
Cryptanalysis and Design

of

Iterated Hash Functions

by

Norbert Pramstaller

A PhD Thesis
Presented to the Faculty of Computer Science in Partial Fulfillment of the

Requirements for the PhD Degree

Assessors

Prof. Dr. Ir. Vincent Rijmen (TU Graz, Austria)
Prof. Dr. Ir. Bart Preneel (KU Leuven, Belgium)

November 2007

Institute for Applied Information Processing and Communications (IAIK)
Faculty of Computer Science

Graz University of Technology, Austria





This work is dedicated to my family:
Hermann, Luisa,

Sonja, Sylvia,
Artur, Christian,

Julia, Jana, Sarah, and Hannah.

Success is not the key to happiness.
Happiness is the key to success.
If you love what you are doing,

you will be successful.

Albert Schweitzer (1875-1965)





Abstract

Cryptographic hash functions play a fundamental role in cryptology. In the past
years, much progress has been made in the cryptanalysis of hash functions. As
a consequence, most of the hash functions in use today show weaknesses or have
been broken. Motivated by these recent developments, we focus in this thesis on
the analysis and design of cryptographic hash functions.

We review generic attack methods on iterated hash functions that show limi-
tations of the popular Merkle-Damg̊ard design principle. The collision attack on
the widely used SHA-1 has attracted most attention in academia, industry, and
governmental organizations. Firstly, because it was for a long time believed that
SHA-1 is secure, and secondly, because different parts of the attack on SHA-1
were initially not well understood. Therefore, we review different strategies that
led to the collision attack on SHA-1 and explain and refine several of them.
Amongst others, we show how to search for linear characteristics by exploiting
methods from coding theory, and we introduce an analytical way to determine
the probability of such characteristics thoroughly.

The analysis of hash functions mostly focuses on collision attacks and only
few results with respect to (second) preimage attacks have been published. We
discuss two new hash function proposals, for which we can construct second
preimages efficiently. Motivated by these results, we also look at the implica-
tions of both collision and second preimage attacks on constructions such as the
hash-based message authentication codes NMAC and HMAC. It turns out that
the cryptanalytic results on hash functions do affect such constructions. The
implications are mainly of theoretical nature, since the attack complexities are
far from being practical. Nevertheless, they show the importance of considering
the security of hash-based constructions too.

The progress in the cryptanalysis of hash functions also motivated researchers
to look at new designs and new design strategies for hash functions. Several new
proposals have been published and the majority of them has been broken shortly
after publication. For some selected design principles for hash functions, we
discuss pros and cons and argue about possible strategies in designing new hash
functions. Also a new block-cipher-based hash function proposal is presented.
We discuss open problems and further research directions in the analysis and
design of cryptographic hash functions.

i





Zusammenfassung

Kryptografische Hash-Funktionen sind ein fundamentaler Bestandteil der mo-
dernen Kryptografie. In den letzten Jahren hat die Kryptanalyse von Hash-
Funktionen einen enormen Fortschritt erlebt. Ein teils überraschendes Resultat
ist, dass der Großteil der Hash-Funktionen entweder gebrochen wurde oder es
wurden Schwachstellen der Algorithmen aufgezeigt. Aufgrund dieser Resultate,
beschäftigt sich diese Dissertation mit der Analyse und dem Entwurf kryptogra-
fischer Hash-Funktionen.

Wir beschreiben generische Attacken auf Hash-Funktionen, wodurch die tech-
nischen Grenzen des weit verbreiteten Merkle-Damg̊ard-Designprinzips hervor-
gehoben werden. Die Kollisionsattacke auf SHA-1, die am meisten eingesetzte
Hash-Funktion, hat in Forschung, Industrie und in staatlichen Organisationen
erhebliches Aufsehen erregt. Wir beschreiben die verschiedenen Schritte dieser
Attacke und betrachten einige davon im Detail. Wir erläutern das Finden von
linearen Charakteristiken basierend auf Methoden der Kodierungstheorie sowie
auch die detaillierte Berechnung der Wahrscheinlichkeit für das Auftreten solcher
Charakteristiken.

Die Kryptanalyse hat sich bis heute fast ausschließlich auf Kollisionsattacken
konzentriert und nur wenige Resultate in Bezug auf Second-Preimage-Attacken
wurden publiziert. Wir besprechen zwei neue Designs von Hash-Funktionen und
zeigen effiziente Second-Preimage-Attacken. Motiviert durch die Resultate in Be-
zug auf Kollisionsattacken und Second-Preimage-Attacken, analysieren wir auch
den Einfluss dieser Resultate auf Applikationen, wie zum Beispiel die Message-
Authentication-Codes NMAC und HMAC.

Der Fortschritt in der Kryptanalyse von Hash-Funktionen hat dazu geführt,
dass sich heute viele Forschungsgruppen neben der Analyse auch mit dem De-
sign von neuen Hash-Funktionen beschäftigen. Mehrere neue Designs wurden
in den letzten Jahren präsentiert, allerdings wurde der Großteil dieser Hash-
Funktionen bereits kurz nach ihrer Veröffentlichung gebrochen. Wir beschrei-
ben ausgewählte Designvorschläge und präsentieren, basierend auf den abge-
leiteten Vor- und Nachteilen, mögliche Richtlinien für das Design neuer Hash-
Funktionen. Auch stellen wir eine neue Hash-Funktion vor, die auf der bekannten
Blockchiffre Advanced Encryption Standard (AES) beruht. Als Abschluss dieser
Dissertation geben wir einen Ausblick auf offene Fragen und neue Forschungs-
schwerpunkte in Bezug auf die Analyse und das Design von kryptografischen
Hash-Funktionen.

iii





Acknowledgements

I would like to start the acknowledgements with the most important person
during my PhD studies: Professor Vincent Rijmen. “Vincent, without you I
would have never been able to reach this important goal in my life. Thank you!”
I was lucky having the chance to work together with, and to learn from, one of
the most famous and brilliant researchers in cryptography. Besides the scientific
guidance throughout the past years, I would like to thank Vincent for being
not only my professor but also for being a very good friend. Thank you, for
having had time also outside university and thank you for listening to me with
respect to personal, life-related matters. To cut a long story short: thank you
for everything!

I would like to thank Professor Bart Preneel for being my external reviewer
and examiner. His valuable comments and suggestions helped to improve the
quality of this thesis.

Special thanks go to the IAIK Krypto Group. Shortly after Vincent launched
this new group at IAIK, it was already clear that we will become more a ‘research
family’ than an ordinary research group. To date, we are a well-rehearsed suc-
cessful team and we really enjoy doing research together. Therefore, thank you
Mario Lamberger, Florian Mendel, Christian Rechberger, Martin Schläffer, and
Michaela Tretter-Dragovic. I would also like to thank Christophe De Cannière
who joined our group for one year and also Jorge Munilla, who was guest re-
searcher for three months. In particular, I would like to thank Mario Lamberger
and Florian Mendel who invested their valuable time for proofreading my the-
sis and for helpful discussions on it. Thank you Mario for shedding light on
mathematical subjects and for remaining patient while explaining them to me.

Before I will thank my other colleagues and friends, I would like to devote
some words to my family: my parents Hermann and Luisa, my sisters Sonja
and Sylvia, my brothers in law Artur Mair and Christian Gasser, and my four
nieces Julia, Jana, Sarah, and Hannah. Having such a family makes it almost
impossible to not succeed with your plans and to remain at the right path in
life and work. Thank you for your support and for being there for me whenever
I needed you. Without you, I would not be who I am and I would have never
reached my goal. My family is really the best one to have!

Thank you to all the people working at IAIK. In particular, I would like to
thank Manfred Aigner, Stefan Mangard, and Elisabeth Oswald. Doing research
together with them was a great experience and I was able to learn a lot from
them. Special thanks go also to Professor Karl Christian Posch. He actually
brought me into IAIK and guided me through my Master studies. Manfred,

v



vi

Stefan, Elisabeth, and Karl Christian also supported me in making my decision
to jump at the chance for moving from hardware to the amazing subject of
cryptography. Today, I am fully convinced of having made the right decision.

I would also like to thank my coauthors of articles that have been pub-
lished during my studies: Sandra Dominikus, Florian Mendel, Stefan Mangard,
Mario Lamberger, Elisabeth Oswald, Christian Rechberger, Vincent Rijmen, and
Johannes Wolkerstorfer (TU Graz), Krystian Matusiewicz and Josef Pieprzyk
(Macquarie University Australia), Frank K. Gürkaynak, Simon Häne, Hubert
Kaeslin, Norbert Felber, and Wolfgang Fichtner (ETH Zurich), Steve Babbage
(Vodafon Group R&D Newbury), Carlos Cid (Royal Holloway, University of
London), and H̊avard Raddum (University of Bergen). It was a pleasure and an
honor to work together with you.

Before I go over to thank my friends, I would still like to mention the Eu-
ropean project ECRYPT. This project (and of course my Professor and my
department) made it possible to attend two summer schools in Samos (a Greek
island!)—the first at the beginning, and the second close to the end of my PhD
studies. Starting a PhD with such an event is the best that can happen. From
the first step on you know important people in your field and you can easily
become a member of an amazing research community.

It is important for me to thank all my friends for their support and simply for
being my friends. I would like to start with Thomas Edlinger, Martina Ziesler,
Michaela Jahn, Isabelle Van Nieuwenhuyse, Arne Tauber, Michaela Tretter-
Dragovic, Stefan Mangard, Mario Lamberger, Barbara Angermeier, Christian
Mudrak, Alois and Anneliese Jahn, and Monika Edlinger. It is really good to
have such friends. Whenever I needed their help, they were there for me and
we had a very nice time together during the past years—thank you! Special
thanks go also to my Italian friends: Hanspeter Harpf, Christof Preindl, Lukas
Rungger, Federica Battisti, Michela Cancellaro, Anna Maria Vegni, Germana
Nagler, Gernot Mussner, and Günter Comploj. Thanks go also to my friends
in Belgium: Willem Zuttermann, Wouter Dufoort, Steven Holderik, Christophe
Capoen, Isolde Verbeke, Isabelle and Marno Verhoye, Isablle Van Nieuwenhuyse,
Jan and Martene Van Nieuwenhuyse, Brecht Wyseur, and Joseph Lano. They
gave me the chance to see Belgium from a local’s point of view and they intro-
duced me to Belgian mentality and Belgian life—a wonderful experience I will
never forget.

I emphasize that this is not a comprehensive list of all those people that have
been part of my path and brought me to this point in my life. For those I forgot:
thank you too and my apologizes for not having you mentioned here! When I
was writing the acknowledgements, I first wanted to devote few sentences to each
of you. I immediately noticed that this would have led to another long chapter
in this thesis. Therefore, I decided to thank you all personally when I see you
the next time. I conclude my acknowledgements with saying once again: thank
you all!

Norbert Pramstaller
Graz, November 2007



Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Tables xi

List of Figures xiii

List of Notations xv

1 Introduction 1
1.1 Symmetric Primitives . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cryptographic Hash Functions . . . . . . . . . . . . . . . 1
1.1.2 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline of this Thesis and Main Contribution . . . . . . . . . . . 3

2 Preliminaries 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Cryptographic Hash Functions . . . . . . . . . . . . . . . . . . . 7

2.3.1 Iterated Hash Functions . . . . . . . . . . . . . . . . . . . 8
2.3.2 Security Requirements . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Different Types of Collisions . . . . . . . . . . . . . . . . 9
2.3.4 Dedicated Hash Functions . . . . . . . . . . . . . . . . . . 10
2.3.5 Block-Cipher-Based Hash Functions . . . . . . . . . . . . 10

2.4 Message Authentication Codes . . . . . . . . . . . . . . . . . . . 14
2.5 Diff. Properties of Boolean Functions and Modular Addition . . . 16

2.5.1 Signed-Bit Differences . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Differential Properties of Boolean Functions in SHA-1 . . 18

2.6 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . 19
2.6.2 Polynomials over Fields . . . . . . . . . . . . . . . . . . . 21

2.7 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.2 Searching for Low-Weight Codewords . . . . . . . . . . . 26

vii



viii Contents

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Analysis Methods for Hash Functions 31
3.1 Collision Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Birthday Attacks . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Shortcut Attacks . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Multicollisions . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Expandable Messages . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Collisions for Cascaded Hash Functions . . . . . . . . . . 38

3.2 (Second) Preimage Attacks . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Shortcut Attacks . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Long-Message Second-Preimage Attacks . . . . . . . . . . 41
3.2.3 (Second) Preimages for Cascaded Hash Functions . . . . . 42

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Collision Attacks on SHA-1 45
4.1 The Hash Function SHA-1 . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 SHA-1 Message Expansion . . . . . . . . . . . . . . . . . 45
4.1.2 SHA-1 State Update Transformation . . . . . . . . . . . . 46
4.1.3 Linearized Variant L-SHA-1 . . . . . . . . . . . . . . . . . 47

4.2 The Attack Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Chabaud and Joux . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Biham and Chen . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Rijmen and Oswald . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Wang et al. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Constructing a Linear Characteristic . . . . . . . . . . . . . . . . 54
4.3.1 Collision-Producing Differences and Linear Codes . . . . . 54
4.3.2 Improving Low-Weight Search for L-SHA-1 . . . . . . . . 59

4.4 An Accurate Probability Analysis of Local Collisions in SHA-1 . 65
4.4.1 Considering the Number of Conditions . . . . . . . . . . . 65
4.4.2 Accurate Probability Computation . . . . . . . . . . . . . 69
4.4.3 Disturbances in Adjacent Bit Positions . . . . . . . . . . . 72
4.4.4 Update of Attack Complexity by Wang et al. . . . . . . . 73

4.5 A Generalized Collision Attack on SHA-1 . . . . . . . . . . . . . 76
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Cryptanalysis of Selected Hash Function Proposals 79
5.1 Cryptanalysis of SMASH . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 The Design Strategy SMASH . . . . . . . . . . . . . . . . 79
5.1.2 Specific Properties of SMASH . . . . . . . . . . . . . . . . 81
5.1.3 Collision Attack . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.4 Second Preimage Attack . . . . . . . . . . . . . . . . . . . 88

5.2 A Second Preimage Attack on a DBLH Proposal . . . . . . . . . 94
5.2.1 The Proposal . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 DESX and the General Construction FX . . . . . . . . . 96
5.2.3 DBLH with FX . . . . . . . . . . . . . . . . . . . . . . . . 96



Contents ix

5.2.4 The Second Preimage Attack . . . . . . . . . . . . . . . . 97
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Implications of Collisions and 2nd Preimages on MACs 103
6.1 Message Authentication Codes and Attacks . . . . . . . . . . . . 103
6.2 Implications of Collision Attacks . . . . . . . . . . . . . . . . . . 105

6.2.1 Distinguishing and Forgery Attacks . . . . . . . . . . . . . 106
6.2.2 Key-Recovery Attacks . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Summary of Forgery and Key-Recovery Attacks . . . . . . 109

6.3 Implications of Second Preimage Attacks . . . . . . . . . . . . . . 110
6.3.1 The Notion of b-Block Bypass . . . . . . . . . . . . . . . . 110
6.3.2 b-Block Bypass for SMASH . . . . . . . . . . . . . . . . . 113
6.3.3 b-Block Bypass for DBLH with FX . . . . . . . . . . . . . 113
6.3.4 Implications on NMAC and HMAC . . . . . . . . . . . . 114

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Design of Cryptographic Hash Functions 119
7.1 Recent Proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1.1 Modifications of SHA-1 . . . . . . . . . . . . . . . . . . . 120
7.1.2 Sponge Functions and RADIOGATÚN . . . . . . . . . . . 123
7.1.3 Grindahl . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 The Hash Function Whirlpool . . . . . . . . . . . . . . . . . . . . 131
7.2.1 The Compression Function . . . . . . . . . . . . . . . . . 131
7.2.2 Security Claims . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 A New Block-Cipher-Based Proposal: AESH-256 . . . . . . . . . 134
7.3.1 The Compression Function . . . . . . . . . . . . . . . . . 134
7.3.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . 136
7.3.3 Performance Evaluation and Comparison . . . . . . . . . 141

7.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 142

8 Conclusion and Further Research Directions 145
8.1 Cryptanalysis of Hash Functions . . . . . . . . . . . . . . . . . . 146
8.2 Design of Hash Functions . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 149

List of Publications and CV 169





List of Tables

2.1 Block length and key length for DES and AES. . . . . . . . . . . 7
2.2 Addition of signed-bit differences. . . . . . . . . . . . . . . . . . . 17
2.3 Diff. properties of fXOR and fMAJ for signed-bit differences. . . . 18
2.4 Diff. properties of fIF for signed-bit differences. . . . . . . . . . . 19
2.5 Cayley tables for addition and multiplication in GF (22). . . . . . 23

4.1 Difference pattern of a local collision for L-SHA-1. . . . . . . . . 49
4.2 Lowest Hamming weight found for code C1. . . . . . . . . . . . . 56
4.3 Hamming weight for 2-block and 3-block collisions. . . . . . . . . 57
4.4 Summary of Hamming weights found for code C1,C2,C3, and C4. 59
4.5 Low-weight difference found for code C4. . . . . . . . . . . . . . . 63
4.6 Min. Hamming weight dist. vector for last 60 steps of L-SHA-1. . 64
4.7 Local collision with signed-bit differences for SHA-1. . . . . . . . 65
4.8 Probabilities for local collisions in SHA-1. . . . . . . . . . . . . . 69
4.9 Update on complexity for collision attack on SHA-1. . . . . . . . 74
4.10 Easy conditions for the pseudo-near-collision L-characteristic . . 75

5.1 Example of colliding messages for SMASH-256. . . . . . . . . . . 87

6.1 Summary of forgery attacks on HMAC-SHA-1. . . . . . . . . . . 110
6.2 Summary of key-recovery attacks on NMAC/HMAC-SHA-1. . . . 110
6.3 Implications of second preimage attacks on NMAC and HMAC. . 116

7.1 Min. Hamming weight dist. vector for last 60 steps of SHA1-IME. 121
7.2 Throughput comparison of MDC-2, DBLH, and AESH-256. . . . 141

xi





List of Figures

2.1 Cryptographic primitives build from others. . . . . . . . . . . . . 6
2.2 Modes of operation for block-cipher-based hash functions. . . . . 11
2.3 Collisions for hash function in MMO mode. . . . . . . . . . . . . 14

3.1 Graphical illustration of a 4-collision. . . . . . . . . . . . . . . . . 36
3.2 Graphical illustration of (k, k + 2k − 1)-expandable message. . . . 38
3.3 Cascading two hash functions HL and HR. . . . . . . . . . . . . 39

4.1 The SHA-1 compression function. . . . . . . . . . . . . . . . . . . 46
4.2 One step of the state update transformation of SHA-1. . . . . . . 47
4.3 The principle of a 2-block collision attack on SHA-1. . . . . . . . 52
4.4 State update split into NL-characteristic and L-characteristic. . . 53
4.5 The 2-block collision attack strategy by Wang et al. . . . . . . . 54
4.6 2-block collision for L-SHA-1. . . . . . . . . . . . . . . . . . . . . 59
4.7 Local collisions for SHA-1 with signed-bit differences. . . . . . . . 66

5.1 The attack on SMASH-ORD3. . . . . . . . . . . . . . . . . . . . 83
5.2 Examples of colliding messages for SMASH-256. . . . . . . . . . 87
5.3 Structure of the message used in the (second) preimage attacks. . 93
5.4 Message structure used in preimage attacks for longer messages. 94
5.5 Double-block-length hash function with block cipher F . . . . . . 95
5.6 Three possible configurations of DBLH with FX. . . . . . . . . . 97

6.1 The NMAC and HMAC construction. . . . . . . . . . . . . . . . 104
6.2 Second preimages based on 2-block bypass for 5-block messages. 112

7.1 The basic components of sponge functions. . . . . . . . . . . . . 124
7.2 The round function of RADIOGATÚN. . . . . . . . . . . . . . . 125
7.3 Concatenate-Permute-Truncate principle of Grindahl. . . . . . . 127
7.4 Round transformations of Grindahl. . . . . . . . . . . . . . . . . 128
7.5 The Whirlpool hash function. . . . . . . . . . . . . . . . . . . . . 131
7.6 The round function of Whirlpool. . . . . . . . . . . . . . . . . . . 132
7.7 The compression function of AESH-256. . . . . . . . . . . . . . . 135
7.8 Collision in one path of AESH-256 . . . . . . . . . . . . . . . . . 137
7.9 Preimage attack on AESH-256. . . . . . . . . . . . . . . . . . . . 140

xiii





List of Notations

List of Abbreviations

MAC Message Authentication Code
AES Advanced Encryption Standard
DES Data Encryption Standard
DBL Double-block-length hash construction
SBL Single-block-length hash construction
MD Merkle-Damg̊ard
DM Davies-Meyer mode of operation
MP Miyaguchi-Preneel mode of operation
MMO Matyas-Meyer-Oseas mode of operation
ECB Electronic Codebook mode
CBC Cipher Block Chaining mode
CTR Counter mode
HMAC Hash-based MAC
NMAC Nested MAC construction
CBC-MAC MAC based on block cipher operating in CBC mode

List of Mathematical Symbols

M matrix
MT transpose of matrix M
Mk×n matrix M with k rows and n columns
Ik k × k identity matrix
rank(M) the rank of matrix M
v row vector v = {v1, . . . , vn}
vT transpose of v represented as column vector
GF (q) finite field (Galois field) with q elements
a⊕ b exclusive-or (XOR) of a and b
a � b modular addition of a and b
a + b integer addition
a‖b concatenation of two strings (vectors)
|a| bit length of variable a
GCD(a, b) greatest common divisor of a and b

xv





There are two things
to aim at in life:
first to get what you want;
and, after that, to enjoy it.
Only the wisest of mankind
achieve the second.

Logan Pearsall Smith
(1865-1946)

1
Introduction

In the last decades, information technology has become more and more part of
our daily lives and can be found in the majority of applications we are using
to date. Just to mention few of them: the mobile systems GSM and UMTS,
e-banking, e-government, and wireless internet. These ubiquitous techniques do
not only support and ease our daily lives but are also open to abuse. Therefore,
securing information systems is as important as the systems themselves. Cryp-
tology is the science that studies this problem. A popular and common reference
treating all different aspects of this field is the book by Menezes et al. [116].

The ISO 7498-2 standard [47] distinguishes between five types of security
services: data confidentiality, data integrity, authentication, access control, and
non-repudiation. Standardized are also 13 types of security mechanisms, which
are implemented by using cryptographic primitives. At the highest level, we dis-
tinguish between asymmetric primitives and symmetric primitives. Most asym-
metric primitives can be used to provide data confidentiality by means of asym-
metric encryption and data integrity services by digital signature schemes.

1.1 Symmetric Primitives

Symmetric primitives can be used to provide confidentiality and data integrity
services. There are four types of symmetric primitives: block ciphers, stream
ciphers, hash functions, and message authentication codes. Confidentiality is
usually provided by means of encryption, which is typically implemented by
using block ciphers or stream ciphers. Data integrity mechanisms are usually
implemented by cryptographic hash functions or message authentication codes.

1.1.1 Cryptographic Hash Functions

Since we focus on cryptographic hash functions in this thesis, we informally de-
scribe this primitive. A cryptographic hash function is an algorithm that maps
a message string of arbitrary length to a string of fixed length, called hash value.
Hash functions are used as an elementary building block in a large variety of
cryptographic systems, but their primary use is to compute fixed-length ‘finger-
prints’ of messages of arbitrary length in such a way that it is difficult to find two

1



2 Chapter 1. Introduction

messages that lead to the same fingerprint. An important class of applications
where this property is useful are for instance digital signature schemes. Instead
of signing the entire message, only the typically much shorter fingerprint of this
message needs to be signed. This significantly improves the performance of such
schemes.

1.1.2 Cryptanalysis

The security of symmetric primitives can in general not be proven and the trust
basically relies on a thorough security analysis over the years. Analyzing the
security of these primitives is called cryptanalysis. In the past 20 years, a lot of
effort has been invested in the cryptanalysis of block ciphers, stream ciphers, and
message authentication codes. The analysis of cryptographic hash functions has
drawn similar attention in the cryptographic community. For instance, Preneel
analyzed numerous hash functions in his PhD thesis [143] and presented attacks
for the majority of them.

Let us consider for instance the hash function MD4 proposed by Rivest in
1990. Shortly after MD4 was published, weaknesses have been presented by den
Boer and Bosselaers in [45]. Rivest, then proposed a strengthened variant of
MD4 in 1991, namely MD5. However, also for MD5 weaknesses have been shown
by den Boer and Bosselaers in [46]. Dobbertin presented cryptanalytic results
for both MD4 [49, 51] and MD5 [50]. NIST has published several hash functions
known as the SHA family. The first hash function was SHA-0 (formerly called the
Secure Hash Algorithm) proposed in 1993. NIST replaced SHA-0 by SHA-1 in
1995. In 1998, Chabaud and Joux [31] analyzed the hash function SHA-0. Their
results motivated more researchers to look at hash functions. In 2004, a Chinese
research team led by Prof. Wang announced at the CRYPTO 2004 rump session
that they have broken, amongst others, the most widely employed hash functions
MD5 and SHA-1 [172, 173]. These announcements were surprising and unset-
tling for both academia and industry. After these breakthrough results, many
researchers devoted their time to the cryptanalysis of hash functions and also
new ideas for designing hash functions have been presented. The main focus was
on the hash function as a primitive and only recently also other primitives such
as message authentication codes derived from these hash functions have been
analyzed. The progress in the cryptanalysis of hash functions does also impact
such constructions. However, most attacks on hash-based constructions are still
of theoretic nature since the attack complexities are far beyond being practical.
Nevertheless, counterexamples demonstrate the importance of considering also
the impact on hash-based constructions and applications. For instance, Stevens
et al. have presented two colliding X.509 certificates for different identities in
[159] based on the collision attacks on MD5.

It is surprising how much progress in the cryptanalysis of hash functions has
been made during the last couple of years. Nevertheless, the analysis and design
of cryptographic hash functions is still an open research problem, and we can
expect several new directions in this field in the forthcoming years.



1.2. Outline of this Thesis and Main Contribution 3

1.2 Outline of this Thesis and Main Contribu-
tion

In this thesis, we focus on the analysis and design of cryptographic hash func-
tions. In the following, we give an outline of each chapter including the main
contributions.

In Chapter 2, we treat the preliminaries that are needed for the discussed
topics in the remainder of this thesis. We will describe symmetric primitives such
as block ciphers, hash functions, and message authentication codes and look at
the differential properties of the Boolean functions used in the hash function
SHA-1. An introduction to finite fields and linear codes concludes this chapter.

A general overview of cryptanalytic techniques for hash functions is presented
in Chapter 3. We focus on collision, second preimage, and preimage attacks on
iterated hash functions. We discuss birthday attacks and shortcut attacks. We
review generic attacks that exploit the structure of the Merkle-Damg̊ard design
principle. This overview of attack strategies will be further extended in the
according chapters.

In Chapter 4, we focus on collision attacks on SHA-1. We review existing
results in a chronological order and explain the main strategy that led to the
first collision attack on SHA-1. We introduce how one can exploit coding theory
for finding high-probability linear characteristics, which is a crucial part of the
collision attack. Furthermore, we refine the probability estimates of these linear
characteristics by including side-effects such as carries in modular additions. As
a result, we present an analytical method to determine the probability of linear
characteristics for SHA-1. The results of this chapter have been published in
[114, 138].

Chapter 5, is devoted to second preimage attacks on hash functions. We
discuss and analyze a new hash function design strategy called SMASH. As a
result of our analysis, we show how one can construct collisions. This collision
attack is then further generalized resulting in a second preimage attack. We also
discuss a new hash function construction that uses a block cipher as underlying
primitive. We show that the choice of the underlying block cipher is crucial for
the security of this scheme. For a block cipher following the FX construction,
we can construct second preimages efficiently. The results of this chapter have
been published in [95, 136, 141].

In Chapter 6, we focus on the impact of recent cryptanalytic results on
hash functions on hash-based message authentication codes. We first review
and discuss results of the impact of collision attacks and go then over to the
impact of second preimage attacks. Firstly, we introduce a new notation for
iterated hash functions that is similar to the notion of second preimages: b-block
bypass. We show that for the hash functions discussed in Chapter 5 this new
notion applies. Secondly, we look at the implications on hash-based message
authentication codes if such hash functions are employed. The results of this
chapter have been published in [136].

We discuss the design of cryptographic hash functions in Chapter 7. We



4 Chapter 1. Introduction

look at proposed modifications for SHA-1 and discuss a new design principle.
We also propose a new block-cipher-based hash function and give a security
analysis. This new proposal has been presented in [110]. We conclude this
chapter with a summary and a discussion on the design of cryptographic hash
functions.

In Chapter 8, we present a summary and conclude this thesis by discussing
open problems and future research directions.

As indicated above, the main results in this thesis have been published in
[95, 110, 114, 136, 138, 141]. Other results that focus on hash functions, stream
ciphers, and the hardware implementation of cryptographic primitives, published
during my studies, can be found in [2, 103, 107, 111, 112, 113, 130, 135, 137,
139, 140, 142].



2
Preliminaries

In this chapter, we treat the preliminaries that are needed for the topics we will
discuss in the remainder of this thesis. We will start with giving the notation that
we follow throughout the thesis. Then, we present the basics of cryptographic
primitives such as block ciphers, hash functions, and message authentication
codes. Furthermore, we will discuss the differential properties of Boolean func-
tions and modular additions that are used in the hash function SHA-1. We also
give a short introduction to finite fields and linear codes.

2.1 Notation

For the concatenation of two variables we write a‖b. Addition modulo 2 (XOR)
is denoted by a ⊕ b, modular addition is denoted by a � b. The operator ‘+’
denotes addition of arbitrary integers. The bit length of a variable a is denoted
by |a|. We use two different kinds of indexing. Superscripts denote different
(independent) objects. For instance, different messages are denoted by mi and
mj with i 6= j. To denote parts of these objects we use subscripts. For instance
a message m consisting of t blocks is denoted by m = m1‖ . . . ‖mt. Note that for
messages, we always assume that each message block mi is of the same length.
We use the concatenation operator to denote messages consisting of a number
of blocks, since it is convenient for iterated hash functions.

Variables that belong to the internal structure of a cryptographic primitive
are denoted by capital letters. Subscripts of these variables denote the appear-
ance of the variable in a certain iteration, e.g. Ai means the value of variable
A in iteration i. If we want to index a certain bit of this variable, we use an
additional subscript: Ai,j denotes the bit in position j of variable A in iteration
i. For representing an n-bit binary variable, we use the big-endian notation, i.e.
on the right we write the least significant bit (LSB), and on the left we write
the most significant bit (MSB). For instance, storing the decimal value 1027
(= 210 +21 +20) into a 32-bit register is represented in hexadecimal notation as
00000403. Rotation of a variable A is denoted by ≪ (left rotation) or ≫ (right
rotation). Rotation can also be denoted by accordingly setting the subscript.
For instance, a rotation by 5 positions to the left (right) of an n-bit variable A in

5



6 Chapter 2. Preliminaries

iteration i is denoted by Ai,(j+5) mod n (Ai,(j−5) mod n) with 0 ≤ j < n. For the
sake of readability, we do not explicitly write the modulo operator—it is always
clear from the context that rotations are performed modulo the bit-length of the
variable.

2.2 Block Ciphers

Block ciphers are the most versatile symmetric cryptographic primitives since
they can be used to provide data confidentiality, data integrity, and authenti-
cation services. These are three out of the five security services standardized
by ISO 7498-2 [47]. Another reason for their versatility is that other symmetric
primitives can be constructed from block ciphers as illustrated in Figure 2.1.

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 2.1: The four symmetric cryptographic primitives: block ciphers, stream ci-
phers, hash functions, and message authentication codes. The arrows
denote which primitive can be constructed from the other.

A specific n-bit block cipher with a k-bit key can be considered formally as a
family of 2k permutations on n bits. Every key defines a different permutation
{0, 1}n → {0, 1}n. Therefore, what we expect from a ‘good’ block cipher is
that it should behave as a good pseudo-random permutation [10]. We denote by
Ek(m) the encryption of the n-bit input block m under the key k. The inverse
operation, decryption, is denoted by E−1

k (m). If we refer to a specific block
cipher then we use the abbreviation of the block cipher instead of the letter E,
for instance, we write AESk(m) if we mean encryption of the message m with
AES under the key k.

The two most widely used block ciphers to date are the Data Encryption
Standard DES [121] (and variants such as 3-DES [116]) and its successor the
Advanced Encryption Standard AES [122]. In Table 2.1, we list the block length
and key lengths specified for DES and AES.

The obvious drawback of DES is its short-key size. However, many other
weaknesses are known. One of the first weak properties of DES that has been ob-
served by Hellman et al. [67] is the complementation property: y = DESk(m)⇔
ȳ = DESk̄(m), where the bar denotes the bitwise complement. The complemen-
tation property reduces the key space by a factor of 2. Also other weaknesses
are known. For instance, for DES there exist four weak keys (encryption equals
decryption) and six additional pairs of semi-weak keys (see for instance Moore



2.3. Cryptographic Hash Functions 7

Table 2.1: Block length and key length for DES and AES.

block length in bits key length in bits
DES 64 56

AES-128 128 128
AES-192 128 192
AES-256 128 256

and Simmons [119]). These properties are due to the interaction of the key
schedule and cipher structure. DES also succumbs to key-recovery attacks that
are faster than brute-force key search by applying differential (e.g. Biham and
Shamir [20]) and linear cryptanalysis (e.g. Matsui [104]). For AES no such,
or any equivalent properties are known to date. AES is also resistant against
differential and linear cryptanalysis. Therefore, it is widely believed that AES
behaves as a good pseudo-random permutation, a good block cipher.

In [123], several modes of operation for block ciphers have been standardized.
The simplest mode of operation is the electronic codebook mode (ECB). There
the input message (plaintext) is split into n-bit blocks and then each block mi

is encrypted under the key k resulting in the ciphertext ci = Ek(mi). It is
easy to see that this mode has some shortcomings. For instance, a repeated
input message block leads to a repeated ciphertext: mi = mj ⇔ ci = cj for
i 6= j. To overcome the drawback with repeating patterns, one can use the
cipher block chaining mode (CBC). There feedback between the current and
previous iteration is introduced to avoid that a repeating input block results
in a repeating pattern in the ciphertext: ci = Ek(mi ⊕ ci−1). For processing
the first input block an n-bit initial value c0 is defined. This value does not
need to be secret but should not be predictable by an attacker. Note that after
encrypting 2n/2 message blocks under the same key, the CBC mode starts leaking
information similar to the ECB mode. Another mode of operation is the counter
mode (CTR). In this mode of operation, an incrementing counter value ctri of n
bits is used in each iteration as the input message block for the block cipher, and
the message block is added (XORed) to the output of the block cipher resulting
in the ciphertext ci = Ek(ctri) ⊕ mi. Also the counter mode starts leaking
information after encrypting 2n/2 message blocks under the same key.

2.3 Cryptographic Hash Functions

A cryptographic hash function H is an algorithm that maps a message string m
of arbitrary length to a string h = H(m) of fixed length n, called hash value.
Hash functions are used as an elementary building block in a large variety of
cryptographic systems, but their primary use is to compute n-bit ‘fingerprints’ of
messages of arbitrary length in such a way that it is difficult to find two messages
that lead to the same fingerprint. An important class of applications where this



8 Chapter 2. Preliminaries

property is useful are for instance digital signature schemes [116, Chapter 11]:
if H(m) can be considered to be a unique representation of m, then, instead of
the complete message, it suffices to sign this compact hash value.

It is clear, however, that if more than 2n different messages are hashed,
at least one pair of messages will have to share the same hash value. Hence,
the purpose of a hash function is not to prevent the existence of such colliding
messages (they are unavoidable), but to ensure that it would take an infeasible
effort to find them. We make this more precise in the next sections.

2.3.1 Iterated Hash Functions

Most hash functions in use today are designed following the Merkle-Damg̊ard
design principle [41, 118]. The idea is to split the input message m into `-bit
blocks, which are then processed one after another by iterating a compression
function f . Messages whose length is not a multiple of ` bits need to be padded
first by applying an unambiguous padding method.

More formally, let H : {0, 1}∗ → {0, 1}n be an iterated hash function,
based on a compression function f : {0, 1}n × {0, 1}` → {0, 1}n, and let m =
m1‖ . . . ‖mt be a (padded) message consisting of t blocks of ` bits each. The
hash value is then computed as shown in (2.1).

h0 = iv

hi = f(hi−1,mi) for i = 1, . . . , t
ht+1 = g(ht)

(2.1)

The n-bit variable hi is called the intermediate chaining value. We call ht+1 the
final hash value and h0 the initial value, which is initialized using a predefined
n-bit value iv. The function g is called the output transformation. In most hash
function designs, the output transformation is simply the identity mapping, i.e.
we have ht+1 = ht. To denote the application of the hash function H to a t-block
message, we write h = H(m) = H(iv, m) = H(iv, m1‖ . . . ‖mt).

The purpose of the Merkle-Damg̊ard construction is to extend the collision
resistance of a compression function to a hash function which accepts messages
of arbitrary length. In order to achieve this, messages are preprocessed using a
technique called Merkle-Damg̊ard (MD) strengthening. MD strengthening spec-
ifies an unambiguous padding method which includes the binary representation
of the message length and fixes a predefined value of iv. This also prevents
trivial attacks such as long-message attacks and fixed-point attacks. We give a
more detailed description of these attacks in Section 3.2.2.

We still mention a specific property of iterated hash functions, namely the
extension property. Assume we are given two colliding t-block messages m and
m∗. Then we can add any binary string e to both messages, m‖e and m∗‖e,
without destroying the collision: both H(m‖e) and H(m∗‖e) are identical. If
we consider these two extended messages, m‖e and m∗‖e, then we say that an
internal collision has occurred after processing the two t-block messages m and
m∗.



2.3. Cryptographic Hash Functions 9

2.3.2 Security Requirements

The security properties that hash functions are expected to provide, are infor-
mally summarized in the following three requirements:

• Collision resistance: it is practically infeasible to find two messages m and
m∗, with m∗ 6= m, such that H(m) = H(m∗).

• Second preimage resistance: for a given message m, it is practically infea-
sible to find a second message m∗ 6= m such that H(m) = H(m∗).

• Preimage resistance: for a given hash value h, it is practically infeasible
to find a message m such that H(m) = h.

The second requirement is a weaker variant of the first, but suffices, for in-
stance, in applications where the adversary has no control whatsoever over the
data that will be hashed. The third requirement is important in public-key sig-
nature schemes, in order to prevent adversaries from constructing valid (albeit
meaningless) messages for arbitrary signatures.

The resistance of a hash function to collision and (second) preimage attacks
depends in the first place on the length n of the hash value. Regardless of how
a hash function is designed, an adversary will always be able to find preimages
or second preimages after trying out about 2n different messages. Finding col-
lisions requires a much smaller number of trials: about 2n/2, as we will see in
Section 3.1.1. As a result, hash functions producing less than 160 bits of output
are currently considered inherently insecure. Moreover, if the internal structure
of a particular hash function allows collisions or preimages to be found more effi-
ciently than what could be expected based on its hash length, then the function
is considered to be broken.

2.3.3 Different Types of Collisions

As described in the previous section, one of the security requirements of a cryp-
tographic hash function is collision resistance. Finding two different messages
that have the same hash value with a complexity below the 2n/2 constitutes
a collision attack. Nevertheless, there exist also certificational weaknesses of
hash functions. Certificational, since the property itself does not render a hash
function insecure. However, as we will see later on in this thesis, this kind of
certificational weaknesses can, in the worst case, be exploited for attacking hash
functions (see for instance also [143]). We give an informal definition of two
different types of collisions.

Definition 2.1. (Pseudo-Collision) A pseudo-collision for the hash function H
has one of the following properties:

H(iv,m) = H(iv∗,m∗) or
H(iv,m) = H(iv∗,m) ,

where m 6= m∗ and iv 6= iv∗.



10 Chapter 2. Preliminaries

Definition 2.2. (Near-Collision) A near-collision for the hash function H has
the following property:

H(iv, m)⊕H(iv, m∗) = δ ,

where m 6= m∗, and δ is a non-zero value with low Hamming weight.

So far, we did not specify the non-zero values δ and iv′ = iv ⊕ iv∗. If we
allow a δ with an arbitrary (high) Hamming weight, then it is clear that any two
different messages will with overwhelming probability lead to a near-collision as
in Definition 2.2. Therefore, we require that δ has a low Hamming weight. We
will further elaborate on this in Section 3.1.1 and in Chapter 4. These definitions
can also be adapted to second preimages and preimages as has been shown in
[143].

2.3.4 Dedicated Hash Functions

Dedicated hash functions are hash functions that have been designed only for
hashing purposes. In general, they are designed from scratch without using an
existing cryptographic primitive such as a block cipher (e.g. AES). Some of the
most popular hash functions are for instance MD4 [153], MD5 [154], SHA-1 and
the SHA-2 family of hash functions [128], RIPEMD-160 [52], and Tiger [1]. All of
these hash functions are iterated hash functions that follow the Merkle-Damg̊ard
design principle (see Section 2.3.1). The most commonly used hash functions in
practice are MD5 and SHA-1.

A common component of these designs is that they all use a compression func-
tion f that maps an `-bit input message block together with an n-bit chaining
value hi−1 to an n-bit chaining value hi. In most hash functions the compression
function can be considered as a weak block cipher working in a certain mode of
operation.

2.3.5 Block-Cipher-Based Hash Functions

An alternative to dedicated hash functions are functions that are based on exist-
ing block ciphers. The advantage of block-cipher-based constructions is that the
underlying primitive has been analyzed thoroughly over years. For instance, no
weaknesses have been found to date for the popular AES. Nevertheless, design-
ing a hash function by using a block cipher leads to a completely new situation
for the security analysis, since there is no secret key involved; all values are
known by an adversary. A new approach to analyze the security of block ciphers
with this in mind, has been introduced recently by Knudsen and Rijmen in [91].

We know that a block cipher can be inverted easily and therefore, we require
a certain mode of operation. By using a block cipher that has been thoroughly
analyzed, we basically only have to investigate the mode of operation.



2.3. Cryptographic Hash Functions 11

Single-Block-Length Constructions

For a single-block-length (SBL) construction, one takes an existing block ci-
pher and chooses a mode of operation to define the compression function. In
[144], Preneel et al. discuss the general model of a block-cipher-based compres-
sion function. The block cipher E has two inputs (plaintext and key) and one
output (ciphertext). For these inputs one can select the input message mi, the
intermediate chaining variable hi−1, the value mi ⊕ hi−1, or any constant c.
Furthermore, one of these four values can be XORed to the ciphertext of the
block cipher. Based on this general model, there are in total 43 = 64 possible
modes of operation. As a result of the security analysis in [144], only 12 out of
the 64 possible modes of operation are secure. In [24], Black et al. have proven
the security of these modes in the ideal cipher model (we briefly discuss security
proofs in this model later on in this section). The three most popular modes are
(see also Figure 2.2):

hi = Em1(hi−1)⊕ hi Davies-Meyer (DM)
hi = Ehi−1(mi)⊕mi ⊕ hi−1 Miyaguchi-Preneel (MP)
hi = Ehi−1(mi)⊕mi Matyas-Meyer-Oseas (MMO)

(2.2)

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 2.2: The Davies-Meyer, Miyaguchi-Preneel, and the Matyas-Meyer-Oseas
mode of operation. The hatch denotes the key input of the block cipher
E.

For instance, we could build a hash function by choosing AES-128 operating
in one of the modes of operation in (2.2). This results in an iterated hash
function with a 128-bit hash value. From the size of the hash value, we observe
an immediate consequence of single-block-length constructions, namely we can
only provide a hash value that equals the block length of the underlying block
cipher. As discussed in Section 2.3.2, we can only expect a collision resistance
of 2n/2. For our hash function with AES-128 this results in 264. Such a security
margin is clearly no longer sufficient anymore for nowadays use.



12 Chapter 2. Preliminaries

Double-Block-Length Constructions

A common approach to overcome the limited hash-value size of single-block-
length constructions is to use two or more block ciphers within one iteration and
concatenate their outputs. Such schemes are referred to as double-block-length
hash functions if the output of two block ciphers is concatenated resulting in a
2n-bit hash value (we abbreviate double-block-length by DBL for the remainder
of this section). Examples for DBL constructions are for instance MDC-2 and
MDC-4 [116, pp. 341-343], or the recent DBL proposal of Hirose [68] (see also
Section 5.2). In [116], MDC-2 is instantiated with DES [121] as underlying block
cipher and in [166] instantiated with AES-128.

As opposed to single-block-length hash functions, the required security mar-
gins for DBL hash functions based on a block cipher with an n-bit output, are
that the complexity for a collision attack is substantially higher than 2n/2 and
the complexity for a (second) preimage attack is higher than 2n (see [88]).

For block-cipher-based hash functions with an n-bit block cipher it is common
to define the rate r of the scheme. The rate is interpreted as a measure for the
performance of a double-block-length hash function. The rate is defined as
follows:

Definition 2.3. The rate r of a block-cipher-based hash function is defined as

r =
|mi|

#encryptions · n
.

Based on Definition 2.3, we have r = 1/2 for MDC-2 and for MDC-4 we
get r = 1/4 (see Menezes et al. [116, page 339]). From this, we can derive that
MDC-2 is twice as fast as MDC-4 but the rate does not provide any information
about the security margins. For the block-cipher-based hash functions defined
in (2.2) we have r = 1 if a block cipher with |k| = n is employed. A block cipher
with |k| 6= n (e.g. DES) only affects the DM mode of operation: r = |m|/n.
Both MMO and MP have r = 1.

We want to stress that the rate of a hash function gives only a rough estimate
on the performance, since it only considers the number of calls to the underlying
block cipher per message block. However, it can be that even if there are for
instance two calls to the block cipher, parts of it, e.g. the key schedule of AES
(see [122] for further details), only need to be computed once. This is clearly
better than two full computations of AES. Nevertheless, in most cases the given
definition of the rate is accurate enough for a first estimate of the performance
and for a rough comparison of different proposals.

Proofs of Security in the Ideal Cipher Model

The first security analysis of the 64 possible SBL modes of operation by Preneel
et al. in [144] was performed in a synthetic way. They analyzed the security of
these schemes with respect to existing attacks and filtered out 52 constructions,
since they are considered to be insecure by this analysis. Black et al. proved



2.3. Cryptographic Hash Functions 13

these constructions secure in the ideal cipher model [24]. In the following, we
will give a basic informal overview of the assumptions these proofs are based on.
The discussion is based on Black’s work presented in [22].

To prove the security of cryptographic primitives, we have to define a model
on which we base our proofs. Mostly, we use the so-called standard model. In this
model, we do not use any special mathematical objects such as random oracles
[9]. This model does not turn out to be useful if we do not define additional
hardness assumptions. For instance, it is widely believed that factoring the
product of two large primes is difficult. Another assumption in this model is for
instance that we assume from a good n-bit block cipher that it should behave as
a pseudo-random permutation (PRP) on n bits. Informally, this means that for
an n-bit block cipher with a secret randomly-chosen key it should be infeasible
to distinguish its output from a randomly chosen permutation on n bits. For
constructing a block-cipher-based hash functions the PRP assumption is not
sufficient. We illustrate this by an example given by Black in [22]. Assume,
we are given an n-bit block cipher E with a key k of n bits. Furthermore, we
assume that this block cipher is a good PRP. Now, we define the block cipher
Ẽ as follows:

Ẽk(m) =


k if m = k

Ek(k) if m = E−1
k (k)

Ek(m) otherwise
(2.3)

The only difference between E and Ẽ is the invariant that Ẽk(k) = k for any key
k. Since we assumed that E is a good PRP, Ẽ is also a good PRP: for a randomly
chosen key, Ẽk(·) is computationally indistinguishable from a randomly chosen
n-bit permutation. Now we build a SBL hash function with the block cipher
Ẽ working in the MMO mode of operation. Since, Ẽ is a good PRP it fulfills
the requirements and we expect to have a strong hash function. However, for
this construction it is easy to construct collisions. Namely, the 2-block message
m = m1‖m2, where m1 is an arbitrary n-bit value and

m2 = m1 ⊕ Ẽiv(m1)

results in h2 = 0 for any value of m1 and any value of iv (see also Figure 2.3).
This follows from the fact that h1 = Ẽiv(m1) ⊕ m1. Then by choosing m2 =
m1 ⊕ Ẽiv(m1), we have Ẽm2(m2) = m2 based on the definition of Ẽ in (2.3).
This leads to h2 = Ẽm2(m2)⊕m2 = m2 ⊕m2 = 0.

Even if this demonstrative example shows that the PRP assumption is not
enough for constructing a block-cipher-based hash function, we stress that the
block cipher Ẽ was chosen such that the collision attack works. Also, there is
no reason why a block cipher should possess an unusual property such as the
invariant Ẽk(k) = k.

In the ideal cipher model (also referred to as black box model) a block cipher
E is considered as being chosen uniformly from the set of all possible n-bit block
ciphers with a k-bit key. For every single key there are 2n! possible permutations.
Furthermore, since any permutation may be assigned to a single key, there are in



14 Chapter 2. Preliminaries

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 2.3: Constructing collisions for a MMO hash construction with underlying

block cipher Ẽ defined in (2.3).

total (2n!)2
k

possible block ciphers. In this model, an adversary is given access
to the ideal cipher oracle, which he can query for encryption and decryption. If
we consider a block-cipher-based hash function, then the security with respect
to for instance collision resistance is proved by showing that the advantage of
an adversary in finding a colliding message pair is not better than what we
can expect from the birthday paradox. For the 12 provably secure SBL block-
cipher-based hash functions it has been shown by Black et al. in [24] that the
advantage of an adversary in finding a colliding message pair is upper bounded
by q(q + 1)/2n, where q is the number of queries to the ideal cipher oracle for
encryption and decryption. In other words, the adversary cannot do better than
finding a collision based on a birthday attack.

The question is what we can expect from a cryptographic scheme that has
been proven secure in the ideal cipher model, once we employ a practical block
cipher (this is called instantiation). In the cryptographic community there are
different opinions about the value of such proofs. In [22], Black has demonstrated
that even if a block-cipher-based hash construction is provable secure in the ideal
cipher model, it can be broken once a concrete block cipher is employed. Such
a scheme it is then called uninstantiable. He showed that for the 12 provably
secure SBL schemes, he can construct variants that are also provably secure in
the ideal cipher model but they are uninstantiable. It is important to note that
these variants possess quite unusual properties compared to known block-cipher-
based constructions.

