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Abstract

In this thesis a new architecture (see Section 5.2) is introduced to model the
function of a cortical microcircuit. It represents a digital form of an already
existing framework for computations in neural microcircuits, the Liquid State
Machine(LSM) [29]. The LSM, a recurrent neural networks of biologically re-
alistic neurons, incorporates fading memory, temporal integration and task in-
dependence. These characteristics of the neural network are translated in the
world of kernels, what is implicitly done within the LSM as well. Fading mem-
ory is achieved by including a weight vector into the used kernels, temporal
integration by concatenation of several time steps and task independence by
using unsupervised kernel methods. Exploiting the idea behind using kernel
methods, i.e. the projection of the data into a higher dimensional space, simple
learning algorithms such as linear regression can be applied.
In Chapter 6, the new architecture is compared to its companion, the LSM, by
performing prediction tasks on visual data sets, that are generated artificially
and taken from the real-world.

Keywords: Machine Learning, Fading Kernels, Kernel Methods, Liquid State
Machine, Fading Memory, Temporal Integration

Gott gebe mir die Gelassenheit, Dinge hinzunehmen, die ich nicht
ändern kann, den Mut, Dinge zu ändern, die ich ändern kann, und
die Weisheit, das eine vom anderen zu unterscheiden.

Reinhold Niebuhr
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ABSTRACT iv

Zusammenfassung

In dieser Arbeit wird eine neue Architektur (siehe Sektion 5.2) vorgestellt, die
die Funktion eines kortikalen Mikroschaltkreises modelliert. Sie stellt eine dig-
itale Form eines bereits existierenden Frameworks für Berechnungen in einem
neuronalen Mikroschaltkreis, der Liquid State Machine(LSM) [29], dar. Die
LSM, ein rekurrentes, neuronales Netzwerk, das aus biologisch realistischen
Neuronen aufgebaut ist, beinhaltet Fading Memory, zeitliche Integration und
Unabhängigkeit von der jeweiligen Fragestellung. Diese Eigenschaften des neu-
ronalen Netzwerks werden in die Welt der Kernels transferiert, was implizit auch
innerhalb des Netzwerks geschieht. Fading Memory wird durch das Hinzufügen
eines Gewichtvektors in die benutzten Kernel erreicht, zeitliche Integration
durch das Vereinigen mehrerer Zeitschritte und die Aufgabenunabhängigkeit
durch das Verwenden von unüberwachten Kernelmethoden. Unter Ausnutzung
der Projektion der Daten in einen höher dimensionalen Raum, ist es möglich,
einfache Lernalgorithmen, wie die lineare Regression, anzuwenden.
In Kapitel 6 wird die neue Architektur mit ihrem Pendant, der LSM, ver-
glichen. Es werden Vorhersageaufgaben auf visuellen Datensätzen ausgeführt,
die einerseits künstlich generiert werden und andererseits aus der realen Welt
entnommen werden.

Stichwörter: Maschinelles Lernen, Fading Kernels, Kernel Methoden, Liquid
State Machine, Fading Memory, zeitliche Integration
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Chapter 1

Introduction

When sensory information is processed in living organisms, the complex stream
of information has to pass a lot of stages, where it is object to various preprocess-
ing steps such as information compression, offering a sparse representation and
segregation of the conceived information into different pathways.

Considering the processes visual information has to undergo, the representa-
tion of information that is required by the first cortical area, the striate cortex
(V1), is demanding. Let’s take a look at these preprocessing steps that are
applied to the visual information on its way from the retina to V1.

At first, the received information is segregated into parallel pathways, the mag-
nocellular pathway and parvocellular pathway. The magnocellular pathway
carries, among other things, information about the motion of objects in the
visual field whereas the parvocellular pathway deals with the shape of objects,
depending on the receptors in the retina. Hence, different types of retinal in-
formation are kept separate.

Another preprocessing step involving compression takes place at the crossing
from the retina, which contains approximately 125 million nerve cells, into the
optical nerve that contains only 2 million nerve cells any more. After passing
the lateral geniculate nucleus (LGN), the parallel pathways arrive at different
layers (mainly layer four) of the visual cortex (V1). There, simplest features
such as lines and edges are extracted in order to be further processed by higher
hierarchical regions of the cortex.

This hierarchical structure in the cortex, where simple features are extracted
in early stages and are then combined in higher layers, partly answers for the
mental capabilities living organisms are equipped with. In computational sci-
ences there is the desire to make use of this known structure in order to gain
access to the computational power humans can access in their everyday lives.

In [28] it is proposed to model the computational function of a cortical micro-
circuit as a combination of three basic operations:

1. analog fading memory

2. a non-linear kernel that generates a large number of items at different
locations in time and space from the analog fading memory

1



CHAPTER 1. INTRODUCTION 2

3. linear readouts that are trained to extract specific features from the output
of the kernel

The Liquid State Machine(LSM)[30], a recurrent neural network consisting of
biologically realistic neurons, intends to provide the computational function of
a cortical microcircuit.

This thesis aims to implement a digitalized form of the computational paradigm
LSM. Hence, a stacked architecture is introduced that consists of two layers.
The first layer serves as preprocessing unit where salient information is extracted
to provide a compact representation of the visual input data. Kernel Principal
Component Analysis (kernel PCA) [6] using standard kernels and a greedy
algorithm for a training set reduction [27] are applied in the first layer.

The features extracted are combined in that sense that temporal integration
is performed and information of a larger time window (see [23]) is available in the
second layer. In contrast to the first layer, kernel PCA is used incorporating
kernels that possess a fading property, i.e. older information does have less
relevance than newer one and eventually fades away).

On top of the second layer, a simple linear learning algorithm, linear re-
gression in my case, is placed. This architecture is applied to noisy, real-world
video data as well as to an artificially generated data set that was used in [2]
with the LSM. The required task encompasses the learning of a prediction up
to four time steps ahead. The stacked architecture is compared to its neural
network counterpart using the settings from [13]. Video data sets are applied
to both learning machines.

The thesis is structured as follows: Chapter 2 introduces kernel functions that
represent the crucial component in the kernel methods used throughout the
stacked architecture. The kernel methods employed in the two-layered archi-
tecture are described in Chapter 3. Chapter 4 gives a proper introduction to
the LSM. In Chapter 5 the experimental setup of both approaches as well as the
two visual input data sets are presented. The obtained results and a comparison
of the results are discussed in Chapter 6. Chapter 7 offers a short summary and
considers further experiments that might lead to more insight into processing
of sensory information in humans.



Chapter 2

Kernel Functions

Kernels are the basic components shared by all kernel methods. They provide a
general framework to represent data and must satisfy some mathematical con-
ditions, e.g., positive definiteness.

Methods and algorithms using kernels provide a new answer to the question of
data representation. Data is not represented individually any more, but only
through a set of pairwise comparisons (see Figure 2.1).

I denote by X = (x1, . . . ,xn),xi ∈ X a set of n objects to be analysed
such as a set of images or strings. These objects are usually represented by
finite real-valued vectors (φ(x) ∈ R

p). A real-valued ”comparison function”
k : X × X → R is used resulting in a representation of the data set X as n × n
matrix of pairwise comparisons ki,j = k(xi,xj). All kernel methods are de-
signed to process such square matrices independent of the nature of the objects
to be processed. This property is exploited in various scientific fields where data
of different nature need to be integrated and analysed in a unified framework.
Processing of DNA sequences in computational biology, dealing with images in
computer vision and analysing chemical compounds in chemical informatics are
representatives for such applications. Another advantage results from the fact
that the size of the matrix used to represent a data set of n objects is always
n×n. Computationally, this is very attractive in the case when a small number
of complex objects are to be processed. However, it should be noted that the
size of the square matrix is dependent on the number of objects, acting as an
information bottleneck. Hence, when large data sets are to be processed, con-
ventional kernel methods fail and have to be replaced by kernel methods that
are capable of handling large input sets.

The comparison function k is the critical component of any kernel method, since
it defines how the algorithm ”sees” the data. Since a lot of kernel methods
can only handle symmetric, positive definite square matrices, there are certain
requirements the comparison function k has to satisfy.

Definition 1. A function k : X × X → R is called a positive definite kernel iff
it is symmetric, that is, k(xi,xj) = k(xj ,xi) for any two objects xi,xj ∈ X,

3



CHAPTER 2. KERNEL FUNCTIONS 4

Figure 2.1: Two different representations of the same data set. X is supposed
to be the set of all images, and X is a data set of three particular images
depicted on the right side. The set of images denotes different ball positions
and serves as data set for the experiments performed in this thesis. The classic
way to represent X is to convert the images into vectors and treat each vector
individually. Kernel methods are based on a different representation of X, as a
matrix of pairwise similarity between its elements.

and positive definite, that is,

n
∑

i=1

n
∑

j=1

cicjk(xi,xj) ≥ 0 (2.1)

for any n > 0, any choice of n objects x1, . . . ,xn ∈ X, and any choice of real
numbers c1, . . . , cn ∈ R.

Positive definite kernels are also referred to as Mercer kernels. A symmetric
matrix is positive definite only if all its eigenvalues are nonnegative, a valuable
property that can be checked without great effort.

2.1 Feature Space

Suppose the data to be analysed are real valued vectors (x ∈ R
p) and any object

is represented as x = (x1, . . . , xp)
T. One might guess that calculating the inner

product between vectors is a way of comparison, i.e., length and direction, and
indeed it meets the requirements defined in Definition 1. It is usually referred
to as linear kernel (see Equation2.2).

k(x,x′) = xTx′ =

p
∑

i=1

xix
′
i (2.2)
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Since objects of all kinds, e.g. image data, are admitted, one has to represent
each object x ∈ X as a vector φ(x) ∈ R

p and then defining a kernel for any
x,x′ ∈ X by

k(x,x′) = φ(x)Tφ(x′). (2.3)

Function k defined in (2.3) is a valid kernel on the space X. Any mapping
φ : X → R

p for some p≥ 0 results in a valid kernel. Replacing R
p by an

eventually infinite-dimensional Hilbert space1 leads to the important theorem:

Theorem 1. For any kernel k on a space X, there exists a Hilbert space F and
a mapping φ : X → F such that

k(x,x′) = 〈φ(x), φ(x′)〉 (2.4)

for any x,x′ ∈ X, where 〈u, v〉 denote the dot product in the Hilbert space
between any two points u, v ∈ F.

Theorem 1 provides a first intuition about kernels: They can be thought of as
dot products in some space F, usually called the feature space. This intuition
of kernels as dot products is useful allowing a geometric interpretation of kernel
methods.

Besides the geometric interpretation, Theorem 1 states that calculating dot
products in possibly infinite-dimensional spaces reduces to applying kernels in
X. It enables us to carry out calculations implicitly without ever dealing with
the feature space vectors explicitly.
Along with Theorem 1 goes the following proposition:

Proposition 1. Any algorithm for vectorial data that can be expressed only in
terms of dot products between vectors can be performed implicitly in the feature
space associated with any kernel, by replacing each dot product by a kernel
evaluation.

Proposition 1 is usually refered to as the kernel trick. It provides a convenient
way to transform linear methods such as principal component analysis, match-
ing pursuit, or the generalized hebbian algorithm, by simply replacing the dot
product by a more general kernel. Nonlinearity is then obtained at no compu-
tational cost, as the algorithm remains exactly the same. The reformulation of
linear algorithms is commonly refered to as kernelization.

2.2 Similarity Measurements

A common view of kernels is as a measure of similarity, in the sense that k(x,x′)
is large when x and x′ are similar. Methods like Support Vector Machines
(SVM) [8] for example base their prediction on the assumption that ’similar’
points are likely to have the same values. The ’similarity’ between points is

1a vector space that is endowed with a dot product and complete for the norm induced.
Rp with the classic inner product is an example of a finite-dimensional Hilbert space
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determined by the kernel.

There are three standard kernels that are introduced in this Section, the poly-
nomial kernel, the Gaussian Radial Basis Function kernel and the sigmoidal
kernel. Each of them defines a different measure of similarity.

Figure 2.2: Two dimensional classification example. By mapping the data from
R

2 to R
3 a linear decision boundary can be found. (Figure from [5])

The polynomial kernel is best introduced by the toy example in Figure 2.2.
The task is to separate the circles from the crosses. By mapping the input data
in a higher dimensional space (see Equation 2.5), a separation can be found
using a linear hyperplane (right), instead of having to construct a non-linear
ellipsoidal decision boundary (left). The corresponding feature space is the
space of second order monomials.

φ : R
2 → R

3

(x1, x2) 7→ (z1, z2, z3) := (x2
1,
√

2x1x2, x
2
2)

(2.5)

The computation of a scalar product between two feature space vectors can be
reformulated in terms of a kernel function k

(φ(x) · φ(x′)) = (x2
1,
√

2x1x2, x
2
2)((x

′)21,
√

2(x′)1(x
′)2, (x

′)22)

= ((x1, x2)(x
′
1, x

′
2)

T)2

= (x · x′)2

= k(x,x′).

(2.6)

A generalization leads to the polynomial kernel:

k(x,x′) = ((x,x′) + θ)d (2.7)

where θ ∈ R and d ∈ N. The kernel computes a scalar product in the space of
all products of d vector entries (monomials) of x and x′.
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Yet one might consider the notion of distance as a measure of similarity rather
than the notion of dot product. However, there are cases, where these ideas
coincide. For example, the kernel on X = R

p, called the Gaussian Radial Basis
Function (RBF) kernel

k(x,x′) = exp(−||x − x′||2
2σ2

) (2.8)

where σ > 0 denotes the width of the Gaussian hill. This is a valid kernel,
which can be considered as a polynomial kernel of infinite degree. Its features
are all possible monomials of the input features with no restriction placed on
the degrees. The Taylor expansion of the exponential function

exp(x) =

∞
∑

i=0

1

i!
xi (2.9)

shows that the weighting of individual monomials falls off as i! with increasing
degree.

The RBF kernel can be interpreted as a decreasing function of the Euclidian
distance between points. Each point is represented by a bell-shaped function
sitting on that point. The larger the kernel k(x,x′), the closer the points x and
x′ in X.

The last kernel to be considered is the sigmoidal kernel

k(x,x′) = tanh(κ(x · x′) + θ) (2.10)

where κ, θ ∈ R. The main motivation behind the usage of this kernel is that
the decision function learned by a kernel method is a particular type of two-
layer sigmoidal neural network. Problems might arise using this type of kernel,
since the Mercer conditions are not always assured as it is the case with the
former two kernels. So certain parameter combinations of κ and θ do not lead
to positive definiteness. Still the sigmoidal kernel has been successfully used in
practice.

I conclude this section by the fact that a universal kernel capable of dealing
with any kind of data does not exist. Regarding various types of data, the
requirements of a learning task on the definition of similarity differ. Often
the optimal parameters according to the given data have to be determined in
advance, e.g. by parameter sweeps. If standard kernels such as polynomial,
RBF or sigmoidal do not suffice, own kernels can be designed that calculate
desired, data-dependent measures of similarity.
Thus prior knowledge about the data structure has to be taken into account
when kernels are used and designed.
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2.3 Function Regularity

In this section I would like to point out that by selecting a particular kernel,
the space of functions on X and the norm on that space are determined as well.

