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Abstract

Electrical Capacitance Tomography (ECT) is a reliable tool for imaging industrial pro-
cesses. Basically, it reveals information on the interior distribution of the material in a
pipe or vessel. Due to its soft-field modality and due to the ill-posed nature of the involved
inverse problem, only a limited spatial resolution is obtained. Especially the reconstruc-
tion of sharp phase boundaries is challenging. In many applications, however, an accurate
determination of these boundaries is necessary, for instance the identification of mixing
zones in stirred reactors, interface measurements in complex separation processes, mea-
surements of two or more phase boundaries in pipes with applications to multi-phase flow
measurements, and non-invasive testing of materials to finde.g. inclusions. Additionally,
the identification of phase sizes and boundaries within vessels and pipelines provides in-
formation on fundamental reaction kinetics and it can be used for model validations and
for finding out an optimal geometry of the equipment.

Commonly used imaging techniques yield blurred images with less spatial resolution.
In this work a shape reconstruction technique is suggested for piecewise constant permit-
tivities. The level set method, which is utilized to describe and evolve non-trivial contours,
is combined with the boundary element method, which solves field problems with high
accuracy. The Gauss-Newton method is applied to obtain a fast convergence and yields
an imaging technique, which reconstructs the involved materials simultaneously to their
boundaries in an iterative optimization process. Due to thetreatment of physical con-
straints for the material value and for the geometry, a stable optimization can be achieved
under all kinds of potential conditions. The measurement noise is considered as well and
improves the reconstruction of real world measurement dataconsiderably. Experimental
results validate the good performance and accuracy of the proposed imaging technique.
As far as the author knows it is the first treatment of the inverse problem in ECT by the
combination of boundary elements and the level set method.

The application of a single type of sensor is not the only opportunity for a tomography
system. In this work a dual-mode system is considered as combination of ECT and ul-
trasonic reflection tomography (URT). The information about edges from URT provides
a physically meaningful regularization (a priori information) for reconstruction of ECT
data. This new technique for data fusion performs, based on the level set method, an edge
detection of an URT image simultaneously to the ECT reconstruction. This yields closed
contours for the URT and improved accuracy of boundaries in ECT.

Keywords: Boundary Element Method, Capacitance Tomography, Level Set Method,
Inverse Problems





Kurzfassung

Elektrische Kapazitätstomografie (ECT) ist ein zuverlässiges, bildgebendes Verfahren für
industrielle Prozesse. Grundsätzlich erhält man Schnittbilder der Materialverteilung in
Rohren oder Behältern. Aufgrund der so genannten „soft-field“Eigenschaft und der
„Schlechtgestelltheit“ des Problems ist nur eine beschränkte Auflösung möglich. Insbe-
sondere die Rekonstruktion von scharfen Materialübergängen ist eine Herausforderung.
Diese ist in vielen Anwendungen erwünscht, wie z.B. bei der Separation von Stoffen oder
beim Testen von Materialien auf Einschlüsse. Zusätzlich kann eine Rekonstruktion von
Phasengrenzen verwendet werden, um Modelle zu validieren oder um optimale Geome-
trien von Anlagen zu entwickeln.

Die normalerweise verwendeten bildgebenden Verfahren zeigen nur verschwommene
Bilder mit einer begrenzten örtlichen Auflösung. In dieser Arbeit wird eine Rekonstruk-
tionsmethode für stückweise konstante Leitfähigkeiten vorgestellt. Diese basiert auf der
Kombination der Level-Set Methode, um Deformationen von komplexen Konturen und
Formen zu beschreiben, mit der Randelemente Methode, um das Feldproblem mit guter
Genauigkeit zu lösen. Die Gauss-Newton Methode wird für eine schnelle Konvergenz
verwendet und die Materialwerte werden im iterativen Prozess simultan mit der Form
rekonstruiert. Physikalische Randbedingungen, wie die derMaterialwerte oder der Geo-
metrie, werden mit der Active-Set Methode berücksichtigt um eine stabile Optimierung
unter allen möglichen Bedingungen zu garantieren. Zusätzlich wird Messrauschen be-
rücksichtigt und das beschriebene Verfahren wird anhand von Messungen validiert. So
weit es dem Autor bekannt ist, ist das die erste Behandlung desInversen Problems in der
ECT mit der Kombination der Level-Set und der Randelemente Methode.

Die Anwendung eines einzelnen Messprinzips ist nicht die alleinige Möglichkeit ei-
nes Tomografie Systems. In dieser Arbeit wird ein System mit der Kombination von ECT
mit Ultraschall Reflexions Tomografie (URT) betrachtet. Die Information über Materi-
algrenzen stellt eine physikalisch sinnvolle Regularisierung (a priori Information) für die
ECT Rekonstruktion bereit. Diese neue Technik der Fusion von Sensordaten führt, basie-
rend auf der Level-Set Formulierung, eine Kantendedektionvom URT Bild simultan zur
ECT Rekonstruktion durch. Durch diese Fusion erhält man geschlossene Ränder in der
URT und verbesserte Genauigkeit der Materialgrenzen in derECT.

Schlagwörter: Randelemente Methode, Kapazitätstomografie, Level-Set Methode, In-
verse Probleme
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Chapter 1

Introduction

Tomography and its non-invasive principle of imaging are not restricted to the medical
field. Over the last decade, industrial tomography systems have been developed and they
are used for many industrial applications as a reliable toolfor imaging [23, 64, 71]. Basi-
cally a number of sensors are mounted around a pipe or vessel and they reveal information
on the interior distribution of material. The output signals depend for example on the po-
sition of the boundaries of different components. This spatial variation of the parameter of
interest is represented as a cross-sectional image. This process is known as image recon-
struction and the obtained image is further analyzed quantitatively for example to improve
process control or to develop models for individual processes. Tomography systems are
used in a wide field of industrial applications, for example (see [23, 64, 71])

• imaging of multi-phase processes such as for conveying systems (pneumatic con-
veying for particulate solids, powders, and flakes), for oilfield pipelines (com-
ponent fraction and velocity distribution in flow regimes for control purposes), in
centrifugal or gravity separators (liquid/liquid, gas/liquid mixing, and solid/liquid
separation), and hydro-cyclone imaging,

• measurement and control of multi-phase flows (e.g. [27, 32])to study the dynamic
behavior in fast flows or to measure mass flow rates in complex regimes,

• in pipeline conveying (slug flow) to control the air flow to prevent blockage and to
decrease the energy demand and pipeline erosion,

• monitoring of filtration processes,

• flame imaging in an internal combustion engine cylinder,

• in stirred tank reactors to get information of the effectivemixing zone,

• to visualize gas or liquid bubbles in fluidized bed, and

• for material testing to find inclusions and to give quality characteristics.

One sensor method beside many others is electrical tomography, which is based on
measurement of capacitance (ECT), resistance (ERT), or magnetic induction (MIT). The

1



2 CHAPTER 1. INTRODUCTION

term Electrical Impedance Tomography (EIT) is justified if the complex impedance is
measured. Commonly, these techniques are easy to operate (nosafety problems e.g. by
radiation), relatively inexpensive, and have a robust construction. The capturing time of
the measurements is fast and this yields a good temporal resolution for dynamic processes.
Such sensors can operate in aggressive materials, in fast moving fluids, and for multi-
phase mixtures. The choice of a specific sensing method is determined by

• the components in the vessel or pipeline (appropriate difference or contrast in the
physical properties of the involved material),

• the required spatial resolution and sensitivity,

• the time dynamic of the flow, and

• the environmental conditions (e.g. temperature, pressure).

Electrical tomography is more sensitive to bulk material rather than to phase boundaries.
This allows to reconstruct the material properties and to calculate integral parameters, for
instance material fractions.

The drawback of electrical tomography is its soft-field modality [91]. This means
that the sensing field tends to spread by the material to be imaged and it is related to its
electrical properties. This is distinctly different from other tomography techniques, like
X-ray computer tomography, where the source lines pass directly through the object. The
distortion of the sensing field by the material is inherentlynon-linear.

Another point is that the set of data is obtained by a limited number of sensors. For
instance in electrical capacitance tomography usually eight up to 16 electrodes are used. A
higher number of sensors leads to less available surface area of one electrode and thus to a
small input signal and to less sensitivity. This small number of measurements complicates
the reconstruction of an image. Due to the limited sensitivity, measurement errors have
a large influence on the reconstructed image as well. An unique solution can not be
guaranteed and the image reconstruction is therefore called an ill-posed problem [87]. For
these reasons the reconstructed images have a relatively low spatial resolution. Figures
between 5 to 10 percent of the pipe diameter are commonly given for the resolution.

In many applications, however, an accurate determination of phase boundaries is nec-
essary. For example if one is interested in

• the identification of the distribution of mixing zones in stirred reactors,

• interface measurement in complex separation processes,

• comprehensive information about the shape of the slugs’ nose and tail in pipeline
conveying,

• imaging of the air core in hydro-cyclones for quantitative measurements to obtain
information about the operating condition,

• measurements of two or more phase boundaries in pipes with applications to multi-
phase flow measurements, and
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• non-invasive testing of the quality of materials (inclusions, etc.).

Additionally, the identification of phase sizes and boundaries within vessels and pipelines
provides information on fundamental reaction kinetics andit can be used for model vali-
dations and for finding an optimal geometry of the equipment.Commonly used imaging
techniques yield blurred images with less spatial resolution [54]. Arbitrary criteria are
applied in order to establish the boundaries between various materials from such blurred
images (e.g. amplitude thresholding techniques for two-phase flow imaging). For quan-
titative measurements this is not satisfactory. Techniques, which focus especially on the
reconstruction of phase boundaries, improve the image significantly [48]. In this work
a shape reconstruction method with implicit representation of the boundary is presented
for electrical capacitance tomography. This method imagesthe shape, location, size and
geometry of different and unknown materials.

In process tomography one is mainly interested in quantities, which are used for con-
trolling the process, i.e. quantities like the volume fractions rather than tomographic
images itself. ECT provides an inexpensive method to obtain tomographic images of a
process, however resolution is very limited. The application of a single type of sensor
is not the only opportunity for a tomography system. A multi-mode system, which em-
ploys two or more different sensing principles, improves the image and the information
gained from the process to be monitored. They are used to locate or to measure different
properties of the involved materials. A possible dual-modeimaging system is to use data
of ultrasonic tomography systems and of capacitance tomography. Applications for such
systems are for example in imaging of oil/gas/water mixtures in flows or in separators and
they can be used to inspect multilayer materials. This work presents a data fusion tech-
nique, which incorporates an image from Ultrasound Reflection Tomography (URT) for
the shape reconstruction in capacitance tomography. The edge information, which comes
from URT, improves the reconstruction of phase boundaries with ECT data significantly.

The next sections in this chapter are organized as follows. In the first two sections, a
short overview of the measurement setup and of the inverse problem is given to provide
background information on ECT. Next the state of the art of shape reconstruction meth-
ods is given. A section with the novelty of this work follows next. The structuring and
mathematical notation of this thesis are the last two parts in this chapter.

1.1 Measurement Setup and Forward Problem

At the Institute of Electrical Measurement and MeasurementSignal Processing at Graz
University of Technology, a capacitance tomography systemhas been developed in the
last years [38, 37, 9, 89]. This system is designed to examinethe interior of a PVC pipe
by means of evaluating coupling capacitances of a multi-electrode assembly. These ca-
pacitances are in a wide range from 1 fF to 5 pF and they pose high demands on the sensor
hardware. Figure 1.1 presents the latest developed sensor.16 electrodes are mounted on
the outer area of the pipe and they can operate in different and selectable modes. Ac-
cording to a chosen control pattern, each electrode can either be used as a transmitting
or receiving segment. Exploiting the different sensitive areas in the pipe interior, which
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Figure 1.1: Prototype of an ECT sensor. 16 electrodes are mounted on the outer surface of a PVC tube and
each electrode has an amplifier and output driver.

are caused by the control pattern, the permittivity distribution of the pipe content can be
obtained and reconstructed. Figure 1.2 shows the measurement setup of the developed
prototype sensor. It is comprising electrodes mounted on the outer pipe surface, the cor-
responding frontend amplifiers, as well as the signal preprocessing unit. Each frontend
is individually controlled by a micro processor and the 16 frontends are connected via a
serial bus to the signal preprocessor unit. To allow fast data acquisition a PC is connected
to the setup via local area network.

Two hardware concepts with different frontends have been developed and imple-
mented. One principle is designed to determine coupling capacitances by means of mea-
suring electrode potentials (high-impedance measurement) and a second principle is based
on the measurement of displacement currents (low-impedance measurement) [3]. They
differ with respect to the impedance of the measurement electrodes, which are ideally
floating electrodes (high-impedance) or virtual grounded electrodes (low-impedance).
Both concepts rely on a carrier frequency system [12] with a frequency of 5.5 MHz and
40 MHz, respectively. For a robust ECT system that is capable of working under harsh
environmental conditions, it is essential that the setup isinsensitive to stray capacitances.
Due to the tuned input bandwidth filter in the low-impedance approach the frontend is
insensitive against stray capacitances. This insensitivity allows a proper shielding and
makes the sensor immune to different kinds of contamination. Additionally, the circuitry
is less affected by electromagnetic compatibility (EMC) influences due to a narrow fre-
quency characteristic. This narrow bandwidth implicates better signal-to-noise ratio com-
pared to the high-impedance approach. A thorough discussion of the advantages of the
displacement current measurement can be found in [89]. The imaging results presented
in this thesis are based on low-impedance measurements.

A direct method of obtaining the permittivity distributionfrom such boundary mea-
surements is not available. Instead, starting from a guessed distribution, the field problem
is solved iteratively in an appropriate computer model. Then the initial guess is improved
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Figure 1.2: ECT measurement setup with 16 electrodes, sensor frontends, and preprocessing unit.

by minimizing the error between the calculated and measuredboundary data. Thus a
computer model, which corresponds to the measurement setup, is an essential part for
the imaging process. Some simplifications are used to obtaina suitable model. First the
wave length of the applied excitation frequency (40 MHz) is larger than the dimension
of the sensor1 (about 15 cm). Thus an electrostatic approximation of the field problem is
feasible. Further it is assumed that only the imaginary partof the current is measured.
The sensor frontend, however, measures the absolute value including a real part coming
from a conductive material. In this case an erroneous permittivity value is imaged and
a careful interpretation of the material value is important. Edge effects in longitudinal
direction are neglected because the ratio of the length of the electrodes (5 centimeters) to
the diameter of the pipe (10.3 centimeters) is large enough.Additionally, it is assumed
that the material to be imaged does not vary in longitudinal direction for the length of the
electrodes. Thus a 2-dimensional model of the whole domain of interest can be employed.
On the right hand side in figure 1.2 the cross-section of the ECTsensor is shown. The
field problem can be solved for certain permittivity distributions and boundary conditions
e.g. with the Finite Element Method (FEM) or Boundary ElementMethod (BEM). This
problem is called the forward problem.

1This comparison depends on the material inside the sensor. However, it holds true for the involved
materials like air, oil, and tap water.
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1.2 Definition of the Inverse Problem

The imaging process itself is considered as an inverse problem to find the spatial distrib-
uted permittivities for a given set of boundary measurements. This is performed iteratively
by an optimization problem with a fit to data functional. In this section it is assumed that
displacement currents are measured. It can be adapted easily to measurements of voltages
(frontends with high impedance).

Let ε denote the permittivity value of a medium,u the electric scalar potential2, u0

a Dirichlet boundary condition on the exciting electrodes with the boundaryΓ0, and the
measurement electrodes with the boundaryΓe, then the forward problem is described by

∇ · (ε∇u) = 0

u|Γ0 = u0

u|Γe = 0.

(1.1)

The charges on the electrodes correspond to measured displacement currents. The charge
is calculated e.g. by the flux integrating method for theith electrode

qi =

∫

Γe,i

ε
∂u
∂n

ds (1.2)

with Γe,i the electrode surface and~n the inward normal vector. The calculated and the
measured charges for different electrodes and different measurement patterns are summa-
rized into~q(ε) ∈ IRni and~qm ∈ IRni respectively (ni is the number of all charges).

In [65] it is shown that an assumption of additive and Gaussian distributed measure-
ment noise (noise vector~m) with zero mean is valid. The noise is defined to be indepen-
dent from the material distribution. The probability density function reads

πnoise(~m) ∼ exp

(

−1
2
~mTC−1~m

)

(1.3)

with C ∈ IRni×ni a symmetric and positive definite covariance matrix of the noise. In the
experimental measurement system an approximation for the noise covariance can be ob-
tained by using a set of repeated measurements or by analyzing the measurement system.
Next a prior probability densityπpr is defined which is assumed to be independent to the
measurement noisen. The so called regularizing prior density is written in the form

πpr(ε) ∼ exp(−α2R(ε)) (1.4)

where α2 is a scaling parameter that is related to the confidence on theregularizing
prior andR(ε) is the regularization functional. Then the conditional probability density

2The electric scalar potential is linked to the electric fieldstrength by~E = −∇u.
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πpost(ε) = π(ε|~qm) is calculated by the well known Bayes formula. The density hasthe
following structure

π(ε|~qm) ∼ πnoise(~q(ε)−~qm)πpr(ε). (1.5)

and it is called the solution of the inverse problem in a statistical sense. The estimation
of the whole a posteriori distribution is too computationalexpensive. Additionally, it is
impossible to visualize the distribution directly. Commonly, the maximum a posteriori
(MAP) estimate is used as reconstructed permittivity distribution

εMAP = argmax
ε

π(ε|~qm). (1.6)

It is the most probable configuration of the model for the given outcome of the experiment,
the prior information, and the physical laws that are applied to the system. The particular
assumptions in this section lead to an optimization problemwith weighted least squares
structure and Tikhonov regularization (see e.g. [87])

ε = argmin
ε

[
1
2
(~q(ε)−~qm)TC−1(~q(ε)−~qm)+α2R(ε)

]

. (1.7)

The covariance matrixC incorporates a weight on the different measurements. The para-
meterα2 is the regularization parameter andR(ε) the regularization functional. With the
technique of regularization one can cope with instabilities due to the strong influence of
the noise on the solution (e.g. [28, 87]) and the term can ensure an unique solution. If a
prior information is available (like an image form URT or prior information on the per-
mittivity values) one can incorporate this information by the regularization term. Other
possibilities are to use ad hoc terms like a smoothness assumption on the solution [8] or
an assumption of small total variation [6].

For a shape imaging method the material distribution is a piecewise constant func-
tion. Figure 1.3 sketches the cross-section of the sensor and an example illustrates an
unknown shape. The two different regions have the permittivities ε1 andε2 respectively.
The interface where the jump of material value occurs is denoted byΓ. For all unknown
regions (more than two are allowed) the material values are summarized into~ε. Then the
cost functional in (1.7) is written as follows

I(~ε,Γ) =
1
2
‖W (~q(~ε,Γ)−~qm)‖2 +α2R(~ε,Γ), (1.8)

with WTW = C−1. This function depends on the piecewise constant permittivity values
and on the boundary of the shapes.

