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Abstract

The neocortex has a distinctive modular and laminar structure, that exhibits a

characteristic anatomical organization into six cortical layers. One may conjec-

ture that this stereotypical organization is distinguished by specific functional

properties that are advantageous for many information processing domains in

diverse cortical areas. This thesis investigates the computational operations in

the neocortex and how they are related to the underlying stereotypical circuit

structure.

It is shown by means of computer simulations of detailed cortical microcir-

cuit models that the biologically realistic lamina-specific synaptic connectivity

structure exhibits specific computational advantages over various types of control

structures that consist of the same components. Several aspects of the connectiv-

ity structures are analyzed for their impact on the information processing capa-

bilities of cortical microcircuit models. It turns out that structures that support

noise suppression enhance the computational capabilities of cortical microcircuit

models.

Furthermore the analysis of multi-electrode recordings in cat primary visual

cortex demonstrates that the temporal dynamics of information is not compatible

with simple computational models based on linear operations. The diversity

of temporal profiles recorded at different electrodes, the superposition of slowly

fading memory from different preceding stimuli, and the fact that linear readout

models are sufficient even for nonlinear processing tasks can be seen as support

for recently proposed computational models based on nonlinear dynamic systems

theory. It is demonstrated that this characteristic features can be replicated by

a detailed model for cat primary visual cortex.
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Zusammenfassung

Der Neokortex hat eine charakteristische modulare und laminare Struktur, welche

eine typische anatomische Organisation in sechs Layern aufweist. Es wird ver-

mutet, dass diese stereotypische Organisation durch spezifische funktionelle Eigen-

schaften ausgezeichnet ist, welche für viele Informationverarbeitungsgebiete in

unterschiedlichen kortikalen Arealen vorteilhaft ist. Diese Arbeit untersucht die

Rechenoperationen im Neokortex und wie diese von der zugrunde liegenden stereo-

typischen Verbindungsstruktur abhängen.

Es wird durch Computersimulationen von detaillierten kortikalen Mikroschalt-

kreismodellen gezeigt, dass die biologisch realistischen synaptischen Verbindungs-

strukturen einen spezifischen Rechenvorteil gegenüber verschiedenen Kontroll-

strukturen, welche aus den selben Elementen bestehen, haben. Verschiedene As-

pekte der Verbindungsstrukturen werden auf ihre Auswirkungen auf die Informa-

tionsverarbeitungsfähigkeiten von kortikalen Mikroschaltkreismodellen analysiert.

Es stellt sich heraus, dass Strukturen welche Rauschunterdrückung unterstützen,

die Rechenfähigkeiten von kortikalen Mikroschaltkreismodellen verbessern.

Weiters zeigt die Analyse von Mehrelektrodenaufzeichnungen im primären vi-

suellen Kortex der Katze, dass die zeitliche Dynamik von Information nicht mit

einfachen Rechenmodellen, welche auf linearen Operationen basieren, vereinbar

ist. Die Vielfältigkeit der zeitlichen Profile der Aufzeichnungen verschiedener

Elektroden, die Überlagerung der langsam abklingenden Speicherung verschie-

dener vorangegangener Stimuli und die Tatsache, dass lineare Auslesemodelle

sogar für nichtlineare Verarbeitungsaufgaben ausreichend sind, kann als eine

Bestätigung der vor kurzem vorgeschlagenen Rechenmodelle basierend auf nicht-

linearer dynamischer Systemtheorie angesehen werden. Es wird gezeigt, dass diese

charakteristichen Eigenschaften in einem detaillierten Modell für den primären

visuellen Kortex der Katze reproduziert werden können.
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Chapter 1

Introduction

The cerebral cortex of mammals has been the subject of intense study for at least

four decades. Although much has been discovered about the response proper-

ties of individual cortical neurons and about the structure of topographic maps,

little is presently known about the computational operations in cortex and how

they are achieved by the underlying circuit structure. Even for the extensively

studied primary sensory cortices, such as visual cortex, auditory cortex, and so-

matosensory cortex, the direct relation between circuitry and behavior is still

largely unknown.

On the other hand all of these cortical areas have a similar anatomical orga-

nization and are more similar to each other than to other brain areas. Cortical

neurons seem to obey well-defined rules of connectivity across layers that are

characteristic for each layer and have motivated the concept of a cortical column.

This relatively uniform structure of cerebral cortex suggests that the similarity

on the anatomical level extends to the computational level and endows different

areas with specific universal functional properties that are advantageous for many

information processing domains.

A conceptual framework that could explain and analyze the potentially uni-

versal computational capabilities of such microcircuits has been proposed recently

by Maass et al. (2002)1, called liquid state machine. In this framework a cortical

microcircuit is not viewed as an implementation of a single computation, but as

1A closely related computational model was discovered by Jäger & Haas (2004) in the

context of artificial neural networks.

1



1. INTRODUCTION

a more universal computational device that can simultaneously support a large

number of different computations. For this computational model the exact oper-

ations that are carried out by the cortical microcircuit are less relevant as long

as neural readouts can learn to transform the ongoing activity of the cortical mi-

crocircuit at any moment in time into the output that is needed for their specific

computation. Compared to Turing machines or attractor neural networks this

model is more adequate for analyzing parallel real-time computations on time-

varying input streams, such as those occurring in generic cognitive information

processing tasks, because it does not rely on discrete internal states or require

convergence to some stable internal state that are in general hard to control.

Within this framework the investigation of the functional properties of cortical

microcircuits corresponds to the analysis of the information that is available to

neural readouts about results of specific computations.

The aim of this thesis is to gain insight in the functional properties of the

neocortex by linking modeling and experimental studies within the framework of

the liquid state machine. This is achieved by focusing on one hand on computer

simulations of detailed microcircuit models in order to relate certain structural

features of the neocortical circuitry to specific functional properties. On the other

hand a direct experimental test of these computational properties is carried out

by analyzing multi-electrode recordings from cat primary visual cortex (area 17).

Finally a link between model and experiment is established by comparing certain

computational aspects that are found in the experiments to the corresponding

results for the simulation of a detailed computer model of a 1.1× 1.1 mm2 patch

of cat primary visual cortex complemented by a standard model for retina and

LGN.

For the first part of the thesis dedicated to the modeling approach I investigate

in Chapter 2 the general applicability of the concept of the liquid state machine

for computations in neural microcircuits. For this purpose I explore the possible

relationship between the high dimensional dynamics of neural circuits and the

potential capabilities of neural readouts through computer simulations of generic

cortical microcircuits. These neural readouts receive inputs from hundreds of neu-

rons in the circuit and collapse the dynamics of this very high dimensional system

to a low dimensional state. A consequence of this collapse is that each readout

2



neuron can learn to assign equivalence classes of high dimensional microcircuit

states that allow invariant readout responses despite the fact that the neural mi-

crocircuit may never return to the same state. I analyze the capability of readout

neurons to extract clearly structured trajectories from the complex trajectories

of transient states of large neural circuits that can exhibit even convergence to

virtual attractors. The attractor landscape may be completely different for dif-

ferent readout neurons. They are called virtual because they exist only from

the perspective of readout neurons and are not apparent in the high dimensional

trajectory. In principle these virtual attractors make it possible to carry out

specific computations without changing the dynamics of the microcircuit itself.

Furthermore I address the point whether generic neural microcircuits can play a

similar role for neural computing as high dimensional kernels for support vector

machines, which present a large number of nonlinear combinations of components

of the input stream to a readout. This kernel property of neural microcircuits

is tested by comparing the performance of a single linear readout to the per-

formance of sophisticated multi-unit classifiers that do not rely on a nonlinear

preprocessing stage.

In Chapter 3 I apply the framework of the liquid state machine to the analysis

of the potential universal functional properties of the neocortex due to its specific

anatomical organization. The neocortex has a distinctive modular and laminar

organization, that exhibits a characteristic organization into six cortical layers.

Sensory regions are organized as arrays of vertical columns with a diameter of

about 500 µm that are composed of cells with similar response properties. Each

column traverses the six cortical layers and each layer has a unique pattern of

inputs, intrinsic connections and outputs. Layer 1 receives input from non-specific

thalamus, layer 2/3 from higher cortical regions, layer 5 from specific thalamus

and layer 6 receives input from specific thalamic nuclei and multiple brain regions.

On the other hand layer 2/3 projects to higher cortical areas and layer 5 provides

the main output to lower cortical areas or to subcortical structures, but also

projects back to nonspecific thalamus. Finally layer 6 projects to thalamus and

multiple brain regions specialized to process different modalities. Additionally all

layers are highly interconnected with each other forming a precisely structured

microcircuit. Why the neocortex has a laminar design has remained a mystery

3



1. INTRODUCTION

from a functional point of view. In contrast to the previous work of Treves (2003)

and Raizada & Grossberg (2003) that is based on the assumption of specific

computational roles of individual layers of a rather abstract neural network model

I approach this question by analyzing the information processing capabilities of

a detailed model of a single cortical column with a diameter of about 100 µm.

Furthermore I investigate the impact of certain structural features of the lamina-

specific connectivity on the computational performance of generic ’neocortical

readouts’, i.e. of projection neurons in layers 2/3 and layer 5. The purpose of

this chapter is to identify certain properties of the connectivity graphs that are

most salient for the computational performance of these readouts.

The aim of the second part of this thesis is to investigate experimentally if

the computational properties that are predicted by the theory of the liquid state

machine are supported by multi-electrode recordings from cat area 17. There

exists a variety of different computational models for visual processing in the

brain that are consistent with most of the available experimental data. Most

work on cortical microcircuits is done in the conceptual framework of Hubel &

Wiesel (1962) that was developed 40 years ago for cat area 17. This framework

postulates a precise feedforward organization of visual processing to explain the

formation of specific receptive fields. On the other hand cortical circuits are

highly recurrent structures. For instance simple cells in layer 4 of cat receive 95%

of their synapses from other cortical cells (Ahmed et al. (1994)). Thus notions

such as ’feedforward’ and ’feedback’ are inadequate concepts for the analysis

of highly recurrent cortical microcircuits. In the framework of the liquid state

machine recurrent microcircuits are viewed as kernel-like processors that perform

a nonlinear spatio-temporal integration of time-varying inputs thereby providing

the computational properties of fading memory and high nonlinearity for visual

processing. A direct experimental test of these essential properties for real-time

processing of quickly varying visual stimuli has been missing so far for cat primary

visual cortex. An example for an experimental study that may be seen as a step

in this direction is Hung et al. (2005), where it was shown that the firing activity

of an unbiased sample of a few neurons in macaque inferior temporal cortex (IT)

contains information about a previously shown image, and that this information

4



lasts for several hundred ms. A similar persistence of information in the cortical

entrance stage of visual processing would be somewhat surprising.

In Chapter 4 I focus in particular on the temporal dynamics of information

about previously shown visual patterns and how the information about visual

inputs arriving at different moments in time is superimposed and merged within

the microcircuit. In this context I additionally address the question of how the

information about previously shown stimuli is encoded in the neural activity,

or equivalently, what kernel-like mappings are used to project this information

into the cat primary visual cortex. Up to now it is still a controversial issue

as to whether cortical neurons transmit information primarily in their average

firing rates or in the precise timing of spikes. Synchronous firing is experimen-

tally observed in the cat superior colliculus (Brecht et al. (1999)). Furthermore

neurons with overlapping receptive fields in the cat primary visual cortex fire

synchronously when activated by common preferred stimuli (Gray et al. (1989)).

It has been shown for β-lobe neurons in locusts in vivo (MacLeod et al. (1998))

that precise spike timing in the order of millisecond carries information about

input stimuli. Desynchronization of ensembles of projection neurons causes a loss

of information in odor-evoked spike trains in single downstream β-lobe neurons.

A corresponding study of the information about stimuli that is contained in the

precise timing of spikes is missing for the cat primary visual cortex. I therefore fo-

cus on the question of how the information about previously shown visual stimuli

is encoded in the neural activity in the context of rate coding and precise timing

of spikes.

Finally in Chapter 5 a link between modeling and experiment is established

by comparing the experimental results obtained in Chapter 4 to the results for a

detailed computer model for a 1.1 × 1.1 mm2 patch of cat primary visual cortex

(area 17). The model is based on the cortical microcircuit model with biologically

realistic lamina-specific connectivity presented in Chapter 3 and complemented

by a standard model for retina and LGN. In particular the temporal dynamics of

information and the importance of the precise timing of spikes for the computa-

tional performance of neural readouts is compared to the corresponding results

for multi-electrode recordings from cat primary visual cortex.

5
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Chapter 2

Perspectives of the high

dimensional dynamics of neural

microcircuits from the point of

view of low dimensional readouts

Summary

I investigate generic models for cortical microcircuits, i.e. recurrent circuits of

integrate-and fire neurons with dynamic synapses. These complex dynamic sys-

tems subserve the amazing information processing capabilities of the cortex, but

are at the present time very little understood. I analyze the transient dynamics

of models for neural microcircuits from the point of view of one or two readout

neurons that collapse the high dimensional transient dynamics of a neural cir-

cuit into a 1- or 2–dimensional output stream. This stream may for example

represent the information that is projected from such circuit to some particular

other brain area or actuators. It is shown that simple local learning rules enable

a readout neuron to extract from the high dimensional transient dynamics of a

recurrent neural circuit quite different low-dimensional projections, that even may

contain ”virtual attractors” which are not apparent in the high dimensional dy-

namics of the circuit itself. Furthermore it is demonstrated that the information

extraction capabilities of linear readout neurons are boosted by the computational

7



2. PERSPECTIVES OF HIGH DIMENSIONAL DYNAMICS

operations of a sufficiently large preceding neural microcircuit. Hence a generic

neural microcircuit may play a similar role for information processing as a kernel

for support vector machines in machine learning. I demonstrate that the projec-

tion of time-varying inputs into a large recurrent neural circuit enables a linear

readout neuron to classify the time-varying circuit inputs with the same power as

a complex nonlinear classifiers, such as for example a pool of perceptrons trained

by the p-delta-rule, or a feedforward sigmoidal neural net trained by backprop,

provided that the size of the recurrent circuit is sufficiently large. At the same

time such readout neuron can exploit the stability and speed of learning rules for

linear classifiers, thereby overcoming the problems caused by local minima in the

error function of nonlinear classifiers. In addition it is demonstrated that pairs

of readout neurons can transform the complex trajectory of transient states of a

large neural circuit into a simple and clearly structured 2-dimensional trajectory.

This 2-dimensional projection of the high-dimensional trajectory can even exhibit

convergence to virtual attractors which are not apparent in the high dimensional

trajectory.

2.1 Introduction

Computation in biological neural circuits is often modeled by attractor neural net-

works with low dimensional internal state spaces, and analyzed from the point

of view of a human observer with focus on easily discernible features such as

convergence to an attractor. However, the dynamics of real neural microcircuits,

consisting of a few thousand neurons, represents a trajectory in a very high di-

mensional dynamical system. Due to its high dimensionality, new phenomena

emerge which cannot be observed in the commonly studied 2- or 3-dimensional

dynamical systems. Functionally most important are features of the dynamics of

neural circuits that can be extracted by readout neurons, i.e. by neurons that

receive inputs from hundreds or thousands of neurons in this circuit and transmit

low dimensional projections of their transient dynamics to other brain areas, or

to actuators. This chapter explores the possible relationship between the high

dimensional dynamics of neural circuits and their neural readouts through com-

puter simulations of generic cortical microcircuits.

8



2.1 Introduction

Recently Maass, Markram & Natschlaeger proposed a general theoretical

model, called liquid state machine Maass et al. (2002), which represents a con-

venient framework for neural computations in real time for rapidly time varying

continuous input functions. It does not require convergence to stable internal

states or attractors, since information about past inputs is captured in the pertur-

bations of a high dimensional dynamical system, i.e. in the continuous trajectory

of transient internal states. First the input stream is projected into a sufficiently

large neural circuit. In general different input streams will cause different tra-

jectories of internal states of the system, i.e., the input streams are separated by

the circuit. Secondly a memory-less readout learns to extract salient information

from the high dimensional transient states of the circuit. In particular each read-

out can learn to define its own classes of equivalence of dynamical states within

the neural microcircuit, and can then perform its task on novel inputs. Due to

this principle of ”readout assigned equivalent states of a dynamical system” an

invariant readout can be possible despite the fact that the neural microcircuit

may never re-visit the same state. Furthermore multiple readouts can be trained

to perform different tasks on the same state trajectories of a recurrent neural

circuit, thereby enabling parallel real-time computing. Good separation capabil-

ity of the high dimensional dynamical system for different preceding inputs, in

combination with an adequate readout, allows essentially any real-time computa-

tion on continuous and bounded time-varying inputs with fading memory to an

arbitrary degree of precision. It is shown in Maass et al. (2002) that a generic

neural microcircuit model tends to have fairly good separation property, due to

the biologically realistic diversity of its components and its sparse but recurrent

connectivity (”loops within loops”). Adaptivity within the microcircuit itself is

not necessary in this context, although it may facilitate the task of the readout

for a family of related tasks. This situation is analogous to that of choosing ker-

nels for support vector machines, where there exist general purpose kernels that

provide good performance for a large variety of tasks.

Whereas in Maass et al. (2002) the potential readout capabilities of pools

of neurons were explored, I investigate in this chapter the readout capability

of single integrate-and-fire (I&F) neurons and of pairs of such neurons. It is

shown that for a sufficiently large recurrent neural circuit a single neuron as

9



2. PERSPECTIVES OF HIGH DIMENSIONAL DYNAMICS

readout achieves the same classification power for a binary classification task (as

specified in section 2.3.2) as sophisticated multi-unit classifiers, such as pools of

perceptrons with the p-delta-rule, see Auer et al. (2002), voted perceptrons, see

Freund & Schapire (1999); Warmuth et al. (2002), feedforward sigmoidal neural

nets trained by backprop. Hence one may argue that a generic neural microcircuit

plays a similar role for neural computing as a high dimensional kernel for support

vector machines in machine learning. In addition it is demonstrated that pairs

of readout neurons can transform the complex trajectory of transient states of a

large neural circuit into a simple and clearly structured 2-dimensional trajectory.

This 2-dimensional projection of the high-dimensional trajectory can even exhibit

convergence to virtual attractors which are not apparent in the high dimensional

trajectory.

2.2 Methods

I carried out computer simulations with a generic recurrent network of I&F neu-

rons as described in Maass et al. (2002). The input to the network consisted of

spike trains, which diverged to inject current into 30% randomly chosen excita-

tory neurons. The amplitudes of the input synapses were chosen from a Gaussian

distribution, so that each neuron in the recurrent microcircuit received a slightly

different input. The input spike trains were generated from randomly gener-

ated Poisson spike templates with a frequency of 20 Hz, where each spike in the

template was moved by a Gaussian distribution with mean 0 and an SD of 4 ms.

I used randomly connected circuits consisting of I&F neurons, 20% of which

were randomly chosen to be inhibitory (see Tsodyks et al. (2000)). Unless stated

otherwise in the figure legend the circuit size was chosen to be 135 neurons.

Parameters of neurons and synapses were chosen in accordance with biological

data: membrane time constant 30 ms, absolute refractory period 3 ms (excitatory

neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting membrane

potential assumed to be 0 mV), reset voltage 13.5 mV, constant background

current at 13.5 nA, input resistance 1 MΩ.

Connectivity structure: The distribution of connection lengths was chosen to

be biologically realistic, with primary local connections and a few longer connec-

10



2.2 Methods

tions. More precisely the probability of a synaptic connection from neuron a to

neuron b (as well as that of a synaptic connection from neuron b to neuron a) was

defined as C · exp(−D(a, b)2/λ2), where λ is a parameter which controls both the

average number of connections and the average distance between neurons that are

synaptically connected (its value was fixed at 1.5 for all simulations reported in

this chapter, independent of the size of the network). For the circuits consisting

of 135 neurons I assumed that the neurons were located on the integer points of

a 15 × 3 × 3 column in space, where D(a, b) is the Euclidean distance between

neurons a and b. The neurons of the circuits used for the simulations for Fig. 2.2

and Fig. 2.3 were arranged in 2× 2× 3, 3× 3× 6, 5× 5× 4, 5× 5× 8, 7× 7× 8,

7×7×12 and 7×7×16 columns, whereas the columns of the networks for Fig. 2.6

had the size 3× 3× 9, 3× 3× 11, 3× 3× 13, 3× 3× 15, 3× 3× 18 and 3× 3× 21.