As first example, consider the linear kernel (2.2) on a vector space X = R
p.

The corresponding functional space is the space of linear function f : R
d → R:

Hk = {f(x) = wTx : w ∈ R
p} (2.11)

The associated norm is just the slope of the linear function,

‖f‖Hk
= ‖w‖ (2.12)

for f(x) = wTx. As a second example, consider the Gaussian RBF kernel (2.8)
on the same vector space X ∈ R

p. The associated functional space is the set of
functions f : R

d → R with Fourier transform f̂ that satisfies:

N(f) =
1

(2πσ2)
p

2

∫

Rp

|f̂(ω)|2eσ2

2
‖ω‖2

dω < +∞, (2.13)

and the norm in Hk is precisely this functional: ‖f‖Hk
= N(f). Hence Hk is a

set of functions with Fourier transforms that decay rapidly, and the norm ‖.‖Hk

quantifies how fast this decay is.
In both examples, the norm ‖f‖Hk

decreases if the ’smoothness’ of f in-
creases, where the definition of smoothness depends on the kernel. In case
of the linear kernel, the smoothness is related to the slope of the function: a
smooth function is a flat function. For the Gaussian RBF kernel, the smooth-
ness of a function is measured by its Fourier spectrum: a smooth function has
little energy at high frequencies. To state it otherwise - a function is smooth,
if it varies slowly between similar points.

2.3.1 Reproducing Kernel Hilbert Space

Given the kernel k, how is the corresponding functional space Hk constructed?
The set Hk is defined as the set of function f : X → R of the form

f(x) =

n
∑

i=1

αik(xi,x), (2.14)

for n > 0, a finite number of points x1, . . . ,xn ∈ X, and a finite number of
weights α1, . . . , αn ∈ R, together with their limits under the norm:

‖f‖2
Hk

=

n
∑

i=1

n
∑

j=1

αiαjk(xi,xj) (2.15)

Hk is a Hilbert space, with a dot product defined for two elements
f(x) =

∑n
i=1 αik(xi,x) and g(x) =

∑m
j=1 α′

jk(x′
j ,x) by

〈f, g〉 =
n

∑

i=1

m
∑

j=1

αiα
′
jk(xi,x

′
j) (2.16)
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A property of this construction is that the value f(x) of a function f ∈ Hk at
a point x ∈ X can be expressed as a dot product in Hk,

f(x) = 〈f, k(x, .)〉 (2.17)

In particular, taking f(.) = k(x′, .), following reproducing property can be
derived valid for any x,x′ ∈ X:

k(x,x′) = 〈k(x, .), k(x′ , .)〉 (2.18)

For this reason, the functional space Hk is usually called the reproducing kernel
Hilbert space (RKHS) associated with k.

2.3.2 Regularization

One should keep in mind the connection between kernels and norms on func-
tional spaces. Most kernel methods have an interpretation in terms of functional
analysis and can be defined as algorithms that, given a set of objects X, return
a function that solves the equation

min
f∈Hk

R(f,X) + c‖f‖Hk
, (2.19)

where R(f,X) is small when f ’fits’ the data well, and the term ‖f‖Hk
ensures

that the solution of (2.19) is ’smooth’. The parameter c > 0 is the regulariza-
tion parameter which specifies the trade-off between minimization of R(f,X)
and the smoothness or simplicity which is enforced by a small norm. It can be
viewed as a trade-off between overfitting and generalization as well.

By thinking of kernels as regularization operators, the Representer Theorem
can help to see many kernel methods in a different light.

Theorem 2. Let X be a set endowed with a kernel k, and X = {x1, . . . ,xn} ⊂ X

a finite set of objects. Let Ψ : R
n+1 → R be a function of n + 1 arguments,

strictly monotonic increasing in its last argument. Then any solution of the
problem

min
f∈Hk

Ψ(f(x1), . . . , ‖f‖Hk
), (2.20)

where (Hk, ‖.‖Hk
) is the RKHS associated with k, admits a representation of

the form

∀x ∈ X, f(x) =

n
∑

i=1

αik(xi,x). (2.21)

I would like to throw a closer look to the effects of this important Theorem. By
including a dependency in ‖f‖Hk

in the function to optimize, the solution is
forced to be smooth. This penalization is reasonable since demanding smooth-
ness in the solution is usually a powerful protection against overfitting of the
data.

Moreover the representer theorem states that the solution lies in the span
of n particular kernels - those centered on the training points - resulting in
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computational advantages. Any solution to (2.19) is known to belong to a sub-
space of Hk of dimension at most n, the number of training points, even though
the optimization is carried out over a possibly infinite-dimensional space Hk.
Hence the problem is reduced to an n-dimensional optimization problem → by
combining (2.21) and (2.20) and optimizing over (α1, . . . , αn) ∈ R

n.

To summarize: By selecting a kernel, a space of functions with a corresponding
norm is determined. Kernel methods can be understood to return a function
that solves Equation 2.19. Theorem 2 entitles us to perform a reduced opti-
mization problem on the functional space by including the norm of that space
in the optimization problem as a stability term (regularizer). The resulting
function has the property of being smooth (definition of smoothness depends
on the kernel) meaning that the solution is optimal in terms of generalization.

These observations can serve as a guide to choose a kernel for practical ap-
plications, if one has some prior knowledge about the function the algorithm
should output. So, the challenge is to design a kernel such that a priori desir-
able functions have a small norm.

I recommend books from Schölkopf/Smola [5] and Shawe-Taylor/Cristianini [15]
that provide both a thorough introduction into kernels and kernel methods.



Chapter 3

Kernel Methods

In this chapter the algorithms used in the stacked architecture are reviewed. I
commence by introducing kernel PCA [6], the kernelization result of PCA[18].
Afterwards a greedy derivative of kernel PCA -greedy KPCA [27]- is discussed
that aims at reducing the number of training samples by selecting only the most
representative ones.

These methods provide a framework for feature extraction in an unsupervised
manner. The algorithms attempt to find some structure that is possibly hidden
in the data without having access to specified target values as in supervised
methods (e.g. Support Vector Machines [8]). A resulting property of unsuper-
vision is that extracted features are not dependent on a particular task specified
in advance but can be used by simple learning rules to tackle a variety of tasks.

However, it should be noted that the mentioned kernel methods prove ill
when dealing with large data sets is required. Consequently, the size of the
input set is limited - otherwise the computations become infeasable because
of too large kernel matrices. Different approaches exist (see Section 7.1) that
approach this problem in a greedy, sparse or iterative way and thus could be
used to enlarge the input set.

3.1 Kernel Principal Component Analysis

Kernel principal component analysis [6] is going to be applied in the first layer
(see Section 5.2.1) for dimensionality reduction as well as in the second layer (see
Section 5.2.2) as unsupervised learning algorithm in combination with kernels
having fading property.

Kernel PCA is a powerful technique for extracting non-linear structure from
data, thus capturing part of higher-order statistics. The basic idea is to map the
input data into a Reproducing Kernel Hilbert Space (RKHS) and then perform
Principal Component Analysis in that space (see Figure 3.1).
Hence, kernel PCA represents a form of non-linear PCA. Before discussing the
kernel PCA algorithm, the standard PCA algorithm is introduced.

11
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Figure 3.1: A comparison of linear PCA and kernel PCA is depicted. (Figure
from [6])

3.1.1 Principal Component Analysis

Being one of the most valuable results from applied linear algebra, PCA [18]
is used abundantly in all forms of analysis for it is a simple, non-parametric
method of extracting relevant information from confusing data sets. PCA pro-
vides the means to reduce a complex data set to a lower dimension to reveal
the sometimes hidden, simplified dynamics.

3.1.2 Toy Example

A simple toy example from Shlens [17] will help to understand the mecha-
nisms that are behind PCA. In addition, the obtained results will emphasize
the value of this method. The settings are depicted in Figure 3.2. The motion
of the physicist’s ideal spring shall be studied. This system consists of a ball of
mass m attached to a massless, frictionless spring. The ball is released a small
distance away from equilibrium. The spring being ’ideal’ oscillates indefinitely
along the x-axis about its equilibrium at a certain frequency. This is a stan-
dard problem in physics in which the motion along the x direction is solved by
an explicit function of time. In other words, the underlying dynamics can be
expressed as a function of a single variable x.

Experimenters often face situations as described above where phenomenas want
to be understood by measuring all available quantities. Hence, more dimen-
sions than actually needed are recorded because experimenters lack the knowl-
edge which measurements best reflect the underlying dynamics of the system
in question. Back to the toy example additional measurements are taken into
account although only information about the single variable x would suffice.
The ball’s position in a three-dimensional space is recorded by three cameras
A,B and C (see Figure 3.2). Each camera records an image indicating a two-
dimensional position of the ball, i.e., camera A records a corresponding po-
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sition (xA(t), yA(t)). Each trial can be expressed as a six dimensional vector
X = (xA, yA, xB , yB , xZ , yZ).

PCA aims at finding the most meaningful basis to re-express a noisy data
set. The hope is that this new basis will filter out the noise and reveal hidden
dynamics. In the example of the spring, the explicit goal of PCA is to deter-
mine: “the dynamics are along the x-axis”.

PCA makes one stringent but powerful assumption: linearity. Assuming linear-
ity simplifies the problem by restricting the set of potential bases and formal-
izing the implicit assumption of continuity in a data set. With this assumption
PCA is now limited to reexpressing the data as a linear combination of its basis
vectors. Let X and Y be m × n matrices related by linear transformation P.
X is the original recorded data set and Y is re-representation of that data set.

PX = Y (3.1)

Equation 3.1 represents a change of basis and can be interpreted in various
ways:

• P is a matrix that transforms X into Y.

• P can be interpreted geometrically as rotation and a stretch again trans-
forming X into Y.

• The rows of P are a set of new basis vectors for expressing the column
vectors in X.

Each column yi of Y can be calculated by calculating the dot product between
the corresponding column xi of X and the new basis vectors which happen to
be the row vectors p of P.

yi =







p1 · xi

...
pm · xi






(3.2)

Figure 3.2: Setup of a toy example to demonstrate the effects of Principal
Component Analysis. (Figure from [17])
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In other words, the jth coefficient of yi is a projection of xi onto the jth basis
vector pj . The basis vectors become the principal components of X.

After the illustration of transforming X into Y by means of a new basis, some
questions arise such as, What is a good choice of the basis P? and What is the
best way to re-express X? These questions can be answered by next asking
what features Y shall exhibit?

When dealing with a linear system, data becomes “garbled” due to noise and
redundancy. In order to clean the data, one strives for getting rid of noise and
redundancy → Y should be free of noise and redundancy.

Noise

To be able to extract any information about a system, noise in a data set must
be low. A common measure is the signal-to-noise ratio (SNR), or a ratio of
variances σ2.

Figure 3.3: The signal and noise variances σ2
signal and σ2

noise of one camera are
graphically represented.

SNR =
σ2

signal

σ2
noise

(3.3)

A high SNR (�1) indicates high precision data, while a low SNR indicates
noise comtaminated data. Figure 3.3 shows a simulated plot of the ball’s po-
sition recorded by camera A. Any camera should record motion in a straight
line. Therefore, any spread deviating from straigt-line motion must be noise.
The variance due to the signal and noise are indicated graphically. The ratio of
the variances, i.e. the SNR, measures how “fat” the oval is - the range of possi-
bilities includes a thin line (SNR � 1), a perfect circle (SNR = 1) or even worse.
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Figure 3.4: A spectrum of possible redundancies in data from two separate
recordings r1 and r2. The best fit line r2 = kr1 is indicated by the dashed line.
(Figure from [17])

Redundancy

In the example of the spring, redundancy in the measured variables is caused by
multiple sensor recordings of the same dynamic information. Consider Figure
3.4 as a range of possible plots between two arbitrary measurement types r1

and r2. Panel (a) depicts two recordings with no redundancy. In other words,
r1 is totally uncorrelated with r2. This situation could occur by plotting two
variables such as temperature and income.

However in panel (c) both recordings appear to be strongly related. This
extremity might be achieved by plotting the same variable in different scales
(celsius, fahrenheit) or related to the toy example, a plot of (xA, xB) if the
cameras are very nearby.

Consequently, regarding panel (c), it would be more sensible to just have
recorded only one variable, the linear combination r2−kr1, instead of two vari-
ables r1 and r2. Recording solely the linear combination would both express
the data more concisely and reduce the number of sensor readings. Indeed, this
is the very idea behind dimensionality reduction.

Covariance Matrix

The covariance represents a generalization of the variance which only takes
into account one variable. The covariance matrix of the already centered data
X = (x1, . . . ,xn) where

∑n
i=1 xi = 0 is defined in Equation 3.4. Each row of

X corresponds to all measurements of a particular type. Each column of X

corresponds to a set of measurements of particular trial or time step.

CX =
1

n

n
∑

i=1

xixi
T. (3.4)

Characteristics of the covariance matrix are enlisted below.

• CX is a square matrix having as much dimensions as there are measure-
ment types.

• The diagonal terms of CX are the variances of the particular measurement
types.
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• The off-diagonal terms of CX are covariance between measurement types.

Computing CX quantifies the correlation between all possible pairs of measure-
ments. Between one pair of measurements, a large covariance corresponds to
a situation like panel (c) in Figure 3.4, while zero covariance corresponds to
entirely uncorrelated data as in panel (a).

At this point, I refer to the above question - What features Y and CY respec-
tively shall exhibit? If the goal is to reduce redundancy, then each variable
should co-vary as little as possible with other variables. More precisely, to re-
move redundancy the covariances between separate measurements ought to be
zero. Hence an optimal covariance matrix CY looks like a diagonal matrix with
all off-diagonal terms zero. In other words, removing redundancy diagonalizes
CY .

Before deriving an algebraic solution to PCA, I will informally describe what
happens during PCA. PCA assumes that the basis vectors pi are orthonormal,
as a consequence P is an orthonormal matrix as well. Secondly, PCA assumes
that the directions with the largest variances are the most important or most
principal. PCA first selects a normalized direction along which the variance in
X is maximized - it saves this as p1. Again it finds another direction along
which the variance is maximized, however, because of the orthonormality con-
dition, it restricts its search to all directions perpendicular to all previously
selected directions. This could continue until m directions are selected. The
resulting ordered set p’s are the principal components. The components are
rank-ordered according to the corresponding variances.

Eigenvectors of Covariance

The algebraic solution is based on an important property of eigenvector decom-
position. Once again, the data set is X, an m×n matrix, where m is the number
of measurement types and n is the number of data trials. The objective is to
find some orthonormal matrix P where P·X = Y such that CY is diagonalized.
First, CY is rewritten:

CY = 1
n
YYT

= 1
n
(PX)(PX)T

= 1
n
P(XXT)PT

CY = 1
n
PAPT

The symmetric matrix A is diagonalized by an orthogonal matrix of its eigen-
vectors and can be expressed by

A = EDET (3.5)
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where D is a diagonal matrix and E is a matrix of eigenvectors of A arranged
as columns. The matrix A has r ≤ m orthonormal eigenvectors where r de-
notes the rank of the matrix. The rank of A is less than m either when A is
degenerative or all data occupy a subspace of dimension r ≤ m.