Numerical optimization tools provide a stable and fast way to solve (1.7). For instance
the Gauss-Newton algorithm [29] is a deterministic approach to solve the optimization
problem of least squares structure. For this a Jacobian matrix is necessary, which de-
scribes the influence of change of material values and geometry on the calculated charges.
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ε2

ε1

Figure 1.3: Sketch of the sensor model with piecewise constant permittivities.

Hence an analytical calculation of the so called material and shape derivative [75] is nec-
essary. These derivatives can be obtained easily by the adjoint variable approach. The
advantage of a deterministic approach with information about the gradient is for instance
the fast convergence rate. Especially if one is interested in on-line process monitoring, a
fast rate of reconstructed images is desired.

1.3 State of the Art

The underlying field problem in ECT is described by the Laplaceequation. Similar field
problems arise e.g. in ERT and Electrical Impedance Tomography (EIT). Partial Differ-
ential Equations (PDE) occur also if one solves inverse scattering problems (acoustic or
electromagnetic waves). Many of the techniques, which are applied to solve these dif-
ferent inverse problems, resemble each other. Therefore, this section of the state of the
art makes no further distinction between them. Table 1.1 summarizes some criteria to
classify the numerous publications. These publications are presented next and they are
ordered in the following paragraphs. First different approaches to overcome the blurring
of images, which are based on a fixed discretization, are presented. The second paragraph
is about shape reconstruction methods, which rely on the FEM. Next inverse problems are
presented, which are solved by the level set method. Then shape reconstruction methods
with the boundary element method are discussed. The last paragraph deals with the fusion
of different sensor data.

Electrical Tomography on a Fixed Grid. The finite element method does not match
the needs of a shape reconstruction perfectly. The unknown interface is not treated natu-
rally and the finite elements incorporate an upper limit for the spatial resolution. However
many toolboxes and algorithms based on the FEM already exist. For instance Brandstät-
ter et al. [8] present a reconstruction algorithm based on a fixed grid.The permittivity
value of each finite element in the pipe, in which the materialis to be resolved spatially,
is treated as unknown. Sharp discontinuities are not reconstructed due to a smoothness
assumption as regularization term. To overcome the blurring of the image, Borsic [6]
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Solver for the forward problem. Inverse problems, coming from optimal design,
shape optimization, and identification of distributed
parameters in PDE, are closely related to this work.
Numerous publications deal with these problems and
they propose many different solvers for the forward
problem, like FEM or BEM.

Description of the boundary. For the description of the boundary different para-
meterizations or other types like implicit representa-
tions of the interface are utilized. This has an impor-
tant influence on the flexibility and on the necessary
a priori information about the number of unknown
regions.

Regularization method. A regularization method is mandatory to overcome
the ill-posed nature of the inverse problem. Differ-
ent approaches are suggested, like total variational
regularization and the Mumford-Shah functional.

Parameter space. The parameter space has an influence on the conver-
gence behavior of the inverse problem. Only a few
papers assume unknown material values and perform
the reconstruction of shape and material simultane-
ously.

Optimization technique. The imaging process can be based ona determinis-
tic approach where a descent direction is calculated
by direct differentiation or by an adjoint variable ap-
proach. Other optimization techniques are for exam-
ple genetic algorithms.

Validation. A validation of the proposed techniques can be ob-
tained e.g. by simulated experiments. Few papers
apply real measurement data for the reconstruction.

Table 1.1: Different aspects of shape optimization problems in literature.

proposes a regularization term, which penalizes the total variation of the image (total
variation regularization). Thus the sharpness of the interface is improved. Experimental
results for this regularization term are presented in [79].A finer mesh to improve the
spatial resolution leads to an increase in the computational effort for the forward problem
and for the inversion of the fully occupied Hessian matrix inthe Gauss-Newton approach.

For two-phase flows one idea is mesh grouping (e.g. [45, 47]).This technique can
overcome the increase of the computational burden and the poor convergence characteris-
tics in the Gauss-Newton (Newton-Raphson respectively) algorithm as the finite elements
increase. The material values are classified iteratively indifferent groups. Another idea
is the monotonicity method [83], which provides a non-iterative inversion technique with
low computational costs. Mesh grouping and the monotonicity method are restricted to
two components mixtures. Additionally, only a partial classification of the pixels to one



10 CHAPTER 1. INTRODUCTION

of the material is obtained. Rondi and Santosa [66] introducethe Mumford-Shah func-
tional as regularization term for the linearized problem inEIT. An image segmentation is
performed in the same time as the reconstruction. Simulatedexperiments are promising,
however, the method requires tuning of several parameters.

FEM and Shape Reconstruction. Kolehmainenet al. [48] present a shape recon-
struction method, which assumes known material values. Thepaper introduces a gen-
eral framework for elliptic problems with a parameterization of the interface by Fourier
coefficients. To overcome the fixed discretization in finite elements a subdivision of the
elements is performed. The descent direction is calculatedby the Levenberg-Marquardt
method and an example in optical tomography with synthetic data is given. It is reported
that the method has the tendency to produce self-intersecting boundaries if the starting
condition is far away from the true contour. For EIT, estimations of phase boundaries
are performed in [46], where the boundary is described by interpolation of front points,
and [43], where truncated Fourier coefficients are used. Simulated data is used to verify
the algorithms. Difficulties are the unknown number of regions and that knowledge of
the material properties of the involved phases must be available. Another estimation of
boundaries based on the FEM is described in [85] where a Beziercurve approach is used.
The boundary to a non-conductive phase is reconstructed as well as the material distrib-
ution of the outer phase. In this paper simulations and real world data are used to verify
the method.

Level Set Method and Inverse Problems. To overcome the limitations of a parame-
terization of the curve a level set method can be used. With this method the shape can
evolve iteratively and any arbitrary topology can occur (merging and splitting of regions
is handled easily). In the early paper [68] from Santosa a level set approach is used for
the linear inverse problems in deconvolution and for diffraction screen reconstruction in
optic and acoustic. It assumes known material values and suggests an optimization ap-
proach as alternative to a shape evolution approach. In [55]Litmanet al. solve an inverse
scattering problem with the level set method and the method of moments. The movement
of the shape is performed by a velocity field to minimize the residual in the data fit and
the gradient is calculated analytically by the adjoint variable method. Another inverse
scattering problem is discussed in [24] and numerical examples are shown based on the
finite element method. Itoet al. [42] propose an immersed interface method (a version
of finite difference method). The problem in [42] and Ito [41]is motivated by electrical
tomography. The gradient direction of the boundary is calculated for known conductiv-
ities. Denget al. present in [22] a fast immersed interface method in 3D for interface
problems of piecewise constant coefficients. They successfully solve an inverse prob-
lem of shape identification. Burger [14] describes a framework for shape optimization
and reconstruction of elliptic boundary value problems. This is based on a gradient flow
and on a FEM discretization. In [15] the descent direction iscalculated by the Levenberg-
Marquardt method and in [16] the shape optimization approach is extended by topological
derivatives. The idea of topological derivatives calculates the sensitivity of the objective
function with respect to a hole in the material and the reconstruction of the correct topol-
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ogy is improved.
Chan and Tai [17, 18] present a level set method, which reconstructs the material

value simultaneously to the shape. This method solves the inverse problem of recov-
ering discontinuous coefficients from boundary measurements in elliptic problems. A
variational augmented Lagrangian formulation is proposedinstead of the commonly used
speed (velocity) method. Additionally, Chan and Tai proposea multiple level set frame-
work to describe more than two phases. After 100 to 1000 iterations the shape and mater-
ial value can be reconstructed successfully. This method uses total variational regulariza-
tion. This regularization term is used as well by Chunget al. in [20]. The optimization
problem for EIT is solved by the gradient descent. Simulateddata with simulated noise
validates this method. In [2] a shape sensitivity analysis and level set method for elliptic
problems are presented, where a singular surface with knowncoefficients in each region
is reconstructed. Numerical simulations are performed by the FEM. In [77] experimental
results are presented for ECT with a level set based algorithm. The level set approach
reconstructs the images on a fixed discretization into finiteelements. However, less infor-
mation is given about the material values (assumed to be known a priori, constant during
the reconstruction, etc.). The possibility to reconstructmore than two phases is not dis-
cussed.

Shape Reconstruction with the Boundary Element Method. A natural way to solve
the forward problem with piecewise constant material values is to use the boundary ele-
ment method. The variable contour is discretized easily in each iteration step. In the early
paper [5] Bonnet solves a geometrical inverse problem for linearly acoustic and elastic
medium by boundary integral equations. The boundary is described by parameters or
by the movement of mesh nodes in two and three dimensions. A quasi-Newton method
is proposed to solve the optimization and the material derivative concept is applied to
the formulation of an inverse obstacle problem. In [25, 26] Legendre polynomials are
used for EIT in two and three dimensions. The method reconstructs the shape of internal
regions with zero conductivity. The number of known regionshas to be available a pri-
ori. The optimization is performed by downhill simplex, Powell, and conjugate gradient
(the Jacobian for the conjugate gradient method is calculated by finite differences). No
analytically derived Jacobian calculation is performed and thus up to 2000 evaluations
of the forward problem are necessary. In [40] a hybrid Powelland genetic algorithm
is proposed. As before Legendre polynomials are used and no gradient computation is
necessary. Two and three dimensional results are shown on basis of simulated data. In
[62] a front tracking, which adjusts the nodes of the boundary elements, is suggested for
EIT-monitored cryosurgery. Simulated phantom images are used to reconstruct the sharp
discontinuity in the physical properties across the interface. The Jacobian is calculated by
direct differentiation of the BEM system matrices.

Sensor Fusion. Multisensor data fusion is successfully applied in different disciplines
of engineering. They are applied to problems where single sensors are only capable of
yielding incomplete or inaccurate information. Multisensor fusion techniques are already
implemented with other tomographic imaging principles than ECT and URT. In [7], the
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inspection of sandwiched structures is performed by Computed Tomography (CT), laser
range measurements, and ultrasound thickness measurements. The range and thickness
data are used to impose geometrical constraints on the linear equation system for the
reconstruction. These constraints reduce the degree of freedom of the CT problem, which
leads to an improved reconstruction result. Two different tomographic principles are fused
by Zhao in [93]. Diffuse Optical Tomography (DOT) is structurally guided by ultrasound
tomography. The results from ultrasound tomography are used as a rough estimate of
the location of phase boundaries. The finite element mesh, used for DOT, is then locally
refined in regions with potential phase transitions. As a result, the spatial resolution of
the imaging system is considerably improved. The design of an integrated multi-modal
process tomography system is described by Hoyle [39]. System engineering is used for
the hardware and software design. An algorithm based on a different multi-modal data
is proposed in [78]. It is assumed that one point of the boundary is determined from
ultrasonic time of flight data. Then a reconstruction is performed by the level set method
on a finite element discretization with simulated ERT data.

1.4 Novelty and Publications

In this thesis an image reconstruction technique is presented, which is based on a bound-
ary element method to solve the forward problem and on a levelset formulation for the
description of object boundaries. As discussed, the utilization of the boundary element
method is very natural for a shape reconstruction algorithmand it is of advantage com-
pared with e.g. a finite element approach. As far as the authorknows it is the first treat-
ment of the inverse problem in ECT by the combination of boundary elements and the
level set method. With this formulation the topology of a disturbance can change easily
and any arbitrary shape can occur in the iterative reconstruction. The technique presented
in this work features

• reconstruction of multiple phase flows where the number of phases is not available
a priori,

• non-trivial geometries are allowed due to the implemented level set method,

• reconstruction of the unknown material values for each region simultaneous to the
shape,

• treatment of the field problem with boundary elements instead of a finite element
method to allow higher spatial resolution,

• fast convergence because a Gauss-Newton approach is implemented to calculate
the descent direction of the cost functional and because a line search algorithm is
implemented,

• physical constraints for the material values and for the geometry are incorporated
by an active set method, which is important for a stable reconstruction with real
world data,



1.5. STRUCTURING OF THIS WORK 13

• measurement noise is considered as well and improves the image quality signifi-
cantly, and

• real world measurement data validates the algorithm and illustrates the good per-
formance of this method.

In this thesis a Gaussian measurement noise is considered and the object to be recovered
is assumed to be stationary for one measurement cycle. A survey of this reconstruction
technique is also published in [49, 51] where the reconstruction is performed by Dirichlet
boundary data and examples based on real world data are presented. In these publications
a coupled FEM-BEM is utilized in contrary to this work where only a BEM approach is
discussed because the recently developed prototype has a simplified sensor design. The
paper [50] gives a detailed discussion of the influence of different types of boundary data
on the imaging process. It is shown that both types of data, corresponding to the developed
high and low impedance frontends, deliver images of equal quality if a similar signal to
noise ratio is assumed. Reconstruction results, which have been submitted recently to the
journal of Measurement Science and Technology (see [52]), are shown in figure 1.4. Two
PVC objects are located in the interior of the sensor. First the reconstruction is performed
by a standard imaging technique based on a fixed finite elementmesh. The second image
is obtained by the new developed shape reconstruction technique. It illustrates the gain in
spatial resolution by the shape reconstruction method.

For the regularization term prior information can be incorporated into the ECT imag-
ing process. A sensor fusion technique of URT and ECT data is presented in [82] for
the finite element method. A novel regularization term for a level set based reconstruc-
tion is presented in [11, 10]. An edge detection of an URT image simultaneously to the
ECT reconstruction combines information about edges from URT with ECT data, which
is more sensitive to bulk material. This leads to an increased accuracy of the estimated
object boundaries and material values. The results in thesepapers are based on simulation
because the combined sensor hardware, ECT and URT, is currently under development.

Further publications are [30, 31] where ECT results with experimental data are pre-
sented to detect tracer particles in phase flow measurements. In [89] the new hardware
concept, which is based on the measurement of displacement current, is presented.

1.5 Structuring of this Work

In chapter 2 the description of object boundaries is considered. It starts with a short
overview over possible implicit and explicit representations and it gives the motivation to
use the level set framework. Additionally, this chapter explains briefly the deformation of
objects and the concept of shape derivatives is introduced.

In the next chapter these derivatives are applied to the forward problem to calculate
the sensitivity of the electrode potential or charge with respect to a deformation of the
contour and with respect to the material values. This chapter deals with the first term
(least squares) in the cost functional (1.8). Therefore theadjoint variable method is uti-
lized for the two dimensional ECT model. A proof for the sensitivity equations and the
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(a) Measurement setup:
two PVC objects.

(b) Reconstruction with a FEM
based algorithm.
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(c) Reconstruction with BEM
and level set algorithm.

Figure 1.4: Performance of the shape reconstruction method. This example is based on real world measure-
ments and illustrates the gain in the spatial resolution by ashape reconstruction method. With the BEM
and level set based algorithm, the contours are reconstructed within small tolerances compared to the true
objects.

corresponding adjoint problems is given. Additionally, this chapter describes the imple-
mentation of the boundary element method.

Chapter 4 deals with appropriate regularization terms (second term in (1.8)). Ad hoc
approaches are discussed as well as a regularization technique where a priori information
is available from ultrasonic reflection tomography. The calculation of a Newton-type
speed function is discussed for the proposed regularization terms.

The last chapter demonstrates the performance of the algorithm with experimental
results. A discussion concludes the main features and opportunities of the proposed shape
imaging technique.

In appendix A one can find an introduction on shape derivatives for PDE. An one-
dimensional example of a plate capacitor is presented. First the shape differentiation is
performed by direct differentiation of an analytical solution. Additionally, it is carried out
by the adjoint variable method and both methods are compared. Appendix B gives details
about the discretization of the gradient and the Hessian matrix of the regularization term.

1.6 Mathematical Notation

A comprehensive list of symbols and variables can be found onpage 93. The notation
of shape and material derivatives, as defined in [76], are introduced in chapter 2. Tan-
gential derivatives are used as well and they are defined in corresponding context. This
work is an application of different mathematical methods. Especially the correct function
spaces, theoretical foundations, and proofs are neglectedand the interested reader can find
comprehensive information in the referred literature.



Chapter 2

Description and Deformation of Objects

In image processing (e.g. image segmentation) and computervision one task is often to
recover the shape of objects in two and three dimensions. Many of the existing shape
modeling schemes require that the topology of the object is known before the recovery
can commence [25, 26, 43]. In the case of industrial tomography it is difficult to specify
the number of unknown objects a priori and an assumption is a significant limitation
of the reconstruction algorithm. In the case of ECT, the regions are distinguished by
their permittivity values. The contour is described by the boundaries between distinct
regions. In the iterative reconstruction process this contour is deformed and the ability to
describe this movement is another important aspect of shapemodels. Additionally, the
models have different attributes concerning the calculation of differential quantities such
as normals and curvature.

First a short description of several methods is given and themotivation to use the level
set method is discussed. A comprehensive discussion of different deformable contours is
given e.g. in [80, 57]. First, shape models can be classified in discrete and continuous
ones. A discrete representation of a shape is a set of points or the discrete mesh of bound-
ary elements. Contrary to these discrete representations a continuous one offers the ability
to compute differential quantities almost everywhere. Forthis reason the second approach
is discussed further and two possible representations are suggested.

First a contour can be represented explicitly by parameterization of the boundary
trace. A two dimensional parametric contour is described bya vector-valued function
C(s, t) ∈ IR2 wheres is usually the arc length andt the time. The movement and deforma-
tion is achieved by temporal and spatial discretization e.g. with finite differences. Possible
parameterizations are Legendre polynomials and Fourier coefficients. Another represen-
tation proposed in literature is for example B-splines [4, 84]. These models present the
contour by as few parameters as possible while still meetingthe requirements of the given
application. This formulation, however, has several drawbacks. When tracking the motion
of the interface, problems arise if different parts of the front cross each other. Addition-
ally, difficulties arise if the shape tries to break into pieces or if two shapes try to merge
into one. The main drawback of this explicit approach is thatthe evolving model is not
capable to undergo topological changes. Additional procedures must be added to detect
and deal with these situations and this is usually a cumbersome task.

15
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The opposition is the implicit representation. The contouris described by the zero
level set of a higher dimensional function. The deformationof the contour in time is
linked to the evolution of this function and its discretization constrains the resolution of
the contour. The contour is usually closed and an open boundary is only possible on the
border of the underlying grid of the higher dimensional function. The main advantage of
this formulation is its ability to automatically change thetopology during the deformation.
In contrast to a parametric contour the implementation of the implicit approach requires
a little more care. The level set method, which has been utilized in this work, belongs to
this group of shape representations.

In the following sections an overview of the implemented level set method is given.
Next the definition of shape derivatives is presented to differentiate boundary and domain
integrals with respect to a deformation of the contour. These definitions are applied in
chapter 3 and additionally they are necessary later in chapter 4 to calculate the shape
derivatives of possible regularization terms.

2.1 Level Set Framework

The main advantage of the level set method is, as explained, its ability to undergo a
topological transformation. This formulation can elegantly describe shapes, which split
and merge freely. The method was originally introduced by Osher and Sethian in [61]
and is now widely used in lots of applications (for instance the simulation of two-phase
oil-water flows in pipes [74]) and a lot of literature can be found e.g. [72, 73, 60, 59, 58,
88, 90]. Some additional attributes of the level set method are given below.

1. The formulation remains unchanged for different dimensions. Surfaces in 3D can
be represented as well as contours in 2D.