Depending on whether a and b were excitatory (E) or inhibitory (I), the value of

C was 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II).

In the case of a synaptic connection from a to b the synaptic dynamics were

modeled according to the model proposed in Markram et al. (1998), with the

synaptic parameters U (use), D (time constant for depression), F (time constant

for facilitation) randomly chosen from Gaussian distributions that were based

on biological data reported in Gupta et al. (2000) and Markram et al. (1998).

Depending on whether a, b were excitatory (E) or inhibitory (I), the mean values

of these three parameters (with D, F expressed in second, s) were chosen to be

0.5, 1.1, 0.05 (EE), 0.05, 0.125, 1.2 (EI), 0.25, 0.7, 0.02 (IE), 0.32, 0.144, 0.06 (II).

The scaling parameter A (in nA) was chosen to be 75 (EE), 150 (EI), -47 (IE),

-47 (II). In the case of input synapses, the parameter A had a value of 18 nA. The

SD of each parameter was chosen to be 50% of its mean (with negative values

replaced by values chosen from an appropriate uniform distribution). The time

course of postsynaptic currents was modeled by an exponential decay exp(−t/τs)

with τs = 3 ms (τs = 6 ms) for excitatory (inhibitory) synapses. The transmission

delays between liquid neurons were chosen uniformly to be 1.5 ms (EE), and 0.8

for the other connections. For each trial the initial conditions of the circuit were

randomly chosen (for each neuron in the circuit the membrane voltage was set at

a value drawn from the uniform distribution over the interval [13.5 mV, 15 mV].

11



2. PERSPECTIVES OF HIGH DIMENSIONAL DYNAMICS

I assumed that each readout neuron receives synaptic input from all neurons in

the recurrent circuit. The current liquid state of the circuit (using the terminology

Maass et al. (2002)) is defined as the n-dimensional vector of contributions of the

n neurons in the circuit to the membrane potential of a generic readout neuron

at time t (assuming unit size weights and static synapses for this generic readout

neuron). Technically these individual contributions to the membrane potential

of a generic readout neuron are the outputs of a low pass filter with a kernel that

decays exponentially with a time constant of 30 ms (reflecting the assumed 30 ms

membrane time constant of the readout neuron), applied to the spike trains of the

n neurons in the recurrent circuit. After training, the weights of a readout neuron

have no longer uniform size, and hence each readout neuron defines a different

projection of the high dimensional liquid states into one dimension. Therefore

strictly speaking a readout neuron does not have full access to the real intrinsic

state space of the recurrent network, which consists of the membrane potential of

each I&F neuron and the fraction of available synaptic efficacy R and the running

value of the utilization of synaptic efficacy u (for terminology see Markram et al.

(1998)) of each dynamical synapse. The trajectory of the recurrent neural circuit

was modeled as a sequence of consecutive liquid states sampled every 20 ms.

Each readout neuron defines in general a different projection of this trajectory

of liquid states into a 1-dimensional trajectory, and correspondingly each pair of

readout neurons defines a different projection of the high dimensional dynamics

into 2 dimensions.

2.3 Results

2.3.1 Projecting the input into a larger neural circuit in-

creases the classification power of a readout neuron

When a time-varying input, such as for example a Poisson spike train, is injected

as input into a large recurrent circuit of n I&F neurons, it becomes difficult for

a human observer to extract information about this input from the resulting

dynamics of the circuit. The computer simulations show that in contrast to that,

the dynamics of neural circuits becomes easier to classify for a readout neuron

12
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when n is large. This effect is less surprising if one notes that the decision surface

which is relevant for the decision whether an I&F neuron fires at some specific

time t, can be approximated by a hyperplane in the state space of the dynamical

system that models the recurrent circuit of I&F neurons. The number of degrees

of freedom of this hyperplane grows with n. Furthermore an empirically well-

supported result from statistical learning theory (see for example Vapnik (1998))

implies that the discrimination power of a perceptron (or hyperplane) increases

when the inputs that need to be classified are first projected nonlinearly into a

sufficiently high-dimensional space. This effect has been demonstrated by Jäger

(2001) in the context of artificial neural networks. I would like to argue that

it may also play an important role in biological neural computation, and may

contribute to the large and seemingly universal computational power of recurrent

neural microcircuits. It may have received little attention so far in the analysis

of neural computation, because it is not observable in small circuits. It also can

usually not be observed in larger models for neural circuits if their architecture

has been engineered by the modeler for a particular task, since that often entails

that the dynamics of that circuit is restricted to a lower dimensional subspace

of its state space. For this reason I focus on the dynamics of generic models

for recurrent neural microcircuits that reflect biological data in their connection

statistics, and which have not been engineered for a particular purpose.

As a benchmark test for memory retrieval and pattern classification by neural

circuits I considered the task illustrated in Fig. 2.1. Four Poisson spike trains

were randomly generated and fixed as spike pattern templates. More precisely,

two such patterns, templates 1 and 2, were fixed for the time interval from 0

to 250 ms, and two other ones, templates 3 and 4, for the second interval from

250 to 500 ms. Input spike trains over 500 ms were randomly composed of noise

variations (Gaussian distribution with mean 0, SD 4 ms) of one of the templates

1, 2 in their first half followed by noisy variations of one of the templates 3, 4 in

their second half. I defined that an input spike train belongs to class 1(2) if its

first half was generated from the template spike train 1 (2), no matter whether

its second half had been generated from. A readout neuron was required to carry

out a classification at time t = 500 ms, after a noisy variation of one of the 2 spike

pattern templates 3 or 4 had been sent into the circuit and had ”overwritten” the

13
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Template 1
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3 input spike trains of class 1
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Figure 2.1: Input distribution for the classification task. For each experiment four

Poisson spike trains were randomly generated and fixed as spike pattern templates 1-4.

Input spike trains over 500 ms were randomly composed of noise variations (Gaussian

distribution with mean 0, SD 4 ms) of one of the templates 1, 2 in their first half

followed by noisy variations of one of the templates 3, 4 in their second half. An input

spike train was defined to belong to class 1(2) if its first half was generated from the

template spike train 1 (2), no matter whether its second half had been generated from.

Three typical noisy variations of class 1 are shown in the lower part of the figure.

transient dynamics caused by the first pattern templates. One can therefore view

the earlier pattern as one that sets the ”context” for the second one, and it may

be important from the functional point of view to recover this ”context” at a later

point in time. This classification task is relatively difficult, since it requires the

integration of information over a time interval (and from a temporal distance) of

250 ms, which is fairly large compared to the membrane time constant of a single

neuron (30 ms). For this discrimination task only the weights of the synapses

of the readout neuron were adapted, thus leaving the dynamics of the recurrent

neural circuits unspecialized, potentially providing unbiased input to myriads of

other readout neurons that are specialized to extract other information about

the input to the circuit (see Fig. 8 in Maass et al. (2002)). Several standard
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algorithms for single-unit and multi-unit neural classifiers were applied: pools of

perceptrons with the p-delta-rule, see Auer et al. (2002), voted perceptrons, see

Freund & Schapire (1999); Warmuth et al. (2002), and backprop for feedforward

sigmoidal neural nets.

Panels A, B and C in Fig. 2.2 show that each type of readout achieves a better

performance when spike trains generated from input distributions as described

above are injected into a larger recurrent circuit. Furthermore it can be seen that

even for single neuron readouts (panels A, B) the classification error approaches

0 when the size of the recurrent circuit grows1. This effect is reminiscent of a

frequently exploited effect in machine learning (more precisely in support vector

machines and other kernel based methods). There one projects the given data

first nonlinearly into a very high dimensional space. Within this high dimensional

space the projections of the original data from different classes usually become

linearly (or nearly linearly) separable, see Vapnik (1998). But an essential dif-

ference to kernel-based methods in machine learning is that there the projection

into a high dimensional space is not carried out explicitly, whereas in the neural

model the nonlinear projection of the input stream into the high dimensional

state set of the circuit may be viewed as the essential computational operation

of the generic neural microcircuit model.

For a human observer the liquid states at time t = 500 ms that result from

input spike trains from the classes 1 and 2 look indistinguishable, like two sets

of state vectors that are drawn from the uniform distribution over the state set.

However readout neurons can be trained to recognize their inherent structural

similarities, and are therefore able to classify also novel examples drawn from

these classes. In order to demonstrate that their performance, which improves for

larger sizes of the recurrent circuit, is due to this hidden structural similarity, and

not to other scaling effects, the experiment were repeated with the same number

of states drawn from a uniform distribution over the state set of the corresponding

recurrent circuits (with a random assignment of class labels). Panel D of Fig. 2.2

shows that the readout can still be trained to classify states in the training set

1Further work is needed to explore when exactly this occurs. It appears to depend both

on values of parameters of the circuit (e.g. λ) and on the type of inputs and the number of

training examples.
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Figure 2.2: Demonstration that a larger recurrent neural circuit increases the clas-

sification power of a readout neuron. A: The readout was to trained to carry out

a classification of the previously injected input time series as described in Fig. 1 by

means of the internal state of the recurrent network at time t = 500 ms (after the

complete spike train had been injected into recurrent circuit). The solid and dashed

lines show for training and test inputs the error rates of a hyperplane (= perceptron)

in the n-dimensional state space of the recurrent circuit, trained with the well-known

delta learning rule (see Hertz et al. (1991)), as a function of the size n of the recurrent

circuit of I&F neurons. For each value of n 100 randomly drawn recurrent circuits were

generated. For each circuit a new input distribution was fixed and 800 input spike

trains from this distribution were chosen for training, whereas 80 novel examples were

used for testing. The error rates represent the averages over the performance of differ-

ent circuits (error bars indicate SEM). B: Corresponding results for the classification

task applying the Fisher-discriminant algorithm (see Duda et al. (2001)) instead of the

delta learning rule to optimize the weights of a perceptron. The error rates were almost

the same for this algorithm (whereas its computing time was much shorter).
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Figure 2.2 (continued): C: Corresponding results for the classification task apply-

ing multi-unit readouts instead of perceptrons: p-delta learning rule (using an array

of 10 perceptrons see Auer et al. (2002)), backpropagation (applied to 10 feedforward

sigmoidal neurons), and voted perceptrons (using an array of 10 perceptrons) imple-

mented as outlined in Warmuth et al. (2002). The error rates were almost the same

as for perceptrons. D: Results of a control experiment. In order to show that a better

readout performance for larger recurrent circuits can only be achieved if the complexity

of the input stays constant (or grows at a lower rate than the circuit size), the same

algorithms as in panel B were applied to compute an optimal separating hyperplane

for randomly chosen internal states of the recurrent circuit. The training set consisted

of 800 randomly drawn state vectors, drawn from the uniform distribution over all

state vectors (with randomly assigned class labels) instead of 800 liquid states at time

t = 500 ms that resulted from injecting input spike trains from a fixed distribution into

these circuits. The performance on these training sets decreased with the circuit size.

But in the case of such randomly labeled state sets there was no generalization possible,

hence the performance on test data from the same distribution (uniform distribution

over all state vectors) yielded an error of 50%.

with an error of less than 50% (but much larger than for the previously considered

classes). Furthermore this error on the training set decreases with the circuit size.

But in the case of such randomly labeled state sets there is no generalization

possible, hence the performance on test data from the same distribution yields

an error of 50%.

The test that was applied here provides a generally applicable method for

quantifying the characteristic inherent similarity of states within each of two

classes A, B of liquid states, even in cases where this inherent similarity of states

can not be detected by a human observer. This method proposes to compare the

classification performance of readouts that were trained to classify states from

these two classes with that of the same type of readouts (using the same training

algorithm) trained to classify states from two classes C, D of the same size,

whose elements were drawn from the uniform distribution over the state space

(with randomly assigned class labels). The classification performance on these

two other classes will in general also be better than random guessing, since the

readout can store information about these particular two sets C and D in its
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Figure 2.3: Results for the classification task of Fig. 2A with two levels of noise

added to the input currents independently for all neurons in the circuit. For each

simulation time step Gaussian noise with mean 0 and standard deviation 0.5 nA and

1 nA respectively was injected into the neurons. The classification error increased for

the higher noise level, whereas the results showed little effect for the lower noise level.

weights. Hence its classification performance will improve with the number of

weights in the readout, and hence with the size of the circuit. However if there

is some structural similarity among states within one of the two classes A, B,

a trained readout neuron achieves a much higher performance for classification

of states from these two classes. The difference in error rates achieved for the

classification of states from the two original classes A, B and the two classes C,

D quantifies how much common structure the readout can extract from each of

the two original classes A, B of liquid states.

In order to test the robustness of the classification capabilities of a readout

neuron with regard to additional noise in the circuit I added Gaussian noise with

mean 0 and standard deviation 0.5 nA and 1 nA respectively to the input cur-

rents of each neuron in the circuit at each simulation time step. This corresponds

to Gaussian noise on the membrane potentials with a std of 1/52 (1/26) of the

voltage difference between the threshold and the membrane potential for a con-

stant background current of 13.5 nA (reset voltage). As illustrated in Fig. 2.3 the

classification error increased for the higher noise level, whereas the results for the

lower noise level were comparable to those without this extra noise.
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Figure 2.4: A: A Typical 2-dimensional projection of the high dimensional trajectory

of liquid states in a recurrent neural circuit, represented by the combined synaptic

inputs from the neurons in this circuit to 2 readout neurons. The beginning of the

trajectory is marked by a circle, with crosses on the curve at every 50 ms interval.

B, C: Resulting spike trains of these 2 readout neurons.

2.3.2 Finding structure in complex high dimensional tra-

jectories of circuit dynamics

If one tracks the n-dimensional trajectory defined by the states of a recurrent

circuit of n I&F neurons as a function of time, this trajectory is likely to resemble

Brownian motion. However, from the point of view of readout neurons the same

trajectory may have a simple and clear structure, and even converge to a ”virtual

attractor”. The input to the recurrent circuit consists in the following always of

8 spike trains that are simultaneously injected into the circuit.

I focus on the information that pairs of readout neurons can extract from the

high dimensional trajectory of liquid states of a recurrent neural circuit. The

time course of the synaptic input to such readout neurons1 is plotted as a curve

in the plane, such as illustrated in Fig. 2.4A. The approximate structure of this

2-dimensional curve is captured by the resulting spike trains of these 2 readout

1More precisely: the total contribution of the neurons in the recurrent circuit to the mem-

brane potential of these two readout neurons, with an assumed membrane time constant of

30 ms.
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A Untrained readout B Readout trained for classification

C Readout trained to
generate smooth trajectories D Readout trained for both

Figure 2.5: Three trajectories of the synaptic input to 2 readout neurons (indicated

by solid, dashed, and dotted lines) caused by three different input Poisson spike trains

to the recurrent circuit during a time interval of 1 s. For randomly assigned synaptic

weights these trajectories resemble Brownian motion as shown in panel A. For other

values of the weights the same trajectories may appear well separated in space as

illustrated in panel B, or smooth as displayed in panel C. For the calculations of the

weights in both cases the well-known Fisher discriminant algorithm was applied for

panel B directly to the points of the trajectories and for panel C to their second time

derivatives. A combination of both perspectives, enabling both classifications through

clear spatial separation and smooth tracking of the trajectory (see panel D), can be

achieved by applying the Fisher discriminant to the union of the two point sets used

for panels B and C.

neurons (see Fig. 2.4B, C), and can therefore be transmitted to other neural

circuits.

In Fig. 2.5 the input to two readout neurons is plotted in this way for three

different time varying inputs to a recurrent circuit consisting of 135 I&F neurons.

Depending on the choice of synaptic weights for these readout neurons, these 2-
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dimensional trajectories may look like Brownian motion (Fig. 2.5A), trajectories

that move fast into different attractor basins (Fig. 2.5B), smooth trajectories with

a characteristic dynamical structure (Fig. 2.5C), or trajectories that are smooth

and move into different attractor basins (Fig. 2.5D). The first output (Fig. 2.5A)

is the typical result if the weights of the two readout neurons are randomly

chosen. If one chooses the weights of these two readout neurons according to

the Fisher discriminant Duda et al. (2001), the resulting curves move for these

three time-varying inputs to three different ”virtual attractor basins”. With

a slight variation of the Fisher discriminant (apply it to the sets of 2nd order

derivatives with regard to time for points on these three trajectories, not to the

sets of points on these trajectories) one gets the outputs of the two readout

neurons that define the curves shown in Fig. 2.5C. These curves are quite smooth

and exhibit a clear temporal evolution. By applying the Fisher discriminant to

the union of points on the trajectories and their second derivatives with regard

to time, one gets responses of the two readout neurons that combine the effects

of Fig. 2.5B and C: they move on smooth curves to different attractor basin

(shown in Fig. 2.5A). Although the Fisher discriminant is usually only viewed as

a global optimization procedure, the resulting setting of the weights of the two

readout neurons can also be approximated by an incremental learning algorithm:

the MSE-algorithm, see section 5.8.2. in Duda et al. (2001), which is local and

unsupervised, and therefore not unrealistic from the biological point of view.

For the simulations reported in this chapter I used the exact implementation of

the Fisher discriminant. The results of Fig. 2.5 show that the low dimensional

trajectory extracted by 2 readout neurons from a fairly large neural circuit may

have little visible structural similarity with the high dimensional trajectory of

transient states of that circuit, and my even move to ”virtual attractors” that are

not apparent from the high dimensional trajectory.

Analogously as with the classification task considered for Fig. 2.2, there exists

an interesting scaling law, which prevents the observation of these effects in 2-

or 3-dimensional dynamical systems, or in small models for neural circuits. The

capability of pairs of readout neurons to extract smooth 2-dimensional trajectories

from the very complex trajectory of firing activity in a recurrent circuit of I&F

neurons increases with the number of neurons in this circuit (Fig. 2.6). The same
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81 neuronsA 99 neuronsB 117 neuronsC

135 neuronsD 162 neuronsE 189 neuronsF

Figure 2.6: Dependence of the capability of 2 readout neurons to transform a trajec-

tory of a recurrent circuit of n I&F neurons into a smooth low dimensional projection

on the number n of neurons in the circuit. The input consisted of eight parallel injected

random Poisson spike trains over a time interval of 2 s. In each case the same opti-

mization method as for Fig. 2.5C was applied to the weights of the 2 readout neurons.

input spike train was injected into recurrent neural circuits of varying size, and for

each recurrent circuit a pair of readout neurons was optimized (as for Fig. 2.5C)

to generate a smooth 2-dimensional trajectory of their synaptic input. In order

to show that the increased smoothness of the projections depends on the size of

the network and is not due to a slow down of its dynamic the spike rasters with

the responses of 10 randomly chosen neurons of each recurrent circuit to input as

used for the simulations for Fig. 2.6 are illustrated in Fig. 2.7.

Fig. 2.8 shows that the smooth large scale structure that pairs of trained

readout neurons can extract from a complex dynamics of high dimensional cir-

cuits, may generalize to input where one of the eight simultaneously injected

spike trains was replaced by a random Poisson spike train at each trial. This
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Figure 2.7: Spike rasters with the responses of 10 randomly chosen neurons from

the recurrent circuits of n I&F neurons, for a circuit input as used for the simulation

for Fig. 2.6. The level of activity of the these neurons does not diminish with circuit

size. This shows that the increased smoothness of the low dimensional projections of

the circuit trajectories shown in Fig. 2.6 is not the result of diminishing firing activity

in the larger circuits.

additional input may represent independent spatio-temporal information about

the environment received from other areas in the neocortex. Two readout neu-

rons were trained to respond with smooth trajectories of similar shape to the

quite diverse high dimensional dynamics caused by this random spike train. In

other words the readout was trained to assign equivalence classes in the internal

state space, which contained all possible internal states at time point t that could

result from different previously injected random spike trains. After training the

readout neurons transformed the trajectories of liquid states that resulted from

input composed of the same seven fixed spike trains but a previously not seen

random spike train into closely related 2-dimensional projections (panels B-E).