The desired transformation matrix P is now chosen to be a matrix where
each row pi is an eigenvector of XXT, thus P≡ ET. Substituting into Equation
3.5, matrix A reads A = PTDP. The covariance matrix CY accordingly takes
the following form:

CY = 1
n
PAPT

= 1
n
(PPT)D(PPT)

= 1
n
(PP−1)D(PP−1)

CY = 1
n
D

The choice of P diagonalizes CY .

Singular Value Decomposition(SVD) denotes another algebraic solution for PCA.
It is closely related to PCA, in fact, the names of both methods are used inter-
changeably. In the course of SVD the diagonalization is performed by solving
the eigenvalue problem expressed by

λe = Ce (3.6)

for eigenvalues λ ≥ 0 and eigenvectors ei ∈ R
p \ {0}. The resulting set of mu-

tually orthogonal eigenvectors defines again a new basis along the directions of
maximal variance in the data. The orthogonal projection onto the eigenvectors
are called principal components (PC’s) of the data set.

Concluding Remarks on PCA

Beside the fact, that performing PCA is a quite simple procedure, PCA provides
useful properties regarding optimality that are enumerated in the following.

1. The first r(r ∈ {1, . . . , n}) extracted features, or projections on the first r
eigenvectors (assuming that the eigenvectors are sorted in descending or-
der of their eigenvalues), carry more variance than any other r orthogonal
directions.

2. If observations in H should be represented by the first r extracted fea-
tures, the mean-squared approximation error is minimal (over all possible
r directions).

3. The extracted features are uncorrelated.

4. The first r features have maximal mutual information.
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Hence, the PCA basis , among all basis expansions, minimizes the reconstruc-
tion error when the expansion is truncated to a smaller number of basis vectors.
That is why PCA is one of the prefered methods when dimensionality is to be
reduced.

Furthermore, omitting principal components corresponding to small eigenval-
ues, i.e. principal components that are associated with low variances, equals to
noise reduction since noise is associated with directions of little variance in the
data.

Both the strength and weakness of PCA is that it is a non-parametric analysis.
There are no parameters to set and no coefficients to adjust. It is not possible
to incorporate prior knowledge about the dynamics of the system. A famous
example where PCA fails is a ring shaped distribution. Prior knowledge, i.e.
converting the data to the appropriately centered polar coordinates, needs to
be incorporated before computing the PCA.

Last but not least, it should be noted that PCA tends to fail when it is con-
fronted with non-gaussian data distributions, since the axes with the largest
variance do not correspond to the underlying basis. In exponentially distrib-
uted data, for example, the largest variance do not correspond to the underlying
basis. Under such circumstances, other methods like Independent Component
Analysis [1] succeed.

3.1.3 The KPCA algorithm

To be able to perform a non-linear form of PCA, the input data X = (x1, . . . ,xn),
xi ∈ X has to be mapped into a possibly infinite-dimensional feature space H

(RKHS) as stated above. The non-linear map reads:

Φ : X → H,x 7→ Φ(x) (3.7)

It is assumed that the mapped data is centered,
∑n

i=1 Φ(xi) = 0. In H the
covariance matrix takes the following form:

C =
1

n

n
∑

i=1

Φ(xi)Φ(xi)
T. (3.8)

In PCA like manner, eigenvalues λ ≥ 0 and nonzero eigenvectors v ∈ H \ {0}
satisfying

λv = Cv (3.9)

All solutions v with λ 6= 0 lie in the span of Φ(x1), . . . ,Φ(xn). The consequences
imply that one may consider the equivalent system

λ〈Φ(xk),v〉 = 〈Φ(xk),Cv〉 , for all k = 1 . . . n (3.10)
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and that there exist coefficients αi (i = 1 . . . n) such that

v =

n
∑

i=1

αiΦ(xi) (3.11)

Combining equations (3.10) and (3.11) leads to

λ
n

∑

i=1

αi〈Φ(xk),Φ(xi)〉 =
1

n

n
∑

i=1

αi

〈

Φ(xk),
n

∑

j=1

Φ(xj)〈Φ(xj),Φ(xi)〉
〉

(3.12)

for all k = 1 . . . n. In terms of the n × n Gram matrix Kij := 〈Φ(xi),Φ(xj)〉
equation 3.12 reads

nλKααα = K2ααα (3.13)

where ααα denotes the column vector with entries α1 . . . αn. To find solutions
of equation (3.13), one has to solve the dual eigenvalue problem for nonzero
eigenvalues.

nλααα = Kααα (3.14)

λ1 ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues of the Gram matrix K and ααα1, . . . ,αααn

the corresponding complete set of eigenvectors.
The solutions ααα1, . . . ,αααp belonging to nonzero eigenvalues are normalized by
requiring that the corresponding vectors v in the feature space H be normalized
(see equation (3.11)).

〈vk,vk〉 = 1 for all k = 1 . . . p (3.15)

Using equations (3.11) and (3.14) the normalization of ααα1, . . . ,αααp can be carried
out by

1 =
∑n

i,j=1 αk
i α

k
j 〈Φ(xi),Φ(xj)〉

=
∑n

i,j=1 αk
i α

k
j Ki,j

= 〈αααk,Kαααk〉

= λk〈αααk,αααk〉

(3.16)

The data needs to be centered in H as well. This can be done by simply
substituting the matrix K with

K̂ = K − 1nK − K1n + 1nK1n, (3.17)

where (1n)ij = 1/n; for details see [6].

In order to extract principal components, one has to compute projections onto
the eigenvectors vk in H (k = 1 . . . p). A test point x is mapped into the
feature space at first. Then
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〈vk,Φ(x)〉 =

n
∑

i=1

αk
i 〈Φ(xi),Φ(x)〉 (3.18)

are the non-linear principal components (or features) corresponding to Φ. See
Figure 3.5 for the exemplary extraction of one principal component. It can be
viewed as projecting the test image, that is mapped into a high dimensional
space at first, onto the eigenvector V. The test image x is compared to the
training images xi by applying the kernel function k. The feature value results
from the linear combination

∑n
i=1 αik(xi,x) where the weights are found by

solving an eigenvalue problem.

Figure 3.5: The process of feature extraction by kernel PCA is illustrated. A
test point x is compared to all other points in the training set by applying the
kernel function k. The weights of the linear combination are found by solving an
eigenvalue problem. Implicitly the test point is mapped into a high dimensional
space and there it is projected onto the eigenvector V. (Figure from [5])

Note that neither computing the entries of the Gram matrix K nor the feature
extraction (3.18) requires Φ(x) in explicit form. Therefore, applying kernel
functions for computing the needed dot-products is feasable without actually
performing the map Φ.

Known, optimal properties of kernel PCA that represents similar to PCA an
orthogonal basis transformation yet not in the input space but in a possibly
infinite-dimensional feature space H are:

1. The first r(r ∈ {1, . . . , n}) extracted features, or projections on the first r
eigenvectors (assuming that the eigenvectors are sorted in descending or-
der of their eigenvalues), carry more variance than any other r orthogonal
directions.
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2. If observations in H should be represented by the first r extracted fea-
tures, the mean-squared approximation error is minimal (over all possible
r directions).

3. The extracted features are uncorrelated.

4. The first r features have maximal mutual information.

However, when taking a closer look at the feature extraction process a serious
drawback of kernel PCA and kernel methods in general becomes obvious. When
an image is projected onto eigenvectors in the feature space, the algorithm needs
to have access to all members of the input set X (see Equation (3.18)). Thus
kernel PCA is limited in the number of input samples that can be processed.

Finally I would like to connect kernel PCA with terms as regularization, func-
tional space and an associated norm introduced in Chapter 2.

The feature extractors (see Equation 3.18) are linear functions in the feature
space H

fk(x) =

n
∑

i=1

αk
i 〈Φ(xi),Φ(x)〉 =

n
∑

i=1

αk
i k(xi,x) (3.19)

Regularization properties are closely related to the norm of a functional space.
As discussed in Section 2.3, smoothness ensures protection against overfitting,
thus leading to low capacity. Smoothness is increased by decreasing the norm,
here in case of linear functions this corresponds to keeping the length of the
weight vector ααα short.

When applied to the training data, the kth feature extractor generates a set
of outputs with variance λk. Dividing each coefficient vector αααk by

√
λk, a set

of non-linear feature extractors with unit variance output is obtained. A direct
consequence of this scaling is the property that the kth feature extractor is
optimal among all feature extractors of the form of Equation (3.19) in the sense
that it has minimal weight vector norm in the RKHS H that can be obtained
combining Equations(3.19) and (2.15)

‖fk‖2 = 〈αααk,Kαααk〉 (3.20)

Unlike PCA, kernel PCA allows extraction of a number of features which can
exceed the input dimensionality though requiring that the number of training
samples exceeds the input dimensionality as well.

3.2 Greedy Kernel PCA

Greedy KPCA is going to be applied in the first layer of the stacked architecture
(see Section 5.2.1) to reduce the input dimensionality. The algorithm intends
to provide answers regarding two problems that occur when performing kernel
PCA. The first one concerns the memory capacity. The storage of the Gram
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matrix that contains the training data in terms of dot-products becomes ex-
pensive since the size of the matrix increases quadratically with the number of
training samples. Note that kernel PCA requires access to all training samples.

Secondly, the solution - a linear function in the feature space - is not sparse,
i.e. many coefficients αi are nonzero. The non-sparse solution implies an expen-
sive evaluation. Greedy KPCA circumvents these two problems by proposing a
technique to approximate the training set.

Let X = (x1, . . . ,xn), xi ∈ X be the training data that is mapped into a
high-dimensional space H by

Φ : X → H (3.21)

The set of training data transformed to H is denoted as H = (Φ(x1), . . . ,Φ(xn)).
The transformed training data H live in a subspace span(H) ⊆ H.

It is attempted to find a finite subset Xr = (r1, . . . , rm), ri ∈ X with correspond-
ing images Hr = (Φ(r1), . . . ,Φ(rm)). Let’s suppose that the vectors Φ(ri) are
linearly independent and thus forming a basis of linear subspace span(Hr) ⊆ H.
The transformed training data H is now expressed in a linear basis defined by
Hr.

H′ = (Φ(x1)
′, . . . ,Φ(xn)′) denotes a set of approximations of vectors in H which

will be computed as minimal square error projections on the subspace span(Hr).
An approximation Φ(x)′ ∈ H′ of the vector Φ(x) ∈ H is accomplished by a
linear combination of vectors of Hr.

Φ(x)′ =

m
∑

i=1

βiΦ(ri) = Hr · βββ (3.22)

The vector βββ contains real coefficients of linear combination and is computed
by an optimization problem that reads

βββ = arg minβββ′ ‖Φ(x) − Φ(x)′‖2

= (Φ(x) − Hr · βββ′)T(Φ(x) − Hr · βββ′)

(3.23)

The pseudoinverse provides a well-known analytical solution to such an incon-
sistent system

βββ = (Hr
T ·Hr)

−1Hr · Φ(x) (3.24)

Since Equation (3.24) can be represented in terms of dot-products, the coeffi-
cient vector βββ can be expressed in the following way

βββ = K−1
r ·

m
∑

i=1

k(ri,x) = K−1
r · kr(x) (3.25)

where x ∈ X is a vector to be approximated, Kr = Hr
T ·Hr is a kernel matrix

m × m of vectors from the set Xr.
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Let βββi denote the coefficient vector for a training sample xi ∈ X. The ap-
proximated value of the kernel function of two training samples xi,xj ∈ X is
calculated as

k′(xi,xj) = 〈Φ(xi)
′,Φ(xj)

′〉

= (Hr · βββi)
T · (Hr · βββj)

= βββi
T · Kr · βββj

(3.26)

Being positive definite, the kernel matrix Kr can be decomposed by the Choleski
factorization leading to Kr = RT · R, where matrix R is an upper triangular
matrix. Thus the computation of the approximated kernel function can be
simplified

k′(xi,xj) = βββi
T · Kr · βββj

= βββi
T · RT ·R · βββj

= 〈γγγi,γγγj〉

(3.27)

The training set can be represented by a matrix ΓΓΓ = [γγγ1, . . . ,γγγn] of size m × n
instead of the whole kernel matrix K of size n×n. m is the number of elements
in Hr used to approximate the subspace span(H) and n is the number of train-
ing samples. Evidently setting Hr = H, a perfect approximation without errors
is obtained. If a perfect approximation is achieved, span(Hr) equals span(H),
but not necessarily n = m, if the data is linearly dependent in the space H.

The next subsection deals with the selection process, i.e.which training samples
should be contained in Hr?

3.2.1 Selection Procedure

In the case of greedy KPCA, the whole data set has to be accessible during
the selection process. The algorithm cycles through the data set in an iterative
way, each time selecting that training sample that together with the previously
chosen samples leads to the best approximation result in that moment. To
prevent the algorithm from looping indefinitely, the iteration procedure stops,
if the approximation of the training set yields an acceptable level.

Hence, an approximation error se(x) of the transformed vector Φ(x) is defined
as follows:

se(x) = (Φ(x) − Φ(x)′)T(Φ(x) − Φ(x)′)

= (Φ(x) − Hr · β)T(Φ(x) − Hr · βββ)

= k(x,x) − 2kr(x)T · βββ + βββT ·Kr · βββ

(3.28)

An acceptable level is achieved, if the approximation error crosses a predeter-
mined threshold ε, i.e. se(x) < ε,∀x ∈ X. Another possibility to stop the
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iteration is when a certain number of elements in Hr is reached (this way mem-
ory constraints can be met).

Algorithm 1 Training set approximation

1: Initialize the Xr = {r}, r = arg maxx∈X k(x,x)

2: while size of Xr is less than m do

3: Compute se(x) for all training vectors not yet included in Xr.
{It is required to compute βββ = K−1

r ·kr(x) where Kr is the kernel matrix
of the current set Xr.}

4: if maxx∈X\Xr
se(x) < ε then

5: Stop the iteration.

6: else

7: Add x = arg maxx∈X\Xr
se(x) to the set Xr and continue the iteration.

The initialization step can be viewed as a selection of the training sample that
accounts for the worst approximation error when the subset Xr is empty, i.e.
all samples are projected onto the origin. The algorithm cycles as long as the
termination conditions are not met. The termination conditions ensure, that -
if met - all remaining training samples can be approximated sufficiently and/or
the number of samples to select is reached.

In each cycle the approximation error for all projected training samples that
are not included in the set Xr is computed. The training sample that is ap-
proximated worst by a linear combination of the samples in Xr is added to this
set.

After the application of the algorithm a subset Xr ⊂ X is obtained which
contains the basis vectors along with the matrix K−1

r . Hence, the coefficient
vector βββ can be computed using Equation (3.25), leading to a new representa-
tion of the data.



Chapter 4

The Liquid State Machine

4.1 The framework of a Liquid State Machine

The “liquid state machine” (LSM) from [30] is a new framework for computa-
tions in neural microcircuits. The term “liquid state” refers to the idea to view
the result of a computation of a neural microcircuit not as a stable state like
an attractor that is reached. Instead, a neural microcircuit is used as an online
computation tool that receives a continuous input that drives the state of the
neural microcircuit. The result of a computation is again a continuous output
generated by readout neurons given the current state of the neural microcircuit.