2. Geometry properties of the front, like the normal and the curvature, are easily de-
termined by differentiation of the level set function.

3. It is not necessary to have a priori information about the number of unknown phases
in the flow and their topology. The topology of the initial condition is not necessar-
ily the same as the one at convergence.

The idea of this method is to define a smooth functionΦ : D× IR+ → IR in the domain
D ⊂ IR2 that represents the interface as the set where

Φ(~x, t) = 0. (2.1)

The domainD is divided by the interface in distinct regions such that following conditions
hold.

Ω1 = {~x∈ D : Φ(~x, t) < 0} (2.2)

Ω2 = D\Ω1 = {~x∈ D : Φ(~x, t) > 0} (2.3)

Γ = ∂Ω1 = {~x∈ D : Φ(~x, t) = 0} (2.4)
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The trajectory of a particle~x(t) on the interface is defined by the movementd
dt~x(t) =

~VF . The deformation of the whole domain is described by this velocity field~VF : D →
IR2. Commonly this field depends on position, time, geometry, or some external physics.
Partial differentiation of (2.1) leads to

∂Φ
∂t

+∇Φ ·~VF = 0. (2.5)

This partial differential equation is of type Hamilton-Jacobi, which is also known as trans-
port equation. Actually, only the projection of the velocity on the normal, denoted by
F̃ : D → IR, is necessary and (2.5) becomes

∂Φ
∂t

+ |∇Φ|F̃ = 0 (2.6)

The last equation is solved by spatial discretization on a fixed grid. The resulting ordi-
nary differential equation is solved by an appropriate timestepping method. The CFL
(Courant, Friedrichs, and Lewy) condition [59]∆t|F̃| < ∆x must hold if one is interested
in the correct and stable evolution of the interface. In thiswork, however, an optimization
is performed and a fast convergence is more important than the evolution of the interface
itself. This means that it is not important to track a very smooth propagation of the inter-
face. A line search algorithm is used to determine an optimalstep size and to relax the
CFL condition. A simple forward Euler step is applied for timediscretization. To speed
up the calculation of the level set function one idea is to localizeΦ to a small tube (e.g.
[63]) about the contourΓ(t). This is appropriate for small time steps, which is usually the
case if the CFL condition holds. As mentioned above in this work the step size is as large
as possible and thus a localization is an unnecessary restriction on the step size.

As already mentioned geometric properties have simple representations in terms of
Φ, like the outward normal of regionΩ1

~n1 =
∇Φ
|∇Φ| (2.7)

and the curvature

κ = ∇ · ∇Φ
|∇Φ| . (2.8)

The velocityF̃ is chosen as descent direction of the cost-functional (1.8). Therefore
a velocityF : Γ(t) → IR is calculated for points on the contour. At this point three issues
of practical importance arise.

Velocity Extension. First, the calculated velocity must be extended off the interface to
the whole domain ofΦ to solve (2.6). This process is called velocity extension and is
commonly not trivial. One idea to perform this is based on thesolution of an additional
partial differential equation. A detailed discussion is given in subsection 2.1.1.
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Reinitialization. Second, it is of importance that the level set function remains well
behaved. That implies bounds on the gradient such as

0 < c1 ≤ |∇Φ| ≤ c2 (2.9)

for some constantsc1 andc2. Commonly the level set function is supposed to be a signed
distance function, i.e.

|∇Φ| = 1. (2.10)

Figure 2.1 illustrates a slice of the level set function. Theinterface is well defined due
to (2.10). Additionally, the numerical approximations of (2.7) and (2.8) are stable. With
this definition the distance of an arbitrary point~x to the surfaceΓ is equal to the function
value|Φ(~x, t)|. Even if accurate numerical schemes are applied to solve (2.6), the level set
function often becomes very flat or steep at the interfaceΓ. For that reason a correction
is necessary to satisfy (2.10). This procedure is called reinitialization and it is discussed
in subsection 2.1.2. For both procedures, velocity extension and reinitialization, ideas
coming from [63] are used and presented briefly. Alternatively one can use a fast marching
algorithm [1, 73] to determine the extension velocity and the signed distance function.
The PDE based approach, however, leads to a flexible and accurate method and it is easy
to implement.

The spatial discretization ofΦ is determined by the necessary accuracy of the contour.
It is chosen fine enough to ensure the accuracy of the contour.A course grid, however,
performs faster. Additionally first order finite differences are used to get a moderate
computational burden.

Multiphase level set method. Another question arises if one assumes more than two
unknown phases in the pipe. An extension of the level set framework is introduced in
[86], namely the multiphase level set method. In other publications the method is called
multiple level set method (e.g. [18]). This method is implemented in this work and the
corresponding idea is presented in subsection 2.1.3.

2.1.1 Velocity Extension

One way to extend the velocity off the front is to letF̃ be constant along the curve normal
to Γ(t). This condition ensures thatΦ keeps being a signed distance function. In other
words let

~n·∇F̃ = 0. (2.11)

This suggests the following partial differential equation

∂
∂τ

F̃ +S(Φ)
∇Φ
|∇Φ| ·∇F̃ = 0, (2.12)

whereS(Φ) is the signature defined as

S(Φ) =







−1 if Φ < 0,

0 if Φ = 0,

1 if Φ > 0.

(2.13)
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Φ

Φ > 0 Φ > 0

x
Φ < 0

1

1

Figure 2.1: Slice of the level set function. The interface isdescribed byΦ = 0. The absolute value of the
gradient equals one to ensure a numerical accurate calculation.

This problem is solved by applying the initial conditionF̃ |Γ(t) = F until a steady state is
achieved. A highly accurate numerical scheme is presented in [44]. In this work following
first order scheme coupled with a forward Euler discretization is utilized. An important
characteristics of (2.12) is that information flows out of the interface. This is an essential
attribute, which must be enforced numerically to ensure stability. The method is called
upward scheme since only values biased toΓ are used to approximate∇F̃ numerically.
S(Φ) ∇Φ

|∇Φ| is constant for the iterative algorithm. The signature is smeared for numerical
reasons by

Sσ(Φ) =
Φ√

Φ2 +σ2
, (2.14)

whereσ is a smoothing parameter in the size of the spatial discretization∆x. The normal
vector is denoted by

(nx ny)
T =

∇Φ
|∇Φ| (2.15)

and is calculated by central finite differences. The nodal values of a 2D grid with uniform
spacing∆x in x-direction and in y-direction are denoted by the indicesi and j. The first
coordinate of∇F̃ is calculated by forward finite differences by

D+
x F̃i j =

F̃i+1, j − F̃i j

∆x
(2.16)

and by backward finite differences by

D−
x F̃i j =

F̃i j − F̃i−1, j

∆x
. (2.17)

The same notation is used for the second coordinate. The usage of forward and backward
finite differences depends on the sign of the corresponding component of the normal vec-
tor (direction) and on the sign of the level set function (inner/outer region). This is il-
lustrated in figure 2.2 for the x-direction. Forward differences are chosen if the product
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Φ

Φ > 0
nx < 0

Φ < 0
nx < 0

Φ < 0
nx > 0

Φ > 0
nx > 0

D+
xD+

x D−
x D−

x

x

Figure 2.2: The choice between forward and backward finite differences for an upward scheme depends on
the sign of normal vector and level set function.

S(Φ)nx is negative and, respectively, backward differences are chosen for a positive prod-
uct. The numerical scheme to solve (2.12) reads as follows (indicesi and j are neglected,
the iteration step is indicated byk)

F̃k+1 = F̃k−∆τ
{

(Sσnx)
+D−

x F̃k +(Sσnx)
−D+

x F̃k

+ (Sσny)
+D−

y F̃k +(Sσny)
−D+

y F̃k
}

(2.18)

where(·)+ = max(·,0) and (·)− = min(·,0). For this scheme the CFL condition must
hold. The process, however, converges quickly near the interfaceΓ because information
is only transported away from the interface.

2.1.2 Reinitialization

Reinitialization is necessary because flat or steep regions,which are caused by numerical
inaccuracies, complicate the determination of the contour. Additionally, the computation
of the normal and curvature becomes inaccurate. For these numerical reasons the level
set function is corrected to ensure that it remains a signed distance function and that it
remains well behaved.

This is simply done by replacingΦ by another function that has the same zero level
set but behaves better. Among other methods to perform this,one elegant way is based on
following partial differential equation

∂
∂τ

Φ+S(Φ)(|∇Φ|−1) = 0, (2.19)

which is solved until a steady state is achieved. Similar to the velocity extension a first or-
der upwind scheme for the spatial and a forward Euler time discretization is used (indices
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i and j neglected, the iteration step is indicated byk)

Φk+1 = Φk−∆τS+(
√

max[(a+)2,(b−)2]+min[(c+)2,(d−)2]−1)

−∆τS−(
√

max[(a−)2,(b+)2]+min[(c−)2,(d+)2]−1). (2.20)

(·)+ = max(·,0) and(·)− = min(·,0) and following abbreviations are used for the finite
differences

a = D−
x Φk

i j (2.21)

b = D+
x Φk

i j (2.22)

c = D−
y Φk

i j (2.23)

d = D+
y Φk

i j . (2.24)

This method has a good convergence as discussed in [63]. The reinitialization step is per-
formed in every iteration because the interface changes rapidly. This is the case because
the step size for (2.6) is chosen as far as possible by a line search algorithm.

2.1.3 Multiphase Level Set Method

For image segmentation of more than two phases Vese and Chan introduce in [86] a
multiphase level set framework. In this paper it is shown that complex topologies can be
represented. The idea is to describenl phases bynp = log2nl level set functions. For
instance, with two level set functionsΦ1 andΦ2 it is possible to express four regions of
constant valuesεl by

ε =ε0H(Φ1)H(Φ2)+ ε1H(−Φ1)H(Φ2)

+ε2H(Φ1)H(−Φ2)+ ε3H(−Φ1)H(−Φ2), (2.25)

whereH(Φ) is the Heaviside function defined as follows.

H(Φ) =

{

1 if Φ > 0,

0 if Φ ≤ 0
(2.26)

Figure 2.3 demonstrates these four regions with their distinct material value and the cor-
responding sign of the level set function.

The union of the zero-level sets represent the edges in the image. The regions are
disjoint sets. An image of unique region numbers is calculated easily by

IR =

np∑

p=1

H(−Φp)2
p−1, (2.27)

where the background region is defined by the value 0. It can beseen thatnp level set
functions describe a total number of 2np regions. The multiphase framework is imple-
mented in this work and it gives several advantages, i.e.
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ε0

Φ1 > 0
Φ2 > 0

ε1

Φ1 < 0
Φ2 > 0

ε2

Φ1 > 0
Φ2 < 0

ε3

Φ1 < 0
Φ2 < 0

Figure 2.3: More than two phases are described by the combination of different level set functions.

• if one level set function splits into two regions, an additional level set function is
generated adaptively,

• the level set function is removed if it describes no region anymore (in the case if the
function is non-negative), and

• the tracking of the phases with their material values is performed easily due to the
distinct region numbers.

Thus the number of unknown phases is adjusted adaptively andno a priori information is
necessary. Additionally, the importance of the initial condition is reduced.

2.2 Definition of Shape Derivatives

The level set formulation describes a deformation of the boundary by the solution of
(2.6). Therefore a descent direction of (1.8) must be calculated. Generally, this is a shape
optimization problem and one has to calculate sensitivities of a functional with respect to a
geometric variable such as the boundary of an open domain. In[76, 21] shape derivatives
are introduced and this section gives a short overview over essential results. In this work
the boundaryΓ(t) = ∂Ω of an open set is supposed to be as smooth as necessary.

A real-valued shape functionalJ for an appropriate set of domainsE is described by

J : E → IR. (2.28)

First two possible mathematical descriptions of deformations are explained. Next the
shape derivative is introduced and the results for two simple shape functions (boundary
and domain integrals) are given. In the following section the shape derivative concept
is extended by material derivatives. This is necessary for more complex shape functions
where a spatial distributed variable depends on the geometry itself. At last, results of
the shape derivative concept applied to the level set function are presented. Additionally,
second order derivatives are considered.
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2.2.1 Flows of Velocity Fields

Instead of a parametrized curve, the interface is describedby the boundary of an open set
Ω ⊂ D in a given domainD ⊂ IRN. Two types of deformation can be found in literature,
namely, transformation and velocity method. The velocity method is also referred to as
the speed method.

First consider the transformation aroundΩ along the one dimensional path

∀~X ∈ D, t ≥ 0, T(t,~X) = Tt(~X) = ~X + t~V(~X). (2.29)

for some vector fields~V : D → IRN. This deformation is not completely satisfactory since
it is a nonlocal transformation. In other words the velocityfield d

dt~x(t) =~V(~X) at the point
~x(t) = Tt(~X) depends on the point~X instead on~x(t).

More natural is the approach by the velocity (or speed) method. It describes the
movement as flow for a given (smooth) vector field~V : D → IRN. Consider the trajectory
of a point in the artificial timet, which is defined by following differential equation (initial
value problem)

d
dt

~x(t) = ~V(~x(t)) (2.30)

~x(0) = ~X (2.31)

for t ≥ 0. This is now a local deformation or flow and it defines following mapping with
respect to~V

Tt(~X) =~x(t), t ≥ 0 (2.32)

by the solution of the differential equation.~V is also called perturbation vector field.
The deformation is a local deformation and the velocity of the point~x(t) equals the field
~V evaluated at~x(t). In literature one can find both deformations (transformation and
velocity method) and they yield equal results for first orderderivatives.

Two different kinds of vector fields can be defined. The field isnamed autonomous if
it does not depend ont. In the other case it is non-autonomous if~V(t)(x) =~V(t,x). Then
the trajectory of a point is defined by following differential equation

d
dt

~x(t) = ~V(t,~x(t)), (2.33)

~x(0) = ~X. (2.34)

In this work the vector field is assumed to be an autonomous field. To ensure thatTt(~x)
mapsD ontoD, the normal component of the velocity must vanish at∂D

~V(~x) ·~n
∣
∣
∣
∂D

= 0 (2.35)

and on points where∂D is not smooth the velocity is zero

~V(~x)
∣
∣
∣
∂D

= 0. (2.36)
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By utilization of the mapTt(~x) one can define the perturbation of a domain or bound-
ary by

Ωt = {Tt(~x) :~x∈ Ω} = Tt(Ω) (2.37)

and
Γt = {Tt(~x) :~x∈ Γ} = Tt(Γ). (2.38)

2.2.2 Shape Derivative

The shape functionalJ has a Eulerian semiderivative atΩ in the direction~V if the follow-
ing limit exists and is finite

dJ(Ω;~V) = lim
t→0

J(Ωt(~V))−J(Ω)

t
. (2.39)

The functionalJ is said to be differentiable atΩ if the map~V 7→ dJ(Ω;~V) is linear and
continuous for perturbation fields~V. In the analogous way one can define semiderivatives
for Γ.

A simple example of a shape functional is given by the volume integral over a bounded
open domainΩ ⊂ D with Lipschitzian boundaryΓ and normal~n. Under appropriate as-
sumptions on the vector field~V and on the functionψ : D → IR the shape functional

J1(Ωt(~V)) =

∫

Ωt(~V)
ψdx (2.40)

yields the semiderivative

dJ1(Ω;~V) =

∫

Γ
ψ~V ·~nds. (2.41)

The derivative of the surface integral

J2(Γt(~V)) =

∫

Γt(~V)
ψds (2.42)

yields

dJ2(Γ;~V) =

∫

Γ

(
∂ψ
∂n

+κψ
)

~V ·~nds (2.43)

with the curvatureκ = ∇ ·~n.

2.2.3 Material and Shape Derivative

More interesting is the case ifψ depends on the geometric variables themselves i.e.
ψ = ψ(Ω). This yields more complex shape functionals and the derivatives have to be
corrected by terms which take care of the derivative ofψ.

First the material derivative of the functionψ is defined by

ψ̇(Ω;~V) = lim
t→0

1
t

(

ψ(Ωt)◦Tt(~V)−ψ(Ω)
)

(2.44)
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if the limit exists. An analogous definition holds for functionsψ(Γ). This is the derivative
with respect to the geometry for a moving (Lagrangian) coordinate system1. In the special
case thatψ does not depend onΩ one findsψ̇(V) = ∇ψ ·~V. This leads to the definition of
the shape derivative ofψ

ψ′(Ω;~V) = ψ̇(Ω;~V)−∇ψ ·~V. (2.45)

The shape derivative is zero for every function which does not depend onΩ. It is the
derivative with respect to a fixed (Eulerian) coordinate system2. The shape and material
derivatives for the level set function are given in subsection 2.2.4.

The derivatives of integrals like

J1(Ω) =

∫

Ω
ψ(Ω,~x)dx (2.46)

and

J2(Γ) =

∫

Γ
ψ(Ω,~x)ds (2.47)

yield following results

dJ1(Ω;~V) =

∫

Ω
ψ′(Ω;V)dx+

∫

Γ
ψ~V ·~nds (2.48)

and for boundary functions (note that it is assumed thatψ : D → IR)

dJ2(Γ;~V) =

∫

Γ
ψ′(Ω;V)ds+

∫

Γ

(
∂ψ
∂n

+κψ
)

~V ·~nds. (2.49)

The last equation is simplified if one assumes a perturbationfield of the form~VF = F~n.
This leads to

dJ2(Γ;~VF) =

∫

Γ
ψ̇(Ω;F~n)ds+

∫

Γ
κψF ds. (2.50)

1Note that◦ meanscomposed with. The termψ(Ωt) ◦Tt(~V) corresponds to the function value ofψ,
which is altered by the deformed domainΩt and is evaluated in the new coordinating system.

2A possible interpretation of (2.45) is the total differentiation ofψ and in an analogous way (2.45) can
be written as∂ψ

∂t = dψ
dt −∇ψ · d~x

dt .
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2.2.4 Shape Derivative of Signed Distance Functions

In chapter 4 it is necessary to calculate the derivatives of different regularization terms.
Additionally, second order derivatives are necessary. In this subsection shape and material
derivatives of the signed distance function are discussed.The signed distance function is
equal to the level set function, which has been utilized to describe the deformation. In
[35, 36] one can find a detailed description of these calculations. In this section the main
results are summarized.