23

Chapter1/figures/figure7.eps


2. PERSPECTIVES OF HIGH DIMENSIONAL DYNAMICS

50 training spike trainsA Test spike train 1B Test spike train 2C

Test spike train 3D Test spike train 4E Random spike trainF

Figure 2.8: A: The smooth large scale structure that pairs of trained readout neurons

can extract from a complex dynamics of high dimensional circuits can generalize to

novel input. One of eight fixed random input spike trains of length 0.5 s that were

simultaneously injected into a recurrent circuit of 135 I&F neurons was replaced by a

novel random Poisson spike train at each trial. The weights of the two readout neurons

were chosen (similarly as in Fig. 2.5C) in such a way that the trajectories have about

the same shape from the point of view of these readout neurons. This generalized

to previously not shown variations of the random input spike train (B - E). The

trajectory caused by entirely different input to the recurrent circuit (with the same

firing rate) induced a completely different temporal evolution of membrane potentials

in the readout (F), what shows that the response of the two readout neurons was still

highly selective.

However their response is still highly selective and the trajectory of liquid states

caused by entirely different input to the recurrent circuit (with the same firing

rate) induces a completely different temporal evolution of membrane potentials

in the readout (panel F).
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2.3.3 Different readouts may create diverse virtual attrac-

tor landscapes

I showed that different readout neurons can be trained to extract a diverse set

of features from the same high dimensional neural activity of a sufficiently large

recurrent circuit of I&F neurons. Hence for a specific information processing task

it may not be necessary to manipulate this high dimensional trajectory itself.

Instead, the number of degrees of freedom for readout neurons are chosen so

large, that they can be trained to extract individualized smooth paths on virtual

attractor landscapes from the same high dimensional circuit dynamics.

These attractors are called virtual, because they are not real attractors of the

underlying dynamics but just look like attractors from the perspectives of cer-

tain low dimensional projections. Furthermore these attractors are transient, i.e.

they represent temporary attractors formed within the transient behavior of the

system. In other words: they are sets of states that attract certain trajectories

during a certain time segment, but not permanently. Nevertheless, they may

represent the result of a computation for a low dimensional readout. Hence the

presence of virtual attractors makes it in principle possible to carry out particu-

lar computations needed by specific readouts without changing the dynamics of

the recurrent circuit itself (thereby leaving it ready to serve as analog memory

for other readouts with completely different tasks). The remarkable flexibility

that remains when just the low-dimensional readouts are adapted for specific

computational tasks is demonstrated in Fig. 2.9 for 3 different pairs of readout

neurons. For all three panels of Fig. 2.9 the inputs to the recurrent circuit (and

the resulting circuit dynamics) are identical. However the temporal evolution of

the readout responses has a different large-scale structure for each of the three

pairs of readout neurons. Inputs to the recurrent circuit were three different spike

trains a, b, c. The first pair of readout neurons was just trained to separate the

trajectories resulting from these 3 inputs by smooth responses (panel A). The

second pair was trained in addition to create a virtual common attractor for pat-

terns a and b, but not for c (panel B). The third pair of readout neurons was

trained to move the responses for patterns a and c to a common attractor, while

keeping the trajectory for pattern b away from this attractor. Altogether Fig. 2.9
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Figure 2.9: Different pairs of readout neurons may create different virtual attractor

landscapes. A: Two readout neurons were trained to respond to the 3 trajectories

of liquid states caused by the injection of 3 different input spike trains during a time

interval of 1 s to a recurrent circuit of 375 I&F neurons (in a 5 × 5 × 15 column) with

smooth well-separated responses, like in Fig. 2.5A (beginnings of the 2 dimensional

response-trajectories marked by circles). B, C: Responses of 2 other pairs of readout

neurons to the same 3 trajectories of liquid states as in panel A. For panel B a pair of

readout neurons were trained to move only for inputs a and b to a common attractor.

For panel C another pair of readout neurons was trained to move only for inputs a and

c a common attractor.

suggests an alternative to modeling neural dynamics by low-dimensional attrac-

tor neural networks: While the internal dynamics of a generic high-dimensional

neural microcircuit may be extremely complex, different pools of readout neurons

may use this high dimensional dynamics as a universal source of online informa-

tion, and can be trained to extract low dimensional trajectories that move on

virtual attractor landscapes. Since these virtual attractor landscapes may differ

from readout to readout, one arrives in this way at a possible scheme for parallel
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real-time processing with the help of high dimensional dynamical systems.

2.4 Discussion

Many tools and concepts that have been developed for the investigation of dy-

namical systems are very useful for analyzing low dimensional autonomous dy-

namical systems. However new effects have to be taken into account when one

analyzes high dimensional dynamical systems such as those implemented by corti-

cal microcircuits. Typically these systems are constantly bombarded with inputs

from sensory neurons and other neural circuits, hence they are non-autonomous.

Furthermore these systems have to compute in real-time, and therefore need to

retrieve information for their computational tasks from trajectories of transient

states of the circuit. Since the high dimensionality of the neural dynamics in-

creases the capability of a readout neuron to select and represent specific compo-

nents of the information, the high dimensional trajectory need not be engineered

for a specific task. Rather, different readout neurons can extract completely dif-

ferent aspects for their specific task. In fact, from their point of view the high

dimensional dynamics may even appear to move towards well-defined attractor

basins, but this virtual attractor landscape may be a completely different one for

each readout neuron.

Another beneficial aspect of the high dimensionality of the dynamics of neural

microcircuits is the resulting boosting of the classification power of single readout

neurons, which has been demonstrated in this chapter. This implies that very

simple and robust learning algorithms, which cannot get stuck in local minima,

can be used to train these readouts. The effects exhibited in this chapter may help

to provide challenges and ideas for the development of a new theory of dynami-

cal systems that is adequate for high dimensional non-autonomous systems with

diverse components, and can therefore be used to analyze real-time computing in

neural microcircuits. In particular I will apply the framework of the liquid state

machine in the next chapter to the analysis of the potential universal functional

properties of the neocortex. I will investigate the impact of the lamina-specific

synaptic connectivity in stereotypical cortical microcircuits on the computational
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performance and address the question of how certain structural features of the

neocortical circuitry relate to specific functional properties.
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Chapter 3

A statistical analysis of

information processing properties

of lamina-specific cortical

microcircuit models

Summary

A major challenge for computational neuroscience is to understand the compu-

tational function of lamina-specific synaptic connection patterns in stereotypical

cortical microcircuits. Previous work on this problem had focused on hypothesized

specific computational roles of individual layers and connections between layers,

and had tested these hypotheses through simulations of abstract neural network

models. I approach this problem by studying instead the dynamical system defined

by more realistic cortical microcircuit models as a whole, and by investigating

the influence which its laminar structure has on the transmission and fusion of

information within this dynamical system. The circuit models that I examine

consist of Hodgkin-Huxley neurons with dynamic synapses, based on detailed data

from Markram et al. (1998); Thomson et al. (2002) and Gupta et al. (2000). I

investigate to what extent this cortical microcircuit template supports the accu-

mulation and fusion of information contained in generic spike inputs into layer

4 and layers 2/3, and how well it makes this information accessible to projection
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neurons in layers 2/3 and layer 5. I exhibit specific computational advantages of

such data-based lamina-specific cortical microcircuit model by comparing its per-

formance with various types of control models that have the same components and

the same global statistics of neurons and synaptic connections, but are missing the

lamina-specific structure of real cortical microcircuits. I conclude that computer

simulations of detailed lamina-specific cortical microcircuit models provide new

insight into computational consequences of anatomical and physiological data.

3.1 Introduction

The neocortex is composed of neurons in different laminae that form precisely

structured microcircuits. In spite of numerous differences depending on age, cor-

tical area, and species, many properties of these microcircuits are stereotypical,

suggesting that neocortical microcircuits are variations of a common microcircuit

template (Douglas & Martin (2004); Douglas et al. (1995); Kalisman et al. (2005);

Mountcastle (1998); Nelson (2002); Silberberg et al. (2002); White (1989)). One

may conjecture that such microcircuit template is distinguished by specific func-

tional properties, which enable it to subserve the enormous computational and

cognitive capabilities of the brain in a more efficient way than, for example, a

randomly connected circuit with the same number of neurons and synapses. The

potential computational function of laminar circuit structure has already been ad-

dressed in numerous articles, see for example Douglas & Martin (2004); Raizada

& Grossberg (2003); Treves (2003) and the references in these recent publications.

Treves (2003) and Raizada & Grossberg (2003) investigated specific hypotheses

regarding the computational role of lamina-specific structure, and have supported

these hypotheses through computer simulations of rather abstract models for neu-

ral circuits.

The results of Treves (2003) show that in this more abstract setting the lam-

inar circuit structure yields a small advantage regarding the separation of two

types of information: at which horizontal location of the circuit input has been in-

jected (“where” information) and information about the particular pattern which

had been injected there (“what” information). I complement this analysis by tak-

ing a closer look at the temporal dynamics of information at a single horizontal
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location, more precisely within a single column with a diameter of about 100 µm.

I find that from this perspective the computational advantage of laminar circuits

is substantially larger: around 30% (depending on the specific type of information

processing task), rather than just 10% as observed in Treves (2003).

The stereotypical cortical microcircuit is a highly recurrent circuit that in-

volves numerous superimposed positive and negative feedback loops Douglas &

Martin (2004). Most methods that have been developed in engineering sciences in

order to design and analyze such recurrent circuits focus on the system behavior

of the recurrent circuit as a whole, since it has turned out to be not feasible to

understand the emergent dynamics of nonlinear recurrent circuits merely on the

basis of specifications of their components. This systems-perspective of stereo-

typical cortical microcircuits had first been emphasized by Douglas et al. (1995),

and had led to their definition of an abstract model of a “canonical microcircuit”.

It was demonstrated in Douglas et al. (1995) that this systems-perspective pro-

vides a new way of understanding the role of inhibition in cortical microcircuits,

in particular the way in which relatively small changes of inhibitory feedback may

cause large changes in the gain of the system. However the temporal dynamics

of neuronal and synaptic activity had not been taken into account in these early

models. Also much fewer data on stereotypical connection patterns were available

at that time. Furthermore no attempt had previously been made to analyze with

rigorous statistical methods emergent information processing capabilities of the

resulting detailed microcircuit models. The goal of this chapter is to close this

gap.

I investigate the information processing capabilities of detailed microcircuit

models based on data from Thomson et al. (2002) on lamina-specific connection

probabilities and connection strengths between excitatory and inhibitory neu-

rons in layers 2/3, 4, 5, and on data from Markram et al. (1998) and Gupta et al.

(2000) regarding stereotypical dynamic properties (such as paired pulse depres-

sion and paired pulse facilitation) of synaptic connections between excitatory and

inhibitory cortical neurons. The analysis is based on the assumption that stereo-

typical cortical microcircuits have some “universal” computational capabilities,

and can carry out quite different computations in diverse cortical areas. Conse-

quently it concentrates on the generic information processing capability to hold
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and fuse information contained in Poisson input spike trains from two different

sources (modeling thalamic or cortical feedforward input into layer 4, and lateral

or top-down input into layers 2/3). In addition I examined the capability of such

circuit models to carry out linear and nonlinear computations on time-varying fir-

ing rates of these two afferent input streams. In order to avoid – necessarily quite

biased – assumptions about the neuronal encoding of the results of such compu-

tations, I analyzed the information which is available about the results of such

computations to the generic “neural users”, i.e., to pyramidal neurons in layers

2/3 (which typically project to higher cortical areas) and to pyramidal neurons

in layer 5 (which typically project to lower cortical areas or to subcortical struc-

tures, but also project for example from V1 back to nonspecific thalamus , i.e.

to the intralaminar and midline nuclei that do not receive direct primary sensory

input, and through this relay to higher cortical areas, see Callaway (2004)).

In contrast to the model in Maass et al. (2002) (see Destexhe & Marder

(2004) for a discussion) I have not used simply linear regression to estimate the

information available to such readout neurons, whose output is modeled by a

weighted sum of postsynaptic potentials (with an exponential decay time constant

of 15 ms) in response to spikes from presynaptic neurons. Rather, I added here

the constraint that the contribution of an excitatory (inhibitory) presynaptic

neuron needs to have a positive (negative) weight in such weighted sum. In

addition I took into account that a readout neuron in layers 2/3 or layer 5 only

receives synaptic inputs from a rather small subset of neurons in the microcircuit

according to the data of Thomson et al. (2002) (which imply that in a circuit of

560 neurons a neuron in layers 2/3 has on average 84 presynaptic neurons, and a

neuron in layer 5 has on average 109 presynaptic neurons, see Fig. 3.1). But as in

the earlier model the parameters of synapses were not modified within the circuit

for specific computational tasks, only the weights of synaptic connections to such

symbolic readout neurons in layers 2/3 and 5 (which were not modeled to be part

of the circuit, in the sense that they did not project back into the circuit). 1

1This simplification was made in this chapter for pragmatic reasons, since first results on

the case with feedback Maass et al. (2006) suggest that it requires a separate analysis.
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3.2 Methods

The currently most complete set of data on connection probabilities and effica-

cies of synaptic connections between 6 specific populations of neurons in cortical

microcircuits (excitatory and inhibitory neurons in layers 2/3, 4, 5) has been as-

sembled in Thomson et al. (2002). Intracellular recordings with sharp electrodes

from 998 pairs of identified neurons were made to assemble these data. 679 paired

recordings were made from somatosensory, motor and visual areas of adult rats,

and 319 from visual areas in adult cats. The sampling was made randomly within

a lateral spread of 50−100 µm Thomson (2005). For those pairs where both data

from rat and from cat are given in Thomson et al. (2002), I took the data from

rat (see Fig. 3.1). Only for pairs of neurons within layer 4 no data from rat are

given in Thomson et al. (2002), hence the corresponding data in Fig. 3.1 are from

cat. 1

The short term dynamics of cortical synapses (i.e., their specific mixture of

paired pulse depression and paired pulse facilitation) is known to depend on the

type of the presynaptic and postsynaptic neuron (see for example Gupta et al.

(2000); Markram et al. (1998); Thomson (2003)). I modeled this short term

synaptic dynamics according to the model proposed in Markram et al. (1998),

with synaptic parameters U , D, F . The model predicts the amplitude Ak of the

PSP for the kth spike in a spike train with interspike intervals ∆1, ∆2, . . . , ∆k−1

through the recursive equations

Ak = w · uk · Rk

uk = U + uk−1(1 − U)exp(−∆k−1/F ) (3.1)

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)exp(−∆k−1/D)

with hidden dynamic variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values

for the first spike are u1 = U and R1 = 1 (see Maass & Markram (2002) for

1Some of the pairings were rarely observed and the corresponding entries suffer from small

sample size (see Thomson et al. (2002) for details). Also very small neurons in rat may have been

missed Thomson (2005). In addition it is possible that in some cortical microcircuits connections

exist between pairs of neurons for which no connections were reported in Thomson et al. (2002)

(see for example Dantzker & Callaway (2000) for the case of connections to inhibitory neurons

in layers 2/3).
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a justification of this version of the equations, which corrects a small error in

Markram et al. (1998)). The deterministic synapse model is designed to model

the average sum of postsynaptic responses resulting from the concerted action

of multiple stochastic synaptic release sites. Results reported in section 3 show

that the inclusion of short term synaptic plasticity has a significant impact on

the information processing capability of the circuit models. 1

The parameters U , D, and F were chosen in the computer model from Gaus-

sian distributions that reflect data reported in Markram et al. (1998) and Gupta

et al. (2000) for each type of connection (note that the parameter U is according

to Markram et al. (1998) largely determined by the initial release probability of

the synaptic release sites involved). Depending on whether the input was exci-

tatory (E) or inhibitory (I), the mean values of these three parameters U,D, F

(with D, F expressed in seconds) were chosen to have the mean values that were

reported in these articles (see Table 3.1). The standard deviation SD of each

parameter was chosen to be 50% of its mean (with negative values replaced by

values chosen from an uniform distribution between 0 and two times the mean).

The microcircuit models that I examined consisted of three layers, with 30%,

20% and 50% of the neurons assigned to layers 2/3, layer 4 and layer 5, respec-

tively. Each layer consisted of a population of excitatory neurons and a popula-

tion of inhibitory neurons with a ratio of 4:1. Synaptic connections between the

neurons in any pair of the resulting 6 populations were randomly generated in

accordance with the empirical data from Table 3.1 and Fig. 3.1. Most circuits

that were simulated consisted of 560 neurons. The mean number of presynaptic

neurons from a neuron in such circuit was then 76, yielding altogether an average

of 42594 synapses in the circuit.

1Long term synaptic plasticity within the simulated circuit was not included in this study

for pragmatic reasons because of the additional complex issues involved, but will be addressed

in subsequent studies.
1Connections from L2/3-I to L5-E are reported in Thomson et al. (2002), but are discussed

only qualitatively. Hence the entry for connections from L2/3-I to L5-E (marked by a question

mark) is only an extrapolation. The same applies to connections from L4-I to L2/3-I. No data

on the amplitudes of IPSPs from L5-I to L5-I are given in Thomson et al. (2002), hence the

corresponding entry is just a guess.
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Figure 3.1: Cortical microcircuit template. Numbers at arrows denote connection

strengths (mean amplitude of postsynaptic potentials, PSPs, measured at soma in

mV) and connection probabilities (in parentheses) according to Thomson et al. (2002),

for connections between cortical neurons in 3 different layers, each consisting of an

excitatory (E) and an inhibitory (I) population, with an estimated maximal horizontal

distance of up to 100 µm. Most of the data are from rat cortex, except for intercon-

nections in layer 4 (italic), which are from cat.1Percentages at input streams denote

connection probabilities for input neurons used in the simulations. In addition each

neuron receives background noise reflecting the synaptic inputs from a large number of

more distal neurons (see Methods).

As models for excitatory and inhibitory neurons I chose conductance based

single compartment Hodgkin-Huxley neuron models with passive and active prop-

erties modeled according to Destexhe et al. (2001) and Destexhe & Pare (1999).
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from/to E I

E 0.5, 1.1, 0.05 0.05, 0.125, 1.2

I 0.25, 0.7, 0.02 0.32, 0.144, 0.06

Table 3.1: Synaptic parameters that scale the short term dynamics of synapses accord-

ing to the type (excitatory or inhibitory) of the pre- and postsynaptic neuron: Mean

values of U, D, F according to Markram et al. (1998) and Gupta et al. (2000).

In accordance with experimental data on neocortical and hippocampal pyramidal

neurons (Hoffman et al. (1997); Magee et al. (1998); Magee & Johnston (1995);

Stuart & Sakmann (1994)) the active currents comprise a voltage dependent

Na+ current (Traub & Miles (1991)) and a delayed rectifier K+ current (Traub

& Miles (1991)). For excitatory neurons a non-inactivating K+ current (Mainen

et al. (1995)) responsible for spike frequency adaptation was included in the

model. The peak conductance densities for the Na+ current and delayed rectifier

K+ current were chosen to be 500pS/µm2 and 100pS/µm2 respectively, and the

peak conductance density for the non-inactivating K+ current was chosen to be

5pS/µm2. The membrane area of the neuron was set to be 34636 µm2 as in Des-

texhe et al. (2001). For each simulation the initial conditions of each neuron, i.e.

the membrane voltage at time t = 0, were drawn randomly (uniform distribution)

from the interval [-70, -60] mV.

A cortical neuron receives synaptic inputs not only from immediately adja-

cent neurons (which were modeled explicitly in the computer model), but also

smaller background input currents from a large number of more distal neurons.