2.4 Message Authentication Codes

In this section, we briefly introduce message authentication codes, or short
MACs. We will not discuss attack scenarios and the security of MACs, since we
will work further on this in Chapter 6. MACs are used for symmetric message
authentication, first to protect the integrity of the message and to provide origin
authentication. To achieve this goal, a secret key k is involved (shared between
legitimate parties) for computing the tag of a given message.

A message authentication code can be considered as a family of hash functions



2.4. Message Authentication Codes 15

Hk parameterized by the secret key k. Therefore, the way how the message is
processed to compute the tag is similar to that of an iterated hash function. As
shown in Figure 2.1, we have three possibilities to construct a MAC from existing
primitives: block ciphers, hash functions, and stream ciphers. We note that only
few dedicated MAC algorithms exist. For instance the Message Authenticator
Algorithm MAA designed in 1988 by Davies and Clayden [43].

We demonstrate the basic working principle by considering the most pop-
ular block-cipher-based MAC construction, namely the CBC-MAC and several
variants of it, which are standardized in [57]. The basic CBC-MAC is based
on a block cipher working in the CBC mode of operation (see Section 2.2). As
opposed to a hash function only the last ciphertext is output resulting in the
tag. Assuming we have a padded message m consisting of t blocks of n bits
each (n is the block length of the underlying cipher), we can summarize the tag
computation as follows:

c0 = iv

ci = Ek(mi ⊕ ci−1) for i = 1, . . . , t

tag = g(ct)
(2.4)

The function g(·) is an output transformation and is in the simplest case a
truncation of n bits to ñ < n bits. The security of CBC-MAC has been proven for
fixed-length messages by Bellare et al. in [7] and for variable-length messages by
Petrank and Rackoff in [132]. For the proof of security with respect to variable-
length messages a variant of CBC-MAC has been defined, namely EMAC. For
EMAC two keys k′ and k′′ are derived from the key k. The message is then
processed by CBC-MAC as in (2.4) with key k′. Finally, the output of (2.4) is
encrypted by applying the block cipher with key k′′.

Note that for variable-length messages an output transformation is required
for CBC-MAC in order to avoid the fact that it is easy to construct different
messages leading to identical tags. This would result in a forgery attack on the
MAC (see Chapter 6 for further details). We demonstrate the importance of
the output transformation for the basic CBC-MAC by a simple example (see
also Menezes et al. [116, page 354]). Assume that we are given two single-block
messages m1 and m2, with m1 6= m2, and according tags, denoted by tagm1 and
tagm2 . We choose the two-block message m3 = m1‖y, where y is an arbitrary
n-bit value, and request the according tag tagm3 . Assume the tags have been
computed as shown in (2.4), where g(·) is the identity mapping:

tagm1 = Ek(m1 ⊕ iv)

tagm2 = Ek(m2 ⊕ iv)

tagm3 = Ek(y ⊕ Ek(m1 ⊕ iv))

Based on this information, we can now construct a fourth 2-block message m4

that has the identical tag as m3. We choose the message m4 = m2‖y′, where



16 Chapter 2. Preliminaries

y′ = y ⊕ tagm1 ⊕ tagm2 . This results in

tagm4 = Ek(y′ ⊕ Ek(m2 ⊕ iv)) = Ek(y ⊕ tagm1 ⊕ tagm2 ⊕ tagm2)
= Ek(y ⊕ tagm1) = tagm3 .

It is easy to see that truncating the output to ñ < n bits destroys this property.
However, as has been shown by Knudsen in [86] truncating the output is still not
enough for avoiding forgery attacks. By using stronger output transformations
these attacks can be thwarted. For instance, the proposal MacDES by Knudsen
and Preneel in [89] includes two additional applications of the block cipher DES
for processing the first message block (2 encryptions with the same key as for
processing the entire input message) and an additional encryption with a differ-
ent key before the tag is output. For this proposal, truncating the output is not
required but can be done optionally. An overview of the security analysis of sev-
eral CBC-MAC variants has been presented for instance by Brincat and Mitchell
in [25]. To summarize, the problems with these CBC-MAC constructions arise
due to the employment of the weak block cipher DES with only 64 output bits. If
AES is used as underlying block cipher, then the basic CBC-MAC construction
with a simple output truncation to less than 128 bits can be used—there is no
need to implement any other variants.

An alternative to block-cipher-based MAC constructions are MACs based
on hash functions. For instance Preneel and van Oorschot presented MDxMAC
in [145], which is a hash-based MAC construction for the MD family of hash
functions such as MD4 [153] and MD5 [154]. They also presented a thorough
security analysis of iterated MACs in [146]. The most well known hash-based
constructions to date are NMAC and HMAC presented by Bellare et al. in [6].
We will describe both MAC constructions and discuss their security with respect
to recent cryptanalytic results in more detail in Chapter 6.

An example of a MAC based on stream ciphers was presented by Lai et al.
in [94]. There exist several other proposals for MACs. To mention few of them:
UMAC proposed by Black et al. in [23], Poly1305-AES MAC proposed by Bern-
stein in [12], and the MAC construction ALRED proposed by Daemen and
Rijmen in [38].

2.5 On Differential Properties of Boolean Func-
tions and Modular Addition

In this section, we introduce signed-bit differences as a generalization of XOR
differences. We will look at modular additions and the differential properties of
Boolean functions with respect to signed-bit differences which have been intro-
duced by Wang et al. in [169]. Regarding the Boolean functions, we will focus
only on those we need for the analysis of the hash function SHA-1 in Chapter 4.
For a more general treatment of signed-bit differences we refer to the PhD thesis
of Daum [42].



2.5. Diff. Properties of Boolean Functions and Modular Addition 17

Table 2.2: Addition of signed-bit differences.

A′
j B′

j C ′
j S′

j C ′
j+1

0 0 0 0 0

0 0 v (−1)Aj⊕Bj v −v(Aj ⊕Bj)

0 v 0 (−1)Aj⊕Cj v −v(Aj ⊕ Cj)

v 0 0 (−1)Bj⊕Cj v −v(Bj ⊕ Cj)

0 u v 0 1
2 (u + v)

u 0 v 0 1
2 (u + v)

u v 0 0 1
2 (u + v)

v v v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v

v v −v (−1)Aj⊕Bj⊕1v (−1)Aj⊕Bj v

v −v v (−1)Aj⊕Cj⊕1v (−1)Aj⊕Cj v

−v v v (−1)Bj⊕Cj⊕1v (−1)Bj⊕Cj v

2.5.1 Signed-Bit Differences

We define the sign of a difference in bit position j as

w′
j = wj − w∗

j , where wj , w
∗
j ∈ {0, 1} and w′

j ∈ {−1, 0,+1} .

In particular, if w′
j = 0 the difference is zero. The signed-bit difference is defined

as W ′
j = w′

j2
j . A useful property of signed-bit differences is that the difference

also includes information about the values of wj and w∗
j .

W ′
j =


+2j if wj = 1 and w∗

j = 0
0 if wj = w∗

j

−2j if wj = 0 and w∗
j = 1

Let us now consider the addition of two signed-bit differences. The addition
S = A + B is defined as

Sj = Aj ⊕Bj ⊕ Cj

Cj+1 = (Aj ∧Bj)⊕ (Aj ∧ Cj)⊕ (Bj ∧ Cj) with C0 = 0 ,

where Cj+1 is the resulting carry of the addition in bit position j. Table 2.2 lists
all possible cases for the output and carry difference of a signed-bit addition
with v, u ∈ {−1,+1}.

To perform the addition of two signed-bit differences, we can use Table 2.2
for computing the resulting difference. We know that the output difference is
C ′

j+12
j+1 +S′

j2
j . For instance, if there are two non-zero differences at the input



18 Chapter 2. Preliminaries

with opposite signs, then both C ′
j+1 and S′

j are zero and hence, the output
difference is zero. If the differences have the same sign, for instance −2j and
−2j , the output difference is −2j+1, since C ′

j+1 = −1 and S′
j = 0.

2.5.2 Differential Properties of Boolean Functions in SHA-1

For our analysis of local collisions in Section 4.4, we need the differential prop-
erties with respect to signed-bit differences of the Boolean functions defined for
SHA-1:

fIF(B,C,D) = (B ∧ C)⊕ (¬B ∧D)
fMAJ(B,C,D) = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D)
fXOR(B,C,D) = B ⊕ C ⊕D

In Table 2.3, we list the cases that occur in a local collision (see Section 4.4,
Figure 4.7) where v ∈ {−1,+1}. As can be seen in Table 2.3, for fXOR the
sign of the input difference is flipped with probability 1/2 depending on the
input values and assuming that the input values have been chosen randomly.
For fMAJ the sign is preserved but the difference propagates with probability
1/2. For instance, if the input difference D′

j = v2j then the output difference
of fXOR is given by (−1)Bj⊕Cj v2j and for fMAJ it is given by (Bj ⊕ Cj)v2j . In
Section 6.2.2, we also need the differential properties of fIF. We give some cases
in Table 2.4.

Table 2.3: Differential properties of fXOR and fMAJ for signed-bit differences.

B′
j C ′

j D′
j fXOR(B′

j , C
′
j , D

′
j) fMAJ(B′

j , C
′
j , D

′
j)

0 0 v (−1)Bj⊕Cj v (Bj ⊕ Cj)v

0 v 0 (−1)Bj⊕Dj v (Bj ⊕Dj)v

v 0 0 (−1)Cj⊕Dj v (Cj ⊕Dj)v



2.6. Finite Fields 19

Table 2.4: Differential properties of fIF for signed-bit differences.

B′
j C ′

j D′
j fIF(B′

j , C
′
j , D

′
j)

0 0 v (Bj ⊕ 1)v

0 v 0 Bjv

v 0 0 (Cj ⊕Dj)(−1)Dj v

0 v v v

v v 0 (Dj ⊕ 1)v

v 0 v Cjv

0 −v v (−1)Bj v

v −v 0 −Djv

v 0 −v −Cjv

v v v v

v v −v 0

v −v v 0

−v v v v

2.6 Finite Fields

In this section, we will introduce the basics on finite fields. We will only introduce
the necessary definitions that are required for the analysis of the hash function
design strategy SMASH in Chapter 3. We will start by defining groups, rings,
and fields. Then, we go over to polynomials over fields. This introduction is
based on the work of Lidl and Niederreiter in [98]. We refer to their work for a
more comprehensive discussion on the theory of finite fields and applications.

2.6.1 Groups, Rings, and Fields

Definition 2.4. An Abelian group (G, +) is a set G together with a binary
operation + on G such that the following properties hold:

1. closure: ∀a, b ∈ G : a + b ∈ G
2. associativity: ∀a, b, c ∈ G : a + (b + c) = (a + b) + c
3. identity element: ∃0 ∈ G,∀a ∈ G : a + 0 = 0 + a = a
4. inverse element: ∀a ∈ G,∃b ∈ G : a + b = b + a = 0
5. commutativity: ∀a, b ∈ G : a + b = b + a

An example of an Abelian group is (Z,+) with ‘+’ being the ordinary integer
addition. For this group, the identity element is 0 and the inverse element of
a ∈ Z is −a. The additive notation is common for Abelian groups. For (a+(−b)),



20 Chapter 2. Preliminaries

we simply write a − b. If we consider the multiplicative notation then we say
that we have a multiplicative group (G, ·) with the binary operation ‘·’. The
inverse element of a ∈ G is then denoted by a−1 and the identity element is 1.
Furthermore, for the n-fold composite of a ∈ G we write an = a · a · · · a in the
multiplicative notation and in the additive notation we write na = a+a+ · · ·+a.
We adopt the convention that a0 = 1 in multiplicative notation and 0a = 0 in
additive notation.

Definition 2.5. A multiplicative group (G, ·) is said to be cyclic if there exists
an element a ∈ G such that ∀b ∈ G, there is some integer j with b = aj.

We call such an element the generator of the cyclic group and we write G = 〈a〉.
Note that a cyclic group can have more than one generator. For instance, in the
additive group (Z,+) two generators are 1 and −1. Another example for a cyclic
group are the integers modulo n. For arbitrary integers a, b and a positive integer
n, we say that a ≡ b mod n if the difference a−b is a multiple of n, i.e. a = b+kn
for some integer k. The set of all residue classes modulo n is denoted by Zn. It is
also called Z modulo n and is represented by the set {0, 1, . . . , n−1}. This cyclic
group (Zn,+) is generated by the set {. . . ,−2n+1,−n+1, 1, n+1, 2n+1, . . . } ≡
1 mod n. This example also leads to the definition of a finite group.

Definition 2.6. A group is called finite if it contains finitely many elements.
The number of elements is called the order of the group and denoted by |G|.
Definition 2.7. For a ∈ (G, ·), we call the least positive integer k, for which
ak = 1, the order of the element a and we denote it by ord(a) = k.

Definition 2.8. A ring (R,+, ·) is a set R together with two binary operations
‘+’ and ‘·’, such that

1. (R,+) is an Abelian group
2. the operation ‘·’ is associative, i.e. ∀a, b, c ∈ R : (a · b) · c = a · (b · c)
3. the distributive laws hold:
∀a, b, c ∈ R : a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a

Furthermore, we say (R,+, ·) is a commutative ring if the operation ‘·’ is com-
mutative. If there exists a multiplicative identity then we call the ring a ring
with identity.

In the following we use 0 to denote the identity element of the Abelian group
(R,+) and the additive inverse of a is denoted by −a. For a ring with identity, we
denote the multiplicative identity by 1. A well-known example of a commutative
ring is the ring of integers with ordinary addition and multiplication: (Z,+, ·).
Another example is the ring (Zn,+, ·), the ring of integers modulo n.

Definition 2.9. An algebraic structure (F,+, ·) is called a field if the following
properties hold:

1. (F,+, ·) is a commutative ring
2. for all elements in F there exists an inverse element in F with respect to

the operation ‘·’, except for the identity element 0 in (F,+)



2.6. Finite Fields 21

Furthermore, we call (F,+, ·) a finite field if the set F contains only finitely
many elements.

In the following, we use 1 to denote the multiplicative identity of the field F .

Definition 2.10. Given a field F . A vector space V is an Abelian group together
with an external operation F × V → V , which satisfies the following properties:
∀λ, µ ∈ F and ∀u,v ∈ V it holds that

1. λ(µu) = (λµ)u
2. (λ + µ)u = λu + λu
3. 1u = u
4. λ(u + v) = λu + λv

The elements of V are called vectors and the elements of F are called scalars.
An example of a vector space is F × F × · · · × F = Fn. We say that Fn

is an n-dimensional vector space over F , and every vector can be written as
v = (v1, . . . , vn), where vi ∈ F . Addition of two vectors u,v ∈ Fn is defined as

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

and scalar multiplication is performed as

λv = (λv1, . . . , λvn) ,

where all component-wise operations are carried out in the underlying field F .

2.6.2 Polynomials over Fields

Let F be a field. A polynomial over F is an expression of the form

f(x) =
n∑

i=0

aix
i = a0 + a1x + · · · anxn ,

where n is a non-negative integer, the ai’s are called coefficients and ai ∈ F for
0 ≤ i ≤ n. The variable x does not belong to F and is therefore called the
indeterminate. For two polynomials over F

f(x) =
n∑

i=0

aix
i and g(x) =

n∑
i=0

bix
i

we define the polynomial addition as the addition of the coefficients, i.e.

f(x) + g(x) =
n∑

i=0

(ai + bi)xi ,

where without loss of generality, we assume that both polynomials involve the
same powers of x. The product of two polynomials over F

f(x) =
n∑

i=0

aix
i and g(x) =

m∑
j=0

bjx
j



22 Chapter 2. Preliminaries

is given by

f(x)g(x) =
n+m∑
k=0

ckxk, with ck =
∑

i+j=k
0≤i≤n,0≤j≤m

aibj .

With these operations it can be shown that the set of polynomials over F forms
a ring.

Definition 2.11. The ring formed by the set of polynomials over F with the
operations given above, is called the polynomial ring over F and denoted by
F [x].

Let f(x) =
∑n

i=0 aix
i ∈ F [x] and suppose an 6= 0. Then we call an the

leading coefficient of f(x), and a0 is the constant term. The polynomial where
all coefficients are zero is called the zero polynomial and we simply write 0 to
denote it. Furthermore, we call n the degree of f(x) denoted by n = deg(f(x)).
By convention we set deg(0) = −∞. A polynomial with degree 0 is a constant
polynomial. If the leading coefficient of f(x) is an = 1 then we call f(x) a monic
polynomial. For polynomial rings over fields there is a division with remainder.

Theorem 2.1. Let g(x) 6= 0 be a polynomial in F [x]. Then for any f(x) ∈ F [x]
there exist polynomials q(x),r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x),where deg(r(x)) < deg(g(x)) ,

For computing the division with remainder, we can use the Euclidean algorithm
(see for instance [116]).

Definition 2.12. A polynomial p(x) ∈ F [x] is said to be irreducible over F if
p(x) has positive degree and p(x) = b(x)c(x) with b(x), c(x) ∈ F [x] implies that
either b(x) or c(x) is a constant polynomial.

In other words, an irreducible polynomial over F [x] allows only trivial factoriza-
tions.

Definition 2.13. An element b ∈ F is called a root of the polynomial f(x) ∈
F [x] if f(b) = 0.

Now we introduce subfields and extension fields. Let F be a field. Any
subset K of F that is itself a field is called a subfield. In this case, we say F is an
extension field of K. Furthermore, if K 6= F we say that K is a proper subfield
of F .

In cryptography, the most important fields are finite fields. We know that
the residue classes modulo n form the ring (Zn,+, ·). If n = p, where p is prime,
then the residue classes modulo p form a finite field (Zp,+, ·). For the remainder
of this thesis, we will denote the finite field with q elements by GF (q), where
GF stands for Galois field. The simplest finite field is the binary field GF (2)
containing only two elements, namely the elements 0 and 1. It can be shown,



2.6. Finite Fields 23

cf. [98], that every finite field consists of q = pn elements and can be realized as
an extension field of GF (p), for p a prime number. We illustrate this fact by an
example.
Example 2.1. We construct the finite field GF (22) as an extension field of GF (2),
i.e. p = 2 and n = 2. This implies that the elements 0 and 1 are included in
GF (4). The finite field GF (4) contains 4 elements. We add the new element α.
For this new element, we can now derive the Cayley tables given in Table 2.5.

Table 2.5: Cayley tables for addition and multiplication in GF (22).

+ 0 1 α

0 0 1 α
1 0 0 1 + α
α α 1 + α 0

· 0 1 α

0 0 0 0
1 0 1 α
α 0 α α2

As can be seen in Table 2.5, we have two new elements, namely 1 + α and
α2. Together with the elements 0, 1, α we have five elements {0, 1, α, α + 1, α2}.
However, we know that GF (4) only consists of four elements. Therefore, two of
these five elements have to be equal. Assume α2 = α. This leads to α = 0 or
α = 1. Since this does not add any new element, we try α + 1 = α, i.e. 0 = 1,
which is impossible since 0 and 1 are distinct in GF (2). The last equality is
α2 = α + 1. If we use this equality then addition and multiplication is defined
properly in GF (4). Thus the elements of GF (4) are {0, 1, α, α+1}, where alpha
is the root of the monic irreducible polynomial x2 + x + 1, i.e. α2 + α + 1 = 0.
Whenever α2 turns up in a multiplication it is replaced by α + 1.

Theorem 2.2. Every finite field GF (pn) with p a prime number can be realized
as the set of all polynomials over GF (p) with degree ≤ n − 1. Addition is
performed by adding the coefficients modulo p. Multiplication in the finite field
is polynomial multiplication followed by a reduction modulo a monic irreducible
polynomial of degree n.

For efficient implementations of finite field arithmetic, we refer to Hankerson
et al. [64]. For the finite extension field GF (pn), we call p the characteristic of
GF (pn). Furthermore, we denote by (GF (pn)∗, ·) the multiplicative group of
the non-zero elements in GF (pn). An important fact about finite fields is that
(GF (pn)∗, ·) is a cyclic group. A generator of this group is called a primitive
element in GF (pn).

We can now also define the inverse operation of multiplication with respect
to the irreducible polynomial f(x) for the multiplicative group (GF (pn)∗, ·). We
can use the extended Euclidean algorithm (see Menezes et al. [116, Algorithm
2.221, page 82]) for finding the inverse of the polynomial a(x) as follows. The
extended Euclidean algorithm returns two polynomials b(x) and c(x) such that

a(x)b(x) + f(x)c(x) = GCD(a(x), f(x)) , (2.5)



24 Chapter 2. Preliminaries

where GCD denotes the greatest common divisor of a(x) and f(x). Since f(x)
is monic and irreducible, we know that GCD(a(x), f(x)) = 1. If we reduce (2.5)
modulo the irreducible polynomial, we have

a(x)b(x) ≡ 1 mod f(x)

which means that b(x) is the inverse element of a(x).

Definition 2.14. A primitive polynomial over GF (p) of degree n is a monic
polynomial that is irreducible over GF (p) and has a root α ∈ GF (pn) that gen-
erates the multiplicative group of GF (pn).

Example 2.2. For the extension field GF (4) the polynomial x + 1 is a generator
of GF (4)∗. This can be shown easily by computing the powers of the element
(1 + x) modulo the irreducible polynomial. Furthermore, (x + 1) is a root of
the irreducible polynomial f(x) = x2 + x + 1 defining GF (4). This is since
f(x + 1) = (x + 1)2 + (x + 1) + 1 = (x2 + 1) + x. We know that x2 = x + 1 and
therefore we get f(x + 1) = (x + 1 + 1) + x = 0. Since f(x) is monic, we can
conclude that f(x) is a primitive polynomial over GF (2).

2.7 Linear Codes

In this section, we introduce the basic concepts of coding theory, whereby we will
focus only on linear codes. This basic introduction to coding theory is based on
the work by van Lint in [163]. After this introduction, we explain algorithms that
can be used to search for codewords of low Hamming weight. This introduction
serves as a starting point for Section 4.3.

2.7.1 Basic Definitions

Definition 2.15. Let A = {0, . . . , q−1} be an alphabet consisting of q elements.
We call a sequence of n symbols in A a word of length n. The set of all words
of length n is denoted by An.

It is clear that if the alphabet A consists of q symbols, then there exist exactly
qn words of length n. Now we give the definition of a code C.

Definition 2.16. An [n, k]-code C over the alphabet A = {0, 1, . . . , q−1} with q
elements is a subset of An consisting of exactly qk codewords. The number n is
called the length of the code denoted by length(C), and k is called the dimension
of C denoted by dim(C).

Definition 2.17. (Hamming Distance and Weight) For u = (u1, . . . , un) ∈ An

and v = (v1, . . . , vn) ∈ An the Hamming distance of u, v is defined as

d(u, v) := #{i : ui 6= vi} with i ∈ {1, . . . , n} .

The Hamming weight of u, denoted by wt(u), is the number of nonzero entries
in u, i.e. wt(u) = d(0, u), where 0 denotes the zero word, i.e. 0 = {0, . . . , 0}.



2.7. Linear Codes 25

The Hamming distance is a very important measure for codes. Some of its
properties are given by the following lemma.

Lemma 2.1. The Hamming distance d(u, v) is a metric on An, i.e. it satisfies

d(u, v) ≥ 0, and d(u, v) = 0 if and only if u = v

d(u, v) = d(v, u) for all u, v

d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w .

Before we go over to linear codes, we still have to define a very important prop-
erty of codes, namely the minimum distance.

Definition 2.18. Let C be a [n, k]-code over A. We call

d := min
x,y∈C,x6=y

d(x, y)

the minimum distance of C. Then we call C also an [n, k, d]-code.

Definition 2.19. (Linear Code) Let the alphabet A be the finite field GF (q)
with q elements. Then we call an [n, k]-code C over GF (q) a linear code, if C
is a subspace of the vector space GF (q)n, whereby multiplication by α ∈ GF (q)
and addition of a = (a1 . . . , an) and b = (b1, . . . , bn) is defined as follows

αa = (αa1, . . . , αan)
a + b = (a1 + b1, . . . , an + bn) .

Note that if q = 2, we speak of a linear binary code. For a linear code, we can
now characterize the minimum distance by the following theorem.

Theorem 2.3. For an [n, k]-linear code over GF (2) the minimum distance
equals the minimum weight of all codewords different from the zero vector.

Proof. For u, v ∈ C it holds that d(u, v) = wt(u − v). Due to the linearity, we
know that also u−v ∈ C, i.e. u−v is also a codeword in C. Therefore, it follows
that

d = min
c1,c2∈C
c1 6=c2

d(c1, c2) = min
c1,c2∈C
c1 6=c2

wt(c1 − c2) = min
c∈C
c6=0

wt(c) ,

since C is a group with respect to addition.

So far, we defined basic properties of (linear) codes. Now we introduce two
important matrices in coding theory: the generator matrix and the check matrix
of a linear code. These matrices define how a message word gets encoded into
a codeword that can be transmitted over a noisy channel, and how it can be
verified whether or not a received message is a codeword. Encoding is done via
a (linear) encoder. Basically, an encoder adds to each message word a certain
amount of redundancy resulting in a codeword. With this added redundance it
is possible to verify whether or not a received codeword is valid, meaning that
it can be decoded to get the message according to the transmitted codeword.



26 Chapter 2. Preliminaries

Lemma 2.2. Let G be a k × n matrix with k ≤ n and rank(G) = k, and let C
be the set of vectors xG, with x ∈ GF (q)k. Then C is an [n, k]-linear code.

Proof. Let v, w ∈ C. For x, y ∈ GF (q)k and λ ∈ GF (q) it holds that

v + w = xG + yG = (x + y)G ∈ C since x + y ∈ GF (q)k

λv = λ(xG) = (λx)G ∈ C since λx ∈ GF (q)k.

Therefore, the set C is a subspace of GF (q)n and hence a linear code following
Definition 2.19.

Definition 2.20. Let C be a linear [n, k]-code over GF (q). Furthermore, let G
be a k×n matrix such that the codewords are determined by xG for any word x
of length k. Then G is called a generator matrix of the code C.

Note that we call the matrix G a systematic generator matrix if the first k
columns of G are the k×k identity matrix Ik. We simply write I if the dimension
is clear from the context. One of the main reasons to work with linear codes is
the fact that it is easy to verify whether or not a received word is a codeword.
To demonstrate this, we define the check matrix of a linear code C.

Definition 2.21. A check matrix for a [n, k]-linear code C over GF (q) is an
(n − k) × n matrix H, with the property that for all v ∈ GF (qn) the following
holds:

HvT = 0⇔ v ∈ C

As for the generator matrix, we call the check matrix H systematic if the right-
most (n−k) columns are the identity matrix Jn−k. The following theorem states
an important relationship between the generator matrix and the check matrix
of a code C.

Theorem 2.4. Let C be a [n, k]-linear code over GF (q). Then the following
holds. C possesses a systematic generator matrix G if and only if it possesses a
systematic check matrix H. In particular, if G =

[
I A

]
and H =

[
B J

]
then

A = −BT .

The presented definitions and theorems are the basics on coding theory we need
for the next section and for the discussion in Section 4.3. This introduction is
only a very small fraction of coding theory and error correcting codes. Therefore,
we refer the interested reader to [101, 134, 147, 163] for a more detailed treatment
of coding theory and error correcting codes.

2.7.2 Searching for Low-Weight Codewords

In Definition 2.18, we defined the minimum distance of an [n, k]-code C. For
linear codes, the minimum distance equals the minimum Hamming weight of
all codewords different from the zero codeword, cf. Theorem 2.3. Finding code-
words with a certain Hamming weight in linear codes, plays an important role in



2.7. Linear Codes 27

cryptography. For instance, one of the first cryptosystems that has used error-
correcting codes has been proposed by McEliece in [108]. It can be shown that
finding a codeword with minimum Hamming weight renders the cryptosystem
insecure. However, finding a codeword with a given Hamming weight in a lin-
ear code is an NP complete problem (see Berlekamp et al. [11]). Nevertheless,
there exist probabilistic algorithms for finding codewords in linear codes with
low Hamming weight. We describe the basic idea of these algorithms and sum-
marize work factor estimates given in [30]. We will apply these algorithms to
search for linear characteristics with low Hamming weight in Chapter 4.

Probabilistic Algorithms

We will briefly discuss some probabilistic algorithms presented by Leon [96] and
modified by Chabaud [30], Stern [158], and by Canteaut and Chabaud [29]. The
basic common approach of these algorithms is to take a (randomly permuted)
subset of a given code C, which is referred to as the punctured code and denoted
by C•. Since we only take a subset of C, we have length(C•) < length(C). Then,
we search for codewords with a small Hamming weight in the smaller code C•,
instead of searching in C. A found codeword with small Hamming weight in the
punctured code is a good candidate for a low Hamming weight codeword in the
initial code C.

Modified Leon. A modified variant of Leon’s algorithm [96] was presented by
Chabaud [30]. It is applied to the generator matrix Gk×n of a code C and
defines the parameters p and s. The first step is to randomly permute the
columns of the generator matrix G. Then, we apply a Gaussian elimination
such that we have a matrix of the form

G∗
k×n =

[
I Z B

]
,

where Z is a (k× (s− k)) matrix. Then, we define the punctured code C•

with generator matrix G• =
[
Ik Zk×(s−k)

]
. The length of the punctured

code is determined by s, where s > dim(C•) = k. Now, we search for all
linear combinations of at most p rows of G• having a Hamming weight
of less than or equal p. For these codewords, we compute the Hamming
weight of the codeword in C. The parameter p is usually 2 or 3. Values
for the parameter s are k + 13, . . . , k + 20 (see for instance [30]).

Stern. Stern’s algorithm [158] is applied to the check matrix H(n−k)×n. The
parameters of the algorithm are ` and p. As before, we first randomly
permute the columns of H and perform a Gaussian elimination to get a
matrix of the form

H∗ =
[

I` 0`×(n−k−`) Z`×k

0(n−k−`)×` In−k−` B(n−k−`)×k

]
Now we search for codewords in the punctured code C• with check matrix
H• =

[
Z`×k

]
. We proceed as follows. We further split the columns of H•



28 Chapter 2. Preliminaries

into two sets, namely H• =
[
H•

1 H•
2

]
. Then the linear combinations of

at most p columns are computed for both H•
1 and H•

2 and their weight is
stored. Then searching for a collision of both weights, allows to search for
codewords of weight 2p. For these candidates, we compute the resulting
Hamming weight in C. Usually, the parameter p is 2 or 3 and ` is at most
20 (see for instance [158]).

Canteaut-Chabaud. Canteaut and Chabaud [29] have presented a modifica-
tion of these algorithms. Instead of performing a Gaussian elimination
after the random permutation in each iteration, Canteaut and Chabaud
use a more efficient updating algorithm. More precisely, only two randomly
selected columns are interchanged in each iteration, that is, only one step
of a Gaussian elimination has to be performed. Even if this reduces the
probability of finding a ‘good’ subset of the code, this approach leads to
considerable improvements as they have shown for several codes in [29].

Work-Factor Estimates

In [30], Chabaud presented work factor estimates for the above-mentioned low-
weight-search algorithms. With these estimates one can determine the effort to
find an existing codeword with a weight wt in a linear code of length n and
dimension k. The work factor estimate for Leon’s and Stern’s algorithm can be
computed as follows (see [30]), where the parameters p, s, and l depend on the
punctured code C•.

WLEON(p,s)(n, k, wt) =
k k

2n +
∑p

i=1

(
k
i

)
(i− 1)

[
(s− k) + n

∑p−i
j=0 (s−k

j )
2s−k

]
∑p

i=1
(n−w

s−i )(w
i )

(n
s)

WSTERN(p,l)(n, k, wt) =[
(n− k) (n−k)

2 n + 2l
(
k/2
p

)
(p− 1) + (n− k − l)(2p− 1)(k/2

p )2
2l

]
a(

w
p

)(
n−w

k/2−p

)(
w−p

p

)(
n−w−(k/2−p)

k/2−p

)(
n−w−(k−2p)

(n−k−l)−(w−2p)

) , (2.6)

with

a =
[(

n

k/2

)(
n− k/2

k/2

)(
n− k

n− k − l

)]
.

In the following, we give an example for computing the work factor estimate
for finding a codeword of a certain weight in a linear code as we will define it in
Section 4.3. As can be seen in Example 2.3, for the chosen parameters l, p, s, the
work factor of Stern’s algorithm is about 256 times higher than the work factor
estimate for Leon’s algorithm.



2.8. Summary 29

Example 2.3. Consider a binary linear code C with dim(C) = k = 672 and length
n = 11520. Furthermore, assume that a codeword c of weight wt(c) = 237 exists.
To find such a codeword in C, we get the following estimates:

• Leon’s algorithm with p = 3 and s = dim(C) + 12:

WLEON(p,s)(n, k, wt) = 241

• Stern’s algorithm with p = 3 and l = 20:

WSTERN(p,l)(n, k, wt) = 249

2.8 Summary

In this chapter, we have introduced the notation we will follow throughout the
remainder of this thesis. Furthermore, we have discussed the basics of symmetric
cryptographic primitives (block ciphers, hash functions, and message authenti-
cation codes), that are needed for the discussions in the forthcoming chapters.
We have defined signed-bit differences which will be applied in the analysis of
SHA-1 in Section 4.4. The introduction to finite fields covers all aspects needed
for the analysis of the SMASH design strategy in Section 5.1. The section on
coding theory, including the description of algorithms to search for codewords
with low Hamming weight serves as a starting point in Section 4.3.





3
Analysis Methods for Hash Functions

In this chapter, we review analysis methods for cryptographic hash functions
that have been introduced and successfully applied in the past. We will focus on
collision attacks and (second) preimage attacks. We will give a general overview
of attack methods. Further details will be provided in later chapters.

3.1 Collision Attacks

Definition 3.1. For a given hash function H, a message pair (m,m∗) with
m 6= m∗ possessing the same hash value, i.e. H(m) = H(m∗), is called a colliding
message pair. Alternatively, we say that the messages collide, or simply that we
have a collision for H.

As can be seen in Definition 3.1, we do not impose any conditions on the message
pair except that we require that they are not equal. Also we consider unordered
message pairs since it is clear that if (m,m∗) is a colliding message pair then
also (m∗,m) will collide. For our discussions, both pairs are identical.

3.1.1 Birthday Attacks

For an n-bit hash function the possible hash values are represented by 2n distinct
bit strings. Therefore, when hashing (2n + 1) different messages (this implies
that the message length is greater than n), there must be at least two identical
hash values, a collision. In fact, due to the birthday paradox, we do not have to
compute 2n+1 hash evaluations to find a colliding message pair. In the following,
we will show how to determine the probability for finding two messages with
identical hash values (see also Buchmann [26]). From this, we can then derive
the complexity of a birthday attack.

Lemma 3.1. Assume we are given an n-bit hash function. It follows from the
birthday paradox that if we compute the hash value for

k ≥
√

1.386 · 2n/2

31



32 Chapter 3. Analysis Methods for Hash Functions

randomly chosen messages then the probability for finding a colliding message
pair in the set of k messages is greater than 1/2. This is called a birthday attack
and is also referred to as square-root attack.

Proof. Let us denote the number of different hash values by N = 2n and the
number of different messages by k. Furthermore, we denote by p the probability
that at least two out of k messages have the same hash value. In other words,
p is the probability for a colliding message pair in a set of k different messages.
Thus, q = 1− p is the probability that all k messages have different hash values.
We define an elementary event as a tuple: (h1, . . . , hk) ∈ {1, . . . , N}k. If this
event occurs, then the i-th message has the hash value hi. Thus, in total there
are Nk elementary events. We assume that all events are equally probable and
hence each elementary event has a probability of 1/Nk. We are interested in
the following event C̄: the number of vectors (h1, . . . , hk) ∈ {1, . . . , N}k with
different coordinates. This corresponds to drawing a sample of size k without
replacement of the population of N elements. So, for the first element, we
have N choices, for the second element (N − 1), etc. Thus, in total there are
N(N −1) · · · (N −k+1) choices. Since we assume that all elementary events are
equally probable, we can compute the probability q by multiplying the number
of elements in C̄ by 1/Nk. Therefore we get

q =
1

Nk
N(N − 1) · · · (N − k + 1) =

1
Nk

k∏
i=1

(N − i + 1)

=
1

Nk

k∏
i=1

N

(
1− i− 1

N

)
=

k∏
i=1

(
1− i− 1

N

)

=
k−1∏
i=1

(
1− i

N

)
.

Since it holds that 1 + x ≤ ex for all real numbers x, we can write

q ≤
k−1∏
i=1

e−
i
N = e−

∑k−1
i=1

i
N = e

−k(k−1)
2N .

Since we want that q ≤ 1/2, we set

q ≤ e
−k(k−1)

2N ≤ 1/2 . (3.1)

Inequality (3.1) can be rewritten to get

k(k − 1) ≥ 2N ln 2

resulting in
k2 − k − 2N ln 2 ≥ 0 . (3.2)



3.1. Collision Attacks 33

In order to satisfy (3.2), k is chosen as follows

k ≥ 1 +
√

1 + 8N ln 2
2

>

√
1 + 8N ln 2

2
>

√
8 ln 2

4
N ≈

√
1.386 · 2n/2 .

This implies that q ≤ 1/2 and hence p ≥ 1/2. In other words, the probability
p to find a colliding message pair is greater than 1/2, if we compute the hash
value for k ≥

√
1.386 · 2n/2 randomly chosen messages.

The birthday attack is a generic attack which considers a hash function as
a black box and hence, can be applied successfully to any hash function. A
birthday attack can be implemented as has been shown by Yuval in [178] (see
also [116, Algorithm 9.92]):

1. Randomly pick a message m and compute H(m)

2. Update the list L

• if H(m) is already in the list L, a colliding message pair has been
found

• else save the pair (H(m),m) in the list L and go back to step 1

After performing about
√

1.386 · 2n/2 hash evaluations, we know from the birth-
day paradox that we can find a matching entry (a collision) with a probability
greater than 1/2. Yuval’s approach has a memory requirement of about 2n/2

to store the list L. A memoryless variant of Yuval’s birthday attack has been
presented by Quisquater and Delescaille in [148]. An efficient parallel variant of
this algorithm has been proposed by van Oorschot and Wiener in [164, 165].

Note that in a birthday attack, an attacker has full control over the messages.
Hence, this method enables an attacker to construct meaningful collisions. We
speak of a meaningful collision if the colliding messages have meaningful content
such as readable text and do not just look like random strings.

As described in Section 2.3.3, there exist variants of a collision, namely
pseudo-collisions and near-collisions. For a near-collision, we can also apply
the birthday paradox.

Lemma 3.2. Assume we are given an n-bit hash function H and we want to
find a near-collision such that H(m)⊕H(m∗) ∈ ∆, where ∆ denotes the set of
all n-bit vectors with a Hamming weight of d, i.e. ∆ = {δ ∈ {0, 1}n : wt(δ) = d}.
It follows from the birthday paradox that after computing the hash value for

k ≥
√

1.386 · 2n(
n
d

)
randomly chosen messages, the probability to find two messages m and m∗ in
this set of k messages such that H(m)⊕H(m∗) ∈ ∆ is greater than 1/2.



34 Chapter 3. Analysis Methods for Hash Functions

Proof. The proof proceeds along the same lines as the proof of Lemma 3.1,
except that we are interested in the probability p that two messages m and m∗

lead to a near collision. Thus, q = 1 − p is the probability that all hash values
(h1, . . . , hk) ∈ {1, . . . , N}k satisfy hi ⊕ hj /∈ ∆ for i 6= j. For h1 we have N
possibilities, for h2 we have N −

(
n
d

)
possibilities, where

(
n
d

)
is the cardinality of

∆. So we end up with

q =
1

Nk
N

(
N −

(
n

d

))(
N − 2

(
n

d

))
· · ·
(

N − (k − 1)
(

n

d

))
=

k−1∏
i=1

(
1−

i
(
n
d

)
N

)
.

This leads to

k ≥
√

1.386 · 2n(
n
d

)

It follows from Lemma 3.2 that finding a near-collision is less complex than
finding a collision. Note that in the remainder of this thesis, we will omit the
factor

√
1.386 if we talk about the complexity of a birthday attack; we simply say

that a birthday attack has a complexity of about 2n/2 hash function evaluations.
In a birthday attack, we are searching for a pair of messages (m,m∗) with

m 6= m∗ such that H(m) ⊕ H(m∗) = 0. Wagner introduced a k-dimensional
generalization of the birthday problem in [167]. He presented how to find k
messages, for k ≥ 2 (if k = 2, we have the standard birthday problem), such that
their XOR sum equals zero. He showed for instance that it is possible to find four
different messages m1,m2,m3,m4 such that H(m1)⊕H(m2)⊕H(m3)⊕H(m4) =
0 with about 2n/3 hash evaluations and 2n/3 storage. For further details and for
applications of the generalized birthday attack, we refer to [167].

3.1.2 Shortcut Attacks

So far, we discussed the birthday attack, where the hash function is considered
as a black box. If, for a concrete hash function, the internal structure can be
exploited for collision attacks with a complexity below the birthday bound (2n/2),
we speak of shortcut attacks. One method for shortcut attacks on hash functions
is to apply techniques from differential cryptanalysis. Differential cryptanalysis
was invented in 1989 by Biham and Shamir, which were the first that gave a
general description of this method for the cryptanalysis of DES [19]. Similar
techniques had been used already for instance by Murphy in [120]. Also the
designers of DES claim to have known about differential cryptanalysis already
back in the 1974 when the algorithm was designed [34]. Differential cryptanalysis
is a general method in the cryptanalysis of block ciphers and stream ciphers, and
also applicable to hash functions. The main idea of differential cryptanalysis in
hash functions is to force certain bits to be equal in both messages m and m∗.



3.1. Collision Attacks 35

The more equalities we impose, the more likely these equalities will propagate,
eventually leading to equal hash values (a collision).

As opposed to block ciphers, hash functions allow some additional techniques
to improve on this idea. Firstly, an attacker can impose additional conditions on
the values of certain bits in both messages, in order to increase the probability
that the equalities propagate. For most block ciphers, this is not promising
since message blocks are usually XORed with an unknown whitening key before
being processed. Secondly, also conditions on the bits of internal variables in the
hash function can be set. Enumerating messages which fulfill such conditions is
relatively easy as long as these conditions are imposed in the first steps, where
the state variables do not depend on all message words (nor on any secret key,
as in block ciphers).

Based on the notion of collisions it is natural to apply techniques from dif-
ferential cryptanalysis for the analysis of cryptographic hash functions. The
attacker tries to find a pair of messages m and m∗ 6= m that possesses the same
hash value. Since m∗ 6= m, we can define the (XOR) difference between both
messages: m′ = m⊕m∗ and analyze how this difference propagates throughout
(parts) of the hash function. Clearly, we are interested in a difference m′ that
propagates with a high probability. Therefore, the aim is the same as in the
cryptanalysis of block ciphers, namely find input differences defining a charac-
teristic with high probability. Nevertheless, a high probability characteristic for
a hash function needs to result in a zero output difference such that m and m∗

collide. This is not the case for a block cipher. The probability of a character-
istic is the fraction of message pairs that follow the characteristic. If a message
pair follows the characteristic, it is called a right pair. In our context, we can
equivalently call it a colliding pair.

3.1.3 Multicollisions

Multicollision attacks have been introduced by Joux in [74]. It is a generic
attack, which exploits the iterative structure of a hash function. We start with
giving the definition of an r-collision, cf. [74].

Definition 3.2. An r-tuple of messages (m1, . . . ,mr) leading all to the same
hash value, i.e. H(m1) = · · · = H(mr), is called an r-collision. In particular, if
r = 2, we say 2-collision, which is an ordinary collision.

The main result of [74] is that constructing 2t-collisions is only slightly more
expensive than constructing a 2-collision. To explain this in more detail, we
define a collision finding machine C (see also [74]).

Definition 3.3. A collision finding machine C for the compression function f ,
is an algorithm that for a given chaining value hi returns two message blocks m1

i

and m2
i , with m2

i 6= m1
i , such that f(hi,m

1
i ) = f(hi,m

2
i ).

Note that the collision finding machine C may simply implement a birthday at-
tack or any other shortcut collision attack on the underlying compression func-
tion f . For the remaining discussion, we assume that it implements a birthday



36 Chapter 3. Analysis Methods for Hash Functions

attack, i.e. collisions can be found with a complexity of about 2n/2 evaluations
of the compression function. With this collision finding machine, we now illus-
trate how one can find a 4-collision. We call C with the initial value iv and
obtain two message blocks m1

1,m
2
1 that collide for the compression function f ,

i.e. f(iv,m1
1) = f(iv,m2

1). We call C again but now with the chaining value
resulting from the first call, namely f(iv,m1

1). This results in two colliding mes-
sage blocks m1

2,m
2
2. Therefore, we have the following four messages which all

possess the same hash value (a graphical illustration is given in Figure 3.1):

m1 = m1
1‖m1

2 m2 = m1
1‖m2

2

m3 = m2
1‖m2

2 m4 = m2
1‖m2

2

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 3.1: Graphical illustration of a 4-collision.

Therefore, the complexity to find a 4-collision is only twice the complexity of
finding a normal collision, i.e. 2 · 2n/2. It is easy to see that calling the collision
finding machine t times results in a 2t-collision. The complexity for doing so
is about t · 2n/2 evaluations of the compression function. Note that since all 2t

colliding messages are of the same length (t blocks), appending the final block
including the length encoding does not have any impact.

3.1.4 Expandable Messages

In [80], Kelsey and Schneier introduced expandable messages. An expandable
message is a kind of multicollision with the difference that it is a set of colliding
messages of different length, prior to applying the final message block including
the length encoding. As defined in [80], an (a, b)-expandable message can consist
of between a and b message blocks all leading to the same hash value. Before we
describe how one can construct expandable messages, we give the definition of
a fixed point in the compression function as has been described by Preneel et al.
in [144].

Definition 3.4. We say that we can construct a fixed point for the compression
function f , if for a given chaining value hi, we can find a pair (hi−1,mi) such
that hi = f(hi−1,mi) = hi−1.

Most of the compression functions in practical hash functions use the Davies-
Meyer construction, i.e. the chaining value hi−1 is added to the output of the
block cipher Emi

(hi−1): f(hi−1,mi) = Emi
(hi−1)⊕hi−1 (see also Section 2.3.5).

For this kind of compression functions it is easy to find a fixed point (see also



3.1. Collision Attacks 37

Preneel et al. [144]): select an arbitrary message block mi, and compute the
inverse of the block cipher for the ciphertext 0 to get hi−1 = E−1

mi
(0). Then we

know that

hi = f(hi−1,mi) = Emi
(hi−1)⊕ hi−1 = 0⊕ hi−1 = hi−1 . (3.3)

Note that for constructing the fixed point in this way, we have no control over
the chaining value hi−1. Now we can describe Dean’s method [44] for construct-
ing expandable messages based on fixed points. Constructing an expandable
message based on fixed points consists basically of two steps: (1) for a given
iv, we would like to find a message that leads to chaining value hi, and (2) for
exactly this value, we want to find a fixed point. We proceed as follows. Gen-
erate about 2n/2 fixed points as in (3.3) and store the according pairs (hi,mi)
in the list LFP. Then compute for about 2n/2 arbitrary messages and the initial
value iv the chaining value hi and store the pair (hi,mi) in the list Liv. Due to
the birthday paradox, we find a matching entry for hi in both lists with a good
probability. Then we have constructed an expandable message and the length
of this expandable message is only restricted by the maximum message length
that can be hashed with the considered hash function. Assuming that we have
a hash function that can process up to 2k message blocks, we can construct a
(1, 2k)-expandable message with a complexity of about 2 · 2n/2 = 2n/2+1 evalua-
tions of the compression function. To construct a message consisting of a specific
number of blocks, say t, we simply append (t− 1) equal message blocks that de-
termine the fixed point to the first message block. This adds only negligible
work.

Kelsey and Schneier presented an alternative technique for constructing ex-
pandable messages. Their method is inspired by the multicollision attack of Joux
in [74]. In [74], a huge set of colliding messages of equal length is constructed.
Kelsey and Schneier do the same except that they construct a set of messages
of different length. One fact they exploit is that the complexity for finding a
collision for two messages of different length has the same order of magnitude as
a birthday attack. To find a collision between two messages m1 and m2, where
m1 consists of one block and m2 consists of α blocks, we can proceed as follows.
Firstly, compute about 2n/2 chaining values for randomly chosen message blocks
m1

i and store the pairs (hi,m
1
i ) in the list LSB. Then take an arbitrary message

block u and compute the chaining value hα−1 for α− 1 times the block u. Com-
pute about 2n/2 hash values for the compression function with chaining value
hα−1 and store the pair (hj ,mj) in the list LαB. Due to the birthday paradox,
we find a matching entry in both lists with good probability. If so, we have
found two colliding messages, where one consists of a single and the other of α
blocks, namely

H(iv,m1) = H(iv, (

m2︷ ︸︸ ︷
u‖ . . . ‖u︸ ︷︷ ︸
α−1 blocks

‖mj)) ,

assuming that no final block including the length encoding of the messages is ap-
plied. The complexity for constructing the colliding messages of different length



38 Chapter 3. Analysis Methods for Hash Functions

is about (α−1)+2n/2+1 evaluations of the compression function. For the further
discussion we denote this method by (m1,m2, htemp) = FindCollision(α, hi) (see
also [80]).

The described methods can be used to construct (k, k + 2k − 1)-expandable
messages. We construct a list C storing two entries at each index: the left entry
is the single-block message m1, and the second entry is the (2k−1 + 1)-block
message m2. Algorithm 3.1 shows how the list C is constructed. In Figure 3.2,
we give a graphical illustration of the list C.

Algorithm 3.1 Construct a (k, k + 2k − 1)-expandable message [80, Page 480]
Input: initial value iv and variable k
Output: list C, a k × 2 array, where the first entry C[k][0] corresponds to

a single-block message, and the second entry C[k][1] to a (2k−1 + 1)-block
message. Both messages result in the same hash value.
set htemp = iv
for i = 0 to k − 1 do

(m1,m2, htemp) = FindCollision(2i + 1, htemp)
C[k − i− 1][0] = m1

C[k − i− 1][1] = m2

end for

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 3.2: A graphical illustration of the (k, k + 2k − 1)-expandable message stored
in list C generated by Algorithm 3.1.