First a distance function for a subsetA⊂ IRn is defined by

dA(~x) = inf
~y∈A

|~y−~x|. (2.51)

This leads to the definition of the signed distance function

bΩ(~x) =







dΓ(~x) for ~x∈ D\Ω
0 for ~x∈ Γ
−dΓ(~x) for ~x∈ Ω

. (2.52)

It is easy to see that|∇bΩ| = 1 almost everywhere. One can identifybΩ with the level
set functionΦ, which has been introduced in section 2.1. In the special case of a signed
distance function the normal and the curvature is calculated by

~n = ∇Φ (2.53)

and
κ = ∇ ·∇Φ. (2.54)

The interface is described by the zero level set. Thus the derivative with respect to a
moving coordinate system yields

Φ̇ = 0 (2.55)

on the interfaceΓ(t). The shape derivative is calculated by (2.45)

Φ′ = −~VF ·~n = −F (2.56)

and yields a similar result as (2.6).
Second order derivatives are introduced in [35, 36]. The aimis to calculate

d2J(Γ;~VF ;~VG) = d(dJ(Γ;~VF))(Γ;~VG) (2.57)

for the perturbationsF,G : Γ → IR. Hintermüller and Ring suggest a few assumptions
to simplify this calculation. These assumptions perfectlymatch the level set framework.
First the velocity fields are restricted to a normal component, like

~VF = F ·~n, ~VG = G·~n. (2.58)

Additionally, the following condition must hold near the interfaceΓ

∇F̃ ·~n = 0, ∇G̃·~n = G. (2.59)
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This leads to ∂
∂n(~VF ·~n)

∣
∣
∣
Γ

= 0 for F̃ and for G̃, respectively. Note that (2.59) is equal

to (2.11). Hence this condition is satisfied if the velocity on the interface is extended as
described in section 2.1.1. These restrictions on the velocity fields are necessary to obtain
a symmetric second order derivative. The second order derivative of the shape function

J(Γ) =

∫

Γ
ψds (2.60)

is

d2J(Γ;~VF ;~VG) =

∫

Γ

[(
∂2ψ
∂n2 +2

∂ψ
∂n

κ
)

FG+ψ∇ΓF ·∇ΓG

]

ds, (2.61)

whereas tangential calculus is used to define the tangentialgradient of a functionh(Γ)

∇Γh = ∇h̃|Γ −
∂h̃
∂n

~n. (2.62)

for an arbitrary smooth extensionh̃.

Concluding Remarks. In the first part of this chapter the level set framework is intro-
duced. It is shown that this framework is a versatile tool to describe the interfaces of
distinct regions. Additionally, the deformation of the contours is easily obtained by a
velocity field. The second part of this chapter introduces shape and material derivatives.
The differentiation of domain and boundary integrals is presented. In the following two
chapters these derivatives are applied to the two terms of the cost functional (1.8). In
chapter 3 the sensitivity of the potential and of the flux withrespect to the deformation
is calculated (least squares term). The consecutive chapter deals with the regularization
term.
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Chapter 3

Sensitivity Calculation and Boundary
Element Method

In this work, the inverse problem of ECT is formulated as a shape optimization problem.
The task is to find the minimizer of the cost functional (1.8) for all possible shapes and
material values in the pipe. This chapter deals with the problem of finding an expression
for the derivative of the potential and of the flux with respect to the deformation of a
contour. Additionally, the sensitivity with respect to thepermittivity values is calculated.
Depending on the applied boundary condition, one is interested in the shape derivative of
the potential in the domain of the electrodeΩe

u′
∣
∣
Ωe

(3.1)

or of the flux on the electrode surfaceΓe

∫

Γe

(

ε
∂u
∂n

)′
ds, (3.2)

whereu satisfies the partial differential equation (1.1) of the field problem. The interfaces
of the different regions are separating the piecewise constant permittivity values. These
boundaries are assumed to be sufficiently smooth.

One may use different approaches for this differentiation,like

• finite differences [25, 26],

• direct differentiation of an analytical expression,

• direct differentiation of system matrices [62], and

• the Adjoint Variable Method (AVM) [42, 41].

Finite differences lead to a high number of field problems andtherefore it is very time
consuming. Additionally, numerical instability occurs very often. An analytical expres-
sion is only available for simple geometries. For the directdifferentiation of the BEM
system matrices one has to construct matrices with the partial derivatives of each node

29
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point (see e.g. [62]). In this work the adjoint variable method is utilized and it is shown
that few additional computation time is necessary to calculate the sensitivity.

In appendix A one can find an introducing, one dimensional example. For this simple
example an analytical expression exists and it is compared to the result of the adjoint
variable method. This appendix illustrates the necessary steps to gain a suitable equation
for the shape derivative. In the first section in this chapterthe adjoint variable method is
applied to the geometry of the ECT sensor and an expression forthe shape derivative is
obtained. Two distinct adjoint problems are defined, one forthe derivative of the electrode
potential and the other for the derivative of the charge on the electrode. At last details
about the implemented BEM are given and the computational effort is discussed.

3.1 Shape Derivatives in 2D

The construction of a sensitivity formula in 2D is similar tothe process in 1D. The deriva-
tion in this section has a similar procedure as described in [56, 5]. The velocity field is
restricted to the case where it consists only of the normal component similar to (2.58)
(~VF = F~n). First only one region with constant permittivity is considered and

ε∆u = 0 (3.3)

is fulfilled in the domainΩ with the sufficiently smooth boundaryΓ (note that the appli-
cation of Dirichlet and Neumann conditions is discussed later in this section). The shape
derivative (2.45) of the primary variableu and adjoint variableu is defined as follows.

u′ = u̇− ∂u
∂n

F (3.4)

u′ = u̇− ∂u
∂n

F (3.5)

First the weak formulation is considered
∫

Ω
ε∇u·∇udx

︸ ︷︷ ︸

S1

−
∫

Γ
uε

∂u
∂n

ds
︸ ︷︷ ︸

S2

= 0. (3.6)

The shape derivative of the domain integral yields

dS1(Ω;~VF) =

∫

Ω
(ε∇u·∇u)′ dx+

∫

Γ
ε∇u·∇uF ds (3.7)

and it is simplified by the Gauss’ theorem to

dS1(Ω;~VF) =

∫

Ω

(
ε′∇u·∇u−u′ε∆u

)
dx+

∫

Γ

(

u′ε
∂u
∂n

+u′ε
∂u
∂n

+ ε∇u·∇uF

)

ds. (3.8)
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Similar to the 1D example in appendix A.2, the shape derivatives on the boundary are
replaced by the material derivative such that

dS1(Ω;~VF) =

∫

Ω

(
ε′∇u·∇u−u′ε∆u

)
dx

+

∫

Γ

(

u̇ε
∂u
∂n

+ u̇ε
∂u
∂n

+ ε∇u·∇uF−2ε
∂u
∂n

∂u
∂n

F

)

ds. (3.9)

Later the material derivatives of the interface conditionsare used to eliminate these terms.
The shape derivative of the boundary integralS2 is achieved by (2.50) and yields

dS2(Ω;~VF) =

∫

Γ

[

u̇ε
∂u
∂n

+u

(

ε
∂u
∂n

)·
+uε

∂u
∂n

κF

]

ds. (3.10)

Both shape derivatives dS1 and dS2 lead to following result.

∫

Ω
u′ε∆udx+

∫

Γ

[

u

(

ε
∂u
∂n

)·
− u̇ε

∂u
∂n

]

ds

=

∫

Ω
ε′∇u·∇udx+

∫

Γ

(

ε∇u·∇u−2ε
∂u
∂n

∂u
∂n

−uε
∂u
∂n

κ
)

F ds (3.11)

The left hand side of this equation consists of the shape and material derivatives of the
primary variableu. The domain integral on the right hand side corresponds to a change
in the permittivity value and the boundary integral corresponds to a deformation of the
boundary.

Two Subregions. The result (3.11) is applied to the setup shown in figure 3.1. The
regionΩ1 is inside ofΩ2 and the interface between them is denoted byΓ1. Dirichlet
and Neumann boundary conditions are applied onΓ0 = Γd ∪Γn. It is assumed that the
velocity field~VF satisfies (2.35) and (2.36) onΓ0. Thus the outer boundary of this setup
is not deformed. Additionally, it is assumed that the boundary conditions do not depend
on the geometry (i.e.Γ1). The interface conditions onΓ1 are (if necessary the quantities
of each region are distinguished by the corresponding subscript)

u1 = u2 (3.12)

ε1
∂u1

∂n
= ε2

∂u2

∂n
(3.13)

with ~n the outward normal vector of regionΩ1. These conditions are fulfilled for allΓt

and their material derivatives lead to

u̇1 = u̇2 (3.14)
(

ε1
∂u1

∂n

)·
=

(

ε2
∂u2

∂n

)·
. (3.15)
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Ω1

ε1

Ω2

ε2

Γd

u = ud

Γn

ε ∂
∂nu = gn

Γ1

~n

~n

Figure 3.1: Two subregionsΩ1 andΩ2 with different constant permittivity values. On the boundaries Γd

andΓn Dirichlet and Neumann boundary conditions are applied. Theinterface between the two regions is
described byΓ1.

Similar interface conditions are applied for the adjoint variableu

u1 = u2 (3.16)

ε1
∂u1

∂n
= ε2

∂u2

∂n
. (3.17)

The shape derivative (3.11) is applied for both domains. Thematerial derivatives on
the boundaryΓ1 and the term with the curvature are eliminated if both shape derivatives
are summed up and if their interface conditions are applied.This yields

∫

Ω
u′ε∆udx+

∫

Γ0

[

u2

(

ε2
∂u2

∂n

)·
− u̇2ε2

∂u2

∂n

]

ds=

∫

Ω
ε′∇u·∇udx

+

∫

Γ1

(

ε1∇u1 ·∇u1−2ε1
∂u1

∂n
∂u1

∂n
− ε2∇u2 ·∇u2 +2ε2

∂u2

∂n
∂u2

∂n

)

F ds. (3.18)

The material derivatives of the primary variable only occuron the outer boundaryΓ0.
This boundary consists of two parts with different boundaryconditions. In ECT, these
boundary conditions do not depend on the geometry. OnΓd Dirichlet boundary conditions
are applied and the material derivative equals zero.

u|Γd = ud (3.19)

u̇|Γd = 0 (3.20)
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Similar the material derivative of the displacement onΓn yields

ε
∂u
∂n

∣
∣
∣
∣
Γn

= gn (3.21)

(

ε
∂u
∂n

)·∣∣
∣
∣
∣
Γn

= 0. (3.22)

The boundary integral overΓ1 is further simplified by splitting∇u in a normal and tangen-
tial component. The tangential component is denoted byEt~t 1 and the normal component
is given byEn,1~n andEn,2~n 2 for each region. The over line denotes the adjoint variable.

ε1(Et~t +En,1~n) · (Et~t +En,1~n)−2ε1En,1En,1

−ε2(Et~t +En,2~n) · (Et~t +En,2~n)+2ε2En,2En,2

=ε1EtEt − ε1En,1En,1− ε2EtEt + ε2En,2En,2

=(ε1− ε2)(EtEt +En,1En,2)

=(ε1− ε2)∇u1 ·∇u2 (3.23)

Hence (3.18) is simplified to

∫

Ω
u′ε∆udx+

∫

Γd

u2

(

ε2
∂u2

∂n

)·
ds−

∫

Γn

u̇2ε2
∂u2

∂n
ds

=

∫

Ω
ε′∇u·∇udx+(ε1− ε2)

∫

Γ1

∇u1 ·∇u2F ds.

(3.24)

Generally, a similar result is obtained if more than two regions are considered. On the
left hand side shape and material derivatives of the primaryvariable occur. The adjoint
problem is defined in such way that the desired sensitivity isobtained. The right hand
side consists of two terms. The first term corresponds to the sensitivity with respect to the
material value. The second integral is related to a materialjump and to a deformation of
the interface with velocityF .

3.1.1 Sensitivity of the Potential

In ECT, the electrodes are not deformed and thus ˙u = u′ holds (F̃ = 0 on the electrode
surface). To calculate the sensitivity of the potential, consider the region of the electrode

1Et is the tangential component of the electric field strength (the negative sign is omitted for sake of
simplicity).

2En,1 andEn,2 denote the electric field strength in normal direction for region 1 and 2, respectively.
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Ωe and its characteristic functionχe. The characteristic function equals 1 ifx∈ Ωe and 0
else. Then the adjoint problem is defined as follows.

∇ · (ε∇u) = χe

u|Γd
= 0

ε
∂u
∂n

∣
∣
∣
∣
Γn

= 0

(3.25)

With these definitions (3.24) leads to

∫

Ωe

u̇dx =

∫

Ω
ε′∇u·∇udx+(ε1− ε2)

∫

Γ1

∇u1 ·∇u2F ds. (3.26)

This equation is used if one is interested in the change of theelectrode potential. This
corresponds to the high impedance approach of the measurement circuit. The new hard-
ware concept [89] is based on low impedance electrodes [3] and this case is considered in
the following subsection.

An identical result for the second term in (3.26) is obtainedin [41] for electrical
impedance tomography. In this paper the sensitivity with respect to a deformation is
calculated for two regions with a priori known and constant conductivity values.

3.1.2 Sensitivity of the Charge

If one is interested in the change of the electrode charge, a different adjoint problem is
defined. This is necessary for the low impedance approach i.e. the forward problem
is defined by (1.1). In this case, only Dirichlet boundary conditions are applied to the
electrodes. The boundary of the electrode of interest is denoted byΓe,i and following
adjoint problem is defined.

∇ · (ε∇u) = 0

u|Γ0
= 0

u|Γe,i
= 1

(3.27)
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The sensitivity of the measured charge is obtained by

∫

Γe,i

(

ε
∂u
∂n

)·
ds=

∫

Ω
ε′∇u·∇udx+(ε1− ε2)

∫

Γ1

∇u1 ·∇u2F ds. (3.28)

where~n onΓe is the inward normal vector of the electrode. Similar to the previous section
it is assumed that̃F = 0 onΓe.

3.2 Boundary Element Method

The boundary element method is utilized to solve the forwardproblem. In the practical
application different questions arise. First the discretization into boundary elements of
the sensor and of interior objects is discussed. Next the formulation of the boundary ele-
ment method is introduced. The subsection deals with the discretization of the boundary
integrals for the sensitivity calculation.

Discretization into Boundary Elements. Figure 3.2 shows the discretization of an ex-
pedient model of the ECT sensor into boundary elements. Section 1.1 gives a detailed
discussion about the appropriate assumptions for the application of a two dimensional
model. Without interior material, it consists of three regions of interest, namely, the PVC
pipe, the interior of the pipe, and the region with the grounded shield at the outermost
circumference. The 16 electrodes are assumed to be perfectly conductive and each of
them is an equipotential surface. Thus it is not necessary tosolve the Laplace equation
for these regions.

The interior objects are described by the level set functionΦ. To discretize the bound-
ary it is necessary to track the contour i.e. one has to solve (2.1). This is illustrated in
figure 3.3. The level set function is discretized on a fixed Cartesian grid and the function
is assumed to be linear between the grid points. Additional points are computed on the
grid line, whereΦ = 0. These points are connected to a polygon of boundary elements.
Similar one can construct the boundary elements for the multiphase level set method.

The front-ends of the prototype measure the displacement current for different active
electrodes. In fact, each electrode acts successively as transmitting electrode whereas the
other 15 electrodes are measuring. A total number of 240 measurements is obtained. Due
to the symmetry of the measurement this is twice the number ofindependent capacitances.
In other words, the displacement current remains the same ifmeasuring and exciting
electrodes are reversed. Averaging of these measured displacement currents is used to
reduce this redundancy.

Formulation of the Boundary Element Method. One advantage of the boundary el-
ement method is that it reduces the dimension of the problem by one [53]. In 2D it
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interior of the pipe

PVC tube

grounded shield

electrodes

Figure 3.2: The sensor is discretized into boundary elements. It consists of the PVC pipe, the interior region
with the unknown materials, the 16 electrodes that are mounted around the pipe, and the outermost region
with the grounded shield.

Φ > 0

Φ < 0

node points

Figure 3.3: Discretization of the interior object into boundary elements. The level set function is discretized
on a fixed grid (dotted lines). The sign of the level set function is marked by small circles and x symbols.
The node points of the straight boundary elements are calculated on the grid lines by linear interpolation.

discretizes only the interface of regions with constant permittivity. A further advantage is
that it gives the solution of the partial differential equation explicitly. This is in contrast to
the finite element method where an interpolation of the solution onto a grid is performed.
For a moving geometry and a changing topology it is a great advantage to have an accu-
rate solution without the need of remeshing of the whole domain. The boundary element
method is mainly restricted to linear partial differentialequations. In this work, however,
it is assumed that the materials in the interior of the pipe are linear. In other words the
material value does not depend on the electric field strength.

A short introduction in inverse problems with boundary elements is given in [53].
An application to elasticity is given. A detailed description of the BEM itself is given
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for instance in [13]. The BEM leads to dense stiffness matrices, which restrict its usage
to problems of small size. To speed up the calculation, especially in three dimensions,
fast boundary element techniques [81] are utilized. These techniques improve the BEM
with respect to storage requirements as well as the complexity of matrix times vector
multiplications.

Basically, the solution of∆u = 0 in terms of boundary integrals is

1
2

u(~x)+

∫

Γ
u(~y)

∂
∂n

U∗(~x,~y)dsy =

∫

Γ
U∗(~x,~y)

∂
∂n

u(~y)dsy (3.29)

for~x∈ Γ. 3 U∗ is the so called fundamental solution and in 2D one obtains

U∗(~x,~y) = − 1
2π

log|~x−~y|. (3.30)

In this work a direct formulation for the Dirichlet boundaryvalue problem is used [81].
The unknown variables in the resulting equation system are physical values. One starts
with the boundary integral equation (3.29) and the integrals are discretized in linear
boundary elements in a geometrical sense. Each element has constant valuesui and
fi = ∂

∂nu. The collocation method is used to assemble the corresponding matrices of
the boundary integrals and the discretization of (3.29) is evaluated at each midpoint of a
boundary element. An analytical evaluation of the integrals is possible due to the constant
and linear boundary elements. This results in

Hb~u = Gb~f (3.31)

where~u and~f summarize the physical quantities at each boundary element. For additional
subregions interface conditions are used to combine the individual matrices.

This simple formulation leads to dense blocks in the resulting system matrix, which
is not symmetric in general. The equation is solved by a direct approach with Gauss
elimination. Possible improvements are e.g. a symmetric Galerkin formulation or the
usage of elements of higher order.

3.2.1 Discretization of the Sensitivity Equation

The first term of the cost functional (1.8) consists of the weighted least squares of the
calculated and measured electrode charges. At iteration stepk this term reads as follows.

I1
k =

1
2

∥
∥
∥W

(

~qk−~qm

)∥
∥
∥

2
. (3.32)

The gradient and an approximated Hessian matrix of this partof the cost functional are
calculated by the Jacobian matrix. This matrix consists of the partial derivatives of each
charge with respect to the change in geometry and material properties. The deformation
is described by the velocityFj on different node points along the boundary and they are

3The term1
2 in (3.29) is obtained for a smooth boundaryΓ.
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summarized into~F of sizen j . The change in the material values is denoted by~δε (size
nl ). By neglecting higher order terms the charges~q are represented by Taylor expansion

~qk+1 =~qk +JΓ~F +Jε~δε (3.33)

with the Jacobian matricesJΓ of sizeni ×n j andJε of sizeni ×nl . The Jacobian matrices
are assembled with the partial derivatives

JΓ,i j =
∂qi

∂Fj
(3.34)

and

Jε,il =
∂qi

∂εl
. (3.35)

The function value at iteration stepk+1 is written as

I1
k+1 = I1

k +~δT~g1 +
1
2
~δTG1

~δ (3.36)

where the change in geometry and permittivity is summarizedinto

~δ =

(

~F
~δε

)

. (3.37)

The gradient of the weighted least squares (3.32) is defined by (note thatWTW = C−1)

~g1 =

(
JΓ

TC−1(~qk−~qm)
Jε

TC−1(~qk−~qm)

)

(3.38)

and the Hessian is approximated by

G1 =

(
JΓ

TC−1JΓ JΓ
TC−1Jε

Jε
TC−1JΓ Jε

TC−1Jε

)

. (3.39)

Jacobian Matrix JΓ. The boundary integral of the right hand side of (3.28) determines
the change of the electrode charge with respect toF . For the adjoint problem for the
electrodei a Dirichlet boundary condition is valid on the corresponding electrode surface
Γe,i. The integral is discretized by the boundary elementsΓb, j . The outward normal vector
of the boundary element defines an interior and an exterior region, which are denoted by
the subscript 1 and 2, respectively. Under assumption of a constant velocityFj on each
boundary element in the direction of the normal vector, the entries of the Jacobian are

JΓ,i j = (ε1− ε2)

∫

Γb, j

∇u1 ·∇u2ds. (3.40)

If a linear velocity function is assumed on each boundary element, the unknown elements
Fj are defined on the node points. A similar equation for the elements in the Jacobian
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can be derived. Further details on the discretization of thevelocity function are given in
appendix B.