Recurrent neural networks (see Figure 4.1) with spiking neurons represent a
non-linear dynamical system with a high-dimensional internal state, which is
driven by the input. The internal state vector x(t) is given as the contributions
of all neurons within the LSM to the membrane potential of a readout neuron
at the time t. The complete internal state is determined by the current input
and all past inputs that the network has seen so far. Hence, a history of (recent)
inputs is preserved in such a network and can be used for computation of the
current output. The basic idea behind solving tasks with a LSM is that one
does not try to set the weights of the connections within the pool of neurons
but instead reduces learning to setting the weights of the readout neurons. This
reduces learning dramatically and much simpler supervised learning algorithms
which e.g. only have to minimize the mean square error in relation to a desired
output can be applied.
The LSM has several interesting features in comparison to other approaches
with recurrent circuits of spiking neural networks:

1. The liquid state machine provides “any-time” computing, i.e. one does
not have to wait for a computation to finish before the result is available.
Results start emitting from the readout neurons as soon as input is fed
into the liquid. Furthermore, different computations can overlap in time.
That is, new input can be fed into the liquid and perturb it while the
readout still gives answers to past input streams.

2. A single neural microcircuit can not only be used to compute a special

25
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Figure 4.1: Comparison of the architecture of a feed-forward (left hand side)
with a recurrent neural network (right hand side); the gray arrows sketch the
direction of computation. Figure from [13].

output function via the readout neurons. Because the LSM only serves
as a pool for dynamic recurrent computation, one can use many different
readout neurons to extract information for several tasks in parallel. So
a sort of “multi-tasking” can be incorporated. Figure 4.2 illustrates this
and the previous property.

3. In most cases simple learning algorithms can be used to set the weights
of the readout neurons. The idea is similar to support vector machines,
where one uses a kernel to project input data into a high-dimensional
space. In this very high-dimensional space simpler classifiers can be used
to separate the data than in the original input data space. The LSM
has a similar effect as a kernel: due to the recurrency the input data is
also projected to a high-dimensional space. Hence, in almost any case
experienced so far simple learning rules like e.g. linear regression suffice.

4. Last but not least it is not only a computational powerful model, but it
is also one of the biological most plausible so far. Thus, it provides a
hypothesis for computation in biological neural systems.

4.2 Neural microcircuit

The model of a neural microcircuit as it is used in the LSM is based on evidence
found in [11] and [4]. Still, it gives only a rough approximation to a real neural
microcircuit since many parameters are still unknown. The neural microcircuit
is the biggest computational element within the LSM (see Figure 4.3), although
multiple neural microcircuits could be placed within a single virtual model.

In a model of a neural microcircuit N = nx · ny · nz neurons are placed on a
regular grid in 3D space. The number of neurons along the x, y and z axis,
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Figure 4.2: Multi-tasking with any-time computing. A single neural microcir-
cuit can be used by different readout-neurons to compute various function in
parallel. In this case, based on a Poisson spike train as input to the LSM, 7
different functions were computed by readout neurons (Figure from [25]).

nx, ny and nz respectively, can be chosen freely. One also specifies a factor to
determine how many of the N neurons should be inhibitory. Another impor-
tant parameter in the definition of a neural microcircuit is the parameter λ.
Number and range of the connections between the N neurons within the LSM
are determined by this parameter λ. The probability of a connection between
two neurons i and j is given by

p(i,j) = C · exp−
D(i,j)

λ2

where D(i,j) is the Euclidean distance between those two neurons and C is a
parameter depending on the type (excitatory or inhibitory) of each of the two
connecting neurons. There exist 4 possible values for C for each connection
within a neural microcircuit: CEE, CEI ,CIE and CII may be used depending
on whether the neurons i and j are excitatory (E) or inhibitory (I). In our ex-
periments we used spiking neurons according to the standard leaky-integrate-
and-fire (LIF) neuron model that are connected via dynamic synapses. The
time course for a postsynaptic current is approximated by the equation:

v(t) = w · e−
t

τsyn
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Figure 4.3: Neural microcircuit with liquid The input x(t) is applied to
the neurons (Figure from [7])

where w is a synaptic weight and τsyn is the synaptic time constant. In case of
dynamic synapses the “weight” w depends on the history of the spikes it has
seen so far according to the model from [12]. For synapses transmitting analog
values (such as the output neurons in our experimental setup) synapses are
simply modeled as static synapses with a strength defined by a constant weight
w. Additionally, synapses for analog values can have delay lines, modeling the
time a potential would need to propagate along an axon.

4.3 Parameterization of the LSM

In this section the LSM that is used to carry out the prediction task is pre-
sented. That includes the liquid itself (i.e. how many neurons are contained),
the percentage of inhibitory neurons, the type of connections and so on.

To feed input into the liquid, External Input Neurons are used that conduct
an injection current Iinject via Static Analog Synapses (parameters are shown
in Table 4.1) into the first layer of the liquid pool. Inspired from information
processing in living organisms, I set up a cognitive mapping from input layer
to liquid pool. The value of Iinject depends on the value of the input data. ,
in this case the activation of each single visual sensor (for further details see
Section 5.1).

The liquid consists of 144 Leaky Integrate And Fire Neurons (parameters are
listed in Table 4.2), grouped in an 8 · 6 · 3 cuboid, that are randomly connected
via Dynamic Spiking Synapses (parameters are listed in Table 4.3), as described
above. The probability of a connection between every two neurons is modeled
by the probability distribution depending on a parameter λ described in the
previous section. Various combinations of λ (connection probability) and mean
connection weights Ω (connection strength) were used for simulation. 20% of the
liquid neurons were randomly chosen to produce inhibitory potentials. Figure
4.4 shows an example for connections within the LSM.
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Inoise wmean delaymean

[nA] - [ms]

EE EI EE EI

0 3 · 10−8 6 · 10−8 1.5 0.8

Table 4.1: Parameters for Static Analog Synapses used to feed the LSM with
input. EE and EI denote whether the source and target neurons of a connection
emit excitatory or inhibitory action potentials. Co-Variance for delaymean is 0.1.

Vthresh Vresting Vreset Vinit Trefract Inoise Iinject

[mV ] [mV ] [mV ] [mV ] [ms] [nA] [nA]

E I

15 0 U(13.8, 14.5) U(13.5, 14.9) 3 2 0 U(13.5, 14.5)

Table 4.2: Parameters for Leaky Integrate And Fire Neurons comprising the
liquid (Cm = 30nF,Rm = 1MΩ). Letters ’E’ and ’I’ indicate whether the
neurons emit excitatory or inhibitory action potentials. U(a, b) denotes an
uniform distribution on the interval [a, b].

Umean Dmean Fmean delaymean τsyn C

connection - - [s] [ms] [ms] -

EE 0.5 1.1 0.05 1.5 3 0.3

EI 0.05 0.125 1.2 0.8 3 0.4

IE 0.25 0.7 0.02 0.8 6 0.2

II 0.32 0.144 0.06 0.8 6 0.1

Table 4.3: Parameters for Dynamic Spiking Synapses connecting neurons inside
the liquid. EE, EI, IE and II denote whether the source and target neurons of
a connection emit excitatory or inhibitory action potentials. Co-Variance for
delaymean is 0.1.

The information provided by the spiking neurons in the liquid pool is processed
(read out) by External Output Neurons (Vinit, Vresting, Inoise are the same as
for the liquid neurons), each of them connected to all neurons in the liquid pool
via Static Spiking Synapses (parameters are listed in Table 4.4). The output
neurons perform a simple linear combination of inputs that are provided by the
liquid pool.
For simulation within the training and evaluation the neural circuit simulator
CSim1 was used. Parameterization of the LSM is described below. Names

1The software simulator CSim and the appropriate documentation for the liquid state
machine can be found on the web page http://www.lsm.tugraz.at/
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τsyn w delaymean

[ms] - [ms]

EE EI EE EI

3 6 −6.73 · 10−5 1.5 0.8

Table 4.4: Parameters for Static Spiking Synapses connecting the liquid with
each read out neuron. EE and EI denote whether the source and target neurons
of a connection fire excitatory (E) or inhibitory (I) action potentials. The value
given for w only serves as an example of values set after training. Co-Variance
for delaymean is 0.1.

Figure 4.4: An example showing the connections of a single liquid neuron: input
is received from the input sensor field on the left hand side and some random
connection within the liquid. The output of every liquid neuron is projected
onto every output neuron (located on the most right hand side). The 8x6x3
neurons in the middle form the ”liquid”

for neuron and synapse types all originate from terms used in the CSim envi-
ronment. Letters I and E denote values for inhibitory and excitatory neurons
respectively.



Chapter 5

Experimental Setup

The aim of this chapter is to describe the experimental setup when applying
the LSM (see Section 5.1) to perform the prediction task and furthermore to
introduce a two-layered architecture (see Section 5.2) using kernels to perform
the same task. The results of both approaches are compared and discussed in
the next chapter. Furthermore the stacked architecture is applied to another
data (see Section 5.3) set that has been artificially generated and resembles the
one in [2].

5.1 Applying the Liquid State Machine

The input data was recorded by using a prototype of the middle-size-league
RoboCup robot in use (and developed) by the RoboCup team at the Graz
University of Technology. The experimental setup can be described as follows:
the robot was located on the field and pointed its camera across the field.
This robot tracked the movements of a soccer ball and featured a directional
firewire camera driven by the XVision machine vision software [10], frequently
delivering steady state images of 320 × 240 true color format. Time delays
between transmission of two images varied from 70ms to 200ms. Similar to [2],
the input to the LSM was provided by 48 sensors arranged in a 2D array(8×6),
so the recorded images had to be preprocessed.
For each image, the x and y coordinates as well as the radius of the ball were
extracted using an existing tracking package. The ball is detected within an
image by simple color-blob-detection leading to a binary image of the ball. This
simple image preprocessing is applicable since all objects on the RoboCup-field
are color-coded and the ball is the only red one. The segmented image is
presented to the 8 times 6 sensor field of the LSM (see Figure 5.1).
The activation of each sensor is equivalent to the percentage of how much of the
sensory area is covered by the ball. To group contiguous ball movements from
the moment the ball entered the robot’s field of view up to the point the ball
left it (movies), we wrote an add-on for the XVision environment. Tracking
information is stored line by line for each image containing coordinates, radius
and time elapsed since start. Given this movie recording equipment, it was
possible to record several hundreds of raw data movie files.

31
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Figure 5.1: Architecture of the experimental setup depicting the three different
pools of neurons and a sample input pattern with the data path overview.
Example connections of a single liquid neuron are shown: input is received
from the input sensor field on the left hand side and some random connection
within the liquid. The output of every liquid neuron is projected onto every
output neuron (located on the most right hand side). The 8x6x3 neurons in the
middle form the ”liquid”.

Figure 5.2: Upper Row: Ball movement recorded by the camera. Lower Row:
Activation of the sensor field.

A set of 674 video sequences of the ball was recorded rolling with different veloc-
ities and directions across the field. The video sequences have different lengths
and contain images in 50ms time steps. These video sequences are transfered
into the equivalent sequences of activation patterns of the input sensors. Figure
5.2 shows such a sequence. The activation sequences are randomly divided into
a training set (85%) and a validation set (15%) used to train and evaluate the
prediction. Training and evaluation is conducted for the prediction of 1 time
step (50ms), 2 time steps (100ms) and 4 time steps (200ms) ahead. The corre-
sponding target activation sequences are simply obtained by shifting the input
activation sequences 1,2 or 4 steps forward in time.
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5.1.1 Simulation and Training

Simulation for the training set is carried out sequence-by-sequence: for each
collected activation sequence, the neural circuit is reset, input data are as-
signed to the input layer, recorders are set up to record the liquid’s activity,
simulation is started, and the corresponding recorded liquid activity is stored
for the training part. The training is performed by calculating the weights
of all static synapses connecting each liquid neuron with all output layer neu-
rons using linear regression1. Let {mi,j [n]} be the activation sequence for sen-
sor i out of the 8x6 sensor pool for one sequence j out of the training set.
Let {xi[n]} = {{mi,1}, {mi,2}, ..., {mi,N}} be the concatenation of all N ac-
tivation sequences of the training set. With the expected output sequence
{yi[n]} = {xi[n + p]} consisting of the input sequence shifted by p prediction
time steps, wi as the weights of output neuron i and {psp[n]} as the sequence
of postsynaptic potentials of all liquid neurons recorded during simulation, the
regression writes as

wi = regress({yi[n]}, {psp[n]})

for one neuron in the output layer. The least squares method is used for approx-
imation. To get a more robust modeling, white noise was added to {psp[n]}.

Analogous to the simulation with the training set, simulation is then carried
out on the validation set of activation sequences. The resulting output neuron
activation sequences are stored for evaluating the network’s performance.

The quality of the prediction (only the evaluation set is considered) is assessed
by computing the correlation coefficient between target and prediction as il-
lustrated in Equation 5.1, where target equals one target frame and prediction
equals the corresponding predicted frame. The variable n denotes the number
of all frames considered.

For one simulation (fixed # liquid neurons, λ and Ω) one correlation coefficient
is computed that represents the mean correlation coefficient:

CC =
1

n

n
∑

i=1

cci(target(:, i), prediction(:, i)) (5.1)

The correlation coefficient measures the linear dependency of two random vari-
ables. If the value is zero two variables are not correlated. The higher the
coefficient the higher the probability of getting a correlation as large as the
observed value without coincidence involved.

5.1.2 Finding Optimal Parameter Combination

As stated in Section 4.2 the connection strength w and connection probability λ
represent two important parameters regarding the LSM. Various combinations
of these two paramters exist. This Subsection aims at finding the optimal ones.

1In fact also the injection current Iinject for each output layer neuron is calculated. For
simplification this bias is treated as the 0th weight.
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Findings from [13] provide the necessary calculations to be able to identify
the optimal parameter regions. In [13] the same prediction task is carried
out applying the LSM to the recorded, noisy real-world data (see Figure 5.1).
Each parameter combination yields a certain prediction quality expressed by
a correlation coefficient ranging from zero to one or in other words from no
prediction to an almost perfect prediction.

In the following the procedure is described how the correlation coefficient
landscape plots are obtained. In conclusion, a theoretical explanation for the
optimal region of parameter combinations is given.

Figure 5.3 shows an input frame that is fed into the LSM, the corresponding
target needed for the linear regression, the prediction of the LSM and finally the
absolute error. A problem which arises if the absolute error (respectively the
mean absolute error if several predictions are to evaluated by one value) is used
for evaluation is that also networks with nearly no output activation produce a
low mean absolute error - because most of the neurons in the target activation
pattern are not covered by the ball and therefore they are not activated leading
to a low average error per image. Consequently, the mean correlation coefficient
(see Equation (5.1)) is calculated.

Input Target Prediction Error

Figure 5.3: Sensor activation for a prediction one timestep ahead. Input acti-
vation, target activation, predicted activation and absolute error (left to right).

In Figure 5.4 the quality of the results by means of the correlation coefficients
for the prediction of one timestep (50ms) and two timesteps (100ms) ahead
are shown for various parameter combinations. The parameter values range for
both landscapes from 0.1 to 5.7 for Ω and from 0.5 to 5.7 for λ.

