuflosung maoglich. Insbe-
sondere die Rekonstruktion von scharfen Materialiibergérmsiesine Herausforderung.
Diese ist in vielen Anwendungen erwiinscht, wie z.B. bei dgagaion von Stoffen oder
beim Testen von Materialien auf Einschlisse. Zusatzliginkeine Rekonstruktion von
Phasengrenzen verwendet werden, um Modelle zu validietenwm optimale Geome-
trien von Anlagen zu entwickeln.

Die normalerweise verwendeten bildgebenden Verfahregeneiur verschwommene
Bilder mit einer begrenzten ortlichen Auflosung. In diesebdit wird eine Rekonstruk-
tionsmethode flr stiickweise konstante Leitfahigkeitergestellt. Diese basiert auf der
Kombination der Level-Set Methode, um Deformationen vomgtexen Konturen und
Formen zu beschreiben, mit der Randelemente Methode, umetidysréblem mit guter
Genauigkeit zu lI6sen. Die Gauss-Newton Methode wird fle echnelle Konvergenz
verwendet und die Materialwerte werden im iterativen Psezg@multan mit der Form
rekonstruiert. Physikalische Randbedingungen, wie didvigerialwerte oder der Geo-
metrie, werden mit der Active-Set Methode bericksichtigt @ine stabile Optimierung
unter allen mdglichen Bedingungen zu garantieren. Zusétzlird Messrauschen be-
ricksichtigt und das beschriebene Verfahren wird anhamdWessungen validiert. So
weit es dem Autor bekannt ist, ist das die erste Behandlung¢nstessen Problems in der
ECT mit der Kombination der Level-Set und der Randelementenvtis.

Die Anwendung eines einzelnen Messprinzips ist nicht deragje Moglichkeit ei-
nes Tomografie Systems. In dieser Arbeit wird ein System arikedmbination von ECT
mit Ultraschall Reflexions Tomografie (URT) betrachtet. Diéofmation Gber Materi-
algrenzen stellt eine physikalisch sinnvolle Regularisigr(a priori Information) fur die
ECT Rekonstruktion bereit. Diese neue Technik der Fusion wms&daten fuhrt, basie-
rend auf der Level-Set Formulierung, eine Kantendedekton URT Bild simultan zur
ECT Rekonstruktion durch. Durch diese Fusion erhélt man desstne Rander in der
URT und verbesserte Genauigkeit der Materialgrenzen ifcQ4r.

Schlagwdrter: Randelemente Methode, Kapazitatstomografie, Level-Sehddet In-
verse Probleme
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Chapter 1

Introduction

Tomography and its non-invasive principle of imaging aré nestricted to the medical

field.

Over the last decade, industrial tomography systesme been developed and they

are used for many industrial applications as a reliableftmaimaging [23, 64, 71]. Basi-
cally a number of sensors are mounted around a pipe or vast#iay reveal information
on the interior distribution of material. The output sighdepend for example on the po-
sition of the boundaries of different components. Thisigpaariation of the parameter of

interest is represented as a cross-sectional image. Tdue$s is known as image recon-
struction and the obtained image is further analyzed gizdngly for example to improve
process control or to develop models for individual proesssfomography systems are
used in a wide field of industrial applications, for examseg [23, 64, 71])

iImaging of multi-phase processes such as for conveying@ss{pneumatic con-
veying for particulate solids, powders, and flakes), forfald pipelines (com-
ponent fraction and velocity distribution in flow regimes fmntrol purposes), in
centrifugal or gravity separators (liquid/liquid, gagtlid mixing, and solid/liquid
separation), and hydro-cyclone imaging,

measurement and control of multi-phase flows (e.g. [27, @23}udy the dynamic
behavior in fast flows or to measure mass flow rates in compgigixres,

in pipeline conveying (slug flow) to control the air flow to peat blockage and to
decrease the energy demand and pipeline erosion,

monitoring of filtration processes,

flame imaging in an internal combustion engine cylinder,

in stirred tank reactors to get information of the effectinixing zone,
to visualize gas or liquid bubbles in fluidized bed, and

for material testing to find inclusions and to give qualityacdcteristics.

One sensor method beside many others is electrical tomlogragich is based on
measurement of capacitance (ECT), resistance (ERT), oretiagnduction (MIT). The

1



2 CHAPTER 1. INTRODUCTION

term Electrical Impedance Tomography (EIT) is justifiedhi&tcomplex impedance is
measured. Commonly, these techniques are easy to operataféty problems e.g. by
radiation), relatively inexpensive, and have a robust tangon. The capturing time of
the measurements is fast and this yields a good tempordlitesofor dynamic processes.
Such sensors can operate in aggressive materials, in faghgntbuids, and for multi-
phase mixtures. The choice of a specific sensing methodesrdigted by

e the components in the vessel or pipeline (appropriateréififee or contrast in the
physical properties of the involved material),

¢ the required spatial resolution and sensitivity,
¢ the time dynamic of the flow, and
¢ the environmental conditions (e.g. temperature, pre¥sure

Electrical tomography is more sensitive to bulk materi#thea than to phase boundaries.
This allows to reconstruct the material properties and toutate integral parameters, for
instance material fractions.

The drawback of electrical tomography is its soft-field magd91]. This means
that the sensing field tends to spread by the material to bgachand it is related to its
electrical properties. This is distinctly different fronther tomography techniques, like
X-ray computer tomography, where the source lines passttjirdarough the object. The
distortion of the sensing field by the material is inherenthy-linear.

Another point is that the set of data is obtained by a limitathber of sensors. For
instance in electrical capacitance tomography usuallyteig to 16 electrodes are used. A
higher number of sensors leads to less available surfaeefome electrode and thus to a
small input signal and to less sensitivity. This small nundfeneasurements complicates
the reconstruction of an image. Due to the limited sengjtivheasurement errors have
a large influence on the reconstructed image as well. An engplution can not be
guaranteed and the image reconstruction is thereforedcafldl-posed problem [87]. For
these reasons the reconstructed images have a relativelgplatial resolution. Figures
between 5 to 10 percent of the pipe diameter are commonlydorethe resolution.

In many applications, however, an accurate determinafiphase boundaries is nec-
essary. For example if one is interested in

¢ the identification of the distribution of mixing zones inrstid reactors,
e interface measurement in complex separation processes,

e comprehensive information about the shape of the slug® aos tail in pipeline
conveying,

e imaging of the air core in hydro-cyclones for quantitativeasurements to obtain
information about the operating condition,

e measurements of two or more phase boundaries in pipes witltafions to multi-
phase flow measurements, and
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e non-invasive testing of the quality of materials (inclusopetc.).

Additionally, the identification of phase sizes and bouretawithin vessels and pipelines
provides information on fundamental reaction kinetics @rmdn be used for model vali-
dations and for finding an optimal geometry of the equipm@ummonly used imaging
techniques yield blurred images with less spatial resmitufb4]. Arbitrary criteria are
applied in order to establish the boundaries between vanuaterials from such blurred
images (e.g. amplitude thresholding techniques for twaspHlow imaging). For quan-
titative measurements this is not satisfactory. Techrsguaich focus especially on the
reconstruction of phase boundaries, improve the imagefisigntly [48]. In this work
a shape reconstruction method with implicit representadiothe boundary is presented
for electrical capacitance tomography. This method imalgeshape, location, size and
geometry of different and unknown materials.

In process tomography one is mainly interested in quastitidich are used for con-
trolling the process, i.e. quantities like the volume fraies rather than tomographic
images itself. ECT provides an inexpensive method to obtaimographic images of a
process, however resolution is very limited. The applaabf a single type of sensor
is not the only opportunity for a tomography system. A moitede system, which em-
ploys two or more different sensing principles, improves ithage and the information
gained from the process to be monitored. They are used ttelocdo measure different
properties of the involved materials. A possible dual-mimagging system is to use data
of ultrasonic tomography systems and of capacitance toapbgr Applications for such
systems are for example in imaging of oil/gas/water mixtunelows or in separators and
they can be used to inspect multilayer materials. This woesgnts a data fusion tech-
nique, which incorporates an image from Ultrasound Reflactimmography (URT) for
the shape reconstruction in capacitance tomography. Tieeiatbrmation, which comes
from URT, improves the reconstruction of phase boundarigsBBCT data significantly.

The next sections in this chapter are organized as followthd first two sections, a
short overview of the measurement setup and of the inverdadem is given to provide
background information on ECT. Next the state of the art opsh@&construction meth-
ods is given. A section with the novelty of this work followext. The structuring and
mathematical notation of this thesis are the last two partsis chapter.

1.1 Measurement Setup and Forward Problem

At the Institute of Electrical Measurement and Measuren@ghal Processing at Graz
University of Technology, a capacitance tomography sydtasibeen developed in the
last years [38, 37, 9, 89]. This system is designed to exathménterior of a PVC pipe

by means of evaluating coupling capacitances of a multtelde assembly. These ca-
pacitances are in a wide range from 1 fF to 5 pF and they po$ed@ignands on the sensor
hardware. Figure 1.1 presents the latest developed selsetectrodes are mounted on
the outer area of the pipe and they can operate in differeshtsatectable modes. Ac-
cording to a chosen control pattern, each electrode caardi used as a transmitting
or receiving segment. Exploiting the different sensitiveas in the pipe interior, which
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Figure 1.1: Prototype of an ECT sensor. 16 electrodes ar@tedwn the outer surface of a PVC tube and
each electrode has an amplifier and output driver.

are caused by the control pattern, the permittivity distiin of the pipe content can be

obtained and reconstructed. Figure 1.2 shows the measnote®ieip of the developed

prototype sensor. It is comprising electrodes mounted erother pipe surface, the cor-
responding frontend amplifiers, as well as the signal piegssing unit. Each frontend

is individually controlled by a micro processor and the Idhtends are connected via a
serial bus to the signal preprocessor unit. To allow fast datjuisition a PC is connected
to the setup via local area network.

Two hardware concepts with different frontends have beemldped and imple-
mented. One principle is designed to determine couplingci&égmces by means of mea-
suring electrode potentials (high-impedance measurgrardta second principle is based
on the measurement of displacement currents (low-impedar@asurement) [3]. They
differ with respect to the impedance of the measurementreldes, which are ideally
floating electrodes (high-impedance) or virtual groundxtteodes (low-impedance).
Both concepts rely on a carrier frequency system [12] withregdency of 5.5 MHz and
40 MHz, respectively. For a robust ECT system that is capalleodking under harsh
environmental conditions, it is essential that the setupsensitive to stray capacitances.
Due to the tuned input bandwidth filter in the low-impedanpgraach the frontend is
insensitive against stray capacitances. This insertgitallows a proper shielding and
makes the sensor immune to different kinds of contamina#aiditionally, the circuitry
is less affected by electromagnetic compatibility (EMC)uefices due to a narrow fre-
guency characteristic. This narrow bandwidth implicate$dy signal-to-noise ratio com-
pared to the high-impedance approach. A thorough discussithe advantages of the
displacement current measurement can be found in [89]. Mlaging results presented
in this thesis are based on low-impedance measurements.

A direct method of obtaining the permittivity distributidrom such boundary mea-
surements is not available. Instead, starting from a gdedis&ribution, the field problem
is solved iteratively in an appropriate computer model. Tt initial guess is improved
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Figure 1.2: ECT measurement setup with 16 electrodes, séostends, and preprocessing unit.

by minimizing the error between the calculated and meashoeshdary data. Thus a
computer model, which corresponds to the measurement,sstap essential part for
the imaging process. Some simplifications are used to ohtatntable model. First the
wave length of the applied excitation frequency (40 MHz)agyer than the dimension
of the sensdr(about 15cm). Thus an electrostatic approximation of tHd fieoblem is
feasible. Further it is assumed that only the imaginary pathe current is measured.
The sensor frontend, however, measures the absolute vallweling a real part coming
from a conductive material. In this case an erroneous pgvityitvalue is imaged and
a careful interpretation of the material value is importaBtige effects in longitudinal
direction are neglected because the ratio of the lengtheoéliectrodes (5 centimeters) to
the diameter of the pipe (10.3 centimeters) is large enoudgltditionally, it is assumed
that the material to be imaged does not vary in longitudimalation for the length of the
electrodes. Thus a 2-dimensional model of the whole donfaiierest can be employed.
On the right hand side in figure 1.2 the cross-section of the E€Bor is shown. The
field problem can be solved for certain permittivity distiions and boundary conditions
e.g. with the Finite Element Method (FEM) or Boundary Eleméethod (BEM). This
problem is called the forward problem.

This comparison depends on the material inside the sensmnever, it holds true for the involved
materials like air, oil, and tap water.
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1.2 Definition of the Inverse Problem

The imaging process itself is considered as an inverse gmob find the spatial distrib-
uted permittivities for a given set of boundary measuremsentis is performed iteratively
by an optimization problem with a fit to data functional. Imsteection it is assumed that
displacement currents are measured. It can be adaptegteasiéasurements of voltages
(frontends with high impedance).

Let € denote the permittivity value of a medium the electric scalar potentfalug
a Dirichlet boundary condition on the exciting electrodetvhe boundary o, and the
measurement electrodes with the boundagythen the forward problem is described by

O-(e0du) = 0O
Ur, = Uo (1.1)
U’re = 0

The charges on the electrodes correspond to measuredodisp@at currents. The charge
is calculated e.g. by the flux integrating method for ittheelectrode

ou
0] :/r As%ds (1.2)

with e the electrode surface amtithe inward normal vector. The calculated and the
measured charges for different electrodes and differeasaorement patterns are summa-
rized intoq(e) € R™ anddm € R™ respectively i is the number of all charges).

In [65] it is shown that an assumption of additive and Gaumsdiatributed measure-
ment noise (noise vectah) with zero mean is valid. The noise is defined to be indepen-
dent from the material distribution. The probability depgunction reads

Thoise( M) ~ E‘Xp(—%l’_ﬁTclr_ﬁ> (1.3)

with C € R"*" a symmetric and positive definite covariance matrix of thiseoln the
experimental measurement system an approximation fordlse iwovariance can be ob-
tained by using a set of repeated measurements or by amglyinrmeasurement system.
Next a prior probability densityt,, is defined which is assumed to be independent to the
measurement noise The so called regularizing prior density is written in tloem

Tior (€) ~ exp(—a?R(g)) (1.4)

where a? is a scaling parameter that is related to the confidence ometa@arizing
prior andR(¢g) is the regularization functional. Then the conditionallyability density

2The electric scalar potential is linked to the electric figieength byE = —[u.
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Thhost(€) = TI(€|Gm) is calculated by the well known Bayes formula. The densitythas
following structure

TI(E|Om) ~ Thoise(T(€) — Om) TTor (€). (1.5)

and it is called the solution of the inverse problem in a statl sense. The estimation
of the whole a posteriori distribution is too computatioeapensive. Additionally, it is
impossible to visualize the distribution directly. Commgrthe maximum a posteriori
(MAP) estimate is used as reconstructed permittivity digtron

Evmap = arg ”;am(emm)- (1.6)

Itis the most probable configuration of the model for the giwatcome of the experiment,
the prior information, and the physical laws that are agligethe system. The particular
assumptions in this section lead to an optimization probMth weighted least squares
structure and Tikhonov regularization (see e.g. [87])

e = argmin| 5(c(e) — ) Ca(e) — ) + a7R(E)|. @)

The covariance matri incorporates a weight on the different measurements. Tiee pa
metera? is the regularization parameter aR¢t) the regularization functional. With the
technique of regularization one can cope with instabditiee to the strong influence of
the noise on the solution (e.g. [28, 87]) and the term canrerau unique solution. If a
prior information is available (like an image form URT or @rinformation on the per-
mittivity values) one can incorporate this information I tregularization term. Other
possibilities are to use ad hoc terms like a smoothness gggumon the solution [8] or
an assumption of small total variation [6].

For a shape imaging method the material distribution is aguise constant func-
tion. Figure 1.3 sketches the cross-section of the sensbaarexample illustrates an
unknown shape. The two different regions have the perntiésec; ande, respectively.
The interface where the jump of material value occurs is teghbyl". For all unknown
regions (more than two are allowed) the material valuesaresarized int&E. Then the
cost functional in (1.7) is written as follows

IE7) = 5[ W (AE.T) ) + 02RET), 18)

with WTW = C~1. This function depends on the piecewise constant perimjttialues
and on the boundary of the shapes.

Numerical optimization tools provide a stable and fast veesdive (1.7). For instance
the Gauss-Newton algorithm [29] is a deterministic appio@csolve the optimization
problem of least squares structure. For this a Jacobianxmatnecessary, which de-
scribes the influence of change of material values and gepmethe calculated charges.
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Figure 1.3: Sketch of the sensor model with piecewise cahgrmittivities.

Hence an analytical calculation of the so called materidistrape derivative [75] is nec-
essary. These derivatives can be obtained easily by thenaspriable approach. The
advantage of a deterministic approach with informationudltioe gradient is for instance
the fast convergence rate. Especially if one is interestenhiline process monitoring, a
fast rate of reconstructed images is desired.

1.3 State of the Art

The underlying field problem in ECT is described by the Lapkageation. Similar field
problems arise e.g. in ERT and Electrical Impedance TonpdgyréEIT). Partial Differ-
ential Equations (PDE) occur also if one solves inversetagag) problems (acoustic or
electromagnetic waves). Many of the techniques, which ppdied to solve these dif-
ferent inverse problems, resemble each other. Therefoeséction of the state of the
art makes no further distinction between them. Table 1.1nsanzes some criteria to
classify the numerous publications. These publicatioespaesented next and they are
ordered in the following paragraphs. First different agttes to overcome the blurring
of images, which are based on a fixed discretization, arepted. The second paragraph
Is about shape reconstruction methods, which rely on the. Mt inverse problems are
presented, which are solved by the level set method. Thgresiegonstruction methods
with the boundary element method are discussed. The lasgzgoh deals with the fusion
of different sensor data.