It is easy to see that the list C is a (k, k+2k−1)-expandable message. If we look at
Figure 3.2 then concatenating the single-block messages m1

i results in a k-block
message and concatenating the (2k−1 + 1)-block messages m2

i for 0 ≤ i ≤ k − 1
results in a message consisting of

∑k−1
i=0 (2i + 1) = k +

∑k−1
i=0 2i = k + 2k − 1

blocks. Computing the complete list C requires about 2k +k ·2n/2+1 evaluations
of the compression function.

3.1.5 Collisions for Cascaded Hash Functions

With the observation that constructing multicollisions is only slightly more com-
plex than constructing an ordinary collision (see Section 3.1.3), Joux answered
the following open question: does cascading hash functions increase its security



3.2. (Second) Preimage Attacks 39

as expected by the size of the cascaded hash value? Assume, we are given two
hash functions: HL with an nL-bit hash value and HR with an nR-bit hash
value, where at least one is an iterated hash function. If we cascade these hash
functions, i.e. we initialize them with their initial value (ivL and ivR) and con-
catenate both hash values, we have in total a (nL + nR)-bit hash value. The
hash value is then computed as h = HL(ivL,m)‖HR(ivR,m) (see Figure 3.3).

iv

h1 h2 h3

hk

2-block 3-block 5-block (2k-1+1)-block

E

hi

hi-1

mi E E

mi

hi-1

hi

hi-1

mi

hi

DM MP MMO

Block cipher

Hash function

Stream cipher

Message 
authentication code

Eiv

m1

h1 = Eiv(m1) ⊕ m1

E

h2=0

m2 = Eiv(m1) ⊕ m1

Eiv(m1) ⊕ m1

iv

h1

h2

HL HR

ivL ivR

hL hR

nL nR

m m

h = hL k hR

f f

f f

m1
2 m2

2

m1
1 m2

1

f

f f f f f

f

f f f f f

f

f f

f

f f

mk
1m3

1m2
1m1

1

m2
2 m3

2 mk
2m1

2

Figure 3.3: Cascading two hash functions HL and HR.

At first sight, we would expect a collision resistance of 2(nL+nR)/2. However,
Joux showed that the security of a cascaded hash function is in fact only slightly
larger than what we can expect from a single hash function. To demonstrate this,
we assume that nL ≤ nR (we refer to [74] for the case nL ≥ nR) and that HL is
an iterated hash function. Attacking this cascaded hash construction works as
follows. We set t = nR/2 and construct a 2nR/2-collision for HL as described in
Section 3.1.3. This has a complexity of nR/2 · 2nL/2 ≈ nR · 2nL/2. So, now we
have 2nR/2 messages all having the same hash value for HL. Since we assumed
that nL ≤ nR, we can simply apply a birthday attack on this set of messages and
with reasonable probability, we will find a message pair within this set that also
collides under HR. Increasing the probability can be achieved by making more
calls to the collision finding machine. Therefore, the total complexity for finding
a collision in the cascade of HL and HR can be summarized as nR ·2nL/2+2nR/2,
which is significantly less than 2(nL+nR)/2. Note that for this attack to work, the
hash function HR does not have to be an iterated hash function. It can be any
other hash function. In general, this attack works as long as one of the functions
is an iterated hash function such that we can construct multicollisions. In [74],
Joux also presented attacks on cascades of more than two hash functions.

3.2 (Second) Preimage Attacks

Before we discuss different (second) preimage attacks, we give an informal defi-
nition of a second preimage and a preimage. For formal definitions, we refer to
Rogaway and Shrimpton [155].

Definition 3.5. For a given hash function H, and for a given message m, a
second message m∗ 6= m is called a second preimage of m, if the hash value
H(m∗) equals the hash value H(m).



40 Chapter 3. Analysis Methods for Hash Functions

This definition does not impose any conditions on the second preimage m∗ of
m except that both messages must not be equal. Later in this thesis, we will
consider second preimages for a message m that have special properties such as
the length of m and m∗ is identical. Nevertheless, we use this general definition
of a second preimage for discussing second preimage attacks.

Definition 3.6. For a given hash function H, and for a given hash value h, a
message m is called a preimage of h, if H(m) = h.

Also in this case, no conditions are imposed on the message m.

3.2.1 Shortcut Attacks

In Section 3.1.1, we reviewed the birthday attack for finding colliding message
pairs. For (second) preimages there exists a similar approach, namely meet-in-
the-middle attacks (MITM), which can be considered as shortcut attacks. These
attacks are also based on the birthday paradox. As opposed to birthday attacks
for finding collisions, for MITM attacks the hash function is not considered as
a black box. The attacks are applied to the internal values of a hash function
such as the intermediate chaining values. MITM attacks are also referred to as
chaining attacks in [116]. We will explain their working principle by an example
of an iterated hash function. Assume, we are using an n-bit hash function with
a compression function that can be easily inverted (for instance a block-cipher-
based construction by omitting the mode of operation): hi = Emi

(hi−1). Note
that as discussed in Section 2.3, a hash function employing such a compression
function is inherently insecure. Assume, we are given a two-block message m1 =
m1

1‖m1
2 with according hash value h1, for which we want to construct a second

preimage m2 of the same length. We can now proceed as follows to find such
a message with a complexity of about 2 · 2n/2 evaluations of the compression
function. Firstly, we compute for about 2n/2 randomly chosen message blocks
mi one iteration forward, i.e. hi = Emi(h0) and store the pairs (hi,m

i) in the
list L1. Then, we compute for about 2n/2 message blocks mj and the hash value
h1 one iteration backwards, i.e. hj = E−1

mj (h1) and store the pairs (hj ,m
j) in

the list L2. Then, based on the birthday paradox, we will have with a good
probability a matching entry in both list1: hi = hj . If so, then we have found a
second preimage m2 = mi‖mj for the message m1 after about 2·2n/2 evaluations
of the compression function instead of the 2n expected from the n-bit hash value.
Note that for constructing expandable messages in Section 3.1.4, we also applied
a MITM approach. We emphasize that this example is just used to explain
the working principle of MITM attacks. In general, inverting the compression
function cannot be done efficiently and therefore, the complexity for (second)
preimage attacks is about 2n evaluations of the hash function.

Differential cryptanalysis as discussed in Section 3.1.2 can also be exploited
for finding second preimages, with the restriction that the attacker cannot choose

1As has been shown by Nishimura and Sibuya in [125] the probability for finding a matching
value between two sets is larger than the probability of success in the classical birthday problem
described in Section 3.1.1. However, the asymptotic complexity is the same for both problems.



3.2. (Second) Preimage Attacks 41

a message of his choice. However, applying differential cryptanalysis remains a
promising approach. If we consider preimage attacks, it is at first sight not clear
how one could exploit differential cryptanalysis for inverting the hash function.
Nevertheless, in Section 5.1.4, we show that if a hash function possesses certain
differential properties, finding preimages can also be successful by exploiting
differential cryptanalysis.

3.2.2 Long-Message Second-Preimage Attacks

Kelsey and Schneier [80], present a generic second preimage attack on iterated
hash functions that follow the Merkle-Damg̊ard design principle. The result is
that for an n-bit hash function, second preimages can be found in much less than
the expected 2n evaluations of the hash function. However, very long messages
are required for this kind of generic attack. In the following, we will describe
the basic attack strategy. It can be seen as a generalization of the multicollision
attack of Joux in [74]. As noted in [80], the attack strategy was invented in the
PhD thesis of Dean [44].

We start with repeating long-message attacks for second preimages [116,
Chapter 9, Fact 9.37]. The long-message attack works for iterated hash functions
without Merkle-Damg̊ard strengthening, i.e. the last message block including the
length encoding of the entire message is omitted. Assume, we are given a message
consisting of 2R +1 message blocks for which we want to find a second preimage.
From the number of message blocks we know, that there are 2R chaining values
hi. For constructing a second preimage, we need to find a message block mlink

such that f(iv, mlink) = h matches one of these 2R chaining values. Due to the
number of chaining values, we can expect to find a match after trying about 2n−R

message blocks since for each message block we have a probability of 2−(n−R)

that it matches one of the chaining values of the (2R +1)-block message. So the
result is a second preimage with fewer blocks. It is easy to see that the larger R
the less the complexity for finding a second preimage (note that this was already
pointed out in the PhD thesis of Merkle [117]). However, if Merkle-Damg̊ard
strengthening is applied, then the attack does not succeed anymore since the
last block including the length encoding defeats this attack.

Kelsey and Schneier show how MD strengthening can be bypassed by exploit-
ing expandable messages. Assume that we are given a large target message m
consisting of 2k + k + 1 message blocks for which we want to construct a second
preimage. The first step in the second preimage attack is to construct the list
C based on Algorithm 3.1 given in Section 3.1.4, with iv and k as input and
store the resulting chaining value, i.e. hk (see also Figure 3.2). Then, we store
the intermediate chaining values of the target message in the list h[j], where
k + 1 ≤ j ≤ 2k + k + 1. Note that we do not need to store the first k chain-
ing values since the expandable message in C consists of at least k blocks and
hence we cannot construct a message consisting of less than k blocks. For the
resulting chaining value of the expandable message hk, we try to find a message
block mlink that maps hk to one of the intermediate chaining values of the target
message. More precisely, we choose message blocks such that f(hk,mlink) = h[j]



42 Chapter 3. Analysis Methods for Hash Functions

for k + 1 ≤ j ≤ 2k + k + 1. Once we found the message block mlink, we proceed
as follows. We know that we found mlink for the intermediate chaining value in
iteration j. Therefore, we construct an expandable message mexpand from list C
consisting of j − 1 blocks. Since the constructed j-block message has the same
intermediate chaining value as the target message at iteration j (a collision), we
can simply append the remaining 2k + k + 1− j blocks of the target message to
have a second preimage m∗ of the same length:

m∗ = mexpand︸ ︷︷ ︸
j − 1 blocks

‖ mlink︸ ︷︷ ︸
1 block

‖mj+1‖ . . . ‖m2k+k+1︸ ︷︷ ︸
2k + k + 1 − j blocks

Since the target message and the second preimage are of the same length, adding
the final block including the length encoding has no impact on the attack.

The complexity for the attack consists of the effort to construct the expand-
able message (list C) and the effort to find the message block mlink. Finding the
message block mlink has the same complexity as in the original second preim-
age long-message attack, namely 2n−k + 1. Therefore, the overall complexity is
about (2k + k · 2n/2+1) + 2n−k+1 evaluations of the compression function. As
can be seen, the dominating term comes from finding the message mlink. There-
fore, we have again: the longer the target message the lower the complexity for
finding a second preimage. We give a demonstrative example by applying the
second preimage attack on for instance SHA-1 [128], which produces a 160-bit
hash value (i.e. n = 160). Furthermore, we assume that we are given a target
message m consisting of 254 +54+1 message blocks, i.e. k = 54. Then finding a
second preimage has a complexity of about 54·281+2160−54+1 ≈ 2107 evaluations
of the compression function.

3.2.3 (Second) Preimages for Cascaded Hash Functions

Joux showed in [74] how to exploit multicollisions for (second) preimage attacks.
As a result, also (second) preimage attacks for cascaded hash functions can
be found significantly more efficient than expected from the concatenated hash
value if the cascade contains at least one iterated hash function. For the case
where nL ≤ nR, (second) preimages can be found with a complexity of about
nR · 2nL/2 + 2nL + 2nR . The attack works along the same lines as the collision
attack discussed in Section 3.1.5. Assume that HL is an iterated hash function.
We set t = nR and construct a 2nR -collision for HL. This has a complexity
of about nR · 2nL/2. Now, we select a last block that maps the last chaining
value of the 2nR -collision to the expected value of HL. This requires about 2nL

applications of the compression function. Therefore, we have now 2nR messages
that all lead to the expected value of HL. Since t = nR and we assumed that
nL ≤ nR, we know with reasonable probability that at least one in this set
of messages also matches the expected hash value of HR. The probability for
finding a (second) preimage can be increased by increasing the value of t.



3.3. Summary 43

3.3 Summary

In this chapter, we have discussed general cryptanalytic methods to analyze the
security of hash functions. We have focused on collision, second preimage, and
preimage attacks. The most common tool in the cryptanalysis of hash functions
is differential cryptanalysis. This technique, initially invented for the analysis of
block ciphers, can be successfully exploited for attacks on hash functions.

New general attack methods such as multicollision attacks and second preim-
age attacks for long messages have been discussed. As a result, multicollision
attacks show that the cascading of hash functions does not increase the security
margin as one would expect from the resulting size of the hash value. Sec-
ond preimage attacks for long messages can be considered as a generalization of
multicollision attacks. The result is that for very long messages, second preim-
ages can be constructed with much less than 2n evaluations of the hash function,
which is the complexity we expect from an n-bit hash value. Even if these second
preimage attacks are not practical, they clearly show some structural limitations
of iterated hash functions following the Merkle-Damg̊ard design principle.

We note that another general attack strategy, called herding attacks has been
presented by Kelsey and Kohno in [79]. Herding attacks are a special form of
preimage attacks that work for all iterated hash functions. The original work
in [79] has been later on extended to cascades of hash functions by Dunkelman
and Preneel in [53].





4
Collision Attacks on SHA-1

In this chapter, we review several collision attack strategies that led to the colli-
sion attack on SHA-1 presented by Wang et al. in [172]. Firstly, in Section 4.1,
we describe the hash function SHA-1 and the linearized variant L-SHA-1, which
we use for our analysis. Secondly, we review the attack strategies on SHA-0
and their extensions to SHA-1 in Section 4.2. We discuss in detail the collision
attack on SHA-1 presented by Wang et al. In Section 4.3, we show how to ex-
ploit coding theory to construct a high probability L-characteristic. With our
tools, we find the same L-characteristic as found by Wang et al. As we will see,
this L-characteristic determines the attack complexity of the collision attack on
SHA-1. Therefore, Section 4.4 is dedicated to a thorough analysis of its prob-
ability. Based on this analysis, we will update the collision attack complexity.
Before we summarize this chapter in Section 4.6, we describe a generalization of
the attack by Wang et al. in Section 4.5. This chapter includes work presented
in [114, 138]. The main contribution of this chapter is that we show how to
derive a high probability L-characteristic by exploiting coding theory and how
we can accurately compute the corresponding probability.

4.1 The Hash Function SHA-1

SHA-1 is an iterated hash function (cf. Section 2.3) that computes a 160-bit hash
value for messages of length less than 264 bits, cf. [128]. As most iterated hash
functions, SHA-1 applies MD strengthening as described in Section 2.3. The
compression function processes input message blocks of 512 bits and produces
a 160-bit chaining value. The compression function of SHA-1 basically consists
of two parts: the message expansion and the state update transformation. The
chaining variable hi−1 (iv in the first iteration) is added to the output of the state
update transformation (Davies-Meyer mode of operation). This is graphically
illustrated in Figure 4.1. In the following, we will describe both parts in detail.

4.1.1 SHA-1 Message Expansion

In SHA-1, the message expansion is defined as follows. A single 512-bit input
message block is represented by 16 words of 32 bits each, denoted by Mi, with

45



46 Chapter 4. Collision Attacks on SHA-1

      state update

msg expansion

      state update

msg expansion

m’1 m’2

δ = 0

20 2079 79

Wi

Ki

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Ai Bi Ci Di Ei

f

δ20 ≠ 0 δ20 ≠ 0o’1 = δ o’2 = δ

o’ = 0

2

<<<

5<<<

state update
transformation

expansion

msg

m1 m1
∗

iv
state update

transformation

expansion

msg

o2

m2 m2
∗

o1 o1
∗

      state update
20 79

st
a
te

 u
p
d
a
te

tr
a
n
sf

o
rm

a
ti
o
n

hi-1 (iv)

ex
p
a
n
si

o
n

m
sgmi

hi

Figure 4.1: The SHA-1 compression function.

0 ≤ i ≤ 15. The message input is linearly expanded into 80 32-bit words Wi

defined as follows:

Wi =

{
Mi for 0 ≤ i ≤ 15
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i ≤ 79

(4.1)

4.1.2 SHA-1 State Update Transformation

The state update transformation starts from a fixed initial value iv for 5 32-bit
registers A,B, . . . , E (also referred to as state variables) and updates these reg-
isters in 80 steps (i = 0, . . . , 79) by using the word Wi and the step constant
Ki in step i. One step of the state update transformation is defined as (see also
Figure 4.2):

Ai+1 = (Ai ≪ 5) � Wi � f(Bi, Ci, Di) � Ki

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

(4.2)

The function f depends on the step number: steps i = 0, . . . , 19 use the IF-
function referred to as fIF and steps i = 40, . . . , 59 use the MAJ-function referred
to as fMAJ. The remaining steps, use a 3-input XOR referred to as fXOR. The
Boolean functions are defined as follows:

fIF(B,C,D) = (B ∧ C)⊕ (¬B ∧D)
fMAJ(B,C,D) = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D)
fXOR(B,C,D) = B ⊕ C ⊕D

For the sake of completeness, we give the step constants Ki and the initial
values, even though they have no impact on our analysis of SHA-1. There are



4.1. The Hash Function SHA-1 47

      state update

msg expansion

      state update

msg expansion

m’1 m’2

δ = 0

20 2079 79

Wi

Ki

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Ai Bi Ci Di Ei

f

δ20 ≠ 0 δ20 ≠ 0o’1 = δ o’2 = δ

o’ = 0

2

<<<

5<<<

state update
transformation

expansion

msg

m1 m1
∗

iv
state update

transformation

expansion

msg

o2

m2 m2
∗

o1 o1
∗

      state update
20 79

st
a
te

 u
p
d
a
te

tr
a
n
sf

o
rm

a
ti
o
n

hi-1 (iv)

ex
p
a
n
si

o
n

m
sgmi

hi

Figure 4.2: One step of the state update transformation of SHA-1.

four different constants (in hexadecimal representation):

Ki = 5A827999 for i = 0, . . . , 19
Ki = 6ED9EBA1 for i = 20, . . . , 39
Ki = 8F1BBCDC for i = 40, . . . , 59
Ki = CA62C1D6 for i = 60, . . . , 79

The initial values for the 5 32-bit registers (state variables) are specified as:

A0 = 67452301 B0 = EFCDAB89 C0 = 98BADCFE

D0 = 10325476 E0 = C3D2E1F0

After the last application of the state update transformation, the initial reg-
ister values are added to the final values of the state variables (feed forward),
and the result is either the input to the next iteration or the final hash value.

4.1.3 Linearized Variant L-SHA-1

For the analysis of SHA-1, we define a linearized variant referred to as L-SHA-1
as has been done similarly by Chabaud and Joux for the analysis of SHA-0 [31],
and by Rijmen and Oswald for the analysis of SHA-1 [150]. Note that for the
remainder of this chapter all vectors and matrices are over GF (2). A single
512-bit input message block is denoted by the row vector m and the expanded
message is denoted by the 2560-bit row vector w. Since the message expansion
is linear, it can be described by a 512 × 2560 matrix M such that w = mM.
The message expansion starts with a copy of the message, cf. (4.1). Hence, there
exists a 512× 32(80− 16) matrix F such that M can be written as:

M512×2560 =
[
I F

]
, (4.3)

where I is the 512× 512 identity matrix.



48 Chapter 4. Collision Attacks on SHA-1

The state update transformation is linearized by approximating fIF and fMAJ

by fXOR, and by replacing the modular addition by the XOR-operation. One
step of the linearized state update transformation is defined as follows:

Ai+1 = (Ai ≪ 5)⊕Wi ⊕ fXOR(Bi, Ci, Di)⊕Ki

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

Thus, the linear state update transformation can be described by a 2560×160
matrix S, a 160 × 160 matrix T, and a vector k. The matrix T describes
the transformation of the initial register values and the vector k represents the
transformation of the four step constants. With these matrices the linearized
compression function producing the output o from the input message m can be
described as follows:

o = mMS⊕ ivT⊕ k (4.4)

4.2 The Attack Strategy

In this section, we chronologically review the basic strategy for collision attacks
on SHA-1. We do not describe the attacks in detail but we highlight the most
important facts that led to the collision attack on SHA-1 by Wang et al. [172].

We start with a review of the cryptanalysis of SHA-0 presented by Chabaud
and Joux in [31] and the improvement of their attack by Biham and Chen in [17].
Independently to the cryptanalysis of SHA-0 by Biham and Chen, Rijmen and
Oswald presented the first extension of the attack by Chabaud and Joux to
SHA-1 [150]. While Biham et al. presented further improvements on SHA-0 and
step-reduced variants of SHA-1 in [18], Wang et al. announced a practical colli-
sion attack on SHA-0 [174] and the first collision attack on the full SHA-1 [172].

4.2.1 Chabaud and Joux

Chabaud and Joux presented in [31] the first differential collision attack on
SHA-0, the predecessor of SHA-1. SHA-0 was standardized in 1993 and with-
drawn and replaced by SHA-1 without justification in 1995. The only difference
to SHA-1 is that the message expansion in (4.1) is defined without left rotation.
Chabaud and Joux used a linearized variant of SHA-0 to show how an injected
single-bit disturbance1 can be corrected by several consecutive single-bit correc-
tions. This is referred to as a local collision. Since we intensively look at local
collisions in Section 4.4, we formally define a local collision as follows. Note that
the following definition is valid for SHA-0 and SHA-1.

1In [31] the term perturbation is used. However, we will use the synonym disturbance
throughout this thesis.



4.2. The Attack Strategy 49

Definition 4.1. (Local Collision) A local collision for SHA-0 and SHA-1 con-
sists of a single-bit disturbance and five consecutive single-bit corrections:

disturbance: W ′
i = 2j

corrections: W ′
i+1 = 2j+5

W ′
i+2 = 2j

W ′
i+3 = W ′

i+4 = W ′
i+5 = 2j−2

It follows directly from Definition 4.1 that a disturbance injected after step i = 74
cannot be corrected within the remaining steps. In this case the difference in
the state variables A′

80, . . . , E
′
80 is non-zero.

Example 4.1. We show an example for a local collision for the linearized variant
L-SHA-1 with a disturbance in the least-significant bit. In step i, the differences
in the state variables A′

i, . . . , E
′
i equal zero and W ′

i = 20. By injecting the
corrections as given in Definition 4.1, we get a collision in step i + 6, i.e. the
differences in state variables A′

i+6, . . . , E
′
i+6 are zero. The according difference

pattern through the linearized state update transformation is shown in Table 4.1.

Table 4.1: Difference pattern of a local collision for L-SHA-1 with a disturbance in
the least-significant bit. The values are listed in hexadecimal notation.
For the sake of readability, zero values are denoted by a dash.

step W ′
i A′

i B′
i C′

i D′
i E′

i

i -------1 -------- -------- -------- -------- --------

i + 1 ------2- -------1 -------- -------- -------- --------

i + 2 -------1 -------- -------1 -------- -------- --------

i + 3 4------- -------- -------- 4------- -------- --------

i + 4 4------- -------- -------- -------- 4------- --------

i + 5 4------- -------- -------- -------- -------- 4-------

i + 6 -------- -------- -------- -------- -------- --------

Fact 4.1. A local collision as in Definition 4.1 holds with probability 1 for
L-SHA-0 and L-SHA-1. For both SHA-0 and SHA-1, a local collision has prob-
ability < 1, depending on the bit position of the disturbance and on the Boolean
functions fIF and fMAJ (cf. Section 4.4).

Chabaud and Joux showed how to construct a characteristic for the linearized
variant of SHA-0. This linear characteristic, referred to as L-characteristic
throughout the remainder of this thesis, consists of linear combinations of over-
lapping local collisions as in Definition 4.1. For the given L-characteristic the
attacker tries to construct two message pairs that follow the characteristic for
SHA-0. The most naive method is to perform random trials until a mes-
sage pair is found. The number of trials depends on the probability of the
L-characteristic. Chabaud and Joux observed that the probability such that



50 Chapter 4. Collision Attacks on SHA-1

the L-characteristic holds for the (non-linear) SHA-0 is related to the Hamming
weight of the L-characteristic. In general, the lower the Hamming weight the
higher the probability. As we will see in Section 4.4, this is not always the case
since we encounter certain side-effects such as carry overflows. In general, it is
a good approach to first search for L-characteristics with low Hamming weight
and then to choose the L-characteristic with the best probability out of this set.
With this strategy, Chabaud and Joux presented the first differential collision
attack on SHA-0 with a complexity of 261.

4.2.2 Biham and Chen

Biham and Chen [17] extended the collision attack on SHA-0 by exploiting the
following facts:

1. near-collisions are easier to find than collisions

2. there exist neutral bits in SHA-0.

Near-Collisions

Biham and Chen have shown that for SHA-0 it is easier to find a high probability
L-characteristic that leads to a collision after 82 steps than a high probability
L-characteristic that leads to a collision after 80 steps of the state update trans-
formation. In other words, it is easier to find near-collisions than collisions.

The authors found a near-collision for 80 steps of SHA-0 that has a signifi-
cantly higher probability than a collision for the same number of steps. The fact
that near-collisions are easier to find than collisions has been exploited already
in the cryptanalysis of MD4 [153] by Dobbertin [49, 51].

Neutral Bits

Additionally, Biham and Chen observed that there exist so-called neutral bits
in SHA-0. This observation leads to a significant improvement of the collision
attack. A neutral bit can be explained as follows. Assume, we have two messages
m and m∗ with a certain difference ∆, i.e. m∗ = m⊕∆. Note that this ∆ defines
the L-characteristic. Furthermore, assume that the given message pair m and
m∗ leads to a difference δi in the state variables of step i for the non-linear
SHA-0.

Now, a neutral bit exists, if complementing the j-th bit of both messages
still leads to δi. In [17] the authors show that there are not only single bits but
also pairs of two or more bits that are all simultaneously neutral. With these
neutral bits, a set of message pairs is constructed that all lead to the difference
δi. Furthermore, Biham and Chen observed that a small fraction of the message
pairs does not only result in δi but also result in δi′ , with i′ > i, where this
difference is given by the L-characteristic. In other words, based on the neutral
bits it is possible to construct a message pair, that results in a difference δi′

(i′ > i) without decreasing the probability. It is clear that this improves the



4.2. The Attack Strategy 51

overall attack complexity. In [17], the authors show that there exist neutral
bits that have no impact on the difference for 15-20 steps of the state update
transformation.

Based on a high probability near-collision L-characteristic and the existence
of neutral bits, Biham and Chen presented a collision attack on SHA-0 reduced
to 65 steps with a complexity of 229. This approach has further been improved
and has also been extended to step-reduced variants of SHA-1 in [18].

4.2.3 Rijmen and Oswald

Rijmen and Oswald presented the first extension of the attack strategy of Chabaud
and Joux to SHA-1 [150, 151]. The strategy basically can be summarized as fol-
lows:

1. construct a linear variant of SHA-1

2. determine collisions for the linear variant

3. find a collision for the original SHA-1 among the set of collisions for the
linearized variant.

For constructing the linearized variant of SHA-1, Rijmen and Oswald used
L-SHA-1 as described in Section 4.1.3. Additionally, they defined several lin-
ear approximations for the Boolean functions fIF and fMAJ different from the
approximation used in L-SHA-1. As a result of their research with different
approximations, it turned out that the best results are achieved by using the
linearized variant L-SHA-1. In [150, 151] they exploit coding theory to find
‘good’ collision-producing L-characteristics. Rijmen and Oswald describe the
set of collision-producing differences for L-SHA-1 as a linear code and search for
codewords (L-characteristics) with a low Hamming weight. They observed that
the low-weight codewords have in common that the zeroes and ones appear in
‘bands’. In other words, the zeroes/ones appear mainly in adjacent bit posi-
tions. Rijmen and Oswald introduced two algorithms that exploit this fact to
improve the low-weight codeword search. Based on this strategy, they presented
a collision attack on SHA-1 reduced to 53 steps with a complexity of less than
280 hash computations.

4.2.4 Wang et al.

In 2005, Wang et al. presented the seminal work describing the first collision
attack on SHA-1 [171, 172]. Their approach was also applied to practically
break SHA-0 [174]. In a similar way other hash functions, such as MD4, MD5,
RIPEMD, and HAVAL-128 were broken by Wang et al. [168, 169, 173]. In
the following, we will review the basic strategy for collision attacks on SHA-1
presented by Wang et al. Besides some noticeable new strategies of Wang et al.
the collision attack exploits techniques that have been described in the previous
sections.



52 Chapter 4. Collision Attacks on SHA-1

As mentioned above, it is easier to find near-collisions than collisions. Wang
et al. use a 2-block collision for their collision attack on SHA-1. This is schemat-
ically depicted in Figure 4.3.

      state update

msg expansion

      state update

msg expansion

m’1 m’2

δ = 0

20 2079 79

Wi

Ki

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Ai Bi Ci Di Ei

f

δ20 ≠ 0 δ20 ≠ 0o’1 = δ o’2 = δ

o’ = 0

2

<<<

5<<<

state update
transformation

expansion

msg

m1 m1
∗

iv
state update

transformation

expansion

msg

o2

m2 m2
∗

o1 o1
∗

      state update
20 79

st
a
te

 u
p
d
a
te

tr
a
n
sf

o
rm

a
ti
o
n

hi-1 (iv)

ex
p
an

si
on

m
sgmi

hi

Figure 4.3: The principle of a 2-block collision attack on SHA-1. The differences (col-
ored in red) cancel out after two iterations of the compression function.

Based on Figure 4.3, a 2-block collision can be constructed as follows. In the
first iteration we construct two message blocks m1 6= m∗

1 such that the output
difference after the first iteration is o1 ⊕ o∗1 = δ 6= 0. This means that we have
a near-collision after the first iteration. For the second iteration, we construct
two message pairs m2 6= m∗

2 that, with the input difference δ, lead to an output
difference of −δ before the feed forward. This difference gets then canceled due
to the feed forward, i.e. o2⊕o∗2 = δ+(−δ) = 0. Based on this basic principle, we
can now describe in more detail how Wang et al. construct these two message
blocks with the required differences.

Wang et al. split the 80 steps of the state update transformation into two
parts: a nonlinear characteristic that we refer to as NL-characteristic, and the
already discussed L-characteristic. For the moment, we assume that the first
part, referred to as P1, consists of the first 20 steps, and the second part, referred
to as P2, consists of the remaining 60 steps of the state update transformation.
This is depicted in Figure 4.4.

Firstly, an L-characteristic that results in a pseudo-near-collision in P2 is
constructed. More precisely, for constructing a pseudo-near-collision in P2, we
search for a message difference such that starting from a non-zero difference in
the chaining variables it results in a non-zero difference in step 80. Again, a
good L-characteristic has a low Hamming weight and therefore, a high proba-
bility. How such an L-characteristic can be constructed is discussed in detail in
Section 4.3.

Secondly, after the high probability L-characteristic has been constructed,
Wang et al. search for an NL-characteristic that turns the non-zero difference at
the beginning of P2 (δi in Figure 4.4) into a zero difference in step i = 0. To
construct an NL-characteristic in the first 20 steps of the state update transfor-
mation, Wang et al. exploit the non-linearity imposed by the Boolean function
fIF and the modular additions. Unfortunately, Wang et al. do not describe in



4.2. The Attack Strategy 53

79
L-characteristicNL-characteristic

iv

pseudo-near-collision
≠ 0 ≠ 0

P1 P2

A
0

A
i

A
800

B
8
0

C
80

D
8
0

E
80

B
0

C
0

D
0

E
0

B
i

C
i

D
i

E
i

expanded message

iv

expanded message

pseudo-near-
collision

L-characteristic

pseudo-near-
collision

L-characteristic

NL-char
A

NL-char
B

0
0

0
0

0
0

0
0

0

0
0

0
0

0

iv
pseudo-near-

collision
L-characteristic

pseudo-near-
collision

L-characteristic

≠ 0

expanded message expanded message

≠ 0

NL-char
A

NL-char
B

Figure 4.4: The state update transformation split into an NL-characteristic (P1) and
an L-characteristic (P2).

detail how to construct this NL-characteristic. But they show based on an ex-
ample collision for 58 steps of SHA-1 (cf. [172]), that the non-linearity can be
exploited to map the difference at the beginning of P2 not only to zero but also
to a non-zero difference. This fact is used in the second iteration of the collision
attack. We can now summarize the 2-block collision attack on SHA-1 as follows
(cf. Figure 4.5):

1. first iteration:

(a) construct a pseudo-near-collision L-characteristic for P2
(b) construct an NL-characteristic that brings the input difference of P2

to a zero difference in step i = 0. This NL-characteristic implies
conditions on the message

(c) perform random trials to find two message pairs m1 and m∗
1 (re-

stricted by the conditions of (b)) that follow the remaining steps of
the L-characteristic

2. second iteration:

(a) take the same L-characteristic as for the first iteration, i.e. the output
difference of P2 in both iterations is the same

(b) construct a second NL-characteristic that maps the input difference
of P2 to the output difference of P2 in the first iteration. This
NL-characteristic implies conditions on the message

(c) perform random trials to find two message pairs m2 and m∗
2 (re-

stricted by the conditions of (b)) that follow the remaining steps of
the L-characteristic

3. Due to the feed forward, this results (with a certain probability) in a zero
difference after the second iteration and hence a 2-block collision

Until now, we have only required a pseudo-near-collision L-characteristic with
a high probability. But what about the probability of the NL-characteristic? In



54 Chapter 4. Collision Attacks on SHA-1

79
L-characteristicNL-characteristic

iv

pseudo-near-collision
≠ 0 ≠ 0

P1 P2

A
0

A
i

A
800

B
8
0

C
80

D
8
0

E
80

B
0

C
0

D
0

E
0

B
i

C
i

D
i

E
i

expanded message

iv

expanded message

pseudo-near-collision

L-characteristic

pseudo-near-collision

L-characteristic

NL-char
A

NL-char
B

0
0

0
0

0
0

0
0

0

0
0

0
0

0

iv
pseudo-near-collision

L-characteristic

pseudo-near-collision

L-characteristic

≠ 0

expanded message expanded message

≠ 0

NL-char
A

NL-char
B

Figure 4.5: The 2-block collision attack strategy by Wang et al.

fact, the probability of the NL-characteristic is not important for the collision at-
tack complexity. Indeed, basic and advanced message modification (as described
by Wang et al. in [172]) result in message pairs that follow the NL-characteristic
P1 with a probability close to 1. Therefore, the complexity of a collision at-
tack is only determined by the L-characteristic. Until now, we assumed that
the L-characteristic is derived for the last 60 steps of the state update transfor-
mation. However, due to the message modification technique it is possible that
message pairs can be constructed that follow the NL-characteristic plus some
additional steps of the L-characteristic with a probability of (almost) one. In
[170, 171], Wang et al. claim to be able to use message modification up to step
27. As a consequence of this, we can still use the L-characteristic for the last 60
steps but the overall probability is then determined by fewer than 60 steps. It
is clear that the probability of the collision attack increases if more steps can be
covered by message modification. Nevertheless, the remaining steps covered by
the L-characteristic still determine the attack complexity. Therefore, we discuss
in detail how to construct a high probability L-characteristic in the following
section.

4.3 Constructing a Linear Characteristic

In this section, we will describe how we can derive an L-characteristic for L-SHA-1.
We will first map the problem of finding an L-characteristic with low Hamming
weight to the problem of finding low-weight vectors in linear codes. Secondly, we
will describe several linear codes and show how we can improve the low-weight
search to find an L-characteristic with high probability.

4.3.1 From a Set of Collision-Producing Differences to a
Linear Code

With the message expansion described by the matrix M512×2560 and the lin-
earized state update transformation described by the matrix S2560×160, the out-
put (hash value) of one L-SHA-1 iteration is o = mMS ⊕ ivT ⊕ k, cf. (4.4)



4.3. Constructing a Linear Characteristic 55

in Section 4.1.3. Two messages m1 and m∗
1 = m1 ⊕ m1

′ collide if (see also
[150, 151]):

o∗1⊕o1 = ((m1⊕m′
1)MS⊕ ivT⊕k)⊕ (m1MS⊕ ivT⊕k) = m′

1MS = 0 (4.5)

It follows directly from (4.5) that the set of collision-producing differences is a
linear code with check matrix H160×512 = (MS)T . The dimension of the code
is 512− 160 = 352 and the length of the code is n = 512.

Observation 4.1. The set of collision-producing differences is a linear code.
Therefore, finding low-weight differences corresponds to finding low-weight vec-
tors in a linear code.

Based on Observation 4.1, we can exploit well known and well studied meth-
ods of coding theory to search for low-weight vectors in a linear code as described
in Section 2.7.2. In the following, we will present several linear codes represent-
ing the set of (collision-producing) differences for the linearized model L-SHA-1.
We follow a constructive approach to demonstrate the effectiveness of the dif-
ferent codes and the corresponding low-weight L-characteristics. We will start
with a code that fulfills the most restrictive condition, namely that the resulting
codewords are collision-producing for a 1-block message. Afterwards, we extend
the code such that the low-weight search gets improved. We apply the different
strategies described in Section 4.2.

Single-Block Collision—Code C1

Theorem 4.1. The binary linear code C1 with dimension dim(C1) = 352 and
length n = 2560 is defined by the following check matrix:

HC1
2208×2560 =

[
ST

M̃

]
, (4.6)

where ST is the transpose of the 2560 × 160 matrix S and M̃ :=
[
FT I

]
with

FT being the transpose of the 512× 2048 matrix F in (4.3) and the 2048× 2048
identity matrix I. The codewords ci ∈ C1 have the following properties:

1. they are valid expanded-message differences

2. they are collision-producing

Proof. Since mM = w = m
[
I512 F512×2048

]
and M is a systematic generator

matrix, we can immediately derive the check matrix M̃ (cf. Section 2.7.1). If a
codeword w fulfills wM̃T = 0, w is a valid expanded message. Additionally, we
require the codewords to be collision-producing. This condition is determined
by the state update transformation matrix S. If wS = 0 then w is collision-
producing. Therefore, we have ST as check matrix. Combining these two check
matrices leads to the check matrix HC1 in (4.6).



56 Chapter 4. Collision Attacks on SHA-1

When applying a probabilistic algorithm (cf. Section 2.7.2) to search for low-
weight codewords in code C1, we find a lowest Hamming weight of 436 for 80
steps. The same weight has been found also by Rijmen and Oswald in [150]. We
do not count the weight of the first 20 steps, since these steps are covered by the
NL-characteristic (cf. Section 4.2.4). The Hamming weights for an increasing
number of steps are listed in Table 4.2.

Table 4.2: Lowest Hamming weight found for code C1.

steps 0, . . . , 79 steps 15, . . . , 79* steps 20, . . . , 79
436 333 293

*Hamming weight also given in [150]

Multi-Block Collision—Code C2

Instead of working with a single-block message that leads to a collision, we can
also work with multi-block messages that lead to a collision after b iterations
(cf. Section 4.2.4). For instance take b = 2. After the first iteration, we have an
output difference o′1 6= 0 and after the second iteration we have a collision, i.e.
o′2 = 0. The hash computation of two messages is given by

o1 = m1MS⊕ ivT⊕ k

o2 = m2MS⊕ o1T⊕ k

= m2MS⊕m1MST⊕ ivT2 ⊕ kT⊕ k︸ ︷︷ ︸
constant

.

Based on the same reasoning as for the check matrix HC1 defined in (4.6), we
can construct a check matrix for two-block messages as follows:

HC2
4256×5120 =

(ST)T ST

M̃ 0

0 M̃


This approach can be generalized to construct check matrices for b-block

messages that collide after b iterations. The output in iteration b is given by

ob =
b−1⊕
j=0

mb−jMSTj ⊕ ivTb ⊕ k
b−1⊕
`=0

T`

︸ ︷︷ ︸
constant

.

To demonstrate the improvements for the low-weight search due to multi-
block messages, we additionally define code C2a for 3-block collisions. The out-
put after 3 iterations is given by:

o3 = m3MS⊕m2MST⊕m1MST2 ⊕ ivT3 ⊕ kT2 ⊕ kT⊕ k︸ ︷︷ ︸
constant



4.3. Constructing a Linear Characteristic 57

Thus, the set of collision-producing differences for 3-block messages is a linear
code with check matrix:

HC2a
6304×7680 =


(ST2)T (ST)T ST

M̃ 0 0

0 M̃ 0

0 0 M̃


Searching for low-weight vectors for a 2-block collision in C2 with HC2 and

a 3-block collision with the check matrix HC2a , results in the Hamming weights
listed in Table 4.3. As can be seen in Table 4.3, the multi-block approach results
in a lower Hamming weight for each message block. The complexity for a collision
attack is determined by the message block with the highest Hamming weight.
Compared to the Hamming weight for a single-block collision in Table 4.2 (weight
= 293), we achieve a significant improvement.

Table 4.3: Hamming weight for 2-block and 3-block collisions.

weight of collision-producing differences for steps 20, . . . , 79

two-block collision three-block collision

exp. message 1 exp. message 2 exp. message 1 exp. message 2 exp. message 3

152 198 107 130 144

Single-Block Collision and State Update Transformation—Code C3

As we will describe in Section 4.4, we have to derive conditions involving bits of
the expanded message and bits of the state variables, such that an L-characteristic
derived for L-SHA-1 holds for SHA-1. For deriving the conditions, we have to
consider the differences in the state variables. This means that for the previously
derived collision-producing differences (codes C1, C2, and C2a), we still have to
compute the Hamming weight in the state variables. It is clear that this leads
to an increase of the total Hamming weight (see also Table 4.4). Therefore, our
next approach is to define a code that also contains the state variables and to
look for low-weight vectors in this larger code. This leads to lower Hamming
weights for the total, since we search for low-weight vectors in the expanded
message words and the state variables concurrently.

Furthermore, we apply the fact that we can use an NL-characteristic that
brings a non-zero difference of for instance step 20 to a zero-difference in step
i = 0 (cf. Section 4.2.4). In terms of our linear code, this means that we
only require the codewords to be valid expanded messages and no longer to be
collision-producing. In other words, we construct a code for which the codewords
are differences that lead to a pseudo-collision L-characteristic in the last 60 steps
of the L-SHA-1 state update transformation.



58 Chapter 4. Collision Attacks on SHA-1

We proceed as follows to construct a generator matrix for code C3 with
codewords that describe a pseudo-collision in the last 60 steps. Starting from
a collision after step 79 (state variables A80, . . . , E80), we will apply the inverse
linearized state update transformation to compute the state variables for step
78,77,. . . ,20. We obtain a generator matrix of the following form:

GC3
512×11520 =

[
M A B C D E

]
(4.7)

The matrix M is defined in (4.3). Note that since we are looking at the last
60 steps, we only take the last 60 · 32 = 1920 columns of the matrix M. The
512 × 1920 matrices A,B, . . . ,E can be constructed by computing the state
update transformation backwards starting with a zero difference from step 79,
i.e. A′

80 = B′
80 = · · · = E′

80 = 0, and ending at step 20. More precisely, we set a
single bit in the message (the remaining bits are set to zero) and compute the
expanded message words. Using these message words, we then compute the state
update backwards. Therefore, for each of the state variables we get a 1 × 1920
row vector. We repeat this procedure for all 512 bits of the message resulting in
the 512× 1920 matrices A, . . . ,E.

The matrix defined in (4.7) is a generator matrix for code C3 with the fol-
lowing parameters: dim(C3) = 512 and length n = 11520. The lowest Hamming
weight found for code C3 is 297. Note that this low-weight vector now also
contains the Hamming weight of the state variables A′

i, . . . , E
′
i. The Hamming

weight for the expanded message is only 127. Compared with the results of the
previous sections (code C1), we achieve a remarkable improvement by also con-
sidering the Hamming weight of the state variables and by only requiring that
the codewords are valid expanded messages.

Multi-Block Collision and State Update Transformation—Code C4

As shown in the previous section, we are able to find differences with lower Ham-
ming weight if we use multi-block messages. We exploit this fact to construct
code C4. A multi-block collision with i = 2 is shown in Figure 4.6. As can be
seen in Figure 4.6, we have a collision after the second iteration due to the feed
forward for L-SHA-1, if the state update transformation has the same output
difference after each iteration (cf. Section 4.2.4). In other words, we want to
construct a code with codewords that produce a pseudo-near-collision in the last
60 steps of L-SHA-1. Having such a pseudo-near-collision L-characteristic, we
use an NL-characteristic to bring the non-zero difference in the first iteration to
zero in step i = 0 and another NL-characteristic to bring the non-zero differ-
ence in the second iteration to a difference in step i = 0 that equals the output
difference of the first iteration.

To construct a generator matrix for code C4, we only have to appropriately
extend the generator matrix for code C3. More precisely, we have to extend the
matrix such that the output difference of the state update transformation has a
non-zero output difference δ80 6= 0. Therefore, we add 160 rows, denoted by the
160× 1920 matrices 0, Ã, . . . , Ẽ, to the generator matrix in (4.7). For the code



4.3. Constructing a Linear Characteristic 59

79
L-characteristicNL-characteristic

iv

pseudo-near-collision
≠ 0 ≠ 0

P1 P2

A
0

A
i

A
800

B
8
0

C
80

D
8
0

E
80

B
0

C
0

D
0

E
0

B
i

C
i

D
i

E
i

expanded message

iv

expanded message

pseudo-near-collision

L-characteristic

pseudo-near-collision

L-characteristic

NL-char
A

NL-char
B

0
0

0
0

0
0

0
0

0

0
0

0
0

0

iv
pseudo-near-collision

L-characteristic

pseudo-near-collision

L-characteristic

≠ 0

expanded message expanded message

≠ 0

NL-char
A

NL-char
B

Figure 4.6: 2-block collision for L-SHA-1.

C4, we get a generator matrix

GC4
672×11520 =

[
M A B C D E

0 Ã B̃ C̃ D̃ Ẽ

]
. (4.8)

The matrix in (4.8) is a generator matrix for code C4 with dim(C4) = 672 and
n = 11520. Searching for low-weight vectors in C4 results in a smallest Hamming
weight of 237 for the expanded message words and the state variables for the
last 60 steps. This low-weight difference (pseudo-near-collision L-characteristic)
is shown in Table 4.5.

Summary of Hamming Weights Found

To give an overview of the improvements achieved by constructing different
codes, we list the Hamming weights of the found codewords in Table 4.4. As can
be seen in Table 4.4, we find the lowest Hamming weight if we use multi-block
messages and if we search for pseudo-near-collision L-characteristics in the last
steps of L-SHA-1.

Table 4.4: Summary of Hamming weights found for code C1,C2,C3, and C4.

Code C1 Code C2 Code C3 Code C4

single-block two-block single-block two-block

msg 1 msg 2 msg 1 msg2

weight expanded message 293 152 198 127 108 108

weight state update trans. 563 4730 4817 170 129 129

total Hamming weight 856 4882 5015 297 237 237

4.3.2 Improving Low-Weight Search for L-SHA-1

The low-weight vectors for the previously described codes have not been found
by just applying the probabilistic algorithms described in Section 2.7.2. The
reason is that the work factors for the different search algorithms are too high.
We demonstrate this fact by using code C4 with dim(C4) = k = 672 and length



60 Chapter 4. Collision Attacks on SHA-1

n = 11520. We want to estimate the work factor for Leon’s algorithm and
Stern’s algorithm for finding vectors with a Hamming weight of 237. The optimal
parameters for Stern’s algorithm are p = 3 and l = 20 for C4. To find a
codeword with Hamming weight 237 in C4 requires approximately 249 elementary
operations. Leon’s algorithm, with parameters p = 3 and s = dim(C4) + 12,
requires approximately 241 elementary operations. In the following, we present
two different approaches to reduce the work factors for the low-weight search.

Zero-Bands in L-SHA-1

During our research on the different codes, we observed that the found low-
weight vectors all have in common that the ones and zeroes occur in bands. More
precisely, the ones in the expanded message words and the state variables usually
appear in adjacent bit positions (see for instance Table 4.5). This observation has
been reported also by Rijmen and Oswald in [150]. This special property of the
low-weight differences for L-SHA-1 can be used to improve the low-weight search
as follows. By applying Algorithm 4.1 below to the generator matrix, we force
certain bits in the codewords to zero. With this approach, we are able to reduce
the search space significantly. As described in Section 2.7.2, the basic idea of the
probabilistic algorithms is to use a randomly permuted subset of the generator
matrix G to construct the punctured code C• with generator matrix G•. This
corresponds to a reduction of the search space. If we apply Algorithm 4.1 to G,
we actually do something similar but instead of randomly puncturing the code,
we have defined a strategy. Algorithm 4.1 shows the pseudo-code.

Algorithm 4.1 Forcing certain bits of the codewords to zero
Input: generator matrix G for code C, integer r defining the minimum rank

of G•, list L of candidate columns to force to zero
Output: generator matrix G• for punctured code C• with rank(G•) = r

G• = G
while rank(G•) > r and L not empty do

randomly pick a column y from L (0 ≤ y < length(G•))
for all rows x (0 ≤ x < rank(G•)) with a one in column y
add row x to all other rows that have a one in the same column
remove row x from G•

remove column y from L
end while
return G•

Prior to applying the probabilistic search algorithms, we apply Algorithm 4.1
to reduce the search space of the code. Since we force columns of the codewords
to zero, we do not only reduce the dimension of the code but also the length.
Computing the estimates for the complexities of this ‘restricted code’ shows
that the expected number of operations to find a vector with a certain Ham-
ming weight decreases remarkably. For instance, applying Algorithm 4.1 to the
generator matrix for code C4 with r = 50 leads to the following values for the



4.3. Constructing a Linear Characteristic 61

punctured code C•
4 : dim(C•

4 ) = 50 and length n = 2327. Stern’s algorithm
with optimal parameter p = 2 and l = 4 requires approximately 237 elementary
operations. For Leon’s algorithm, we get a work factor of approximately 225

with p = 3 and s = dim(C•
4 ) + 8. Therefore, the Hamming weights presented

for codes C1, C2, C3, C4 have been found by first applying Algorithm 4.1 and
then running the probabilistic search algorithms. With this technique, we are
able to reduce the search space significantly and finding the low-weight vectors
is possible within minutes on an ordinary computer. Note that by applying Al-
gorithm 4.1 it can be that we get a suboptimal solution. However, as we will see
in the next section the lowest weight found with our methods has been proven
by Jutla in [76, 78] to be the minimum weight for the message expansion by
using a computer-aided proof.