Certain parameter combinations (e.g. the light shaded region in Figure 5.4)
yield better results than others. In [22] it is shown that cortical microcircuits
do operate at the edge of chaos, a region that is located at the boundary be-
tween ordered and chaotic behavior. It turns out that in the study of neural
systems this research direction is of special interest, since dynamic systems ex-
hibit enhanced computational power in this region.

At this critical line, the antagonistic effects of the fading memory property [24]
and the separation property [29] reach an equilibrium state. The ordered phase
is typically characterized by the fading memory property - small differences in
the network state tend to decrease rapidly over time. In chaotic networks these
differences are highly amplified and do not vanish. In the landscape plots (see
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Figure 5.4: Correlation coefficient landscape for a prediction of one timestep
(50ms) ahead on the left plot and of two timesteps (100ms) on the right plot.
Ω(wscale) ∈ [0.1,5.7], λ ∈ [0.5,5.7].

Figure 5.4, regions can be spotted whose parameter combinations yield optimal
performance according to the task - the lighter the better.

The regions of good results remain the same throughout the prediction
tasks. Therefore it can be assumed that the network operates at the edge of
chaos when initialized with the corresponding parameter combinations. Similar
parameter regions are obtained in Legenstein et al. [22] when performing a spike
train classification task using a LSM.

5.2 Applying a Stacked Architecture

The introduction of a stacked architecture containing two layers intends to pro-
vide a digitalized form, i.e. equivalent computational properties, of a recurrent
neural network described in Chapter 4. The proposed architecture incorporates
the three previously described basic computational operations of a cortical mi-
crocircuit translated into the digital world.

The first layer serves mainly as preprocessing unit to provide the second
layer with the means to carry out the basic operations. Instead of analog fading
memory, a form of a digital tapped delay line in combination with a non-linear
kernel is used in the second layer. The kernel generates a large number of non-
linear combinations of the input at different locations in time and space.

In the following I will give a detailed description of both layers and their re-
sponsibilities. In Figure 5.2.2 the process flow of the proposed architecture is
illustrated.

5.2.1 First Layer

As already mentioned the first layer serves as a kind of preprocessing. The di-
mensionality of the input data is reduced. Kernel PCA and a greedy derivative
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are applied which have been described in Sections 3.1.3 and 3.2.1 respectively.

Kernel PCA [6] provides the means to reduce the input dimensionality. Stan-
dard kernels (the polynomial kernel, the RBF kernel and the sigmoidal kernel)
define the higher dimensional feature space, the input data is first mapped into.
Principal Component Analysis is carried out on the new feature space. Result-
ing eigenvalues and corresponding eigenvectors are then sorted in descending
order beginning with the largest. By projecting the transformed input data
onto the first eigenvectors, principal components, i.e. features, are obtained in
an unsupervised manner. By taking a lower number of eigenvectors as input
dimensions into account the number of dimensions can be reduced.

Parameter Setting in the First Layer

The next question is: “How many dimensions suffice to loose as little informa-
tion as possible while compressing the input data as good as possible?”
A first approach is to analyze the decay of the eigenvalues which is depicted in
Figure 5.5 for all three kernels.
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Figure 5.5: The decay of the eigenvalues corresponding to the polynomial kernel
(left), the RBF kernel(middle) and the sigmoidal kernel(right). The x-axis is
segregated into steps of length 5. So starting at zero the second value on the x-
axis denotes the tenth eigenvalue and the fourth value the twentieth eigenvalue.

Instead of estimating the adequate number of dimensions, the reconstruction
of the original input data is attempted by applying linear regression to the ex-
tracted features. The obtained coefficients from a training data set are then
used to reconstruct the evaluation data set. In Table 5.1 the correlation coeffi-
cients comparing the original the reconstructed data are listed indicating that
the usage of 10 features reconstructs the input data sufficiently.

It should be noted that the correlation coefficients in Table 5.1 correspond to
the optimal parameter for each kernel. The optimal kernel parameters are ob-
tained by parameter sweeps over sensible values for each kernel relating to the
reconstruction of the evaluation data.

For the polynomial kernel a degree d = 3 suffices and the range of θ is [0.5 : 5],
for the RBF kernel the range of 1

2σ
is [0.5 : 2] and for the parameter κ of the
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Number of Features Correlation Coefficients

polynomial kernel RBF kernel sigmoidal kernel

30 0.9972 0.9619 0.9949

20 0.9846 0.9424 0.9834

10 0.9274 0.8635 0.9182

Table 5.1: The correlation coefficients denote the reconstruction quality of the
input data after the first layer.

sigmoidal kernel the range is [0.1 : 1.5] (see 2.2 for a kernel overview). Optimal
parameter values for each kernel can be taken from Table 5.2.

Optimal Kernel Paramters

polynomial kernel RBF kernel sigmoidal kernel

θ / d σ κ/ θ

1.5/ 3 0.75 0.1/ 0

Table 5.2: Optimal parameter values for each kernel regarding the first layer.

As a consequence, in the experiments the polynomial kernel with parameters
d = 3 and θ = 1.5 is used within the first layer and 10 extracted features are
taken along to the second layer.

Remarks on Greedy KPCA

As a representative of a more complex method greedy KPCA (see Section 3.2.1)
is applied for dimensionality reduction in the first layer as well. Based on ker-
nel PCA, it aims at approximating the training set by taking only the most
significant samples into account. According to the findings from the preceding
section, 10 training samples are selected. Experiments show that the recon-
struction of the input data is nearly as good as with normal kernel PCA.

Thus greedy KPCA represents an alternative to normal KPCA. In addition
greedy KPCA does not require eigenvalue decomposition to select the repre-
sentative training samples as it is the case with KPCA. Consequently, time
complexity reduces from O(n × n) to O(n × m3), where n denotes the number
of trainings samples and m the number of samples to select. However, if the
proper coverage of the input distribution requires a larger number of selected
training samples, the method gradually loses its benefit.



CHAPTER 5. EXPERIMENTAL SETUP 38

5.2.2 Second Layer

Arranging the input

As already previously mentioned the input to the second layer (no matter if
training or evaluation data) is constructed using a time window that slides over
a tapped delay line (TDL). When trying to imagine the appearance of the TDL,
it may be advantageous to do so the following way:

Consider the extracted feature sets of the first layer y1, . . . ,yn each containing
m features, thus yi ∈ R

10, in this case. Now arrange these sets one after
another to form a large vector ∈ R

(n∗m), the TDL. In the second layer temporal
integration happens by combining feature sets of the first layer, thus feature
sets of several time steps form a new input vector for the second layer. For
example, I would like that an input vector of the second layer encompasses two

time steps. The first (compound) vector cv then reads cv1 = (y1
T,y2

T)
T
. To

form a connection with the TDL, imagine a window of size (2*10, i.e. 2 time
steps combined, 10 features each) moving along the TDL. The next step of the
window translates into shifting the window by an offset (that offset is defined
by the size of one feature set, 10 in my case). The second input vector results

then from shifting the window by the offset, thus cv2 = (y2
T,y3

T)
T
. cv3 would

be (y3
T,y4

T)
T

and so on (see Figure 5.6 for an illustration).

Figure 5.6: By moving a time window along the TDL the corresponding com-
pound vector consisting of feature sets y can be built

Note, however, that there is no overlapping of video sequences within the input
vectors for the second layer. Similarly, the LSM is reset when a new sequence
is fed into the network.

The target vectors for the linear regression on top of the stacked architecture
are built the following way. (Their dimensionality remains the same (R48)).
Imagine at first, that there is no temporal integration and the number of pre-
diction steps is determined to be two. The corresponding target vector for an
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input vector would be the input vector shifted by two steps into the future.
However, it has to be considered that the input vectors of the second layer

are compound vectors. Accordingly the targets have to be put together appro-
priately. Let’s assume that a prediction task of two time steps ahead has to be
accomplished and one compound vector of the second layer includes two feature
sets (hence a time window of two time steps). The corresponding target vector,
that is needed for the linear learning rule afterwards, will be the input vector
shifted by three time steps into the future (one because the input vector of the
second layer has information about that additional time step and another two
time steps to fulfil the prediction requirements).

Fading Kernels in the Second Layer

Kernel PCA is applied to the training data that have already been preprocessed
in the first layer (see Subsection 5.2.1). As described in Section 3.1.3, kernel
PCA implicitly performs PCA in a high-dimensional feature space that is non-
linearly related to the input space. Calculations in that possibly infinite dimen-
sional space (the feature space) are due to the application of kernel functions
in the input space that corresponds to computing the dot-product in that fea-
ture space. In the second layer RBF kernels as well as polynomial kernels are
applied that incorporate a fading property. In the LSM paradigm an analog
fading memory is responsible for evaluating events in terms of the time of their
emergence. Older events become less and less relevant (following an exponen-
tial decay) and finally fade away. This analog fading memory is translated into
the digital world by temporal integration in combination with a fading kernel.
Temporal integration is achieved by concatenation of several time steps. In
order to obtain a fading kernel (RBF and polynomial), a weight vector is added
to the kernel function. The weight vector equals the speed older parts of one
enlarged vector fade away, i.e. becoming more and more insignificant. Differ-
ent fading speeds are applied within the experiments (see Section 6.4 for the
results) , e.g. linear and exponential decays).

The resulting, new kernels have to be valid Mercer kernels to be applicable in
the stacked architecture.

Valid Mercer Kernels?

Mercer’s Theorem [14] states that if k(x,x′) is a Mercer Kernel, then there
exists a Hilbert space H of real valued functions defined on X and a feature
map:

Φ : X → H,x 7→ Φ(x) (5.2)

such that
〈φ(x), φ(x′)〉 = k(x,x′) (5.3)

where 〈·, ·〉 denotes the inner product.
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The new kernels, the fading RBF kernel and the fading polynomial kernel, are
defined as follows. The fading RBF kernel reads:

k(x,x′) = exp(−||〈(x − x′),w〉||2
2σ2

) (5.4)

where σ > 0 and the fading polynomial kernel:

k(x,x′) = (
〈

〈x,w〉, 〈x′,w〉
〉

) + Θ)d (5.5)

where d is the degree of the polynomial and Θ is a constant.

The new fading kernels have to be valid kernels to be able to exploit Mercers’s
Theorem.

Proof Normal RBF and polynomial kernels always meet Mercer’s conditions2.
The new, fading kernels (see Equations (5.4) and (5.5) respectively) are ex-
tended by a weight vector w (wi ∈ (0, 1] ) that corresponds to the fading speed.
The two vectors x,x′ ∈ R

n are multiplied by the constant vector w ∈ R
n cor-

responding to a weighting of the vector elements. The weighting takes place
before the actual translation into a higher dimsional space.
Thus, if the normal RBF and polynomial kernel are Mercer kernels, the new
fading kernels are valid Mercer’s kernels as well.

Parameter Setting in the Second Layer

The optimal kernel parameters for the second layer are obtained again by para-
meter sweeps over sensible values for each kernel regarding the prediction task.
In other words, parameter values yielding best prediction results are selected.
Consequenly, in the stacked architecture, following parameter settings are used:

Optimal Kernel Paramters

polynomial kernel RBF kernel

θ / d σ

1.5/5 0.7

Table 5.3: Optimal parameter values for the polynomial and RBF kernel applied
in the second layer.

2Mercer’s Conditions:

1. k(x,x′) is continuous.

2. k(x,x′) = k(x′, x)

3. k(x,x′) is positive definite.
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Feature Extraction

By solving the eigenvalue problem stated in Equation (3.14), eigenvalues (λ > 0)
and corresponding eigenvectors (6= trivial solution) are obtained. Thus the
underlying structure of the training data is revealed, lying in the directions of
the eigenvectors. Feature extraction is carried out as explained in Equation
(3.18). At first the evaluation vector has to be mapped into the feature space
H and is projected onto the eigenvectors.

Learning the Prediction

One of the enormous benefits of applying kernel functions is that the data is
mapped into a high dimensional space. The kernel generates a large number
of non-linear combinations of the input data, thus enabling the application of
simple learning rules, i.e. separating hyperplanes in case of classification.

By exploiting the projection of the data into a higher dimensional space, simple
learning algorithms can be applied and are sufficient almost in any case experi-
enced so far. Linear regression serves as the learning algorithms on top of the
stacked architecture.

The number of extracted features per second layer input vector varies be-
tween 20 and 50 features yielding better results the more features used. Usually
it does not make sense to work with more than 50 features, since the results do
not become better any more.

After having performed the regression, each target vector from the evalua-
tion set is approximated by the learnt regression coefficients (see Equation 5.6)
from the training set and the corresponding features resulting in a prediction
vector.

coefficients = regress(target, features) (5.6)

The quality of the prediction (only the evaluation set is considered) is assessed
by computing the correlation coefficient between target and prediction. For one
simulation - a simulation encompasses 150 training sequences and 100 evaluation
sequences - one correlation coefficient is computed that represents the mean
correlation coefficient (in the same way as with the LSM approach):

CC =
1

n

n
∑

i=1

cci(target(:, i), prediction(:, i)) (5.7)

Hence, a correlation coefficient is calculated for each predicted frame and the
corresponding target frame in the evaluation set. Afterwards the mean corre-
lation coefficient according to Equation 5.7 is computed.

5.3 Artificial Data Set

In order to apply the stacked architecture to another data set, sequences are
artificially generated similarly to [2]. The sequences contain balls of varying
size and moving at different speeds. For each sequence, the speed, the size and
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Figure 5.7: The new stacked architecture is illustrated. A pass through starts
with the input frames on the bottom. The raster frames are converted into
vectors and the dimension of the vectors is reduced in the first layer. Afterwards
the resulting reduced vectors are concatenated and fed into the second layer.
Kernel PCA using a fading kernel is applied and a feature vector is extracted
that is used by the linear regression to perform a prediction task.
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the direction of the ball are randomly chosen. In Figure 5.8 some exemplary
sequences are shown.

Figure 5.8: Three artificially generated sequences that are fed into the stacked
architecture.

Differences to the real-world data set shall be emphasized. The most important
difference is the stable radius throughout the sequences. The artificial data is
merely two-dimensional, there is no perspective as with the real world data set.

Secondly, there are only three different speeds available when generating
the artificial data set. The speed variety within the real world data set is much
richer.

Thirdly, the artificially generated data is smooth regarding the curves of
the x,y coordinates. Due to the admitting of perspective and the processing of
the camera, coordinates and radius are not smooth but tend to be sometimes
erratic.

The above mentioned differences are reflected in the prediction results that are
discussed in Section 6.3.3.



Chapter 6

Results

In this chapter the results of the prediction tasks are presented. The task re-
quires the prediction of the ball position (see Figure 5.2 for examples of a ball
position) one to four time steps ahead by taking into account its trajectory seen
so far.

At first, the findings of the LSM approach, applied to the noisy real-world data
set, are listed in Section 6.1. In Section 6.2 results of the stacked architecture
are presented where the prediction task is performed with both data sets - the
real-world and the artificially generated data set. Additionally, experiments
are carried out with the fading kernel in the second layer as well as with the
normal, non fading version.