Electrical Tomography on a Fixed Grid. The finite element method does not match
the needs of a shape reconstruction perfectly. The unknoterface is not treated natu-
rally and the finite elements incorporate an upper limit far $patial resolution. However
many toolboxes and algorithms based on the FEM already. é5astinstance Brandstat-
ter et al. [8] present a reconstruction algorithm based on a fixed drtte permittivity
value of each finite element in the pipe, in which the mateasiab be resolved spatially,
Is treated as unknown. Sharp discontinuities are not réxaaried due to a smoothness
assumption as regularization term. To overcome the blyminthe image, Borsic [6]



1.3. STATE OF THE ART 9

Solver for the forward problem. Inverse problems, comingnfroptimal design,
shape optimization, and identification of distributed
parameters in PDE, are closely related to this work.
Numerous publications deal with these problems and
they propose many different solvers for the forward
problem, like FEM or BEM.

Description of the boundary. For the description of the laaug different para-
meterizations or other types like implicit representa-
tions of the interface are utilized. This has an impor-
tant influence on the flexibility and on the necessary
a priori information about the number of unknown
regions.

Regularization method. A regularization method is mangatorovercome
the ill-posed nature of the inverse problem. Differ-
ent approaches are suggested, like total variational
regularization and the Mumford-Shah functional.

Parameter space. The parameter space has an influence omibe c
gence behavior of the inverse problem. Only a few
papers assume unknown material values and perform
the reconstruction of shape and material simultane-
ously.

Optimization technique. The imaging process can be baseddaterminis-
tic approach where a descent direction is calculated
by direct differentiation or by an adjoint variable ap-
proach. Other optimization techniques are for exam-
ple genetic algorithms.

Validation. A validation of the proposed techniques can be o
tained e.g. by simulated experiments. Few papers
apply real measurement data for the reconstruction.

Table 1.1: Different aspects of shape optimization proslé@miterature.

proposes a regularization term, which penalizes the t@gahtion of the image (total
variation regularization). Thus the sharpness of the fiateris improved. Experimental
results for this regularization term are presented in [78]finer mesh to improve the
spatial resolution leads to an increase in the computdtedfaat for the forward problem
and for the inversion of the fully occupied Hessian matrisha Gauss-Newton approach.

For two-phase flows one idea is mesh grouping (e.g. [45, 4If})s technique can
overcome the increase of the computational burden and trecpovergence characteris-
tics in the Gauss-Newton (Newton-Raphson respectivelyyrdhlgn as the finite elements
increase. The material values are classified iterativetiiffierent groups. Another idea
is the monotonicity method [83], which provides a non-iteinversion technique with
low computational costs. Mesh grouping and the monotgniokthod are restricted to
two components mixtures. Additionally, only a partial difisation of the pixels to one
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of the material is obtained. Rondi and Santosa [66] introdbeeMumford-Shah func-
tional as regularization term for the linearized problerili. An image segmentation is
performed in the same time as the reconstruction. Simukatpdriments are promising,
however, the method requires tuning of several parameters.

FEM and Shape Reconstruction. Kolehmainenet al. [48] present a shape recon-
struction method, which assumes known material values. pEper introduces a gen-
eral framework for elliptic problems with a parameteripatof the interface by Fourier
coefficients. To overcome the fixed discretization in finiengents a subdivision of the
elements is performed. The descent direction is calculayetie Levenberg-Marquardt
method and an example in optical tomography with synthetta @& given. It is reported
that the method has the tendency to produce self-intengebthundaries if the starting
condition is far away from the true contour. For EIT, estimas$ of phase boundaries
are performed in [46], where the boundary is described rpaiation of front points,
and [43], where truncated Fourier coefficients are used ulaited data is used to verify
the algorithms. Difficulties are the unknown number of regi@and that knowledge of
the material properties of the involved phases must beablail Another estimation of
boundaries based on the FEM is described in [85] where a Beiee approach is used.
The boundary to a non-conductive phase is reconstructeagkhasvthe material distrib-
ution of the outer phase. In this paper simulations and realdxdata are used to verify
the method.

Level Set Method and Inverse Problems. To overcome the limitations of a parame-
terization of the curve a level set method can be used. Withniethod the shape can
evolve iteratively and any arbitrary topology can occur (gimeg and splitting of regions
is handled easily). In the early paper [68] from Santosa el Iset approach is used for
the linear inverse problems in deconvolution and for diffi@n screen reconstruction in
optic and acoustic. It assumes known material values angestgy an optimization ap-
proach as alternative to a shape evolution approach. IrLjiBhn et al. solve an inverse
scattering problem with the level set method and the metfiatbonents. The movement
of the shape is performed by a velocity field to minimize thadeal in the data fit and
the gradient is calculated analytically by the adjoint able method. Another inverse
scattering problem is discussed in [24] and numerical exasngre shown based on the
finite element method. Itet al. [42] propose an immersed interface method (a version
of finite difference method). The problem in [42] and Ito [44Jmotivated by electrical
tomography. The gradient direction of the boundary is datedl for known conductiv-
ities. Denget al. present in [22] a fast immersed interface method in 3D faogriiace
problems of piecewise constant coefficients. They sucekgsolve an inverse prob-
lem of shape identification. Burger [14] describes a fram&wWor shape optimization
and reconstruction of elliptic boundary value problemsisT& based on a gradient flow
and on a FEM discretization. In [15] the descent directiacaisulated by the Levenberg-
Marquardt method and in [16] the shape optimization apgr@@extended by topological
derivatives. The idea of topological derivatives caloegathe sensitivity of the objective
function with respect to a hole in the material and the rettanson of the correct topol-
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ogy is improved.

Chan and Tai [17, 18] present a level set method, which reaaristthe material
value simultaneously to the shape. This method solves trexsa problem of recov-
ering discontinuous coefficients from boundary measurésnenelliptic problems. A
variational augmented Lagrangian formulation is propasstéad of the commonly used
speed (velocity) method. Additionally, Chan and Tai propasaultiple level set frame-
work to describe more than two phases. After 100 to 1000titeraithe shape and mater-
ial value can be reconstructed successfully. This methed tedal variational regulariza-
tion. This regularization term is used as well by Chwi@l. in [20]. The optimization
problem for EIT is solved by the gradient descent. Simulakata with simulated noise
validates this method. In [2] a shape sensitivity analysis lavel set method for elliptic
problems are presented, where a singular surface with kiwoefiicients in each region
is reconstructed. Numerical simulations are performechbyREM. In [77] experimental
results are presented for ECT with a level set based algaritfine level set approach
reconstructs the images on a fixed discretization into felgenents. However, less infor-
mation is given about the material values (assumed to be koavriori, constant during
the reconstruction, etc.). The possibility to reconstmore than two phases is not dis-
cussed.

Shape Reconstruction with the Boundary Element Method. A natural way to solve
the forward problem with piecewise constant material valisgo use the boundary ele-
ment method. The variable contour is discretized easilaoheateration step. In the early
paper [5] Bonnet solves a geometrical inverse problem faalily acoustic and elastic
medium by boundary integral equations. The boundary isritest by parameters or
by the movement of mesh nodes in two and three dimensions.asi-dNewton method
is proposed to solve the optimization and the material dévig concept is applied to
the formulation of an inverse obstacle problem. In [25, 26f&ndre polynomials are
used for EIT in two and three dimensions. The method recocistthe shape of internal
regions with zero conductivity. The number of known regitias to be available a pri-
ori. The optimization is performed by downhill simplex, Rellyand conjugate gradient
(the Jacobian for the conjugate gradient method is cakdlhy finite differences). No
analytically derived Jacobian calculation is performed #mus up to 2000 evaluations
of the forward problem are necessary. In [40] a hybrid Powell genetic algorithm
is proposed. As before Legendre polynomials are used andaubegt computation is
necessary. Two and three dimensional results are showngis dfasimulated data. In
[62] a front tracking, which adjusts the nodes of the boupddements, is suggested for
ElT-monitored cryosurgery. Simulated phantom images aeel tio reconstruct the sharp
discontinuity in the physical properties across the iateef The Jacobian is calculated by
direct differentiation of the BEM system matrices.

Sensor Fusion. Multisensor data fusion is successfully applied in différdisciplines
of engineering. They are applied to problems where singls@s are only capable of
yielding incomplete or inaccurate information. Multisenfusion techniques are already
implemented with other tomographic imaging principlest&CT and URT. In [7], the
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inspection of sandwiched structures is performed by Congptibenography (CT), laser
range measurements, and ultrasound thickness measuseniéet range and thickness
data are used to impose geometrical constraints on ther legpeation system for the
reconstruction. These constraints reduce the degreeeafdre of the CT problem, which
leads to an improved reconstruction result. Two differentagraphic principles are fused
by Zhao in [93]. Diffuse Optical Tomography (DOT) is strully guided by ultrasound
tomography. The results from ultrasound tomography ard asea rough estimate of
the location of phase boundaries. The finite element mesld, fes DOT, is then locally
refined in regions with potential phase transitions. As altethe spatial resolution of
the imaging system is considerably improved. The desigmaht&egrated multi-modal
process tomography system is described by Hoyle [39]. Bystegineering is used for
the hardware and software design. An algorithm based orfexelit multi-modal data
Is proposed in [78]. It is assumed that one point of the bogndadetermined from
ultrasonic time of flight data. Then a reconstruction is perfed by the level set method
on a finite element discretization with simulated ERT data.

1.4 Novelty and Publications

In this thesis an image reconstruction technique is presemthich is based on a bound-
ary element method to solve the forward problem and on a kstelormulation for the
description of object boundaries. As discussed, the atibn of the boundary element
method is very natural for a shape reconstruction algoriimeh it is of advantage com-
pared with e.g. a finite element approach. As far as the aktmws it is the first treat-
ment of the inverse problem in ECT by the combination of boup@tements and the
level set method. With this formulation the topology of atdibance can change easily
and any arbitrary shape can occur in the iterative recoctsdru The technique presented
in this work features

e reconstruction of multiple phase flows where the number akphk is not available
a priori,

e non-trivial geometries are allowed due to the implemengedliset method,

e reconstruction of the unknown material values for eachoregimultaneous to the
shape,

¢ treatment of the field problem with boundary elements irtstefaa finite element
method to allow higher spatial resolution,

e fast convergence because a Gauss-Newton approach is iemgknto calculate
the descent direction of the cost functional and becauseeaskarch algorithm is
implemented,

e physical constraints for the material values and for thetggoy are incorporated
by an active set method, which is important for a stable rstrantion with real
world data,
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e Mmeasurement noise is considered as well and improves thgeiopaality signifi-
cantly, and

¢ real world measurement data validates the algorithm auostilites the good per-
formance of this method.

In this thesis a Gaussian measurement noise is considedatenbject to be recovered
is assumed to be stationary for one measurement cycle. A&wifvthis reconstruction
technique is also published in [49, 51] where the reconstmiés performed by Dirichlet
boundary data and examples based on real world data arejgestn these publications
a coupled FEM-BEM is utilized in contrary to this work wherdya BEM approach is
discussed because the recently developed prototype haghbfigid sensor design. The
paper [50] gives a detailed discussion of the influence dédiht types of boundary data
on the imaging process. Itis shown that both types of dateesponding to the developed
high and low impedance frontends, deliver images of equalityuf a similar signal to
noise ratio is assumed. Reconstruction results, which hese submitted recently to the
journal of Measurement Science and Technology (see [52])sl@own in figure 1.4. Two
PVC objects are located in the interior of the sensor. Rwstéconstruction is performed
by a standard imaging technique based on a fixed finite elemesh. The second image
is obtained by the new developed shape reconstructionitpainit illustrates the gain in
spatial resolution by the shape reconstruction method.

For the regularization term prior information can be inagied into the ECT imag-
ing process. A sensor fusion technique of URT and ECT dataesemted in [82] for
the finite element method. A novel regularization term foewel set based reconstruc-
tion is presented in [11, 10]. An edge detection of an URT iensignultaneously to the
ECT reconstruction combines information about edges frorit With ECT data, which
is more sensitive to bulk material. This leads to an incréaseuracy of the estimated
object boundaries and material values. The results in thegsers are based on simulation
because the combined sensor hardware, ECT and URT, is dyweder development.

Further publications are [30, 31] where ECT results with expental data are pre-
sented to detect tracer particles in phase flow measureminf89] the new hardware
concept, which is based on the measurement of displacemernt, is presented.

1.5 Structuring of this Work

In chapter 2 the description of object boundaries is comsitle It starts with a short
overview over possible implicit and explicit represerdati and it gives the motivation to
use the level set framework. Additionally, this chapterlaiys briefly the deformation of
objects and the concept of shape derivatives is introduced.

In the next chapter these derivatives are applied to theai@wroblem to calculate
the sensitivity of the electrode potential or charge witbpect to a deformation of the
contour and with respect to the material values. This chagaals with the first term
(least squares) in the cost functional (1.8). Thereforeatljeint variable method is uti-
lized for the two dimensional ECT model. A proof for the semgit equations and the
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(@) Measurement setup: (b) Reconstruction with a FEM (c) Reconstruction with BEM
two PVC objects. based algorithm. and level set algorithm.

Figure 1.4: Performance of the shape reconstruction mefftud example is based on real world measure-
ments and illustrates the gain in the spatial resolution bhape reconstruction method. With the BEM

and level set based algorithm, the contours are reconstrugthin small tolerances compared to the true
objects.

corresponding adjoint problems is given. Additionallyistbhapter describes the imple-
mentation of the boundary element method.

Chapter 4 deals with appropriate regularization terms (sterm in (1.8)). Ad hoc
approaches are discussed as well as a regularization ¢eewwhere a priori information
is available from ultrasonic reflection tomography. Thecuakdtion of a Newton-type
speed function is discussed for the proposed regularizédions.

The last chapter demonstrates the performance of the gdgowith experimental
results. A discussion concludes the main features and typptes of the proposed shape
imaging technique.

In appendix A one can find an introduction on shape derivatiee PDE. An one-
dimensional example of a plate capacitor is presentedt thiesshape differentiation is
performed by direct differentiation of an analytical sadat Additionally, it is carried out
by the adjoint variable method and both methods are compayguendix B gives details
about the discretization of the gradient and the Hessianxradtthe regularization term.

1.6 Mathematical Notation

A comprehensive list of symbols and variables can be foungage 93. The notation
of shape and material derivatives, as defined in [76], aredntced in chapter 2. Tan-
gential derivatives are used as well and they are definedriegmonding context. This
work is an application of different mathematical methodspécially the correct function
spaces, theoretical foundations, and proofs are neglaotéthe interested reader can find
comprehensive information in the referred literature.



Chapter 2

Description and Deformation of Objects

In image processing (e.g. image segmentation) and comypigten one task is often to
recover the shape of objects in two and three dimensions.yMéthe existing shape
modeling schemes require that the topology of the objechisv before the recovery
can commence [25, 26, 43]. In the case of industrial tomdgrags difficult to specify
the number of unknown objects a priori and an assumption igrafisant limitation
of the reconstruction algorithm. In the case of ECT, the megjiare distinguished by
their permittivity values. The contour is described by tloihdaries between distinct
regions. In the iterative reconstruction process thisamanis deformed and the ability to
describe this movement is another important aspect of shrequiels. Additionally, the
models have different attributes concerning the calautadif differential quantities such
as normals and curvature.

First a short description of several methods is given andibgvation to use the level
set method is discussed. A comprehensive discussion efeliff deformable contours is
given e.g. in [80, 57]. First, shape models can be classifiatiscrete and continuous
ones. A discrete representation of a shape is a set of paittie discrete mesh of bound-
ary elements. Contrary to these discrete representatiangiagous one offers the ability
to compute differential quantities almost everywhere.th@reason the second approach
is discussed further and two possible representationsuggested.

First a contour can be represented explicitly by paraneztton of the boundary
trace. A two dimensional parametric contour is describedh byector-valued function
C(s,t) € R? wheresis usually the arc length aridhe time. The movement and deforma-
tion is achieved by temporal and spatial discretizationwith finite differences. Possible
parameterizations are Legendre polynomials and Fourgfficents. Another represen-
tation proposed in literature is for example B-splines [4], 8¢hese models present the
contour by as few parameters as possible while still med¢tieagequirements of the given
application. This formulation, however, has several diasids. When tracking the motion
of the interface, problems arise if different parts of thenfrcross each other. Addition-
ally, difficulties arise if the shape tries to break into gsor if two shapes try to merge
into one. The main drawback of this explicit approach is thatevolving model is not
capable to undergo topological changes. Additional prosimust be added to detect
and deal with these situations and this is usually a cumbezgask.

15
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The opposition is the implicit representation. The contsudescribed by the zero
level set of a higher dimensional function. The deformatdrihe contour in time is
linked to the evolution of this function and its discretipat constrains the resolution of
the contour. The contour is usually closed and an open bovislanly possible on the
border of the underlying grid of the higher dimensional fiime. The main advantage of
this formulation is its ability to automatically change t@ology during the deformation.
In contrast to a parametric contour the implementation efithplicit approach requires
a little more care. The level set method, which has beerzedlin this work, belongs to
this group of shape representations.

In the following sections an overview of the implementeckleset method is given.
Next the definition of shape derivatives is presented tedbffitiate boundary and domain
integrals with respect to a deformation of the contour. €hasfinitions are applied in
chapter 3 and additionally they are necessary later in ehapto calculate the shape
derivatives of possible regularization terms.

2.1 Level Set Framework

The main advantage of the level set method is, as explaitedpbility to undergo a

topological transformation. This formulation can eledyantescribe shapes, which split
and merge freely. The method was originally introduced bjigdsnd Sethian in [61]

and is now widely used in lots of applications (for instanoe $imulation of two-phase
oil-water flows in pipes [74]) and a lot of literature can berid e.g. [72, 73, 60, 59, 58,
88, 90]. Some additional attributes of the level set methredyaven below.