Looking at Disturbances Only

If we look at the low-weight difference for code C4 in Table 4.5 then we observe
the following:

Observation 4.2. The L-characteristic consists of overlapping local collisions.
The state variable A′ contains the disturbances of each local collision. This is
referred to as the disturbance vector.

This can be explained as follows. Based on the definition of a local collision
(cf. Definition 4.1) and the definition of the state update transformation in
(4.2), we know that the disturbance that is introduced in step i goes to state
variable A′

i+1. Then, the disturbance for each local collision gets corrected in
the next 5 consecutive steps, i.e. the difference in state variables A′

i+2, . . . , A
′
i+5

is zero. Therefore, for each local collision only the disturbance appears in the
state variables A′

i. Note that the disturbance of a single local collision does not
necessarily have to be injected through the expanded message-words but can
also come from an earlier local collision.

For L-SHA-1, the differences of state variables B′
i, . . . , E

′
i are completely de-

termined by the differences of state variable A′
i, i.e. the disturbance vector. Ad-

ditionally, the expanded message can be constructed by the linear combination
of the disturbances and corresponding corrections. Therefore, we can construct
a code that only describes the pseudo-near-collision for state variable A. If we
search for low-weight vectors in this code, then we aim to find low-weight dis-
turbance vectors. As we will see in Section 4.4, based on this disturbance vector
we can accurately compute the probability such that the L-characteristic for
L-SHA-1 holds for SHA-1.
Remark 4.1. We do not need to look at state variable A but we can also look at
the expanded message words. However, since the result is the same in both cases
and we can derive a generator matrix for the code describing the disturbance
vector in A directly from code C4, we will use this approach to search for low-
weight disturbance vectors.

To search for low-weight disturbance vectors in state variable A′ only, we
define code C5 with dim(C5) = 672 and length n = 1920 by the following



62 Chapter 4. Collision Attacks on SHA-1

generator matrix that can be directly derived from GC4 :

GC5
672×1920 =

[
A
Ã

]
,

where the 512 × 1920 matrix A and the 160 × 1920 matrix Ã are the same as
in (4.8). If we compare this code with the codes C2, C3, C4, we see that the
code C5 is remarkably smaller. This leads to running-time improvements for the
probabilistic low-weight search algorithms. Nevertheless, also in this case we can
still speed-up the low-weight search by first applying Algorithm 4.1 followed by
the probabilistic algorithms. In both cases, we find a smallest Hamming weight of
25 for the disturbance vector. This found low-weight disturbance vector is given
in Table 4.6. Note that this vector is the same as the difference in state variable
A′ in Table 4.5 rotated down by one position. More precisely, we compute A′

i+1

for i = 19 and then for i = 19, . . . , 78 the column A′
i+1 in Table 4.5 is the same

vector as in Table 4.6. In [76, 78] a computer aided proof is used to show that
the minimum Hamming weight is 25.

So far, we omitted the fact that all found L-characteristics are rotation in-
variant with respect to the message expansion and state update transformation.
More precisely, we can rotate each L-characteristic (or the according disturbance
vector) over all 32 bit positions. Clearly, rotating the L-characteristic over dif-
ferent bit positions does not change the Hamming weight. However, rotating
the L-characteristic influences its probability as will be discussed in detail in the
next section.



4.3. Constructing a Linear Characteristic 63

Table 4.5: Low-weight difference found for code C4. The overall Hamming weight is
237. The differences are listed in hexadecimal notation. For the sake of
readability, zero values are denoted by a dash.

step W ′
i A′

i+1 B′
i+1 C′

i+1 D′
i+1 E′

i+1
i = 20 8-----4- -------- -------2 -------- A------- 8-------
i = 21 2------1 -------3 -------- 8------- -------- A-------
i = 22 2-----6- -------- -------3 -------- 8------- --------
i = 23 8------1 -------2 -------- C------- -------- 8-------
i = 24 4-----42 -------2 -------2 -------- C------- --------
i = 25 C-----43 -------1 -------2 8------- -------- C-------
i = 26 4-----22 -------- -------1 8------- 8------- --------
i = 27 -------3 -------2 -------- 4------- 8------- 8-------
i = 28 4-----42 -------2 -------2 -------- 4------- 8-------
i = 29 C-----43 -------1 -------2 8------- -------- 4-------
i = 30 C-----22 -------- -------1 8------- 8------- --------
i = 31 -------1 -------- -------- 4------- 8------- 8-------
i = 32 4------2 -------2 -------- -------- 4------- 8-------
i = 33 C-----43 -------3 -------2 -------- -------- 4-------
i = 34 4-----62 -------- -------3 8------- -------- --------
i = 35 8------1 -------2 -------- C------- 8------- --------
i = 36 4-----42 -------2 -------2 -------- C------- 8-------
i = 37 4-----42 -------- -------2 8------- -------- C-------
i = 38 4------2 -------- -------- 8------- 8------- --------
i = 39 -------2 -------2 -------- -------- 8------- 8-------
i = 40 ------4- -------- -------2 -------- -------- 8-------
i = 41 8------2 -------- -------- 8------- -------- --------
i = 42 8------- -------- -------- -------- 8------- --------
i = 43 8------2 -------2 -------- -------- -------- 8-------
i = 44 8-----4- -------- -------2 -------- -------- --------
i = 45 -------- -------2 -------- 8------- -------- --------
i = 46 8-----4- -------- -------2 -------- 8------- --------
i = 47 8------- -------2 -------- 8------- -------- 8-------
i = 48 ------4- -------- -------2 -------- 8------- --------
i = 49 8------- -------2 -------- 8------- -------- 8-------
i = 50 ------4- -------- -------2 -------- 8------- --------
i = 51 8------2 -------- -------- 8------- -------- 8-------
i = 52 -------- -------- -------- -------- 8------- --------
i = 53 8------- -------- -------- -------- -------- 8-------
i = 54 8------- -------- -------- -------- -------- --------
i = 55 -------- -------- -------- -------- -------- --------
i = 56 -------- -------- -------- -------- -------- --------
i = 57 -------- -------- -------- -------- -------- --------
i = 58 -------- -------- -------- -------- -------- --------
i = 59 -------- -------- -------- -------- -------- --------
i = 60 -------- -------- -------- -------- -------- --------
i = 61 -------- -------- -------- -------- -------- --------
i = 62 -------- -------- -------- -------- -------- --------
i = 63 -------- -------- -------- -------- -------- --------
i = 64 -------- -------- -------- -------- -------- --------
i = 65 -------4 -------4 -------- -------- -------- --------
i = 66 ------8- -------- -------4 -------- -------- --------
i = 67 -------4 -------- -------- -------1 -------- --------
i = 68 -------9 -------8 -------- -------- -------1 --------
i = 69 -----1-1 -------- -------8 -------- -------- -------1
i = 70 -------9 -------- -------- -------2 -------- --------
i = 71 ------12 ------1- -------- -------- -------2 --------
i = 72 -----2-2 -------- ------1- -------- -------- -------2
i = 73 ------1A -------8 -------- -------4 -------- --------
i = 74 -----124 ------2- -------8 -------- -------4 --------
i = 75 -----4-C -------- ------2- -------2 -------- -------4
i = 76 ------26 -------- -------- -------8 -------2 --------
i = 77 ------4A ------4- -------- -------- -------8 -------2
i = 78 -----8-A -------- ------4- -------- -------- -------8
i = 79 ------6- ------28 -------- ------1- -------- --------

weight 108 26 25 25 26 27



64 Chapter 4. Collision Attacks on SHA-1

Table 4.6: Minimum Hamming weight disturbance vector for last 60 steps of L-SHA-1.
The values are listed in hexadecimal notation. For the sake of readability,
zero values are denoted by a dash.

A′
20 = -------2 A′

40 = -------2 A′
60 = --------

A′
21 = -------- A′

41 = -------- A′
61 = --------

A′
22 = -------3 A′

42 = -------- A′
62 = --------

A′
23 = -------- A′

43 = -------- A′
63 = --------

A′
24 = -------2 A′

44 = -------2 A′
64 = --------

A′
25 = -------2 A′

45 = -------- A′
65 = --------

A′
26 = -------1 A′

46 = -------2 A′
66 = -------4

A′
27 = -------- A′

47 = -------- A′
67 = --------

A′
28 = -------2 A′

48 = -------2 A′
68 = --------

A′
29 = -------2 A′

49 = -------- A′
69 = -------8

A′
30 = -------1 A′

50 = -------2 A′
70 = --------

A′
31 = -------- A′

51 = -------- A′
71 = --------

A′
32 = -------- A′

52 = -------- A′
72 = ------1-

A′
33 = -------2 A′

53 = -------- A′
73 = --------

A′
34 = -------3 A′

54 = -------- A′
74 = -------8

A′
35 = -------- A′

55 = -------- A′
75 = ------2-

A′
36 = -------2 A′

56 = -------- A′
76 = --------

A′
37 = -------2 A′

57 = -------- A′
77 = --------

A′
38 = -------- A′

58 = -------- A′
78 = ------4-

A′
39 = -------- A′

59 = -------- A′
79 = --------



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 65

4.4 An Accurate Probability Analysis of Local
Collisions in SHA-1

The pseudo-near-collision L-characteristic derived in the previous section deter-
mines the complexity of a collision attack on SHA-1. Therefore, we will take now
the disturbance vector given in Table 4.6 and derive the probability such that
the according pseudo-near-collision L-characteristic holds for the original SHA-1.
Since the disturbance vector consists of overlapping local collisions, we start to
derive the probability of single local collisions with disturbances in different bit
positions. Based on these probabilities, we will then estimate the collision at-
tack complexity for SHA-1. As a result of our thorough analysis of probabilities
for local collisions, we will see that the attack complexity is slightly lower than
estimated by Wang et al. in [172].

4.4.1 Considering the Number of Conditions

To analyze the probability of local collision, we work with signed-bit differences
as defined in Section 2.5.1. Table 4.7 shows a local collision with signed-bit
differences for fXOR and fMAJ. Note that the first 20 steps of SHA-1 are covered
by the NL-characteristic (cf. Section 4.2.4). Therefore, we only consider the
Boolean functions fXOR and fMAJ.

Table 4.7: Local collision (disturbance-corrections) with signed-bit differences for
SHA-1.

step difference description
fXOR fMAJ

i W ′
i = +2j +2j single-bit disturbance at bit position j

i + 1 W ′
i+1 = −2j+5 −2j+5

i + 2 W ′
i+2 = ±2j −2j

i + 3 W ′
i+3 = ±2j−2 −2j−2 corrections

i + 4 W ′
i+5 = ±2j−2 −2j−2

i + 5 W ′
i+8 = −2j−2 −2j−2

± denotes an arbitrary sign

For the local collision defined in Table 4.7, we can now derive the number
of conditions and the corresponding probabilities such that the local collision
holds for the original SHA-1. We refer to conditions that contain only bits of
the expanded message words as easy conditions since we can easily fulfill them.
This follows from the fact that we have full control over the input messages.
Conditions that include bits of the state variables are referred to as hard con-
ditions, since in general it is difficult to fulfill them2. For the analysis we can

2Conditions that include bits of the state variables can be fulfilled by techniques such as
basic and advanced message modification. However, this is only possible for slightly more than
20 steps [172]. Since we are looking at the last 60 steps of SHA-1, we assume that it is difficult
to fulfill these conditions.



66 Chapter 4. Collision Attacks on SHA-1

Ai Bi Ci Di Ei

f

W 0
i = +2j

f

W 0
i+1 = -2 j+5

f

W 0
i+2 = ±2 j

f

W 0
i+3 = ±2 j-2

f

+2 j-2

W 0
i+4 = ±2 j-2

f

Ai+6 Bi+6 Ci+6 Di+6 Ei+6

W 0
i+5 = -2 j-2

+2 j+5

st
ep

  
i

st
ep

  
i+

1
st

ep
  

i+
2

st
ep

  
i+

3
st

ep
  

i+
4

st
ep

  
i+

5

+2 j , -2 j

+2 j-2 , -2 j-2

+2 j-2 , -2 j-2

+2 j

+2 j-2

+2 j-2

Ai Bi Ci Di Ei

f

+21-20

W 0
i = +20

f

W 0
i+1 = -25

f

W 0
i+2 = ±20

f

W 0
i+3 = ±230

f

W 0
i+4 = ±230

f

Ai+6 Bi+6 Ci+6 Di+6 Ei+6

W 0
i+5 = -230

+26-25

st
ep

  
i

st
ep

  
i+

1
st

ep
  

i+
2

st
ep

  
i+

3
st

ep
  

i+
4

st
ep

  
i+

5

+21+20 , -21-20

+21-20 , -21+20

+231+230 , -231-230

+231-230 , -231+230

+231+230 , -231-230

+231-230 , -231+230

+21-20

+231-230

+231-230

+231-230

+231 , 0
-230 , +231-230

f X
O

R
f M

A
J

+231 , 0
-230 , +231-230

f X
O

R
f M

A
J

+21 , 0
-20 , +21-20

f X
O

R
f M

A
J

fXOR

fMAJ+2 j , 0

fXOR

fMAJ+2 j-2 , 0

fXOR

fMAJ+2 j-2 , 0

+2 j

5

2

5

2

2

5

2

5

5

2

5

2

5

2

5

2

2

5

5

2

5

2

5

2

Figure 4.7: On the left, a local collision with disturbance in bit position j. No carry
occurs in step i. On the right a local collision with disturbance in bit
position j = 0. In step i a carry occurs. The differences in the dashed
rectangles are the possible output differences of fXOR and fMAJ.



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 67

assume without loss of generality that the sign of the disturbance is positive, i.e.
W ′

i = +2j . If the disturbance is −2j , we get the same results by just flipping all
the other signs. The propagation of the disturbance and corrections is shown in
the left part of Figure 4.7.

Disturbance in Step i

The disturbance difference is injected in step i. As can be seen in Figure 4.7,
we require that the injected difference stays the same in state variable Ai+1, i.e.
A′

i+1 = W ′
i = +2j . This occurs with probability 1/2. Even if the disturbance is

injected at bit position j = 31 (MSB position), the sign of the difference stays
the same in A′

i+1 with probability 1/2.

Correction in Step i + 1

As shown in Figure 4.7, the difference in state variable A is rotated to the left
by 5 positions. Therefore, the correction is W ′

i+1 = −2j+5. It follows from
Table 2.2 (row 6 with u = +1 and v = −1, or vice versa) in Section 2.5 that
if the sign of the correction is the opposite of the sign of the disturbance, then
the correction occurs with probability 1 since the sum of the disturbance and
the correction is 0 and no carry occurs. We can ensure the negative sign of the
correction with the following condition. This condition contains only bits of the
expanded message words and hence we can easily fulfill it.

Wi+1,j+5 ⊕Wi,j = 1 (CWi+1)

Correction in Step i + 2

In this step, we have to consider the modular addition and the Boolean functions
fXOR and fMAJ. As described in Table 2.3 in Section 2.5, fXOR flips the sign of
the input difference with probability 1/2. Therefore, for B′

i+2 = +2j the output
difference of fXOR can be either +2j or −2j depending on Ci+2 and Di+2. Since
we cannot easily influence the values of Ci+2 and Di+2 the probability for the
correction is 1/2.

For fMAJ, we get the same probability as for fXOR by defining a condition
including bits of the expanded message words only. For the input difference
B′

i+2 = +2j the possible output difference of fMAJ is either +2j or 0. Together
with the probability of 1/2 for the modular addition, this results in a probability
of 1/4. However, if the sign of the correction is negative, then the correction has
a probability of 1/2. This can be ensured by fulfilling the following condition

Wi+2,j ⊕Wi,j = 1 . (CWi+2)

Correction in Step i + 3 and i + 4

These steps are the same as step i+2 except that the difference +2j is rotated to
the right by 2 positions, i.e. +2j−2. For fXOR, we get a probability of 1/2 in each



68 Chapter 4. Collision Attacks on SHA-1

step. For fMAJ, we also get the probability 1/2 if the signs of the corrections are
negative. This can be ensured by fulfilling the following easy conditions:

Wi+3,j−2 ⊕Wi,j = 1 (CWi+3)

Wi+4,j−2 ⊕Wi,j = 1 (CWi+4)

Correction in Step i + 5

If all corrections have taken place in the previous steps the signed-bit difference
is in state variable E. Figure 4.7 shows that E′

i+5 is the same difference as
A′

i+1 = +2j rotated by 2 to the right, i.e. E′
i+5 = +2j−2. We only have to

consider the modular addition. As in step i + 1, we can fulfill condition

Wi+5,j−2 ⊕Wi,j = 1 (CWi+5)

such that the correction has negative sign. Hence, the correction in step i + 5
has probability 1.

Local Collision with Best Probability

With the above-described probabilities for each step of the local collision, we
can define a local collision that has the best probability for fXOR. Assume the
disturbance is introduced in bit position j = 1. In step i, we have a probability
of 1/2. Since we can easily fulfill condition CWi+1, we have a probability of 1
in step i + 1. In step i + 2 the probability is 1/2. Now, for steps i + 3 to i + 5
the disturbance is rotated to bit position j = 31. Since a carry in the difference
can be ignored (addition mod 232) we get a total probability of 2−2 for a local
collision with fXOR and a single-bit disturbance in bit position j = 1. For all
other bit positions we have a probability less than 1 in steps i+3 and i+4, since
the corrections do not occur in the MSB position. Therefore, the probability
2−2 is an upper bound for a local collision with fXOR.

Summary of Probabilities of Local Collisions

Table 4.8 summarizes the probabilities for all possible local collisions with a
single-bit disturbance and lists the easy conditions that have to be fulfilled. For
the discussion so far, we considered probabilities and easy conditions. Never-
theless, the probabilities for the modular addition and the functions fMAJ and
fXOR can also be described in terms of hard conditions. Each single condition
is fulfilled with probability 1/2. Consider for instance fMAJ. The input dif-
ference B′

i = +2j leads to the output difference +2j(Ci ⊕ Di) (see Table 2.3
in Section 2.5). In order to ensure the output difference +2j , we require that
Ci ⊕ Di = 1. Since we cannot easily influence the values of Ci and Di, the
condition is fulfilled with probability 1/2. The same can be done for the other
cases. For a local collision with disturbance in bit position j = 1, we have a
probability of 2−4 for fMAJ. In other words, there are 4 hard conditions.



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 69

Table 4.8: Probabilities for local collisions in SHA-1.

probability easy conditions

disturbance fXOR fMAJ fXOR fMAJ

j = 0, 2, . . . , 30 2−4 2−4 CWi+1, CWi+5 CWi+1, CWi+2, CWi+3

CWi+4, CWi+5

j = 31 2−3 2−4 CWi+1, CWi+5 CWi+1, CWi+3, CWi+4, CWi+5

j = 1 2−2 2−4 CWi+1 CWi+1, CWi+2

With the probabilities listed in Table 4.8 the complexity of the attack on
SHA-1 can be determined. For the disturbance vector in Table 4.6 or [172,
Table 5], we compute the product of all probabilities for each disturbance bit to
determine the overall probability and hence the attack complexity. Note that
computing the overall probability in this way requires that the probabilities are
independent. We performed several measurements that agree with this assump-
tion (see also Remark 4.2).

4.4.2 Accurate Probability Computation

In Section 4.4.1, we determined the probabilities of local collisions with distur-
bances introduced at different bit positions. For the analysis we did not allow
carries in step i, where the disturbance is injected. This restriction can actually
be relaxed. In the following, we will analyze the impact of carries in step i on the
probability of local collisions. We will show that the probabilities are actually
higher for most bit positions of the disturbance.

Single-Bit Disturbance

We start with a disturbance in bit position j = 0. As shown in Table 4.8 this
results in a probability of 2−4. Now assume that a carry occurs in the difference
in step i, i.e. the disturbance W ′

i = +20 leads to A′
i+1 = +21−20. This is shown

on the right hand side in Figure 4.7.
The carry in step i occurs with probability 1/4. The difference in bit position

j = 1 can be seen as a new disturbance that leads to a second local collision with
a certain probability. To cancel out the difference A′

i+1 = +21, we require that
the corrections in the consecutive steps also produce a carry in the difference. As
described in Section 4.4.1, we fulfill condition CWi+1 to ensure that W ′

i+1 = −25.
Therefore, the differences cancel out with probability 1 since (+26−25)+(−25) =
0. For steps i+2 to i+4 we first consider fXOR. In step i+2, we have a probability
of 1/4 because fXOR flips the sign of a bit difference with probability 1/2. Since
we have two bit differences this results in a probability of 1/4. The same holds
for steps i + 3 and i + 4. However, since the disturbance is introduced in bit
position j = 0, the second difference caused by the carry is rotated to bit position
j = 31 in step i + 2. We can ignore carries in this bit position and hence the
sign in bit position j = 31 has no impact. Therefore, we get a probability of 1/2



70 Chapter 4. Collision Attacks on SHA-1

for each step. The same analysis can be done for fMAJ. As already mentioned,
fMAJ preserves the sign of the input difference but the difference propagates
only with probability 1/2. Therefore, we cannot exploit bit position j = 31—
the probability for steps i+3 and i+4 is 1/4 each. For step i+2 the probability
is 1/4 since CWi+2 is fulfilled. In step i+5, we have a probability of 1 for fXOR

and fMAJ based on the same reasoning as for step i+1. With the results of this
analysis, we can update the probabilities given in Section 4.4.1. The probability
for fXOR and fMAJ with a disturbance in bit position j = 0 becomes:

PLC(fXOR, j = 0) = 2−4 + 2−6 = 2−3.6781 (4.9)
PLC(fMAJ, j = 0) = 2−4 + 2−8 = 2−3.9125 (4.10)

Uncorrectable Carries

Let us now consider the case where two carries in the difference occur in step i.
In this case the disturbance W ′

i = +20 leads to the following difference in state
variable A: A′

i+1 = +22 − 21 − 20. Two carries occur with probability 1/8. If
we work with the difference in bit position j = 2, we encounter the following
problem, which we refer to as uncorrectable carries. In step i + 2 the difference
is rotated by two positions to the right, i.e. −231− 230 +20. It is not possible to
correct the difference +20 in step i + 3 anymore since the correction takes place
in bit position j = 30. For fMAJ, uncorrectable carries for this example take
place only in step i+5. This is due to the fact that the difference +20 is blocked
by fMAJ with probability 1/2 in steps i + 2 to i + 4. However, in step i + 5
we cannot correct the difference +20 since the correction takes place in j = 30.
Therefore, the probabilities given in (4.9) and (4.10) are an upper bound of the
probabilities for both functions with a disturbance in j = 0.

If we perform the carry analysis for bit position j = 1, we also encounter
uncorrectable carries as for the disturbance in j = 0. Namely, a carry in step
i cannot be corrected anymore in step i + 3 (step i + 5 for fMAJ, respectively)
and therefore, a carry does not increase the probability for a local collision with
disturbance in j = 1 for both fXOR and fMAJ. Uncorrectable carries can also
occur due to the left rotation by 5 in step i + 1. A disturbance in j = 26 that
leads to a carry in step i cannot be corrected anymore in step i + 1 since the
correction W ′

i+1 takes place in bit position j = 31 but the carry in the difference
is rotated to j = 0.

Carries that Improve the Probability of Local Collisions

After determining the probabilities for disturbances in bit position j = 0 and
j = 1, we describe now the impact of carry effects for disturbances in bit position
j = 2, . . . , 31. Due to uncorrectable carries after bit position j = 26, we have
to analyze the probability for j = 2, . . . , 26 and j = 27, . . . , 31 separately. We
start the explanation for fXOR. For 2 ≤ j ≤ 26, we have the same probability
in steps i, i + 2, i + 3, and i + 4, namely the probability that no carry occurs
and the probabilities for all possible carries. Note that the probability in steps



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 71

i + 1 and i + 5 is 1 since we fulfill the easy conditions CWi+1 and CWi+5 (see
Section 4.4.1). For 27 ≤ j ≤ 31, we have the same except that the probability
in step i + 2 is increased by a factor of 2 if the carry in step i propagates to bit
position j = 31, i.e. in this case the carry difference in step i+2 can be ignored.
For fMAJ, we also assume that the easy conditions are fulfilled. Then we get
the same probabilities as for fXOR with the difference that for 27 ≤ j ≤ 31, we
cannot exploit the fact that the carry in bit position j = 31 can be ignored.
This is because for fMAJ the difference only propagates with probability 1/2. In
(4.11) and (4.12), we give the formulae to compute the accurate probability for
a local collision including all carry effects.

PLC(fXOR, j) =


2−4 + 2−6 for j = 0
2−2 for j = 1∑27−j

k=1 2−4k for j = 2, . . . , 26
2 · 2−4·(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 31

(4.11)

PLC(fMAJ, j) =



2−4 + 2−8 for j = 0
2−4 for j = 1∑27−j

k=1 2−4k for j = 2, . . . , 26∑32−j
k=1 2−4k for j = 27, . . . , 30

2−4 for j = 31

(4.12)

Based on these formulae the probability for a local collision with fXOR and
fMAJ can be bounded as follows. We know that

27−j∑
k=1

2−4k = 2−4 1− 2−4(28−j)

1− 2−4
≤ 2−4

1− 2−4
=

1
24 − 1

,

32−j∑
k=1

2−4k = 2−4 1− 2−4(33−j)

1− 2−4
≤ 2−4

1− 2−4
=

1
24 − 1

, and

2 · 2−4·(32−j) +
31−j∑
k=1

2−4k = 2−4(32−j)+1 + 2−4 1− 2−4(32−j)

1− 2−4

≤ 2−3 +
2−4

1− 2−4
=

1
23

+
1

24 − 1
.

Therefore, we get the following bounds on the probability:

1
24
≤ PLC(fXOR, j) ≤ 1

24 − 1
for j = 2, . . . , 26

1
24
≤ PLC(fXOR, j) ≤ 1

23
+

1
24 − 1

for j = 27, . . . , 31

1
24
≤ PLC(fMAJ, j) ≤

1
24 − 1

for j = 2, . . . , 26 and j = 27, . . . , 30 ,



72 Chapter 4. Collision Attacks on SHA-1

where the lower bound for the probability 2−4 is derived by counting conditions
as described in Section 4.4.1. For instance, if we compute the probability for a
disturbance in bit position j = 3 we get for both fXOR and fMAJ a probability
of 2−3.9068 instead of 2−4.

4.4.3 Disturbances in Adjacent Bit Positions

If we have a look at the disturbance vector in Table 2.5 or [172, Table 5], we notice
that there occur disturbances in adjacent bit positions, e.g. W ′

i = +2j+1 + 2j for
fXOR. Let us consider the concrete case with

disturbance: W ′
i = −21 + 20

corrections: W ′
i+1 = +26 − 25

W ′
i+2 = +21 − 20

W ′
i+3 = +231 + 230

W ′
i+4 = +231 + 230

W ′
i+5 = +231 − 230

In a straightforward way, we can just treat them as separate disturbances and
compute the probability based on (4.11). This results in a probability of

PLC(fXOR,−21 + 20) = 2−2︸︷︷︸
j=1

(2−4 + 2−6︸ ︷︷ ︸
j=0

) = 2−5.678 .

However, by performing a detailed analysis we show that the probability
for this case can be improved to PLC(fXOR,−21 + 20) = 2−3.678 by defining
two additional conditions including bits of the expanded message words only,
referred to as CWi and CW1i+2. We assume that the easy conditions described
in Section 4.4.1 are fulfilled. If no carry occurs in step i, both disturbances are
corrected with probability 2−6. This follows from Section 4.4.1. Now consider
the case that a carry occurs in step i. Assume that in step i the disturbances
have opposite signs, e.g. W ′

i = −21 + 20. This can be ensured by fulfilling the
new condition

Wi,1 ⊕Wi,0 = 1 . (CWi)

If a carry occurs in bit position j = 0 the difference in state variable A′
i+1 is

−20 since the positive sign of the carry cancels the negative difference in j = 1
(see Table 2.2 in Section 2.5.2). This occurs with probability 1/2. In step i + 1
the probability is 1 since CWi+1 is fulfilled. In step i + 2, we can increase the
probability to 1/2 if the additional condition is fulfilled:

Wi+2,1 ⊕Wi+2,0 = 1 (CW1i+2)

This is based on the same reasoning as for step i. For the remaining steps i + 3
and i + 4, we get a probability of 1/2 for each step. In step i + 5, we have again
a probability of 1. Hence, we have a total probability of 2−4 for the case that a



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 73

carry occurs in step i. Therefore, the total probability for a local collision with
fXOR and the disturbance W ′

i = +21 − 20 or W ′
i = −21 + 20 is:

PLC(fXOR,−21 + 20) = 2−4︸︷︷︸
carry in j=0

+ 2−6︸︷︷︸
no carry in step i

= 2−3.6781 (4.13)

Wang et al. use a probability of 2−4 for their estimate of the collision at-
tack complexity. The same analysis can be performed for disturbances in other
adjacent bit positions. Again, one has to consider uncorrectable carries. Un-
correctable carries occur if the disturbances are in bit position j = {2, 1} and
j = {27, 26}. In these cases, we get the probability of both disturbances without
carry. If j = {2, 1}, we obtain a probability of 2−42−2 = 2−6 and j = {27, 26} re-
sults in 2−42−4 = 2−8. Let us now consider disturbances in adjacent bit positions
from j = 2, . . . , 25, i.e. j = {3, 2}, {4, 3}, . . . , {26, 25}, and from j = 27, . . . , 30,
i.e. j = {28, 27}, {29, 28}, {30, 29}, {31, 30}. The formulae for all cases are given
in (4.14), where j refers to the first entry of the tuple.

PLC(fXOR, {j + 1, j}) =

2−4 + 2−6 for j = 0
2−4 + 2−8 for j = 1∑27−j

k=1 2−4k for j = 2, . . . , 25
2−4 + 2−8 for j = 26
2 · 2−4(32−j) +

∑31−j
k=1 2−4k for j = 27, . . . , 30

(4.14)

4.4.4 Update of Attack Complexity by Wang et al.

With the above analysis we covered all cases of disturbances that occur in the
disturbance vector of [172]. Since Wang et al. count conditions in the last 60
steps of SHA-1 the overall probability can be updated based on (4.11), (4.12),
and (4.13). Table 4.9 lists the comparison with [172, Table 9] and Table 4.10
summarizes the conditions that have to be fulfilled.

As can be seen in Table 4.9 the probability is by a factor of approx. 2.7 higher
than estimated in [172]. Note that we did not count the disturbances in step
i = 21 and step i = 77 since some of the conditions are fulfilled due to message
modification or truncation. This means that the path of the disturbance is fixed
and we cannot exploit any carry effects.

Remark 4.2. For the estimate of the probability such that the L-characteristic
holds for SHA-1, we assumed that the local collision and corresponding proba-
bilities are independent. We performed several measurements that agree with
this assumption. However, in general one would need to look at conditional
probabilities (see for instance [111]).

In the case of SHA-1 the improvements that follow from the accurate prob-
ability analysis are rather small. In fact, when implementing the final search in
a naive way, we have to compute two instances of SHA-1 in order to monitor



74 Chapter 4. Collision Attacks on SHA-1

Table 4.9: Update on complexity for collision attack on SHA-1.

[172, Table 9] this section
disturbance disturbance number of estimated accurate
bit position index conditions probability probability

j = 1 23, 24, 27, 28, 32, 35, 36 2 · 7 = 14 2−14 2−14

j = 0 25, 29, 33 4 · 3 = 12 2−12 2−11.0343

j = 1 39, 43, 45, 47, 49 4 · 5 = 20 2−20 2−20

j = 2 65 4 · 1 = 4 2−4 2−3.9068

j = 7 68 4 · 1 = 4 2−4 2−3.9068

j = 4 71 4 · 1 = 4 2−4 2−3.9068

j = 3 73 4 · 1 = 4 2−4 2−3.9068

j = 5 74 4 · 1 = 4 2−4 2−3.9068

total 2−66 2−64.5683

the carry effects. This reduces the gained factor from 2.7 to 1.35. Neverthe-
less, if the disturbance vector has a higher Hamming weight, carry effects can
have more impact on the probability. Let us look for instance at SHA1-IME
proposed by Jutla and Patthak in [77] (a short description of this proposal is
given in Section 7.1.1). They propose a modification of the message expansion of
SHA-1 such that the Hamming weight of the disturbance vector is substantially
greater than 25. In this case the impact of carry effects can lead to a much
higher probability than one would estimate by counting conditions as discussed
in Section 4.4.1.



4.4. An Accurate Probability Analysis of Local Collisions in SHA-1 75

T
a
b
le

4
.1

0
:

C
o
n
d
it

io
n
s

th
a
t

n
ee

d
to

b
e

fu
lfi

ll
ed

in
o
rd

er
to

in
cr

ea
se

th
e

p
ro

b
a
b
il
it
y

o
f
th

e
p
se

u
d
o
-n

ea
r-

co
ll
is

io
n

L
-c

h
a
ra

ct
er

is
ti

c

e
a
sy

c
o
n
d
it

io
n
s

d
is

tu
rb

a
n
c
e

C
W

i
C

W
i
+

1
C

W
i
+

2
C

W
i
+

3
C

W
i
+

4
C

W
i
+

5

W
′ 2
3

=
2
1

-
W

2
4

,6
⊕

W
2
3

,1
=

1
-

-
-

W
2
8

,3
1
⊕

W
2
3

,1
=

1

W
′ 2
4

=
2
1

-
W

2
5

,6
⊕

W
2
4

,1
=

1
-

-
-

W
2
9

,3
1
⊕

W
2
4

,1
=

1

W
′ 2
5

=
2
0

-
W

2
6

,5
⊕

W
2
5

,0
=

1
-

-
-

W
3
0

,3
0
⊕

W
2
5

,0
=

1

W
′ 2
7

=
2
1

-
W

2
8

,6
⊕

W
2
7

,1
=

1
-

-
-

W
3
2

,3
1
⊕

W
2
7

,1
=

1

W
′ 2
8

=
2
1

-
W

2
9

,6
⊕

W
2
8

,1
=

1
-

-
-

W
3
3

,3
1
⊕

W
2
8

,1
=

1

W
′ 2
9

=
2
0

-
W

3
0

,5
⊕

W
2
9

,0
=

1
-

-
-

W
3
4

,3
0
⊕

W
2
9

,0
=

1

W
′ 3
2

=
2
1

-
W

3
3

,6
⊕

W
3
2

,1
=

1
-

-
-

W
3
7

,3
1
⊕

W
3
2

,1
=

1

W
′ 3
3

=
2
1

+
2
0

W
3
3

,1
⊕

W
3
3

,0
=

1
W

3
4

,5
⊕

W
3
3

,0
=

1
W

3
5

,1
⊕

W
3
5

,0
=

1
*

-
-

W
3
8

,3
0
⊕

W
3
3

,0
=

1

W
′ 3
5

=
2
1

-
W

3
6

,6
⊕

W
3
5

,1
=

1
-

-
-

W
4
0

,3
1
⊕

W
3
5

,1
=

1

W
′ 3
6

=
2
1

-
W

3
7

,6
⊕

W
3
6

,1
=

1
-

-
-

W
4
1

,3
1
⊕

W
3
6

,1
=

1

W
′ 3
9

=
2
1

-
W

4
0

,6
⊕

W
3
9

,1
=

1
W

4
1

,1
⊕

W
3
9

,1
=

1
-

-
W

4
4

,3
1
⊕

W
3
9

,1
=

1

W
′ 4
3

=
2
1

-
W

4
4

,6
⊕

W
4
3

,1
=

1
W

4
5

,1
⊕

W
4
3

,1
=

1
-

-
W

4
8

,3
1
⊕

W
4
3

,1
=

1

W
′ 4
5

=
2
1

-
W

4
6

,6
⊕

W
4
5

,1
=

1
W

4
7

,1
⊕

W
4
5

,1
=

1
-

-
W

5
0

,3
1
⊕

W
4
5

,1
=

1

W
′ 4
7

=
2
1

-
W

4
8

,6
⊕

W
4
7

,1
=

1
W

4
9

,1
⊕

W
4
7

,1
=

1
-

-
W

5
2

,3
1
⊕

W
4
7

,1
=

1

W
′ 4
9

=
2
1

-
W

5
0

,6
⊕

W
4
9

,1
=

1
W

5
1

,1
⊕

W
4
9

,1
=

1
-

-
W

5
4

,3
1
⊕

W
4
9

,1
=

1

W
′ 6
5

=
2
2

-
W

6
6

,7
⊕

W
6
5

,2
=

1
-

-
-

W
7
0

,0
⊕

W
6
5

,2
=

1

W
′ 6
8

=
2
7

-
W

6
9

,1
2
⊕

W
6
8

,7
=

1
-

-
-

W
7
3

,5
⊕

W
6
8

,7
=

1

W
′ 7
1

=
2
4

-
W

7
2

,9
⊕

W
7
1

,4
=

1
-

-
-

W
7
6

,2
⊕

W
7
1

,4
=

1

W
′ 7
3

=
2
3

-
W

7
4

,8
⊕

W
7
3

,3
=

1
-

-
-

W
7
8

,1
⊕

W
7
3

,3
=

1

W
′ 7
4

=
2
5

-
W

7
5

,1
0
⊕

W
7
4

,5
=

1
-

-
-

W
7
9

,3
⊕

W
7
4

,5
=

1

*
.
.
.
e
a
sy

c
o
n
d
it

io
n

C
W

1
i
+

2
a
s

d
e
sc

ri
b
e
d

in
S
e
c
ti

o
n

4
.4

.3



76 Chapter 4. Collision Attacks on SHA-1

4.5 A Generalization of the Collision Attack
Strategy of Wang et al.

The seminal work of Wang et al. in the cryptanalysis of hash functions such as
MD4, MD5, and SHA-1, motivated a lot of researchers to investigate how the
manual search for the L-characteristic and NL-characteristic can be automated.
The first cryptanalytic tool for an automated search of the NL-characteristic
for SHA-1 has been presented by De Cannière and Rechberger in [28]. In the
following, we will give a short and abstract overview of their automated search
method which resulted in the best cryptanalytic results on SHA-1 to date: a
64-step collision has been presented in [28] and further optimizations led to a
70-step collision for SHA-1 by Mendel et al. in [27].

This generalization of the method of Wang et al. is based on the fact that
instead of considering signed-bit differences, the authors of [28] look at pairs
of bits. We know from Section 2.5.1 that signed-bit differences also include
information about the bit values of the message and not only the difference. This
has been generalized in [28] by not only considering single bits but by looking at
pairs of bits, resulting in 16 possible conditions. Based on this generalization the
working principle of their automated search can be summarized as follows. The
first step is to find a high probability L-characteristic as described in detail in
this chapter. Based on this L-characteristic the input difference in the message
is fixed (linear message expansion) and for instance at step 20 we are given a
‘target difference’. This is basically the start point for the automated search.
Initially, for the first 20 steps of the state update transformation no conditions
are set. Then the algorithm starts to add conditions at randomly chosen bit
positions. In the first phase conditions are set in such a way that no difference
is allowed, i.e. a zero-difference condition is forced. This is done in order to find
a sparse NL-characteristic.

The most complex part is then to monitor how the imposed conditions propa-
gate forward and backward in the state update transformation. If a contradiction
for the forced conditions occurs, the tool starts from scratch by setting again
zero-difference conditions at randomly chosen bit positions. Once all conditions
have been fixed an NL-characteristic has been found.

In [28], the authors also introduce a new method for computing the proba-
bility of the found NL-characteristic. This method allows to give the accurate
complexity for finding a message pair that follows the characteristic and hence
leads to colliding hash values. If the remaining search space is still large enough
then a greedy approach can be used to still improve the probability of the char-
acteristic and hence, to reduce the overall complexity of the collision search.

We stress that this is a very rough description of the automated search
method and additional details and special cases have to be considered for ap-
plying the search tool. Therefore, we refer the reader to [27, 28] for a complete
description. Based on the results of this new automated collision search, re-
cently, also some speed-up techniques have been presented by Sugita et al. in
[160], and by Joux and Peyrin in [75].



4.6. Summary 77

4.6 Summary

In this chapter, we have given a description of the building blocks of SHA-1
and have reviewed existing collision-attack strategies. We have explained in
detail how one can find high-probability L-characteristics by exploiting coding
theory. We followed a systematic approach for defining several linear codes
and have shown how we can apply probabilistic algorithms for searching code-
words with low Hamming weight. Several improvements for a speed-up of
these algorithms have been presented by exploiting the internal structure of
SHA-1. We have introduced an analytical approach do determine the proba-
bility of L-characteristics. These probability estimates also include side-effects
such as the impact of carries on the overall probability. We have found the
same L-characteristic as Wang et al. in [172] and have demonstrated how one
can accurately determine its probability. This in turn led to a slight improve-
ment of the probability given by Wang et al. At the end of this chapter, we have
given a rough description of new results for finding an NL-characteristic. We
note that this is the most complex part of the collision search for SHA-1. We
emphasize that the starting point for this new approach is a high-probability
L-characteristic that can be found as described in this chapter.





5
Cryptanalysis of Selected Hash Function

Proposals

In this chapter, we present second preimage attacks on two recent hash function
proposals which do not follow the design strategy of the MD-family. Firstly,
we start with a collision attack on the design strategy SMASH, which will then
be extended to a second preimage attack. Both the collision and the second
preimage attack are purely structural. Furthermore, for messages of a certain
length the attacks are deterministic.

Secondly, we present a second preimage attack on a double-block-length hash
function. This attack works if the construction is instantiated with a block
cipher following the FX construction. For different configurations, we are able
to construct second preimages deterministically. As with SMASH, this second
preimage attack is a purely structural attack too. The material of this chapter
was presented in [95, 136, 141].

5.1 Cryptanalysis of SMASH

In this section, we present an attack on the hash function design strategy
SMASH. We briefly introduce the design strategy and discuss specific properties
that have been exploited for the collision and second preimage attack. We follow
the notation of [87], except that we denote finite field addition by ‘+’, and we
stick to the convention of [19] to denote a difference by h′ = h + h∗.

5.1.1 The Design Strategy SMASH

At FSE 2005, Knudsen [87] proposed a new hash function design strategy. It
is an iterated hash function with a compression function that is based on a
nonlinear bijective n-bit mapping f : {0, 1}n → {0, 1}n. Let m = m1‖ . . . ‖mt

be the message input after MD strengthening (cf. Section 2.3), where each block

79



80 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

mi consists of n bits. The hash output ht+1 is computed as follows:

h0 = f(iv) + iv (5.1)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (5.2)

ht+1 = f(ht) + ht , (5.3)

where hi denotes the chaining value after iteration i. The multiplication by θ in
(5.2) is defined as an operation in the finite field GF (2n). Note that if we are
talking about the design strategy then θ is an arbitrary field element in GF (2n)
with the only restriction that θ /∈ {0, 1} as specified in [87]. If we consider
concrete instances of the design strategy, we will properly define the element θ.

As opposed to the design strategy of the MD4 family, SMASH applies the
nonlinear bijective mapping f also to the initial value (5.1) and to the final hash
computation (5.3). According to Knudsen, cf. [87, Section 2.2], this is done in
order to avoid pseudo-collision attacks (cf. Section 2.3.3), since the attacker does
not have full control over the chaining value h0. Applying f also to the final
hash computation should make it impossible to predict the final hash value. The
final hash computation can also be seen as the application of (5.2) with mi = 0.

Knudsen proposed two concrete instances of the SMASH design strategy,
namely SMASH-256 and SMASH-512. These two instances were intended to be
candidate alternatives to SHA-256 and SHA-512 [128]. In the following sections,
we will briefly describe both instances. We will give only the necessary details
needed for the understanding of the attack.

SMASH-256

The specific instance SMASH-256 is specified by setting n = 256. The finite
field element θ is defined as a root of the irreducible polynomial

q(θ) = θ256 + θ16 + θ3 + θ + 1 ,

which defines the arithmetic in GF (2256).
Even if the properties of the nonlinear bijective mapping f are irrelevant

for our attack, we briefly describe them to give a basic understanding of the
SMASH design strategy. The nonlinear mapping f for SMASH-256 is composed
of several applications of so-called H-rounds and L-rounds:

f = H1 ◦H3 ◦H2 ◦ L ◦H1 ◦H2 ◦H3 ◦ L ◦H2 ◦H1 ◦H3 ◦ L ◦H3 ◦H2 ◦H1

Both, the H-rounds and L-rounds take as input a 256-bit value and produce a
256-bit output. The underlying operations are S-Boxes, some linear diffusion
layers, and rotations. Each H round has a different rotation constant. The S-
Boxes are based on the S-Boxes employed in the block cipher Serpent [16]. Due
to the chosen padding method, SMASH-256 can be used to process messages of
length less than 2128 bits.



5.1. Cryptanalysis of SMASH 81

SMASH-512

SMASH-512 is specified by setting n = 512 and, as in the case of SMASH-256,
the finite field element θ is defined as a root of the irreducible polynomial

q(θ) = θ512 + θ8 + θ5 + θ2 + 1 ,

which defines the arithmetic in GF (2512). Due to the chosen padding method
one can process messages with a length less than 2256 bits. The nonlinear 512-bit
mapping f works along the same lines as the mapping for SMASH-256 (cf. [87]
for further details).

5.1.2 Specific Properties of SMASH

Forward Prediction Property (FPP)

The structure of SMASH exhibits a forward prediction property as has been
already observed and described in the design document [87]:

Property 5.1. (Forward prediction property of SMASH) Let hi−1 and h∗i−1 be
two intermediate hash values with difference h′i−1 = hi−1 + h∗i−1. If, for an
arbitrary mi the message block m∗

i is computed as m∗
i = mi + h′i−1, then the

output difference is given by

h′i = hi + h∗i = (1 + θ)h′i−1, 2 ≤ i ≤ t .

Obviously, Property 5.1 can be extended to hold over more iterations. That
is for k ≤ t− 2 iterations we have

h′i+k−1 = (1 + θ)kh′i−1, 2 ≤ i ≤ t− k .

Pattern Construction Property (PCP)

For the SMASH strategy one can also control the input values to the nonlinear
function f in different iterations (except the last iteration). We refer to this
property as the pattern construction property:

Property 5.2. (Pattern construction property of SMASH) Let the output of the
nonlinear function f in iteration i and i + k be denoted by fi and fi+k, where
1 ≤ i + k < t. If we choose mi+k = mi + hi−1 + hi+k−1 then the output of f is
the same in both iterations:

fi = f(mi + hi−1)
fi+k = f(mi+k + hi+k−1)

= f(mi + hi−1 + hi+k−1 + hi+k−1) = fi

It is clear that the pattern construction property can be applied in more than
two iterations. In general, we can construct messages for which the input to f
is the same in all iterations by using Property 5.2. Note that if we construct
two inputs to f as described by Property 5.2, then, regarding the nonlinear
function f , the same input difference in both iterations leads to the same output
difference.



82 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

5.1.3 Collision Attack

The properties described in Section 5.1.2 can be exploited for collision attacks
on the SMASH design strategy. We start by demonstrating the basic attack
strategy by looking at a simplified variant of SMASH. Afterwards, we will extend
the strategy for collision attacks on SMASH-256 and SMASH-512.

Collisions for Simplified Variants SMASH-ORD3 and SMASH-ORDy

In order to explain our attack, we first consider a simple instance of SMASH.
The instance, referred to as SMASH-ORD3, differs from SMASH in the choice
of the finite field element θ. More, precisely, we assume that we can choose a θ
such that the element (1 + θ) has order 3, i.e. (1 + θ)3 = 1. Such a choice is not
explicitly forbidden in [87].

To explain the collision attack on the simplified variant of SMASH, we define
the following variables (see also Figure 5.1):

x an arbitrary n-bit value
f1 = f(m1 + h0)
f2 = f(m2 + h1)
f3 = f(m3 + h2)
a = f1 + f(m1 + h0 + x) + θx

The variable x defines an arbitrary n-bit difference. f1, . . . , f3 are the output val-
ues of f with message block mi and intermediate chaining variable hi−1, where
i = 1, . . . , 3, as input. The difference in h1 is defined by a. Based on these defi-
nitions, we can now construct two 4-block messages m = m1‖m2‖m3‖m4, where
m1,m2,m3 can be chosen arbitrarily, and m∗ = m∗

1‖m∗
2‖m∗

3‖m∗
4 as follows:

m4 = m1 + f1 + f2 + f3 + θ(m1 + m2 + m3)
m∗

1 = m1 + x
m∗

2 = m2 + a
m∗

3 = m3 + (1 + θ)a
m∗

4 = m4 + (1 + θ)2a + x

(5.4)

Note that a depends on both m1 and x. In particular, if x = 0 then a = 0,
i.e. m = m∗. As we will describe in the following, the two 4-block messages m
and m∗ defined in (5.4) lead to the same hash value, a collision. The attack is
graphically illustrated in Figure 5.1.

The attack is an extension of the forward prediction property (Property 5.1).
It can be verified that the value a is the difference in h1. We cannot predict
the value of a, but we can of course easily compute it once we have chosen an
arbitrary m1 and x. Note that this also determines the difference f ′1 = a + θx.

The basic idea of the attack is to control the propagation of the difference such
that the input differences to the function f in the second iteration and in the last
but one iteration (iteration 2 and iteration 3 in Figure 5.1) equal zero. In this
case the nonlinearity of f does not have any impact on the difference propagation.
For the last message block (iteration 4 ) we ensure that the difference m′

4 = m4+



5.1. Cryptanalysis of SMASH 83

f

·θ

f

·θ

f

·θ

f

·θ

f

iv

m1

h0 h1

m2

h2

m3

h3

f1 f2 f3

m4

h0

x (1+θ)2a

x

(1+θ)aa

a a(1+(1+θ)3)(1+θ)2a(1+θ)a

iteration 1 iteration 2 iteration 3 iteration 4

h1 h2 h3 h4

f4

a+θx

Figure 5.1: The attack on SMASH-ORD3. The dashed rectangles denote differences.

m∗
4 equals the difference m′

1 = m1 + m∗
1 and that f ′1 = f ′4. This can be achieved

by exploiting the pattern construction property as described in Property 5.2. By
choosing the difference in the second message block equal to m′

2 = a, we make
sure that the input difference to f equals zero (differences cancel out). Hence,
we ensure that the difference h′2 = (1+θ)a. Similarly, by choosing the difference
in the third message block equal to m′

3 = (1 + θ)a, we ensure that the difference
h′3 = (1 + θ)2a. These two steps exploit the forward prediction property.