Section 6.3 compares some of the approaches that are mentioned above, e.g.,
fading versus non-fading and LSM versus stacked architecture. This chapter is
concluded with Section 6.4 that reports experiences with different parameter
settings during experiments with the stacked architecture.

The results are expressed in correlation coefficients that correspond to the mean
correlation coefficient as described in Equation 5.1, i.e., the correlation coeffi-
cient is calculated for every target frame and its corresponding predicted frame.
Afterwards the mean value is output. For the linear regression the dimension
of the feature vector, that is output by the second layer per time step, varies
between 20 and 50 features in case of the stacked archticture and is fixed at 144
features in case of the LSM.

In all experiments, 10 random splits of the input data are used for each
parameter setting. The resulting correlation coefficients are averaged. The size
of the input data encompasses 150 training and 100 test sequences in each trial.
As a remark, taking 150 sequences corresponds to a kernel matrix of approxi-
mately (4000 × 4000) in the first layer. In Section 7.1 a potential enlargement of
the training data size is discussed by taking into account online kernel methods.

The prediction results are presented visually as well. The manner of represen-
tation is always the same. On the top there is one sequence of target frames.
That sequence is to be predicted given an input sequence that starts one, two,

44
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three or four time steps earlier. Presented this way, the visual quality of the
prediction can be compared more easily. The larger the prediction ahead, the
worse the result quality.

6.1 LSM Results

In Table 6.1 the obtained correlation coefficients are listed. The parameter
combinations of λ and w are selected according to the optimal behaviour of the
LSM in this region as stated in Section 5.1.2.

Parameter Combination Correlation Coefficients

(λ, w) One Two Three Four

λ = 2, w = 1 0.9122 0.8716 0.8023 0.7255

λ = 1, w = 0.5 0.9117 0.8662 0.7961 0.7204

Table 6.1: Correlation Coefficients for one, two, three and four predicted time
steps ahead corresponding to the optimal parameter combinations of the LSM.

The performance decreases, i.e. lower correlation coefficients are achieved, when
the task gets harder, i.e. the number of time steps to predict increases. Mean
correlation coefficients for predictions of one (50ms), two (100ms), three(150ms)
and four (200ms) time steps ahead are listed in Table 6.1.

Figure 6.1: Target frames for predictions of one, two, three and four time steps
ahead.

Figure 6.2: Predicted frames for the prediction of one time step ahead.

Figure 6.3: Predicted frames for the prediction of two time steps ahead.
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Figure 6.4: Predicted frames for the prediction of three time steps ahead.

Figure 6.5: Predicted frames for the prediction of four time steps ahead.

In Figures 6.1 to 6.5, prediction results for 50ms, 100ms, 150ms and 200ms are
visually presented. For a better comparison, the target frames are the same for
all prediction tasks. Accordingly, the corresponding input frames start one, two,
three and four time steps earlier. The activation sequence starts at the left side
and ends at the left side. The decay of prediction quality that is reflected in the
decreasing correlation coefficients is visually confirmed. At first, the activation
starts getting weaker. Finally, the position of the ball is not predicted as exactly
as it used to be with fewer time steps to predict.

6.2 Stacked Architecture Results

The stacked architecture is first applied to the real-world data set, then to the
artificial data set. Experiments are carried out with fading kernels as well as
with non-fading kernels in the second layer.

For all experiments regarding the stacked architecture, the polynomial kernel
is chosen for the dimensionality reduction procedure in the first layer as stated
in Section 5.2.1 and 10 extracted features per time step are forwarded to the
second layer. The compound vector encompasses two time steps resulting in 20
elements per vector. The fading speed is set as follows: the older vector (the
first ten elements) is weighted half as much as the newer one.

6.2.1 Real World Data Set

Fading in Second Layer

In Table 6.2 the obtained mean correlation coefficients for the polynomial ker-
nel in the second layer are listed. Kernel parameters are selected according to
Section 5.2.2 to be d = 5 and θ = 1.5.

Not surprisingly, the performance decreases, i.e. lower correlation coefficients
are achieved when the task gets harder, i.e. the number of time steps to predict
increases. In Figures 6.6 to 6.10, prediction results for 50ms, 100ms, 150ms and
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Number of Features Correlation Coefficients

One Two Three Four

50 0.9500 0.8780 0.8038 0.7326

40 0.9479 0.8745 0.7977 0.7235

30 0.9440 0.8696 0.7904 0.7132

20 0.9360 0.8613 0.7799 0.6997

Table 6.2: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The fading polynomial kernel (d = 5 and θ = 1.5) was applied to the real
data set.

200ms are visually presented using 50 features during linear regression. For a
better comparison, the target frames are the same for all prediction tasks. Ac-
cordingly, the corresponding input frames start one, two, three and four time
steps earlier.

Figure 6.6: Target frames for predictions of one, two, three and four time steps
ahead.

Figure 6.7: Predicted frames for the prediction of one time step ahead.

Figure 6.8: Predicted frames for the prediction of two time steps ahead.

In Table 6.3 the obtained mean correlation coefficients for the RBF kernel in
the second layer are listed. Kernel parameters are selected according to Section
5.2.2 to be σ = 0.7.

In Figures 6.11 to 6.15 , prediction results for 50ms, 100ms, 150ms and 200ms
are visually presented using 50 features during linear regression. For a better
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Figure 6.9: Predicted frames for the prediction of three time steps ahead.

Figure 6.10: Predicted frames for the prediction of four time steps ahead.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9514 0.8820 0.8111 0.7439

40 0.9481 0.8784 0.8070 0.7397

30 0.9434 0.8735 0.8015 0.7327

20 0.9208 0.8316 0.7415 0.6594

Table 6.3: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The fading RBF kernel (σ = 0.7) was applied to the real data set.

comparison, the target frames are the same for all prediction tasks. Accordingly,
the corresponding input frames start one, two, three and four time steps earlier.

Figure 6.11: Target frames for predictions of one, two, three and four time steps
ahead.

Figure 6.12: Predicted frames for the prediction of one time step ahead.
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Figure 6.13: Predicted frames for the prediction of two time steps ahead.

Figure 6.14: Predicted frames for the prediction of three time steps ahead.

Figure 6.15: Predicted frames for the prediction of four time steps ahead.

The results indicate that both kernels can be used for the prediction task though
the RBF kernel seems to yield slightly better results. The good correlation co-
efficients of both kernels are visually confirmed. The decay in the correlation
coefficient quality is reflected by the fact that the predictions get more and more
blurred with the growing number of time steps to predict. Especially when four
time steps are to predict, the blurring of the activation can be identified clearly.

No Fading in Second Layer

In Table 6.4 the obtained mean correlation coefficients for the polynomial ker-
nel in the second layer are listed. Kernel parameters are selected according to
Section 5.2.2 to be d = 5 and θ = 1.5. There is no fading in the second layer.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9492 0.8783 0.8047 0.7334

40 0.9467 0.8732 0.7961 0.7214

30 0.9429 0.8685 0.7891 0.7116

20 0.9340 0.8596 0.7786 0.6989

Table 6.4: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The polynomial kernel (d = 5 and θ = 1.5) was applied to the real data
set.
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In Table 6.5 the obtained mean correlation coefficients for the RBF kernel in
the second layer are listed. Kernel parameters are selected according to Section
5.2.2 to be σ = 0.7.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9452 0.8801 0.8125 0.7472

40 0.9399 0.8733 0.8043 0.7388

30 0.9344 0.8684 0.7997 0.7341

20 0.9046 0.8234 0.7418 0.6680

Table 6.5: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The RBF kernel (σ = 0.7) was applied to the real data set.

The results indicate that both kernels can be used for the prediction task.
Again the RBF kernel seems to yield slightly better results. It is curious to
note the drop of prediction quality between the two kernels when using 30
features compared to using 20 features. The polynomial kernel succeeds in the
task of predicting four time steps ahead when using only 20 features.

6.2.2 Artificial Data Set Results

The prediction task is now performed with artificially generated data (see Sec-
tion 5.3). The parameter settings are identical to the ones of the real-world
data experiments. By performing parameter sweeps in order to identify the
optimal parameter settings, it turned out, that the same parameter settings
can be applied as with the real-world data set.

Fading in Second Layer

In Table 6.6 the obtained mean correlation coefficients for the polynomial kernel
in the second layer are listed. Kernel parameters are d = 5 and θ = 1.5.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9508 0.9346 0.9061 0.8675

40 0.9482 0.9331 0.9054 0.8672

30 0.9430 0.9225 0.8881 0.8423

20 0.9313 0.9029 0.8611 0.8097

Table 6.6: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The fading polynomial kernel (d = 5 and θ = 1.5) was applied to the
artificial data set.
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In Table 6.7 the obtained mean correlation coefficients for the RBF kernel in
the second layer are listed. The selected kernel parameter is σ = 0.7.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9440 0.8896 0.8236 0.7552

40 0.9361 0.8784 0.8076 0.7345

30 0.9273 0.8738 0.8061 0.7349

20 0.9163 0.8672 0.8029 0.7343

Table 6.7: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The fading RBF kernel (σ = 0.7) was applied to the artificial data set.

Again it is not surprising, that the performance decreases, when the task gets
harder. In other words, a worse prediction quality is achieved, when the number
of time steps to predict increases.
However, in contrast to Section 6.2.1, the results indicate that the polynomial
kernel is better suited for the artificial data set. It significantly outperforms
the RBF kernel when the prediction encompasses more time steps.

In Figures 6.16 to 6.20 , prediction results for 50ms, 100ms, 150ms and 200ms
are visually presented using 50 features during linear regression for the poly-
nomial kernel. For a better comparison, the target frames are the same for all
prediction tasks. Accordingly, the corresponding input frames start one, two,
three and four time steps earlier.
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Figure 6.16: Target frames for predictions of one, two, three and four time steps
ahead.
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Figure 6.17: Predicted frames for the prediction of one time step ahead.
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Figure 6.18: Predicted frames for the prediction of two time steps ahead.
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Figure 6.19: Predicted frames for the prediction of three time steps ahead.
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Figure 6.20: Predicted frames for the prediction of four time steps ahead.

No Fading in Second Layer

In Table 6.8 the obtained mean correlation coefficients for the polynomial kernel
in the second layer are listed. Kernel parameters are d = 5 and θ = 1.5. No
fading takes place in the second layer.

Number of Features Correlation Coefficients

One Two Three Four

50 0.9501 0.9339 0.9058 0.8676

40 0.9473 0.9317 0.9040 0.8657

30 0.9410 0.9199 0.8854 0.8397

20 0.9278 0.8981 0.8559 0.8046

Table 6.8: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The polynomial kernel (d = 5 and θ = 1.5) was applied to the artificial
data set.

In Table 6.9 the obtained mean correlation coefficients for the RBF kernel in
the second layer are listed. The selected kernel parameter is σ = 0.7.
As in the preceding experiment, the results indicate that the polynomial kernel
is better suited for the artificial data set. It significantly outperforms the RBF
kernel when the prediction encompasses more time steps.
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Number of Features Correlation Coefficients

One Two Three Four

50 0.9255 0.8623 0.7908 0.7198

40 0.9187 0.8563 0.7848 0.7134

30 0.9092 0.8511 0.7825 0.7129

20 0.8947 0.8407 0.7752 0.7079

Table 6.9: Correlation Coefficients for one, two, three and four predicted time
steps depending on the number of used extraced features during linear regres-
sion. The RBF kernel (σ = 0.7) was applied to the artificial data set.

6.3 Comparison

The results of Sections 6.1 and 6.2 are compared to each other in this section.
These comparisons answer questions like “Is the stacked architecture capable
of exhibiting an equivalent computational behaviour as a recurrent neural net-
work?, “Does fading in the second layer make sense?” and “Is there a difference
between noisy, real-world data and artificially generated data?”.

6.3.1 Stacked Architecture vs. LSM

The prediction task using the real-world data set is performed by the stacked
architecture as well as by the LSM. In Table 6.10 the resulting correlation co-
efficients taken from Tables 6.1, 6.2 and 6.3 are shown.

Learning Model Parameters Correlation Coefficients

One Two Three Four

Stacked Architecture d =5, θ = 1.5 0.9500 0.8780 0.8038 0.7326

Stacked Architecture σ = 0.7 0.9514 0.8820 0.8111 0.7439

LSM λ = 2, w = 1 0.9122 0.8716 0.8023 0.7255

LSM λ = 1, w = 0.5 0.9117 0.8662 0.7961 0.7204

Table 6.10: Correlation Coefficients for one, two, three and four predicted time
steps corresponding to the optimal parameter combinations of the LSM and
the stacked architecture using the polynomial kernel (d =5, θ = 1.5) and RBF
kernel (σ = 0.7).

Comparing the results indicates that the stacked architecture meets the com-
putational capabilities of the LSM. It even exceeds it when considering the
correlation coefficients for four time steps ahead.

It is to mention that multi-tasking is feasable with stacked architecture as well.
The features are extracted in an unsupervised manner and are thus not task
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dependent.
Nevertheless there exist several benefits if using the LSM approach. One

major difference concerns the number of training sequences which is limited by
the kernel method itself. Because of those computational constraints only 150
sequences can be used for training resulting in matrices of approximately 4000 ×
4000 elements that have to be processed. That limitation could be a disadvan-
tage compared to the LSM, if not all possible input variations (ball trajectories)
are covered in the training period. Furthermore the stacked architecture can
only be applied offline, whereas the LSM provides any-time computing (see
Section 4.1), thus as soon as input is fed into the network the corresponding
output is available.

In Section 7.1 a potential enlargement of the training data size is discussed
by taking into account kernel methods that include a greedy, sparse or iterative
approach.

6.3.2 Fading vs. Non Fading

The prediction task is performed by the stacked architecture - one time incor-
porating the fading property in the second layer and one time without it. First,
the results of the real-world data set are considered using 50 features for the
linear regression. In Table 6.11 the results from Tables 6.2, 6.3, 6.4 and 6.5 are
compared.

Applied Kernel Fading Correlation Coefficients

One Two Three Four

polynomial kernel yes 0.9500 0.8780 0.8038 0.7326

RBF kernel yes 0.9514 0.8820 0.8111 0.7439

polynomial kernel no 0.9492 0.8783 0.8047 0.7334

RBF kernel no 0.9452 0.8801 0.8125 0.7472

Table 6.11: Correlation Coefficients for one, two, three and four predicted time
steps corresponding to fading/ non-fading RBF kernel (σ = 0.7 and 50 features
used) and polynomial kernel (d =5, θ = 1.5 and 50 features used).

Regarding the real-world data set, it does not care whether the fading property
is incorporated in the second layer. The question arises if fading is really needed
in the second layer? Or does temporal integration suffice?

The answer is provided by considering the artifical data set. The results of the
artificial data set are considered using 50 features for the linear regression. In
Table 6.12 the results from Tables 6.6, 6.7, 6.8 and 6.9 are compared.

In case of the polynomial kernel the additional fading does not improve the
results significantly whereas in case of the RBF kernel the fading does have an
effect on the correlation coefficients.
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Applied Kernel Fading Correlation Coefficients

One Two Three Four

polynomial kernel yes 0.9508 0.9346 0.9061 0.8675

RBF kernel yes 0.9440 0.8896 0.8236 0.7552

polynomial kernel no 0.9501 0.9339 0.9058 0.8676

RBF kernel no 0.9255 0.8623 0.7908 0.7198

Table 6.12: Correlation Coefficients for one, two, three and four predicted time
steps corresponding to fading/ non-fading RBF kernel (σ = 0.7 and 50 features
used) and polynomial kernel (d =5, θ = 1.5 and 50 features used).