In fact, intracellular recordings in awake animals suggest that neocortical neu-

rons are subject to an intense bombardment with background synaptic inputs,

causing a depolarization of the membrane potential and a lower input resistance

commonly referred to as ’high conductance state’ (for a review see Destexhe et al.

(2003)). This was reflected in the computer model by background input currents

that were injected into each neuron (in addition to explicitly modeled synap-

tic inputs from afferent connections and from neurons within the circuit). The

conductances of these background currents were modeled according to Destexhe

et al. (2001) as a one-variable stochastic process similar to an Ornstein-Uhlenbeck
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process with mean ge = 0.012µS and gi = 0.057µS, variance σe = 0.003µS and

σi = 0.0066µS, and time constants τe = 2.7 ms and τi = 10.5 ms, where the

indices e/i refer to excitatory and inhibitory background input conductances, re-

spectively. According to Destexhe et al. (2001) this model captures the spectral

and amplitude characteristics of the input conductances of a detailed biophysical

model of a neocortical pyramidal cell that was matched to intracellular recordings

in cat parietal cortex in vivo. Furthermore the ratio of the average contributions

of excitatory and inhibitory background conductances was chosen to be 5 in ac-

cordance with experimental studies during sensory responses (Anderson et al.

(2000); Borg-Graham et al. (1998); Hirsch et al. (1998)).

The maximum conductances of the synapses were chosen from a Gaussian

distribution with a SD of 70% of its mean (with negative values replaced by

values chosen from an uniform distribution between 0 and two times the mean).

The mean maximum conductances of the synapses were chosen to reproduce the

mean amplitude of PSPs given in Fig. 3.1 at the resting membrane potential (in

the presence of synaptic background activity).

Two afferent input streams, each consisting of either 4 or 40 spike trains (i.e.,

4 or 40 input channels), were injected into the circuit. Each of the channels of

the first input stream (representing thalamic, or feedforward cortical input) was

injected mainly into layer 4, i.e. to 50% of its inhibitory neurons and 80% of its

excitatory neurons, but also into 20% of the excitatory neurons in layer 2/3 and

10% of the excitatory neurons in layer 5 (all randomly chosen). 1 The average

number of inputs converging to an excitatory neuron in layer 4 is therefore 3.2 or

32. 2 This is roughly in the range suggested by experimental measurements of the

1This input distribution reflects qualitatively the evidence cited in ch. III of White (1989)

that “thalamocortical afferents to layer 4 synapse not only with layer 4 nonpyramidal neurons,

but also with a wide variety of both pyramidal and nonpyramidal neuronal types whose cell

bodies occur throughout layers 2 to 6”.
2Computer simulations suggest that smaller connection probabilities from external input

neurons can be chosen if the amplitudes of resulting PSPs are scaled up accordingly. For the

case of 40 input channels I carried out simulations with lower input connectivity for input

stream 1 while keeping the product of PSP amplitude and connection probability constant.

The results about performance differences between data-based circuits and amorphous control

circuits (see Table 3.2) are largely invariant to these changes, even if the connection probabilities

for external input neurons are scaled down to 1/5th of the previously given values.
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variability of EPSPs in simple cells of cat visual cortex with varying levels of LGN

stimulation (Ferster (1987)) and cross-correlation experiments between monosy-

naptically linked cells of the LGN and cat visual cortex (Tanaka (1983)), which

suggest that at least 10 LGN cells provide input to each simple cell. The mean

conductance of input synapses was chosen to generate a PSP with a mean am-

plitude of 1.9 mV at the resting membrane potential (in the presence of synaptic

background activity). This value corresponds to the lower bound of the estimate

of geniculate input to a single neuron in layer 4 of adult cats given in Chung &

Ferster (1998). It was multiplied in the simulations with a scaling parameter SI1

that reflects the biologically unrealistic number of input neurons in these simu-

lations (see discussion below). Each of the channels of the second afferent input

stream was injected into 20% of the excitatory neurons in layers 2/3 (also with a

mean amplitude of 1.9 mV, multiplied with another scaling parameter SI2).

Altogether there remain 3 parameters for which values have to be chosen in

order to arrive at functional computer models of cortical microcircuits. These pa-

rameters SRW , SI1, SI2 scale (in the form of multiplicative factors) the amplitudes

of PSPs for all synaptic connections within the circuit (“recurrent weights”), the

amplitudes of PSPs from input stream 1, and the amplitudes of EPSPs from

input stream 2. They have to be chosen in such a way that they account for the

difference in scale between the simulated microcircuits and biological cortical mi-

crocircuits. Values for these 3 parameters cannot be read off from the previously

mentioned data, and one has to suspect that adequate values depend also on the

species, on the specific cortical microcircuit in vivo that one wants to model, on

the current state of various homeostatic processes, on the current behavioral state

(including attention) of the organism, and on the intensity of the current afferent

input.

The parameter SI1 was chosen so that the afferent input stream 1 (consisting

of 40 Poisson spike trains at 20 Hz) caused (without input stream 2 and without

recurrent connections, i.e. SRW set to 0) an average firing rate of 15 Hz in layer

4. The parameter SI2 was analogously chosen so that the afferent input stream

2 (generated like input stream 1) caused an average firing rate of 10 Hz in layers

2/3. In either case only one of the two input streams was activated. With this

procedure I obtained SI1 = 14 and SI2 = 33. For simulations with input streams
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consisting of 4 Poisson spike trains these values were multiplied by 10. The

input synapses were chosen to be static, i.e. the synaptic parameters were set

to U = 1, D = 0, and F = 0, and their maximum conductances were chosen

from a Gaussian distribution with a SD of 70% of its mean (with negative values

replaced by values chosen from an uniform distribution between 0 and two times

the mean).

The parameter SRW accounts for the average number of synaptic inputs to

a neuron from other neurons in the circuit (apart from the globally modeled

background synaptic input, see above), hence for the difference in circuit size

between the simulated microcircuit models and a real cortical microcircuit. It

turned out that a value of 60000/(number of neurons in the simulated circuit)

for SRW produced in layer 5 of the simulated circuit for the standard values of

SI1 and SI2 a realistic low but significant firing activity of 8.5 Hz (see Fig. 3.2),

hence this value was used as standard value for SRW . This value scales the average

number 76 of presynaptic neurons in a circuit of 560 neurons up to 107 times that

value, yielding thereby an average of 8132 presynaptic neurons. This number is

consistent with the estimates for the total number of synapses on a neuron given

in Binzegger et al. (2004), that range from 2981 to 13075 for different cell types

in cat visual cortex. Some additional synaptic input was modeled by background

synaptic input (see above).

These standard values of the parameters SRW , SI1, SI2 were used throughout

the computer experiments, except for the results reported in Fig. 3.10 and 3.11,

where I analyzed the impact of these parameters on the reported results. In this

case I simulated circuit models with randomly chosen values from independent

uniform distributions over the interval [0.1×standard value, 3.1×standard value]

for all three parameters.

The computer simulations examined how much information about each pre-

ceding temporal segment (of length 30 ms) of each of the two input streams was

accessible to a hypothetical projection neuron in layers 2/3 and to a hypothetical

1The population firing rates of different layers are somewhat, but not totally correlated.

The maximum correlation coefficient between the population firing rates of layer 2/3 and layer

4, layer 2/3 and layer 5, and layer 4 and layer 5 (for t > 150 ms, 1 ms bin size and arbitrary

lag) is 0.62, 0.65 and 0.56, respectively.
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Figure 3.2: A: Two input streams consisting each of 40 Poisson spike trains (the input

to layers 2/3 starts here 100 ms later). B: Spike raster of data-based cortical micro-

circuit model (consisting of 560 neurons) for the two input streams shown in A. The

vertical dimension is scaled according to the number of neurons in each layer. Spikes of

inhibitory neurons are indicated in red. 1C: Distribution of firing rates in B (after onset

of input into layers 2/3 and layer 4), showing an automatically emerging exponential

distribution of firing rates in layer 5. Mean firing rate: 8.5 Hz. D: Enlargement of the

initial time segment, showing a spread of excitation from layer 4 to superficial and deep

layers that qualitatively matches data from Armstrong-James et al. (1992).

projection neuron in layer 5. The excitatory and inhibitory presynaptic neurons

for such a hypothetical readout neuron were randomly chosen in the same manner

as for any other excitatory neuron in that layer (i.e., according to Fig. 3.1), but no

synaptic connections from a readout neuron back into the circuit were included.

This amounted to an average of 84 presynaptic neurons for a readout neuron in

layers 2/3, and 109 presynaptic neurons for a readout neuron in layer 5. The
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weights of synaptic connections from these presynaptic neurons were optimized

for specific tasks. In contrast to the simulations discussed in Maass et al. (2002),

the resulting number of inputs to such readout neuron was much smaller than

the circuit size. The projection or readout neurons themselves were modeled as

linear neurons, i.e., their output was a weighted sum of low pass filtered spikes

(exponential decay with a time constant of 15 ms, modeling the time constants of

synaptic receptors and membrane of a readout neuron). Care was taken to make

sure that weights from excitatory (inhibitory) presynaptic neurons could not be-

come negative (positive). For this purpose I used the linear least squares method

with non-negativity constraints Lawson & Hanson (1974) to optimize the weights

for a particular task. This is in contrast to the linear regression which was used

in Maass et al. (2002). For each training or test example, which consisted of an

input and a target value for the readout neuron, a simulation of the microcircuit

model was performed. Each input for the readout neuron was generated by col-

lecting the low pass filtered version of the presynaptic spike trains to the readout

neuron at time point t = 450 ms. Each corresponding target value was calcu-

lated for the various tasks described below (see Results). In order to correctly

apply the linear least squares method with non-negativity constraints the spike

trains of inhibitory (excitatory) neurons were convolved with negative (positive)

exponential kernels and the corresponding readout weights were multiplied by -1

(+1) after training. For classification tasks the linear readout neuron was trained

to output the class labels, i.e. 0 or 1, whereas a classification was obtained by

thresholding the output at 0.5 (analogous to the firing threshold of a real cortical

neuron). This algorithm yields a weight vector < w1, ..., wn > with wi ≥ 0 if the

ith presynaptic neuron of the readout is excitatory, and wi ≤ 0 if the ith presy-

naptic neuron is inhibitory. Within these (linear) constraints this restricted form

of linear regression minimizes the error of the readout on the training examples.
1 This typically resulted in an assignment of weight 0 (corresponding to a silent

synapse in a biological circuit) to about 2/3 of these synapses. Hence a typical

readout neuron had less than 40 nonzero weights, and therefore a much smaller

1In MATLAB one can execute this optimization algorithm through the command LSQNON-

NEG.
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capability to extract information in comparison with the model considered in

Maass et al. (2002).

For each computer simulation at least 10 circuits were generated. For the

experiments shown in Fig. 3.5 and Fig. 3.8 20 circuits were used. New spike tem-

plates were generated each time when a new circuit was drawn, in order to avoid

accidental dependencies on properties of specific spike templates. For the training

of the readout neurons 1500 simulations were performed with randomly drawn

Poisson inputs over 450 ms. Furthermore 300 simulations with new randomly

generated inputs were used for testing. The error bars in the figures denote stan-

dard errors. All performance results in this chapter (except for some diagnostic

results reported in Fig. 3.8, see legend) are for test inputs that had not been used

for the training of readouts, and freshly generated random initial conditions and

background noise for all neurons in the circuit.

All simulations were carried out with the CSIM software Natschläger et al.

(2003) in combination with MATLAB.

3.3 Results

Injection of two input streams consisting of Poisson spike trains into layer 4 and

into layers 2/3 of the microcircuit model produced a response (see Fig. 3.2) whose

successive onset in different layers qualitatively matches data on cortical micro-

circuits in vivo (Armstrong-James et al. (1992)). In addition the firing rates in

layer 5 automatically acquire a biologically realistic exponential distribution (see

e.g. Amit & Brunel (1997); Baddeley et al. (1997); v. Vreeswijk & Sompolinsky

(1998, 1996)). 1 Fig. 3.3 gives an impression of the fairly large trial to trial

variability of firing activity within the circuit for the same spike input patterns,

which resulted from jitter in the spike input (top row) and internal noise (bot-

tom row) due to the injection of randomly varying background input currents

to all neurons in order to model in-vivo conditions (see Methods). 2 Hence the

1The distribution of firing rates in layers 2/3 and 4 reflects the typical rate distribution of

Poisson spike trains that was induced by the Poisson input to these layers.
2In addition, for all subsequently considered computational tasks independently chosen

spike patterns had been previously injected as afferent inputs, causing a fairly large variance of
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Figure 3.3: Impact of temporal jitter of input spikes (Gaussian distribution with mean

0 and SD 1 ms) and background noise of neurons in the circuit on the circuit response

(see Methods). The rows in the middle and at the top show the spike rasters resulting

from two trials with identical background noise and with input spike patterns that were

identical except for their temporal jitter. The bottom row shows how much the spike

raster for a trial with novel background noise and identical input spike patterns differs

from that for the trial shown in the middle row. This illustrates that the simulated

circuits (which were subject to both sources of noise) reflect qualitatively the commonly

observed large trial-to-trial variability of neural responses in vivo to repetitions of the

same stimulus.

simulated circuits reflect qualitatively the commonly observed large trial-to-trial

variability of neural responses in vivo to repetitions of the same stimulus.

I tested these microcircuit models on a variety of generic information process-

ing tasks that are likely to be related to actual computational tasks of neural

microcircuits in cortex:

initial states of dynamic synapses.
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• classification of spike patterns in either of the two afferent input streams (re-

quiring invariance to noise and to spike input from the other input stream)

• temporal integration of information contained in such spike patterns

• fusion of information from spike patterns in both input streams in a non-

linear fashion (related to “binding” tasks)

• real-time computations on the firing rates from both input streams.

For information processing tasks with spike patterns I randomly generated

spike pattern templates consisting of 30 ms segments of 40 Poisson spike trains

at 20 Hz (see Fig. 3.4). More precisely the spike trains of each of the two input

streams were of length 450 ms and consisted of 15 consecutive time segments

of length 30 ms. For each segment 2 spike pattern templates were generated

randomly. For the actual input one of the two templates of each time segment was

chosen randomly (with equal probability) and a noisy variation of it, where each

spike was moved by an amount drawn from a Gaussian distribution with mean 0

and SD 1 ms (see the panel on the right hand side of Fig. 3.4), was injected into

the circuit. Such temporal jitter in the spike input causes significant changes in

the circuit response (see Fig. 3.3), and it is a nontrivial task for readout neurons

to classify spike patterns in spite of this fairly large trial-to-trial variability of

the circuit response. I also tested retroactive classification of preceding spike

patterns that had been injected 30 ms before, and hence were “overwritten”

by independently chosen subsequent spike patterns. Furthermore a nonlinear

XOR computation on spike patterns in the two concurrent input streams was

examined in order to test the capability of the circuit to extract and combine

information from both input streams in a nonlinear manner. The task is to

compute the exclusive-or (XOR) 1 of the two bits that represent the labels of the

two templates from which the most recent spike patterns in the two input streams

had been generated (for example, its target output is 1 for both time segments for

the input shown on the right hand side of Fig. 3.4). Note that this computation

1The XOR outputs 1 if exactly one of its two input bits has value 1, it outputs 0 if the

input bits are 00 or 11.
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Figure 3.4: Input distributions for the spike pattern classification and exclusive-or

(XOR) tasks. The task is to compute the XOR of the two bits that represent the

labels of the two templates from which the most recent spike patterns in the two input

streams had been generated, i.e. classify as 1 if their template labels are different and

0 otherwise. The spike trains of each of the two input streams were of length 450 ms

and consisted of 15 time segments of length 30 ms. For each segment 2 templates were

generated randomly (40 Poisson spike trains at 20 Hz). The actual spike trains of each

input of length 450 ms used for training or testing were generated by choosing for each

segment one of the two previously chosen associated templates, and then generating a

jittered version by moving each spike by an amount drawn from a Gaussian distribution

with mean 0 and a SD 1 ms (a sample is shown in the panel on the right hand side).

involves a nonlinear “binding” operation on spike patterns, since it has to give a

low output value if and only if either noisy versions of the spike templates with

label 1 appeared both in input streams 1 and 2, or if noisy version of the spike

templates with label 0 appeared both in input stream 1 and 2.

In addition I analyzed linear and nonlinear computations on time-varying

firing rates of the two input streams. The spike trains of each of the two input
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streams were of length 450 ms and consisted of 15 consecutive time segments

of length 30 ms. For each input stream and each time segment 4 Poisson spike

trains were generated with a randomly chosen frequency between 15 Hz and 25

Hz. The actual firing rates used for the computations on these input firing rates

were calculated from these spike trains with a sliding window of 15 ms width.

I used input streams consisting of just 4 spike trains for these tests since the

performance of both data-based circuits and control circuits was quite low if

input rates were represented by 40 spike trains.

The emergent computational properties of data-based microcircuit models are

recorded in Fig. 3.5 (green bars). The performance of the trained readouts for

test inputs (which are generated from the same distribution as the training ex-

amples, but not shown during training) was measured for all binary classification

tasks by the kappa coefficient, which ranges over [-1,1], and assumes a value ≥ 0

if and only if the resulting classification of test examples makes fewer errors than

random guessing. 1 For tasks that require an analog output value the perfor-

mance of the trained readout was measured on test examples by its correlation

coefficient with the analog target output. The accuracy of computations achieved

by trained readout neurons from microcircuit models with a data-based laminar

structure is compared with the accuracy achieved by trained readout neurons

from control circuits (red bars in Fig. 3.5) whose data-based laminar connectivity

structure has been scrambled by replacing the source and target neurons of each

synaptic connection within the circuit by randomly drawn neurons of the same

type, i.e. excitatory or inhibitory neurons, under the constraint that no synaptic

connection occurs twice (I will usually refer to these circuit models as amorphous

circuits). Note that this procedure does not change the total number of synapses,

the synapse type alignment with regard to pre- and postsynaptic neuron type,

the global distributions of synaptic weights or other synaptic parameters, or the

sets of neurons which receive afferent inputs or provide output to readout neu-

rons. The connectivity structure of amorphous circuits is (apart from different

1The kappa coefficient measures the percentage of agreement between two classes expected

beyond that of chance and is defined as (Po - Pc)/(1 - Pc), where Po is the observed agreement

and Pc is the chance agreement. Thus for classification into 2 equally often occurring classes

one has PC = 0.5.
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Figure 3.5: Performance of trained linear readout neurons in layers 2/3 and layer 5 (see

Methods) for various classification tasks on spike patterns and computations performed

on the rates of the two input streams, both for data-based laminar microcircuit models

(green bars) and for control circuits where the laminar structure had been scrambled

(red bars). tcl1/2(t) denotes retroactive classification of noisy spike patterns (inputs

were generated as shown in Fig. 3.4) in input streams 1 or 2 that were injected during

the preceding time interval [t-30ms,t] into two classes according to the template from

which each spike pattern had been generated. tcl1/2(t−∆t) refers to the more difficult

task to classify at time t the spike pattern before the last one that had been injected

during the time interval [t − 60 ms, t − 30 ms]. For XOR classification the task is to

compute at time t = 450 ms the XOR of the template labels (0 or 1) of both input

streams injected during the preceding time segment [420 ms, 450 ms]. On the right hand

side the performance results for real-time computations on the time-varying firing rates

r1(t) of input stream 1 and r2(t) of input stream 2 (both consisting of 4 Poisson spike

trains with independently varying firing rates in the two input streams). The light bars

show performance results for the two target functions r1(t)/r2(t) and (r1(t) − r2(t))
2,

and the bold bars for the performance on the nonlinear components of these real-time

computations at any time t
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connection probabilities between and within the populations of excitatory and

inhibitory neurons) identical with that of the graphs studied in classical random

graph theory Bollobas (1985) (with the four connection probabilities for these

two populations taken from the data-based circuits).