Now, we have to determine the last message block in each of the messages.
We choose the last message block of the first message, m4, following the pattern
construction property, i.e. m1 + h0 = m4 + h3:

m4 = m1 + h0 + h3

= m1 + h0 + f3 + h2 + θm3︸ ︷︷ ︸
h3

= m1 + h0 + f3 + f2 + h1 + θm2︸ ︷︷ ︸
h2

+θm3

= m1 + h0 + f3 + f2 + f1 + h0 + θm1︸ ︷︷ ︸
h1

+θm2 + θm3

= m1 + f3 + f2 + f1 + θ(m3 + m2 + m1)

The last block of the second message, m∗
4, is selected in such a way that the

difference in the last message block m′
4 = (1 + θ)2a + x. This choice ensures

that the input of f in the last iteration (iteration 4 ) equals the input in the first
iteration (iteration 1 ). Consequently, the output of f will be the same as in
the first iteration, hence it will have the same difference as in the first iteration,
namely f ′1 = f ′4 = a + θx (cf. Figure 5.1). Working out the equations, we see



84 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

that the difference in h4 becomes:

h′4 = f ′4 + h′3 + m′
4

= f ′4 + h′3 + θx + (1 + θ)2θa

= a + θx + (1 + θ)2a + θx + (1 + θ)2θa

= a + (1 + θ2)a + (1 + θ2)θa

= θa + θ2a + θ3a

= a(1 + (1 + θ)3)

(5.5)

Since we assumed that we can choose a θ such that (1 + θ) has order 3, the
difference in (5.5), h′4 = a(1 + (1 + θ)3), equals zero and we have produced a
collision for our simple SMASH instance SMASH-ORD3. Due to the collision
after the last iteration (h′4 = 0), the final hash computation (5.3) has no impact
on the result.

The attack on SMASH-ORD3 can be generalized to break the simplified
SMASH instances, referred to as SMASH-ORDy. The instances SMASH-ORDy
are defined by choosing a θ such that the order of the element (1 + θ) equals y,
where y is an arbitrary value with y ≥ 3. As we have observed for the instance
SMASH-ORD3, we have a collision in iteration 4. Along the same lines it is
easy to show that for SMASH-ORDy we can construct collisions for messages
consisting of at least y + 1 blocks without counting in the last message block
that results from MD strengthening.

Collisions for SMASH-256 and SMASH-512

For the attacks on SMASH-ORD3 and SMASH-ORDy, we assumed that we
can choose a certain finite field element θ. This is not possible for the specific
instances of SMASH. For SMASH-256 the finite field element θ is defined as a
root of the irreducible polynomial q(θ) = θ256 + θ16 + θ3 + θ + 1, i.e. q(θ) = 0.
Also for SMASH-512, θ is defined as a root of the irreducible polynomial. In
order to show whether or not the previously described attacks on SMASH-ORD3
and SMASH-ORDy can be applied to SMASH-256 and SMASH-512, we have to
compute the order of the element (1+θ) for the specified θ. For SMASH-256, the
order of (1 + θ) equals ((2256 − 1)/5) and for SMASH-512 the order of (1 + θ) is
(2512−1). For both SMASH-256 and SMASH-512, we computed the order of the
element (1+θ) using Maple. Based on the order of the element (1+θ) the attack
requires at least (((2256 − 1)/5) + 1) message blocks for SMASH-256 and 2512

message blocks for SMASH-512, respectively. As specified in [87], SMASH-256
can be used to hash messages of bit length less than 2128. This corresponds to
(2120−1) message blocks of 256 bits each. SMASH-512 is specified for (2247−1)
message blocks of 512 bits each. Hence, the order of the element (1 + θ) is for
both hash functions larger than the maximum number of message blocks. This
means, that we can still produce colliding messages but these messages are no
longer valid inputs according to the SMASH-256 and SMASH-512 specification.



5.1. Cryptanalysis of SMASH 85

Previously, we exploited the pattern construction property by considering
message pairs that introduce a non-zero input difference x into f twice: once
at the beginning and once at the end of the message. As already mentioned in
Section 5.1.2, we can extend this property further by considering message pairs
that introduce the difference x three or more times. In other words, we exploit
the pattern construction property in several iterations. Every time the input
difference to f is non-zero, we make sure that the values of the two message
blocks equal the values in the first message blocks. Consequently, the output
difference of f will be every time the same, namely (a + θx), cf. Figure 5.1.

In this way, we can produce almost any desired difference in the chaining
variable ht. In order to find a collision, we want to construct a difference that
is a multiple of the irreducible polynomial, i.e. a difference of the form h′t =
a · q(θ) = a · 0 = 0 (mod q(θ)).

Based on Property 5.1 and Property 5.2, it can be shown that we can con-
struct differences in the chaining values of the form

h′t = a
t∑

i=1

(1 + θ)t−iδi , (5.6)

where the δi ∈ {0, 1} are arbitrary (cf. Theorem 5.1). Thus, our problem boils
down to find values δi that fulfill

a · q(θ) = a
t∑

i=1

(1 + θ)t−iδi .

How these δi’s can be determined in general will be shown in Section 5.1.4. For
the collision attack on the concrete instances SMASH-256 and SMASH-512, we
will simply rewrite the irreducible polynomials q(θ) in terms of (1+θ)i to achieve
our goal.

For given δ1, . . . , δi, we can then compute the difference m′
i as follows:

m′
i =


∑i−1

j=1(1 + θ)i−j−1aδj if δi = 0

x +
∑i−1

j=1(1 + θ)i−j−1aδj if δi = 1 ,

(5.7)

where x is the arbitrarily chosen difference (cf. Figure 5.1). The values of mi can
be determined as follows. The first block, m1, can always be selected arbitrarily.
If δi = 0, then mi can be selected arbitrarily. If δi = 1 and i > 1, then mi has
to be equal to hi−1 + m1 + h0 (cf. Property 5.2).

Solutions for SMASH-256. In order to show that we can construct a dif-
ference that is a multiple of the irreducible polynomial, we have to rewrite the
polynomial such that it contains powers of (1 + θ). For the irreducible polyno-
mial θ256 + θ16 + θ3 + θ + 1 we need the powers 256, 16, and 3. We know that
(1 + θ)256 = 1 + θ256. The same holds for (1 + θ)16 = 1 + θ16. To get the power



86 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

3 we have to use (1 + θ)3 resulting in (1 + θ)3 = 1 + θ + θ2 + θ3. Summing up
these three terms results in

1 + θ256 + 1 + θ16 + 1 + θ + θ2 + θ3 = θ256 + θ16 + θ3 + θ2 + θ + 1 .

To eliminate θ2 we need to introduce (1 + θ)2 = 1 + θ2. Finally, we add 1 and
the irreducible polynomial q(θ) can be rewritten as:

θ256 + θ16 + θ3 + θ + 1 =

1 + (1 + θ)2 + (1 + θ)3 + (1 + θ)16 + (1 + θ)256
(5.8)

Since we want to construct a difference that is a multiple of the irreducible
polynomial, we can solve (5.6) for the polynomial (5.8). It follows that t = 257
and the solutions are δi = 1 for i = 1, 241, 254, 255, 257 and δi = 0 for all other
i ≤ 257. Given the δi’s, the differences m′

i can be computed as shown in (5.7).
This gives:

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 240

m′
241 = x + (1 + θ)239a
m′

i = (1 + θ)i−2a + (1 + θ)i−242a, 241 < i < 254
m′

254 = x + (1 + θ)252a + (1 + θ)12a
m′

255 = x + (1 + θ)253a + (1 + θ)13a + a

m′
256 = (1 + θ)254a + (1 + θ)14a + (1 + θ)a + a

m′
257 = x + (1 + θ)255a + (1 + θ)15a + (1 + θ)2a + (1 + θ)a

Here, x is an arbitrary 256-bit difference. All other differences are defined by
the attack method. As explained above, 253 of the message blocks mi can be
chosen arbitrarily, while the remaining 4 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h257:

h′257 = (1 + θ)256a + (1 + θ)16a + (1 + θ)3a + (1 + θ)2a + a

It is clear that h′257 = a · q(θ) = a · 0 = 0, and hence we have a collision after
iteration 257.

SMASH-256: Example of colliding messages. We give an example of two
messages, m and m∗ = m + m′, that collide after 257 iterations. Note that for
this example we omitted padding.

Figure 5.2 shows the two colliding ASCII coded strings. Each message con-
sists of 258 message blocks. Even if we have already a collision after iteration
257 (see also Table 5.1), we added an additional message block, m258 = m∗

258,
containing the character ‘>’ (3e). We have chosen the two messages in this way,
because the message blocks m2, . . . ,m258 and m∗

2, . . . ,m
∗
258 are inside the end



5.1. Cryptanalysis of SMASH 87

<html>You owe me 1000.0€ </ >………………..

m1 m2…..m257 m258

<html>You owe me 100000€ </ >………………..

m∗
1 m∗

2…..m∗
257 m∗

258

n1

h0

T

n2

nt

m1

h0

h1

ht-1

ht

h2

m2

mt

m*1

h0

h*1

h*t-1

h*t

h*2

m*2

m*t

m1

h0

h1

ht-1

ht

h2

m2

mt

ht+1

Figure 5.2: Examples of colliding messages for SMASH-256. ASCII coded strings m
and m∗.

tag (< / m2, . . . ,m258 >) and hence are not displayed in a standard HTML
viewer or web browser (e.g. Mozilla Firefox 1.0.3). Therefore, at first sight, only
the two message blocks m1 and m∗

1 are visible.
Using hexadecimal notation, Table 5.1 shows the input message blocks mi

and m∗
i for i = 1, 241, 254, 255, 257, 258, the initial chaining variables h0 = h∗0 =

f(iv) + iv, the chaining variables h257, h∗257, h258, and h∗258, and the colliding
outputs h259 and h∗259. The message blocks m2, . . . ,m240,m242, . . . ,m253, and
m256 can be chosen arbitrarily. In this simple example each of these message
blocks contains only space characters (20).

Table 5.1: Colliding messages m and m∗ for SMASH-256. Table entries are given in
hexadecimal representation.

h0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac
h∗0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac

m1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 302e3030 | 80202020 | 20203c2f
m∗

1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 30303030 | 80202020 | 20203c2f

. . . . . .
m241= 346a6100 | 4e3cbc5b | f472d355 | b41311b2 | 4b7df46d | e6b4028f | 6aaf9c4d | 97a6f169
m∗

241= 4afe2771 | dd8507d9 | a25082bc | dac25578 | f34abb1c | 5501e05e | d9874798 | 6aa679d3

. . . . . .
m254= 60358467 | cfde2276 | 534a4038 | d3555d7e | 576415d4 | 5c151dbb | 7664ed09 | f97bb393
m∗

254= de2cdecd | 6e323f7e | de8e653b | 7d887168 | f94cebb5 | 7370fc51 | 0e2e0226 | 8f1e25ba

m255= 40088790 | 06da5567 | eb2a1d6e | 2869d96f | 02fb791a | dc8799ca | 0df2d9de | 9dec9799
m∗

255= f81b73fc | db0f8afe | 28947e42 | 699822e0 | 6de2b3b5 | 0b5536fe | c3d1ebb0 | 7744d316

. . . . . .
m257= cc4a7c9c | 9b4a99e1 | 8d275de9 | 3a44a2e7 | 4640484b | 3cb2abb4 | f1af679f | 4e6e142f
m∗

257= 1a5d75eb | 71ea319e | be76a60e | abc9278b | 329ff04f | 5e932f4d | cc04996a | 9e6c4183
h257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf
h∗257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf

m258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
m∗

258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
h258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00
h∗258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00

h259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e
h∗259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e

SMASH-512: Equations and solutions. To determine the differences m′
i

that produce a collision for SMASH-512, we use the same definitions and equa-
tions as we have used for SMASH-256.



88 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

SMASH-512 is specified by setting n = 512 and by defining the finite field
GF(2512) via the irreducible polynomial q(θ)

q(θ) = θ512 + θ8 + θ5 + θ2 + 1 .

Rewriting the polynomial q(θ) such that it consists of powers of (1 + θ) works
along the same lines as for SMASH-256. It can be rewritten as follows:

q(θ) = 1 + (1 + θ) + (1 + θ)2 + (1 + θ)4 + (1 + θ)5 + (1 + θ)8 + (1 + θ)512

The solution of (5.6) is given by δi = 1 for i = 1, 505, 508, 509, 511, 512, 513
and δi = 0 for all other i ≤ 513. Given the δi’s, the differences m′

i can be
computed as shown in (5.7). This gives:

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 504

m′
505 = x + (1 + θ)503a
m′

i = (1 + θ)i−2a + (1 + θ)i−506a, 505 < i < 508
m′

508 = x + (1 + θ)506a + (1 + θ)2a
m′

509 = x + (1 + θ)507a + (1 + θ)3a + a

m′
510 = (1 + θ)508a + (1 + θ)4a + (1 + θ)a + a

m′
511 = x + (1 + θ)509a + (1 + θ)5a + (1 + θ)2a + (1 + θ)a

m′
512 = x + (1 + θ)510a + (1 + θ)6a + (1 + θ)3a + (1 + θ)2a + a

m′
513 = x + (1 + θ)511a + (1 + θ)7a + (1 + θ)4a + (1 + θ)3a + (1 + θ)a + a

Here x is an arbitrary 512-bit difference. All other differences are defined by the
attack method. For SMASH-512, 507 of the message blocks mi can be chosen
arbitrarily, while the remaining 6 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h513:

h′513 = (1 + θ)512a + (1 + θ)8a + (1 + θ)5a
+ (1 + θ)4a + (1 + θ)2a + (1 + θ)a + a

It is clear that h′513 = a · q(θ) = a · 0 = 0, and hence we have a collision for
SMASH-512 after iteration 513.

5.1.4 Second Preimage Attack

In the following we describe the remarkable fact that the collision attack on
the SMASH design strategy can be generalized resulting in a second preimage
attack. The attack also exploits the fact that we can control the differences
throughout the application of the compression function.

In the following, we define the messages that we need in order to construct
arbitrary differences in a chaining variable of SMASH: the base message and the



5.1. Cryptanalysis of SMASH 89

offset message. The aim is to construct a base message in such a way that by
constructing an according offset message we can produce an arbitrary difference
of our choice in the chaining variable. By doing so, we can construct preimages or
second preimages as we will show in the following sections. Firstly, we consider
the SMASH design strategy in general and then we will look at the specific
instances SMASH-256 and SMASH-512.

Base Message

We define a base message consisting of n message blocks. The first block m1 can
be chosen arbitrarily. The next blocks are defined as follows:

mi = m1 + h0 + hi−1 for 1 < i ≤ n , (5.9)

where hi denotes the value of the chaining variable after processing message
block mi. The value h0 is defined by (5.1) and hi is defined by (5.2). The
purpose of this base message is to ensure that the inputs to the function f are
the same in all iterations. In other words, we can use the pattern construction
property (Property 5.2) in each iteration.

Offset Message

We denote an n-block offset message by m∗(δ), where δ is an n-bit vector. The
single elements of this vector are denoted by δ1, . . . , δn, where δi ∈ {0, 1}. The
message blocks of m∗(δ) are denoted by m∗

i . Furthermore, we denote the value
of the chaining variable after processing the message block m∗

i by h∗i according
to (5.1) and (5.2). Let x be an arbitrary n-bit block, different from zero, and let
a denote the value

a = f(m1 + h0) + f(m1 + x + h0) + θx

= f(mi + hi−1) + f(mi + x + hi−1) + θx ,
(5.10)

where the second equality follows from the definition of the base message in
(5.9). Then, we can define the offset message as follows:

m∗
1 = m1 + δ1x

m∗
i = mi + δix + a

i−1∑
j=1

δj(1 + θ)i−j−1 for 1 < i ≤ n
(5.11)

Constructing the Desired Offset Message

Using Property 5.1 and Property 5.2, we show the following theorem which is
also given without proof in Section 5.1.3, cf. (5.6). The proof is based on the fact
that (5.9) and (5.11) have the following effect on the input to the f function.
Let yi = mi + hi−1 be the inputs to f when processing the base message m.



90 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

Similarly, let y∗i be the inputs to the compression function when processing the
offset message m∗. In case of the base message m, we have

∀i, 1 ≤ i < n : yi = m1 + h0 .

In case of the offset message m∗, the inputs to f depend on δ but still can have
only two values:

∀i, 1 ≤ i < n : yi = m1 + h0 + δix

Theorem 5.1. For any nonzero value x, defining m, δ, a, and m∗(δ) as before,
it holds that

hn + h∗n = a

n∑
j=1

δj(1 + θ)n−j .

Proof. We prove the theorem by induction, showing that

ht + h∗t = a

t∑
j=1

δj(1 + θ)t−j for 1 ≤ t ≤ n . (5.12)

In the first step, we set t = 1. If δ1 = 0, then we have from (5.11) that m1 = m∗
1

and hence h1 + h∗1 = 0. If δ1 = 1, then m∗
1 = m1 + x and

h1 + h∗1 = (f(h0 + m1) + h0 + θm1) + (f(h0 + m1 + x) + h0 + θ(m1 + x))
= a .

Assume now that (5.12) holds for index t ≥ 1. Applying (5.11) and the induction
hypothesis gives

mt+1 + m∗
t+1 + δt+1x = a

t∑
j=1

δj(1 + θ)t−j = ht + h∗t . (5.13)

We also know that:

ht+1 + h∗t+1 = f(ht + mt+1) + f(h∗t + m∗
t+1) + ht + h∗t + θ(mt+1 + m∗

t+1) (5.14)

Hence, if δt+1 = 0 we get from (5.13) that mt+1 + m∗
t+1 = ht + h∗t and by using

(5.12), (5.14) becomes:

ht+1 + h∗t+1 = ht + h∗t + θ(mt+1 + m∗
t+1)

= ht + h∗t + θ(ht + h∗t )
= (1 + θ)(ht + h∗t )

= (1 + θ)a
t∑

j=1

δj(1 + θ)t−j

= a
t+1∑
j=1

δj(1 + θ)t+1−j



5.1. Cryptanalysis of SMASH 91

If δt+1 = 1, then we know from (5.13) that mt+1 +m∗
t+1 +x = ht +h∗t and hence

by using (5.10) and (5.12), (5.14) becomes:

ht+1 + h∗t+1 = (a + θx) + ht + h∗t + θ(mt+1 + m∗
t+1)

= (a + θx) + ht + h∗t + θ(ht + h∗t + x)

= (a + θx) + a
t∑

j=1

δj(1 + θ)t−j + θ

a
t∑

j=1

δj(1 + θ)t−j + x


= a

1 + (1 + θ)
t∑

j=1

δj(1 + θ)t−j


= a

t+1∑
j=1

δj(1 + θ)t+1−j

Theorem 5.1 can be used to compute the value hn + h∗n corresponding to a
given base message m, difference x, and n-bit vector δ. Conversely, when given
a value for m, x, and hn + h∗n the corresponding value for δ can be computed
by solving a set of n linear equations over GF (2) in the unknowns δ1, . . . , δn.
If the polynomials (1 + θ)i mod 2, where 0 ≤ i < n, are linearly independent,
then there is always exactly one solution. This follows from the fact that we
have an inhomogeneous system of equations with full rank. Once δ has been
computed, the corresponding offset message m∗ can be constructed using (5.11).
The polynomials (1 + θ)i mod 2 are independent if the element (1 + θ) is not
in a proper subfield of GF (2n). If n is a power of 2, then the number of such
elements is 2n − 2n/2. Hence a randomly selected θ will give linear independent
polynomials with overwhelming probability. This is the only condition that
is required for the attack to work deterministically on a hash function design
according to the SMASH design strategy.

Controlling the Output Difference of SMASH-256 and SMASH-512

In the case of SMASH-256 and SMASH-512 the element θ is defined as a root of
the irreducible polynomials q(θ), and from the computed orders we know that
the element (1 + θ) is not in a proper subfield. For these cases the n-bit vector
δ can be computed with Algorithm 5.1.

For the collision attack presented in Section 5.1.3, the collisions are con-
structed by choosing an arbitrary base message and selecting a proper offset
message. Note that for n-block messages, hn + h∗n = 0 always leads to an unac-
ceptable solution δ = 0. This follows from the fact that a homogeneous system
of equations with full rank only has the trivial solution. Therefore, (n+1)-block
messages (without padding) have to be used to construct collisions.

Proposition 5.1. Algorithm 5.1 outputs the right δ and terminates.



92 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

Algorithm 5.1 Compute δ for SMASH-256 and SMASH-512
Input: First preimage hn + h∗n
Output: δi ∈ {0, 1}

Compute base message m as described in (5.9)
Compute a as described in (5.10)
Let p(θ) be the polynomial representation of (hn + h∗n)a−1

i⇐ n
Initialize δ with 0
repeat

Perform the polynomial division pi(θ) = pi−1(θ)(1 + θ) + ri to determine
the quotient pi−1(θ) and the remainder ri.
δi ⇐ ri

i⇐ i− 1
until i = 0 or pi(θ) = 0

Proof. We can represent (hn + h∗n)a−1 as polynomial pn(θ) = c0 + c1θ + · · · +
cn−1θ

n−1. It follows from Theorem 5.1 that

(hn + h∗n)a−1 =
n∑

i=1

δi(1 + θ)n−i . (5.15)

Division with remainder of the left hand side in (5.15) leads to

pn(θ) = pn−1(θ)(1 + θ) + rn .

The special form of the right hand side in (5.15) implies that δn = rn ∈ {0, 1}
since deg(rn) < 1. The same process is repeated for pn−1(θ) = pn−2(θ)(1 + θ) +
rn−1 and so forth. In every step we have deg(pi−1(θ)) < deg(pi(θ)). Thus, the
algorithm terminates after a maximum of n steps (deg(pn(θ) < n)) and produces
in every step the desired coefficients δi for i = 1, . . . , n. Every step needs O(n)
additions modulo 2 and hence the running time of Algorithm 5.1 is O(n2).

Constructing Second Preimages for SMASH

To show how to construct second preimage for SMASH we consider first a re-
duced variant of SMASH. This variant is defined by omitting the final output
transformation (5.3) and by assuming that the input message consists of a mul-
tiple of n blocks (i.e. without considering padding). As shown in the previous
sections, we can control the output difference of this SMASH variant. From this
property, we can derive the following theorem.

Theorem 5.2. For the reduced variant of SMASH, we can construct preimages
for any hash value h.

Proof. We construct an n-block base message m as shown in (5.9). Then we
compute the hash value hm for the base message. Now derive the difference



5.1. Cryptanalysis of SMASH 93

h′ = h + hm. For h′ and the base message m, we can construct the n-block
offset message m∗ according to Theorem 5.1. Therefore, we know that the
difference between the hash values of the base message and the offset message
is h′ = hm + hm∗

. It follows that the offset message m∗ is an n-block preimage
of h since h′ = h + hm = hm + hm∗

and thus h = hm∗
.

Note that this is a nice example for a preimage attack that exploits dif-
ferential cryptanalysis. It follows from Theorem 5.2, that in order to construct
preimages, we have to control the message blocks m∗

2, . . . ,m
∗
n. This is illustrated

in Figure 5.3.

f

·θ

f

·θ

f

·θ

f

·θ

m1

h0

h1

m2

h2

m3

h3

f1 f2 f3

m4

h1 h2 h3 h4

f4

1 2 n t = n+1

paddingn-1 blocks determined by the attackarbitrary

n blocks used in the basic attack

target of the preimage attacks

1 t-n t-n+1 t-1 t

tn1 2

target of the preimage attacks

n blocks used in the basic attack

paddingt-n arbitrary blocks n-1 blocks determined by the attack

paddingarbitrary n-1 blocks determined by the attack

n blocks used in the basic attack t-n blocks same as the 
first preimage

target of the preimage attacks

f

·θ

f

·θ

f

·θ

f

iv

m1

h0 h1

m2

h2

m3

f1 f2 f3

h0

x (1+θ)a + a + xa + x

a (1+θ)2a + (1+θ)a + a(1+θ)a + a

h1 h2 h3

Figure 5.3: Structure of the message used in the (second) preimage attacks.

Due to the padding and the final processing in SMASH, cf. (5.3), we can-
not control the message input for the last two applications of the compression
function. Therefore, we see currently no way of constructing preimages for the
SMASH design strategy. However, we can use the fact that we can control the
difference in the chaining variable to construct second preimages. For the sake
of readability, assume we are given a message M after padding consisting of
t = n + 1 blocks. We refer to this message as the first preimage. Later on, we
will show how to extend the approach to longer and also shorter messages. We
can easily compute ht−1, the chaining variable before processing the message
block Mt. Now, we construct an n-block preimage for ht−1. Subsequently, we
concatenate Mt to produce a second preimage for SMASH. This attack produces
second preimages of the same length as the given message (first preimage).

Second Preimages for Longer Messages. For messages consisting of t ≥
n + 2 blocks, there are two possibilities to construct second preimages using the
above-described attack strategy.

1. The target for the preimage is again ht−1. Choose arbitrary values in the
first t− n blocks instead of the first block only and then do the attack by
controlling the last n− 1 message blocks. The resulting message structure
is illustrated at the top of Figure 5.4.

2. Instead of constructing a preimage for ht−1, construct a preimage for hn.
Only the first message block can be chosen arbitrarily, the last t−n blocks



94 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

are the same for the first message and the second preimage. The resulting
message structure is illustrated at the bottom of Figure 5.4.

f

·θ

f

·θ

f

·θ

f

·θ

m1

h0

h1

m2

h2

m3

h3

f1 f2 f3

m4

h1 h2 h3 h4

f4

1 2 n t = n+1

paddingn-1 blocks determined by the attackarbitrary

n blocks used in the basic attack

target of the preimage attacks

1 t-n t-n+1 t-1 t

tn1 2

target of the preimage attacks

n blocks used in the basic attack

paddingt-n arbitrary blocks n-1 blocks determined by the attack

paddingarbitrary n-1 blocks determined by the attack

n blocks used in the basic attack t-n blocks same as the 
first preimage

target of the preimage attacks

f

·θ

f

·θ

f

·θ

f

iv

m1

h0 h1

m2

h2

m3

f1 f2 f3

h0

x (1+θ)a + a + xa + x

a (1+θ)2a + (1+θ)a + a(1+θ)a + a

h1 h2 h3

Figure 5.4: Two different structures of the messages used in the (second) preimage
attacks for longer messages.

Second Preimages for Shorter Messages. The attack can also be extended
to find second preimages for a first preimage M consisting of t ≤ n blocks. It
follows from Theorem 5.1 that then we get n equations in t− 1 unknowns:

ht−1 + h∗t−1 = a
t−1∑
j=1

δj(1 + θ)t−j−1

With probability 2t−1−n, there exists a solution δ. If no solution exists, then
the attack has to be repeated with another value for m or x. On average, the
attack will succeed after 2n+1−t iterations. Hence, the presented attack is faster
than the general meet-in-the-middle attack [87] for messages longer than n/2+1
blocks.

5.2 A Second Preimage Attack on a DBLH Pro-
posal

In this section, we present a second preimage attack on a double-block-length
hash proposal presented at FSE 2006. The attack works if the hash function



5.2. A Second Preimage Attack on a DBLH Proposal 95

proposal is instantiated with a block cipher following the FX construction. This
second preimage attack is, as the attack on SMASH in the previous section, a
purely structural attack, and allows to construct second preimages determinis-
tically if the given message consist of at least 2 (3) message blocks.

5.2.1 The Proposal

Shoichi Hirose proposed a double-block-length hash function at FSE 2006 [68],
which we will refer to as DBLH for the remainder of this chapter. It is an iterated,
block-cipher-based hash function and uses MD strengthening. The compression
function is defined as follows:

gi = Fhi−1‖mi
(gi−1)⊕ gi−1

hi = Fhi−1‖mi
(gi−1 ⊕ c)⊕ gi−1 ⊕ c ,

(5.16)

where c is an arbitrary constant with the only restriction that c 6= 0, Fk (k =
hi−1‖mi) is an arbitrary block cipher, and hi‖gi is the chaining value with h0‖g0

a fixed initial value (cf. Figure 5.5). After t message blocks have been processed,

m1

f

m2

f

m3

f
h1 h2 h3

h0

f f fh1
* h2

*

m1
* m2

* m3
*

f f f f

1 2 3 t

F F

c

gi-1hi-1

mi

gihi

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

gi-1hi-1

c

mi = li || ri

gihi

li

ri

FX FX

m4

f
h4

m5

f
h5

FF

gi-1hi-1

c

gihi

li

ri

mi = li || ri

FX FX

m3 m5m1 m4m2

m1
* m2

* m5m4m3

m1 m2
* m3

* m5m4

m1 m2 m3
* m4

* m5

m3m1 m2 m4
* m5

*

m1
* m2

* m3
* m4

* m5

m1
* m2

* m3 m4
* m5

*

m1 m2
* m3

* m4
* m5

*

t

` = 2
` = 3

Figure 5.5: The double-block-length hash function proposal of Hirose with F as un-
derlying block cipher.

the final hash value is the concatenation ht‖gt. As it can be seen in (5.16), the
key length of the underlying block cipher F has to be greater than the block
length. This is because |k| = |hi−1| + |mi|, where |hi−1| is the block length of
the cipher.

In [68], Hirose proved the security with respect to collision resistance of
DBLH in the ideal cipher model. Another interesting property of this proposal
is that the construction does not require two full encryptions for one iteration
since only one key schedule has to be computed. This is in general not the case
for double-block-length hash functions as for instance MDC-2 or MDC-4. How-
ever, this performance advantage compared to other DBL hash functions is not
reflected in the rate of this block-cipher-based hash function (cf. Section 2.3.5).
If the construction is instantiated for instance with AES-192 a rate r = 1/4 and
in the case of AES-256 a rate r = 1/2 is achieved.



96 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

5.2.2 DESX and the General Construction FX

The block cipher DESX [82] was proposed by Rivest to protect DES against
exhaustive key search attacks. Kilian and Rogaway proved the security of the
DESX construction in [81, 82] against a key-search adversary. The best know
attack on DESX known to date has been presented by Biryukov and Wagner in
[21].

The general form of this construction is referred to as FX [81, 82], where
F can be any block cipher with block length n and key length |k|. The FX
construction is defined as follows:

FXk‖k1‖k2(x) = Fk(x⊕ k1)⊕ k2 ,

where |k1| = |k2| = n and the key length is |k|+ 2n.
Kilian and Rogaway showed that FX with a key length of |k| + 2n bits has

an effective key length of at least k + n − 1 − log m bits, where m bounds
the number of (m,FXk‖k1‖k2(x)) pairs a key-search adversary can obtain. The
effective key length, which is obviously smaller than |k|+2n bits, determines the
security margin against a brute force key-search attack. It is obvious that the
FX construction is not an ideal cipher. For instance, flipping a bit in k2 can be
directly observed in the ciphertext which allows to distinguish it trivially from
an ideal cipher (see Section 2.2).

5.2.3 DBLH with FX

For DBLH with underlying block cipher FXk‖k1‖k2(x), we can construct the
following three configurations (see Figure 5.6), where mi = li‖ri.

Configuration I:
k‖k1‖k2 = li‖hi−1‖ri, where |li| = |k|, |hi−1| = |ri| = n

Configuration II:
k‖k1‖k2 = hi−1‖li‖ri, where |hi−1| = |k|, |li| = |ri| = n

Configuration III:
k‖k1‖k2 = li‖ri‖hi−1, where |li| = |k|, |ri| = |hi−1| = n

(5.17)

For each configuration, we can interchange li and ri. However, without loss of
generality, we take the configurations defined in (5.17) for the further analysis.
Note that if F is a block cipher with |k| < n then, for Configuration II, the
chaining variable hi−1 needs to be truncated to match the key length |k|. Which
bits are truncated does not have any impact on the analysis. For the remainder
of this section, we assume that F is a block cipher with |k| = n.

For the sake of simplicity, we will write DX to denote the instantiation of
DBLH with FX as underlying block cipher. If we speak of a specific configura-
tion, we append the number of the configuration. For instance, for DBLH with
FX in Configuration II, we write DX-II.



5.2. A Second Preimage Attack on a DBLH Proposal 97

FF

gi-1hi-1

c

mi = likri

gihi

FF

gi-1hi-1

c

gihi

FF

gi-1hi-1

c

gihi

li

ri

li

ri

ri

li

Configuration II Configuration IIIConfiguration I

FX FX FX FX FX FX

Hin

Hout

m

k2

k1

NMACk1k2 (m)
1 2

Hin

Hout

iv

iv

HMACk (m)

ihash

(k ⊕ ipad)k m

(k ⊕ opad)k ihash

p
a

d

mi = likri mi = likri

Figure 5.6: Three possible configurations of DBLH with FX as underlying block ci-
pher. The hatch denotes the key input of the block cipher F .

5.2.4 The Second Preimage Attack

For DX, we can find second preimages for all the configurations described in
Section 5.2.3. The following three theorems describe how the second preimages
can be constructed. The proofs of the theorems are based on techniques from
differential cryptanalysis.

Theorem 5.3. For the iterated hash function DX-I, we can construct second
preimages, since for every two-block message m = m1‖m2 the following message
m∗ results in the same hash value:

m∗ = (m1 ⊕ (0‖u′))‖(m2 ⊕ (0‖u′)) , (5.18)

where mi = li‖ri, |li| = |k|, |ri| = n, u′ any value with |u′| = n, and 0 is the
|k|-bit all-zero binary string.

Proof. Assume, we have the following 2-block messages m,m∗, where:

m = m1‖m2 = (l1‖r1)‖(l2‖r2)
m∗ = m∗

1‖m∗
2 = (m1 ⊕ (0‖u′))‖(m2 ⊕ (0‖u′)) = (l∗1‖r∗1)‖(l∗2‖r∗2)

l∗1 = l1 ⊕ 0 = l1, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ 0 = l2, r∗2 = r2 ⊕ u′

After one iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ h0)⊕ r1

g∗1 = g0 ⊕ Fl1(g0 ⊕ h0)⊕ r1 ⊕ u′ = g1 ⊕ u′ , and
h1 = g0 ⊕ c⊕ Fl1(g0 ⊕ c⊕ h0)⊕ r1

h∗1 = g0 ⊕ c⊕ Fl1(g0 ⊕ c⊕ h0)⊕ r1 ⊕ u′ = h1 ⊕ u′ .



98 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

The outputs after two iterations are

g2 = g1 ⊕ Fl2(g1 ⊕ h1)⊕ r2

g∗2 = g1 ⊕ u′ ⊕ Fl2(g1 ⊕ u′ ⊕ h1 ⊕ u′)⊕ r2 ⊕ u′

= g1 ⊕ Fl2(g1 ⊕ h1)⊕ r2 = g2 , and
h2 = g1 ⊕ c⊕ Fl2(g1 ⊕ c⊕ h1)⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c⊕ Fl2(g1 ⊕ u′ ⊕ c⊕ h1 ⊕ u′)⊕ r2 ⊕ u′

= g1 ⊕ c⊕ Fl2(g1 ⊕ c⊕ h1)⊕ r2 = h2 .

Hence, g′2 = g2 ⊕ g∗2 = 0 and h′2 = h2 ⊕ h∗2 = 0. Therefore, the 2-block message
m∗ defined in (5.18) is a second preimage for the 2-block first preimage (given
message) m.

Theorem 5.4. For the iterated hash function DX-II, we can construct second
preimages, since for every 3-block message m = m1‖m2‖m3 the following mes-
sage m∗ results in the same hash value:

m∗ = (m1 ⊕ (0‖u′))‖(m2 ⊕ (v′‖w′))‖(m3 ⊕ (z′‖z′)) , (5.19)

where mi = li‖ri, |li| = |ri| = n, u′, v′ any value with |u′| = |v′| = n, and 0
is the n-bit all-zero binary string. Let t′ be the output difference of the left F
instance in iteration 2:

t′ = [Fh1(g1 ⊕ c⊕ l2)]⊕ [Fh1⊕u′(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)] (5.20)

Then, w′ = u′ ⊕ t′ and the difference z′ in (5.19) is defined as

z′ = [Fh1(g1 ⊕ l2)⊕ r2 ⊕ g1]⊕
[Fh1⊕u′(g1 ⊕ u′ ⊕ l2 ⊕ v′)⊕ r2 ⊕ w′ ⊕ g1 ⊕ u′] . (5.21)

Proof. We show that for the 3-block messages m and m∗, where

m = m1‖m2‖m3 = (l1‖r1)‖(l2‖r2)‖(l3‖r3)
m∗ = (m1 ⊕ (0‖u′))‖(m2 ⊕ (v′‖w′))‖(m3 ⊕ (z′‖z′)) = (l∗1‖r∗1)‖(l∗2‖r∗2)‖(l∗3‖r∗3)
l∗1 = l1 ⊕ 0, r∗1 = r1 ⊕ u′

l∗2 = l2 ⊕ v′, r∗2 = r2 ⊕ w′

l∗3 = l3 ⊕ z′, r∗3 = r3 ⊕ z′

the output difference equals zero after three iterations. After one iteration, we
have

g1 = g0 ⊕ Fh0(g0 ⊕ l1)⊕ r1

g∗1 = g0 ⊕ Fh0(g0 ⊕ l1)⊕ r1 ⊕ u′ = g1 ⊕ u′

h1 = g0 ⊕ c⊕ Fh0(g0 ⊕ c⊕ l1)⊕ r1

h∗1 = g0 ⊕ c⊕ Fh0(g0 ⊕ c⊕ l1)⊕ r1 ⊕ u′ = h1 ⊕ u′ .



5.2. A Second Preimage Attack on a DBLH Proposal 99

After two iterations, chaining variable h2 is computed as follows

h2 = g1 ⊕ c⊕ Fh1(g1 ⊕ c⊕ l2)⊕ r2

h∗2 = g1 ⊕ u′ ⊕ c⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)⊕ r2 ⊕ w′ .

With w′ = u′ ⊕ t′ and t′ as defined in (5.20), we get

h∗2 = g1 ⊕ u′ ⊕ c⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)⊕ r2 ⊕ u′

⊕ Fh1(g1 ⊕ c⊕ l2)⊕ Fh1⊕u′(g1 ⊕ u′ ⊕ c⊕ l2 ⊕ v′)︸ ︷︷ ︸
t′

= g1 ⊕ u′ ⊕ c⊕ r2 ⊕ u′ ⊕ Fh1(g1 ⊕ c⊕ l2)
= h2 .

The difference in chaining variable g2 after two iterations is

g∗2 = g2 ⊕ z′ ,

where z′ is defined in (5.21). After three iterations, we get

g3 = g2 ⊕ Fh2(g2 ⊕ l3)⊕ r3

g∗3 = g2 ⊕ z′ ⊕ Fh2(g2 ⊕ z′ ⊕ l3 ⊕ z′)⊕ r3 ⊕ z′

= g2 ⊕ Fh2(g2 ⊕ l3)⊕ r3

= g3

h3 = g2 ⊕ c⊕ Fh2(g2 ⊕ c⊕ l3)⊕ r3

h∗3 = g2 ⊕ z′ ⊕ c⊕ Fh2(g2 ⊕ z′ ⊕ c⊕ l3 ⊕ z′)⊕ r3 ⊕ z′

= g2 ⊕ c⊕ Fh2(g2 ⊕ c⊕ l3)⊕ r3

= h3 .

Therefore, after three iterations the differences in the chaining variables are
g′3 = g3 ⊕ g∗3 = 0 and h′3 = h3 ⊕ h∗3 = 0. Therefore, the 3-block message m∗

defined in (5.19) is a second preimage for the 3-block first preimage m.

Theorem 5.5. For the iterated hash function DX-III, we can construct sec-
ond preimages, since for every 3-block message m = m1‖m2‖m3 the following
message m∗ results in the same hash value:

m∗ = (m1 ⊕ (u′‖v′))‖(m2 ⊕ (0‖z′))‖(m3 ⊕ (0‖(w′ ⊕ z′))) , (5.22)

where mi = li‖ri, |li| = |k|, |ri| = n, u′, v′ any value with |u′| = |k| and |v′| = n,
and 0 is the |k|-bit all-zero binary string. Once the values u′, v′ have been chosen
for the given input message block m1, the differences w′ and z′ can be computed:

w′ = [g0 ⊕ c⊕ Fl1(g0 ⊕ c⊕ r1)⊕ h0]
⊕ [g0 ⊕ c⊕ Fl1⊕v′(g0 ⊕ c⊕ r1 ⊕ u′)⊕ h0] ,

z′ = [g0 ⊕ Fl1(g0 ⊕ r1)⊕ h0]
⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′)⊕ h0]



100 Chapter 5. Cryptanalysis of Selected Hash Function Proposals

Proof. As for the proof of Theorem 5.3 and Theorem 5.4, we show that for the
3-block messages m and m∗, where m = m1‖m2‖m3 = (l1‖r1)‖(l2‖r2)‖(l3‖r3)
and

m∗ = (m1 ⊕ (u′‖v′))‖(m2 ⊕ (0‖z′))‖(m3 ⊕ (0‖(w′ ⊕ z′))) = (l∗1‖r∗1)‖(l∗2‖r∗2)‖(l∗3‖r∗3)
l∗1 = l1 ⊕ u′, r∗1 = r1 ⊕ v′

l∗2 = l2 ⊕ 0, r∗2 = r2 ⊕ z′

l∗3 = l3 ⊕ 0, r∗3 = r3 ⊕ (w′ ⊕ z′)

the output difference equals zero after three iterations, i.e. g′3 = h′3 = 0. After
the first iteration, we have

g1 = g0 ⊕ Fl1(g0 ⊕ r1)⊕ h0

g∗1 = g1 ⊕ z′,where
z′ = [g0 ⊕ Fl1(g0 ⊕ r1)⊕ h0]
⊕ [g0 ⊕ Fl1⊕v′(g0 ⊕ r1 ⊕ u′)⊕ h0] , and

h1 = g0 ⊕ c⊕ Fl1(g0 ⊕ c⊕ r1)⊕ h0

h∗1 = h1 ⊕ w′,where
w′ = [g0 ⊕ c⊕ Fl1(g0 ⊕ c⊕ r1)⊕ h0]

⊕ [g0 ⊕ c⊕ Fl1⊕v′(g0 ⊕ c⊕ r1 ⊕ u′)⊕ h0] .

The difference of the chaining variables after two iterations is

g2 = g1 ⊕ Fl2(g1 ⊕ r2)⊕ h1

g∗2 = g1 ⊕ z′ ⊕ Fl2(g1 ⊕ z′ ⊕ r2 ⊕ z′)⊕ h1 ⊕ w′

= g2 ⊕ (w′ ⊕ z′) , and
h2 = g1 ⊕ c⊕ Fl2(g1 ⊕ c⊕ r2)⊕ h1

h∗2 = g1 ⊕ z′ ⊕ c⊕ Fl2(g1 ⊕ z′ ⊕ c⊕ r2 ⊕ z′)⊕ h1 ⊕ w′

= h2 ⊕ (w′ ⊕ z′) .

The output difference after three iterations is computed as follows. For the sake
of clearness, we write y′ = w′ ⊕ z′:

g3 = g2 ⊕ Fl3(g2 ⊕ r3)⊕ h2

g∗3 = g2 ⊕ y′ ⊕ Fl3(g3 ⊕ y′ ⊕ r3 ⊕ y′)⊕ h2 ⊕ y′

= g3 , and
h3 = g2 ⊕ c⊕ Fl3(g2 ⊕ c⊕ r3)⊕ h2

h∗3 = g2 ⊕ y′ ⊕ c⊕ Fl3(g2 ⊕ y′ ⊕ c⊕ r3 ⊕ y′)⊕ h2 ⊕ y′

= h3

Hence, g′3 = g3 ⊕ g∗3 = 0 and h′3 = h3 ⊕ h∗3 = 0. Therefore, the 3-block message
m∗ defined in (5.22) is a second preimage for the 3-block first preimage m.



5.3. Summary 101

5.3 Summary

In this chapter, we have presented second preimage attacks for two recent hash
function proposals: the single-block-length hash function design strategy SMASH
and the double-block-length hash function proposal DBLH. Both attacks are
pure structural attacks in the sense that they are independent of the underlying
nonlinear function: for SMASH the n-bit function f and for DBLH the under-
lying block cipher. It is important to stress, that the second preimage attack on
DBLH when instantiated with a block cipher following the FX construction does
not disprove the security proof of Hirose. Therefore the hash function proposal
can not be considered to be broken. We will exploit the results of this chapter
for the discussion on the implications of second preimage attacks on hash-based
message authentication codes in Chapter 6.





6
Implications of Collision and Second

Preimage Attacks on Hash-Based MACs

In this chapter, we will discuss the implications of recent collision and second
preimage attacks on hash-based message authentication codes (MACs) such as
NMAC and HMAC. Firstly, we will review the implications on MACs due
to recent collision attacks. Secondly, building upon the results of Chapter 5,
we also analyze the implications on NMAC and HMAC if one can construct
second preimages for the underlying hash function. This chapter includes work
presented in [136].

6.1 Message Authentication Codes and Attacks

Message authentication codes (see Section 2.4 for an introduction) such as the
CBC-MAC or NMAC/HMAC are subject to the following attacks: forgery at-
tacks and key-recovery attacks. Regarding forgery, we require from a MAC that
for an adversary it should be infeasible to find for an arbitrary message (exis-
tential forgery) or a message of his choice (selective forgery) the corresponding
tag if he has no knowledge of the secret key k. The most devastating attack on
a MAC is key recovery. For an ideal MAC, key recovery should be as expensive
as exhaustive key search, i.e. for a |k|-bit key it should require about 2|k| MAC
queries. The number of required message-tag pairs for verifying the correct key
is d|k|/ne, where n is the length of the tag in bits. It is clear that once an
adversary knows the correct key k then he can also perform a (selective) forgery.
We speak of a known-message attack if the adversary eavesdrops q message-
tag pairs communicated between two legitimate parties: (m1, a1), . . . , (mq, aq),
where ai is the corresponding tag. An attack is called a chosen-message attack
if the adversary can choose the messages m1, . . . ,mq and gets the corresponding
tags. Note that a chosen-message attack is considered to be less realistic than a
known-message attack. For instance, depending on the practical application, an
attacker may not be able to have access to the system and hence cannot ask for
the tag of a message of his choice.

The most popular hash-based message authentication codes are NMAC and

103



104 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

HMAC, where the construction used most often in practice is HMAC. This is
also reflected by the standardization of HMAC in for instance IETF RFC 2104
[92], ANSI X9.71 [72], and the generalization of these standards in NIST FIPS
[129]. For the remainder of this chapter, we will only focus on NMAC and
HMAC. They are defined as follows (see also Figure 6.1):

NMACk1,k2(m) = H(k1, pad(H(k2,m))) (6.1)
HMACk(m) = H(iv, (k ⊕ opad)‖H(iv, (k ⊕ ipad)‖m)) , (6.2)

where H(iv, m) denotes the application of the iterated hash function H, e.g.
SHA-1, with initial value iv and a t-block message m = m1‖ . . . ‖mt after
padding. If a hash function with a block size bigger than the chaining value
is used, then an appropriate padding is required for NMAC such that the hash
value H(k2,m) fits the block size of the hash function. This is denoted by pad(·)
in (6.1) and in Figure 6.1. For NMAC the initial value iv is replaced by the
secret key k1, respectively k2, resulting in a keyed hash function. For HMAC
the same initial value is used as specified for the underlying hash function and
the message input is keyed. Two appropriate padding methods are defined (the
one specified for the underlying hash function) to have a key k that is of the
same length as the block size of the hash function. Furthermore, two constants
ipad and opad for the secret key k are defined, which is also referred to as the
key derivation function of HMAC. For NMAC, we call the key k2 the inner key
and the according Hin the inner hash. The key k1 is called the outer key and
Hout the outer hash, respectively. We use the same naming for HMAC with the
only difference that (k⊕ ipad) and (k⊕opad) is called the inner key, respectively
the outer key. For the remaining discussion, we assume that we have an n-bit
chaining value and an n-bit tag, i.e. no output transformation such as truncation
is applied. Furthermore, we assume that we have messages that are a multiple
of the block length.

FF

gi-1hi-1

c

mi = likri

gihi

FF

gi-1hi-1

c

gihi

FF

gi-1hi-1

c

gihi

li

ri

li

ri

ri

li

Configuration II Configuration IIIConfiguration I

FX FX FX FX FX FX

Hin

Hout

m

k2

k1

NMACk1k2 (m)
1 2

Hin

Hout

iv

iv

HMACk (m)

ihash

(k ⊕ ipad)k m

(k ⊕ opad)k ihash

p
a

d

mi = likri mi = likri

Figure 6.1: The NMAC (left) and HMAC (right) construction based on an iterated
hash function H.

Since NMAC and HMAC are iterated MACs the results of Preneel and van
Oorschot in [146] apply. They presented generic attacks which are based on the
birthday paradox. As a result, a forgery attack is always possible in about 2n/2

operations. Therefore, in order to speak of a (theoretical) attack on NMAC and
HMAC (or any other iterated MAC construction), we require that the complexity
for forgery attacks is below 2n/2 and for key-recovery attacks it is below 2|k|.



6.2. Implications of Collision Attacks 105

Bellare et al. proved the security of NMAC and HMAC in [6]. They show
that NMAC is a pseudo-random function PRF (for the definition of a PRF we
refer to Goldreich et al. [63]). In their security model, the notion of a PRF is
stronger than the notion of a secure MAC. Therefore, any PRF is a secure MAC
as it has been shown by Bellare et al. in [8]. We do not further investigate their
security model but we will look at the required properties of the underlying hash
function. To prove that NMAC is a PRF, the underlying hash function needs
to fulfill the following two properties:

• P1) the keyed compression function is a pseudo-random function

• P2) the keyed hash function is weakly collision resistant

Regarding the definition of the second property P2, we refer to [6], where this
notion has been introduced. Roughly speaking, the second property is weaker
than the assumption that the keyed hash function has to be collision resistant.
Based on the security proof of NMAC they also proved the security of HMAC
by introducing an additional assumption:

• P3) the key derivation function of HMAC is a pseudo-random function

Due to the recent results in the cryptanalysis of MD5 and SHA-1, the assumption
P2 is no longer valid for these hash functions since collisions can be constructed
for any initial value [172, 173]. Note that these recent attacks do not contradict
the proofs of Bellare et al. They just show that the most commonly used hash
functions in practice do not fulfill the requirements anymore. Therefore, Bellare
presented new proofs for NMAC and HMAC in [5] where the assumption P2 is
not required anymore. This leads to proofs that have less strong requirements on
the underlying hash function than the original proofs. The biggest advantage of
these new proofs is that the two most widely used hash functions used in practice
for NMAC and HMAC, namely MD5 and SHA-1, still provide the required
strength. More precisely, based on the cryptanalytic results to date the keyed
compression function for both hash functions is a PRF and hence assumption
P1 still holds.