1. The formulation remains unchanged for different dimensi Surfaces in 3D can
be represented as well as contours in 2D.

2. Geometry properties of the front, like the normal and thevature, are easily de-
termined by differentiation of the level set function.

3. Itis not necessary to have a priori information about tin@ber of unknown phases
in the flow and their topology. The topology of the initial abton is not necessar-
ily the same as the one at convergence.

The idea of this method is to define a smooth functiorD x Rt — R in the domain
D c R? that represents the interface as the set where

P(X,t) = 0. (2.1)

The domairD is divided by the interface in distinct regions such thaloiwing conditions
hold.

Q1 = {XeD:d(Xt)<0} (2.2)
Q, = D\ﬁl = {XE D: CD(Y,t) > 0} (23)
[ = 0Q;={XeD:d(EXt)=0} (2.4)
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The trajectory of a particl&(t) on the interface is defined by the movemﬁfﬂ(t) =
Ve. The deformation of the whole domain is described by thiscig} field Vi : D —
R2. Commonly this field depends on position, time, geometrypane external physics.
Partial differentiation of (2.1) leads to

%—T+D®~\7F =0. (2.5)

This partial differential equation is of type Hamilton-d&¢ which is also known as trans-
port equation. Actually, only the projection of the velgcdn the normal, denoted by
F :D — R, is necessary and (2.5) becomes

%—Tﬂmqﬁ =0 (2.6)

The last equation is solved by spatial discretization on edfigrid. The resulting ordi-
nary differential equation is solved by an appropriate tstepping method. The CFL
(Courant, Friedrichs, and Lewy) condition [58f|F | < Ax must hold if one is interested
in the correct and stable evolution of the interface. In sk, however, an optimization
is performed and a fast convergence is more important treaublution of the interface
itself. This means that it is not important to track a very sthgropagation of the inter-
face. A line search algorithm is used to determine an optstegd size and to relax the
CFL condition. A simple forward Euler step is applied for tigiscretization. To speed
up the calculation of the level set function one idea is t@lize ® to a small tube (e.g.
[63]) about the contour (t). This is appropriate for small time steps, which is usudily t
case if the CFL condition holds. As mentioned above in thisktioe step size is as large
as possible and thus a localization is an unnecessaryctesiron the step size.

As already mentioned geometric properties have simpleesgmtations in terms of
@, like the outward normal of regiof1

W[

M =—— 2.7
1= 0o (27)
and the curvature o

=0 —. 2.8

The velocityF is chosen as descent direction of the cost-functional (I-Bgrefore
a velocityF : I'(t) — R is calculated for points on the contour. At this point thissues
of practical importance arise.

Velocity Extension. First, the calculated velocity must be extended off therfate to
the whole domain ofp to solve (2.6). This process is called velocity extensiod &n
commonly not trivial. One idea to perform this is based ondbleition of an additional
partial differential equation. A detailed discussion igagi in subsection 2.1.1.
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Reinitialization. Second, it is of importance that the level set function remavell
behaved. That implies bounds on the gradient such as

O<c<|0v<c (2.9)

for some constants; andc,. Commonly the level set function is supposed to be a signed
distance function, i.e.
0| = 1. (2.10)

Figure 2.1 illustrates a slice of the level set function. Titerface is well defined due
to (2.10). Additionally, the numerical approximations @f{) and (2.8) are stable. With
this definition the distance of an arbitrary poiib the surfacé is equal to the function
value|®(Xt)|. Even if accurate numerical schemes are applied to sol@§ (Be level set
function often becomes very flat or steep at the interfac€or that reason a correction
is necessary to satisfy (2.10). This procedure is calledtr&iization and it is discussed
in subsection 2.1.2. For both procedures, velocity extanand reinitialization, ideas
coming from [63] are used and presented briefly. Alterntigae can use a fast marching
algorithm [1, 73] to determine the extension velocity ane signed distance function.
The PDE based approach, however, leads to a flexible andeaecuethod and it is easy
to implement.

The spatial discretization @f is determined by the necessary accuracy of the contour.
It is chosen fine enough to ensure the accuracy of the confoaaurse grid, however,
performs faster. Additionally first order finite differerscare used to get a moderate
computational burden.

Multiphase level set method. Another question arises if one assumes more than two
unknown phases in the pipe. An extension of the level setdveork is introduced in
[86], namely the multiphase level set method. In other malions the method is called
multiple level set method (e.g. [18]). This method is impésted in this work and the
corresponding idea is presented in subsection 2.1.3.

2.1.1 Velocity Extension

One way to extend the velocity off the front is to lebe constant along the curve normal
to I'(t). This condition ensures th&t keeps being a signed distance function. In other
words let

fi-0OF =0. (2.11)
This suggests the following partial differential equation
0 =~ 0b .
5F +S(CD)—|D¢| .OF =0, (2.12)
whereS(®) is the signature defined as
-1 if d<0,
SP)=¢0 if =0, (2.13)

1 if d>0.
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d<O0

Figure 2.1: Slice of the level set function. The interfacdéscribed by® = 0. The absolute value of the
gradient equals one to ensure a numerical accurate cadculat

This problem is solved by applying the initial conditiémr(t) = F until a steady state is
achieved. A highly accurate numerical scheme is presentfdd]. In this work following
first order scheme coupled with a forward Euler discretimats utilized. An important
characteristics of (2.12) is that information flows out o thterface. This is an essential
attribute, which must be enforced numerically to ensurbiltta The method is called
upward scheme since only values biased tare used to approximatéF numerically.
S((D)% is constant for the iterative algorithm. The signature i®arad for numerical
reasons by

o}

S(P) = ;.
@) V®2+02
whereao is a smoothing parameter in the size of the spatial disetizAx. The normal
vector is denoted by

(2.14)

)T — E

0|
and is calculated by central finite differences. The nodiiesof a 2D grid with uniform
spacingAx in x-direction and in y-direction are denoted by the indicasd j. The first
coordinate ofJF is calculated by forward finite differences by

~ ~

Fii1j—Fj

(N ny (2.15)

Dy Fj = = (2.16)
and by backward finite differences by
. Bi-E.,
Dy Fij :”A—X'LJ. (2.17)

The same notation is used for the second coordinate. The usdgrward and backward
finite differences depends on the sign of the correspondingponent of the normal vec-
tor (direction) and on the sign of the level set function énfouter region). This is il-
lustrated in figure 2.2 for the x-direction. Forward diffieces are chosen if the product



20 CHAPTER 2. DESCRIPTION AND DEFORMATION OF OBJECTS

d>0 d>0
Ny <0 ny>0

d<0

nX<O nx>0
Dy Dy Dy Dy

Figure 2.2: The choice between forward and backward finfferéinces for an upward scheme depends on
the sign of normal vector and level set function.

S(®)ny is negative and, respectively, backward differences avsanfor a positive prod-
uct. The numerical scheme to solve (2.12) reads as follavasdgsi and | are neglected,
the iteration step is indicated Ky

lfk+1 _ lfk_A.l- {(San)JrD;lfk—F (Sbnx)iD)Tlfk
+ (Sohy) "Dy FA + (S:ny)*D?'fk} (2-18)

where ()™ = max(-,0) and (-)~ = min(-,0). For this scheme the CFL condition must
hold. The process, however, converges quickly near thefamel” because information
is only transported away from the interface.

2.1.2 Reinitialization

Reinitialization is necessary because flat or steep regidmish are caused by numerical
inaccuracies, complicate the determination of the contadditionally, the computation
of the normal and curvature becomes inaccurate. For thasental reasons the level
set function is corrected to ensure that it remains a sigmgdrete function and that it
remains well behaved.

This is simply done by replacing by another function that has the same zero level
set but behaves better. Among other methods to performathéselegant way is based on
following partial differential equation

2o s(@) (|01 =0, (2.19)
which is solved until a steady state is achieved. Similah#&ovelocity extension a first or-

der upwind scheme for the spatial and a forward Euler timeréiation is used (indices
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i and ] neglected, the iteration step is indicatedd)y

Pkl q)k_ArS+(\/max[(a+)2, (b=)2] +min[(ct)2,(d~)2] — 1)

— S (y/ma(a-)2, (b+)2) + min[(c-)2, (d )2 ~ 1). (2.20)

()" =max(-,0) and(-)~ = min(-,0) and following abbreviations are used for the finite
differences

a = D, o (2.21)
A (2.22)
c - Dyl (2.23)
d = Djof. (2.24)

This method has a good convergence as discussed in [63] eirfhigalization step is per-
formed in every iteration because the interface changedlyafhis is the case because
the step size for (2.6) is chosen as far as possible by a larelsalgorithm.

2.1.3 Multiphase Level Set Method

For image segmentation of more than two phases Vese and Ctraduce in [86] a
multiphase level set framework. In this paper it is shown twenplex topologies can be
represented. The idea is to descripgphases by, = log, n; level set functions. For
instance, with two level set functior®; and®; it is possible to express four regions of
constant values; by

€ =goH (P1)H (P2) +-€1H (—P1)H(P2)
+eoH (P1)H(—P2) +e3H(—P1)H(—D2), (2.25)

whereH (@) is the Heaviside function defined as follows.

H(®) =

{1.f¢>q (2.26)

0 if <0

Figure 2.3 demonstrates these four regions with theirrdistnaterial value and the cor-
responding sign of the level set function.

The union of the zero-level sets represent the edges in tagamThe regions are
disjoint sets. An image of unique region numbers is caledla&asily by

Np
lR=) H(-®p)2" (2.27)
p=1

where the background region is defined by the value 0. It caseka than, level set
functions describe a total number dPZegions. The multiphase framework is imple-
mented in this work and it gives several advantages, i.e.
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€
(D1>O
d, >0

Figure 2.3: More than two phases are described by the cotitrinaf different level set functions.

e if one level set function splits into two regions, an additiblevel set function is
generated adaptively,

¢ the level set function is removed if it describes no regioynaore (in the case if the
function is non-negative), and

¢ the tracking of the phases with their material values isqreréd easily due to the
distinct region numbers.

Thus the number of unknown phases is adjusted adaptivelp@adoriori information is
necessary. Additionally, the importance of the initial diion is reduced.

2.2 Definition of Shape Derivatives

The level set formulation describes a deformation of thendawny by the solution of
(2.6). Therefore a descent direction of (1.8) must be catedl Generally, this is a shape
optimization problem and one has to calculate sensits/idfex functional with respectto a
geometric variable such as the boundary of an open domajii6/r21] shape derivatives
are introduced and this section gives a short overview cssgrial results. In this work
the boundary (t) = 0Q of an open set is supposed to be as smooth as necessary.

A real-valued shape functionalfor an appropriate set of domaigsis described by

J:E-R. (2.28)

First two possible mathematical descriptions of defororatiare explained. Next the
shape derivative is introduced and the results for two snsplape functions (boundary
and domain integrals) are given. In the following sectioa #$ihape derivative concept
is extended by material derivatives. This is necessary fanersomplex shape functions
where a spatial distributed variable depends on the gegnisélf. At last, results of
the shape derivative concept applied to the level set fanetre presented. Additionally,
second order derivatives are considered.
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2.2.1 Flows of Velocity Fields

Instead of a parametrized curve, the interface is deschigedde boundary of an open set
Q c D in a given domaiD ¢ RN. Two types of deformation can be found in literature,
namely, transformation and velocity method. The velocistimod is also referred to as
the speed method.

First consider the transformation arou2chlong the one dimensional path

vXeD,t >0, T(t,X)=T(X)=X+tV(X). (2.29)

for some vector field¥ : D — RN. This deformation is not completely satisfactory since
it is a nonlocal transformation. In other words the veloéigyd %X(t) =V (X) at the point
X(t) = Tt(X) depends on the poitt instead orx(t).

More natural is the approach by the velocity (or speed) nmkthib describes the
movement as flow for a given (smooth) vector fieldD — RN. Consider the trajectory
of a point in the artificial timé, which is defined by following differential equation (irati
value problem)

%X(t) = V(X(t)) (2.30)
%0) = X (2.31)

fort > 0. This is now a local deformation or flow and it defines follogrimapping with
respect to/
T(X)=X(t), t>0 (2.32)

by the solution of the differential equatior/ is also called perturbation vector field.
The deformation is a local deformation and the velocity &f plointX(t) equals the field
V evaluated ak(t). In literature one can find both deformations (transfororatand
velocity method) and they yield equal results for first orderivatives.

Two different kinds of vector fields can be defined. The fieldasmed autonomous if
it does not depend an In the other case it is non-autonomou¥ it)(x) = V(t,x). Then
the trajectory of a point is defined by following differenteguation

991) = Vi), (2.33)

ot
%(0) = (2.34)

Xl

In this work the vector field is assumed to be an autonomous fied ensure that; (X)
mapsD ontoD, the normal component of the velocity must vanisa@at

V(%)- ﬁ’aD —0 (2.35)

and on points wher@D is not smooth the velocity is zero

—

V(Y)‘GD —0. (2.36)
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By utilization of the magl; (X) one can define the perturbation of a domain or bound-
ary by
Q= {T(%):Xe Q} =T (Q) (2.37)

and
M= {T(X):Xel}=T(I). (2.38)

2.2.2 Shape Derivative

The shape functional has a Eulerian semiderivative@tin the directiorV if the follow-
ing limit exists and is finite

(2.39)

The functionald is said to be differentiable #® if the mapV — dJ(Q;V) is linear and
continuous for perturbation fields In the analogous way one can define semiderivatives
forT.

A simple example of a shape functional is given by the volumegral over a bounded
open domairf) C D with Lipschitzian boundary and normali. Under appropriate as-
sumptions on the vector field and on the functio : D — R the shape functional

B((7)) = /Q o b (2.40)

yields the semiderivative
dJy(Q;V) = / PV - fAds. (2.41)
r
The derivative of the surface integral

H(M(V)) = i (v)wds (2.42)

yields
oy

<—+KqJ)\7-ﬁds (2.43)

dd(I: V) :/ o

-
with the curvaturex = [0 - f.

2.2.3 Material and Shape Derivative

More interesting is the case ¥ depends on the geometric variables themselves i.e.
P = P(Q). This yields more complex shape functionals and the dérastave to be
corrected by terms which take care of the derivativey of

First the material derivative of the functianis defined by

peyV) = lim + (w(©) o T(V) - w(@) (2.44)

t—0
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if the limit exists. An analogous definition holds for furanisy(I"). This is the derivative
with respect to the geometry for a moving (Lagrangian) cimatig systerh In the special

case thatp does not depend df one finds(V) = Oy -V. This leads to the definition of
the shape derivative @

W(QV) = P(Q;V) —Oy-V. (2.45)

The shape derivative is zero for every function which doetsdepend omQ. It is the
derivative with respect to a fixed (Eulerian) coordinatetesy8. The shape and material
derivatives for the level set function are given in subsecf.2.4.

The derivatives of integrals like

Jl(Q):/Lp(Q,X’)dx (2.46)
Q
and
Jz(l‘):/Lp(Q,X)ds (2.47)
r
yield following results
dJl(Q;\7):/ qJ’(Q;V)dx+/qJ\7.ﬁds (2.48)
Q r

and for boundary functions (note that it is assumed ¢ghab — R)

sz(r;\7)=/qu’(Q;V)ds+/r (‘Z_L:]J+K¢)\7-ﬁds. (2.49)

The last equation is simplified if one assumes a perturbdiedeh of the formVr = Fi.
This leads to

dJa (M5 V) =/|_l]J(Q;Fﬁ)ds+/quJFds. (2.50)

INote thato meanscomposed with The termy(Q;) o T;(V) corresponds to the function value ¢f
which is altered by the deformed domdd and is evaluated in the new coordinating system.

2A possible interpretation of (2.45) is the total differexiton of ¢ and in an analogous way (2.45) can
be written asy® = % [y &,
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2.2.4 Shape Derivative of Signed Distance Functions

In chapter 4 it is necessary to calculate the derivativesftdrdnt regularization terms.
Additionally, second order derivatives are necessanhimdubsection shape and material
derivatives of the signed distance function are discustbd.signed distance function is
equal to the level set function, which has been utilized tecdbe the deformation. In
[35, 36] one can find a detailed description of these cal@rat In this section the main
results are summarized.