The gradient is expressed by a normal and a tangential component. The normal com-
ponent is known from the solution of the boundary element method. The necessary tan-
gential component can be obtained e.g. by direct differentiation of the system matrices,
by differentiation of equation (3.29), and by finite differences of the potentialu along the
boundary elements. In this work central finite differences are utilized for a fast calculation
of this part of the gradient.

Jacobian Matrix J ε. An element of this Jacobian is obtained by evaluation of the do-
main integral in (3.28). The adjoint problem is determined as before and the electrodeΓe,i

acts as exciting electrode. The domain with constant material valueεl is denoted byΩl

and its boundary isΓl . With the Gauss’ theorem the domain integral is transformedinto
a boundary integral

Jε,il =

∫

Ωl

∇u·∇udx =

∫

Γl

u
∂u
∂n

ds (3.41)

since∇ ·∇u = 0. The resulting integral can be evaluated easily due to the fact that the
necessary quantities are computed directly by the boundaryelement method.

Computational Effort. The necessary computations for one iteration step are summa-
rized as follows.

1. Find the zero level set by (2.1) and discretize the unknownobjects into boundary
elements.

2. Calculate the electrode charges~qk by the flux integrating method (1.2). Therefore
16 forward problems of type (1.1) are solved. The boundary conditions are defined
by the corresponding measurement setup.

3. For each forward problem 15 adjoint problems (for each measurement electrode)
are defined according to (3.27) and solved. In fact, only 120 independent measure-
ments exist due to the symmetry. Thus only one half of the adjoint problems is
necessary.

4. Next the tangential component of the gradients∇u and∇u is determined by finite
differences.

5. The Jacobian matricesJΓ andJε are assembled by numerical evaluation of the cor-
responding boundary integrals.

For these steps a charge based prototype is assumed with 16 electrodes. In the case of the
charge based measurement principle, only Dirichlet boundary conditions are applied for
the forward and adjoint problems. Therefore it is straightforward to use the superposition
of only 16 independent field problems to calculate all necessary field problems. This
principle can be applied under the assumption that the permittivities do not depend on
the electric field strength. Each independent field problem applies a Dirichlet boundary
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conditionu = 1 on a different electrode and homogeneous Dirichlet boundary conditions
on all other electrodes. It is also possible to apply this procedure to the case of voltage
based measurements. Hence the overall number of field problems, which have to be
solved, is equal to the number of electrodes. Furthermore only the boundary conditions
change for each field problem. That means that the system matrix remains the same and
merely the right hand side of the equation systems differs.



Chapter 4

A Priori Information and
Regularization Terms

A problem is called well-posed in the sense of Hadamard if forevery data a solution
exists, this solution is unique, and the solution is stable with respect to perturbations in
the data. If any of these three conditions does not hold, the problem is called ill-posed
(compare with [28, 87]). Unfortunately, the inverse problem of electrical capacitance
tomography is ill-posed and its solution is unstable with respect to data perturbations.
This creates serious numerical problems. The Hessian matrix (3.39) is ill-conditioned,
which is indicated by the decay of its singular values. To cope with this instability, so
called regularization methods are implemented. In section1.2 the knowledge of a prior
probability densityπpr(ε) is assumed. The reconstruction is stable with this additional
information, which is incorporated by the regularization term R with the regularization
parameterα2. This kind of regularization is of Tikhonov type.

In the community of image processing and level set techniques one idea is to use so
called shape priors. Even though shape priors are possible regularization techniques, it is
necessary to have a good idea of the shape of the objects to be recovered. Generally, this
is not fulfilled in capacitance tomography for industrial processes and thus this technique
is not applicable.

Commonly, no particular a priori information is available. In absence of this informa-
tion it is reasonable to apply a smoothness assumption on thesolution. In ECT, this means
that the permittivity value in the interior pipe is assumed to be smooth. The disadvantage
is that the reconstructed image is blurred and has less spatial resolution. Even for a shape
reconstruction method, which assumes piecewise constant permittivity values, additional
information is necessary. As a consequence of describing the interfaces between regions
with constant permittivities, a regularization, which smoothes the solution in a region, is
no longer applicable. Instead a smoothness assumption on the contour has to be applied
to avoid zig-zagging of the interfaces. Following regularization methods are proposed in
literature:

• implicit regularization where a parameterization of the contour with as few coeffi-
cients as possible is applied,

• penalization of the arc length of the interface between materials as suggested in

41



42 CHAPTER 4. A PRIORI INFORMATION AND REGULARIZATION TERMS

[42, 41],

• the Mumford-Shah functional [66],

• total variation regularization [17, 18, 20].

In the case of a parameterization of the interface, a limitednumber of coefficients is used.
For instance the Fourier coefficients of higher order are truncated and high frequencies in
the trace of the contour are avoided. This characteristic is, however, not easy to control.
Often the arc length of the interface is penalized which alsoresults in smooth contours
between different materials. This term does not depend on the material values themselves.
This regularization term is often applied if the material values are assumed to be known a
priori. This can rise a problem if the material values are reconstructed simultaneously to
the shape. The Mumford-Shah functional consists of two parts with particular parameters.
One term leads to piecewise smooth images and the second termyields simplicity of the
edge set between the different smooth parts of the image. TheMumford-Shah functional
has more than one tuning (regularization) parameter, whichare difficult to determine in
practical applications. At last the Total Variational Regularization (TVR) can be used.
This method originates from image processing (as well as theMumford-Shah functional).
It is suitable for blocky images (piecewise smooth images) similar to the Mumford-Shah
functional but it has only one regularization parameter.

Many different approaches exist for the choice of the regularization parameter. Com-
mon methods are the Generalized Cross Validation (GCV), the discrepancy principle, or
the L-curve method. A detailed discussion of these methods can be found e.g. in [28, 87].
The influence of the regularization parameter on the reconstructed image quality is pre-
sented in chapter 5.

In this chapter appropriate regularization terms are discussed. First of all the New-
ton method, which is applied to find the minimum of shape functionals, is introduced.
In the following three sections different regularization terms are discussed, namely, the
regularization of the arc length, a regularization, which consists of the squared jump in
the material value multiplied by the arc length, the Mumford-Shah functional, and total
variational regularization. Details about the discretization and about the assembling of
the gradient and Hessian matrix are given in appendix B. Section 4.5 introduces a regu-
larization where prior information is known from ultrasonic reflection tomography. The
last section deals with constraints. These constraints incorporate some kind of a priori in-
formation on the solution. In case of ECT the permittivity is constrained to values above
one and geometrical constraints are applied to the unknown interface.

4.1 Newton Method

As discussed in chapter 3, the Gauss-Newton method is appropriate for the first term
of the cost functional (1.8). A Newton-type method converges much faster, however
one needs to know the Hessian matrix. Thus, the second order derivative of the second
term (regularization term) is necessary as well. Generally, the regularization term can be
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considered of type (2.60)

J(Γ) =

∫

Γ
ψds.

Commonly, the descent direction, which is defined by the shapederivative, is used. This
shape gradient based flow has slower propagation compared with a Newton type flow. In
[35, 36] the Newton-type speed function is defined as follows.

d2J(Γ;~VF ;~VG) = −dJ(Γ;~VG) for all G : Γ → IR (4.1)

This equation is used to assemble the Hessian matrix and the gradient of the regularization
term. The conditions (2.58) and (2.59) are assumed to hold for ~VF and~VG as discussed in
section 2.2.4.G is an appropriate test function and a detailed discussion ofthe discretiza-
tion is given in the appendix B. The Hessian matrices for both terms in (1.8) are combined
and weighted by the regularization parameter. Finally, theNewton-type descent direction
is calculated in the optimization framework.

One important issue is that the Hessian must be positive definite, which means that
the curvature of the objective function is always positive.This assures that a descent
direction is calculated. The Gauss-Newton approximation of the Hessian is at least posi-
tive semidefinite. Generally, the Hessian of the regularization parameter is calculated by
(2.61). This part is only positive definite under some assumptions onψ and in practi-
cal applications it is necessary to modify this term in such away that it is convex. This
problem is addressed in the sections 4.3 and 4.5.

Another issue is that complex topologies can occur if the multiphase level set frame-
work is applied. For instance, if two level set functions overlap, junctions occur and
arbitrary angles are allowed at these edges. The regularization term, however, is written
as sum over all individual level set functions. The contour of one level set function is
smooth enough to allow a shape sensitivity calculation.

4.2 Regularization by the Arc Length

Many shape reconstruction methods assume a priori known material values of the distinct
phases. These values are held constant during the reconstruction process. A straight
forward way to implement a regularization is to penalize thearc length of the interface.
This is done by

Rarc =

np∑

p=1

∫

Γp

ds. (4.2)
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where the arc length of all level set functions is summed up. The weight between the
least squares part of the cost functional and the regularization term is adjusted by the
regularization parameterα2. The reconstructed trace of each region is smooth because
zig-zagging is effectively avoided. Numerical results arepresented in chapter 5.

By settingψ = 1, the shape sensitivity calculated by (2.43) and (2.61) yields

dRarc(Γ;~VG) =

∫

Γ
κGds (4.3)

and

d2Rarc(Γ;~VF ;~VG) =

∫

Γ
∇ΓF ·∇ΓGds. (4.4)

For the sake of simplicity it is assumed that only one level set function exists. The integral
in (4.4) represents the so called Laplace-Beltrami operator, which is defined e.g. in [76].
It is easy to see that the shape Hessian is positive semi-definite i.e. d2Rarc(Γ;~VF ;~VF) ≥ 0.
The assembling of the gradient and the Hessian matrix is shown in appendix B.1.

4.3 Squared Jump and Arc Length

If material values are reconstructed simultaneously to theshape, a more complex regular-
ization term is necessary. In this thesis, heuristic arguments are given why the jump in
the material value must be penalized as well. These arguments are based on experimental
results, which are shown in section 5.1. A simple idea is to multiply the arc length by the
squared jump in the material value

RSJ(~ε,Γ) = (ε1− ε2)
2
∫

Γ
ds. (4.5)

As above it is assumed without loss of generality that only one level set function exists.
The material valuesε1 andε2 are similar to chapter 3 the inner and outer permittivity.
For this functional the first and second order derivatives with respect toεl are calculated
easily. The first order derivative with respect to shape and material value is

dRSJ(Γ;~VG) = (ε1− ε2)
2
∫

Γ
κGds+2(δε1−δε2)(ε1− ε2)

∫

Γ
ds (4.6)

with δεl the change in the material value. The second order derivative yields

d2RSJ(Γ;~VF ;~VG) =(ε1− ε2)
2
∫

Γ
∇ΓF ·∇ΓGds+2(δε1−δε2)

2
∫

Γ
ds

+2(δε1−δε2)(ε1− ε2)

∫

Γ
κ(F +G)ds. (4.7)



4.4. MUMFORD-SHAH FUNCTIONAL AND TOTAL VARIATIONAL REGULARIZATION 45

As mentioned above, it is of importance that the regularization term is positive definite.
It is easy to see that the first and the second term in (4.7) are positive (semi-)definite. The
third term, however, rises problems. For instance, the lastequation yields for constant
F = G = Fc andδε2 = −δε1

d2RSJ(Γ;~VF ;~VF) = 8(δε1)
2
∫

Γ
ds+8(δε1)(ε1− ε2)

∫

Γ
κFcds. (4.8)

In the last equation there exists a combination ofδε1 andFc such that the Hessian is nega-
tive. One idea is to modify the regularization term to assurea convex functional. Consider
following inequality, which is further simplified by the Cauchy-Schwarz inequality.

2

[

(δε1−δε2)

∫

Γ
ds+(ε1− ε2)

∫

Γ
κF ds

]2

≥ 0

2(δε1−δε2)
2
∫

Γ
ds+4(δε1−δε2)(ε1− ε2)

∫

Γ
κF ds+2(ε1− ε2)

2

[∫

Γ κF ds
]2

∫

Γ ds
≥ 0

2(δε1−δε2)
2
∫

Γ
ds+4(δε1−δε2)(ε1− ε2)

∫

Γ
κF ds+2(ε1− ε2)

2
∫

Γ
κ2F2ds ≥ 0

This result leads to following modified Hessian, which is nowpositive semi-definite.

d2R∗
SJ(Γ;~VF ;~VG) = d2RSJ(Γ;~VF ;~VG)+2(ε1− ε2)

2
∫

Γ
κ2FGds (4.9)

A detailed discussion of the discretization of these integrals is given in appendix B.2.
Note that the discretization of the last term in (4.9) adds positive values to the leading
diagonal of the discretized Hessian matrix. This implements a small correction of the
Newton direction to the steepest descent direction.

4.4 Mumford-Shah Functional and Total Variational Reg-
ularization

The Mumford-Shah functional, which has been introduced in electrical impedance to-
mography by Rondi [66], consists of two parts.

RMS(ε) =

∫

Ω\Γ
|∇ε|2dx+ν

∫

Γ
ds (4.10)

The first term in this equation leads to smooth images.Γ is usually called the edge set.
It is removed from the domain of integration and the reconstructed permittivity can be
discontinuous across the interface. The second term yieldssimplicity of the edge set.
This term is tuned by an additional parameterν, which is difficult to determine in practical
application.

Total variation was originally introduced for image de-noising [67, 59]. A restora-
tion algorithm, which is based on total variation, preserves edges i.e. jumps in noisy
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and blurred images. This kind of regularization is well suited for inverse problems of
distributed parameters. The regularization term is definedover the region of interest by

RTV(ε) =

∫

Ω
|∇ε|dx.

This functional can be interpreted geometrically as the lateral surface area ofε. For piece-
wise constantε it consists of the length of the boundary multiplied by the height of the
jump in the material value. The length of the curves is penalized as well as the jump in the
discontinuity. Both properties are held relatively small. However, the non-differentiability
of the Euclidean norm at the origin rises problems in the numerical solution.

Both regularization functionals are not straight forward toimplement in this work.
Thus the experimental results in chapter 5 are based on the squared jump and arc length
regularization.

4.5 Sensor Fusion

Electrical capacitance tomography images the spatial distribution of material permittivi-
ties. For further quantitative analysis one can calculate integral parameters, like material
fractions of the process to be monitored. However, the imaging process is ill-posed and it
usually strongly depends on regularization. This regularization is required to end up with
acceptable results. In fact, the main problems are

• the soft-field characteristic of the electric field (ECT is known to provide informa-
tion on bulk rather than on object boundaries) and

• that small disturbances near the center have almost no influence on the capacitances
at the circumference of the tube.

Hence it is complicate to determine accurate volume fractions out of the tomographic
image. In many applications it is reasonable to assume piecewise constant permittivi-
ties. Such situations arise e.g. in gas-liquid two-phase flows, where sharp transitions
between the two phases exist. Even for shape reconstructiontechniques a regularization
is necessary, which incorporates specific assumptions about the material distribution, i.e.
smoothness of the boundary between regions of different permittivities.

If additional information is provided, which is sensitive to object boundaries, one
ends up with images that correspond better to reality than those obtained with bulk in-
formation and edge preserving regularization. Ultrasoundtomography, which is sensitive
to disturbance boundaries, provides this supplementary information. In this section, a
concept for the fusion of Ultrasound Reflection Tomography (URT) and ECT for indus-
trial applications is presented. The method is intended to combine the strengths of both
principles while reducing their respective disadvantages.

Ultrasound Reflection Tomography. An alternative to ECT, which is as inexpensive,
but is able to provide information about the shape of materials with different acoustic
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impedance, is ultrasound tomography. This work focuses on Ultrasound Reflection To-
mography URT due to its simplicity. It is based on Time-Of-Flight (TOF) measurements
of reflected ultrasonic waves. It aims at reconstructing theacoustic reflectivity function
of a cross-section of a pipe. URT has been successfully applied to industrial processes
[70, 69]. One application is e.g. the identification of bubbly gas-liquid flows as de-
scribed in [92]. Typically, there is a great difference between the acoustic impedance of
the gas and liquid phase, resulting in a nearly perfect reflection of sound waves at phase
boundaries. Gas bubbles can be treated as perfect reflectorsas long as their geometrical
dimensions are several times larger than the wavelength of the ultrasonic wave.

The layout of a URT system for pipelines is similar to that of the ECT sensor. Instead
of electrodes, ultrasonic transducers are equally spaced around the circumference of the
pipe. A sketch of an URT sensor is shown in figure 4.1. All transducers can be used
as both transmitters and receivers. One transducer at a timeis excited with a broadband
pulse and emits an acoustic wave. This triggers the data acquisition where all transducers
simultaneously act as receivers. To obtain sufficient information for the reconstruction
process it is essential that the transducers have a wide beamangle in the lateral direction.
On the contrary the beam should be very narrow in the azimuthal direction to treat only a
thin slice of the pipe.

Figure 4.1: Sketch of an URT senor. The image is reconstructed by time-of-flight measurements of reflected
ultrasonic waves.

The reconstruction is performed by a simple backprojectionof the recorded arrival
times. A pulse emitted by transducer T3 is partially reflected back to transducer T5.
The backprojections take the form of ellipsoidal arcs with the foci at the transmitting
and receiving transducers, respectively. The reconstruction is obtained by summing up
all backprojections. At last some kind of thresholding is applied. The reconstruction
does not explicitly rely on regularization but the images suffer from blurring. Figure 4.2
illustrates an URT result, which is based on the simulation of backprojections of two air
bubbles in oil. To visualize the artifacts, no thresholdingis applied. Many artifacts are
visible especially between the two objects and this complicates the accurate determination
of volume fractions.
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(a) Test distribution of two air bub-
bles in oil.
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0.8

(b) URT result with simulated backprojections.
The image is scaled such that possible edges have
values near 0.

Figure 4.2: Example of an URT image of two air bubbles in oil.

URT offers almost opposite properties than ECT, like

• its sensitivity to the transitions between different phases and

• its sensitivity distribution, which has its maximum near the center of the pipe. This
is contrary to ECT, which is sensitive at the margin of the region of interest.