6.2 Implications of Collision Attacks

Recently, some researchers investigated the impact of collision attacks on hash-
based message authentication codes instantiated with MD4, MD5, HAVAL,
SHA-0, and SHA-1 as underlying hash function: Kim et al. [83], Contini and
Yin [32, 33], Rechberger and Rijmen [149], and Fouque et al. in [59]. The results
of their analyses is that the collision attacks do impact the security of NMAC
and HMAC. However, the attack complexities are far beyond being practical.

For the following discussion, we assume that the attacker is able to perform
a chosen-message attack. The adversary is given an NMAC/HMAC oracle he
can query with messages of his choice and receives the according tags, which is
the standard model for analyzing the security of MACs. For the remainder of
this chapter, we consider the following attack scenarios:



106 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

• distinguishing attack: distinguish the MAC from a pseudo-random
function

• forgery attack: for a message m, find a second message m∗ 6= m that
results in the same tag

• key-recovery attack:

– NMAC: find the keys k1 and k2

– HMAC: find the key k. Note that an equivalent information for the
key k are the values H(iv, (k⊕ipad)) and H(iv, (k⊕opad)) since with
these values an adversary can compute the tag for any message

Note that distinguishing attacks on the hash-based MACs are interesting
for two reasons. Firstly, the security proof of NMAC and HMAC shows that
NMAC/HMAC is a pseudo-random function. This property is useful when
HMAC is used as a PRF for key-derivation in for instance TLS [48] and IPsec [65].
Therefore, if we can distinguish the MAC from a pseudo-random function, then
we can conclude that the underlying hash function does not fulfill the required
properties and one should replace the hash function with a stronger one. Sec-
ondly, the kind of distinguishing attacks discussed in this chapter and forgery
attacks are closely related to one another. We emphasize that we are only con-
sidering a special type of forgery, namely we try to find a second message that
results in the same tag as a given one. In general, for a forgery the attacker can
also generate a new message resulting in a new valid tag.

6.2.1 Distinguishing and Forgery Attacks

To present the basic idea of a distinguishing attack on NMAC and HMAC, we
assume that we are given a collision-producing characteristic with a probability of
2−w, where w � n/2. For instance, we can use the characteristic for step-reduced
SHA-1 presented in [149, Table 6]. This collision-producing characteristic for 34
out of 80 steps has a probability of 2−31. One of the main reasons why such
a characteristic can be exploited for a distinguishing attack is that for both
NMAC and HMAC, a collision in the inner hash is preserved by the application
of the outer hash. Based on this property and the given characteristic, we can
distinguish NMAC and HMAC as follows (see also [32, 149]):

• on-line phase: collect the tags for pairs of messages with the input dif-
ference that defines the characteristic

• off-line phase: search for a pair of messages that have the same tag

The number of required trials, i.e. queries to the NMAC/HMAC oracle, is
related to the probability of the characteristic. We know that after randomly
choosing about 2w message pairs with the given input difference defining the
characteristic, we will find with high probability one message pair that has the
same tag. Therefore, after about 2w+1 queries to the NMAC/HMAC oracle, we



6.2. Implications of Collision Attacks 107

found one message pair with colliding tags. Since we assumed that w � n/2, we
have successfully performed a distinguishing attack on both NMAC and HMAC.

A forgery attack in a chosen-message scenario proceeds as follows: the ad-
versary chooses a message m and queries the oracle to obtain the tag. Now, if
the attacker is able to find a second message m∗ 6= m that results in the same
tag and the complexity for finding this message m∗ is smaller than 2n/2, then
he can continue as follows. Since the two messages collide in the inner hash the
attacker can just append an arbitrary message e to have successfully performed a
forgery: due to the collision of m and m∗ both m‖e and m∗‖e result in the same
tag. Therefore, we can conclude that a collision attack on the underlying hash
function leads to a distinguishing attack and this in turn leads to an immediate
forgery attack with the same complexity as the distinguishing attack. The only
difference is that the adversary needs one additional chosen query to get the tag
for the message m‖e.

So far, we assumed that we are given a collision-producing characteristic.
But as has been shown for instance in [32] also a related-key attack can be
used. More precisely, the related-key assumption gives the adversary additional
information about the key: he still does not know the key but a specific relation
between certain key bits. Under the related-key assumption, we can use for
instance a characteristic resulting in a pseudo-collision in the inner hash. As
we have discussed in Chapter 4, such a characteristic can have a significantly
better probability than a collision-producing characteristic. Hence, the related-
key assumption can lead to lower attack complexities as it has been shown in
[32, 149]. Nevertheless, the attack becomes less realistic since it is reduced to
the related-key setting.

6.2.2 Key-Recovery Attacks

The distinguishing attack and the forgery attack are also the basis for the key-
recovery attack. This is due to the fact that the defined characteristic and the
observation of identical tags resulting from a collision in the inner hash, provide
the adversary with information about internal state values. We will explain this
in more detail on a demonstrative example for NMAC-SHA-1 that only consists
of the first six steps, i.e. the state update transformation uses fIF. For a more
detailed analysis and description of the methods for key recovery, we refer to
[32, 59, 149].

For our example, we are using a single local collision as defined in Chapter 4
with the difference that we do not inject the corrections in steps 2, 3, and 4:

W ′
0 = +2j

W ′
1 = −2j+5

W ′
5 = −2j−2

W ′
2 = W ′

3 = W ′
4 = 0 ,

(6.3)

where 0 ≤ j ≤ 31. If we observe a collision after six rounds then we know
with overwhelming probability (the probability that we find a random collision



108 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

is negligible compared to the probability of the 6-step collision) that the input
differences to fIF have been blocked in steps 2, 3, and 4 (note that a single-bit
difference is blocked with probability of 1/2). This in turn provides information
about the internal state as follows. We know from Section 2.5.2 that fIF has the
following differential properties for a single-bit difference in bit position j:

step 2 : difference B′
2 = 2j is blocked iff C2,j ⊕D2,j = 0

step 3 : difference C ′
3 = 2j−2 is blocked iff B3,j−2 = 0

step 4 : difference D′
4 = 2j−2 is blocked iff B4,j−2 = 1

Therefore, if we observe a collision in the tags, i.e. we found a message pair
that follows the characteristic, we gain the following information about the state
values at bit position j:

C2,j ⊕D2,j = 0⇔ A0,j−2 ⊕B0,j−2 = 0
B3,j−2 = 0⇔ A2,j−2 = 0
B4,j−2 = 1⇔ A3,j−2 = 1 ,

and hence information about the inner key k2. Note that for the further discus-
sion, we will exploit only the information we gain about A0,j−2 and B0,j−2.

If we do not observe a collision after the expected number of trials, we can
conclude that the difference in step 2 has not been blocked and hence we know
that

C2,j ⊕D2,j = 1⇔ A0,j−2 ⊕B0,j−2 = 1 .

Note that we would also not observe a collision if the difference has not been
blocked in steps 3 or 4. However, we can assume that the difference has not been
blocked in step 2 and not in steps 3, 4, since in these steps we have a probability
of 1/2 that the difference is blocked. The probability for steps 3 and 4 follows
from the fact that we use randomly chosen messages as input and hence the
input to fIF in steps 3, 4 behaves randomly. In step 2 the differential property of
fIF depends on the chaining variables C2,j and D2,j , namely the values A0,j−2

and B0,j−2 (parts of the inner key k2).
It is easy to see that for the characteristic in (6.3), we expect a collision after

six steps with a probability of 2−4 (without considering carry effects) resulting
from a probability of 1/2 in step 0 and steps 2, 3, 4. As opposed to the probability
of a local collision (cf. Section 4.4), the probability of the characteristic in (6.3) is
independent of the bit position j. The reason for this is that, firstly, we assume
that the easy conditions are fulfilled. Secondly, we only require the difference
in step 2 to be blocked. Hence the sign of the difference is not of interest (zero
difference in the message word W2). Therefore, we have a probability of 1/2 in
step 2.

With this information, we can now proceed as follows. For each bit position
j, with 0 ≤ j ≤ 31, we try about 24 message pairs, i.e. 25 queries. If we
observe a collision, then we know with high probability that A0,j−2⊕B0,j−2 = 0
and if we do not observe a collision in the tags then we can conclude that



6.2. Implications of Collision Attacks 109

A0,j−2 ⊕ B0,j−2 = 1. Therefore, with about 32 · 25 = 210 queries the key
space has been reduced from 2160 to 2160−32 = 2128. Thus, we can guess the
inner key k2 of NMAC-SHA-1 reduced to six steps in about 2128 trials and we
have performed successfully an inner-key-recovery attack for this demonstrative
example.

Once the inner key k2 has been recovered, we can also recover the outer
key k1, which then constitutes a full key recovery on NMAC. Recovering the
outer key was for the first time presented in [149]. The idea is as follows. With
the knowledge of the inner key k2, we can generate arbitrary many messages for
which we can easily compute the inner hash. Then, we use for instance a pseudo-
near-collision characteristic with a zero difference in the message words. More
precisely, we use the related-key assumption for recovering the outer key k1 and
we have a characteristic that has a zero input-difference but results in a specific
difference in the outer hash. Note that such a difference can be observed directly
in the tag of NMAC. An example of such a characteristic for step-reduced SHA-1
is given in [100]. With this characteristic also the outer key can be recovered as
has been shown in [149].

As discussed in the previous section, the distinguishing and forgery attack
on NMAC can be extended directly to HMAC. Regarding key-recovery attacks
the attack scenario is slightly different. More precisely, we cannot gain key
information as with NMAC, but we can get equivalent information, i.e. by get-
ting information about the initial value for the inner hash, we get information
about H(iv, (k ⊕ ipad)). For recovering the outer key-equivalent information
H(iv, (k⊕ opad)) one can proceed in a similar way as done for NMAC. We refer
to [32, 59, 149] for a more detailed discussion on the key-recovery attacks.

6.2.3 Summary of Forgery and Key-Recovery Attacks on
NMAC and HMAC with Step-Reduced SHA-1

In the following, we summarize the results on NMAC and HMAC with SHA-1
as underlying hash function that have been published to date. Kim et al. [83]
were the first that investigated the impact of collision attacks on both NMAC
and HMAC. They presented new distinguishing and forgery attacks if NMAC
or HMAC are instantiated with HAVAL, MD4, MD5, SHA, and step-reduced
SHA-1. Contini and Yin [32] extended upon these results for MD4, MD5, and
step-reduced SHA-1 by considering several published characteristics. They dis-
cussed forgery attacks and partial key-recovery attacks on NMAC for recovering
the inner key k2. Rechberger and Rijmen [149] improved further on the work
of Contini and Yin by considering easy relations between message words and
also by looking at side effects such as the impact of carries on the probability of
the characteristics. They presented new characteristics and new attack methods
that lead to the best cryptanalytic results on NMAC and HMAC with MD5
and SHA-1 published to date. Additionally, their analysis also considers the
truncation of the tag, which is a common output transformation for MACs (see
Section 2.4). Fouque et al. [59] presented full-key-recovery attacks on NMAC



110 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

and HMAC for MD4 without related-key assumption. Their key-recovery at-
tack on NMAC-MD5 is in the related-key setting and leads to the same result
as presented in [149]. A summary of the results and attack complexities is given
in Table 6.1 and Table 6.2, whereby we only consider the results for NMAC and
HMAC with step-reduced SHA-1.

Table 6.1: Summary of forgery attacks on HMAC-SHA-1.

MAC steps data truncation work
out of 80 complexity #bits out of 160

HMAC-SHA-1 0, . . . , 33 252 64 [83]
HMAC-SHA-1 0, . . . , 33 234 64 [32]
HMAC-SHA-1 0, . . . , 33 232 64 [149]
HMAC-SHA-1 20, . . . , 56 265 96 [149]

Table 6.2: Summary of key-recovery attacks on NMAC-SHA-1 and HMAC-SHA-1
presented in [149]. Note that the column offline complexity comes from a
new key-recovery method presented in [149].

MAC result steps data offline truncation
out of 80 compl. compl. #bits out of 160

NMAC-SHA-1 FRK 0, . . . , 33 2153 2156 64
HMAC-SHA-1 IK 0, . . . , 33 232 232 160
NMAC-SHA-1 IRK 19, . . . , 79 2100 2100 128
HMAC-SHA-1 IK 20, . . . , 72 299.5 299.5 128
FRK: Full-related key recovery
IRK: Inner related-key recovery
IK: Inner key recovery

6.3 Implications of Second Preimage Attacks

In this section, we will discuss the implications of second preimage attacks on
NMAC and HMAC. In particular, we will focus on the attacks on SMASH and
the double-block-length hash function proposal DBLH instantiated with a block
cipher following the FX construction as presented in Chapter 5.

6.3.1 The Notion of b-Block Bypass

In the following, we introduce a new property of iterated hash functions and
show which implications it has. For the remainder of this chapter, we assume



6.3. Implications of Second Preimage Attacks 111

without loss of generality that we have message lengths that are a multiple of
the block length. Furthermore, we assume that the blocks required for MD
strengthening have been removed.

Definition 6.1. (b-block bypass) Let H be an iterated hash function. We say
that we can construct a b-block bypass for H, if for any initial value h0 and
for any b-block message m = m1‖ . . . ‖mb, we can find a b-block message m∗ =
m∗

1‖ . . . ‖m∗
b 6= m such that the following holds:

H(h0, (m1‖ . . . ‖mi)) 6= H(h0, (m∗
1‖ . . . ‖m∗

i )) for i = 1, . . . , b− 1
H(h0, (m1‖ . . . ‖mb)) = H(h0, (m∗

1‖ . . . ‖m∗
b))

(6.4)

Remark 6.1. It follows directly from Definition 6.1 that the notions of b-block
bypass and second preimage are closely related. To be more precise, if we can
construct a b-block bypass for an iterated hash function then it is possible to
construct a second preimage m∗ for any given message m = m1‖ . . . ‖mt 6= m∗

with t ≥ b. Furthermore, both the second preimage m∗ and the message m are
of equal length. Hence, a b-block bypass provides additional details such as the
dependency on the chaining value.

Remark 6.2. Controlling the output difference of a hash function after b iter-
ations as has been shown in Section 5.1.4, is similar to Definition 6.1. The
differences are that for controlling the output difference, we cannot choose the
message m arbitrarily but it has to be the base message such that with the cor-
responding offset message we can control the difference after iteration b. Also,
we do not require that the chaining values of the base message and the offset
message are different throughout the iterations 1, . . . , b− 1. While for a b-block
bypass we can construct second preimages, controlling the output difference after
b iterations allows to construct b-block preimages as shown in Theorem 5.2.

It follows from Definition 6.1 that if we can construct a b-block bypass for a
hash function then we can do this for any initial value. Thus we can give the
following lemma:

Lemma 6.1. Let H be an iterated hash function for which we can construct a
b-block bypass. Then, for every message m = m1‖ . . . ‖mt with t ≥ b ≥ 1, we
can construct at least

bt/bc∑
j=1

(
t− j(b− 1)

j

)
distinct second preimages.

Proof. Based on Remark 6.1, we know that for every message with block length
greater or equal than b we can construct a second preimage. From Definition 6.1
it follows immediately that it does not matter which b consecutive blocks of the
message m are taken to construct a second preimage m∗. This implies that we
have at least t− b + 1 second preimages for the message m (see Figure 6.2).
On the other hand, if bt/bc ≥ 2 we can apply the fact from Definition 6.1 not



112 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

only for one b-block sub-message of m but for j sub-messages, where j can be in
the range of 1, . . . , bt/bc. An illustration of this fact is also shown in Figure 6.2.
The problem of counting all these possible second preimages of m boils down to
counting the number of possibilities of putting n indistinguishable balls into `
distinguishable urns. This number is known to be(

n− ` + 1
`− 1

)
,

cf. [55, page 38, Eq. (5.2)]. In our scenario, we fix a given number of b-block
bypass sub-messages. Then the ‘urns’ correspond to the possible positions where
the remaining message blocks can be inserted. That is, between two b-block
bypass blocks and on the very left or right end. The remaining message blocks
correspond to the ‘balls’.
Thus, in the formula above we have n = t − jb and ` = j + 1 so for every
j ∈ {1, . . . , bt/bc} we end up with(

t− jb + (j + 1)− 1
j + 1− 1

)
=
(

t− j(b− 1)
j

)
possibilities of choosing j sub-messages of length b in the original message m.
Thus, the overall number of second preimages resulting from the described con-
struction is

bt/bc∑
j=1

(
t− j(b− 1)

j

)
.

Remark 6.3. The result of Lemma 6.1 seems intuitive. However, Lemma 6.1
does not necessarily apply to the notion of second preimage but it always holds
for the notion of b-block bypass. Therefore, the notion of b-block bypass enables
a better insight on the possibilities for constructing a second preimage.

m1

f

m2

f

m3

f
h1 h2 h3

h0

f f fh1
* h2

*

m1
* m2

* m3
*

f f f f

1 2 3 t

F F

c

gi-1hi-1

mi

gihi

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

g0h0

c

m1 = l1 || r1

g1h1

l1

r1

FX FX

FF

g1h1

c

m2 = l2 || r2

g2h2

l2

r2

FX FX

FF

gi-1hi-1

c

mi = li || ri

gihi

li

ri

FX FX

m4

f
h4

m5

f
h5

FF

gi-1hi-1

c

gihi

li

ri

mi = li || ri

FX FX

m3 m5m1 m4m2

m1
* m2

* m5m4m3

m1 m2
* m3

* m5m4

m1 m2 m3
* m4

* m5

m3m1 m2 m4
* m5

*

m1
* m2

* m3
* m4

* m5

m1
* m2

* m3 m4
* m5

*

m1 m2
* m3

* m4
* m5

*

t

` = 2
` = 3

Figure 6.2: For a 2-block bypass we can construct for any 5-block message m =
m1‖ . . . ‖m5 seven distinct second preimages. The shadowed rectangles
show which blocks of the original message m have been modified to con-
struct the second preimage.

In the following sections, we will show that the second preimage attacks on
SMASH in Section 5.1 and DX in Section 5.2 fit the notion of b-block bypass.



6.3. Implications of Second Preimage Attacks 113

6.3.2 b-Block Bypass for SMASH

As discussed in detail in Section 5.1.4, we can construct efficiently second preim-
ages for SMASH-n. For the following discussion let us first consider SMASH-n
omitting padding and omitting the final output transformation in (5.3). For this
simplified variant of SMASH-n, we can derive an equation of the following form:

ht = x + y

t∑
j=1

δj(1 + θ)t−j , (6.5)

where 1 ≤ t ≤ n, x and y are values depending on the used initial value and
the compression function f , and the δi ∈ {0, 1} are unknowns on which the
respective blocks of the preimage m∗ = m∗

1‖ . . . ‖m∗
n will depend. As mentioned

in Section 5.1.4, (6.5) can be interpreted as an inhomogeneous system of n linear
equations in t variables over GF (2).
For the solvability of this system, we refer to Section 5.1.4. There we have shown
that if t = n in (6.5), we are guaranteed a unique solution δ1, . . . , δn from which
an n-block preimage m∗ can be constructed.

Because of (5.3), this preimage attack cannot be augmented to the full variant
of SMASH-n. However, we can use this result to construct an n-block bypass
for an arbitrary message m = m1‖m2‖ . . . ‖mn. Let hn denote the chaining
value computed after n applications of (5.2) starting from our initial message
m. Then, the technique described in Section 5.1.4 leads to a message m∗ such
that h∗n = hn and therefore h∗n+1 = hn+1. Furthermore, the method guarantees
that the constructed second preimage m∗ differs from m at least in the first
message block. Since this can be carried out independently of the choice of the
initial value h0, we arrive at the following theorem:

Theorem 6.1. For almost all instantiations of SMASH-n, we can construct an
n-block bypass. Especially, we can construct a 256-block, respectively 512-block
bypass for the hash functions SMASH-256, respectively SMASH-512.

It follows from Lemma 6.1 that for an arbitrary message m = m1‖ . . . ‖mt

with t ≥ n, we can find at least

bt/nc∑
j=1

(
t− j(n− 1)

j

)

second preimages based on the n-block bypass for SMASH-n.

6.3.3 b-Block Bypass for DBLH with FX

For the DBLH construction instantiated with FX as underlying block cipher
we can also construct a b-block bypass. Depending on the configuration, we
can construct a 2-block or a 3-block bypass, respectively. This is given by the
following theorems.



114 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

Theorem 6.2. For DX-I, we can construct a 2-block bypass. Furthermore, for
an arbitrary message m = m1‖ . . . ‖mt with t ≥ 2, we can find at least

bt/2c∑
j=1

(
t− j

j

)
second preimages based on this 2-block bypass.

Proof. The construction of a 2-block bypass for DX-I follows directly from Theo-
rem 5.3 given in Section 5.2.4. After two iterations the differences in the chaining
variables are g′2 = g2 ⊕ g∗2 = 0 and h′2 = h2 ⊕ h∗2 = 0. Since the differences in
chaining variables g′0 = h′0 = 0, we can construct a 2-block bypass following
Definition 6.1. The final statement of the theorem is an immediate consequence
of Lemma 6.1 with b = 2.

Note that for DX-I, we have an even stronger property than a b-block bypass
given in Definition 6.1. From Theorem 5.3 it follows that we can construct for
any 2-block message m a 2-block message m∗ such that for any initial value h0

(6.4) holds. This means that we are independent of the used initial value h0

for constructing a second preimage consisting of 2 blocks. In other words, the
2-block second preimage m∗ as shown in Theorem 5.3, remains always the same,
no matter which h0 is used.

Theorem 6.3. For both DX-II and DX-III, we can construct a 3-block bypass.
Furthermore, for an arbitrary message m = m1‖ . . . ‖mt with t ≥ 3, we can find
at least

bt/3c∑
j=1

(
t− 2j

j

)
second preimages based on this 3-block bypass.

Proof. The construction of a 3-block bypass for both DX-II and DX-III follows
directly from Theorem 5.4 and Theorem 5.5 given in Section 5.2.4. For both
configurations the differences in the chaining variables after three iterations are
g′3 = g3⊕g∗3 = 0 and h′3 = h3⊕h∗3 = 0. Since the differences in chaining variables
g′0 = h′0 = 0, we can construct a 3-block bypass following Definition 6.1. The
final statement of the theorem is an immediate consequence of Lemma 6.1 with
b = 3.

6.3.4 Implications on NMAC and HMAC

Motivated by the results on the implications of collision attacks on the security
of NMAC and HMAC, we now consider the implications of the second preimage
attacks. In particular, we will look at NMAC and HMAC using SMASH or one
of the DX constructions as underlying hash function. Note that in practice one
would not decide for NMAC and HMAC using the DX hash construction but
would rather use the underlying block cipher for deriving a block-cipher-based



6.3. Implications of Second Preimage Attacks 115

MAC (see for instance Section 2.4). However, we will use NMAC and HMAC
with DX as underlying hash function to highlight the impact of second preimage
attacks on hash-based MACs.

If we look at the second preimage attacks, then we see that these attacks
are differential attacks. However, as opposed to the collision attacks, the second
preimage attacks presented in this chapter are purely structural. Structural in
the sense that for constructing the second preimage, we do not consider the
nonlinear components of the hash functions. For instance, for the attack on
SMASH the nonlinear bijective mapping has no impact—any other mapping
can be used and the second preimage attack still succeeds. The same holds for
DX in all three configurations. In the case of DX it is even more clear since we
instantiate DX already with the general FX construction, meaning that we can
employ any block cipher.

DX-I

For the second preimage attack based on the 2-block bypass for the DX-I con-
struction, we can mount directly a forgery attack on both NMAC and HMAC.
This follows immediately from Theorem 5.3, which states that the second preim-
age can be constructed without knowing the initial value. Therefore, for any
t-block message m = m1‖ . . . ‖mt with t ≥ 2 = b, we can construct a forgery as
follows:

m∗
1 =m1 ⊕ (0‖u′)

m∗
2 =m2 ⊕ (0‖u′)

m∗
i =mi for i = 3, . . . , t ,

where u′ is an arbitrary value with |u′| = n, i.e. the value u′ has to be of the same
size as the block size of the underlying block cipher. The all-zero binary string 0 is
of the same size as the key of the employed block cipher (see Theorem 5.3). Note
that based on Lemma 6.1 the attacker has several possibilities for constructing
the second preimage depending on the number of blocks for the given message
m. As opposed to the forgery attacks discussed in Section 6.2, the forgery attack
presented here can be mounted in a known-message attack scenario making the
attack realistic. Furthermore, for messages with a block length ≥ 2 the attack
is deterministic, meaning that if we eavesdrop only a single message-tag, we can
construct a forgery.

Let us now look at the implications of this second preimage attack with
respect to key recovery. From the notion of b-block bypass in Definition 6.1, we
know that the second preimage can be constructed for any initial value h0. This
implies that we cannot gain any information about the used iv or equivalent state
information. Therefore, a key-recovery attack based on the second preimage
attack is not possible for both MAC constructions.

DX-II, DX-III, and SMASH

For DX-II and DX-III, we can construct second preimages based on a 3-block
bypass. It follows immediately from Theorem 5.4 and Theorem 5.5 that for



116 Chapter 6. Implications of Collisions and 2nd Preimages on MACs

constructing the second preimages, we require the knowledge of the initial value
since we need to compute the output differences of the employed block cipher
in iteration 2 and iteration 3. The same is true for SMASH-n. To construct the
second preimage based on the n-block bypass, we have to solve the inhomoge-
neous system of equations given in (6.5). In order to solve this system we need
to know the values x, y in (6.5) and these values depend on the initial value.
Therefore, the second preimage attacks on these hash functions do not lead to
a forgery for both NMAC and HMAC.

Regarding key-recovery attacks, we are in a similar situation as for DX-I.
The second preimage attacks are not independent of the initial value (we need
the iv to construct the second preimage) but the attack works for any known iv
resulting in no conditions on the initial value or any other state values. Therefore,
also for DX-II, DX-III, and SMASH-n a key-recovery attack by exploiting the
second preimage attack is not possible.

Table 6.3 summarizes the implications of the second preimage attacks on
NMAC and HMAC with the hash functions DX-I, DX-II, DX-III, and SMASH-n.
As can be seen in Table 6.3, the powerful second preimage attacks on the hash
functions SMASH-n and DX in all three configurations have very limited impli-
cations on NMAC and HMAC.

Table 6.3: Summary of the implications of second preimage attacks on NMAC and
HMAC with DX-I, DX-II, DX-III, and SMASH-n as underlying hash func-
tion. ‘no’ means that an attack based on the second preimage attack on
the hash function is not possible and ‘yes’ means that the attack can be
done efficiently.

NMAC/HMAC forgery attack key-recovery attack
DX-I yes no
DX-II no no
DX-III no no

SMASH-n no no

6.4 Summary

In this chapter, we have discussed the implications of recent collision and second
preimage attacks on the security of NMAC and HMAC. In the first part, we
reviewed recent research results in this direction. The main result is that the
collision attacks on the underlying hash function do impact the security of both
NMAC and HMAC. Nevertheless, the complexities for these attacks are far from
being practical. Furthermore, all attacks are performed in a chosen-message
attack model which makes them less realistic. Also the related-key assumption
reduces again the practicability. Regarding SHA-1, one has to note that so far it
is only possible to find high probability characteristics for step-reduced variants



6.4. Summary 117

of SHA-1 such that the attack complexity is below the generic bounds. If we look
at the full key-recovery attack on NMAC then it is also important to mention
that for this attack the outer key can only be recovered under the related-key
assumption. Nevertheless, even if the discussed attacks are only of theoretical
importance, we stress that further research in this direction is necessary to get
a better view on the security margins of NMAC and HMAC with for instance
MD5 or SHA-1.

In the second part of this chapter, we discussed very rare second preimage
attacks on hash functions and their implications on NMAC and HMAC. As a
result, we have shown that only in one case (DX-I) we can perform a forgery
attack. This forgery attack is practical since it is a known-message attack and
a forgery can be performed very efficiently. Nevertheless, for the other hash
constructions DX-II, DX-III, and SMASH-n neither forgery nor key-recovery
attacks are possible.

Comparing the implications of the collision attacks and the second preim-
age attacks is difficult since both attacks are entirely different in their nature.
However, one common fact is that the powerful attacks on the underlying hash
function do have less serious consequences for the MAC constructions. There-
fore, a weak hash function does not necessarily mean a weak construction such
as NMAC and HMAC derived from this hash function.





7
Design of Cryptographic

Hash Functions

In this chapter, we describe and discuss recent hash function proposals. We only
treat dedicated and block-cipher-based hash functions and omit hash functions
that are based on for instance number theoretic constructions. We start with
looking at proposed modifications for SHA-1. The idea of these modifications
is firstly to strengthen the security of SHA-1 with respect to existing collision
attacks, and secondly, to leave SHA-1 unchanged as much as possible. Further-
more, we treat a new design paradigm for hash functions, called sponge functions.
This design principle combines techniques from block cipher and stream cipher
design. Two new designs based on this design strategy, namely RADIOGATÚN
and Grindahl are discussed. We also discuss the block-cipher-based hash func-
tion Whirlpool since it is the only block-cipher-based proposal we are aware
of, which does not use a double-block-length construction but rather defines a
new block cipher. Finally, we propose a new double-block-length hash function
AESH-256 and give a security analysis. Based on the design principles of these
hash functions, we discuss possible directions in the design of new hash functions.

We emphasize that many other hash constructions have been proposed that
we will not discuss in this chapter. For instance, Gauravaram et al. proposed
hash function constructions called 3C and 3C+ in [60] as an enhancement of
the MD design principle. A security analysis presenting shortcomings of these
constructions has been presented by Joscák and Tuma in [73]. A dedicated hash
function called FORK-256 has been proposed by Hong et al. in [70]. Shortly
after the publication of FORK-256, weaknesses for simplified variants have been
published by Matusiewicz et al. in [105] and by Mendel et al. in [109]. A collision
attack on the FORK-256 hash function has been presented by Matusiewicz et al.
in [106]. Also a new version of FORK-256 by Hong et al. in [71], has been broken
by Saarinen in [156]. Recently, a new compression function proposal called
MAME, suitable for restricted hardware requirements, has been presented by
Yoshida et al. in [176]. As a final example of new proposals, we mention the new
design strategy called ‘zipper hash’ that has been presented by Liskov in [99].
We refer to [3] for a more comprehensive list of hash functions and corresponding
security analyses.

119



120 Chapter 7. Design of Cryptographic Hash Functions

7.1 Recent Proposals

7.1.1 Modifications of SHA-1

Due to the widespread use of SHA-1 in applications, it might be necessary to
find possible short-term modifications such that existing collision attacks are
precluded. We are only aware of two proposed modifications of SHA-1, which
we will describe and discuss in the following.

A New Message Expansion

After the publication of the collision attacks of Wang et al., Jutla and Patthak
[78] proposed an alternative to SHA-1, called SHA1-IME. The hash function
SHA1-IME specifies a modified message expansion. With this new message ex-
pansion the minimum Hamming weight of the disturbance vector of SHA1-IME
is significantly higher than the Hamming weight of the disturbance vector of
SHA-1. The message expansion is given by

Wi =


Mi, for 0 ≤ i ≤ 15
Wtmp ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15)� 13) for 16 ≤ i ≤ 35
Wtmp ⊕ ((Wi−1 ⊕Wi−2 ⊕Wi−15 ⊕Wi−20)� 13) for 36 ≤ i ≤ 79 ,

with Wtmp = Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16 .

The state update transformation, the iv, and the step constants of SHA1-IME
are the same as defined for SHA-1. As stated in [78] the performance of SHA1-IME
is very close to that of SHA-1. However, existing implementations have to be
changed accordingly, which makes the new proposal less attractive.

In Section 4.3.1, we described how to construct a generator matrix for the
pseudo-near-collision covering the last 60 steps. We did the same for SHA1-IME
and the lowest Hamming weight we find is 75 for the last 60 steps considering
only state variable A, see Table 7.1.

Jutla and Patthak give a computer aided proof for this Hamming weight.
For SHA-1 the minimum Hamming weight is 25 (see Section 4.3.1). Since the
minimum Hamming weight of SHA1-IME is three times higher than the mini-
mum weight of SHA-1 the complexity of the attack increases significantly. For
the overall attack complexity Jutla and Patthak conjecture the complexity to
be 275·2.5. Assuming on average a probability of 2−2.5 for a local collision is
quite a conservative heuristic. From our detailed analysis of local collisions in
Section 4.4 it follows that the best probability for a local collision is at most
2−2. Based on the found low-weight vector, approximately 2/3 of the single
disturbances are in bit positions with probabilities around 2−4. Therefore, the
attack complexity can be expected to be even higher than 275·2.5 for the last 60
steps of SHA1-IME.

Based on our short analysis of SHA1-IME, we state that SHA1-IME is
more secure against the attacks on SHA-1 presented by Wang et al. [172] and
De Cannière and Rechberger [28]. However, SHA1-IME has not been studied



7.1. Recent Proposals 121

Table 7.1: Minimum Hamming weight disturbance vector for last 60 steps of the
linearized variant of SHA1-IME. The values are listed in hexadecimal
notation. For the sake of readability, zero values are denoted by a dash.

A′
20 = --1-4--- A′

40 = -------- A′
60 = ----4--2

A′
21 = --1----- A′

41 = --1----2 A′
61 = --1----2

A′
22 = ----4--- A′

42 = --1-4--- A′
62 = --1-----

A′
23 = -------2 A′

43 = ----4--- A′
63 = --------

A′
24 = --1----- A′

44 = --1----2 A′
64 = -------2

A′
25 = -------2 A′

45 = -------- A′
65 = ----4--2

A′
26 = ----4--- A′

46 = ----4--- A′
66 = ----4---

A′
27 = --1-4--- A′

47 = --1----- A′
67 = -------2

A′
28 = --1-4--- A′

48 = --1-4--2 A′
68 = --1-----

A′
29 = --1----2 A′

49 = --1----- A′
69 = --1-4---

A′
30 = --1-4--- A′

50 = -------2 A′
70 = ----4---

A′
31 = ----4--- A′

51 = --1----2 A′
71 = --------

A′
32 = --1----- A′

52 = -------2 A′
72 = --1-----

A′
33 = -------- A′

53 = -------- A′
73 = --------

A′
34 = ----4--2 A′

54 = --1----- A′
74 = -------2

A′
35 = -------- A′

55 = ----4--- A′
75 = --1-----

A′
36 = ----4--2 A′

56 = -------2 A′
76 = -------2

A′
37 = -------2 A′

57 = --1-4--- A′
77 = -8-----2

A′
38 = -------2 A′

58 = -------2 A′
78 = -----1-2

A′
39 = ----4--2 A′

59 = --1----- A′
79 = --2--1-2

carefully enough to date. It is conceivable that a slightly modified attack strat-
egy could bypass the higher Hamming weight of the disturbance vector. Note
that the increased Hamming weight of the L-characteristic can imply a more
significant decrease in the complexity of the attack following from the carry ef-
fect that we discussed in detail in Section 4.4. Therefore, we conclude that a
more in-depth security analysis of SHA1-IME is essential in order to get a good
understanding of the security margins.

Message Preprocessing

An alternative modification of SHA-1 has been proposed by Szydlo and Yin in
[161]. Instead of changing parts of SHA-1 directly, they propose message prepro-
cessing methods. The basic idea is that by message preprocessing the attacker
has less freedom and flexibility in finding high probability L-characteristics. So,
basically the aim is the same as the method proposed by Jutla and Patthak
with the difference that existing SHA-1 implementations can be used further on,
which is obviously a nice feature of their proposal.

Szydlo and Yin propose two preprocessing methods: message whitening and
message interleaving that also preserve the streaming property of SHA-1, i.e.
incoming message blocks can be processed without requiring additional tem-
porary storage. To explain their basic idea, we consider a t-block message
m = m1‖ . . . ‖mt as the concatenation of 512-bit blocks, where each message



122 Chapter 7. Design of Cryptographic Hash Functions

block mi is further split into 16 32-bit words xi, i.e. m = x1‖ . . . ‖x16t. Without
preprocessing, 16 words are used as the input for the compression function of
SHA-1 in each iteration. Now, if message whitening is applied, a 512-bit block
is constructed by concatenating less than 16 words xi, say 16−w, and by insert-
ing zero-words to get a 512-bit block. For instance, if we take the first 16 − w
words, then we simply append w zero-words. For the first whitened message
block we get: m∗

1 = x1‖ . . . ‖x16−w‖0‖ . . . ‖0. Based on this whitening approach,
the compression function processes only 16 − w words of each original message
block mi in one iteration. It is clear that this leads to an according performance
slowdown. For instance, if w = 8 then whitening can be seen as constructing a
new message m∗ that is twice as long as the original message m, and hence, the
performance is reduced by a factor of two.

The second preprocessing method, message interleaving, does not whiten
parts of an input message block but reuses some xi’s. For instance, one possi-
bility is to reuse each 32-bit word xi twice for building a 512-bit message block.
Then the interleaved first input message block can for instance be constructed as
follows: m∗

1 = x1‖x1‖x2‖x2‖ . . . ‖x8‖x8. It is clear that also this preprocessing
method leads to an according performance slowdown compared to SHA-1—for
the given example the performance is reduced by a factor of two.

Szydlo and Yin give a quantitative security analysis of the proposed methods.
More precisely, their analysis is based on coding theory and investigates how the
preprocessing methods do affect the search for good L-characteristics as we have
discussed in detail in Chapter 4.3.1. They construct different linear codes based
on the linearized variant L-SHA-1 and consider the restriction caused by the
preprocessing method. They have performed several experiments for finding
low-weight L-characteristics. As shown in Section 4.3.1 and [78] the minimum
Hamming weight of the L-characteristic for the last 60 steps of the state update
transformation of L-SHA-1 is 25. Based on the performed experiments, they
state that the minimum Hamming weight for the last 60 steps can be higher
than 80 depending on the used preprocessing method. It is clear that this makes
a collision attack on SHA-1 more complex. Nevertheless, one has to be very
careful when choosing the preprocessing method, and each variant of it has to
be analyzed thoroughly. For instance, if we consider message whitening then
it is clear that the performance slowdown can be reduced if fewer blocks are
whitened. On one side, this is clearly a goal for applications. On the other
side, this can reduce the additional strength one would expect from message
preprocessing. Leurent presented in [97] a modified collision search of Wang
et al. and showed how it can be exploited for collision attacks on MD4 and MD5
with message whitening. He presented a collision attack on MD4 if 11 words of
32 bits are whitened in the 512-bit input-message block. For MD5, he showed
a collision attack if only a single 32-bit zero word is used for whitening. Even
if there are no results for SHA-1 and even if the quantitative security analysis
suggests that high probability L-characteristics are more difficult to find or are
less likely to exist, we stress that the message preprocessing methods proposed
in [161] need a very careful in-depth analysis before being applied.



7.1. Recent Proposals 123

7.1.2 Sponge Functions and RADIOGATÚN

RADIOGATÚN is a recent proposal presented by Bertoni et al. in [13, 14] as
an alternative to the design strategy of the MD family of hash functions. In the
following, we present the motivation for a new design paradigm called sponge
functions and give a description of the specific instance RADIOGATÚN. We
stress that this new design paradigm for hash functions is still work in progress
and hence, we will only give a short overview and refer to [13, 14, 15] for further
details and a security analysis of the new design strategy.

Motivation

Most hash functions in use today are designed following the Merkle-Damg̊ard de-
sign principle [41, 118] (see also Section 2.3.1). As discussed in Chapter 3, these
constructions are vulnerable to different kind of attacks such as multicollision
attacks and second preimage attacks for long messages. Also, it has been shown
that certificational weaknesses such as near-collisions or pseudo-near-collisions
can be exploited for collision attacks. Therefore, new design principles different
than the MD constructions are of high interest and important for new directions
in the design of cryptographic hash functions. In [13, 14] a new design principle
for hash functions has been proposed and later on generalized in [15]. The basic
idea is to provide a new reference model, called sponge functions, for the design
of new hash functions in order to replace the random oracle model [9]. The
reason for this is that it is infeasible to design a hash function that behaves as
a random oracle with truncated output. For instance, based on the definition
of a random oracle, we know that no internal collisions exist but for existing
hash functions they do exist. Therefore, the aim of this new reference model is
to provide a design paradigm that is more realistic and considers unideal prop-
erties such as internal collisions. The main point is to find a method to show
that finding inner collisions is harder than a generic birthday attack on the hash
value.

In Figure 7.1 the basic design principle of a sponge function is depicted. The
basic components are the internal state, the injection layer, the round function,
and the output transformation. The working principle is as follows. A simple
round function is iteratively applied to the large internal state which is updated
with the injected message blocks. When the entire message has been processed,
some blank iterations are performed, i.e. the round transformation is applied
to the internal state without injecting any message blocks. Then, parts of the
state are iteratively output (denoted by the output transformation) resulting in
a hash value of variable length.

The question is which properties are required from the single components?
For the general model, the round function is defined as a family of functions. For
a concrete design one has to fix this function. In this case, the round function
defines a permutation but has no cryptographic strength by itself. Furthermore,
it is invertible. In [13], the authors introduce the sponge capacity, which depends
on the state size. Roughly speaking, the higher the state size the higher the



124 Chapter 7. Design of Cryptographic Hash Functions

181716 1514133210

12,2

0,00

2

mill function

1 0,1

0,2

7654 8 1211109

In
p
u
t 

B
lo

ck
m

b[
i]

belt function

Belt
b[i,j]

Mill
a[i]

internal state

in
je

ct

round function

m
es

sa
ge

 b
lo

ck
m

i

output transformation

hash value

Figure 7.1: The basic components of sponge functions.

capacity and the more difficult it is to find internal collisions. Note that there
is no formal way to determine the capacity. For a concrete hash function the
designers can only claim it. We refer to [13, 14] for a more detailed description
on this new design strategy.

The Round Function of RADIOGATÚN

The design RADIOGATÚN has been presented as a concrete instance of the
new design principle relying on sponge functions. RADIOGATÚN borrows tech-
niques from the cipher Panama proposed by Daemen and Clapp in [36] which
can act as both stream cipher and hash function. For the Panama hash function
collision attacks have been presented by Rijmen et al. in [152] and by Daemen
in [35]. When designing RADIOGATÚN, these attacks have been considered.

RADIOGATÚN consists of a large state and uses a simple round function
to update the state in an iterative way. In each iteration some message words
are injected. After the complete message has been processed the round function
is applied for several iterations without injecting any message words. Finally,
parts of the state are output resulting in the final hash value. In the following,
we describe the different parts of the round function in more detail. We follow
the notation presented in [14]. RADIOGATÚN is designed generically, i.e. the
word length can be between 1 and 64 bits. For our description, we focus on the
64-bit variant, which is the default word length.

We start with describing the different parts of the round function and sum-
marize then how the hash value is computed. The state of RADIOGATÚN is
composed of two parts (see also Figure 7.2): Mill consisting of 19 words a[i]
with i = 0, . . . , 18, and Belt consisting of 13 stages b[i] of 3 words each b[i, j],
i = 0, . . . , 12 and j = 0, . . . , 2. Therefore, the state of the 64-bit variant consists
of (19 + 3 · 13) · 64 = 3712 bits. An input block consists of 3 words mb[i], and
the output block consists of 2 words from the state. Two functions are defined:
the mill function and the belt function. The mill function is borrowed from the
cipher Panama [36] and consists of simple Boolean operations such as XOR and
AND, and bitwise rotations of the words (see [14, Algorithm 4] for further de-
tails). The only difference to the function used in Panama is that it is defined for



7.1. Recent Proposals 125

19 words instead of 17 words. The mill function is the only nonlinear function
in RADIOGATÚN. The belt function is a simple rotation of the state b[i, j],
where each row is rotated by one word to the left.

181716 1514133210

12,2

0,00

2

mill function

1 0,1

0,2

7654 8 1211109

In
p
u
t 

B
lo

ck
m

b[
i]

belt function

Belt
b[i,j]

Mill
a[i]

internal state

in
je

ct

round function

m
es

sa
ge

 b
lo

ck
m

i

output transformation

hash value

Figure 7.2: The round function of RADIOGATÚN.

Computing the hash value can be summarized as follows (see also Figure 7.2):

• Step 1 (Initialize): initialize the state (Belt and Mill) to zero.

a[i]← 0 for 0 ≤ i ≤ 18
b[i, j]← 0 for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2

• Step 2 (Process one input block):

1. XOR the 3 input words to Belt and Mill

b[0, j]← b[0, j]⊕mb[j] for 0 ≤ j ≤ 2
a[i + 16]← a[i + 16]⊕mb[i] for 0 ≤ i ≤ 2

2. apply the belt function to Belt

b[i, j]← b[i− 1 mod 13, j] for 0 ≤ i ≤ 12 and 0 ≤ j ≤ 2

3. mix parts of Mill and Belt

b[12, j]← b[12, j]⊕ a[13 + j] for 0 ≤ j ≤ 2

4. apply the mill function to Mill

a← mill(a)



126 Chapter 7. Design of Cryptographic Hash Functions

5. mix parts of Belt and Mill

a[i + 1]← a[i + 1]⊕ b[i + 1, i mod 3] for 0 ≤ i ≤ 11

• Step 3 (Process input message): repeat Step 2 until the entire input
message has been processed

• Step 4 (Blank rounds): compute 16 blank rounds, i.e. repeatedly perform
Step 2 with a zero input block

• Step 5 (Output parts of final hash value): apply Step 2 once with zero
input block and output the register values a[0], a[1]

• Step 6 (Final hash value): repeat Step 5 until the needed hash size is met.
It follows immediately that the hash value is a multiple of the word length,
e.g. 64 bits.

Looking at the description of RADIOGATÚN, we can see immediately the
analogy to a sponge: first the entire message is processed in the internal state (ab-
sorbing the message) and only after that, parts of the state are output (squeezing
the sponge) resulting in the final hash value.

Applying the blank iterations can be seen as the application of a block cipher
with a fixed key (zero message block) and hence acts as a permutation on the
internal state. Note that during the blank iterations the attacker has no control
since there are no input message blocks. Therefore, this permutation destroys
certificational weaknesses such as near-collisions. Clearly, the number of blank
iterations has to be chosen carefully. The hash value generation (Step 5 and Step
6) has similarities to the working principle of a stream cipher (see for instance
[116, Chapter 6]). The round function can be considered as the feedback for the
state. In each iteration, two words are output and the round function is applied
to the state again. Then the next two words are output and so forth.

For RADIOGATÚN with a word size of 64 bits, the designers claim a sponge
capacity of lc = 19 · 64 = 1216. This is exactly the number of bits in the Mill
state. Following the definition of the capacity by Daemen and Rijmen in [39]
this results in a complexity of 2lc/2 = 2608 for finding inner collisions. Note
that the birthday paradox still applies. For instance, if a 256-bit hash value is
generated by outputting (2 · 2 · 64)-bit words, then the complexity for finding a
collision for RADIOGATÚN is 2128. Therefore, as long as the size of the hash
value is smaller than the capacity, we can say that it is more complex to find
inner collisions than a collision based on the generic birthday attack. For this
word size of RADIOGATÚN, we can produce hash values of a length up to 1216
bits (as a multiple of 64 bits). If the hash size gets bigger than lc, then finding
inner collisions is less complex than finding collisions by applying the birthday
attack.

7.1.3 Grindahl

At FSE 2007, Knudsen et al. presented a new proposal for a family of hash
functions called Grindahl [90]. Grindahl follows the basic design principle of



7.1. Recent Proposals 127

Internal state sint

E
x
te

n
d
ed

 s
ta

te
 s

Concatenate

In
p
u
t 

B
lo

ck
 

m
i

Permute

Truncate

E
x
te

n
d
ed

 s
ta

te
 s

’

Internal state sint’

A
d
d
C
o
n
s
t
a
n
t

S
u
b
B
y
t
e
s

S
h
i
f
t
R
o
w
s

M
i
x
C
o
l
u
m
n
s

st
at

e 
s

st
at

e 
s

st
at

e 
s

st
at

e 
s

st
a
te

 s
’

st
a
te

 s
’

st
at

e 
s’

st
at

e 
s’

Figure 7.3: Single round of the Concatenate-Permute-Truncate principle of Grindahl.

RADIOGATÚN. The designers call the design principle Concatenate-Permute-
Truncate, where the permutation borrows the main transformations of AES.
In [90], two specific instances of the hash family Grindahl have been specified:
Grindahl-256 and Grindahl-512 producing a 256-bit, respectively a 512-bit hash
value. For the remainder of this section, we will only focus on Grindahl-256 and
for the sake of readability, we will simply write Grindahl to refer to the 256-bit
variant. Furthermore, we assume that the reader is familiar with AES and with
the defined transformations.

Short Description of Grindahl-256

Due to the chosen padding method (see [90] for the specified padding method)
Grindahl can process messages of at most 264 − 1 blocks, where each block
consists of 4 bytes. The input message m is split (after padding) into 32-bit
blocks mi. In each iteration, a single message block is processed. The internal
state sint of Grindahl consists of a 4 × 12 array of bytes which is initialized by
zero values. A single round is computed as follows. The input message block
is first concatenated to the internal state sint resulting in the so-called extended
state, which we denote by s. Then the permutation P : {0, 1}416 → {0, 1}416
is applied to the extended state. Afterwards, the extended state is truncated
by omitting the leftmost column. A graphical illustration of the Concatenate-
Permute-Truncate round function is depicted in Figure 7.3. When the last input
message block is processed, the truncation is omitted. Then 16 blank iterations
are performed, i.e. the permutation P is applied 16 times to the extended state
s. After the blank iterations have been performed, the eight rightmost columns
(256 bits) are output as the final hash value.

The permutation P is defined as follows:

P (s) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(s) ,



128 Chapter 7. Design of Cryptographic Hash Functions

where the transformations are applied to the extended state from right to left.
The transformations MixColumns and SubBytes are the same as defined in AES.
ShiftRows uses the rotation constants (1, 2, 4, 10), meaning that row zero is
rotated by 1, row one by 2, row two by 4, and row three by 10 byte positions
to the right. As stated in [90] the rotation constants have been chosen in such
a way that each injected message byte affects the entire extended state after
four rounds. AddConstant simply adds a single bit s′3,12 = s3,12 ⊕ 01. Note
that adding this single bit is necessary in order to avoid that an extended state
of equal columns can still have equal columns after applying one round if for
instance a message block mi = 0 is injected. Flipping this single bit destroys
this property (see [90]). Figure 7.4 illustrates how the single transformations
operate on the extended state s.