First a distance function for a subgetC R" is defined by

0a(%) = inf 9 - %] (2.51)

This leads to the definition of the signed distance function
dr(X) for xe D\Q

bo(X) =<0 for xel . (2.52)
—dr(X) for XeQ

It is easy to see thdflbg| = 1 almost everywhere. One can identifyy with the level
set function®, which has been introduced in section 2.1. In the specia oaa signed
distance function the normal and the curvature is calcdlaye

A= 0o (2.53)

and
K=0-00¢. (2.54)

The interface is described by the zero level set. Thus thwalie with respect to a
moving coordinate system vyields _
®=0 (2.55)

on the interfacé (t). The shape derivative is calculated by (2.45)

and yields a similar result as (2.6).
Second order derivatives are introduced in [35, 36]. Theisito calculate

d?3(I";Vi; Vi) = d(dI(I; V) (T Vi) (2.57)

for the perturbation$, G : ' — R. Hintermuller and Ring suggest a few assumptions
to simplify this calculation. These assumptions perfentbtch the level set framework.
First the velocity fields are restricted to a normal componiéde

Ve=F-fA, Vg=G-f. (2.58)
Additionally, the following condition must hold near theenfacel”

OF-A=0, 0G-A=G. (2.59)
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This leads toZ (Vg - 1) _=0for F and forG, respectively. Note that (2.59) is equal

to (2.11). Hence this condition is satisfied if the velocitytbe interface is extended as
described in section 2.1.1. These restrictions on the itglfields are necessary to obtain
a symmetric second order derivative. The second orderatemvof the shape function

I = / wds (2.60)
r
IS
olZJ(r;vF;vG):/r K_anf”_alrl:'() FG+YOrF-OrG| ds, (2.61)

whereas tangential calculus is used to define the tangengidient of a functiorn(I")
oh

Orh = Oh|r — 5

(2.62)
for an arbitrary smooth extensidn

Concluding Remarks. In the first part of this chapter the level set framework isant

duced. It is shown that this framework is a versatile tool ésatibe the interfaces of
distinct regions. Additionally, the deformation of the ¢ours is easily obtained by a
velocity field. The second part of this chapter introducespghand material derivatives.
The differentiation of domain and boundary integrals isspreed. In the following two

chapters these derivatives are applied to the two termseo€dist functional (1.8). In

chapter 3 the sensitivity of the potential and of the flux wiéspect to the deformation
is calculated (least squares term). The consecutive chde#ts with the regularization
term.
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Chapter 3

Sensitivity Calculation and Boundary
Element Method

In this work, the inverse problem of ECT is formulated as a shagtimization problem.
The task is to find the minimizer of the cost functional (1.8) &ll possible shapes and
material values in the pipe. This chapter deals with the lpratof finding an expression
for the derivative of the potential and of the flux with respecthe deformation of a
contour. Additionally, the sensitivity with respect to thermittivity values is calculated.
Depending on the applied boundary condition, one is intedeis the shape derivative of
the potential in the domain of the electroQe

u/|Qe (3.1)

or of the flux on the electrode surfaCe

ou\’
/re (s%) ds, (3.2)

whereu satisfies the partial differential equation (1.1) of thedfiptoblem. The interfaces
of the different regions are separating the piecewise eohgtermittivity values. These
boundaries are assumed to be sufficiently smooth.

One may use different approaches for this differentiatiée,

o finite differences [25, 26],

¢ direct differentiation of an analytical expression,
¢ direct differentiation of system matrices [62], and
¢ the Adjoint Variable Method (AVM) [42, 41].

Finite differences lead to a high number of field problems #edefore it is very time
consuming. Additionally, numerical instability occursryeften. An analytical expres-
sion is only available for simple geometries. For the digifferentiation of the BEM
system matrices one has to construct matrices with theapastivatives of each node

29
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point (see e.g. [62]). In this work the adjoint variable noeths utilized and it is shown
that few additional computation time is necessary to cateuhe sensitivity.

In appendix A one can find an introducing, one dimensionainpta. For this simple
example an analytical expression exists and it is compardte result of the adjoint
variable method. This appendix illustrates the necesgapsgo gain a suitable equation
for the shape derivative. In the first section in this chapiteradjoint variable method is
applied to the geometry of the ECT sensor and an expressidhdahape derivative is
obtained. Two distinct adjoint problems are defined, on&federivative of the electrode
potential and the other for the derivative of the charge @ndlectrode. At last details
about the implemented BEM are given and the computationattef discussed.

3.1 Shape Derivatives in 2D

The construction of a sensitivity formula in 2D is similartke process in 1D. The deriva-
tion in this section has a similar procedure as describe86n%]. The velocity field is
restricted to the case where it consists only of the normalpament similar to (2.58)
(Ve = FH). First only one region with constant permittivity is coseied and

eAu =0 (3.3)

is fulfilled in the domainQ with the sufficiently smooth boundafy (note that the appli-
cation of Dirichlet and Neumann conditions is discusseer lat this section). The shape
derivative (2.45) of the primary variableand adjoint variabl@ is defined as follows.

ou

!/ _ -
u=u 6nF (3.4)

. 0u

Tt o
Uu=1u anF (3.5)

First the weak formulation is considered
- _du
/ elu-OJudx— / Ue—ds=0. (3.6)
S S

The shape derivative of the domain integral yields

ds;(Q;Vk) :/Q(SDUDU)’ dx+/rsDu.DUFds (3.7)

and it is simplified by the Gauss’ theorem to

dS1(Q;Vk) :/

(¢'Ou- Ou— U'eAn) dx+/
0

(u’s@ +U’£@ +¢e0u-Ou F) ds. (3.8)
.

on on
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Similar to the 1D example in appendix A.2, the shape dexigaton the boundary are
replaced by the material derivative such that

dsl(Q;VF):/ (¢/Ou- Ou— u'eAm) dx
Q
. 0u - du . oudu

+/r (ua%-l—us% +sDu-DuF—25%% F) ds. (3.9)

Later the material derivatives of the interface conditiarssused to eliminate these terms.
The shape derivative of the boundary integsais achieved by (2.50) and yields

Ue—+T (e—) +Us—lrJ]K F] ds. (3.10)
Both shape derivativesS and & lead to following result.

/u’aAde+/ u 8@ —Ua@ ds
o) r on on

:/S’DU-Dde-i—/ sDu-DU—ZS@@—Us@K Fds (3.11)
o) r onon on

The left hand side of this equation consists of the shape atdrral derivatives of the
primary variableu. The domain integral on the right hand side corresponds taage
in the permittivity value and the boundary integral cormss to a deformation of the
boundary.

Two Subregions. The result (3.11) is applied to the setup shown in figure 3.he T
region Q1 is inside ofQ, and the interface between them is denoted by Dirichlet
and Neumann boundary conditions are applied ea=q U . It is assumed that the
velocity fieldVe satisfies (2.35) and (2.36) dfy. Thus the outer boundary of this setup
is not deformed. Additionally, it is assumed that the boupd@nditions do not depend
on the geometry (i.el'1). The interface conditions dny are (if necessary the quantities
of each region are distinguished by the corresponding sigibsc

u = u (3.12)
6u1 . 0U2
81 % - 82% (3 13)

with 1i the outward normal vector of regid®;. These conditions are fulfilled for dll;
and their material derivatives lead to

i = U (3.14)
our\ ou\
<Elﬁ) - (82%) . (315)
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Figure 3.1: Two subregion@; andQ, with different constant permittivity values. On the boundarl 4
and[l, Dirichlet and Neumann boundary conditions are applied. iftexface between the two regions is
described by ;.

Similar interface conditions are applied for the adjoiniahlet

U = W (3.16)
o _ o0l
81 % - 82 % . (3 . 17)

The shape derivative (3.11) is applied for both domains. mhaterial derivatives on
the boundary 1 and the term with the curvature are eliminated if both shagpeatives
are summed up and if their interface conditions are appliéd yields

/u’sAde+/ U (82%> —UzEz@] ds:/s’Du'Dde
Q Mo o

on on
- dup 0Uy - Oouy 0y
Oup - 001 — 26— —— —&x0up - O 20— — | Fds. 3.18
+/r1 (81 Uz - LU Slan an LUz - Ltz + Ezan 6n> S ( )

The material derivatives of the primary variable only ocouarthe outer boundario.
This boundary consists of two parts with different boundesynditions. In ECT, these
boundary conditions do not depend on the geometrnyl” @irichlet boundary conditions
are applied and the material derivative equals zero.

Ury, = Ug (3.19)
Ur, = O (3.20)
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Similar the material derivative of the displacementieryields

Ju
%I’n = 0On (3.21)

ou\
(£%> ',— = 0. (3.22)

The boundary integral ovén is further simplified by splittingJu in a normal and tangen-
tial component. The tangential component is denoteB;By and the normal component
is given byEn 11 andE ofi 2 for each region. The over line denotes the adjoint variable.

81(Etf+ En71ﬁ) . (Eﬁ—l— En,lﬁ) — 2€1En71En71
—82(Eﬁ+ En72ﬁ) . (Eﬁ—l— En’zﬁ) + 282En72En72
=&15Et — €1En1En1 — €2EtEt + €2En 2En 2
=(e1—€2) (BBt + En71En,2)
=(€1—€2)0uy - 002 (3.23)

Hence (3.18) is simplified to

/u’sAde+/ U (82%> ds—/ Ugsz%ds
0 g on rp on (3.24)

:/s’Du-DUdX+(sl—sz)/ Ouy - OUpF ds.
Q M

Generally, a similar result is obtained if more than two oegi are considered. On the
left hand side shape and material derivatives of the primariable occur. The adjoint

problem is defined in such way that the desired sensitivigbisined. The right hand

side consists of two terms. The first term corresponds togahsitivity with respect to the

material value. The second integral is related to a matgniap and to a deformation of

the interface with velocity.

3.1.1 Sensitivity of the Potential

In ECT, the electrodes are not deformed and thusu’ holds £ = 0 on the electrode
surface). To calculate the sensitivity of the potentiahsider the region of the electrode

1E, is the tangential component of the electric field strendtle fiegative sign is omitted for sake of
simplicity).
2En71 andEn > denote the electric field strength in normal direction f@ioa 1 and 2, respectively.
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Qe and its characteristic functioge. The characteristic function equals XXiE Qe and 0
else. Then the adjoint problem is defined as follows.

O-(e0u) = Xe

Ur, = 0 (3.25)
s@ =0

onjr

With these definitions (3.24) leads to

/ de:/s’Du~Dde+(£1—£2)/ Ou, - OuoF ds. (3.26)
Qe Q M

This equation is used if one is interested in the change oékbetrode potential. This
corresponds to the high impedance approach of the measotreir®iit. The new hard-
ware concept [89] is based on low impedance electrodes {Bias case is considered in
the following subsection.

An identical result for the second term in (3.26) is obtaimed41] for electrical
impedance tomography. In this paper the sensitivity witpeet to a deformation is
calculated for two regions with a priori known and constatauctivity values.

3.1.2 Sensitivity of the Charge

If one is interested in the change of the electrode chargéfeaaht adjoint problem is
defined. This is necessary for the low impedance approachthe forward problem
is defined by (1.1). In this case, only Dirichlet boundary ditions are applied to the
electrodes. The boundary of the electrode of interest ist@enbyl¢; and following
adjoint problem is defined.

O-(e0du) = 0
U\ro =0 (3.27)
U‘re‘i =1
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The sensitivity of the measured charge is obtained by

/ U dS:/SIDU-DUdX+(€1—82)/ Ouy - OuzF ds. (3.28)
Fei \ ON Q r

whererionleis th~e inward normal vector of the electrode. Similar to thevjpus section
it is assumed thdt =0 onle.

3.2 Boundary Element Method

The boundary element method is utilized to solve the forwaaoblem. In the practical

application different questions arise. First the diseadton into boundary elements of
the sensor and of interior objects is discussed. Next thadtation of the boundary ele-
ment method is introduced. The subsection deals with treatigation of the boundary
integrals for the sensitivity calculation.

Discretization into Boundary Elements. Figure 3.2 shows the discretization of an ex-
pedient model of the ECT sensor into boundary elements. @ettil gives a detailed
discussion about the appropriate assumptions for thecghplh of a two dimensional
model. Without interior material, it consists of three @g of interest, namely, the PVC
pipe, the interior of the pipe, and the region with the graeahdhield at the outermost
circumference. The 16 electrodes are assumed to be pgréecttiuctive and each of
them is an equipotential surface. Thus it is not necessaspliee the Laplace equation
for these regions.

The interior objects are described by the level set functioiio discretize the bound-
ary it is necessary to track the contour i.e. one has to s@wg.( This is illustrated in
figure 3.3. The level set function is discretized on a fixed €aan grid and the function
is assumed to be linear between the grid points. Additionaltp are computed on the
grid line, where® = 0. These points are connected to a polygon of boundary elsmen
Similar one can construct the boundary elements for theijpmalse level set method.

The front-ends of the prototype measure the displacemergrdufor different active
electrodes. In fact, each electrode acts successivelgrstitting electrode whereas the
other 15 electrodes are measuring. A total number of 240 uneaents is obtained. Due
to the symmetry of the measurement this is twice the numbiedependent capacitances.
In other words, the displacement current remains the samee#suring and exciting
electrodes are reversed. Averaging of these measuredhcispent currents is used to
reduce this redundancy.

Formulation of the Boundary Element Method. One advantage of the boundary el-
ement method is that it reduces the dimension of the problgrane [53]. In 2D it
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interior of the pipe

PVC tube

electrodes

grounded shield

Figure 3.2: The sensor is discretized into boundary elesnéttonsists of the PVC pipe, the interior region
with the unknown materials, the 16 electrodes that are nesuatound the pipe, and the outermost region
with the grounded shield.

node points

d>0

Figure 3.3: Discretization of the interior object into balany elements. The level set function is discretized
on a fixed grid (dotted lines). The sign of the level set fumtiis marked by small circles and x symbols.
The node points of the straight boundary elements are edéxlibn the grid lines by linear interpolation.

discretizes only the interface of regions with constantrpgivity. A further advantage is
that it gives the solution of the partial differential eqoatexplicitly. This is in contrast to
the finite element method where an interpolation of the smutnto a grid is performed.
For a moving geometry and a changing topology it is a greaamatage to have an accu-
rate solution without the need of remeshing of the whole domghe boundary element
method is mainly restricted to linear partial differenggjuations. In this work, however,
it is assumed that the materials in the interior of the piel@ear. In other words the
material value does not depend on the electric field strength
A short introduction in inverse problems with boundary ederts is given in [53].

An application to elasticity is given. A detailed descmyptiof the BEM itself is given
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for instance in [13]. The BEM leads to dense stiffness matrieéhich restrict its usage
to problems of small size. To speed up the calculation, éslhein three dimensions,
fast boundary element techniques [81] are utilized. Theskriques improve the BEM
with respect to storage requirements as well as the contyplekimatrix times vector
multiplications.

Basically, the solution of\u = 0 in terms of boundary integrals is

1 0 0
—u(X —U*(X = (X V) — 2
U+ [ ug)ZU g)ds = [ R Su)ds, (329)
for X e . 3 U* is the so called fundamental solution and in 2D one obtains
. 1
U*(%,9) = —5_log[% 3] (3.30)

In this work a direct formulation for the Dirichlet boundavglue problem is used [81].
The unknown variables in the resulting equation system hysipal values. One starts
with the boundary integral equation (3.29) and the integeak discretized in linear
boundary elements in a geometrical sense. Each elementonatant values; and

fi = %u. The collocation method is used to assemble the correspgrdatrices of
the boundary integrals and the discretization of (3.29y&uated at each midpoint of a
boundary element. An analytical evaluation of the integyimpossible due to the constant
and linear boundary elements. This results in

Hpl = Gpf (3.31)

wherelland f summarize the physical quantities at each boundary elefRenadditional
subregions interface conditions are used to combine theidudl matrices.

This simple formulation leads to dense blocks in the rasglsystem matrix, which
is not symmetric in general. The equation is solved by a tiapproach with Gauss
elimination. Possible improvements are e.g. a symmetrier@a formulation or the
usage of elements of higher order.

3.2.1 Discretization of the Sensitivity Equation

The first term of the cost functional (1.8) consists of thegh&ed least squares of the
calculated and measured electrode charges. At iteragqmk $his term reads as follows.

= 3wt o) 62

The gradient and an approximated Hessian matrix of thisgddtte cost functional are
calculated by the Jacobian matrix. This matrix consisthefgartial derivatives of each
charge with respect to the change in geometry and mateoakepties. The deformation
is described by the velocitly; on different node points along the boundary and they are

3The term% in (3.29) is obtained for a smooth bounddary
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summarized intd- of sizenj. The change in the material values is denoteaﬁbysize
n;). By neglecting higher order terms the chargese represented by Taylor expansion

qtt = g+ IrF + J:¢ (3.33)

with the Jacobian matricels of sizen; x n; andJ, of sizen; x n;. The Jacobian matrices
are assembled with the partial derivatives

. _9q
and 3
]
The function value at iteration stépt 1 is written as
S lor =
| K+l = |1‘<+6Tg1+§5Tc516 (3.36)

where the change in geometry and permittivity is summarnzex

. [ F
d= < 5 ) (3.37)

The gradient of the weighted least squares (3.32) is defipg¢ddie thatvTwW = C—1)

_ (I —m)
O1= ( JsTC‘l(d"—dm) ) (3.38)

and the Hessian is approximated by

(I TC Y e,
Gl— ( JSTCflJI_ JSTCflJS : (339)

Jacobian Matrix Jr. The boundary integral of the right hand side of (3.28) detees
the change of the electrode charge with respedt.toFor the adjoint problem for the
electrode a Dirichlet boundary condition is valid on the correspomgditectrode surface
Iei. The integral is discretized by the boundary elemégts The outward normal vector
of the boundary element defines an interior and an extergyomewhich are denoted by
the subscript 1 and 2, respectively. Under assumption ohataat velocityF; on each
boundary element in the direction of the normal vector, thteies of the Jacobian are

Jij = (e1—¢€2) / Ouy - OUx ds. (3.40)
rb’J

If a linear velocity function is assumed on each boundarmnela, the unknown elements
F;j are defined on the node points. A similar equation for the efgmin the Jacobian
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can be derived. Further details on the discretization olv#lecity function are given in
appendix B.

The gradient is expressed by a normal and a tangential caenpofihe normal com-
ponent is known from the solution of the boundary elementiet The necessary tan-
gential component can be obtained e.g. by direct diffea¢ioti of the system matrices,
by differentiation of equation (3.29), and by finite diffaces of the potential along the
boundary elements. In this work central finite differenaesidilized for a fast calculation
of this part of the gradient.

Jacobian Matrix J¢.  An element of this Jacobian is obtained by evaluation of the d
main integral in (3.28). The adjoint problem is determinsdafore and the electrodig;
acts as exciting electrode. The domain with constant nstesiueg, is denoted byQ,
and its boundary i§,. With the Gauss’ theorem the domain integral is transforméex
a boundary integral

Jeil :/ Du-Dde:/ u@ds (3.41)
Q r on

sincel]-Ju = 0. The resulting integral can be evaluated easily due todbethat the
necessary quantities are computed directly by the bourelangent method.