Fig. 3.5 shows that data-based circuits perform significantly better for the

majority of the considered information processing tasks, except for the rate tasks

for a readout neuron in layer 5 and the task tcl2(t − ∆t) for a readout neuron in

layer 2/3 (for which the performance increase was not significant). In particular,

potential projection neurons in layers 2/3 and layer 5 have in a data-based laminar

circuit better access to the information contained in the current and preceding

spike patterns from either afferent input stream. The results show that potential

readout neurons can classify spike patterns from either afferent input stream

independently from the simultaneously injected spike pattern in the other input

stream (and independently from the fairly high trial-to-trial variability shown

in Fig. 3.3). One interesting detail can be observed for the two tasks involving

computations on firing rates. Here the performance of data-based and control

circuits is about the same (see light bars in Fig. 3.5), but readouts from layer 2/3

perform for data-based circuits significantly better on the nonlinear component

of these computations (see bold bars in front of the light bars in Fig. 3.5). 1

The actual performance achieved by trained readouts from microcircuit mod-

els depends on the size of the circuit (theoretical results predict that it will au-

tomatically improve when the circuit size increases Maass et al. (2002)). This

is demonstrated in Fig. 3.6 for one of the computational tasks considered in

Fig. 3.5 (XOR of labels of spike patterns from the two afferent input streams),

both for data-based and for control circuits. Fig. 3.6 also shows that the superior

performance of data-based circuits does not depend on the circuit size. The per-

formance improvement of circuits consisting of 1000 neurons compared to circuits

consisting of 160 neurons is somewhat smaller for rate tasks. For instance the

performance of a readout neuron in layer 2/3 or layer 5 trained for the two rate

1This nonlinear component of the target functions r1/r2 and (r1−r2)
2 resulted by subtract-

ing from these functions an (for the considered distribution of r1, r2) optimally fitted linear

function.
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Figure 3.6: Performance (see Methods) of projection neurons in layers 2/3 and layer

5 for different circuit sizes, with and without a data-based laminar structure, for the

computation of the XOR task. These results show that the superior performance of

data-based circuits does not depend on the circuit size.

tasks r1/r2 and (r1−r2)
2 increases on average by only 25% for data-based circuits

and 20% for amorphous circuits.

The preceding results show that microcircuits with a data-based laminar struc-

ture have superior computational capabilities for a large variety of computational

tasks. This raises the question why this is the case. I approach this question from

two different perspectives. I first examine which aspects of the data-based circuit

structure are essential for their superior performance. Obviously the procedure

for generating amorphous circuits destroys not only the laminated structure of

data-based circuits, but also other structural properties such as the distribution

of degrees of nodes in the underlying connectivity graph, and its cluster structure.

I therefore introduce three additional types of control circuits in order to analyze

the impact of specific structural features on the performance. Secondly I exhibit

a characteristic feature of the internal dynamic of these different circuit types
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that is correlated with their computational performance.

I first studied the computational impact of small-world properties of data-

based circuits. Small-world networks have been characterized in Watts & Stro-

gatz (1998) through two properties. They have a higher clustering coefficient

(measured by the proportion of immediate neighbors of nodes in the graph that

are connected by a link) than amorphous circuits, while maintaining a compara-

ble average shortest path length. 1 Data-based cortical microcircuit models have

in fact small-world properties according to this definition, since their clustering

coefficient (that has a value of 36%) is 38% higher than in amorphous circuits,

while their average shortest path length is about the same (1.75 links). 2 In

order to decide whether these small-world properties are sufficient for inducing

the superior computational properties of data-based circuits, I generated control

circuits that have the same size, clustering coefficient, and average shortest path

length as data-based circuits by the spatial growth algorithm described in Kaiser

& Hilgetag (2004) (with parameters α = 4, β = 1.32 and 560 nodes). Subse-

quently these undirected graphs were converted to directed graphs by randomly

replacing each edge with a synapse (that is randomly oriented) or a reciprocal

synaptic connection, with a probability so that the total number of synaptic con-

nections and reciprocal synaptic connections is identical to the corresponding

number for data-based circuits. 3

For the third type of control circuit I considered circuits that have the same

distributions of in- and outdegrees for neurons as data-based circuits. The in- and

outdegree of a neuron is defined as the total number of incoming and outgoing

synaptic connections, respectively.

For this purpose I generated data-based circuits and subsequently exchanged

the target neurons of randomly chosen pairs of synapses with pre- and postsy-

naptic neurons of the same category (excitatory or inhibitory), until the laminar

specific connectivity structure disappeared (no exchange was carried out if either

1Note that both properties refer to the structure of the underlying undirected graph, where

directed edges are replaced by undirected links.
2The long-range cortical connectivities in the cat and macaque monkey brain have clustering

coefficients of 55% and 46%, respectively, as reported in Hilgetag et al. (2000).
3It should be noted that this procedure does not reproduce the same fraction of synapse

types as for data-based circuits and amorphous circuits.
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tasks/circuits amorphous
small- degree-

degree-controlled random short
static

world controlled
w/o input or term synaptic

synapses
output specificity dynamics

memory 32.6 41.6 12.0 35.8 48.3 65.7

non-linear 36.9 11.3 -2.3 4.6 40.1 38.7

other 12.2 5.3 -0.6 5.6 14.1 6.9

all 25.0 15.4 1.6 12.0 30.4 30.6

Table 3.2: Average percentage of performance decrease compared to data-based cir-

cuits (averaged over tasks and readout types) for 7 types of control circuits (defined

in the text) and the tasks defined in the legend for Figure 3.5. The memory tasks are

tcl1(t−∆t), tcl2(t−∆t), the non-linear tasks are XOR and computations on the purely

nonlinear components of r1/r2 and (r1 − r2)
2 and other tasks are the remaining tasks

considered in Figure 3.5. Only degree-controlled circuits achieve better performance

than data-based circuits for some tasks.

of the two resulting new connections existed already). This circuit type also has

small-world properties, but the average cluster coefficient was smaller than for

data-based circuits (only 27% higher than in amorphous networks). I refer to this

circuit type as degree-controlled circuits.

Degree-controlled circuits preserve the distribution of degrees among neurons

that receive external input or provide input to a readout neuron. Therefore

a control circuits was added, referred to as degree controlled circuits without

input or output specificity, by randomly exchanging neurons in different layers of

degree-controlled circuits. The degree distributions of neurons for all 5 types of

circuits are shown in Figure 3.7.

An important structural feature of all circuit types considered until now is

the alignment of synapse type with regard to pre- and postsynaptic neuron type

according to Table 3.1. In order to analyze the impact of the alignment of dy-

namic synapses on the performance I randomly exchanged the synaptic param-

eter triplets, i.e. U , D and F , that define the short term plasticity between all

synapses. In the last type of control circuits all dynamic synapses were replaced

by static synapses (with weights rescaled so that the mean firing rate in layer 5

stayed fixed).
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Figure 3.7: Degree distributions of neurons in different populations for 5 types of

circuits (averaged over 100 circuits). All circuits have degree distributions that can be

better approximated by sums of Gaussians than by a power law of the form P (d) ∝ d−γ

for neurons of degree d and a positive constant γ (i.e. the circuits are not scale-free).

The correlation coefficients for least square fits for sums of Gaussians and power law

distributions are > 0.96 and < 0.08, respectively. Thus none of these circuits are

scale-free, which shows that their difference in performance cannot be explained on

the basis of this concept. The computational analysis (see Table 3.2) implies that the

varying locations of peaks for different layers of data-based circuits are essential for

their superior computational performance.

A summary of the performance of all 7 different types of control circuits

is shown in Table 3.2. The small world property increases the performance of

amorphous circuits to some extent, but a more important structural feature is

the degree distribution defined by data-based circuits. If this degree distribution

matches the degree distribution of data-based circuits for each single layer, and

therefore matches also the specific input and output topology of data-based cir-

cuits, the average performance is comparable to the performance of data-based

circuits. Table 3.2 also shows (see column 5) that a data-based assignment of
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synapse types (according to Table 3.1) is essential for good computational per-

formance. The last column shows that circuits with static synapses also have

inferior computational properties.

In order to elucidate the relationship between inherent properties of the cir-

cuit dynamics and computational performance I studied one fundamental – but

relatively simple – information processing task in more detail: retroactive classi-

fication of spike patterns into two classes, in spite of noise. More precisely, the

task was to classify the 2 × 4 input spike trains generated from two templates

(as in Fig. 3.4) into two classes, in spite of a subsequent waiting period of 100

ms (during which identical spike trains were injected in either case), and in spite

of widely different initial conditions (caused by different preceding spike inputs)

and the relatively high internal noise that models bombardment with unrelated

background synaptic input in the ’high conductance state’ (compare the middle

and bottom row of Fig. 3.3 to see stochastic changes in the spike response caused

by the latter). This task tests the capability of circuits to maintain information

about spike patterns that had been injected more than 100 ms ago. This infor-

mation is reduced by noise resulting from inherent noise in neurons and varying

initial conditions (“in-class variance”). The solid green lines in Fig. 3.8 show that

readout neurons in layers 2/3 and layer 5 of data-based circuits can learn quite

fast from relatively few training examples to guess which of the two fixed spike

patterns had previously been injected. A comparison with the red lines show

that their error on new examples of this task (test error) is significantly smaller

than that of readout neurons in amorphous control circuits. Furthermore this

advantage is not reduced when more training examples become available. The

superiority of readouts from data-based circuits results both from a better fit to

the training data (dashed curves in Fig. 3.8), and from a smaller generalization

error (= distance between solid and dashed curve). 1

A more intrinsic explanation for the better computational performance of

data-based laminar circuits is provided by the theory of computations in dynam-

ical systems (see Legenstein & Maass (2005) for a review). Fig. 3.9 shows that a

1Note that all types of circuits have for a smaller number of training examples a smaller

error on the training set but a larger error on the test set due to the well-known overfitting

effect that is studied extensively in statistical learning theory Vapnik (1998).
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Figure 3.8: Training and testing error of readouts from data-based and amorphous

microcircuit models as function of the size of the training set. The task was retroactive

classification of two randomly created spike patterns of length 100 ms (consisting of 4

Poisson spike trains at 20 Hz) after identical input of length 100 ms was subsequently

injected into the circuit, in spite of varying initial conditions (caused by independently

generated preceding Poisson spike inputs of the same type) and noisy background input

currents as before. The top panel shows the performance of a potential readout neuron

in layers 2/3 with 84 presynaptic neurons, trained by sign-constrained linear regression

(see Methods). The bottom panel depicts the performance for a potential readout

neuron in layer 5 with 109 presynaptic neurons. Both types of readouts perform better

for data-based laminar circuit, both on the training set (with new random drawings of

initial conditions and background noise) and on the testing set. This holds for all sizes

of the training set that were considered.

data-based circuit works in a substantially less chaotic regime than an amorphous

control circuit. Its sensitivity to tiny differences in initial conditions is also less

than in the other 3 types of control circuits that preserve selected aspects of the
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Figure 3.9: Euclidean distances in trajectories of circuit states (more precisely: of

input vectors to readout neurons in layers 2/3 and in layer 5) resulting from moving

a single input spike (at 100 ms) by 0.5 ms. Shown is the average from simulations of

400 randomly generated circuits with different initial conditions and background noise.

Initial conditions and internal noise were chosen to be identical in both trials of each

simulation, as in standard tests for estimating the Lyapunov exponent of (determin-

istic) dynamical systems, see Legenstein & Maass (2005). The curves show lasting

differences in Euclidean distance between circuit states which are about twice as large

for amorphous circuits, thereby indicating a more chaotic dynamics than in laminar

circuits with the same number of neurons and synapses.

data-based network structure. A less chaotic dynamics implies better generaliza-

tion capability to new inputs for many different types of dynamical systems. This

observation is of interest because one might assume that the number of synapses

per neuron is the essential parameter that determines the amount of chaos in the

circuit. But all circuits for which results are plotted in Fig. 3.9 have the same

number of synapses.
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Figure 3.10: Data-based circuit structure reduces the impact of noise. For each of two

circuit types, i.e. for data-based and amorphous circuits, 50 circuits were generated

and 500 identical inputs as generated for the task in Fig. 3.8 were injected into each of

them. The difference in the variance of circuit responses (averaged over the 50 circuits)

was evaluated from the perspective of readout neurons. More precisely: The variance

of the input to readout neurons, after injecting 500 times the same input into the

circuit, was analyzed by how much this variance was reduced for the data-based circuit

structure (expressed as percentage of change in comparison with amorphous control

circuits). The smaller variance for data-based circuits shows that their dynamics is less

influenced by internal noise and different initial conditions, thereby providing better

generalization capabilities of trained readouts. This experiment was repeated for 30

randomly chosen settings of the scaling parameters SRW , SI1, SI2 (see Methods), and

this figure shows for how many of these parameter settings a specific noise-reduction

was achieved for data-based circuits. The mean in-class variance for all parameter

settings was 0.58, SD 0.29, for data-based circuits. The percentages for 5 of these

circuits were not entered into this plot since their in-class variance was below 0.01,

resulting from the fact that they hardly responded to the input. The percentage of

change of in-class variance for the standard setting of the scaling parameters was -38

for layer 2/3 readouts and -41 for layer 5 readouts. These results show that the noise

reduction capability of the data-based circuits was not an accidental property of the

standard setting of the scaling parameters.

The dashed curves in Fig. 3.8 show that another reason for the better com-

putational performance of data-based circuit models is that the synaptic weights

of their readout neurons can be better fitted to the training data. This fact can

be explained in terms of the in-class variance of high-dimensional circuit states
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Figure 3.11: Percentage of improvement in performance of readouts from laminar

circuits for different values of the 3 scaling parameters, for the same XOR task as

discussed in Fig. 3.4 and 3.5 (but with just 2 times 4 input spike trains). The percentage

of improvement was measured for 16 randomly drawn settings of the scaling parameters

SRW , SI1, SI2. Two of these settings yielded extremely low performance for both data-

based and amorphous circuits (below 0.08, hence below the SD of the performance

data for all 16 parameter settings), and were therefore omitted from the plot. The

improvement in performance for the standard setting of these parameters was 74% for

layer 2/3 readouts and 64% for layer 5 readouts. This suggests that a laminar circuit

has a superior computational capability for most parameter settings, hence for a wide

variety of stimulus intensities and regulatory states of neural systems in vivo.

caused by varying initial conditions and internal noise (for repeated trials with

the same spike input to the circuit). The correlation between this in-class vari-

ance on training data and the classification error of trained readouts on test data

for the task considered in Fig. 3.8 was 0.80 for readouts from layer 2/3 and 0.72

for readouts from layer 5 for data-based laminar circuits.

Fig. 3.10 shows that for amorphous control circuits this in-class variance is

generally larger. Furthermore Fig. 3.10 shows that this noise-suppressing feature

of the dynamics in data-based laminar circuits is not an accidental property

of the fixed setting of the 3 parameters SRW , SI1, SI2 (which scale the weights

of recurrent synaptic connections, the amplitudes of input stream 1, and the

amplitudes of input stream 2) that I used for the simulations reported so far (see

Methods). Fig. 3.10 shows that this noise-suppressing feature appears also for all

other (randomly chosen) settings of these parameters that were tested.
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Fig. 3.11 shows that also the superior computational performance of data-

based laminar microcircuit models is not an accidental consequence of a particular

choice of these 3 parameters, but holds for most of their potential values. This fact

is demonstrated here for the XOR on spike patterns that was already previously

discussed. 1 This suggests that a laminar circuit has for some tasks superior

computational capability for a fairly large variation of dynamic regimes. This

is of interest because different behavioral states, different states of homeostatic

processes, or different input intensities may give rise to a variety of different

dynamic regimes of cortical microcircuits.

3.4 Discussion

I demonstrated that data-based laminar connectivity structure enhances the in-

formation processing capabilities of cortical microcircuit models. In particular I

have shown that such data-based circuit model can accumulate, hold, and fuse

information contained in two afferent spike input streams. It should be noted

that the computations that were analyzed in the computer experiments were bi-

ologically realistic real-time computations on dynamically varying input streams,

rather than static computations on batch inputs that are usually considered in

modeling studies. In contrast to the circuit models from Buonomano & Merzenich

(1995) and Maass et al. (2002), the circuit models that were analyzed in this

chapter not only have a biologically realistic laminar structure, but also con-

sist of Hodgkin-Huxley type neurons (with additional background input based

on data which are conjectured to be representative for the ’high conductance

state’ of cortical circuits in vivo Destexhe et al. (2003)). In addition the simula-

tions discussed in this chapter took a substantially larger trial-to-trial variability

into account. Furthermore information was not extracted from all neurons as

in Buonomano & Merzenich (1995) and Maass et al. (2002), but from a much

smaller subset of neurons that represents the typical set of presynaptic neurons

1The SD of the performance of readouts from control circuits for different parameter settings

was 0.15 for readouts from layer 2/3 and 0.18 for readouts from layer 5. The performance

improvement for data-based laminar circuits was somewhat correlated with the performance

(cc. 0.16 for layer 2/3, 0.59 for layer 5 readouts)
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for a projection neuron in layers 2/3 or 5. In addition the extraction of informa-

tion by such projection neurons was for the first time subjected to the constraint

that the signs of weights of incoming synapses cannot be chosen arbitrarily in

a biological circuit, but are determined by the type (excitatory or inhibitory) of

each presynaptic neuron. Although this means that not the full power of linear

regression (or of the perceptron learning rule) can be used for optimizing such

more realistic readouts, I show that even under these biologically more realistic

conditions a substantial amount of information can be extracted by projection

neurons in layers 2/3 or layer 5. Furthermore the results in Fig. 3.6 show that

their performance increases with circuit size, making it reasonable to conjecture

that almost perfect performance will be achieved by a circuit model which is

sufficiently large so that the number of presynaptic neurons approaches realistic

values of a few thousand.

I demonstrated in Fig. 3.5 that data-based laminar microcircuit models per-

form significantly better than control circuits (which are lacking the laminar

structures but are otherwise identical with regard to their components and over-

all connection statistics) for a wide variety of fundamental information processing

tasks. This superiority holds for most settings of the parameters which scale the

global strength of afferent inputs and of recurrent connections, corresponding to a

wide variety of stimulus intensities and regulatory states of neural systems in vivo

(Fig. 3.11). I also analyzed which aspect of the connectivity structure of data-

based laminar circuits is responsible for their better computational performance.

I arrived (on the basis of the results reported in Table 3.2) at the conclusion

that their particular distribution of degrees of nodes (relative to circuit inputs

and projection neurons) is primarily responsible, more so than the small world

property of data-based circuits. I propose that this computational superiority of

laminar circuits can be understood in terms of the properties of the dynamical

system which is defined by such microcircuit models: I have shown in Fig. 3.9

and 3.10 that the dynamics of laminar circuits is somewhat less influenced by

internal noise and noise in the input, thereby providing better generalization ca-

pabilities of trained readouts, and a better fit to training data because of the

reduced variance in circuit responses.
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In Chapter 4 I continue by investigating experimentally if the computational

properties of the cortical microcircuit model as explored in this chapter, in par-

ticular fading memory and nonlinear computing on inputs from different time

frames, are supported by multi-electrode recordings in cat primary visual cortex.