In conclusion, including fading in the second layer does not always improve the
obtained results and certainly depends on the task and the data set that is
used. However, regarding the RBF kernel applied to the artificial data set a
significant improvement can be noticed.

6.3.3 Real Data vs. Artificial Data

The last comparison involves both data sets - the real-world and the artificial
data set. The following comparisons reflect the significant difference (see 5.3
Section for an overview) between the two data sets.

Data Set Applied Kernel Correlation Coefficients

One Two Three Four

Real polynomial kernel 0.9500 0.8780 0.8038 0.7326

Real RBF kernel 0.9514 0.8820 0.8111 0.7439

Artificial polynomial kernel 0.9508 0.9346 0.9061 0.8675

Artificial RBF kernel 0.9440 0.8896 0.8236 0.7552

Table 6.13: Correlation Coefficients for one, two, three and four predicted time
steps corresponding to fading RBF kernel (σ = 0.7 and 50 features used) and
polynomial kernel (d =5, θ = 1.5 and 50 features used). Both data sets are
used in the experiments.

The results indicate that a much better prediction quality is achievable with
the artificially generated data set using the polynomial kernel.



CHAPTER 6. RESULTS 56

Data Set Applied Kernel Correlation Coefficients

One Two Three Four

Real polynomial kernel 0.9492 0.8783 0.8047 0.7334

Real RBF kernel 0.9452 0.8801 0.8125 0.7472

Artificial polynomial kernel 0.9501 0.9339 0.9058 0.8676

Artificial RBF kernel 0.9255 0.8623 0.7908 0.7198

Table 6.14: Correlation Coefficients for one, two, three and four predicted time
steps corresponding to RBF kernel (σ = 0.7 and 50 features used) and polyno-
mial kernel (d =5, θ = 1.5 and 50 features used). Both data sets are used in
the experiments.

6.4 Additional Parameter Settings

The question arises if better results are achievable using other parameter set-
tings, e.g. using a larger time window in the second layer or using an other
weighting schema.

During the experimental phase a lot of different parameter settings and combi-
nations of these settings were tested. A larger temporal integration was achieved
by concatenating up to four input vectors after they were reduced in dimension.
Different fading speeds, that correspond to different weighting schemas, were
tested as well, including exponential decay.

The correlation coefficients that are reported in Tables 6.2 and 6.3 were not
exceeded.



Chapter 7

Conclusion

A stacked architecture consisting of two layers has been presented that incor-
porates three basic operations, i.e. analog fading memory, non-linear kernel
functions and linear readouts, to model the computational function of a cor-
tical microcircuit. The presented approach can be seen as a digitalized form
of a recurrent neural network, the LSM, it is compared to . Furthermore the
stacked architecture has been applied to two different data sets.

The architecture seems to reflect properties that occur in biological organisms
when sensory information is processed. The first layer serves as preprocessing
unit that extracts salient features in order to compress the input data as much
as possible without loosing essential information.

The second layer implements temporal integration by combining the ex-
tracted features of successive time steps. A non-linear kernel equipped with a
fading property is applied to the compressed, temporally enlarged data gener-
ating non-linear combinations of items at different locations in space and now
in time as well. Features are extracted in an unsupervised manner by using
kernel PCA. The operation in high-dimensional spaces enables the application
of simple learning algorithms such as linear regression in order to obtain the
desired findings.

7.1 Next Experiments

According to the results in Chapter 6, the proposed stacked architecture can
be applied successfully to computational tasks such as prediction. It is by all
means comparable to the computational capabilities of the LSM. It sometimes
even outperforms the LSM in the prediction task.

However, the limitations in processing large data sets pose a serious disadvan-
tage. This problem needs to be solved, if the idea of the stacked architecture is
to be further pursued in the future.

Possible solutions might be found by contemplating about replacing the
standard kernel algorithms by methods that can handle larger data sets. In the
following, some existing methods that propose iterative or greedy approaches
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are considered.

Iterative Kernel Principal Component Analysis [19] results from kernelizing
the General Hebbian Algorithm(GHA)([9], [26]) that represents an iterative
method for PCA to solve the eigenvalue problem when the size of the covari-
ance matrix is large. This means that the covariance matrix does not have to
be computed and stored directly. Carrying out the resulting Kernel Hebbian
Algorithm equals performing GHA in a high dimensional space.

Sparse Greedy Matrix Approximation [3] tries to find a good subset of basis
functions, spanning a subspace. Only samples of this subset are used to ap-
proximate the original kernel matrix K by a matrix K̃ = K · PS , where PS

denotes the projector on the subspace S.

Spectral Greedy Embedding by Ouimet [20], Greedy Kernel Principal Component
by Franc [27] and Kernel Matching Pursuit for Large Datasets [21] follow similar
approaches.

7.2 Open Questions

Including a separation into parallel pathways (see Chapter 1) in the stacked
architecture as preprocessing step seems promising for further research. Sev-
eral (preprocessing) units in the first layer can be used in parallel performing
different algorithms for feature extraction. Each unit outputs an other repre-
sentation of the data. This idea reminds of a combination of different kernels
as it is proposed by Joachims [16] where a combination of two kernels

K = λ · K1 + (1 − λ) · K2 (7.1)

enables the utilization of two different measures of similarity in a SVM classifica-
tion task. A simple rule is infered based on the theoretical results. Combining
kernels in a SVM is beneficial, if both kernels yield approximately the same
prediction quality individually, while their support vectors are different. In an
unsupervised learning environment, that rule could be interpreted as follows.
A combination of kernels is advantageous, if the kernels perform equally well
as individuals while extracting features that differ in their representation of the
data.

The second layer is then capable of making use of these different views of the
data structure by combining features of several preprocessing units and time
steps.

In another research step, the stacked architecture could be enlarged by several
layers, so that the two-layered approach described in this thesis is only a small
part of it. Furthermore connections, that reflect backward from higher layers
into lower ones, could provide a form of feedback. Such an implementation
would certainly be more cortex-like and thus be potentially of advantage.
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Source Code

A.1 Generating Data

A.1.1 generateData.m

%creates a cell array containing artificial raster data

%parameters are to be set in config.m

%resulting cell array is stored in artificialData.mat File

clear all

config;

designedCoord

numSequences = length(caDesignedCoord);

for j = 1:numSequences

temp_matrix = caDesignedCoord{j};

temp_size = size(temp_matrix);

m_raster = [];

for i = 1:temp_size(1)

temp_x = temp_matrix(i,1);

temp_y = temp_matrix(i,2);

temp_r = temp_matrix(i,3);

single_frame = convertInfos(temp_x,temp_y,temp_r);

m_raster(i, 1:(N_Y*N_X) ) = single_frame;

clear single_frame;

end

caDesignedRaster{j} = m_raster;

end

save artificialData.mat caDesignedRaster caDesignedCoord
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A.1.2 config.m

%parameters for creating artificial raster data are to be set

%it is recommended to alter only NUM_DESIGNED_SESSIONS,

%ROWS_PER_DESIGNED_SESSION and the radius range

global caDesignedCoord

global caDesignedRaster

global RES_X

RES_X = 320;

global RES_Y

RES_Y = 240;

global N_X

N_X = 6;

global N_Y

N_Y = 8;

global D_X

D_X = RES_X/N_Y;

global D_Y

D_Y = RES_Y/N_X;

% amount of sessions to be created by designedSessions.m

global NUM_DESIGNED_SESSIONS

NUM_DESIGNED_SESSIONS = 100;

global R_DESIGNED

R_DESIGNED=50;

global R_DESIGNED_MAX

R_DESIGNED_MAX = 200;

%only starting number equals die fastest velocity

%now three different speeds are feasable [15 30 45]

global ROWS_PER_DESIGNED_SESSION

ROWS_PER_DESIGNED_SESSION = 15;

A.1.3 designedCoord.m

caDesignedCoord = cell(NUM_DESIGNED_SESSIONS, 1);

n_steps = ROWS_PER_DESIGNED_SESSION;
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y_start = rand(NUM_DESIGNED_SESSIONS, 1) * RES_Y;

y_end = rand(NUM_DESIGNED_SESSIONS, 1) * RES_Y;

x_step = (RES_X) / (n_steps-1);

%conventional way, where only one radius value is defined

% r = R_DESIGNED*ones(1,n_steps);

radiusArray = floor((rand(1,NUM_DESIGNED_SESSIONS)*80)+20);

velocityArray = ceil(rand(1,NUM_DESIGNED_SESSIONS)*3);

for session = 1:NUM_DESIGNED_SESSIONS

%assign a radius out of randomly generated radius value array

r = radiusArray(session) * ones(1,n_steps);

if(mod(session,2))

x = [0: x_step: RES_X];

else

x = [RES_X : -x_step : 0];

end

%y_end = RES_Y-y_start(session);

y_step = (y_end(session) - y_start(session)) / (n_steps-1);

tmpMatrix = [];

tmpMatrix = [x; [y_start(session):y_step:y_end(session)]; r]’;

caDesignedCoord{session} = [interp(tmpMatrix(:,1),velocityArray(session))

interp(tmpMatrix(:,2),velocityArray(session))

interp(tmpMatrix(:,3),velocityArray(session)) ];

end

A.1.4 convertInfos.m

function raster_record = convertInfos(posX, posY, radius)

%load necessary values from config.m

config

if radius < 5

radius=5;

end

width = D_X/radius;

height = D_Y/radius;

myArea = width*height;
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startX = max(floor(((posX-radius))/D_X),0);

endX = min(floor((posX+radius)/D_X),N_Y-1);

startY = max(floor(((posY-radius))/D_Y),0);

endY = min(floor(((posY+radius))/D_Y),N_X-1);

if (startX>endX) | (startY>endY) | (endY>=N_X) | (endX>=N_Y)

[startX startY; endX endY]

end

raster_local = zeros(1, N_Y*N_X);

for y = startY:endY

for x=startX:endX

xl = (x*D_X-posX)/radius;

xr = xl+width;

yb = (y*D_Y-posY)/radius;

yt = yb+height;

raster_local( 1, y*N_Y+x+1) = (getSensVal(xl,xr,yb,yt))/myArea;

end

end

raster_record = raster_local;

A.1.5 convertInfos.m

function OUT = getSensVal(xl,xr,yb,yt)

OUT = triCirc(xr,xl,yb)-triCirc(yt,yb,xr)-triCirc(xr,xl,yt)+triCirc(yt,yb,xl);

function OUT = triCirc(r,l,b) %entspricht x=r,y=l,z=b

if ((b > 1) | (b < (-1)))

OUT = ((atan2(b,r)-atan2(b,l))*0.5);

else

A = sqrt(1-b*b);

if(((-A) <=l) & (r <= A))

OUT = (-0.5*b*(r-l));

elseif (A <= l)

OUT = ((atan2(b,r)-atan2(b,l))*0.5);

elseif (r <= (-A))

OUT = ((atan2(b,r)-atan2(b,l))*0.5);

elseif ((-A <= l) & (l <= A) & (A <= r))

OUT = ((-b*(A-l) + atan2(b,r) - atan2(b,A))*0.5);

elseif ((l<=-A) & (-A<=r) & (r<=A))

OUT = ((-b*(r + A) + atan2(b,-A) - atan2(b,l))*0.5);

elseif ((l<=-A) & (A<=r))

OUT = ((atan2(b,-A) - atan2(b,l) - b*(A+A) + atan2(b,r) -

atan2(b,A))*0.5);
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else

OUT = (0.0);

end

end

A.2 Apply Stacked Architecture

A.2.1 kernelArchitecture.m

%main file

clear all

initParameters

makeInput01

fprintf(’Dimension Reduction using kernel KPCA(%s):\n’,firstKernel)

performKpca

featureExtractionKpca

disp(’Second Layer:’)

makeInput02

disp(’Fading Kernel PCA’)

fprintf(’Second stage kernel KPCA(fading %s):\n’, secondKernel)

performKpca02Fading

featexExtractionKpca02Fading

regressionOneTimeStep

regressionTwoTimeSteps

regressionThreeTimeSteps

regressionFourTimeSteps

A.2.2 initParameters.m

%general parameters

lengthTrain = 150;

lengthTest = 100;

%up to four time steps is to be predicted

predTime = 4;

%how many time steps the compound vector contains

numTsSecond = 2;

%###

%first layer parameter
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%determines the number of eigenvectors used to extract features after the

%first layer

numEvFirst = 30;

%kernel parameters for first stage

%kernel_type 1 -> rbf kernel_type 2 -> poly kernel_type 3 -> sigmoid

kernelTypeFirst = 2;

%kernel PCA

rbfVar01 = 0.9;

polyInh01 = 1.5;

sigVar01 = 0.1;

global firstKernel

switch kernelTypeFirst

case 1

firstKernel = ’radial basis function kernel’;

case 2

firstKernel = ’polynomial kernel’;

case 3

firstKernel = ’sigmoidal kernel’;

otherwise

firstKernel = ’no kernel function specified’;

end

%###

%second layer kernel parameters

kernelTypeSecond = 2;

%kernel_type 1 -> rbf kernel_type 2 -> poly kernel_type

rbfVar02 = 0.9;

polyInh02 = 1.5;

%determines the number of eigenvectors used to extract features after the

%second layer

numEvSecond = 50;

%defines the number of eigenvectors used

evFirstUsed = 10;

%offset of the sliding window

step = evFirstUsed;

%length of a second layer input vector

lengthVector02 = evFirstUsed * numTsSecond;

%notice the different weight vectors regarding the used kernel
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fadingWeights = ones(lengthVector02,1);

fadingWeights(1:10) = fadingWeights(1:10) * 0.5;

fadingWeights(11:20) = fadingWeights(11:20) * 1;

global secondKernel

switch kernelTypeSecond

case 1

secondKernel = ’radial basis function kernel’;

case 2

secondKernel = ’polynomial kernel’;

otherwise

secondKernel = ’no kernel function specified’;

end

A.2.3 makeInput01.m

load ./trainingSet.mat

load ./testSet.mat

disp(’building training/test/target sets for

predictions of 1/2/3/4 time steps ahead’);

input01Train = [];

coInput01Train = [];

caInput01Train = [];

pred1FirstTrain = [];

pred2FirstTrain = [];

pred3FirstTrain = [];

pred4FirstTrain = [];

actual02Train = [];

coActual02Train = [];

pred1SecondTrain = [];

pred2SecondTrain = [];

pred3SecondTrain = [];

pred4SecondTrain = [];

coPred1SecondTrain = [];

coPred2SecondTrain = [];

coPred3SecondTrain = [];

coPred4SecondTrain = [];

for i=1:lengthTrain

tmp = caTrainingSet{i}’;

input01Train = [input01Train tmp(:,1:end-predTime)];

caInput01Train{i} = tmp(:,1:end-predTime);

pred1FirstTrain = [pred1FirstTrain tmp(:, 2 : end-(predTime-1))];
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pred2FirstTrain = [pred2FirstTrain tmp(:, 3 : end-(predTime-2))];

pred3FirstTrain = [pred3FirstTrain tmp(:, 4 : end-(predTime-3))];

pred4FirstTrain = [pred4FirstTrain tmp(:, 5 : end-(predTime-4))];

clear inputLength; inputLength = size(tmp,2) - predTime;

clear targetLength; targetLength = inputLength-(numTsSecond-1);

actual02Train = [actual02Train tmp(:, numTsSecond:

numTsSecond + targetLength-1 )];

pred1SecondTrain = [pred1SecondTrain tmp(:,1 + numTsSecond :