Computational Effort. The necessary computations for one iteration step are summa
rized as follows.

1. Find the zero level set by (2.1) and discretize the unknoljacts into boundary
elements.

2. Calculate the electrode charg#sby the flux integrating method (1.2). Therefore
16 forward problems of type (1.1) are solved. The boundangltmns are defined
by the corresponding measurement setup.

3. For each forward problem 15 adjoint problems (for eachsmesament electrode)
are defined according to (3.27) and solved. In fact, only h2@pendent measure-
ments exist due to the symmetry. Thus only one half of theiadproblems is
necessary.

4. Next the tangential component of the gradigntsandJu is determined by finite
differences.

5. The Jacobian matricds andJ; are assembled by numerical evaluation of the cor-
responding boundary integrals.

For these steps a charge based prototype is assumed withci®des. In the case of the
charge based measurement principle, only Dirichlet boyndanditions are applied for
the forward and adjoint problems. Therefore it is straigivtiard to use the superposition
of only 16 independent field problems to calculate all nemgsfield problems. This
principle can be applied under the assumption that the perities do not depend on
the electric field strength. Each independent field problppli@s a Dirichlet boundary
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conditionu = 1 on a different electrode and homogeneous Dirichlet boyncanditions
on all other electrodes. It is also possible to apply thixedure to the case of voltage
based measurements. Hence the overall number of field pnsblhich have to be
solved, is equal to the number of electrodes. Furthermolsetba boundary conditions
change for each field problem. That means that the systenxmatnains the same and
merely the right hand side of the equation systems differs.



Chapter 4

A Priori Information and
Regularization Terms

A problem is called well-posed in the sense of Hadamard ifefeery data a solution
exists, this solution is unique, and the solution is stalité vespect to perturbations in
the data. If any of these three conditions does not hold, tbblgm is called ill-posed
(compare with [28, 87]). Unfortunately, the inverse prablef electrical capacitance
tomography is ill-posed and its solution is unstable witbpext to data perturbations.
This creates serious numerical problems. The Hessianx1(@89) is ill-conditioned,
which is indicated by the decay of its singular values. Toecwjith this instability, so
called regularization methods are implemented. In sedti@rthe knowledge of a prior
probability densityrt,(€) is assumed. The reconstruction is stable with this addition
information, which is incorporated by the regularizatiennt R with the regularization
parameteni?. This kind of regularization is of Tikhonov type.

In the community of image processing and level set techisique idea is to use so
called shape priors. Even though shape priors are possifpléarization techniques, it is
necessary to have a good idea of the shape of the objects ¢xddeered. Generally, this
is not fulfilled in capacitance tomography for industriabpesses and thus this technique
Is not applicable.

Commonly, no particular a priori information is availabla.dbsence of this informa-
tion it is reasonable to apply a smoothness assumption aotbgon. In ECT, this means
that the permittivity value in the interior pipe is assumedé smooth. The disadvantage
is that the reconstructed image is blurred and has lessabpagplution. Even for a shape
reconstruction method, which assumes piecewise constamifivity values, additional
information is necessary. As a consequence of describsgtlrfaces between regions
with constant permittivities, a regularization, which stites the solution in a region, is
no longer applicable. Instead a smoothness assumptioreasotitour has to be applied
to avoid zig-zagging of the interfaces. Following reguation methods are proposed in
literature:

e implicit regularization where a parameterization of thatooir with as few coeffi-
cients as possible is applied,

e penalization of the arc length of the interface between rnaseas suggested in

41
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[42, 41],
e the Mumford-Shah functional [66],
e total variation regularization [17, 18, 20].

In the case of a parameterization of the interface, a limtadber of coefficients is used.
For instance the Fourier coefficients of higher order anedated and high frequencies in
the trace of the contour are avoided. This characteristicdgever, not easy to control.
Often the arc length of the interface is penalized which aéswlts in smooth contours
between different materials. This term does not depend@mtterial values themselves.
This regularization term is often applied if the materidles are assumed to be known a
priori. This can rise a problem if the material values ar@nstructed simultaneously to
the shape. The Mumford-Shah functional consists of twospaith particular parameters.
One term leads to piecewise smooth images and the secongitdd®s simplicity of the
edge set between the different smooth parts of the imageMIimeford-Shah functional
has more than one tuning (regularization) parameter, waiehdifficult to determine in
practical applications. At last the Total Variational Regyidation (TVR) can be used.
This method originates from image processing (as well abtilmaford-Shah functional).
It is suitable for blocky images (piecewise smooth imagas)lar to the Mumford-Shah
functional but it has only one regularization parameter.

Many different approaches exist for the choice of the raggdsion parameter. Com-
mon methods are the Generalized Cross Validation (GCV), gwejpancy principle, or
the L-curve method. A detailed discussion of these methad$e found e.g. in [28, 87].
The influence of the regularization parameter on the recacistd image quality is pre-
sented in chapter 5.

In this chapter appropriate regularization terms are dised. First of all the New-
ton method, which is applied to find the minimum of shape fiom&tls, is introduced.
In the following three sections different regularizati@mms are discussed, namely, the
regularization of the arc length, a regularization, whiomsists of the squared jump in
the material value multiplied by the arc length, the Mumf&iaah functional, and total
variational regularization. Details about the discrdt@aand about the assembling of
the gradient and Hessian matrix are given in appendix B. @gdti5 introduces a regu-
larization where prior information is known from ultrasomeflection tomography. The
last section deals with constraints. These constraintgracate some kind of a priori in-
formation on the solution. In case of ECT the permittivity @nstrained to values above
one and geometrical constraints are applied to the unknoterface.

4.1 Newton Method

As discussed in chapter 3, the Gauss-Newton method is apgeor the first term

of the cost functional (1.8). A Newton-type method convergeuch faster, however
one needs to know the Hessian matrix. Thus, the second oedeative of the second
term (regularization term) is necessary as well. Generdle/regularization term can be
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considered of type (2.60)
J(F) :/l]JdS.
r

Commonly, the descent direction, which is defined by the skapeative, is used. This
shape gradient based flow has slower propagation compatie@d\Mewton type flow. In
[35, 36] the Newton-type speed function is defined as follows

d2I(MVeVg) = —dI( V) forallG:T — R 4.1)

This equation is used to assemble the Hessian matrix andabegt of the regularization
term. The conditions (2.58) and (2.59) are assumed to holMf@ndVg as discussed in
section 2.2.4G is an appropriate test function and a detailed discussidmeodliscretiza-
tion is given in the appendix B. The Hessian matrices for batims in (1.8) are combined
and weighted by the regularization parameter. FinallyNbaiton-type descent direction
is calculated in the optimization framework.

One important issue is that the Hessian must be positiveitgfimhich means that
the curvature of the objective function is always positivEhis assures that a descent
direction is calculated. The Gauss-Newton approximaticth@ Hessian is at least posi-
tive semidefinite. Generally, the Hessian of the reguléiongparameter is calculated by
(2.61). This part is only positive definite under some asgionp ony and in practi-
cal applications it is necessary to modify this term in suahag that it is convex. This
problem is addressed in the sections 4.3 and 4.5.

Another issue is that complex topologies can occur if thetiphese level set frame-
work is applied. For instance, if two level set functions rb&p, junctions occur and
arbitrary angles are allowed at these edges. The reguianz&rm, however, is written
as sum over all individual level set functions. The contoluome level set function is
smooth enough to allow a shape sensitivity calculation.

4.2 Regqularization by the Arc Length

Many shape reconstruction methods assume a priori knowarrakatalues of the distinct
phases. These values are held constant during the reocdistrprocess. A straight
forward way to implement a regularization is to penalizedhelength of the interface.
This is done by

Np
Rarc:Z/ ds. (4.2)
p=1"Tp
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where the arc length of all level set functions is summed upe Weight between the
least squares part of the cost functional and the regutarizéerm is adjusted by the
regularization parameter®. The reconstructed trace of each region is smooth because
zig-zagging is effectively avoided. Numerical results presented in chapter 5.

By settingy = 1, the shape sensitivity calculated by (2.43) and (2.61yigie

dRarc(r;vG) = /KGdS (4.3)
r
and
&P Rarc(T'; Vi Vo) = / OrF -OrGds. (4.4)
r

For the sake of simplicity it is assumed that only one levefgaction exists. The integral
in (4.4) represents the so called Laplace-Beltrami operatioich is defined e.g. in [76].
It is easy to see that the shape Hessian is positive semitdéfin Rarc(I;Vie; Vi) > 0.
The assembling of the gradient and the Hessian matrix is simmappendix B.1.

4.3 Squared Jump and Arc Length

If material values are reconstructed simultaneously tetape, a more complex regular-
ization term is necessary. In this thesis, heuristic argusare given why the jump in
the material value must be penalized as well. These argsnaeabased on experimental
results, which are shown in section 5.1. A simple idea is ttiipiy the arc length by the
squared jump in the material value

Rsjy(&,N) = (sl—eg)z/r ds. (4.5)

As above it is assumed without loss of generality that only lavel set function exists.
The material values; ande; are similar to chapter 3 the inner and outer permittivity.
For this functional the first and second order derivativeth wespect te, are calculated
easily. The first order derivative with respect to shape aateéral value is

dRsJ(r;\_]G) = (81 — 82)2/ KGds+ 2(581 — 582) (81 — 82) / ds (4.6)
r r
with &g the change in the material value. The second order der@/gigids
d?Rsy(T"; Ve ; V) =(£1 — 52)2/ OrF - OrGds+2(3¢1 — 582)2/ ds
r r

+2(0e1 — Oep) (€1 — €2) /r K(F+G)ds. (4.7)
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As mentioned above, it is of importance that the regulaopaterm is positive definite.
It is easy to see that the first and the second term in (4.7)cmiéve (semi-)definite. The
third term, however, rises problems. For instance, thedgsation yields for constant
F =G=F.andode; = —0¢;

d?Rs3(T";Vi; Vi) :8(681)2/ ds+ 8(681)(81—82)/Kchs. (4.8)
r r

In the last equation there exists a combinatiopsgafandF; such that the Hessian is nega-
tive. One idea is to modify the regularization term to assurenvex functional. Consider
following inequality, which is further simplified by the CaucSchwarz inequality.

2{(681—582)/rd8—|— (sl—gz)/rKFds}2 > 0

2
Fd
2(Be1 — Be2)? / ds-+ 4(Be1 — Be2) (£1 — £2) / KF d8+2<81—€2>2UFfK—d§ =0
r r r

2(5e1 — 652)2/ ds+ 4(dey — 8ep) (1 — £2) / KF ds+2(g1 — 82)2/ K°F?ds > 0
r r r
This result leads to following modified Hessian, which is rmegitive semi-definite.

d2RE4(T; Vi ; Vo) =dZRSJ(F;VF;Vg)+2(81—£2)2/K2FGds (4.9)
r
A detailed discussion of the discretization of these irdegyis given in appendix B.2.
Note that the discretization of the last term in (4.9) addsitp@ values to the leading
diagonal of the discretized Hessian matrix. This implermensmall correction of the
Newton direction to the steepest descent direction.

4.4 Mumford-Shah Functional and Total Variational Reg-
ularization

The Mumford-Shah functional, which has been introducedléctacal impedance to-
mography by Rondi [66], consists of two parts.

RMS(S):/ \Ds]zdx+v/ds (4.10)
Q\r r

The first term in this equation leads to smooth imadess usually called the edge set.
It is removed from the domain of integration and the recacséd permittivity can be
discontinuous across the interface. The second term ysaaglicity of the edge set.
This term is tuned by an additional parametgwhich is difficult to determine in practical
application.

Total variation was originally introduced for image desiog [67, 59]. A restora-
tion algorithm, which is based on total variation, presereeges i.e. jumps in noisy
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and blurred images. This kind of regularization is well edifor inverse problems of
distributed parameters. The regularization term is defowed the region of interest by

RTv(S)Z/Q|DE|dX.

This functional can be interpreted geometrically as therédisurface area @f For piece-
wise constant it consists of the length of the boundary multiplied by théghe of the
jump in the material value. The length of the curves is peedlas well as the jump in the
discontinuity. Both properties are held relatively smalbhwéver, the non-differentiability
of the Euclidean norm at the origin rises problems in the migaksolution.

Both regularization functionals are not straight forwardngplement in this work.
Thus the experimental results in chapter 5 are based on tlaextjjump and arc length
regularization.

4.5 Sensor Fusion

Electrical capacitance tomography images the spatiaillision of material permittivi-
ties. For further quantitative analysis one can calculatiegral parameters, like material
fractions of the process to be monitored. However, the in@grocess is ill-posed and it
usually strongly depends on regularization. This reguédion is required to end up with
acceptable results. In fact, the main problems are

¢ the soft-field characteristic of the electric field (ECT is Wwmoto provide informa-
tion on bulk rather than on object boundaries) and

¢ that small disturbances near the center have almost nome#uen the capacitances
at the circumference of the tube.

Hence it is complicate to determine accurate volume frastiout of the tomographic
image. In many applications it is reasonable to assume piseeconstant permittivi-
ties. Such situations arise e.g. in gas-liquid two-phasesflavhere sharp transitions
between the two phases exist. Even for shape reconstruetbniques a regularization
is necessary, which incorporates specific assumptions dtwmaterial distribution, i.e.
smoothness of the boundary between regions of differemigt@rities.

If additional information is provided, which is sensitive tbject boundaries, one
ends up with images that correspond better to reality thasettobtained with bulk in-
formation and edge preserving regularization. Ultrasaenabgraphy, which is sensitive
to disturbance boundaries, provides this supplementdoynration. In this section, a
concept for the fusion of Ultrasound Reflection TomographiRTWand ECT for indus-
trial applications is presented. The method is intendedtohline the strengths of both
principles while reducing their respective disadvantages

Ultrasound Reflection Tomography. An alternative to ECT, which is as inexpensive,
but is able to provide information about the shape of materath different acoustic
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impedance, is ultrasound tomography. This work focuses ltnasdund Reflection To-
mography URT due to its simplicity. It is based on Time-Oight (TOF) measurements
of reflected ultrasonic waves. It aims at reconstructingatb@ustic reflectivity function
of a cross-section of a pipe. URT has been successfullyeppd industrial processes
[70, 69]. One application is e.g. the identification of bybghks-liquid flows as de-
scribed in [92]. Typically, there is a great difference beéw the acoustic impedance of
the gas and liquid phase, resulting in a nearly perfect rigfleof sound waves at phase
boundaries. Gas bubbles can be treated as perfect reflasttyag as their geometrical
dimensions are several times larger than the wavelengtieailtrasonic wave.

The layout of a URT system for pipelines is similar to thatted ECT sensor. Instead
of electrodes, ultrasonic transducers are equally spaweshd the circumference of the
pipe. A sketch of an URT sensor is shown in figure 4.1. All tcarcers can be used
as both transmitters and receivers. One transducer at agiexeited with a broadband
pulse and emits an acoustic wave. This triggers the datasaio where all transducers
simultaneously act as receivers. To obtain sufficient mfmion for the reconstruction
process it is essential that the transducers have a wide &eglein the lateral direction.
On the contrary the beam should be very narrow in the azirhdirection to treat only a
thin slice of the pipe.

T5

T3

T31

Figure 4.1: Sketch of an URT senor. The image is reconsulumtéime-of-flight measurements of reflected
ultrasonic waves.

The reconstruction is performed by a simple backprojeatibthe recorded arrival
times. A pulse emitted by transducer T3 is partially reflddback to transducer T5.
The backprojections take the form of ellipsoidal arcs whk foci at the transmitting
and receiving transducers, respectively. The reconsbruct obtained by summing up
all backprojections. At last some kind of thresholding ipleggd. The reconstruction
does not explicitly rely on regularization but the imageesurom blurring. Figure 4.2
illustrates an URT result, which is based on the simulatibbazkprojections of two air
bubbles in oil. To visualize the artifacts, no thresholdisgpplied. Many artifacts are
visible especially between the two objects and this comapdie the accurate determination
of volume fractions.
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(a) Test distribution of two air bub- (b) URT result with simulated backprojections.
bles in oil. The image is scaled such that possible edges have
values near 0.

Figure 4.2: Example of an URT image of two air bubbles in oil.

URT offers almost opposite properties than ECT, like
e its sensitivity to the transitions between different plsased

e its sensitivity distribution, which has its maximum neag ttenter of the pipe. This
is contrary to ECT, which is sensitive at the margin of theaagf interest.

A disadvantage of URT is that it can not be guaranteed thatebenstructed phase
boundaries are closed contours. This may not be of majorezani€ one is interested
in qualitative images, but seriously complicates the datoan of integral flow parame-
ters. Additionally, it is not possible to reconstruct petimity values of the involved
materials. ECT, on the other hand, enables the quantificetitetms of absolute permit-
tivity values. The available boundary information perfgsupplements the information
gathered from capacity measurements. Usually, a high nuofhétrasonic transducers
are used to obtain images of sufficient quality. For a sensaoih method it is reasonable
to assume that less transducers compared to a stand-aldngyistem are sufficient. Suf-
ficient means that enough information about edges is avaitalbconsiderably improve
the overall image quality.