This second part of the thesis is therefore dedicated to a direct experimental test

of this essential properties predicted by the theory of the liquid state machine.
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Chapter 4

Temporal dynamics of

information carried by ensembles

of neurons in the primary visual

cortex

Summary

I use multi-electrode recordings from cat primary visual cortex to investigate

whether a simple linear classifier can extract information about previously pre-

sented stimuli. I find that information is extractable and that it even lasts for

several hundred milliseconds after the stimulus has been removed. In a fast se-

quence of stimulus presentations, information about both new and old stimuli is

superimposed and can be is extracted simultaneously. Nonlinear relations between

successively presented pattern in a stimulus sequence can be extracted suggesting

highly nonlinear properties of cortical representations. It is shown that the precise

timing of spikes in the order of milliseconds carries information about the visual

stimuli that is not contained in rate responses.
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4. TEMPORAL DYNAMICS OF INFORMATION

4.1 Introduction

It has recently been argued that fundamental aspects regarding the organization

of computations in visual cortex are still unknown Olshausen & Field (2006). In

fact, there exist completely different computational models for the processing of

visual inputs in the brain that are consistent with most of the available experi-

mental data. On one end of the spectrum one finds models which propose that

specific computational operations are carried out by specialized neural circuits

(often seen as being organized through precisely structured maps of columns,

where each column is specialized for carrying out a specific computational oper-

ation, such as for example the application of a Gabor filter to a particular patch

in the image). Complex vision tasks, such as visual object recognition, are then

modeled by a subsequent hierarchy of other processing layers that carry out fur-

ther specific computational operations (Serre et al. (2005)). At the opposite end

of the spectrum one finds models which emphasize that the visual system (in fact,

the whole brain) is a recurrent neural network (or more abstractly: a dynami-

cal system), whose organizational structure is incompatible with such isolated

sequential applications of specific computational operations. In between both

extremes one finds models that explicitly take feedback connections between cor-

tical areas (and between cortex and thalamus) into account, but assign specific

computational roles to such feedback, such as for example input completion or

“predicting away”.

One particular prediction of models that emphasize the aspect that the visual

system is a recurrent circuit concerns the time course of information about visual

inputs in primary visual cortex. Computer simulations of sparsely connected

recurrent circuits of neuron-like processing units Buonomano & Merzenich (1995);

Jäger & Haas (2004); Maass et al. (2002), as well as theoretical analysis of related

circuits with simpler (linear) processing units Jäger (2002); White et al. (2004)

make the following prediction. Inputs to such circuits leave a trace in the circuit

activity that is in general difficult to “decode” with the naked eye, but which

can be read out quite easily by suitably trained linear or nonlinear classifiers

(“readouts”). In fact, if such readout receives direct inputs from a sufficiently

large set of neurons in the circuit, even very simple linear classifiers suffice in many
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cases. The validity of this prediction for the time course of visual information

in a higher cortical area (area IT, i.e. inferior temporal cortex) has recently

been verified by Hung et al. (2005). They showed (through a series of single-unit

recordings) that a hypothetical linear readout that gets as input the spike counts

(for the last 50 ms) from different neurons (recorded in different trials, but with

the same visual input), can recover from these spike counts the information which

image had been shown to the monkey several hundred ms ago.

If such slowly fading information about a previous stimulus would also occur

when a rapid sequence of different images is shown (especially if it can be demon-

strated for primary visual cortex, rather than for the highest visual area IT),

it would pose an obstacle for computational models that postulate a precisely

organized sequence of processing steps (i.e., a pipelined computational organiza-

tion) in the visual cortex, where each processing layer works at any moment on

a single “frame” of an input movie. If such superposition of information from

different frames can be demonstrated in primary visual cortex, it would also pose

an obstacle for models that propose a precisely structured feedback from higher

visual areas (that completes or explains each frame in terms of higher level con-

cepts), since the temporal dispersion of information would make it very hard to

bring bottom-up sensory information and top-down interpretation together in a

coherent manner for any single frame. On the other hand, such superposition

of information from subsequent frames of online inputs is an essential ingredient

for models that emphasize the dynamical system aspect of the recurrently con-

nected visual system as a whole. Furthermore, it was shown in Natschläger &

Maass (2005) to be a direct consequence of generic recurrent circuits of neurons.

This recurrent circuitry is viewed in the context of the Liquid State Machine

(LSM) model of Maass et al. (2002) as an analogue for a kernel of a support

vector machine (SVM) in machine learning Schölkopf & Smola (2002); Vapnik

(1998), whose computational task is to superimpose and mix information from

different time frames and different sources (such as various sensory modalities,

internal states, or even motor plans) in such a way, that a large number of pro-

jection neurons can independently learn to extract specific aspects of such fused

information that are needed by the particular brain area to which they project.
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4. TEMPORAL DYNAMICS OF INFORMATION

The exact computational operations that are carried out by neurons and micro-

circuits are less relevant for this computational model, as long as a number of

large scale properties for the simultaneous response of large ensembles of neurons

(more precisely, for those ensembles of neurons that are synaptically connected to

projection neurons in various cortical areas) are met. Such desirable properties

are for example: diversity of responses of individual neurons, and high mutual in-

formation between their collective response and salient components in the recent

sensory input stream.

I report in this chapter results from a direct experimental test of this predic-

tion. I analyzed the superposition of information from different frames of visual

input in sets of neurons in primary visual cortex through the following type of

experiment. The experimental data was provided by the Department of Neuro-

physiology of the Max-Planck-Institute for Brain Research in Frankfurt (Main),

Germany. Rapid sequences of complex visual patterns (large white letters with

a black background, see Fig. 4.1A) were shown to anesthetized cats, and the

resulting spiking activity in primary visual cortex (area 17) was recorded with

multi-unit recordings.

I analyzed the information that is contained in the spikes from about 100 si-

multaneously recorded neurons from the perspective of a hypothetical projection

neuron, i.e. the spike train from each recorded neuron was low-pass-filtered (in

order to mimic the time course of postsynaptic potentials in a projection neuron

that are caused by these spikes, see Fig. 4.1D). A linear combination of these

traces (with weights that remained fixed after training) was formed. It was ex-

amined whether the weights could be chosen in such a way, that a comparison of

the current value of the weighted sum of these traces with a fixed threshold (cor-

responding to the firing threshold of a hypothetical projection neuron) provided

a classification of an earlier visual input that had been shown several hundred

ms ago. This was examined in particular in cases where another frame had been

shown during the intervening time interval.
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4.2 Methods

4.2.1 Experiments

The experimental recordings were planned and performed by Danko Nikolić from

the Department of Neurophysiology of the Max-Planck-Institute for Brain Re-

search in Frankfurt (Main), Germany. In four cats anesthesia was induced with

ketamine and maintained with a mixture of 70% N2O and 30% O2 and with

halothane (0.4-0.6%). The cats were paralysed with pancuronium bromide ap-

plied intravenously (Pancuronium, Organon, 0.15 mg kg−1h−1). Multi-unit ac-

tivity (MUA) was recorded from area 17 and by using multiple silicon-based

16-channel probe (organized in a 4 × 4 spatial matrix) which were supplied by

the Center for Neural Communication Technology at the University of Michi-

gan (Michigan probes). The inter-contact distances were 200 µm (0.3-0.5 MΩ

impedance at 1000 Hz). Signals were amplified 1000× and, to extract unit ac-

tivity, were filtered between 500 Hz and 3.5 kHz. Digital sampling was made

with 32 kHz frequency and the waveforms of threshold-detected action potentials

were stored for an off-line spike sorting procedure. The probes were inserted

approximately perpendicular to the surface of the cortex, allowing us to record

simultaneously from neurons at different cortical layers and at different columns.

This setup resulted with a cluster of overlapping receptive fields (RF), all RFs

being covered by the stimuli (see Fig. 4.1A) (more details on recording techniques

can be found in Schneider & Nikolić (2006); Schneider et al. (2006)).

Stimuli were presented binocularly on a 21” computer monitor (HITACHI

CM813ET, 100 Hz refresh rate) and by using the software for visual stimulation

ActiveSTIM

(www.ActiveSTIM.com). Binocular fusion of the two eyes was achieved by map-

ping the borders of the respective RFs and then by aligning the optical axes with

an adjustable prism placed in front of one eye. The stimuli consisted of single

white letter with elementary features suitable for area 17 and spanning approx-

imately 5◦ of visual angle. The stimuli were presented on a black background

for a brief period of time. Fig. 4.1A illustrates the spatial relation between the

constellation of RFs and the stimulus in one of the experimental setups. In each
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4. TEMPORAL DYNAMICS OF INFORMATION

stimulation condition either a single letter was presented or a sequence of up to

three letters. For presentations of single letters the letters A and D each presented

for 100 ms were used.

Stimulus sequences were made with letters A, B, C, D, and E. I compared

either the responses across the sequences ABC, DBC, and ADC (cat 1 and 4)

or across sequences ABE, CBE, ADE, and CDE (cats 2 and 3). Each member

of a sequence was presented for 100 ms and the blank delay-period separating

the presentation of letters lasted also 100 ms. Each stimulation condition (single

letter or a sequence) was presented 50 times for cat 1, 150 times for cat 2 and cat

3 and 100 times for cat 4. The order of presentation was randomized across the

stimulation condition. Example raster plots of responses to two different sets of

stimuli can be seen in Fig. 4.1B.

For the analysis of the neuronal responses to single letter presentations I

discarded datasets with a maximum mean firing rate (averaged over electrodes

and trials) below 50 Hz. For the analysis of the responses to sequences of letters

only datasets with a maximum mean firing rate above 80 Hz were used.

4.2.2 Data analysis

The typical spike trains prior to the application of spike-sorting procedures are

illustrated in Fig. 4.1B. All datasets showed high trial-to-trial variability, with

an average fano factor of about 8. If all the single units that resulted from the

spike-sorting procedure included into the analysis, this resulted in too sparse

data representations and hence in overfitting. Therefore only units with mean

firing rates ≥10 Hz were used and single units with less frequent firings were

pooled into multi-unit signals. These methods resulted in datasets with 66 to 124

simultaneously recorded units for further analysis.

The recorded spike times were convolved with an exponential kernel with a

decay time constant of τ = 20 ms (the performance of classifiers is similar when

one uses instead spike counts for the last 20 or 30 ms, see Suppl. Fig. A.1). A

linear classifier was trained to discriminate between pairs of stimuli on the basis

of the convolved spike trains at time points t ∈ {0, 10,..., 700} ms after stimulus

onset (using only the vectors of 66 to 124 values of the convolved time series
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at time t). I refer to this classifier as Rt. A second type of classifier, which I

refer to as Rint, was trained to carry out such classification simultaneously for

all time points t ∈ {150, 160,..., 450} ms (see Fig. 4.9). If not otherwise stated,

the results for type Rt classifiers are reported. A linear classifier applied to the

convolved spike data (i.e., an equivalent to low-pass-filtering) can be interpreted

as an integrate-and-fire (I&F) neuron with synaptic inputs modeled as Dirac

delta functions. The time constant of 20 ms reflects the temporal properties of

synaptic receptors and of the membrane. A classification is obtained due to the

firing threshold of the I&F neuron.

Linear classifiers were trained with linear-kernel support vector machines

(SVMs). In section 4.3.3 I also discuss performance results for nonlinear SVMs

with quadratic and radial basis function (RBF) kernels (see Schölkopf & Smola

(2002); Vapnik (1998)). The parameter C of the SVMs was chosen to be 50 for

recordings from cat 1 and cat 4 and 10 for recordings from cat 2 and cat 3. The

parameter σ2 of RBF kernels was set to 0.5 in order to achieve optimal test per-

formance. The classification performance was always estimated with 10-fold cross

validation, in which the number of positive and negative examples was balanced

for the training and for the test set. All the reported performance data are for

the test set. Error bars in the figures denote the standard error of the test error

of all 10 cross validation runs.

4.3 Results

4.3.1 Persistent information about preceding visual stim-

uli

The spike trains from a randomly sampled set of neurons in primary visual cortex

carry for several hundred ms information about previously shown visual stimuli,

even for anesthetized cats (Fig. 4.2). Furthermore this information can be ex-

tracted by simple linear classifiers (applied to low pass filtered spike trains, see

Methods), hence potentially also by a suitably trained projection neuron.
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Figure 4.1: Experimental setup and illustration of the chosen method for data analysis.

A: An example of a visual stimulus in relation to the constellation of receptive fields

(gray rectangles) from one Michigan probe. B: Upper part: Spike times recorded from

one neuron across 50 stimulus presentations and for two stimulus sequences (ABC and

DBC). In this and in all other figures the gray boxes indicate the periods during

which the letter-stimuli were visible on the screen. Lower part: Peri-stimulus time

histogram for the responses of this neuron. Mfr: mean firing rate. C: Spike trains

from 66 identified neurons for one trial (trial number 38, see blue trace in B) are shown

on the left. The spikes from neuron number 10, for which the responses in all trials

are shown in B, are plotted in blue. Each spike train is convolved with an exponential

kernel (i.e., low pass filtered), as shown for the spike train from 6 selected neurons on

the right hand side. The values of the resulting traces at a particular time point t

(shown in red for t = 250 ms, for just 6 of the 66 neurons), but from all 66 neurons,

constitute the vector of numbers to which a classifier (in most cases: a linear classifier)

is applied in the data analysis. The target output of the classifier is in this case 1, since

A (instead of D) had been shown in this trial as the first stimulus in the sequence.
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Figure 4.2: Persistence of information in primary visual cortex for a single visual

stimulus (for 2 cats). In one cat (lower panel) the firing rates remained rather low,

and hence the available information was lower. Information was extracted by linear

classifiers Rt. Performance results shown are for test data.

4.3.2 Superposition of information about different sequen-

tially presented stimuli

I also find, that when sequences of visual stimuli were presented, neuronal activ-

ity continued to carry information about the first stimulus during and after the

presentation of the second stimulus (Fig. 4.3). However, this does not imply that

information about the second visual stimulus did not enter primary visual cor-

tex. Rather, information about the second visual stimulus can be recovered (by

another linear classifier) from the firing activity of the same ensemble of neurons

(Fig. 4.4 A,B). In fact, information about this second stimulus persists also, even

during and after the presentation of a third stimulus. This implies, that the fir-

ing activity of the recorded ensemble of neurons carries during some time period

simultaneously information about two sequentially presented stimuli (Fig. 4.4B).

Consequentially, also results of computations that essentially involve information

from both stimuli can be extracted from the same ensemble of neurons by a linear

classifier (Fig. 4.4C).

Moreover linear readouts can extract information about results of purely non-
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Figure 4.3: Persistence of information about the first stimulus in spite of subsequent

further stimuli. Classifiers Rt were trained to identify the first letter in the sequences

ABC vs. DBC in one experiment (cat 1) and sequences ABE vs. CBE in other two

experiments (cats 2 and 3). In all cases, the performance reached its maximum shortly

before or during the presentation of the second letter. In one case (cat 1) information

about the first letter remained present even during the presentation of the third letter.

linear computations1 on visual stimuli. This indicates nonlinear processing of

visual inputs in the visual pathway up to the level of the primary visual cortex.

The reason for this is that in case of only linear processing in the visual path-

way the output of a linear readout in the primary visual cortex is necessarily

a linear function of the visual input. Clearly the output of this linear readout

has a vanishing correlation coefficient with any purely nonlinear function of the

visual input. Therefore the nonvanishing correlation coefficient with the purely

nonlinear XOR function of the 2 bits encoded by the 2 choices A|C and B|D as

visual inputs shown in Fig. 4.4C indicates nonlinear processing of visual inputs

in the visual pathway (see Suppl. Theorem 1).

1 Functions are considered as purely nonlinear if for a given input distribution the correlation

coefficient between its output and the output of any linear nonconstant function vanishes.
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Figure 4.4: Simultaneous persistence of information about the second stimulus (in the

same neurons). A: Performance of classifiers Rt trained to identify the second letter

in the sequences ABC and ADC. Similarly to the results in Fig. 4.3, the performance

is still significant during the presentation of the third stimulus. B: Simultaneously

available information about two different letters of a sequence. Two classifiers identified

either the first or the second letter of the following four sequences: ABE, CBE, ADE,

and CDE . C: Linear classifiers Rt were trained to compute the XOR function of the

2 bits encoded by the 2 choices A|C and B|D (solid line).

4.3.3 Information contained in firing rates

Additional data analysis provides insight into the specific way how information

was encoded by the ensembles of neurons from which was recorded. The dash-

dotted curves in Fig. 4.2 - 4.4 indicated already that the performance of each

classifier was correlated with the time-varying mean firing rate (with the mean

taken over all trials and all recording electrodes, but not over time). For example,

the correlation coefficients were 0.45, 0.68, 0.66 for the 3 panels of Fig. 4.3. The

performance of the classifier was also positively correlated with the difference in

the mean firing rates in response to a different stimulus at the beginning of the

sequence (see Fig. 4.5). However the corresponding correlation coefficients were
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Figure 4.5: The relation between classifier’s performance and i) the mean firing rates

(dash-dotted lines) and ii) the difference in the mean firing rates between two stimula-

tion conditions (8 fold magnified, dashed lines). The results are for the same data as in

Fig. 4.3. The mean firing activity of all neurons from which we recorded exhibits some

class specific differences.

somewhat smaller (0.37, 0.42, 0.46).

The weights of the linear classifiers Rt that were trained (independently for

each t) to classify from the low pass filtered spike train at a specific time t the

stimulus that had been shown during the time interval [0, 100] ms were not

time-invariant. However one can also train classifiers Rint to carry out such

classification for any time t within some interval int. For an interval int of

length 100 ms a linear classifier Rint achieves almost the same performance as the

classifier Rt (see Fig. 4.6A). Fig. 4.6C shows the performance of an even more

invariant classifier for the whole time interval int = [150, 450] ms. As expected,

the performance of such very general classifier Rint is for most time points t lower

than that of the more specialized linear classifiers Rt. Nevertheless, Fig. 4.4C

shows that a substantial amount of information about a preceding stimulus is

contained in the spike responses in a time-invariant manner for a 300 ms long
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Figure 4.6: Performance of classifiers Rint that were trained to extract information at

any time point within some interval int. A: Performance of 4 linear classifiers trained

for disjoint intervals of length 100 ms, marked by a bar at the bottom in the same color

as the corresponding performance curve (for test data). Each classifier reaches almost

the same performance as the more specialized classifiers Rt for t within the interval int,

but its performance drops quite fast outside of int. B: Weight vectors of the 4 classifiers

from A. C, D: Performance of more invariant classifiers that classify the first letter for

all time points t within an interval int of length 300 ms (for 2 cats). Performance is

lower than that of more specialized classifiers, but still significant.

time interval that starts 50 ms after the offset of the first stimulus, and extends

through and beyond the time interval when the second stimulus was shown. This

results imply, that the persistent information that is contained in the spike trains

about the first stimulus cannot be explained in any simple way through neuronal

adaptation (for example through a reduced response to the second stimulus if a

neuron had already been activated by the first stimulus).

It turned out that a nonlinear classifier (SVM with polynomial or RBF ker-

nel) could not achieve a significant performance improvement for any classifier Rt

that was specialized for a single time point t (relative to stimulus onset). However
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Fig. 4.6C shows that a SVM with a quadratic kernel performs significantly better

than a SVM with a linear kernel for the time-invariant classification task of the

classifier Rint for int = [150, 450] ms. A plot of the class-specificity of the firing

rates of the most informative neurons for this task (Fig. 4.8) shows, that some cor-

relations between these firing rates produce in fact for certain time periods within

the interval [150, 450] ms significant class-specific differences, that complement

differences of individual firing rates which occur at other time points. Remarkably,

it turns out that additional nonlinear computations (besides pairwise correlations)

do not increase the performance of a classifier Rint for int = [150, 450] ms, since

a SVM with an RBF kernel does not perform better then a classifier with a

quadratic kernel (see Fig. 4.6C).

A nonlinear classifier only provided a performance improvement for time-

invariant classification in the case where the response to the first stimulus was

perturbed by a second stimulus (see Fig. 4.7).

It turned out that a relatively small subset of neurons contained already most

of the information that the nonlinear classifier Rint for int = [150, 450] ms could

extract from the whole ensemble of neurons (see Fig. 4.8A).

4.3.4 Information contained in precise spike times

I also tested whether precise spike times in primary visual cortex carried informa-

tion about the visual stimulus that had been shown several hundred ms ago. For

that purpose the recorded data was perturbed by jittering the spike times. More

precisely, each spike was moved by an amount that was drawn from a Gaussian

distribution with mean 0 and some standard deviation SD. The results in Fig. 4.9

show that even values of a few ms for SD reduce the performance of classifiers

Rt (and classifiers Rint) significantly. This also holds true if one first shuffles

spike trains between different trials (see Fig. 4.9B). This finding is particularly

remarkable in view of the high trial-to-trial variability of neuronal responses in

these experiments (shown in Fig. 4.10).