Internal state sint

E
x
te

n
d
ed

 s
ta

te
 s

Concatenate

In
p
u
t 

B
lo

ck
 

m
i

Permute

Truncate

E
x
te

n
d
ed

 s
ta

te
 s

’

Internal state sint’

A
d
d
C
o
n
s
t
a
n
t

S
u
b
B
y
t
e
s

S
h
i
f
t
R
o
w
s

M
i
x
C
o
l
u
m
n
s

st
at

e 
s

st
at

e 
s

st
at

e 
s

st
at

e 
s

st
a
te

 s
’

st
a
te

 s
’

st
at

e 
s’

st
at

e 
s’

Figure 7.4: Round transformations defined for Grindahl operating on the extended
state. Shadowed squares denote altered bytes.

Security Analysis of Grindahl-256

In the design document the authors investigated the security of Grindahl. They
claim that for finding collisions, second preimages, and preimages, an attacker
needs an effort of about 2128 iterations of Grindahl-256. From Section 2.3.2, we
know that for an ideal hash function with a 256-bit hash value, we expect that
finding (second) preimages should require about 2n evaluations of the compres-
sion function. However, the authors of [90] only claim a resistance of 2n/2 with
the remark that they expect that the complexity of (second) preimage attacks



7.1. Recent Proposals 129

is far beyond that bound. This is the only hash function proposal we are aware
of, where the security claims for collision and (second) preimage resistance are
the same. It is clear that there are other hash functions such as MDC-2 that do
not achieve the ideal bound with respect to (second) preimage resistance but the
lower complexity is argued by an existing generic attack which is not the case for
Grindahl. Note that there exist (second) preimage attacks with less than 2256

for Grindahl. This has been pointed out in the design document. Also a meet-
in-the-middle attack for preimages can be mounted with a complexity of about
213·(4·8)/2 = 2208 evaluations of the round function since the round function is
invertible.

Shortly after the publication of Grindahl a collision attack on Grindahl has
been published by Peyrin in [133]. The attack finds collisions based on an inner
collision with a complexity of about 2112 evaluations of the round function. Be-
fore describing the basic attack strategy, we need to introduce some terminology
which is common in the analysis of block ciphers such as AES. For the analysis
we do not need to look at actual differences but rather at the fact whether or
not a difference exists. If there is a nonzero difference in one of the bytes of
the state, we call it an active byte. We know that the only nonlinear trans-
formation in Grindahl is SubBytes. The remaining transformations are linear
over GF (256). MixColumns takes as input a 4-byte value and returns a 4-byte
output. The branch number of MixColumns is 5 (see Daemen and Rijmen [37]
for a definition). This means that in total (input and output) at least 5 bytes
are active. This is all we need to know for giving a short overview of the collision
attack presented by Peyrin.

An obvious way to find an internal collision is to find a path through several
iterations with the requirement that it ends in a state where only the leftmost
column has active bytes. In this case, we would have a collision since the leftmost
column is truncated at the end of the round function. Clearly, this needs to
happen before the blank rounds are applied to the extended state. In order to
succeed with this approach, we require that the number of active bytes in the
path is as low as possible. However, this seems quite unlikely since in the design
document of Grindahl the authors state that finding such a path requires at least
5 iterations. Additionally, in at least one iteration, the path has to go through
a state where at least half of the state bytes are active, cf. [90, Property 1]. In
fact, in [133] it has been shown that the number of iterations is at least 6 to find
an inner-collision path. Based on this, Peyrin et al. proceed in a different way.
They observed that by injecting arbitrary input differences over few rounds a
state where all bytes are active can be constructed effectively. Then, starting
from the state full of active bytes they construct a path over 8 iterations that
leads to a collision (note that this is called macro-differences in [133]). The
probability of the exploited path is about 2−440. At first sight this seems too
low for a collision attack. However, by cleverly exploiting the freedom due to the
input message bytes, they are able to find an inner collision with a complexity
of about 2112 hash computations.

An interesting approach of their attack is the fact that as long as we consider



130 Chapter 7. Design of Cryptographic Hash Functions

only active bytes, we actually do not have to look at the differential properties
of SubBytes. An input difference of SubBytes will always lead to an output
difference. Hence SubBytes preserves the active byte. The only transformation
that is important is MixColumns. Due to the branch number of MixColumns, we
know that at least 5 bytes are active. For instance, if we have 3 active input
bytes then we know that this leads to at least 2 active output bytes. However,
also 3 and 4 bytes can be active. Since MixColumns is a linear transformation
it is easy to derive linear conditions such that the number and the position of
active bytes can be guaranteed. We follow the notation presented by Daemen
and Rijmen in [40] for the analysis of two round differentials in AES. For any
activity pattern, i.e. a vector that denotes the active input/output bytes by a 1,
we can derive the so-called ub and ud vector. For instance, for the activity pattern
(1111; 0001) we have ub = [9, D, B, E] and ud = [0, 0, 0, 1]. This means, that any
nonzero input difference δ of the form [δ9, δD, δB, δE] leads to the following output
difference after MixColumns: [0, 0, 0, δ]. It is easy to see that only 255 input
differences fulfill these conditions, namely all δ ∈ {1, 2, . . . , 255}. This results
in a probability of (28 − 1)/(232 − 1) ≈ 2−24. If we look at activity patterns
with more than 5 active bytes then the probability increases. For instance, if we
consider 7 active bytes, i.e. activity pattern (1111; 1110), then the probability
can be approximated by (224 − 1)/(232 − 1) ≈ 2−8. In fact, the probability is
slightly lower than this approximation. This can be explained by looking at
so-called bundles introduced in [40]. Daemen and Rijmen define a bundle as the
non-zero differences that follow the ub and the ud pattern. Therefore, if we have
7 active bytes, then we do not have 224 possible output differences but in fact
slightly less: 64015 bundles representing 64015 · 255 < 224 non-zero differences.
Therefore, the probability for the activity pattern is (64015·255)/232−1 ≈ 2−8.04

instead of 2−8. Nevertheless, for the attack on Grindahl this slight decrease in
the probability has not been considered and can in fact be neglected.

It is immediately clear that activity patterns for MixColumns with a higher
number of active bytes have a better probability. This can also be seen as a
motivation why the attack on Grindahl starts from a state full of active bytes.
If we look at the path given in [133, Figure 1], we see that most of the activity
patterns for MixColumns have 7 and 8 active bytes. This increases the probability
significantly. Another fact why the attack works are the degrees of freedom an
attacker gets due to the injected message bytes. More precisely, the path in
[133] has been chosen in such a way that the injected bytes can be exploited
to increase the probability of MixColumns. For instance, assume we have an
activity pattern (1111; 1110) which has a probability of 2−8. If an injected
byte in the same iteration directly influences this column, then the activity
pattern has a probability of approximately 1. Therefore, by cleverly choosing
the path such that the number of injected bytes can be exploited to increase the
probability of MixColumns and by choosing activity patterns for MixColumns
with high probability, the attack has a complexity below the birthday bound.
More precisely, the path with a probability of 2−440 can be influenced by the
degrees of freedom due to the injected message bytes resulting in a collision



7.2. The Hash Function Whirlpool 131

attack with a complexity of about 2112 hash computations.
In [133], a second preimage attack has been presented as well. For the second

preimage attack the collision attack has been extended accordingly. The attack
has a complexity of about 2224 hash computations. Nevertheless, due to the
security claim of 2n/2 = 2128 for (second) preimages by the designers of Grindahl,
this cannot be considered as an attack. To summarize, Grindahl is not collision
resistant. In the attack paper, modifications of Grindahl have been proposed. By
adding a single column, and by choosing the rotation constants of ShiftRows
to be 1, 2, 5, 7 such that the diffusion properties are maximized for the larger
state, the collision attack does not work anymore with a complexity below the
birthday bound. However, to have a better security margin, the authors of [133]
suggest to add some more columns.

7.2 The Hash Function Whirlpool

The iterated hash function Whirlpool proposed by Barreto and Rijmen in [4] is
standardized in the ISO/IEC 10118-3:2003 standard for dedicated hash functions
[58]. It also has been evaluated and approved by NESSIE [124]. The other hash
functions in this standard are the SHA-2 family (SHA-224, SHA-256, SHA-384,
and SHA-512) [128], RIPEMD-160 [52], and Tiger [1]. In the following, we give
a short description of the compression function and review the security analysis
of the designers of Whirlpool.

7.2.1 The Compression Function

Whirlpool [4] is an iterated hash function and processes input message blocks of
512 bits and produces a 512-bit hash value. For the first message block an initial
vector iv is defined; for Whirlpool: iv = 0. Due to the chosen padding method
(see [4] for further details) Whirlpool can hash messages of less than 2256 bits.
The main component of Whirlpool is the underlying block cipher, referred to
as W. The block cipher operates in the Miyaguchi-Preneel mode of operation as
shown in Figure 7.5 (see also Section 2.3.5).

W

mi

hi-1

hi

γ

π

θ

σ[k]

hi-1

cr

hi

d
a
ta

p
a
th

k
ey

 s
ch

ed
u
le

ro
u
n
d
s 

r 
=

 1
,…

,1
0γ

π

θ

σ[k]ro
u
n
d
s 

r 
=

 1
,…

,1
0

 σ[k]

cti

mi

mi hi-1

operation mode

bl
oc

k 
ci

ph
er

 W

Figure 7.5: The Whirlpool hash function.

The block cipher W is strongly based on the structure of AES [122]. W
is a 512-bit block cipher and uses a 512-bit key. The input (plaintext) is the
i-th message block mi to be hashed and the cipher key is the intermediate hash



132 Chapter 7. Design of Cryptographic Hash Functions

value from the previous iteration hi−1. The block cipher W can basically be
divided into two parts: the datapath and the key schedule (see also Figure 7.6).
The datapath processes the input message mi by iteratively applying the round

W

mi

hi-1

hi

γ

π

θ

σ[k]

hi-1

cr

hi

d
a
ta

p
a
th

k
ey

 s
ch

ed
u
le

ro
u
n
d
s 

r 
=

 1
,…

,1
0γ

π

θ

σ[k]ro
u
n
d
s 

r 
=

 1
,…

,1
0

 σ[k]

cti

mi

mi hi-1

operation mode

bl
oc

k 
ci

ph
er

 W

Figure 7.6: The round function of Whirlpool.

transformations for 10 rounds. Each round requires a round key that is derived
by the key schedule from the cipher key. The block cipher W uses a 512-bit
internal state that is organized as an 8× 8 array of bytes. The state stores the
input message, the intermediate results for each round, and the ciphertext after
10 rounds. As can be seen in Figure 7.6, both the datapath and the key schedule
use the same round transformations. The round transformations are:

• the nonlinear layer γ, where a nonlinear S-Box is applied to each byte of
the state independently

• the cyclical permutation π, where the bytes of column j are rotated down-
wards by j positions

• the linear diffusion layer θ, where the state is multiplied by a constant
matrix

• the key addition σ[k], where also round constants cr are introduced

One round ρ[k] of W is performed as follows:

ρ[k] ≡ σ[k] ◦ θ ◦ π ◦ γ ,

where the transformations are applied to the state from the right to the left.
A single input-message block is processed as follows (see also Figure 7.6).

The cipher key (either hi−1 or h0 = iv) is added to the message block mi and



7.2. The Hash Function Whirlpool 133

stored in the state. Then, the round transformation ρ[k] is applied to the state
for 10 rounds with the round key for each round provided by the key schedule.
After 10 rounds, the state containing the ciphertext cti, the cipher key hi−1, and
the input-message block mi are added (Miyaguchi-Preneel mode of operation)
resulting in the cipher key hi for the next message block, or the final hash value,
if the input message has been completely processed.

When having a closer look at Figure 7.6, it can be seen that the block cipher
W is actually composed of two block ciphers: the datapath with round keys
provided by the key schedule and the key schedule with the round constants cr

as round keys. Therefore, also a 512-bit internal state is required for the key
schedule. Both, the internal state of the datapath and the state for the key
schedule are organized as an 8× 8 array of bytes.

All arithmetic operations of Whirlpool required for the round transformations
(addition and multiplication) are defined in the finite field GF (256), i.e. the
operations are performed at byte level. This makes Whirlpool very suitable for
hardware implementations since operations such as multiplication and addition
can efficiently be implemented as has been shown for numerous implementations
of AES [54, 69, 102, 137]. Efficient implementation of Whirlpool have been
presented for instance in [84, 140].

7.2.2 Security Claims

The designers of Whirlpool give the following security claims:

• collision resistance: 2n/2 = 2256

• (second) preimage resistance: 2n = 2512

For the analysis they consider the compression function and the block cipher
W. The compression function operates in the Miyaguchi-Preneel mode of oper-
ation. This is one of only few modes that have not been broken to date, see
[143, 144]. Black et al. [24] have proven the security of, amongst others, this
mode in the ideal cipher model. Based on these results the Miyaguchi-Preneel
mode of operation is a favorable choice.

Barreto and Rijmen carefully analyzed the security of the block cipher W.
They have given design rationales for the round transformations based on exist-
ing attacks on block ciphers. The most obvious attack is of differential nature.
The transformation θ has been designed in such a way that the branch num-
ber equals 9. Based on the wide-trail design strategy of AES (see Daemen and
Rijmen [37]) the number of active S-Boxes over four consecutive rounds is the
square of the branch number, i.e. 92 = 81. For the choice of the transformation
γ the differential probability is 2−5. Therefore, a characteristic over four rounds
has a probability of at most 2−581

= 2−405. This clearly makes a differential
attack very unlikely.

No attacks showing certificational weaknesses of Whirlpool have been pub-
lished to date. Knudsen analyzed a variant of Whirlpool in [85] reduced to 6
out of 10 rounds. He showed that this variant exhibits non-random properties.



134 Chapter 7. Design of Cryptographic Hash Functions

However, these properties are not a weakness for the original Whirlpool. Also
the fact that Whirlpool has been standardized, and evaluated and approved by
NESSIE, gives confidence in the security of the hash function. Unfortunately, no
methods for truncating the output have been specified in the design document
which can lead to incompatibility issues in applications where smaller hash val-
ues are required. At first sight, truncating the output of Whirlpool seems to pose
no security problems except that the security margins are decreased according
to the size of the hash value. However, an in-depth analysis for possible trunca-
tion methods is necessary. A new variant of Whirlpool, called MAELSTROM-0,
has been presented by Filho et al. in [56]. As stated in [56], the hash func-
tion MAELSTROM-0 shows better performance figures than Whirlpool and can
produce hash values with a variable output length up to 512 bits.

7.3 A New Block-Cipher-Based Hash Proposal:
AESH-256

In [110], Mendel and Pramstaller proposed a new hash function AESH-256. The
proposal is a modification of the double-block-length hash function proposed by
Hirose in [68] (see also Section 5.2), which we refer to as DBLH for the remainder
of this chapter. A drawback of DBLH is the achievable rate r (see Definition 2.3
in Section 2.3.5), due to the size of the message blocks: if instantiated with
AES-192 then only 64-bit message blocks can be processed within one iteration
and if AES-256 is used, then 128-bit message blocks can be processed. AESH-256
can process message blocks of 256 bits per iteration resulting in better perfor-
mance figures compared to DBLH. The hash value has a size of 256 bits. In
the following, we define the compression function, the padding method, and fix
the iv and constants. After the specification of AESH-256, we present a security
analysis with respect to collision and (second) preimage resistance.

7.3.1 The Compression Function of AESH-256

The compression function of AESH-256 is defined as follows, where AES-256k(p)
denotes the encryption of the plaintext p under the key k with AES-256 (see also
Figure 7.7):

hi = gi−1 ⊕ c⊕AES-256mi(gi−1 ⊕ c) ,with c 6= 0
gi = AES-256mi(gi−1)⊕ gi−1 ⊕ hi−1 ,

(7.1)

where |hi| = |gi| = 128 and |mi| = 256. The concatenation of the two blocks
h0 and g0 is the initial value. After t message blocks have been processed, the
final hash value is the concatenation ht‖gt. The only requirement we have for
the constant c is that c 6= 0. For AESH-256, we specify the following 128-bit
constant consisting of the four 32-bit words c = c0‖c1‖c2‖c3, where

c0 = 0x00000000 c1 = 0x00000000 c2 = 0x00000000 c3 = 0x0AE256DC .



7.3. A New Block-Cipher-Based Proposal: AESH-256 135

Width of lncs

gihi

AES-256AES-256

hi-1 gi-1mi

c

gi

(h0,g0)

(h1,g0) (h1,g0)

(h2,g0) (h2,g0) (h2,g0) (h2, g0)

*

* ** ***

(ht-1,g0)

(ht-2,g0)(ht-2,g0)

(ht-3,g0) (ht-3,g0) (ht-3,g0) (ht-3,g0)* ** ***

*

(ht,gt)

k=1  ⇒ 21 pairs

k=64⇒ 264 pairs

k=2 ⇒ 22 pairs

k=64⇒ 264 pairs

k=2⇒ 22 pairs

k=1⇒ 21 pairs

upper tree
(Step 2)

lower tree
(Step 2)

Step 1

g1h1

AES-256AES-256

h0 g0m1

c

g1

g2h2

AES-256AES-256

h1 g1m2

c

h0 = 0
‚

g0 = 0
‚

m1 ≠ 0
‚

h1 ≠ 0
‚

g1 = 0
‚

m2 = 0
‚

h1 ≠ 0‚
g1 = 0

‚
h2≠ 0‚

g2 ≠ 0‚

g2

Figure 7.7: The compression function of AESH-256. The hatch marks the key in-
put of AES-256. The value ḡi will be used for the security analysis in
Section 7.3.2.

For the sake of readability, we write hi‖gi = AESH-256(hi−1‖gi−1,mi) in-
stead of (7.1) for the remainder of this section. As can be seen in (7.1), we need
two encryptions per input block. Since we are using AES-256, i.e. |k| = 2n,
we achieve a rate of r = 1 following Definition 2.3. If we compare the rate for
AESH-256 with the rate of DBLH with AES-256 (see Section 5.2.1), we gain a
factor of 2. In other words, the throughput will be twice as high. This is shown
also in the performance comparison in Section 7.3.3.

Initial Value

For AESH-256, we define the same iv as for SHA-256, cf. [128], i.e. we take the
first 32 bits of the fractional parts of the square roots of the first eight prime
numbers. The 256-bit initial value iv = h0‖g0 is specified as follows, where
h0 = h0,0‖h0,1‖h0,2‖h0,3 and g0 = g0,0‖g0,1‖g0,2‖g0,3 with

h0,0 = 0x6A09E667 g0,0 = 0x510E527F

h0,1 = 0xBB67AE85 g0,1 = 0x9B05688C

h0,2 = 0x3C6EF372 g0,2 = 0x1F83D9AB

h0,3 = 0xA54FF53A g0,3 = 0x5BE0CD19 .

MD Strengthening

For MD strengthening, we have to fix the iv and we have to define an unam-
biguous padding method. We already defined the iv and the constant c for
AESH-256. The padding is defined as follows. Take the Y -bit input message m
(Y < 2128) and append a ‘1’ followed by z ‘0’ bits such that z is the smallest
positive integer satisfying

Y + 1 + z ≡ 128 mod 256



136 Chapter 7. Design of Cryptographic Hash Functions

and, finally, append the binary representation of the length of the original mes-
sage m. Due to the chosen padding method, AESH-256 can process messages
with a length of at most (2128 − 1) bits.

7.3.2 Security Analysis

In this section, we analyze the security of AESH-256 with respect to collision
resistance and (second) preimage resistance. Based on this analysis, we expect
the following security margins:

1. Collision resistance: 2n/2 = 2128

2. (Second) Preimage resistance: 2n/2+1 = 2129

Note that the attacks presented by Knudsen et al. in [88] do not apply to
AESH-256. This follows from the fact that the attacks are applied to a general
class of rate 1 hash functions, where in each iteration two message blocks are
processed. This is clearly not the case for AESH-256—only one message block
is processed in each iteration.

If we look for instance at the MDC-2 construction [116], second preimage
and preimage resistance is bounded by 23n/4. For AESH-256, we can only claim
2n/2+1. This is due to a structural property of the proposed double-block-length
construction. The same property has been exploited by Mendel and Rijmen [115]
for a (second) preimage attack on the single-block-length dedicated hash con-
struction HAS-V [131]. We will explain this structural limitation of AESH-256
and the according generic (second) preimage attack in the following sections.

Collision Resistance

Consider the first two iterations of AESH-256. Then, based on the structure of
AESH-256, we observe the following property:

Property 7.1. A zero difference in the chaining variable g1 leads automatically
to a zero difference in h2 if there is a zero difference in m2. This is independent
of h1, i.e. if g1 = g∗1 and m2 = m∗

2 then h2 = h∗2 for any value of h1.

One could now use the following strategy for constructing a collision over two
iterations of AESH-256 (see also Figure 7.8). Find a message pair m1 6= m∗

1 in
the first iteration that leads to g′1 = g1⊕g∗1 = 0. Then search for a message block
m2 that leads to g′2 = 0 in the second iteration. Together with Property 7.1 this
would lead to a collision after the second iteration of the compression function.
However, it is easy to verify that this is not possible. The reason why this attack
based on Property 7.1 does not work is as follows. Assume g′1 = 0. Then we
know that h′2 = 0 if m′

2 = 0 (Property 7.1). Since we found m1 6= m∗
1 such

that g′1 = 0 we know that with overwhelming probability h1 6= h∗1 (note that
if h′1 = 0, we would have already a collision). With g′1 = 0 and m′

2 = 0 the
difference after the second iteration is h′2 = 0 but since h1 6= h∗1 we have g′2 6= 0.
To have g′2 = 0 we need that m2 6= m∗

2 but then Property 7.1 does not hold.



7.3. A New Block-Cipher-Based Proposal: AESH-256 137

Width of lncs

gihi

AES-256AES-256

hi-1 gi-1mi

c

gi

(h0,g0)

(h1,g0) (h1,g0)

(h2,g0) (h2,g0) (h2,g0) (h2, g0)

*

* ** ***

(ht-1,g0)

(ht-2,g0)(ht-2,g0)

(ht-3,g0) (ht-3,g0) (ht-3,g0) (ht-3,g0)* ** ***

*

(ht,gt)

k=1  ⇒ 21 pairs

k=64⇒ 264 pairs

k=2 ⇒ 22 pairs

k=64⇒ 264 pairs

k=2⇒ 22 pairs

k=1⇒ 21 pairs

upper tree
(Step 2)

lower tree
(Step 2)

Step 1

g1h1

AES-256AES-256

h0 g0m1

c

g1

g2h2

AES-256AES-256

h1 g1m2

c

h0 = 0
‚

g0 = 0
‚

m1 ≠ 0
‚

h1 ≠ 0
‚

g1 = 0
‚

m2 = 0
‚

h1 ≠ 0‚
g1 = 0

‚
h2≠ 0‚

g2 ≠ 0‚

g2

Figure 7.8: Graphical illustration of Property 7.1 for AESH-256. Dashed rectangles
denote differences.

We did not find any other attack strategies that exploit Property 7.1. In
general, we do not see any other collision shortcut attack that has lower com-
plexity than a birthday attack. However, the structure of AESH-256 allows to
construct pseudo-collisions with a complexity of about 264 encryptions. The
pseudo-collision attack is described in Algorithm 7.1.

Algorithm 7.1 Constructing a pseudo-collision for AESH-256.
Input: Intermediate chaining value hi−1‖gi−1

Output: Two messages mi and m∗
i , and the difference h′i−1 such that

AESH-256(mi, hi−1‖gi−1) = AESH-256(m∗
i , hi−1 ⊕ h′i−1‖gi−1).

• Apply a birthday attack to find two messages mi and m∗
i such that

h′i = 0, i.e. hi = h∗i . This requires about 264 encryptions

• For the messages m and m∗ compute the values ḡi and ḡ∗i for the given
gi−1. This determines the difference h′i−1 = ḡi ⊕ ḡ∗i

(Second) Preimage Resistance

For an ideal hash function with an n-bit hash value one would expect a security
margin of 2n for finding a (second) preimage for the hash function. However,
in the case of AESH-256, we can find a (second) preimage with complexity
close to 2n/2+1 hash computations. Firstly, we will describe an attack with
complexity 23n/4, which is similar to the attack that can be applied to MDC-2,
see [93]. Secondly, we present a structural attack following [115] which results
in a (second) preimage attack in about 2n/2+1 evaluations of the compression
function.

Fact 7.1. The compression function is invertible with respect to the chaining
variables.



138 Chapter 7. Design of Cryptographic Hash Functions

Algorithm 7.2 A way to invert the compression function.
Input: The intermediate hash value hi||gi and an arbitrary message block mi

Output: The intermediate hash value hi−1||gi−1 such that
AESH-256(mi, hi−1||gi−1) = hi||gi holds.

• Guess gi−1 and check if the following equation holds:

hi = gi−1 ⊕ c⊕AES-256mi(gi−1 ⊕ c)

Hence, a correct choice for gi−1 can be found in about 2128 encryptions

• Calculate hi−1 = gi ⊕AES-256mi(gi−1)⊕ gi−1

Based on Algorithm 7.2, the hash function is invertible with respect to the
chaining variables. In detail, for a given hi, gi and an arbitrary message, we can
find hi−1 and gi−1 in about 2128 applications of the compression function. This
can be used to find a preimage in the hash function with a complexity of about
2192 based on Fact 7.2.

Fact 7.2. An unbalanced meet-in-the-middle attack can be used to find a (sec-
ond) preimage similar as it has been shown by Lai and Massey in [93].

Based on Algorithm 7.3, we can find a preimage in the hash function with
complexity about 2 · 2192 applications of the compression functions. Note that a
similar attack can also be applied to MDC-2.

Algorithm 7.3 Unbalanced birthday attack to find a preimage of the hash
function
Input: The final hash value hi||gi

Output: The message m = mi−1||mi such that AESH-256(m,hi−2||gi−2) =
hi||gi.

• Calculate and store 264 candidates for hi−1||gi−1 in the list L result-
ing from a backward computation of the compression function using
Algorithm 7.2 (264 · 2128 applications of the compression function).

• Calculate hi−1||gi−1 resulting from a forward computation of the com-
pression function and check for a match in L.

• After calculating at most 2192 candidates for hi−1||gi−1 one can find a
matching entry in L (a collision) and hence a preimage. Note that a
collision is likely to exist due to the birthday paradox.

So far, we achieved the same security margin with respect to (second) preim-
age resistance as MDC-2. Nevertheless, we explain now a generic attack that is
based on [115] resulting in a (second) preimage resistance of 2129 for AESH-256.
The attack is based on the following fact.



7.3. A New Block-Cipher-Based Proposal: AESH-256 139

Fact 7.3. The structure of AESH-256 allows to construct a fixed point in the
right stream for an arbitrary value gi and mi. That means, we can easily find
hi−1 and hi such that

AESH-256(hi−1‖gi−1,mi) = hi‖gi−1 .

To construct a fixed-point following Fact 7.3, we proceed as follows. Choose
an arbitrary value gi−1 and an arbitrary mi. Then apply the compression
function to compute the values hi and ḡi (see Figure 7.7). Finally, compute
hi−1 = gi ⊕ ḡi resulting in the fixed point. Thus, constructing a fixed point in
the right stream of AESH-256 requires only one application of the compression
function.

We describe now how one can find a preimage for AESH-256, i.e. we are
given the final hash value (ht‖gt) and want to find the according message m.
For the discussion of the attack, we assume that we have messages with a length
that is a multiple of the block length (i.e. a multiple of 256 bits) and that no
padding is applied (padding will be treated separately). A graphical illustration
is given in Figure 7.9.

1. Step 1: For the given hash value (ht‖gt) we take the initial value gt−1 = g0

and choose random messages mt until we find the according ht. Since ht is
a 128-bit value, we expect to find the right ht after at most 2128 randomly
chosen messages. Once we found ht, we choose ht−1 such that we match
the value gt, i.e. ht−1 = gt ⊕ ḡt. Now, since gt−1 = g0, we can exploit the
fact that we can construct fixed points in the right stream of AESH-256
to preserve the value g0.

2. Step 2: In the second phase of the attack, we compute 2 ·2128 fixed-points
as described before and store the triplets (hi−1, hi,mi) in the list L. Now,
for each entry we have a fixed point such that AESH-256(hi−1‖g0,mi) =
(hi‖g0). Based on the 2129 entries in the list, we expect to have two entries
in L with the same hi−1 and two entries with the same hi. This fact
can be exploited for the preimage attack. Step 2 has a complexity of 2129

evaluations of the compression function.

3. Step 3: Based on the list L constructed in Step 2, we build two trees
(see Figure 7.9), referred to as the upper and lower tree. We start with
the upper tree using the value h0 as the first node. Then, for each node
we get two new nodes since we expect two entries that are identical in the
list L (see Step 2). We continue like this until we have a tree of depth k,
knowing that at this depth we have in total 2k nodes with different hi’s.
We do the same for the lower tree by starting from ht−1. Therefore, we
have two trees of depth k. The choice of k depends on the bit size of
the chaining value hi. For AESH-256, we have 128 bits. Setting k = 64,
we know that we have 264 hi’s in the upper and lower tree at depth k.
Due to the birthday paradox it is very likely that we find two matching
hi’s between both trees. Hence, finding a path from (ht−1‖g0) to (h0‖g0)
requires about 2129 evaluations of the compression function.



140 Chapter 7. Design of Cryptographic Hash Functions

Based on this description, we can give the complexity of this preimage attack
on AESH-256: constructing a preimage requires about 2128 + 2 · 2128 ≈ 2129

evaluations of the compression function. Furthermore, the preimage for (ht‖gt)
has a length of 64 + 64 + 1 = 129 message blocks. Note that for estimating
the complexity, we did not consider the cost of building the trees. The memory
requirements for storing the trees is about 2·

∑64
i=1 2i ≈ 266 message blocks. Note

that there exist alternative ways to construct the trees requiring less storage but
in this cases the complexity for constructing the trees increases.

Width of lncs

gihi

AES-256AES-256

hi-1 gi-1mi

c

gi

(h0,g0)

(h1,g0) (h1,g0)

(h2,g0) (h2,g0) (h2,g0) (h2, g0)

*

* ** ***

(ht-1,g0)

(ht-2,g0)(ht-2,g0)

(ht-3,g0) (ht-3,g0) (ht-3,g0) (ht-3,g0)* ** ***

*

(ht,gt)

k=1  ⇒ 21 pairs

k=64⇒ 264 pairs

k=2 ⇒ 22 pairs

k=64⇒ 264 pairs

k=2⇒ 22 pairs

k=1⇒ 21 pairs

upper tree
(Step 2)

lower tree
(Step 2)

Step 1

g1h1

AES-256AES-256

h0 g0m1

c

g1

g2h2

AES-256AES-256

h1 g1m2

c

h0 = 0
‚

g0 = 0
‚

m1 ≠ 0
‚

h1 ≠ 0
‚

g1 = 0
‚

m2 = 0
‚

h1 ≠ 0‚
g1 = 0

‚
h2≠ 0‚

g2 ≠ 0‚

g2

Figure 7.9: Graphical illustration of the preimage attack on AESH-256.

So far, we omitted the padding in the discussion. Including the padding
leads to a slightly modified preimage attack. However, the basic attack strategy
is the same, since we know that the preimage consists of 129 blocks. There-
fore, we start with constructing the final message block resulting from padding.
Computing once the inverse of the compression function leads to the chaining
values (ht−1‖gt−1), which are then the target values (the first preimage) for the
preimage attack. Computing the inverse for the padding block can be done along
the same lines as described in Step 2, with the only difference that the message
block is fixed. Therefore, this step additionally requires about 2128 evaluations
of the compression function.

Note that the preimage attack implies a second preimage attack. In this
case we are not given only the hash value ht‖gt but also a message m that
results in this hash value. We can construct for any given message a second
preimage in the same way as we construct preimages. The difference is, that the
second preimage will always consist of 129 message blocks. We can also construct



7.3. A New Block-Cipher-Based Proposal: AESH-256 141

preimages consisting of less blocks. In this case the preimage attack has to be
modified. This results in a higher attack complexity. This can be explained by
looking at Step 3. As described, we add to each node two new nodes resulting
in 2k nodes at a depth of k in the lower and upper tree. Actually, we are not
restricted by adding two nodes, but in fact, we can also add for instance 4 nodes.
This leads to a smaller depth of the trees. For instance, if we add four new nodes
at each node then we have 22k nodes at a depth of k. Therefore, at the depth
k = 32, we have 264 different hi’s. This results in a (second) preimage consisting
of 32 + 32 + 1 = 65 message blocks instead of 129. It is clear that adding 4
new nodes leads to accordingly more values in the list L. This in turn results
in a higher complexity for Step 2 of the attack. Nevertheless, the attack still
works. Based on this generic attack, we claim a (second) preimage resistance for
AESH-256 of 2n/2+1 = 2129.

7.3.3 Performance Evaluation and Comparison

In this section, we give a relative performance comparison between MDC-2,
DBLH, and AESH-256. Note that the MDC-2 construction requires a block ci-
pher with a key length less or equal than the block length, cf. [116]. For instance,
in [166] the MDC-2 construction instantiated with AES-128 as underlying block
cipher is presented.

One big advantage of DBLH and AESH-256 is that the key schedule only
has to be computed once, whereas for MDC-2 the key schedule has to be com-
puted twice in each iteration. For the implementation, we used the IAIK Crypto
Toolkit [162] and the C-implementation of AES of Gladman [62]. The perfor-
mance comparison is given in Table 7.2.

Table 7.2: Throughput comparison of MDC-2, DBLH, and AESH-256.

MDC-2 DBLH DBLH AESH-256

AES-128 AES-192 AES-256

PC32C 1 23.6 MB/sec 11.9 MB/sec 19.5 MB/sec 40.8 MB/sec

PC32J 2 3.8 MB/sec 2.2 MB/sec 3.8 MB/sec 7.5 MB/sec

PC64J 3 7.9 MB/sec 3.7 MB/sec 6.7 MB/sec 13.7 MB/sec

1Intel Pentium M, 1.7 GHz 32-bit architecture, Microsoft VC++ compiler
2Intel Pentium 4, 2 GHz 32-bit architecture, Java VM: SUN JDK 1.5.0 06
3AMD Opteron, 2 GHz 64-bit architecture, Java VM: SUN JDK 1.5.0 04

As can be seen in Table 7.2, AESH-256 compared to MDC-2 achieves an
improvement of about 70-90%, depending on the AES implementation and on
the architecture. Compared to DBLH, AESH-256 performs approximately four
times (DBLH with AES-192) or twice as fast (DBLH with AES-256). This also
correlates to the rate of the hash functions, cf. Section 7.3.1.



142 Chapter 7. Design of Cryptographic Hash Functions

Compared to DBLH instantiated with either AES-192 or AES-256, we achieve
better performance figures with the disadvantage that we do not have a security
proof for the collision resistance of AESH-256. In [68], Hirose does not comment
on (second) preimage resistance. However, the attacks on AESH-256 presented
in this chapter do not apply. We expect that the security margins for DBLH
with respect to (second) preimage resistance are way beyond 2n/2. If we compare
our proposal with the MDC-2 construction instantiated with AES-128, then we
can claim the same security margins for collision resistance but not for (sec-
ond) preimage resistance. In addition to the higher security margin for (second)
preimage attacks, very recently, a proof for the collision resistance of MDC-2
has been presented by Steinberger in [157].

In the following, we list some advantages of AESH-256:

• AESH-256 has a very simple structure and therefore can be implemented
easily in existing systems that support AES-256. Furthermore, the simple
structure makes the security analysis easier

• AESH-256 shows better performance than MDC-2 and DBLH

• AESH-256 uses the popular AES as underlying block cipher. For AES, no
weaknesses have been found to date

7.4 Summary and Discussion

In this chapter, we reviewed some recent proposals for modifications of SHA-1.
The two discussed proposals, a new message expansion and two message prepro-
cessing methods, make the modified SHA-1 more secure against existing attacks.
However, as discussed in this chapter, an in-depth security analysis is required
to get a good insight in the strengthened security, since in some special cases
collision attacks are still possible.

A very interesting approach in designing new hash functions are the discussed
sponge functions. Sponge functions are intended to be a new reference model
for modeling an ideal hash function. As opposed to the random oracle model,
sponge functions consider more realistic properties such as internal collisions. It
is believed that the required properties of sponge functions can be realized with
iterated designs. An example for a hash functions that uses sponge functions
as a reference model is the hash function RADIOGATÚN. This type of hash
function borrows techniques from block cipher and stream cipher design. As
we have shown, the basic idea is to work on a bigger internal state and only
simple transformations operating on this state are defined. An interesting prop-
erty of this proposal is that first the entire input message is processed before a
certain number of blank rounds are applied. The blank rounds are introduced
in order to withstand attacks that are based on certificational weaknesses such
as near-collisions. This approach was actually also used for the design strategy
SMASH where a single blank round is applied after processing the entire input
message. RADIOGATÚN is still work in progress and the designers motivate its



7.4. Summary and Discussion 143

security analysis. Grindahl is a new proposal that follows the design principles
of RADIOGATÚN and borrows the basic transformations from the block cipher
AES. The hash function can be efficiently implemented in both hardware and
software and the reuse of transformations of AES makes it a very elegant design.
Also, analyzing the security is facilitated by the fact that one can operate at
byte level. Nevertheless, a collision attack has been presented shortly after the
hash function Grindahl has been proposed. In order to withstand the attack a
possible approach is to increase the size of the internal state.

A potential drawback of both RADIOGATÚN and Grindahl is the huge
internal state. For instance, the 64-bit variant of RADIOGATÚN has an internal
state size of 3712 bits. Clearly, for implementations in restricted environments
this can be a crucial drawback. Compared to RADIOGATÚN, Grindahl has a
significant smaller internal state, namely 13 · 4 · 8 = 416 bits. Nevertheless, in
order to thwart the collision attack the state size still needs to be increased.

From the discussion of these recent hash function proposals, we can derive
some remarks and suggestions for approaching the design of new cryptographic
hash functions. What we have learned from the past years, is that dedicated
designs such as SHA-1 and a lot of other proposals designed from scratch, have
shown weaknesses, once researchers invest enough effort to analyze these primi-
tives. Therefore, designing a new hash function along the same lines as the MD
family is questionable. It is likely that the collision attacks on the MD family
presented by Wang et al. [169, 172, 173] can be extended to other hash functions
that are based on similar design principles. In particular, the recent results on
SHA-1 by De Cannière and Rechberger in [28] and De Cannière et al. in [27]
make an extension more likely. Also the fact that hash functions following the
Merkle-Damg̊ard design principle can for instance not achieve a security margin
of 2n for second preimages (see the generic second preimage attack for long mes-
sages discussed in Section 3.2.2), emphasizes that it may be advisable to move
away from MD constructions.

An alternative to dedicated hash functions are block-cipher-based hash func-
tions. One of the biggest advantages of block-cipher-based constructions is that
a popular block cipher such as AES has gone through a public security analysis
over several years. This clearly gives confidence in using this primitive. We have
discussed two block-cipher-based hash proposals. The first is Whirlpool that has
been designed in such a way that the size of the hash value is large enough to
fulfill nowadays security requirements. By doing so, no double-block-length con-
struction is required and one of the provable modes of operations can be used.
However, the underlying block cipher has been designed from scratch. Even if
similar design rationales as for AES are given, the new block cipher W has def-
initely not been analyzed as thoroughly as for instance AES. What should be
required from a hash function such as Whirlpool is the specification of truncation
modes due to compatibility reasons. Clearly, truncation methods should be part
of the security analysis. The new variant of Whirlpool, namely MAELSTROM-0,
considers various sizes of the hash value. The new block-cipher-based hash func-
tion AESH-256 uses AES as underlying block cipher. In order to achieve the



144 Chapter 7. Design of Cryptographic Hash Functions

required security margins a double-block-length construction is used. What we
have seen with this hash function is that structural weaknesses can be exploited
to lower the security bounds. For instance, a (second) preimage attack can be
performed with a complexity of about 2n/2+1 = 2129 instead of the expected 2n.
Note that the recent results of Knudsen and Rijmen in [91] may have implica-
tions on the security of block-cipher-based hash functions including Whirlpool
and AESH-256—this needs to be further investigated.

With block-cipher-based hash constructions a fixed-size hash value can be
computed with the advantage of using a well known primitive. Other hash
sizes can only be achieved by truncating the output. This in turn requires an
independent security analysis. If we look at RADIOGATÚN, then this design
approach allows to produce a variable hash size with the only restriction that it
will be a multiple of the internal word size. Depending on the size of the internal
state and the claimed capacity, this hash function can produce hash values of
various sizes. An advantage of RADIOGATÚN is that the security margins can
be estimated accurately for the different output sizes. Based on the existing
security analyses of this new design principle for hash functions, it is clearly too
early to recommend the use of this kind of hash function. Further analysis is
required to avoid a similar situation we encountered with the hash functions of
the MD family, in particular MD5 and SHA-1.

Other points to consider when designing hash functions are the security mar-
gins for collision and (second) preimage resistance. For the hash functions in this
chapter, we have seen different approaches. First of all, most of the cryptanalytic
results focus on collision resistance. For (second) preimage resistance, we are as-
suming in general the bound we expect from an ideal hash function, namely 2n

for a hash function with an n-bit hash value. In the example of Grindahl, we
have seen that even if there is no known (second) preimage attack, the claimed
margins are in the same order of magnitude as for collision resistance. This is
the first proposal, where this was done. Clearly, there are other proposals where
the security margins are below the ones expected from an ideal hash function
(e.g. MDC-2) but in these cases there exist generic attacks that force the claim
of lower security margins. The same holds for AESH-256. However, it remains
an open discussion whether or not it is advisable to claim the same security
margins for collision and for (second) preimage resistance, even if there do not
exist any attacks that force lower claims.



8
Conclusion and

Further Research Directions

In this thesis, we have focused on the analysis and design of cryptographic hash
functions. We have reviewed general cryptanalytic techniques for the analysis
of iterated hash functions. The collision attack on SHA-1 has been reviewed
in detail. Furthermore, we have shown how coding theory can be exploited to
find high-probability linear characteristics for the state update transformation
of SHA-1, which plays a crucial role in the collision attack. We have refined the
estimate of the probability of linear characteristics by considering side-effects
such as the impact of carries. This resulted in a slight improvement of the
attack complexity compared to the original collision attack by Wang et al.

We have presented an efficient collision attack on the new hash function
design strategy SMASH. A generalization of this attack resulted in a powerful
second preimage attack. Furthermore, we have shown for a new block-cipher-
based double-block-length hash construction DBLH that the underlying block
cipher is crucial for the security. If a block cipher following the FX construction is
employed in DBLH, second preimages can be constructed efficiently. Motivated
by these results, we have described and discussed how recent results in the
cryptanalysis of hash functions affect the hash-based message authentication
codes NMAC and HMAC. For the analysis of the impact on NMAC and HMAC,
we have considered the existing collision attacks on hash functions such as SHA-1
and also the second preimage attacks on the hash functions SMASH and DBLH.
It turned out that the cryptanalytic results on hash functions do affect the
security of NMAC and HMAC.

Regarding the design of hash functions, we firstly have discussed some mod-
ifications of SHA-1 that have been proposed in order to increase the complex-
ity of existing collision attacks. Secondly, we have described and discussed
selected hash function designs such as Whirlpool and the two new proposals
RADIOGATÚN and Grindahl. We also have proposed a new block-cipher-based
double-block-length hash construction AESH-256 and have given a security anal-
ysis with respect to collision and (second) preimage resistance.

145



146 Chapter 8. Conclusion and Further Research Directions

8.1 Cryptanalysis of Hash Functions

As discussed in this thesis, differential cryptanalysis is a powerful method for the
analysis of hash functions. The majority of dedicated hash functions based on
the Merkle-Damg̊ard design principle has been (theoretically) broken by exploit-
ing and extending methods from differential cryptanalysis. Exceptions are for
instance the SHA-2 family of hash functions (including amongst others SHA-256
and SHA-512) standardized in FIPS-180-2 [128], and RIPEMD-160 designed by
Dobbertin et al. in [52]. Only few cryptanalytic analyses of these hash func-
tions have been published to date, e.g. see [113] for an analysis of RIPEMD-160,
and [61, 66, 107, 112, 175] for preliminary results on SHA-256 and SHA-512.
Compared to SHA-1, these hash functions have a bigger internal state and more
complex internal operations are employed. Nevertheless, the main concern re-
garding the security of these hash functions is that the constructions follow
similar design principles as SHA-1. Therefore, an important open question is
whether or not the known attack methods that have been used to break SHA-1
can be refined and extended in such a way that they can also be applied to break
these hash functions.

In the past years, hash functions have been analyzed mostly with respect to
collision resistance. Only few results regarding (second) preimage attacks have
been published to date. It follows, that an interesting open research problem
is to investigate whether collision attacks can be extended in order to construct
second preimages. For the hash function MD4, first results in this direction have
been published by Yu et al. in [177], but no similar results for the hash functions
MD5 and SHA-1 are known to date.

8.2 Design of Hash Functions

The design of new hash functions will be the most challenging task in the future.
Designers are faced with the difficulty of having no clear view on which security
requirements a hash function should fulfill. So far, the reference model for an
ideal hash function was, and still is, the random oracle model. However, the
results of the past years have shown that we are far away from this model with
respect to what can be achieved by iterated hash function designs. Therefore,
an important open research problem is to find alternative reference models that
consider more realistic scenarios. One step in this direction are sponge functions.
Even if this new reference model is a promising alternative to the random oracle
model, further in-depth analysis is required.

Similar to the development process for the Advanced Encryption Standard,
NIST is initiating a public effort to develop one or more hash functions. The
tentative schedule foresees 5 years including several workshops during the evalu-
ation phase of submitted hash function proposals. In 2012, NIST plans to revise
FIPS-180-2 [128] depending on the results of the public effort (see [127] for the
tentative timeline). As a first step, NIST has drafted the minimum require-
ments for hash function proposals. The following items are used for judging new



8.2. Design of Hash Functions 147

proposals with respect to security [126]:

1. security with respect to collision and (second) preimage resistance com-
pared to other submissions

2. the extent to which the algorithm output is indistinguishable from a ran-
dom oracle

3. soundness of the mathematical basis for the security of the hash function

4. all other security factors that may arise during the public evaluation phase
of the submitted hash function proposals

These draft requirements do not really include any new requirements on hash
functions, except the fact that NIST prefers proposals that support an elegant
security analysis. Therefore, the first step is to clearly specify what we expect
from a hash function by refining these minimum requirements. It is advisable to
not only specify the minimum security requirements for the hash function itself
but also for hash-based constructions and applications including cryptographic
protocols. In other words, we need to specify general minimum requirements
for the security of hash functions as a primitive, and additionally, we need to
specify application-dependent security requirements. Such a clear specification
of the security requirements is the first step to design new hash functions that
satisfy our needs for the next decades.

It is an open question whether or not the public effort in designing new hash
functions, will be as successful as the selection process of the Advanced Encryp-
tion Standard. Independent of this, it will definitely lead to new insights and
new directions in both the analysis and design of cryptographic hash functions
and hash-based constructions.





Bibliography

[1] Ross J. Anderson and Eli Biham. TIGER: A Fast New Hash Function. In
Dieter Gollmann, editor, Fast Software Encryption, Third International
Workshop, Cambridge, UK, February 21-23, 1996, Proceedings, volume
1039 of LNCS, pages 89–97. Springer, 1996.

[2] Steve Babbage, Carlos Cid, Norbert Pramstaller, and H̊avard Raddum.
An Analysis of the Hermes8 Stream Ciphers. In Josef Pieprzyk, Hossein
Ghodosi, and Ed Dawson, editors, Information Security and Privacy, 12th
Australasian Conference, ACISP 2007, Townsville, Australia, July 2-4,
2007, Proceedings, volume 4586 of LNCS, pages 1–10. Springer, 2007.

[3] Paulo S.L.M. Barreto. The Hash Function Lounge. http://paginas.terra.
com.br/informatica/paulobarreto/hflounge.html.

[4] Paulo S.L.M. Barreto and Vincent Rijmen. The Whirlpool Hashing
Function, 2000, revised in May 2003. http://paginas.terra.com.br/

informatica/paulobarreto/WhirlpoolPage.html.

[5] Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Col-
lision Resistance. In Cynthia Dwork, editor, Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117
of LNCS, pages 602–619. Springer, 2006.

[6] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions
for Message Authentication. In Neal Koblitz, editor, Advances in Cryp-
tology - CRYPTO ’96, 16th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume
1109 of LNCS, pages 1–15. Springer, 1996.

[7] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Ci-
pher Block Chaining. In Yvo Desmedt, editor, Advances in Cryptology
- CRYPTO ’94, 14th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1994, Proceedings, volume 839
of LNCS, pages 341–358. Springer, 1994.

[8] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of the Cipher
Block Chaining Message Authentication Code. Journal of Computer and
System Sciences, 61(3):362–399, 2000.

[9] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In ACM Conference on Com-
puter and Communications Security, pages 62–73, 1993.

[10] Mihir Bellare and Phillip Rogaway. CSE 207 Course Notes: Introduction to
Modern Cryptography, 2005. http://www-cse.ucsd.edu/~mihir/cse207/.

149

http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html
http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://www-cse.ucsd.edu/~mihir/cse207/


150 Bibliography

[11] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems. IEEE Trans-
actions on Information Theory, 24(3):384–386, 1978.

[12] Daniel J. Bernstein. The Poly1305-AES Message-Authentication Code.
In Henri Gilbert and Helena Handschuh, editors, Fast Software Encryp-
tion: 12th International Workshop, FSE 2005, Paris, France, February
21-23, 2005, Revised Selected Papers, volume 3557 of LNCS, pages 32–49.
Springer, 2005.

[13] Guido Bertoni, Joan Daemen, and Gilles Van Assche. RADIOGATÚN, a
Belt-and-Mill Hash Function, 2006. http://radiogatun.noekeon.org/.

[14] Guido Bertoni, Joan Daemen, and Gilles Van Assche. RADIOGATÚN,
a Belt-and-Mill Hash Function. Presented at the Second Cryptographic
Hash Workshop hosted by NIST, 2006.