1 + numTsSecond+targetLength-1)];

pred2SecondTrain = [pred2SecondTrain tmp(:,2 + numTsSecond :

2 + numTsSecond+targetLength-1)];

pred3SecondTrain = [pred3SecondTrain tmp(:,3 + numTsSecond :

3 + numTsSecond+targetLength-1)];

pred4SecondTrain = [pred4SecondTrain tmp(:,4 + numTsSecond :

4 + numTsSecond+targetLength-1)];

tmp01 = caCoordTrain{i};

coInput01Train{i} = tmp01(1:end-predTime,1:3);

coActual02Train{i} = tmp01(numTsSecond:numTsSecond + targetLength-1,1:3);

coPred1SecondTrain{i} = tmp01(1 + numTsSecond:1 +

numTsSecond+targetLength-1,1:3);

coPred2SecondTrain{i} = tmp01(2 + numTsSecond:2 +

numTsSecond+targetLength-1,1:3);

coPred3SecondTrain{i} = tmp01(3 + numTsSecond:3 +

numTsSecond+targetLength-1,1:3);

coPred4SecondTrain{i} = tmp01(4 + numTsSecond:4 +

numTsSecond+targetLength-1,1:3);

clear tmp tmp01

end

input01Test = [];

coInput01Test = [];

caInput01Test = [];

pred1FirstTest = [];

pred2FirstTest = [];

pred3FirstTest = [];

pred4FirstTest = [];

actual02Test = [];

coActual02Test = [];

pred1SecondTest = [];

pred2SecondTest = [];

pred3SecondTest = [];
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pred4SecondTest = [];

coPred1SecondTest = [];

coPred2SecondTest = [];

coPred3SecondTest = [];

coPred4SecondTest = [];

for i=1:lengthTest

tmp = caTestSet{i}’;

input01Test = [input01Test tmp(:,1:end-predTime)];

caInput01Test{i} = tmp(:,1:end-predTime);

pred1FirstTest = [pred1FirstTest tmp(:, 2 : end-(predTime-1))];

pred2FirstTest = [pred2FirstTest tmp(:, 3 : end-(predTime-2))];

pred3FirstTest = [pred3FirstTest tmp(:, 4 : end-(predTime-3))];

pred4FirstTest = [pred4FirstTest tmp(:, 5 : end-(predTime-4))];

clear inputLength; inputLength = size(tmp,2) - predTime;

clear targetLength; targetLength = inputLength-(numTsSecond-1);

actual02Test = [actual02Test tmp(:, numTsSecond :

numTsSecond + targetLength-1)];

pred1SecondTest = [pred1SecondTest tmp(:,1 + numTsSecond :

1 + numTsSecond+targetLength-1)];

pred2SecondTest = [pred2SecondTest tmp(:,2 + numTsSecond :

2 + numTsSecond+targetLength-1)];

pred3SecondTest = [pred3SecondTest tmp(:,3 + numTsSecond :

3 + numTsSecond+targetLength-1)];

pred4SecondTest = [pred4SecondTest tmp(:,4 + numTsSecond :

4 + numTsSecond+targetLength-1)];

tmp01 = caCoordTest{i};

coInput01Test{i} = tmp01(1:end-predTime,1:3);

coActual02Test{i} = tmp01(numTsSecond:numTsSecond + targetLength-1,1:3);

coPred1SecondTest{i} = tmp01(1 + numTsSecond:

1 + numTsSecond+targetLength-1,1:3);

coPred2SecondTest{i} = tmp01(2 + numTsSecond:

2 + numTsSecond+targetLength-1,1:3);

coPred3SecondTest{i} = tmp01(3 + numTsSecond:

3 + numTsSecond+targetLength-1,1:3);

coPred4SecondTest{i} = tmp01(4 + numTsSecond:

4 + numTsSecond+targetLength-1,1:3);

clear tmp tmp01

end
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A.2.4 performKpca.m

%clear all

%initializing parameter

%initializing variables

X_train = input01Train;

disp(’Start calculating the kernel matrix’);

%carry out Kernel PCA

KmTrain = myKernel(X_train, X_train, kernelTypeFirst,

rbfVar01, polyInh01, sigVar01);

sizeKmTrain = size(KmTrain,2);

UmTrain = ones(sizeKmTrain, sizeKmTrain)/sizeKmTrain;

% centering in feature space!

KmTrainN = KmTrain - UmTrain*KmTrain - KmTrain*UmTrain

+ UmTrain*KmTrain*UmTrain;

disp(’Start diagonalizing the kernel matrix’);

[evecsFirstLayer, evalsFirstLayer] = eig(KmTrainN);

evalsFirstLayer = real(diag(evalsFirstLayer));

[dummy,esort] = sort(evalsFirstLayer);

esort=flipdim(esort,1);

evalsFirstLayer = evalsFirstLayer(esort);

evecsFirstLayer = evecsFirstLayer(:,esort);

for i=1:sizeKmTrain,

evecsFirstLayer(:,i) = evecsFirstLayer(:,i)/(sqrt(evalsFirstLayer(i)));

end

A.2.5 featureExtractionKpca.m

disp(’Start extracting features’);

numberOfTrainSamples = size(X_train,2);

KmProjN = KmTrainN;

features01Train = zeros(numEvFirst,numberOfTrainSamples);

features01Train = evecsFirstLayer(:,1:numEvFirst)’ * KmProjN; %’

X_train = input01Train;

X_test = input01Test;

numberOfTestSamples = size(X_test,2);

UmTrain=ones(numberOfTrainSamples,numberOfTrainSamples)/numberOfTrainSamples;
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UmTest=ones(numberOfTrainSamples,numberOfTestSamples)/numberOfTrainSamples;

KmProj = myKernel(X_train, X_test, kernelTypeFirst,

rbfVar01, polyInh01, sigVar01);

clear KmProjN

KmProjN = KmProj - KmTrain * UmTest - UmTrain * KmProj

+ UmTrain * KmTrain * UmTest;

features01Test = evecsFirstLayer(:,1:numEvFirst)’ * KmProjN;

A.2.6 makeInput02.m

%building compound vectors for second layer

features = features01Train(1:evFirstUsed,:);

features = features./max(max(features));

input02Train = [];

for i = 1:length(coInput01Train)

tmp_input = [];

for j = 1:(size(coActual02Train{i},1))

tmp = features(:,j:(j+numTsSecond-1));

tmp = reshape(tmp,size(tmp,1)*size(tmp,2),1);

tmp_input = [tmp_input tmp];

end

features = features(:,1+size(coInput01Train{i},1):end);

input02Train = [input02Train tmp_input];

clear tmp

end

clear feat_vec tmp_input features

input02Test = [];

features = features01Test(1:evFirstUsed,:);

features = features./max(max(features));

for i = 1:length(coInput01Test)

tmp_input = [];

for j = 1:(size(coActual02Test{i},1))

tmp = features(:,j:(j+numTsSecond-1));

tmp = reshape(tmp,size(tmp,1)*size(tmp,2),1);

tmp_input = [tmp_input tmp];

end
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features = features(:,1+size(coInput01Test{i},1):end);

input02Test = [input02Test tmp_input];

clear tmp

end

A.2.7 performKpca02Fading.m

kernelType = kernelTypeSecond;

if(kernelType == 1)

fprintf(’Second Layer: using rbf kernel with parameter: %2.1f\n’,rbfVar02)

elseif(kernelType == 2)

fprintf(’Second Layer: using poly kernel with parameter: %2.2f\n’,polyInh02)

end

%initializing variables

X_train = input02Train;

disp(’Start calculating the kernel matrix’);

KmTrain = myKernelFading(X_train, X_train, kernelType,

rbfVar02, polyInh02, fadingWeights);

sizeKmTrain = size(KmTrain,2);

UmTrain = ones(sizeKmTrain, sizeKmTrain)/sizeKmTrain;

% centering in feature space!

KmTrainN = KmTrain - UmTrain*KmTrain - KmTrain*UmTrain

+ UmTrain*KmTrain*UmTrain;

disp(’Start diagonalizing the kernel matrix’);

%diagonalizing first kernel matrix and plotting the biggest eigenvalues

[evecsSecondLayer, evalsSecondLayer] = eig(KmTrainN);

evalsSecondLayer = real(diag(evalsSecondLayer));

[dummy,esort] = sort(evalsSecondLayer);

esort = flipdim(esort,1);

evalsSecondLayer = evalsSecondLayer(esort);

evecsSecondLayer = evecsSecondLayer(:,esort);

for i=1:sizeKmTrain,

evecsSecondLayer(:,i) = evecsSecondLayer(:,i)/(sqrt(evalsSecondLayer(i)));

end

A.2.8 featexExtractionKpca02Fading

disp(’Start extracting features’);

numberOfTrainSamples = size(X_train,2);
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KmProjSecondN = KmTrainN;

features02Train = zeros(numEvSecond,numberOfTrainSamples);

features02Train = evecsSecondLayer(:,1:numEvSecond)’ * KmProjSecondN; %’

X_test = input02Test;

numberOfTestSamples = size(X_test,2);

UmTrain = ones(numberOfTrainSamples,numberOfTrainSamples)/numberOfTrainSamples;

UmTest = ones(numberOfTrainSamples,numberOfTestSamples)/numberOfTrainSamples;

KmProj = myKernelFading(X_train, X_test, kernelType,

rbfVar02, polyInh02, fadingWeights);

clear KmProjSecondN

KmProjSecondN = KmProj - KmTrain*UmTest - UmTrain*KmProj

+ UmTrain*KmTrain*UmTest;

features02Test = evecsSecondLayer(:,1:numEvSecond)’ * KmProjSecondN; %’

A.2.9 regressionOneTimeStep

prediction = [];

coefficients02Train = [];

target = [];

disp(’Performing regression - One Time Step’);

trainingData = pred1SecondTrain;

testingData = pred1SecondTest;

ccsTrain2nd = [];

features = features02Train;

target = trainingData;

for j = (numEvSecond/10):-1:2

numberOfUsedFeatures = j*10;

clear coefficients

for i = 1:48

coefficients(:,i) = regress(target(i,:)’,

[ones(size(features(1:numberOfUsedFeatures,:),2),1)

features(1:numberOfUsedFeatures,:)’] );

prediction(i,:) = ([ones(size(features(1:numberOfUsedFeatures,:),2),1)

features(1:numberOfUsedFeatures,:)’]

* coefficients(:,i))’;

end
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coefficients02Train{j} = coefficients;

[r,p] = corrcoef(target, prediction);

cc = r(2);

ccsTrain2nd = [ccsTrain2nd; [numberOfUsedFeatures cc]];

end

features = features02Test;

ccsTest2nd = []; prediction = [];

target = testingData;

for j = (numEvSecond/10):-1:2

numberOfUsedFeatures = j*10;

for i = 1:48

prediction(i,:) = ([ones(size(features(1:numberOfUsedFeatures,:),2),1)

features(1:numberOfUsedFeatures,:)’]

* coefficients02Train{j}(:,i))’;

end

[r,p] = corrcoef(target, prediction);

cc = r(2);

ccsTest2nd = [ccsTest2nd; [numberOfUsedFeatures cc]];

if (numberOfUsedFeatures == numEvSecond)

predictionOneAhead = prediction;

end

end

CcsTrain{1} = ccsTrain2nd;

CcsTest{1} = ccsTest2nd;

A.2.10 myKernel.m

function K = myKernel(x, y, kernelTypeFirst, rbfVar01, polyInh01, sigVar01)

if (kernelTypeFirst == 1)

for i=1:size(x,2)

for j=1:size(y,2)

K(i,j) = exp(-norm(x(:,i)-y(:,j))^2/rbfVar01);

end

end

elseif(kernelTypeFirst == 2)

K = (((x’ * y)/(size(x,1))) + polyInh01).^3;

else

K = tanh(sigVar01*((x’*y)));

end
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A.2.11 myKernelFading.m

function K = myKernelFading(x, y, kernelType, rbfVar01, polyInh01, fadingWeights)

if (kernelType == 1)

for i=1:size(x,2)

for j=1:size(y,2)

K(i,j) = exp(-norm(((x(:,i)-y(:,j)).* fadingWeights))^2/rbfVar01);

end

end

elseif(kernelType == 2)

K = (((x.*repmat(fadingWeights,1, size(x,2)))’ *

(y.*repmat(fadingWeights,1, size(y,2))))/(size(x,1)) + polyInh01).^5;

end

A.3 Analyzing Data

A.3.1 analyzeData.m

plotEvFeatures

config

plotRasterSession(input01Train’)

plotRasterSession2(Pred1SecondTest’, predictionOneAhead’)

A.3.2 plotEvFeatures.m

%plots the decay of eigenvalues from first and second layer

%in addition, the extracted features from both layers are depicted

numberOfEvals = 30;

figure;

subplot(2,3,1);

plot(evalsFirstLayer(1:numberOfEvals));

title(’EW - first layer’);

subplot(2,3,2)

imagesc(features01Train(1:numberOfEvals,:)’)

title(’1st - training features’);

subplot(2,3,3)

imagesc(features01Test(1:numberOfEvals,:)’)

title(’1st - test features’);

subplot(2,3,4);

plot(evalsSecondLayer(1:numberOfEvals));

title(’EW - second layer’);

subplot(2,3,5)
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imagesc(features02Train(1:numberOfEvals,:)’)

title(’2nd - training features’);

subplot(2,3,6)

imagesc(features02Test(1:numberOfEvals,:)’)

title(’2nd - test features’);

A.3.3 plotRasterSession.m

function plotRasterSession(m_session)

%plots two sequences of raster records one after another

%Configuration parameters concerning number of slices in x and y

%dimension as well as x and y resolution are taken from config.m

if ~exist(’N_Y’, ’var’)

config

end

%checking range

m_session = m_session .* (m_session>=0);

m_session(m_session>1) = 1;

for i = 1:size(m_session, 1)

figure(1);

%figure;

plotRaster ( m_session(i,:), N_Y, N_X, RES_X, RES_Y );

end

A.3.4 plotRasterSession2.m

function plotRasterSession2(m_session1, m_session2)

if ~exist(’N_Y’, ’var’)

config

end

%checking range

m_session1 = m_session1 .* (m_session1>=0); m_session1(m_session1>1) = 1;

m_session2 = m_session2 .* (m_session2>=0); m_session2(m_session2>1) = 1;

for i = 1:size(m_session1, 1)

figure(1); plotRaster ( m_session1(i,:), N_Y, N_X, RES_X, RES_Y );

figure(2); plotRaster ( m_session2(i,:), N_Y, N_X, RES_X, RES_Y );

end
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