Fusion of Sensor Data. Both methods have proven to be useful for monitoring indus-
trial processes. However, they have their respective adgas and limitations and the
quality of the reconstructed images is limited in practié&ach sensor system collects
only incomplete data about the material distribution inibgion of interest. The usage
of data from both tomographic sensors is a possible remduydata obtained from both
methods is fused to yield better overall reconstructionltesECT benefits from

¢ the supplementation of the soft field properties of the aletield and
¢ the introduction of a physically meaningful regularizatio

URT takes advantage of the fact



4.5. SENSOR FUSION 49

¢ that the fusion yields closed contours and
¢ that material values of the distinct regions are determined

An obvious way to implement the data fusion is a sequentiapliog of information.
The URT image is obtained first and it provides a prior infatiorafor ECT. Level set
methods are a versatile tool for image processing, e.g.dfeysed for the segmentation
of images. One idea is to perform such segmentation of the idRRge simultaneously
to the ECT reconstruction. Therefore the fusion between URT BCT is based on
the common level set method. This procedure is describecttaildn the following
subsection. Another possibility is explained in the secenblsection. It is based on
post-processing of the ECT and URT image by level sets. Thibades not based on
boundary elements. However, itis an illustrative exameitete fusion of different sensor
data. Both methods are validated by simulated experimentartAer discussion can be
found in [10, 11].

For the sake of simplicity, it is assumed that the crossiseat material distribution
does not change between the ECT and the URT measurementsf(EQT and URT
sensors are in the same plane in flow direction). Otherwisenaust take effects of fluid
dynamics into account. For instance a statistical invarsiith a state space formulation
and an appropriate transition matrix can be performed mdase.

4.5.1 Segmentation of the URT Image and ECT Reconstruction

One idea for the segmentation of images is to use a defornfabliee) contour. The
curve is driven by an appropriate velocity function where ginopagation is stopped at
edges. A possible velocity function is given by (see e.g])[59

F=—0(gA). (4.11)

In (4.11),1 is the normal vector of the interface agd R? — R is an edge detector,
which is chosen in such a way thgt= 0 at ideal edges of the image agd- O elsewhere.
The image obtained by URT contains information about edgescantours of objects.
Therefore an edge detector is not necessarygamlials the intensity values of the URT
image scaled to the range from 0 to 1 (as shown in figure 4.2(b))

The velocity function (4.11) can be interpreted as the negaradient direction for
the cost functional

R|S(F) Z/rgdS. (4.12)

If the problem satisfies the necessary smoothness requitengeshape sensitivity analy-
sis can be performed. One obtains the first and second ordeatilees (2.43) and (2.61).

In [35], Hintermdller and Ring propose a second order apgrdacimage segmentation
based on (4.12). They observe that the shape Hessian igtikbe positive definite near
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the optimal contour. This property must be maintained fortgors away from the opti-
mal contour. Hintermiller and Ring suggest following modifion of the shape Hessian

2 +
dZRIS(r;vF;VG):/[(@+2@K) FG+gOrF-OrG| ds,
r

o on

where(-)™ = max(-,0) for 0 < 0 < 1. The non convex part is cut off= 0. If 5> 0, a
small correction towards the steepest descent directicgalgzed.

The cost functional for the image segmentation method iflairto the regulariza-
tion term in ECT. Obviously, a possible technique for senasrdn is to incorporate the
segmentation of the URT image as a regularization term foc#pacitance tomography.
Instead of using the conventional smoothness assumptidineoactive contour, the reg-
ularization termRg attracts the contour towards edges. The numerical digatetn of
(4.13) is performed similar as described in appendix B.

A test distribution is used to compare the ECT reconstruaiith and without edge
information from the URT. The true material distributionnsists of two air bubbles
(2 = 1) in il (2 = 2) as shown in figure 4.2(a). The measured voltages are simu-
lated by the boundary element method and a Gaussian distilmeasurement noise
with a standard deviation of. D percent of the sending voltage is assumed. Figure 4.3(a)
presents the result of the capacitance tomography. Theestiajhe two bubbles does
not match the true distribution. By incorporating infornaatifrom URT, which is shown
in figure 4.2(b), the reconstruction can be improved sigaifity. This is illustrated in
figure 4.3(b)) where the phase boundaries are reconstruetgavell.

OO OXe

(a) BEM and level set based reconstruction with)y Reconstruction with edge information from
out particular prior information. URT.

Figure 4.3: Sensor fusion based on a physically meaningiylilarization term. The accuracy of the

reconstructed shape is improved significantly by priorimfation from URT (dotted line: test distribution,
solid line: reconstructed shape).

4.5.2 Post-Processing of ECT and URT Images

Another possibility to combine both tomographic techngjigto post-process the ob-
tained images. For this method the ECT reconstruction isopadd by a discretization
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into finite elements with constant permittivity values asatéed in [8]. The next step is
a segmentation into distinct regions. Therefore infororatibout the permittivity values
from ECT and about edges from URT are processed into one cechlimmage. In this

essay a two-phase flow is assumed and only a set with two piertyivalues is used for

two or more disjoint regions. The piecewise constant maltealues are expressed by

£ =¢1(1—H(®P)) + £2H (D) (4.13)

similar to the multiphase level set method (section 2.1T&g two material values; and
€2 are calculated as the mean permittivities in each regios.H®T image is denoted by
€* and its segmentation is done by minimization of the follagvaost functional, which
has been introduced in [19]

J|s,1=/|€—€*|2dx. (4.14)
Q

Both image segmentation techniques can be combined into @stefunctional by a
weighting parametem?, which scales the URT term.

J|s:/ \s—e*|2dx+a2/gds (4.15)
Q r
The fist order accurate velocity function for that functibisacalculated by
2 w2 ~2(99
F=—(e1—€)"+(e2—€")"—q %+Kg . (4.16)

The weighting parameter? adjusts the confidence in the URT image and the ECT im-
age, respectively. An example is shown in figure 4.4. FisBEET image™ is presented.
Note that a somehow arbitrary threshold value is necessasgparate both phases in
this image. Figure 4.4(b) presents the reconstructed shapehe image segmentation
by (4.15). The shape is determined accurately (the URT inadiyacts the contour to
the correct interface) and the mean permittivities of eagjion are obtained automati-
cally. This simple method combines the strength of both im@gechniques. It operates
on basis of the individual images and no modification of thenstruction software is
necessary.

4.6 Constraints on Material Value and Geometry

Another kind of a priori information is the restriction ofdlparameter space to feasi-
ble solutions. In case of ECT, constraints are imposed on titemal value and on the
geometry. To calculate the Newton type descent directine,l@as to solve

(G1+02G2)d = — (g1 + 0%p) (4.17)

for iterationk, where the change in geometry and permittivity is summeriato

. [ F
5_<&>. (4.18)
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1.6

1.5

‘ 1.4

1.3

1.2

(a) ECT result based on a FEM grid. For the liquid (b) Image segmentation. The com-

phases; = 2. bination of the URT and FEM image
yields a good agreement of the shape
(dotted line: test distribution, solid
line: reconstructed shape).

Figure 4.4: Sensor fusion technique based on an image ségfioen

The gradient and Hessian for the first term of the cost funeli¢l.8) are calculated by
(3.38) and (3.39), respectively. For the second term, therelie derivatives are defined
in (B.13).

In fact, the minimization problem is extended by the inegyal

g>1 v, (4.19)

which constrains the relative permittivities of all distirregions to values above one.
Additionally, the reconstructed interface must be in theenior of the pipe. Thus, the
pipe wall is an upper bound for the veloci: In the negative direction (a contraction
of the region),F is limited to the so called skeleton of the shape. Figure WLStrates
these limits forF, which are calculated on each node point of the discrete deyn
element mesh. The dashed line indicates the skeleton oh#pes Points on the skeleton
are equidistant to both sides of the contour. The limit isnfibby a line search, which
looks for the first minimum of the level set function in theeition of the inward normal
vector! This restriction is incorporated by the inequality

Frnin < F < Fax (4.20)

which must be fulfilled for each value of the velocity functio

The whole optimization process is solved by a Sequentiald@u@& Programming
(SQP) technique (see e.g. [29]). In each iteration steplijextve function is replaced by
a quadratic approximation. The Newton step is calculateairogctive set method, which
includes the linear constraint functions. The converggmoperties of the SQP algorithm
are improved by using a line search, which adjusts the sgep sinplementation details
about the optimization techniques can be found in [29, 33].

IFigure 2.1 illustrates the one dimensional level set fmctirhe point, which minimize®, is equidis-
tant from the interface points.
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Figure 4.5: Geometrical constraints on the velocity fumttiThe maximum value fdf is the distance in
normal direction to the pipe circumference. In the interibe skeleton (dashed line) is the lower limit of
the velocity. These distances are calculated for each noite gnd they act as an upper and lower bound
for the optimization problem.

Concluding Remarks. In the previous two chapters, the objective function (1s8)is-
cussed in detail. The adjoint variable method is utilizec¢atculate the sensitivity of
the electric field problem with respect to the deformatiothef interface and the change
in material values. Appropriate regularization terms aesented in chapter 4 and the
calculation of the sensitivity of these terms is performéd.this point the reconstruc-
tion problem can be solved efficiently by the optimizatiochtieique SQP. The following
chapter demonstrates the suggested reconstruction mbyhoghl world measurement
data.
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Chapter 5

Experimental Results and Discussion

This chapter validates the proposed reconstruction d@hgorby experiments with real
world measurement data. The images obtained by ECT are io#ddoy plenty of dif-
ferent factors, such as

calibration of the measurement system and the BEM model,
discretization of the forward problem,

parameter space (unknown shape or unknown shape and rhpteparties),
regularization term,

choice of the regularization parameter,

measurement noise, and

initial condition.

To measure the influence of these parameters on the reccimtrone has to examine
the quality of the obtained images. In this work followingierna are evaluated

surface area, which is measured in percent of the true area,
material values of the reconstructed phases,
stability under real world measurement noise, and

stability with respect to the initial condition.

The next paragraphs depict the measurement setup and aeditest distributions, which
are used to examine the proposed shape optimization. Addlty, the calibration proce-
dure of the computer model is discussed and details abourngiiementation are given.
Especially, the necessary computational steps are suzedan a list.

Then two sections deal with the two different types of par@mgpaces. First only an
unknown shape is considered. Therefore it is assumed thatdterial values are known

55
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a priori. The penalization of the arc length is used as regatton term. Mainly, two is-
sues are analyzed, namely the influence of the regulanzpicameter and the influence
if the assumed material values are altered. Additiondily,Nlewton-type optimization is
compared with the gradient descent and the influence of tagaspliscretization of the
level set function is demonstrated. Second the parameaeesp enlarged. Not only the
shape but also the material values are reconstructed. A dle regularization parame-
ter is an important issue. Further it is an essential atteilofi a reconstruction technique
to deliver stable results with respect to measurement ndiberefore the influence of
measurement noise on the result is analyzed. The initialiton (alteration of material
value and geometry) could probably have some influence oalitened image as well.
Finally, a few limitations of the implementation of the imiag technique are shown. The
last section gives a final discussion and conclusion.

Measurement Setup. The measurement setup consists of the charge based sexsor (a
described in the introduction of this work). The pipe diaenes 10.3 centimeters and it
contains different materials in its interior. In this wordlbwing test materials are used

for the measurement, namely

e PVC objects of different shapes (circles, semicircles),
o fill levels of different phases (tap water, diesel), and
e bubbles of air in water.

The materials are fixed for the measurement and they do nogeha longitudinal direc-
tion. A set of 160 measurements is recorded for one matastllmition whereas each
measurement consists of 120 measured displacement curiidr@ data acquisition time
for the measurement of 120 displacement currents, whiclthareecessary data for the
reconstruction of one image, is less than 60ms. The cowiaratrix is estimated and
no averaging is performed for the reconstruction process.

First two test distributions are presented in figure 5.1¢a) figure 5.1(b). One dis-
tribution (measurement setuy) consists of two objects with a shape of a circle and a
semicircle. Test distributioB consists of three equally shaped PVC rods. The diameter
of the PVC rods is 20.9 mm and their surface area is 3.43 chine semicircle shaped
object has an area of 9.01 émFigure 5.1(c) and figure 5.1(d) demonstrate the recon-
struction result with a FEM based algorithm. The interiayioa is discretized into 316
triangles, whose permittivity values are the degrees acddoen. The results are quite
blurred and it is difficult to estimate e.g. volume fractiang of these images.

The quality of the measurement hardware is defined by theabignNoise Ratio
(SNR), which is calculated by the proportion of the measursplacement current to its
standard deviation. Figure 5.2 illustrates the SNR for #tasA for all 120 displacement
currents. The SNR is not evenly distributed because it dé&pen the operating point
of the amplifier in the sensor frontend. The SNR is in the ramgteveen 32 and 52 dB.
Further information about the utilized sensor hardwardxegiound in [89]. The influence
of the measurement noise on the reconstructed image issdsduater in section 5.2.1.
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Figure 5.1: Two test distributions to verify the reconstioe algorithm. The reconstructions are performed
by a fixed discretization into finite elements.
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Figure 5.2: Signal to noise ratio of the measured displacecgrents for setup.

Calibration of the Boundary Element Model. An accurate calibration is essential for
a successful reconstruction. A detailed description ofctlération of the sensor front-
ends can be found in [89]. Generally, a characteristic cigwesed to map values from
the Analog to Digital Converter (ADC) to displacement cursenThese displacement
currents correspond to charges in the two dimensional ceenpuodel.
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To calibrate the ECT system it is necessary to obtain a spesfiof data i.e. one
has to physically fill the sensor with low permittivity matdrand consecutively with a
sample of a high permittivity material. Then geometricapmrties of the BEM mesh and
permittivity values are altered such that a conformity B=w measured and calculated
capacitances is obtained. In this work, the calibrationaseldl on two measurements.
First the sensor is filled with air, then it is filled with tap tea

Figure 5.3 and figure 5.4 show the measured displacemer@ntsrrThe electrodes
are numbered consecutively from the one, which is adjacetié exciting electrode,
to the electrode, which is located opposite the exciting. ofilee first measurement in
figure 5.3 is used as a reference. This is necessary becausadiiing voltage is not
known exactly. Both figures show a decrease in the measurpthcisnent currents,
whereas the setup with water has a smaller measurement tizeng¢he setup with air.
Due to simplifications (e.g. the 3D to 2D simplification, caang@ with section 1.1), there
exists a discrepancy between the sensor and the corresgocainputer model. Thus
parameters in the BEM mesh are altered such that the measeceghde matches the
decrease in the calculated charges. In this work the distahthe radial screen and the
permittivity values of the PVC and of the space between the pnd the grounded screen
are adjusted. The differences between measured and ¢attwi@ues are shown in the
second subfigure in figure 5.3 and figure 5.4 respectively.cohéormity between sensor
and model is satisfying.

The idea of normalized capacitances is used to map the neghdigplacement cur-
rents to charges in the boundary element model. Genefladlyisplacement currents are
normalized between the currents of the low permittivity ena iy and that of the high
permittivity materialip,.

o = meas—h (5.2)
Ih—1
wherei* is the normalized current angeasis the actually measured one. The charges
in the model, which are used for the reconstruction of an enage calculated by linear
interpolation between the charges of the low permittivitgtemialg, and that of the high
permittivity materialgy, respectively.

q° =q(1—i")+gni" (5.2)

whereq* is the calibrated data for the reconstruction process.

Implementation Details. The discretized sensor model (figure 3.2) consists of 876
boundary elements and 860 node points. The discretizafidimeointerior objects de-
pends on the fixed grid of the level set function. The levelfgettion in this work is
defined on a uniform grid with a grid space of two millimetéfte number of boundary
elements of the interior objects depends on the arc lengtieafcontour.

The input parameters of the algorithm are the measureméay i@ estimated co-
variance matrix, and the regularization parameter. Thalaggation parameter, which
is chosen empirically, is constant during the optimizapoocess. Not the determination
of the parameter itself is discussed but its influence onelkernstruction result. At the
beginning of the reconstruction process one has to definmitied condition, which is
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determined by the geometry and by the material values ofbfexts. The advantage of
the level set formulation is its flexibility. Thus the cortéopology of the objects to be
reconstructed has not necessarily to be available at tharbeg. Tests have shown that
a reasonable initial condition for the geometry is an obyeith the shape of a circle in
the center of the pipe.

The reconstruction is summarized by following steps, whihevaluated iteratively:

1. track the boundary, assemble the node points to boundizmeats, and find the
region number of each object,

2. solve the field problems and calculate all necessary fahaad adjoint problems
by the superposition principle,

3. calculate the objective function, which consists of #est error squares and of the
regularization term,

4. solve the boundary integrals to calculate the Jacobwrtlfe least error squares)
and the gradient and the Hessian (for the regularization)ter

5. calculate the search direction and consider the physicatraints by the active set
method,

6. extend the velocity off the interface (velocity extemgio
7. update the level set function and update the permittuatyes,
8. reinitialize the level set function (reinitializatioaipd continue with step one.

Additionally to these points, a line search is performed dqust the step size. This
achieves an improvement of the convergence of the optimaizatgorithm. This conver-
gence is measured by the decrease in the objective fundtf@algorithm is stopped, if
this decrease is less than a certain constant. Anotherisgpppndition is a small change
in the unknown parameters. In other words the algorithmrimiteated if the maximum
absolute velocity value is less than a constant. This cohsggpends on the spatial dis-
cretization of the level set function. A similar conditianapplied for the change in the
material values.

5.1 Unknown Shape

At the moment only an unknown shape (and not unknown matalaks) is considered.
The test distributiorA in figure 5.1(a) is used for the reconstruction process. Teedi
iterations are shown in figure 5.5. As an initial condition,abject with the shape of a
circle is used, which is located at the center of the regiomigfrest and its diameter is
4 cm. The permittivity of the object is tw@{ = 2) and the background has a permittivity
& —=1.

After only four iterations one can recognize the outlineha&f two objects. At iteration
step six the shape divides into two parts. Each part is fudbecribed by its own level
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Figure 5.5: Iteratively deformed shape based on real woddsurement data. The material values are
constant during the deformation.

set function. The decrease in the objective function istgtbin figure 5.6. A good
convergence behavior is obtained and the objective fumeiononotonously decreasing.
The resulting surface area after convergence differs filuarréal area of the objects by
only 1.7 percent.