A disadvantage of URT is that it can not be guaranteed that thereconstructed phase
boundaries are closed contours. This may not be of major concern if one is interested
in qualitative images, but seriously complicates the calculation of integral flow parame-
ters. Additionally, it is not possible to reconstruct permittivity values of the involved
materials. ECT, on the other hand, enables the quantificationin terms of absolute permit-
tivity values. The available boundary information perfectly supplements the information
gathered from capacity measurements. Usually, a high number of ultrasonic transducers
are used to obtain images of sufficient quality. For a sensor fusion method it is reasonable
to assume that less transducers compared to a stand-alone URT system are sufficient. Suf-
ficient means that enough information about edges is available to considerably improve
the overall image quality.

Fusion of Sensor Data. Both methods have proven to be useful for monitoring indus-
trial processes. However, they have their respective advantages and limitations and the
quality of the reconstructed images is limited in practice.Each sensor system collects
only incomplete data about the material distribution in theregion of interest. The usage
of data from both tomographic sensors is a possible remedy. The data obtained from both
methods is fused to yield better overall reconstruction results. ECT benefits from

• the supplementation of the soft field properties of the electric field and

• the introduction of a physically meaningful regularization.

URT takes advantage of the fact
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• that the fusion yields closed contours and

• that material values of the distinct regions are determined.

An obvious way to implement the data fusion is a sequential coupling of information.
The URT image is obtained first and it provides a prior information for ECT. Level set
methods are a versatile tool for image processing, e.g. theyare used for the segmentation
of images. One idea is to perform such segmentation of the URTimage simultaneously
to the ECT reconstruction. Therefore the fusion between URT and ECT is based on
the common level set method. This procedure is described in detail in the following
subsection. Another possibility is explained in the secondsubsection. It is based on
post-processing of the ECT and URT image by level sets. This method is not based on
boundary elements. However, it is an illustrative example for the fusion of different sensor
data. Both methods are validated by simulated experiments. Afurther discussion can be
found in [10, 11].

For the sake of simplicity, it is assumed that the cross-sectional material distribution
does not change between the ECT and the URT measurements (e.g.if ECT and URT
sensors are in the same plane in flow direction). Otherwise one must take effects of fluid
dynamics into account. For instance a statistical inversion with a state space formulation
and an appropriate transition matrix can be performed in this case.

4.5.1 Segmentation of the URT Image and ECT Reconstruction

One idea for the segmentation of images is to use a deformable(active) contour. The
curve is driven by an appropriate velocity function where the propagation is stopped at
edges. A possible velocity function is given by (see e.g. [59])

F = −∇(g~n) . (4.11)

In (4.11),~n is the normal vector of the interface andg : IR2 → IR is an edge detector,
which is chosen in such a way thatg= 0 at ideal edges of the image andg> 0 elsewhere.
The image obtained by URT contains information about edges and contours of objects.
Therefore an edge detector is not necessary andg equals the intensity values of the URT
image scaled to the range from 0 to 1 (as shown in figure 4.2(b)).

The velocity function (4.11) can be interpreted as the negative gradient direction for
the cost functional

RIS(Γ) =

∫

Γ
gds. (4.12)

If the problem satisfies the necessary smoothness requirements, a shape sensitivity analy-
sis can be performed. One obtains the first and second order derivatives (2.43) and (2.61).
In [35], Hintermüller and Ring propose a second order approach for image segmentation
based on (4.12). They observe that the shape Hessian is likely to be positive definite near
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the optimal contour. This property must be maintained for contours away from the opti-
mal contour. Hintermüller and Ring suggest following modification of the shape Hessian

d2RIS(Γ;~VF ;~VG) =

∫

Γ

[(
∂2g
∂n2 +2

∂g
∂n

κ
)+

FG+g∇ΓF ·∇ΓG

]

ds,

where(·)+ = max(·,σ) for 0≤ σ � 1. The non convex part is cut off ifδ = 0. If δ > 0, a
small correction towards the steepest descent direction isrealized.

The cost functional for the image segmentation method is similar to the regulariza-
tion term in ECT. Obviously, a possible technique for sensor fusion is to incorporate the
segmentation of the URT image as a regularization term for the capacitance tomography.
Instead of using the conventional smoothness assumption onthe active contour, the reg-
ularization termRIS attracts the contour towards edges. The numerical discretization of
(4.13) is performed similar as described in appendix B.

A test distribution is used to compare the ECT reconstructionwith and without edge
information from the URT. The true material distribution consists of two air bubbles
(ε1 = 1) in oil (ε2 = 2) as shown in figure 4.2(a). The measured voltages are simu-
lated by the boundary element method and a Gaussian distributed measurement noise
with a standard deviation of 0.1 percent of the sending voltage is assumed. Figure 4.3(a)
presents the result of the capacitance tomography. The shape of the two bubbles does
not match the true distribution. By incorporating information from URT, which is shown
in figure 4.2(b), the reconstruction can be improved significantly. This is illustrated in
figure 4.3(b)) where the phase boundaries are reconstructedvery well.

(a) BEM and level set based reconstruction with-
out particular prior information.

(b) Reconstruction with edge information from
URT.

Figure 4.3: Sensor fusion based on a physically meaningful regularization term. The accuracy of the
reconstructed shape is improved significantly by prior information from URT (dotted line: test distribution,
solid line: reconstructed shape).

4.5.2 Post-Processing of ECT and URT Images

Another possibility to combine both tomographic techniques is to post-process the ob-
tained images. For this method the ECT reconstruction is performed by a discretization
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into finite elements with constant permittivity values as described in [8]. The next step is
a segmentation into distinct regions. Therefore information about the permittivity values
from ECT and about edges from URT are processed into one combined image. In this
essay a two-phase flow is assumed and only a set with two permittivity values is used for
two or more disjoint regions. The piecewise constant material values are expressed by

ε = ε1(1−H(Φ))+ ε2H(Φ) (4.13)

similar to the multiphase level set method (section 2.1.3).The two material valuesε1 and
ε2 are calculated as the mean permittivities in each region. The ECT image is denoted by
ε∗ and its segmentation is done by minimization of the following cost functional, which
has been introduced in [19]

JIS,1 =

∫

Ω
|ε− ε∗|2 dx. (4.14)

Both image segmentation techniques can be combined into one cost functional by a
weighting parameterα2, which scales the URT term.

JIS =

∫

Ω
|ε− ε∗|2 dx+α2

∫

Γ
gds (4.15)

The fist order accurate velocity function for that functional is calculated by

F = −(ε1− ε∗)2 +(ε2− ε∗)2−α2
(

∂g
∂n

+κg

)

. (4.16)

The weighting parameterα2 adjusts the confidence in the URT image and the ECT im-
age, respectively. An example is shown in figure 4.4. First the ECT imageε∗ is presented.
Note that a somehow arbitrary threshold value is necessary to separate both phases in
this image. Figure 4.4(b) presents the reconstructed shapewith the image segmentation
by (4.15). The shape is determined accurately (the URT imageattracts the contour to
the correct interface) and the mean permittivities of each region are obtained automati-
cally. This simple method combines the strength of both imaging techniques. It operates
on basis of the individual images and no modification of the reconstruction software is
necessary.

4.6 Constraints on Material Value and Geometry

Another kind of a priori information is the restriction of the parameter space to feasi-
ble solutions. In case of ECT, constraints are imposed on the material value and on the
geometry. To calculate the Newton type descent direction, one has to solve

(G1 +α2G2)~δk = −(~g1 +α2~g2) (4.17)

for iterationk, where the change in geometry and permittivity is summarized into

~δk =

(

~F
~δε

)

. (4.18)
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(a) ECT result based on a FEM grid. For the liquid
phaseεr = 2.

(b) Image segmentation. The com-
bination of the URT and FEM image
yields a good agreement of the shape
(dotted line: test distribution, solid
line: reconstructed shape).

Figure 4.4: Sensor fusion technique based on an image segmentation.

The gradient and Hessian for the first term of the cost functional (1.8) are calculated by
(3.38) and (3.39), respectively. For the second term, the discrete derivatives are defined
in (B.13).

In fact, the minimization problem is extended by the inequality

εl ≥ 1 ∀l , (4.19)

which constrains the relative permittivities of all distinct regions to values above one.
Additionally, the reconstructed interface must be in the interior of the pipe. Thus, the
pipe wall is an upper bound for the velocityF . In the negative direction (a contraction
of the region),F is limited to the so called skeleton of the shape. Figure 4.5 illustrates
these limits forF , which are calculated on each node point of the discrete boundary
element mesh. The dashed line indicates the skeleton of the shape. Points on the skeleton
are equidistant to both sides of the contour. The limit is found by a line search, which
looks for the first minimum of the level set function in the direction of the inward normal
vector.1 This restriction is incorporated by the inequality

~Fmin ≤ ~F ≤ ~Fmax, (4.20)

which must be fulfilled for each value of the velocity function.
The whole optimization process is solved by a Sequential Quadratic Programming

(SQP) technique (see e.g. [29]). In each iteration step the objective function is replaced by
a quadratic approximation. The Newton step is calculated byan active set method, which
includes the linear constraint functions. The convergenceproperties of the SQP algorithm
are improved by using a line search, which adjusts the step size. Implementation details
about the optimization techniques can be found in [29, 33].

1Figure 2.1 illustrates the one dimensional level set function. The point, which minimizesΦ, is equidis-
tant from the interface points.
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Fmax

−Fmin

Figure 4.5: Geometrical constraints on the velocity function. The maximum value for~F is the distance in
normal direction to the pipe circumference. In the interior, the skeleton (dashed line) is the lower limit of
the velocity. These distances are calculated for each node point and they act as an upper and lower bound
for the optimization problem.

Concluding Remarks. In the previous two chapters, the objective function (1.8) is dis-
cussed in detail. The adjoint variable method is utilized tocalculate the sensitivity of
the electric field problem with respect to the deformation ofthe interface and the change
in material values. Appropriate regularization terms are presented in chapter 4 and the
calculation of the sensitivity of these terms is performed.At this point the reconstruc-
tion problem can be solved efficiently by the optimization technique SQP. The following
chapter demonstrates the suggested reconstruction methodby real world measurement
data.
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Chapter 5

Experimental Results and Discussion

This chapter validates the proposed reconstruction algorithm by experiments with real
world measurement data. The images obtained by ECT are influenced by plenty of dif-
ferent factors, such as

• calibration of the measurement system and the BEM model,

• discretization of the forward problem,

• parameter space (unknown shape or unknown shape and material properties),

• regularization term,

• choice of the regularization parameter,

• measurement noise, and

• initial condition.

To measure the influence of these parameters on the reconstruction one has to examine
the quality of the obtained images. In this work following criteria are evaluated

• surface area, which is measured in percent of the true area,

• material values of the reconstructed phases,

• stability under real world measurement noise, and

• stability with respect to the initial condition.

The next paragraphs depict the measurement setup and define two test distributions, which
are used to examine the proposed shape optimization. Additionally, the calibration proce-
dure of the computer model is discussed and details about theimplementation are given.
Especially, the necessary computational steps are summarized in a list.

Then two sections deal with the two different types of parameter spaces. First only an
unknown shape is considered. Therefore it is assumed that the material values are known

55
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a priori. The penalization of the arc length is used as regularization term. Mainly, two is-
sues are analyzed, namely the influence of the regularization parameter and the influence
if the assumed material values are altered. Additionally, the Newton-type optimization is
compared with the gradient descent and the influence of the spatial discretization of the
level set function is demonstrated. Second the parameter space is enlarged. Not only the
shape but also the material values are reconstructed. As above the regularization parame-
ter is an important issue. Further it is an essential attribute of a reconstruction technique
to deliver stable results with respect to measurement noise. Therefore the influence of
measurement noise on the result is analyzed. The initial condition (alteration of material
value and geometry) could probably have some influence on theobtained image as well.
Finally, a few limitations of the implementation of the imaging technique are shown. The
last section gives a final discussion and conclusion.

Measurement Setup. The measurement setup consists of the charge based sensor (as
described in the introduction of this work). The pipe diameter is 10.3 centimeters and it
contains different materials in its interior. In this work following test materials are used
for the measurement, namely

• PVC objects of different shapes (circles, semicircles),

• fill levels of different phases (tap water, diesel), and

• bubbles of air in water.

The materials are fixed for the measurement and they do not change in longitudinal direc-
tion. A set of 160 measurements is recorded for one material distribution whereas each
measurement consists of 120 measured displacement currents. The data acquisition time
for the measurement of 120 displacement currents, which arethe necessary data for the
reconstruction of one image, is less than 60ms. The covariance matrix is estimated and
no averaging is performed for the reconstruction process.

First two test distributions are presented in figure 5.1(a) and figure 5.1(b). One dis-
tribution (measurement setupA) consists of two objects with a shape of a circle and a
semicircle. Test distributionB consists of three equally shaped PVC rods. The diameter
of the PVC rods is 20.9 mm and their surface area is 3.43 cm2. The semicircle shaped
object has an area of 9.01 cm2. Figure 5.1(c) and figure 5.1(d) demonstrate the recon-
struction result with a FEM based algorithm. The interior region is discretized into 316
triangles, whose permittivity values are the degrees of freedom. The results are quite
blurred and it is difficult to estimate e.g. volume fractionsout of these images.

The quality of the measurement hardware is defined by the Signal to Noise Ratio
(SNR), which is calculated by the proportion of the measured displacement current to its
standard deviation. Figure 5.2 illustrates the SNR for the setupA for all 120 displacement
currents. The SNR is not evenly distributed because it depends on the operating point
of the amplifier in the sensor frontend. The SNR is in the rangebetween 32 and 52 dB.
Further information about the utilized sensor hardware canbe found in [89]. The influence
of the measurement noise on the reconstructed image is discussed later in section 5.2.1.
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(a) Measurement setupA:
two PVC objects.

(b) Measurement setupB:
three PVC rods.

(c) Reconstruction with a FEM
based algorithm.

(d) Reconstruction with a FEM
based algorithm.

Figure 5.1: Two test distributions to verify the reconstruction algorithm. The reconstructions are performed
by a fixed discretization into finite elements.
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Figure 5.2: Signal to noise ratio of the measured displacement currents for setupA.

Calibration of the Boundary Element Model. An accurate calibration is essential for
a successful reconstruction. A detailed description of thecalibration of the sensor front-
ends can be found in [89]. Generally, a characteristic curveis used to map values from
the Analog to Digital Converter (ADC) to displacement currents. These displacement
currents correspond to charges in the two dimensional computer model.
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To calibrate the ECT system it is necessary to obtain a specificset of data i.e. one
has to physically fill the sensor with low permittivity material and consecutively with a
sample of a high permittivity material. Then geometrical properties of the BEM mesh and
permittivity values are altered such that a conformity between measured and calculated
capacitances is obtained. In this work, the calibration is based on two measurements.
First the sensor is filled with air, then it is filled with tap water.

Figure 5.3 and figure 5.4 show the measured displacement currents. The electrodes
are numbered consecutively from the one, which is adjacent to the exciting electrode,
to the electrode, which is located opposite the exciting one. The first measurement in
figure 5.3 is used as a reference. This is necessary because the exciting voltage is not
known exactly. Both figures show a decrease in the measured displacement currents,
whereas the setup with water has a smaller measurement rangethan the setup with air.
Due to simplifications (e.g. the 3D to 2D simplification, compare with section 1.1), there
exists a discrepancy between the sensor and the corresponding computer model. Thus
parameters in the BEM mesh are altered such that the measured decrease matches the
decrease in the calculated charges. In this work the distance of the radial screen and the
permittivity values of the PVC and of the space between the pipe and the grounded screen
are adjusted. The differences between measured and calculated values are shown in the
second subfigure in figure 5.3 and figure 5.4 respectively. Theconformity between sensor
and model is satisfying.

The idea of normalized capacitances is used to map the measured displacement cur-
rents to charges in the boundary element model. Generally, the displacement currents are
normalized between the currents of the low permittivity material i l and that of the high
permittivity materialih.

i∗ =
imeas− i l

ih− i l
(5.1)

wherei∗ is the normalized current andimeas is the actually measured one. The charges
in the model, which are used for the reconstruction of an image, are calculated by linear
interpolation between the charges of the low permittivity materialql and that of the high
permittivity materialqh, respectively.

q∗ = ql (1− i∗)+qhi∗ (5.2)

whereq∗ is the calibrated data for the reconstruction process.

Implementation Details. The discretized sensor model (figure 3.2) consists of 876
boundary elements and 860 node points. The discretization of the interior objects de-
pends on the fixed grid of the level set function. The level setfunction in this work is
defined on a uniform grid with a grid space of two millimeters.The number of boundary
elements of the interior objects depends on the arc length oftheir contour.

The input parameters of the algorithm are the measurement data, the estimated co-
variance matrix, and the regularization parameter. The regularization parameter, which
is chosen empirically, is constant during the optimizationprocess. Not the determination
of the parameter itself is discussed but its influence on the reconstruction result. At the
beginning of the reconstruction process one has to define theinitial condition, which is
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Figure 5.3: Decrease in the measured charges and their differences compared to the calculated ones for an
empty sensor. The first electrode, which is located adjacentto the exciting one, is used as a reference elec-
trode. The other electrodes are numbered consecutively (the last electrode is located opposite the exciting
one).
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Figure 5.4: Measured charges for a sensor filled with tap water and their differences compared to the
calculated ones.
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determined by the geometry and by the material values of the objects. The advantage of
the level set formulation is its flexibility. Thus the correct topology of the objects to be
reconstructed has not necessarily to be available at the beginning. Tests have shown that
a reasonable initial condition for the geometry is an objectwith the shape of a circle in
the center of the pipe.

The reconstruction is summarized by following steps, whichare evaluated iteratively:

1. track the boundary, assemble the node points to boundary elements, and find the
region number of each object,

2. solve the field problems and calculate all necessary forward and adjoint problems
by the superposition principle,

3. calculate the objective function, which consists of the least error squares and of the
regularization term,

4. solve the boundary integrals to calculate the Jacobian (for the least error squares)
and the gradient and the Hessian (for the regularization term),

5. calculate the search direction and consider the physicalconstraints by the active set
method,

6. extend the velocity off the interface (velocity extension)

7. update the level set function and update the permittivityvalues,

8. reinitialize the level set function (reinitialization)and continue with step one.

Additionally to these points, a line search is performed to adjust the step size. This
achieves an improvement of the convergence of the optimization algorithm. This conver-
gence is measured by the decrease in the objective function.The algorithm is stopped, if
this decrease is less than a certain constant. Another stopping condition is a small change
in the unknown parameters. In other words the algorithm is terminated if the maximum
absolute velocity value is less than a constant. This constant depends on the spatial dis-
cretization of the level set function. A similar condition is applied for the change in the
material values.

5.1 Unknown Shape

At the moment only an unknown shape (and not unknown materialvalues) is considered.
The test distributionA in figure 5.1(a) is used for the reconstruction process. The first 9
iterations are shown in figure 5.5. As an initial condition, an object with the shape of a
circle is used, which is located at the center of the region ofinterest and its diameter is
4 cm. The permittivity of the object is two (ε1 = 2) and the background has a permittivity
ε2 = 1.

After only four iterations one can recognize the outline of the two objects. At iteration
step six the shape divides into two parts. Each part is further described by its own level
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Figure 5.5: Iteratively deformed shape based on real world measurement data. The material values are
constant during the deformation.

set function. The decrease in the objective function is plotted in figure 5.6. A good
convergence behavior is obtained and the objective function is monotonously decreasing.
The resulting surface area after convergence differs from the real area of the objects by
only 1.7 percent.