74



4.4 Discussion

0  

20 

40 

60 

80 

100
A|D

 

 

P
er

fo
rm

an
ce

(%
 c

or
re

ct
)

0

80

M
ea

n 
fir

in
g 

ra
te

 [H
z]

0  

20 

40 

60 

80 

100
A|D

 

 

P
er

fo
rm

an
ce

(%
 c

or
re

ct
)

0  100 200 300 400 500 600 700
0 

80

M
ea

n 
fir

in
g 

ra
te

 [H
z]

Time [ms]

 

 

Cat 4

Cat 1
Linear kernel
Polynomial kernel
RBF kernel

Figure 4.7: Performance of more invariant classifiers Rint that were trained to classify

a single visual stimulus for all time points t within an interval int of length 500 ms

and 400 ms for cat 1 and cat 4, respectively. The performance is comparable to that of

the more specialized classifiers Rt in Fig. 4.2. The performance of nonlinear classifiers

is for this task not significantly better. This is in contrast to the case where a second

intervening stimulus had been shown (see Fig. 4.6C). In the case where only a single

visual stimulus was shown, linear classifiers Rint are able to extract information about

this stimulus for several hundred ms.

4.4 Discussion

I have shown for the presented experimental data that even in the primary vi-

sual cortex of anesthetized cats the information about preceding visual stimuli

lasts for several hundred ms. These data are consistent with those of Hung et al.

(2005), who had demonstrated such persistence of information about a single

stimulus in a higher cortical area (area IT). It is somewhat surprising that a

similar persistence of information can be found in the cortical entrance stage for

visual information, which might be seen as being substantially more input-driven

rather than percept-driven. Furthermore, the data show that information from

different frames of visual input sequences is superimposed, and information about

completely different frames is transmitted simultaneously by spikes from the same

ensemble of neurons in primary visual cortex. These findings, in conjunction with

the observed diversity of individual neural responses (see Fig. 4.8B), support com-

putational models for visual processing that view the highly recurrent neuronal
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Figure 4.8: Analysis of contributions of individual neurons to the performance of a

classifier Rint for int = [150, 450] ms (SVM with quadratic kernel from Fig. 4.6C). A:

Performance is already maximal with very few neurons. B: Average firing rates of the

4 most informative neurons 210 ms after stimulus onset for the two classes (defined by

the first stimulus A or D) marked in red (for A) and blue (for D). C: Class dependent

correlations exhibit marked differences at various time points.

networks in the visual cortex as kernel-like processors that fuse information from

different time slices in such a way, that numerous different classifications and

conclusions can be extracted by projection neurons that receive synaptic inputs

from a large number of neurons within this recurrent circuit. Such superposition

of information is also a prediction of preceding computer simulations of generic

cortical microcircuits (Natschläger & Maass (2005)). On the other hand, these

experimental data are harder to explain on the basis of computational models

that view the visual cortex as a more orderly processing pipeline, where a se-

quence of precisely structured processing steps is applied sequentially to each

frame in a sequence of visual inputs. The experimental data are also hard to

explain on the basis of computational models that postulate precisely structured

and well-defined computational roles for feedback connections to primary visual
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Figure 4.9: Drop in performance for the classifiers Rt in Fig. 4.3 due to the Gaussian

jitter of spike times. A: Drop in performance computed for three points in time ac-

cording to the original peaks in performance in Fig. 4.3. For cat 1, these peaks were

t ∈ {60, 120, 200} ms and for cat 3, t ∈ {40, 120, 230} ms. The performance drops for

these three points in time are shown in the three panels, respectively, and in the order

left to right. A standard deviation (SD) of the jitter of only a few milliseconds decreased

the classification performance significantly. B: Drop in performance for spike data that

was shuffled randomly across trials. The drop in performance was computed at the

performance peaks at t ∈ {40, 130, 220} ms, for cat 1, and t ∈ {40, 120, 250} ms, for

cat 3. Jittering the spike times of trial shuffled data resulted in a similar performance

drop when compared to un-shuffled data.

cortex, such as input completion. These models require a more precise temporal

organization of information about subsequent frames of visual inputs, in order

to make a comparison of bottom-up visual input with top-down interpretations

possible. Superposition of information from several frames seems to make input

completion for any single frame impossible.

I used methods for extracting information from simultaneously recorded en-

sembles of neurons that mimic the computational capabilities of hypothetical
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Figure 4.10: Trial-to-trial variability of neuronal responses and classification errors of

a classifier Rint for int = [150, 450] ms (SVM with linear kernel from Fig. 4.6C) during

the time interval [150, 250] ms for 10 test trials (five for each of the two classes defined

by the first stimulus A or D). Shown are the spike times for the 10 units with the 5

largest positive weights (marked in blue) and the 5 largest negative weights (marked

in red). Gray shading indicates time periods during which the corresponding trial was

misclassified by the classifier.

projection neurons, thereby showing that this information is not only present in

the spike trains from this ensemble of neurons, but could in principle also be

extracted and used by the brain. But further experiments in awake and behav-

ing animals are needed in order to test whether this information is actually used

by the animal. Another open problem arises from the observation that in some

cases the performance of classifiers that also had access to correlations between

the firing of individual neurons performed better than simple linear classifiers.

Experiments with larger numbers of electrodes will have to determine whether

such correlations are still needed when one records from a number of neurons

that approaches the member of presynaptic neurons for a biological neuron.

A surprising fact that emerged from the data analysis was, that the informa-
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tion about visual stimuli that were shown (and had disappeared) several hundred

ms ago, was not only contained in the firing rates, but also in the precise timing

of spikes. A random jittering of the actually recorded spike trains by just a few

ms reduced the amount of information (even if the readout classifier has previ-

ously been trained on such artificially jittered spike trains). This result suggests

that spike timing in a fairly large ensemble of neurons in primary visual cortex

contains extra information over fairly long periods of time, in addition to the

information contained in firing rates.

In Chapter 5 these findings are compared to the results for a detailed computer

model for a 1.1 × 1.1 mm2 patch of cat primary visual cortex (area 17). In

contrast to the microcircuit model in Chapter 3 that was intended to model a

generic neocortical micro-column this model also incorporates lateral short range

connectivity as found in cat. Additionally it is complemented by standard models

for retina and LGN that replicate the statistical structure of cortical inputs in a

biologically realistic way. I will focus in particular on the temporal dynamics of

information about previously shown stimuli and how this information is encoded

in the neural activity.
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Chapter 5

Comparison of a detailed model

for cat primary visual cortex

with experimental recordings

Summary

A circuit model for a small patch of cat primary visual cortex (area 17) is pre-

sented, that is based on detailed anatomical and physiological data and comple-

mented by a standard model for the retina and the LGN. The temporal dynamics

of neural activity and information in the model is compared with multi-electrode

recordings from cat primary visual cortex. It is shown that in the model infor-

mation from different frames of visual input sequences is superimposed and in-

formation about completely different frames is simultaneously available to a neu-

ral readout. Additionally it is demonstrated that the information about preceding

stimuli is not only contained in slowly varying rates, but also in the precise timing

of spikes with a temporal resolution of a few milliseconds. Both of these findings

closely resemble the results for recordings in primary visual cortex of cat. Finally

it is shown that the nonlinear properties of cortical representations observed in

experiments can be sufficiently explained in terms of the nonlinear computations

performed locally by the recurrent circuitry.
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5.1 Introduction

Processing of visual information in the primary visual cortex (V1) has been a

subject of extensive research. Nevertheless, its computational role and the mech-

anisms underlying it remain poorly understood. Numerical simulations of de-

tailed biophysical models provide powerful tools for investigating the computa-

tional function of cortical microcircuits. In general, approaches along this line

attempt to incorporate the known anatomy and physiology of the primary vi-

sual cortex to replicate experimental data on emergent functional properties as

for instance the structure of preferred orientation maps (Adorjan et al. (1999);

Bartsch & van Hemmen (2001); Blumenfeld et al. (2006)), direction selectivity

maps (Ernst et al. (2001); Wenisch et al. (2005)) and simple and complex cells

(Chance et al. (1999); Tao et al. (2004); Wielaard et al. (2001)). In Schwabe &

Obermayer (2005) a common principle of optimal encoding of sensory informa-

tion was hypothesized that resulted in changes in the stimulus tuning functions

which relate to experimentally observed changes during attentional modulations

and perceptual learning.

This study combines detailed computer modeling with neurobiological exper-

iments in order to arrive at a more accurate model for primary visual cortex with

respect to neuronal firing statistics and temporal dynamics of information. The

model consists of a small patch of area 17 and is based on the cortical microcir-

cuit model described in Chapter 3 that implements experimental data data from

Thomson et al. (2002) on lamina-specific connection probabilities and connection

strengths between excitatory and inhibitory neurons in layers 2/3, 4, 5, and data

from Markram et al. (1998) and Gupta et al. (2000) regarding stereotypical dy-

namic properties (such as paired pulse depression and paired pulse facilitation)

of synaptic connections between excitatory and inhibitory cortical neurons.

In contrast to Chapter 3, where I concentrated on the generic information

processing capability to hold and fuse information contained in generic Poisson

input spike trains, I here explicitly model the output of the lateral geniculate

nucleus (LGN) in response to photoreceptor activity on the retina evoked by

visual stimuli. For the retina and the LGN I implemented the model described in

Dong & Atick (1995), which is based on the assumption that in the visual system
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natural inputs are decorrelated spatially at the level of the retina and temporally

in the LGN so that signals that arrive in the visual cortex are encoded in an

efficient form. Physiological studies show that in response to natural time-varying

stimuli (movies) neurons in the cat LGN remove temporal correlations at the time

scale of 50 - 300 ms and have a power spectrum that is whitened in the frequency

range of 3-15 Hz (Dan et al. (1996)). Furthermore this model accounts for lagged

and non-lagged cells, which have been observed experimentally (Humphrey &

Weller (1988a,b); Mastronarde (1987)).

The temporal dynamics of information about previously shown stimuli is com-

pared between the V1 model and recordings from cat primary visual cortex (area

17). For this purpose the experimental setup used for the analysis of the multi-

electrode recordings in Chapter 4 is replicated for the V1 model. Additional to

identical stimuli, i.e. sequences of white letters, the readouts were modeled as

virtual electrodes that are arranged in a realistic manner with respect to position

and number of neurons (units) from which they record.

5.2 Methods

5.2.1 Retina and LGN

I modeled a realistically dense lattice of LGN X-cells, that dominate central cat

V1 physiology Ferster (1990). The model consisted of 10000 LGN cells that were

laid out on a 50× 50× 4 grid. Anatomical and physiological studies have shown

that within the X pathway one LGN cell receives retinal input from very few,

i.e. about 1-3, ganglion cells (Hamos et al. (1987); Mastronarde (1992); Robson

(1993)). Therefore each LGN X-cell in the model received input from a single

retinal ganglion X-cell and each retinal ganglion X-cell projected to four LGN

X-cells (Troyer et al. (1998); Worgotter & Koch (1991)). At 5o of eccentricity

the resulting 50 × 50 grid of retinal ganglion X-cells corresponds to a patch of

1.61 × 1.61 mm2 retina (Peichl & Wassle (1979)), which covers a visual field of

7.1o × 7.1o (Bishop et al. (1962)).

The LGN cells closely followed the standard design of Dong & Atick (1995);

Troyer et al. (1998) (see also Teich & Qian (2006)) and were modeled as a spatio-
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Figure 5.1: Model for the retina and the LGN. A: Spatial retinal kernels in the shape

of a ’Mexican hat’. B: Temporal LGN kernels used to convolve the retinal response

consisting of a temporal phasic response and a weaker longer lasting tonic response.

The negative response of the phasic component is converted to positive firing rates

by the lagged response of the LGN model. The total response to a flash lasts about

200 ms. C: Temporal evolution of the retinal and the LGN response to a visual stimulus

for consecutive points in time separated by 50 ms (from left to right). Shown is the

absolute value of the filter output that corresponds to the sum of the responses of on-

center and off-center cells for the retinal model and lagged and non-lagged cells for the

LGN model. Retinal and LGN cells are located on a horizontal 50 × 50 grid covering

a visual field of 7.1o × 7.1o.

temporal filter bank with non-linearities. The filter bank converted time varying

input signals which were given by the photoreceptor activity on the retina into

firing rates of LGN neurons. From these firing rates spike trains were generated

as LGN output. I extended this standard model by two features. Additional to

the short transient high-frequency phasic discharge of LGN cells (in response to
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a small light spot) I implemented a longer lasting tonic discharge with temporal

dynamics taken from Gazeres et al. (1998). Secondly, I accounted for the differ-

ence in firing statistics for the initial phasic response and the tonic response by

implementing the switching gamma renewal process described in Gazeres et al.

(1998) as spike generation mechanism. In particular the initial phasic response of

LGN cells is more regular than the tonic response, which could be caused by an

increased contribution of bursts. Finally, no mechanism for luminance and con-

trast gain control was implemented because current models (Bonin et al. (2005);

Troyer et al. (1998)) are only applicable to drifting gratings with fixed contrast

through time and not to sequences of letters.

In detail each of the 50×50 retinal cells had a center-surround spatial receptive

field that was modeled by a difference of Gaussians

hspatial = Gσr+(xr, yr) − Gσr−(xr, yr) (5.1)

Gσr+/−
(xr, yr) =

1

2πσ2

r+/−

exp

(

−
x2

r + y2
r

2σ2

r+/−

)

(5.2)

where the parameters σr+ = 0.11o and σr− = 0.33o were taken from Gazeres et al.

(1998). This filter resembles spatial decorrelation properties of the retina Dong

& Atick (1995). Positive retinal output values were assigned to on-center cells

and negative values to off-center cells.

The retinal output was filtered by the LGN model using the temporal kernels

illustrated in Fig. 5.1B. The output of the LGN model consisted of the sum of

two components. A phasic component that was modeled according to Dong &

Atick (1995) by

kphasic(t) = k0t(1 − πωct) exp(−2πωct), t ≥ 0

with a characteristic noise cutoff ωc = 5.5, and a tonic component that was

implemented according to Gazeres et al. (1998) with ktonic(t) = k1 exp(−t/τ), t ≥

0 and τ = 15 ms. The parameters k0 and k1 were chosen so that the maximum

phasic response was 3 times larger that the tonic response and yielded a value of

160 Hz in response to an optimal centered spot (Gazeres et al. (1998)). Negative

LGN output values were assigned to lagged cells and positive values were assigned

85



5. COMPARISON BETWEEN MODEL AND EXPERIMENT

20

40

60

80

100

LG
N

 c
el

l i
nd

ex

A B E

20

40

60

80

100
C B E

0 100 200 300 400 500 600 700
0

50

Time [ms]

M
fr

 [H
z]

0 100 200 300 400 500 600 700
0

50

Time [ms]

Figure 5.2: LGN output spike trains for the two sequences ABE and CBE. A: Spike

trains of 100 LGN cell with firing rates drawn from a gamma renewal process switching

at a frequency of 30 Hz between regular spiking and a Poisson process for spontaneous

discharge. The first (second) half of the LGN cells correspond to lagged (non-lagged)

cells. In this and in all other figures the gray boxes indicate the time periods during

which the letter-stimuli were visible on the screen. B: Mean firing rate (Mfr) of the

LGN cells shown in B calculated with a sliding window of length 20 ms.

to non-lagged cells. The spontaneous discharge frequency of LGN cells was chosen

to be 10 Hz (Gazeres et al. (1998)).

Therefore each visual input to the retina caused four different responses, i.e.

that of any combination of non-lagged or lagged cells in the LGN model with on-

center or off-center cells in the retinal model. The four LGN cells corresponding

to the four different responses to a single visual input were aligned along the

z-axis of the 50 × 50 × 4 grid. The preprocessing stages of the retinal and the

LGN model are illustrated in Fig. 5.1C.

The firing rates of LGN cells were converted to spike trains by means of a

switching gamma renewal process introduced by Gazeres et al. (1998) for model-

ing spontaneous and visually evoked spike trains within the same mathematical

framework. The switching frequency between regular spiking during phasic re-

sponses (r = 5) and a Poisson process for spontaneous discharge (r = 1) was

chosen to be 30 Hz. An example of LGN output spike trains is shown in Fig. 5.2.

86

Chapter4/figures/fig3.eps


5.2 Methods

5.2.2 Cortical model

The model for cat primary visual cortex was based on the model described in

Chapter 3 and consisted of three layers, with 30%, 20% and 50% of the neurons

assigned to layers 2/3, layer 4 and layer 5, respectively. Each layer consisted of a

population of excitatory neurons and a population of inhibitory neurons with a

ratio of 4:1. Connection probabilities and connection strengths between 6 specific

populations of neurons (excitatory and inhibitory neurons on layer 2/3, 4 and 5)

were chosen according to experimental data assembled in Thomson et al. (2002).

Short term synaptic dynamics was implemented according to Markram et al.

(1998), with synaptic parameters chosen as in Maass et al. (2002) to fit data

from microcircuits in rat somatosensory cortex (based on Gupta et al. (2000)

and Markram et al. (1998)). Neurons were modeled as conductance based single

compartment Hodgkin-Huxley neurons (Destexhe & Pare (1999); Destexhe et al.

(2001)). In addition each neuron received synaptic background noise reflecting

the bombardment of synaptic inputs from a large number of more distal neurons

which cause a depolarization of the membrane potential and a lower input resis-

tance commonly referred to as ’high conductance state’ (Destexhe et al. (2001)).

Two afferent input streams were injected into the circuit. The first input stream

(representing LGN input) was injected mainly into layer 4, but also to a lesser

extent into layers 2/3 and layer 5. The second afferent input stream (modeling

top-down input) was injected into layer 2/3.

In contrast to the microcircuit model in Chapter 3 that was intended to model

a generic neocortical micro-column, I here adapted this model for the specific

application to a 1.1× 1.1 mm2 patch of cat area 17. The model consisted of 4840

neurons located on a 22 × 22 × 10 grid with a lattice spacing of 50 µm. This

roughly corresponds to the size of a vertically oriented pyramidal cell module

in cat area 17 that is centered around a cluster of apical dendrites from layer

5 pyramidal cells (Peters & Yilmaz (1993)). In cat each of this pyramidal cell

modules contains approximately 203 neurons.

In accordance with biological data short range lateral connectivity is isotropic

and nonspecific and inhibition acts on a shorter length scale than excitation (Call-

away (1998); Callaway & Wiser (1996); Fitzpatrick et al. (1985); Lund (1987)).
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Figure 5.3: Cortical receptive fields. A: Receptive field contours for 12 neurons located

in layer 4 of the microcircuit model. The center and the orientation of the receptive field

of each neuron is determined by a visuotopic map and an orientation map, respectively.

B: Orientation map laid out in the shape of a pinwheel. The orientation of a receptive

field is chosen according to the location of its center in the visual field. C: Receptive

field of an inhibitory neuron associated with the blue contour shown in panel A. The

probability of a connection between the inhibitory neuron and a LGN cell that receive

input from a certain position on the retina is given by the absolute value of a Gabor

function. Negative and positive values of the Gabor function represent connections to

LGN on-center cells and LGN off-center cells, respectively. D: Receptive field of an

excitatory neuron associated with the yellow contour shown in panel A.

The lateral connection probabilities were modeled by a Gaussian

c = c0 exp

(

−
x2

c + y2
c

2σ2
c

)
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where σc was chosen to be 200 µm and 100 µm for excitatory and inhibitory con-

nections, respectively, and xc and yc specified the distances between two cortical

cells in the two horizontal directions. The value for the excitatory short range

connectivity corresponds roughly to the 260 µm measured by Buzas et al. (2006)

for cat area 17. For each synaptic connection the peak of the Gaussian c0 was set

to the corresponding value used in Chapter 3 for connections between neurons

within a lateral distance of 100 µm.