The regularization parameter in this example, which is ehaampirically, isa? =
10325, This parameter is constant for all iterations. One ideafdeterministic choice
is the L-curve criterion, which is introduced in [34]. Figubs.7 presents the L-curve for
this example. One tunes the regularization parameter anktularization term (second
term of the objective function) is plotted against the lessbr squares (first term) in a
logarithmic scale. The idea of the L-curve is to chose dRewhich is located at the
corner of the curve (at the point of maximum curvature). Thare demonstrates that a
reasonable value of the regularization parameter can l&lfoy this criterion.

Comparison between Steepest Descent and Newton-type Optration. The mini-
mization of the objective function is done by a Newton-tygoeity function. As it is
mentioned in the introduction a second order approach isrgupto a gradient flow.

Figure 5.8 compares the decrease in the objective funcfibatb possible optimiza-
tion techniques. First the reconstruction is performedigyproposed Newton-type flow.
Convergence is achieved after 13 iteration steps. The semamd corresponds to the
flow in the steepest descent direction. An overall number3oit@&ations are necessary
until a sufficient solution is reached. Between iteratiop s and 53 one obtains only
few decrease of the objective function. Until iterationps&3 only one object exists. At
this point of the reconstruction the object splits into tvaotp.

Spatial Discretization of the Level Set Function. Figure 5.9 presents reconstructed
contours whereas the grid space of the level set functidieised. Each node point of the
boundary element mesh is marked by a dot. The resultingaues depend on the level
of discretization. For a very coarse mesh (grid lines evann8and 10 mm) the object
does not split into two. However, the results of the last twaxigktization levels hardly
differ. All further tests in this thesis are computed by algipace of two millimeters.
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Figure 5.6: Convergence of the shape optimization problEhe objective function is plotted against the
iteration numbers.
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Figure 5.7: L-curve of the shape optimization problem. Tdést error squares are plotted against the
regularization term for different regularization paraerst
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Figure 5.8: Comparison between steepest descent and Navetinod.



5.1. UNKNOWN SHAPE

0.02 0.02 0.02
0.01 0.01 0.01
0 0 0
-0.01 -0.01 -0.01
-0.02 -0.02 -0.02
-0.03 -0.03 -0.03
-002 0 0.02 -002 0 002 -002 0 0.02
(& 10mm (b) 8mm (c) 6mm
0.02 0.02 0.02
0.01 0.01 0.01
0 0 0
-0.01f - -0.01f o -0.01f o
-0.02 O -0.02 O -0.02 O
-0.03 , -0.03 , -0.03 ,
-002 0 002 -002 0 002 -002 0 002
(d) 4mm (e) 2mm f) 1mm

Figure 5.9: Reconstructed contours for different grid sgaaf the level set function.
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Figure 5.10: Computational effort of the first iterationgster different levels of discretization of the level
set function.

The computing time of the level set framework is about 20 @etrof the time, which
is necessary for the boundary element method. In figure BelOverall computation time
of the first iteration step is plotted against the differevels of discretization of the level
set function. Depending on the application one has to findaetff between accuracy of
the contour and computational time.

Correlation between Material Value and Reconstructed Shape One important issue
is the influence of the regularization parameter on the nbthimage. Additionally, an
alteration of the permittivity value of the interior objget) could probably change the
reconstruction result. In figure 5.11 the regularizationapgeter and the permittivity
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Figure 5.11: The relative error between the reconstruateldraie surface area for different material values
and regularization parameters.

value are varied and the obtained image quality is measwyréaelreconstructed surface
area of the interior object. The surface area is measureéroept of the true area of the
objects. The initial condition for this test remains the saas described above.

One can observe that the permittivity has a very strong inflaen the reconstructed
areas. A smaller permittivity value leads to an oversizatase area and vice versa. A
possible interpretation of this impact is that an objectvairge area and a small permit-
tivity value has a similar effect on the least squares thaokgect with high permittivity
and small surface area.

An interesting fact, which is shown in this figure, is thasl@sluence exists between
regularization term and surface area for a wide range olaegation parameters. On the
right hand side, which corresponds to strong regularinatize reconstructed area is too
small. In this case the arc length of the contour is penali@geanuch such that the object
can not split into two regions and the reconstruction failewever, for values less than
1073 the surface area is nearly constant.

There is a correlation between permittivity value and retarcted surface area. This
IS an important issue if the permittivity value is not knowpréori. Carefulness is neces-
sary if the reconstruction of the shape and material valveperformed simultaneously.
A penalization of the arc length without a penalization & fmp in the material values
leads to erroneously high permittivity values. In this ctisereconstruction compensates
a too small surface area by a disproportional high perntittixalue.
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5.2 Unknown Shape and Material Value

The results in this section are based on the regularizatbich penalizes the squared
jump in the material value across the interface multipligdha arc length of the contour.
This type of regularization is described in section 4.3.

Figure 5.12 presents the first iterations of the shape anérrakteconstruction of the
measurement setupwhereas the regularization parameter is constantignd 10375,
For this test the same initial condition is used as above.tekaiion step six the level
set function splits (similar to the shape reconstructiot) iwo fragments. At this point
two objects exist, each of them with its own material valu¢hie subsequent iterations.
The convergence behavior is shown in figure 5.13. A monotecesdse in the objective
function is presented. Figure 5.14 illustrates the changie material values. From
iteration one to iteration six only two material values é&xiBhen each object (the circle
and the semicircle) has its own permittivity.

The image at convergence is shown in figure 5.15(b). The stagted mean per-
mittivity value ! is € = 2.09. The surface area is2percent less than the true shape.

Figure 5.15 presents results for different regularizaparameters. The object does
not split into two if the regularization parameter is toothign this case the permittiv-
ity value is too low. Similar results are obtained for thet t@istribution B (shown in
figure 5.16). For a small regularization parameter all tH®€ rods are reconstructed.
However, more artifacts are visible. The reconstructethserarea in figure 5.16(b) dif-
fers 54 percent from the true shape and the average permittivievas = 2.07.

Influence of the Regularization Parameter. A deterministic approach for the choice
of the regularization parameter is e.g. the L-curve. Thigeis shown for the test distrib-
utionAin figure 5.17. Values foa?, which are used above to demonstrate the results, are
marked. The curvature can be used to identify a reasonakdengter. However, in this
plot a corner can hardly be identified. The regularizatioapeeter has a strong influence
on the resulting image.

Figure 5.18 and figure 5.19 analyze the influence on the pidrityitvalue and on
the reconstructed surface area for the first and secondistsbdtion, respectively. The
regularization parameter works as tuning parameter. In platts a strong correlation be-
tween the permittivity value and the area of the objects eadéntified. The dependency
between both attributes is shown in figure 5.20. Additionalis compared to the depen-
dency in the shape reconstruction (figure 5.11). For theeshag material reconstruction
the regularization parameter is altered, whereas thisypetex is fixed for the shape re-
construction. In this case? = 10-32° and the permittivity value is altered. Both curves
are nearly identical. This leads to the conclusion thatliblsavior is an essential attribute
of this kind of inverse problem. Even though the shape of thieat can be identified, it is
difficult to estimate correct volume fractions out of the tmyrephic images. A possible
solution could be to apply further information about therpitivities or shapes of the
objects to be reconstructed.

LA weighted average is used whereas each permittivity valueditiplied by the fraction of its surface
area.
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Figure 5.13: Convergence of the reconstruction problem.
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Figure 5.14: Material values of each reconstructed regfsniteration step six the shape splits into two
objects. In the subsequent iterations each object is desthy a distinct permittivity value.
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Figure 5.16: Reconstruction results for the test distidvuA.
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Figure 5.17: L-curve of the shape and material reconstdtr test distributiorA.
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Figure 5.18: Reconstructed material value and surface(arear in percent) for different regularization
parameters for the test distributién
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Figure 5.19: Reconstructed material value and surface (arear in percent) for different regularization
parameters for the test distributi@n
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Figure 5.20: Correlation between permittivity value andate area for both types of reconstruction. If
both shape and material value are unknown the regularizaicameter determines the points, which are
marked with the symbol x. For the shape reconstruction, tterial value is constant (second curve, points
are marked with an o).

5.2.1 Measurement Noise

In ECT, the electrode capacitances are not sensible to a ehartge permittivities in
the center of pipe. Without regularization small pertuidyzd in the data (measurement
noise) strongly influence the reconstructed image. This@eanalyzes the stability of
the reconstruction with respect to real world measuremeisen

The sensor frontends have a non-linear characteristicsg@ithmic demodulator
is used) and the variance of the noise depends on the ogpmaiint of the amplifier.
As shown in (1.7) the covariance matrix weights the measang¢rdata. In figure 5.21
the reconstruction result is shown for the measuremenpethereas each charge is
weighted evenly. In other words the covariance matrix exjtted identity matrix. The
imaging process fails and the two objects can not be idedhtifie

To qualify the stability of the imaging process, 160 measwets have been carried
out for each test distribution whereas the objects remagufikn other words no process
noise is considered. For each data a reconstruction isrpgztband the image is ana-
lyzed. For this process the regularization parametér=f 10-37°) is constant and the
initial condition is, as above, a centered circle with atreéapermittivity of two. The re-
construction converges successfully for each sampleeTalllsummarizes sample mean
values, standard deviations, and the minimum and maximunesaf the obtained area,
which is enclosed by the surface, and of its permittivityuealDifferent to the permittiv-
ity, which has a small variance, the area spreads in a widgeran

The reconstructed interfaces are visualized in figure &)22(is remarkable that the
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£l

Figure 5.21: Reconstruction result where the measurenadmes are weighted equally.

mean & min  max
surface error in percent—6.3 570 —-111 -20
relative permittivity| 2.14 008 206 222

Table 5.1: Influence of real world measurement noise on tbenstruction. The mean, standard deviation
o, minimum, and maximum values are given.

contours spread similarly in all directions. This is congreo the expected behavior that
points on the contour near the center are more difficult tonesé than the points closer
to the pipe wall. To characterize the results the centrofdbi® objects are calculated
(visualized as points in the center of each object). One baarve that they hardly spread.
For a further visualization the mean shapeshe mean centroids, and their associated
confidence regions are plotted (shown in figure 5.22(b)). hia work the confidence
region is defined as error ellipsoid, whose points have ttinees the standard deviation
of the deviation of the centroids. For a closer look on theawigd images following
guality parameters are introduced:

e the surface area, the relative permittivaty and the positioy andcy of the centroid
of each object, and

¢ distanced between the two objects, which is measured by the distanwecba
their centroids.

Similar as above the result of all 160 measurements is suin@ddn table 5.2. It is worth
noting that the position of the semicircle is estimated Wwas deviation than the circular
object, even though the semicircle is located closer tod¢inész. The semicircle, however,
has a greater influence on the displacement currents dueléwger surface area.

The correlation coefficients (Pearson product-moment)jchviare calculated by the
covariance matrix of the quality parameters, are shownhiets.3. These coefficients
indicate the strength of a linear relationship between twernia. Note that a careful
interpretation of the coefficients is necessary becauseeheson matrix is an optimal es-
timator only for Gaussian data. Additionally, a coefficiaptir zero does not indicate that
there is no correlation between two criteria (there existdably a non-linear relationship

2To visualize the mean shape, the average over all level setifins of each object is calculated and its
zero level contour is plotted. This is admissible under gsueption that each level set function is a signed
distance function, which is fulfilled in this thesis.
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(a) Reconstructed contours (solid lines) an¢b) Mean shape (solid line), mean centroids
their centroids (points). (points) and ellipsoids, which define the confidence
region of the centroids.

Figure 5.22: Influence of the measurement noise on the rercoted shape.

circle semicircle distance

area & Cx cy | area & Cx Cy d

e? (-] fem]  fem] | [en?]  [-]  [em] [em] | [cm]
true value| 3.43 9.01

meanvalue, 389 183 -128 -219| 777 230 -031 112 3.45
30| 053 011 008 008 | 053 012 006 006 0.08

Table 5.2: Attributes to describe the reconstruction tesulface area, relative permittivity, position of the
centroid, and the distance between both centroids (trueesamean values, and standard deviadipn

circle semicircle
area & Cx Cy area & Cx Cy d
circle area| 1.00 -0.82 0.18 024 | -0.12 015 017 015 | —-0.14
& 1.00 019 016 0.09 -004 -000 -0.03| -0.22
Cx 100 0.64| -0.13 014 019 024 | —-0.68
Cy 1.00 | —0.37 025 017 0.40 | —0.83
semicircle area 1.00 -063 -0.02 -021 0.24
& 1.00 0.58 -0.36 | —0.40
Cx 100 -046| -0.32
Cy 1.00 0.14
d 1.00

Table 5.3: Correlation matrix of the reconstructed atteisu Values neat-1 indicate a linear correlation
between two parameters. Absolute values abofefe marked.

between them). The coefficients have values in the rangegieetwl and 1 and the direc-
tion of the linear relationship is indicated by its sign. Afitries in the symmetric matrix
with an absolute value greater thad @re marked by bold fonts. As expected, there is a
negative linear relation between surface area and pevityitialue of each object{0.82
and—0.63). Further the permittivity of the semicircle depends lo& x-coordinate of its
centroid. A small correlation can be identified between themeters of the two objects
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(with exception of 04, which is the coefficient of the y-coordinates of the cengp The
correlation of the distance is calculated by of the coordisaf the centroids. As it is
mentioned above, the centroid of the semicircle has a snstfladard deviation than the
circular object. Thus there is less correlation betweenlistance and the centroid of the
semicircle than between the distance and the circular tbjec

5.2.2 Initial Condition

In this subsection the initial condition is altered. Untdw the initial condition is a
centered circle (diameter of 4 cm) with a relative permitiyiwalue ofe; = 2. For the
outer region (background) equals one. All simulations in this section are based on
the test distributiorA and the regularization parameter is fixetl= 10-3/°. Table 5.4
presents the iteration numbers until convergence is odxdidior different combinations of
the initial permittivity values. Therefore the reconstian starts with the centered circle
as before and convergence is obtained if the objective ifomds less than ®- 103,
At this point of the imaging process, a similar result as @nésd in iteration step nine
of figure 5.12 is reconstructed. The reconstruction persowell for almost all initial
conditions except in the case where= 1 ande, = 5. Even though the reconstruction is
successful, the number of iterations increase if the cenbratween the permittivities is
changed (in other words the rate of convergence decreases if>).

Not only the permittivity values but also the geometry camlbered. For this test the
reconstruction starts with a circle located at the top ordftehand side (figure 5.23) and
with a circle, which is located at the bottom on the right-thade (figure 5.24). Even
though the reconstruction starts with an initial conditian away from the true distri-
bution, one can recognize the approximate shape after &atibns. Obviously, more
iterations are necessary until a sufficient image is recocistd. For the first initial con-
dition 157 out of 160 reconstructions are successful anthiisecond initial condition,
which is far away from the true shape, 152 reconstructiomgese a satisfying result.
The mean shapes and centroids are calculated for all cawergconstructions and the
obtained interfaces (the mean shapes for the three ingraitions: circle in the center,
on the top left and bottom right hand) are presented in figu26.5The contours match
almost perfectly. Table 5.5 summarizes the surface areaocbf @bject for the three condi-
tions. The standard deviations slightly increase, if thiggicircle is located at the bottom
on the right-hand side. Similar results are obtained forpenittivity values, which are
presented in table 5.6. It can be concluded that the reaantistn technique has a good

iteration numbers €1 (interior region)
1 2 3 5 10
€ (background) 2110 9 9 10 10
5| — 14 14 12 9
10|15 16 16 13 13

Table 5.4: Iteration numbers until convergence is achidedgective function less than.®- 10-3) for
different initial conditions of the relative permittivis. The initial shape is a centered circle. The material
values in the interior and exterior region are altered.
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Figure 5.23: The first 14 iteration steps for a geometricalligred initial condition (circle on the top left).

LY
@©)e
D
LY
e

1 15

N
N
o

Figure 5.24: The first 14 iteration steps for a geometricaltgred initial condition (circle on the bottom
right).
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global convergence behavior.
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(a) PVC rod. (b) Semicircle shaped PVC object.

Figure 5.25: Mean shape and mean centroid (with confidemgenefor three different initial conditions.

surfacelcn?] mean & min max
circle center, 3.89 053 346 435
topleft| 3.89 054 346 438

bottom right| 3.87 071 288 438

semicircle center 7.77 053 743 819
topleft| 778 055 739 821

bottom right| 7.84 089 743 961

Table 5.5: Influence of the initial condition on the recounsted surface area.

relative permittivity mean & min max
circle centerf 1.83 011 176 191

topleft| 1.83 011 175 192

bottom right| 1.83 015 175 211

semicircle center 230 012 221 240

topleft| 229 012 220 239

bottomright| 2.28 016 204 239

Table 5.6: Influence of the initial condition on the reconsted permittivity values.

5.2.3 Limitations of the Proposed Technique

Some limitations and problems of the proposed techniquswarenarized in this section.
First of all figure 5.26(a) presents a test distribution vehar bubbles are simulated in a
liquid phase (i.e. tap water) by two PVC pipes, which aredil@th air. The thickness
of the pipe can be neglected. The reconstructed image isrshofigure 5.26(b) and its
quality is not sufficient. The contrast of the permittivitglues of the phases is too small
and additionally the interfaces are blurred.
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The small measuring range is unfavorable if the sensor élfillith water (compare
with figure 5.4). The analog to digital converter is desigf@da measuring range of
80db, which is much more than the necessary 8db. Additipnidlé operating point of
the amplifier is worse with respect to the measurement n&sgen though the values of
the ADC have a very small standard deviation, the absolutatien of the charges on
the electrodes is much higher due to the logarithmic chearistic curve. However, the
main issue is the dielectric screen effect, which meansth@atlectric field is absorbed
by a material with high permittivity. In other words objeetith lower permittivity in a
high permittivity component are more difficult to detectrthace versa.