[15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge Functions. Presented at the Dagstuhl Seminar 07021: Symmet-
ric Cryptography, 2007. http://kathrin.dagstuhl.de/files/Materials/07/
07021/07021.DaemenJoan1.Slides.pdf.

[16] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block
Cipher Proposal. In Serge Vaudenay, editor, Fast Software Encryption, 5th
International Workshop, FSE 1998, Paris, France, March 23-25, 1998,
Proceedings, volume 1372 of LNCS, pages 222–238. Springer, 1998.

[17] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of LNCS, pages 290–305.
Springer, 2004.

[18] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe
Lemuet, and William Jalby. Collisions of SHA-0 and Reduced SHA-1.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005:
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceed-
ings, volume 3494 of LNCS, pages 36–57. Springer, 2005.

[19] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[20] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryp-
tion Standard. Springer, 1993. ISBN 0-387-97930-1.

[21] Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Pre-
neel, editor, Advances in Cryptology - EUROCRYPT 2000, International
Conference on the Theory and Application of Cryptographic Techniques,

http://radiogatun.noekeon.org/
http://kathrin.dagstuhl.de/files/Materials/07/07021/07021.DaemenJoan1.Slides.pdf
http://kathrin.dagstuhl.de/files/Materials/07/07021/07021.DaemenJoan1.Slides.pdf


Bibliography 151

Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of LNCS,
pages 589–606. Springer, 2000.

[22] John Black. The Ideal-Cipher Model, Revisited: An Uninstantiable
Blockcipher-Based Hash Function. In Matthew J. B. Robshaw, editor, Fast
Software Encryption, 13th International Workshop, FSE 2006, Graz, Aus-
tria, March 15-17, 2006, Revised Selected Papers, volume 4047 of LNCS,
pages 328–340, 2006.

[23] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Ro-
gaway. UMAC: Fast and Secure Message Authentication. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of LNCS, pages 216–233. Springer,
1999.

[24] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Anal-
ysis of the Block-Cipher-Based Hash-Function Constructions from PGV.
In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings, volume 2442 of LNCS, pages 320–
335. Springer, 2002.

[25] Karl Brincat and Chris J. Mitchell. New CBC-MAC Forgery Attacks. In
Vijay Varadharajan and Yi Mu, editors, Information Security and Privacy,
6th Australasian Conference, ACISP 2001, Sydney, Australia, July 11-13,
2001, Proceedings, volume 2119 of LNCS, pages 3–14. Springer, 2001.

[26] Johannes Buchmann. Einführung in die Kryptographie. Springer, 1999.
ISBN 3-540-66059-3.

[27] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Col-
lisions for 70-step SHA-1: On the Full Cost of Collision Search. In Selected
Areas in Cryptography, 14th Annual International Workshop, SAC 2007,
Ottowa, Ontario, Canada, August 16-17, 2007. Revised Papers, to appear
in LNCS. Springer, 2007.

[28] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Char-
acteristics: General Results and Applications. In Xuejia Lai and Kefei
Chen, editors, Advances in Cryptology - ASIACRYPT 2006, 12th Inter-
national Conference on the Theory and Application of Cryptology and In-
formation Security, Shanghai, China, December 3-7, 2006, Proceedings,
volume 4284 of LNCS, pages 1–20. Springer, 2006.

[29] Anne Canteaut and Florent Chabaud. A New Algorithm for Finding
Minimum-Weight Words in a Linear Code: Application to McEliece’s
Cryptosystem and to Narrow-Sense BCH Codes of Length 511. IEEE
Transactions on Information Theory, 44(1):367–378, 1998.



152 Bibliography

[30] Florent Chabaud. On the Security of Some Cryptosystems Based on Error-
Correcting Codes. In Alfredo De Santis, editor, Advances in Cryptology -
EUROCRYPT ’94, Workshop on the Theory and Application of Crypto-
graphic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings, volume
950 of LNCS, pages 131–139. Springer, 1995.

[31] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0.
In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings, volume 1462 of LNCS, pages 56–
71. Springer, 1998.

[32] Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery
Attacks on HMAC and NMAC Using Hash Collisions. In Xuejia Lai and
Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006, 12th
International Conference on the Theory and Application of Cryptology and
Information Security, Shanghai, China, December 3-7, 2006, Proceedings,
volume 4284 of LNCS, pages 37–53. Springer, 2006.

[33] Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery
Attacks on HMAC and NMAC Using Hash Collisions. Cryptology ePrint
Archive, Report 2006/319, 2006. Available online at http://eprint.iacr.

org/.

[34] Don Coppersmith. The Data Encryption Standard (DES) and its Strength
Against Attacks. IBM Journal of Research and Developement, 38(4):243–
250, 1994.

[35] Joan Daemen and Gilles Van Assche. Producing Collisions for Panama,
Instantaneously. In Alex Biryukov, editor, Fast Software Encryption, 14th
International Workshop, FSE 2007, Luxembourg City, Luxembourg, March
26-28, 2007, Revised Selected Papers, volume 4593 of LNCS, pages 1–18,
2007.

[36] Joan Daemen and Craig S. K. Clapp. Fast Hashing and Stream Encryption
with PANAMA. In Serge Vaudenay, editor, Fast Software Encryption,
5th International Workshop, FSE’98, Paris, France, March 23-25, 1998,
Proceedings, volume 1372 of LNCS, pages 60–74, 1998.

[37] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information
Security and Cryptography. Springer, 2002. ISBN 3-540-42580-2.

[38] Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED
and a Specific Instance ALPHA-MAC. In Henri Gilbert and Helena Hand-
schuh, editors, Fast Software Encryption: 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers,
volume 3557 of LNCS, pages 1–17. Springer, 2005.

http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography 153

[39] Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED
and a Specific Instance ALPHA-MAC. In Henri Gilbert and Helena Hand-
schuh, editors, Fast Software Encryption: 12th International Workshop,
FSE 2005, Paris, France, February 21-23, 2005, Revised Selected Papers,
volume 3557 of LNCS, pages 1–17. Springer, 2005.

[40] Joan Daemen and Vincent Rijmen. Understanding Two-Round Differ-
entials in AES. In Robert De Prisco and Moti Yung, editors, Security
and Cryptography for Networks, 5th International Conference, SCN 2006,
Maiori, Italy, September 6-8, 2006, Proceedings, volume 4116 of LNCS,
pages 78–94. Springer, 2006.

[41] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of LNCS, pages 416–427. Springer, 1989.

[42] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD
thesis, Ruhr Universität Bochum, 2005. Available online at http://www.

cits.rub.de/imperia/md/content/magnus/dissmd4.pdf.

[43] D.W. Davies and D.O. Clayden. The Message Authenticator Algorithm
(MAA) and its Implementation. Report DITC 109/88, National Physical
Laboratory, U.K., February 1988.

[44] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University, 1999.

[45] Bert den Boer and Antoon Bosselaers. An Attack on the Last Two Rounds
of MD4. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO
’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings, volume 576 of LNCS,
pages 194–203. Springer, 1991.

[46] Bert den Boer and Antoon Bosselaers. Collisions for the Compressin Func-
tion of MD5. In Tor Helleseth, editor, Advances in Cryptology - EURO-
CRYPT ’93, Workshop on the Theory and Application of of Cryptographic
Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765
of LNCS, pages 293–304. Springer, 1993.

[47] Alex W. Dent and Chris J. Mitchell. User’s Guide To Cryptography And
Standards. Artech House Publishers, 2004. ISBN 1-580-53530-5.

[48] Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0, Request
for Comments (RFC) 2246, The Internet Engineering Task Force, 1999.

[49] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor,
Fast Software Encryption, Third International Workshop, Cambridge, UK,
February 21-23, 1996, Proceedings, volume 1039 of LNCS, pages 53–69.
Springer, 1996.

http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf


154 Bibliography

[50] Hans Dobbertin. The Status of MD5 After a Recent Attack. RSA Labo-
ratories’ CryptoBytes, 2(2):1–6, 1996.

[51] Hans Dobbertin. Cryptanalysis of MD4. Journal of Cryptology, 11(4):253–
271, 1998.

[52] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
Strengthened Version of RIPEMD. In Dieter Gollmann, editor, Fast Soft-
ware Encryption, Third International Workshop, Cambridge, UK, Febru-
ary 21-23, 1996, Proceedings, volume 1039 of LNCS, pages 71–82. Springer,
1996.

[53] Orr Dunkelman and Bart Preneel. Generalizing the Herding Attack to
Concatenated Hashing Schemes. Presented at the ECRYPT Hash Work-
shop, May 2007.

[54] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. AES Im-
plementation on a Grain of Sand. IEE Proceedings on Information Secu-
rity, 152(1):13–20, 2005.

[55] William Feller. An Introduction to Probability Theory and its Applications.
Vol. I. Third edition. John Wiley & Sons Inc., New York, 1968.

[56] Décio L. G. Filho, Paulo S. L. M. Barreto, and Vincent Rijmen. The
MAELSTROM-0 Hash Function. In Symposium Proceedings of The
6th Brazilian Symposium on Information and Computer System Secu-
rity, 2006. Available online at http://www.cryptolounge.org/w/images/f/

f5/Maelstrom-0.pdf.

[57] International Organization for Standardization. ISO/IEC 9797-1:1999 In-
formation Technology – Security Techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms Using a Block Cipher., 1999.

[58] International Organization for Standardization. ISO/IEC 10118-3:2004
Information Technology – Security Techniques – Hash-Functions – Part 3:
Dedicated Hash-Functions., 2004.

[59] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full Key-
Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In Alfred
Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, volume 4622 of LNCS, pages 13–30. Springer,
2007.

[60] Praveen Gauravaram, William Millan, Ed Dawson, and Kapali
Viswanathan. Constructing Secure Hash Functions by Enhancing Merkle-
Damg̊ard Construction. In Lynn Margaret Batten and Reihaneh Safavi-
Naini, editors, Information Security and Privacy, 11th Australasian Con-
ference, ACISP 2006, Melbourne, Australia, July 3-5, 2006, Proceedings,
volume 4058 of LNCS, pages 407–420. Springer, 2006.

http://www.cryptolounge.org/w/images/f/f5/Maelstrom-0.pdf
http://www.cryptolounge.org/w/images/f/f5/Maelstrom-0.pdf


Bibliography 155

[61] Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and
Sisters. In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected
Areas in Cryptography, 10th Annual International Workshop, SAC 2003,
Ottawa, Canada, August 14-15, 2003, Revised Papers, volume 3006 of
LNCS, pages 175–193. Springer, 2003.

[62] Brian Gladman. AES and Combined Encryption/Authentication Modes.
http://fp.gladman.plus.com/AES/index.htm.

[63] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct
Random Functions. Journal of the Association for Computing Machinery
(ACM), 33(4):792–807, 1986.

[64] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer, 2004. ISBN 0-387-95273-X.

[65] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE), Request
for Comments (RFC) 2409, The Internet Engineering Task Force, 1998.

[66] Philip Hawkes, Michael Paddon, and Gregory G. Rose. On Corrective Pat-
terns for the SHA-2 Family. Cryptology ePrint Archive, Report 2004/207,
2004. Available online at http://eprint.iacr.org/.

[67] Martin E. Hellman, Ralph C. Merkle, Richard Schroeppel, Lawrence C.
Washington, Whitfield Diffie, Stephen C. Pohlig, and P. Schweitzer. Re-
sults of an Initial Attempt to Cryptanalyze the NBS Data Encryption
Standard. Technical Report, Stanford University, U.S.A, 1976.

[68] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length
Hash Functions. In Matthew J. B. Robshaw, editor, Fast Software En-
cryption, 13th International Workshop, FSE 2006, Graz, Austria, March
15-17, 2006, Revised Selected Papers, volume 4047 of LNCS, pages 210–
225, 2006.

[69] Alireza Hodjat and Ingrid Verbauwhede. Area-Throughput Trade-Offs for
Fully Pipelined 30 to 70 Gbits/s AES Processors. IEEE Transactions on
Computers, 55(4):366–372, 2006.

[70] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie Hong,
Jaesang Lee, Dukjae Moon, and Sungtaek Chee. A New Dedicated 256-Bit
Hash Function: FORK-256. In Matthew J. B. Robshaw, editor, Fast Soft-
ware Encryption, 13th International Workshop, FSE 2006, Graz, Austria,
March 15-17, 2006, Revised Selected Papers, volume 4047 of LNCS, pages
195–209. Springer, 2006.

[71] Deukjo Hong, Donghoon Chang, Jaechul Sung, Sangjin Lee, Seokhie
Hong, Jesang Lee, Dukjae Moon, and Sungtaek Chee. New FORK-256.
Cryptology ePrint Archive, Report 2007/185, 2007. Available online at
http://eprint.iacr.org/.

http://fp.gladman.plus.com/AES/index.htm
http://eprint.iacr.org/
http://eprint.iacr.org/


156 Bibliography

[72] American National Standards Institution. ANSI X9.71, Keyed Hash Mes-
sage Authentication Code, 2000.

[73] Daniel Joscák and Jiŕı Tuma. Multi-Block Collisions in Hash Functions
Based on 3C and 3C+ Enhancements of the Merkle-Damg̊ard Construc-
tion. In Min Surp Rhee and Byoungcheon Lee, editors, Information Secu-
rity and Cryptology - ICISC 2006, 9th International Conference, Busan,
Korea, November 30 - December 1, 2006, Proceedings, volume 4296 of
LNCS, pages 257–266. Springer, 2006.

[74] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to
Cascaded Constructions. In Matthew K. Franklin, editor, Advances in
Cryptology - CRYPTO 2004, 24th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 306–316. Springer, 2004.

[75] Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified)
Boomerang Attack. In Alfred Menezes, editor, Advances in Cryptology -
CRYPTO 2007, 27th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of
LNCS, pages 244–263. Springer, 2007.

[76] Charanjit S. Jutla and Anindya C. Patthak. A Matching Lower Bound
on the Minimum Weight of SHA-1 Expansion Code. Cryptology ePrint
Archive, Report 2005/266, 2005. Available online at http://eprint.iacr.

org/.

[77] Charanjit S. Jutla and Anindya C. Patthak. A Simple and Provably Good
Code for SHA Message Expansion. Cryptology ePrint Archive, Report
2005/247, 2005. Available online at http://eprint.iacr.org/.

[78] Charanjit S. Jutla and Anindya C. Patthak. Provably Good Codes for
Hash Function Design. In Eli Biham and Amr M. Youssef, editors, Se-
lected Areas in Cryptography, 13th International Workshop, SAC 2006,
Montreal, Canada, August 17-18, 2006 Revised Selected Papers, volume
4356 of LNCS, pages 376–393. Springer, 2006.

[79] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nos-
tradamus Attack. In Serge Vaudenay, editor, Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28 - June 1, 2006, Proceedings, volume 4004 of LNCS, pages 183–200.
Springer, 2006.

[80] John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Func-
tions for Much less than 2n Work. In Ronald Cramer, editor, Advances
in Cryptology - EUROCRYPT 2005: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Aarhus,

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography 157

Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages
474–490. Springer, 2005.

[81] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, volume 1109, pages
252–267. Springer, 1996.

[82] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive
Key Search (an Analysis of DESX). Journal of Cryptology, 14(1):17–35,
2001.

[83] Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the
Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0 and
SHA-1 (Extended Abstract). In Roberto De Prisco and Moti Yung, editors,
Security and Cryptography for Networks, 5th International Conference,
SCN 2006, Maiori, Italy, September 6-8, 2006, Proceedings, volume 4116
of LNCS, pages 242–256. Springer, 2006.

[84] Paris Kitsos and Odysseas G. Koufopavlou. Efficient Architecture and
Hardware Implementation of the Whirlpool Hash Function. IEEE Trans-
actions on Consumer Electronics, 50(1):208–213, 2004.

[85] Lars R. Knudsen. Non-Random Properties of Reduced-Round
Whirlpool. https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/

uibwp5-016-2.pdf.

[86] Lars R. Knudsen. Chosen-Text Attack on CBC-MAC. Electronic Letters,
33(1):48–49, 1997.

[87] Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri
Gilbert and Helena Handschuh, editors, Fast Software Encryption: 12th
International Workshop, FSE 2005, Paris, France, February 21-23, 2005,
Revised Selected Papers, volume 3557 of LNCS, pages 228–242. Springer,
2005.

[88] Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on Fast Double
Block Length Hash Functions. Journal of Cryptology, 11(1):59–72, 1998.

[89] Lars R. Knudsen and Bart Preneel. MacDES: MAC Algorithm Based on
DES. Electronic Letters, 34(9):871–873, 1998.

[90] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The
Grindahl Hash Functions. In Alex Biryukov, editor, Fast Software Encryp-
tion, 14th International Workshop, FSE 2007, Luxembourg City, Luxem-
bourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of LNCS,
pages 39–57, 2007.

https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-016-2.pdf
https://www.cosic.esat.kuleuven.be/nessie/reports/phase2/uibwp5-016-2.pdf


158 Bibliography

[91] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for
Some Block Ciphers. In Kaoru Kurosawa, editor, Advances in Cryptology
- ASIACRYPT 2007, 13th International Conference on the Theory and
Application of Cryptology and Information Security, Kuching, Malaysia,
December 2-6, 2007, Proceedings, volume 4833 of LNCS, pages 315–324.
Springer, 2007.

[92] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing
for Message Authentication, Request for Comments (RFC) 2104, The In-
ternet Engineering Task Force, 1997.

[93] Xuejia Lai and James L. Massey. Hash Functions Based on Block Ciphers.
In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT
’92, Workshop on the Theory and Application of of Cryptographic Tech-
niques, Balatonfüred, Hungary, May 24-28, 1992, Proceedings, volume 658
of LNCS, pages 55–70. Springer, 1992.

[94] Xuejia Lai, Rainer A. Rueppel, and Jack Woollven. A Fast Cryptographic
Checksum Algorithm Based on Stream Ciphers. In Jennifer Seberry and
Yuliang Zheng, editors, Advances in Cryptology - AUSCRYPT ’92, Work-
shop on the Theory and Application of Cryptographic Techniques, Gold
Coast, Queensland, Australia, December 13-16, 1992, Proceedings, volume
718 of LNCS, pages 339–348. Springer, 1993.

[95] Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vin-
cent Rijmen. Second Preimages for SMASH. In Masayuki Abe, editor,
Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at the
RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Pro-
ceedings, volume 4377 of LNCS, pages 101–111. Springer, 2007.

[96] Jeffrey S. Leon. A Probabilistic Algorithm for Computing Minimum
Weights of Large Error-Correcting Codes. IEEE Transactions on Infor-
mation Theory, 34(5):1354–1359, 1988.

[97] Gaëtan Leurent. Message Freedom in MD4 and MD5 Collisions: Appli-
cation to APOP. In Alex Biryukov, editor, Fast Software Encryption,
14th International Workshop, FSE 2007, Luxembourg City, Luxembourg,
March 26-28, 2007, Revised Selected Papers, volume 4593 of LNCS, pages
309–328, 2007.

[98] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and
Their Applications. Cambridge University Press; Second edition (August
26, 1994), 1994. ISBN 0-521-46094-8.

[99] Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Com-
pression Functions. In Eli Biham and Amr M. Youssef, editors, Selected
Areas in Cryptography, 13th International Workshop, SAC 2006, Mon-
treal, Canada, August 17-18, 2006 Revised Selected Papers, volume 4356
of LNCS, pages 358–375. Springer, 2006.



Bibliography 159

[100] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Differ-
ential and Rectangle Attacks on Reduced-Round SHACAL-1. In Rana
Barua and Tanja Lange, editors, Progress in Cryptology - INDOCRYPT
2006, 7th International Conference on Cryptology in India, Kolkata, India,
December 11-13, 2006, Proceedings, volume 4329 of LNCS, pages 17–31.
Springer, 2006.

[101] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. North Holland, 1983. ISBN 0-444-85193-3.

[102] Stefan Mangard, Manfred J. Aigner, and Sandra Dominikus. A Highly
Regular and Scalable AES Hardware Architecture. IEEE Transactions on
Computers, 52(4):483–491, 2003.

[103] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
Attacking Masked AES Hardware Implementations. In Josyula R. Rao
and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, volume 3659 of LNCS, pages 157–171.
Springer, 2005.

[104] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In Tor
Helleseth, editor, Advances in Cryptology - EUROCRYPT ’93, Workshop
on the Theory and Application of of Cryptographic Techniques, Lofthus,
Norway, May 23-27, 1993, Proceedings, volume 765 of LNCS, pages 386–
397. Springer, 1993.

[105] Krystian Matusiewicz, Scott Contini, and Josef Pieprzyk. Weaknesses of
the FORK-256 Compression Function. Cryptology ePrint Archive, Report
2006/317, 2006. Available online at http://eprint.iacr.org/.

[106] Krystian Matusiewicz, Thomas Peyrin, Olivier Billet, Scott Contini, and
Josef Pieprzyk. Cryptanalysis of FORK-256. In Alex Biryukov, editor,
Fast Software Encryption, 14th International Workshop, FSE 2007, Lux-
embourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, vol-
ume 4593 of LNCS, pages 19–38. Springer, 2007.

[107] Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian
Rechberger, and Vincent Rijmen. Analysis of Simplified Variants of SHA-
256. In Christopher Wolf, Stefan Lucks, and Po-Wah Yau, editors, WE-
WoRC 2005 - Western European Workshop on Research in Cryptology,
July 5-7, 2005, Leuven, Belgium, volume 74 of LNI, pages 123–134. GI,
2005.

[108] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Cod-
ing Theory. The Deep Space Network Progress Report, DSN PR 42-44,
January and February 1978, pages 114-116.

http://eprint.iacr.org/


160 Bibliography

[109] Florian Mendel, Joseph Lano, and Bart Preneel. Cryptanalysis of Reduced
Variants of the FORK-256 Hash Function. In Masayuki Abe, editor, Top-
ics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at the RSA
Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Proceed-
ings, volume 4377 of LNCS, pages 85–100. Springer, 2007.

[110] Florian Mendel and Norbert Pramstaller. A New Block-Cipher-Based Hash
Proposal: AESH-256. IAIK Krypto Group Technical Report 2006/09/18
(updated on 2007/10/05). http://www.iaik.tugraz.at/research/krypto.

[111] Florian Mendel, Norbert Pramstaller, and Christian Rechberger. Improved
Collision-Attack on the Hash Function Proposed at PKC’98. In Min Surp
Rhee and Byoungcheon Lee, editors, Information Security and Cryptol-
ogy - ICISC 2006, 9th International Conference, Busan, Korea, November
30 - December 1, 2006, Proceedings, volume 4296 of LNCS, pages 8–21.
Springer, 2006.

[112] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. Analysis of Step-Reduced SHA-256. In Matthew J. B. Robshaw,
editor, Fast Software Encryption, 13th International Workshop, FSE 2006,
Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047
of LNCS, pages 126–143. Springer, 2006.

[113] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. On the Collision Resistance of RIPEMD-160. In Sokratis K. Kat-
sikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel,
editors, Information Security, 9th International Conference, ISC 2006,
Samos Island, Greece, August 30 - September 2, 2006, Proceedings, vol-
ume 4176 of LNCS, pages 101–116. Springer, 2006.

[114] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen. The Impact of Carries on the Complexity of Collision Attacks on
SHA-1. In Matt Robshow, editor, Fast Software Encryption, 13th Interna-
tional Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised
Selected Papers, 2006.

[115] Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V Compres-
sion Function. In Kil-Hyun Nam and Gwangsoo Rhee, editors, Informa-
tion Security and Cryptology - ICISC 2007, 10th International Conference,
Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of LNCS,
pages 335–345. Springer, 2007.

[116] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, Boston, 1997.

[117] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD
thesis, Stanford University, 1979. Available online at http://www.merkle.

com/papers/Thesis1979.pdf.

http://www.iaik.tugraz.at/research/krypto
http://www.merkle.com/papers/Thesis1979.pdf
http://www.merkle.com/papers/Thesis1979.pdf


Bibliography 161

[118] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of LNCS, pages 428–446. Springer, 1989.

[119] Judy H. Moore and Gustavus J. Simmons. Cycle Structure of the DES for
Keys Having Palindromic (or Antipalindromic) Sequences of Round Keys.
IEEE Transactions on Software Engineering, 13(2):262–273, 1987.

[120] Sean Murphy. The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts.
Journal of Cryptology, 2(3):145–154, 1990.

[121] National Institute of Standards and Technology (NIST). FIPS-46-3: Data
Encryption Standard, October 1999. Available online at http://www.itl.

nist.gov/fipspubs/.

[122] National Institute of Standards and Technology (NIST). FIPS-197: Ad-
vanced Encryption Standard, November 2001. Available online at http:

//www.itl.nist.gov/fipspubs/.

[123] National Institute of Standards and Technology (NIST). Recommenda-
tion for Block Cipher Modes of Operation – Methods and Techniques,
December 2001. Available online at http://csrc.nist.gov/publications/

nistpubs/.

[124] NESSIE. New European Schemes for Signatures, Integrity, and Encryp-
tion. IST-1999-12324. http://cryptonessie.org/.

[125] K. Nishimura and M. Sibuya. Probability To Meet in the Middle. Journal
of Cryptology, 2(1):13–22, 1990.

[126] NIST. Announcing the Development of New Hash Algorithm(s) for the
Revision of Federal Information Processing Standard (FIPS) 1802, Secure
Hash Standard, 2007. http://www.csrc.nist.gov/pki/HashWorkshop/

FederalRegister/Federal%20Register%20Notice%20for%20Requirements%

20&%20Criteria%20-%20E7-927.pdf.

[127] NIST. Cryptographic Hash Competition – Tentative Timeline, 2007. http:
//csrc.nist.gov/groups/ST/hash/documents/HashWshop_2005_Report.pdf.

[128] National Institute of Standards and Technology (NIST). FIPS-180-2: Se-
cure Hash Standard, August 2002. Available online at http://www.itl.

nist.gov/fipspubs/.

[129] National Institute of Standards and Technology (NIST). FIPS PUB 198,
The Keyed-Hash Message Authentication Code (HMAC), March 2002.
Available online at http://www.itl.nist.gov/fipspubs/.

http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://csrc.nist.gov/publications/nistpubs/
http://csrc.nist.gov/publications/nistpubs/
http://cryptonessie.org/
http://www.csrc.nist.gov/pki/HashWorkshop/FederalRegister/Federal%20Register%20Notice%20for%20Requirements%20&%20Criteria%20-%20E7-927.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/FederalRegister/Federal%20Register%20Notice%20for%20Requirements%20&%20Criteria%20-%20E7-927.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/FederalRegister/Federal%20Register%20Notice%20for%20Requirements%20&%20Criteria%20-%20E7-927.pdf
http://csrc.nist.gov/groups/ST/hash/documents/HashWshop_2005_Report.pdf
http://csrc.nist.gov/groups/ST/hash/documents/HashWshop_2005_Report.pdf
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/


162 Bibliography

[130] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Ri-
jmen. A Side-Channel Analysis Resistant Description of the AES S-Box.
In Henri Gilbert and Helena Handschuh, editors, Fast Software Encryp-
tion: 12th International Workshop, FSE 2005, Paris, France, February
21-23, 2005, Revised Selected Papers, volume 3557 of LNCS, pages 413–
423. Springer, 2005.

[131] Nan Kyoung Park, Joon Ho Hwang, and Pil Joong Lee. HAS-V: A New
Hash Function with Variable Output Length. In Douglas R. Stinson and
Stafford E. Tavares, editors, Selected Areas in Cryptography, 7th Annual
International Workshop, SAC 2000, Waterloo, Ontario, Canada, August
14-15, 2000, Proceedings, volume 2012 of LNCS, pages 202–216. Springer,
2000.

[132] Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources.
Journal of Cryptology, 13(3):315–338, 2000.

[133] Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor,
Advances in Cryptology - ASIACRYPT 2007, 13th International Confer-
ence on the Theory and Application of Cryptology and Information Secu-
rity, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of
LNCS, pages 551–567. Springer, 2007.

[134] Vera Pless. Introduction to the Theory of Error-Correcting Codes. Wiley-
Interscience; 3 edition, 1998. ISBN 0-471-19047-0.

[135] Norbert Pramstaller, Frank K. Gürkaynak, Simon Häne, Hubert Kaes-
lin, Norbert Felber, and Wolfgang Fichtner. Towards an AES Crypto-
Chip Resistant to Differential Power Analysis. In M. Steyaert and C.L.
Claeys, editors, 30th European Solid-State Circuits Conference, ESSCIRC
2004, Leuven, Belgium September 21-23, 2004, Proceedings, pages 307–
310. IEEE, 2004.

[136] Norbert Pramstaller, Mario Lamberger, and Vincent Rijmen. Second
Preimages for Iterated Hash Functions and their Implications on MACs.
In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, Information
Security and Privacy - ACISP 2007, Townsville, Queensland, Australia,
July 2-4, 2007, Proceedings, volume 4586 of LNCS, pages 68–81. Springer,
2007.

[137] Norbert Pramstaller, Stefan Mangard, Sandra Dominikus, and Johannes
Wolkerstorfer. Efficient AES Implementations on ASICs and FPGAs. In
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, Advanced
Encryption Standard - AES, 4th International Conference, AES 2004,
Bonn, Germany, May 10-12, 2004, Revised Selected and Invited Papers,
volume 3373 of LNCS, pages 98–112, 2004.

[138] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Ex-
ploiting Coding Theory for Collision Attacks on SHA-1. In Nigel P.



Bibliography 163

Smart, editor, Cryptography and Coding, 10th IMA International Confer-
ence, Cirencester, UK, December 19-21, 2005, Proceedings, volume 3796
of LNCS, pages 78–95. Springer, 2005.

[139] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Impact
of Rotations in SHA-1 and Related Hash Functions. In Bart Preneel and
Stafford E. Tavares, editors, Selected Areas in Cryptography, 12th Interna-
tional Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005,
Revised Selected Papers, volume 3897 of LNCS, pages 261–275. Springer,
2005.

[140] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. A Com-
pact FPGA Implementation of the Hash Function Whirlpool. In Steven
J. E. Wilton and André DeHon, editors, Proceedings of the ACM/SIGDA
14th International Symposium on Field Programmable Gate Arrays, FPGA
2006, Monterey, California, USA, February 22-24, 2006, pages 159–166.
ACM, 2006.

[141] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Breaking
a New Hash Function Design Strategy Called SMASH. In Bart Preneel
and Stafford E. Tavares, editors, Selected Areas in Cryptography, 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11-
12, 2005, Revised Selected Papers, volume 3897 of LNCS, pages 233–244.
Springer, 2006.

[142] Norbert Pramstaller and Johannes Wolkerstorfer. A Universal and Effi-
cient AES Co-Processor for Field Programmable Logic Arrays. In Jürgen
Becker, Marco Platzner, and Serge Vernalde, editors, Field Programmable
Logic and Application, 14th International Conference, FPL 2004, Leu-
ven, Belgium, August 30-September 1, 2004, Proceedings, volume 3203 of
LNCS, pages 565–574. Springer, 2004.

[143] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD
thesis, Katholieke Universiteit Leuven, 1993.

[144] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based
on Block Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 22-26, 1993,
Proceedings, volume 773 of LNCS, pages 368–378. Springer, 1993.

[145] Bart Preneel and Paul C. van Oorschot. MDx-MAC and Building Fast
MACs from Hash Functions. In Don Coppersmith, editor, Advances in
Cryptology - CRYPTO ’95, 15th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 27-31, 1995, Proceedings,
volume 963 of LNCS, pages 1–14. Springer, 1995.



164 Bibliography

[146] Bart Preneel and Paul C. van Oorschot. On the Security of Iterated Mes-
sage Authentication Codes. IEEE Transactions on Information Theory,
45(1):188–199, 1999.

[147] Oliver Pretzel. Error-Correcting Codes and Finite Fields. Oxford Univer-
sity Press, USA; Student edition, 1996. ISBN 0-192-69067-1.

[148] Jean-Jacques Quisquater and Jean-Paul Delescaille. How Easy is Collision
Search. New Results and Applications to DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of LNCS, pages 408–413. Springer, 1989.

[149] Christian Rechberger and Vincent Rijmen. Note on Distinguishing,
Forgery, and Second Preimage Attacks on HMAC-SHA-1 and a Method to
Reduce the Key Entropy of NMAC. In Financial Crypto 2007, to appear
in LNCS. Springer, 2007.

[150] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred
Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptogra-
phers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005, Proceedings, volume 3376 of LNCS, pages 58–71.
Springer, 2005.

[151] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. Cryptology
ePrint Archive, Report 2005/010, 2005. Available online at http://eprint.
iacr.org/.

[152] Vincent Rijmen, Bart Van Rompay, Bart Preneel, and Joos Vandewalle.
Producing Collisions for PANAMA. In Mitsuru Matsui, editor, Fast
Software Encryption, 8th International Workshop, FSE 2001 Yokohama,
Japan, April 2-4, 2001, Revised Papers, volume 2355 of LNCS, pages 37–
51, 2001.

[153] Ronald L. Rivest. The MD4 Message-Digest Algorithm, Request for Com-
ments (RFC) 1320, The Internet Engineering Task Force, 1992.

[154] Ronald L. Rivest. The MD5 Message-Digest Algorithm, Request for Com-
ments (RFC) 1321, The Internet Engineering Task Force, 1992.

[155] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function
Basics: Definitions, Implications, and Separations for Preimage Resis-
tance, Second-Preimage Resistance, and Collision Resistance. In Bimal K.
Roy and Willi Meier, editors, Fast Software Encryption, 11th International
Workshop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers,
volume 3017 of LNCS, pages 371–388. Springer, 2004.

[156] Markku-Juhani O. Saarinen. A Meet-in-the-Middle Collision Attack
Against the New FORK-256. In Progress in Cryptology - INDOCRYPT

http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography 165

2007, 8th International Conference on Cryptology in India, Chennai, In-
dia, December 9-13, 2007, Proceedings, to appear in LNCS. Springer, 2007.

[157] John P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-
Cipher Model. In Moni Naor, editor, Advances in Cryptology - EURO-
CRYPT 2007: 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007. Proceedings, volume 4515 of LNCS, pages 34–51. Springer, 2007.

[158] Jacques Stern. A Method for Finding Codewords of Small Weight. In
G. Cohen and J. Wolfmann, editors, Coding Theory and Applications, 3rd
International Colloquium, Toulon, France, November, 1988, Proceedings,
volume 388 of LNCS, pages 106–113. Springer, 1989.

[159] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Col-
lisions for MD5 and Colliding X.509 Certificates for Different Identities.
In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings,
volume 4515 of LNCS, pages 1–22. Springer, 2007.

[160] Makoto Sugita, Mitsuru Kawazoe, Ludovic Perret, and Hideki Imai. Al-
gebraic Cryptanalysis of 58-Round SHA-1. In Alex Biryukov, editor, Fast
Software Encryption, 14th International Workshop, FSE 2007, Luxem-
bourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume
4593 of LNCS, pages 349–365. Springer, 2007.

[161] Michael Szydlo and Yiqun Lisa Yin. Collision-Resistant Usage of MD5 and
SHA-1 Via Message Preprocessing. In David Pointcheval, editor, Topics
in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings,
volume 3860 of LNCS, pages 99–114. Springer, 2006.

[162] IAIK Crypto Toolkit. http://jce.iaik.tugraz.at/products/core_crypto_

toolkits/jca_jce.

[163] Jacobus H. van Lint. Introduction to Coding Theory (Graduate Texts in
Mathematics). Springer; Third rev. and exp. ed. edition, 1998. ISBN
3-540-64133-5.

[164] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search
with Application to Hash Functions and Discrete Logarithms. In ACM
Conference on Computer and Communications Security, pages 210–218,
1994.

[165] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search
with Cryptanalytic Applications. Journal of Cryptology, 12(1):1–28, 1999.

[166] John Viega. The AHASH Mode of Operation, 2004. http://www.

cryptobarn.com/papers/ahash.pdf.

http://jce.iaik.tugraz.at/products/core_crypto_toolkits/jca_jce
http://jce.iaik.tugraz.at/products/core_crypto_toolkits/jca_jce
http://www.cryptobarn.com/papers/ahash.pdf
http://www.cryptobarn.com/papers/ahash.pdf


166 Bibliography

[167] David Wagner. A Generalized Birthday Problem. In Moti Yung, edi-
tor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, volume 2442 of LNCS, pages 288–303. Springer, 2002.

[168] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Xiuyuan Yu. Collisions
for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology
ePrint Archive, Report 2004/199, 2004. Available online at http://eprint.
iacr.org/.

[169] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the Hash Functions MD4 and RIPEMD. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings,
volume 3494 of LNCS, pages 1–18. Springer, 2005.

[170] Xiaoyun Wang, Andrew Yao, and Frances Yao. Cryptanalysis of SHA-1.
Presented at the Cryptographic Hash Workshop hosted by NIST, October
2005.

[171] Xiaoyun Wang, Andrew Yao, and Frances Yao. New Collision Search for
SHA-1, August 2005. Presented at rump session of CRYPTO 2005.

[172] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005, 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings, volume 3621 of LNCS,
pages 17–36. Springer, 2005.

[173] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Ronald Cramer, editor, Advances in Cryptology - EURO-
CRYPT 2005: 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26,
2005. Proceedings, volume 3494 of LNCS, pages 19–35. Springer, 2005.

[174] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search
Attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology -
CRYPTO 2005, 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621
of LNCS, pages 1–16. Springer, 2005.

[175] Hirotaka Yoshida and Alex Biryukov. Analysis of a SHA-256 Variant. In
Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptog-
raphy, 12th International Workshop, SAC 2005, Kingston, ON, Canada,
August 11-12, 2005, Revised Selected Papers, volume 3897 of LNCS, pages
245–260. Springer, 2005.

http://eprint.iacr.org/
http://eprint.iacr.org/


Bibliography 167

[176] Hirotaka Yoshida, Dai Watanabe, Katsuyuki Okeya, Jun Kitahara,
Hongjun Wu, Özgül Küçük, and Bart Preneel. MAME: A Compres-
sion Function with Reduced Hardware Requirements. In Pascal Paillier
and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of LNCS, pages 148–165.
Springer, 2007.

[177] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The Second-
Preimage Attack on MD4. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and
Yongqing Li, editors, Cryptology and Network Security, 4th International
Conference, CANS 2005, Xiamen, China, December 14-16, 2005, Proceed-
ings, volume 3810 of LNCS, pages 1–12. Springer, 2005.

[178] Gideon Yuval. How to Swindle Rabin. Cryptologia, 3(3):187–189, 1979.





List of Publications

In Refereed Conference Proceedings

1. Norbert Pramstaller, Mario Lamberger, and Vincent Rijmen, Second Preim-
ages for Iterated Hash Functions and their Implications on MACs. In Pro-
ceedings of Information Security and Privacy - ACISP 2007, Townsville,
Queensland, Australia, July 2-4, 2007, pp. 68-81, LNCS 4586

2. Steve Babbage, Carlos Cid, Norbert Pramstaller, and H̊avard Raddum, An
Analysis of the Hermes8 Stream Ciphers. In Proceedings of Information
Security and Privacy - ACISP 2007, Townsville, Queensland, Australia,
July 2-4, 2007, pp. 1-10, LNCS 4586

3. Mario Lamberger, Norbert Pramstaller, Christian Rechberger and Vin-
cent Rijmen, Second Preimages for SMASH. In Proceedings of Topics in
Cryptology - CT-RSA 2007, San Francisco, USA, February 5-9, 2007, pp.
101-111, LNCS 4377

4. Florian Mendel, Norbert Pramstaller, and Christian Rechberger, Improved
Collision-Attack on the Hash Function Proposed at PKC’98. In Proceed-
ings of Information Security and Cryptology - ICISC 2006, Busan, Korea,
November 30 - December 1, 2006, pp. 8-21, LNCS 4296

5. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen, On the Collision Resistance of RIPEMD-160. In Proceedings of
Information Security - ISC 2006, Samos, Greece, August 30 - September
2, 2006, pp. 101-116, LNCS 4176

6. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen, The Impact of Carries on the Complexity of Collision Attacks on
SHA-1. In Proceedings of Fast Software Encryption - FSE 2006, Graz,
Austria, March 15-17, 2006, pp. 278-292, LNCS 4047

7. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent
Rijmen, Analysis of Step-Reduced SHA-256. In Proceedings of Fast Soft-
ware Encryption - FSE 2006, Graz, Austria, March 15-17, 2006, pp 126-
143, LNCS 4047

8. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, A Com-
pact FPGA Implementation of the Hash Function Whirlpool. In Proceed-
ings of 14th ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays - FPGA 2006, Hyatt Regency Monterey, Monterey, Califor-
nia, February 22-24, 2006, pp. 159-166, ACM Press ISBN 1-59593-292-5

9. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, Break-
ing a New Hash Function Design Strategy Called SMASH. In Proceedings
of 12th Annual Workshop on Selected Areas in Cryptography - SAC2005,

169



170 Bibliography

Queen’s University, Kingston, Ontario, Canada, August 11-12, 2005, pp.
233-244, LNCS 3897

10. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, Impact
of Rotations in SHA-1 and Related Hash Functions. In Proceedings of 12th
Annual Workshop on Selected Areas in Cryptography - SAC2005, Queen’s
University, Kingston, Ontario, Canada, August 11-12, 2005, pp. 261-275,
LNCS 3897

11. Krystian Matusiewicz, Josef Pieprzyk, Norbert Pramstaller, Christian Rech-
berger, and Vincent Rijmen, Analysis of simplified variants of SHA-256.
In Western European Workshop on Research in Cryptology - WEWoRC
2005, LNI P-74, Gesellschaft für Informatik, 2005

12. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, Exploit-
ing Coding Theory for Collision Attacks on SHA-1. In Proceedings of 10th
IMA International Conference on Cryptography and Coding, Royal Agri-
cultural College, Cirencester, UK , December 19-21, 2005, pp 78-95, LNCS
3796

13. Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald, Success-
fully Attacking Masked AES Hardware Implementations. In Proceedings
of Workshop on Cryptographic Hardware and Embedded Systems - CHES
2005, Edinburgh, Scotland, August 29 - September 1, 2005, pp. 157-171,
LNCS 3659

14. Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Ri-
jmen, A Side-Channel Resistant Description of the AES S-box. In Pro-
ceedings of Fast Software Encryption - FSE 2005, Paris, France, February
21-23, 2005, pp. 413-423, LNCS 3557

15. Norbert Pramstaller, Elisabeth Oswald, Stefan Mangard, Frank K. Gürkay-
nak, and Simon Häne, A Masked AES ASIC Implementation. In Proceed-
ings of Austrochip 2004, pp.77-81, ISBN 3-200-00211-5, Villach, Austria,
October 8th 2004

16. Norbert Pramstaller and Manfred Aigner, A Universal and Efficient SHA-
256 Implementation for FPGAs. In Proceedings of Austrochip 2004, pp.89-
93, ISBN 3-200-00211-5, Villach, Austria, October 8th 2004

17. Norbert Pramstaller, Frank K. Gürkaynak, Simon Häne, Hubert Kaes-
lin, Norbert Felber, and Wolfgang Fichtner, Towards an AES Crypto-chip
Resistant to Differential Power Analysis. In Proceedings of European Solid-
State Circuits Conference - ESSCIRC 2004, Leuven, September 21-23,
2004, pp. 307-310, ISBN 0-7803-8480-6

18. Norbert Pramstaller, Stefan Mangard, Sandra Dominikus, and Johannes
Wolkerstorfer, Efficient AES Implementations on ASICs and FPGAs. In
Proceedings of Fourth Conference on the Advanced Encryption Standard -
AES 2004, Bonn, May, 2004, pp.98-112, LNCS 3373



Bibliography 171

19. Norbert Pramstaller and Johannes Wolkerstorfer, A Universal and Efficient
AES Implementation for Filed Programmable Logic Arrays. In Proceed-
ings of Field-Programmable Logic and Applications - FPL 2004, Antwerp,
August 30 - September 2, 2004, pp. 565-574, LNCS 3203

20. Martin Feldhofer, Michael Gross, Johann Großschädl, Thomas Popp, Nor-
bert Pramstaller, Christian Pühringer, Karl Scheibelhofer, Alexander Sze-
kely, Stefan Tillich, and Karl C. Posch, Rapid Prototyping of a SPARC-
V8-based Firewall-on-Chip. In Proceedings of Austrochip 2003, pp. 4145,
ISBN 3-200-00021-X, Linz, Austria, October 3rd, 2003

21. Norbert Pramstaller, Johannes Wolkerstorfer, An Efficient AES Implemen-
tation for Re-configurable Devices. In Proceedings of Austrochip 2003, pp.
58, ISBN 3-200-00021-X, Linz, Austria, October 3rd, 2003

Contributions to Workshops Without Proceed-
ings

1. Steve Babbage, Carlos Cid, Norbert Pramstaller, and H̊avard Raddum,
Cryptanalysis of Hermes8F, SASC The State of The Art of Stream Ciphers,
January 31 - February 1, Bochum, Germany, 2007

2. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, Breaking
a new Hash Function Design Strategy called SMASH. Workshop Hash
Functions, Przegorzaly (Krakow), June 23-24, Poland, 2005

3. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, On Vari-
able Bit-Rotations in SHA-1-like Hash Functions. Workshop Hash Func-
tions, Przegorzaly (Krakow), June 23-24, Poland, 2005

4. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, Prelim-
inary Analysis of the SHA-256 Message Expansion . Western European
Workshop on Research in Cryptography - WEWoRC, July 05-07, Leuven,
Belgium, 2005

5. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, An Effi-
cient FPGA Implementation of Whirlpool. Western European Workshop
on Research in Cryptography - WEWoRC, July 05-07, Leuven, Belgium,
2005

Preprints

1. Steve Babbage, Carlos Cid, Norbert Pramstaller, and H̊avard Raddum,
Cryptanalysis of Hermes8F, eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/048 and Cryptology ePrint Archive, Report 2006/269



172 Bibliography

2. Mario Lamberger, Norbert Pramstaller, and Vincent Rijmen, Second Preim-
ages for Iterated Hash Functions Based on a b-Block Bypass, Cryptology
ePrint Archive, Report 2006/116

3. IAIK Krypto Group, Preliminary Analysis of DHA-256, Cryptology ePrint
Archive, Report 2005/398

Invited Book Chapters

1. Vincent Rijmen and Norbert Pramstaller, Chapter 6, Cryptographic Al-
gorithms in Constrained Environments, in Handbook of Wireless Secu-
rity: From Specifications to Implementations, edited by N. Sklavos and X.
Zhang, CRC Press, ISBN: 9780849387715, 2007



Curriculum Vitae

Norbert Pramstaller was born in Brunico (Italy), on June 29, 1978. From 1998
to 2004 he studied Telematics at Graz University of Technology, where he ob-
tained the Master degree with distinction. His master thesis was about DPA
resistant AES ASIC implementations and was performed at ETH Zurich during
the winter term 2003/2004. From June 2004 to December 2004, he was working
as researcher in the VLSI and security group at IAIK TU Graz. In January
2005, he started to work towards his PhD degree with Prof. Vincent Rijmen at
the IAIK Krypto Group. Since then, he is scientific assistant at Graz University
of Technology.

173




	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Notations
	Introduction
	Symmetric Primitives
	Cryptographic Hash Functions
	Cryptanalysis

	Outline of this Thesis and Main Contribution

	Preliminaries
	Notation
	Block Ciphers
	Cryptographic Hash Functions
	Iterated Hash Functions
	Security Requirements
	Different Types of Collisions
	Dedicated Hash Functions
	Block-Cipher-Based Hash Functions

	Message Authentication Codes
	Diff. Properties of Boolean Functions and Modular Addition
	Signed-Bit Differences
	Differential Properties of Boolean Functions in SHA-1

	Finite Fields
	Groups, Rings, and Fields
	Polynomials over Fields

	Linear Codes
	Basic Definitions
	Searching for Low-Weight Codewords

	Summary

	Analysis Methods for Hash Functions
	Collision Attacks
	Birthday Attacks
	Shortcut Attacks
	Multicollisions
	Expandable Messages
	Collisions for Cascaded Hash Functions

	(Second) Preimage Attacks
	Shortcut Attacks
	Long-Message Second-Preimage Attacks
	(Second) Preimages for Cascaded Hash Functions

	Summary

	Collision Attacks on SHA-1
	The Hash Function SHA-1
	SHA-1 Message Expansion
	SHA-1 State Update Transformation
	Linearized Variant L-SHA-1

	The Attack Strategy
	Chabaud and Joux
	Biham and Chen
	Rijmen and Oswald
	Wang et al.

	Constructing a Linear Characteristic
	Collision-Producing Differences and Linear Codes
	Improving Low-Weight Search for L-SHA-1

	An Accurate Probability Analysis of Local Collisions in SHA-1
	Considering the Number of Conditions
	Accurate Probability Computation
	Disturbances in Adjacent Bit Positions
	Update of Attack Complexity by Wang et al.

	A Generalized Collision Attack on SHA-1
	Summary

	Cryptanalysis of Selected Hash Function Proposals
	Cryptanalysis of SMASH
	The Design Strategy SMASH
	Specific Properties of SMASH
	Collision Attack
	Second Preimage Attack

	A Second Preimage Attack on a DBLH Proposal
	The Proposal
	DESX and the General Construction FX
	DBLH with FX
	The Second Preimage Attack

	Summary

	Implications of Collisions and 2nd Preimages on MACs
	Message Authentication Codes and Attacks
	Implications of Collision Attacks
	Distinguishing and Forgery Attacks
	Key-Recovery Attacks
	Summary of Forgery and Key-Recovery Attacks

	Implications of Second Preimage Attacks
	The Notion of b-Block Bypass
	b-Block Bypass for SMASH
	b-Block Bypass for DBLH with FX
	Implications on NMAC and HMAC

	Summary

	Design of Cryptographic Hash Functions
	Recent Proposals
	Modifications of SHA-1
	Sponge Functions and RADIOGATÚN
	Grindahl

	The Hash Function Whirlpool
	The Compression Function
	Security Claims

	A New Block-Cipher-Based Proposal: AESH-256
	The Compression Function
	Security Analysis
	Performance Evaluation and Comparison

	Summary and Discussion

	Conclusion and Further Research Directions
	Cryptanalysis of Hash Functions
	Design of Hash Functions

	Bibliography
	List of Publications and CV