The regularization parameter in this example, which is chosen empirically, isα2 =
10−3.25. This parameter is constant for all iterations. One idea fora deterministic choice
is the L-curve criterion, which is introduced in [34]. Figure 5.7 presents the L-curve for
this example. One tunes the regularization parameter and the regularization term (second
term of the objective function) is plotted against the leasterror squares (first term) in a
logarithmic scale. The idea of the L-curve is to chose theα2, which is located at the
corner of the curve (at the point of maximum curvature). The figure demonstrates that a
reasonable value of the regularization parameter can be found by this criterion.

Comparison between Steepest Descent and Newton-type Optimization. The mini-
mization of the objective function is done by a Newton-type velocity function. As it is
mentioned in the introduction a second order approach is superior to a gradient flow.

Figure 5.8 compares the decrease in the objective function of both possible optimiza-
tion techniques. First the reconstruction is performed by the proposed Newton-type flow.
Convergence is achieved after 13 iteration steps. The secondcurve corresponds to the
flow in the steepest descent direction. An overall number of 83 iterations are necessary
until a sufficient solution is reached. Between iteration step 25 and 53 one obtains only
few decrease of the objective function. Until iteration step 53 only one object exists. At
this point of the reconstruction the object splits into two parts.

Spatial Discretization of the Level Set Function. Figure 5.9 presents reconstructed
contours whereas the grid space of the level set function is altered. Each node point of the
boundary element mesh is marked by a dot. The resulting interfaces depend on the level
of discretization. For a very coarse mesh (grid lines every 8mm and 10 mm) the object
does not split into two. However, the results of the last two discretization levels hardly
differ. All further tests in this thesis are computed by a grid space of two millimeters.
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Figure 5.6: Convergence of the shape optimization problem.The objective function is plotted against the
iteration numbers.
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Figure 5.7: L-curve of the shape optimization problem. The least error squares are plotted against the
regularization term for different regularization parameters.
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Figure 5.8: Comparison between steepest descent and Newtonmethod.
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Figure 5.9: Reconstructed contours for different grid spaces of the level set function.
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Figure 5.10: Computational effort of the first iteration step for different levels of discretization of the level
set function.

The computing time of the level set framework is about 20 percent of the time, which
is necessary for the boundary element method. In figure 5.10 the overall computation time
of the first iteration step is plotted against the different levels of discretization of the level
set function. Depending on the application one has to find a tradeoff between accuracy of
the contour and computational time.

Correlation between Material Value and Reconstructed Shape. One important issue
is the influence of the regularization parameter on the obtained image. Additionally, an
alteration of the permittivity value of the interior object(ε1) could probably change the
reconstruction result. In figure 5.11 the regularization parameter and the permittivity
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Figure 5.11: The relative error between the reconstructed and true surface area for different material values
and regularization parameters.

value are varied and the obtained image quality is measured by the reconstructed surface
area of the interior object. The surface area is measured in percent of the true area of the
objects. The initial condition for this test remains the same as described above.

One can observe that the permittivity has a very strong influence on the reconstructed
areas. A smaller permittivity value leads to an oversized surface area and vice versa. A
possible interpretation of this impact is that an object with large area and a small permit-
tivity value has a similar effect on the least squares than anobject with high permittivity
and small surface area.

An interesting fact, which is shown in this figure, is that less influence exists between
regularization term and surface area for a wide range of regularization parameters. On the
right hand side, which corresponds to strong regularization, the reconstructed area is too
small. In this case the arc length of the contour is penalizedtoo much such that the object
can not split into two regions and the reconstruction fails.However, for values less than
10−3 the surface area is nearly constant.

There is a correlation between permittivity value and reconstructed surface area. This
is an important issue if the permittivity value is not known apriori. Carefulness is neces-
sary if the reconstruction of the shape and material values are performed simultaneously.
A penalization of the arc length without a penalization of the jump in the material values
leads to erroneously high permittivity values. In this casethe reconstruction compensates
a too small surface area by a disproportional high permittivity value.
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5.2 Unknown Shape and Material Value

The results in this section are based on the regularization,which penalizes the squared
jump in the material value across the interface multiplied by the arc length of the contour.
This type of regularization is described in section 4.3.

Figure 5.12 presents the first iterations of the shape and material reconstruction of the
measurement setupA whereas the regularization parameter is constant andα2 = 10−3.75.
For this test the same initial condition is used as above. At iteration step six the level
set function splits (similar to the shape reconstruction) into two fragments. At this point
two objects exist, each of them with its own material value inthe subsequent iterations.
The convergence behavior is shown in figure 5.13. A monotone decrease in the objective
function is presented. Figure 5.14 illustrates the change in the material values. From
iteration one to iteration six only two material values exist. Then each object (the circle
and the semicircle) has its own permittivity.

The image at convergence is shown in figure 5.15(b). The reconstructed mean per-
mittivity value 1 is ε = 2.09. The surface area is 2.2 percent less than the true shape.

Figure 5.15 presents results for different regularizationparameters. The object does
not split into two if the regularization parameter is too high. In this case the permittiv-
ity value is too low. Similar results are obtained for the test distribution B (shown in
figure 5.16). For a small regularization parameter all threePVC rods are reconstructed.
However, more artifacts are visible. The reconstructed surface area in figure 5.16(b) dif-
fers 5.4 percent from the true shape and the average permittivity value isε = 2.07.

Influence of the Regularization Parameter. A deterministic approach for the choice
of the regularization parameter is e.g. the L-curve. This curve is shown for the test distrib-
utionA in figure 5.17. Values forα2, which are used above to demonstrate the results, are
marked. The curvature can be used to identify a reasonable parameter. However, in this
plot a corner can hardly be identified. The regularization parameter has a strong influence
on the resulting image.

Figure 5.18 and figure 5.19 analyze the influence on the permittivity value and on
the reconstructed surface area for the first and second test distribution, respectively. The
regularization parameter works as tuning parameter. In both plots a strong correlation be-
tween the permittivity value and the area of the objects can be identified. The dependency
between both attributes is shown in figure 5.20. Additionally, it is compared to the depen-
dency in the shape reconstruction (figure 5.11). For the shape and material reconstruction
the regularization parameter is altered, whereas this parameter is fixed for the shape re-
construction. In this caseα2 = 10−3.25 and the permittivity value is altered. Both curves
are nearly identical. This leads to the conclusion that thisbehavior is an essential attribute
of this kind of inverse problem. Even though the shape of the object can be identified, it is
difficult to estimate correct volume fractions out of the tomographic images. A possible
solution could be to apply further information about the permittivities or shapes of the
objects to be reconstructed.

1A weighted average is used whereas each permittivity value is multiplied by the fraction of its surface
area.
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Figure 5.12: Reconstruction of the shape simultaneously tothe material values. The first 9 iteration steps
are shown.
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Figure 5.13: Convergence of the reconstruction problem.
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Figure 5.14: Material values of each reconstructed region.At iteration step six the shape splits into two
objects. In the subsequent iterations each object is described by a distinct permittivity value.
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Figure 5.15: Influence of the regularization parameter on the reconstructed shape.
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Figure 5.16: Reconstruction results for the test distribution A.
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Figure 5.17: L-curve of the shape and material reconstruction for test distributionA.
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Figure 5.18: Reconstructed material value and surface area(error in percent) for different regularization
parameters for the test distributionA.
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Figure 5.19: Reconstructed material value and surface area(error in percent) for different regularization
parameters for the test distributionB.
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Figure 5.20: Correlation between permittivity value and surface area for both types of reconstruction. If
both shape and material value are unknown the regularization parameter determines the points, which are
marked with the symbol x. For the shape reconstruction, the material value is constant (second curve, points
are marked with an o).

5.2.1 Measurement Noise

In ECT, the electrode capacitances are not sensible to a change in the permittivities in
the center of pipe. Without regularization small perturbations in the data (measurement
noise) strongly influence the reconstructed image. This section analyzes the stability of
the reconstruction with respect to real world measurement noise.

The sensor frontends have a non-linear characteristics (a logarithmic demodulator
is used) and the variance of the noise depends on the operating point of the amplifier.
As shown in (1.7) the covariance matrix weights the measurement data. In figure 5.21
the reconstruction result is shown for the measurement setup A whereas each charge is
weighted evenly. In other words the covariance matrix equals the identity matrix. The
imaging process fails and the two objects can not be identified.

To qualify the stability of the imaging process, 160 measurements have been carried
out for each test distribution whereas the objects remain fixed. In other words no process
noise is considered. For each data a reconstruction is performed and the image is ana-
lyzed. For this process the regularization parameter (α2 = 10−3.75) is constant and the
initial condition is, as above, a centered circle with a relative permittivity of two. The re-
construction converges successfully for each sample. Table 5.1 summarizes sample mean
values, standard deviations, and the minimum and maximum values of the obtained area,
which is enclosed by the surface, and of its permittivity value. Different to the permittiv-
ity, which has a small variance, the area spreads in a wide range.

The reconstructed interfaces are visualized in figure 5.22(a). It is remarkable that the
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Figure 5.21: Reconstruction result where the measurement values are weighted equally.

mean 3σ min max
surface error in percent−6.3 5.70 −11.1 −2.0

relative permittivity 2.14 0.08 2.06 2.22

Table 5.1: Influence of real world measurement noise on the reconstruction. The mean, standard deviation
σ, minimum, and maximum values are given.

contours spread similarly in all directions. This is contrary to the expected behavior that
points on the contour near the center are more difficult to estimate than the points closer
to the pipe wall. To characterize the results the centroids of the objects are calculated
(visualized as points in the center of each object). One can observe that they hardly spread.
For a further visualization the mean shapes2, the mean centroids, and their associated
confidence regions are plotted (shown in figure 5.22(b)). In this work the confidence
region is defined as error ellipsoid, whose points have threetimes the standard deviation
of the deviation of the centroids. For a closer look on the obtained images following
quality parameters are introduced:

• the surface area, the relative permittivityεr , and the positioncx andcy of the centroid
of each object, and

• distanced between the two objects, which is measured by the distance between
their centroids.

Similar as above the result of all 160 measurements is summarized in table 5.2. It is worth
noting that the position of the semicircle is estimated withless deviation than the circular
object, even though the semicircle is located closer to the center. The semicircle, however,
has a greater influence on the displacement currents due to its larger surface area.

The correlation coefficients (Pearson product-moment), which are calculated by the
covariance matrix of the quality parameters, are shown in table 5.3. These coefficients
indicate the strength of a linear relationship between two criteria. Note that a careful
interpretation of the coefficients is necessary because thePearson matrix is an optimal es-
timator only for Gaussian data. Additionally, a coefficientnear zero does not indicate that
there is no correlation between two criteria (there exists probably a non-linear relationship

2To visualize the mean shape, the average over all level set functions of each object is calculated and its
zero level contour is plotted. This is admissible under the assumption that each level set function is a signed
distance function, which is fulfilled in this thesis.
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(a) Reconstructed contours (solid lines) and
their centroids (points).

(b) Mean shape (solid line), mean centroids
(points) and ellipsoids, which define the confidence
region of the centroids.

Figure 5.22: Influence of the measurement noise on the reconstructed shape.

circle semicircle distance
area εr cx cy area εr cx cy d

[cm2] [−] [cm] [cm] [cm2] [−] [cm] [cm] [cm]
true value 3.43 9.01

mean value 3.89 1.83 −1.28 −2.19 7.77 2.30 −0.31 1.12 3.45
3σ 0.53 0.11 0.08 0.08 0.53 0.12 0.06 0.06 0.08

Table 5.2: Attributes to describe the reconstruction result: surface area, relative permittivity, position of the
centroid, and the distance between both centroids (true values, mean values, and standard deviationσ).

circle semicircle
area εr cx cy area εr cx cy d

circle area 1.00 −0.82 0.18 0.24 −0.12 0.15 0.17 0.15 −0.14
εr 1.00 0.19 0.16 0.09 −0.04 −0.00 −0.03 −0.22
cx 1.00 0.64 −0.13 0.14 0.19 0.24 −0.68
cy 1.00 −0.37 0.25 0.17 0.40 −0.83

semicircle area 1.00 −0.63 −0.02 −0.21 0.24
εr 1.00 0.58 −0.36 −0.40
cx 1.00 −0.46 −0.32
cy 1.00 0.14
d 1.00

Table 5.3: Correlation matrix of the reconstructed attributes. Values near±1 indicate a linear correlation
between two parameters. Absolute values above 0.4 are marked.

between them). The coefficients have values in the range between−1 and 1 and the direc-
tion of the linear relationship is indicated by its sign. Allentries in the symmetric matrix
with an absolute value greater than 0.4 are marked by bold fonts. As expected, there is a
negative linear relation between surface area and permittivity value of each object (−0.82
and−0.63). Further the permittivity of the semicircle depends on the x-coordinate of its
centroid. A small correlation can be identified between the parameters of the two objects
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(with exception of 0.4, which is the coefficient of the y-coordinates of the centroids). The
correlation of the distance is calculated by of the coordinates of the centroids. As it is
mentioned above, the centroid of the semicircle has a smaller standard deviation than the
circular object. Thus there is less correlation between thedistance and the centroid of the
semicircle than between the distance and the circular object.

5.2.2 Initial Condition

In this subsection the initial condition is altered. Until now, the initial condition is a
centered circle (diameter of 4 cm) with a relative permittivity value of ε1 = 2. For the
outer region (background)ε2 equals one. All simulations in this section are based on
the test distributionA and the regularization parameter is fixedα2 = 10−3.75. Table 5.4
presents the iteration numbers until convergence is obtained for different combinations of
the initial permittivity values. Therefore the reconstruction starts with the centered circle
as before and convergence is obtained if the objective function is less than 0.9 · 10−3.
At this point of the imaging process, a similar result as presented in iteration step nine
of figure 5.12 is reconstructed. The reconstruction performs well for almost all initial
conditions except in the case whereε1 = 1 andε2 = 5. Even though the reconstruction is
successful, the number of iterations increase if the contrast between the permittivities is
changed (in other words the rate of convergence decreases ifε1 < ε2).

Not only the permittivity values but also the geometry can bealtered. For this test the
reconstruction starts with a circle located at the top on theleft-hand side (figure 5.23) and
with a circle, which is located at the bottom on the right-hand side (figure 5.24). Even
though the reconstruction starts with an initial conditionfar away from the true distri-
bution, one can recognize the approximate shape after few iterations. Obviously, more
iterations are necessary until a sufficient image is reconstructed. For the first initial con-
dition 157 out of 160 reconstructions are successful and forthe second initial condition,
which is far away from the true shape, 152 reconstructions achieve a satisfying result.
The mean shapes and centroids are calculated for all convergent reconstructions and the
obtained interfaces (the mean shapes for the three initial conditions: circle in the center,
on the top left and bottom right hand) are presented in figure 5.25. The contours match
almost perfectly. Table 5.5 summarizes the surface area of each object for the three condi-
tions. The standard deviations slightly increase, if the initial circle is located at the bottom
on the right-hand side. Similar results are obtained for thepermittivity values, which are
presented in table 5.6. It can be concluded that the reconstruction technique has a good

iteration numbers ε1 (interior region)
1 2 3 5 10

ε2 (background) 1 10 9 9 10 10
5 – 14 14 12 9

10 15 16 16 13 13

Table 5.4: Iteration numbers until convergence is achieved(objective function less than 0.9 · 10−3) for
different initial conditions of the relative permittivities. The initial shape is a centered circle. The material
values in the interior and exterior region are altered.
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1 1.5 2 2.5

Figure 5.23: The first 14 iteration steps for a geometricallyaltered initial condition (circle on the top left).

1 1.5 2 2.5

Figure 5.24: The first 14 iteration steps for a geometricallyaltered initial condition (circle on the bottom
right).
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global convergence behavior.
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(b) Semicircle shaped PVC object.

Figure 5.25: Mean shape and mean centroid (with confidence region) for three different initial conditions.

surface[cm2] mean 3σ min max
circle center 3.89 0.53 3.46 4.35

top left 3.89 0.54 3.46 4.38
bottom right 3.87 0.71 2.88 4.38

semicircle center 7.77 0.53 7.43 8.19
top left 7.78 0.55 7.39 8.21

bottom right 7.84 0.89 7.43 9.61

Table 5.5: Influence of the initial condition on the reconstructed surface area.

relative permittivity mean 3σ min max
circle center 1.83 0.11 1.76 1.91

top left 1.83 0.11 1.75 1.92
bottom right 1.83 0.15 1.75 2.11

semicircle center 2.30 0.12 2.21 2.40
top left 2.29 0.12 2.20 2.39

bottom right 2.28 0.16 2.04 2.39

Table 5.6: Influence of the initial condition on the reconstructed permittivity values.

5.2.3 Limitations of the Proposed Technique

Some limitations and problems of the proposed technique aresummarized in this section.
First of all figure 5.26(a) presents a test distribution where air bubbles are simulated in a
liquid phase (i.e. tap water) by two PVC pipes, which are filled with air. The thickness
of the pipe can be neglected. The reconstructed image is shown in figure 5.26(b) and its
quality is not sufficient. The contrast of the permittivity values of the phases is too small
and additionally the interfaces are blurred.
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The small measuring range is unfavorable if the sensor is filled with water (compare
with figure 5.4). The analog to digital converter is designedfor a measuring range of
80db, which is much more than the necessary 8db. Additionally, the operating point of
the amplifier is worse with respect to the measurement noise.Even though the values of
the ADC have a very small standard deviation, the absolute deviation of the charges on
the electrodes is much higher due to the logarithmic characteristic curve. However, the
main issue is the dielectric screen effect, which means thatthe electric field is absorbed
by a material with high permittivity. In other words objectswith lower permittivity in a
high permittivity component are more difficult to detect than vice versa.

Further test distributions are shown in figure 5.27. In this case the pipe is filled with
different levels of water and diesel. The iterations of the optimization process of the first
test distribution are shown in figure 5.28. The real fill levelis marked with the dash and
dot line (note that there is a small rotation of the model compared to the sensor).

After few iterations the phase with material value aboutε1 = 2, which is approxi-
mately the value of oil, can be identified. However, a small gap arises between interface
and pipe wall. Numerical problems arise because the reconstructed interface is not iden-
tical with the pipe wall on the lower part of the region of interest. This can not be handled
by the level set function due to the fact that the implicit representation describes only

(a) ECT sensor filled with
water. There is air inside
the two PVC pipes.

20
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(b) Reconstruction with BEM
and level set algorithm.

Figure 5.26: Reconstruction of objects with lower permittivity in a high permittivity component.

(a) Sensor filled with
diesel.

(b) Transition between tap
water (bottom), diesel, and
air (top).

Figure 5.27: Detection of transitions between several phases.
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closed contours. In this example the points of the interfaceare limited to 98 percent of the
pipe radius (leaving 2 percent of air between the interior object and the pipe wall, which
is an 1 mm thick tube). As shown in figure 5.29, the algorithm gets stuck at iteration step
7. The material values of the iteration steps are shown in figure 5.30.