5.2.3 Cortical receptive fields

The LGN inputs were injected mainly into layer 4, i.e. to 50% of its inhibitory

neurons and 80% of its excitatory neurons, but also into 20% of the excitatory

neurons in layer 2/3 and 10% of the excitatory neurons in layer 5. The connection

probability between a LGN cell and a V1 cell was modeled according to Troyer

et al. (1998) by a two-dimensional Gabor function with parameters taken from

Teich & Qian (2006). For vertically oriented V1 cells the Gabor function is defined

by

g(xlc, ylc) = exp

(

−
x2

lc

2σxlc

−
y2

lc

2σylc

)

× cos(2πfgxlc + φ),

where fg and φ determined the spatial frequency and spatial phase, respectively,

and σxlc
and σylc

set the number of subregions and the aspect ratio of the receptive

field. The Gabor function was properly rotated around the center in order to

obtain receptive fields with orientation θ.

The distances between a LGN cell and a cortical cell in the two horizontal

directions, i.e. xlc and ylc, were calculated after the location of the LGN cell was

topographically mapped onto the cortex. According to Buzas et al. (2003) the

visuotopic map of area 17 is locally smooth and independent of the orientation

map. The visuotopic mapping was implemented by aligning the centers of the

LGN grid and the cortical grid in the horizontal directions. Subsequently the

LGN grid was rescaled so that a shift of 10 in the visual field corresponds to a

shift of 0.9 mm in the cortex (Troyer et al. (1998)). The orientation preference

of V1 cells of the model was laid out as a pinwheel as illustrated in Fig. 5.3B.

All connections from the LGN model to the microcircuit model were excita-

tory. Positive and negative values of the Gabor function represented connections
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from on-center LGN cells and off-center LGN cells, respectively (regardless if the

LGN cells were lagged or non-lagged). The absolute values of the Gabor function

represented connection probabilities. All connection probabilities were addition-

ally rescaled by a single global scaling factor so that a layer 4 excitatory cell had

on average 32 LGN inputs. This is the same number as chosen in Chapter 3.

The width and the length of a receptive field were defined by the number of

subregions and the aspect ration. The number of subregions was given by the

ratio of the width of the Gaussian to the width of a half-cycle of the sinusoid.

The aspect ratio was defined by the ratio of the length of the Gaussian to the

width of a half-cycle of the sinusoid. The width and the length of the Gaussian

were defined by the 5% value of the peak of the Gaussian along the short and the

long axes.

Orientation tuning was implemented according to the inhibition-dominant

recurrent model proposed in McLaughlin et al. (2000); Tao et al. (2004). In

contrast to feedforward models for orientation selectivity of cortical cells recurrent

models assume only a weak feedforward orientation bias by the mechanism of

Hubel and Wiesel and a subsequent sharpening of the tuning by phase-insensitive

intracortical connections (Carandini & Ringach (1997); Douglas et al. (1995);

Somers et al. (1995)). In the inhibition-dominant recurrent model this tuning is

achieved by a more broadly tuned feedforward LGN input to inhibitory cells than

to excitatory cells to produce an effective Mexican hat. According to Teich &

Qian (2006) aspect ratios of 4.54 and 2.0 were used for excitatory and inhibitory

cells, respectively, and 2.65 subregions were chosen for both cell types.

The layout of spatial frequency maps in cat area 17 remains controversial.

Several descriptions of the organization of spatial frequency preference have been

proposed (Everson et al. (1998); Hubener et al. (1997); Issa et al. (2000); Shoham

et al. (1997); Tolhurst & Thompson (1982); Tootell et al. (1981)) that share the

common finding that spatial frequency varies systematically within a hypercol-

umn. In contrast Sirovich & Uglesich (2004) showed that a nonspecific component

biased some of these results and argued that there is little evidence for spatial

frequency columns on the scale of cortical orientation columns. Therefore the

spatial frequency for each receptive field was drawn randomly from a Gaussian

distribution with mean 0.8 cycles/o and standard deviation 0.1 cycles/o. This
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Figure 5.4: A: Upper part: Spike times recorded from neuron number 76 across 50

stimulus presentations for the two stimulus sequences ABE and CBE. Lower part:

Peri-stimulus time histogram for the responses of this neuron. Mfr: mean firing rate. B:

Spike trains from 80 selected neurons located around the positions of virtual electrodes

for trial number 5. Spike trains of excitatory and inhibitory neurons are indicated in

black and red, respectively.

corresponds roughly to the mean preferred spatial frequency of cortical cells in

cat at 5o of eccentricity (Movshon et al. (1978)). The spatial phase preference of

cells varies widely from cortical cell to cortical cell and does not cluster with any

other receptive field property (DeAngelis et al. (1999)). In agreement with these

results the spatial phase was drawn randomly from a uniform distribution over

the interval [0, 2π].

The second input stream modeling top-down input consisted of 50×50 Poisson

inputs with firing rates between 10Hz and 15Hz that were injected into layer 2/3

(see Chapter 3 for details). The same visuotopic mapping as for input stream

1 was applied. Instead of the Gabor connectivity function a uniform connection
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probability was chosen. The maximum extent of lateral connections was scaled

such that a cortical neuron could receive input from at most 40 LGN neurons.

The connection probability was set to the corresponding values used in Chapter 3
1. Because of the visuotopic mapping the inputs to two different cortical cells are

less correlated than in Chapter 3 and represent a stronger noise source. Therefore

the input strength of input stream 2 was scaled by a factor of 1/2.

5.2.4 Classification task

The stimuli consisted of sequences of white letters, i.e. ABE, CBE, ADE and

CDE, of size 50×50 that were presented on a black background. The letters cov-

ered approximately 5o of the visual field. Each letter of a sequence was presented

for 100 ms. Intervals between the presentations of subsequent letters lasted 100

ms.

In order to replicate the results for the multi-electrode recordings reported

in Chapter 4 a virtual 4 × 4 electrode array centered in the microcircuit model

was simulated. This was done be recording the spiking activity of the 80 closest

neurons around the 16 virtual electrodes. Adjacent electrodes were separated

horizontally by a distance of 200µm. Because the layers from which the real

electrodes recorded are unknown the virtual electrodes recorded from all neurons

along the vertical axis of the model (covering all layers). The spike raster of

neurons recorded by a virtual electrode array is shown in Fig. 5.4.

The recorded spike times of neurons were convolved with an exponential kernel

with a decay time constant of τ = 20 ms. A linear support vector machine (SVM)

was trained to discriminate between pairs of stimuli on the basis of the convolved

spike trains at time points t ∈ {0, 10,..., 700} ms with respect to stimulus onset.

The parameter C of the linear SVM was chosen to be 5.

Each stimulus sequence was presented 50 times. The classification perfor-

mance was estimated with 5-fold cross validation and averaged over 5 circuits.

All reported results are for test data. Error bars indicate the standard error of

the test error of all 5 cross validation runs.

1With this setup the number of inputs injected into a V1 neuron is identical to the corre-

sponding number of inputs obtained for the model in Chapter 3
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Figure 5.5: Mean firing rates of the microcircuit model and multi-electrode recordings

in cat primary visual cortex for a similar experiment as in Chapter 4. The mean firing

rates were averaged over all trials for the sequence ABE. The temporal evolution of

the mean firing rate varies for different cats but all curves show characteristic activity

peaks during and approximately 80 ms after the presentation of letters. The activity

peaks of the microcircuit model due to the lagged and non-lagged responses of LGN

cells are in good agreement with the experimental data from cat 3 with a correlation

coefficient of 0.53.

5.3 Results

The time course of the mean firing rate of the V1 model shows characteristic

activity peaks corresponding to the lagged and non-lagged responses of LGN cells

to the visual stimuli (Fig. 5.5). For a short time interval, during the presentation

of the second and the third letter of a sequence, lagged and non-lagged LGN

cells respond simultaneously. The temporal evolution of the mean firing rate of

multi-electrode recordings in cat primary visual cortex for a similar experiment

(see Chapter 4) varies for different cats. However, all curves show the same

characteristic activity peaks as also observed for the V1 model.

Fig. 5.6A and B show that classifiers can extract substantial information about

the first and the second letter in a sequence even after the letters were removed

and new letters were shown. Note that the information about the previously

shown letter is available although the neuronal rate responses decrease for a short

period of time to the level of spontaneous activity. This is even more prominent

during the presentation of the third letter (Fig. 5.6B) than during the presentation

of the second letter (Fig. 5.6A) because the two options B or D for the second

time slot represent an additional noise source for the classifier (trained to identify
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Figure 5.6: Comparison of the temporal evolution of information about previously

shown stimuli for the microcircuit model and for a similar experiment in cat primary

visual cortex (Chapter 4, cat 3). The classifiers were trained to discriminate at time t

between pairs of stimuli on the basis of the convolved spike trains recored with a real and

a virtual electrode for the cat and the microcircuit model, respectively. A: Performance

of classifiers trained to identify at time t the first letter in a sequence. B: Performance

of classifiers trained to identify at time t the second letter in a sequence. C: A linear

classifiers was trained to compute at time t the XOR function of the 2 bits encoded by

the 2 choices A or C and B or D. The results for the microcircuit model and for the

recordings from cat show similar performance peaks due to the lagged and non-lagged

responses of LGN cells. The results for the XOR task suggest that the performance is

primarily limited by the available information about each of its input bits.

the first letter in a sequence).

The temporal dynamics of information shows similar performance peaks for

the V1 model when compared to experimental data from cat (Chapter 4, cat 3).

The time points of the performance peaks match with the corresponding time

points of the activity peaks for the mean firing rate. The results for cat show
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Figure 5.7: Drop in performance for the classifiers in Fig. 5.6A due to adding Gaussian

jitter to the spike times. The drop in performance was computed for two points in time

according to the performance peaks during the first and the second letter presentation.

For the V1 model these peaks were at t ∈ {70, 200} ms and for cat at t ∈ {40, 230} ms.

For the V1 model and the cat a standard deviation (SD) of only a few milliseconds

decreases the classification performance significantly.

somewhat better temporal integration properties. The performance of a classifier

trained to classify the first letter in a sequence is less affected by the appearance of

the second letter. Nevertheless, the total time interval during which information

about previously shown stimuli is available is comparable between the V1 model

and the experimental results for cat.

After the presentation of the second letter, the spiking activity contains si-

multaneously high information about both of the sequentially presented letters

as also observed in the experimental data. Virtual electrode recordings from neu-

rons in the V1 model contain information about the exclusive OR (XOR) of the 2

bits that are encoded through the choice of the first two letters, as also observed

experimentally (see Fig. 5.6C). This suggests that the information that is present

in the neural activity about the result of this nonlinear XOR computation is pri-

marily limited by the available information about each of its input bits. This

information is mainly contained in the lagged and non-lagged responses of LGN

cells.

I further analyzed how the information is encoded in the neuronal activity.

The ability of classifiers to distinguish between two stimuli is positively correlated
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with the time-varying mean firing rate (averaged over all trials and all recorded

electrodes, but not over time). The correlation coefficient of the performance of a

classifier trained to classify the first letter in sequence and the mean firing rate is

0.45. This value is somewhat lower than the corresponding value of 0.66 for cat.

The correlation coefficient of the performance of the classifier and the difference

in the mean firing rates caused by the two stimuli classes has a value of 0.71 and

is larger than for cat (0.46).

Similar to the experimental results the precise timing of spikes carries infor-

mation about the stimulus identity. Perturbing the recorded spike times by an

amount drawn from a Gaussian distribution with mean 0 and a standard devi-

ation (SD) of a few ms decreases the performance of the classifier significantly.

(Fig. 5.7). The classification performance dropped even for time points 200 ms

after the stimulus onset. The similarity between the results for the simulation and

the experiment suggests that the amount of information contained in the precise

timing of spikes is not due to a specifically engineered neural coding in the brain

but rather a general consequence of computing in recurrent neural microcircuits.

5.4 Discussion

I have shown that a detailed computer model of a small patch of cat primary

visual cortex that implements experimental data on lamina-specific connection

probabilities and connection strengths between neurons in three different layers

replicates the characteristic features of the temporal dynamics of information

found in experiments (Chapter 4).

The information about previously shown stimuli contained in the neural ac-

tivity of the microcircuit is not erased by the presentation of a new stimulus but

it is possible to extract information about multiple stimuli simultaneously. Fur-

thermore a linear classifiers applied to the spike times recorded with simulated

electrodes can extract information about results of nonlinear computations on

visual stimuli in the same order of magnitude as real electrodes from cat primary

visual cortex. Thus the nonlinear properties of cortical representations observed

in experiments can be sufficiently explained in terms of the nonlinear computa-

tions performed locally by the recurrent synaptic connections. The results for
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the XOR task suggest that the performance is primarily limited by the available

information about each of its input bits.

Finally the results also agree with the experimental results obtained in Chap-

ter 4 in indicating that information is not only contained in rate responses, but

that the precise timing of spikes with a temporal resolution of a few milliseconds

carries additional information about the stimulus. The results for the V1 model

show a similar performance drop when compared to the corresponding results for

cat. This suggests that computer simulations represent an adequate testbed for

the further analysis of this effect.
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Chapter 6

Conclusions

The preceding chapters have demonstrated how the conceptual framework of

the liquid state machine can be applied to gain further understanding of the

computational properties of the neocortical circuitry.

In Chapter 2 I investigated the high dimensional transient dynamics of neu-

ral microcircuit models from the point of view of one or two readout neurons.

It was shown that pairs of readout neurons can extract clearly structured low-

dimensional projections of these complex transient states that can even exhibit

convergence to virtual attractors which are not observable in the high dimensional

trajectories. These virtual attractor landscapes may differ for each readout neu-

ron making it in principle possible to carry out particular computations needed

by specific readouts without changing the dynamics of the recurrent circuit it-

self. Furthermore it was demonstrated that sufficiently large neural microcircuits

can play a similar role for information processing as kernels for support vec-

tor machines in machine learning and enable linear readout neurons to classify

time-varying inputs with the same power as complex nonlinear classifiers. Lin-

ear readouts have the advantage that they can be trained by simple learning

algorithms that cannot get stuck in local minima of the error function.

In Chapter 3 the specific computational properties of detailed cortical mi-

crocircuit models with biologically realistic lamina-specific synaptic connection

patterns were explored. It was shown that these cortical microcircuit models ex-

hibit specific computational advantages over various types of control circuits that

have the same components and the same global statistics of synaptic connections,
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but are missing the lamina-specific structure of real cortical microcircuits. This

superiority holds for various values of the global strength of recurrent connec-

tions and afferent input streams, corresponding to different regulatory states of

neural systems in vivo and stimulus intensities. Furthermore these information

processing capabilities increase with circuit size suggesting that almost perfect

performance will be achieved for biologically realistic circuit sizes. It was shown

that the connectivity graphs defined by this cortical microcircuit template have

small-world properties, but it turned out that other properties of the connectivity

graphs are more salient for the computational performance. In particular the dis-

tribution of the total number of input and output synapses to a neuron relative

to circuit inputs and projection neurons is primarily responsible for the better

computational performance. It was shown that these properties of the connec-

tivity graphs support noise suppression and thereby enhance the computational

capabilities of the cortical microcircuit model.

In Chapter 4 an experimental test of the predictions of the computational

model liquid state machine was carried out for visual processing in primary vi-

sual cortex of anesthetized cats. Some quite surprising facts about the temporal

evolution of the information about visual stimuli that can be recovered from

multi-unit recordings were demonstrated. First, this information lasts several

hundred ms, and information from subsequently presented stimuli is superim-

posed. Second, this information about preceding stimuli is not only contained in

slowly varying rates, but also in the precise timing of spikes. Altogether the ex-

perimental paradigm that has been explored differs in essential aspects from most

experiments that aim at providing information about computational processes in

primary visual cortex: The data consisted of recordings from a randomly chosen

subset of neurons, rather than from a subset of neurons that were selected because

they responded in a predictable manner. Furthermore a sequence of visual stimuli

was presented, rather than a single one, which is arguably closer to natural vision

than a single static image. This setup provides an opportunity to analyze the

fusion of information from several preceding time segments. Finally, it turned out

that almost all information that could be extracted in this way from multi-unit

spike activity by state-of-the-art nonlinear classifiers, could also be extracted by

linear classifier. Therefore it is not impossible that the same information, and in
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fact substantially more information from several thousand presynaptic neurons

instead of the roughly hundred neurons from which was recorded, is available to

projection neurons that read out information from primary visual cortex. These

experiments demonstrated that the temporal dynamics of information in primary

visual cortex is not compatible with simple models based on linear filters. The

exhibited superposition of slowly fading memory from different preceding stim-

uli, the diversity of temporal profiles recorded at different electrodes, and the

fact that linear readout models sufficed even for nonlinear processing tasks can

be seen as support for recently proposed computational models Jäger & Haas

(2004); Maass et al. (2002) based on nonlinear dynamic systems theory.

Finally, in Chapter 5 it was demonstrated that a detailed computer model of

a small patch of cat primary visual cortex that is based on the realistic cortical

microcircuit model presented in Chapter 3 exhibits the characteristic features of

the temporal dynamics of information found experimentally in Chapter 4. The

results agree with respect to the capability of a readout to extract simultane-

ously information about different preceding stimuli. Furthermore linear readouts

can retrieve information about nonlinear relations between these stimuli indicat-

ing nonlinear fusion of information due to the recurrent synaptic connections of

the microcircuit model. Finally, it was shown the precise timing of spikes with

a temporal precision of a few milliseconds carries additional information about

previously shown stimuli that is not contained in rate responses.

Apparently the neural circuit models considered in this thesis represent the

most detailed data-based cortical microcircuit models whose information process-

ing capabilities have been analyzed so far. The results of this analysis show that

it is possible to exhibit through extensive computer simulations specific compu-

tational consequences of their circuitry, thereby creating a link between detailed

anatomical and neurophysiological data and their likely computational conse-

quences.
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Appendix A

Appendix

Supplementary Theorem 1 The correlation coefficient between the XOR func-

tion fXOR : {sA, sC}×{sB, sD} → R of the visual stimuli sA, sB, sC , sD ∈ R
m with

m ∈ N defined by

fXOR(sA, sB) = fXOR(sC , sD) = 0

fXOR(sA, sD) = fXOR(sC , sB) = 1

and any nonconstant linear function fL : {sA, sC} × {sB, sD} → R is zero.

Proof: The correlation coefficient between fXOR and fL is defined by

CC =
COV(fXOR, fL)

VAR(fXOR) VAR(fL)

where COV and VAR denote the covariance and the variance, respectively. Any

linear function fL : {sA, sC} × {sB, sD} → R can be written as

fL = w1s1 + w2s2 + b
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with w1,w2 ∈ R
m, b ∈ R and s1 ∈ {sA, sC}, s2 ∈ {sB, sD}. Furthermore

COV(fXOR, fL) =
∑

s1,s2

fXOR(s1, s2)fL(s1, s2)/4

−
∑

s1,s2

fXOR(s1, s2)/4 ·
∑

s1,s2

fL(s1, s2)/4

= 0 · (w1sA + w2sB + b)/4

+ 1 · (w1sA + w2sD + b)/4

+ 1 · (w1sC + w2sB + b)/4

+ 0 · (w1sC + w2sD + b)/4

− (w1sA + w2sB + w1sC + w2sD + 2b)/4

= 0.

The variance of nonconstant fL is larger than 0 and thus CC = 0.

104



0  100 200 300 400 500 600 700
0  

20 

40 

60 

80 

100
A|D B C

P
er

fo
rm

an
ce

(%
 c

or
re

ct
)

Time [ms]

 

 

Exp. kernel, τ=20ms
Spike count, sliding window 5ms
Spike count, sliding window 20ms
Spike count, sliding window 50ms
Spike count, sliding window 100ms

Figure A.1: Comparison of the performance of linear classifiers Rt trained to discrimi-

nate between pairs of stimuli on the basis of convolved spike trains (exponential kernel

with a decay time constant of τ = 20 ms) or spike counts during the last 20, 50 or

100 ms (see Chapter 4.2.2). The performance of classifiers trained on convolved spike

trains is similar to the performance of classifiers trained on spike counts during the last

20 ms.
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