Further test distributions are shown in figure 5.27. In tlaisecthe pipe is filled with
different levels of water and diesel. The iterations of théroization process of the first
test distribution are shown in figure 5.28. The real fill lessamarked with the dash and
dot line (note that there is a small rotation of the model carag to the sensor).

After few iterations the phase with material value abeut 2, which is approxi-
mately the value of oil, can be identified. However, a smatl gases between interface
and pipe wall. Numerical problems arise because the rewmtst interface is not iden-
tical with the pipe wall on the lower part of the region of irgst. This can not be handled
by the level set function due to the fact that the implicitresggntation describes only

120
4 100
&
| &
| 0
“ !
2

(&) ECT sensor filled with (b) Reconstruction with BEM
water. There is air inside and level set algorithm.
the two PVC pipes.

Figure 5.26: Reconstruction of objects with lower permiityiin a high permittivity component.

(a) Sensor filled with (b) Transition between tap
diesel. water (bottom), diesel, and
air (top).

Figure 5.27: Detection of transitions between several @has
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closed contours. In this example the points of the interéaedimited to 98 percent of the
pipe radius (leaving 2 percent of air between the interigecttand the pipe wall, which
is an 1 mm thick tube). As shown in figure 5.29, the algorithis géuck at iteration step
7. The material values of the iteration steps are shown imdi§LB0.

The second test distribution (figure 5.27(b)) consists tddlphases, namely water,
diesel, and air (from bottom to top). Again the problem arig&t the level set function
can not describe an open contour. Additionally, the cohtrasveen air and diesel is very
low compared to the permittivity of water. At the present nemnan image of sufficient
guality can not be obtained. However, a possible solutiortife contrast problem is the
fusion with data from URT, which provides the necessaryrimiation about the location
of the phase transitions.

Figure 5.28: Reconstruction of the transition betweeneadiard air. The dot and dash line marks the real
fill level.

o
[N

objective function [arbitrary units]

© =5

0 1 2 3 4 5 6 7 8
iteration number

Figure 5.29: Convergence of the fill level reconstruction.
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relative permittivity
=
n

iteration number

Figure 5.30: Material values of each reconstructed phase.

5.3 Conclusion

This thesis presents a shape reconstruction techniquehvidiéntifies the location of
phase transitions and which determines the material vdlaaah region. This algorithm
overcomes difficulties, which are mainly caused by the seftifmodality of electrical
capacitance tomography. The blurring of reconstructedjends avoided because the
inverse problem of ECT is formulated as shape optimizatioblem.

Commonly used reconstruction techniques rely on the FEMlteeghe correspond-
ing forward problems. A fine mesh is necessary to obtain imagth high spatial accu-
racy. However the computational effort, which is requiredolve the field problem and
which is necessary to invert the Hessian matrix, strongiygases by the number of finite
elements. On the other hand the BEM, which is utilized in thoskyis of advantage if the
unknown material distribution is described by means of@iése constant permittivities.
Additionally, shape and material derivatives are cal@dagasily by the adjoint variable
method with few computational costs.

The level set framework is implemented in this thesis irgstifaa parameterization of
the contour. This technique is an accurate and flexible gegoT of objects and it is not
essential to know the number of phases a priori. Regulaoizati Tikhonov type is uti-
lized and the magnitude of the regularization is controligc regularization parameter.

The inverse problem is solved by a non-linear optimizatemihique. Fast and stable
convergence is obtained by a Newton method with a line sedgdrithm. Additionally,
physical constraints are incorporated by an active setadeth

The suggested imaging technique has proven that it sucdigsgfconstructs images
of real world measurement data. Therefore experimentalteeare presented. For the
data acquisition a prototype sensor, which is based on tlasunement of displacement
currents, is used. Furthermore, tests show that the recatish is stable with respect to
measurement noise and with respect to the initial conddfdhe optimization process.

The resulting images can be used for the calculation of gocelevant informa-
tion, like the volume fraction of different phases. It is Womentioning that no arbitrary
threshold value is necessary to obtain this process paganteten though the regular-
ization parameter has less influence on the result if themaht@lues of the phases are
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known, it strongly affects the reconstructed surface drégeipermittivity values are un-
known additionally to the shape. Itis shown that this catieh is a fundamental attribute
of this kind of inverse problem. In the case of unknown materalues, supplementary
information improves the accuracy of the image. For ingamtrasound reflection to-
mography can provide additional information about the fiocaof phase transitions. A
regularization technique, which relies on informatiomfrdRT, is presented in this work.
Experimental results on the basis of simulations are priogpis

The accuracy of electrical capacitance tomography can peowed by a technique,
which takes care of 3D aspects. Further development wilisamn this topic. A 3D re-
construction becomes feasible what the computation timenserned if a fast boundary
element method is applied (e.g. multipole boundary elemethod [81]). Additionally,
efficient solvers for the optimization problem are mandatocause the number of un-
known variables increases. The extension of the level setuiation to 3D, however, is
straight forward.
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Appendix A

1D Example of Shape Derivatives

In this appendix a plate capacitor with infinite extensiod éinite distance of the plate
is considered as shown in figure A.1. It consists of two regiith different permittiv-
ities €1 andey. Dirichlet boundary conditions are applied on the other sides and the
boundary value problem

0 0
with
u0) = 0 (A.2)
ul =1 (A.3)
Is considered. The permittivity valigshas a discontinuity at= a and the permittivity is
g(x) = &1 !f xe (0,a) . (A.4)
g if xe(al)

In the following two sections, the direct differentiatioppaoach is compared with the
adjoint variable method for the displacement fielckat 0. This displacement is defined

by
ou

D= —sla—x . (A.5)
A.1 Direct Differentiation
The electric potential is linear in each region and the lirfieactions
up = &x+4 (A.6)
U = &X+02 (A.7)
are introduced. Ax = a the equations
up = Uz (A.8)
6u1 . 0U2
81& - 82& (Ag)
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Figure A.1: Example of a plate capacitor with two differerdaterials.

are satisfied and with the boundary conditions (A.2) and \#8 coefficients are deter-
mined as

&2

= A.10

&1 g1(l—a)+ea ( )
G2 = 0 (A.11)
g = = (A12)

2 = g1(1—a)+eza '
a(ex—e€1)
. A.13
C2 g1(l—a)+¢era ( )
For the displacement at= 0 one obtains

D—___‘1f2 (A.14)

In this simple example an analytical solution exists and gtraightforward to calcu-
late the derivative with respect & €1, andes.

ED: 8182(82_81) . (A.15)

0a  (g(1—a)+¢ea)

0 . —&52a

a_le ~ (e1(1—a) +gpa)? (A.16)
_e.2(1 —

A 2 ) (A.17)

ds, (e1(1—a)+€0a)2

A.2 Adjoint Variable Approach

Commonly, an analytical solution can not be obtained. In ¢thise the adjoint variable
method offers an attractive way to calculate the shapeateré: In this work the adjoint
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variable is introduced similar to the method explained i&][SMultiplication of (A.1)
with a weighting functioru and integration by parts yieId

du; U ou
S = / 1—1—1d X — Up€ 16_1
X

-0 (A.18)

and
=0. (A.19)

0U2 6U2 0U2

__d _ €y —2
S= / €2 Uoga o .
Next one can define a velocity = dt, which is zero ax = 0 andx = 1. The shape
derivative ofS; leads to

a oui 0Oy ' dup 0Uy
dSl(F)—/O (&Laa) dx+ SlaaF

1lax

x=a
.|a
— U (81%) ‘ =0 (A.20)
0

where(x)" denotes the material derivative. Now the aim is to define nagpiate adjoint
problem such that the last equation can be simplified. Toietite the shape derivative
of the variablesi andu in the integral term, one can carry out partial integration

a ou; 0Up _ a , ou; 0Up , 62U1 _, 02u1
/o ( 13x O ) o /o (81&& “El G - El“lﬁ) o
u U ouy |*

6u1 LU
x| B19x

0

+ U&El

(A.21)
0
The last equation is simplified if the adjoint variable fdlslfitl—zzul = 0. Additionally,

the definition of the shape denvatlu@ =U— —ulF andt, = aixulF is used. These
results are applied to (A.20) and one obtalns

a
. aul aul aul . . aul aul 6u1
ng_(F) —/ 81 ox a —dx—10p (81 X > O-|- Ui€1— ox . €1 X ox F - (A.22)
A similar result for the second region is obtained wiﬁlg‘%uz =0
1
. aUZ o0l oup )\ . Juy 1 duy 0Uy
dSZ(F) —/ 82 a a d 2 (82&) a+ u282a + 2 Wa—l: e (A23)

Before the two shape derivativeS,dF ) and &5 (F) are combined, a few additional equal-
ities are derived. The material derivatives (moving cooatk system) of the interface
conditions (A.8) and (A.9) at = ayield following identity

= U (A.24)

<81%) = (82%) | . (A.25)
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Additionally, the material derivatives of the boundary dtions (A.2) and (A.3) yield

0
0.

(A.26)
(A.27)

l.'11|x:0

l212|x:1

Further similar interface conditions as for the primaryiable are introduced for the
adjoint variable ak = a

U = W (A.28)
ou; _ ol
81& - 82&. (A29)
Now the addition of the equations (A.22) and (A.23) leads to
1
oup\ _ 1 ,6uaU Oou, dUy oup 0ty
Uy (81&) ‘O— o Eaxax T (82&& e )| B39

The boundary conditions of the adjoint problem are choseh siat the derivative of
(A.5) is obtained

000 = 1 (A.31)
(1) = 0 (A.32)
and this leads to
: 1 duadu duy oty
_ /1= o et}
D_/O saXaXdXJr (€1—€2) ax x| . (A.33)

The solution of one additional field problem is required tlwakate the material derivative
in (A.33). The first term in (A.33) corresponds to a changehm permittivity value and
the second term is the sensitivity of a movement of the iaterf The adjoint problem is
summarized as follows.

0 [/ 0

—(e=tu) = A.34

v (saxu> 0 (A.34)
Tlg 1 (A.35)
g, =0 (A.36)

The advantage of the adjoint variable method is that an #oalysolution is not
necessary. This formulation can be used for more complemge@es. The method can
be summarized as follows.

1. One starts with the weak formulation in each region of tamtspermittivity.
2. The shape derivative is performed for each integral.

3. The material derivative of the primary variable is penied. This yields material
derivatives of the boundary and interface conditions.
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4. An adjoint problem is defined, which fulfills the same partlifferential equation
and has similar interface conditions.

5. These results are combined and this leads to simple egsatiith different terms.
It consists of the material derivative of the primary vak&lhe sensitivity with re-
spect to the permittivity, and the sensitivity with respahe deformation velocity.

6. At last the boundary conditions of the adjoint problem @eéned such that the
desired material derivative of the primary variable is oied.

In this special case one can compare the result of the diféetehtiation with the
adjoint variable method due to the existence of the anallytolution. By substituting
the solution of the forward and adjoint problem in (A.33) @i#ains the same result as
(A.15), (A.16), and (A.17).
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Appendix B

Discrete Gradient and Hessian of the
Reqularization Term

The discretization of the shape derivatives of the regeddion term is a cumbersome
task. The approximation must be accurate and furthermerdittrete Hessian must be
positive definite and symmetric. In the first section, theutagzation of the arc length
is discussed and in this case the material values are conktare complex calculations
are necessary for the following regularization, which ualds the squared jump in the
material value.

B.1 Regularization by the Arc Length

Consider the definition of the Newton-type flow (4.1) and th&t fand second order shape
derivatives (4.3) and (4.4), these results are summarizéallaws.

/DrF-DerS:—/KGdS foralG:T - R (B.1)
r r

e

Aa B

To assemble the gradient and the Hessian matrix a spat@etization is necessary.
Therefore one needs a discrete moddr ofn this work the boundary elements are used
as underlying grid. Additionally, an approximation Bf G, andk is necessary. These
functions are assumed to be piecewise linear on each bouel@anent. Figure B.1 shows
for instance two boundary elements with the poipts the common poinp,, and ps
(local indices). The arc length is denoteddiyands,. The values on the nodal points are
denoted by, G; andk;. Note thai; is calculated by (2.8). The shape function for point
p2 is linear andNj(p1) = 0, Nj(p2) = 1 andN;(p3) = 0 (j is the global index of node
point py).

The discretization of (B.1) can be written in matrix form as

LF = —k (B.2)

The rows of the gradierﬁt(sizenj) and Hessiah (sizenj x nj) are calculated by indepen-
dent test function&. A natural choice for the test function is to use the shapetfan. In

101
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&1

S1

P3 P1

Figure B.1: Shape functioN; for a linear approximation. This example illustrates twaibdary elements
with the pointspl, p2, andp3.

other words, one row is calculated by the solution of the loamy integrals foiG = N;.
For each nodal point of the boundary element mesh, a distinctof the gradient and
Hessian is obtained. The integrals are written in terms®fdbal coordinate§; andéo.
The linear approximations of the functioRs G, andk are written for the first boundary
element as

F = R(1-&)+R& (B.3)
= & (B.4)
K = Ki(1-&1)+Ko&1 (B.5)

and for the second boundary element one has

F = R(1-&)+Ré (B.6)
- 15 (B.7)
K = Ko(1—&2)+Ks&2 (B.8)

The tangential gradient, which occurs in ternis for the first boundary element equal
to =% and is a vector in tangential direction fropd to p2. A similar result is obtained
for the second boundary element. With these definitionsrtegral B yields

1 1
/KGdS: 6(K1+2K2)sl+6(2}<2+|<3)52 (B.9)
-

and it defines one elementlf The integralq yields

1 1 1
/Dﬁ{}G%:——H+(—+—>
r S1 1

\/\q,_/

a b

(B.10)

N
°<£’il—‘
!
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and it defines one row df. The coefficients, b, andc are the elements in the corre-
sponding column (To find the correct column, one has to tmansthe local indices into
global ones). The coefficietitis positive and is an element on the leading diagonal. The
matrixL, which is the discrete and negative Laplace-Beltrami operatpositive definite
and symmetric.

B.2 Squared Jump and Arc Length

Recall the shape derivatives of the the regularization tdrs) (

dRs3(;Vs) = (81—82)2/KGdS+2(5€1—582)(81—£2)/ ds (B.11)
r r

C D

d?Rs (5 Vi Vi) Z(Sl—sz)z/DrF'DerS+2(€1—€2)2/K2FGds
I I

v~ g

E F
+2(de1 — 652)2/ ds+2(de; — 0g2) (€1 — €2) / K(F+G)ds. (B.12)
r r

g g

G H

The discretization of these integrals is a complex taskfebeht to section B.1, the ma-
terial values are unknown as well. The aim of this sectiorifirtd vector and matrix
representation of these shape derivatives in the form

L1z L2 \3 k
O0=—|( B.13
( Lor Lo22 ) ( Ko ) ( )
S— — N —
G2 o)

where the same notation as in section 3.2.1 is used to ddrekéessian and the gradient,
l.e. G2 and@y. The step indicates the change in geometry and material values

. ([ F
3= ( 5 ) (B.14)

The terms in the shape derivatives and the vectors and mesen be identified as fol-
lows,

o kq (sizen;) and termc,
e ko (sizen)) and termd,
e L1 (sizenj x nj) and termsE and ¥,

o Lo (sizen x n;) and termg,
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e L1 (sizen; x ny) andL 1 and term#,

In the following paragraphs each component is discussetsgif. For better understand-
ing it is useful to consider following equation

¢\ /k
(2)(8)

which is the discrete version of (B.11). The discrete versitine Hessian (B.12) is
— / —
G Ll_‘]_ L12 F
= . B.16
( o ) ( Loa Lo o (8.16)

Vector Rl. Term C is similar to termB of section B.1 and the same discretization of the
integral is used. This leads to

— —

ki = (1 —€2)%k. (B.17)

Vectorky. This vector corresponds to terfh The arc length, denoted Isyis calculated
easily by the sum over all boundary elements. The vectorfinetkby

Rz = 2s(g1—€2) ( _1 ) (B.18)

Note that this simple structure is obtained under the assamghat only one level set
function exists. However, for more than two regions a simisult is obtained.

Matrix L 11. This part of the Hessian is independent of the change in therrabvalue.
Term ‘E is similar to the already calculated tersmh The discretization of tern¥ is
missing. The discrete counterpart of the integral in térns denoted by * (sizen; x n;).
Following equation defines one row of this matrix and it isaotsed by the substitution of
the linear approximations fd¥, G, andk.

1
/ K’FGds= 6—0[(3K12 + 4K 1Ko 4 3K22)s1Fy
r
+(12|(22 + 6K1K2 + 2K12)81F2
+(12K22 + B6KoK3 + 2K32)82F2
+(3K2? + 4K K3 + 3K3?) S, F3) (B.19)

The coefficients of;, F», andF3 (local indices) are the values in their corresponding
columns (global indices). The matrix* is again symmetric and positive definite. This
part of the shape Hessian is defined as follows.

L11=(e1—€2)*(L +2L7) (B.20)
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Matrix L 2o. This part of the Hessian is determined @y It only depends on the change
in the material values. The integral over the boundary, thdemgth of the interface, is
denoted bys.

1 -1
L22—2$( 1 1) (B.Zl)

Matrices L1 and L1.  The term#, which corresponds to these matrices, consists of a
combination of change in shape and material. The term

2(de1 — O€2) (€1 — €2) /r KGds (B.22)

defines the matrik 12. The integral is equal to terr (its discretization is denoted &y
Thus, the matrix is defined by

Lio=2(e1—€)( k —k). (B.23)

The matrixL »; corresponds to

2(0e1 — d€e2) (€1 —€2) /r KF ds. (B.24)

The discrete version of this integral leadsltg," (not shown here) and the resulting
Hessian matrix is symmetric.