The second test distribution (figure 5.27(b)) consists of three phases, namely water,
diesel, and air (from bottom to top). Again the problem arises that the level set function
can not describe an open contour. Additionally, the contrast between air and diesel is very
low compared to the permittivity of water. At the present moment an image of sufficient
quality can not be obtained. However, a possible solution for the contrast problem is the
fusion with data from URT, which provides the necessary information about the location
of the phase transitions.

1 1.5 2 2.5

Figure 5.28: Reconstruction of the transition between diesel and air. The dot and dash line marks the real
fill level.
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Figure 5.29: Convergence of the fill level reconstruction.
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Figure 5.30: Material values of each reconstructed phase.

5.3 Conclusion

This thesis presents a shape reconstruction technique, which identifies the location of
phase transitions and which determines the material value of each region. This algorithm
overcomes difficulties, which are mainly caused by the soft field modality of electrical
capacitance tomography. The blurring of reconstructed images is avoided because the
inverse problem of ECT is formulated as shape optimization problem.

Commonly used reconstruction techniques rely on the FEM to solve the correspond-
ing forward problems. A fine mesh is necessary to obtain images with high spatial accu-
racy. However the computational effort, which is required to solve the field problem and
which is necessary to invert the Hessian matrix, strongly increases by the number of finite
elements. On the other hand the BEM, which is utilized in this work, is of advantage if the
unknown material distribution is described by means of piecewise constant permittivities.
Additionally, shape and material derivatives are calculated easily by the adjoint variable
method with few computational costs.

The level set framework is implemented in this thesis instead of a parameterization of
the contour. This technique is an accurate and flexible description of objects and it is not
essential to know the number of phases a priori. Regularization of Tikhonov type is uti-
lized and the magnitude of the regularization is controlledby a regularization parameter.

The inverse problem is solved by a non-linear optimization technique. Fast and stable
convergence is obtained by a Newton method with a line searchalgorithm. Additionally,
physical constraints are incorporated by an active set method.

The suggested imaging technique has proven that it successfully reconstructs images
of real world measurement data. Therefore experimental results are presented. For the
data acquisition a prototype sensor, which is based on the measurement of displacement
currents, is used. Furthermore, tests show that the reconstruction is stable with respect to
measurement noise and with respect to the initial conditionof the optimization process.

The resulting images can be used for the calculation of process relevant informa-
tion, like the volume fraction of different phases. It is worth mentioning that no arbitrary
threshold value is necessary to obtain this process parameter. Even though the regular-
ization parameter has less influence on the result if the material values of the phases are
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known, it strongly affects the reconstructed surface area if the permittivity values are un-
known additionally to the shape. It is shown that this correlation is a fundamental attribute
of this kind of inverse problem. In the case of unknown material values, supplementary
information improves the accuracy of the image. For instance ultrasound reflection to-
mography can provide additional information about the location of phase transitions. A
regularization technique, which relies on information from URT, is presented in this work.
Experimental results on the basis of simulations are promising.

The accuracy of electrical capacitance tomography can be improved by a technique,
which takes care of 3D aspects. Further development will focus on this topic. A 3D re-
construction becomes feasible what the computation time isconcerned if a fast boundary
element method is applied (e.g. multipole boundary elementmethod [81]). Additionally,
efficient solvers for the optimization problem are mandatory because the number of un-
known variables increases. The extension of the level set formulation to 3D, however, is
straight forward.
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Appendix A

1D Example of Shape Derivatives

In this appendix a plate capacitor with infinite extension and finite distance of the plate
is considered as shown in figure A.1. It consists of two regions with different permittiv-
ities ε1 andε2. Dirichlet boundary conditions are applied on the other twosides and the
boundary value problem

∂
∂x

(

ε
∂
∂x

u

)

= 0 (A.1)

with

u(0) = 0 (A.2)

u(1) = 1 (A.3)

is considered. The permittivity valueε has a discontinuity atx = a and the permittivity is

ε(x) =

{

ε1 if x∈ (0,a)

ε2 if x∈ (a,1)
. (A.4)

In the following two sections, the direct differentiation approach is compared with the
adjoint variable method for the displacement field atx = 0. This displacement is defined
by

D = −ε1
∂u
∂x

∣
∣
∣
∣
x=0

. (A.5)

A.1 Direct Differentiation

The electric potential is linear in each region and the linear functions

u1 = ξ1x+ζ1 (A.6)

u2 = ξ2x+ζ2 (A.7)

are introduced. Atx = a the equations

u1 = u2 (A.8)

ε1
∂u1

∂x
= ε2

∂u2

∂x
(A.9)
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Figure A.1: Example of a plate capacitor with two different materials.

are satisfied and with the boundary conditions (A.2) and (A.3) the coefficients are deter-
mined as

ξ1 =
ε2

ε1(1−a)+ ε2a
(A.10)

ζ1 = 0 (A.11)

ξ2 =
ε1

ε1(1−a)+ ε2a
(A.12)

ζ2 =
a(ε2− ε1)

ε1(1−a)+ ε2a
. (A.13)

For the displacement atx = 0 one obtains

D = − ε1ε2

ε1(1−a)+ ε2a
. (A.14)

In this simple example an analytical solution exists and it is straightforward to calcu-
late the derivative with respect toa, ε1, andε2.

∂
∂a

D =
ε1ε2(ε2− ε1)

(ε1(1−a)+ ε2a)2 (A.15)

∂
∂ε1

D =
−ε2

2a
(ε1(1−a)+ ε2a)2 (A.16)

∂
∂ε2

D =
−ε1

2(1−a)

(ε1(1−a)+ ε2a)2 (A.17)

A.2 Adjoint Variable Approach

Commonly, an analytical solution can not be obtained. In thiscase the adjoint variable
method offers an attractive way to calculate the shape derivative. In this work the adjoint
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variable is introduced similar to the method explained in [56]. Multiplication of (A.1)
with a weighting functionu and integration by parts yield

S1 =

∫ a

0
ε1

∂u1

∂x
∂u1

∂x
dx− u1ε1

∂u1

∂x

∣
∣
∣
∣

a

0
= 0 (A.18)

and

S2 =

∫ 1

a
ε2

∂u2

∂x
∂u2

∂x
dx− u2ε2

∂u2

∂x

∣
∣
∣
∣

1

a
= 0. (A.19)

Next one can define a velocityF = da
dt , which is zero atx = 0 andx = 1. The shape

derivative ofS1 leads to

dS1(F) =

∫ a

0

(

ε1
∂u1

∂x
∂u1

∂x

)′
dx+ ε1

∂u1

∂x
∂u1

∂x
F

∣
∣
∣
∣
x=a

− u̇1ε1
∂u1

∂x

∣
∣
∣
∣

a

0
− u1

(

ε1
∂u1

∂x

)·∣∣
∣
∣
∣

a

0

= 0 (A.20)

where(x)· denotes the material derivative. Now the aim is to define an appropriate adjoint
problem such that the last equation can be simplified. To eliminate the shape derivative
of the variablesu andu in the integral term, one can carry out partial integration

∫ a

0

(

ε1
∂u1

∂x
∂u1

∂x

)′
dx =

∫ a

0

(

ε′1
∂u1

∂x
∂u1

∂x
− ε1u′1

∂2u1

∂x2 − ε1u′1
∂2u1

∂x2

)

dx

+ u′1ε1
∂u1

∂x

∣
∣
∣
∣

a

0
+ u′1ε1

∂u1

∂x

∣
∣
∣
∣

a

0
. (A.21)

The last equation is simplified if the adjoint variable fulfills ε1
∂2

∂x2u1 = 0. Additionally,

the definition of the shape derivativeu′1 = u̇1− ∂
∂xu1F andu′1 = u̇1− ∂

∂xu1F is used. These
results are applied to (A.20) and one obtains

dS1(F) =

∫ a

0
ε′1

∂u1

∂x
∂u1

∂x
dx− u1

(

ε1
∂u1

∂x

)·∣∣
∣
∣
∣

a

0

+ u̇1ε1
∂u1

∂x

∣
∣
∣
∣

a

0
− ε1

∂u1

∂x
∂u1

∂x
F

∣
∣
∣
∣
x=a

. (A.22)

A similar result for the second region is obtained withε2
∂2

∂x2u2 = 0

dS2(F) =

∫ 1

a
ε′2

∂u2

∂x
∂u2

∂x
dx− u2

(

ε2
∂u2

∂x

)·∣∣
∣
∣
∣

1

a

+ u̇2ε2
∂u2

∂x

∣
∣
∣
∣

1

a
+ ε2

∂u2

∂x
∂u2

∂x
F

∣
∣
∣
∣
x=a

. (A.23)

Before the two shape derivatives dS1(F) and dS2(F) are combined, a few additional equal-
ities are derived. The material derivatives (moving coordinate system) of the interface
conditions (A.8) and (A.9) atx = a yield following identity

u̇1 = u̇2 (A.24)
(

ε1
∂u1

∂x

)·
=

(

ε2
∂u2

∂x

)·
. (A.25)
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Additionally, the material derivatives of the boundary conditions (A.2) and (A.3) yield

u̇1|x=0 = 0 (A.26)

u̇2|x=1 = 0. (A.27)

Further similar interface conditions as for the primary variable are introduced for the
adjoint variable atx = a

u1 = u2 (A.28)

ε1
∂u1

∂x
= ε2

∂u2

∂x
. (A.29)

Now the addition of the equations (A.22) and (A.23) leads to

u1

(

ε1
∂u1

∂x

)·∣∣
∣
∣
∣

1

0

=

∫ 1

0
ε′

∂u
∂x

∂u
∂x

dx+

(

ε2
∂u2

∂x
∂u2

∂x
F − ε1

∂u1

∂x
∂u1

∂x
F

)∣
∣
∣
∣
x=a

(A.30)

The boundary conditions of the adjoint problem are chosen such that the derivative of
(A.5) is obtained

u1(0) = 1 (A.31)

u2(1) = 0 (A.32)

and this leads to

Ḋ =

∫ 1

0
ε′

∂u
∂x

∂u
∂x

dx+ (ε1− ε2)
∂u1

∂x
∂u2

∂x
F

∣
∣
∣
∣
x=a

. (A.33)

The solution of one additional field problem is required to calculate the material derivative
in (A.33). The first term in (A.33) corresponds to a change in the permittivity value and
the second term is the sensitivity of a movement of the interface. The adjoint problem is
summarized as follows.

∂
∂x

(

ε
∂
∂x

u

)

= 0 (A.34)

u|0 = 1 (A.35)

u|1 = 0 (A.36)

The advantage of the adjoint variable method is that an analytical solution is not
necessary. This formulation can be used for more complex geometries. The method can
be summarized as follows.

1. One starts with the weak formulation in each region of constant permittivity.

2. The shape derivative is performed for each integral.

3. The material derivative of the primary variable is performed. This yields material
derivatives of the boundary and interface conditions.
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4. An adjoint problem is defined, which fulfills the same partial differential equation
and has similar interface conditions.

5. These results are combined and this leads to simple equations with different terms.
It consists of the material derivative of the primary variable, the sensitivity with re-
spect to the permittivity, and the sensitivity with respectto the deformation velocity.

6. At last the boundary conditions of the adjoint problem aredefined such that the
desired material derivative of the primary variable is obtained.

In this special case one can compare the result of the direct differentiation with the
adjoint variable method due to the existence of the analytical solution. By substituting
the solution of the forward and adjoint problem in (A.33) oneobtains the same result as
(A.15), (A.16), and (A.17).
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Appendix B

Discrete Gradient and Hessian of the
Regularization Term

The discretization of the shape derivatives of the regularization term is a cumbersome
task. The approximation must be accurate and furthermore the discrete Hessian must be
positive definite and symmetric. In the first section, the regularization of the arc length
is discussed and in this case the material values are constant. More complex calculations
are necessary for the following regularization, which includes the squared jump in the
material value.

B.1 Regularization by the Arc Length

Consider the definition of the Newton-type flow (4.1) and the first and second order shape
derivatives (4.3) and (4.4), these results are summarized as follows.

∫

Γ
∇ΓF ·∇ΓGds

︸ ︷︷ ︸

A

= −
∫

Γ
κGds

︸ ︷︷ ︸

B

for all G : Γ → IR (B.1)

To assemble the gradient and the Hessian matrix a spatial discretization is necessary.
Therefore one needs a discrete model ofΓ. In this work the boundary elements are used
as underlying grid. Additionally, an approximation ofF , G, andκ is necessary. These
functions are assumed to be piecewise linear on each boundary element. Figure B.1 shows
for instance two boundary elements with the pointsp1, the common pointp2, and p3

(local indices). The arc length is denoted bys1 ands2. The values on the nodal points are
denoted byFi, Gi andκi. Note thatκi is calculated by (2.8). The shape function for point
p2 is linear andNj(p1) = 0, Nj(p2) = 1 andNj(p3) = 0 ( j is the global index of node
point p2).

The discretization of (B.1) can be written in matrix form as

L~F = −~k (B.2)

The rows of the gradient~k (sizen j ) and HessianL (sizen j ×n j ) are calculated by indepen-
dent test functionsG. A natural choice for the test function is to use the shape function. In

101
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NjNj

p1

p2

p3

s1s2

1

ξ1

ξ2

Figure B.1: Shape functionNj for a linear approximation. This example illustrates two boundary elements
with the pointsp1, p2, andp3.

other words, one row is calculated by the solution of the boundary integrals forG = Nj .
For each nodal point of the boundary element mesh, a distinctrow of the gradient and
Hessian is obtained. The integrals are written in terms of the local coordinatesξ1 andξ2.
The linear approximations of the functionsF , G, andκ are written for the first boundary
element as

F = F1(1−ξ1)+F2ξ1 (B.3)

G = ξ1 (B.4)

κ = κ1(1−ξ1)+κ2ξ1 (B.5)

and for the second boundary element one has

F = F2(1−ξ2)+F3ξ2 (B.6)

G = 1−ξ2 (B.7)

κ = κ2(1−ξ2)+κ3ξ2 (B.8)

The tangential gradient, which occurs in termA , is for the first boundary element equal
to F2−F1

s1
and is a vector in tangential direction fromp1 to p2. A similar result is obtained

for the second boundary element. With these definitions the integralB yields

∫

Γ
κGds=

1
6
(κ1 +2κ2)s1 +

1
6
(2κ2 +κ3)s2 (B.9)

and it defines one element of~k. The integralA yields

∫

Γ
∇ΓF ·∇ΓGds= − 1

s1
︸︷︷︸

a

F1 +

(
1
s1

+
1
s2

)

︸ ︷︷ ︸

b

F2−
1
s2

︸︷︷︸

c

F3 (B.10)
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and it defines one row ofL . The coefficientsa, b, andc are the elements in the corre-
sponding column (To find the correct column, one has to transform the local indices into
global ones). The coefficientb is positive and is an element on the leading diagonal. The
matrixL , which is the discrete and negative Laplace-Beltrami operator, is positive definite
and symmetric.

B.2 Squared Jump and Arc Length

Recall the shape derivatives of the the regularization term (4.5).

dRSJ(Γ;~VG) = (ε1− ε2)
2
∫

Γ
κGds

︸ ︷︷ ︸

C

+2(δε1−δε2)(ε1− ε2)

∫

Γ
ds

︸ ︷︷ ︸

D

(B.11)

d2R∗
SJ(Γ;~VF ;~VG) =(ε1− ε2)

2
∫

Γ
∇ΓF ·∇ΓGds

︸ ︷︷ ︸

E

+2(ε1− ε2)
2
∫

Γ
κ2FGds

︸ ︷︷ ︸

F

+2(δε1−δε2)
2
∫

Γ
ds

︸ ︷︷ ︸

G

+2(δε1−δε2)(ε1− ε2)

∫

Γ
κ(F +G)ds

︸ ︷︷ ︸

H

. (B.12)

The discretization of these integrals is a complex task. Different to section B.1, the ma-
terial values are unknown as well. The aim of this section is to find vector and matrix
representation of these shape derivatives in the form

(
L11 L12

L21 L22

)

︸ ︷︷ ︸

G2

~δ = −
(

~k1
~k2

)

︸ ︷︷ ︸

~g2

(B.13)

where the same notation as in section 3.2.1 is used to denote the Hessian and the gradient,
i.e. G2 and~g2. The step~δ indicates the change in geometry and material values

~δ =

(

~F
~δε

)

. (B.14)

The terms in the shape derivatives and the vectors and matrices can be identified as fol-
lows,

• ~k1 (sizen j ) and termC ,

• ~k2 (sizenl ) and termD,

• L11 (sizen j ×n j ) and termsE andF ,

• L22 (sizenl ×nl ) and termG ,
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• L12 (sizen j ×nl ) andL21 and termH ,

In the following paragraphs each component is discussed foritself. For better understand-
ing it is useful to consider following equation

(
~G
~δε

)′(
~k1
~k2

)

, (B.15)

which is the discrete version of (B.11). The discrete versionof the Hessian (B.12) is

(
~G
~δε

)′(
L11 L12

L21 L22

)(

~F
~δε

)

. (B.16)

Vector~k1. TermC is similar to termB of section B.1 and the same discretization of the
integral is used. This leads to

~k1 = (ε1− ε2)
2~k. (B.17)

Vector~k2. This vector corresponds to termB. The arc length, denoted bys, is calculated
easily by the sum over all boundary elements. The vector is defined by

~k2 = 2s(ε1− ε2)

(
1

−1

)

(B.18)

Note that this simple structure is obtained under the assumption that only one level set
function exists. However, for more than two regions a similar result is obtained.

Matrix L 11. This part of the Hessian is independent of the change in the material value.
Term E is similar to the already calculated termA . The discretization of termF is
missing. The discrete counterpart of the integral in termF is denoted byL∗ (sizen j ×n j ).
Following equation defines one row of this matrix and it is obtained by the substitution of
the linear approximations forF , G, andκ.

∫

Γ
κ2FGds=

1
60

[(3κ1
2 +4κ1κ2 +3κ2

2)s1F1

+(12κ2
2 +6κ1κ2 +2κ1

2)s1F2

+(12κ2
2 +6κ2κ3 +2κ3

2)s2F2

+(3κ2
2 +4κ2κ3 +3κ3

2)s2F3] (B.19)

The coefficients ofF1, F2, andF3 (local indices) are the values in their corresponding
columns (global indices). The matrixL∗ is again symmetric and positive definite. This
part of the shape Hessian is defined as follows.

L11 = (ε1− ε2)
2(L +2L∗) (B.20)
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Matrix L 22. This part of the Hessian is determined byG . It only depends on the change
in the material values. The integral over the boundary, the arc length of the interface, is
denoted bys.

L22 = 2s

(
1 −1

−1 1

)

(B.21)

Matrices L12 and L21. The termH , which corresponds to these matrices, consists of a
combination of change in shape and material. The term

2(δε1−δε2)(ε1− ε2)

∫

Γ
κGds (B.22)

defines the matrixL12. The integral is equal to termB (its discretization is denoted by~k).
Thus, the matrix is defined by

L12 = 2(ε1− ε2)
(

~k −~k
)
. (B.23)

The matrixL21 corresponds to

2(δε1−δε2)(ε1− ε2)

∫

Γ
κF ds. (B.24)

The discrete version of this integral leads toL12
T (not shown here) and the resulting

Hessian matrix is symmetric.


